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Abstract

The flow and heat transfer characteristics in a matrix of surface mounted

cubes are investigated by means of an unstructured finite volume solver and

the numerical results are validated against experimental data. Several simu-

lations have been performed, with different turbulence models: the classical

URANS models (k− ε, k−ω), a non-linear k− ε model and the more recent

Scale Adaptive Simulation (SAS); in addition, also Large Eddy Simulations

(LES) have been performed, in order to investigate their performances on

computational grids which were designed mainly for URANS applications.

The comparison is made for first and second order statistical quantities as

well as for the general flow structure. The LES results show several char-

acteristics which are out of the modelling capabilities of classical URANS

models (including SAS) and, in turn, influence the local temperature distri-

bution. Also, for this kind of flow, LES higher accuracy is shown to be only

slightly influenced by the grid resolution and accurate results are achievable

at costs even smaller than those typical of URANS computations.
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Abstract

Lo scambio termico ed il flusso intorno ad una matrice di cubi è stato analiz-

zato utilizzando un codice non strutturato ai volumi finiti: i risultati delle

simulazioni sono poi stati messi a confronto con i dati sperimentali disponi-

bili. Sono state effettuate simulazioni con diversi modelli di turbolenza: i

tradizionali modelli URANS (k− ε, k−ω), un modello k− ε non lineare e la

recente “Scale Adaptive Simulation” (SAS); in aggiunta, sono state effettuate

anche delle simulazioni “Large Eddy” (LES), per valutarne le prestazioni su

griglie di calcolo per applicazioni URANS. Nel confronto sono state consi-

derate quantità statistiche del primo e del secondo ordine, nonché la strut-

tura generale del flusso. A differenza dei modelli URANS e SAS, la LES

è stata in grado di ricostruire in modo estremamente dettagliato le carat-

teristiche dinamiche del flusso, che giocano un ruolo fondamentale nella

previsione della distribuzione locale di temperatura. Inoltre, nel caso analiz-

zato, l’accuratezza dei risultati della LES si è dimostrata poco dipendente dal

passo di griglia utilizzato ed il costo computazionale è risultato addirittura

minore di quello delle simulazioni URANS.
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1.1 Introduction

The prediction of turbulent airflow and heat transfer around bluff bodies is

a matter of considerable importance. A typical example is the cooling of

electronic components attached to a printed circuit board, which act as con-

centrated heat sources: long term reliability can be ensured only adopting an

efficient heat removal technique, in order to avoid excessive local overheat-

ing. Furthermore, the continuous tendency to component miniaturisation

and power density increment makes the accurate prediction of heat transfer

a fundamental prerequisite of optimum component design.

Another interesting application is the internal cooling of gas turbine

blades: the engine efficiency can in fact be improved increasing the tem-

perature of combustion gases, but this is possible only if an efficient blade

cooling method is provided. The cooling fluid passes through internal ducts

which are equipped with wall-mounted protrusions and ribs, in order to en-

hance heat removal: it is therefore very important to provide an accurate

prediction of local heat transfer, since a local overeating could cause serious

damages to the blades and, consequently, to the whole engine.

Many other examples can be found, such as flow around buildings in

urban areas: in these cases the attention is focussed on aerodynamic forces

or dispersion of pollutants.

An idealised model which can be used to investigate the complex flow

physics involved in the practical applications listed above is -in spite of the

differences with respect to the real configurations- a matrix of wall-mounted

cubes.

Such a case was experimentally investigated by Meinders and Hanjalić [7]

and the gathered data served as reference for the 6th and 8th ERCOFTAC

Workshop [4] on refined flow and turbulence modelling. In fact, according

to the periodic conditions of the flow and the complex involved turbulence

phenomena, this case is also well suited for benchmarking and validation of

turbulence models and numerical methods.

The conclusions of the two workshops substantiate the fact that RANS

computations are not able to reproduce the main features of the flow due to
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the assumption of steadiness. In contrast, unsteady computations perform

considerably better, with large eddy simulations (LES) and direct numeri-

cal simulations (DNS) achieving an excellent agreement with the available

experimental data.

In the present work, different turbulence models have been employed to

simulate the turbulent flow and the heat transfer of the same configuration

considered by Meinders and Hanjalić. The obtained results have then been

compared with the experimental data provided by the measurements in order

to find the model which yields the most accurate results, in consideration of

the computational costs. Furthermore also the influence of the computational

grid has been investigated: computations have therefore been performed on

two different meshes, a coarse one and a fine one.

The Unsteady Reynolds averaged Navier-Stokes (URANS) approach has

first been adopted, and several models have been tested: the standard and

the non linear version of the k − ε model, the k − ω model and the Scale

Adaptive Simulation, which is an hybrid between the URANS and the large

eddy simulation (LES) approach. Then, two LES on both computational

grids have been performed, in order to investigate their performances on

meshes which were specifically designed for URANS applications.

It is important to notice that the aim of the present work was neither to

improve existing models in order to obtain the best conformance with the

experimental measurements, nor exclusively to perform LES simulations: the

main purpose was in fact to investigate the performances and the accuracy

of the standard URANS and LES models, as they are implemented on the

solver.

All computations have been performed with the commercial solver AN-

SYS FLUENT 12.2.1.

1.2 Thesis outline

In the following chapters first a brief description of turbulence phenomenol-

ogy and turbulence modelling will be given. Then the main characteristics of

the solver ANSYS FLUENT will be discussed, focussing in particular on the
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numerical schemes which were adopted in the performed simulations. The

analysed case will then be described, with a brief explanation of the experi-

mental and numerical setup, with particular attention to the characteristics

of the mesh.

Subsequently, results will be presented and compared with experimental

data. Some additional results will also be shown, for which a comparison with

experiments has not been possible, since measured data were not available.

Finally some remarks about computational costs will be made, and the

conclusions will be drawn.
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2.1 Phenomenology of turbulence

It is easy to find examples of turbulent flows in our everyday life, such as

smoke from a chimney or water in a waterfall. One can also immediately

observe what the characteristics of turbulent flows are: irregularity, presence

of eddies of different size, unsteadiness etc.

All flows tend to become turbulent under certain conditions. It is possible

to describe the level of turbulence by means of a non-dimensional parameter,

the Reynolds number, that is defined as follows:

Re =
LU

ν
(2.1)

where L and U are respectively a characteristic length and velocity of the flow

while ν is the kinematic viscosity of the fluid. The Reynolds number is es-

sentially a ratio between inertial forces and viscous effects. Flows dominated

by viscosity are called laminar and are characterized by a regular spatial

and temporal behaviour. If the Reynolds number Re of this flow increases,

inertial effects become more important than the viscous ones and the flow

becomes turbulent: the flow looses regularity and its characteristics start

exhibiting chaotic features in time and space. Figure 2.1 shows an example

of flows at different Reynolds number. All flows encountered in engineer-

ing practice are turbulent; besides this, turbulence significantly increases the

transport and mixing of matter, momentum and heat in flows, therefore its

study is of great practical importance.

Turbulence is a phenomenon characterized by rotational flow structures

called turbulent eddies, which have a very wide range of length scales. Eddies

of size l have a characteristic velocity u (l) and time scale τ (l) ≡ l/u (l): if

the size l decreases, also u (l) and τ (l) decrease.

There is a wide range of turbulent eddies: the largest ones are essentially

inviscid, because viscous effects are negligible compared to inertial effects;

the smallest ones are instead dominated by viscosity so that their kinetic

energy is converted into thermal internal energy. Furthermore, the largest

eddies interact with the main flow and receive energy from it.
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Figure 2.1: Turbulent mixing layer. The Reynolds number of the flow in the
picture below is two times the Reynolds number of the one in the picture
above. (From [17])

Through the so called vortex stretching and eddy break up processes the

energy is then handed down to progressively smaller eddies until it is dissi-

pated at the smallest scales: this phenomenon is called energy cascade.

The largest eddies have energy of order u2
0 and time scale τ0 = l0/u0, so

that the energy transfer rate can be supposed to be u0/τ0 = u3
0/l0. Since the

small eddies -due to their small lenght and time scales- are supposed quickly

to adapt to the energy transfer from the largest ones, it can also be supposed

that small eddies are in dynamic equilibrium with large eddies. Under this

hypothesis, it can be assumed that the viscous dissipation ε is nearly equal

to the energy transfer at the smaller scales (supposed to be u3
0/l0).

The typical spectrum of a turbulent flow contains energy across a wide

range of spatial frequencies or wavenumbers, as shown in figure 2.2.

A. N. Kolmogorov, who in the 1940s carried out fundamental work on the

structure of turbulence, formulated three hypothesis, on which his theory is

based. The first one is:

1. Hypothesis of local isotropy : At sufficiently high Reynolds number, the

small scale turbulent motions (l � l0) are statistically isotropic.

It is then useful to introduce a length scale lEI as demarcation between the
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Figure 2.2: Energy spectrum of turbulence

anisotropic large eddies (l > lEI) and the isotropic small eddies (l < lEI): this

range of small scale motions is the so called universal equilibrium range. Ev-

ery information about geometry and direction of the large scales is supposed

to be lost by passing down the cascade: therefore the statistics of the small

scale motions are similar in every high-Reynolds-number turbulent flow. It

is important to understand on which parameters does this statistically uni-

versal state depend. The two most important processes that take place in

the energy cascade are the energy transfer through different scales and the

viscous dissipation. A plausible hypothesis is then that the important pa-

rameters are the rate TEI at which the small scales receive energy from the

large ones, and the kinematic viscosity ν. According to the equilibrium hy-

pothesis, the dissipation rate ε is determined by the energy transfer rate TEI ,

so it can be assumed that these two rates are nearly equal: ε ≈ TEI . Hence

the second hypothesis introduced by Kolmogorov:

2. First similarity hypothesis : In every turbulent flow at sufficiently high

Reynolds number, the statistics of the small scale motions (l < lEI)

have a universal form that is uniquely determined by ν and ε.
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If the two parameters ν and ε are given, the only length, velocity and time

scales that can be formed from these are:

η ≡
(
ν3

ε

) 1
4

(2.2)

uη ≡ (εν)
1
4 (2.3)

τη ≡
(ν
ε

) 1
2

(2.4)

These are the so called Kolmogorov scales, which characterize the smallest

eddies. It should be observed that the Reynolds number based on the Kol-

mogorov scales is:
ηuη

ν
= 1 (2.5)

It means that at the smallest motion scales the effects due to inertia are com-

parable to those due to viscosity, so dissipation can take effect. Considering:

ε0 ≈
u0

3

l0
(2.6)

Re0 =
u0l0
ν

(2.7)

τ0 =
l0
u0

(2.8)

and the definition of η, the following quantities can be derived:

Length scale ratio :
η

l0
≈
(

ν3

u3
0l

3
0

) 1
4

= Re
− 3

4
0 ≈ Re−

3
4 (2.9)

V elocity scale ratio :
uη

u0
≈
(

ν

u0l0

) 1
4

= Re
− 1

4
0 ≈ Re−

1
4 (2.10)
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T ime scale ratio :
τη
τ0
≈
(

ν

u0l0

) 1
2

= Re
− 1

2
0 ≈ Re−

1
2 (2.11)

It must now be observed that if the flow Reynolds number is high, the ratio

η/l0 sensibly decreases and it can therefore be found a very large range of

scales of size l that are much smaller than l0 but still very large compared

with η, so that l0 � l � η.

It can then be supposed that these eddies are still dominated by inertial

effects because they are too large for viscous dissipation to take effect, but

still small enough to be independent from the large scales. This leads to the

third Kolmogorov’s hypothesis:

3. Second similarity hypothesis : In every turbulent flow at sufficiently high

Reynolds number, the statistics of the motions of scale l in the range

l0 � l � η have a universal form that is uniquely determined by ε,

independent of ν.

It is thus convenient to split the universal equilibrium range (l < lEI) in two

subranges: the inertial subrange for lEI > l > lDI and the dissipation range

for l < lDI . For l > lEI there is the so called energy-containing range: eddies

of this size range contain the bulk of the energy1.

