POLITECNICO DI MILANO

FACOLTA DI INGEGNERIA DEI SISTEMI

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA MATEMATICA

Functional Sparse K-Means

Clustering
Relatore Laureando
Prof. Piercesare Secchi Davide Floriello (matr. 734820)

ANNO AccADEMICO 2010-2011

The question, O me! so sad, recurring - What good amid these, O me,
O life?
Answer.
That you are here - that life exists, and identity;

That the powerful play goes on, and you will contribute a verse.

O Me! O Life!, Walt Whitman

Chance and chance alone has a message for us. Everything that occurs
out of necessity, everything expected, repeated day in and day out, is mute.
Only chance can speak to us. We read its message much as gypsies read the
images made by coffee grounds at the bottom of a cup.

The Unbearable Lightness of Being, Milan Kundera

Contents

Introduzione
Introduction

1 Vectorial Sparse Clustering

1.1 Introduction
1.2 Sparse Clustering in Finite Dimension
1.3 The Proposed Sparse Clustering Framework

1.3.1 The Sparse K-Means Method

1.3.2 Selection of Tuning Parameter for Sparse K-Means

1.4 An Example

2 Functional Sparse Clustering

2.1 Imntroduction
2.2 Functional Data
2.2.1 Some properties of Functional Data
2.2.2 Some problems connected with Functional Data
2.3 Sparse Clustering in Infinite Dimensions
2.3.1 The Main Result
2.4 An Analytical Example L.

3 Simulations

3.1 Introduction
3.2 Simulation Studies L.
321 Casel
3.22 Case2
3.3 Simulations With Noise
3.3.1 A First Example
3.3.2 A Noisier Example
333 TheLastCase.
3.4 Final Comments

i

19
19
19
21
22
24
28
35

Contents

4 Analysis of Growth Curves 68
4.1 Introduction 68
4.2 The Growth Dataset 69
4.3 Analysis On Misaligned Data 73
4.4 Alignment 79
4.5 Analysis On Aligned Data 82

5 Analysis of Three-Dimensional Cerebral Vascular Geome-
tries 91
5.1 Introduction 91
5.2 Multidimensional Weighted Functional K-Means 91
5.3 The Dataset of the AneuRisk Project 95
5.4 Analysis of the Geometry of the Carotids 98

A Codes 112

iii

List of Figures

1.1

1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4

3.5
3.6

3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14

Plot of the Gap Statisitc as a function of the number of nonzero

WS, L 17
Plot of the calculated values of w;’s. 18
The analytical case. L. 36
Comparison between w(x) and b(x). 38

Plot of w(z), on the z-axis against b(x), on the y-axis. We
can note the characteristic stair-shaped curve and see the hy-

pothetical line these points should follow. 39
A simulation for Case 1. 43
Comparison between w(x) and b(z) for Case 1.. 44
A simulation for Case 2. 46
Comparison between w(x) solution of the problem and b(z)

for Case 2. L 47
A simulation for the noisy case, 3.3.1. 49
The graph of S(k) using normal K-means as clustering method

(the index starts from 2), example 3.3.1. 50
The graph of S(k) using weighted K-means as clustering method

(the index starts from 2), example 3.3.1. 51
The very irregular shape of w and b, example 3.3.1. 52
Mean functions for the clusters in example 3.3.1. 54
Data for example 3.3.2. 55
The statistics S(k) computed with classical K-means as clus-
tering method (the index starts from 2), example 3.3.2. 56
Mean functions found with normal K-means for the data in
example 3.3.2. o7
The statistics S(k) computed with weighted K-means as clus-
tering method (the index starts from 2), example 3.3.2. 58
Mean functions found with weighted K-means for the data in
example 3.3.2.o 59

iv

List of Figures

3.15
3.16
3.17
3.18
3.19
3.20

3.21

4.1
4.2

4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14
4.15

4.16

The functions w and b, for example 3.3.2. 60
Data for example 3.3.3. L. 61
The statistic S(k) using classical K-means as clustering pro-
cedure in example 3.3.3. 62
The Mean functions found using classical K-means as cluster-
ing procedure in example 3.3.3. 63
The statistic S(k) using weighted K-means as clustering pro-
cedure in example 3.3.3. 64
The Mean functions found using classical K-means as cluster-
ing procedure, example 3.3.3. 65
The graphs of w(x) and b(x), example 3.3.3. 66
The estimated functions describing the developments of the
heights of the 93 children. 69
The estimated velocities of the heights of the 93 children. . . . 71

The estimated accelerations of the heights of the 93 children. . 72
The computed mean functions for the two clusters: the red
dashed curve is the mean for the male heights, while the black
curve is the mean for the female heights. 74
b(x) found for the clusterization on nonregistered data. 75
w(z) solution to the problem (the point at the right end of
the interval is due to possible problems of the algorithm at

the boundaries). L oL 76
In the upper and the lower panel, the mean velocity for boys
and girls respecively are plotted. 76
In the upper and the lower panel, the mean accelerations for
boys and girls respecively are plotted. 7
The functions w(x) and b(z) found for velocities (the upper
panels) and accelerations (the lower panels). 78
The aligned height curves, using linear affine warping functions. 83
The warping functions used for alignment. 84
The aligned curves, but shifted, in order to distinguish better
the presence of different sexes. 85

The computed mean function for the two clusters: the dashed
function is the mean height for the boys, while, the other one
isthat of girls. oo 86
The aligned velocities, but shifted between different sexes. . . 87
The mean functions for the velocities. The dashed curve is
the mean for the girls and note the maximum occurring earlier
than the maximum for the boys. 88
The aligned accelerations, but shifted between different sexes. 89

List of Figures

4.17

5.1
5.2

5.3
5.4
2.5
5.6
2.7
0.8
2.9
5.10
5.11

5.12

5.13

The mean acceleration functions. 90
The three spatial derivatives coordinate functions. 96
The three statistics S(k) computed for each coordinate. Note

that in each case, the optimal number of clustersis 2. 99
The three computed cluster means when the clustering is con-
ducted separately on the three coordinates. 100
The computed functions b and w for the x coordinate, in the
separate analysis.o 101
The computed functions b and w for the y coordinate, in the
separate analysis. 102
The computed functions b and w for the z coordinate, in the
separate analysis. oo 103
The computed mean functions with the joint clusterization. . . 104
The computed function b(s) for the x coordinate. 105
The computed functions b(s) for the y coordinate. 106
The computed functions b(s) for the z coordinate. 107
The computed vector b(s, f, C) for each coordinate with three
groups: {1}, {2,3} and {4,5}. 108
The computed vector b(s, f, C) for each coordinate with groups:

{2,3} and {4,5}. In this way we can search for differences be-
tween those showing different types of aneurysms. 109
The computed vector b(s, f, C) for each coordinate with groups:

{1} and {2,3,4,5}. In this way we can search for differences
between those patients showing an aneurysm and those with-

out any kind of it.o 110

vi

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

5.1

K-means vs Real clustersin Case 1. 42
Weighted K-means vs Real clusters in Case 1. 42
K-means vs Real clusters, Case 2. 48
Weighted K-means vs Real clusters, Case 2. 48
K-means vs Real clusters, 3.3.1. 50
Weighted K-means vs Real clusters, 3.3.1. 52
K-means vs Real clusters, example 3.3.2. 55
Weighted K-means vs Real clusters, example 3.3.2. 56
K-means vs Real clusters, example 3.3.3. 61
Weighted K-means vs Real clusters, example 3.3.3. 62
Comparison between joint K-means and alignment of data

with weighted K-means 104

vii

Abstract

When one faces a clustering problem, typically unsupervised, it is prob-
able that only a limited number of variables causes the differences between
the groups. For this reason new statistical methods, denominated "sparse’,
are born, which, at the same time, select relevant features and classify the
data. The purpose of the following work is the extension, in a functional
environment, of a result, recently appeared in [23], which defines a method
of this type in case of vectorial K-means. If the data are functions, we pro-
pose a method able to select Borel subsets of the domain, where the clusters
distinguish the most and able to classify through a functional K-means. This
is obtained thanks to the constrained maximization of a functional and the
optimization is to be done over the set of possible clusters and over a set
of admissible functions, responsible for feature selection. It is proven the
existence and uniqueness of the solution to this problem and, under a weak
strengthening of the hypotheses, the convergence in L? and [u]—a.e. of the
solution function to an object known from the problem. Then it is derived
an inequality on the committed error and a numerical algorithm is deducted.
Successively, this method is tested firstly on simulated cases and then on real
datasets. The first real case is the dataset Growth, on the growth curves of 93
children; the analises are conducted both on aligned and misaligned curves,
in order to obtain a better clusterization with respect to standard methods
and some aspects already found by evolutionists are observed. Finally, after
a further extension of this method to the case of vector of functions, it is
used to a study, even supervised, of the geometry of the internal carotid of
65 patients.

Introduzione

Lo scopo principale del seguente lavoro ¢ lo sviluppo di un metodo, nel
caso di dati funzionali, di clustering sparso, ossia, un procedimento che riesca
a classificare i dati e, contemporaneamente, selezioni variabili rilevanti che
differenzino i gruppi.

Nel caso di dati di tipo vettoriale, questo problema si colloca nel campo de-
nonimato unsupervised learning e un gran numero di tecniche, ormai note,
sono state sviluppate e studiate per ottenere tale fine. Esempi possono es-
sere trovati in algoritmi come il COSA (Clustering Objects on a Subset of
Attributes, cfr. [3]), in alcune particolari versioni di verosimiglianze penaliz-
zate, come quelle proposte da Pan e Shen (2007) o, nel metodo che vogliamo
estendere al caso funzionale, il K-Means sparso, cfr. [23].

Il problema della classificazione nasce quando ci si trova a dover analizzare
un nuovo dataset, ma nessuna informazione sulla distribuzione di probabilita
che genera i dati, e disponibile. I ricercatori sono interessati a stimare la
distribuzione che da origine alle osservazioni e alcuni utili parametri ad essa
connessi, come la sua media o la sua varianza. Un gran numero di metodi
esiste per trattare questo caso: da stime nonparametriche della densita fino
a metodi locali, ognuno dei quali presenta propri vantaggi e svantaggi. Puo
tuttavia accadere che diversi gruppi di dati siano generati da differenti, an-
che se incognite, distribuzioni; percio, prima di condurre qualsiasi analisi, e
molto importante riconoscere i possibili clusters di osservazioni, in modo da
isolare insiemi di dati generati dalla stessa distribuzione. Accade spesso che
non tutte le variabili caratteristiche dei dati contribuiscano in ugual modo
alla distinzione dei clusters. L’identificazione di quelle variabili responsabili
della diversificazione ¢ un problema di estrema importanza in statistica. Nel
caso di dati vettoriali, tale questione e stata gia affrontata e recentemente
risolta con un metodo basato sul K-Means, da R. Tibshirani e D. Witten,
[23]. Essi hanno proposto un K-Means pesato dove un vettore di elementi,
maggiori o uguali a zero, riesce a identificare variabili rilevanti per la classifi-
cazione, dimostrando, inoltre, che questa ¢ 'unica soluzione di un problema
di ottimizzazione ben posto. Essi trovano una forma analitica del vettore

Introduzione

soluzione, che ¢ data dall’operatore Soft-thresholding e strettamente legata
al metodo di Lasso.

L’Analisi di Dati Funzionali, o FDA, & una recente e nuova area di ricerca in
statistica. In un crescente numero di applicazioni, i dati raccolti sono quan-
tita molto vicine nel tempo o nello spazio ed essi possono naturalmente essere
pensati come curve o funzioni. Esempi si possono trovare in medicina, fisica,
economia, meteorologia e molte altre scienze. La novita dell’approccio con-
siste nel considerare ogni curva come un singolo dato; in questo modo tutte le
caratteristiche funzionali sono interamente mantenute. Sono gia stati messi
a punto algoritmi che svolgono clustering funzionale, ma, in questo lavoro, ci
concentriamo sullo sviluppo di un metodo per clustering funzionale di tipo
sparso. Notevoli sono le motivazioni per una ricerca in questa direzione: se-
lezione di variabili e miglioramenti nella classificazione, o inferenze e criteri
di decisione ne rappresentano solo un numero limitato. Non possiamo, tut-
tavia, pensare di applicare direttamente i risultati trovati in [23]: quelli erano
stati trovati solo per dati vettoriali e percio, quel contesto, € assolutamente
inappropriato per dati funzionali. Di conseguenza, si sente 1’esigenza di un
metodo completamente funzionale. Estenderemo il procedimento proposto
in [23], al caso funzionale.

La tesi e strutturata come segue:

Capitolo 1: questo ¢ un capitolo di riepilogo dei risultati noti in spazi finito-
dimensionali. Discuteremo il metodo proposto in [23] e il conseguente algo-
ritmo. Infine, concluderemo mostrando un’applicazione di questo procedi-
mento ad un esempio, modificato, e gia presentato dagli autori.

Capitolo 2: questa sezione e prevalentemente teorica e introduce i nuovi
risultati della tesi. Cominceremo discutendo le proprieta dei dati funzionali
e i problemi ad essi collegati. In seguito definiremo il contesto rigoroso e
formale del problema, che ¢ proposto come una massimizzazione vincolata
di un opportuno funzionale, sull’insieme dei cluster possibili e sull’insieme
delle funzioni peso ammissibili. Nel Teorema 2.1, dimostreremo 1’esistenza
e 'unicita della soluzione del problema. Inoltre mostreremo che, se rafforzi-
amo leggermente le ipotesi sulle proprieta topologiche dei dati, riusciamo ad
ottenere la convergenza in L? e [u] —a.e. della funzione peso ottima w*(x) ad
una funzione d’interesse, data dal problema. Deriveremo un algoritmo che
svolga quanto asserito dal Teorema 2.1. Alla fine del capitolo, proporremo
un facile esempio di applicazione del metodo appena sviluppato, in cui rius-
ciamo ad effettuare tutti i calcoli in modo analitico.

Capitolo 3: questo capitolo ¢ completamente orientato a mettere alla prova,
con simulazioni, il nuovo algoritmo. Gli esempi proposti sono di complessita
crescente e sono utilizzati per osservare l'aderenza con i risultati teorici di-
mostrati. Per ogni caso i risultati sono confrontati con ’algoritmo classico del

Introduzione

K-Means e viene osservata ’eventuale convergenza delle soluzoni. Il nuovo
algoritmo migliora costantemente le classificazioni, rispetto al K-Means clas-
sico.

Capitolo 4: viene qui illustrata la prima applicazione del nuovo metodo,
a dei dati reali. E lo studio delle curve di crescita di 93 bambini. Questo
famoso dataset e reso disponibile con il pacchetto fda di R. Innanzitutto, anal-
izzeremo le curve non registrate. Noteremo che il novo algoritmo riconosce
perfettamente i bambini e le bambine dalle loro altezze, ma non riesce a
fare altrettanto con le curve della velocita e dell’accelerazione della crescita.
Successivamente, dopo una breve presentazione delle principali tecniche di
registrazione, passeremo ad analizzare le curve registrate. Come mostrato in
un precedente lavoro, cfr. [19], possiamo individuare solo un cluster, percio
ci concentreremo su un’analisi supervisionata per stimare la differenza tra gli
orologi biologici tra maschi e femmine.

Capitolo 5: qui consideriamo una seconda applicazione ad un caso reale; si
tratta dello studio della geometria della carotide interna destra di 65 pazi-
enti, alcuni dei quali sono affetti da aneurisma. Lo scopo e la classificazione
di diverse possibili forme delle carotidi. Prima di cio, tuttavia, dobbiamo
estendere l'algoritmo al caso di vettori di funzioni. Dimostreremo, pertanto,
un Teorema analogo al Teorema 2.1 e descriveremo un algoritmo che esegue
un clustering sparso funzionale congiuntamente su tutti gli elementi dei vet-
tori di funzioni dati. In seguito cercheremo classificazioni ragionevoli per
la geometria delle carotidi e, infine, useremo il nuovo metodo per un’analisi
supervisionata, volta a trovare gruppi di variabile che distinguono gruppi
interessanti di pazienti.

Introduction

The primary aim of this work is the development of a functional sparse
clustering method for functional data, i.e. a clustering method that selects
only relevant features while it clusters the data.

In case of vector data, this particular problem lies within the research
area of unsupervised learning and a large number of well known techniques
have been already developed and studied in order to achieve that purpose.
Examples include methods like COSA (Clustering Objects on a Subset of
Attributes, cfr. [3]), some particular versions of a penalized log-likelihood,
like those presented by Pan and Shen (2007) or the method which we here
want to extend to functional data, namely Sparse K-means, cfr. [23].

The problem of clustering arises when a new dataset is to be analyzed, but
no information about the distribution generating it is available. Researchers
are interested in estimating the distribution generating the data and some
useful parameters related to it, such as its mean or variance. A large number
of methods exist to treat this case: from nonparametric estimation of the
densities to local methods, each of which has advantages and drawbacks. It
might however happen that different groups of data are generated by differ-
ent, albeit unknown, distributions; thus, before conducting any analysis, it
is very important to recognize possible clusters of the observations, aiming
at isolating groups of data generated by the same distribution. It is often
the case that not all the features describing the observations equally con-
tribute to distinguish the clusters. Identifying those features responsible for
the discrimination is a problem of high interest in statistics. In the case of
vectorial data, the problem has been already attacked and recently solved,
with a K-means based method, by R. Tibshirani and D. Witten, [23]. They
have proposed a weighted K-means, where a vector of nonnegative weights
are able to identify important discriminating features proving, moreover, that
this is the unique solution to a well posed optimization problem. They find
an analytical form for the resulting vector of weights, that is given by the
Soft-Thresholding operator and strictly related to the Lasso method.

Functional Data Analysis is a recent new area of research in Statistics. In

Introduction

an ever increasing number of applications, the data collected are quantities
very close in time or space, which can be naturally thought of as curves or
functions. Examples are found in medicine, physics, economics, meteorology
and many others sciences. The innovation consists in considering each curve
as a single datum; in this way the functional features are all maintained.

Methods performing clustering with functional data already exist, but
in this thesis we are concerned with the development of a sparse functional
clustering method. There are many motivations for an interest in this direc-
tion: features selection, more interpretable results and improvements in the
classification, or inference and decision making processes are only a limited
number of them. However, we can not think of directly applying the results
found in [23]: they were developed only for vectors and so that framework
is inappropriate to functional data. Therefore, the need for a completely
functional method arose. We will extend the method proposed in [23], to a
functional setting.

The thesis is organized as follows:
Chapter 1: this is a review chapter about known results in finite dimension
spaces. We will discuss the method proposed in [23] and go through the
explanation of their algorithm. Finally we will end showing an application
of this method to a modified example already discussed by the authors.
Chapter 2: this section is mostly theoretic and introduces the new results
advanced in the thesis. We will begin by discussing the properties of func-
tional data and the problems related to them. Then we will move on to
define the rigorous setting of the problem, which is proposed as the con-
strained maximization of a functional over the set of possible clusters and
the set of admissible weight functions. In Theorem 2.1, we will prove the
existence and uniqueness of the solution to this problem. Moreover we will
show that if we slightly strengthen the hypotheses on the topological proper-
ties of the data, we are able to obtain the convergence in L? and [u]—a.e. of
the optimal weight function w*(z) to a contingent function of interest. We
will derive a numerical algorithm that performs what Theorem 2.1 claims.
In the end of the chapter, we will go through an easy example of application
of the method, where we can develop all the computations in a completely
analytical way.
Chapter 3: this chapter is completely devoted to test the new algorithm to
some simulated cases. The examples examined are of increasing complexity
and are used to see the adherence to the theorical results. For each case
we make a comparison with classical K-means and eventually observe the
convergence of the solutions. Our algorithm is constantly found to improve
on the classifications.
Chapter 4: The first real data analysis considered in the thesis is here illus-

Introduction

trated. It is the study of the growth curves of 93 children. This quite famous
dataset is made available with the R package fda. Firstly we will analyze the
misaligned curves. We will note that our algorithm perfectly recognizes the
boys and the girls form the height curves, but fails in identifying the clusters
from the velocities and the accelerations. Then, after a brief presentation of
the alignment techniques, we will move to the analysis of the aligned curves.
As showed in a previous work, cfr. [19], we can identify only one cluster, thus
we will concentrate on a supervised analysis in order to estimate the shift in
the biological clocks between boys and girls.

Chapter 5: We here consider a second application to real data; it is the
study of the geometry of the right internal carotid of 65 patients, some of
whom are affected by aneurysms. The purpose is the classification of the
possible different shapes of the carotids. However, before going through this,
we have to extend the algorithm to the case of vector of functions. We will
prove a Theorem analogous to Theorem 2.1 and derive an algorithm that
performs joint sparse functional clustering. Then we will search for some
reasonable classifications of the geometry of the carotids and, finally, we will
use our method to perform a supervised analysis, in order to find the features
that mostly distinguish some interesting groups of patients.

Chapter 1

Vectorial Sparse Clustering

1.1 Introduction

When we face a clustering problem, in general, we can not expect that
the different groups generating the data, distinguish themselves along the
whole set of features. It is far more probable that only a restricted number
of variables cause the data to be different. Some procedures, such as the
COSA method, e.g. [3], some particular versions of a penalized log-likelihood
or weighted clustering methods, like those presented in [10], were designed to
take into account this fact, in order to obtain more precise clusters. We first
begin this chapter by developing a particular method, among those just cited,
in the finite dimensional case. We will derive the formal problem and find the
solution, which is explicit, in this context, and given by the Soft-thresholding
operator. Moreover we can obtain a simple algorithm, that could be imple-
mented in specific softwares, so to find the solution when the data and the
number of features are so many that we can not solve analitically the prob-
lem. The use of this particular algorithm leads to the problem of how to
choose the right values of a parameter that is a specifical constraint on the
¢y norm of the weight vector. The solution is found thanks to a particular
use of the Gap Statistics through a permutation procedure.

