
Politecnico di Milano

Facoltà di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

An On-Line Aspect-Oriented Monitoring Tool

for the SelfLet Framework

Relatore: Elisabetta Di Nitto

Tesi di Laurea di: Francesco NIGRO matr. 666733

Anno Accademico 2009-2010

alle persone che hanno saputo credere in me, la mia

famiglia, i miei amici e Sara, il mio amore. . .

Ringraziamenti

Ringrazio tutte le persone che mi hanno supportato in questa sofferta stesura

del lavoro di tesi, a partire da coloro che mi hanno donato la possibilità di

esprimere la mia passione per questa disciplina, come la prof.ssa Di Nitto o

Nicolò Calcavecchia. Ringrazio inoltre tutti i miei amici e la mia famiglia, che

mi hanno spinto e aiutato con ogni mezzo ad affrontare questo ultimo capitolo

della mia vita universitaria. Infine, per ultima, ma nel mio cuore, più cara,

va la mia gratitudine e stima alla mia ragazza, Sara, che ha stretto i denti

insieme a me durante tutto questo duro periodo, spronandomi, con la dolcezza

e delicatezza di cui solo lei è capace, a non perdere mai la speranza in un futuro

migliore, da costruire con forza e determinazione: qualità che mi miglioreranno

sicuramente come ingegnere, ma soprattutto, come uomo. Grazie.

Milano, 19 Marzo 2011

Francesco

Sommario

La proliferazione di sistemi tecnologici nella quotidianità, sta fortemente cam-

biando il mondo in cui viviamo. Come conseguenza di questa esplosione tec-

nologica, la domanda relativa a professionisti capaci di gestire e mantenere

questi sistemi, sta costantemente crescendo. Sfortunatamente, la richiesta sta

superando l’offerta di personale specializzato, sollevando cos̀ı un problema mai

affrontato prima: gestire la complessità dei sistemi informatici.

L’Autonomic Computing è l’ambito di ricerca interessato allo studio di sis-

temi capaci di autogestirsi, senza l’intervento umano. Questi sistemi si pos-

sono caratterizzare per le cosiddette proprietà Self- (auto-configurazione, auto-

guarigione, auto-ottimizzazione e auto-protezione), che prendono ispirazione

dal sistema autonomo nervoso del corpo umano.

L’Autonomic Computing è anche il contesto di riferimento per le SelfLet: una

SeflLet[17] è un singolo componente autonomico autosufficiente, che posto in

una rete è in grado di comunicare con altre SelfLet. Le SelfLet vengono de-

scritte tramite degli obiettivi da ottenere, dei comportamenti capaci di rag-

giungere gli obiettivi e delle regole per far fronte a situazioni critiche.

Il lavoro svolto in questa tesi estende il supporto all’utilizzatore delle Self-

Let, attraverso la creazione di uno strumento che permetta il monitoraggio

distribuito di una rete di SelfLet. Tale strumento deve inoltre risultare:

• di semplice utilizzo

• facilmente estendibile

• altamente configurabile

• a minimo impatto prestazionale

Inizialmente è stata svolta una ricerca delle soluzioni a problemi simili, con

l’obiettivo di analizzare differenti approcci al monitoraggio di sistemi dis-

tribuiti; successivamente, una ricerca in letteratura delle architetture e delle

tecnologie scelte per favorire una buona manutenibilità della soluzione. Il

lavoro continua con lo studio di un modello architetturale per il sistema di

monitoraggio che prediliga la semplicità e la robustezza. Particolare atten-

zione viene data alle tecniche di progettazione tipiche della realizzazione di

sistemi programmati difensivamente. Succesivamente è stato realizzato il cuore

dell’architettura attraverso le metologie e con gli strumenti trovati nel corso

dell’attività di ricerca iniziale. Infine, l’architettura proposta è stata validata

attraverso l’implementazione di uno strumento (compatibile con il modello

stesso dell’architettura) da applicare a due casi di studio, i cui risultati vengono

analizzati in modo tale da quantificare il contributo del lavoro svolto.

Organizzazione

Questa tesi è organizzata come segue.

• Nel Capitolo 2 viene introdotto lo stato dell’arte dei sistemi di monitor-

aggio distribuiti. In particolare, vengono presentate le caratteristiche ed

i problemi tipici di questo genere di sistemi, nonchè la soluzione proposta

da “Technischen Universität München”1.

• Il Capitolo 3 presenta gli strumenti adottati nello sviluppo della soluzione

proposta, una breve descrizione del framework autonomico oggetto

del monitoraggio e dell’architettura della soluzione realizzata, con una

panoramica di una implementazione conforme ad essa.

• Il Capitolo 4 infine presenta i casi di studio implementati ed i risultati

ottenuti dalla loro esecuzione.

La tesi si conclude con il Capitolo 5: sono tratte delle conclusioni e sono

presentati alcuni possibili sviluppi futuri.

1Università Tecnica di Monaco di Baviera

viii

Table of Contents

1 Introduction 1

1.1 Outline of the Thesis . 2

2 State of the art 3

2.1 Monitoring . 3

2.1.1 The purpose of monitoring 4

2.1.2 Modelling and the level of monitoring 4

2.1.3 The problems of monitoring 5

2.1.4 Program Monitoring . 6

2.2 Distribution and monitoring . 8

2.2.1 Aspects of distribution 8

2.2.2 Conclusions about monitoring in a distributed system . . 12

2.3 The OMIS approach . 12

2.3.1 J-OMIS . 15

2.3.2 J-OCM . 16

3 The SelfLetMonitor framework 21

3.1 The SelfLet framework . 21

3.1.1 SelfLet Conceptual Model 21

3.1.2 The SelfLet Architecture 23

3.2 Conceptual Tools . 24

3.2.1 Aspect Programming . 24

3.2.2 Design Patterns . 27

3.3 Technologies adopted . 35

3.3.1 AspectJ . 35

3.4 The SelfLetMonitor Framework 39

3.4.1 Architecture . 39

TABLE OF CONTENTS

3.4.2 Under the hood . 40

4 Case study analysis and results 47

4.1 Objectives . 47

4.2 Methodology . 48

4.2.1 First case study: evaluating speed of execution 49

4.2.2 Second case study: evaluating messages overhead 50

4.3 Results . 50

5 Conclusions and Future Works 55

5.1 Conclusion . 55

5.2 Future work . 56

Appendices 59

A SelfLetMonitorAPI UML 2.0 Class Diagrams 61

B SelfLetClientMonitor UML 2.0 Class Diagrams 67

C SelfLetServerMonitor UML 2.0 Class Diagrams 73

Bibliography 77

x

Chapter 1

Introduction

The proliferation of technology in everyday life, is greatly changing the world

in which we live. As a result of this explosion of technology, the demand for

professionals capable of managing and maintaining these systems is steadily

growing. Unfortunately, demand is outpacing the supply of skilled personnel,

thus relieving a problem never faced before: to manage the complexity of

computer systems.

The Autonomic Computing is the field of research concerned the study of

systems able to manage themselves without human intervention. These sys-

tems can be characterized by the so-called Self- properties (self-configuring,

self-healing, self-optimizing and self-protection), taking inspiration from the

autonomous nervous system of human body.

The Autonomic Computing is the reference framework for SelfLet: a SeflLet[17]

is a single self-contained stand-alone component, which if is placed in a net-

work can communicate with other SelfLet. The SelfLet are described by the

objectives to be achieved, for conduct capable of achieving the objectives and

rules to deal with critical situations.

The work in this thesis extends support to the SelfLet’s user through the

creation of a tool that allows monitoring distributed network of SelfLets. The

tool should also be:

• easy to use

• easily extensible

• highly configurable

Introduction

• with minimal performance impact

Was initially carried out a search for solutions to similar problems, with the

aim to analyze different approaches to monitoring distributed systems, and

thereafter a search of the literature of architecture and technology choices to

promote good maintainability of the solution. Work continues with the study

of an architectural model for the monitoring system that focuses on simplicity

and robustness. Particular attention is given to the technical design of the

typical implementation of systems programmed defensively. Successive was

created the core of the architecture through the metodologies and the tools

found in the work of research. Finally, the proposed architecture was validated

through the implementation of a tool (compatible with the architectural model

itself) to be applied to two case studies, whose results are analyzed in order

to quantify the contribution of the solution realized.

1.1 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 introduces the state of the art about monitoring of distributed

systems. In particular, it presents the characteristics and problems typ-

ical of such systems, as well as the proposed solution from the “Technis-

chen Universität München”1.

• Chapter 3 presents the tools used in the development of the solution

proposal, a brief description of the autonomic framework object of the

monitoring and the architecture of the solution made, with an overview

of an implementation compliant to it.

• Chapter 4 then presents the case studies implemented and the results

obtained from their execution.

The thesis concludes with Chapter 5: the conclusions and the presentation of

some possible future developments.

1Technical University of Monaco of Bavaria

2

Chapter 2

State of the art

2.1 Monitoring

Increasing complexity is an undeniable trend in modern software. The rise in

complexity affects not only developers involved in constructing large and com-

plex systems, but also those who intend to debug and maintain the systems,

or reuse existing code in new systems: before commencing work, developers

have to understand the existing system code.

Understanding code for maintenance reasons is related to the idea of under-

standing it for educational purposes. A common technique for interpreting how

complex software works consists of reading its source code. This approach has

its problems: not only it is taxing having to decipher previously unseen code,

often it can be difficult for the reader to work out which area of the code s/he

meant to focus on, or which program components s/he should be looking at.

Traditional methods of collecting program monitoring information suffer from

various problems, which range from not providing wide enough spectrum of

information to being intrusive.

This kind of problems are magnified in the cases of softwares organized with

a distributed approach, as autonomic distributed system, because there are

additional issues related to the consistency of monitoring data collected along

the execution of the nodes being part of the overall system.

State of the art

2.1.1 The purpose of monitoring

Monitoring is carried out in order to obtain information about a system, and

in general, monitoring is part of the process of management. Among the many

activities which involve monitoring is possible to find:

• debugging

• testing

• accounting

• performance evaluation

• resource utilisation analysis

• security

• fault detection

• teaching aid.

Monitoring and its management are concerned with providing the necessary

information in order to allow the construction of the required model of the

observed system and its presentation. It is the purpose of monitoring which

dictates what should be observed and also how the information is to be ob-

tained.

2.1.2 Modelling and the level of monitoring

The different purposes for which monitoring is carried out can be interpreted

at different levels. Thus, for example, debugging a single object as opposed to

debugging the interactions among multiple objects will require different events

to be observed. A language debugger will require events to be generated at a

smaller level of granularity with respect to the one which is aimed at debugging

the interactions between objects.

Some of the models constructed for the purposes listed in the following sections

will require a different model or models of the distributed system. The exact

level of modelling will dictate the granularity of the events the observer wishes

to monitor.

4

2.1 Monitoring

2.1.3 The problems of monitoring

The following list is an exposition of the problems encountered when monitor-

ing centralized and distributed computer systems[27]:

1. Direct and indirect observations: the behavior of some systems can

be directly observed, thereby making the process of monitoring relatively

straight forward. In computer systems most events of interest cannot be

observed directly without special facilities, thereby requiring the incor-

poration of a monitoring infrastructure in such systems. The monitoring

infrastructure will also facilitate the management of monitoring. There

may be several levels of indirection between the observed system and the

observer. Distribution complicates the process of monitoring, introduc-

ing additional levels of indirection and subsequently additional problems.

2. Complete and incomplete observations: completeness and incom-

pleteness refer to whether the information necessary in order to construct

a particular model of an observed system is available or not. It could be

argued that any observation of a system only reveals part of the system.

This is not a problem when the observer is constructing a particular

model of the system and the observation fits this model. However, in-

completeness can cause problems when it is not intended or not catered

for.

3. Presentation problems: in many cases it is necessary to modify the

information from the observed events if that events occur at a rate which

cannot be easily used by the observer, appear in a form which is not

suited for immediate use by the observer or the volume of events may be

such that it overwhelms the observer.

4. Monitor and interference: there is a relation between the flexibility

of the monitoring facilities, the cost of implementation, and the extent to

which they interfere with the behavior of the system. The most general

requirement from monitoring, which is independent of the purpose for

which it is introduced, is that although the sequence of system events

may change as a result of the interference caused by monitoring, it must

not result in an illegal sequence of events taking place.

5

State of the art

2.1.4 Program Monitoring

Program Monitoring is the regular observation and recording of activities tak-

ing place in a program. It is a process of routinely gathering information on all

aspects of the project. To monitor is to check on how program activities are

progressing. It is the performing of systematic and purposeful observations.

Monitoring also involves giving feedback about the progress of the program

to the implementors and beneficiaries of the system. Reporting enables the

gathered information to be used in making decisions for improving program

performance.

The above definition of the monitoring problem is usually faced with two kind

of approaches[27]:

• event-driven

• data-driven

The major pitfall of the event-driven approach is that it requires modifica-

tion of source code, which is intrusive. The alternative data-driven approach

monitors the target program for functions calls and data modifications. Pro-

grams can be monitored in various ways, which include hardware monitoring

, postprocessing the executable form of the program, modifying the language

processor and preprocessing the program source.

The four techniques presented below are often used in combination, as they

all have their own strengths and weakness, as well as collecting different type

of information. While they do not involve modification of source code, they

still require modification of existing tools, some at quite low level, or creation

of completely new tools. Furthermore, they are non necessary capable of col-

lecting the required monitoring information.

Hardware Monitoring

Since computer programs must be executed by a hardware processor, it is pos-

sible to modify the processor to start monitoring the execution of the program

when a certain condition occurs. This monitoring can take various forms,

such as invocation of a debugger, which will single-step the program, or use of

memory access traps to monitor changes in data structures. A typical problem

6

2.1 Monitoring

encountered with hardware monitoring is that it is difficult to control gran-

ularity refers to the level of detail of animation events. Since any change to

a variable being mapped causes the program state to change, by default the

granularity is high: usually some mechanism is used to control the granularity

i.e. determine when the state has changed sufficiently to require visualization

updating.

For many programming languages, the primary problem with this approach is

that it generally means that informations will be reported in terms of assem-

bly language. This not have to be the case for Java however, since the Java

Platform Debugger Architecture provides the Java Debug Interface (JDI). The

JDI allows for collection of debugging and tracing information from a running

Java program without modification of source code.

Postprocessing the Executable Form of the Program

This approach involves modifying the program’s executable form directly, as

opposed to modifying the processor or the language software. An advantage of

this approach is that the program can be changed after the language processor,

and even the target program itself has been loaded and run. In other words, it

is possible to modify the program modifying the program binary and without

having to do additional program retranslations. A disadvantage is that the

only information yielded will be that which can be extracted from the program

binary.

Modifying the language processor

To avoid having to work with assembly language information or worse still,

binary output, it is possible to monitor programs by modifying the language

processor directly. This approach can be successfully applied to both compiler

processors and interpreter processors, but it does mean that the language

processor needs to be extended to include the monitoring.

Preprocessing the Program Source

This involves using a preprocessor to modify the target program source prior to

sending it to the language processor. The task of the preprocessor is to insert

statements in relevant places that will output useful monitoring information.

7

State of the art

A clear advantage is that program source code is dealt with, and existing

software and hardware does not need to be modified. A disadvantage is that a

preprocessor needs to be created, and furthermore, one needs to be careful that

the source code after preprocessing will present the same program behavior to

the user as it did prior to preprocessing.