In the inertial subrange the viscosity ν cannot be used to form length,

velocity and time scales, however, if a length l is given, it is possible to derive

the following relations:

u (l) = (εl)
1
3 = uη

(
l

η

) 1
3

=
uη

u0

u0

(
l l0
l0 u0

) 1
3

= u0

(
l

l0

) 1
3

(2.12)

τ (l) =

(
l2

ε

) 1
3

= τη

(
l

η

) 2
3

=
τη
τ0
τ0

(
l l0
l0 τ0

) 2
3

= τ0

(
l

l0

) 2
3

(2.13)

These two equations have some important consequences. First of all they

confirm the assumption that the velocity and time scales decrease with l.

1The suffixes EI and DI respectively indicate the boundary between energy containing
range and inertial subrange and the boundary between dissipation and inertial subrange.
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Secondly, considering an energy of order u2 (l) and a time scale τ (l) to be

associated to an eddy of size l, the rate T (l) at which energy is transferred

from motions of size l to the smaller ones can be expected to be:

u2 (l)

τ (l)
=

(εl)
2
3(

l2

ε

) 1
3

= ε (2.14)

T is therefore independent of l and equal to ε: it means that the energy

transfer rate remains constant through the energy cascade:

TEI = T = TDI = ε (2.15)

that is the equilibrium hypothesis: ε ≈ TEI .

As mentioned above, referring to figure 2.2, the energy content of a tur-

bulent flow is distributed among a wide range of frequencies or wavenum-

bers. It is useful to introduce the energy spectrum function E (k), that is the

amount of kinetic energy, per unit mass and wavenumber, associated to the

wavenumber k; its typical trend is shown in figure 2.2.

According to the first similarity hypothesis, when (l < lEI) the governing

parameters are ν and ε: following the same reasoning as before, the energy

spectrum function can be shown to have -in the universal equilibrium range-

the following form:

E (k) = ε2/3k−5/3Ψ (kη) (2.16)

where Ψ (kη) is a function that takes account for viscosity. If k tends to zero

the size of the eddies tends to increase and viscous effect become negligible,

as assumed in the second similarity hypothesis. The function Ψ (kη) tends

therefore to a constant value K0. For the inertial subrange it can then be

written:

E (k) = K0ε
2/3k−5/3 (2.17)

which is the well known Kolmogorov −5/3 spectrum and K0 ≈ 1.5 is the

universal Kolmogorov constant.

It emerges from the previous explanations that the fundamental problem

in the study of turbulence is the presence of a very large number of space
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and time scales.

A powerful tool to investigate the features of fluid flow is computational

fluid dynamics (CFD), which essentially consists in a numerical solution of

the discretized system of the Navier-Stokes equations. Details about numeri-

cal procedures will be explained in chapter 3; now only the aspects concerning

turbulence will be treated.

As mentioned above, turbulent flows are characterised by the presence

of an extremely wide range of space and time scales: this means that in

order to perform a correct simulation, the Navier-Stokes equations have to

be discretized with space and time steps which are at least equal to the

smallest scales present in the flow. Nonetheless, the computational costs will

sensibly increase if the size of the space and time steps decreases.

The approach that leads to the most correct results is the direct numerical

simulation (DNS): it is based on the solution of the Navier-Stokes equations,

which govern the flow of Newtonian fluids, without any kind of averaging or

approximation.

The main problem of such a kind of simulation is -as already noticed- the

computational cost. A DNS requires in fact the grid resolution to be so high

that all scales of motion are resolved and all the kinetic energy dissipation

is captured. This phenomenon -as explained above- is due to viscosity and

takes place at the smallest turbulence scales, whose characteristic length is

η.

A rough estimate of the minimum number of cells needed to perform

a DNS can be found assuming the viscous length scale δv, which can be

computed from the flow Reynolds number and from the channel height, as

an estimate of η. This approximation is valid only in case of simple channel

flows, for which the following relation between the Reynolds number and the

friction Reynolds number can be found:

Reτ =
δ

δv
= 0.09 · Re0.88 (2.18)

where δ is half the channel height L. Considering, for example, a simple
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channel with the same L and Re of the case analysed in the present work:

L = 3.4H = 0.051 m (2.19)

Re ≈ 13000 (2.20)

yields:

δv =
δ

Reτ
=

1.7H

375
= 6.8 · 10−5 (2.21)

Which is the maximum grid spacing that ensures a correct resolution of all

turbulent scales. It means that considering a computational domain with

size:

(4 · 4 · 3.4)H (2.22)

and assuming an uniform grid spacing, the minimum needed number of cells

is:

n =

(
4H

δv

)2

·
(
3.4H

δv

)
≈ 5.8 · 108 (2.23)

So, in spite of the small dimensions of the computational domain, the number

of cells that are needed for a DNS is very large and this implies extremely

high computational costs.

It must be remarked that if the Reynolds number is not too high and a

grid with non-uniform spacing is adopted, the number of cells can be kept

sensibly lower: for example, a DNS of the same case analysed in the present

work has been run ([18],[19]) adopting a grid of circa 9 million cells.

However, DNS still remain too costly for engineering applications, and

are therefore used only as a research tool.

Two more practical approaches to the simulation of turbulent flows are

possible. Both are based on the fact that most of times a very accurate

description of all the turbulent structures is not necessary: engineers are in

fact normally interested only in a few quantitative properties of a turbulent

flow, such as average forces on a body or the degree of mixing of two flows.

The main idea is to resolve only the biggest scales and find a suitable

model for the smaller ones: according to the size of the minimum resolved

scale it can be distinguished between the Reynolds-averaged Navier-Stokes
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(RANS) approach and the large eddy simulation (LES) approach.

2.2 RANS and URANS approach

This method is based on ideas proposed by Osborne Reynolds at the end of

the 19th century. The attention is focused on the mean flow and the effects of

turbulence on it. Since turbulent flows are chaotic, but characterized by de-

terministic statistical quantities, Reynolds introduced a distinction between

mean and fluctuating quantities. In this way, every generic quantity ϕ can in

general be written as the sum of the mean value ϕ and a fluctuating quantity

ϕ
′
, so that:

ϕ = ϕ+ ϕ
′

(2.24)

This is the so called Reynolds decomposition. The instantaneous continuity

and Navier-Stokes equations2 for an incompressible unsteady isothermal flow

are:
∂ (ui)

∂xi

= 0 (2.25)

∂ (ρui)

∂t
+

∂

∂xj

(
ρujui

)
= − ∂p

∂xi

+
∂

∂xj

(
μ
∂ui

∂xj

)
(2.26)

The Reynolds decomposition3 can now be introduced in equations 2.25 and

2.26. Then, since averaging commutes with summation, integration and dif-

ferentiation, an average of these equations can be taken, yelding a new sys-

tem of equations, the unsteady Reynolds averaged Navier-Stokes equations

(URANS):
∂ (ρU i)

∂xi
= 0 (2.27)

∂ (ρU i)

∂t
+

∂

∂xj

(
ρU jUi

)
= −∂P

∂xi
+

∂

∂xj

(
μ
∂Ui

∂xj
− ρu′

iu
′
j

)
(2.28)

2For the sake of simplicity, in this chapter the Einstein summation convention will be
adopted: when an index variable appears twice in a single term it implies that we are
summing over all of its possible values.

3According to the Reynolds decomposition, velocity will be written as ui = Ui+u
′
i and

pressure as p = P + p
′
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Aside from replacement of instantaneous variables by mean values, the only

difference between the averaged and the instantaneous equations is the ap-

pearance of the term ρu′
iu

′
j, which essentially represents the velocity covari-

ances. It derives from the averaging of the non linear convective term, since

averaging does not commute with multiplication. This product of fluctuating

velocities is associated with convective momentum transfer due to turbulent

eddies.

In these extra turbulent stresses, the so called Reynolds stresses Rij =

−ρu′
iu

′
j , lies the fundamental problem of turbulence: Rij is in fact a sym-

metric tensor with six independent components, which are all unknown, so

that the total amount of unknowns is ten (pressure, three velocity compo-

nents, six Rij terms), while the system consist only in four equations. It is

therefore necessary to find a suitable model to predict the Reynolds stresses

and thus close the system.

Later on the problem of turbulence modelling will be discussed, with par-

ticular consideration for the models employed in the performed simulations.

Finally a few words must be spent on the term:

∂ (ρU i)

∂t
(2.29)

Herein lies the difference between RANS and URANS equations, according

to the kind of averaging -time or ensemble- which was employed. If a flow is

statistically steady, the Reynolds decomposition becomes:

ϕ (xi, t) = ϕ (xi) + ϕ
′
(xi, t) (2.30)

with

ϕ (xi) = lim
T→∞

1

T

∫ T

0

ϕ (xi, t) dt (2.31)

where t is the time and T the averaging interval, which must be large com-

pared to the typical scale of fluctuations. If T is large enough, ϕ does not

depend on the time at which the averaging is started and every time depen-

dence is lost. This time averaging leads therefore to the RANS equations,
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which are steady because:
∂ (ρU i)

∂t
= 0 (2.32)

as a consequence of the elimination of time-dependence. Otherwise if the

flow is unsteady, a sort of moving averaging is used:

ϕ (xi, t) =
1

T

∫ t+T

t

ϕ
(
xi, t

′
)
dt

′
(2.33)

where T , usually identified with the time-integration step Δt, is supposed to

be large compared to the time scale of the fluctuations but small enough to

accurately describe the large scale unsteadiness. Time-dependence is instead

not eliminated.

Hence the unsteady RANS (URANS) equations listed above are obtained.

2.3 LES approach

Although many efforts have be done in order to develop general-purpose

RANS models suitable for a wide range of practical applications, an optimal

solution has not been found so far. The main problem is the different be-

haviour of small and large eddies: the first ones are in fact almost isotropic

and do not strictly depend on the geometry of the domain. The second ones

are instead very anisotropic, depend directly on geometry and boundary con-

ditions and are generally much more energetic. It is therefore clear that the

approximation introduced by RANS equations -where a single turbulence

model must describe the collective behaviour of all eddies- is very strong. It

makes then more sense to introduce a distinction between large anisotropic

eddies and small isotropic ones: the first ones will be directly computed, while

the second ones will be modelled. According to their isotropy, in fact, small

eddies are easier to capture with a simpler model (compared to RANS). This

is the idea on which the large eddy simulation is based. In order to obtain

a velocity field that contains only the large scale components, an operation

of space-filtering must be performed, so that the generic filtered quantity ϕ
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can be written as:

ϕ (x, t) =

∫ ∞

−∞
G
(
x,x

′
,Δ

)
ϕ
(
x

′
, t
)
dx

′
(2.34)

where G is the filter function, which depends on the cutoff width Δ. This

width is extremely important, because it precisely determines which scales

will be resolved and which ones will be modelled. Of course it makes no

sense to specify a cutoff width that is smaller than the grid size: generally

a value of Δ = 3
√
ΔxΔyΔz is taken, where ΔxΔyΔz is equal to the cell

volume V. Many filter functions can be used; in FLUENT a box filter is

implemented, since this kind of filtering is implicitly provided by the finite

volume discretization:

G
(
x,x

′
,Δ

)
=

{
1/Δ3

∣∣x− x
′∣∣ ≤ Δ/2

0
∣∣x− x

′∣∣ > Δ/2
(2.35)

where Δ3 is equal to the cell volume V. Filtering -under the assumption

that space-filtering commutes with derivation- leads to the resolvable-scale

equations :
∂ (ρui)

∂xi

= 0 (2.36)

∂ (ρui)

∂t
+

∂

∂xj

(ρuiuj) = − ∂p

∂xi

+
∂

∂xj

(
μ
∂ui

∂xj

)
(2.37)

It is important to notice that:

uiuj 	= uiuj (2.38)

and that ujui cannot be computed. It is therefore necessary to find a model

for the difference between the two sides of the inequality:

τij = ρ (uiuj − uiuj) (2.39)
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The quantity τij represents the subgrid scale Reynolds stresses. Introducing

it in the filtered Navier Stokes equations leads to:

∂ (ρui)

∂t
+

∂

∂xj

(ρuiuj) = − ∂p

∂xi

+
∂

∂xj

(
μ
∂ui

∂xj

)
− ∂τij

∂xj

(2.40)

As mentioned above, it is now necessary to find a suitable model for the

subgrid scale stresses: this problem is similar to the closure of the RANS

equations, but in this case only the smallest unresolved scales -for which it is

easier to provide a good description- will be modelled. In the next sections

the models adopted in the performed simulations will be described.

