
Politecnico di Milano
Scuola di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica
Academic Year 2010/11

Human-Oriented Event Processing
Human Interactions in Complex Event Processing

Francesco Feltrinelli
francesco.feltrinelli@gmail.com

734505

Supervisor: Gianpaolo Cugola
Assistant supervisor: Alessandro Margara

Contents

List of Figures 7

List of Tables 9

Abstract 11
Abstract (Italian) . 11

1 Introduction 13
1.1 SOEP . 13
1.2 Document Structure . 14

2 Information Flow Processing 17
2.1 IFP Models . 17

2.1.1 Data Stream Processing . 18
2.1.2 Complex Event Processing . 18
2.1.3 Human-Oriented Event Processing 20

2.1.3.1 Characteristics . 20
2.1.3.2 Architecture . 22

2.2 IFP Technologies in SOEP . 22
2.2.1 TESLA . 23
2.2.2 T-Rex . 24

2.2.2.1 Processing Algorithms 24

3 Scenarios 27
3.1 Generic Scenarios . 27

3.1.1 Radio-Taxi . 27
3.1.2 Door-to-door Salesman . 28
3.1.3 Road Traffic . 29
3.1.4 Foot Traffic . 29
3.1.5 Tournament Organization . 30
3.1.6 Geocaching . 30
3.1.7 Laser Tag . 32
3.1.8 Bingo . 32
3.1.9 Concert Setlist . 33
3.1.10 Personal Sensing . 34

3.2 SOEP’s Scenarios . 35

3

Contents

3.2.1 Crowding in study rooms . 35
3.2.2 Proposals and agreements . 37
3.2.3 Gatherings of people . 38

3.2.3.1 Implementation . 40
3.2.4 Queues at the student office . 40

3.2.4.1 Turn Management . 41
3.2.4.2 Waiting Time . 42

3.2.5 Surveys and Statistics . 43
3.2.5.1 Survey Framework . 44
3.2.5.2 Survey Analysis . 45
3.2.5.3 Statistics . 47

3.2.6 Administrative Announcements 50

4 SOEP-Server 53
4.1 Features . 53

4.1.1 Scalability . 54
4.2 Design . 54

4.2.1 Server’s Workflow . 56
4.3 Implementation . 57

4.3.1 Boost Libraries . 57

5 SOEP-Client 61
5.1 Android . 61
5.2 Features . 63
5.3 Design . 65

5.3.1 Service . 65
5.3.2 Activity . 67
5.3.3 Event Management . 68

5.3.3.1 Module . 69
5.3.3.2 Action . 69
5.3.3.3 Packet . 70

5.4 Implementation . 70
5.4.1 Libraries . 71
5.4.2 Issues . 72

5.4.2.1 SOEPService’s startup method 72
5.4.2.2 Components’ memory retainment 73
5.4.2.3 EventModule’s activities 74
5.4.2.4 Capabilities discovery 75
5.4.2.5 Module retrieval . 76
5.4.2.6 Pinch-to-zoom gesture 77
5.4.2.7 Device’s standby . 77

6 Related Work 79

4

Contents

7 Future Work 85

8 Conclusion 87

Bibliography 89

5

Contents

6

List of Figures

1.1 SOEP’s overview . 14

2.1 CEP system’s overview . 19
2.2 HOEP system’s overview . 22

3.1 Scenario’s framework . 27
3.2 Position events in SOEP-Client . 40
3.3 Gathering events in SOEP-Client . 41

4.1 SOEP-Server’s architecture . 55
4.2 SOEP-Server’s workflow . 56

5.1 Android’s architecture . 62
5.2 SOEP-Client’s main views . 63
5.3 SOEP-Client’s architecture . 66

7

List of Figures

8

List of Tables

3.1 Events in Radio-Taxi scenario . 28
3.2 Events in Door-to-door Salesman scenario 28
3.3 Events in Road Traffic scenario . 29
3.4 Events in Foot Traffic scenario . 30
3.5 Events in Tournament Organization scenario 30
3.6 Events in Geocaching scenario . 31
3.7 Events in Laser Tag scenario . 32
3.8 Events in Bingo scenario . 33
3.9 Events in Concert Setlist scenario . 33
3.10 Events in Personal Sensing scenario . 34

9

List of Tables

10

Abstract

Human-Oriented Event Processing (HOEP) is introduced as a particular kind of Complex
Event Processing (CEP) in which both producers and consumers are human operators:
the goal is to widen the CEP domain with scenarios focused on human interaction and
collaboration, and vice versa provide people of a given social/business context with the
powerful technologies and methodologies of CEP. The significance of HOEP is corrob-
orated by the broad range of applicative scenarios presented. Moreover, the Students-
Oriented Event Platform (SOEP), an example of HOEP system addressed to university
students, was designed and implemented: students roam around the campus with their
mobile phone connected to the system, taking advantage of several services related to
their university life. SOEP is composed both by a server part and a client part: the
server runs a CEP engine on which event rules are deployed to generate in real-time
new events from those published by students; the client is a mobile application run in
student’s phone which can publish, receive and subscribe to events.

Abstract (Italian)

Lo Human-Oriented Event Processing (HOEP) viene introdotto come un tipo parti-
colare di Complex Event Processing (CEP) in cui sia i produttori che i consumatori
sono persone: l’obiettivo è quello di ampliare il dominio del CEP con scenari focalizzati
sull’interazione umana e la collaborazione, e viceversa fornire alle persone all’interno
di un certo contesto sociale/lavorativo le efficaci tecnologie e metodologie del CEP. La
rilevanza dello HOEP è avvalorata dall’ampia gamma di scenari applicativi presentati.
È stato inoltre progettato ed implementato un esempio di sistema HOEP rivolto a stu-
denti universitari, lo Students-Oriented Event Platform (SOEP): gli studenti girano per
il campus con il loro cellulare connesso al sistema, beneficiando di diversi servizi legati
alla loro vita universitaria. SOEP è composto da una parte server ed una parte client: il
server si appoggia ad un motore di CEP sul quale sono installate regole di eventi utiliz-
zate per generare in tempo reale nuovi eventi a partire da quelli pubblicati dagli studenti;
il client è una applicazione mobile eseguita sul cellulare dello studente che permette di
pubblicare, ricevere e sottoscriversi ad eventi.

11

Abstract

12

1 Introduction

Complex Event Processing (CEP) [1] systems emerged in the last years as a particular
branch of the general Information Flow Processing (IFP) domain [2] to address real-time
processing on flows of events, as opposed to traditional computations on data stored on
database. Such systems are designed to timely react to the publication of events from
several sources in the external world, so that the notified events will be filtered and
combined by an event engine to generate new knowledge (in the form of new higher-
level - complex - events) according to a set of deployed rules; these generated events are
then promptly reported to every interested subscriber. The general idea as presented
here has found application in many different domains and have been used in a multitude
of scenarios (eg. environmental monitoring, stock analysis, fraud detection) with the
common point of processing the information as it flows from the peripheral to the center
of the system without requiring it to be persistently stored.
Anyway, although theoretically unrestricted, CEP systems so far have been prevalently
used with electro-mechanical components (sensors, actuators), business processes and
automated informative systems. The human operator is usually not an active parte-
cipant in the event processing, rather is put by its side as a system manager or data
analyst. This thesis tries to go a step father in the direction of human involvement:
it introduces Human-Oriented Event Processing (HOEP), a particular subtype of CEP
which explicitly focuses on human interaction and collaboration, and which features
human operators as the main producers/consumers of the event system.
To corroborate the introduction of HOEP, a wide variety of applicative scenarios in
HOEP’s domain are presented. Moreover a particular HOEP system, the Students-
Oriented Event Platform (SOEP), was designed and implemented. It focuses on a uni-
versity campus scenario and aims to provide students with many useful services related
to their university life. Students are both the sources and the sinks of the events, and
interact with the system through their mobile phone. Android (the innovative mobile
operating system developed by Google) was chosen as their phone’s platform. Section 1.1
gives some more introductory information about SOEP.

1.1 SOEP

The high-level view of SOEP is shown in figure 1.1: the student’s mobile phone runs
SOEP-Client, an Android application which lets the user connect to SOEP-Server to
publish, receive and subscribe to events. On the other side, the server leverages the

13

1 Introduction

event engine T-Rex [38], on which TESLA [37] event rules are deployed to generate in
real-time complex events from simple ones; those are then reported to every subscribing
client. SOEP-Server and SOEP-Client were designed and implemented from scratch,
while T-Rex is a third-party library which the server merely links to.

Figure 1.1: SOEP’s overview

The introduction of CEP in the university aims to create a portal to many useful ser-
vices, brought with the contribution of them all. Each service should improve some
aspect of the university life and convey a unique user experience: this distinguishes from
more traditional event management as in Wireless Sensor Networks (WSN) or in the
other business domains CEP has been used until now. This care on user experience is
needed because the primary actors of the system are students, not sensors: they are
not forced to send data or to run the application if they do not want to. Examples
of services which could be provided to students through their mobile phone are: real-
time information about the crowding of study rooms, facilities to help them in making
distributed proposals and to set up agreements, detection of people’s gatherings in the
campus, management of the queues at the student’s office, conducting surveys on uni-
versity matters.

1.2 Document Structure

The following chapters are devoted to elaborate more on the ideas touched above. Chap-
ter 2 first outlines a brief overview of the Information Flow Processing domain, with a

14

1.2 Document Structure

little reference on historical background and on main models emerged today, starting
from Data Stream Processing, continuing to Complex Event Processing, up to the newly
introduced notion of Human-Oriented Event Processing. Then it presents the technolo-
gies related to IFP which were used in SOEP: the TESLA rule-definition language and
the T-Rex event engine. In chapter 3 a broad overview of possible usage scenarios for
HOEP is given, both generic and focused on SOEP. The latters are supplied with a formal
description of the involved events in terms of TESLA rules. Chapter 4 gets to the heart
of SOEP-Server, describing its features and design, with some notes on implementation.
Chapter 5 is similarly dedicated to SOEP-Client, additionally preceded by a brief intro-
duction on Android. Finally, chapter 6 explores related work and chapter 7 future work.
Conclusions are drawn in chapter 8.

15

1 Introduction

16

2 Information Flow Processing

With traditional DataBase Management Systems (DBMSs) the processing of data re-
quires it to be previously stored and indexed; moreover, it is asynchronous with regards
to its arrival, that is, data is first stored and on a later time requested by database’s
clients. These peculiarities made DBMSs unsuitable for scenarios where the timely pro-
cessing of a continuous flow of information from the peripheral to the center of the
system is required, especially when many distributed sources and sinks are available,
and data arrival time is unpredictable; these systems could be collectively referred to
with the umbrella term Information Flow Processing (IFP) [2]. The focus is on real-time
processing of a flow of information according to a set of deployed rules, which describe
how to create new knowledge from detected pieces of information. In such situations
(think for example about a fire detection system, which uses sensors placed around a
given geographical area to monitor critical environmental conditions), there is usually
neither time nor need to store everything persistently on disk, because irrelevant infor-
mation can be immediately discarded, while relevant one can be retained in memory
only until it is used to produce new knowledge, and freed after that.

In section 2.1 the main models in IFP domain will be briefly described. Section 2.2 focus
on the subset of IFP technologies used in SOEP.

2.1 IFP Models

Several communities - including those specialized in distributed information systems,
business process automation, control systems, network monitoring and sensor networks -
brought contributions to the IFP research branch, exploiting the new methodologies and
technologies to tackle the most disparate scenarios, eg. in environmental monitoring
[21], stock ticker monitoring [4], credit card fraud detection [8], intrusion detection [19],
RFID-based inventory management [12] and manufacturing control systems [13][14].
Pushed by this multitude of contributions from different points of view, though with a
common goal, several systems were created which differ in architectures, data models,
rule languages, and processing mechanisms [2]. Nowadays two main models emerged and
can be denoted as: Data Stream Processing [30] and Complex Event Processing [1]. This
thesis introduces another one, the Human-Oriented Event Processing, as a particular
kind of CEP.

17

2 Information Flow Processing

2.1.1 Data Stream Processing

In the Data Stream Processing (DSP) model, information coming from sources is seen
as a stream of data to be processed in order to produce a new stream of data as output.
This kind of systems were designed as extensions to traditional DBMSs to manage online,
unordered and unbounded flows of generic data.
The first result in this direction was given by Active Database Systems [31], which were
introduced to allow actions to be automatically executed when given conditions arise.
As traditional DBMSs are completely passive, because they only react to an explicit data
request made by the application, it is not possible to ask them to asynchronously perform
some processing when a given condition verifies: the application itself must implement
its own logic to obtain that. Active database systems were developed to overcome this
limitation: they can be seen as an extension of classical DBMSs where the reactive
behaviour can be moved from the application to the database. The sources of the events
which could trigger an action may be internal operators, like a tuple insertion or update,
or in some cases also external events, like those raised by clocks or sensors. Similarly,
the action taken could be only internal as an update on the database, or sometimes
external like the notification of the application.
The limit of active database systems in the context of IFP is their need for a persistent
storage where all the relevant data is kept, whose update is assumed to be relatively
infrequent. As a consequence, their performance sinks under the weight of a high number
of queries or high rate of events’ arrival. Data Stream Management Systems (DSMSs)
[30] went farther to solve these issues and to allow query processing in the presence of
continuous unbounded data streams. Differently from a DBMS, which requires data to
be stored persistently with the assumption of infrequent updates, a DSMS deals with
volatile unpredictable streams of data. Another difference is on the semantics of queries:
while in a DBMS queries are one-time, that is, evaluated once over a snapshot of the data
set, with the answer returned synchronously to the caller, a DSMS executes standing
queries, which run continuously from their deployal to their removal, asynchronously
providing results as soon as new data comes. [2]
Despite these differences, DSMSs have much in common with DBMSs, especially in the
way they process data through common SQL operators like selections, aggregates, joins,
and all the operators defined by relational algebra.

2.1.2 Complex Event Processing

While in DSP the information flowing in the system is treated as plain data, which
the application is in charge of assigning a semantics to, the Complex Event Processing
(CEP) model [1][2] characterizes the information items as events coming from the ex-
ternal world, each associated with a particular semantics. Another difference between
DSMS and CEP is that the former usually manages homogeneous information flows, as
uniformly-typed data streams which fill transient unbounded database tables, while the

18

2.1 IFP Models

Figure 2.1: CEP system’s overview

latter allows the processing of heterogeneous events coming from a multitude of different
sources.

In CEP an event engine takes as input this flow of low-level (also simple, or primitive)
events coming from sources, combines them according to a set of pre-installed rules, and
creates new higher-level (or complex) events when particular patterns of simple ones are
matched; the complex events are then returned as output to every interested sink (see
figure 2.1). Note that the CEP engine may have a simple centralized architecture, as
well as adopt a distributed architecture with a set of Event Processing Agents (EPA)
connected in an overlay network.

The CEP model can be seen as an evolution of the publish-subscribe model: while the
latter considers singularly each event to be delivered, in the former elaborate patterns of
multiple related events are defined. In addition, with CEP hierarchies of events can be
built, because a complex event can be in turn used to define another higher-level event,
and so on1. This pyramid of events is an effective way to organize knowledge, and ease
the design of an event system with the creation of an abstraction on the core concepts
of the application’s domain.

Although in theory producers (consumers) in CEP can be anything that produces (con-
1Actually not all the rule-definition languages are expressive enough to allow this chaining of events;

TESLA, the language adopted by SOEP, does it.

19

2 Information Flow Processing

sumes) an event, in practice traditional CEP systems (as shown in figure 2.1) have been
used so far with electro-mechanical components (sensor and actuators of various kinds),
automated informative systems, business applications and business processes. As re-
gards the latters, the combination of CEP and Business Process Management (BPM) is
sometimes called Event-Driven BPM (ED-BPM) [32]: the idea is to use event process-
ing to detect situations, and the BPM part to react by triggering a new BPM workflow
instance, or by updating an existing one. In all these cases the human operator is not an
active partecipant in the event processing, rather is put by its side to carry out system
management (eg. Rule Manager and Supervisor) or data analysis (Analyst).

Rule managers deploy event rules, which can be defined in any ad-hoc language (eg.
TESLA), and can impose various types of constraints on the pattern of events to be
detected. Depending on the expressiveness of the language, the definable constraints
may regard the temporal relationships among a sequence of events, and filters on their
content. Content-based constraints may involve single events (for example, the value of
an event’s attribute could be imposed inside a certain range), or use an aggregate on set
of events, that is, a function applied on them which generates a constrainable value.

2.1.3 Human-Oriented Event Processing

Human-Oriented Event Processing (HOEP) is a particular type of CEP in which both
sources and sinks are human operators, which interact with the system through fixed
terminals or more often mobile devices. HOEP focuses on collaboration between people,
aimed to efficiently pursue a common goal. This interaction could be set in working life,
that is, while a business process is being carried out by human workers, or it may involve
aspects of private life, as sociality, fun, hobbies. The term human-oriented process is
used to refer to an automated process in which human role - as input and/or output -
is essential.

HOEP’s domain has some common elements with Human Interaction Management
(HIM) [33], but it largely differs from it. HIM draws a framework to integrate in the
context of BPM all those processes performed by people which require innovation and
creativity (eg. research, product design, marketing [34]) and as such cannot be managed
by traditional BPM techniques. On the other hand, HOEP focuses on systems whose
core logic is automatable - in a similar way to BPM - but whose front-end and back-
end are made by people. Of course also in HOEP human operators interact with the
system through devices and applications, but the flow of information they generate is
immediately referable to them.

2.1.3.1 Characteristics

There are some characteristics of HOEP which distinguish it from traditional CEP. The
first one, as it was said, is its being carried out by both human producers and human

20

2.1 IFP Models

consumers. An immediate consequence is that the quality of the reported events is sub-
ject to high variance: people can easily make mistakes, or even lie (eg. for competition,
sabotage, etc.). Note that even in traditional CEP the management of uncertain, inex-
act events coming from unreliable sources or over an unreliable channel, may become an
issue [1, sec. 11.2]; anyway, human unpredictability makes the demanding techniques
proposed so far (probability-based methods such as Monte Carlo algorithms or Bayesian
networks [35], evidential reasoning as in Dempster-Shafer theory [36], fuzzy logic, neu-
ral networks) even harder to be applied in HOEP’s context. Moreover, people may be
unwilling to collaborate: after all, people are not automata. Their benefits from parte-
cipating in the event system should balance the drawbacks (mostly the time spent to
learn and to use it, sometimes also the cost of its development, implementation and
maintenance): the service should be useful and attractive. It is important to create a
high degree of involvement.