2.2 Distribution and monitoring

This section discusses aspects of distribution which affect monitoring: phys-

ical separation, concurrency, heterogeneity, federation, scaling and evolution.

A summary of the assumptions which are no longer valid when monitoring

distributed systems, as opposed to centralised systems, is presented. The sec-

tion also identifies the three major problem areas of providing monitoring in

distributed systems: management of monitoring, reconstruction of the causal

flow of events, and presentation of monitoring information.

2.2.1 Aspects of distribution

The following sections discuss the aspects of distribution which have an effect

on monitoring: physical separation, concurrency, heterogeneity, federation,

scaling and evolution[27].

Physical separation

In a distributed system the physical separation of objects is unavoidable. In

addition, communication delays among objects are usually variable and unpre-

dictable. As a result there is no single point of reference from which events in

the entire system can be directly observed. In order to obtain a global view of

the system it is necessary to collect information on local events from several

locations, from which a reconstruction of the flow of global events can be made.

For example, to determine whether a certain event at one location is causally

related to another event at some other location.

There are situations in which it is not possible to monitor events in certain

parts of the system. This may be the result of the absence of monitoring

facilities, or policy decisions imposed on an object. There are two additional

complications in distributed systems:

8

2.2 Distribution and monitoring

• failures can occur during communication

• services may partially fail.

Such failures may affect not only the activities being monitored, but also the

monitoring of these activities, resulting in incomplete information.

This complicates the reconstruction of the flow of events in the system, and

results in an incomplete picture of the system.

Distributed systems are characterized by the possibility of partial failures.

Partial failures may lead to situations where some but not all of the managed

objects in a system can be accessed. Moreover, some of the management

infrastructure itself may fail. Fault tolerant techniques may therefore have

to be applied to the management facilities themselves in order to make them

more robust to failure.

The physical separation of systems together with the variable communication

delays also means that there is no single point of control in a distributed

system. This together with the absence of a single point of observation means

that checkpoints, tracing, breakpoints and single stepping of a distributed

application are difficult, if not impossible without changing the nature of the

system.

If a system is distributed, the absence of a single point of control and the

absence of a single point of observation implies that the monitor and controller

must be distributed as well. Furthermore, in some systems the decision making

process may either be distributed and/or have to be carried out in the face of

incomplete information.

Cuncurrency

Distributed systems will support multiple objects and activities. Bindings

between objects will be set up and discarded, and objects will be able to invoke

other objects asynchronously through these bindings. Furthermore, objects

will be created and destroyed as the need arises. The dynamic initiation and

termination of activities will lead to situations where the activities stemming

from an application may spread throughout the system. The extent of the

initiated activities may not be known in advance.

From the point of view of monitoring this creates several difficulties. In order

to gain sufficient understanding of the flow of events in a system it may not be

9

State of the art

enough to monitor a single object or simply its interactions with other objects.

In fact we may wish to gain information on how activities spread in a system.

Thus we may wish to:

• fully activate monitoring of objects with which a monitored object inter-

acts

• follow the chain of activity as it moves from one object to another

As different combinations of these strategies may occasionally be required, the

management of the monitoring activities in such circumstances will be difficult

unless extremely flexible management structures can be provided.

Together with different monitoring activation strategies, additional event in-

formation to allow the observer to follow activities throughout the system is

necessary.

Heterogeneity

Large scale distributed systems inevitably include some diversity in their hard-

ware, operating systems and their distributed system infrastructure. It is

reasonable to assume, therefore, that this diversity will be reflected in the

implementations of monitoring facilities. Distribution does not only refer to

the run-time physical separation of components, but also to the possibility of

a distributed development environment. In such a case it is possible to have

different implementations of monitoring which do not conform to one another.

In order to make possible monitoring across heterogeneous systems, it is nec-

essary to reach agreement on monitoring conformance issues.

Standard management facilities cannot be assumed across domain boundaries.

Different monitoring and control facilities may exist in different management

domains.

The problem of the integration of management infrastructures where different

monitoring and control facilities may exist can be overcome through agree-

ment on facilities or by the incorporation of facilities which allow dynamic

integration of the different local management facilities.

10

2.2 Distribution and monitoring

Federation

The existence of centralised ownership and universal and technical control in

large scale distributed systems cannot be assumed, and separate sources of

authority will inevitably reside side by side. In such systems a “federated”

style of interworking will be necessary in which no participant is in control

of the others. Each system controls its own services locally according to its

policies. Different monitoring policies must be anticipated within federated

systems and problems will arise when attempting to monitor across federation

boundaries between systems whose monitoring policies clash. Cooperation

between systems requires the parties responsible for them to negotiate the use

of services either prior to the request for use of service or as a result of such a

request.

Scaling

As discussed in the section on concurrency, activities in a distributed system

can spread and encompass large parts of the system. In cases where moni-

toring is expected to report on such activities, it is important to note that

the monitoring activity itself will have to spread, thus consuming increasing

storage, processing and communication resources. It is therefore essential that

(the distribution of) monitoring itself scales well.

The requirement for scaling needs monitoring structures which can accommo-

date distribution, system evolution, and growth of the activity in the face of

resource constraints and performance requirements. Both management and

collation structures must be designed with scaling in mind.

Evolution

Distributed systems will evolve over time, possibly in an inconsistent man-

ner. If monitoring procedures change over time, there may be clashes between

monitoring standards embedded in new components and monitoring standards

in existing components. The problems arising in evolving systems are often

similar in nature to those arising in heterogeneous and federated systems.

11

State of the art

2.2.2 Conclusions about monitoring in a distributed

system

The problems cited above which distribution introduces to monitoring can be

grouped together into three major problem areas:

1. the definition, design and incorporation of a monitoring and management

infrastructure to facilitate the dynamic monitoring of distributed systems

2. ordering and reconstruction of the flow of events in a distributed system

from the monitoring information: the transformation of a collection of

monitoring information of local events into a global picture. The ability

to reconstruct can be seen as a pre-requisite for providing useful presen-

tations of monitoring information

3. the visualization of monitoring information in order to provide the ob-

server with useful models of the system and the activities in it

2.3 The OMIS approach

OMIS (On-line Monitoring Interface Specification)[24] is the definition of

a standard interface between various types of run-time tools for parallel

and distributed systems and the systems themselves. Speaking of run-time

tools we mean debuggers, performance analyzers, program flow and result

visualizers, load and resource management systems etc. These tools require

means for observation and manipulation of the execution of parallel programs.

Different tools need similar sets of information and manipulation facilities.

These facilities are called monitoring systems and must be implemented for a

large variety of target systems.

A monitoring system with a standardized interface allows to quickly supply

various target systems with the same powerful set of tools. OMIS is the

definition of such an interface. It allows tool developers to attach new tools

to already existing implementations of OMIS compliant monitoring systems

on different target architectures. An OMIS compliant monitoring system

can concurrently serve several compliant tools, thus offering a means for

tool interoperability. Universality with respect to new tool environments is

guaranteed by OMIS’ intrinsic mechanisms of extendibility.

12

2.3 The OMIS approach

OMIS is not the first approach that tries to define a standard interface

for middle-ware software layers, however, it’s currently the only one that

concentrates on complete tool environments for parallel and distributed

system. An overall view of the system model of an OMIS compliant

monitoring system embedded into an environment with tools and a parallel

programming library is presented in Figure 2.1.

Figure 2.1: System model OMIS 2.0 compliant.

The cooperation between the tool and the monitoring system is based

on the service request/reply mechanism. A tool sends a service request to

the monitoring system, e.g. as a coded string which describes a condition

(event) (if any) and activities (action list) which have to be invoked (when

the condition gets true). In this way the tool programs the monitoring system

to listen for event occurrences, perform needed actions, and transfer results

to the tool. OMIS relies on a hierarchy of the abstract objects: nodes,

processes, threads, messages queues and messages (see Figure 2.2). Every

object is represented by an abstract identifier (token) which can be converted

into other token types by the conversion functions localization and expansion

13

State of the art

which are automatically applied to every service definition that has tokens as

a parameter. Each tool at each moment has a well defined scope, i.e. it can

observe and manipulate a specific set of objects attached on a request from

this tool.

Figure 2.2: Hierarchy of objects in OMIS.

For each system object OMIS defines a set of services that belong to one

of the three categories:

• information services: provide information about the object

• manipulation services: allow to manipulate the object

• event services: trigger arbitrary actions whenever a matching event

takes place

Due to the distributed nature of parallel application, the monitoring system

must itself be distributed and needs one monitoring component per node.

OMIS allows the monitoring system to be expanded with a tool extension or

monitor extension, which adds new services and new types of objects to the

basic monitoring system, for specific programming environments.

In the next section an extended version of this standard specifically designed to

work with Java and an istance of this specification that represents the current

state of art of a monitoring distribuited system for Java is presented.

14

2.3 The OMIS approach

2.3.1 J-OMIS

The OMIS specification focuses on the definition of an interface between tools

and a monitoring system.

The original OMIS specifies a hierarchy of system objects for the message

passing paradigm, stemming from its initial focus on PVM applications (see

Figure 2.2). The specific features of Java necessitated to review this hierarchy

of system objects and to introduce new objects and relationships between

them, which underly the J-OMIS (Java-bound On-line Monitoring Interface

Specification)[26]. The extended specification (see Figure 2.3) distinguishes

between two kinds of system objects: execution objects, i.e. nodes, JVMs,

threads and application objects, i.e. interfaces, classes, objects, methods.

Figure 2.3: Hierarchy of objects in Java oriented extension to OMIS.

Figure 2.4 shows the software component structure of the monitoring

system. On the top of Figure 2.4 there are various tools running which

communicate with the central component of the monitoring system. This

component is called the node distribution unit (NDU). The NDU is intended

to analyze each request issued by a tool and split it into pieces that can

be processed locally by the local monitors on the nodes involved. The

NDU must also assemble the partial answers which are received from

the local monitor processes into a global reply sent back to the requesting

tool. Addition and removal of nodes is also detected and handled by the NDU.

15

State of the art

Figure 2.4: Architecture of the monitoring environment.

The distributed part of the monitoring system consists of multiple node

local monitors (NLM), one per node of the target system and Java virtual

machine local monitors (JVMLM), one for each JVM process (there can be

multiple JVMs on one node). The NLM processes control the JVM processes

via agents (JVMLMs) and the operating system interfaces. The NLM offers

a server interface that is similar to the monitoring interface, with the excep-

tion that it only accepts requests that can be handled locally. The NLM is

responsible for the cooperation with JVMLMs. In addition, it gathers infor-

mation from the outside of the JVM process. The JVMLM is an agent that

is embedded in the virtual machine process. The agent is responsible for the

execution of the requests received from the NLM. Its implementation depends

on the virtual machine native interfaces that provide low-level mechanisms for

interactive monitoring of the JVM. In order to make the monitoring system

widely independent from a concrete JVM implementation, it is required to

build JVMLMs that will use JVM interfaces like JVMPI (Java Virtual Ma-

chine Profiler Interface), JNI (Java Native Interface), JVMDI (Java Virtual

Machine Debug Interface) or Java bytecode instrumentation.

2.3.2 J-OCM

J-OCM [18] is a J-OMIS compliant monitoring system, a Java-oriented

extension to OCM[25] (OMIS Compliant Monitoring system) that extends

16

2.3 The OMIS approach

the functionalities of the OCM, via adding new software components and

adapting existing ones (see Figure 2.5).

Figure 2.5: Architecture of J-OCM.

To support the monitoring of Java applications, the LM’s extension,

JVMEXT, provides new services defined by J-OMIS, which control JVM via

agents. JVMEXT is linked to LMs as a dynamically linked library at run-

time using the dlopen interface, whenever the tool issues a service request to

JVMEXT.

The Java Virtual Machine Local Monitor (JVMLM) is an agent embedded

into a JVM process, as seen in the section 2.3.1.

The Shared Memory based Local Agents Environment (SHMLAE) is a commu-

nication layer to support cooperation between agents and the LM. This allows

the components involved in communication to find each other during start-up

and notify about their existence.

Request Processing

The monitoring infrastructure allows the tool to see the whole monitored

application as a set of distributed objects and the monitoring system as a

higher-level software layer (middleware) that provides a standardized interface

to access those objects, regardless of implementation details, like hardware

platform or software language.

17

State of the art

To deal with the distributed target system the J-OCM will be considered as

a distributed system, which has to usually comprise additional architectural

elements[13]:

• Interface definition of a remote object (e.g. methods, data types),

written in an Interface Definition Language (IDF) file called registry

• Stub and Skeleton of the object, based on the Proxy Design Pattern

where the object is represented by another object (the proxy), in order

to control access to the object. The monitored objects are identified by

tokens which refer to the proxy object. The proxy is a representation

of the real object in the monitoring system. The object proxy contains

all information that is needed to deliver the tool’s requests to the JVM

agent (JVMLM) which directly accesses the JVM[18]. The JVM agent

acts as a skeleton, while the remote proxy which is embedded into the

JVM is a platform dependent native library. The agent transforms a call

and parameters received from the LM into the format required by one of

interfaces used to interact with JVM.

• Object manager and registration/naming service. The Object

Manager routes the calls issued by the client to the propoer object on

the server and the results back to the client. The registration/naming

service acts as an intermediary layer between the object client and the

object manager. Once an interface to the object has been defined, an

implementation of the interface needs to be registered with the naming

service so that the object can be accessed by clients using the object’s

name. NDU and LMs can be classified as an object manager and provide

operations similar to the naming service that is present in distributed

systems.

Event Handling

In order to follow the idea of event-based monitoring both the LM and the

JVMLM must support the event notification.

JVM notifies several internal events to the JVMLM, using JVMPI and

JVMDI. These events are fired by changes in the state of Java threads, like

(started, ended, blocked on a locked monitor), the beginning/ending of an

18

2.3 The OMIS approach

invoked method, class loading operations, object allocation/deallocation, and

the beginning/ending of JVM garbage collection, exception throwing, etc.

To support the interactive observation of the target system, all events must

be processed by the JVM agent, while the agent sends the events to the LM

selectively, to avoid too much overhead on the LM. This is based on a filtering

mechanism (implemented by a filter table) introduced into the JVM agent,

which selects which events should be sent to the LM.

The J-OCM, as an adaptation of the OCM for Java applications, extends the

event tree of the OCM by its own subtree. The new event hierarchy, shown in

Figure 2.6, consists of three types of event classes[12].

Figure 2.6: Hierarchy of J-OCM events.

The jvm any is the “root” of Java related event classes and is triggered

whenever any of JVMs registered in the monitoring system generates an event.

The jvm any is a Singleton , the event class that has only one instance to pro-

vide the global point of access to it in the Local Monitor. All other event

classes, which relate to other object types specified in J-OMIS, e.g. jvms,

threads, classes, etc. are derived from this one using filters.

The jvm control, jvm thread, jvm class, jvm object, jvm method control

classes represent abstract object control event classes.

Leaves, those elements of the tree which do not have children, represent the

events which are defined by the interface specification, i.e. J-OMIS. J-OMIS

classifies event services based on the categories of elements of the Java program

19

State of the art

architecture the services operate on. The J-OCM event tree follows this clas-

sification, similarly the control services group the event services operating on

a type of token, e.g. thread, JVM. But some event services have been moved

over in the event hierarchy in order to recognize the situation where the event

took place. The information which is needed to determine whether an event

matches a given event class is the location (context) of the event, e.g. the

event service jvm method entered indicates when a given method is called,

i.e. is needed t o specify the most dynamic elements of a Java application

execution, e.g. JVM, thread, object because they determine the context of the

event occurrence, i.e. an event may occur on a particular JVM, in a thread,

and refer to an object.