2.4 RANS models

As already explained, both the RANS and the LES equations need to be

closed: it means that a model for the Reynolds stresses Rij = −ρu′
iu

′
j and

for the subgrid scale stresses τij must be provided. Since in computational

fluid dynamics a very wide range of different problems can be found, several

turbulence models are available. No one of these has so far been accepted as

being superior for all classes of problems, it is therefore necessary to choose

case by case the most suitable models.

All models used in the present computations are based on the presumption

that there is an analogy between the action of viscous stresses and Reynolds

stresses on the main flow (Boussinesq hypothesis).

In Newton’s law of viscosity the viscous stresses are considered to be

proportional to the rate of deformation of the fluid elements:

τij = μ

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
μ
∂uk

∂xk

δij (2.41)

where in this case τij are the viscous stresses and not the LES subgrid scale

stresses. Since turbulent stresses are found to increase as the mean rate

of deformation increases [20], it was proposed by Boussinesq (1877) that
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Reynolds stresses might be proportional to mean rates of deformation:

Rij = −ρu′
iu

′
j = μt

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− 2

3
ρkδij (2.42)

where

k =
1

2
u

′
iu

′
i (2.43)

is the turbulent kinetic energy per unit mass and δij is the Kronecker delta

(δij = 1 if i = j, 0 otherwise). Equation 2.41 is exactly the same as equation

2.42, except for the term μt, that is the turbulent or eddy viscosity, and the

term −2/3ρkδij , which ensures that the formula gives the correct result for

the normal Reynolds stresses (those with i = j). As a consequence of the

introduction of μt, models based on the Boussinesq hypothesis are known as

eddy viscosity models.

Turbulent transport of heat, mass and other scalar quantities can be sim-

ilarly modelled: since equation 2.42 shows a proportionality between the

turbulent momentum transport and the mean gradients of velocity, the tur-

bulent transport of a scalar is by analogy taken to be proportional to the

gradient of the mean value of the transported quantity:

− ρu′
iϕ

′
i = Γt

∂ϕ

∂xi

(2.44)

where Γt is the turbulent diffusivity. Experiments show that the value of the

turbulent diffusivity is proportional to that of the turbulent viscosity [20], so

that it can be assumed:

Γt ≈ μt (2.45)

The problem is now to find a suitable value for the turbulent viscosity μt. All

the models that were used in the present simulations compute μt and thus Rij

by means of two equations: they are therefore known as two equations models,

since turbulence models are generally classified according to the number of

extra transport equations which must be solved to obtain Rij . Also one

equation models exist: they are very cheap in terms of computational costs,

but exhibit relevant problems where convection and diffusion cause significant
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differences between production and destruction of turbulence.

Finally it must be noted that not all the RANS models are based on the

Boussinesq hypothesis: there are in fact the Reynolds stress models (RSM),

which use seven additional equations to provide an approximation for all the

six independent components of the Reynolds stress tensor, without involving

the turbulent viscosity and thus preserving all the information about the

anisotropy of turbulence.

In the next sections the models adopted in the performed computations

will be presented.

2.4.1 Standard k − ε model

Assuming that for high Reynolds numbers the energy transfer rate remains

almost the same across the whole energy cascade, it is possible to use the tur-

bulent kinetic energy k and the turbulence dissipation rate ε, whose dimen-

sions are respectively m2/s2 and m2/s3, to obtain the characteristic velocity

u0 and length l0 of the large scale eddies4:

u0 = k
1
2 (2.46)

l0 =
k

3
2

ε
(2.47)

Applying dimensional analysis leads to the following equation for turbulent

viscosity:

μt = Cρu0l0 = ρCμ
k2

ε
(2.48)

with Cμ dimensionless constant. Two transport equations to determine k

and ε are now needed 5:

∂ (ρk)

∂t
+

∂

∂xi

(ρkui) =
∂

∂xj

[(
μ+

μt

σk

)
∂k

∂xj

]
+ 2μtsijsij − ρε (2.49)

4This assumption is not valid for low-Reynolds-number fluxes.
5For the sake of simplicity the mean velocity components will from now on be indicated

with lower case letters.



CHAPTER 2. TURBULENT FLOWS 37

∂ (ρε)

∂t
+

∂

∂xi
(ρεui) =

∂

∂xj

[(
μ+

μt

σε

)
∂ε

∂xj

]
+C1ε

ε

k
2μtsijsij−C2ερ

ε2

k
(2.50)

where Cμ = 0.09, σk = 1, σε = 1.3, C1ε = 1.44, C2ε = 1.92 are adjustable

constants which derive from experimental analysis, and:

sij =

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.51)

The meaning of single terms of these equations is the following:

Rate of

change

of k or ε

+

Transport

of k or ε

by con-

vection

=

Transport

of k or

ε by dif-

fusion

+

Rate of

produc-

tion of

k or ε

-

Rate of

destruc-

tion of

k or ε

It can be observed that production and destruction of turbulent kinetic

energy are strictly linked: production of ε is large if production of k is large.

There is therefore an equilibrium between production and dissipation of tur-

bulence.

The standard k− ε model is the most widely validated turbulence model

and as a consequence of its robustness, economy and reasonable accuracy over

a wide range of turbulent flows it has become the most used model in practical

engineering applications. This model has however some disadvantages, in

particular -like all other eddy viscosity models- its performances are quite

poor in certain circumstances, such as flows characterized by anisotropy of

normal Reynolds stresses, i.e. it is not possible to predict secondary flows in

non circular ducts.

2.4.2 Menter’s SST k − ω model

Since the SST k−ω model proposed by Menter is an improvement of Wilcox’s

k − ω model, the latter will first be explained and then the SST version will

be derived.

While in the k − ε model the length-scale-determining quantity was the

rate of dissipation of turbulent kinetic energy ε, the turbulence frequency
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ω = ε/k is now used instead. The turbulent viscosity is then defined as:

μt = α∗ρ
k

ω
(2.52)

where α∗ is a damping function which ensures low-Reynolds-number cor-

rection. k and ω are calculated by means of the two following transport

equations:

∂ (ρk)

∂t
+

∂

∂xi

(ρkui) =
∂

∂xj

[(
μ+

μt

σk

)
∂k

∂xj

]
+ 2μtsijsij − β∗ρkω (2.53)

∂ (ρω)

∂t
+

∂

∂xi
(ρωui) =

∂

∂xj

[(
μ+

μt

σω

)
∂ω

∂xj

]
+ 2α

ω

k
μtsijsij − βρω2 (2.54)

The meaning of the single terms of the equation is exactly the same of those

of the k − ε model. The Reynolds stresses can then be calculated with the

Boussinesq hypothesis:

Rij = −ρu′
iu

′
j = μt

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− 2

3
ρkδij (2.55)

The main advantage of the k − ω model on the k − ε model is that it does

not require the use of wall- or damping functions in the low-Reynolds-number

near-wall regions. However, the k−ω model has the disadvantage of a strong

dependency of the results on the value of ω in a free stream, which must be

set as boundary condition, while the k− ε model is much less sensitive to it.

These considerations led to the SST k − ω model proposed by Menter

(1992), which is an hybrid of the two models: the standard k − ε is used in

the fully turbulent region far from the wall, and is then converted in a k−ω

in the near-wall region. The two transport equations for k and ω are derived

from the equations for k and ε , by substituting ε = kω:

∂ (ρk)

∂t
+

∂

∂xi
(ρkui) =

∂

∂xj

[(
μ+

μt

σk

)
∂k

∂xj

]
+ Pk − β∗ρkω (2.56)

∂ (ρω)

∂t
+

∂

∂xi

(ρωui) =
∂

∂xj

[(
μ+

μt

σω

)
∂ω

∂xj

]
+ Pω − βρω2 +Dω (2.57)
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The meaning of the terms in equation 2.57 is:

Rate of

change

of k or

ω

+

Transport

of k or ω

by con-

vection

=

Transport

of k or

ω by

diffusion

+

Rate of

produc-

tion of k

or ω

-

Rate of

destruc-

tion of k

or ω

-
Cross

diffu-

sion

These equations are quite similar to those of the original k − ω model:

the only differences are the form of the production terms for k and ω and

the appearance of an extra source term Dω on the right hand side, which

represents the cross diffusion and arises from the substitution of ε = kω.

The production terms are:

Pk = min (2μtsijsij, 10ρβ∗kω) (2.58)

Pω =
α

νt
Pk (2.59)

This ensures that the production of turbulence is limited to prevent the

build-up of turbulence in stagnation regions. Also the turbulent viscosity is

limited:

μt =
ρk

ω

1

max
(

1
α∗ ,

2F2
√
sijsij

a1ω

) (2.60)

to give improved performance in flows with adverse pressure gradients and

in wake regions. Finally the cross diffusion term is:

Dω = 2 (1− F1)
ρ

σω2

1

ω

∂k

∂xj

∂ω

∂xj

(2.61)

Many coefficients appear in the equations: β∗ = 0.09, σω2 = 1.168 are con-

stant, while σk, σω, α, β are made variable by means of the blending functions:

F1, F2 = f

(√
k

ω
, y, Rey

)
(2.62)

which ensure a smooth transition between the k − ε and the k − ω model

and thus numerical stability (y is the distance from the wall). Finally α∗ is a
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damping function which provides a low-Reynolds correction damping out the

turbulent viscosity. In spite of the improved performances in the treatment

of near-wall regions, the k − ω model has -as all eddy viscosity models- the

same weaknesses of the k − ε in case of anisotropy of the normal Reynolds

stresses.

2.4.3 Menter’s SAS model

The SAS model is presented as an advanced URANS model which can pro-

duce spectral content for unsteady flows. The k−ε and k−ω models use the

exact equation for the turbulent kinetic energy k as a starting point, while

a model is used to determine ε and ω: this because the exact equations for

these terms, although available, contain complex correlations which are diffi-

cult to evaluate. Consequently the ε and ω equations are modelled in analogy

with the k equation using dimensional and intuitive arguments. Such an ap-

proach has however several disadvantages, because some important terms

and physical effects can be missed in the derivation.

A different approach was proposed by Rotta (1968), who formulated an

exact equation for kL, where k is the turbulent kinetic energy and L is an

integral length scale of turbulence. The distinguishing factor of this model

was the appearance of a length scale in the kL source terms, that allows

the determination of a turbulence integral length scale L which -unlike the

other two-equation models- is independent from the shear layer thickness and

avoids the damping of the resolved scales.

The main disadvantage of this model is that the source term for L involves

a third derivative of the velocity, which is very problematic because it is

complex to be treated numerically and also prevents the logarithmic law to

be satisfied.

In recent years Menter and Egorov [9][10] showed that instead of the third

derivative term it is more correct to keep the second derivative: this ensures

that the logarithmic layer equations are satisfied and furthermore it allows the

model to adjust to resolved turbulent structures, without dissipating them.

It means that under certain conditions the model automatically balances the
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contribution of modelled and resolved parts of the turbulent stresses and

smoothly changes from an LES to a steady RANS model and vice versa.

Menter and Egorov derived their KSKL (K-Square root KL) model from

Rotta’s k − kL model and then transformed it to other variables in order

to introduce it into existing two-equation models: the traditional SST k− ω

model is thus converted into the SAS model by means of an additional source

term QSAS.