The second major characteristic of HOEP is that involved people are usually part of the
same social/work group, or related groups. They are all collectively engaged in reaching
a common goal, or at least in doing their part well to eventually benefit from it. The
quality of the resulting service depends on the quality of individual contributions: from
this it becomes clear the importance of the collaborative aspect.

Another feature that poses some challenges over traditional CEP is the usage of mobile
phones. As almost everyone nowadays owns a smartphone, it seems to be the ideal
vehicle of interaction with the event systems, but there are some caveats. First of all,
phone’s connectivity is highly variable: with varying degrees depending on the scenarios,
connection with the system cannot be supposed constantly available, and there should
be a mechanism to allow offline work and periodic synchronization. Another drawback
of mobile phones over other kinds of infrastructural equipment is the limited battery
life, which makes it necessary to reduce energy consumptions as much as possible2:
both the hardware and the software on the device should be optimized to avoid wastes
of energy. Moreover, the mobile application used to interact with the HOEP system
will be installed on a non-exclusive platform, as the phone will be shared with other
applications. Thus, it is important to design it to integrate seamlessly and in a non-
invasive manner with the mobile operating system; this also includes constraints on
computational resources’ usage, as the application should not stall the others. Finally,
to reach the vastest amount of users, the application should be cross-platform or different
versions for the main mobile platforms should be released. Even with a single platform,
differences in hardware equipments should be taken into account: a phone could have a
hardware configuration as minimal as a keyboard, screen, microphone, cellular network
module3 and camera, going on with the addition of a touchscreen, Bluetooth, Wi-Fi
and GPS, up to many sophisticated sensors like accelerometer, gravity, magnetic field,
gyroscope, ambient light, proximity; much more seldom are temperature and humidity
sensors.

2The same need arises in the WSN domain
3Used both for voice and data link; technologies for cellular connectivity span from 2G (GSM, GPRS),
3G (EDGE, UMTS, CDMA2000, Mobile WiMAX), and the upcoming 4G technologies.

21

2 Information Flow Processing

Figure 2.2: HOEP system’s overview

2.1.3.2 Architecture

In figure 2.2 you can see the general architecture of a HOEP system. Compare it with
traditional CEP systems (figure 2.1): here producers and consumers are people. They are
not limited to side roles, as system management or data analysis, rather they are active
actors in the event processing. The complex events generated by the CEP engine can be
sent to human operators directly, or they can trigger the creation/update of automated
human-oriented processes which will in turn produce new information relevant to them.

2.2 IFP Technologies in SOEP

SOEP suits better to the HOEP/CEP model rather than the DSP model: the capability
of inferring new knowledge from the information received from sources is at the basis of
the services it provides to students. By using the students as both sources and sinks of
the system, those services can be tailored on their needs and react cleverly on their input.
It is not a matter of processing a stream of data as in DSMSs: here sources are numerous
and provide a high volume of information items whose order and time relationships may
often be relevant. Moreover, the ability to define expressive hierarchies of events is useful
to filter and combine those items at different logical levels to produce meaningful results.

The following sections focus on two CEP technologies which were also adopted in SOEP:
section 2.2.1 introduces TESLA, a rule definition language, while section 2.2.2 describes
T-Rex, the CEP engine which SOEP-Server is built on.

22

2.2 IFP Technologies in SOEP

2.2.1 TESLA

The Trio-based Event Specification LAnguage (TESLA) is a complex event specification
language designed by G. Cugola and A. Margara at Politecnico di Milano [37]. TESLA
is highly expressive despite its simple syntax and has formal semantics, given in terms
of the first order, metric temporal logic Trio. It introduces a limited number of oper-
ators, through which it provides content and temporal constraints, parameterization,
negations, sequences, aggregates, timers, and customizable policies for event selection
and consumption.
A TESLA rule defines a complex event from its constituting simple events. Each event has
an associated type, which defines the number, order, names, and types of its attributes,
and a timestamp. The general structure of a rule is the following:
define ComplexEvent(Attribute1: Type1, . . . , AttributeN: TypeN)
from Pattern
where Attribute1= f1, . . . , AttributeN= fN
consuming e1, . . . , eN

where the define clause declares a new complex event specifying its type, and the from
clause describes the pattern of simpler events that lead to the complex one. In the
where clause the actual values for the attributes of the new event are given, using a set
of functions f1, ... , fN which may depend on the arguments defined in Pattern. Finally,
the optional consuming clause lists the events that will not be used again next time the
rule will be fired.
Given the easy syntax of the language, it is quite intuitive to understand its semantics:
for the purpose of this document some concrete examples of rules - presented in the
following - will be enough; you can refer to [37] for a more formal and complete discussion
on TESLA. The example presented here mimics an environmental monitoring application,
where sensors periodically notify their position, temperature and smoke presence. From
the readings of the sensors the system uses this rule to deduce when a fire alarm should
be launched:
define Fire(area: string, temperature: double)
from Smoke(area=$a) and each Temp(area=$a and value>45) within 5 min. from Smoke
where area=Smoke.area and temperature=Temp.value

This rule states that a fire event should be created whenever a smoke notification is
received in a certain area and for every temperature reading with value greater than
45 degrees read at most 5 minutes earlier in the same area. The fire event is supplied
with the indication of the interested area and the temperature detected. Note how
the occurrence of a complex event (Fire) is bound to the occurrence of a simple event
(Smoke), which acts as an anchor point and implicitly determines the time at which the
new event is created. This anchor event (also denoted as the terminator of the sequence)
is coupled with other events (Temp) through sequence operators (each-within) which
express the temporal relationships among them. Moreover, event selection is restricted
by the parameter $a, which imposes the area of Smoke to be the same as that of Temp.

23

2 Information Flow Processing

The each-within operator defines a multiple selection policy, because it creates a
new complex event for every event of the specified type in the given time window;
first-within and last-within operators are also available to define single selection
policies (the former selects only the first event, the latter only the last one). It is also
possible to use aggregate operators, which are functions computing a value from a set of
events, useful either to filter out events that do not match certain conditions, or to give
values to the attributes of a newly created complex event. It should also be mentioned
that it is possible to schedule the periodic evaluation of rules through a special event
called Timer used in the from clause; this way the creation of complex events can be
driven by a regular timer instead of by the reception of a rule’s terminator event.
A final note on subscriptions. Subscriptions in TESLA are as simple as in traditional
publish-subscribe languages and include the type of the event together with a filter over
the content of its attributes, for example:
Subscribe(Fire, area= “Building 20” and temperature> 50)

Subscriptions may refer either to simple events (those directly observed by sources), or
to complex ones (those derived through TESLA rules).

2.2.2 T-Rex

T-Rex is a general-purpose CEP engine developed by A. Margara and G. Cugola at
Politecnico di Milano [38]. It supports TESLA rule-definition language and uses efficient
processing mechanisms. It is free software - released with LGPLv3 licence - implemented
in C++ but with Java client adapters also available. SOEP-Server uses T-Rex as its
CEP engine.
A client interacts with T-Rex by installing processing rules, publishing events and lis-
tening for the creation of new events. TESLA rules are compiled into efficient in-memory
data structures and dynamically processed as simple events are submitted. A listener
is registered on the engine to be notified when new complex events are created, as a
consequence of the processing of simple events according to installed rules.
For a more detailed overview on T-Rex you can refer to [38] or go to the project’s web
site (http://home.dei.polimi.it/margara). Section 2.2.2.1 gives a brief description
of the processing algorithms used.

2.2.2.1 Processing Algorithms

As it was explained in section 2.2.1, a TESLA rule describes a sequence of primitive
events which must be detected to generate the complex event it declares, and imposes
constraints on their content and their occurrence time. Moreover, the rule binds the
occurrence time of the complex event to the detection of the sequence terminator. The
goal of T-Rex’s processing algorithm is to analyze the history of received primitive events,
looking for the sequences which a composite event should be generated from.

24

http://home.dei.polimi.it/margara

2.2 IFP Technologies in SOEP

Two opposite approaches can be followed as regards the detection of relevant sequences.
On one hand, the engine could temporarily buffer incoming primitive events, postponing
all the processing to detect sequences until a terminator event is submitted to the engine.
On the other hand, events can be incrementally processed as they arrive, and only the
results of the intermediate computation temporarily stored.
The algorithm corresponding to the first approach has been called Column-based De-
layed Processing (CDP), since it organizes the history of received events into sorted
columns and delays their processing until a terminator comes. Each rule keeps a column
for each primitive event appearing in the sequence it defines, and store events on their
corresponding column as they are received. When a terminator is received, a backward
iteration which analyzes columns’ content starts from last column (the one associated
with the terminator) to first one (associated with the first event of the sequence), grad-
ually discarding unsuitable events and composing partial sequences of events which are
good candidates to form a relevant terminal sequence. When the iteration reaches the
first column, the remaining sequences are the valid ones and a complex event is created
for each of them.
The algorithm that follows the second approach was denoted as Automata-based Incre-
mental Processing (AIP), because it processes events incrementally as they arrive and
stores partial results as automata. Each rule is translated into an automaton model,
which is a linear deterministic finite-state machine where each state is mapped to an
event in the sequence defined by the rule. A new instance of the automaton model, with
current state one step forward in the sequence, is created for every received event which
satisfies the type, content and time constraints necessary to trigger the transition. When
an automaton instance reaches last state (the one mapped with the terminator event) a
valid sequence has been recognized and the corresponding complex event is generated.
T-Rex has been implemented with both AIP and CDP algorithms; it makes extensive
use of multi-core processing and exploits several other optimizations to improve over-
all efficiency. It is also available an implementation with CDP optimized for CUDA,
a widespread architecture for general purpose programming on GPUs, developed by
Nvidia. Note that all of these versions are centralized; a distributed version, which de-
composes TESLA rules to process parts of them on different nodes of an overlay network,
is also in progress.
SOEP-Server was tested with both the CPU-based AIP and CDP versions, and currently
adopts the CDP one. Refer to [39] for a more detailed description of the processing
algorithms used in T-Rex.

25

2 Information Flow Processing

26

3 Scenarios

In this chapter lots of scenarios for a HOEP system (see section 2.1.3) are presented.
Scenarios in section 3.1 come from different and unrelated contexts, while section 3.2
focuses on scenarios specifically targeted to SOEP (see section 1.1 for an introduction
on SOEP, or chapters 4 and 5 for a detailed description of the server and client part,
respectively).

3.1 Generic Scenarios

This section contains a wide variety of possible scenarios for a HOEP system, coming
from many unrelated contexts. The same generic structure depicted in figure 3.1 will be
used to describe each of them: it includes the input events sent by sources to the event
engine, the processing done by the engine in reaction to those events, which eventually
will end up with the generation of new output events delivered to sinks. Sometimes
there are more than one work team or social group involved, and there may be ambi-
guity on which of them the reported events refer to: in these cases the used syntax is
‹source› → ‹event› to specify the source of the event, and ‹sink› ← ‹event› to specify
the sink of the event. All the scenarios are assigned one or more high-level categories to
better organize them.

Figure 3.1: Scenario’s framework

3.1.1 Radio-Taxi

Categories: [Business Process Management]

27

3 Scenarios

Input Events
customer → ride request
taxi → position
taxi → ride started
taxi → ride finished

Processing
choose available taxi
estimate service time
choose waiting area

Output Events
customer ← estimated
waiting time
taxi ← ride assignment
taxi ← waiting area
assignment

Table 3.1: Events in Radio-Taxi scenario

Management of a private network of radio taxis with a HOEP system (table 3.1) [1, sec.
1.5]. Its goals are to effectively assign ride requests to taxis spread all over the city, and to
supervise the deployment of the units on the various reserved waiting areas, to guarantee
best coverage. The taxi is connected to the central system through radio equipment,
which is also provided with GPS to periodically signal its position. A customer requests
a ride either with a phone call or by pushing a button on a dedicated pedestal-style
box. The request is routed to the system, which chooses a taxi among those available
and close to the pick up point, assigns it the ride, and informs the customer about
the estimated service time. The taxi notifies the start of the ride when it picks up the
passenger, and its conclusion when it gets to the destination. After the ride is finished
the system sends the taxi to one of the waiting areas to wait for next ride.

3.1.2 Door-to-door Salesman

Categories: [Business Process Management]

Input Events
salesman → selling report
. customer
. address
. proposed products
. proposed prices
. selling outcome

warehouse operator → stocks
update
marketing consultant →
market prices

Processing
update areas to scour
update products’ priority
update products’ price
update salesmen’s score

Output Events
salesman ← area assignment
salesman ← products’
priorities
salesman ← products’ prices
salesman ← score report

Table 3.2: Events in Door-to-door Salesman scenario

Management of a network of door-to-door salesmen (table 3.2). It should help to organize
salesmen’s work by effectively spreading them around the city and notifying them about
the priorities and prices of the products they are trying to sell. Salesmen are connected
with the system through their mobile device, and send a report after every sale’s attempt,

28

3.1 Generic Scenarios

which includes the customer met, the products suggested along with the proposed prices.
The assignment of the areas to be scoured takes into account the current deployment
of salesmen, their timetables, the sales’ volume reported in each area and how much it
has already been combed in the recent past. Products’ priorities and prices are updated
according to the sales done by the salesmen, the current warehouse’s status, and real-
time evaluations of market prices. As salesmen are rewarded on the basis of their sales,
statistics are made from their reports which lead to the update of a dedicated score
system.

3.1.3 Road Traffic

Categories: [Business Process Management, Public Service, Time Management]

Road traffic identification and control (table 3.3). Cars are provided with a satellite
navigator which takes into account traffic conditions and reroutes the driver when an
issue along its path has been reported. The system detects roads’ congestion starting
from the position and speed of the vehicles (GPS) and their proximity with each other
(proximity sensor). While GPS and proximity readings are automatically sent to the
system by the car’s electronic equipment, drivers can also manually report road issues
through the touchscreen of their navigator. The system can also combine information
about the current traffic situation with historical data to make short-term traffic forecasts
and alert the user about possible delays.

Input Events
car position
car speed
car proximity
road issue report
. car accident
. disabled vehicle
. road damage
. broken traffic signal

Processing
compute real-time traffic
compute traffic forecast

Output Events
traffic update
alternative route

Table 3.3: Events in Road Traffic scenario

3.1.4 Foot Traffic

Categories: [Business Process Management, Time Management]

Suppose a big chain store (eg. a supermarket chain) wants to provide their customers
with a way to monitor the real-time traffic on their stores and mean service times, in
order to choose the least busy one, give up and try another day, or at least consciously

29

3 Scenarios

face the queue and organize other appointments (table 3.4) [40]. The crowd on each store,
as well as the mean waiting time, is inferred from the readings of people counters placed
above the entrance combined with the transactions from the electronic cash registers.
Customers may check the current situation through an interactive map on the company’s
website, or install a dedicated mobile app on their phone.

Input Events
cash register → transaction
people counter → client in
people counter → client out

Processing
compute real-time waiting
time
compute waiting time forecast

Output Events
waiting time update

Table 3.4: Events in Foot Traffic scenario

3.1.5 Tournament Organization

Categories: [Collective Scheduling, Personal Information Management, Time Management]

A system to help the organization of sports tournaments, eg. a tennis tournament (ta-
ble 3.5). Meant to support amateur competitions, which do not have full-time dedicated
organizers, the system relies on players’s input from their mobile phone to carry on the
automatic scheduling of the matches and update the tournament’s scoreboard. Players
notify changes on their availability (in terms of the days they can play and their pre-
ferred time slot), and announce the result of a match just played. After some processing,
the system schedules the next matches and alerts the involved players, as well as broad-
casts the current players’ scores. When a new match is notified, the players’ mobile app
automatically adds the event to calendar and the opponents’ contacts on the address
book.

Input Events
player’s availability
match result

Processing
compute matches’ schedule
update scoresboard

Output Events
next match
scores

Table 3.5: Events in Tournament Organization scenario

3.1.6 Geocaching

Categories: [Social, Fun]

Geocaching is a modern form of treasure hunting: participants are defied to find small
objects (called geo-caches) hidden somewhere, usually with the help of their GPS phone

30

3.1 Generic Scenarios

or dedicated satellite equipment. There are many websites1 which collect and organize
the caches published by users, ordered by difficulty or geographical area, and let the
community enrich them with social content, multimedia clips, geotags, and so on2. In
the most basic modality the participant chooses one of the challenges proposed in the
preferred area, takes note of the cache’s coordinates (sometimes encoded in a QR code3)
and go hunting near that location to find it. Once he has found it, he usually writes
the date and his sign over a small logbook contained inside the cache, and hides it
again; he can also notify his success on the website and add comments about the hunt.
Larger caches can also contain items for trading, usually toys or trinkets of little value.
More challenging hunts involve the interpretation of clues and riddles to find the cache,
sometimes even with intermediary chained caches which eventually lead to the final one.

As presented above, the social part of the game is concentrated more in the sharing
of contents on the website, rather than in the act of hunting itself, which is configured
as an individual challenge (though participants may join in small groups to look for
the same cache together). The following scenario proposes a modality for geotagging
which put more social emphasis on the hunt, similarly to the traditional treasure hunting
(table 3.6).

Input Events
position
cache discovered

Processing
verify cache validity
choose next cache
update scoresboard

Output Events
next cache
. exact coordinates
. approximate position with

clues/riddles

scores

Table 3.6: Events in Geocaching scenario

Many treasures are scattered around the play area (being it a small garden or an entire
city) before the game starts. The hunt is done in teams, which challenge each other to
find the most number of them (possibly treasures may be given different values). Each
team has a GPS mobile device connected with the system, which periodically sends its
position. When a team discovers the current cache, it sends the contained unlock code
to the system, which verifies it and - if correct - chooses the next one and communicate
it. The next cache is dynamically chosen according to the current teams’ position, in
order not to favour any of them in terms of geographical proximity. The scoreboard is
updated after every discovery and notified to teams.

1The most famous one is www.geocaching.com
2Including, of course, buying caches and other similar gadgets
3A particular kind of matrix barcode which can be scanned and decoded by a dedicated reader or the
mobile phone’s camera

31

www.geocaching.com

3 Scenarios

3.1.7 Laser Tag

Categories: [Social, Fun]

Laser tag is a team activity where players hold infrared-emitting guns and score points
by tagging other players. Infrared-sensitive targets are worn by each player and sound
when being tagged, so that the hit player has to go out of the arena. The match may
be played either indoor or outdoor with different modes, among which:
. team deathmatch: each team has its own hit-count, which is incremented each time
one of the team mates tags an opponent. The team with the highest hit-count at the
end of a fixed time interval wins;

. capture the flag: each team tries to steal the opponents’ flag from their base and take
it back to its own base in order to score a point or win the match;

. protect the VIP: there is a special player called the VIP, who only wears the infrared
target but has no gun; the team with the VIP must conceal and protect him for a set
length of time while the opposing team tries to eliminate him;

. conquer the base: a team must defend its base while simultaneously attacking the
opponent’s one; points are gained for possessing the target base for certain lengths of
time.