1.2 Sparse Clustering in Finite Dimension

Let us first take a brief overview of some possible ways proposed for sparse
clustering. These techniques are usually adopted when data are in high di-
mensional feature spaces.

Let X denote an n x p matrix, where n is the number of observations and p is

1. Vectorial Sparse Clustering

the number of features and each z;; € R. One way to reduce the dimension-
ality of the data before clustering is by performing a matrix decomposition.
The data matrix X can be approximated by X =~ AB, where A is a n X ¢ ma-
trix and B a ¢ X p matrix, with ¢ < p. Then, one can cluster the observation
using A, rather than X. Several authors, for instance Ghosh and Chinnaiyan
(2002) and Liu et al. (2003), proposed this way to solve the problem and the
A matrix of reduced dimensionality they used was obtained by performing a
Principal Component Analysis; then the rows of A can be clustered. Simi-
larly, someone else, see Tamayo et al. (2007), suggetsed a decomposition of
X using the nonnegative matrix factorization and then, again, cluster the
rows of A. These proposals, however, present a number of drawbacks. First
of all, the resulting clustering is not sparse in the features, since each of the
columns of A is, in general, a function of the whole set of features. Moreover,
there is no guarantee that we are able to separate the true groups, because
the principal components with largest eigenvalues do not necessarily provide
the best separation between subgroups.

Sparse clustering, instead, has two great advantages:

I) if it is true that only a small number of variables separate the clusters,
then it might result a more accurate identification of the groups if
compared with standard clustering;

IT) it helps the interpretation of the procedure that leads to the formation
of different groups and so gives a simpler way to recognize them in
future applications.

Clustering procedures require the concept of dissimilarity measures between
pairs of observations.

Definition 1.1. A function d : RP x RP — R* is a dissimilarity measure if
it satisfies the two following properties:

1) d(z,y) = d(y, z), Vo, y € R?;
2) d(z, x) = 0,Va € RP.

From this definition we see that any dissimilarity measure looks like a
distance. Indeed every distance is a particular case of a dissimilarity measure:
a distance is a dissimilarity that satisfies, also, the triangular inequality.
We assume, moreover, that, the particular chosen dissimilarity measure is
additive in the feature. For instance, take d to be the squared Fuclidean
distance, so to have:

p
d(x,y) = Z diit
=1

9

1. Vectorial Sparse Clustering

where
dipj = (Xij — Xi’j)Q-

The model based clustering framework has been studied extensively in re-
cent years and many of the proposals for feature selection and dimension-
ality reduction for clustering fall in this setting; for example the articles of
McLachlan and Peel (2000) and Fraley and Raftery (2002) are considerable
in this field. The basic idea is as follows: one can model the rows of X as
indipendent multivariate observations drawn from a mixture model with K

components; usually a mixture of Gaussians is used. That is, given the data,
the log-likelihood is

Zlog Zﬂ'kfk (X5 e, B | (1.1)

=1 =

where f; is a Gaussian density parametrlzed by its mean pu; and covariance
matrix Xy, 7, are the a priori probabilities and x; € RP is the vector of
the jth row of X. The EM algorithm can be used to fit this model. When
p = n or p > n, however, problems arise, because the p x p covariance
matrix ¥; can not be estimated from only n observations. If we suppose
that that the observations lie in a low-dimensional latent factor space, we
can overcome the problem, but we end only with a dimensionality reduction
and not with sparsity. It turns out that model based clusterings lends itself
easily to feature selection. Rather than seeking i and ¥ that maximizes the
previous log-likelihood, one can, instead, maximize the log-likelihood subject
to a penalty that is chosen to yield sparsity in the features. For example, if
we assume that the features of X are centered to have mean zero, then, the
proposed penalized log-likelihood is

K »p

Zlog Zﬁkfk X s k) | — A DY gl (1.2)

i=1 k=1j=1
where »; = ... = Y is taken to be a diagonal matrix. That is, a lasso
penalty is applied to the elements of px. When the nonnegative tuning
parameter A is large, then some of the elements of ;. will be exactly equal
to zero. If, for some variable j, ux; = 0, VkE = 1,..., K, then the resulting
clustering will not involve feature j, Hence this yields a clustering that is
sparse in the features.
Friedman and Meulman (2004) proposed Clustering Objects on Subsets of
Attributes (COSA). Let C) denote the indices of the observations in the kth
of K clusters. Then, the COSA criterion is

min Zak Z Z wid; i ; + Aw;logw;)

(€. ’CK)W 1,1'eC j=1

10

1. Vectorial Sparse Clustering

p
subject to > wy =1, w; >0, Vj. (1.3)
j=1

Actually, the COSA criterion allows different feature weights within each
cluster. Here aj is some function of the number of elements in cluster k,
w € RP? is a vector of feature weights and A > 0 is a tuning parameter. It can
be observed that this criterion is related to a weighted version of K-means
clustering. Unfortunately, this proposal, does not truly result in a sparse
clustering, since all variables have nonzero weights for A > 0. An extension of
(1.3) is proposed, by the same authors in [3], in order to generalize the method
to other types of clustering, such as hierarchical clustering. The proposed
algorithm is quite complex and involves multiple tuning parameters, that
should be avoided, as they require to be determined in an appropriate way.

1.3 The Proposed Sparse Clustering Frame-
work

The method we want to extend is the one proposed by D. Witten and R.
Tibshirani in [23], so we first analyze it more deeply.
We want to cluster the observations and we suspect that the true underlying
groups differ only with respect to a restricted group of the variables. The
method proposed allows to choose, adaptively, a subset of features to cluster
the observations. Let x; € R™ denote the vector of the jth feature. Many
clustering methods can be restated as an optimization problem of the form:

p

mafoj(xj, 0), (1.4)

eeD =

where f;(x;, ©) is some appropriate function that involves only thejth feature
of the data and © is a parameter restricted to lie in a set D. Two examples
of such methods are K-means and hierarchical clustering. In K-means f;
turns out to be the between cluster sum of squares for feature j and O is a
partition of the observation into K disjoint groups. The K-means method is
precisely what we are going to implement. In [23], the following definition is
given.

Definition 1.2. We define sparse clustering the solution to the following
problem:

P
%%%;wjfj(mjy@)
subject to ||[wl| < 1, ||w]|a < s, w; >0V, (1.5)

11

1. Vectorial Sparse Clustering

where w; is a weight corresponding to the jth feature and s is a tuning pa-
rameter, with 1 < s < /p.

Let us make a few comments on this problem.

If we take w; = wy = ... = w, in (1.5), then we obtain a simple, non-
weighted clustering criterion. The constraint on the ¢! norm of the vector w
is truly what forces the sparsity on the components of w for small values of
the tuning parameter s, meaning that s is a kind of measure of the number of
features involved in the clustering. The ¢? penalty is also important, since,
without it, at most one element of w would be nonzero in general. The
presence of those weights w; helps interpretating the results: the value of
each w; can be thought of as the contribution of the jth feature to the final
sparse clustering; therefore a large value of some w; means that those features
contribute greatly to the diversification, whereas w; = 0 simply states that
the jth feature is not involved in the clustering. Finally, we can observe
that, for (1.5) to result in a nontrivial sparse clustering, it is necessary that
[i(x;,0) > 0 for some or all j. Indeed, if we have f;(x;,0) < 0,Vy, then
the solution to the problem is simply w; = 0,Vj. If f;(x;,0) > 0, then the
nonnegativity constraint on that feature has no effect.

The solution is found using an iterative algorithm: holding w fixed, (1.5)
is optimized with respect to © and, holding © fixed, it is optimized with
respect to w. This procedure assures us a monotonicity on the value of the
objective function. Note, finally, that we can rewrite the previous problem
as a linear problem:

max w!a

subject to [wll% < 1, [wlln < s, w; > 0Vj, (L6)

where a; = f;j(x;,0). In this case, we have an explicit solution, found, by
the two authors in [23].

Proposition 1.1.
The solution to the convexr problem (1.6) is
S A
w = (a'+>) 7
1S(as, A)le
where x denotes the positive part of x and where A = 0 if that results in

|lw||e < 's; otherwise, A > 0 is chosen to yield |w||p = s. Here S is the Soft-
thresholding operator, defined as S(x,c) = sign(x)(|z| —c)4 and 1 < s < \/p.

Behind this result, there is the fundamental and technical assumption
that there is a unique maximal element of a. The proof of the propostion

12

1. Vectorial Sparse Clustering

follows from the Karush-Kuhn-Tucker’s Theorem.

Now we are going to show that K-means clustering optimizes criteria of the
form (1.4). Then we propose a sparse version of K-means clustering using
(1.5). The resulting criterion is easily optimized and involve a single tuning
parameter s that controls the number of features used in the clustering.

1.3.1 The Sparse K-Means Method

K-means clustering minimizes the Within Cluster Sum of Squares (WCSS).
That is, it seeks to partition the n observation into K sets, or clusters, such
that the WCSS

AN
S o X Sy (1.7)
1,i'eCy j=1

is minimal, where n; is the number of observations in cluster k£ and C}
contains the indices of the observations in cluster k. In general d;; ; can
denote any dissimilarity measure between observations ¢ and i’ along feature
J. In order to have a K-means procedure, it is required to take d;;; =
(xij — xi7;)%; for this reason we refer to (1.7) as the within cluster sum of
squares. Note that if we define the Between Clusters Sum of Squares (BCSS)
as

S(hESan-Tan San). 09
j=1 i=14¢=1 1, €CY,

then minimizing the WCSS is equivalent to maximizing the BCSS.

We could try to develop a method for sparse K-means clustering by optimiz-

ing a weighted WCSS, subject to constraints on the weights, that is:

K
L, S (g 8
(1.0y K)7 nkZZECk

subject to |[w]7 < 1, |[w]la <5, w; >0 Vj. (1.9)

Here, s, is a tuning parameter. Since, however, each element of the weighted
sum is negative, the maximum occurs when all are weights are set to zero,
regardless of the value of s. Thus, we have to maximize a weighted BCSS,
subject to constraints on the weights. Therefore, the sparse K-means clus-
tering criterion is:

max zwj(%zz " zzn Zdw)

(€1,--.Ck),] 1 i=14'=1 1,0/ €Cly,

subject to |[w]7 < 1, |[w]la <5, w; >0 Vj. (1.10)

13

1. Vectorial Sparse Clustering

The weights will be sparse for an appropriate choice of the tuning parameter
s, which has to satisfy 1 < s < ,/p. Note that if w; = ... = w,, then (1.10)
simply reduces to the standard K-means criterion. Moreover, we observe that
(1.8) and (1. 10) are special cases of (1.4) and (1.5), where © = (C},...,Ck),
fi(x;,0) = S i — S, i Yivec, diirj, and D denotes the
set of all pos&ble partitions of the observations into K clusters.

The criterion (1.10) assigns a weight to each feature, based on the increase
in BCSS that the feature can contribute. First, consider the criterion with
the weights wy,...,w, fixed. It reduces to a clustering problem, using a
weighted dissimilarity measure. Second, consider the criterion with the clus-
ters C,...,Ck fixed. Then a weight will be assigned to each feature based
on the BCSS of that feature; features with larger BCSS will be given larger
weights. This argument suggests how to develop an iterative algorithm for
maximizing (1.10).

Algorithm for sparse K-means clustering

1. Initialize w as wy; = ... = w, = —=.
1) \/;5

2. Iterate until convergence:

(a) Holding w fixed, optimize (1.10) with respect to C1, ..., Ck. That
is,
1r7m,1r61YKkZ1 > Zw] il (1.11)
1,1/ €Cl, j=1
by applying the standard K-means algorithm to the n x n dissim-
ilarity matrix with (7,4) element >, w;d; ;.

(b) Holding C1,...,Ck fixed, optimize (1.10) with respect to w by

applying the Proposition (1.1): w ﬁ, where
)l
(> i - Z > dw,]) (1.12)
i=14'=1 1,1/ €C,

and A = 0 if that results in |w||x < s; otherwise, A > 0 is chosen
so that ||[wl||a = s.

3. The clusters are given by Cf,...,Ck and the feature weights corre-
sponding to this clustering are given by wy, ..., w,.

When d is squared Euclidean distance, Step 2(a) can be optimized by per-
forming K-means on the data after scaling each feature j by ,/w;. In this

14

1. Vectorial Sparse Clustering

implementation of sparse K-means, Step 2 is iterated until the stopping cri-

terion . | 1|
-1 wh —wh B
i _f| <10™* (1.13)

j=1 W]
is satisfied, where w" indicates the set of weights obtained at iteration r.
However, the Tibshirani and Witten, in [23], have noticed that, in general,
the algorithm will not converge to the global optimum of the criterion (1.10),
since the criterion is nonconvex and uses in Step 2(a) the algorithm for K-
means clustering, which is not guaranteed to find a global optimum.

Note the similarity between the COSA criterion (1.3) and (1.10): when aj =
ﬁ in (1.3), then both criteria involve minimizing a weighted function of the
WCSS, where the feature weights reflect the importance of each feature in
the clustering. However, (1.3) does not result in weights that are exactly
equal to zero unless A = 0, in which case only one weight is nonzero. The

combination of ¢; and ¢y constraints in (1.10) yields the desired effect.

1.3.2 Selection of Tuning Parameter for Sparse K-Means

We now discuss briefly a method that can be used to choose an adequate

value for the tuning parameter. We have seen that the sparse K-Means
clustering algorithm depends on one tuning parameter s, which is the ¢;
bound on w in (1.10). We assume that the number of clusters K is fixed.
The problem of finding the appropriate number of clusters is a quite complex
one and requires the use of the "Gap Statistics'.
First of all, we note that we can not simply select s to maximize the objective
function in (1.10), since, as s is increased, the objective function is increased
as well. Moreover we have previously observed the role the tuning parameter
assumes: it controls the sparsity in clustering, so, the more we increase s,
the less the number of variables will result equal to zero. Thus we have to
apply a different method: a permutation approach that is closely related to
the Gap Statistics.

Algorithm to select tuning parameter s for sparse K-Means

1. Obtain permuted datasets Xy, ..., Xpg by indipendently permuting the
observation within each feature.

2. For each candidate tuning parameter value s:

() Compute O(s) = 3wy (g iy iy diry — YAy 5o Yivecy diry)»
the objective obtained by performing sparse K-Means with tuning
parameter value s on the data X.

15

1. Vectorial Sparse Clustering

(b) For b=1,2,..., B, compute Oy(s) the objective obtained by per-
forming sparse K-means with tuning parameter value s on the
data Xp.

(c) Calculate Gap(s) = log(O(s)) — % 42, log(Oy(s)).

3. Choose s* corresponding to the largest value of Gap(s). Alternatively,
one can choose s* equal to the smallest value for which Gap(s*) is within
one standard deviation of log(Oy(s)) of the largest value of Gap(s).

Note that even if there could be strong correlations between the features in
the original data X, the features in the permuted datasets Xi,...,Xp are
uncorrelated with each other. The Gap Statistics measures the strength of
the clustering obtained on the real data relative to the clustering obtained
on null data that does not contain subgroups. The optimal tuning parameter
value occurs when this quantity is greatest.

Observation 1.1.

An important question is how to choose the permuted datasets at Step 1. of
the previous algorithm. The permuted datasets are obtained in this way: a
particular column, say 7, is selected; then the elements T, withi=1,...,n,
are permuted. Then other columns are chosen and the procedure is repeated,
independently from the previous permutations. Thus, it is as we are gen-
erating new observations, but with the values of the original dataset. The
new datasets Xy, ..., Xp, are randomly chosen among the (n x p)! possible
permutations of the original set of data.

1.4 An Example

Now, we present an example showing sparse clustering in the vectorial
case. This case is taken from the booklet explaining the usage of the package
sparcl in R, but we have made it more complicated. We have two groups,
both generated from a Multivariate Normal random variable, with p, the
number of variable, equal to 300. The cardinality of the groups is the same:
25 units each. Therefore we have a matrix X, belonging to R%0*3% To make
the groups different between each other, we simply add a random quantity
to the observations of the first group, and only to the first 15 variables. Then
we rescale the matrix obtained and permute it. The random quantity added
is given by 1+ y;, where the y;’s are samples from a normal random variable
Y, withi=1,...,15.

In this case, we know that the tuning parameter s has to satisfy: 1 < s <
v/300. We know exactly what the real parameter s should be; anyway we run

16

1. Vectorial Sparse Clustering

the method implemented with the gap statistics to find its plausible value.
The optimal tuning parameter found is 3.857143, very close to the right value,
with a gap statistic equal to 0.7489, leading to a number of nonzero weights
of 22. In figure 1.1, we have shown the computed Gap Statistics as a function

Gap Statistics

064 066 068 0.70 0.72 0.74

I I I I
20 50 100 200

Non-zero Wj's

Figure 1.1: Plot of the Gap Statisitc as a function of the number of nonzero w;’s.

of the number of nonzero weights. Note that it overestimate the number of
significative variables that differ between the groups. This is a drawback
constantly found in every example we have run. However this overestimation
is not so large: only seven more than variables, than the right ones, are
considered to help distinguishing the groups. Unfortunately, the entity of the
overestimation gets larger and larger as the number of variables increases.
The reasons for this are not very clear. We propose three motivations that
could be responsible for that:

e problems internal to the algorithm used;
e sometimes the way used to weight the variables is not properly correct;

e the fact that, if we augment the number of variables, the probability
that the significative features increase is raising.

17

1. Vectorial Sparse Clustering

After these considerations, we apply the Sparse algorithm and we find the
number of nonzero weight to be 22, ||w||, = 3.857141 and the vector of
clusters is perfectly consistent with the permutation, i.e. the groups are
perfectly recognized. In figure 1.2, we have reported the plot of the computed

Wbound is 3.857

O
(0]
™ o
O-—O
9
(O]
o
N
EO_O%
(o]
o
4
o
e |
o

0 50 100 150 200 250 300

Feature Index

Figure 1.2: Plot of the calculated values of w;’s.

values of the vector w. The components equal to zero are those irrelevant
to the clusterization. The maximal component is found to be the thirteenth.
If we repeat the calculations with the real parameter s, we find exaclty the
same results.

Finally, we have applied the normal K-means algorithm to the same dataset.
It misclassifies three data, but, it still performs overall well.

18

Chapter 2

Functional Sparse Clustering

2.1 Introduction

In this chapter, we will introduce the field of Functional Data Analysis,
arisen only few years ago. We will see a definition of functional data and
functional dataset. Successively, we will give a short overview on the proper-
ties of functional variables, some statistically interesting quantities and their
sample counterparts. We will also discuss some problems related to infinite
dimensional spaces where functional data lie and we have to work with. Be-
sides problems of mathematical nature, we occur in another great difficulty
given by the necessary discretization of functions operated by all calculators.
Then we will pass to extend the result found in finite dimensions to this
functional case. We will see what changes from the vectorial case and what
remains unaltered, the kind of solution we are able to find, the procedure
that brings us to it and its properties. Then, we will show, under regular
hypotheses of functional data, the convergence of the solution to a particular
function of interest. This suggests us how we can write a code for an algo-
rithm able to find the desired solution and, finally, we will try to investigate
the error, eventually committed, by this new algorithm. The last section is
about an easy example with which we can do, analytically, the all compu-
tations needed and verify the properties stated in the previous parts of this
chapter.

2.2 Functional Data

There is actually an increasing number of situations coming from differ-
ent fields of applied sciences, such as biometrics, medicine or econometrics, in
which the collected data are curves. In particular, for a single phenomenon,

19

2. Functional Sparse Clustering

it can be observed a very large set of variables. For instance, we can con-
sider this usual situation where some random variable can be observed at
several different times in the range (tmin, tmaz). An observation can, then,
be expressed by the random family {X(¢;)},_, ;. in other terms, as if we
were sampling from a stochastic process. In modern statistics, we make the
grid becoming finer and finer, meaning that consecutive instants are closer
and closer. One way to take this into account is to consider the data as
observations of the continuous family X = {X(t) : t € (tmin, tmaz)}- To fix
ideas, we give the following, rather general, definition:

Definition 2.1. A random variable X is called functional variable if it takes
values in an infinite dimensional, or functional, space (E,E). An observation
x of X is called a functional data. Here, £ is an appropriate o-algebra on

E.

This definition, as given in [2], is voluntarily unprecise, to take into ac-
count the fact that, with the term functional variable, we are, really, consider-
ing a very large variety of objects: it can be a simple real function, or a surface
or, in general, a n-dimensional (with n > 2, n € N) vector of functions. When
X, respectively y, denotes a random curve, respectively its observation, we
implicitly make the following identification X = {X(t) : t € T'}, respectively
X = {x(t) : t € T}. In this situation, the functional feature comes directly
from the observations. The case when the variable is a curve is associated
with an unidimensional set T" C R. If a functional variable is a random sur-
face, like for instance the grey levels of an image or a vector of curves, then,
in this case, T is a bidimensional set T C R? and therefore we are sampling
from what is called a random field or, moreover, we can consider any other
more complicated infinite dimensional mathematical object.

Having specified what a functional variable is, we now need a precise defini-
tion of a functional dataset.

Definition 2.2. A functional dataset x1,. .., Xn s the observation of n func-
tional variables Xy, ..., X, identically distributed.

This definition covers many situations, the most popular being curves
datasets. We will not investigate the question of how these functional data
have been collected, which is linked with the discretization problems. Ac-
cording to the kind of the data, a preliminary stage consists in presenting
them in a way which is well adapted to functional processing. The problem
if the grid of the measurements is fine enough, is a first important stage and
usually involves some numerical approximation techniques. In other stan-
dard cases, classical smoothing methods can be invoked. There exist some

20

2. Functional Sparse Clustering

other situations which need more sophisticated smoothing techniques, for in-
stance when the repeated measures per subjects are very few (sparse data)
and/or with irregular grid. This is obviously a parallel and complementary
field of research but, from now on, we will assume that we have at hand a
sample of functional data.