∂ (ρk)

∂t
+

∂

∂xi

(ρkui) =
∂

∂xj

[(
μ+

μt

σk

)
∂k

∂xj

]
+ Pk − cμρkω (2.63)

∂ (ρω)

∂t
+

∂

∂xi
(ρωui) =

∂

∂xj

[(
μ+

μt

σω

)
∂ω

∂xj

]
+Pω−βρω2+Dω+QSAS (2.64)

The transport equations are exactly the same of the k − ω model except for

the presence of the term QSAS :

QSAS = max

[
ρη2κS

2

(
L

Lvk

)2

+

− C
2ρk

σϕ
max

(
1

ω2

∂ω

∂xj

∂ω

∂xj
,
1

k2

∂k

∂xj

∂k

∂xj

)
, 0

]
(2.65)

The model constants are η2 = 3.51, C = 2, σϕ = 2/3, while κ = 0.41 is the

von Karman constant. The activation of the SAS functionality is due to the

ratio L/Lvk, where L is the length scale of the modelled turbulence and Lvk

is the von Karman length scale, by means of which the second derivative of

velocity- that appears in Rotta’s equation- is introduced in the ω equation:

L =

√
k

c
1/4
μ ω

(2.66)

Lvk =
κS

|U ′′| (2.67)

The ratio L/Lvk is a measure of the local flow length scale and in unsteady sit-

uations it becomes much more important than the other terms, thus leading

to the activation of the source term and hence to a reduction of the turbulent
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viscosity, allowing therefore an adjustment of the turbulence length scale to

the local flow inhomogeneities. Finally, the terms S and |U ′′| are:

S =
√

2SijSij , with Sij =
1

2

[
∂ui

∂xj
+

∂uj

∂xi

]
(2.68)

∣∣∣U ′′
∣∣∣ = √

∂2ui

∂x2
k

+
∂2ui

∂x2
j

(2.69)

They are respectively the scalar invariant of the strain rate tensor and the

magnitude of the velocity laplacian and represent the first and the second

velocity derivative. In the SAS model a high wave number damping is also

provided, by means of a constraint on the value of the von Karman’s length

scale:

Lvk = max

(
κS

|U ′′ | , Cs

√
η2κ

(β/cμ)− α
·Δ

)
(2.70)

Δ = V
1
3 (2.71)

where η2, β, α are constants and V is the cell volume. This kind of damping is

necessary because the von Karman length adjusts to the smallest scales and

thereby produces a turbulent viscosity small enough to allow the formation

of even smaller eddies until the grid resolution is reached. At this point no

smaller eddies can form, however the model, if no cut-off limit is implemented,

provides a turbulent viscosity that allows further formation of smaller scales.

As this is not possible due to the resolution limit, the energy accumulates at

the high wave number limit. It is therefore necessary to introduce a constraint

for Lvk which ensures that scales that are smaller than the grid resolution

are damped out.

2.4.4 Non-linear k − ε model

The most important disadvantage of the models that are based on the Boussi-

nesq hypothesis (the so called eddy viscosity models) is that they cannot cap-

ture anisotropy of the Reynolds normal stresses, and consequently they are

not able to predict secondary flows.
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As mentioned above, a different approach to the problem of turbulence

modelling is the Reynolds stress model (RSM), in which a transport equation

for every independent component of the Reynolds stress tensor is written,

thus leading to an Rij term which is effectively a tensor. This ensures that

the information about anisotropy is conserved, but several other problems

arise. First of all many unknown turbulence processes, such as pressure-strain

correlations, need to be modelled; second, seven extra transport equations

need to be introduced: six for the independent Reynolds stresses and one for

the turbulent kinetic energy dissipation. It means that the computational

cost significantly increases compared with two-equations models. Also, the

mathematical character of the turbulence model is not anymore of viscous

type, with possible limitations on the stability of the computations

Rodi [15] made a first attempt to improve the RSM method: he observed

that the convection and diffusion terms of the transport equations can be ne-

glected (weak equilibrium assumption), thus leading to a set of algebraic equa-

tions instead of differential equations. It is the so called Algebraic Reynolds

Stress Model (ARSM): computational costs are sensibly reduced while the

results -in presence of stress anisotropy- are better than those of the eddy

viscosity models. The ARSM equation is:

u
′
iu

′
j

k
(Pk − ε) = Pij +Rij −

2

3
εδij (2.72)

where Pk is the rate of production of turbulent kinetic energy, Pij is the

Reynolds stresses production and Rij is the pressure rate-of-strain tensor.

Furthermore, the term u
′
iu

′
j/k is equivalent to the normalized Reynolds stress

tensor anisotropy bij , in fact:

bij =
1

2k

(
u

′
iu

′
j −

2

3
δij

)
⇒

u
′
iu

′
j

k
= 2bij +

2

3
δij (2.73)

The main disadvantage is that the ARSM involves the resolution of a system

of strongly coupled implicit algebraic equations, which sometimes leads to

numerical instability and convergence difficulty. The efforts to overcome



CHAPTER 2. TURBULENT FLOWS 44

these problems led to the so called Explicit Algebraic Reynolds Stress Models

(EARSM).

In order to find an explicit relation for the anisotropy bij , Pope (1975)

[13] introduced the following expression:

bij = Bij

(
Ŝ, Ω̂

)
=

10∑
n=1

G(n)T̂ n
ij (2.74)

which represents the most general possible relationship between the Reynolds

stresses and strain.

Ŝ and Ω̂ are the normalized mean rate-of-strain and rotation tensors,

Ŝ ij =
k
ε
Sij; Ω̂ij =

k
ε
Ωij .

T̂ (n)are non dimensional symmetric deviatoric tensors while G(n) are co-

efficients which depend upon the five invariants Ŝ2
ii, Ω̂2

ii, Ŝ
3
ii, Ω̂2

ijŜji, Ω̂2
ijŜ

2
ji.

Since the ten tensors T̂ (n) form an integrity basis, every second order

tensor formed from Ŝ and Ω̂ can be expressed as a linear combination of them;

the finite number of independent tensors and invariants is a consequence of

the Cayley-Hamilton theorem of matrix algebra.

Assuming G(1) = −Cμ and G(n) = 0 for n > 1 leads to the linear k − ε

turbulent viscosity formula, while a non trivial specification of G(n) for n > 1

yields a non-linear viscosity model, it means an explicit formula for u′
iu

′
j

that is non-linear in the mean velocity gradients.

Since these models are based on explicit equations, they have been clas-

sified as EARSM; furthermore, according to the appearance of non-linear

terms, they are also known as non-linear eddy viscosity models : u′
iu

′
j de-

pends now not only upon S -as in the Boussinesq hypothesis- but also on

higher order terms, such as S2. It has also been demonstrated that to obtain

sensitivity to normal stress anisotropy and mean streamline curvature a cu-

bic stress-strain relationship is sufficient. This leads to the following general
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relation for the Reynolds stresses:

− ρu′
iu

′
j = −2

3
ρkδij + μtSij − C1μt

k

ε

[
SikSkj −

1

3
δijSklSkl

]
+

− C2μt
k

ε
[ΩikSkj + ΩjkSki]− C3μt

k

ε

[
ΩikΩjk −

1

3
δijΩklΩkl

]
+

− C4μt
k2

ε2
[ΩljSki + ΩliSkj]Skl +

− C5μt
k2

ε2

[
ΩilΩlmSmj + ΩmjΩlmSil −

2

3
SlmΩmnΩnlδij

]
+

− C6μt
k2

ε2
[SklSklSij ]− C7μt

k2

ε2
[ΩklΩklSij ] (2.75)

In the performed simulations a third order model with eddy viscosity damp-

ing has been adopted, which was implemented in ANSYS FLUENT by means

of an user defined function (UDF), see [11].

This model is based on a standard k − ε model which has been im-

proved adding five source terms derived from equation 2.75 in each momen-

tum equation and in the turbulence production and dissipation equations,

while a damping function fμ proposed by Wilcox [21] has been introduced

in the definition of the eddy viscosity, in order to ensure a good accuracy in

low-Reynolds-number regions:

μt = Cμρfμ
k2

ε
(2.76)

fμ =
0.024 +Ret/6

1 +Ret/6
(2.77)

where Ret is a Reynolds number based on turbulent quantities.

The coefficients C1 . . . C7 are chosen in order to ensure the realizability of

the model, i.e. the diagonal elements of the Reynolds stress tensor must be

positive and the Schwarz inequality must be verified6

6The two conditions are u′
αu

′
α > 0 and u′

iu
′
j
2
> ui

2 · uj
2 so that unphysical results

are avoided.
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2.5 LES models

As mentioned above, also the filtered LES Navier-Stokes equations need to

be closed: a suitable model for the subgrid scale stresses τij must therefore

be found. In ANSYS FLUENT these stresses are modelled -as in the RANS

approach- by means of the Boussinesq hypothesis:

τij = −ρuiuj − ρuiuj = −μSGS

(
∂ui

∂xj

+
∂uj

∂xi

)
+

1

3
τkkδij (2.78)

where the constant of proportionality between stress and strain is the dy-

namic subgrid scale (SGS) viscosity μSGS, while the term 1/3τkkδij is not

modelled but added to the filtered static pressure term. At this point a

model for μSGS must be provided.

2.5.1 Smagorinsky-Lilly model

This is the simplest subgrid scale model, and it builds on Prandtl’s mixing

length model7:

μSGS = ρL2
SGS

∣∣S ∣∣ (2.79)∣∣S ∣∣ = √
2SijSij (2.80)

LSGS is the mixing length for the subgrid scales and its size is determined by

the details of the filtering function, i.e. the filter cutoff width Δ. In ANSYS

FLUENT LSGS is computed as:

LSGS = min (κd, CsΔ) (2.81)

Δ = V 1/3 (2.82)

where κ is the von Karman constant and d is the distance to the closest wall,

Cs is the Smagorinsky constant and V is the generic cell volume.

7In case of simple two-dimensional flows it can be assumed that the only significant
stresses are τxy = τyx = −ρu′v′ and the only significant velocity gradient is ∂U/∂y. The

Reynolds stresses can therefore be described with the relation: τxy = ρl2m

∣∣∣∂U∂y ∣∣∣ ∂U
∂y , where

lm is the so called mixing length, which varies case-by-case.
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The main shortcoming of this model lays in the fact that the constant

Cs is not universal: Lilly derived a value of 0.17 for isotropic homogeneous

turbulence in the inertial subrange, nonetheless a value of 0.1 has been found

to yield the best results for a wide range of flows. This means that the

behaviour of the small eddies is not as universal as it was conjectured at first

and that a correct LES modelling might require case-by-case adjustment of

Cs or a more sophisticated approach.

2.5.2 Dynamic SGS model

Germano (1991) proposed to compute local values of Cs by means of a dy-

namic procedure: its concept is to apply a second filter (called test filter,

with Δ̂ > 2Δ) to the filtered equations of motion. The difference between

the two resolved fields represents the contribution of the scales whose size is

comprised between the two different filter widths. When applying the test

filter the SGS stress tensor can be expressed as:

Tij = ρ
(
ûiuj − ûiûj

)
(2.83)

Both Tij and τij are modelled with the Smagorinsky model, assuming that

Cs is the same:

τij = −2ρC2
sΔ

2
∣∣S ∣∣Sij (2.84)

Tij = −2ρC2
s Δ̂

2
∣∣∣Ŝ∣∣∣ Ŝij (2.85)

According to the Germano identity, the difference between the two SGS stress

tensors can be written as:

Lij −
1

3
Lkkδij = Tij − τ̂ ij = ρ

(
ûiuj − ûiûj

)
(2.86)

This yields:

Lij −
1

3
Lkkδij = Tij − τ̂ ij =

= C2
S

(
−2ρΔ̂2

∣∣∣Ŝ∣∣∣ Ŝij + 2Δ2 ̂

∣∣S ∣∣Sij

)
= C2

SMij (2.87)
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The value of C2
S can be then found by means of a least squares approach

proposed by Lilly (1992):

C2
S =

(Lij − Lkkδij/3)Mij

MijMij
(2.88)

Finally CS =
√

C2
S.

2.6 General remarks about turbulence mo-

dels

It is at this point important to spend a few words to explain the criterion

which lead to the adoption of the models listed above. First of all the stan-

dard k − ε has been chosen as a reference URANS model; also, it is one of

the most widely used models in industrial applications. Furthermore, it has

also been employed in several works about the same test case of this thesis

[4], [2].