Input Events
position
gunshot
player/VIP hit
flag captured

Processing
update scoresboard and stats
check game end
schedule next game

Output Events
scores and stats
game start/end
new game mode / new target

Table 3.7: Events in Laser Tag scenario

A laser tag session could be supported by a HOEP system (table 3.7). The player’s
infrared equipment -as well as other mobile or infrastructural elements such as the flag
or fields’ stations - would be radio-connected with the system to send all the relevant
events (RFIDs could also be used in indoor environments), in addition a GPS receiver
would periodically transmit the player’s position. Scores would be updated according
to the gunshots fired and the targets hit, or the position mantained inside constrained
areas (eg. the opposing team’s base), depending on the game mode. Players would be
notified of the start/end of matches and about dynamic changes of the game mode or
the choice of a new team’s target.

3.1.8 Bingo

Categories: [Social, Fun]

Bingo is a famous game of chance in which randomly drawn numbers are matched by
players against numbers’ matrices (called cards) which players buy before the game

32

3.1 Generic Scenarios

starts. A jackpot is made available as a percentage of the total money got from cards’
sale, and money prizes are assigned to specific patterns achieved on the cards from the
drawn numbers (eg. five numbers in a row, or all the card’s numbers matched, called
bingo). Usually cards are in printed format.
The game could also be electronically managed by a HOEP system (table 3.8). Players
are provided with a tablet or use a fixed terminal, connected to the event system. New
virtual cards can be bought at the beginning of each match; cash money is paid only at
the exit of the room, or the credit card is used. As much of the fun in the game consists
in detecting and announcing a win to the bank, this aspect should not be automated:
players have to take care of their cards and manually spot a matching pattern; when
they found one, they notify it by pressing on their touchscreen. The system then checks
the validity of the announced pattern and possibly confirms the win.

Input Events
pattern matched
. five in a row
. bingo
. other patterns

buy new card

Processing
draw next number
verify pattern
update jackpot

Output Events
drawn number
win confirmation

Table 3.8: Events in Bingo scenario

3.1.9 Concert Setlist

Categories: [Social, Collective Scheduling]

While nowadays concerts have a fixed setlist pre-determined by the band, it would be
more involving for the audience to be able to vote in real-time for their favourite songs
to be played, much like a televoting system (table 3.9).

Input Events
song’s vote

Processing
choose next song
. compute most voted song
. leave out already/just

played songs
. apply band’s contraints

Output Events
next song
songs chart

Table 3.9: Events in Concert Setlist scenario

Before the beginning of the show, the band declares the list of the songs it is willing to
play, along with any possible constraints on the voting (eg. fixed tracks in the setlist,

33

3 Scenarios

non-consecutive tracks, etc.). The vote is done dynamically, song by song: while the
band is playing a track, the spectators vote for the next one to be chosen, through a
dedicated mobile app or simply with an SMS. The real-time results of the televoting,
with the most wanted songs’ chart, is displayed on big screens next to the stage.

3.1.10 Personal Sensing

Categories: [Social, Human-Computer Interaction, Context-aware Computing]

Input Events
smartphone → sensor reading
. accelerometer
. position (GPS-based or

network-based)
. ambient light
. microphone
. camera
. proximity
. WiFi scan

smartphone → OS event
. audio/video playback
. phone call / chat / mail

PAN device → sensor reading
. humidity
. temperature
. galvanic skin response

Processing
infer user’s activity
. standing / sitting
. walking / running / driving
. listening to music /

watching movie
. talking / phone calling /

chatting / writing mail

infer user’s environment
. position (raw coordinates

or geolocated)
. indoor / outdoor
. sunny / cloudy / rainy
. at home
. at work
. at a concert
. crowded place
. close to friends

Output Events
profile update
avatar update

Table 3.10: Events in Personal Sensing scenario

A personal sensing system [41][42][43] used to infer the current user’s status (his activity,
geo-climatic and social context) and properly update in real-time his profile on a SNS4
(eg. Facebook) or his avatar in a virtual world (eg. Second Life). The system (table 3.10)
combines a CEP engine with sophisticated activity-inference techniques to deduce the
user’s activity and environment basing on mobile phone’s sensors readings, possibly
combined with other PAN5 devices (eg. a Bluetooth fitness monitor supplied with GSR
sensor6) or infrastructural nodes (eg. RFID readers spread on key city locations). User’s

4Social Network Service
5Personal Area Network
6Galvanic Skin Response (GSR), also known as skin conductance, is a method of measuring the electri-
cal conductance of the skin, which varies with its moisture level. As the sweat glands are controlled
by the sympathetic nervous system, GSR is used as an indication of psychological or physiological
arousal

34

3.2 SOEP’s Scenarios

phone could also interact with other mobile devices in the neighbourhood, for example
to automatically detect the presence of friends, or to compensate a limitation on its
sensors (either permanent, as the lack of a GPS receiver, or temporary, as the inability
to receive GPS signal due to indoor position) borrowing readings from other phones.
Personal information (such as address book contacts, calendar events, and so on) could
also be sent and stored to detect known/favourite people/places and make statistics
on user’s habits in order to improve its status’ inference; of course this would require
full-customizable privacy settings in the mobile app.

3.2 SOEP’s Scenarios

In the following sections some usage scenarios for SOEP are described. Each scenario
starts with a preamble which contextualizes the example given and justify the need
for a HOEP system, followed by some possible TESLA rules (section 2.2.1) that would
implement the described service. The scenarios refer to Politecnico di Milano as an
example of university which could benefit from SOEP.

An effort has been made to present in this document scenarios that could be implemented
only with the student’s mobile phone connected to the server: no additional hardware is
required. The purpose is to show the potentials of a HOEP system and the improvements
it could make even without expensive infrastructural changes. An attempt has been done
to find out applications useful to students, who are the primary users of the system. In
the future many other innovative services could be conceived by integrating more deeply
with university’s infrastructures.

3.2.1 Crowding in study rooms

A big nuisance for students in Politecnico di Milano is to find an available room to study
in. There are various study rooms spread all over the campus, but available seats are
barely enough to let everyone in. Students must roam around the campus from one
room to the other, till they eventually find a place to stay.

In this context, an automatic service that let users know about real-time crowding in
study rooms would be useful. This service would collect positions of the students and
aggregate data to compute crowdings for each room. This should be done automatically,
including the notification of student’s position in a certain room: it is not realistic to
suppose that a student would do it manually any time he stops in a room. Moreover,
we would like to do it without additional hardware (eg, RFIDs on each study room, or
turnstyles accepting students’ cards) other than the Android mobile devices owned by
the students and the server.

Android mobile devices have two ways to know their position: the best way is the
GPS that is built-in the device, which has an accuracy up to a few meters under good

35

3 Scenarios

conditions; a second way is to get their location from the cell towers of the mobile
network, but it is a very coarse estimate with an accuracy that can be a few hundred
meters. It is clear that the second way is too coarse for our purpose, but also GPS is
useless because we are talking about indoor environments.
Another custom way of determining student’s position could be used. In Politecnico di
Milano any study room is provided with WiFi access, and for many of them the Access
Point (AP) is dedicated. Thus, the BSSID (that is, the MAC address) of the AP could
be exploited: student’s mobile periodically scans for WiFi networks and sends their
BSSID to the server; the former knows which AP covers which room, and can realize
if the student is in one of those rooms. Note that student’s devices only scan the air
and get information about each wireless network in range, but do not need to connect
to them.
The event sent by Android devices would be something like:
WifiDetection(BSSID=[address of the AP of a network in range])

where BSSID is the unique identifier of the AP of a network just detected. WifiDetection
events are sent automatically and periodically (eg. every 5 minutes or more) by the
mobile phones, so the same WifiDetection is repeated if the student keeps staying in the
room, while it is just not sent anymore when the user leaves the room.
The system is set to periodically count the number of people in each room:
define RoomXPeople(PeopleNum)
from Timer(M%5==0)
where PeopleNum=Count(WifiDetection(BSSID==[bssid of room X])) within 5min from Timer

with a rule for each room (X is the room identifier). Count is an aggregate operator that
returns the number of occurred events of specified type. Actually, with this approach
rules are not parameterized on room identifier (and each rule is for one room only)
because of the checks on the BSSID, which cannot be done all in a single rule. Automatic
generation of the rules should overcome this nuisance.
In case a more qualitative indicator would be needed (rather than the approximate
number of people in the room), other higher-level rules could be exploited:
define RoomXCrowding(Crowding)
from RoomXPeople(PeopleNum≤5)
where Crowding="LOW"

and
define RoomXCrowding(Crowding)
from RoomXPeople(PeopleNum>5 and PeopleNum<15)
where Crowding="MEDIUM"

and
define RoomXCrowding(Crowding)
from RoomXPeople(PeopleNum≥15)
where Crowding="HIGH"

36

3.2 SOEP’s Scenarios

that use textual indicators instead of numbers. Again, there is a triple of rules for each
room, because each room has a different capacity and therefore its specific rule has
knowledge of what are the criteria to define its crowding.

To simplify user’s subscription, a rule that aggregates notifications on rooms is useful:

define RoomsCrowding(Room1Crowding, . . . , RoomNCrowding)
from Timer(M%5==0) and

last Room1Crowding() as R1 within 5min from Timer and
. . .
last RoomNCrowding() as RN within 5min from Timer

where Room1Crowding=R1.Crowding,
. . .
RoomNCrowding=RN.Crowding

so that the user can subscribe with:

Subscribe(RoomsCrowding)

and periodically get notifications about the crowding in every room.

Of course, this way of getting users’ positions through the BSSID of WiFi networks
is intrinsically approximate, and some mechanisms should be adopted to prevent easy
errors like, for example, students in range with the network but not stopped in the
room (thus not occupying available seats), maybe just walking near it or stopped in the
adjacent room which is also in range with the network, and so on.

3.2.2 Proposals and agreements

A HOEP system could also be used as an instrument to make proposals and set up
agreements. Imagine a student during a typical university day: many hours of lessons
distributed during the day, and here and there some break time. Often breaks are used
just to relax, but sometimes he would like to fill one of those with something funny. For
example, he could want to arrange a small football match with other students: the event
he sends to the system is then actually a proposal of the type:

FootballMatchProposal(Name=[student’s name], When=[proposed time])

that is a simplified example in which just the student’s name and the proposed match’s
time is needed, and other details like the field to play in are left out.

Meanwhile other students are also proposing football matches. The following rule is
used to detect when there are enough suitable proposals and schedule the corresponding
match:

37

3 Scenarios

define FootballMatch(When, Player1, Player2, Player3, Player4)
from FootballMatchProposal() as FMP1 and

1-first FootballMatchProposal(Abs(When-FMP1.When)<30min) as FMP2 within 5hour
from FMP1 and
2-first FootballMatchProposal(Abs(When-FMP1.When)<30min) as FMP3 within 5hour
from FMP1 and
3-first FootballMatchProposal(Abs(When-FMP1.When)<30min) as FMP4 within 5hour
from FMP1

where When=(FMP1.When + FMP2.When + FMP3.When + FMP4.When)/4,
Player1=FMP1.Name, Player2=FMP2.Name, Player3=FMP3.Name, Player4=FMP4.Name

consuming FMP1, FMP2, FMP3, FMP4

Abs computes the modulus of its argument. To simplify, each team has just 2 players.
When four proposals with close starting times are collected, a match is scheduled.
Students subscribe for matches in their preferred time window with:
Subscribe(FootballMatch, When>[time window start] and When<[time window end])

so that they will be notified when a match with start time inside the given window is
scheduled. Of course, it is in the interest of a proposing student to subscribe before
making the proposal; anyway, a student could subscribe even when he is not going to
propose, just to be able to receive notifications about ongoing matches and possibly
decide to join one of them at the last moment.
Clearly, this kind of reasoning about proposals and agreements on football matches could
be done on many other subjects.

3.2.3 Gatherings of people

Sometimes it could be useful to detect the presence of groups of students stopped and
gathered together in an area of the campus. There are many reasons that could cause
those gatherings. Happy ones, like for example a concert going on, or a good snack
kiosk attracting hungry students, or a stand promoting a new product and giving free
gadgets, or the AVIS7 mobile operations room and so on, could be interesting to students
themselves. Other more critical reasons, like an incident just happened, or a fight going
on, or a manifestation of any type, could be monitored by some security system.
To know accurately the location of the student the GPS of its device is used. The client
application periodically communicate it (eg. every 5 minutes or more) sending to the
server an event like:
Position(Id=[device’s identifier], Latitude, Longitude)

where the phone Id would probably be its IMEI, and geographical coordinates are ex-
pressed as latitude and longitude decimal degrees. To realize whether a student has
stopped somewhere, its current position is compared with the previous one; if the two

7Associazione Volontari Italiani Sangue, the major Italian blood donation organisation

38

3.2 SOEP’s Scenarios

positions are very close the student can be considered stopped and a StoppedPosition
event is created:
define StoppedPosition(Id, Latitude, Longitude)
from Position() as P2 and

last Position(Id==P2.Id) as P1 within 5min from P2 and
Abs(P1.Latitude-P2.Latitude)<0.00009 and
Abs(P1.Longitude-P2.Longitude)<0.00013

where Id=P2.Id, Latitude=P2.Latitude, Longitude=P2.Longitude

The latitude/longitude degree deltas used in this example to compare consecutive posi-
tions correspond to linear length of about 10 meters 8.
In alternative, if the GPS of the mobile directly gives the speed, or the client application
indirectly computes it, speed can be added to Position:
Position(Id, Latitude, Longitude, Speed)

with speed given in meters per second. Now the rule that understands if the student is
stopped needs only the last detected position:
define StoppedPosition(Id, Latitude, Longitude)
from Position(Speed<0.1) as P
where Id=P.Id, Latitude=P.Latitude, Longitude=P.Longitude

Whatever is the way StoppedPosition events are created, with the following rule the
system can realize, and inform subscribers of, whether significant people gatherings are
going on in a particular area of the campus:
define PeopleGathering(CenterLat, CenterLong, DeltaLat, DeltaLong)
from StoppedPosition() as P and

30 < Count(StoppedPosition(
Abs(Latitude-P.Latitude)<0.00027 and
Abs(Longitude-P.Longitude)<0.00038)

) within 5min from P
where CenterLat=P.Latitude, CenterLong=P.Longitude, DeltaLat=0.00027*2,

DeltaLong=0.00038*2

where CenterLat and CenterLong are the coordinates of the rectangular area’s center,
while DeltaLat and DeltaLong are respectively its height and width9. In this example
latitude and longitude deltas define a square with semi-side of about 30 meters centered
on the last student whose (stopped) position was detected. The threshold to distinguish
between numerically relevant and irrelevant gatherings have been arbitrarily set to 30
students.

8Considering latitudes of about +45° as in Milan; convertion from latitude/longitude degrees to linear
length was done with this tool: http://www.csgnetwork.com/degreelenllavcalc.html

9Note that the geometry of the area is a rectangle when considering its 2-D Mercator’s map projection,
while it is a spherical quadrangle on Earth’s surface when considering the 3-D globe. A spherical
quadrangle is a region on Earth’s surface formed by the intersection of a spherical zone (bounded
by min/max latitudes) with a spherical lune (bounded by min/max longitudes). You can find an
example of quadrangle here: http://www.mathworks.com/help/toolbox/map/quadarea.gif .

39

http://www.csgnetwork.com/degreelenllavcalc.html
http://www.mathworks.com/help/toolbox/map/quadarea.gif

3 Scenarios

3.2.3.1 Implementation

A demo of this scenario has been implemented in SOEP. The TESLA rules for StoppedPo-
sition and PeopleGathering are deployed on SOEP-Server. Students send to the server
Position events, subscribe to Gathering events inside the university campus, and are
notified when such gatherings are detected by the event engine.

Figure 3.2: Position events in SOEP-Client. From left to right: 1) scheduling of posi-
tion’s automatic publication every five minutes; 2) the periodic publication
just scheduled is listed 3) an interactive publication of the position is being
started 4) the position to be published has been defined

There are two ways in SOEP-Client to publish an event (in this case, a Position): the
first one is to schedule the event to be automatically published on a periodic basis (see in
the first two screenshots of figure 3.2 the scheduling of the automatic publication every
five minutes of the current position); in the second one the user interactively defines a
position and sends it (third and fourth screenshot in figure 3.2).

The user can subscribe to gatherings inside a specific geographical area by pinching on
the touchscreen a map selection (see the first and second screenshot of figure 3.3 for the
subscription to gatherings inside the Politecnico di Milano’s campus). When the event
engine on the server detects new gatherings from the received positions, a Gathering
event is sent to each subscribing SOEP-Client (see the last two shots in figure 3.3),
which properly notifies and displays it.

3.2.4 Queues at the student office

A student of Politecnico di Milano is never glad of going to the student office: he often
has to face endless queues, and the dedicated informative system inside the building is
not so efficient. Students are given a paper ticket with the type of the queue, their ticket
number, and the current queue length; they then must wait in a place in line of sight
with one of the electronic boards, to costantly check for their number approaching. No

40

3.2 SOEP’s Scenarios

Figure 3.3: Gathering events in SOEP-Client. From left to right: 1) a subscription to
Gathering events inside Politecnico di Milano, Leonardo campus is being
started 2) the selection area of the subscription has been refined to fit the
campus 3) a notification of a gathering inside the campus has been received
4) the received gathering is listed in the inbox

statistics are given before joining the queue, neither after, and leaving the building for
a while could mean to lose the turn.
Of course, an informative system cannot do much to shorten service time or improve
quality of service on human side, that is, on the work of its employees; nonetheless,
it should do its best to inform students about the current traffic situation, helping in
self-organization so that queues are faced more consciously.
To reach these goals, a HOEP system that communicate with the students’ devices and
integrates with existing informative system would be very useful. Students could take
their ticket directly with the mobile, events about the queues would be easily notified
by the system to the students, or viceversa. Students could wait their turn anywhere
because they would check the queue on their phone; short absences from the secretary
would be no longer a problem. Everything but the final service of the employee would
be in student’s hand. In the following, the events to handle this scenario in SOEP are
shown.