2.2.1 Some properties of Functional Data

One of the interesting facts in considering functional data is that we have
a complete representation of a phenomenon. We can take note of peaks or
valleys or even where the function crosses a determined level, which, usually,
corresponds to a significant variable to be observed. Each of these functional
features are associated with a specific value of the argument of the data, i.e.
most features are characterized by a location. Moreover, other informations,
specifically amplitude and width are associated to peaks and valleys. This
means that in errorless circumstances we could ideally use three measure-
ments to a local reconstruction of our functions and this comes from the idea
that in minima or in maxima a function looks like a parabola, which is de-
fined by three coefficients. We call dimensionality the amount of information
needed to estimate a functional feature.
This suggests the notation of the resolving power or resolution of a set of
data. It is inversely related to the width of the narrowest event that can be
estimated to our satisfaction. As an example, we mean by "high resolution
data', that they can tell small events. The resolution leads, in turn, to the
concept of the dimensionality of a function. We can roughly consider it as
simply the sum, across all functional features, of the number of informations
required to define each of the features. Functions are object potentially infi-
nite dmensional. If we have a funcion that has an infinite number of peaks
or valleys in any interval, no matter how small, then we will need an infinite
resolving power. An example of this particularly frustrating case is given by
the Brownian motion.

Let us be given a functional variable X : Q — (E,), where E and £ are,
respectively, a functional space and its Borel o-algebra. Then:

Definition 2.3. The Mean Function is a function p € E, such that:

u(t) = E[X (D).

Definition 2.4. The Autocovariance, Variance and Standard Deviation Func-
tions are, respectively:

21

2. Functional Sparse Clustering

- B(t,s) = cov (X (1), X(s)) = E[(X(t) — p(t))(X(s) — u(s))];
- o%(t) = E[(X(t) — u(t))?);
- o(t) =/o%(1).

These quantities are defined exactly as if we were managing random vari-
ables, but, obviously, we have to consider the dipendence on the ¢ variable.
Now, given the functional dataset x1, ..., X, we list the sample counterparts
of the previous definitions.

Definition 2.5. The Sample Mean Function is given by:

l i Xi(t)7

s —

X)) =22
Definition 2.6. The Sample Autocovariance, Sample Variance and Sample
Standard Deviation Functions are given by:

- S(t,s) = ;55 2 [0a(t) — X)) (als) — X))
- () = A5 T Da() — X))
- s(t) = 1/s%(t).

We will focus our attention on data, rather than on the distribution that
generated them. This leads us to consider an entire function as a single
datum. The opposite choice is typical, instead, to the field of nonparametric
functional statistics, but we will not go through that way.

2.2.2 Some problems connected with Functional Data

When we are dealing with functional data, we immediately face some im-
portant statistical problems. The larger is the space F in which the variables
are taking their values, the sparser are the data. In case of functional data,
we know, by the nature itself of the data, that E is an infinite dimensional
space. So we have to consider essential problems of high (i.e., infinite) di-
mensional data.

As in Statistics one is usually interested in variations between phenomena,
the sparseness notion is strongly linked with the way used to measure close-
ness between data. So, the first concept to be made precise is that of distance.
In the case of finite dimensions this is usually done by choosing a norm in
that space, but this choice is not crucial (except, at least, for some con-
stants), because of the equivalence between norms in R". Even if we take a

22

2. Functional Sparse Clustering

Mahalanobis distance, we encounter no problems, because it is induced by a
positive definite matrix and we can define a suitable scalar product, giving
us a corresponding norm still equivalent to any other in that space. On the
other hand, in an infinite dimensional space it is no more true that every
norm is equivalent to any other and the presence of a Hamel basis compli-
cates the situation. Therefore we have to pay more attention to the selection
of the norm to use and different choices lead to different results or could not
ensure convergence results any more. In some cases (see for example [2]),
a choice of a seminorm, or a semimetric, can be even more appropriate. A
seminorm, respectively a semimetric, is a function satisfying all the proper-
ties of norms, respectively distances, except for the fact that, now, it is no
more true that ||z||g = 0 implies x = 0, respectively d(z,y) =0 = =z = y.
If the data considered are regular functions in L*(E), i.e. provided with all
the derivatives we need, an example of seminorm could be

(/10 =)

that is, the pairwise difference in L?(E) of the m-th derivative of the func-
tions x;(t) and x;(¢). However, there is never a unique answer to the question
of what kind of norm or seminorm should be used: it all depends on the par-
ticular analyses we want to carry out.

The sparsity of the data in high dimensional spaces leads to another problem
well known by statisticians: the curse of dimensionality. 1t is, geometrically,
the disposing, of the data, close to the boundaries of the space when the
number of the observed variables p becomes large. Indeed it is very inter-
esting to ask what happens with the curse of dimensionality if we work with
functional data. If we have n observations lying in R”; one way to illustrate
the curse of dimensionality is to count the number N (p) of units falling into a
subset, of fixed size, of R when p takes successive values (1,2, ...). Following
the same idea, if we have n functional observations lying in a (semi)metric
space (E,d), we will count the number N, of units falling into a subset, of
fixed size, of E. If we take into account the functional feature of the data,
we can compute the quantity Ny defined as:

max d(x; (£),0)

Ng = ;I{ d(x;(1),0) <0.1}(X¢(t))7

where, I is the usual indicator function and d denotes the chosen functional
measure of closeness. It appears, in practice, that the curse of dimensional-
ity does not affect one-dimensional functional data when they show a high
correlation structure, but it continues to be a serious problem in the other

23

2. Functional Sparse Clustering

cases. Obviously, a crucial challenge is pointed out here: the choice of the
measure of closeness d, which is, we remember, strictly related to practical
considerations. Other considerations about these questions could be find, for
instance, in [2].

Another complication, worth to be mentioned and still linked to the curse of
dimensionality, is related to the computational aspect of the kind of data we
have to manage. As we have already noticed, we could need a huge amount
of informations to treat, on a calculator, functional data, or, said in other
terms, a high resolution. This leads to the problem of the choice of the
grid used to handle numerically the data and, obviously, to issues concerning
memory, time and velocity of the software for functional data analysis. Evi-
dently, a finer grid brings to a higher resolution, but it can also result in more
memory and time used for the computation. On the other hand, a coarser
grid means less time and memory spent, but also a loss of informations in
the discretization process of a function.

2.3 Sparse Clustering in Infinite Dimensions

Now we extend the same sparse clustering method in an infinite dimen-
sional space. Precisely, we assume that the data we have to deal with are
functions. The complexity we now face with is greatly augmented with re-
spect to the finite dimension case, because every point in the domain of the
data is to be considered a feature, so we actually have an uncountable infinity
of variables we are looking at.

Let us precise the setting of this new problem. For simplicity, we assume
that the whole set of functions data are defined on the same domain D C R,
which is a Borel set and the image space is one dimensional:

fi:D—=R, VjeJ, (2.1)

where J is a set of indices. To avoid problems concerning how to measure
sets in an infinite dimensional space, we will always suppose that J is a set
of finite cardinality. This means that the number of data is finite, which is so
in every statistical application and we consider the number of observations
to be equal to N € N, with N < oco. Given the data, we have to define an
appropriate dissimilarity measure. The straightforward extension of the finite
dimensional case is to consider the squared L? norm of pairwise differences
of functions, that is:

dm-:d(fi,fj):/D(fi—fj)Qdu, Vij=1,... N, i#4j (22

24

2. Functional Sparse Clustering

which we can rewrite as:

dl»j = d(flaf]) = ||fl - f]'H%Q(D)) VZ,j =1,.. 'aNa i 7é J- (23)

We chose the L? norm because we want to perform a K-means procedure,
which is defined by taking Euclidean distances between points in the space
(see Pollard, [13]) and because it gives particular properties to the space that
other norms would not guarantee. It is not, naturally, the unique choice of
distance we could take, but different alternatives lead to different methods.
From this definition of dissimilarity measure, we have to consider every f;
belonging to L?(D), giving us a Hilbert space structure. We consider the
functions f;’s, which, to be rigorous we should have indexed also with £,
as realizations of some functional random variables X}, : Q — L?*(D) with
k=1,...,K, where K is the number of clusters that we, for the moment,
hold fixed. That is, we are supposing that K functional random variables
are generating the whole set of data and we have to cluster the observations
basing on this information. The X}’s are defined on the same probability
space (2, F,P), where Q is the event space, F is a suitable o-algebra on
and P is an appropriate probability measure on F.

The measure p used in the definition of the dissimilarity measure should be
positive. For instance Lebesgue’s measure £ or any other positive measure
absolutely continuous with respect to £. From now on, we will always assume
i to be the Lebesgue’s measure. We moreover assume that p(D) < oo, so
that, u, could be made a probability measure after a normalization. Thanks
to Holder’s inequality we immediately get, also: f; € L*(D) for every j =
1,...,N.

We could also consider the image space to be R", with n > 1; in this case we
have to consider f; € L*(D;R™) and the dissimilarity measure becomes the
sum, across the components, of the squared L? norm pairwise differences:

d(fi f;) = Z/ du,Vi,jzl,...,N,i;«éj. (2.4)

We focus, for the moment, on the case of a one dimensional image space.
In the functional case we define the Total Within Clusters Sum of Squares
(WCSS) as

> [(=) dn (25)

7,]ECh

K
> mn

where |Cy] is the cardinality of the group C}, and the coefficient 2 is taken to
avoid the sum of two equal terms. As a consequence, the Between Clusters

25

2. Functional Sparse Clustering

Sum of Squares (BCSS) becomes:

i,j=1 h=1 i,j€CH

/D {2;[Z (fi = ;)" dp = > |2éh| > (fi- fj)Q} dp, (2.6)

that is the Total Sum of Squares, represented by the first term, to which we
subtract the total WCSS. We note that this allows us to write the following
expression about the Variance Decomposition:

BCSS =TSS —-WCSS.

If we were to solve the following problem:

L < 2 g3 L 2Vau, (27
s Jo oy 3 U B g X e e 2

we would find the classical functional K-Means solution. We are, instead,
interested in sparse clustering, so we have to make some feature selection
and integrate it into the formulation of the problem. As we are dealing with
an uncountable infinity of variables, we notice that we need a weight function
w(z) to do this work. Precisely:

w:D — R, with w(x) >0, u—a.e. (2.8)

w is defined on the same domain of the functions f;’s and nonnegative almost
everywhere on D; if some point x € D or an entire Borel set B C D is not
involved in the clustering process, or, said in an alternative way, the data
are almost indistinguishable on that point or on that set, then w(z) = 0 or
w(x) = 0 for every x € B. Otherwise, if some points or entire sets have a
role in the clustering, then w will be strictly positive and as much greater as
that point or that set are important in the distinction of the groups. Thus if
we write the functional sparse clustering problem, we obtain:

1 N) K 1)
Z i — fi) dp— i — [du.
w(x),(C?,?.(.,CK) /Dw(x) {2N ig=1 U= F5)"du f; 12C, Z]ngh U= Ja)" da

(2.9)

We must pose some constraints on w. The first requirement is that the weight

function belongs to L*(D) and, specifically that it belongs to the closed ball
of radius 1:

@) 3o, < 1. (2.10)

26

2. Functional Sparse Clustering

If the norm were not limited, the solution to the problem (2.9) would not
exist: indeed, we could always find a function increasing the value of the
functional considered and this process would not end, resulting in a maximum
growing to infinity and in useless clusters: every randomly chosen grouping
is optimum in the same way. The choice of the unit closed ball comes from a
normalization reason: w should increase the value of the functional in (2.9)
only by feature selection or functions reassignements and not by augmenting
its own values, as, evidently, the greater the norm of a function is, the greater
are the values it can assume.

The second constraint is what truly determines the sparsity in the clustering.
Note that, by Holder’s inequality, we readily have:

lw(@) o) = [w(w)di < \Ju(D) @)l < JuD). (211)

As in the finite dimensional case, the constraint on the L' norm of the weight
functions is what truly specifies sparsity in clustering. Indeed, if we define
the set Wy as:

Wy = {u € L*(D) : lu(z)llzypy < s, llu(@)||72py < 1, u(z) >0 p— a.e.},
(2.12)

we see that
W, C W, if 0 <t <s, (2.13)

and if we let
W .= UWS,

where the union is done over all admissible s, specifically, 0 < s < y/u(D),
we obtain

W = {u € L*(D) : u(z) > 0 p— a.e., [Ju(x)]|72p) < 1},

which, in particularly, contains the solution of a nonsparse K-Means. From
this we deduce, again, that, the greater is s, the less the sparsity will result
in the final clustering. The tuning parameter s, therefore, assumes again the
role of "measure of sparsity" of the resulting clustering. This happens because
(and will be even more clear in the construction of the weight function) the
L' norm direclty controls the amplitude and the extension, over the domain,
of w(z).

Having described the context and the path that leads to the specific proper-
ties we ask to the weight function w, we can formally define what we mean
by Sparse Functional Clustering.

27

2. Functional Sparse Clustering

Definition 2.7. We define Sparse Functional K-means Clustering the solu-
tion to the following problem.:

1 5 k 1 ,
_ =) — - f d ’
w(ﬂf),r(rg}?sck) /D w<x) (2N i;—:l (f fj) h;l |20h fiyJ%G:Ch (f f]) :

subject to: Hw(:C)H%Q(D) <1 lw@)||p <5, wx) >0 p—ae (2.14)

Before going deeply in the solution of this problem, let us make some
brief comments.
We note, again, that, if we take w(x) constant over the domain D and

. 1 S
w(z) :mm{u(D)’M(D)}’

we find the solution to the classical K-means. If the measure p considered
is the counting measure, we readily fall in the finite dimensional case dis-
cussed in (1.10). The tuning parameter s is assigned basing on specific outer
informations about the functions or by other computational methods. Note
that, the more we increase s, the greater will be the value of the objective
functional and the less the sparsity will result, leading to a method that con-
founds with the classical K-means. As a result, there may need a little effort
in choosing the right L' constraint. A good weight function solution to the
problem (2.14) should, besides helping the classification, identify subsets, if
any, of the domain where it is useless clustering the functions because they
have the same distribution, at least blurred by some noise.

2.3.1 The Main Result

The complexity of the problem forces us to look for an algorithm to find
the solution, but, first we need to know if the solution of (2.14) exists and it
is unique.

Fortunately, we have the following result.

Theorem 2.1.

Let D C R be a Borel set, such that u(D) < oo, fi € L*(D), f; € L>(D) Vi =
L....,N with || fi||pee(py < M Vi, with M € R. Then there exists a unique
solution to the following problem:

1 N 2 k 1 2

(2.15)

28

2. Functional Sparse Clustering

where k < N is the (fized) number of clusters, C; is the i-th cluster and the
function w(x) must satisfy the following constraints:

lw(@) 720y <1, Nlw@)lzipy < 5, wlz) 20 p—ae.

and s, the tuning parameter, is fized.

Proof.

The proof will proceed in three steps.

1%t step.

Let C,...,C} be a fixed clustering of functions. Let us consider a sequence

of simple functions wy,(z) defined in this way:
z)=a) ala(z), (2.16)

where 4, (x) is the indicator function of the subset A,

1 X1) 1)
o (2N Xy =X > [=5 dﬂ)
(2.17)
and the A; are such that A;NA; =0if ¢ # j, UL, A = D and p(A) = D)
The parameter « is to be chosen to make the resulting function w, (x) satlsfy
the constraints ||w,(z)||z2p) < 1, [[wn(2)||L1p) < 5, wp(x) > 0 p — ace..
Substantially we are building the maximizing sequence in such a way that

it results proportional, on subintervals of the domain, to the local Between
Clusters Sum of Squares (BCSS). Now, the problem we face becomes:

N k
H’ng/Dwn() (21\, ”ZI (fi = £ - hz::l |2(13h fh%@ (fi — fj)Q) dp, (2.18)

with « making the w,(z)’s satisfying the previous constraints. The opti-
mization problem so derived, is simply a constrained linear maximization
problem. Indeed, if we treat the function to be maximized as a function of
a, we see that it is a line with a positive angular coefficient and, for every
fixed n, we have an explicit solution in terms of a:

/Dwn(:v) (2?\7 ”ZI (fi — £ — h§:1 |2éh| N]%;Ch (fi — fj)Q) dp = (2.19)

LI |

n 1 N
o ol —
/Dl; (@ (2N X:: 20,

> o(fi- fﬁ) dp =

fi,f3€CH
(2.20)

29

2. Functional Sparse Clustering

Q37

7,7=1

(QNZ/ — /i) d“_;:lu(ljh ,Zh/f;

It suffices to choose the maximum value such that the constraints are satis-
fied:

o =min{ay,as}, (2.22)
where
S
ap = 1 2\ ’
Zl (ﬁZ” 1fAl (f f]) Zh 1 |20h|2f1 f;€Ch fAl (f f]))
(2.23)
S (di)? pu(Ay)

and we have indicated with d; the term in brackets in (2.17). Let us call
the w,(z) with the optimum «o*, @ (z) and consider, in L?(D), the sequence
{w}(x)},. From the boundedness of the @} (x) in L?, thanks to the Banach-
Alaoglu’s Theorem, we have that we can extract a subsequence, which we
still call *(z) weakly converging to a function w*(z) € L?(D), depending
on the particular clusters taken and still solving the maximum problem, with
|w*(z)||2(py < 1 and, moreover, with w*(z) € L'(D), from the finitedness
of (D). We have to verify that the limit w*(z) still satisfies the constraints.
From the definition of weak convergence:

/ x)dp — / x)dp, Yo € L*(D).

Thanks to the finitedness of (D), we have that the indicator function of the
domain D and, of course, of every Borel set B contained in D, belongs to L?
whence:

/ o (d,u—>/ x)dp, VB € Borel(D),

which assures us the positivity p—a.e. of the limit w*(z) and also:

s 2 0 @lw = [@@~ [w@du = v @)l

At a first sight the limit function w*(x) seems to be depending on the par-
ticular partition {A; }j chosen to decompose the domain D. In reality, it can
be shown that not only a maximizing sequence should be constructed in the
way we proceeded, but it is also independent of the partition of D taken.
This is the reason why we did not add a second index in the definition of the
A;’s to take into account of the particular choice of the partition. Finally,

30

2. Functional Sparse Clustering

for every fixed choice of the clusters, the limit function is unique thanks to
this and the uniqueness of weak limits.

2nd step.

Now let w,(z) be fixed and satisfying the requested constraints. Let us
consider the problem:

L SR 2
(Cl,..%;%ﬁ(wn(x)/fjw"(m) (m”zzjl (fi= fi)" — h; 2C, fhé(]h (fi = 13)7) dp.

This is just a weighted clustering problem and we know how to solve it. In-
deed it is only a maximization over a finite number of possible groupings;
then we choose the clusters giving us the maximum value of that integral.
The best clustering always exists (because of the finite number of possible
cases) and, moreover, we assume that it is unique. This assumption is not
restrictive: it is confirmed in the applications, except, eventually, for patho-
logical cases, or, even if we occurr in a non unique best clustering, we simply
choose one and go on.

37 step.

Finally we have to prove that there exists a solution to the original prob-
lem with wy,(z) and the clusters both varying. To this purpose, we start by

setting wy(r) = —2= everywhere on D and we look for the solution of the

V(D)

problem with that function. It is just a normal (i.e. non weighted) clustering
problem and we obtain the optimal clusters. Given this optimal clustering,
we search for the optimal function and then we proceed in this manner it-
eratively. In the end, we want to show that this algorithm converges to an
optimal solution. Focus on the term in brackets in (2.15), which we now call
h(z,Cy,...,Cy). Considered as a function of the only z, with a little abuse
of notation, it belongs to L*(D). Indeed:

/D (h(2))* dp < /D4M4du — IMu(D) < oo, (2.25)

thanks to our hypotheses on the data functions. We can see that, for how
we constructed the algorithm defined by the above iterative procedure and
the uniqueness assumption made in the second step, we obtain sequences
{w}(x)}, (we have now indicated with w}(z) the weak-limit function w*(z)

found at the n-th application of the algorithm) and {(: ...,C’,’;’n)} of

1,n

optimal clusters, satisfying, at the n-th step:
| wi@h(e, Gy Gidn < [wh@)hle, Cla, ., Cio)dn (2:26)

<... < /w;‘l(x)h(x,Cfn,...,C;n)du.
5 : ,

IN

31

2. Functional Sparse Clustering

Let us suppose, for a moment, that the sequence of the optimal clusters keeps
varying at every stage of the algorithm. Surely, because of the finite number
of possible groupings, there are at least two optimal clusterings repeating.
So, suppose that, at steps n and m, with n < m, we have found the same
clusters and let us compare the corresponding optimal functions: w(x) and
w (x). Then, it must happen that w}(z) = w},(z) for how we defined the
maximizing sequence and the uniqueness of weak limits. For if we suppose,
for example, w}(z) < w}, (z), then w?(x) can not be the optimal function
of the n-th passage, because we can augment the value of the functional
(2.15) by simply put w}, (z) instead of w}(x) and we can do this, because
the clusters are the same. Therefore the algorithm must end after a finite
number of passages and the proof is so concluded. O

Let us make some comments on the Theorem. We consider as given the
parameter s and the number of clusters K. The hypotheses requested about
the functions f;’s are quite natural: firstly they have to belong to the space
L?*(D), because that is our functional setting where we are supposing the
variables AX}’s are taking their values, then we want their L°° norm to be
limited, as the data are thought to be measurements, over a limited period
of time or some other continuum, of a physical process and, therefore, they
have to be equibounded. Otherwise there would be need an infinite quantity
of energy to observe the process and this is obviously impossible.