The SAS model has instead been chosen because it is quite recent and

it was therefore interesting to investigate its performances. In addition,

since it is derived from the k − ω SST model and aims to be an hybrid

between URANS and LES computations, also these two approaches have

been adopted, in order to allow a comparison of the different models.

Finally, also a non linear version of the k − ε model has been used, in

order to investigate its improvements over the standard version of the model.

Since the y+ values were of unity order, in all simulations a down-to-

the-wall approach has been adopted. In case of k − ω SST, SAS and LES

(with dynamic SGS model) the computation of the viscous sublayer does

not require a particular treatment. On the other side, simulations with the

standard k−ε model use the one equation model of Wolfstein [1] in proximity

of the walls. Finally, as mentioned above, the non linear k− ε model adopts

a low-Reynolds damping function proposed by Wilcox.
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2.7 Effects of turbulence models on compu-

tational costs

As mentioned above, in spite of the efforts that have been taken, a universal

model for turbulence seems unlikely to exist. Instead of it, many models have

been proposed, which have substantial differences either in the hypotheses

on which they are based or in the resolution that they ensure.

No model has so far been accepted as being superior for all classes of

problems: every model has particular strengths and weaknesses and will be

more suitable for a certain kind of applications. It goes without saying that

turbulence models have also an important influence on the computational

costs, since they require additional transport equations to be solved. Fur-

thermore, models that ensure high resolution need necessarily the adoption

of very fine grids, and this again increases the computational costs.

The models that were adopted in the performed simulations are mainly

two-equations models, it means that for every time step two additional trans-

port equations must be solved, besides the three momentum equations, the

pressure-velocity coupling and the energy equation.

Among these models, the SAS requires the evaluation of an additional

source term, which is essentially computed from the velocity laplacian and

the first derivatives of production and dissipation rate of turbulence. These

quantities are not computed by default by ANSYS FLUENT, therefore they

require a further discretization procedure: the SAS model is therefore ex-

pected to need slightly more computational time then the other two-equation

models. On the other hand the LES approach does not introduce additional

transport equations or complex source terms, thus leading to faster calcu-

lations: the dynamic model for the SGS stresses introduces in fact only

algebraic equations, which are not expensive to solve.

The non linear k−ε is instead expected to be the slowest one: it requires

in fact the definition of a large amount of scalars, of source terms and the

calculation of derivatives which are not computed by default by FLUENT.

Besides this the specific model implementation puts some limitations on the

numerical solver (see paragraph 3).
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Finally it must be observed that the duration of the simulation depends

not only on the time needed for the computation of a single time step, but

also on the number of time steps needed to obtain converged statistics. As

the resolution of the model increases, the time step size decreases (in order

to resolve the smallest scales of motion), thus leading to a large amount of

time steps required to reach convergence.
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3.1 The solver ANSYS FLUENT

As already noticed, the aim of the present work is to compare the perfor-

mances -in terms of accuracy and computational costs- of different turbu-

lence models implemented in the commercial finite volume solver ANSYS

FLUENT.

The results of the simulations are strictly dependent on the adopted dis-

cretization schemes, since they directly influence the numerical error; fur-

thermore, as mentioned above, in the case of the LES approach the influence

of the solver is even more important, as the filtering procedure is implicitly

determined by the finite volume discretization, the numerical flux evaluation

and the time integration method. It is therefore important to give a brief

description of the numerical methods adopted in the solver.

The commercial CFD code FLUENT is a co-located, cell centred, unstruc-

tured finite volume solver for both compressible and incompressible flows,

which also provides a large variety of models for many physical applications,

such as heat transfer, combustion and multi-phase flows.

In the next sections the main features of the solver will be described, such

as the spatial and temporal discretization, the available numerical schemes

and the pressure-velocity coupling; in particular, the attention will be focused

to numerical methods adopted in the performed computations.

3.2 Flow solver

In ANSYS FLUENT, two different solvers are available: the pressure based

and the density based solver. While the pressure-based approach was devel-

oped for low-Mach-number incompressible flows, the density based solver is

instead well suited for high-speed compressible flows.

Since in the analysed case the flow velocity is low, only the pressure based

solver has been adopted. Velocity is computed from the momentum equa-

tions, while the pressure field is obtained using a pressure-velocity coupling

algorithm which derives from a manipulation of the momentum and conti-

nuity equations.
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Generally speaking, the governing equations are first discretized by means

of a finite volume approach: the domain is therefore divided into discrete

control volumes using a computational grid. The discrete equations are then

integrated over each control volume, thus leading to a system of algebraic

equations for the unknown variables. Finally, the system is linearized and

solved.

3.3 Discretization of the general scalar trans-

port equation

The discretization procedure can be clearly explained by considering the

unsteady transport equation for a generic scalar quantity ϕ. For a generic

control volume V , this equation can be written as follows:

∂

∂t

∫
V

ρ0ϕdV+

∫
∂V

(
ρ0ϕ�u− Γϕ

�∇ϕ
)
· �ndA =

∫
V

SϕdV (3.1)

Where ρ0 is the constant density, �u a divergence free velocity field, Γϕ the

diffusion coefficient for ϕ and Sϕ a source term for ϕ.

In order to obtain a numerical solution for the problem, several approxi-

mations must be introduced. These include the computation of surface and

volume integrals, the evaluation of the fluxes on the faces of the volumes and

the computation of the variable gradient from its value in the cell centres.

Since the integral on the volume boundary ∂V can be written as the sum

of the integrals on the volume faces, the equation -according to the mean

value theorem- can be rewritten as follows:

∂

∂t
(ρ0ϕV ) +

Nfaces∑
f=1

[(
˜

ρ0ϕ�u− Γϕ
�∇ϕ

)
· �n
]
f

Af = SϕV (3.2)

Where V is the volume of the cell and Af the area of the generic cell-face f ;

the overbar refers to a volume average, the tilde to an area average and the

subscript f to the face f . Introducing a second order approximation, it is

possible to replace the volume averaged quantity in the time derivative with
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the local value in the cell centre (denoted by the subscript c), yielding:

∂

∂t
[(ρ0ϕ)c V ] +

Nfaces∑
f=1

[
˜

(
ρ0ϕ�u− Γϕ

�∇ϕ
)
· �n
]
f

Af = SϕV (3.3)

Furthermore, assuming the cell faces to be flat, equation 3.3 can be rewritten

as:

∂

∂t
[(ρ0ϕ)c V ] +

Nfaces∑
f=1

(
˜

ρ0ϕ�u− Γϕ
�∇ϕ

)
f

· �nfAf = SϕV (3.4)

since the unity vector �nf is now constant on every cell face.

It must be noticed that if the faces are not flat, this operation intro-

duces a second order approximation, which is however consistent with the

approximation introduced before.

Finally, like in the discretization of the volume average, the face averages

which appear in the sum can be approximated with the value in centre of the

face, which is again a second order approximation. This leads to the following

equation, which represents the discretized form of the general scalar transport

equation implemented in FLUENT:

∂

∂t
(ρ0ϕ)c V +

Nfaces∑
f=1

(
ρ0ϕ�u− Γϕ

�∇ϕ
)
f
· �nfAf = SϕV (3.5)

For the sake of clarity the subscript f now implies that the quantities have

been evaluated in the centre of the cell face. Furthermore, since the cell

volume has been assumed not to be time dependent, V has been taken out

from the time derivative.

In the next paragraphs the discretization of the convection and the dif-

fusion term will be explained, but first a brief description of the numerical

schemes adopted for the reconstruction of gradients will be given.
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3.4 Evaluation of gradients

Gradients need to be computed in order to allow the evaluation of scalar

quantities at the cell faces and the discretization of convection and diffusion

terms: for this purpose, FLUENT provides three different methods. For all

the computations the least squares cell-based method has been adopted, which

assumes a linear variation of the solution between the cell centres sharing a

face. With regard to figure 3.1 this can be written as follows:

Figure 3.1: Gradients evaluation.

�∇ϕ
∣∣∣
c0
· −→Δri = (ϕci − ϕc0) (3.6)

Where c0 is the centre of the cell in which the gradient is computed, ci is the

centre of the generic neighbour cell and
−→
Δri is the distance between c0 and

ci. A similar equation can be written for every neighbouring cell, yielding

the following over-determined system:

[J ] �∇ϕ
∣∣∣
c0
= Δϕ (3.7)

Where [J ] is the coefficient matrix, which depends only on the geometry and

the unknowns are the three components of the gradient in c0. The least-

squares solution of the problem is obtained by means of a Gram-Schmidt

decomposition of the coefficient matrix, which yields a matrix of weights for
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each cell: three components weights (W x
i0,W

y
i0,W

z
i0) are produced for each

face i of the cell with centre c0. The gradient at the cell centre can therefore

be obtained as follows:

∂ϕ

∂x

∣∣∣∣
c0

=

Nfaces∑
1=1

W x
i0 (ϕci − ϕc0) (3.8)

∂ϕ

∂y

∣∣∣∣
c0

=

Nfaces∑
1=1

W y
i0 (ϕci − ϕc0) (3.9)

∂ϕ

∂z

∣∣∣∣
c0

=

Nfaces∑
1=1

W z
i0 (ϕci − ϕc0) (3.10)

The other two available methods for the computation of gradients are the

Green Gauss cell based and the Green Gauss node based ; however, as they

are not used in the present thesis, their description is omitted: the interested

reader may refer to [1].

3.5 Discretization of the convective term

The computation of the convective term requires the value of ϕ in the centre

of the cell face: this has to be reconstructed from the values stored in the cell

centres. Several methods are available: with the first order upwind scheme,

the face value is assumed to be equal to the value in the centre of the upwind

cell, relative to the mass flux through the face. With regard to figure 3.1 The

convective term is therefore discretized as follows:

(ρ0ϕ�u)f · �nf = max (ρ0�u · �nf , 0)ϕc0 +min (ρ0�u · �nf , 0)ϕci (3.11)

By means of a Taylor series expansion it can be shown that this introduces

a first order approximation of the face value and the truncation error acts as

a further dissipation term.

In the second order upwind scheme the gradients in the cell centres are

used to improve the approximation of the face value. The convective term is
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therefore computed as:

(ρ0ϕ�u)f · �nf = max (ρ0�u · �nf , 0)

(
ϕc0 +

−→rc0 · �∇ϕ
∣∣∣
c0

)
+

+min (ρ0�u · �nf , 0)

(
ϕci +

−→rci · �∇ϕ
∣∣∣
ci

)
(3.12)

The gradient is computed as explained in the previous paragraph. In this

case, it can be shown that a second order approximation is introduced, the

truncation error still acting as an additional dissipation.

In order to avoid spurious oscillations, several different gradient limiters

are implemented in FLUENT, which avoid that the linearly reconstructed

field variable exceeds the minimum and the maximum values in the neigh-

bouring cells. Due to its second order accuracy, this scheme has been adopted

in all the performed URANS computations.

A further second order scheme is the central-differencing scheme, which

has been introduced in FLUENT purposely for LES simulations. The con-

vective term becomes:

(ρ0ϕ�u)f · �nf =
1

2
(ρ0�u · �nf )

[(
ϕc0 +

−→rc0 ·�∇ϕ
∣∣∣
c0

)
+

+

(
ϕci +

−→rci · �∇ϕ
∣∣∣
ci

)]
(3.13)

and its computational stencil is independent from the velocity field. This

scheme should be particularly indicated for LES, since it does not alter the

energy content of the flow1; it can however introduce oscillations of the solu-

tion, which may cause numerical instability, due to the low introduced diffu-

sivity and to the low dissipative nature of the LES subgrid scales. To avoid

stability problems, it is possible to adopt a deferred approach, in which the

face value is calculated adopting simultaneously the upwind and the central

differencing schemes.

Finally the bounded central differencing scheme is implemented in FLU-

ENT. This is also a second order scheme, which does not exhibit the problems

1Except for the gradient part.
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of the central differencing scheme mentioned above, and has therefore been

adopted in all the performed LES simulations. Due to the limited available

information, it is not possible to give an accurate description of the scheme:

it essentially consists of a pure central differencing, a blended scheme of the

central differencing and the second order upwind scheme, and the first order

upwind scheme. The first order upwind scheme is adopted only if the convec-

tion boundedness criterion is violated, that is when new minima or maxima

are introduced in the solution.