The presented shape of the J-OCM events tree (Figure 2.6) allows to narrow

the event detection and to simplify extending the tree by new events.

20

Chapter 3

The SelfLetMonitor framework

3.1 The SelfLet framework

In this section the (either general and internal) structure of the SelfLet frame-

work, an implementation of an Autonomic System[21], is presented; this is

necessary in order to understand all the requirements that have led to the

realization of the Monitoring System in the current form, both in term of the

tools chosen, the design principles used and the in-deep implementation of

some of its features.

3.1.1 SelfLet Conceptual Model

All the SelfLet framework is founded on the concept of SelfLet: a SelfLet

is a self-sufficient piece of software which is situated in some kind of logical

or physical network, where it can interact and communicate with other

SelfLets[17].

According to the SelfLet’s model, every SelfLet is defined in terms of the

offered Services and Autonomic Policies [14].

The services represent high level tasks to accomplish and their implementation,

called behaviour, is programmed using UML state diagrams1. A service can

have more than one implementation and one of these is the default behaviour.

There are two kinds of behaviours: complex (i.e. with a generic number

1Currently ArgoUML[2] is used to design the implementation of the services

The SelfLetMonitor framework

of internal states) and elementary2 (i.e. with a single internal state). The

services can be offered in different ways: Can Do, Can Teach, Know Who Can

Do and Know Who Can Teach. Any combination of these “offer modes” is

allowed. The relationships characterizing services, behaviours and policies of

SelfLets are presented in Figure 3.1.

Figure 3.1: The SelfLet framework

Each SelfLet has a list of known providers for each service required, so,

when there is a need for a given service, it selects one of these providers

according to a given policy in order to ask it for the service. The SelfLets

in a network cooperate to keep such lists always updated. A main service

represents the objective of the SelfLet and is proactively executed after the

SelfLet has been initialized.

The Autonomic policies define reactions to abnormal situations that can occur

during the life-time of the SelfLet. The SelfLet offers to policy writers a list of

actions that enable the transformation of several aspects of the SelfLet itself:

• changing the way a service is offered or asked;

• install action of a new service;

• install action new abilities;

2More specifically, elementary behaviours execute the actual computation which is con-

tained in OSGi[30] bundles called abilities.

22

3.1 The SelfLet framework

• switch from a service implementation to another;

• modification of a given behaviour.

3.1.2 The SelfLet Architecture

The components which constitute a SelfLet are shown in the architecture

presented in Figure 3.2.

Figure 3.2: Internal Architecture of a SelfLet.

The central part of the SelfLet architecture is the Autonomic Manager,

which is responsible for the evolution of a SelfLet depending on the set of

Autonomic Policies it has installed. The Autonomic Manager is implemented

through Drools[3]: every time a request for a service is raised, the Autonomic

Manager triggers the execution of a rule that verifies if the service is locally

available or not and, if not, asks the Negotiation Manager to retrieve the

Service and negotiate with the corresponding SelfLet a proper offer mode.

The Behaviour Manager controls the execution of the SelfLet’s behaviour.

The Internal Knowledge is composed of four parts: Knowledge Base (contains

23

The SelfLetMonitor framework

any kind of information needed by any of the SelfLet components), Service

Repository (contains the services the SelfLet can offer to itself or to other

SelfLets), Behaviours Repository (contains all the behaviours specifications

the SelfLet is able to run) and Attribute Repository (stores descriptions about

the SelfLet).

The Ability Execution Environment executes the Abilities, that can be acti-

vated as part of behaviours.

The Performance Manager offers a unified interface to monitor the execution

of internal services.

A Dispatcher is in charge of receiving subscriptions for events and event pub-

lications between all the SelfLets: it asynchronously delivers all published

events to those components that have subscribed to them. The Dispatcher is

connected to the Message Handler, which manages the communication with

the external environment and with other SelfLet through the REDS[16] mid-

dleware.

3.2 Conceptual Tools

This section presents some of the main conceptual tools that are used in order

to realize the monitoring framework described in the next sections. Other de-

sign pattern as the Singleton Pattern, the Builder Pattern, the Factory Method

Pattern or the Observer Pattern[19] are frequently used along the code of the

framework, but doesn’t represent a differentiation factor from all the other

similar projects, so they were not explained in the current section: they were

only some of the sufficient requirements for the realization of any project that

aim to be easily maintained, understood and extended.

3.2.1 Aspect Programming

The cross-cutting problem is the basis of aspect-oriented programming (AOP).

AOP is a methodology that provides separation of crosscutting concerns by

introducing a new unit of modularization: aspect. Each aspect focuses on a

specific crosscutting functionality. An aspect weaver composes the final system

by combining the core classes and crosscutting aspects through a process called

24

3.2 Conceptual Tools

weaving. Thus, AOP helps to create applications that are easier to design,

implement, and maintain [22].

Without AOP

Typically,the implementation of crosscutting concerns using OOP alone

implies the adding the code needed for each crosscutting concern in each

module, as shown in Figure 3.3. This figure shows how different modules in a

system implement both core concerns and crosscutting concerns.

Figure 3.3: A system as a composition of multiple concerns.

Although the details will vary, the Figure 3.3 shows a common problem

many developers face: a conceptual separation exists between multiple con-

cerns at design time, but implementation mixes them together, breaking the

Single Responsibility Principle (SRP) and thus the Open/Close principle. The

overall consequence is a higher cost of implementing features and fixing bugs.

With conventional implementations, core and crosscutting concerns are tangled

25

The SelfLetMonitor framework

in each module. Furthermore, each crosscutting concern is scattered in many

modules.

Code tangling Code tangling is caused when a module is implemented to

handle multiple concerns simultaneously. Developers often consider concerns

such as business logic, performance, synchronization, logging, security, moni-

toring and so forth when implementing a module. Obviously, such problems

can be fixed within the bounds of OOP, but this leads to the simultaneous

presence of elements from each concern’s implementation and results in code

tangling.

Another way to look at code tangling is to use the notion of a multidimensional

concern space. If the application requirements are projected onto a multidi-

mensional concern space, with each concern forming a dimension, all the con-

cerns are mutually independent and therefore can evolve without affecting the

rest. The Figure 3.4 shows a multidimensional concern space which collapses

into a one-dimensional implementation space. Because the implementation

space is one-dimensional, its focus is usually the implementation of the core

concern that takes the role of the dominant dimension; other concerns then

tangle the core concern. Although the individual requirements can be naturally

separated into mutually independent concerns during the design phase, OOP

alone doesn’t permits the separation in the implementation phase.

Figure 3.4: N-dimensional concern space using a one-dimensional language.

Code scattering Code scattering is caused when a single functionality is

implemented in multiple modules. Because crosscutting concerns, by defini-

tion, are spread over many modules, related implementations are also scattered

26

3.2 Conceptual Tools

over all those modules.

Code tangling and code scattering together impact software design and devel-

opment in many ways: poor traceability, lower productivity, lower code reuse,

poor quality, and difficult evolution. All of these problems lead to search

for better approaches to architecture, design, and implementation. Aspect-

oriented programming is one viable solution.

Modularizing with AOP

In OOP, the core concerns can be loosely coupled through interfaces, but there

is no easy way to do the same for crosscutting concerns. This is because a

concern is implemented in two parts: the server-side piece and the client-side

piece. OOP modularizes the server part quite well in classes and interfaces.

But when the concern is of a crosscutting nature, the client part (consisting

of the requests to the server) is spread over all the clients. The terms server

and client are used here in the classic OOP sense to mean the objects that are

providing a certain set of services and the objects using those services.

The fundamental change that AOP brings is the preservation of the mutual in-

dependence of the individual concerns. Implementations can be easily mapped

back to the corresponding concerns, resulting in a system that is simpler to

understand, easier to implement, and more adaptable to changes.

3.2.2 Design Patterns

Designing object-oriented software is hard, and designing reusable object-

oriented software is even harder. The design should be specific to the problem

at hand but also general enough to address future problems and requirements.

Experienced object-oriented designers state that a reusable and flexible design

is difficult if not impossible to get “right” the first time. Before a design is

finished, they usually try to reuse it several times, modifying it each time.

Yet experienced object-oriented designers do make good designs. Meanwhile

new designers are overwhelmed by the options available and tend to fall back

on non-object-oriented techniques they’ve used before. It takes a long time for

novices to learn what good object-oriented design is all about. Experienced

designers evidently know something inexperienced ones don’t.

One thing expert designers know not to do is solve every problem from first

27

The SelfLetMonitor framework

principles. Rather, they reuse solutions that have worked for them in the

past. When they find a good solution, they use it again and again. Such

experience is part of what makes them experts. Consequently, these solutions

constitute recurring patterns of classes and communicating objects in many

object-oriented systems. These patterns solve specific design problems and

make object-oriented designs more flexible, elegant, and ultimately reusable.

They help designers reuse successful designs by basing new designs on prior

experience. A designer who is familiar with such patterns can apply them

immediately to design problems without having to rediscover them.

Each design pattern systematically names, explains, and evaluates an impor-

tant and recurring design in object-oriented systems [19].

Immutable Objects

An immutable class is simply a class whose instances cannot be modified. All

of the information contained in each instance is provided when it is created

and is fixed for the lifetime of the object. There are many good reasons for

this: Immutable classes are easier to design, implement, and use than mutable

classes. They are less prone to error and are more secure[28].

An immutable class follows these five rules [11]:

1. Any methods that modify the object’s state aren’t provided.

2. The class can’t be extended. This prevents careless or malicious sub-

classes from compromising the immutable behavior of the class by be-

having as if the object’s state has changed. Preventing subclassing is

generally accomplished by making the class final, but there is an alter-

native discussed later.

3. All fields are declared final. It is necessary to ensure correct behavior if a

reference to a newly created instance is passed from one thread to another

without synchronization, as spelled out in the memory model [28].

4. All fields of the class are private. This prevents clients from obtaining

access to mutable objects referred to by fields and modifying these objects

directly. While it is technically permissible for immutable classes to have

public final fields containing primitive values or references to immutable

28

3.2 Conceptual Tools

objects, it is not recommended because it precludes changing the internal

representation in a later release.

5. Any mutable components have exclusive access. If the class has any fields

that refer to mutable objects, clients of the class cannot obtain references

to these objects.

Immutable objects are simple. An immutable object can be in exactly one

state, the state in which it was created. If all constructors establish class

invariants, then it is guaranteed that these invariants will remain true for all

time, with no further effort by the programmer who uses the class. Mutable

objects, on the other hand, can have arbitrarily complex state spaces. If the

documentation does not provide a precise description of the state transitions

performed by mutator methods, it can be difficult or impossible to use a mu-

table class reliably.

Immutable objects are inherently thread-safe; they require no synchronization

[28]. They cannot be corrupted by multiple threads accessing them concur-

rently. This is the easiest approach to achieving thread safety. In fact, no

thread can ever observe any effect of another thread on an immutable object.

Therefore, immutable objects (and their internals) can be shared freely. Im-

mutable classes should take advantage of this by encouraging clients to reuse

existing instances wherever possible. One easy way to do this is to provide

public static final constants for frequently used values.

An immutable class can provide static factories that cache frequently requested

instances to avoid creating new instances when existing ones would do. Using

such static factories causes clients to share instances instead of creating new

ones, reducing memory footprint and garbage collection costs. Opting for static

factories in place of public constructors when designing a new class gives the

flexibility to add caching later, without modifying clients.

Immutable objects make great building blocks for other objects, whether mu-

table or immutable. It’s much easier to maintain the invariants of a complex

object if its component objects will not change underneath it. A special case of

this principle is that immutable objects make great map keys and set elements:

once they’re in the map or set their values never change.

The only real disadvantage of immutable classes is that they require a separate

object for each distinct value. Creating these objects can be costly, especially

29

The SelfLetMonitor framework

if they are large. To summarize, classes should be immutable unless there’s

a very good reason to make them mutable. Immutable classes provide many

advantages, and their only disadvantage is the potential for performance prob-

lems under certain circumstances.

Decorators

Inheritance is a powerful way to achieve code reuse, but it is not always

the best tool for the job. Used inappropriately, it leads to fragile software.

It is safe to use inheritance within a package, where the subclass and the

superclass implementations are under the control of the same programmers. It

is also safe to use inheritance when extending classes specifically designed and

documented for extension. Inheriting from ordinary concrete classes across

package boundaries, however, is dangerous.

Unlike method invocation, inheritance violates encapsulation [29].

In other words, a subclass depends on the implementation details of its

superclass for its proper function. The superclass’s implementation may

change from release to release, and if it does, the subclass may break, even

though its code has not been touched. As a consequence, a subclass must

evolve in tandem with its superclass, unless the superclass’s authors have

designed and documented it specifically for the purpose of being extended.

A related cause of fragility in subclasses is that their superclass can acquire

new methods in subsequent releases. Suppose a program depends for its

security on the fact that all elements inserted into some collection satisfy some

predicate. This can be guaranteed by subclassing the collection and overriding

each method capable of adding an element to ensure that the predicate is

satisfied before adding the element. This works fine until a new method

capable of inserting an element is added to the superclass in a subsequent

release. Once this happens, it becomes possible to add an “illegal” element

merely by invoking the new method, which is not overridden in the subclass.

Both of the above problems stem from overriding methods.

There is a way to avoid all of the problems described earlier. Instead

of extending an existing class, the new class must have a private field

that references an instance of the existing class. This design is called

composition[11] because the existing class becomes a component of the new

30

3.2 Conceptual Tools

one. Each instance method in the new class invokes the corresponding method

on the contained instance of the existing class and returns the results. This

is known as forwarding, and the methods in the new class are known as

forwarding methods. The resulting class will be with no dependencies on the

implementation details of the existing class. Even adding new methods to

the existing class will have no impact on the new class. The implementation

will be broken into two pieces, the class itself and a reusable forwarding

class, which contains all of the forwarding methods and nothing else. Besides

being robust, this design is extremely flexible. Unlike the inheritance-based

approach, which works only for a single concrete class and requires a separate

constructor for each supported constructor in the superclass, the wrapper

class can be used to decorate any implementation of the choosen interface and

will work in conjunction with any preexisting constructor.

The class extending the reusable forwarding class is known as a wrapper

class because each instance contains (“wraps”) another instance of the

right interface. This is also known as the Decorator pattern [19], because

the wrapper class “decorates” the wrapped class by adding functionalities.

Sometimes the combination of composition and forwarding is loosely referred

to as delegation. Technically, it’s not delegation unless the wrapper object

passes itself to the wrapped object.

31

The SelfLetMonitor framework

Figure 3.5: Decorator UML class diagram.

The disadvantages of wrapper classes are few. One caveat is that wrapper

classes are not suited for use in callback frameworks, wherein objects pass self-

references to other objects for subsequent invocations (“callbacks”). Because a

wrapped object doesn’t know of its wrapper, it passes a reference to itself (this)

and callbacks elude the wrapper. This is known as the SELF problem [23] and

in that case is preferred to use inheritance to maintain the right “identity” of

the class to which the client invokes the functionalities.

Inheritance is appropriate only in circumstances where the subclass really is a

subtype of the superclass. In other words, a class B should extend a class A

only if an “is-a” relationship exists between the two classes.