The constructive way in which we proved the theorem suggests us how to
build an algorithm to find the desired solution with a computer:

1. Maximize with respect to the weight function w holding the clusters
fixed. In particular, the first maximization of this kind is given taking
the clusters coming from an ordinary K-means procedure;

2. Maximize with respect to the K clusters holding fixed the weight func-
tion given by the previous step.

This scheme is repeated until convergence of the function w. Practically
this is achieved by a pre-determined stopping criterion which is given by
normalizing the L' norm of the difference of two weight functions at two
consecutive stages of the algorithm and assessing if this quantity is less than
a given threshold.

Moreover, the optimal weight function is proportional to the local BCSS
on given sets of the domain and, at every step of our procedure, those sets
are splitted again into more subsets, so that the solution detects better the
difference between the clusters.

If we refer back to the vectorial case, however, we immediately see that we

32

2. Functional Sparse Clustering

have an explicit analytical form for the solution vector w. We can, anyway,
say something about the optimal weight function in the functional case if we
slightly strengthen the hypotheses on the data.

Theorem 2.2.

Let f;’s be functions such that: f; € L*(D), f; € L>°(D), with || fi||pep) <
M, Yi=1,...,N. Suppose, moreover, f; € C(D) for everyi =1,...,N.
Define

o) = 5y 2 U= 1 @) - X e

> (i f)), (227

fi,f;€Ch

which is well defined thanks to the hypotheses on the f;’s and b(x) € L*(D).
Then

En:clIAl (z) — b(x) in L*(D). (2.28)
I=1

Note, also, that || Sy la(2) |10y = [6) | 1(o)-

Proof.
We have that, as n — oo,

Xn: cla(x) = b(x) p—ae., (2.29)

because [u] —a.e. x € D is a Lebesgue’s point to the f;’s (actually, every
point, thanks to continuity). Then:

1S ala @) bR <1 ala@F + bP < M) (230)

and 8M*Ip(x) € L*(D). Then (2.28) follows from Lebesgue’s Dominated
Convergence Theorem. m

Thus we have that the solution function, i.e. the optimal weak limit, is
proportional to what we have called b(z) that is the function that follows
exactly the BCSS point by point (it is clear that b(x) depends also on the
particular clusters taken, but we have supressed it in the notation). This
happens because if f, — f weakly in L”, with 1 < p < oo and f, — ¢
p—a.e., then f = g. Naturally, because L?*(D) C L'(D), whenever D has
finite measure, we readily have also that Y./, ¢;l4,(z) — b(z) in L'(D).
The good definition of b(x) comes from the continuity of the f;’s: we need
functions which assume a value in every point of the domain to have such a
fair posedness. If we know that D is a compact subset of R, the hypothesis

33

2. Functional Sparse Clustering

to belong to the spaces L? and L* becomes redundant. The requests of
Theorem 2.2 are quite weak. Indeed, if our dataset is composed by discrete
observations of a physical or some other process and we want to treat them
as functions, we can smooth the data at an arbitrary degree, in order to have
very regular curves.

In the end of this section, we want to look at the error, eventually made, by
this method. We can surely state, given the optimal weigth function w(x)
and the optimal clusters (C1,...,Ck), that:

1 9 1 2
fie O o [Lw@) 30 = fldun < o [wl@) 32 (= £,

7€Cy JECH
(2.31)
for every h,k = 1,..., K, with h # k. Thus, summing the first term of the
inequality over all functions and all clusters, we obtain the quantity

K
D
k=1

which is just the weighted W(C'SS and therefore we can say that problem
(2.15) is equivalent to minimize this quantity, over the set of admissible
functions and the set of possible clusters. Note that, if we had started by
trying to minimize the weighted WC'S'S, we could have found a useless re-
sult: a w(x) constantly equal to 0 and any randomly chosen clusterization
from the set of all possible groups. Moreover, it is easier to find and char-
acterize the solution with the maximization of the BC'SS. So, we want the
weighted W(C'SS to be as small as possible and this suggests us that we can
somehow interpret it as a measure of the departure of the functions from
their hypothetical original groups, or, said in another way: as a measure of
"committed error in the clustering process'. This interpretation allows us to
state an important property about the error.

IQék\ /Dw(:”) > (fi— fi)dp, (2.32)

1,j€CK

Proposition 2.1.
The committed error is monotone nonincreasing.

Proof.
The proposition follows rather immediately thanks to inequalities (2.26) O

Moreover, if we think that at the first stage of the algorithm we have the
solution to classical K-means, we have, also, that the committed error is less
than, or equal to, that committed by the classical method.

On the contrary, we can claim that the optimal value of the functional consid-
ered in our problem is greater than, or equal to, that of the same functional
with w(z) constant, which is the solution to classical K-means, otherwise the

34

2. Functional Sparse Clustering

new method would be useless.

There is a drawback affecting both methods, coming from the fact that they
do not take into account the stochastic nature of the problem, but focus only
on distances between realizations of the functional variables rather than to
the functional variables themselves which stand at the origin of the problem.
For this reason it could be possible the two methods assign data to the wrong
cluster. Not only: suppose there exists a subset N of the domain D such
that the trends of the various clusters are very similar, in other words such
that the distances are almost zero, but there also exists a particular parti-
tion (G1,...,Gk) of the data into groups, which wrongly results in assigning
positive distances between groups in that subset. Then we can write, given
the optimal weight function u for this clusterization:

/D w(z)b(z; Gy, ..., Gg)dp = /N u(z)b(z; Gy, . ..,Gg)dp +

/D\N w(x)b(x; Gy, ..., Gg)du (2.33)

and both terms are positive. Now, given the real clusters (Cy,...,Ck) and
the real optimal weight function w, it could be possible that:

/D w(z)b(x; Cy,...,Ck)du < /D u(z)b(z; Gy, . ..,Gk)dpu, (2.34)

because [y w(z)b(z;C,...,Ck)du is negligible and thus the method would
select the wrong solution u(z) and (Gy,...,Ggk). However, if this happens
for weighted K-means it is even more so for classical K-means. A proposed
solution to overcome this drawback will be stated at the end of Chapter 3.

2.4 An Analytical Example

We now want to test our method on an easy example where we can execute
analytically all the computations needed. This particular case allows us to
verify the previous results and confirm the predictions we can make before
getting through any calculation. The data are the following:

- Group 1: {f(z): fi(z)=Muz,Vi=1,...,N}
- Group 2: {g(z) : gi(z) =Mz, Vi=1,... ,N},

that is, the groups are simply lines, considered on the compact interval D =
[0, 1], passing through the origin of axes, but distinguishing for their angular
coefficients, which are random variables, and N is taken equal to 20. We only

35

2. Functional Sparse Clustering

1.5

1.0

data

0.5

0.0

Figure 2.1: The analytical case.

have to specify the distribution of the 901;’s and the M,’s. We, therefore,
consider: M & N (1, 02), M, KN (s, 0%), with g > po and 9
independent of M, for every 4,7 = 1,..., N. Finally, we indicate with M;
and m;, respectively, 7,7 = 1,..., N a random sample from the 91,’s and the
Mj,S.

Figure 2.1 shows a plot of this case. We have taken p; = %, Lo = % and
o = é. We have traced, in black, the bisector of the first quadrant, that
is the ideal line dividing the two clusters. The choice of these particular
values for the parameters is justified by the fact that we already know the
right clusters and because we want to focus, for the moment, on the solution
function w(x).
Before finding the maximum of that functional, we can try to make some
predictions on the solution. It will surely start from the origin: in that point
the two groups are perfectly coincident, therefore, 0, is not a point that occur
in the clustering process. Then we see that, as long as we move from the
origin, the two families of functions are more and more distinct, whence w
will be increasing.
Now, the problem we have to solve is:

36

2. Functional Sparse Clustering

max [win) X (- g +

w(z),(C1,C2) JD

w(z) [1 1

|ff€C1

> (gi— 9]‘)2) dz,

9i,9; GCQ

with the usual constraints on w: w(z) > 0 a.e., [[w(x)|py < 1 and
||w(:1c)||%2(D) < 1. Note that, here, s equals 1, because the two groups are dif-
ferent essentially on every point in D and this, besides the well-separateness
of the curves, forces the optimum clusters to coincide with those found by
the classical K-means and the real ones. The previous expression, after hav-
ing written in explicit form the functions and having managed the terms,
becomes:

N
—E:M 22
(mg§02/wx v m;) x dr +

_/Dw(x)(mz:(mi—mj)2 2;IZ(M M)) 2dz.

(2.36)
For simplicity, we rewrite the problem as:
max/ w(x)naidz, (2.37)
w(z) JD

where n = & 32Ny (M; —my)* — g iy (mi — my)* — 5 S0y (M — M;)*.
As it represents a distance, 7 is always positive and, theorlcally, We could even
calculate its distribution. Note, that, in general, n should depend explicitly
on the clusters, which are unknown, but, in this example, we are allowed to
reduce to (2.37).

Finding the solution to the maximization (2.37) is a fact from real analysis,
see, for example, [7]. The requested function is of the type w(z) = anz?,
where the coefficient « is taken in order to satisfy the constraints on w,

precisely
: { /5 3}
a=min{/—, —
nmn

where, these values are obtained by forcing, the solution function, to satisfy
the inequalities on its norms. In figure 2.2 we can see that the weigth function

37

2. Functional Sparse Clustering

is just a rescalement of the function we called b(z), which, in this example,
is simply na?. The calculated « in this case is approximately 0.0015.

To be even more sure of the similarity between the two functions, we have
plotted in figure 2.3 the values taken by w(x) against those taken by b(z).
Moreover we have overlapped the theorical line these values should follow
and we note that they lie very close to that line. The stair-shaped curve
described by the points (w(x),b(z)), comes from the grid chosen and from
the way the algorithm was written.

)
o o _|
O‘ A vl
w_
o
S 4
o
©_
S 3
P a
To) <
o
8
o
N_
o
S o -
o [[[[[[[[[[[[
0.0 04 0.8 0.0 0.4 0.8
X X

Figure 2.2: Comparison between w(x) and b(x).

38

2. Functional Sparse Clustering

10

b(x)

0.000 0.005 0.010 0.015

w(x)

Figure 2.3: Plot of w(z), on the z-axis against b(z), on the y-axis. We can note
the characteristic stair-shaped curve and see the hypothetical line these points
should follow.

39

Chapter 3

Simulations

3.1 Introduction

In this chapter we want to test our algorithm on some simulated cases

of increasing complexity and compare the obtained clusters to those got by
classical K-means. With these ad hoc built examples, we can also check the
adherence to the real groups and observe the convergence of the (nonnor-
malized) weight function to what we have called b(x). Moreover, we know,
exactly, which is the right tuning parameter s.
Every example will have the same following scheme: 40 curves are simulated,
from two clusters, over the interval [0, 1], half coming from a group and the
remaining half from the other and we consider only continuous functions for
the first two cases, but, then, we will allow the curves to be discontinuous.
The grid over which we evaluated the functions is composed by 1000 points.
The first two examples are quite easy, since they are composed by functions
with a well defined graph. In the first case the groups are formed by positive
curves only on a subinterval of the domain, whereas in the second one, they
are positive on two different and disjont subsets of the domain. The follow-
ing examples show a more complicated kind of complexity: besides being
different on a part of the set of definition, a noise is added to the curves of
one group, then to both groups, but firstly only on a subset of the domain
and then in every part of it. The best improvements are seen on these last
cases, which is optimal, as we are trying to build a method able to identify
different underlying shapes even in very complex cases.

40

3. Simulations

3.2 Simulation Studies

3.2.1 Casel

This is the simplest case of all, therefore we have chosen the first group to
be composed by piecewise linear (affine) continuous functions on a subinterval
of the domain and then set equal to zero on the remaining part, so that, the
data have a triangular shape. The peak of the triangles are generated from
independent random variables Y; ~ N(2,1/2), ¢ = 1,...,20 and then the
coefficients my, mo and ¢ are computed, for every replication, in order to
have continuous functions. Precisely the curves of the first group will have
the following expression:

my(Y;)x if x < x,
0 if v > 2,

with my,q > 0 and ms < 0.

The other group is composed by parabolas starting from zero, having the
maximum in x = 1z, then continuously rejoining to zero at x = x; and,
finally, identically equal to zero from x = z; to 1. Again, the maximum of the
parabolas are samped from independent random variables Z; ~ N (%, %), J=
1,...,20 and the coefficients a and b are calculated in order to have continuos

curves:)
a(Z)x+b(Z)x if 0 <z <ua,
gj(‘”):{ 0() o>, (3:2)

We have run this first example with various decreasing values of xg and z1,
respectively: i, %, then %, i and, finally, with 2% and 1—10. We want the values
taken by the random variables of maxima of the two groups to be slightly
different from each other, in order to have well shuffled data, so that we can
not distinguish them by only looking at them and this motivated the choice
for the parameters of the distributions generating the data. We have only
reported the last case, that is, that where zo = % and 1 = %. The mo-
tivation for this comes from the fact that the larger is the subinterval over
which the functions are different, the more the solution clusters are similar to
those found by classical K-means, which is obvious, since we are augmenting
the part of the domain where the groups are distinct and this implies that
the number of points involved in the clustering process is increasing. Indeed,
when we run the case with xy = 1/4 and z; = 1/2, the two algorithms find
almost always the same clusters, with only sligth improvements performed

by weighted K-means, as we have observed the reallocation of, at most, three

41

3. Simulations

curves. It is observed that the proposed algorithm performs better than clas-
sical K-means, when the domain over which the data are different becomes
small, or, said in other terms, when the sparsity becomes small. In figure
3.1, we see a plot of this case. Looking at the curves, it seems very hard,
but only for a few number of functions, to tell between the two groups. This
effect, though, is useful, in order to test the strength of our algorithm.

For the case shown in figure 3.1, we report a table comparing the perfor-
mance of the two algorithms.

Real Group 1 (lines) | Real Group 2 (parabolas)
K-means — 1 12 7
K-means — 2 8 13

Table 3.1: K-means vs Real clusters in Case 1.

Real Group 1 (lines) | Real Group 2 (parabolas)
WK-means — 1 16 4
WK-means — 2 4 16

Table 3.2: Weighted K-means vs Real clusters in Case 1.

In figure 3.2, we can observe the graphs of the two functions w(z) and
b(xz) and they have the same shape. Obviously, from the point z; = 1/10,
the two curves are identically equal to zero; b(x) = 0, Vo > 1 because the
two groups are equal and, consequently, w(z) = 0, Vo > x; as those points
are not involved in the clustering process. Note, moreover, the symmetrical
shape, of the two functions, around the point xy = 1/20. This particular
profile is completely justified by the type of data used: they both start from
zero, then have a peak at the point x; and, finally, go down again to zero. The
distance between the two groups increases up to a maximum, located at 0.034,
and this happens thanks to the different shape of the generating prototype
functions. Then, the same distance, becomes smaller at the maxima of the
two groups, thus we have a local minimum in the graphs of b and w. Beyond
this minimum, the distance between groups increases again, with another
maximum at x = 0.066, but then it decreases definitely to zero. Looking
at the figure, it seems that the maxima and the local minimum of w and
b are angular points and so not points of differentiability. Indeed these two

42

3. Simulations

1.5 20 25

data

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.1: A simulation for Case 1

functions are not differentiable in x = 1/20 and this comes from the resolution
of the analytical problem, but they are differentiable in correspondence of
maxima. Thus b and w are only continuous and the functional is not a
regularizing one.

43

3. Simulations

Yo}

S

o

=}

< -

o

o -

o

=}
2 o
E 8

~

0

o

o -

o

=}

o

3

S 7| ©

S T T T T T T T T T

00 02 04 06 08 1.0 00 02 04 06 08 1.0
X X
Figure 3.2: Comparison between w(x) and b(z) for Case 1.

3.2.2 Case 2

In this example we have considered a little more complicated kind of

functions. Precisely, we keep considering the same prototypes of the previ-
ous case, but, now, we divide the domain D = [0,1] into four intervals of
different measure. On two of these subintervals, the functions are equal to
zero, but, on the remaining parts, the data have their own shape: piecewise
affine linear or parabolas.
As in the previous example, the maxima of the functions are generated by
independent gaussian random variables and then, every parameter m,., ¢, as,
bs and ¢, with r = 1,2,3,4, s = 1,2, is calculated in order to have contin-
uous functions. The maxima are located at points 1/20 and 5/8 and the
intervals where the groups are different from zero are [0,1/10] and [1/2,3/4].
Moreover, the maxima, are so distributed:

fi (210) =Y,-~/\/(2,i> and f, (Z) — i~ N(6,1);
D ()-5N () e ()i

44

3. Simulations

with 7,5 = 1,...,20. Analytically:

- Group 1:
my (V) x if z <1/20,
mo(Yy)z +q1(Y;) if 1/20 <z < 1/10,
o if 1/10 <z < 1/2,
T =\ pa(Z)z + go(Z)) i 1/2 < 2 <58, (3.3)
0 if x > 3/4;
- Group 2:
CL1(Uj).I'2+b1(Uj)ZL' 1f.§€ S 1/10,
] 0 if 1/10 <z <1/2,
9i(r) = as(Vy)x? + bo(Vy)x + (V) if 1/2 <2 < 3/4, (3.4)
0 if z > 3/4.

In figure 3.3 we can see a possible case for the second simulation. The

two groups are more similar on the first subinterval than on the other where
they are different from zero. Therefore we expect that the weight function
will give more importance to the second subinterval. Moreover, in [0, 1/10],
the parabolas are a bit taller than the piecewise linear functions, while, in
[1/2,3/4], apart from a rather unusual outlier, the contrary is true. That is
why we also expect a different shape of the functions b(z) and w(x) on these
two intervals. Specifically, in [0, 1/10], their shape should be very similar to
that of the previous example, but it should be something different on the
other set.
In figure 3.4, we can see the optimal weight function w(x) and b(z). As we
thought, the two curves are higher on the second interval and they have dif-
ferent shape on the two subsets. Note that on the first part there is the same
symmetrical profile of the previous example, whereas, on the second set, it is
different: it is monotonically increasing with a peak and then monotonically
decreasing to zero. The reason for this is due to the fact that the first group
is taller than the second on that set. Again, the points of local minimum
and absolute maximum are not points of differentiability for b and w.

45

3. Simulations

12

10

data

Figure 3.3: A simulation for Case 2.

Finally, we have reported two tables comparing the clusters obtained to
the real groups. We can observe the improvement made by our method: six
data are reallocated to the correct clusters. If we look at the misclassified
data added to the first group, we find that one is the outlier parabola. One
reason for this error could be that, as this parabola has a very high maximum,
it is regarded as a line, because its curvature is less distinguishable from that
of a line.

46

3. Simulations

N
~
[J—
o
o
o
m_
- bl
[e0)
o
o
<
© o
O_
=
x - x
= e
<«
o
8_
= B
o
S m ~
S 7 °
o T T T T T 1 T T T T 1
0.0 0.4 0.8 0.0 0.4 0.8
X X

Figure 3.4: Comparison between w(z) solution of the problem and b(x) for Case
2.

3.3 Simulations With Noise

In the next cases we are going to consider more complicated data. Pre-
cisely, we have substituted the piecewise linear group with a completely non-
linear kind of functions. Then, the other group, is composed by curves fol-
lowing those of the first group from one point to the end of the domain, but
with the shape modified on the first part of the interval. Finally, we have
added a gaussian noise in every point of the domain to the functions of the
first group.

The explicit expressions of the prototype functions are, thus:

- Group 1:
F(@) = (2sin (372) + 3) (—21; +3)+Sitele) (39

47

3. Simulations

Real Group 1 (lines) | Real Group 2 (parabolas)
K-means — 1 11 6
K-means — 2 9 14

Table 3.3: K-means vs Real clusters, Case 2.

Real Group 1 (lines) | Real Group 2 (parabolas)
WK-means — 1 16)
WK-means — 2 4 15

Table 3.4: Weighted K-means vs Real clusters, Case 2.
- Group 2:

o(z) = { a(Y)z? +b(Y)z if v < o, (3.6)

(2sin (37x) + 3) (—%x + 3) + 5, if x> x.

Here S;’s, © = 1,2, are independent random variables, used to generate the
data, thus giving us a particular kind of variability in the shift of the func-
tions. e(x) is another independent random variable which is added in every
point of the domain to the functions from the first group, thus resulting in a
shape reflecting a Brownian motion. For the second group, the maximum of
the parabola, Y is, again, an independent gaussian random variable. There-
fore we have two kinds of variability for the curves in the two groups: one
coming from the shifts among the curves in the same cluster, which is gener-
ated by the same random variable and the other, coming, for Group 1, from
the noise € and, for Group 2, from the variability in the maxima of parabolas.
We do not require to have continuous functions for the second group, that
is, it need not be true that

lim f(z)= lim f(x),

Ty~ z—yT

for every y € D and, moreover, that

lim g(z) = lim g(z).

Ty a:—>z(')"
Note, moreover, that the random variables S;’s have the same distribution
for both groups, even if they are independent.
In this case we want to test the ability, of the algorithm, to extrapolate a trend

from the noise and we wonder if it is able to recognize the same functional
structure in the two groups, thus giving a low weight in the second part of the

48

3. Simulations

|-
AN
1} o
g °
©
o —]
o
A I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 3.5: A simulation for the noisy case, 3.3.1.

domain. Obviously we expect that, in some sense, this ability will depend on
the variables used to generate the data, but, we will see that our algorithm
performs well with acceptable values of variability of those random variables.

3.3.1 A First Example

We will see that weighted K-means performs much better than classical
K-means.

For these simulations, we have considered S; ~ N (0, %), while, the
maximum of the parabolas are sampled from independent gaussian random
variabls with mean equal to 20 and variance equal to 9. In figure 3.5 the
data for the considered case are plotted. The tuning parameter chosen is 1%,
which is the length of the interval on which the two groups are different. The
abscissa of the maximum of the parabolas is taken to be at z = 1/20, while,

the point from which the two groups have the same trend is z = 1/10.