3.6 Discretization of the diffusion term

The discretization of the diffusion term employs a second order accurate

central differencing scheme. It requires the reconstruction of the gradient at

the face centres from the values stored in the centres of the neighbouring

cells. The discretized diffusion term is written as sum of two terms:

(
Γϕ

�∇ϕ
)
f
· �nf = (Γϕ)f

[
ϕci − ϕc0

�nf ·
−→
Δri

+
〈
�∇ϕ

〉
f
·
(
�nf −

−→
Δri

�nf ·
−→
Δri

)]
(3.14)

where 〈
�∇ϕ

〉
f
=

�∇ϕ
∣∣∣
ci
+ �∇ϕ

∣∣∣
c0

2
(3.15)

The component of the gradient along the line connecting the cell centres

is reconstructed according to the classical finite differences approach; the

remaining part is instead computed as the average of the gradients in the

adjacent cell centres. This formulation avoids the checkerboard effect, which

is due to the exclusive use of
〈
�∇ϕ

〉
f
in the discretization of the diffusion

term.
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3.7 Temporal discretization

The final step is the discretization of the time derivative, in order to obtain

a computable model. In Fluent both a first2 and a second order scheme are

implemented. Because of its higher accuracy, the latter one has been adopted

in the performed simulations.

The Taylor series expansions of the quantity ϕ in c0 at the time steps3 n

and n− 1 are:

ϕn
c0
= ϕn+1

c0
−Δt

∂ϕ

∂t

∣∣∣∣n+1

c0

+
Δt2

2

∂2ϕ

∂t2

∣∣∣∣n+1

c0

− Δt3

6

∂3ϕ

∂t3

∣∣∣∣n+1

c0

+O
(
Δt4

)
(3.16)

ϕn−1
c0

= ϕn+1
c0

−2Δt
∂ϕ

∂t

∣∣∣∣n+1

c0

+2Δt2
∂2ϕ

∂t2

∣∣∣∣n+1

c0

− 4Δt3

3

∂3ϕ

∂t3

∣∣∣∣n+1

c0

+O
(
Δt4

)
(3.17)

Subtracting four times equation 3.16 from equation 3.17 yields the following

identity:

3ϕn+1
c0

− 4ϕn
c0
+ ϕn−1

c0

2Δt
=

∂ϕ

∂t

∣∣∣∣n+1

c0

− Δt2

3

∂3ϕ

∂t3

∣∣∣∣n+1

c0

+O
(
Δt3

)
(3.18)

which can be used for a second order approximation of the time derivative

in equation 3.5:

3ϕn+1
c0 − 4ϕn

c0 + ϕn−1
c0

2Δt
= −

Nfaces∑
f=1

(
ϕ�u− Γϕ

ρ0
�∇ϕ

)
f

· �nf
Af

V
+

Sϕ

ρ0
(3.19)

The terms in brackets are in turn discretized by means of the schemes illus-

trated above, thus yielding the following reformulation:

3ϕn+1
c0 − 4ϕn

c0 + ϕn−1
c0

2Δt
= −

∑
i

liϕ
m
i + s (3.20)

where the first term on the right hand side of equation 3.19 has been expressed

2First order Euler.
3The adopted convention is that the time t can be written as t = nΔt, where Δt is the

discretization time step.
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as the weighted sum of the value of ϕ in the centre of the integration cell c0

and the adjacent cells. The sum extends over an unspecified number of cells,

which depends on the scheme that has been adopted, while the coefficients

li depend from the geometry and, possibly, from external parameters. The

term s takes account of the part of the source term which can be computed

independently from the values ϕm
i .

Writing equation 3.20 for every finite volume of the domain with proper

initial and boundary conditions yields a closed system of equations which

can be solved for the value of the variable at the following time step, ϕn+1.

A last issue to discuss is the choice of the time step m at which the sum

on the right hand side has to be evaluated. According to equation 3.18, in

which the time derivative at the time step n + 1 is discretized, the value

ϕn+1 would be required, leading to a fully implicit method, which, for linear

systems like the simplified one considered above, has the advantage of being

unconditionally stable with respect to the time step.

However, in order to avoid the computational costs due to the high order

terms, the deferred correction approach is used in Fluent: all schemes which

involve higher order terms such as gradients are split into a low order and

a correction term. The first one, which involves only the nearest cells, is

evaluated at the time level n + 1, and is therefore treated implicitly; the

second one is instead expressed as the difference between the higher order

approximation, which involves all the adjacent cells, and the low order term,

and is evaluated at the time step n (and therefore treated explicitly). The

equation system can then be rewritten as:

ϕn+1
c0 +

2

3
Δt

nc+1∑
i

diϕ
n+1
i = −2

3
Δt

∑
j

pjϕ
nk
j +

4ϕn
c0
− ϕn−1

c0
+ 2Δts

3
(3.21)

where unknown terms, i.e. quantities at the time level n+1, have been split

from computable terms (those at the time levels n and n − 1). The sum

on the left hand side extends over the neighbouring cells nc in addition to

the cell with centre c0; the one on the right hand side involves instead the

quantity ϕnk
j , which refers to the previous iteration (i.e. the k-th iteration)
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performed in the computation of the n+1-th time step. The system can now

be rewritten in a more compact form:

ac0ϕ
n+1
c0

+
∑
i

aiϕ
n+1
i = b (3.22)

where b includes the boundary conditions and all the computable terms, i.e.

those that are available from the previous time steps or iteration. The result-

ing system of equation 3.22 is then resolved by means of the Gauss-Seidel

method with an algebraic multigrid acceleration technique. The iterative

method stops when the scaled residual, defined as:

R =

∑
cells

(∣∣ac0ϕn+1
c0

+
∑

i aiϕ
n+1
i − b

∣∣)∑
cells

∣∣ac0ϕn+1
c0

∣∣ (3.23)

falls under a certain prefixed tolerance level.

Only the discretization and the solution of the general scalar transport

equation has been discussed so far: in the following paragraph, while explain-

ing the problem of the pressure-velocity coupling for incompressible flows, the

previously introduced issues will be extended to the complete system of the

incompressible Navier-Stokes equations. However, since in the analysed case

a heat-transfer problem is involved, in addition to the set of incompressible

Navier-Stokes equations also the general transport equation for the temper-

ature will be solved.

3.8 Pressure-velocity coupling

The complete system of the incompressible and isothermal Navier-Stokes

equations for a Newtonian fluid has the following integral form:

∂

∂t

∫
V

ρ0�udV+

∫
∂V

(
ρ0�u�u+ p [I]− μ�∇�u

)
· �ndA =

∫
V

�SdV (3.24)

∫
∂V

�u · �ndA = 0 (3.25)
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where ρ0 is the constant density, �u the velocity filed, [I] the identity matrix,

μ the dynamic viscosity, �n the outward unity vector normal to the boundary

of the domain V and S a generic momentum source term.

A first important point to remark is that the equations of the system are

strongly coupled and non linear. More in detail, the discretized convective

term ρ0ϕ�u ·�n that appeared in the general scalar transport equation analysed

in the previous chapter becomes now ρ0�u�u · �n, since the generic variable ϕ is

replaced by �u. As a consequence, the flux through the faces of the volume

becomes a function of �u, which is also the solution variable.

The coefficients introduced in paragraph 3.5 are therefore not anymore

constant and, since the low order terms -as mentioned above- are treated

implicitly, the resulting system becomes non linear. Problems due to equa-

tion coupling and non linearities are faced in a way similar to that for the

higher order terms in the deferred approach: coefficients are evaluated at the

previous iteration and frozen to make the system linear.

The lack of an independent equation for the pressure is a further impor-

tant issue, which is also strictly related to the continuity (divergence-free)

constraint on the velocity field. In case of a compressible fluid, in fact, the

link between pressure and density is described by the equation of state; oth-

erwise, assuming the density to be constant, the continuity equation becomes

a kinematic constraint on the velocity field and, in addition, an independent

equation for the pressure is missing. As a consequence, an algorithm which

provides a pressure-velocity coupling is needed.

In ANSYS FLUENT several different algorithms are implemented, but

for the performed simulations mainly the so called fractional-step method

(FSM) has been adopted, since it allows to minimize the computational time.

The unique exception is the simulation with the non linear k − ε model: in

this case the iterative PISO algorithm has been chosen because the model

implementation requires the property update inside an iterative loop.

With the fractional step method the momentum equations are iteratively

solved (with the so called inner iterations) using a provisional pressure field:

this yields a velocity field which is not divergence free. The obtained velocity

field is then corrected with a gradient term, obtained from the solution of
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a Poisson equation for the pressure, so that the divergence becomes zero;

from this equation it is also possible to obtain the correction to update the

pressure at the next time level.

Unlike the FSM, other pressure velocity coupling algorithms (such as

those of the SIMPLE family), require for every time step also a cycle of so

called outer iterations. The new pressure value obtained from the correction

is in fact not directly used to compute the next time step but is instead

substituted again in the momentum equations and this iterative process stops

when the scaled residuals reach the tolerance level.

Since the main difference between the two approaches is the need of

the outer iterations, the FSM is labelled as non-iterative time advancement

(NITA) method, while the other algorithms are classified as iterative time

advancement (ITA) methods. The NITA sensibly reduces the computational

time, while on the other side the ITA ensures higher stability. The PISO is

the only algorithm which can be used both with iterative or non iterative

time advancement because, like the FSM, the splitting error is of the same

order of magnitude of the time integration error and the outer iterations are

therefore not necessary. However, since it requires two equations to be solved

in order to yield the pressure correction, it increases the computational costs,

therefore in the performed simulations, where possible, the FSM has been

preferred, while the PISO has been adopted with an iterative time advance-

ment. The FSM implemented in FLUENT is based on an approximated

factorization of the system of discretized equations, which is:

A︷ ︸︸ ︷[
3ρ0V

2Δt
I + (N − L)

]
�un+1 +Gpn+1 =

	r︷ ︸︸ ︷
ρ0V

2Δt

(
4�un − �un−1

)
+ �Su (3.26)

D�un+1 = 0 (3.27)

where �u is the discrete solution, i.e. the components of the velocity field in

the cell centres, p is the pressure in the cell centres, I the identity operator,

N and L stem from the discretization of the convection and diffusion terms,

G and D derive from the discretization of the gradient and divergence terms,
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while �Su is the momentum source term. The equation above can be rewritten

in compact form as follows:[
A G

D 0

][
�un+1

pn+1

]
=

[
�r

0

]
+

[
m.b.c.

c.b.c.

]
(3.28)

where m.b.c are the momentum boundary conditions and c.b.c are the con-

tinuity boundary conditions. This represents the complete system for the

whole domain, which has to be resolved for �u and p4 at the time level n+ 1

starting from the values at the time steps n− 1 and n. To solve the system,

a factorization is needed. The exact LU factorization of the matrix is:[
A 0

D −DA−1G

][
I A−1G

0 I

][
�un+1

δpn+1

]
=

[
�r −Gpn

0

]
+

[
m.b.c.

c.b.c.

]
(3.29)

The pressure has been split in a computable term and an unknown correction:

pn+1 = pn + δpn+1 (3.30)

According to the FSM the following approximation is then introduced:

A−1 ≈ 2Δt

3ρ0V
I = Δt∗ · I (3.31)

This leads to the following approximated system:[
A 0

D −DΔt∗G

][
I Δt∗G

0 I

][
�un+1

δpn+1

]
=

[
�r −Gpn

0

]
+

[
m.b.c.

c.b.c.