Active Objects

Active objects are very similar to traditional objects (also called passive

objects in this context for a better differentiation). They have private fields

and provide methods to operate on this data. The only important difference

lies in the fact that each active object runs in its own thread of control and

32

3.2 Conceptual Tools

that invoked methods do not block the caller but are executed asynchronously.

Methods of active objects are always executed in a single thread and run

sequentially with respect to each other, i.e. it is not possible that two method

calls of one particular active object run at the same time. This simple

condition automatically guarantees that the implementation of an active

object does not require any additional mechanisms to ensure thread-safety for

this particular object.

To understand how active objects work, it is important to differentiate between

their public interface and their internal operation. The public interface of

an active object is often called proxy and the internals are represented by a

so called servant or implementation. The proxy is responsible for accepting

method calls or requests from clients, other objects (passive or active) which

utilize an active object. Public method requests to an active object and

possible arguments are marshaled or converted into messages by the proxy

and added to a message queue. A special object usually called dispatcher or

scheduler which runs in the context of the active object thread dequeues and

processes each incoming message and then invokes the actual methods of the

servant. Possible results of asynchronous methods are returned in the form of

Future objects. Figure 3.6 shows the corresponding message sequence chart

for a typical request from a client to an active object.

33

The SelfLetMonitor framework

Figure 3.6: Active Object Behavior.

Two important things can be observed in this chart. First, it should be-

come clear that the client does only interact with the public proxy interface of

the active object and is not (or does not need to be) aware of the underlying

message-passing semantics. Interaction and communication with the servant is

achieved indirectly with request arguments and possible Future return values.

Secondly, the dequeue and request operations on the lower right of the chart

are processed asynchronously by the dispatcher while the client on the left can

complete other tasks in the meantime.

In summary, active objects are characterized by the combination of the follow-

ing three fundamental properties [28]:

1. Message-based Requests and possible arguments to an active object

are converted into messages, forwarded to and eventually executed by

the private active object implementation. Result messages are modeled

as Future objects.

2. Asynchronous Requests to an active object are executed asyn-

chronously in a private thread of control and only block the caller if

the result is requested before it is available. Asynchronous execution of

34

3.3 Technologies adopted

requests is the property which lets active objects add concurrency and

multi-threading to applications.

3. Thread-safe Active objects are inherently thread-safe by sequentially

dequeuing and processing enqueued requests and always executing them

in a single thread of control. The thread-safety of active objects largely

removes the need for manual locking and mutual exclusion mechanisms.

3.3 Technologies adopted

In this section is presented the main “physical tool” that represents the core of

the monitoring framework that i realized: through it, the monitoring system

(the local part, especially) obtains a simple, well known and clear tool to

capture all the informations choosen by the user of the framework, without

modifying the original source of the monitored system, as described in the

next sections.

Other “tools” were used to achieve all the main qualities (section 2.2.2) of a

fully-functional Distributed Monitoring System; REDS[16] is already part of

the monitored system (the SelfLet Framework) and were adapted to fullfill

the needs of comunication (in particular, for the consistency of the messages

passed) between the node of the monitoring system, without affecting the

comunication channel of the monitored system.

3.3.1 AspectJ

AspectJ is the most complete implementation of the AOP model, supporting

all its elements [22]. This section examines how AspectJ maps each model

element into program constructs. Note that AspectJ offers two syntax choices:

traditional and @AspectJ. This section uses the traditional syntax to study

these building blocks. The crosscutting constructs in the AOP model can be

classified as common crosscutting constructs (join point, pointcut, and aspect),

dynamic crosscutting construct (advice), and static crosscutting constructs

(inter-type declarations and weave-time declarations). These constructs form

the building blocks of AspectJ.

35

The SelfLetMonitor framework

Common crosscutting constructs

AspectJ supports a few common constructs consisting of the join point, the

pointcut, and the aspect. These constructs can be used with both dynamic

and static crosscutting. In AOP, and therefore in AspectJ, join points are the

places where the crosscutting actions take place.

POINTCUT A pointcut is a program construct that selects join points and

collects context at those points. For example, a pointcut can select a join point

that is an execution of a method. It can also collect the join-point context,

such as the this object and the arguments to the method. It’s possible to

name a pointcut so that other programming elements can use it (and so that

programmers can understand the intention behind the pointcut).

ASPECT The aspect is the central unit in AspectJ, in the same way that

a class is the central unit in Java. It contains the code that expresses the

weaving rules for both dynamic and static crosscutting. Additionally, aspects

can contain data, methods, and nested class members, just like a normal Java

class.

Dynamic crosscutting construct: advice

AspectJ’s dynamic crosscutting support comes in the form of advice. Advice

is the code executed at a join point selected by a pointcut. Advice can execute

before, after, or around the join point. The body of advice is much like a

method body; it encapsulates the logic to be executed upon reaching a join

point.

While dynamic crosscutting alters the program behavior, static crosscutting

alters the programs structure.

Static crosscutting constructs

Static crosscutting comes in the form of inter-type and weave-time declara-

tions.

INTER-TYPE DECLARATION The inter-type declaration (ITD) is a

static crosscutting construct that alters the static structure of the classes,

36

3.3 Technologies adopted

interfaces, and aspects in the system. In an ITD, one type (an aspect) declares

the structure for the other types (classes, interfaces, and even aspects), hence

the name. Member introduction is another form of ITD that offers a way to

add new methods and fields to other types. ITD also offer a way to annotate

program elements and deal with checked exceptions in a systematic manner.

An important form of static crosscutting allows detecting and flagging the

presence of join points, matching a pointcut during compilation.

WEAVE-TIME DECLARATION The weave-time declaration is an-

other static crosscutting construct that allows to add weave-time warnings

and errors when detecting certain usage patterns. Often, weaving is performed

during compilation; therefore, these warnings and errors are issued when the

classes are compiled. The weaver will report warnings when it detects the

specified conditions along with other compile-time warnings such as use of a

deprecated method.

Weaving mechanisms

A weaver needs to weave together classes and aspects so that advice gets

executed, inter-type declarations affect the static structure, and weave-time

declarations produce warnings and errors. AspectJ offers three weaving mod-

els:

• Source weaving

• Binary weaving

• Load-time weaving

Regardless of the weaving model used, the resulting execution of the system

is identical. The weaving mechanism is also orthogonal to the AspectJ syntax

used; any combination of weaving mechanism and AspectJ syntax will produce

identical results.

Source weaving In source weaving, the weaver is part of the compiler. The

input to the weaver consists of classes and aspects in source-code form. The

aspects can be written in either the traditional syntax or the @AspectJ syn-

tax.

37

The SelfLetMonitor framework

The weaver, which works in a manner similar to a compiler, processes the

source and produces woven byte code. The byte code produced by the com-

piler is compliant with the Java byte-code specification, which any standard

compliant VM can execute. Essentially, when used in this manner, ajc replaces

javac. But unlike javac, ajc requires that all sources be presented together.

Binary weaving In binary weaving, input to the weaver (classes and as-

pects) is in byte-code form. The input byte code is compiled separately using

the Java compiler or the AspectJ compiler. An extension of binary weaver is

load-time weaving.

Load-time weaving A load-time weaver takes input in the form of binary

classes and aspects, as well as aspects and configuration defined in XML

format. A load-time agent can take many forms: a Java VM Tools Inter-

face (JVMTI) agent, a classloader, or a VM-specific class preprocessor, which

weaves the classes as they’re loaded at run-time into the VM. The Figure 3.7

explains better the process.

Figure 3.7: Load-time weaving schematic.The aop.xml files provide informa-

tion about the aspects and classes participating in load-time weaving. The

weaver intercepts loading of any class to weave in appropriate aspects.

38

3.4 The SelfLetMonitor Framework

3.4 The SelfLetMonitor Framework

In this section is presented the structure of the SelfLetMonitor framework ,

an implementation of an on-line Distributed Monitoring System[27], designed

in order to achieve the needs of a lightweight, extendible, robust and accurate

debugging instrument for the SelfLet framework.

3.4.1 Architecture

As described in the previous sections, a monitoring system that operates over a

distributed system is itself a distributed system, divided in smaller local moni-

toring nodes attached to the nodes of the monitored application (as suggested

by the J-OMIS approach[26]).

The local monitored systems have to intercept a customizable set of events

(and/or data modifications) of the application and comunicate to the moni-

toring tools all the informations collected in a real-time-fashion, in order to

represent in any choosen form (graphically, textually and so on) the overall

state of the system. One of the most important requirements of a monitoring

system is its “plugin” form: the capability to be completely decoupled in term

of development and deployment cycle. For this reason, the SelfLetMonitor

system uses @AspectJ with Load-time weaving (section 3.3.1) for the front-

end part of the local monitors. Indeed, a developer doesn’t have to learn a new

language (the original AspectJ form): the java classes used to interact with

the SelfLet Framework are “decorated” with simple annotations that instruct a

java agent (the AspectJ weaver) to treat the classes annotated as Aspects and

not as simple Java Classes. This solution impose an important constraint on

the framework; the needs of a JVM (Java virtual Machine) updated to the 1.5

version. In any case, considering that in the framework are used other useful

characteristics of such version of the JVM (better cuncurrent API, generics

support and others), it doesn’t represent a heavy-weight constraint in front of

the achieved improvements. Over the classes “@AspectJ-annotated” there is

a thread-safe wrapper layer that translate the informations collected by the

aspects in an immutable form that an Active Object that decorates a REDS[16]

dispatcher uses to send at the remote tool responsible to show the state of the

overall selfLet network. The Immutable form of the data created by the wrap-

39

The SelfLetMonitor framework

pers and sended by the “active sender”, permits a simple mechanism of instance

sharing either in the local nodes (the wrappers and the “Active Sender” and

their respective threads can share freely all the information collected, without

corrupting it[28]) and in the remote tool, as explained in the next sections.

A conceptual representation of the architecture of the monitoring system is

presentend in Figure 3.8.

Figure 3.8: Overall architecture of the SelfLetMonitor framework.

3.4.2 Under the hood

Increasing the detail of the view of the system and going inside its current

implementation is possible to consider 3 important parts that constitute it:

1. the SelfLetMonitor API’s: the API used either by the remote tools

and the local monitoring nodes to create and send the informations

through the comunication channel, decoupled by the REDS messagging

system.

2. the SelfLetClientMonitor: i.e. the local monitoring part, relies on

the interfaces exposed by the SelfLetMonitor API’s and on the interfaces

40

3.4 The SelfLetMonitor Framework

of che monitored concerns. Collects all the information through a layer

of aspects, which, in turn, use the interfaces provided by the wrapping

layer to create the messages. Through another crosscutting concern on

the monitoring system itself, all the relevant creations of messages will

be captured and delivered to the remote tools.

3. the SelfLetServerMonitor: i.e. the tools that realize some kind of ag-

gregation (e.g. a Swing user interface) between all the messages sended

by the local monitoring systems. Relies only on the model and comuni-

cation channels provided by the common monitoring API’s.

SelfLetMonitorAPI

The core part of the architecture are the APIs, divided in two main packages,

model and comunication: the former provides all the primitives to manipulate

(through a Builder pattern to ensure the thread-safety of the creation[11]) the

immutable models (shown in Figures A.2, A.3 , A.4) used by the local monitors

and the remote tools, while the latter permits to establish a general channel in

which the models, encapsulated in proper messages (Figure A.1), could travel

and be retrieved in different manners.

All the comunication part of the APIs hiddens completely its real implemen-

tation through the Bridge pattern[19], permitting to the users of the APIs

only to extends some well-known points, a group of safe-extendable classes3,

as shown in Figures A.5, A.6, A.7. This defensive approach is used in order

to prevent the violations of encapsulation caused by the wrong usage of the

inheritance mechanism[11].

SelfLetClientMonitor

The local monitors are structured in two important parts: concerns and wrap-

pers. The first is responsible to analyze4 the crosscutting choosen informations

of the running monitored system (e.g modifications in the internal knowledges,

3All the classes named with the prefix of Forwardable were let visible to the API user,

and are safely-extendable.
4Not only the monitored system. But there are aspects (Figure B.1) used to monitor

both the on-line local monitoring system and the monitored system for off-line performance

evaluation purposes.

41

The SelfLetMonitor framework

running Services or SelfLet properties) through the expressivity of the AspectJ

language inserted in proper Java annotations, while the second one is used by

the “aspects” to decoupled the arise of some kind of event in the SelfLet engine

from the creation of the right immutable model.

The aspects layer presents, for all the working aspects, a skeletal (i.e. ab-

stract) class that represent only the abstract concern that the local monitor is

designed to capture. So, with this “skeletal aspect” the local monitor system

could easily evolve to permit new kind of interactions with che monitored sys-

tem (e.g. becoming a debug tools capable to modify the flow of informations

in the SelfLet engine 5). All the concrete aspects refers to the right wrapper

only by its interface, so the realization of new implementations of the wrapper

would be simple and without effects on the aspect layer (the Bridge pattern

helps in this). All the current wrapper implementations use factories to be

instantiated and the only wrappers type hierarchy visible outside the packages

are represented by public interfaces, as shown in figures B.2, B.3, B.4, B.5,

B.6).

Instead, internally, the wrappers layer uses a combination of decorators[11][19]

and normal inheritance from skeletal (i.e. abstract) classes to provide all the

services promised by their interfaces and to hide externally the others required

by the classes belonging to the same layer (e.g. the Observer/Observable rela-

tionship between classes of the same layer). Basically, all the classes capable to

manage any new service without encountering the SELF problem[23] use the

Decorator pattern to provide extendibility and skeletal (and high-constrainted)

classes to manage all the other cases. Every implementation provides a sep-

arate factory to manage the instantiation outside the package and various

instance manager systems to minimize the number of real instantiations6. The

figures B.7,B.9 and B.8 represent the UML class diagrams of parts of the layer

that prefer the mechanism of decoration instead of that of inheritance, while,

in the figures B.2 and B.3, the class hierarchies presented underline the choice

of the static inheritance.

5In addition, from a deployment point of view, the aspects could be in turn disabled or

enable by a user simply modifing the XML document named aop.xml that must be set over

the CLASSPATH of the application (see section 3.3.1 for the explanation).
6The Multiton pattern is used instead of plain Singleton pattern if the creation of an

instance depends on any parameter,

42

3.4 The SelfLetMonitor Framework

Every wrapper implementation uses the APIs early mentioned to instantiate

the right immutable model, so the thread-safeness of the classes is simply

accomplished by simple volatile variables that refer to the model currently

created.

SelfLetServerMonitor

The last part of the framework, the “server monitor” (SelfLetServerMoni-

tor), relies completely on the inferfaces exposed by the APIs and its cur-

rent implementation is designed upon the Model-View-Presenter-Controller

pattern (MVPC)[20]. In addition, an active comunication receiver, created

upon the the APIs early mentioned, is connected to the main system via

an Observer/Observable pattern. These two component are contained in the

packages model, views, controllers for the former (figures C.1, C.2) and comu-

nication for the latter.

All the components of the system uses a thread-confinement [28] approach to

solve the thread-safeness requirement imposed by the utilization of the Swing[8]

GUI framework choosen for the view part and by the mechanism used to re-

trieve che monitor messages from the local monitors. In order to improve

the flexibility of the behavior of the receiver, its instantiation depends on the

strategy choosen for it (as shown in Figure C.3).