In the two tables 3.5 and 3.6 we report the comparison between the two

49

3. Simulations

Real Group 1 (noisy) | Real Group 2 (par. + sine)
K-means — 1 14 13
K-means — 2 6 7

Table 3.5: K-means vs Real clusters, 3.3.1.

algorithms used. We can evidently see that classical K-means can not tell well
between the two groups, assigning most functions to the first cluster. This
strange assignment suggests us to find, using some statistics, the optimum
number of clusters for normal K-means. Therefore we try, using the following

quantity:
BCSS(k)
S(k) = —prss k=2,...,N—1 (3.7)
N—k

and then look for the value k* which maximize S(k). In figure 3.6, we can

S
400 600 800
| | |

200
|

I I I I
0 10 20 30

Index

Figure 3.6: The graph of S(k) using normal K-means as clustering method (the
index starts from 2), example 3.3.1.

see the peak at the right end of the plot. In this case, the value k* that

20

3. Simulations

maximizes S(k) is found to be 36. Considering that we have 40 curves, this
means that classical K-means is not able to recognize the same pattern lying
behind the two groups of functions.

o _|
(ap]
2 R
%)
o
o_
T T T T
0 10 20 30
Index

Figure 3.7: The graph of S(k) using weighted K-means as clustering method
(the index starts from 2), example 3.3.1.

Instead, with weighted K-means, things go better. All the functions from
the first group are correctly classified, but there are four curves from the sec-
ond cluster which are assigned to the wrong set of data. These misclassified
functions are the most similar to those of the first group, in the sense that
they have a lower maximum and are completely included in the noisy band.
That is the probable reason for the committed errors. Note that it seems the
algorithm rightly takes into account the fact that the second group starts
from (0,0). If we compute the same statistic S(k) for weighted K-means, we
find that the maximum is assumed in correspondence of k* = 2 and in figure
3.7 there is the plot of that quantity.

In figure 3.8 we can observe the very irregular shape found for the func-

51

3. Simulations

Real Group 1 (noisy) | Real Group 2 (par. + sine)
WK-means — 1 20 4
WK-means — 2 0 16

Table 3.6: Weighted K-means vs Real clusters, 3.3.1.

o
S
@
<
< o F'
) S
1) ©
S
Z § x 8 -
s o) <
<
S | o
& & 7
o
o
¥ o
)
o I I I I I I I I I I I I
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
X X

Figure 3.8: The very irregular shape of w and b, example 3.3.1.

tions b(x) and w(z). First of all we have to say that, since we are also con-
sidering functions which are not necessarly continuous, the result found in
Theorem 2.2 does not hold. However it still continues to be valid in subsets
of continuity and, moreover, we have a.e. convergence of the two consid-
ered functions. We can readily notice the importance given, by the weight
function, to the first part of the interval. There is a first local maximum in
correspondence of x = 0, since that point is important in the distinction, and
an absolute maximum in correspondence to the maximum of the parabolas.
It also seems to have two minima, but, the first, at x = 0.014 is only a local
minimum, whereas, the second, located at z = 1/10 is an absolute minimum.
The local minimum is the mean of the abscissas of the point at which the
conjunction between functions of different clusters happens. The absolute

52

3. Simulations

minimum, instead, is the point at which the curves from the second cluster
change their shape: from parabolas, they become sines. To explain why this
point is an absolute minimum, we have to recall that the functions of the
second group are not necessarily continuous, thus, in that point, they are
very similar to the noisy functions of the first group.

Now, we can focus on the remaining part of the interval. There, w(x) still
shows an irregular shape, but we can guess it is a nearly flat trend, i.e., apart
from some noise, in that set the distance between groups is nearly constant.
In the ideal case, if the algorithm had classified correctly all data, we would
have expected that "plateau" close to zero. Instead it is not so. However,
this is justifiable if we look at those four curves misclassified. That erroneous
assignment makes the distance nearly constant, but at a value different from
zero. Anyway, we can still collect some useful informations for the classifica-
tion: w(x) is not zero, but has a very low value and the flat trend suggests us
that, in that subset, there are no evident characteristics distinguishing the
two groups. It is found, and it is obvious that it should be so, that these
fluctuations around the plateau increase with the increasing of the variance
of e(x). Finally, the obtained functions w(z) and b(z) are, evidently, still in
L2

In the last figure are plotted the cluster mean functions for the two groups
found using weighted K-means.

93

3. Simulations

Mean Functions

Figure 3.9: Mean functions for the clusters in example 3.3.1.

3.3.2 A Noisier Example

In the following case, we are going to complicate further the situation, by
introducing a new source of noise even in the second group. Actually, we have
added some noise, to every point of the first subinterval, to the functions of
the second group. Therefore, in formulas, the analytical expressions of the
curves generating the two groups become:

- Group 1: ;
f(x) = (2sin (372) + 3) (—23: 4 3) +e(x) (3.8)
- Group 2:

[a(Y)z? +b(Y)z + &(x) if z <z,

g(w) = { (2sin (37z) 4 3) (—%x + 3) +S ifz> . (3.9)

The variable S has the same distribution of the previous example: S ~
N (0, %) The variables e(z) and &(z) are again independent gaussian

54

3. Simulations

random variables, but they have different parameters, precisely: e(x) ~
N (0, %) and &(x) ~ N (0,1). Finally, the maximum of the parabolas, Y, is
sampled, idependently from all the other random variables, from a gaussian
random variable with mean equal to 20 and variance equal to 4. Even in
this example the functions of the second group are not supposed to be nec-
essarly continuous. The tuning parameter, the location of the maximum of
the parabolas and the point where the shape of the curves from the second
group changes are the same of the previous example. In figure 3.10 are plot-

15 20 25

data
10

Figure 3.10: Data for example 3.3.2.

ted the functions considered for this example. It is very difficult telling the
two groups, even if one could note, in the first part of the interval, a different

shape for some functions.

Real Group 1

Real Group 2

K-means — 1

15

15

K-means — 2

5

5

Table 3.7: K-means vs Real clusters, example 3.3.2.

95

3. Simulations

Real Group 1 | Real Group 2
WK-means — 1 11 9
WK-means — 2 9 11

Table 3.8: Weighted K-means vs Real clusters, example 3.3.2.

In tables 3.7 and 3.8, respectively, we report the cluster obtained using clas-
sical and weighted K-means. The classical method assigns the 75% of the
data to the first group. Following the same reasoning of the previous case,
we plot the statistic S(k) and seek for the £* maximizing it. In the same
way, we find hard interpretable results, with £* = 35. In figure 3.11, we have

o _
?
v _|
™
o _|
@
o _|
AN
3
o _|
»
o _|
©
o _|
e
LO_

I I I I
0 10 20 30

Index

Figure 3.11: The statistics S(k) computed with classical K-means as clustering
method (the index starts from 2), example 3.3.2.

reported the quantity S(k) for every value of k. The high value for k* means
that, again, the classical method is not able to recognize the same patterns
for the groups and in figure 3.12 are riported the mean functions obtained

o6

3. Simulations

with normal K-means and two clusters. We can note that, probably, classical
K-mean distinguishes between the two clusters only by a criterion based on
height: the highest functions constitute a group and the remaining form the
other.

Looking at the results found with weighted K-means, it seems that it pro-

o
N
v _|
m_
c

]

=

©

c

2 o 4
2
c

@

)

=
m_
o_

Figure 3.12: Mean functions found with normal K-means for the data in example
3.3.2.

vides an improvement but not so evident. However, the misclassifications
are understood because of the lack of the variable S in the first group, which
confounds the situation even more. If we consider the figure 3.14, we immedi-
ately understand the reason for so many misclassified data: the trend in the
second part of the interval are perfectly overlapping, thus it is very probable
the method confounds the groups, if they are very similar even in the first
part of the domain. Note the difference with respect to the mean functions
found by classical K-means. In figure 3.13 the statistic S(k) is plotted for
weighted K-means and k* is correctly found at 2.

o7

3. Simulations

8 10 12 14
| | | |

S(k)
6
|

© | | | I

0 10 20 30 40

Index

Figure 3.13: The statistics S(k) computed with weighted K-means as clustering
method (the index starts from 2), example 3.3.2.

In figure 3.15, we can see the plots of w(z) and b(x) found by the algo-
rithm. The shape in the first part of the domain is very similar to that of
the previous example. In this case, however, it must be a bit more noisy,
because of the random variable {(z) added to the parabolas. For this first
set, we can notice the same characterisics as in the case without noise added
to the second group: w(x) starts with a local maximum in zero, has two, now
both local, minima, situated, respectively at z = 0.019 and at x = 0.113 and
there is an absolute maximum at x = 0.055. Now the absolute minimum has
moved to the flat part, and, precisely, at x = 0.968. Even if the clusters do
not reflect the real groups, the plateau, this time, if found around zero. This
is absolutely expected because of the same trend characterizing the groups,
therefore, the distance between the clusters is almost zero.

o8

3. Simulations

(-
N
w _|
U)‘_
c

e

=

o

c

=

(T o
-
c

©

[}

=
wnH —
o_

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.14: Mean functions found with weighted K-means for the data in ex-
ample 3.3.2.

3.3.3 The Last Case

Now, as the last simulation, we are going to consider the most complicated
case of all. To this purpose, we have added some noise to every group and
in every point of the domain and then we have tried to cluster these data.
The analytical expressions of the prototype functions are the same of the two
previous examples, but we have to consider, also, the new sources of noise.

- Group 1:
F(@) = (2sin (372) + 3) (—2:): + 3) + 5+ () (3.10)
- Group 2:
a(Y)x? +b(Y)z + &(x) if z < @,
9(r) = { (2sin (37x) +3) (=32 +3) + T+ &(2) if 2> xo. (3.11)

29

3. Simulations

o
AN
o
<
© o
o_
[Te) [ce]
-
o
<
o
o S 4
(e}
/-\O —_~
X S X
2 O -08
e S
Yo}
3
S 7 S
o N
o
3 VIR TSP TP TR
S_MMM o —
o I I I I I I I I I I I I
0.0 04 0.8 0.0 04 0.8
X X

Figure 3.15: The functions w and b, for example 3.3.2.

Here, S, T,e(z), {(z) and Y are independent gaussian random variables. S
an T are responsibles for the shift between functions of the same group,
whereas ¢(z) and &(x) are responsibles for the noise added in every point
of the domain. To the functions of the second group, we have used random
variables with the same distributions. For the example specifically reported
we have considered the following distributions:

o« SN (2,4), slw) ~ N (0,2):
o TNN(O,%) {(z) ~N(0,1).

The maximum of parabolas, Y, comes from a N (20,4). So we have different
kind of variability in each group: one coming from the shift and the other
one coming from the punctual noise. Moreover, in the second group we have
also an amplitude variability for the maximum of the parabolas. In figure
3.16, we can see the data generated in the considered example. It is almost
impossible distinguishing the two groups, apart, at most, for one or two
parabolas. We expect that the two algorithms do not perform well, because
of these confused data. Moreover we still have the curves of the groups not

60

3. Simulations

0
N
Q
o
3
S o
m —
o —
Lfl) —]
| T T T T |
0.0 0.2 0.4 0.6 0.8 1.0
X
Figure 3.16: Data for example 3.3.3.
Real Group 1 | Real Group 2
K-means — 1 4 7
K-means — 2 16 13
Table 3.9: K-means vs Real clusters, example 3.3.3.
continuous.

In tables 3.9 and 3.10 we can compare the clusterization obtained with clas-
sical and weighted K-means. The classical algorithm does not return an
efficient result, assigning about the 75% of data to one group and the re-
maining functions to the other. Moreover, if we look at the misclassified
curves, it is not well understood the criterion used to distinguish between
the groups. Then we repeat the criterion of maximizing the statistic S(k), to
find the optimal number of clusters with classical algorithm. Unexpectedly,
we find that it is correctly maximized for k = 2, as we can see in figure 3.17.

61

3. Simulations

Real Group 1 | Real Group 2
WK-means — 1 13 7
WK-means — 2 7 13

Table 3.10: Weighted K-means vs Real clusters, example 3.3.3.

However, we can also note that the graph is very irregular, meaning that, in
this case, it is not a very reliable result. In figure 3.18, we have plotted the

o _
—
—
X o _|
a0
0 -

| | | |
0 10 20 30

Index

Figure 3.17: The statistic S(k) using classical K-means as clustering procedure
in example 3.3.3.

mean functions obtained with classical K-means. Note that, in the first part
of the domain, each group shows a maximum. This means that the algorithm
has not recognized that only one group has a maximum in the first part of
the interval. Thus it mixes the functions coming from both groups. Even
the mean function with the highest maximum has an irregular shape in the
descending part just following the maximum itself. Thus we have to conclude
that classical K-means is not very useful in this case.

Now we focus on the result found with weighted K-means. It correctly
assigns thirteen functions to the right clusters, but it still misclassifies seven

62

3. Simulations

i,
o _| (o
N) ‘\
II i
(%) o _|
C -~
RS
©
[
L o
c I
8 ' 1yl
= | '"n,,wl‘-“"““".t"lh-w\u \
o - ! " o Wy
| " o : \ %"“.’
I ﬂ,‘.l\'"," 7
I Y , v
o ‘l“h-"l"';"v'\"’h,‘"""\'w
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.18: The Mean functions found using classical K-means as clustering
procedure in example 3.3.3.

curves in each group. However, it is a better result with respect to classi-
cal K-means, because the correctly classified curves really come from that
specifically group. In figure 3.19, we have reported the graph for the statistic
S(k) computed using the new method for the classification. The maximum is
again correctly assumed in k = 2 and the shape of S(k) is more regular than
the previous one, suggesting that the result is more robust. To confirm the
fact that the found result is fairer than that found with classical K-means,
we plot the mean functions in figure 3.20. We can note some differences
between the mean functions found in the two cases. The most interesting
fact is the presence of the maximum in only one group and also the shape of
the parabola is more regular. Moreover the distance between the groups, in
the part with common shape, is smaller with weighted K-means than with
classical K-means, which is right, looking at how we have constructed the
curves in the simulation.

Finally, we have shown, in figure 3.21 the graph of w(x) solution of the
problem and that of b(z) found with the weighted algorithm. They both
rightly starts with a maximum, which has now become an absolute maxi-
mum, whereas, what was, in the previous two examples an absolute maxi-
mum, has now become a local maximum. This happended because, now, the

63

3. Simulations

0 _|
o _|
g ~
)
Lo —
o —
T T T T T
0 10 20 30 40
Index

Figure 3.19: The statistic S(k) using weighted K-means as clustering procedure
in example 3.3.3.

point which distinguishes the two groups the most is z = 0. The added noise,
instead, smoothes the distances between the parabolas and the other curves
in correspondence of the maxima. The first minimum, now, is the absolute
one, whereas the second is a local minimum. The first is found at x = 0.023
and the second at x = 0.1. Then we have the average flat trend. The fact
the plateau is not at zero is due to the misclassified functions, but it still
communicates the fact that those points are not so useful for the clustering
procedure. It seems that the shape of w(z) is not just a rescalement of that
of b(x). This was quite expected because the functions are discontinuous in
every point of the domain. However w(x) is still useful to see what are the
most distiguishing sets or points between the groups.

64

3. Simulations

15 20

Mean Functions
10

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.20: The Mean functions found using classical K-means as clustering
procedure, example 3.3.3.

3.4 Final Comments

At the end of these comparisons, we can say that, at least for the cases
here considered, weighted K-means performs better than classical K-means
and the improvements are as more evident as the data are noisier and the
algorithm has to identify an underlying shape defining the different groups.
However, it still shows some drawbacks affecting every K-means procedure.
The most serious one is represented by the fact that it is a method depending
only on distances. Therefore, data which are close, in the norm used, to
functions of a determined group are assigned to it, even if they belong to
another cluster. For example, if we consider a datum, which is an outlier,
it will surely be assigned to a wrong cluster, even if it is an outlier only on
a subset of the domain, but if that set is such that it makes the distance
between that datum and a wrong group smaller than the distance between
the same datum and the real group to which it should belong, then we will
have a wrong assignment.

The first way we can propose to overcome this problem is to make K-means
methods to take into account the probability model underlying the generation
of the data oserved. Thus, we have to consider a probability measure P

65

3. Simulations

<
<
[0} —]
e}
< o
< S
[0) o
q- ~
o
< o
Q _| ©
&
x < 9
Z < O
= < o ©
@
[0}
o
N S -
J
<
S o
L g
N
o
o
¥ o —
[0
o

0.0 0.4 0.8 0.0 0.4 0.8

Figure 3.21: The graphs of w(x) and b(x), example 3.3.3.

which depends on the functional variables generating the data and also on
the points of the domain, so, we write P(Xy(w,z),x). Therefore, setting
C = (Cy,...,Ck), we can rewrite our problem in the following way:

max / w(@)b(z, fir, C)dP(X(w, 1),), (3.12)
w(z),(Ch,....Cx) JD

with i = 1,...,N, k = 1,..., K, w(z) satisfying the usual constraints and
where we have explicited the dependence of b on the domain, the data f;;’s
and the clusters Cy’s. However, there is still the complication due to the
knowledge of the distribution of the functional variables acting in the prob-
lem.

We can try to investigate another direction to improve the solution to the
clustering problem. We are dealing with curves, therefore, if it is true that
the functions come from different distributions, they will be different not
only in their own shape, but also in that of their derivatives, if they exist.
So, we can try to cluster simultaneously the functions and their derivatives.
We can, then, define the following functional:

/D (W(),b(x, fik: fl3> C)) dps, (3.13)

66

3. Simulations

where, w(z) is a vectorial weight function and b(x, fix, fi, C) is the BCSS,
but now considering also the derivatives of the data, i.e. the first component
of this vector is the usual BCSS, while, the second component, is the BCSS
computed with the derivatives f/’s. Now, we could try to maximize it over
w(z) and C. We would like to have w(z) = (wy(z), wa(x)), with, eventually,
the relationship wy(z) = wi(x). The function w;(z) has the same role w(x)
had previously and wy(x) is another function used to weight the BCSS com-
puted with the derivatives of the data. Certainly, we have that wy(x) has to
satisfy some constraints as well: |Jwa(z)||r < ¢, |wa(x)||2. < 1 and, finally,
wy(z) > 0 p-a.e. Here, ¢, is another tuning parameter used to measure the
sparsity, but, now, referring to derivatives. However, the nature of ¢t and the
connections with s should be investigated, because it is not necessary that
the sparsity structure on the derivatives coincides with that of the functions.
If we want to consider this new problem, we have to modify the theorical
setting in some ways. First of all, we should have functions belonging to the
Sobolev space H'(D). However, some questions arise quite naturally: how
could we find the optimum? Is it a global optimum? Moreover: what are
the real connections between ws(z) and wy(x)? Could it be possible that
wy(x) is the (weak) derivative of wq(z)? The answer to this last question is
that, in general, ws(z) can not be the (weak) derivative of wy(x). The proof
of Theorem 2.1 was based, heavily, on the coincidence of the weak and the
weak* topology in L?, fact which does not hold in H' and, moreover, we do
not even know what is the dual space of H!.

67

Chapter 4

Analysis of Growth Curves

4.1 Introduction

In this chapter we are going to analyze deeply the functional dataset

"Growth', already provided in the fda package. This dataset is quite famous
in the field of functional statistics. It is what is called a "benchmark dataset",
that is a set of data to which apply new methods in order to test them, as
the analyses provided can be readily compared with previous results. For
instance it has been already studied deeply by Ramsay and Silverman in
[16]. The dataset is composed by the heights, in ¢cm, of 93 children, of which
54 girls and 39 boys, measured quarterly from 1 to 2 years, annually from
2 to 8 years and then biannually from 8 to 18 years. The data, thus, are
discrete, but it is reasonable to think them as sample points, in time, of a
determined curve representing the particular height of a child. Therefore,
before proceeding in any analysis, we have, firstly, to smooth them. This is
done through standard techniques, requiring the definition of particular basis
functions. After having obtained regular (i.e. twice differentiable) curves, it is
reasonable that children of the same sex will have similar functions describing
their own height and so we will try to make some cluster analysis on them.
Thanks to studies conducted by physicians, we know how human growth
develops and we want to use the method just defined to see if we are able to
find the same results.
We have two kind of curves on which we can conduct our analyses: those
coming directly from the smoothing, called misaligned or unregistered and
then the same functions but considered after a procedure called alignment or
registration. This process consists in finding some nonlinear trasformations
of the temporal variable such that the fictitious (in some sense) variability
between data is deleted.

68

4. Analysis of Growth Curves

Our study starts with the analysis of misaligned data and then, after a brief
presentation of the registration techniques, we will move on to study the
aligned curves.