3.2.4.1 Turn Management

When the student joins a queue with its mobile phone, the system assigns him a ticket
and broadcasts the corresponding event:
TicketTaken(QueueID, QueueNum, Time)

where QueueID is the identifier of the joined queue, QueueNum is the number given to
the student in the queue, Time is the timestamp of the event.
Similarly, each time a student completes its turn he (or the employee) notifies the system
about the completion with:

41

3 Scenarios

TurnDone(QueueID, QueueNum, Time)

On the other hand, when the student for any reason must give up and exits the queue
before being serviced, he sends a cancellation event:
TurnCancelled(QueueID, QueueNum)

TurnCancelled could also be sent automatically by the mobile phone’s application when
its position has become far enough from the student office building (of course, the student
would be warned before).
When a turn is completed, an event is created to inform students about the next number
being served (which is the first subsequent one that has not been cancelled):
define NumberServed(QueueID, QueueNum)
from TurnDone() as TD and

first TicketTaken(QueueID==TD.QueueID and QueueNum>TD.QueueNum) as TT within
2hour from TD and
not TurnCancelled(QueueID==TT.QueueID and QueueNum==TT.QueueNum) between TT
and TD

where QueueID=TT.QueueID, QueueNum=TT.QueueNum

Every student can see on its mobile phone what number the queue is at, in particular
the student whose turn has just arrived is promptly alerted by the application.

3.2.4.2 Waiting Time

To compute the estimated waiting time for a student which is going to enter the queue,
both the current queue length and the average service time for each turn are needed.
With the following rule the current size of each queue is updated whenever a new number
is served:
define QueueLength(QueueID, Length)
from NumberServed() as NS and

last TicketTaken(QueueID==NS.QueueID) as TT within 2hour from NS
where QueueID=NS.QueueID,

Length= TT.QueueNum – NS.QueueNum – Count(
TurnCancelled(QueueID==NS.QueueID and QueueNum>NS.QueueNum)
) within 2hour from NS

The queue length is obtained as the last assigned ticket number, minus the ticket number
of the student currently being served, minus the number of cancellations in between.
To compute the average service time the timestamps in TicketTaken and TurnDone are
used. The average is done incrementally as turns are completed, each time averaging the
previous estimated time with the new information. After n service time measurements,
the system has computed the mean service time s̄n as:

s̄n = s1 + s2 + ... + sn

n

42

3.2 SOEP’s Scenarios

where i = 1, ... , n refers to the queue number and each si is defined as si = tturn
¯
i
¯
done−

tticket
¯
i
¯
taken . Now suppose that a new sn+1 is available: the new average service time

s̄n+1 is computed as
s̄n+1 = s̄n · n + sn+1

n + 1
To do this algebraic operation the number of averaged elements n must be kept, and
incremented each time a turn is completed for the considered queue. The ServiceTime
rule is thus defined incrementally, split in two halves. The first half is used when there
are no previous ServiceTime events (that is, at the opening of the student office), and
begins the iteration from 1:
define ServiceTime(QueueID, Value, Iteration)
from TurnDone() as TD and

last TicketTaken(QueueID==TD.QueueID and QueueNum==TD.QueueNum) as TT within
2hour from TD and
not ServiceTime(QueueID==TD.QueueID) within 2hour from TD

where QueueID= TD.QueueID,
Value= TD.Time – TT.Time,
Iteration= 1

Instead, the second half is used to incrementally update the previous estimated service
time with the information on last completed turn:
define ServiceTime(QueueID, Value, Iteration)
from TurnDone() as TD and

last TicketTaken(QueueID==TD.QueueID and QueueNum==TD.QueueNum) as TT within
2hour from TD and
last ServiceTime(QueueID==TD.QueueID) as ST within 2hour from TD

where QueueID= TD.QueueID,
Value= ((ST.Value * ST.Iteration) + (TD.Time – TT.Time)) / (ST.Iteration+1),
Iteration= ST.Iteration +1

Now that QueueLength and ServiceTime are defined, the computation of the expected
overall waiting time for students who are going to join a queue is computed simply as
their product:
define WaitingTime(QueueID, Value)
from QueueLength() as QL and

last ServiceTime(QueueID==QL.QueueID) as ST within 1hour from QL
where QueueID= QL.QueueID,

Value= QL.Length * ST.Value

3.2.5 Surveys and Statistics

Surveys are a way to collect judgments directly from people, and they are doubly useful:
one time because they help the surveyor (or the commissioner of the survey) to improve
things, and another time because they make people feel involved, stimulating collabora-
tive and sympathetic behaviours. This also applies to students. Surveys in Politecnico

43

3 Scenarios

di Milano are mostly done in paper form, at the end of each course and at the beginning
or in the middle of a lesson, and they include course-specific questions, as well as more
general ones. Usually there is not enough time to sufficiently think about every answer,
and answers are often rushed and incoherent.
SOEP could manage this. Surveys on mobile phone should be more effective, because:
. the student can decide to postpone them in its break time, and answer quietly
. questions can be much more in number, because more distributed in time
. the tecnological channel is more appealing than writing on paper
. even students could propose surveys and see the results

3.2.5.1 Survey Framework

A survey is started with the creation (done by the system or by a student) of a Survey
event:
Survey(Id, Property, Category, Subject, Question, Answer1, . . . , Answer5)

where the attributes are:
. Id: a unique identification number for the survey
. Property: the property to be analyzed (for example, "TeachingQuality", "Speed",
"Cost", "Availability", "Cleanliness", "Kindness", "Openness" . . .)

. Category: a category for which the property has to be analyzed (for example, "Course",
"Teacher", "ClassRoom", "StudyRoom", "Building", "Canteen", "Bar", "Toilets", "Stu-
dentOffice", "TeacherOffice", "PrintingFacilities")

. Subject: the category’s element the survey is dedicated to (for example, the code of a
course, the surname of a teacher, the number of a classroom, . . .)

. Question: the full question (about a specific aspect of the Property for the Subject
in the Category) given to students (for example, with Property="TeachingQuality",
Category="Teacher", Subject="Fornaciari" a possible Question could be: "Do you
think that Fornaciari’s lessons are clear enough?")

. Answer1, . . . , Answer5 : five possible answers the student can choose among (usually
they would be: Answer1="Very Positive", Answer2="Positive", Answer3="Negative",
Answer4="Very Negative", Answer5="Don’t know")

When the student’s mobile phone receives the survey, it prompts him the question so
that he can choose one of the five answers and optionally insert some textual comment,
thus creating the answer event:
SurveyAnswer(Id, IsAns1, . . . , IsAns5, Comment)

where:
. Id: the identificator of the survey
. IsAnsX : equal to 1 if X is the choosen answer, 0 otherwise (of course, only one among
IsAns1, . . . , IsAns5 is equal to 1)

. Comment: optional textual comment

44

3.2 SOEP’s Scenarios

To aggregate results of a survey, a SurveyResult event is defined. The definition is
incremental with regards to each new SurveyAnswer received. The first half of the
definition is used when a result is created from scratch, that is, no results for that
survey has already been fired:

define SurveyResult(Id, Property, Category, Subject, NumAns1, . . . , NumAns5, Comments)
from SurveyAnswer() as A and

not SurveyResult(Id==A.Id) within 1week from A and
last Survey(Id==A.Id) as S within 1week from A

where Id= S.Id, Property=S.Property, Category=S.Category, Subject=S.Subject,
NumAns1= A.IsAns1, . . . , NumAns5= A.IsAns5,
Comments= A.Comment

The second half of the definition contains the incremental mechanism. When a new
SurveyAnswer is received, and a previous SurveyResult is found, a new SurveyResult is
created with the data of the previous one updated with the last answer:

define SurveyResult(Id, Property, Category, Subject, NumAns1, . . . , NumAns5, Comments)
from SurveyAnswer() as A and

last SurveyResult(Id==A.Id) as R within 1week from A
where Id= R.Id, Property=R.Property, Category=R.Category, Subject=R.Subject,

NumAns1= A.IsAns1 + R.NumAns1, . . . , NumAns5= A.IsAns5 + R.NumAns5,
Comments= R.Comments + A.Comment

Given the definition of IsAnsX (=1 if chosen answer is X, =0 otherwise), the update
rule for NumAnsX is a plain sum of A.IsAnsX with R.NumAnsX for every X from 1
to 5. Similarly, the new Comments string is the concatenation of the old one with last
comment.

3.2.5.2 Survey Analysis

Now that we defined a way to express survey results, some analysis on them can be made.
For example, we can make an assessment on the overall teaching quality of courses, based
on the judgements of the students. Supposing that surveys on the quality of each course
were done (translated in our syntax, they are surveys with Property="TeachingQuality",
Category="Course", Subject=[name of a specific course], Question=[a question about
the teaching quality of that course]), and that the standard semantics for answers
was used (Answer1="Very Positive", Answer2="Positive", Answer3="Negative", An-
swer4="Very Negative", Answer5="Don’t know"), we can establish the overall teaching
quality of the courses in Politecnico di Milano:

45

3 Scenarios

define TeachingQuality(Score, MaxPossible, PercentageRating)
from Timer(D==Monday) as T
where Score=

+2*Sum(SurveyResult(Property=="TeachingQuality" and Category=="Course").NumAns1)
+1*Sum(SurveyResult(Property=="TeachingQuality" and Category=="Course").NumAns2)
−1*Sum(SurveyResult(Property=="TeachingQuality" and Category=="Course").NumAns3)
−2*Sum(SurveyResult(Property=="TeachingQuality" and Category=="Course").NumAns4)

within 1week from T,
MaxPossible= 2*(
Sum(SurveyResult(Property=="TeachingQuality" and Category=="Course").NumAns1) +
Sum(SurveyResult(Property=="TeachingQuality" and Category=="Course").NumAns2) +
Sum(SurveyResult(Property=="TeachingQuality" and Category=="Course").NumAns3) +
Sum(SurveyResult(Property=="TeachingQuality" and Category=="Course").NumAns4))

within 1week from T,
PercentageRating= (Score/MaxPossible +1)*50

in which we arbitrarily attributed +2 points for each "Very Positive" answer, +1 point
for "Positive", −1 for "Negative" and −2 for "Very Negative"; "Don’t know" answers are
ignored. Sum is an aggregate operator that sums the values of the specified attribute
in the given set of events. Score is the count of total points made according to these
multipliers, while MaxPossible is the theorical maximum score that would have been
reached if each answer had been a "Very Positive". A PercentageRating from 0 to 100 is
obtained from Score and MaxPossible this way (where s is Score and m is MaxPossible):

−m < s < m

−1 < s
m

< 1
−1 + 1 < s

m
+ 1 < 1 + 1

0 · 50 < (s
m

+ 1) · 50 < 2 · 50
0 < (s

m
+ 1) · 50 < 100

When the teaching quality is critically low (eg. less than 30%), an alarm which reports
the quality rating along with a list of the worst courses can be fired:
define LowTeachingQuality(Rating, WorstCourses)
from TeachingQuality(PercentageRating<30) as Q
where Rating= Q.PercentageRating,

WorstCourses= Concat(SurveyResult(
Property=="TeachingQuality" and Category=="Course" and
30 >
((+2*NumAns1 + 1*NumAns2 – 1*NumAns3 – 2*NumAns4) /
(2*(NumAns1 + NumAns2 + NumAns3 + NumAns4)) +1) *50)

.Subject) within 1week from Q

where Concat is an aggregate operator which concatenates the value of a textual at-
tribute for each event of a given set. To compute the percentage rating of each course,
and verify whether it is lower than the threshold, the same method as in TeachingQuality
is used here.

46

3.2 SOEP’s Scenarios

On the contrary, an event could report when the overall teaching quality of the courses
is undergoing a positive trend:
define TeachingQualityPositiveTrend(AverageGrowth, FinalRating)
from TeachingQuality() as Q4 and

last TeachingQuality(PercentageRating≤Q4.PercentageRating) as Q3 within 8day from Q4 and
last TeachingQuality(PercentageRating≤Q3.PercentageRating) as Q2 within 8day from Q3 and
last TeachingQuality(PercentageRating≤Q2.PercentageRating) as Q1 within 8day from Q2

where AverageGrowth= (
(Q2.PercentageRating – Q1.PercentageRating) +
(Q3.PercentageRating – Q2.PercentageRating) +
(Q4.PercentageRating – Q3.PercentageRating)) /3,

FinalRating= Q4.PercentageRating
consuming Q1, Q2, Q3, Q4

where we arbitrarily defined a positive trend one in which there are four consecutive
non-decreasing quality reports.

Given the above survey framework many other analysis, like this on the quality of the
courses, could be done.

3.2.5.3 Statistics

Students can also be considered as a big group of raw data suppliers, on which some
basic statistics can be made. Unlike surveys, which require user interaction, statistics
runs on data automatically acquired from students’ mobile phone. In the following some
examples are given.

Students’ Number It could be useful to know the approximate number of students
currently in the campus. To this purpose, the Position event defined in section 3.2.3,
sent periodically by student’s devices, is reused. First of all, the following rule could be
used to detect the entry of a student in a particular area of the campus:
define EnterArea(DeviceId, Area)
from Position(

Abs(Latitude-[area center latitude])<[area semiheight in latitude degrees] and
Abs(Longitude-[area center longitude])<[area semiwidth in longitude degrees]

) as P and
last Position(DeviceId=P2.DeviceId and
Abs(Latitude-[area center latitude])≥[area semiheight in latitude degrees] and
Abs(Longitude-[area center longitude])≥[area semiwidth in longitude degrees]

) within 30min from P
where DeviceId=P.DeviceId, Area=[area name]

where a rule for each relevant area should be defined. Area could mean a particular zone
inside the campus (Area="Cafeteria", Area="Building21", etc.) or the entire campus
itself (Area="Campus"). In short, according to this rule a student has just entered the

47

3 Scenarios

area if its current position is inside the area and the previous one was outside. Suppose
the opposite rule ExitArea(DeviceId, Area) is defined, too.
Besides the entry to and exit from an area, also the permance on it could be detected:
define InArea(DeviceId, Area)
from Position(

Abs(Latitude-[area center latitude])<[area semiheight in latitude degrees] and
Abs(Longitude-[area center longitude])<[area semiwidth in longitude degrees]

) as P
where DeviceId=P.DeviceId, Area=[area name]

Note that while EnterArea and ExitArea are created once each time a student enters
or exits a particular area, InArea is periodically created as long as he stays in the area,
with the frequency of creation being the same as Position events (eg. 5 minutes).
The most straightforward way to periodically count the number of students inside the
campus is through InArea events and the aggregate operator Count:
define StudentsNumber(Number)
from Timer(M%5==0)
where Number=Count(InArea(Area=="Campus")) within 5min from Timer

In alternative, the students’ number could be progressively computed by incrementing
or decrementing the number when a student enters or exits the campus, respectively.
The increment is done with this rule:
define StudentsNumber(Number)
from EnterArea(Area="Campus") as EA and

last StudentsNumber() as SN within 12hour from EA
where Number=SN.Number + 1

while the decrement is done with this other rule:
define StudentsNumber(Number)
from ExitArea(Area="Campus") as EA and

last StudentsNumber() as SN within 12hour from EA
where Number=SN.Number − 1

Both rules would also need their relative initialization part for when no StudentsNumber
has still been detected, which has been left out for brevity.

Telephony A bunch of other statistics can be done on telephony data. Suppose that
each student’s mobile phone in the campus periodically (eg. every 5 minutes or more)
sends information about its telephony services:
TelephonyServices(DeviceId, IsCalling, IsDataConnected, NetworkOperator, SimOperator, SimCountry,
NetworkType)

whose attributes are:
. DeviceId: a unique identification number (for example, the IMEI) of the mobile device

48

3.2 SOEP’s Scenarios

. IsCalling: "True" if a phone call was going on during detection, "False" otherwise

. IsDataConnected: "True" if a data connection (that is, an Internet connection) is
active on the device, "False" otherwise

. NetworkOperator : name of the currently registered telephony operator

. SimOperator : name of the operator which provided the SIM

. SimCountry: country code of the SimOperator

. NetworkType: the radio technology currently in use on the device (eg. GPRS, EDGE,
UMTS, HSDPA, etc.)

A rule can be used to make statistics on students that are currently making phone calls:
define CallingStudents(Number, Percentage)
from Timer(M%5==0) as T and

last StudentsNumber() as SN within 5min from T
where Number=Count(TelephonyServices(IsCalling=="True")) within 5min from T,

Percentage=(Number / SN.Number) * 100

which periodically reports the number of students in the campus who are making calls,
both as an absolute value and in percentage.
Other statistics can be done on network operators, for example to know what is the
most used one:
define MostUsedOperator(Operator, UsersNumber, Percentage)
from Timer(M%5==0) as T and

last StudentsNumber() as SN within 5min from T
where Operator=MostFrequent(TelephonyServices().NetworkOperator) within 5min from T,

UsersNumber=Count(TelephonyServices(NetworkOperator==Operator)) within 5min from T,
Percentage=(UsersNumber / SN.Number) * 100

where MostFrequent is an aggregate operator which returns the most frequent value
for an attribute among a set of events. The rule reports the name of the competition-
winning operator, along with the number of users in the campus using that operator
and their percentage on total students.
If the most used network operator has very high percentage of users (eg. 90% or more),
an interesting monopoly is going on:
define TelephonyMonopoly(Operator)
from MostUsedOperator(Percentage>90)
where Operator=MostUsedOperator.Operator

As a final example, from the SIMCountry statistics on foreign students can be done:
define ForeignStudents(Number, Percentage)
from Timer(M%5==0) as T and

last StudentsNumber() as SN within 5min from T
where Number=Count(TelephonyServices(SimCountry 6= “IT”)) within 5min from T,

Percentage=(Number / SN.Number) * 100

which reports the approximate number of foreign students currently in the campus, along
with their percentage on total students.

49

3 Scenarios

3.2.6 Administrative Announcements

SOEP could also be used to distribute university’s administrative announcements to stu-
dents. Currently in Politecnico di Milano this is done through a dedicated section in
WebPoliself, a web tool used by each student to remotely manage his career, and some-
times by emails sent to the institutional address. Actually, the announcements done this
way are quite static and generic. SOEP could add some personalization in the distribution
of announcements - exploiting the potentialities of the smartphones - thus making them
more appealing and useful.
A first kind of announcement could be delivered when a student enters or exits a par-
ticular area of the campus, or the campus itself. For example:
define EnterAreaAnnouncement(TargetDeviceId, Message)
from Timer(M%5==0) as T and

each EnterArea(Area=="Campus") as EA within 5min from T
where TargetDeviceId=EA.DeviceId,

Message="Welcome back to Politecnico. The news and events for today are..."

for when the student gets into the campus and
define ExitAreaAnnouncement(TargetDeviceId, Message)
from Timer(M%5==0) as T and

each ExitArea(Area=="Campus") as EA within 5min from T
where TargetDeviceId=EA.DeviceId,

Message="Goodbye and see you soon in Politecnico. We remind you that tomorrow..."

for when he gets out of it. The EnterArea, ExitArea and InArea events have been defined
in section 3.2.5.3.
A second possible type of announcement is triggered when a particular time is reached,
and is delivered to all the students currently inside a particular area. For example:
define TimeAnnouncement(TargetDeviceId, Message)
from Timer(H==19 and M==30) as T and

each InArea(Area=="Campus") within 5min from T
where TargetDeviceId=InArea.DeviceId and

Message="Politecnico is closing. Hurry up to leave the classrooms!"