The strategies defined in the package of the same name could be decorated

to add new behaviors to the receiving component. The architecture of the

strategies is shown in Figure C.4.

The views of the system are divided in two logical parts, depending on what

kind of informations the end user want to know.

One related to the global state of the SelfLet network (figures 3.9,3.10)

43

The SelfLetMonitor framework

Figure 3.9: Main screen of the SelfLetServerMonitor system.

Figure 3.10: Log screen of the SelfLetServerMonitor system.

and a further detail on the state of a single SelfLet (figures 3.11, 3.12, 3.13

44

3.4 The SelfLetMonitor Framework

and 3.14) belonging to the network.

For the representation of the overall network is been choosen the open-source

framework Jung[6] (i,e Java Universal Network/Graph Framework), thanks to

its full support to the latest features of the Java language version 1.6, the

integration with the Swing framework and all the tools of networks analysis it

provides.

Figure 3.11: Internal Knowledge details of a selected SelfLet.

Figure 3.12: Services details of a selected SelfLet.

45

The SelfLetMonitor framework

Figure 3.13: Services details of a selected SelfLet.

Figure 3.14: Services details of a selected SelfLet.

46

Chapter 4

Case study analysis and results

4.1 Objectives

The objective of these case studies is to validate the developed framework in

terms of performance impact and in terms of contribution to the tools available

for the SelfLet framework.

Since no previous similar works exists on the SelfLet framework, initial efforts

have been directed in the understanding of the proper methodology to adopt.

Measuring the impact of the monitoring tools requires the development of new

case studies involving the exploitation of the characteristics to be tested.

In order to do that it has been necessary to create case studies that would

cause state changes in the monitored concerns of the SelfLet Framework and

a successive reaction of the (local part of) monitoring system.

As it has been explained in the previous chapter, these state changes would

lead the local monitors to create and send proper messages to a REDS broker:

these two reactions of the monitoring system are the objectives of the evalua-

tion.

In order to validate the proposed approach, it is also necessary to extract

relevant numerical data concerning the impact of the feature being developed.

As a further requirement there is the representativeness of the developed case

studies; indeed, since it is not possible to cover all the possible space of exper-

iments, it is necessary to find what are the most relevant ones to which other

case studies can be referred to. In this way an approximate estimate of the

impact of this new feature can be evaluated in other case studies.

Case study analysis and results

4.2 Methodology

In order to validate the implemented feature, the experiments have been orga-

nized in two different case studies. The rationale behind the two case studies

is to create the conditions for an intervention of the monitoring framework.

More precisely, all the experiments involve a comunication between two self-

Let, analyzing the different performances in term of messages sent or services

requests accomplished. Each case study has been tested for different time

intervals on the same “virtual” machines1. This also gave the opportunity to

test with a real system, with real lags caused by an unpredictable network

latencies dependent by the distance of the cloud machines used.

To run an experiments it’s necessary to start (through SSH[7]) on the Cloud in-

stances the REDS middleware with the monitor APIs (SelfLetMonitorAPI.jar)

on its CLASSPATH first so that the SelfLets can connect to it using a common

IP address (obtained by the public DNS of the machine hosting the REDS

broker). The second step depends on which kinds of samples are needed to be

taken. The three test cases involve three possible monitor configurations (i.e.

three different families of experiments) of the two selfLets (named, for brevity,

S1 and S2). In subsections 4.2.1 and 4.2.2 these configurations are explained

in more detail.

All the experiments share the same SelfLets behaviors configurations:

• S1 (Figure 4.1) is capable to accomplish locally the request of the service

simpleService in do mode and without any optimization policy

• S2 (Figure 4.2) requests periodically (every 2000 milliseconds) the exe-

cution of a remote service called simpleService in do mode and without

any optimization policy

The action contained in the state of the elementary behavior of S1 is actually

a very simple one; indeed, it just produces a predefined string as output. The

result of executing the service is thus obtaining this string; the actual value is

irrelevant to the example.

1The machines are offered by the EC2 Cloud service of Amazon[1]

48

4.2 Methodology

Figure 4.1: Main behavior of S1

Figure 4.2: Main behavior of S2

The next subsection focuses on the kind of data collected and the used

tools, parts of the monitor framework itself.

4.2.1 First case study: evaluating speed of execution

In this case study there are two kind of experiments with the same selfLets,

but different monitoring configurations:

1. S1 with all the concerns of the local monitor enabled, while S2 with no

monitoring at all

49

Case study analysis and results

2. S1 and S2 either without local monitoring

Several sessions of each kind of experiments are started indipendently (i.e. on

different Cloud instances) and at the end a Ruby[10] script which analyzes

all the logs created by S1 in the two kind of experiments is launched. The

script creates two different files (one for each configuration tested) readable by

Gnuplot[4] which represent a table having, for each row, two different values:

the timestamp in milliseconds in which a single request of simpleService exe-

cution is accomplished and the related total number of requestes accomplished.

The comparison between the two files may help to better understand the com-

putational overhead introduced by the local monitor to the original engine.

4.2.2 Second case study: evaluating messages overhead

In this case study the system is launched several times with only one monitor

configuration: S1 with all the concerns of the local monitor enabled plus the

messages tracer and S2 with no monitoring at all. An aspect collects infor-

mations about the activities of every REDS’s DispatchingService instantiated

and at the end of the tests is possible to read the two files created by the

aspect readable by Gnuplot that show the number of messages sent by the

local monitor compared to that sent (or replied) by the SelfLet itself.

The analysis of this comparison may help to know the overhead in term of net-

work bandwidth allocation introduced by the monitoring system in a condition

in which the internal state of the selfLet is updated frequently plus verified the

entity of the initial (and predictable) big flow of monitoring informations sent

during the configuration and initialization of the selfLet.

4.3 Results

The two test cases described above were tried a meaningful number of time in

order to verify the validity of the results shown and every time all the results

converge to the results shown below. In particular the first case study reports

the graphs represented in figure 4.3.

50

4.3 Results

 0

 5

 10

 15

 20

 25

 30

 0 20000 40000 60000 80000 100000 120000

se
rv

ic
es

 e
xe

cu
te

d

milliseconds

Monitoring Disabled
Monitoring Enabled

Figure 4.3: Result of the first case study tests

From this test is possible to evaluate the real impact on the performance

in term of services accomplished rate of the system, and the figure 4.3 shows

that the “real” overhead introduced is only at the starting part of the life-

cicle of the SelfLet, right after the initialization of the SelfLet. In this part

the monitoring system is sending all the informations to the remote Monitor.

Anyway, the overall impact is lesser than 5% and the future trend of the gap

seems to be the same. To improve the performance of the local monitor the

available solutions appear to be:

1. to optimize the aspects or the wrappers in order to collect information in

better ways i.e. improving the speed of creation of the model that will be

sent and/or choosing better pointcuts in which the monitor aspects use

the wrapper to obtain the parameters for the translation of the SelfLet

state in the immutable models to be sent.

2. to eliminate the sending of the monitor messages during that initializa-

tion phase, but deleting that comunications from the knowledge of the

remote Monitor, which will receive the actual state of the SelfLets after

the real start of the engines.

51

Case study analysis and results

However, an evaluation of these proposals will be done at the end of the section,

because the results of the second test study could help to choose one or the

other approach.

The results of second test case show the trend of the message sending rate of

the local monitoring system compared with that of the SelfLet engine. The

trends are related to the same configuration and are presented in Figure 4.4.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50000 100000 150000 200000

m
es

sa
ge

s
se

nt
 p

er
 p

er
io

d

milliseconds

Local Monitor
SelfLet

Figure 4.4: Result of the second case study tests

From the figure, is possible that the reason of the bad performance of

the monitored system in the initialization phase could be explained by the

presence of a big quantity of variations in the state of the monitored system

during that phase. The comparison evidentiates that the messages sent by

the monitor after that initial part are about seven time the messages sent

by the selflet itself in the same interval and in the same interval the service

performance of the SelfLet suffers a delay, becoming less responsive. The value

of the delay seems influenced by the instantiations of the new remote running

services requested by the other SelfLet and the Figure 4.3 confirms this idea.

These evaluations suggest the thesis that might exist a correlation between

the number of messages sent and the performance of the SelfLet. Assuming

this idea as correct, one possible way to affect the weight of this dependency

52

4.3 Results

in the overall performance of the system is to cut off every comunication with

the Monitor server during the initialization phase. This approach changes the

policy of the local monitor and affects the nature of monitoring too, so the

other solution is preferable to improve the performance of the local monitor

without affecting the quality of the informations delivered.

Only for the sake of completeness, the Figure 4.5 shows the same comparison

of the figure 4.4, but in the case of “lazy”comunication with the server. The

current local monitor implementation supports this kind of configuration too

but, by default, is adopted the one that comunicates every data changes.

 0

 5

 10

 15

 20

 25

 30

 0 20000 40000 60000 80000 100000 120000

m
es

sa
ge

s
se

nt

milliseconds

Local Monitor
SelfLet

Figure 4.5: Result of the second case study tests adopting the “lazy” comuni-

cation approach

The Figure 4.6 shows, instead, the related gain in term of service perfor-

mance, adopting the “lazy” approach, compared with the performance without

every kind of monitoring.

53

Case study analysis and results

 0

 5

 10

 15

 20

 25

 30

 0 20000 40000 60000 80000 100000 120000

se
rv

ic
es

 e
xe

cu
te

d

milliseconds

Monitoring Disabled
Lazy Monitoring Enabled

Figure 4.6: Result of the first case study tests adopting the “lazy” comunica-

tion approach

The final verdict about the solution of cutting off the flow of messagges is

that the system obtains only a negligible performance boost compared to the

“full comunication” default solution, so the choice of what kind of monitoring

to adopt should be guided only by constraints of the network bandwidth.

In conclusion, the default version of the local monitor has shown a negligible2

computational impact over the monitored system and a predictable comuni-

cation overhead, tunable only at the price of choosing a different monitoring

policy.

2Not influenced by the choice to adopt AspectJ and load-time weaving[9].

54

Chapter 5

Conclusions and Future Works

5.1 Conclusion

The presented work started by setting three main goals:

1. to realize a development framework for the on-line distributed monitoring

of the SelfLets

2. to find a solution at the problem of making it simple to maintain and

extend without affecting the SelfLet framework

3. to realize a case study to demonstrate the effectiveness of the solution

adopted

It is now pointed out how these objectives have been achieved throughout this

work.

The first and the third objective are covered respectively in the chapters 3 and

4, while the second one is better explained below.

The main difference between the approach adopted in the realization of the

framework from other solutions is about the choice of the Java language for

the specification of all the parts of the framework. Other approaches relies on

declared flexible, solid architecture[26] and great support for the developer in

almost every functionality required by such a kind of tools, but when these

frameworks need to be extended in order to express new type of “points of inter-

est” in the monitored system, the vision changes. The choice of the @AspectJ

syntax as the point of contact with the monitored system makes the difference

from these solutions: it’s flexible, robust, powerful (as shown in chapter 4) and

Conclusions and Future Works

expressable in simple Java (with annotations). All the other qualities of the

monitoring system realized in this thesis are not more than good cuncurrent

programming practices, oriented to the production of an high-performance,

thread-safe and defensive API. So, the second goal is fully achieved: no one

users of the presented API will need to modify a java agent [5] in C++ with

all the risks of this kind of operations[18].

5.2 Future work

The future work on the presented framework is mostly signed and can be

summarized as follows:

• add the support for the run-time configuration of the local monitors by

the remote monitor

• add the support for the run-time modification of the systems monitored

in the points expressed by the remote monitor

• find better models/istantiation technique of the models, to improve the

performance of the local monitor during the collection of the informations

Some of these goals could be currently achieved relying on the features of the

presented implementation of the framework:

• the double-way comunication possible with Reds[16] combined with the

State pattern[19] applied to the wrappers, in order to change dinamically

the behavior of the local monitor

• the use of the @Around construct of @AspectJ [22] in order to permit

modifications to the flow of execution of the monitored system

In addition, other features of this framework could be transferred to the SelfLet

framework itself: the autonomic qualities of the framework would be better

expressed if the autonomic layer (which provides a form of on-line monitoring)

were to be applicable to every kind of Java application, even if legacy and not

only those expressed following the SelfLet paradigm.

56

5.2 Future work

A similar solution, which adopts tha same technology of the monitoring frame-

work presented in this thesis, was presented by IBM[15], but with the dis-

tribuited qualities of the SelfLet solution, it will became one of the best ex-

pressions of the Autonomic vision[21].

57

Appendices

Appendix A

SelfLetMonitorAPI UML 2.0

Class Diagrams

messages messagespackage []

-selfLetModel : ImmutableSelfLet{readOnly}

´«constructor´»+MonitorMessage(selfLetModel : ImmutableSelfLet)
-validateState() : void
´«JavaElement´» ´«getter´»+getSelfLetModel() : ImmutableSelfLet{JavaAnnotations = "@Override"}
´«JavaElement´»+toString() : String{JavaAnnotations = "@Override"}
´«JavaElement´»+equals(o : Object) : boolean{JavaAnnotations = "@Override"}
´«JavaElement´»+hashCode() : int{JavaAnnotations = "@Override"}

MonitorMessage

´«getter´»+getSelfLetModel() : ImmutableSelfLet
´«getter´»+getID() : MessageID

IMonitorMessage

Figure A.1: UML Class diagram of part of the system

SelfLetMonitorAPI UML 2.0 Class Diagrams

RunningServicespackage immutable[]

-lastOutput : String{readOnly}
-currentState : ImmutableState{readOnly}
-creationTime : long{readOnly}
-responseTime : long{readOnly}

´«constructor´»#SkeletalImmutableRunningService(builder : Builder<?>)
´«getter´»+getLastOutput() : String
´«getter´»+getCurrentState() : ImmutableState
´«getter´»+getCreationTime() : long
´«getter´»+getResponseTime() : long
´«JavaElement´»+equals(obj : Object) : boolean{JavaAnnotations = "@Override"}
´«JavaElement´»+hashCode() : int{JavaAnnotations = "@Override"}
´«JavaElement´»+toString() : String{JavaAnnotations = "@Override"}

SkeletalImmutableRunningService

´«constructor´»-ImmutableLocalRunningService(builder : Builder<?>)
+builder() : Builder<?>
+builder(toBeCopied : ImmutableLocalRunningService) : Builder<?>
´«JavaElement´»+equals(o : Object) : boolean{JavaAnnotations = "@Override"}
´«JavaElement´»+hashCode() : int{JavaAnnotations = "@Override"}
´«JavaElement´»+toString() : String{JavaAnnotations = "@Override"}

ImmutableLocalRunningService -from : String{readOnly}
-msgId : String{readOnly}

´«constructor´»-ImmutableRemoteRunningService(builder : Builder<?>)
-validateState() : void
´«getter´»+getFrom() : String
´«getter´»+getMsgId() : String
+builder(from : String, msgId : String) : Builder<?>
+builder(toBeCopied : ImmutableRemoteRunningService) : Builder<?>
´«JavaElement´»+equals(o : Object) : boolean{JavaAnnotations = "@Override"}
´«JavaElement´»+hashCode() : int{JavaAnnotations = "@Override"}
´«JavaElement´»+toString() : String{JavaAnnotations = "@Override"}

ImmutableRemoteRunningService

Figure A.2: UML Class diagram of part of the system

LocalRunningServiceBuilderspackage immutable[]