4.2 The Growth Dataset

In this section we describe, in details, the characteristics of the dataset.
The grid over which the measurements of the heights are taken, is not equally
spaced in time, since they are more frequent in the early years of children’s
life and then become more and more distant. What we are really observing,

data
200
|

150
|

100
|

| | |
5 10 15

years

Figure 4.1: The estimated functions describing the developments of the heights
of the 93 children.

when we measure the heights of the children, are the consequences of growth.
The "derivatives" of the height data represents the velocities of growth and
what should correctly called "growth', as they are the change in height per
unit time. Indicating with H(¢) the "height function' and with V'(¢) its
"derivative", we could estimate, at time points ¢;, the velocity by the difference

69

4. Analysis of Growth Curves

ratio

H(tir1) — H(t:)
tipn—ti
This, anyway, is a bad idea from a statistical perspective, since even a small
amount of noise in the height measurements will have a huge effect on the
ratio, and this problem only gets worse as the time points get closer together.
It is much better to fit the height data with an appropriate smooth curve, and
then estimate velocity by finding the slope of this smooth curve. To smooth
these data, monotonic cubic regression splines were implemented, using the
R function smooth.monotone. Spline functions are the most common choice
of approximation system for non-periodic functional data or parameters. In
figure 4.1, the reconstructed height curves are plotted. They are all quite
similar: they are all monotone, start from 80 cm and reach a flat shape at
about 15 years, meaning that, there is a particular age from which the height
is almost constant. In particular, the monotonicity of the heights implies that
the derivatives are all positive, starting from high values and then decreasing
to zero.
We can get more understanding of the growth process by studying the rate of
change in velocity; this is the acceleration in height, denoted by A(t). From
the previous observation about the shape of the velocities, we can readily
state that accelerations will be mostly negative. In figures 4.2 and 4.3 the
reconstructed velocities and accelerations are shown. We can observe and
confirm the predictions made about their shape. In both cases, the curves
have similar trends, with some differences in the points at which minima
or maxima are assumed. This fact will be eliminated successively with the
procedure of alignment.
A way to look at growth could be represented by the following expression:

V(ti) — V() = wiV(t) (tisr — t,). (4.2)

V(t;) = (4.1)

It relates the velocity change over the interval [¢;,t;11] to three factors:

1. t;o1 — t; itself. The smaller this time interval, the less change there
will be, and in the limit At — 0, velocity will not change. This says
that over very small time scales growth is essentially a smooth process,
an assertion that seems beyond question since a jump in the rate of
growth over an arbitrarily small time interval would seem inconceivable
in terms of the body’s physiology;

2. V(t;), a term that measures growth changes on a percentage or relative
basis. This is particularly useful in allowing for variations in height
over the population, and, for instance, allows for comparison of growth
patterns independently of people’s ultimate adult height;

70

4. Analysis of Growth Curves

derivatives of heights

years
Figure 4.2: The estimated velocities of the heights of the 93 children.

3. w;, a factor that determines the change in velocity. We make this factor
depend on t; because we imagine that this factor itself will change with
time. This is the factor that really specifies how growth varies. Note
that w; will be positive if velocity is increasing at age t;, zero if there
is no change, and negative if velocity is decreasing.

Equation 4.2 could be rearranged as:

V(tip1) = V()

Liv1 — 1

= w;V (L), (4.3)

The left side of this equation is just an estimate of the instantaneous rate of

change of V (t), and becomes the acceleration A(¢) when ¢;.; —t; — 0. There-

fore, rather than defining w; to satisfy (4.2) and (4.3) exactly, we replace it
by a function w(t) defined by:

A(t)

Alt) = wt)V(#),)=l 4.4

(t) = w(t)V(t), or w(t) 70 (4.4)

The continuously defined function w(t) is now the ratio of acceleration to

velocity, or what we can call relative acceleration, meaning acceleration of

71

4. Analysis of Growth Curves

o_
(2]
=
o g 4
(0] 1
e
—
(o]
2]
c
S o
®m Y 7
—
o9
(0]
Q
(&)
(]
o
8

| | |
5 10 15

years

Figure 4.3: The estimated accelerations of the heights of the 93 children.

height measured as a fraction of velocity. We can rewrite (4.4) as the differ-
ential equation:

d*H (t) dH (t)

=w(t)——=. 4.5
= wlt)— (4.5)
The general solution to this equation is given by:
t pu
H(t) = Cy+ / eJo wioldv gy, (4.6)
0

In this expression, Cy and C; are arbitrary constants that will need to be
estimated from data.

This model was proposed by Ramsay and Silverman (2002). Equation (4.5)
may be described as the fundamental equation of growth, in the sense that
any intrinsically smooth growth process may be expressed in this way. The
relative acceleration w(t) is the functional parameter of growth. A possible
approach to think about growth is to model this function, rather than the
height function itself. Once it has been estimated w(t), one can check it
against the data by using equation (4.6). However, neither the authors, nor
us, will go deep through this argument.

72

4. Analysis of Growth Curves

4.3 Analysis On Misaligned Data

The first step of our analysis, begins with the clusterization on misaligned
data, that is, with nonmodified reconstructed curves. We are supposing that
the growth process distinguishes between girls and boys and we want to test
our algorithm on this dataset. We want to see if it is able to detect the differ-
ences in heights of boys and girls and find the age at which these differences
are more significant.

The most important problem, before running the algorithm, consists in find-
ing the right tuning parameter, defining sparsity. We have no outer infor-
mations helping us: it is not evident which interval of time distinguishes the
clusters the most and, moreover, even medical sciences can not provide useful
notions, apart from the so called pubertal spurt, which is, unfortunately, not
easy to determine, as it happens at different ages to different children and it
could have different duration. Therefore, we need other quantitative meth-
ods to estimate the right s. To do so, we define an equally spaced grid of 100
points from 0 to 18, then we evaluate the curves on this grid and collect the
values in a matrix belonging to R?3*1%° Now we apply a reasoning similar
to that of the Gap Statistic discussed in chapter 1, but modified, in order to
take into account the functional nature of the original data and the right con-
nections between the norms of functions involved. This procedure provides
s* = 4.123106, that is a value very close to the maximum allowable value of
V18 & 4.242641. This proximity between the two values could suggest that
there is not a well defined set where the clusters are well separated, as we had
already observed looking at figure 4.1. As a consequence, the weight function
will be interpreted as the difference, in every point of the domain, between
the two groups, meaning that eventual peaks or valleys indicate where the
two clusters differ, respectively, the most or the least.

After having found the optimal s, we run our algorithm. We find that it
recognizes correctly the two clusters: one, of cardinality 54, composed by the
heights of the girls and the other, of cardinality 39, composed by those of the
boys. In figure 4.4, we have reported the calculated mean functions found
for the corrispectively clusters. As we could have expected, the mean curve
of the boys is higher than that of the girls. Even if it is not so easy, looking
carefully at the figure, a difference in the shape could be observed. Indeed,
there is a small interval, centered just after 10 years where the mean function
of the girls has a negative curvature, whereas the mean function of the boy
has a positive one.

73

4. Analysis of Growth Curves

(=]
O_
N
(=]
w_
-
2
o ©
B ©
o
c
]
C g
%r
§
(=]
N_
-—
o
O_
—
o _|
(<)
I I I
5 10 15
year

Figure 4.4: The computed mean functions for the two clusters: the red dashed
curve is the mean for the male heights, while the black curve is the mean for the
female heights.

To see better this characteristic, we have reported, in figures 4.5 and 4.6, the
functions b(z) and w(z) found for this clusterization. We can immediately
note the absolute maximum of these functions and, when we look at the
abscissa in correspondence of the maximum, we find it is 12.25. This fact
has an immediate feedback in the real dynamic of growth in children: it is
the pubertal spurt. As confirmed by auxologists and evolutionists, in [15],
girls grow faster than boys and the peak of the process happens at about
12-13 years, age at which girls undergo to radical changes in their body. The
same process, instead, happens later to boys, usually at 14-15 years. Thus,
the maximum found in the two functions, really indicates the presence of the
pubertal spurt and suggests that, while girls are going through changes, boys
are still rather late in their evolution. Then, going on in years, the differ-
ences smooth and we can guess that w(x) and b(x) have a right horizontal
asymptote, having a value given by the difference between the mean height
of boys and girls. Before occurring in the maximum, we can see that both
functions are monotonically increasing, meaning that height really diversify

74

4. Analysis of Growth Curves

o
o
o -
0
-~
(=]
o
o -
o
~—

—

X

=

o}
o
(=g
(=]
Yol
o -

I I I
5 10 15

year

Figure 4.5: b(x) found for the clusterization on nonregistered data.

between sexes, because of a different type of evolution, until, at least, 12
years. The early pubertal spurt in girls could be evidentiated looking at the
corresponding velocities and accelerations, i.e. looking at the corresponding
first and second derivatives of heights. Indeed, we expect to see a maximum
in the female velocities occurring at about 12 years and to find it later if we
refer to the male velocities. In figure 4.7, we have plotted the mean velocities
for the functions assigned to the clusters found in this case. We can readily
note the different years where we find the maximum, as we expected.

Observation 4.1.

The shape of the two curves is very similar: it seems that the mean male
velocity is just the female mean velocity, but stretched. In particular, this
suggests that human growth follows the same path in boys and girls but with
different times.

75

4. Analysis of Growth Curves

0.20
|

0.15
|

0.05
|

0.00
|

I I I I
0 5 10 15

year

Figure 4.6: w(x) solution to the problem (the point at the right end of the
interval is due to possible problems of the algorithm at the boundaries).

2

8]

[0)

>

2 o |

2 2

£

o

g ° T T T

E 5 10 15
year

>

3

ge! _

(0]

> o

o]

E 21

“G_) —

§ e - T T

£ 5 10 15
year

Figure 4.7: In the upper and the lower panel, the mean velocity for boys and
girls respecively are plotted.

76

4. Analysis of Growth Curves

0

mean male acceleration
-6

~
' I [[
5 10 15
year
C
S
©
o
q_) —
3]
8§ ©
o _
©
- o
“E I [[
3 5 10 15
£
year

Figure 4.8: In the upper and the lower panel, the mean accelerations for boys
and girls respecively are plotted.

Finally, in figure 4.8, we have shown the mean acceleration functions for boys
and girls. Even in this case, we can note the different years where we observe
the maximum and the shape of the two curves, which is, again, very similar.
After the analysis of the heights themselves, we try the clusterization of the
derivatives and then of the accelerations. Even in this cases, we do not have
outer important informations suggesting the appropriate tuning parameter
defining sparsity; therefore, we use the same modified Gap Statistic used
previously. For both cases, the optimal s is equal to 4.1231 leading to a
corresponding value for the Gap Statistic of 0.0062 and 0.3826.

When we apply weighted K-means to the first and second derivatives of the
height function, we do not find good performances. The clusters do not re-
flect the distributions of the boys and girls found with heights. When applied
to the derivatives, the algorithm finds a group of cardinality 18 and, as a con-
sequence, the other one is composed by 75 functions, whereas, when applied

77

4. Analysis of Growth Curves

to the accelerations the division in clusters becomes 12 and 81. Moreover, the
found clusters are not homogeneous between sexes, so that we can neither
state that there are some peculiarities conditioning only boys or only girls.
A reason for these erroneous classifications could be found in the observation
4.1. The process of human growth is the same, independently of sex, it only
happens at different times, therefore the shapes of the functions are the same
and the algorithm easily makes mistakes. Eventually, we could use the anal-
yses on velocities and accelerations to find anomalous process of growing.
In figure 4.9, we have plotted w(z) and b(z) found by application of our

o
[o¢] o _|
g <7 g <«
g g]
o <

Z S -
x x 2
s = = _
e .

°© T T T T © T T T

0 5 10 15 5 10 15

year year

0.8
1

w(x) accelerations
0.4

b(x) accelerations

4000 8000

0.0
|
0
|

T T T T T T T
0 5 10 15 5 10 15

year year

Figure 4.9: The functions w(z) and b(z) found for velocities (the upper panels)
and accelerations (the lower panels).

method to velocities and accelerations. The most evident fact is the flat
plateau near zero. It is not exactly zero, but the values are extremely small
in that interval: b, () is between 7.59 x 107% and 7.46 x 107!, while byc.(z)
is between 8.92 x 107* and 9.79 x 10~!. This means that the two found
clusters are composed by almost similar functions from the estimated age of
1.85 years. Before this moment, the two clusters are significantly different,
but they do not reflect the separation between sexes.

78

4. Analysis of Growth Curves

4.4 Alignment

In this section we will introduce the notion of data alignment. The meth-
ods here discussed can be found, with more details, in [16].
In general, functional data can exhibit two types of variability: amplitude
variability, that pertains to the sizes of particular features such as the ve-
locity peak in the pubertal growth spurt, ignoring their timings and phase
variability, that is variation in the timings of the features without consider-
ing their sizes. We have seen, discussing the simulations of Chapter 3, that
variation in functional observations involves both phase and amplitude, and
that confounding these two leads to many problems. Before we can get a
useful measure of a typical growth curve, we must separate these two types
of variation, so that features such as the pubertal spurt occur at roughly the
same time for all children. The need to transform curves by transforming
their arguments, which is what is called curve registration, can be motivated
as follows. The rigid metric of physical time may not be directly relevant
to the internal dynamics of many real-life systems. Rather, there can be a
sort of biological time scale that can be nonlinearly related to physical time,
and can vary from case to case. Human growth, for example, is the result of
many physiological events that are not assured to happen at the same time in
everyone. The intensity of the pubertal growth spurts of two children should
be compared at their respective ages of peak velocity rather than at any fixed
age.
In more abstract terms, the values of two or more function values f;(¢;) can
in principle differ because of two types of variation. The first is the more
familiar vertical variation, or amplitude variation, due to the fact that two
functions fi(t) and fo(t) may simply differ at points of time ¢ at which they
are compared, but otherwise exhibit the same shape features at that time.
But they may also exhibit phase variation in the sense that functions f; and
f2 should not be compared at the same time ¢ because they are not exhibiting
the same behavior. Instead, in order to compare the two functions, the time
scale itself has to be distorted or transformed.
The simplest case of all is represented by shift registration. It means that
curves differ between each other because they are only translations of the
same prototype function, thus we only need to move them horizontally to
eliminate this kind of variability. In this case, we want to find, for each f;, a
parameter J;, in order to have the following transformation of data:

fi(t) = filt + &).

The estimation of a shift or an alignment requires a criterion that defines
when several curves are properly registered. One possibility is to identify

79

4. Analysis of Growth Curves

a specific feature or landmark for a curve, and shift each curve so that this
feature occurs at a fixed point in time. However, the registration by landmark
or feature alignment has some potentially undesirable aspects: the location
of the feature may be ambiguous for certain curves, and if the alignment is
only of a single point, variations in other regions may be ignored.

Instead, we can define a global registration criterion for identifying a shift
9; for curve i as follows. First we estimate an overall mean function fi(t) for
t in the domain. If the individual functional observations f; are smooth, it
usually suffices to estimate i by the sample average f. We can now define
our global registration criterion by

REGSSE = j_vj /D [fi(t +6;) — p(t)]2dt. (4.7)

Thus, our measure of curve alignment is the integrated or global sum of
squared vertical discrepancies between the shifted curves and the sample
mean curve. The target function for transformation in (4.7) is the unregis-
tered cross-sectional estimated mean ji. However, one of the goals of regis-
tration is to produce a better estimate of this mean function. We therefore
expect to proceed iteratively: beginning with the unregistered cross-sectional
estimated mean, argument values for each curve are shifted so as to minimize
REGSSE, then the estimated mean [is updated by re-estimating it from
the registered curves f* , and a new iteration is then undertaken using this
revised target.

The second method used to align curves is called registration landmark. A
landmark or a feature of a curve is some characteristic that one can associate
with a specific argument value t. These are typically maxima, minima, or
zero crossings of curves, and may be identified at the level of some derivatives
as well as at the level of the curves themselves. The landmark registration
process requires for each curve f; the identification of the argument values
tij, 7 =1,...,J associated with each of J features. The goal is to construct
a nonlinear transformation h; for each curve such that the registered curves
with values

Ji(8) = fi(hi(t))
have more or less identical argument values for any given landmark. The
estimated functions h;’s are called warping functions and have to satisfy
only two conditions: h;(0) = 0 and h; must be strictly monotone.

After having found the right warping functions, we have to compute the
registered function values f(t) = fi(h;(t)), but this requires two more steps:

1. estimate the inverse warping function h; ' such that h;*'(hi(t)) = t;

80

4. Analysis of Growth Curves

2. smooth or interpolate the relationship between h;'(t) plotted on the
abscissa and f;(t) plotted on the ordinate.

The third and last method used to align functional data is the continuous
registration. The least squares criterion (4.7) worked well for simple shift
registration, but can bring some problems for more general warping functions.
When two functions differ in terms of amplitude as well as phase, the least
squares criterion uses time warping to also minimize amplitude differences
by trying to squeeze out of existence regions where amplitudes differ. Put
another way, the least squares fitting criterion is intrinsically designed to
assess differences in amplitude rather than phase.

Suppose two curves f and g differ only in amplitude but not in phase. Then,
if we plot the function values f and ¢ against each other, we will see a
straight line. Amplitude differences will then be reflected in the slope of the
line, a line at 45° corresponding to no amplitude differences. Now thinking
about a line as a one-dimensional set of points on a plane, we can turn to
principal components analysis as just the right technique for assessing how
many dimensions are required to represent the distribution of these points.
This technique will yield only one positive eigenvalue if the point spread is, in
fact, one-dimensional. That is, the size of the smallest eigenvalue measures
departures from unidimensionality.

Let us consider now evaluating both the target function f and the registered
function f* at a fine mesh of n values of ¢ to obtain the pairs of values
(f(t), fIh(t)]). Let the n by two matrix X contain these pairs of values.
Then the two-by-two crossproduct matrix X’X would be what we would
analyze by principal components.

The following order two matrix is the functional analogue of the crossproduct
matrix X'X.

T ff() ()
TR =1y it fhenar 1 pin(e)d

We see that the summations over points implied by the expression X'X have
here been replaced by integrals. Otherwise this is the same matrix. We have
expressed the matrix as a function of warping function A to remind ourselves
that it does depend on h.

Consequently, we can now express our fitting criterion for assessing the degree
to which two functions are registered as follows:

MINEIG(h) = Xo(T(R)),

where the function)\, is the size of the second eigenvalue of its argument,
which is an order two symmetric matrix. When MINFEIG(h*) = 0, we have

81

4. Analysis of Growth Curves

achieved registration, and h* is the wanted warping function that does the
job. Finally, if we want the warping function h to be endowed of more regu-
larity or smoothness, we can consider a penalized version of MINEIG(h).

4.5 Analysis On Aligned Data

As we had anticipated in the introduction of this chapter, after having

introduced the techniques of data registration, we, now, move to an analysis
of the same data, but, this time, they are aligned.
The registration of the curves of the dataset is done using the last method
seen: continuous registration. The class of warping functions h(t) used to do
the job, was chosen apriori: linear affine functions. This choice was made,
fundamentally, for two reasons. The first motivation follows from what we
have stated in observation 4.1: the curves look all quite similar; therefore
it is reasonable to think that, thanks to a linear affine rescalement of the
biological time of each child (since the data seems only traslations and di-
latations of the same prototype), we will able to decouple the amplitude and
phase variabilities. The second motivation is due to the possibility of making
a comparison with the article [19]. In that paper, the authors, develops a
method for making, at the same time, alignment and classification of data.
They use a functional optimized to linear affine warping functions and prove
that the similarity index there defined satisfies a number of properties. Con-
sidering the same class of warping functions puts us in condition to compare
the results.

As we can see in figure 4.10, the aligned curves are all very similar. This fact
does not surprise us, because we had already observed that growth is a process
that is the same in every human being. The registration of data only con-
firms this statement. In figure 4.11, we have reported the warping functions
used for alignment. The warping functions for the boys, typically, are the
highest lines, but, we are not able to divide exactly those used for boys from
those used for girls. There is not a clear distinction between sexes. Indeed,
when we try to cluster the aligned data, we do not obtain useful results. Our
algorithm, and classical K-means as well, can not recognize the presence of
two clusters and the process does not even start, because the two procedures
try to generate two cluster centres from what is seen as one group. There-
fore, we opted for conducting a supervised analysis on the aligned dataset;
we decided to make clearer the real difference between sexes, by applying
a shift registration: we traslated the argument of the aligned functions to
evidentiate the presence of two distinct groups. The result of this operation
is shown in figure 4.12. With this analysis, we can estimate easily the shift

82

4. Analysis of Growth Curves

registered data
140 160 180 200
l l l l

120
|

I I I
5 10 15

year

Figure 4.10: The aligned height curves, using linear affine warping functions.

in the biological clocks of boys and girls. Obviously, the highest functions
represent the male group and, in this case, the algorithm performs better:
it correctly recognizes the two clusters. With this data the advantage of the
method proposed in [19] is the immediate identification of only one cluster,
thanks to the contemporary process of alignment and clusterization. More-
over, they show that, eventually, we could identify two or more clusters, but
this detail does not justify the computational effort.

Considering the aligned velocities and accelerations of growth leads to
the same problems: there are no definite different clusters. Therefore, we
apply another shift registration on both aligned velocities and accelerations.
In figure 4.14 the so obtained velocities are plotted. From these two plots,
the same shape for the functions of boys and girls is even more evident: with
only horizontal movements, we can overlap them. This is another evidence
confirming the same structure of growth, that joins every human, with no
regards of sex. The only aspect differentiating between sexes is the time at
which we find maxima or minima in the functions, as we have already noted
for the pubertal spurt. Thus, the shift applied to distinguish the two groups

83

4. Analysis of Growth Curves

15

warping functions
10

5 10 15

year

Figure 4.11: The warping functions used for alignment.

means that the biological clock of girls is just the same as that of boys, but
it is forward of a constant quantity. The calculated mean shift is equal to
1.978 years.

In figure 4.16 we have plotted the registered accelerations, but after having
shifted the two groups. Again, we can note the same shape in the functions;
the only difference between them is a horizontal traslation. The algorithm
correctly clusters boys and girls. In figure 4.17, we have shown the computed
mean acceleration functions for boys and girls. The calculated mean shift
between boys and girls is about 2.00 years, a value close to that found for
velocities and really reflecting the different biological times of the two sexes.

In the end, we have found almost the same results of the article [19]: the
structure of human growth is the same for everyone, the only difference be-
tween sexes is a shift in the biological clocks, even if, the differences between
boys and girls, in [19], were found in terms of warping functions, but this
comes from the algorithm there adopted. Therefore, after having aligned the
data, we can consider the existence of only one distribution generating the
curves. However, this is achieved, in that article, by jontly registrating and
cluterizing, a method that proves that sometimes useful results can not come

84

4. Analysis of Growth Curves

registered heights
140 160 180 200
| | | |

120
|

I I I
5 10 15

year

Figure 4.12: The aligned curves, but shifted, in order to distinguish better the
presence of different sexes.

from solely clustering or solely alignment. Indeed, this is pointed out, also,
from the fact that, when we applied our algorithm to misaligned velocities
and misaligned accelerations, we came out with not so useful informations
about the existence of two groups. Anyway, our method performs well even
with misaligned height curves. The reason could lie in the fact that it is true
that the process of growth is the same in everyone, but the consequences of
the process, manifestating in the height curves, are different because of the
shift between the biological clocks of boys and girls. Moreover weighted func-
tional K-means has the property, as viewed in the previous chapter, of being
only weakly affected of the eventual noise of data, because it considers also
the shape of curves. This is an aspect that could contribute in recognizing
the effective presence of two groups even with misaligned data, but the same
trends in velocities and accelerations confounds the method.