The area considered in these rules is variable, from the campus itself as in previous
examples up to a single building or even room inside the campus. This way, customized
messages are possible.
To simplify student’s subscription, a single Announcement that aggregates all previous
kinds could be defined, in three parts:
define Announcement(TargetDeviceId, Message)
from EnterAreaAnnouncement() as A
where TargetDeviceId=A.TargetDeviceId and Message=A.Message

and

50

3.2 SOEP’s Scenarios

define Announcement(TargetDeviceId, Message)
from ExitAreaAnnouncement() as A
where TargetDeviceId=A.TargetDeviceId and Message=A.Message

and
define Announcement(TargetDeviceId, Message)
from TimeAnnouncement() as A
where TargetDeviceId=A.TargetDeviceId and Message=A.Message

so that the student can make a single subscription with:
Subscribe(Announcement(TargetDeviceId=[student’s device id]))

Several more kinds of announcements that exploit other potentialities of the student’s
mobile phone could be conceived.

51

3 Scenarios

52

4 SOEP-Server

SOEP-Server is the server part of SOEP. It runs the event engine T-Rex on which TESLA
rules are deployed, it accepts and mantains connections with SOEP-Clients and let them
publish and subscribe to events; when new complex events are created, as a consequence
of a client’s publication, they are reported to every subscriber.

In section 4.1 a description of server’s features is given; section 4.2 details its architecture
and its main execution flows, finally section 4.3 adds some notes on the implementation
and on the libraries used to develop it.

4.1 Features

Here is a list of the features of the current version of SOEP-Server:

Connections
. accept new connections from clients
(asynchronous)

. receive data from each connection (asyn-
chronous)

. mantains alive each connection with
heartbeat

� periodically send pings (asynchronous)
� periodically check heartbeat timeout’s

expiration from last reception (asyn-
chronous)
� close connection when an error oc-

curred or timeout expired

Event Rules
. deploy TESLA rules on T-Rex at startup

Subscriptions

. accept subscriptions

. accept unsubscriptions

. remove subscriptions when client discon-
nects

Publications

. receive publication of events from clients

. let T-Rex generate complex events ac-
cording to deployed TESLA rules

. publish generated complex events to sub-
scribers

User Interface

. simple command-line interface

. Log file written to disk

SOEP-Server was designed with a simple centralized architecture and a TCP connection
is opened and kept alive with every client.

53

4 SOEP-Server

4.1.1 Scalability

Despite the centralized architecture, particular attention was paid on scalability and the
server should prove stable enough to manage a few thousands of clients, as a university
campus like Politecnico di Milano requires on average1. On one side, this number of si-
multaneous connections should be treatable even by a single machine. On the other side,
the main factor contributing to scalability is the usage of asynchronous input/output op-
erations to handle each connection, combined with a thread-pool to execute the handlers
associated with them.
Indeed, the traditional thread-per-connection approach, which requires the creation of
a new thread for every accepted connection, would pose a big bottleneck on server’s
scalability: threads are usually considered heavyweight because their creation, switch
and synchronization require lots of computational resources. With this approach, syn-
chronous (that is, blocking) I/O primitives are used, and the only way to obtain concur-
rency is to spawn new threads. Concurrency is thus tightly coupled with threading: the
more concurrency is needed, the more threads the application must spawn. It is easy to
imagine how this can rapidly reach the threshold on system resources’ usage.
On the contrary, the asynchronous I/O model, which requires the help of the Operating
System to schedule asynchronous operations, is way more efficient: only a few threads
(or a single one, at the most) are needed to alternately start asynchronous operations and
execute the associated handler when the OS notifies about the operation’s completion.
For example, a thread can asynchronously accept a connection on a socket and in the
meantime execute other jobs: it is not necessary to block until a client will connect, the
OS will notify the thread when this will happen.

4.2 Design

The architecture of SOEP-Server is shown in figure 4.1. The main components are
T-Rex and Connection: the former is the CEP event engine, which accepts as input
new events received from clients and processes them to create new complex events as
output, according to deployed TESLA rules; the latter represents an open session with
a single client, including all the Subscriptions made by the client. This session is
not stateful over network connection’s drop (a design choice to lessen the management’s
burden on the server): this means that when a client purposely disconnects or when the
connection is abruptly closed due to any error, subscriptions are freed from memory. It
is up to the client to send its subscriptions every time it connects to the server.
Client and server exchange data on the network in form of Packets: there is a packet type
for every relevant action on events, including PubPacket for publications and SubPacket

1According to the Statistical Office of the Italian Ministry of Education, Universities and Research
(http://statistica.miur.it), in the academic year 2008/09 the students registered at Politecnico
di Milano were about 36000, of whom about 21000 in Leonardo campus.

54

http://statistica.miur.it

4.2 Design

Figure 4.1: SOEP-Server’s architecture

for subscriptions. The marshalling algorithms used to flatten packets to bytes to be put
on the network, as well as those for the opposite procedure, are obviously shared between
client and server. A Connection uses a RequestHandler to handle each new piece
of data received from the socket: this involves unmarshalling the packet and reacting
according to the packet’s type. If the received packet is a SubPacket, the corresponding
subscription is added to the Connection (if it is not already registered), while if it
is a PubPacket the publication must be processed by T-Rex (see figure 4.1), which
could generate back a new complex event: in that case the relevant subscribers are first
identified by matching the event with all the registered subscriptions, then the event is
sent them.

The operations described above are performed by a limited number of threads in a Thread
Pool, which cyclically schedule asynchronous operations on socket (accept new connec-

55

4 SOEP-Server

tions, receive data, send data) to an Asynchronous I/O layer which stands in-between
the server and the OS. When any of those asynchronous operations is completed, one of
the threads in the threadpool is arbitrarily chosen to execute its associated handler; by
starting again another asynchronous operation from the handler, the continuity of the
server’s work with each connection is guaranteed.

4.2.1 Server’s Workflow

The asynchronous flow of execution is unfortunately harder to understand (and to de-
velop on) than the standard synchronous mechanisms, due to the separation in time
and space between operation initiation and completion. To clear it up a little more, a
flowchart of the main parts of SOEP-Server’s workflow is available in figure 4.2. The
diagram shows the typical flow of execution of the main components of the server and
their interrelations. Dotted arrows correspond to the start of an asynchronous operation,
which will eventually (on a later time) lead to the execution of the associated handler,
represented with a parallelogram.

Figure 4.2: SOEP-Server’s workflow

At startup, SOEPServer initializes T-Rex and deploys all the TESLA rules on it. After
that, it starts the asynchronous accept loop: whenever a new client connects, a new

56

4.3 Implementation

Connection is created to manage the session with that client. The created Connection is
assigned the socket to communicate through, and immediately starts the asynchronous
receive loop: new Packets are iteratively received and processed by Connection’s Re-
questHandler, until a network error is detected. A mention should also be made on the
existence (not shown in the diagram because conceptually less important) of two other
asynchronous loops: the ping-receive loop, which keeps checking the heartbeat timeout’s
expiration from last reception, and the ping-send loop, which periodically sends pings to
clients.

4.3 Implementation

SOEP-Server is free software, released with GPLv3 licence and implemented in C++. It
was developed with Eclipse CDT and tested on a Linux machine, but its code is cross-
platform. Source code is versioned with SVN and hosted on a repository at Politecnico
di Milano.

SOEP-Server links with some libraries: the C++ Standard Library (including the Stan-
dard Template Library, STL), T-Rex and various Boost libraries. As the Standard Li-
brary is well known, and T-Rex has been already described in section 2.2.2, section 4.3.1
will focus only on the latters.

4.3.1 Boost Libraries

The Boost C++ Libraries (www.boost.org) are a large collection of free libraries that
extend the functionality of C++, most of which are released with the permissive Boost
Software Licence, which allows them to be used both in free and commercial projects.
The collection contains more than a hundred libraries aimed at a wide range of ap-
plication domains, from general-purpose libraries, to very specific ones, up to libraries
primarily aimed at other library developers. They are maintained by an active commu-
nity of developers, which submit each new proposed library to a collective review process;
several Boost libraries have been accepted for incorporation into both the C++ Techni-
cal Report 1 and the upcoming new standard C++0x. A peculiarity of Boost libraries
is that most of them are header based, consisting of inline functions and templates, and
as such do not need to be built in advance of their usage. [48][49]

SOEP-Server was tested with Boost version 1.45.0. More specifically, the used Boost
libraries were:

Boost.Asio The most important one for SOEP-Server, it is a cross-platform library
for both synchronous and asynchronous network and low-level I/O programming.
Referring to figure 4.1 on server’s architecture, Asio provides the Asynchronous
I/O layer (implemented by the library’s io_service object). Some of the fea-
tures of Asio are the management of sockets (TCP, UDP, ICMP and basic SSL),

57

www.boost.org

4 SOEP-Server

timers, buffers, serial ports and file descriptors. Another advantage of Asio is a
simplification on threads’ synchronization: the strand facility wraps asynchronous
completion handlers so that they are executed serially; this is used in SOEP-Server
to serialize the execution of each Connection’s asynchronous completion handler
(while there is no need for synchronization among different Connections). The
main disadvantage of the asynchronous mechanism in Asio is an increase in pro-
gram complexity/readability and in memory usage, because a separate buffer is
required for each concurrent operation and its space is reserved for the complete
duration of the operation.

Boost.Thread It enables the use of multiple threads of execution in portable high-level
C++ code. It provides classes and functions to manage the threads, synchronize
them, share data between them or conversely keep separate copies of local data
specific to individual threads. It is used in conjuction with Boost.Asio to handle
SOEP-Server’s threadpool.

Boost.Array STL compliant wrapper for arrays of constant size. Using this class, an
array can be created that exhibits the same properties as a traditional array in
C++ and in addition conforms to the requirements for C++ containers, so that it
can be used with the framework provided by the Standard Library for processing
algorithms on containers. It is used in SOEP-Server mostly as a fixed-size buffer
of bytes (actually, chars).

Boost.SmartPointers Smart pointers are objects which store pointers to dynamically
allocated (on the heap) objects. They behave much like built-in C++ pointers
except that they automatically delete the object pointed to at the appropriate
time. Conceptually, smart pointers are seen as owning the object pointed to,
and thus responsible for deletion of the object when it is no longer needed. The
library provides six smart pointer class templates; the most used in SOEP-Server
is shared_ptr, whose semantics is the sharing of an object’s ownership among
multiple owners, with the object being guaranteed to be deleted when the last
shared_ptr pointing to it is destroyed or reset. With proper use of smart pointers,
explicit delete statements should no longer be necessary.

Boost.Variant The boost::variant class template is a type-safe, generic, stack-based
discriminated union container, which allows the manipulation of an object from a
heterogeneous set of types in a uniform manner. Whereas standard containers such
as std::vector may be thought of as "multi-value, single type", variant is "multi-
type, single value". The library provides compile-time type-safe value visitation
according to the Visitor design pattern. It is used in SOEP-Server to uniformly
manage all types of packets (RulePkt, PubPkt, SubPkt, PingPkt, etc.) through a
single type (Pkt).

Boost.Log It provides various logging mechanisms to an application, and has a modular
and extensible architecture [50]. Actually, this library is not yet an official part of
the Boost libraries, although it has passed the review and is provisionally accepted.
It is used in SOEP-Server to log events both to console output and on a log file

58

4.3 Implementation

stored on filesystem.

59

4 SOEP-Server

60

5 SOEP-Client

SOEP-Client is an Android application installed on students’ Android-powered mobile
phone whose purpose is to provide them with a portal to many useful services related
to university life. These services are based on the contributions from all the students,
according to the HOEP model: students are both the sources of the information items
(simple events) and the recipients of the new knowledge created from them (complex
events) or, in other words, the end users of the system. The application acts as a bridge
between each student and SOEP-Server, where the events are routed to and processed to
generate new information, which in turn is redistributed to students. The mobile phone
is supposed connected to the Internet, either through a Wi-Fi channel or the cellular
network.
SOEP-Client allows the management of events through a graphical user interface: users
can publish new events (both interactively or by scheduling them to be automatically
published on a periodic basis), define subscriptions for particular events and receive
new publications of the subscribed events, generated by the server. The events the
application can handle are specified as a collection of event modules; each module knows
the semantics of its event, and how to manage the creation of a new publication or
subscription for it. The details on the structure of events (their type and attributes) are
assumed to be shared by clients and server a priori. A daemon manages the connection
with the server and exposes an interface to other components through which they can
send and receive events.
Before getting down to SOEP-Client, some preliminary remarks on Android’s architec-
ture are given in section 5.1. Then in section 5.2 a list of the features of SOEP-Client
will be presented. Section 5.3 describes the application’s architecture and main design
choices. Finally, section 5.4 concludes with some notes on implementation.

5.1 Android

Android1 has been chosen as the mobile phones’ operating system, because it is a promis-
ing open-source project which is gaining more and more consensus both in the industry
and among end-users, rapidly establishing as one of the most important mobile plat-
forms. It is attractive to users for its good usability (focused on touchscreen smartphones
and tablets), the availability of thousands of apps on the Android Market, out-of-the-box

1www.android.com

61

www.android.com

5 SOEP-Client

Figure 5.1: Android’s architecture

integration with lots of services (especially Google’s ones), smart management of hard-
ware resources (battery, GPS, Wi-Fi, 3G, etc.) and last but not least its nice appearance;
on the other hand, developers face with a new powerful event-based architecture, tons
of good documentation, built-in facilities and frameworks for the most common tasks,
together with a development environment and a rich set of tools which significantly ease
programming.
Android is a software stack for mobile devices that includes an operating system, mid-
dleware and key applications. Its stratified architecture is shown in figure 5.1 [51].
In the following the main levels of the platform’s stack are briefly described.
Applications The core applications which are shipped with Android, including an email

client, SMS program, calendar, maps, browser, contacts, and others.
Application Framework The high-level component-based Java framework used by the

core applications, which is leveraged by developers to build their own application.
The architecture is designed to simplify the reuse and replacement of components
also among different applications.

Libraries A set of native C/C++ libraries used by various components of the An-
droid system, which are also exposed to developers in a high-level Java-based

62

5.2 Features

Figure 5.2: SOEP-Client’s main views. From left to right: inbox, outbox, periodics and
subscriptions. Note the application’s icon (the circle with a ‘S’ inside) on the
left part of Android’s top status bar.

way through the application framework.
Android Runtime Android includes a set of core libraries which implements most of

(but not all) the Java Standard Edition’s core APIs. It uses the Dalvik Virtual
Machine [56], which is a particular virtual machine optimized so that every Android
application can efficiently run in its own process with its own instance of the
VM. Dalvik executes files in the Dalvik Executable (.dex) format, obtained by
converting standard .class files, optimized for minimal memory footprint. The
Dalvik VM relies on the Linux kernel for underlying functionality such as threading
and low-level memory management.

Linux Kernel Android is built on a Linux kernel and relies on it for core operating
system’s services such as memory management, process management, hardware
drivers, power management, network stack and so on. Drivers for all the hardware
equipments embedded on the mobile device are included.

5.2 Features

Here is a comprehensive list of the features of SOEP-Client:

Views (see figure 5.2)
. inbox : management of received event
publications

� list received publications
� show/delete/copy-to-clipboard each

publication

. outbox : management of sent event pub-

lications

� list sent publications
� show/delete/copy-to-clipboard each

publication
� publish new events
◦ the choice of events depends on the

available event modules and their

63

5 SOEP-Client

capabilities
◦ the UI depends on the module

. periodics: management of scheduled au-
tomatic publications (called periodics)

� list scheduled periodics
� show/edit/delete/copy-to-clipboard

each periodic
� schedule new periodics
◦ the choice of events depends on the

available event modules and their
capabilities
◦ the UI (a nice wheel widget) is the

same for all the events
◦ periodicity can be absolute: defined

as the day-hour-minute of the week
(and several combinations, eg. ev-
ery day, every hour, etc.) the publi-
cation should be fired on
◦ periodicity can be relative: defined

as an interval expressed in ‹#days,
#hours, #minutes›

. subscriptions: management of event sub-
scriptions

� list subscriptions
� show/edit/delete/copy-to-clipboard

each subscription
� temporarily enable/disable each sub-

scription
� make new subscriptions
◦ the choice of events depends on the

available event modules and their
capabilities
◦ the UI depends on the module

. preferences: management of applica-
tion’s preferences

� list all options
� edit each option

Background daemon
. manage connection with server

� connection/disconnection
� ping and timeout

. expose interface to other components

� to send publications and subscriptions
to server
� to manage periodics
� to listen for sent/received events
� it hides low-level networking details

. work is batched

� let the phone sleep most of the time
� schedule regular wakeups
� work done on every wakeup

. publish periodics

� check periodics’ trigger time on every
wakeup
� publish periodic when its trigger time

has elapsed

. alert user with sound, light and statusbar
notifications

� application’s icon in status bar
� notification of new received publica-

tions

Event Modules
. each module manages a particular event

� supplies information about it
� shows/creates/edits publications for it
� shows/creates/edits subscriptions for

it

. general module framework

� each module extends the abstract base
class EventModule
� EventModule provides default imple-

mentations for some features, while
others must be redefined by subclasses

64

5.3 Design

� a module is not compelled to provide
all the features
� a list of Capabilities is automati-

cally determined for each module to
declare what it can do

. EventManager is used to retrieve mod-
ules
� at startup it loads all the available

modules
� provides several methods to query

modules
. two demo modules already implemented

� PositionModule: the position of the
mobile phone

◦ Google Maps to display the position
◦ both GPS-based and network-based

position detected

� GatheringModule: a gathering of peo-
ple in a geographical area

◦ again Google Maps and position de-
tection
◦ pinch-to-zoom gesture to select the

area on the map

5.3 Design

The architecture of SOEP-Client is shown in figure 5.3. The server is placed somewhere
on campus infrastructure and opened to Internet (or private intranet) access; clients are
Android devices connected to the Internet either through the cellular network or via
Wi-Fi infrastructure. A TCP connection is established and kept alive between client
and server.