´«constructor´»#Builder()
´«constructor´»#Builder(toBeCopied : ImmutableLocalRunningService)
´«JavaElement´»+build() : ImmutableLocalRunningService{JavaAnnotations = "@Override"}

Builder

T > Builder<T>

-lastOutput : String
-creationTime : long
-currentState : ImmutableState
-responseTime : long

´«setter´»+setCurrentState(value : ImmutableState) : T
´«setter´»+setLastOutput(value : String) : T
´«setter´»+setResponseTime(value : long) : T
#self() : T
´«constructor´»#Builder()
´«setter´»+setCreationTime(value : long) : T
´«constructor´»#Builder(toBeCopied : SkeletalImmutableRunningService)
+build() : SkeletalImmutableRunningService

Builder

T > Builder<T>

´«constructor´»-ConcreteBuilder()
´«constructor´»-ConcreteBuilder(toBeCopied : ImmutableLocalRunningService)
´«JavaElement´»#self() : ConcreteBuilder{JavaAnnotations = "@Override"}

ConcreteBuilder

Builder<ConcreteBuilder>

Builder<T>

´«bind´»

<T->ConcreteBuilder>

´«bind´»

<T->T>

Figure A.3: UML Class diagram of part of the system

62

RemoteRunningServiceBuilderspackage immutable[]

-from : String{readOnly}
-msgId : String{readOnly}

´«constructor´»#Builder(from : String, msgId : String)
´«constructor´»#Builder(toBeCopied : ImmutableRemoteRunningService)
´«JavaElement´»+build() : ImmutableRemoteRunningService{JavaAnnotations = "@Override"}

Builder

T > Builder<T>

-lastOutput : String
-creationTime : long
-currentState : ImmutableState
-responseTime : long

´«setter´»+setCurrentState(value : ImmutableState) : T
´«setter´»+setLastOutput(value : String) : T
´«setter´»+setResponseTime(value : long) : T
#self() : T
´«constructor´»#Builder()
´«setter´»+setCreationTime(value : long) : T
´«constructor´»#Builder(toBeCopied : SkeletalImmutableRunningService)
+build() : SkeletalImmutableRunningService

Builder

T > Builder<T>

´«constructor´»-ConcreteBuilder(from : String, msgId : String)
´«constructor´»-ConcreteBuilder(toBeCopied : ImmutableRemoteRunningService)
´«JavaElement´»#self() : ConcreteBuilder{JavaAnnotations = "@Override"}

ConcreteBuilder

Builder<ConcreteBuilder>

Builder<T>

´«bind´»

<T->T>

´«bind´»

<T->ConcreteBuilder>

Figure A.4: UML Class diagram of part of the system

63

SelfLetMonitorAPI UML 2.0 Class Diagrams

p
a
c
k
a
g

e

re
c
e
iv

e
rs

re
c
e
iv

e
rs

[

]

-re
c
e
iv

e
r : IR

e
c
e
iv

e
r{re

a
d
O

n
ly

}

´«
c
o
n
s
tru

c
to

r´»
#
F

o
rw

a
rd

in
g
R

e
c
e
iv

e
r(re

c
e
iv

e
r : IR

e
c
e
iv

e
r)

-v
a
lid

a
te

S
ta

te
() : v

o
id

´«
J
a
v
a
E

le
m

e
n
t´»

+
h
a
s
M

o
re

M
e
s
s
a
g
e
s
() : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

 ´«
g
e
tte

r´»
+

g
e
tN

e
x
tM

e
s
s
a
g
e
() : IM

o
n
ito

rM
e
s
s
a
g
e
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
c
lo

s
e
() : v

o
id

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

 ´«
g
e
tte

r´»
+

is
C

o
n
n
e
c
te

d
() : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
e
q
u
a
ls

(o
 : O

b
je

c
t) : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
h
a
s
h
C

o
d
e
() : in

t{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
to

S
trin

g
() : S

trin
g
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

F
o
rw

a
rd

in
g
R
e
c
e
iv
e
r

-d
s
 : D

is
p
a
tc

h
in

g
S

e
rv

ic
e
{re

a
d
O

n
ly

}

´«
J
a
v
a
E

le
m

e
n
t´»

+
c
lo

s
e
() : v

o
id

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
g
e
tte

r´»
+

is
C

o
n
n
e
c
te

d
() : b

o
o
le

a
n

´«
c
o
n
s
tru

c
to

r´»
~

R
e
c
e
iv

e
r(d

s
 : D

is
p
a
tc

h
in

g
S

e
rv

ic
e
)

-v
a
lid

a
te

S
ta

te
() : v

o
id

´«
J
a
v
a
E

le
m

e
n
t´»

+
h
a
s
M

o
re

M
e
s
s
a
g
e
s
() : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

 ´«
g
e
tte

r´»
+

g
e
tN

e
x
tM

e
s
s
a
g
e
() : IM

o
n
ito

rM
e
s
s
a
g
e
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

R
e
c
e
iv

e
r

+
n
e
w

T
C

P
R

e
c
e
iv

e
r(h

o
s
t : S

trin
g
, p

o
rt : in

t) : IR
e
c
e
iv

e
r

F
a
c
to

ry
+

h
a
s
M

o
re

M
e
s
s
a
g
e
s
() : b

o
o
le

a
n

´«
g
e
tte

r´»
+

is
C

o
n
n
e
c
te

d
() : b

o
o
le

a
n

´«
g
e
tte

r´»
+

g
e
tN

e
x
tM

e
s
s
a
g
e
() : IM

o
n
ito

rM
e
s
s
a
g
e

+
c
lo

s
e
() : v

o
id

IR
e
c
e
iv
e
r

´«
v
irtu

a
l´»

{n
 =

 1
}

Figure A.5: UML Class diagram of part of the system

64

p
a
c
k
a
g

e

s
e
n
d
e
rs

s
e
n
d
e
rs

[

]

-s
e
n
d
e
r : IS

e
n
d
e
r{re

a
d
O

n
ly

}
-s

e
rv

ic
e
 : E

x
e
c
u
to

rS
e
rv

ic
e
{re

a
d
O

n
ly

}

´«
c
o
n
s
tru

c
to

r´»
~

A
c
tiv

e
S

e
n
d
e
r(s

e
n
d
e
r : IS

e
n
d
e
r)

´«
J
a
v
a
E

le
m

e
n
t´»

+
s
e
n
d
(m

o
d
e
l : Im

m
u
ta

b
le

S
e
lfL

e
t) : F

u
tu

re
<

?
>

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
c
lo

s
e
() : F

u
tu

re
<

?
>

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

 ´«
g
e
tte

r´»
+

is
C

o
n
n
e
c
te

d
() : F

u
tu

re
<

B
o
o
le

a
n
>

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

A
c
tiv

e
S

e
n

d
e
r

-s
e
n
d
e
r : IA

c
tiv

e
S

e
n
d
e
r{re

a
d
O

n
ly

}

´«
c
o
n
s
tru

c
to

r´»
#
F

o
rw

a
rd

in
g
A

c
tiv

e
S

e
n
d
e
r(s

e
n
d
e
r : IA

c
tiv

e
S

e
n
d
e
r)

´«
J
a
v
a
E

le
m

e
n
t´»

+
s
e
n
d
(m

o
d
e
l : Im

m
u
ta

b
le

S
e
lfL

e
t) : F

u
tu

re
<

?
>

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
c
lo

s
e
() : F

u
tu

re
<

?
>

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

 ´«
g
e
tte

r´»
+

is
C

o
n
n
e
c
te

d
() : F

u
tu

re
<

B
o
o
le

a
n
>

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
to

S
trin

g
() : S

trin
g
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
e
q
u
a
ls

(o
 : O

b
je

c
t) : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
h
a
s
h
C

o
d
e
() : in

t{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

F
o
rw

a
rd
in
g
A
c
tiv

e
S
e
n
d
e
r

-d
s
 : D

is
p
a
tc

h
in

g
S

e
rv

ic
e
{re

a
d
O

n
ly

}

´«
c
o
n
s
tru

c
to

r´»
~

S
e
n
d
e
r(d

s
 : D

is
p
a
tc

h
in

g
S

e
rv

ic
e
)

-v
a
lid

a
te

S
ta

te
() : v

o
id

´«
J
a
v
a
E

le
m

e
n
t´»

+
s
e
n
d
(m

o
d
e
l : Im

m
u
ta

b
le

S
e
lfL

e
t) : v

o
id

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
c
lo

s
e
() : v

o
id

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

 ´«
g
e
tte

r´»
+

is
C

o
n
n
e
c
te

d
() : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

S
e
n

d
e
r

-s
e
n
d
e
r : IS

e
n
d
e
r{re

a
d
O

n
ly

}

´«
c
o
n
s
tru

c
to

r´»
#
F

o
rw

a
rd

in
g
S

e
n
d
e
r(s

e
n
d
e
r : IS

e
n
d
e
r)

-v
a
lid

a
te

S
ta

te
() : v

o
id

´«
J
a
v
a
E

le
m

e
n
t´»

+
s
e
n
d
(m

o
d
e
l : Im

m
u
ta

b
le

S
e
lfL

e
t) : v

o
id

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
c
lo

s
e
() : v

o
id

{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

 ´«
g
e
tte

r´»
+

is
C

o
n
n
e
c
te

d
() : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
e
q
u
a
ls

(o
 : O

b
je

c
t) : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
h
a
s
h
C

o
d
e
() : in

t{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
to

S
trin

g
() : S

trin
g
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

F
o
rw

a
rd
in
g
S
e
n
d
e
r

+
n
e
w

T
C

P
S

e
n
d
e
r(h

o
s
t : S

trin
g
, p

o
rt : in

t) : IS
e
n
d
e
r

+
n
e
w

T
C

P
A

c
tiv

e
S

e
n
d
e
r(h

o
s
t : S

trin
g
, p

o
rt : in

t) : IA
c
tiv

e
S

e
n
d
e
r

F
a
c
to

ry

+
s
e
n
d
(m

o
d
e
l : Im

m
u
ta

b
le

S
e
lfL

e
t) : F

u
tu

re
<

?
>

+
c
lo

s
e
() : F

u
tu

re
<

?
>

´«
g
e
tte

r´»
+

is
C

o
n
n
e
c
te

d
() : F

u
tu

re
<

B
o
o
le

a
n
>

IA
c
tiv

e
S
e
n
d
e
r

+
s
e
n
d
(m

o
d
e
l : Im

m
u
ta

b
le

S
e
lfL

e
t) : v

o
id

+
c
lo

s
e
() : v

o
id

´«
g
e
tte

r´»
+

is
C

o
n
n
e
c
te

d
() : b

o
o
le

a
n

IS
e
n
d
e
r

´«
v
irtu

a
l´»

{n
 =

 1
}

´«
v
irtu

a
l´»

{n
 =

 1
}

Figure A.6: UML Class diagram of part of the system

65

SelfLetMonitorAPI UML 2.0 Class Diagrams

p
a
c
k
a
g

e

filte
rs

filte
rs

[

]

-w
ra

p
p
e
d
 : IM

o
n
ito

rM
e
s
s
a
g
e
F

ilte
r{re

a
d
O

n
ly

}

´«
c
o
n
s
tru

c
to

r´»
#
F

o
rw

a
rd

a
b
le

M
o
n
ito

rM
e
s
s
a
g
e
F

ilte
r(w

ra
p
p
e
d
 : IM

o
n
ito

rM
e
s
s
a
g
e
F

ilte
r)

-v
a
lid

a
te

S
ta

te
() : v

o
id

´«
J
a
v
a
E

le
m

e
n
t´»

+
m

a
tc

h
e
s
(m

s
g
 : M

e
s
s
a
g
e
) : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
to

S
trin

g
() : S

trin
g
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
e
q
u
a
ls

(o
 : O

b
je

c
t) : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

´«
J
a
v
a
E

le
m

e
n
t´»

+
h
a
s
h
C

o
d
e
() : in

t{J
a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

F
o

rw
a
rd

a
b

le
M

o
n

ito
rM

e
s
s
a
g

e
F

ilte
r

´«
c
o
n
s
tru

c
to

r´»
~

M
o
n
ito

rM
e
s
s
a
g
e
F

ilte
r()

´«
J
a
v
a
E

le
m

e
n
t´»

+
m

a
tc

h
e
s
(m

s
g
 : M

e
s
s
a
g
e
) : b

o
o
le

a
n
{J

a
v
a
A

n
n
o
ta

tio
n
s
 =

 "@
O

v
e
rrid

e
"}

M
o

n
ito

rM
e
s
s
a
g

e
F

ilte
r

+
n
e
w

M
o
n
ito

rM
e
s
s
a
g
e
F

ilte
r() : IM

o
n
ito

rM
e
s
s
a
g
e
F

ilte
r

F
a
c
to

ry

IM
o
n
ito

rM
e
s
s
a
g
e
F
ilte

r
´«

v
irtu

a
l´»

{n
 =

 1
}

Figure A.7: UML Class diagram of part of the system

66

Appendix B

SelfLetClientMonitor UML 2.0

Class Diagrams

ComunicationConcerncomunicationpackage []

-messagesSent : int
-startTimeNano : long

´«constructor´»+MessagePublishedOnReds()
´«JavaElement´»+afterOpen(ds : DispatchingService) : void{JavaAnnotations = "@AfterReturning("open() && this(ds)")"}
´«JavaElement´»+beforePublish(message : Message, ds : DispatchingService) : void{JavaAnnotations = "@Before("publish() && args(message) && this(ds)")"}
´«JavaElement´»+afterClose() : void{JavaAnnotations = "@AfterReturning("close()")"}

´«JavaElement´»

MessagePublishedOnReds

{JavaAnnotations = "@Aspect("perthis(open())")" }

´«JavaElement´»+open() : void{JavaAnnotations = "@Pointcut("execution(public void polimi.reds.DispatchingService+.open())")"}
´«JavaElement´»+publish() : void{JavaAnnotations = "@Pointcut("execution(public void publish(polimi.reds.Message))")"}
´«JavaElement´»+close() : void{JavaAnnotations = "@Pointcut("execution(public void close())")"}

´«JavaElement´»

SkeletalMessagePublishedOnReds

{JavaAnnotations = "@Aspect("perthis(open())")" }

Figure B.1: UML Class diagram of part of the system

SelfLetClientMonitor UML 2.0 Class Diagrams

package SelfLetselfLet []

´«constructor´»#SelfLetWrapper(id : String)
´«constructor´»#SelfLetWrapper(id : String, neighbors : List<Neighbor>)
´«JavaElement´» ´«getter´»+getKnowledgeWrapper(knowledgeType : KnowledgeType) : IObservableKnowledgeWrapper{JavaAnnotations = "@Override"}
´«JavaElement´» ´«getter´»+getServiceWrapper(name : String) : IObservableServiceWrapper{JavaAnnotations = "@Override"}
-updateKnowledgeModel(knowledgeModel : ImmutableKnowledge) : void
-updateServiceModel(serviceModel : ImmutableService) : void
´«getter´»~getInstance(id : String, neighbors : List<Neighbor>) : SelfLetWrapper
´«getter´»~getInstance(id : String) : SelfLetWrapper