]
(3.32)

Which can be decomposed in the following three steps:

A�̃u = �r −Gpn + b.c. (3.33)

DGδpn+1 =
D�̃u

Δt∗
− b.c. (3.34)

4Since the system has been written in a block-matrix form, p is a vector but, for the
sake of clarity, the over-arrow has been omitted.
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�un+1 = �̃u−Δt∗Gδpn+1 (3.35)

Therefore, first the momentum equations are solved with the pressure field

obtained at the previous time step: the resulting velocity field will not be

divergence-free
(
D�̃u 	= 0

)
; second, the Poisson equation is solved and the

pressure correction is calculated. Finally, the velocity field is corrected by

means of the pressure correction.

The approximation introduced by the FSM can be evaluated by substi-

tuting the relation:

A−1 = Δt∗ · I (3.36)

in the un-factorized system:[
A Δt∗ · IAG
D 0

][
�un+1

δpn+1

]
=

[
�r −Gpn

0

]
+

[
m.b.c.

c.b.c.

]
(3.37)

The upper right term can be written as:

Δt∗ · IAG = Δt∗
[

I

Δt∗
+ (N − L)

]
G = G+Δt∗ (N − L)G (3.38)

The introduced error, which only affects the momentum equations, is there-

fore:

Δt∗ (N − L)Gδpn+1 =
2Δt2

3ρ0V
(N − L)G

∂p

∂t

∣∣∣∣n +O
(
Δt3

)
(3.39)

and is of the second order in time, since the pressure correction is used,

instead of the pressure itself, which would otherwise lead to a first order

error. As a consequence, outer iterations are not needed, since the error is of

the same order of magnitude of the one introduced by the time discretization.

The computational procedure can be summarised as follows:

for t = 0 : Δt : T

while Ri > εt

Solve �̃u equation

Solve �̃v equation

Solve �̃w equation
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Update properties

end

Solve pressure correction equation for δpn+1

Correct the velocity field: �un+1 = �̃u−Δt∗Gδpn+1

Correct the pressure field: pn+1 = pn + δpn+1

while Ri > εt

Solve additional equations

end

end where Ri is the scaled residual of the i − th quantity and εt is the

user-defined tolerance. As mentioned above, the Poisson equation is solved

outside the inner iteration loop, i.e. only once per time step: the corrected

pressure is then used to compute the next time step.

On the other side, as already noticed, when the PISO is used with an

iterative time advancement the calculation of the pressure correction does

not directly lead to the following time step but is instead used to update the

momentum equations, which must be solved again (outer iterations). Finally

it must be noted that the pressure values in the cell-face centres are needed,

but since FLUENT is a co-located solver, the pressure values -as the velocity

components- are stored in the cell-centres: a pressure interpolation scheme

is therefore required.

In the performed simulations the PRESTO! scheme (pressure staggering

option) has been adopted, which computes the pressure in the cell-face centre

by means of a discrete continuity balance for a staggered control volume

about the face.
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4.1 Experimental setup

The experiments of Meinders et al. [7] were performed in a wind tunnel with

a rectangular test section of 600 mm × 51 mm. On one of the walls was

mounted a matrix of spatially equidistant cubes, the height of which (H)

was 15 mm. The number of the cubes was respectively 25 in the streamwise

direction and 10 in the spanwise direction; their face-to-face distance (S) in

both directions was 45 mm (S/H = 4). A schematic sketch of the matrix is

given in figure 4.1.

In order to ensure the full development of the flow in both spanwise and

streamwise direction the measurements were performed around the 18th row

of cubes counted from the inlet, at mid position of the channel.

The flow field was measured with a Laser Doppler Anemometer (LDA) at

a Reynolds number of ReH = 3854, based on the cube height and the bulk

velocity ub = 3.86 m/s. The Reynolds number based on the channel height

was instead Re = 13103.

The heat transfer was measured with infrared thermography at one elec-

trically heated cube located in the centre of the matrix, while all the other

cubes remained unpowered. The powered cube consisted of a copper core,

whose temperature was kept constant at 75◦ C, covered with a thin epoxy

layer 1.5 mm thick (0.1 H). The inlet temperature ranged between 19◦ C

and 21◦ C.

4.2 Computational setup

The spatial and temporal periodicity of the flow shown by Meinders’ experi-

ments allowed to consider only a subchannel unit with dimensions 4H×4H×
3.4H . The cube was placed in the centre of the domain, on whose boundaries

periodicity conditions were applied. Instead, on the top and bottom wall of

the channel no slip conditions were applied.

For what concerns the simulation of the temperature field and the heat

flux, the epoxy layer of the cube was meshed, in order to allow simultaneous

solution of heat conduction in the layer and heat convection in the fluid and
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(a) Matrix of cubes

(b) Sub-channel unit

Figure 4.1: Experimental and computational setup.
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Symbol Property Air Epoxy
ρ Density 1.204 kg/m3 1150 kg/m3

cp Specific Heat 1006.43 J/kg ·K 1668.5 J/kg ·K
λ Thermal conductivity 0.0255 W/m ·K 0.236 W/m ·K
μ Kinematic viscosity 1.502 · 10−5 m2/s -

Table 4.1: Material properties.

thus obtain the surface temperature of the cube. The inner side of the layer

was set to a constant temperature of 75◦ C, that is the temperature of the

copper core: it is correct to assume this temperature to be uniform because

of the very high conductivity of copper.

Since in the experiment only one cube was heated, it was not possible

to set periodic boundary conditions also for temperature: the temperature

of the incoming fluid was therefore fixed to 20◦ C. This value has also

been considered as reference for the computation of the heat flux. The heat

transfer through the top and bottom wall of the channel was instead not

modelled, as well as the radiative heat flux.

In addition, it must be remarked that in the experimental setup the ma-

trix of cubes was mounted on a vertical wall: buoyancy effects have however

not been taken into account, since it was shown [8] that at the considered

Reynolds number they are negligible.

The simulations were performed approximately at the same Reynolds

number of the experiments: some differences between the target Reynolds

number and the effective one is due to the fact that it was preferred to set

the pressure gradient’s value between inlet and outlet rather than the mass

flow rate through the channel. Nonetheless it was shown by the experiments

that small variations of the Reynolds number have no significant influence

on the results. All relevant physical properties are shown in table 4.1.
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4.3 Computational grid

In order to investigate the effects of the mesh refinement on the performance

of the tested models two different grids were used: a coarse one and a fine

one.

In the first case (shown in figure 4.2) a small number of cells was employed:

respectively 5184 for the epoxy layer (with 4 elements across its thickness)

and 165600 for the outer region. In y direction (height of the channel) the

size of the elements varied between 0.01 H and 0.256 H while in streamwise

(x) and spanwise (z) direction it ranged between 0.01 H and 0.11 H . The

refinement level of the mesh was higher in the region close to the cube and

the walls in order to provide a good resolution of the boundary layer and

of the turbulence phenomena, and lower in the upper part of the channel.

The sizing of the elements ensured an y+ value of approximately 1.7 in the

near-wall region, with a local maximum of 3.99 around the cube edges.

At the considered Reynolds number and setting the time step size Δt to

3.8 · 10−5s, this grid spacing led also to a Courant number of 1.286 (0.334 for

the LES, where Δt was set to 1 · 10−5s).

Figure 4.2: Coarse grid.
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Mesh
Cells Cells Cells y+ Max. CFL Max. CFL

(epoxy) (fluid) (max) �t1 �t2
Coarse 170784 5184 165600 3.99 1.286 0.334
Fine 638000 170000 621000 4.15 1.35 0.36

Table 4.2: Grid properties. �t1 = 3.8 · 10−5 and �t2 = 1 · 10−5.

The fine grid (shown in figure 4.3) was obtained from the coarse one

keeping the same minimum element size of 0.01 H , but increasing the number

of elements per edge. The total number of cells was 638000, respectively

17000 for the epoxy layer (5 elements across its thickness) and 621000 for

the fluid domain. The element size ranged from the minimum to 0.13 H in

y direction and to 0.1 H in streamwise and spanwise direction.

The near wall y+ value was approximately 1.5, while the local maximum

around the cube edges was 4.15; the cell Courant number (abreviated with

CFL, Courant-Friedrichs-Levy number) was 1.35 (0.36 for the LES), consid-

ering the same time step size as for the coarse grid. Table 4.2 summarizes

Figure 4.3: Fine grid.

the properties of both grids. Since the problem had a very simple geometry

it was possible to adopt structured computational grids.
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It must anyway be noted that both grids were not specifically designed

for LES simulations because the majority of the performed computations

adopted a RANS (or hybrid RANS-LES) approach: the grids are therefore

well suited for this kind of simulations. Otherwise, adopting a LES approach,

the strong grading -especially in y direction- of the cell size determined a loss

of resolution that slightly affected the results of the computations.

4.4 Numerical procedure

In this section a brief summary of the adopted numerical procedure will be

given, although many issues have already been discussed in the previous

chapters.

The flow was always considered unsteady: where possible a second or-

der implicit transient formulation was adopted, with a non iterative time

advancement (NITA) and the fractional step method (FSM) was used for

coupling pressure and velocity. The choice of this kind of schemes is due to

the fact that they permit to considerably reduce the computational time.

Only with the non linear k−ε model it has not been possible to adopt the

same settings, because of its specific implementation in ANSYS FLUENT. In

this case an iterative time advancement was therefore chosen and the PISO

algorithm was used for the pressure-velocity coupling.

For what concerns the space discretization, a second order upwind scheme

was adopted, with the exception of SAS and LES simulations, where the

bounded central differencing scheme was adopted.

Finally, the pressure was discretized by means of the PRESTO! algorithm

while the gradients were always computed with the least-squares cell based

method.

4.5 Setting of periodic conditions

In case of periodic boundaries FLUENT allows to choose between two peri-

odic conditions: specified mass flow rate and specified pressure gradient. The
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choice of the kind of time advancement -iterative or not iterative- restricts

indeed the number of available options: when the NITA scheme is adopted, it

is in fact not possible to impose a mass flow rate through the inlet and outlet

surface. Only the pressure gradient between these surfaces can be specified.

It has therefore been possible to set the mass flow rate only in the sim-

ulation with the non linear k − ε model, where the NITA scheme could not

be employed, while in all the other simulations a pressure gradient had to be

specified.

So, first of all a steady simulation with a standard k − ε model was

performed, in order to find a suitable value for the pressure gradient, which

was found to be approximately −7 Pa/m. This value was then taken as

reference for all other computations and was successively adapted case by

case in order to ensure a correct mean mass flow rate. It must however be

noted that small corrections of this value are necessary because also if the

fixed gradient is always the same, the choice of the turbulence model and the

mesh refinement grade determine a different resulting mass flow rate through

the computational domain.

With the LES simulations a slightly different approach was adopted. In

this case, in fact, only one subgrid scale model was used, so only the mesh

refinement grade affected the mass flow rate. It was therefore decided to keep

the same pressure gradient for both the coarse and the fine grid, in order to

investigate the effects of the mesh on the results.

Finally it should be observed that such an approach, i.e. the choice of

a pressure gradient and its correction with regard to the average mass flow

rate, could not ensure that precisely the target mass flow rate value was

reached; nonetheless, as mentioned above, the results are not very sensitive

to small variations of the Reynolds number therefore small differences from

the target value were considered acceptable.

Table 4.3 summarizes the computational settings of the different cases

while table 4.4 shows the different periodic settings and their effect on the

average values of the bulk velocity and the Reynolds number.
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Mesh
Turbulence p− v Time Space Pressure

model coupling discr. discr. discr.
coarse k − ω FSM II o. NITA II o. upwind PRESTO!
coarse SAS FSM II o. NITA Bounded c. diff. PRESTO!
fine k − ω FSM II o. NITA II o. upwind PRESTO!
fine SAS FSM II o. NITA Bounded c. diff. PRESTO!
fine k − ε FSM II o. NITA II o. upwind PRESTO!
fine k − ε−NL PISO II o. ITA II o. upwind PRESTO!

coarse LES FSM II o. NITA Bounded c. diff. PRESTO!
fine LES FSM II o. NITA Bounded c. diff. PRESTO!

Table 4.3: Numerical settings.