In the following sections the main parts of SOEP-Client will be described, with a doc-
ument structure which actually corresponds to the application’s Java packages : the
service in section 5.3.1, the activities in section 5.3.2, finally event management in sec-
tion 5.3.3.

5.3.1 Service

An Android Service is a component focused on background work; it does not have a
visual interface like an Activity, but rather exposes an interface through which activities
can control it and post some jobs to be processed on the background.

SOEPService is a service used as a bridge between SOEP-Server and all the other com-
ponents of SOEP-Client. Its main purpose is to decouple networking from application
logic performed by the activities. It autonomously establishes a TCP connection with
the server and makes its best to keep it alive, by maintaining a regular heartbeat and
recovering it when network failure is detected2; Android’s ConnectivityManager is also
leveraged to quickly react to local connectivity’s changes, such as the disconnection of
a network interface which results in total connectivity loss or in failover to another

2As it was explained in section 4.2, this also involves re-establishing again all the client’s subscriptions

65

5 SOEP-Client

Figure 5.3: SOEP-Client’s architecture

66

5.3 Design

interface. The service exposes an API that lets activities publish an event or send a sub-
scription with fire-and-forget semantics: new publications and subscriptions are queued
until they can be successfully delivered to server. Activities can also register a listener
on the service to be notified of network updates, such as the reception of a new publi-
cation, change in connection’s status, and so on. Finally, the service takes care of firing
periodics when their trigger time expires, generating a new automatic publication from
them and sending it to the server as for publications interactively created by the user.
To save battery life the service does not run continuously but rather it batches work
and schedules regular wakeups through Android’s AlarmManager; this way, the phone
is allowed to sleep most of the time but the OS wakes it up on a regular basis and the
service can catch up on work. The work the service iteratively carries out involves:
. checking the status of network connection; the connection could have been dropped
either due to an explicit error in trasmission, or because the heartbeat timeout expired;
the recovery process requires that:

� client’s subscriptions must be sent again to the server
� any pending publication stored in the send queue but not yet delivered to the server

is sent

. checking periodics’ trigger time and publishing the ones whose time has elapsed

. scheduling next wakeup; the wakeup delay is dynamically chosen:

� a fixed interval is used when the service is connected
� a binary exponential backoff algorithm with minimum and maximum threshold is

used to calculate the delay when the service is not connected; the purpose is to
promptly react to sudden disconnection (using a low minimum threshold) but also
to avoid premature reconnection requests, which mean battery’s waste (using a high
maximum threshold)

Once it is started, the service will keep running even when none of the activities are
currently in the foreground (because the user switched to another application), until the
user explicitly quits the application. A permanent notification of the ongoing service is
placed on Android’s status bar, while a temporary notification is added whenever a new
publication is received.

5.3.2 Activity

An Android Activity is the component dedicated to user interaction: it presents a visual
interface and reacts to user input. The main activities in SOEP-Client are discussed
below.
InboxActivity is dedicated to incoming publications. It shows the history of received

publications, and gives the possibility to view each one in details. It registers a
listener on SOEPService to be notified when new events are received and promptly

67

5 SOEP-Client

display them. To display a publication, it queries the corresponding EventModule
from EventManager and delegates to it the task (as only the module knows how
to properly display the event’s content). Publications (as well as periodics and
subscriptions) are fetched from database.

OutboxActivity is dedicated to sent publications. It shows the history of sent publica-
tions and lets the user publish a new event. The choice of the publishable events
and how to graphically publish them depends on the available event modules. A
new publication is sent to server through SOEPService.

PeriodicsActivity is dedicated to periodics. It shows the scheduled periodics and the
countdown to their next trigger time. User can add a new periodic or edit an
existing one. The activity notifies SOEPService about the periodics’ update: the
service is in charge of automatically firing them when necessary. A new periodic
is created graphically through a wheel widget which lets the user specify the pe-
riodicity of the publication either in absolute terms, as the day-hour-minute of
the week (and several combinations, eg. every day, every hour; this format has
been called DHM), or in relative terms, as a simple interval expressed in ‹#days,
#hours, #minutes›.

SubscriptionsActivity is dedicated to subscriptions. It shows the subscriptions already
made and allows the creation of a new one or editing an existing one; it is also
possible to temporarily disable a subscription, which will be enabled with a single
click when needed. Both the deletion and the temporary disabling of a subscription
correspond to an unsubscription, which is sent to server through SOEPService; in
the second case, moreover, the subscription will be sent unchanged to server when
the user enables it again. The choice of the events which a subscription can be made
for, and how to graphically create them depends on the event modules installed
on the system and their capabilities.

There are other activities, not listed here because of minor importance, as for example
PreferencesActivity, through which the user can set application’s options.

5.3.3 Event Management

The classes of this package are Plain Old Java Objects (POJO) that help other compo-
nents in the management of events. Client and server must agree a priori on the defini-
tion of each of those events (its id, name, attributes, and the corresponding semantics);
changes in a TESLA rule deployed on the server should be followed by a consistent update
in the corresponding event module installed on the client.

In the following the main subpackages will be detailed: event modules in section 5.3.3.1,
event actions in section 5.3.3.2, finally event packets in section 5.3.3.3.

68

5.3 Design

5.3.3.1 Module

EventModule is the core of the module’s architecture, subclassed by concrete module
implementations. EventManager is used to query modules.

EventModule is an abstract class that represents an event module, which must be sub-
classed by real module implementations. It provides subclasses with a Capability-
based framework in which they can choose what features to implement or redefine,
and consequently the corresponding capability is automatically assigned to the
module. A module should be queried about its capabilities before using it. The
main features a module can implement are3:

. show a publication (this is the only compulsory feature)

. show a subscription

. create or edit a publication interactively (that is, let the user graphically publish
an event)

. create or edit a subscription interactively

. create a publication automatically (that is, without user’s intervention), ac-
cording to the module’s built-in behaviour; this is used with periodics (eg.
PositionModule scheduled to periodically send phone’s position to the server)

Individual modules that perform this kind of management on events are needed
because it would be hard to generalize a single abstract model: remember that
SOEP-Client is meant to be used by students, so each event should create an
individual distinguished user experience that conveys the feeling of a portal to
many separate services, rather than to plain uniform events’ management.

EventManager helps other components to retrieve one or more desidered modules, ei-
ther querying them by id, or by name, or by specifying the needed capabilities, or
directly asking the list of all modules.

5.3.3.2 Action

EventAction is the abstraction of an action done on an event: the available actions are
Publication, Subscription and Periodic. Actions are widespread throughout the
application, manipulated by all the main components (activities, service, modules), and
saved on database. They are a high-level concept used internally in SOEP-Client, as
opposed to Packets which are a low-level representation generated from actions and sent
on the network to the server (or conversely, which generate actions when received from
server)4. In the following the main actions will be briefly described:

3Note that these features are relative to the event type the module is assigned to
4Note that not all packets are generated from, or generate, actions; for example, a Periodic does not
directly generate a PubPacket, and there is a PingPacket used only by SOEPService which does
not have a corresponding ping action

69

5 SOEP-Client

Publication a publication of an event. It mostly includes the event’s type, the event’s at-
tributes (key-value pairs), a timestamp and a status (either received, sent-correctly,
send-pending or send-failed). Publication and Subscription extend a particular
type of action called SendableAction, which represents an action suitable to be
sent to the server, by generating a corresponding Packet: in case of a Publication,
a PubPacket is generated.

Subscription it represents either a subscription or an unsubscription to an event. It
mostly includes the event’s type and the event’s constraints (attribute-operation-
value triples); it also has a flag indicating whether the subscription is currently
enabled or disabled. When the subscription is enabled, the corresponding gener-
ated packet is a SubPacket, while if it is disabled an UnSubPacket is built.

Periodic a periodic automatic publication of an event. It includes the type of the
event to be automatically published, and a description of the periodicity given
either in absolute or relative terms (see PeriodicsActivity in section 5.3.2).
According to the periodicity set, it computes the next time a Publication should
be created from it, starting from the last time this was done. SOEPService on
every wakeup checks what are the periodics whose trigger time elapsed, generates
the corresponding publications and send them to the server; the periodic’s last
trigger time is then updated.

5.3.3.3 Packet

Packets are information units transmitted on the network between clients and server.
The most important ones are PubPacket, which announces a new publication (either
a simple event from a publisher to the server, or a complex event generated from the
server and notified to all subscribers) and SubPacket, which describes a subscription
to an event made by a client5. There is also a PingPacket used for the heartbeat
mechanism which discovers dead connections.
A packet is flattened to an array of bytes to be sent on the network, and the recipient will
unflatten those bytes to the original packet. Similarly to SOEP-Server, SOEP-Client
has a PacketMarshaller and a PacketUnmarshaller which perform the two tasks,
respectively. Of course, the marshalling procedure is shared between client and server.

5.4 Implementation

SOEP-Client is free software, released with GPLv3 licence. As for every Android appli-
cation6, its source code is written in Java, while resources are composed by XML files

5The opposite packet, UnSubPacket, is used for unsubscriptions
6Note that an Android application may also have native code written in C/C++ and combined with
the other parts in Java through the Android NDK, or it may be web-based, that is, composed of
web pages either directly opened with the Android browser or integrated in a standard application
with the WebView widget

70

5.4 Implementation

and multimedia files (mostly images). It was developed with Eclipse CDT on a Linux
machine and tested on a HTC Wildfire A333 with Android 2.2.1, even though the min-
imum required Android version is 2.0. Source code is versioned with SVN and hosted
on a repository at Politecnico di Milano.

In section 5.4.1 a brief outline of the libraries used in SOEP-Client is given, while
section 5.4.2 details some of the issues found while implementing the application, along
with the chosen ways out.

5.4.1 Libraries

Although Android already includes many components and libraries to perform a wide
spectrum of common and not-so-common tasks (see section 5.1), there are times when
external libraries are needed to fulfill some particular requirements. In this regard, the
Android SDK allows the creation of Android library projects, standard projects which
can be referenced by other application projects to reuse shared code and resources. It is
also possible to almost-seamlessly integrate many pure-Java libraries archived in .jar
files: in this case issues may arise when the library uses a part of the standard Java APIs
which are not yet implemented in the core Android libraries. As a last chance, there is
a way to integrate native libraries written in C/C++ with Android NDK. [51]

SOEP-Client uses a mix of built-in libraries, Android library projects, and pure-Java
libraries. In the following these libraries are presented.

SQLite3 a lightweight relational database engine available out-of-the-box in Android.
SOEP-Client uses it to store on database business data such as publications, sub-
scriptions and periodics. To save user’s preferences the SharedPreferences frame-
work is used instead, which allows to save and retrieve persistent key-value pairs
of primitive data types in a simplified manner.

Google Maps Library an external library which provides access to the Google Maps
APIs and enables the integration of Google maps in an Android application. Dif-
ferently from Android’s source code, most of which7 is open, this library is propri-
etary and released under the Google Maps APIs Terms of Service. Among other
things, this requires the developer to register at Google to get a key which must
be referenced in source code to access maps’ services. Most Android-powered de-
vices come with the Google Maps Library installed. The main component of this
library is MapView, a widget which must be included in a MapActivity to display a
map with data obtained from the Google Maps service. It captures keypresses and
touch gestures to pan and zoom the map, can also be controlled programmatically
and overlays can be built on top of it. Moreover, the map can be displayed in a
number of modes, such as satellite, traffic, and streetview. [52]

7Apart from latest Android version 3.0/3.1 (alias Honeycomb), which is currently kept closed by Google
and shared only with major manufacturers

71

5 SOEP-Client

SOEP-Client’s event modules may use a Google map to display the position of en-
tities referred to by published events, and ease user’s manipulation of coordinates
or geographical areas.

android-wheel an Android library project developed by Yuri Kanivets, which provides
an application with nice scrollable wheel widgets [53]. SOEP-Client uses a cus-
tomized wheel to let the user input the periodicity of a periodic.

TRex-Client-Java this is the Java client adapter of T-Rex (see section 2.2.2). Mostly,
it includes Java definitions of the packets used to communicate with the T-Rex
engine, and the code to marshal/unmarshal them. SOEP-Client extends it with
the other packet types used in SOEP.

5.4.2 Issues

In this section some of the issues emerged both during the design and implementation
of SOEP-Client are addressed; a hint about the solution or work-around adopted to
tackle them is also provided. Despite Android’s architecture being solid and the relative
documentation almost always exhaustive, it is still a young platform and rough edges
can be found as soon as you venture into more advanced matters. Luckily there is a
large community ready to help, whose most notable communication channels are the
Android Developers mailing list8 and Stack Overflow9 .

5.4.2.1 SOEPService’s startup method

There are two ways to activate an Android’s Service: it can be started or it can be
bound. A started service usually performs a single operation and does not return a result
to the caller. It can run in the background indefinitely, even if the component that
started it is destroyed; it is destroyed as soon as any component stops it. On the other
hand, a bound service offers a client-server interface that allows components to interact
with the service, either on the same process or even across processes with interprocess
communication (IPC). A bound service runs only as long as another component is bound
to it: multiple components can bind to the service at once, but when all of them unbind,
the service is destroyed; as a particular case, a component automatically unbinds from a
service when it is destroyed. There is a third possibility: a service could be both started
and bound; in this case, the service is destroyed only when at least a component has
stopped it and all the components which bound to it unbind. [51]

As regards SOEPService, it was necessary to both start it and bound it, because:

. the activities need the service to expose a rich interface to control it (the service must
provide the API described in section 5.3.1), thus they bind to it;

8https://groups.google.com/forum/#!forum/android-developers
9http://stackoverflow.com/questions/tagged/android

72

https://groups.google.com/forum/#!forum/android-developers
http://stackoverflow.com/questions/tagged/android

5.4 Implementation

. the service should still go on when the user switches to another application, and
should be destroyed only when the user deliberately chooses to quit the application.
For several reasons (described in section 5.4.2.2), the application’s activities can be
destroyed when the application is put in background, and consequently their binding
with the service is automatically removed: to prevent the service from being destroyed
when all the activities unbinds, it should also be started.

In conclusion, all SOEP-Client’s activities binds to SOEPService when they come to
the foreground, to obtain access to the service’s interface, and at least one of them also
starts it. When the activities are put in the background to let another application come
into play, they unbind to the service but none of them also stops it. The service will be
stopped (and consequently destroyed), only when the user clicks on the “quit” button.

5.4.2.2 Components’ memory retainment

Perhaps one of the most striking and difficult to accept change in Android for a novice
developer accustomed to standard desktop applications, regards the memory manage-
ment of the application’s components. Indeed, the life cycle of Android’s components
as Services, Activities, Content Providers and Broadcast Receivers is mainly managed
by the system: the developer is given a series of callbacks to be overridden, which are
properly executed by the system on every relevant change of the component’s life cycle.
Direct consequence of this is that a developer cannot just close the application, that is,
stop it and free memory: an application can be switched from background to foreground
and viceversa, but it is the OS to decide what and when processes will be stopped. This
mechanism is used to optimize memory usage and favour processes’ recycle. [51]

Another important consequence is that the OS may kill our process if memory is required
for something else. Of course, there are some guarantees which a developer should
carefully exploit to avoid the application’s process being unnecessarily killed or at least
to take proper countermeasures when it cannot be avoided. The system uses a quite
complex priority-based mechanism to choose what are the processes eligible to be killed,
which could be simplified in the following four steps (from higher to lower priority)10 [51]:

1. foreground process: a process which contains, among other components, a fore-
ground activity (an activity at the top of the screen that the user is currently inter-
acting with); it is considered the most important and will only be killed as a last
resort, if it uses more memory than is available on the device

2. visible process: a process which contains, among other components, a visible activity
(an activity that is visible to the user but not in the foreground, such as one sitting
behind a foreground dialog) but not a foreground activity; it is considered extremely
important and will not be killed unless when it is required to keep another foreground
process running

10This classification includes only activities and services, which are the most common components;
things are slightly different for content providers and broadcast receivers

73

5 SOEP-Client

3. background process: a process whose components are neither foreground activities
nor visible activities; it may contain background activities (activities that are not
visible to the user and has been paused) and/or services. A background process is no
longer critical, so the system may kill it to reclaim memory for other foreground or
visible processes.

4. empty process: a process hosting no activities, services or any other components;
it will be killed very quickly by the system as memory becomes low

So far only a single process was considered, but an application’s components may span
over more than one process. For example, a service hosted on a different process may
be interacted with through IPC. In case of services there are three more rules to keep in
mind for prioritization [51]:

. if the service is only started, its hosting process is normally considered a background
process with regards to priority

. if the service instead (or in addition) is bound, its hosting process is never less impor-
tant than its most important client process. That is, if one of its client processes is
a foreground process, or a visible process, the service’s hosting process is respectively
considered a foreground or visible process, too

. a started service can be permanently highered to foreground priority, if necessary; it
will still be theoretically possible for the service to be killed under extreme memory
pressure, but in practice this should not be a concern

Going back to SOEP-Client, the application is mainly made by activities and services
hosted by the same process. To avoid stalling the UI, the service uses a dedicated thread.
As the activities and the service share the same process, the process’ priority will depend
on the activities’ status: foreground or visible priority when the user is interacting with
them, or background priority when he switches to another application. As for activities,
when they are in background they are not serving any purpose and they could be safely
killed; actually the main reason to preserve the process from being killed is SOEPService,
which has a key role in the application. This is almost totally ensured by permanently
upgrading it to the status of foreground service. In the remote possibility that Android
still needs to kill it, the service is configured to be automatically restarted when more
memory will be available.

5.4.2.3 EventModule’s activities

As it was explained in section 5.3.3.1, each EventModule implementation may provide
a way to show, create and edit publications and subscriptions for the event it handles.
This means that each module uses, possibly with the help of a common framework, some
UI widgetry to interact with the user.