SelfLetWrapper

´«constructor´»#SkeletalSelfLetWrapper(id : String)
´«constructor´»#SkeletalSelfLetWrapper(id : String, neighbors : List<Neighbor>)
-validateState() : void
´«JavaElement´» ´«getter´»+getModel() : ImmutableSelfLet{JavaAnnotations = "@Override"}
´«setter´»#setModel(selfLetModel : ImmutableSelfLet) : void
#convertNeighborIds(neighbors : List<Neighbor>) : List<String>
´«JavaElement´»+updateNeighbors(neighbors : List<Neighbor>) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«getter´»+getKnowledgeWrapper(knowledgeType : KnowledgeType) : IKnowledgeWrapper{JavaAnnotations = "@Override"}
´«JavaElement´» ´«getter´»+getServiceWrapper(name : String) : ISkeletalServiceWrapper{JavaAnnotations = "@Override"}

SkeletalSelfLetWrapper

´«constructor´»-ObservableSelfLetWrapper(id : String, neighbors : List<Neighbor>)
´«constructor´»-ObservableSelfLetWrapper(id : String)
´«JavaElement´»+addObserver(observer : IObserver) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+removeObserver(observer : IObserver) : boolean{JavaAnnotations = "@Override"}
-notifyModelChanged(model : ImmutableSelfLet) : void
´«JavaElement´» ´«setter´»#setModel(model : ImmutableSelfLet) : void{JavaAnnotations = "@Override"}
´«getter´»~getInstance(id : String, neighbors : List<Neighbor>) : ObservableSelfLetWrapper
´«getter´»~getInstance(id : String) : ObservableSelfLetWrapper

ObservableSelfLetWrapper

´«constructor´»-Factory()
´«getter´»+getSelfLetWrapper(id : String) : ISkeletalSelfLetWrapper
´«getter´»+getSelfLetWrapper(id : String, neighbors : List<Neighbor>) : ISkeletalSelfLetWrapper

Factory

´«getter´»+getModel() : ImmutableSelfLet
+updateNeighbors(neighbors : List<Neighbor>) : void
´«getter´»+getKnowledgeWrapper(knowledgeType : KnowledgeType) : IKnowledgeWrapper
´«getter´»+getServiceWrapper(name : String) : ISkeletalServiceWrapper

ISkeletalSelfLetWrapper

+addObserver(observer : IObserver) : void
+removeObserver(observer : IObserver) : boolean

IObservable

+update(model : ImmutableSelfLet) : void

IObserver

IObservableSelfLetWrapper

-wrapper

-wrapper

-observers

{readOnly}

0..*

Figure B.2: UML Class diagram of part of the system

package Servicesservice []

´«constructor´»#ServiceWrapper(serviceName : String)
-updateLocals(oldModel : ImmutableLocalRunningService, newModel : ImmutableLocalRunningService) : void
-updateRemotes(oldModel : ImmutableRemoteRunningService, newModel : ImmutableRemoteRunningService) : void
´«JavaElement´» ´«getter´»+getLocalRunningServiceWrapper(runningService : LocalRunningService) : IObservableLocalRunningServiceWrapper{JavaAnnotations = "@Override"}
´«JavaElement´» ´«getter´»+getRemoteRunningServiceWrapper(runningService : RemoteRunningService, from : String, msgId : Serializable) : IObservableRemoteRunningServiceWrapper{JavaAnnotations = "@Override"}
´«getter´»~getInstance(serviceName : String) : ServiceWrapper

ServiceWrapper

´«constructor´»#SkeletalServiceWrapper(name : String)
´«JavaElement´» ´«getter´»+getModel() : ImmutableService{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCanBoth(canBoth : boolean) : void{JavaAnnotations = "@Override"}
´«setter´»#setModel(serviceModel : ImmutableService) : void
´«JavaElement´» ´«setter´»+setCanBothFrozen(canBothFrozen : boolean) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCanDo(canDo : boolean) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCanDoFrozen(canDoFrozen : boolean) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setProviders(providers : List<String>) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCanTeach(canTeach : boolean) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCanTeachFrozen(canTeachFrozen : boolean) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setDefaultBehavior(defaultBehavior : IBehavior) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setDefaultImplementingBehavior(defaultImplementingBehavior : BehaviorSignature) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setDefaultImplementingBehaviorFrozen(defaultImplementingBehaviorFrozen : BehaviorSignature) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setEnabled(enabled : boolean) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setImplementingBehaviors(implementingBehaviors : List<BehaviorSignature>) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setInputParameters(inputParameters : Map<String, Class<?>>) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setKnowsBoth(knowsBoth : boolean) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setKnowsDo(knowsDo : boolean) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setKnowsTeach(knowsTeach : boolean) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setMaxResponseTime(maxResponseTime : double) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setRevenue(revenue : double) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«getter´»+getLocalRunningServiceWrapper(runningService : LocalRunningService) : ILocalRunningServiceWrapper{JavaAnnotations = "@Override"}
´«JavaElement´» ´«getter´»+getRemoteRunningServiceWrapper(runningService : RemoteRunningService, from : String, msgId : Serializable) : IRemoteRunningServiceWrapper{JavaAnnotations = "@Override"}

SkeletalServiceWrapper

´«getter´»+getModel() : ImmutableService
´«setter´»+setCanBoth(canBoth : boolean) : void
´«setter´»+setCanBothFrozen(canBothFrozen : boolean) : void
´«setter´»+setCanDo(canDo : boolean) : void
´«setter´»+setCanDoFrozen(canDoFrozen : boolean) : void
´«setter´»+setProviders(providers : List<String>) : void
´«setter´»+setCanTeach(canTeach : boolean) : void
´«setter´»+setCanTeachFrozen(canTeachFrozen : boolean) : void
´«setter´»+setDefaultBehavior(defaultBehavior : IBehavior) : void
´«setter´»+setDefaultImplementingBehavior(defaultImplementingBehavior : BehaviorSignature) : void
´«setter´»+setDefaultImplementingBehaviorFrozen(defaultImplementingBehaviorFrozen : BehaviorSignature) : void
´«setter´»+setEnabled(enabled : boolean) : void
´«setter´»+setImplementingBehaviors(implementingBehaviors : List<BehaviorSignature>) : void
´«setter´»+setInputParameters(inputParameters : Map<String, Class<?>>) : void
´«setter´»+setKnowsBoth(knowsBoth : boolean) : void
´«setter´»+setKnowsDo(knowsDo : boolean) : void
´«setter´»+setKnowsTeach(knowsTeach : boolean) : void
´«setter´»+setMaxResponseTime(maxResponseTime : double) : void
´«setter´»+setRevenue(revenue : double) : void
´«getter´»+getLocalRunningServiceWrapper(runningService : LocalRunningService) : ILocalRunningServiceWrapper
´«getter´»+getRemoteRunningServiceWrapper(runningService : RemoteRunningService, from : String, msgId : Serializable) : IRemoteRunningServiceWrapper

ISkeletalServiceWrapper

´«constructor´»-ObservableServiceWrapper(serviceName : String)
´«JavaElement´»+addObserver(observer : IObserver) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+removeObserver(observer : IObserver) : boolean{JavaAnnotations = "@Override"}
-notifyModelUpdated(model : ImmutableService) : void
´«JavaElement´» ´«setter´»#setModel(model : ImmutableService) : void{JavaAnnotations = "@Override"}
´«getter´»~getInstance(serviceName : String) : ObservableServiceWrapper

ObservableServiceWrapper

´«constructor´»-Factory()
´«getter´»+getObservableServiceWrapper(name : String) : IObservableServiceWrapper

Factory

+addObserver(observer : IObserver) : void
+removeObserver(observer : IObserver) : boolean

IObservable

+update(model : ImmutableService) : void

IObserver

IObservableServiceWrapper

-controllerMap 0..*

-controllerMap 0..*

-observers

{readOnly}

0..*

Figure B.3: UML Class diagram of part of the system

68

Knowledgeknowledgepackage []

´«constructor´»-KnowledgeWrapper(builder : Multiton)
´«JavaElement´» ´«getter´»+getModel() : ImmutableKnowledge{JavaAnnotations = "@Override"}
´«JavaElement´»+updateKnowledgeContent(contentMap : Map<String, ?>) : void{JavaAnnotations = "@Override"}
´«getter´»-getInstance(multiton : Multiton) : KnowledgeWrapper

KnowledgeWrapper

´«constructor´»-Factory()
´«getter´»+getKnowledgeWrapper(knowledgeType : KnowledgeType) : IKnowledgeWrapper

Factory

´«getter´»+getModel() : ImmutableKnowledge
+updateKnowledgeContent(contentMap : Map<String, ?>) : void

IKnowledgeWrapper

-controllerMap 0..*

Figure B.4: UML Class diagram of part of the system

package Localslocal []

´«constructor´»-Factory()
´«getter´»+getLocalRunningServiceWrapper(runningService : LocalRunningService) : ILocalRunningServiceWrapper

Factory

´«JavaElement´» ´«getter´»+getModel() : ImmutableLocalRunningService{JavaAnnotations = "@Override"}

ILocalRunningServiceWrapper

´«constructor´»-LocalRunningServiceWrapper()
´«JavaElement´» ´«setter´»+setLastOutput(value : Object) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCurrentState(currentState : State) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCreationTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setResponseTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«getter´»+getModel() : ImmutableLocalRunningService{JavaAnnotations = "@Override"}
´«getter´»-getInstance(multiton : Multiton) : LocalRunningServiceWrapper

LocalRunningServiceWrapper

´«getter´»+getModel() : SkeletalImmutableRunningService
´«setter´»+setLastOutput(value : Object) : void
´«setter´»+setCurrentState(value : State) : void
´«setter´»+setCreationTime(value : long) : void
´«setter´»+setResponseTime(value : long) : void

IRunningServiceWrapper

-controllerMap 0..*

Figure B.5: UML Class diagram of part of the system

69

SelfLetClientMonitor UML 2.0 Class Diagrams

package Remotesremote[]

´«constructor´»-Factory()
´«getter´»+getRemoteRunningServiceWrapper(runningService : RemoteRunningService, from : String, msgId : Serializable) : IRemoteRunningServiceWrapper

Factory

´«JavaElement´» ´«getter´»+getModel() : ImmutableRemoteRunningService{JavaAnnotations = "@Override"}

IRemoteRunningServiceWrapper

´«constructor´»-RemoteRunningServiceWrapper(multiton : Multiton)
´«JavaElement´» ´«setter´»+setLastOutput(value : Object) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCurrentState(currentState : State) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCreationTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setResponseTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«getter´»+getModel() : ImmutableRemoteRunningService{JavaAnnotations = "@Override"}
´«getter´»-getInstance(multiton : Multiton) : RemoteRunningServiceWrapper

RemoteRunningServiceWrapper

´«getter´»+getModel() : SkeletalImmutableRunningService
´«setter´»+setLastOutput(value : Object) : void
´«setter´»+setCurrentState(value : State) : void
´«setter´»+setCreationTime(value : long) : void
´«setter´»+setResponseTime(value : long) : void

IRunningServiceWrapper

-controllerMap 0..*

Figure B.6: UML Class diagram of part of the system

KnowledgeDecoratorsdecoratorspackage []

´«constructor´»~ObservableKnowledgeWrapper(wrapper : IKnowledgeWrapper)
´«JavaElement´»+addObserver(observer : IObserver) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+removeObserver(observer : IObserver) : boolean{JavaAnnotations = "@Override"}
-notifyModelUpdated(knowledge : ImmutableKnowledge) : void
´«JavaElement´»+updateKnowledgeContent(contentMap : Map<String, ?>) : void{JavaAnnotations = "@Override"}

ObservableKnowledgeWrapper

´«constructor´»#ForwardingKnowledgeWrapper(wrapper : IKnowledgeWrapper)
-validateState() : void
´«JavaElement´» ´«getter´»+getModel() : ImmutableKnowledge{JavaAnnotations = "@Override"}
´«JavaElement´»+updateKnowledgeContent(contentMap : Map<String, ?>) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+equals(o : Object) : boolean{JavaAnnotations = "@Override"}
´«JavaElement´»+hashCode() : int{JavaAnnotations = "@Override"}
´«JavaElement´»+toString() : String{JavaAnnotations = "@Override"}

ForwardingKnowledgeWrapper

´«constructor´»-Factory()
+newObservableKnowledgeWrapper(wrapper : IKnowledgeWrapper) : IObservableKnowledgeWrapper

Factory

´«getter´»+getModel() : ImmutableKnowledge
+updateKnowledgeContent(contentMap : Map<String, ?>) : void

IKnowledgeWrapper

+addObserver(observer : IObserver) : void
+removeObserver(observer : IObserver) : boolean

IObservable

+update(knowledge : ImmutableKnowledge) : void

IObserver

IObservableKnowledgeWrapper

{readOnly}-wrapper

-observers

{readOnly}

0..*

Figure B.7: UML Class diagram of part of the system

70

RemoteDecoratorsdecoratorspackage []

´«constructor´»-Factory()
+newObservableRemoteRunningServiceWrapper(wrapped : IRemoteRunningServiceWrapper) : IObservableRemoteRunningServiceWrapper

Factory

´«constructor´»~ObservableRemoteRunningServiceWrapper(wrapped : IRemoteRunningServiceWrapper)
´«JavaElement´»+addObserver(observer : IObserver) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+removeObserver(observer : IObserver) : void{JavaAnnotations = "@Override"}
-notifyObservers(oldModel : ImmutableRemoteRunningService, newModel : ImmutableRemoteRunningService) : void
´«JavaElement´» ´«setter´»+setLastOutput(value : Object) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCurrentState(value : State) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCreationTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setResponseTime(value : long) : void{JavaAnnotations = "@Override"}

ObservableRemoteRunningServiceWrapper

+update(oldModel : ImmutableRemoteRunningService, newModel : ImmutableRemoteRunningService) : void

IObserver

´«JavaElement´» ´«getter´»+getModel() : ImmutableRemoteRunningService{JavaAnnotations = "@Override"}

IRemoteRunningServiceWrapper

´«constructor´»#ForwardingRemoteRunningServiceWrapper(wrapped : IRemoteRunningServiceWrapper)
-validateState() : void
´«JavaElement´» ´«getter´»+getModel() : ImmutableRemoteRunningService{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setLastOutput(value : Object) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCurrentState(value : State) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCreationTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setResponseTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+toString() : String{JavaAnnotations = "@Override"}
´«JavaElement´»+equals(o : Object) : boolean{JavaAnnotations = "@Override"}
´«JavaElement´»+hashCode() : int{JavaAnnotations = "@Override"}

ForwardingRemoteRunningServiceWrapper

IObservableRemoteRunningServiceWrapper

+addObserver(observer : IObserver) : void
+removeObserver(observer : IObserver) : void

IObservable

{readOnly}-wrapped

-observers

{readOnly}

0..*

Figure B.8: UML Class diagram of part of the system

LocalDecoratorsdecoratorspackage []

´«constructor´»-Factory()
+newObservableLocalRunningServiceWrapper(wrapped : ILocalRunningServiceWrapper) : IObservableLocalRunningServiceWrapper

Factory

´«constructor´»~ObservableLocalRunningServiceWrapper(wrapped : ILocalRunningServiceWrapper)
´«JavaElement´»+addObserver(observer : IObserver) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+removeObserver(observer : IObserver) : void{JavaAnnotations = "@Override"}
-notifyObservers(oldModel : ImmutableLocalRunningService, newModel : ImmutableLocalRunningService) : void
´«JavaElement´» ´«setter´»+setLastOutput(value : Object) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCurrentState(value : State) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCreationTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setResponseTime(value : long) : void{JavaAnnotations = "@Override"}