We have found the same results of [19], even if we have faced the problem
from another point of view: we had a functional that considers the differences

85

4. Analysis of Growth Curves

mean functions
140 160 180 200
| | | |

120
|

I T I
5 10 15

year

Figure 4.13: The computed mean function for the two clusters: the dashed
function is the mean height for the boys, while, the other one is that of girls.

between data, so we had a measure of dissimilarity between functions; on the
other side, the functional of that paper is a measure of similarity. However it
is well known that, given a dissimilarity measure, a similarity could always
be defined. The contrary is not always true. So, we could define a similarity
measure starting from our functional and we would come out with the same
results.

The jointly combination of aligment and clustering process could suggest us
new directions of research: trying to do the same with the functional here con-
sidered is probably the most immediate; after that we could seek for classes of
warping functions, if they exist, such that our functional remains unaltered.
Another interesting path that could be followed, is the investigation of the
selection of the tuning parameter when this new method is adopted: does
the conjunction of alignment and clustering change the determination of the
parameter s? How is the notion of sparsity modified? Could we define new
methods for parameters selection? Are they modified, if we consider jointly
alignment and clustering? However we will not go through these questions
here.

86

4. Analysis of Growth Curves

10

registered velocities

I I I I I I I
4 6 8 10 12 14 16

year

Figure 4.14: The aligned velocities, but shifted between different sexes.

87

4. Analysis of Growth Curves

12
|

10

registered mean velocities
6
l

I I I I I I I
4 6 8 10 12 14 16

year

Figure 4.15: The mean functions for the velocities. The dashed curve is the
mean for the girls and note the maximum occurring earlier than the maximum for
the boys.

88

4. Analysis of Growth Curves

- —
72} o
c
el
=1
©
o
2
[
Q ~
(&) 1
@©
O
(]
o
]
-
2
o N
]
s
o
v

year

Figure 4.16: The aligned accelerations, but shifted between different sexes.

89

4. Analysis of Growth Curves

0.5

registered mean velocities
-15 -1.0 -05 0.0

-2.0

-25

year

Figure 4.17: The mean acceleration functions.

90

Chapter 5

Analysis of Three-Dimensional
Cerebral Vascular (Geometries

5.1 Introduction

In this chapter, we will analyze a functional dataset coming from a real
study. It is composed of curves describing the carotid of 65 patients, taken
in the contest of the AneuRisk Project. To every patient three functions are
associated: the x, y and z coordinates of the centerline of their carotid. The
aim of the analysis is to classify and recognize similar shapes of the carotids.
Therefore, we want to apply our method to this dataset and, thanks to
the weight function, we want to see what differentiates the possible clusters
the most. However, before proceeding in the analysis, we have to extend the
method defined in chapter 2 to vectors of functions. We will extend Theorem
2.1 and propose another algorithm able to compute that result numerically.
After that, we will take a closer look at the dataset and finally we will apply
weighted functional K-means to it. In the end of the final section of this
chapter, we will use our method to perform supervised learning: indeed,
knowing particular groups of interest of types of patients, we will look at
those features which contributes in distinguishing the most those clusters.

5.2 Multidimensional Weighted Functional K-
Means

Now, we want to extend the result found in Theorem 2.1, to the case of
vectors of functions. We are now supposing that the data at our disposal are

91

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

vectors in R™, n > 1, and every component is a function, i.e.:

fi(z)
£(z) = f2f37)

The functional setting of our problem undergoes some little modifications.
We are now considering functional variables X}’s such that:

X,:Q— L*(D;R"), Vk=1,..., K. (5.1)
Therefore, the data are functions such that:
f(x): D — R", (5.2)

which belongs to L?(D;R"™) and when we compute the distances between
data we have to consider the pairwise component distances:

d;; = d(f',£7) Z / fin—) dp. (5.3)

This slightly different setting modifies, also, the BCSS we have to consider
in our problem, but the extension is straightforward:

bi(z,f,C)
b(z,f,C) = el £C)
bo(z,f,C)
where
b, £,C) = (;V]i() - i|20h) HEE:C (ff;l—fil)z), (5.4)

for every m = 1,...,n, C = (C},...,Ck), each cluster has cardinality |C},|
and N is the total number of observations. The weights we have to consider
become a vector of weight functions:

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

Here we have that w; will weight the first component of the data, thus
it will be multiplicated to the first component of the vector b, wy to the
second component and so on. All the weight functions have to belong to
L*(D) and precisely to the unit ball of that space. We want them all to be
nonnegative and finally, they should perform sparse clustering. As we had
already observed in the second chapter, the constraint on the L'(D) norm of
the weight functions does the job. The sparsity structure, however, could be
different for each component examined. So, we have to request that:

lwillrpy < s1, lwallpipy < s2, -0y [wallzypy < sn, (5.5)
with s1,89,...,5, > 0.

Now, we are ready to define the new sparse clustering problem.

Definition 5.1.
We define Multidimensional Sparse Functional K-means Clustering to be the
solution to the following problem:

ma w(z),b(z,f,C))du, 5.6

e | (w(). b(a.£.C)) dp (56)
lwillzyopy < s1, wellipy < s25 -+, lwallzyoy < sn;

subject to: § |lwil|7z)Sl lwallZepy < 1, vy NlwallZ2py <1 (5.7)

wy(x) 2 0, wy(x) > O,...,wn(:v) 2 0 p—ae.

The parameters s;’s are to be determined, if they are not known apriori.
Anyway, we suppose we know the right value for each of them. Then, we can
state the following result:

Theorem 5.1.
Let D C R be a Borel set, such that u(D) < oo, £ be N wvectorial functions,
s.t. fioe L*(D),f., € L*(D) Vi =1,...,N,Vm = 1,...,n and suppose

there exists an M € R such that ||fi ||Loo)y < M Vi and Vm Then there
exists a unique solution to the following pfmblem.

i /D (w(z), b(z, £, C)) du, (5.8)

with K < N is the (fized) number of clusters, C is the clustering vector and
the vectorial function w(x) must satisfy the following constraints:

lwi |l oy < 51, (Jwallzrpy < 52, -5 |lwallpypy < sn
lwill72py < 1, llwallZ2(p) < L .. ||wn||Lz <1 (5.9)
= Wol\T) = Wy, e — a.e.
wi(z) >0, ()>0 <)>0u

93

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

Proof.

The proof has the same structure of that of Theorem 2.1. For each of the
integrals coming from the explicit writing of the scalar product in (5.8), after
having fixed C, we know that the solution exists, it is unique and we know,
also, how to build it and its properties. Thus we have a vector of weight
functions solution to this first step.

Then, holding fixed an admissible vector of weight functions, there exists a
solution in terms of clusters: since we have a limited, though potentially very
large, number of possible clusters, we can, after enumerating them, choose
the combination which maximizes the functional in (5.8).

Finally, we have to show that the solutions exists when both w(z) and C
change. So, we start with a vector of functional weights constant over D and
then, iteratively, apply the two previous steps. We end with inequalities:

/D<w;(x),b(x,f,c Vdu < .. </ b(z,f,C))du, (5.10)

where we have called with w(z) and C?, respectively, the optimal weight
vector and the optimal clusters at the r-th step. Now, since the number of
possible clusters is finite, there will be an inequality where two clustering are
the same, i.e.: C; = Cj, for two indeces r and p. Then, supposing r > p,

considering these two iterations, we can write:

[(wia) = wy(a), bla.£.C)) dp > 0. 5.11)

Since the second term in the scalar product is composed by always nonneg-
ative components, we must have that the functional vector wy(z) — wy(z)
must be composed by always nonnegative components as well. Now, sup-
pose there exists at least one component, say 7, for which it holds that:
wl*(x) — wl*(z) > 0. Then we would end with an absurd: the way in
which we built the solution function and the uniqueness of the weak limit
force wi(z) not to be the optimal solution to the p-th passage. So, either
w; (z) —wj(x) = 0, or the solution at the r-th passage is the global optimum
and the algorithm ends after a finite number of steps. m

The reasoning behind a numerical algorithm performing Theorem 5.1 is
very similar to that behind the algorithm for the univariate case. The only
detail we have to investigate more carefully, is the selection of the optimal
solution clusters at each stage of the procedure. There do not already exist
numerical methods performing joint clustering, so we have to implement a
possible algorithm from scratch. The solution we propose to this problem
is the following. The idea is to compare the values coming from the op-
timization of the functional. We begin conducting separate clusterings on

94

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

the different components of the data, and, for each of them, we record the
optimal clusters. Then, we put the various optimal groups in each of the
integrals of the functional in (5.8) and calculate the optimal weight functions
associated. Finally, we compute the value of that functional with every opti-
mal clustering and the associated weight functions and we consider optimal
the clusters to which is associated the highest value of the functional with
this procedure. Note that, first of all, this procedure is replicated at every
step of the algorithm and not only at its final step and, finally, this crite-
rion is optimal from the point of view of the maximization of the objective
functional, even though it could miss the global optimum.

5.3 The Dataset of the AneuRisk Project

In this section we will briefly discuss the data considered before proceed-
ing in the analysis.
The AneuRisk Project is a joint research program that aims at evaluating the
role of vascular geometry and hemodynamics in the pathogenesis of cerebral
aneurysms, see, for instance [18] for further details. The data considered in
the analysis here presented are the three z(s), y(s) and z(s) spatial coor-
dinates, measured in mm, of 65 Internal Carotid Artery (ICA) centerlines,
measured on a fine grid of points along a curvilinear abscissa s, decreas-
ing from the terminal bifurcation of the ICA towards the heart. These 3D
reconstructions of the carotids were taken thanks to 3D angiographies and
the data were estimated with three dimensional free knot regression splines.
We are interested in clustering the three-dimensional centerlines, in order to
classify ICA’s possible different morphological shapes. Since the shape of the
ICA influences the pathogenesis of cerebral aneurysms through its effects on
the hemodynamics, such a classification could in fact be helpful in the deter-
mination of the risk level of a given patient. In reality, we will consider the
derivatives of the estimated curves and in figure 5.1 we have plotted the data.
However, the curves could not have the same length: the angiographies were
not taken starting from the same point and this resulted in having curves
defined on different domains; on the other hand, different patients have dif-
ferent features in different points of their own carotid. This fact complicates
the situation, but we decided, following [19], to perform the analysis only
on the common part of the domains. We are able to do so because there
is a set, coming from the intersection of all domains, where every function
is defined and, moreover, that interval coincides with interesting features to
be observed in the geometry of the carotids, otherwise, it would be unuseful
the recording of that particular part. Naturally, the diversity of the domains

95

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

x-coordinate functions
-1.0 0.0 1.0

1.0

-0.5

y-coordinate functions

-1.0 05
L1111l

z-coordinate functions

Figure 5.1: The three spatial derivatives coordinate functions.

implies a high misalignment of the data. Therefore, we have to register them
before conducting any analysis. The curves in figure 5.1 are already regis-
tered; note that the different lengths of the functions are very evident.

Brain aneurysms represent a very serious illness which is associated with a
high rate of mortality and disability, even though ruptured aneurysms are
relatively uncommon. A brain aneurysm is a weak bulging spot on the wall
of a brain artery very much like a thin balloon or weak spot on an inner tube.
Over time, the blood flow within the artery pounds against the thinned por-
tion of the wall and aneurysms form silently from wear and tear on the
arteries. As the artery wall becomes gradually thinner from the dilation,
the blood flow causes the weakened wall to swell outward. This pressure
may cause the aneurysm to rupture and allow blood to escape into the space
around the brain. A ruptured brain aneurysm commonly requires advanced
surgical treatment. There are two kinds of aneurysms: saccular aneurysms
are the most common type of aneurysm and account for 80% to 90% of
all intracranial aneurysms and are the most common cause of nontraumatic
subarachnoid hemorrhage (SAH). This aneurysm looks like a sac or berry
forming at the bifuraction or the "Y" segment of arteries. It has a neck and

96

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

stem. These small, berry-like projections occur at arterial bifurcations and
branches of the large arteries at the base of the brain, known as the Circle
of Willis. The other kind of aneurysm is the fusiform aneurysm and is a
less common type of aneurysm. It looks like an outpouching of an arterial
wall on both sides of the artery or like a blood vessel that is expanded in
all directions. The fusiform aneurysm does not have a stem and it seldom
ruptures. We now report few facts and statistics about cerebral aneurysms *

The estimated number of people having an unruptured brain aneurysm,
is 1 every 50 people.

There is a brain aneurysm rupturing every 18 minutes. Ruptured brain
aneurysms are fatal in about 40% of cases. Of those who survive, about
66% suffer some permanent neurological deficit.

Approximately 15% of patients with aneurysmal subarachnoid hem-
orrhage (SAH) die before reaching the hospital. Most of the deaths
from subarachnoid hemorrhage are due to rapid and massive brain in-
jury from the initial bleeding which is not correctable by medical and
surgical interventions.

4 out of 7 people who recover from a ruptured brain aneurysm will have
disabilities.

Women, more than men, suffer from brain aneurysms at a ratio of 3:2.

Accurate early diagnosis is critical, as the initial hemorrhage may be
fatal, may result in devastating neurologic outcomes, or may produce
minor symptoms. Despite widespread neuroimaging availability, mis-
diagnosis or delays in diagnosis occurs in up to 25% of patients with
subarachnoid hemorrhage (SAH) when initially presenting for medical
treatment. Failure to do a scan results in 73% of these misdiagnoses.
This makes SAH a low-frequency, high-risk disease.

There are almost 500,000 deaths worldwide each year caused by brain
aneurysms and half the victims are younger than 50.

From all these facts we see that an early analysis of the carotids is funda-
mental in order to avoid future diseases and this kind of investigation could
help further the work of physicians.

Statistics taken from The Brain Aneurysm Foundation website.

97

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

5.4 Analysis of the Geometry of the Carotids

Now we will proceed in the analysis of the dataset.

To begin with, we will perform separate analyses on the three coordinates
derivatives and compare the results so obtained, to see if these classifications
are enough to gather some informations on the carotids. Then we will clus-
ter jointly the functions and compare the result with a previous work on the
same dataset and, finally, we will use our method in the case of supervised
learning, knowing the groups of patients with pathology on the Circle of
Willis, those with pathology on ICA or healthy.

First of all we have to determine the right tuning parameters s, so and s3
that bring to the right sparse clusterization. We have no specifical outer
informations to decide the right values, therefore we have to calculate them
via the same previously adopted numerical procedure. Unfortunately, we do
not even know how many clusters we have to seek for. Thus we calculate
the statistic S(k) for the three coordinates, using the aligned data on the
common domain.

Even if the plot of the statistic shows, in each case, some fluctuations (as we
can see in figure 5.2, mainly on the z coordinate), in each case S(k) is max-
imized for k* = 2 and this fact confirms the number of groups found by the
authors in [19]. From these plots we can already think that clustering sepa-
rately the three coordinates will not provide the fairest results and, mainly,
the z coordinate seems to be that which gives the most problematic situation.

98

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

S(k) x-coordinate
10 25
1111

Index

S(k) y-coordinate
10 20
[

Index

S(k) z-coordinate
8 14
NN

Index

Figure 5.2: The three statistics S(k) computed for each coordinate. Note that
in each case, the optimal number of clusters is 2.

After these preliminary observations, we can calculate the optimal tun-

ing parameters in case there were only two groups. The resulting values are
very similar for each coordinate: 5.080 with Gap Statistic value of 2.2774 for
x, 5.074 with Gap Statistic value of 2.1007 for y and 5.080 again with Gap
Statistic value of 1.7941 for z.
Now we can apply our algorithm to the three separate coordinates. We im-
mediately see that the three clusterizations do not produce the same groups,
even if those coming from the z and y coordinates are the most similar.
The vector containing the calculated groups of the z coordinate, instead, is
completely different from the others, the clusters are less defined and this
confirms what we have observed about the graph of the statistic S(k) in this
case.

In figure 5.3, we can see the group means in case of separate clusteriza-
tions. The plot of the means for the z coordinate is not informative: the
shape of the two groups is very similar and it seems that they differentiate
each other only for the values of the functions themselves. The other graphs
are more interesting. We can observe that the first part of the domain is
what differentiate the clusters the most. The remaining final part seems not

99

(S8

. Analysis of Three-Dimensional Cerebral Vascular Geometries

-0.6 0.0 06

mean functions x-coordinate

0.4

-0.2

mean functions y-coordinate

0.5
\

L1 1
\

-0.5
\

mean functions z-coordinate

Figure 5.3: The three computed cluster means when the clustering is conducted
separately on the three coordinates.

so important in the diversification: the clusters only differ for the values as-
sumed by the functions, but not for their shape. Moreover, in the y and, even
more prevalently, in the z coordinate, we can recognize a distinctive shape in
the two clusters: one group (indicated with a continuous line) is composed
by curves with an evident maximum and an evident minimum, while, the
other (indicated with a dashed line) is composed by only a minimum, in case
of the x coordinate and less prominent maximum and minimum in the y
coordinate.

In figures 5.4, 5.5 and 5.6 we have reported the plots of the b and w func-
tions in the three cases. Actually, we can observe the fact that for the first
two coordinates the initial part of the interval is important to the differen-
tiantion and in case of y coordinate, even a final part of it is not negligible.
A case on its own is represented by the remaining coordinate. The two plots
show many peaks and an absolute maximum located at the right end of the
interval, but, the importance given to the first part of the domain is small.
This suggests that y and z take more into account the part close to the bi-
furcation. The cardinality of the found clusters is the same in case of x and

100

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

© S
o
o
[s2]
Q_
2 % e °
g 8
° T
s s
X X ©
x =
S o 2
S
o
o
T T T T T ° T T T T T
-30 -25 -20 -15 -10 -30 -25 -20 -15 -10
X X

Figure 5.4: The computed functions b and w for the x coordinate, in the separate
analysis.

y coordinates: 31 and 34, even if they do not coincide, whereas, for the z
coordinate the two groups have cardinality 30 and 35. Only three functions
differentiate the groups when the clustering process is conducted separately
on the z and y coordinates.

Now we can move on to focus on the joint clustering of the coordinates.
The lackness of deep studies in the field of joint clustering does not provide
us with methods suitable to compute a statistic that is, in some sense, the
"multivariate’ version of S(k). Thus we are in trouble in finding the right
number of clusters. However, since for each of the coordinates we obtained
that the estimated number of clusters is 2, we keep holding this assumption.
We have to calculate, also, the vector s = (s, 52, 53)7 of the optimal tuning
parameters. Even in this case, if we refer back to the previous analysis, we
see that the values found in those cases were almost equal and very close to
the maximum allowed value: 1/25.814, where the number under the square
root is the measure of the common part to the all domains. Therefore we
have decided to take s; = s9 = 53 = v/25.814.

After having precised all these questions, we can apply our modified algo-

101

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

2.0

1.5
0.012
|

0.008
|

b(y) y-coordinate
1.0
|
w(y) y-coordinate

0.004

0.5
|

0
0.000

I I I I I I I I I I
-30 -25 -20 -15 -10 -30 -256 -20 -15 -10

y y

Figure 5.5: The computed functions b and w for the y coordinate, in the separate
analysis.

rithm to perform joint clustering. We obtain a clustering vector that is
different from all those previously found with separate clusterizations. The
clustering vector found with the application of the univariate algorithm to
the x coordinate is the most similar to the new found vector, with only 7
curves reassigned, followed by that of the y coordinate, with 19 reassign-
ments and, finally, the most different is that of the z coordinate, with the
reassignments of all but 6 functions. In figure 5.7 we have reported the new
calculated mean functions.

We can immediately note some aspects distinguishing the new mean func-
tions. First of all in the case of x coordinate, it seems there are not so many
changes: the shapes look quite the same, except in the interval [—20, —15],
where we can note a more evident separation with the separate clustering.
Instead, with the joint algorithm this difference is smoothed. However it is
quite simple to understand why this is happening. In separate clustering,
the algorithm has to take into account only one set of data and, therefore, it
focuses on the differences of only that dataset, without considering the other
coordinates.

The mean functions for the other two coordinates undergo to more distinct

102

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

o | _|
= ©
o
S
o o
CS 7] —
L 2
®© ©
c (= <
5 8- s S -
S o
8 8
Nos = 7
N o <
b z g
8 -
~ o
o- 7 —
o
o S
_ 8 -
I I I I I o I I I I I
-30 -25 -20 -15 -10 -30 -25 -20 -15 -10
z z

Figure 5.6: The computed functions b and w for the z coordinate, in the separate
analysis.

changes. For the y coordinate, in the initial part of the domain the mean func-
tions are quite the same. However, approximatively from the point x = —24,
they change. The differences in the clusters are underlined: the dashed line,
previously almost equal to the continuous one, is now a bit under it in the
inteval [—24, —20] and a bit above in [—20, —13]. Note, that, now, the two
mean functions intersecate two more times than before.

Finally, we can look at the z coordinate. Here the changes happen mostly
in the first part of the domain, whereas the differences between the groups
smooth in last part. Even if it not so evident, the continuous line now shows
a maximum and the gap in [—25, —15] previously found is almost eliminated
in the joint clusterization. Morever we can deduce, from the fact that there
are more intersections than before between the mean functions, that this new
clusterization is more reliable: the algorithm has distinguished mainly basing
on the shape of data, rather than the values they assumed.