At first, this seemed the ideal context for Android’s Dialogs: a dialog is a small window
that appears in front of the current activity, which gains focus and accepts all user
interaction. They are normally used for notifications that should interrupt the user and

74

5.4 Implementation

to perform short tasks that directly relate to the application in progress. Each module
would have used dialogs customized with specific widgets to fulfill its needs. [51]

Unfortunately, the MapView widget - which is used to display Google maps in PositionModule
and GatheringModule, as well as presumably in many future modules - cannot be put
neither in a standard dialog nor in a standard activity: it needs a specifically designed
MapActivity, which manages the setup and teardown of the services behind a map (eg.
threads which access the network and filesystem in the background to download map’s
tiles and cache them). Moreover, only one MapActivity is supported per process.[52]

As dialogs were thus unusable, the choice fell back on activities. The main issues with
activities in this context are:

. differently from dialogs, activities cannot be instantiated from code, instead they have
to be declared in the application’s XML manifest so that Android can manage their
life cycle; but it seemed unfeasible to declare tens of activities in the manifest (one
for each module)

. they are heavyweight objects, thus it would be inefficient to have one of them for each
module

The adopted solution was to use just two activities: EventModuleActivity for normal
usage and EventModuleMapActivity - which extends MapActivity - to be used with
maps; one of the two is automatically chosen depending on whether the module needs a
map or not. A module does not directly implement the activity (as obviously it is not
possible to provide different implementations for the same activity), instead it provides
it11 with a ModuleActivityJob which contains all the information about what it should
execute, and when. By using only a pair of activities, Android’s work on recycling
components is favoured.

5.4.2.4 Capabilities discovery

As described in section 5.3.3.1, an EventModule’s subclass exposes a set of Capabilities
according to the features it provides by overriding the appropriate methods of the parent.
When a module’s method is executed but it does not have the relative capability, a
CapabilityException is thrown.

The most straightforward way to specify capabilities would be to just let each module
declare them at compile time. Anyway, developing the demo modules PositionModule
and GatheringModule with this modality proved to be very error-prone because a de-
veloper could (mis)declare a capability, but then forget to override the corresponding
method; or conversely, a method could be overridden but the corresponding capability
not declared. It probably would have needed a runtime check on capabilities’ declaration.
11Actually, as there is no easy way to pass a complex object like a ModuleActivityJob to the activity,

the job is registered at EventModule with a unique key, and only the key is passed to the activity,
so that it will be able to retrieve the job by itself

75

5 SOEP-Client

To simplify things and force correctness on developer’s side, a different solution was de-
signed: a CapabilityRecognizer which autonomously determines module’s capabilities
at runtime, by verifying what are the overridden methods through reflection. This way,
a module does not need to declare capabilities by itself, it just overrides the interested
methods. The computational effort of using reflection is limited, because modules are
instantiated by EventManager at startup once for all (as it is explained in section 5.4.2.5).

5.4.2.5 Module retrieval

To the best of our knowledge, there is not yet a mature plugin framework for Android,
something like an integrated OSGi framework which could manage the deployment of
both code and resource files locally and remotely12. Thus, event modules have been
implemented simply as subclasses of the abstract class EventModule, and packaged in
the codebase along with their resource files. Ideally, even without a plugin framework
available, the minimum desirable features would have been:
1. dynamically load local modules in a module-agnostic manner (that is, with as less as

possible pre-existing knowledge on the modules to load)
2. dynamically download and deploy new or updated modules from a remote location
Unfortunately the first requirement has been satisfied only partially, and the second one
not at all. As regards the first, in a standard Java application it would have been solved
by putting all the modules’ classes in the same package, then loading at runtime all the
.class files from the filesystem13 and instantiating them with reflection. However, this
is no more possible in Android because it uses the optimized Dalvik Virtual Machine [56]
instead of the standard one, which converts the .class files into a single .dex file. As
a consequence, at least the modules’ names must be known a priori to instantiate them
with reflection: indeed, EventManager includes a static list of all the modules’ classes
which is manually hardcoded by developers. At startup, it creates a single static instance
of each of them and keeps the references in a special map which indexes modules both
by their id and their name. This way, it can quickly serve queries of modules either by
id or by name. On the other hand, when it is asked for modules by their Capability, it
needs to iterate through all the modules to build the list of the ones with the given set
of capabilities; anyway, the lists returned are built only once and then cached in another
map to be quickly retrieved next time.
As for the second requirement, Android does not provide a facility to easily and securely
load code and resources from a remote endpoint. Even if the download of .jar/.apk
files and the runtime load of their content is theoretically possible14, it would still lack
the integration with the other part of the Android framework, eg. for text’s localization,
display’s size management, components’ layout inflation, etc. Therefore, no mechanism
12See [54] for what so far most resembles - but is quite a long way away from being - a plugin architecture

for Android; see [55] for the progress in the integration of OSGi in Android
13See this snippet of code as an example: http://snippets.dzone.com/posts/show/4831
14With a specialized implementation of a class loader called DexClassLoader

76

http://snippets.dzone.com/posts/show/4831

5.4 Implementation

was designed in SOEP-Client to add modules at runtime. As in general an Android
application is of limited size, and in particular in SOEP-Client’s scenario the addition
of new events is not expected frequently, it is far more pratical to just let Android
automatically download from the Market a new available version of the application
containing new or updated modules.

5.4.2.6 Pinch-to-zoom gesture

Although there actually exists non-touch netbooks which ship Android15, according
to the standard an Android-compatible device must have a touchscreen [57]; more-
over, for many of them the screen is multi-touch. Android provides a framework
to manage finger-press events, which has also the built-in capability of recognizing
many high-level gestures, such as scroll, fling, double-tap, long-press, and so on. How-
ever, it lacks support for the stylish iPhone-derived pinch-to-zoom gesture. As it was
needed in GatheringModule to select a geographical area by pinching on the map,
a PinchZoomRecognizer has been implemented16 as an add-on to Android’s built-in
GestureDetector: it recognizes the pinch by properly tracking the first two fingers’
pressure and their movement relative to each other, stopping as soon as a finger is lifted
up.

5.4.2.7 Device’s standby

To the best of our knowledge, there is no technical documentation on Android’s standby
management. What it is sure, anyway, is that after some minutes without user input,
the device enters into sleep mode and most of the running processes freeze in place,
picking up what they left when the device exits from sleep.
Most of Android applications - those entirely focused on immediate interaction with the
user - does not need to take into account the standby. On the other hand, applications
such as SOEP-Client, which have a service on the background which should be kept
running, should take countermeasures. In particular, the freezing of SOEPService would
be disruptive because it would stop the connection heartbeat, the reception of new events
as well as the automatic publications.
Luckily, Android provides a PowerManager through which wake locks can be acquired on
several hardware components (CPU, screen and keyboard), preventing them from falling
sleep. SOEPService thus needs to acquire a wakelock every time it is waked up by the
AlarmManager (see section 5.3.1), to ensure it can perform all its work before the phone
goes back to sleep, and to release the lock when it has done. A WakeLockExecutor was
developed to execute jobs serially in a dedicated thread, acquiring a wakelock on CPU
when first job is offered and releasing it when last job is completed. A little more difficult
was to ensure the execution also of asynchronous jobs: as the automatic publication made
15but which are never allowed to have access to the Android Market
16With the help of [58]

77

5 SOEP-Client

by a module is asynchronous and is accomplished through a listener, the challenge was
to acquire a wakelock until the listener’s callback is called. The implemented solution
was a WakeLockDecorator, a utility class which follows the decorator pattern to create
a dynamic proxy [59] of the given object (in our case, the listener), which acquires
a wakelock when it is created and releases it as soon as any of the proxied object’s
methods (in our case, a listener’s callback) is first called.

78

6 Related Work

As it was described in section 2.1, several different communities brought contributions
to IFP, and many use cases were proposed and often implemented. Most of them,
however, cannot be considered HOEP systems either because they do not include human
operators at all, or because these are not active partecipants in the event processing, and
rather have side or supportive roles such as system management or data analysis. Even
when there are human producers or consumers, most often their work is individually
isolated, that is, the service they are partecipating in brings personal benefits withouth
sharing knowledge between partecipants. HOEP, on the contrary, focuses on collective
contribution, involvement and cooperation, even though at the end the benefit may be
individual. In the following a detailed list of those IFP applications (taken mostly from
the CEP domain) is given, and their convergence with HOEP, when there exists, is
underlined.
Traditional CEP applications come from the finance’s domain. Constant analysis of
stock tickers [4] is required to identify trends, for example a stock which exhibits a jump
in price, or comparisons between different stocks being sold and bought, and so on.
In algorithmic trading [5][3], automated processes are used not only to monitor stocks,
but also to determine when to trade and how to trade: what orders to place, what
stocks to sell, etc. Real-time Profit & Loss [6][3] shows in real-time how the revenue is
transformed into the net income after all the expenses have been accounted for; this is
used to track the impact of intraday movements, judge risks and fluctuating exposures
in making trading decisions.
CEP has also been used to detect in real-time various kinds of frauds. An example is
cellular phone fraud detection [7], where a large set of accounts is scanned to examine
their calling behavior and to issue an alarm when an account appears to have been
defrauded; this can be done eg. by profiling users’ behaviour, or looking for known
fraud patterns. In credit card fraud detection [8], continuous streams of credit card
transactions are observed and inspected to prevent frauds. In the context of disaster
assistance programs, Disaster Assistance Claim [9] aims to identify, in real time before
money is dispensed, the processed claims that are fraudulent or unfairly treated and the
problematic agents and their accomplices engaged in illegal activities. Event processing
may also be used for reasoning about violations of obligations in contracts [10].
There are IFP applications in business processes. Event-driven manufacturing control
systems [13][14] require anomalies to be detected and alerted by looking at the events
describing system’s behaviour. Supply Chain Management [11][3] is aimed at the timely
provisioning of goods by reacting to low stock of parts or supplies, ordering, integrating

79

6 Related Work

the logistics process and tracking the status of shipments, warehouse management, etc;
for example, RFID-based inventory management [12] performs a continuous analysis of
RFID readings to track valid paths of shipments and to capture irregularities.

Many use cases were also proposed for transports. As regards air transport, the use
of CEP has been indicated for managing the more and more crowded air traffic, as a
replacement of legacy outdated airspace management systems [15]. RFID-based baggage-
tracking systems [16][3] improve baggage handling by embedding RFID inlays into the
tags attached to checked luggage, and by using the tags to sort and track the bags;
tracking events are combined with flight and passengers data to specify and update
baggage’s routing plans. In rail transport, freight-cars monitoring [3] is done with a va-
riety of sensors, from temperature sensors which detect overheating of axle bearings that
might lead to derailments, to sensors signaling the position of a given freight car both
in absolute terms as well as relative to its neighbouring trains, and sensors monitoring
the overall condition of the cargo. Many applications have been found also for road
transport, mostly in road traffic monitoring [3]. This includes a wide variety of tasks,
among which: counting of vehicles during specific time windows for the purpose of traffic
planning, access restriction in limited traffic areas, recognition of vehicles wanted by the
police, traffic control and road tolling systems. As an example, Linear Road [17] simu-
lates a toll system for the motor vehicle expressways of a large metropolitan area, which
uses dynamic factors such as traffic congestion measurements and accident proximity,
combined with historical queries, to calculate toll charges. Finally, there are use cases for
pedestrian walkways, for example in foot traffic management [40]. Road traffic and foot
traffic control systems may be considered HOEP systems, see the scenarios proposed in
section 3.1.3 and 3.1.4, respectively.

Emergency prevention and response is another possible domain. An example is fire pro-
tection [18], where fire brigades’ resources must be coordinated for effective and quick
fire averting, rescuing or protecting of entities (human beings, animals, buildings, etc.)
within the fired environment. Intrusion-detection systems [19] analyze in real-time net-
work traffic, accesses and data flows in information systems to promptly detect, react and
possibly anticipate attacks or malicious behaviour to a corporate network. Similarly, but
for physical environments, automed video surveillance [20] automatically extracts and
notifies about predefined atypical events and behaviours in surveillance videos by means
of online video analysis, ontology definition and rule-based engines. In environmental
monitoring [21], sensors are deployed on field to acquire information about the observed
environment, detect anomalies, and predict disasters as soon as possible; for example, an
avalanche warning system [3] combine information about snow conditions and weather
information to detect and predict avalanches. The use of smartphones and other wear-
able or on-body biomedical wireless sensors is proposed for personal health monitoring
systems [22], which augment the domain of telemedicine with scenarios such as remote
monitoring of the health of chronically-ill or elderly patients at home, emergency re-
sponse, palliative care. Personal health monitoring systems, even though involve people
and make extensive use of mobile phones and other wireless devices, do not totally
configure as HOEP systems, because there is no collaboration nor interaction between

80

patients.

Several systems were proposed regarding information dissemination. Selective Dissemi-
nation of Information systems [3] were used in the 50’s and 60’s to allow the distribution
of items recently published in abstract journals to be routed to individuals interested
in their contents. After the advent of the World Wide Web, they were replaced by
modern Digital Libraries [23] which serve for the synchronization of library catalogues
and use alerting systems that inform the user of the availability of new resources meet-
ing the user’s specified keywords and search parameters; alerts can be received through
various channels, including email, RSS feeds, voice mail, and instant messaging. Be-
sides academic world, technologies were devised to monitor, collect, filter, aggregate and
distribute general web information coming both from web blogs [24] and web feeds (eg.
RSS) [24][4].

Some applications were also proposed in CEP with aspects related to the artificial intel-
ligence field. Pragmatic Web [26] extends both the Syntactic Web (describing the form
of the information) and the Semantic Web (describing the meaning of the information)
to provide methods for users to communicate, agree upon and cooperatively modify
ontologies in a practical way. In Pragmatic Web, semi-automated agents form virtual
teams or virtual organizations which interchange and reuse knowledge to derive new
conclusions and decisions according to changed situations [25]. The ambient intelligence
paradigm refers to electronic environments that are sensitive and responsive to the pres-
ence of people, with small embedded devices which work in concert to seamlessly and
pervasively support people in carrying out their everyday life activities. Examples of
branches in ambient intelligence are ambient assisted living [27], which provide supervi-
sion and assistance to elderly people, smart homes (eg. [28]), where household devices,
appliances, entertainment centers, temperature and lighting control units and home se-
curity systems behave intelligently, and smart cities [29], which extend the ambient
intelligence’s concepts to a wider area’s infrastructure, supporting users in a variety of
situations and contexts, from home, to means of transport, public spaces, work spaces
and leisure places.

CEP has also found applications for virtual reality. Cross-reality environments [43] serve
as a bridge across sensor networks and Web-based virtual worlds, improving people’s
interactions with each other and with the physical world; in this context, CEP helps to
turn raw sensor data generated in the real world into meaningful information suitable
for representation in the virtual world. Personal sensing systems [41][42], which infer
the current user’s status (activity, environment and social context) from smartphone’s
and other PAN devices’ readings, can be used to update in real-time the user’s avatar
on a virtual world. Multiplayer online games can benefit from CEP engines, eg. in
efficiently distributing the game state between players and minimizing communication
with the server [44]. Both multiplayer games and personal sensing systems (especially
when combined with social networks, see scenario in section 3.1.10) are examples of
HOEP systems.

Finally, there have been some proposals and implementations on context-aware com-

81

6 Related Work

puting. An example is the use of CEP for museum exhibits [45], where the visitor’s
mobile phone interacts with RFID-tagged objects to create an augmented reality en-
vironment: the environment around a work of art adapts itself and provide additional
contextual information to the visitor, both visual (eg. phone display, media renderers)
and auditive (eg. speakers). Mobile Tourist Information Providers [46][47] supply their
mobile users with feedback about their current location and additional information about
related tourist sights, considering time, previous feedbacks, user’s interests and travel
history. Position-based social networks extend traditional social networks with services
related to user’s position; there are dozens of them available on the market (along with
the corresponding mobile application for the main platforms such as Android, iPhone,
BlackBerry, Windows Phone 7), but what they all have in common is the possibility
for the user to check-in to a physical place and share his location with friends, possi-
bly supplied with a textual comment, a photo or an audio/video clip, and see whether
there are nearby friends. The simplest example in this category is Twitter and its new
Location feature1, which allows a user posting a new tweet to include his position; the
next is Google Latitude2, which maps user’s location on Google Maps and Google Earth,
stores the history and make it available through a dashboard (showing trips, frequently
visited locations and distance traveled), shares location with Google Talk chat contacts
in the status message or publicly on a blog or web site. Facebook Places3 adds the pos-
sibility to tag other friends on check-ins, to be alerted when a friend has a check-in on
a near location, and includes some commercial features as special offers on near shops,
discounts, and so on. Another more evoluted example in this category is Foursquare4,
which augments user’s involvement with elements of competitiveness: users earn badges
by checking in at certain locations, with certain tags, for the check-in frequency, or
for other patterns such as time of check-in and so on; they are granted a mayorship
when they check-in to a venue more than anyone else in the recent past; finally, they
gain superuser status if they are selected for their helpful contributions to the commu-
nity. Note that also SOEP-Client can have similar features (eg. with PositionModule
and other future modules), but what distinguishes it from cited social networks is the
use of a general-purpose rule engine (T-Rex) where events are processed according to
ad-hoc rules, rather than ad-hoc engines or no processing at all (resulting in plain pub-
lish/subscribe). As each event has its own precise syntax (event id, attributes’ name
and type, etc.) and semantics (what the event and its attributes represent and how
they should be used), each module in SOEP-Client have to guide the user to properly
instantiate and manipulate the event it is associated with.

The theory of Human Interaction Management [33] shares some aspects with HOEP.
Anyway, while HIM considers human-driven processes which require innovation and cre-
ativity (eg. research, product design, marketing, auditing, merging companies, treating
a patient, etc. [34]) and as such cannot be automated with traditional BPM techniques,

1See http://support.twitter.com/articles/78525-about-the-tweet-location-feature
2See www.google.com/latitude
3See www.facebook.com/places/
4See https://foursquare.com/

82

http://support.twitter.com/articles/78525-about-the-tweet-location-feature
www.google.com/latitude
www.facebook.com/places/
https://foursquare.com/

HOEP focuses on automated systems whose front-end and back-end are made by people.