ObservableLocalRunningServiceWrapper

+update(oldModel : ImmutableLocalRunningService, newModel : ImmutableLocalRunningService) : void

IObserver

´«JavaElement´» ´«getter´»+getModel() : ImmutableLocalRunningService{JavaAnnotations = "@Override"}

ILocalRunningServiceWrapper

´«constructor´»#ForwardingLocalRunningServiceWrapper(wrapped : ILocalRunningServiceWrapper)
-validateState() : void
´«JavaElement´» ´«getter´»+getModel() : ImmutableLocalRunningService{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setLastOutput(value : Object) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCurrentState(value : State) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setCreationTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«setter´»+setResponseTime(value : long) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+toString() : String{JavaAnnotations = "@Override"}
´«JavaElement´»+equals(o : Object) : boolean{JavaAnnotations = "@Override"}
´«JavaElement´»+hashCode() : int{JavaAnnotations = "@Override"}

ForwardingLocalRunningServiceWrapper IObservableLocalRunningServiceWrapper

+removeObserver(observer : IObserver) : void
+addObserver(observer : IObserver) : void

IObservable

{readOnly}-wrapped

-observers

{readOnly}

0..*

Figure B.9: UML Class diagram of part of the system

71

Appendix C

SelfLetServerMonitor UML 2.0

Class Diagrams

MonitorFramepackage server []

´«constructor´»~MonitorFrame(modelMap : ImmutableSelfLetMap, presenter : IMonitorFramePresenter)
-validateState() : void
´«JavaElement´»-initComponents() : void{JavaAnnotations = "@SuppressWarnings("unchecked")"}
-formWindowClosed(evt : WindowEvent) : void
-selfLetDetailJButtonActionPerformed(evt : ActionEvent) : void
´«JavaElement´»+updateModel(oldModel : ImmutableSelfLet, newModel : ImmutableSelfLet) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+addModel(model : ImmutableSelfLet) : void{JavaAnnotations = "@Override"}
´«JavaElement´» ´«getter´»+getSelfLetModelIdSelected() : String{JavaAnnotations = "@Override"}

MonitorFrame

´«constructor´»-Factory()
+newMonitorFrame(modelMap : ImmutableSelfLetMap, presenter : IMonitorFramePresenter) : IMonitorFrame

Factory

´«constructor´»~MonitorFrameController(updateEventSource : IObservable)
-validateState() : void
´«JavaElement´»+receivedModel(model : ImmutableSelfLet) : void{JavaAnnotations = "@Override"}
-viewClosed() : Future<?>
-showSelectedSelfLetDetail() : Future<?>

MonitorFrameController

+addModel(model : ImmutableSelfLet) : void
´«getter´»+getSelfLetModelIdSelected() : String
+updateModel(oldModel : ImmutableSelfLet, newModel : ImmutableSelfLet) : void
´«setter´»+setVisible(b : boolean) : void
´«getter´»+isVisible() : boolean

IMonitorFrame

´«constructor´»-ImmutableSelfLetMap(selfLetMap : Map<String, ImmutableSelfLet>)
´«constructor´»-ImmutableSelfLetMap()
-validateState() : void
´«getter´»+getSelfLetMap() : Map<String, ImmutableSelfLet>
+putImmutableSelfLet(immutableSelfLet : ImmutableSelfLet) : ImmutableSelfLetMap
+removeImmutableSelfLet(id : String) : ImmutableSelfLetMap
´«JavaElement´»+equals(o : Object) : boolean{JavaAnnotations = "@Override"}
´«JavaElement´»+hashCode() : int{JavaAnnotations = "@Override"}
+newInstance(selfLetMap : Map<String, ImmutableSelfLet>) : ImmutableSelfLetMap
+newInstance() : ImmutableSelfLetMap

ImmutableSelfLetMap

´«constructor´»-MonitorFramePresenter(controller : MonitorFrameController)
-validateState() : void
´«JavaElement´»+windowClosed() : void{JavaAnnotations = "@Override"}
´«JavaElement´»+showDetail() : void{JavaAnnotations = "@Override"}

MonitorFramePresenter

´«constructor´»-Factory()
+newMonitorFrameController(observable : IObservable) : IObserver

Factory

+receivedModel(model : ImmutableSelfLet) : void

IObserver

+showDetail() : void
+windowClosed() : void

IMonitorFramePresenter

-map

´«virtual´»

{n = 1}

´«virtual´»

{n = 1}

{readOnly}-controller

-view

{readOnly}-presenter

Figure C.1: UML Class diagram of part of the system

SelfLetServerMonitor UML 2.0 Class Diagrams

SelfLetDialogpackage server []

´«constructor´»~SelfLetDialogController(updateEventSource : IObservable, model : ImmutableSelfLet)
-validateState() : void
´«JavaElement´»+receivedModel(model : ImmutableSelfLet) : void{JavaAnnotations = "@Override"}
-viewClosed() : Future<?>

SelfLetDialogController

´«constructor´»-Factory()
+newSelfLetDialog(model : ImmutableSelfLet, presenter : ISelfLetDialogPresenter) : ISelfLetDialog

Factory

´«constructor´»~SelfLetDialog(model : ImmutableSelfLet, presenter : ISelfLetDialogPresenter)
´«getter´»+getBaseKnowledge() : List<ImmutableEntry>
´«getter´»+getServiceKnowledge() : List<ImmutableEntry>
´«getter´»+getBehaviorKnowledge() : List<ImmutableEntry>
´«getter´»+getDefaultTypeKnowledge() : List<ImmutableEntry>
´«getter´»+getServices() : List<ImmutableService>
´«JavaElement´»-initComponents() : void{JavaAnnotations = "@SuppressWarnings("unchecked")"}
-formWindowClosed(evt : WindowEvent) : void
´«JavaElement´»+refreshModel(model : ImmutableSelfLet) : void{JavaAnnotations = "@Override"}
´«setter´»-setBaseKnowledge(newValue : List<ImmutableEntry>) : void
´«setter´»-setBehaviorKnowledge(newValue : List<ImmutableEntry>) : void
´«setter´»-setDefaultTypeKnowledge(newValue : List<ImmutableEntry>) : void
´«setter´»-setServiceKnowledge(newValue : List<ImmutableEntry>) : void
´«setter´»-setServices(newValue : List<ImmutableService>) : void

SelfLetDialog

´«constructor´»-Factory()
+newSelfLetDialogController(observable : IObservable, model : ImmutableSelfLet) : IObserver

Factory

´«constructor´»-SelfLetDialogPresenter(controller : SelfLetDialogController)
-validateState() : void
´«JavaElement´»+windowClosed() : void{JavaAnnotations = "@Override"}

SelfLetDialogPresenter

+receivedModel(model : ImmutableSelfLet) : void

IObserver

+refreshModel(model : ImmutableSelfLet) : void
´«setter´»+setVisible(b : boolean) : void
´«getter´»+isVisible() : boolean

ISelfLetDialog

+windowClosed() : void

ISelfLetDialogPresenter

´«virtual´»

{n = 1}

´«virtual´»

{n = 1}

{readOnly}-controller

-view

{readOnly}-presenter

Figure C.2: UML Class diagram of part of the system

Comunicationcomunicationpackage []

-isMonitoring : boolean

´«constructor´»~Monitor(receiver : IReceiver, strategy : IMonitorStrategy)
-validateState() : void
´«JavaElement´»+startMonitoring(delay : long, unit : TimeUnit) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+stopMonitoring() : void{JavaAnnotations = "@Override"}

Monitor

´«constructor´»-Factory()
+newTCPMonitor(host : String, port : int, strategy : IMonitorStrategy) : IMonitor

Factory

´«constructor´»-Factory()
+newMonitor(receiver : IReceiver, strategy : IMonitorStrategy) : IMonitor

Factory

+monitorMessageReceived(message : IMonitorMessage) : void

IMonitorStrategy

+startMonitoring(delay : long, unit : TimeUnit) : void
+stopMonitoring() : void

IMonitor

´«virtual´»

{n = 1}

´«virtual´»

{n = 1}

{readOnly}-strategy

Figure C.3: UML Class diagram of part of the system

74

package Strategiesstrategies []

´«constructor´»~ObservableMonitorStrategy(strategy : IMonitorStrategy)
´«JavaElement´»+addObserver(observer : IObserver) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+removeObserver(observer : IObserver) : boolean{JavaAnnotations = "@Override"}
-notifyModelReceived(model : ImmutableSelfLet) : void
´«JavaElement´»+monitorMessageReceived(message : IMonitorMessage) : void{JavaAnnotations = "@Override"}

ObservableMonitorStrategy

´«constructor´»#ForwardableMonitorStrategy(wrapped : IMonitorStrategy)
-validateState() : void
´«JavaElement´»+monitorMessageReceived(message : IMonitorMessage) : void{JavaAnnotations = "@Override"}
´«JavaElement´»+toString() : String{JavaAnnotations = "@Override"}
´«JavaElement´»+equals(o : Object) : boolean{JavaAnnotations = "@Override"}
´«JavaElement´»+hashCode() : int{JavaAnnotations = "@Override"}

ForwardableMonitorStrategy

´«constructor´»-Factory()
+newObservableMonitorStrategy(strategy : IMonitorStrategy) : IObservableMonitorStrategy

Factory

+monitorMessageReceived(message : IMonitorMessage) : void

IMonitorStrategy

+addObserver(observer : IObserver) : void
+removeObserver(observer : IObserver) : boolean

IObservable

´«constructor´»-Factory()
+newNullMonitorStrategy() : IMonitorStrategy

FactoryIObservableMonitorStrategy

´«virtual´»

{n = 1}

´«virtual´»

{n = 1}

Figure C.4: UML Class diagram of part of the system

75

Bibliography

[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/.

[2] Argouml modeling tool. http://argouml.tigris.org/.

[3] Drools. http://www.jboss.org/drools.

[4] Gnuplot, a portable command-line driven graphing utility. http://www.

gnuplot.info/.

[5] Java platform debugger architecture. http://download.oracle.com/

javase/6/docs/technotes/guides/jpda/architecture.html.

[6] Jung, java universal network/graph framework. http://jung.

sourceforge.net/index.html.

[7] Openssh. http://www.openssh.com/.

[8] Package javax.swing. http://download.oracle.com/javase/6/docs/

api/javax/swing/package-summary.html.

[9] Performance overhead of aspectj. http://www.eclipse.org/aspectj/

doc/released/faq.php#q:effectonperformance.

[10] Ruby homepage. http://www.ruby-lang.org/en/.

[11] Joshua Bloch. Effective Java (2nd Edition) (The Java Series). Prentice

Hall PTR, Upper Saddle River, NJ, USA, 2 edition, 2008.

[12] Marian Bubak, Wlodzimierz Funika, Marcin Smetek, Zbigniew Kilianski,

and Roland Wismüller. Event handling in the j-ocm monitoring system.

In Roman Wyrzykowski, Jack Dongarra, Marcin Paprzycki, and Jerzy

BIBLIOGRAPHY

Wasniewski, editors, Parallel Processing and Applied Mathematics, vol-

ume 3019 of Lecture Notes in Computer Science, pages 344–351. Springer

Berlin / Heidelberg, 2004.

[13] Marian Bubak, Wlodzimierz Funika, Marcin Smetek, Zbigniew Kilian-

ski, and Roland Wismüller. Request processing in the java-oriented omis

compliant monitoring system. In Roman Wyrzykowski, Jack Dongarra,

Marcin Paprzycki, and Jerzy Wasniewski, editors, Parallel Processing and

Applied Mathematics, volume 3019 of Lecture Notes in Computer Science,

pages 352–359. Springer Berlin / Heidelberg, 2004.

[14] Nicolò M. Calcavecchia, Danilo Ardagna, and Elisabetta Nitto. The

emergence of load balancing in distributed systems: the selflet approach.

In Danilo Ardagna and Li Zhang, editors, Run-time Models for Self-

managing Systems and Applications, Autonomic Systems, pages 97–124.

Springer Basel, 2010.

[15] Hoi Chan and Trieu C. Chieu. An approach to monitor application states

for self-managing (autonomic) systems. In Companion of the 18th annual

ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, OOPSLA ’03, pages 312–313, New York, NY,

USA, 2003. ACM.

[16] Gianpaolo Cugola and Gian Pietro Picco. Reds: a reconfigurable dispatch-

ing system. In Proceedings of the 6th international workshop on Software

engineering and middleware, SEM ’06, pages 9–16, New York, NY, USA,

2006. ACM.

[17] Davide Devescovi, Elisabetta Di Nitto, and Raffaela Mirandola. An in-

frastructure for autonomic system development: the selflet approach. In

Proceedings of the twenty-second IEEE/ACM international conference on

Automated software engineering, ASE ’07, pages 449–452, New York, NY,

USA, 2007. ACM.

[18] Wlodzimierz Funika and Pawel Swierszcz. Dynamic instrumentation of

distributed java applications using bytecode modifications. In Interna-

tional Conference on Computational Science (2), pages 534–541, 2006.

78

BIBLIOGRAPHY

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[20] Martin Hunter. Tidying the house: The mvpc software design pattern.

http://www.martinhunter.co.nz/articles/MVPC.pdf, 2006.

[21] IBM. The autonomic computing manifesto. http://www.research.ibm.

com/autonomic/manifesto.

[22] Ramnivas Laddad. AspectJ in Action: Enterprise AOP with Spring Ap-

plications. Manning Publications Co., Greenwich, CT, USA, 2nd edition,

2009.

[23] Henry Lieberman. Using prototypical objects to implement shared be-

havior in object-oriented systems. In Conference proceedings on Object-

oriented programming systems, languages and applications, OOPLSA ’86,

pages 214–223, New York, NY, USA, 1986. ACM.

[24] Thomas Ludwig and Roland Wismüller. Omis 2.0 - a universal interface

for monitoring systems. In Proceedings of 4th European PVM/MPI Users’

Group Meeting, pages 267–276. Springer Verlag, 1997.

[25] Thomas Ludwig, Roland Wismüller, and Michael Oberhuber. Ocm - an

omis compliant monitoring system. In Parallel Virtual Machine – Eu-

roPVM’96, pages 81–90. Springer Verlag. http://wwwbode.informatik.tu-

muenchen.de/ wismuell/pub/europvm96b.ps.gz, 1996.

[26] Wl odzimierz Funika, Marian Bubak, and Marcin Smetek. Monitoring

system for distributed java applications. In Marian Bubak, Geert Dick van

Albada, Peter M. A. Sloot, and Jack J. Dongarra, editors, Computational

Science - ICCS 2004, volume 3038 of Lecture Notes in Computer Science,

pages 472–479. Springer Berlin / Heidelberg, 2004.

[27] Castle Park, Cambridge Cb Rd, Yigal Hoffner, and Yigal Hoffner. Moni-

toring in distributed systems monitoring in distributed systems, 1994.

[28] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and

David Holmes. Java Concurrency in Practice. Addison-Wesley Profes-

sional, 2005.

79

BIBLIOGRAPHY

[29] Alan Snyder. Encapsulation and inheritance in object-oriented program-

ming languages. In Conference proceedings on Object-oriented program-

ming systems, languages and applications, OOPLSA ’86, pages 38–45,

New York, NY, USA, 1986. ACM.

[30] The OSGi Alliance. OSGi service platform core specification, release 4.1.

http://www.osgi.org/Specifications, 2007.

80