There is a common aspect in all these plots: the mean functions mainly dif-
fer on the first part of the domain. Therefore we can infer that it suffices to
consider only this part to decide to which group assign a new observation.
The analysis, here conducted, was completely unsupervised, meaning that

103

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

mean functions x-coordinate
06 0.2
L1111
!
!

-0.2 04

mean functions y-coordinate

|
\

mean functions z-coordinate
1.0 0.0
\
\

Figure 5.7: The computed mean functions with the joint clusterization.

we had no previously collected informations. Specifically, we did not know
what to expect in the shape of the groups found. However, we can still note
the presence of two distinct shapes and already found in literature, e.g. [19].
These shapes are called 2 and S shape, depending on the number of syphons
of the carotid: one in case of €} and two in case of S.

We can compare the clusters here found to those calculated in [19] with
jointly applying K-mean method and alignment of data.

K-means + alignment

weighted K-means

Q

35

35

S

30

30

Table 5.1:

Comparison between joint K-means and alignment of data with

weighted K-means

The groups found are exactly coincident. However we have, also, a quanti-
tative measure of the difference between clusters and a criterion of decision.
In the following three figures the function b(s) is plotted for each coordinate.

As we have already noted, the graph of b,(s) is the most similar to the
separate case. There are only little changes: the absolute maximum, from

104

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

Lr)_
<«
[0
o
©
£
T o
[
Q
o
x
T N
@
fel
-
O_

-30 -25 -20 -15 -10

Figure 5.8: The computed function b(s) for the x coordinate.

6, has moved to 5 and also the successive local maxima have lowered. The
other two cases show the most evident modifications. In the separate analy-
sis, by(s) had two evident maxima, the first local and the second absolute, a
flat part near zero with another local maximum. Now the absolute maximum
has moved to be the first one and raised to 3. The remaining part of the
function has completely modified, it is near zero, with two local maxima and
it ends monotone increasingly.

The function b,(s) is the one which shows the most evident changes. The
absolute maximum, located in the final part of the domain, is now found
precisesly at the first point of the interval. Even if, in this case, some impor-
tance is still given to the ending part of the domain, the most significative
part has become the initial one.

As the final step of our analysis, we want to use our method, to perform
supervised learning. The study conducted so far did not take into account
any kind of knowledge about the data collected and we tried to cluster and
then, aposteriori, we induced some useful informations about them. Now, we
know, among the patients, who had an aneurysm, where it was located and
if the aneurysm ruptured or not. For every datum, there are associated two
more details: where the aneurysm was found, if the patient had any, and if

105

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

3.0

2.5

b(s) y-coordinate
15

1.0

0.5

0.0

-30 -25 -20 -15 -10

Figure 5.9: The computed functions b(s) for the y coordinate.

the aneurysm ruptured. About the location of the anerysm, we can identify
five classes of patients:

1. Patients without any aneurysm,;

2. Patients with an aneurysm along the internal carotid far from the bi-
furcation;

3. Patients with an aneurysm along the internal carotid close to the bi-
furcation;

4. Patients with an aneurysm at the end of the internal carotid;
5. Patients with an aneurysm after the end of the internal carotid.

Of all these distinctions, classes 4. and 5. are the aneurysm commonly in-
dicated as those happening on or after the Circle of Willis, while those in
classes 2. and 3. are located in the internal carotid. Therefore, we want to
find out if we can individuate particular aspects distinguishing all these pos-
sible groups. To begin with, we will consider three groups: patients without

106

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

b(s) z-coordinate
0.2 04 05 06
|

0.1

0.0
|

-30 -25 -20 -15 -10

Figure 5.10: The computed functions b(s) for the z coordinate.

any kind of aneurysm, those belonging to classes 2. and 3. and those be-
longing to the last two classes. In figure 5.11, we have shown b,(s), b,(s) and
b.(s) in this first case. The shape of b,(s) and b,(s) is similar to that found
when we have jointly clustered. Even the abscissa of the absolute maximum
is almost the same. Morever it seems, again, that the first half of the interval
is what really diversify the clusters. If we look at the z coordinate, we can see
that, even if some importance is given to the first half of the interval, what
is most useful to the grouping is the final half of the set and with more and
more significance as long as s augments. If we restrict our attention to the
first half of the domain, we find the absolute maximum of b,(s) in correspon-
dence of that of b,(s). The absolute minimum of b,(s) and b,(s) is found at
values very close to one another: —21.208 and —21.437, respectively, while
the absolute minimum of b,(s) is found at —13.8.

This kind of comparison, however, does not tell us, for example, which fea-
tures mostly distinguish patients with an aneurysm along the internal carotid
from those with an aneurysm on the Circle of Willis. Therefore, to perform
this analysis, we remove, from our dataset those patients who do not suffer
of any aneurysm and consider only those remaining. This will help us to seek
for differences between the two classes of aneurysms. Only seven patients do

107

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

0.6
I |

b(s) x-coordinate

0.0

00 06 1.2

b(s) y-coordinate

b(s) z-coordinate
000 0.15
| -

Figure 5.11: The computed vector b(s,f,C) for each coordinate with three
groups: {1}, {2,3} and {4,5}.

not show any kind of aneurysm, so we do not consider them and remain with
58 curves. We have decided to divide the data into these groups: {2,3} and
{4,5}.

In figure 5.12, the components of the resulting vector b(s, f, C) are reported.
The most similar to the previous cases, here, is the component associated to
the y coordinate. The other two coordinates, show different patterns. Sur-
prisingly, even the z coordinate has a different shape if compared to the
previous analyses. More relevance is assigned to the ending part of the do-
main. It is reasonable, however, since the neighborhood of the bifurcation
could really contribute in determining the type of aneurysm. In particular,
we can note two main areas that distinguish the aneurysms: from the be-
ginning to x = —30.422 and from x = —30.422 to x = —21.513. The shape
of the function in this second interval has modified lightly, with respect to
the previous cases and we can also note that more importance is given to
two more subsets: from —21.513 to —16.792 and, finally, from here to the
end of the domain. The 2z coordinate changes its shape once again. Now it
assumes a pattern similar to the y coordinate, but with inverted importance

108

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

b(s) x-coordinate
0.00 0.08
Ll

00 02 04

b(s) y-coordinate

b(s) z-coordinate
0.00 0.10
[|

Figure 5.12: The computed vector b(s,f, C) for each coordinate with groups:
{2,3} and {4,5}. In this way we can search for differences between those showing
different types of aneurysms.

of maxima: the absolute maximum is the second one. This is a constant
characteristics of the z coordinate: it always gives more relevance to the
ending parts of the domains.

In particular, if we look at the two groups, we can note some differences
in the shape and in the values of the centerlines of the carotids. Those
with an aneurysm on the internal carotid have centerlines with higher values
and a more pronounced maximum at about 30 mm from the bifurcation, on
the x coordinate. The converse is true for the y coordinate: those with an
aneurysm on the Circle of Willis have a more relevant maximum at about
20 mm from the bifurcation and, typically, higher values of their centerlines,
especially in the final part of the domain. For the z coordinate, instead, the
two groups show the same shape. The only aspect differentiating them is in
the values of their centerlines; indeed the patients with an aneurysm on the
Circle of Willis have higher values on the final part of the carotid, that is
near the bifurcation.

The last analysis we can afford is the comparison of the centerlines between

109

5. Analysis of Three-Dimensional Cerebral Vascular Geometries

the patients who do not have any kind of aneurysm and those who have it,
with no regards of the type. In figure 5.13, we have reported the computed
vector b(s,f,C), in this last case. For what concerns the x coordinate, we

b(s) x-coordinate
0.0 04 08
1111

b(s) y-coordinate
0.6

0.0

(s) z-coordinate
0.00 0.15
L1111

Figure 5.13: The computed vector b(s,f, C) for each coordinate with groups:
{1} and {2, 3,4, 5}. In this way we can search for differences between those patients
showing an aneurysm and those without any kind of it.

can note a higher maximum and a steeper descent in the healthy patients
than in the sick ones, but, we have to say that, in this second group, the dif-
ferences can be mitigated by the presence of the two types of aneurysm. In
the y coordinate, the two groups show the same shape, except that the values
of the centerlines of the healthy patients seem to be more extreme: the initial
minimum is lower and the final flat part is higher than in the second group.
However, no evident differences of pattern in the two clusters are found. On
the contrary, the shapes of the z coordinate are more distinct. The sick pa-
tients have a flat part near zero up to 25 mm from the bifurcation and then
the centerline increase. The others, instead, have a little maximum between
30 and 25 mm; this causes the maximum between —30 and —25 in the plot
of b.(s). The ending part also differentiate the two clusters: the centerlines

110

. Analysis of Three-Dimensional Cerebral Vascular Geometries

of both groups increase and then decrease again, but the centerlines of the
healthy patients decrease more rapidly and this explains the increasing final
part of b,(s).

111

Appendix A
Codes

In this appendix, we report the codes used to implement the algorithms
used. All the functions and the programs are written in R language. All the
commands are commented, in order to explain their meaning.

This first function, called "UpdateWsfun" is that used to the update of the
discretized weight function. The returned vector is as long as the number of
the current iteration and it is constructed exactly as it is shown in Theorem
2.1. Tt needs, as arguments, the matrix containing the data, the vector con-
taining the updated groups, the tuning parameter, the number of the current
iteration and, finally, the vector containing the points of the domain.

UpdateWsfun <- function(x, Cs, Llbound, niter, xpoints){

x is the matrix containing the data;

Cs is the updated vector containing the groups;

llbound is the tuning parameter;

niter is the number of the current iteration;

xpoints is the vector containing the points of the domain.
m <- dim(x) [[2]]

len <- length(xpoints) # length of the interval

measure of the subinterval generated at every step:
subint <- (xpoints[len] - xpoints[1])/niter

ws <- numeric(niter)

bcss <- numeric(niter)

update of the distances between groups per subinterval:
b <- GetWCSS(x[,1:(floor(len/niter))], Cs)$bcss.perfeature
bess[1] <= sum(b)

for(i in 2:(niter - 1)){

112

A. Codes

b <- GetWCSS(x[,(1 + (i-1)*floor(len/niter)):
(i*floor(len/niter))], Cs)$bcss.perfeature

bess[i] <= sum(b)

+

b <- GetWCSS(x[, (1 +
(niter-1)*floor(len/niter)) :m], Cs)$bcss.perfeature

bess[niter] <- sum(b)

calculation of the BCSS in every subinterval:

locbcss <- bcss*subint

sum.locbcss <- sum(locbcss) # global BCSS

choice of the optimal alpha:

alpha <- min(Llbound/sum.locbcss, 1/(sqrt(sum(locbcss™2))))

update of the weight "vector":

for(i in 1:niter){

ws[i] <- alpha * (subint) * bcss[i]

}

return(ws)

}

The second function we report is that which, at every iteration, reassigns
the data to the correct clusters. Its arguments are: the data matrix, the
number of clusters, the updated weight vector, the clusters calculated at
the previous iteration, the current iteration and the maximum number of
allowable iterations.

UpdateCsfun <- function(x, K, ws, Cs, niter, maxiter){

x is the matrix containing the data;

K is the number of clusters;

ws 1s the updated weight vector;

Cs is the clustering vector of the previous iteration;
niter is the number of the current iteration;

maxiter is the maximum allowed number of iteration.

<- dim(x) [[1]1]

<- dim(x) [[2]]

weighting of the data matrix (at the second iteration):

H B B H H H H HH

if ((niter == 2) && (niter <= maxiter)){
X1 <- x[,1:(floor(m/2))]
x[,1:(floor(m/2))] <- sqrt(ws[1])*X1

X2 <- x[,(1 + floor(m/2)) :m]

x[,(1 + floor(m/2)) :m] <- sqrt(ws[2])*X2
+

113

A. Codes

weighting of the data matrix:

if ((niter > 2) && (niter <= maxiter)){
X <- x[,1:(floor(m/niter))]
x[,1:(floor(m/niter))] <- sqrt(ws[1])*X
for(j in 2:(niter-1)){
X <= x[,(1 + (j-1)*floor(m/niter)): ((j)*floor(m/niter))]
x[,(1 + (j-1)*floor(m/niter)): ((j)*floor(m/niter))]
<- sqrt(ws[j])*X
}
X <- x[, (1 + (niter-1)*floor(m/niter)) :m]
x[,(1 + (niter-1)*floor(m/niter)) :m] <- sqrt(ws[niter])*X
}

clusters assignment:

nrowx <- nrow(x)
mus <- NULL
if (1is.null(Cs)){

for(k in unique(Cs)){
if (sum(Cs==k)>1) mus <- rbind(mus, apply(x[Cs==k,],2,mean))
if (sum(Cs==k)==1) mus <- rbind(mus, x[Cs==k,])

}

+

if(is.null (mus)){
km <- kmeans(x, centers=K, nstart=10)

+
else {
distmat <- as.matrix
(dist(rbind(x, mus))) [1l:nrowx, (nrowx+1l):(nrowx+K)]
nearest <- apply(distmat, 1, which.min)
if (length(unique (nearest))==K){
km <- kmeans(x, centers=mus)
+
else {
km <- kmeans(x, centers=K, nstart=10)
}
}
return(km$cluster)
+

114

A. Codes

With these functions we have substantially built, respectively, the first and
the second steps of the proof of Theorem 2.1. Now, we need a third function
gathering the previous steps iteratively; i.e. it has to perform the third step
of the proof of the same theorem. This is done with the following function. It
receives as arguments: the data matrix, the number of clusters, the bound on
the L' norm of the solution function, the points of the domain, the number
of restarts of the algorithm and the maximum number of iterations.

FKMeansSparseCluster <- function(x, K, wbounds, xpoints,
nstart, maxiter) {

x is the data matrix;

K is the number of clusters;

wbounds is the bound on the L~1 norm of w(x)

(it could be less or equal to the tuning parameter);
xpoints is the vector of points of the domain;
nstart is the number of restart of the algorithm;
maxiter is the maximum number of iterations.
nstart default = 20
maxiter default = 10
cycles of controls:
if(is.null(nstart)){
nstart <- 20
}
if (is.null (maxiter))d{
maxiter <- 10
}

measure of the domain
mis <- xpoints[length(xpoints)] - xpoints[1]
maximum value of the tuning parameter:
Libound <- sqrt(mis)
if (is.null(wbounds)){
wbounds <- Lilbound
}
if (wbounds > Libound){
stop("wbounds should be less than or equal to Lilbound")
}
1 <- length(xpoints)
wbounds <- c(wbounds)
out <- list()
initialization of the weight vector:
WS <- rep(sqrt(1/mis), times = 1)

H =

H OH HF H HF H

115

A. Codes

WS.o0ld <- (1/2)*WS
store.bcss.ws <- NULL
initialization of the clustering vecor:
C <- kmeans(data, K)$clusters
niter <- 2
iterative calculation of weight and clustering vectors:
while((sum(abs(WS - WS.old))/sum(abs(WS.old))) > 1le-04
&& (niter <= maxiter)){

WS.old <- WS
ws <- UpdateWsfun(x, C, wbounds, niter, xpoints)
Cs <- UpdateCsfun(x, K, ws, C, niter, maxiter)
C <- Cs
it <- niter
niter <- niter + 1
WS <- numeric(l)
WS[1:floor(1/it)] <- ws[1]
for(i in 2:(it-1)){
WS[(1 + (i-1)*floor(1/it)):((i)*floor(1/it))] <- wsl[i]
+
WS[(1 + (it-1)*floor(l/it)):1] <- wsl[it]
}
clusters.mean <- diag(0, K, 1)
b <- (GetWCSS(x, Cs)$bcss.perfeature) * WS
wcss <- GetWCSS(x, Cs, WS)$wcss.perfeature
bcss <- GetWCSS(x, Cs)$bcss.perfeature
for(j in 1:K){
clusters.mean[j,] <- colMeans(x[which(C == j),])
}

out <- list(ws = ws, Cs = C, iteration = it,

fv = sum(b), wcss = wcss, tss = sum(b + wcss),

clusters.mean = as.matrix(clusters.mean),

bcss = bess, WS = WS)

return(out)

The objects returned by this fuction are: the final weight function (ws),
the final cluster vector (Cs), the number of iterations (iteration), the opti-
mal value of the objective functional (fv), the WCSS, the T'SS and the BCSS
(wess, tss, bcess)and, finally, the clusters mean functions (clusters.mean).

116

Bibliography

1]

[10]

[11]

P. Billingsley (1999): Convergence of Probability Measures, New York,
Wiley & Sons Inc.

F. Ferraty, P. Vieu (2006): Nonparametric Functional Data Analysis.
Theory and Practice, New York, Springer.

J. H. Friedman, J. J. Meulman (2004): "Clustering Objects On a Subset
of Attributes", Journal of the Royal Statistical Society, Ser. B., 66, 815-
849

P. Halmos (1974): Measure Theory, New York, Springer.

J. A. Hartigan (1975): Clustering Algorithms, New York, Wiley & Sons
Inc.

T. Hastie, R. Tibshirani, J. Friedman (2010): The Elements of Sta-
tistical Learning. Data Mining, Inference and Prediction, New York,
Springer.

E. Hewitt, K. Stromberg (1965): Real and Abstract Analysis, New York,
Springer.

J. Jacod, P. Protter (2004): Probability Essential, Berlin - Heidelberg,
Springer.

R. A. Johnson, D. W. Wichern (2007): Applied Multivariate Statistical
Analysis, Upper Saddle River, NJ, Prentice Hall.

W. Pan, X. Shen (2007): "Penalized Model-Based Clustering With Ap-
plication to Variable Selection," Journal of Machine Learning Research,
8, 1145-1164.

D. Pollard (1981): "Strong Consistency of K-Means Clustering", The
Annals of Statistics, Vol. 9, No. 1, 135-140.

117

Bibliography

[12]

[20]
[21]

[22]

D. Pollard (1982): "Quantization and the Method of K-Means', IEEE
TRANSACTION ON INFORMATION THEORY, Vol. IT-28, No. 2,
199-205.

D. Pollard (1984): Convergence of Stochastic Processes, New York,
Springer.

J. O. Ramsay, G. Hooker, S. Graves (2009): Functional Data Analysis
with R and MATLAB, New York, Springer.

J. O. Ramsay, B. W. Silverman (2002): Applied Functional Data Anal-
ysis: Methods and Case Studies, New York, Springer.

J. O. Ramsay, B. W. Silverman (2005): Functional Data Analysis, New
York, Springer.

W. Rudin (1987): Real and Complex Analysis, Singapore, McGraw-Hill
Book Co.

L. M. Sangalli, P. Secchi, S. Vantini, A. Veneziani (2009): "A Case
Study in Exploratory Fuctional Data Analysis: Geometrical Features
of the Internal Carotid Artery"', Journal of the American Statistical
Association, vol 104, No. 485, 37-48.

L. M. Sangalli, P. Secchi, S. Vantini, V. Vitelli (2010): "K-Mean Align-
ment for Curve Clustering", Computational Statistics and Data Analy-
sis, 54, 1219-1233.

A. N. Shiryaev (1996): Probability, New York, Springer.

R. Tibshirani, G. Walther (2005): "Cluster Validation by Prediction
Strength", Journal of Computational and Graphical Statistics, 14 (3),
511-528.

R. Tibshirani, G. Walther, T. Hastie (2001): "Estimating the Number
of Clusters in a Dataset via the Gap Statistic", Journal of the Royal
Statistical Society, Ser. B., 32 (2), 411-423.

R. Tibshirani, D. Witten (2010): "A Framework for Feature Selection
in Clustering", Journal of American Statistical Association, Vol. 105,
No. 490, 713-726.

118

Acknowledgments

At the end of this work, I would really like to thank a huge number of
people for having supported, helped or even entertained me through all these
months.

First of all, I have to thank my advisor, prof. Piercesare Secchi, to which
I owe so much. He has made me fond of this difficult discipline that is
Statistics, but also he has stimulated me with challenges contributing to
make this thesis a better work and to think about a great variety of subjects.
His teachings goes beyond the mere academic environment and my regard
of him is very high. There is another person to whom I owe a great debt:
Valeria, for having very patiently followed and helped me with R, even if
she was very busy with all her deadlines... and also, if I was able of getting
through the algorithms and all the oddities of the computational parts of
"our" work, a great contribution is up to her.

Then, I have to thank another long list of persons... Starting from my family
my brother Paolo, my dad and my mom, for having sustained me all this
time and without whom all this would have not been possible. I can’t omit
all my adventure-mates, that have shared with me all these years, the sad
and the happier moments. I will always remember with a smile the laughes
made during the lectures, the moments spent in explanations, those spent in
studying and solving, sometimes quite unuseful, problems and, mainly, the
parties after the exams and the "recreational" moments. I can’t nominate
the totality of people, but, among them, I want to remember some people in
particular. Emma, because of her great patient shown with me, in bearing
my oddities and ideas, for taking care of me like a mom and for her great work
(doing also mine) in all the projects made together. Pamela and Andrea, for
the plays made instead of studying and the "happy hours"', Fez and Martino,
for their continuously computer skills, I1 Cosso, Stefano, Fabio, Il Portos,
Alessio, Federica and Chiara and all the others, that I can’t report, but
whom [distinctly remember. And finally, I would like to thank Stefania, for
she has teached me a lot...

Many other people, outside the university, contributed indirectly to this work.

119

Camilla, for sharing my same dreams and fears, Tommy, Paolo, Martina
and Mario, funny travel-and-poor-figure-mates, but also all the friends of
a lifetime: Fra, Lucia, Fede, Claudio, Anna, the-at-an-¢/2-from-being-my-
favorite Gaia and many others... for they have constantly trusted in me.
Elisabetta, because I promised her, for her "medical consultations" and all
the members of the mighty Team Delfo, mainly Davide and his philosophycal
discussions... and finally Gaia, about whom I have nothing to say, unless that
"I'm learning all about my life, by looking through her eyes".

120