83

6 Related Work

84

7 Future Work

Many improvements in SOEP are possible. So far, SOEP-Client includes two demo event
modules (PositionModule and GatheringModule), but many other modules could be
added, for example to implement the scenarios proposed in section 3.2. Moreover, to
boost its spread among the highest possible number of students, versions of SOEP-Client
for the other main mobile platforms (iPhone, BlackBerry, Windows Phone 7) could be
released.
As regards SOEP-Server, the reference implementation supplied with this work provides
the set of features needed to run and test the system, but it could be extended with
other useful facilities. For example, a remote administration tool used by rule managers
to connect to the server and deploy rules1 could be implemented. Moreover, the server
has been tested with TESLA rules hardwired in source code, but a parser to parse
them from config files stored on filesystem could be added, possibly supplied with a hot-
deploy feature to automatically detect the addition/removal of those files and update
the corresponding rules at runtime.
SOEP could also deal with uncertainty, both at event level and at rule level. About the
former, there are situations where event processing may become inexact or inappropriate:
there could be uncertainty whether an event actually occurred, or inexact event content
(wrong attribute’s value, wrong timestamp, etc.), or inexact matching between the event
and the situations it tries to describe. This may be due to unreliable, imprecise or
even malicious sources, network unreliability which results in events’ drop or wrong
events’ processing order2, rough data sampling, and so on. As regards uncertainty
in rules, the system could be able to distinguish between deterministic and probabilistic
rules: probabilistic rules allow to associate a degree of uncertainty to the complex events
created, even in presence of precise input events. This would be highly beneficial to the
expressiveness of the language adopted by the application (and consequently by its
users).
Another improvement in SOEP would be the introduction of distributed event processing,
both on server side and on client side. The server could be distributed on an overlay
network made by many processing nodes; rules would be decomposed and each part
assigned to different nodes. On the other hand, also clients could cooperate in complex
event detection, according to their computational capability: this could probably be
applied only to a limited subset of operations (eg. content-based filtering and partial

1Note that the server is already capable of receiving new rules in form of RulePackets
2Note that uncertainty due to network unreliability in SOEP is strongly mitigated by the adoption of
the TCP protocol and an heartbeat mechanism

85

7 Future Work

aggregation of simple events), but the system would get high benefits both in bandwith,
as communication with the server would be reduced, and in server’s processing burden,
as a part of the computation would be offloaded to clients.
SOEP will be used as the starting codebase for a part of GreenMove3, a project developed
within the Dipartimento di Elettronica e Informazione (DEI) of Politecnico di Milano,
sponsored by Regione Lombardia. The project aims to create an electric vehicle shar-
ing service, where electric cars or motorbikes can be booked online, picked up at the
specified time and zone, and unlocked with driver’s Android smartphone. Every vehi-
cle provides several services to its passengers, and is supplied with an electronic box
through which it sends events to the server. Once the vehicle is unlocked, the driver
interfaces with it either with its Android smartphone (motorbike) or with an on-board
Android tablet (car). The server runs a CEP engine (T-Rex) through which it carries
on the vehicles’ sharing and monitoring, and related services such as aided navigation
and traffic monitoring.

3Unfortunately, as the project has just started there is no documentation publicly available yet

86

8 Conclusion

This work introduced Human-Oriented Event Processing (HOEP) as a particular type
of CEP in which human operators are active partecipants in the event processing, and
whose focus is on human interaction, collaboration and involvement. The Students-
Oriented Event Platform (SOEP), an example of HOEP system designed and imple-
mented for students roaming in a university campus, was presented and discussed. The
server side of SOEP runs a CEP engine on which event rules are deployed to dynam-
ically generate new complex events from those received; a connection with each client
is kept, and generated events are routed to subscribers. The client part is an Android
mobile application installed on student’s phone which can publish, receive and subscribe
to events; the events the application can handle are specified as a set of modules: each
module knows the semantics of its assigned event and assists the user in creating new
publications and subscriptions. To confirm the significance of HOEP, a wide variety of
scenarios in HOEP’s domain were given, both generic and specific to SOEP.
Although it traces its roots to the old-aged world of events, CEP is a relatively young
research branch with a promising way in front of it and many new challenges to be faced:
it is our opinion that the approach to human beings and their interactions is one of the
keys to interpret such evolution.

87

8 Conclusion

88

Bibliography

[1] O. Etzion, P. Niblett. Event Processing in Action. Manning Publications. Aug-2010.
[2] G. Cugola, A. Margara. Processing flows of information: From data stream to com-

plex event processing. ACM Computing Surveys 2011.
[3] A. Hinze, K. Sachs, A. Buchmann. Event-Based Applications and Enabling Tech-

nologies. DEBS 2009.
[4] A. Demers, J. Gehrke, M. Hong, M. Riedewald, W. White. Towards expressive

publish/subscribe systems. EDBT 2006.
[5] J. Bates. Algorithmic Trading. http://drdobbs.com/high-performance-

computing/197801615 . 09-Mar-2007. Retrieved 14-Jun-2011.
[6] B. Giffords, M. Palmer. StreamBase White Paper. Real-Time Profit &

Loss. http://complexevents.com/wp-content/uploads/2008/09/streambase_
whitepaper_real_time_pnl.pdf . Sep-2008. Retrieved 14-Jun-2011.

[7] T. Fawcett, F. Provost. Activity Monitoring: Noticing interesting changes in behav-
ior. KDD 1999.

[8] N. P. Schultz-Møller, M. Migliavacca, P. Pietzuch. Distributed complex event pro-
cessing with query rewriting. DEBS 2009.

[9] Kun-Lung Wu, B. Gedik, P. S. Yu, K. W. Hildrum, C. C. Aggarwal, E. Bouillet,
Wei Fan, D. A. George, Xiaohui Gu. Challenges and Experience in Prototyping a
Multi-Modal Stream Analytic and Monitoring Application on System S. VLDB 2007.

[10] G. Governatori, Z. Milosevic. Dealing with contract violations: formalism and do-
main specific language. IEEE 2005.

[11] P. Guerrero, K. Sachs, M. Cilia, C. Bornh, A. Buchmann. Pushing Business Data
Processing Towards the Periphery. IEEE 2007.

[12] F. Wang, P. Liu. Temporal Management of RFID Data. VLDB 2005.
[13] E. Y.-T. Lin, Chen Zhou. Modeling and analysis of message passing in distributed

manufacturing systems. IEEE SMC 1999.
[14] J. Park, S. A. Reveliotis, D. A. Bodner, L. F. Mcginnis. A distributed, event-driven

control architecture for flexibly automated manufacturing systems. IJCIM 2002.
[15] David Luckham. The Future Event Driven World: Global Air Traffic Manage-

ment. http://complexevents.com/wp-content/uploads/2007/10/visions-of-
the-future-atc.doc . 18-Nov-2007. Retrieved 24-May-2011.

89

http://drdobbs.com/high-performance-computing/197801615
http://drdobbs.com/high-performance-computing/197801615
http://complexevents.com/wp-content/uploads/2008/09/streambase_whitepaper_real_time_pnl.pdf
http://complexevents.com/wp-content/uploads/2008/09/streambase_whitepaper_real_time_pnl.pdf
http://complexevents.com/wp-content/uploads/2007/10/visions-of-the-future-atc.doc
http://complexevents.com/wp-content/uploads/2007/10/visions-of-the-future-atc.doc

Bibliography

[16] M. C. O’Connor. San Francisco Airport OKs RFID Bag-Tracking Pilot. http://
www.rfidjournal.com/article/view/2629 . 31-Aug-2006. Retrieved 15-Jun-2011.

[17] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stone-
braker. Linear Road: A Stream Data Management Benchmark. VLDB 2004.

[18] J. Pottebaum, A. Artikis, R. Marterer, G. Paliouras, R. Koch. Event Definition for
the Application of Event Processing to Intelligent Resource Management. ISCRAM
2011.

[19] H. Debar, A. Wespi. Aggregation and Correlation of Intrusion-Detection Alerts. In
Recent Advances in Intrusion Detection, LNCS 2212. 2001.

[20] T. Geerinck, V. Enescu, I. Ravyse, H. Sahli. Rule-based Video Interpretation Frame-
work: Application to Automated Surveillance. ICIG 2009.

[21] K. Broda, K. Clark, R. Miller, A. Russo. SAGE: A Logical Agent-Based Environ-
ment Monitoring and Control System. AmI 2009.

[22] A. Mouttham, L. Peyton, B. Eze, A. El Saddik. Event-Driven Data Integration for
Personal Health Monitoring. JETWI 2009.

[23] G. Buchanan, A. Hinze. A Generic Alerting Service for Digital Libraries. JCDL
2005.

[24] I. Rose, R. Murty, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Welsh. Cobra:
Content-based Filtering and Aggregation of Blogs and RSS Feeds. NSDI 2007.

[25] A. Paschke, H. Boley, A. Kozlenkov, B. Craig. Rule Responder: RuleML-Based
Agents for Distributed Collaboration on the Pragmatic Web. 2007.

[26] M. Schoop, A. de Moor, J. L.G. Dietz. The Pragmatic Web: A Manifesto. ACM
2006.

[27] H. Storf, T. Kleinberger, M. Becker, M. Schmitt, F. Bomarius, S. Prueckner. An
Event-Driven Approach to Activity Recognition in Ambient Assisted Living. AmI
2009.

[28] Georgia Tech. Aware Home. http://awarehome.imtc.gatech.edu/ . Visited 15-
Jun-2011.

[29] A. Buchmann. Infrastructure for Smart Cities: The Killer Application for Event-
based Computing. Dagstuhl Seminar Proceedings 2007.

[30] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. Models and issues in data
stream systems. PODS 2002.

[31] D. McCarthy, U. Dayal. The architecture of an active database management system.
SIGMOD 1989.

[32] R. von Ammon, T. Ertlmaier, O. Etzion, A. Kofman, T. Paulus. Integrating Com-
plex Events for Collaborating and Dynamically Changing Business Processes. 2009.

90

http://www.rfidjournal.com/article/view/2629
http://www.rfidjournal.com/article/view/2629
http://awarehome.imtc.gatech.edu/

Bibliography

[33] K. Harrison-Broninski. Human Interaction: The Missing Link in BPM. Part
I and II. http://www.ebizq.net/topics/biz_opt/features/5779.html . 2005.
Retrieved 25-May-2011.

[34] K. Harrison-Broninski. A Theoretical Basis for the Management of Human-
Driven Processes. http://harrison-broninski.com/keith/him/resources/
white_papers/A_Theoretical_Basis_for_the_Management_of_Human-
Driven_Processes.pdf . 2005. Retrieved 23-May-2011.

[35] S. Wasserkrug, A. Gal, O. Etzion, Y. Turchin. Complex event processing over un-
certain data. DEBS 2008.

[36] Jianbing Ma, Weiru Liu, Paul Miller. Event Modelling and Reasoning with Uncer-
tain Information for Distributed Sensor Networks. SUM 2010.

[37] G. Cugola, A. Margara. TESLA: A Formally Defined Event Specification Language.
DEBS 2010.

[38] G. Cugola, A. Margara. Complex Event Processing with T-REX. Submitted to JCC.
16-Nov-2010.

[39] G. Cugola, A. Margara. Low Latency Complex Event Processing on Parallel Hard-
ware. Submitted to JPDC. 24-Mar-2011.

[40] Hans Gilde. Event Processing example: Foot Traffic Management. http:
//hansgilde.wordpress.com/2010/01/09/event-processing-example-foot-
traffic-management . 9-Jan-2010. Retrieved 23-May-2011.

[41] M. Musolesi, E. Miluzzo, N. D. Lane, S. B. Eisenman, T. Choudhury, A. T. Camp-
bell. The Second Life of a Sensor - Integrating Real-world Experience in Virtual
Worlds using Mobile Phones. EmNets 2008.

[42] E. Miluzzo, N. D. Lane, S. B. Eisenman, A. T. Campbell. CenceMe - Injecting
Sensing Presence into Social Networking Applications. EuroSSC 2007.

[43] N. Dindar, Ç. Balkesen, K. Kromwijk, N. Tatbul. Event Processing Support for
Cross-Reality Environments. IEEE Pervasive Computing. 2009.

[44] G. G. Koch, M. Adnan Tariq, B. Koldehofe, K. Rothermel. Event processing for
large-scale distributed games. DEBS 2010.

[45] W. Rudametkin, L. Touseau, M. Perisanidi, A. Gómez, D. Donsez. NFCMuseum:
an Open-Source Middleware for Augmenting Museum Exhibits. ICPS 2008.

[46] A. Hinze, A. Voisarde. Location- and Time-Based Information Delivery in Tourism.
SSTD 2003.

[47] A. Hinze, G. Buchanan. The Challenge of Creating Cooperating Mobile Services:
Experiences and Lessons Learned. ACSC 2006.

[48] Boost.org. Boost C++ Libraries Documentation. Version 1.45.0. www.boost.org/
doc/libs/1_45_0/libs/libraries.htm . Retrieved 18-May-2011.

91

http://www.ebizq.net/topics/biz_opt/features/5779.html
http://harrison-broninski.com/keith/him/resources/white_papers/A_Theoretical_Basis_for_the_Management_of_Human-Driven_Processes.pdf
http://harrison-broninski.com/keith/him/resources/white_papers/A_Theoretical_Basis_for_the_Management_of_Human-Driven_Processes.pdf
http://harrison-broninski.com/keith/him/resources/white_papers/A_Theoretical_Basis_for_the_Management_of_Human-Driven_Processes.pdf
http://hansgilde.wordpress.com/2010/01/09/event-processing-example-foot-traffic-management
http://hansgilde.wordpress.com/2010/01/09/event-processing-example-foot-traffic-management
http://hansgilde.wordpress.com/2010/01/09/event-processing-example-foot-traffic-management
www.boost.org/doc/libs/1_45_0/libs/libraries.htm
www.boost.org/doc/libs/1_45_0/libs/libraries.htm

Bibliography

[49] Boris Schäling. The Boost C++ Libraries. Version 1.0 / 01-Apr-2010. http://en.
highscore.de/cpp/boost/ . Retrieved 18-May-2011.

[50] Andrey Semashev. Boost.Log Documentation. Revised 03-May-2010. http://
boost-log.sourceforge.net/libs/log/doc/html/index.html . Retrieved 18-
May-2011.

[51] Android Developers. The Developer’s Guide. http://developer.android.com/
guide/index.html . Retrieved 01-Jun-2011.

[52] Google Projects for Android. Maps External Library. http://code.google.com/
android/add-ons/google-apis/maps-overview.html . Retrieved 01-Jun-2011.

[53] Yuri Kanivets. The wheel widget for Android. https://code.google.com/p/
android-wheel . Retrieved 01-Jun-2011.

[54] Gabor Paller. Plugins. http://mylifewithandroid.blogspot.com/2010/06/
plugins.html . Retrieved 02-Jun-2011.

[55] Andy Piper. OSGi and Android - or how to train your appserver. www.osgi.org/
wiki/uploads/CommunityEvent2010/OSGiCommunity10-Piper.pdf . Nov-2010.
Retrieved 03-Jun-2011.

[56] David Ehringer. The Dalvik Virtual Machine Architecture. http://
davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
. Mar-2010.

[57] Google. Android 2.3 Compatibility Definition. http://source.android.com/
compatibility/2.3/android-2.3.3-cdd.pdf . 2010.

[58] Ed Burnette. How to use Multi-touch in Android 2: Part 6, Implementing the Pinch
Zoom Gesture. http://www.zdnet.com/blog/burnette/how-to-use-multi-
touch-in-android-2-part-6-implementing-the-pinch-zoom-gesture/1847 .
16-Mar-2010. Retrieved 01-Apr-2011.

[59] Bob Tarr. Dynamic Proxies In Java. http://userpages.umbc.edu/~tarr/dp/
lectures/DynProxies-2pp.pdf . Retrieved 27-Mar-2011.

92

http://en.highscore.de/cpp/boost/
http://en.highscore.de/cpp/boost/
http://boost-log.sourceforge.net/libs/log/doc/html/index.html
http://boost-log.sourceforge.net/libs/log/doc/html/index.html
http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html
http://code.google.com/android/add-ons/google-apis/maps-overview.html
http://code.google.com/android/add-ons/google-apis/maps-overview.html
https://code.google.com/p/android-wheel
https://code.google.com/p/android-wheel
http://mylifewithandroid.blogspot.com/2010/06/plugins.html
http://mylifewithandroid.blogspot.com/2010/06/plugins.html
www.osgi.org/wiki/uploads/CommunityEvent2010/OSGi Community 10 - Piper.pdf
www.osgi.org/wiki/uploads/CommunityEvent2010/OSGi Community 10 - Piper.pdf
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://source.android.com/compatibility/2.3/android-2.3.3-cdd.pdf
http://source.android.com/compatibility/2.3/android-2.3.3-cdd.pdf
http://www.zdnet.com/blog/burnette/how-to-use-multi-touch-in-android-2-part-6-implementing-the-pinch-zoom-gesture/1847
http://www.zdnet.com/blog/burnette/how-to-use-multi-touch-in-android-2-part-6-implementing-the-pinch-zoom-gesture/1847
http://userpages.umbc.edu/~tarr/dp/lectures/DynProxies-2pp.pdf
http://userpages.umbc.edu/~tarr/dp/lectures/DynProxies-2pp.pdf

	Contents
	List of Figures
	List of Tables
	Abstract
	Abstract (Italian)

	1 Introduction
	1.1 SOEP
	1.2 Document Structure

	2 Information Flow Processing
	2.1 IFP Models
	2.1.1 Data Stream Processing
	2.1.2 Complex Event Processing
	2.1.3 Human-Oriented Event Processing
	2.1.3.1 Characteristics
	2.1.3.2 Architecture

	2.2 IFP Technologies in SOEP
	2.2.1 TESLA
	2.2.2 T-Rex
	2.2.2.1 Processing Algorithms

	3 Scenarios
	3.1 Generic Scenarios
	3.1.1 Radio-Taxi
	3.1.2 Door-to-door Salesman
	3.1.3 Road Traffic
	3.1.4 Foot Traffic
	3.1.5 Tournament Organization
	3.1.6 Geocaching
	3.1.7 Laser Tag
	3.1.8 Bingo
	3.1.9 Concert Setlist
	3.1.10 Personal Sensing

	3.2 SOEP's Scenarios
	3.2.1 Crowding in study rooms
	3.2.2 Proposals and agreements
	3.2.3 Gatherings of people
	3.2.3.1 Implementation

	3.2.4 Queues at the student office
	3.2.4.1 Turn Management
	3.2.4.2 Waiting Time

	3.2.5 Surveys and Statistics
	3.2.5.1 Survey Framework
	3.2.5.2 Survey Analysis
	3.2.5.3 Statistics

	3.2.6 Administrative Announcements

	4 SOEP-Server
	4.1 Features
	4.1.1 Scalability

	4.2 Design
	4.2.1 Server's Workflow

	4.3 Implementation
	4.3.1 Boost Libraries

	5 SOEP-Client
	5.1 Android
	5.2 Features
	5.3 Design
	5.3.1 Service
	5.3.2 Activity
	5.3.3 Event Management
	5.3.3.1 Module
	5.3.3.2 Action
	5.3.3.3 Packet

	5.4 Implementation
	5.4.1 Libraries
	5.4.2 Issues
	5.4.2.1 SOEPService's startup method
	5.4.2.2 Components' memory retainment
	5.4.2.3 EventModule's activities
	5.4.2.4 Capabilities discovery
	5.4.2.5 Module retrieval
	5.4.2.6 Pinch-to-zoom gesture
	5.4.2.7 Device's standby

	6 Related Work
	7 Future Work
	8 Conclusion
	Bibliography