Mesh
Turbulence ∇p vbulk ReH % Diff.

model Pa/m m/s from target
coarse k − omega -5.85 3.80 3794,94 -1.55
coarse SAS -5.60 3.94 3934,75 2.07
fine k − omega -6.75 3.94 3934,75 2.07
fine SAS -6.00 3.99 3984,69 3.36
fine k − ε -7.66 3.85 3844,87 -0.25

coarse LES -7.00 3.60 3595,21 -6.73
fine LES -7.00 3.75 3745,01 -2.85
fine k − ε−NL -9.77 3.86 3854,86 0

Table 4.4: Periodic settings. With the k − ε−NL model the mass flow rate
was specified (0.01422 kg/s) instead of the pressure gradient. Target values
were 3.86 m/s for the bulk velocity and 3854 for the Reynolds number.
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5.1 General flow structure

Before explaining in detail the results of the simulations it is useful to give

a brief description of the general flow structure, as shown by Meinders et al.

[7]. A schematic sketch of the main features of the flow is given in figure 5.1.

The formation of distinct vortex structures takes place only in the immediate

Figure 5.1: Sketch of the three dimensional flow pattern (from [7])

proximity of the cube, while in the upper region of the channel and in the

streamwise corridors between the cubes the flow remains almost undistorted.

A horseshoe vortex forms at the windward face and it is then deflected

downstream along both sides of the cube. It becomes then weaker proceeding

further in the streamwise direction, as it interacts with the counter-rotating

vortices formed along the side-neighbouring cubes. This results in negative

velocities close to the side of the cube. Furthermore, the impinging flow sepa-

rates at the leading edges giving rise to small recirculation bubbles on the top

and side faces of the obstacle –which reattach few millimetres downstream-

and to a two-cell recirculation structure immediately downstream of the cube,

which causes a significant upwash close to the leeward face.

Besides the two recirculations, the wake flow is also dominated by the

arch-shaped vortex, which originates from the flow separation on the front
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edges. The flow then reattaches at about half cube height downstream of

the cube. The centres of the two spirally wound vortices in the wake are

clearly visible by means of an oil-film visualization (figure 5.2). In the same

Figure 5.2: Oil-film visualization of the surface streaklines.

figure it is also possible to observe the horseshoe vortex, whose imprint is the

white line which originates in front of the cube and bends downstream along

the separation line, and the small recirculation on the top face, close to the

leading edge.

The vector plots in figure 5.3 and 5.4 show the results of the measure-

ments of Meinders et al. [7] for the plane x − y and half x − z plane.

In this brief description of the general features of the flow around the cube

the temperature field on and around its surfaces has not been considered.

However, it goes without saying that the temperature distribution is strictly

correlated with the turbulent phenomena: in presence of large recirculations

the surface temperature will locally increase, while in zones characterised by

strong flow accelerations the cooling will be more efficient.

As a consequence, numerical simulations that aim to give a good pre-

diction of the local heat transfer characteristics must necessarily adopt an

accurate turbulence model, since the two problems (i.e. heat transfer and

turbulence) are strictly coupled.
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Figure 5.3: Time averaged vector plot on the x − y plane at z/H = 0. The
vectors in the triangular regions were obtained with laser measurements.

Figure 5.4: Time averaged vector plot on half x− z plane at y/H = 0.5.
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5.2 Numerical results

As mentioned in the previous chapters, the aim of the present work is to com-

pare the performances of different turbulence models, taking into account the

effect of the computational grid. Several simulations with different models

have therefore been performed, and their results have then been compared

with measurements.

Three main characteristics of the flow have been investigated: first of all

its dynamic behaviour, i.e. vortex shedding phenomena, second the mean

velocity profiles and the mean Reynolds stresses and finally the mean tem-

perature field and the mean heat transfer coefficient through the cube sur-

faces1. In addition, at the end of this chapter, some further results for which

experimental data are not available will be shown.

Figure 5.5 shows the origin of the coordinate system and the pathlines

along which the measurements of velocity and temperature were taken.

Figure 5.5: Pathlines and coordinate system origin.

Velocity measurements refer to the horizontal and vertical pathlines in the

fluid domain, as summarized in Table 5.1.

1Mean data have been exported from FLUENT, and are based on a flow time of mini-
mum 5 seconds.
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Pathlines x/H y/H z/H

Horizontal

−0.3 0.5 From −2 to 2
0.3 0.5 From −2 to 2
1.3 0.5 From −2 to 2
1.7 0.5 From −2 to 2
2.3 0.5 From −2 to 2

Vertical

−0.3 From 0 to 3.4 0
0.3 From 0 to 3.4 0
1.3 From 0 to 3.4 0
1.7 From 0 to 3.4 0
2.3 From 0 to 3.4 0

Table 5.1: Pathlines

Pathlines y/H z/H

Horizontal
0.25
0.52
0.75

Vertical
0.02
0.18
0.32

Table 5.2: Surface pathlines

An additional horizontal pathline atx/H = 0.5, y/H = 0.5 from z/H =

0.5 to z/H = 2 is used to detect the presence of the horseshoe vortex. Fur-

thermore, as in the experiment, a point has been defined in the wake of the

cube (the psd point in figure 5.5) at x/H = 2, y/H = 0.5, z/H = 0.5, where

time sampling of the spanwise component (w) has been carried out, in order

to obtain its power density spectrum.

Finally, the temperature and heat transfer coefficient measurements refer

to the pathlines on the cube surface whose positions are summarized in table

5.2. Since all these pathlines lay on a plane with constant y/H or z/H , only

this coordinate is used to define the line. For the sake of clarity, in figure 5.5

only two surface pathlines -a horizontal one and a vertical one- are shown.
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5.3 Dynamic behaviour

As mentioned above, like in the experiment, in order to detect coherent

structures the power density spectrum of the spanwise component of the

velocity in a point in the wake of the cube was calculated. The dominant

characteristic frequency was then derived from the location in the spectrum

which corresponded to a maximum of energy.

The experiments showed a vortex shedding frequency of ca. 27 Hz: this

value was then made dimensionless with the cube size and the bulk velocity

to yield the Strouhal number:

St =
Hf

ub
(5.1)

which was found to be 0.109. In the performed simulations a flow time of

minimum 5 seconds was considered, which corresponded to about 130 vortex

shedding cycles.

In order to obtain a clearer graph and highlight the fundamental frequen-

cies, the collected data were then processed by means of the Welch’s averaged

modified periodogram method of spectral estimation implemented in Matlab:

the data were divided into eight sections with 50% overlap, which were then

windowed with a Hamming window.

In figure 5.6 the power density spectra obtained with the coarse grid are

shown; the frequency of 27 Hz which was measured in the experiments has

been highlighted by means of a black solid line.In figure 5.7 are shown the

results obtained with the fine grid. As in the experiment, the spectra have

all been truncated at 4 ·102 Hz: higher frequencies, in fact, are not related to

resolved structures. Regardless of the adopted grid, the spectra confirm that

as the resolution capabilities of the turbulence models increases, the energy

content of the signal increases and is spread over a wider range of frequencies.

The k − ω model is only able to capture the single vortex shedding fre-

quency: this is clearly visible in the graph, where peaks of power spectral

density are associated to the fundamental frequency and its multiples. Since

it has been developed as an hybrid between URANS and LES models, the
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Figure 5.6: Power density spectra of the w-component obtained on the coarse
grid with different models.
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Figure 5.7: Power density spectra of the w-component obtained on the fine
grid with different models.
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Grid Model f Hz St

Coarse
k − ω 17.67 0.070
SAS 18.27 0.070
LES 28.61 0.112

Fine
k − ω 19.27 0.074
SAS 23.00 0.086
LES 30.90 0.129

Table 5.3: Shedding frequencies and Strouhal numbers.

SAS model is able to resolve smaller scales than the k − ω model: as a con-

sequence, there is a wider range of energy containing frequencies and a peak

at the fundamental shedding frequency.

Finally the LES shows the highest spectral content, as it is able to resolve

the smallest scales. As shown in table 5.3, the best predictions of the shedding

frequency are given by the large eddy simulations: the k − ω and the SAS

model tend in fact to underestimate it. It is also interesting to notice a

certain similarity between the results obtained with these two models: like

the k − ω, also the SAS model predicts in fact peaks of power density at

frequencies that are multiples of the fundamental one. Furthermore, even

if the spectral content of the SAS is higher than that of the k − ω, it is

still too low -compared to the peak value- to sensibly affect the value of the

fundamental frequency. It means that even if the model is able to capture

turbulent fluctuations, they are still too weak to have an influence on the

main flow features. The k − ε models -linear and non linear- have not been

considered because even if adopted in unsteady simulations, their results

were nonetheless steady velocity fields: all the unsteadiness was duped by

the viscosity.

Finally, it is important to notice that with the k− ω and SAS model the

difference between measured data and numerical predictions is due to the

incapability of the models to reconstruct small scales of motion. The over-

prediction of the turbulent viscosity does in fact μt damp out the turbulent

fluctuations. This error does not depend on the computational grid: a mesh

refinement, in fact, only slightly modifies the results.
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On the other side the results obtained with the LES are much more

accurate: the error is mainly due to the fact that -as mentioned above- the

grids were well suited for URANS simulations and not for LES, since one

of the aims of the present work was to check the performance of LES on

URANS grids.

5.4 Velocity field

Since the results of the large eddy simulations best agree with the measured

data, it is useful to start from them the analysis of the results. In the

streamline plots (figure 5.8) it is possible to observe the mean recirculation

regions. In figure 5.8(a) the horseshoe vortex in front of the cube is clearly

visible, as well as the recirculation in the wake of the cube, bounded by the

shear layer, which causes a strong upwash close to the rear wall. Finally a

small recirculation can also be found at the foot of the rear face, due to the

arch vortex. The plot in figure 5.8(b) refers to a plane which is very close to
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(b) Plane x− z, y/H = 0.006

Figure 5.8: LES with fine grid: streamlines and contours of mean velocity in
the plane.

the base wall (y/H = 0.06), and it closely resembles the oil-film visualization

of the flow streaklines obtained by Meinders and Hanjalić [7].

It can be noticed how the horseshoe vortex forms in front of the cube

(vortex centre in x/H = −0.5, see figure 5.8(a)) and bends around it along

the separation line. Furthermore the streamlines reveal the presence of two
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counter rotating foci in the wake, which form -together with the recirculation

close to the top surface (figure 5.8(a))- the arch shaped vortex. The reattach-

ment point in the wake of the cube is predicted approximately at x/H= 2.5,

in good agreement with the experimental data. Two recirculation bubbles,

produced by the separation of the flow from the sharp leading edges, are

also visible on the side faces of the cube. Finally, it can be observed that in

the core region above the cube and in the streamwise corridors between the

cubes the flow remains almost undistorted.

In figure 5.9 are shown the mean velocity profiles of the streamwise com-

ponent (u) of the velocity along the vertical pathlines summarised in table

5.1. The circles represent the measured values, while the coloured lines refer

to the different adopted turbulence models; velocity is made dimensionless

by means of the bulk velocity and every profile -with the exception of the

first one- has been offset of one unit from the previous one. As mentioned
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Figure 5.9: Vertical profiles of the mean streamwise component of the velocity
u at z/H = 0.

above, both the coarse and fine-grid LES lead to the most accurate results,

especially in the region y/H < 1. On the contrary, in the region above the

cube (y/H > 1), a certain difference between numerical and experimental

data can be noticed. The causes of this lack of accuracy are mainly two.
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First of all, the adopted computational grids were designed to be well suited

for URANS applications and not for LES, so they are significantly refined in

the cube region and close to the walls, but quite coarse in the upper part of

the channel. The coarseness of the mesh and the strong resulting cell-size

grading between different regions imply therefore a worse performance of the

large eddy simulations for y/H > 1.

Second, LES performed with finite volume solvers typically suffer of a lack

of accuracy in simulations of simple channel flows, because they are not able

to properly reconstruct the very-small-scale turbulence phenomena located

in the near-wall regions. The length scales of these structures are in fact

considerably smaller than the typical filter cutoff frequency but have a certain

energy content, which is incorrectly transferred to larger length scales. This

is clearly visible in figure 5.10, which shows a comparison (from [6]) between

two velocity profiles for a flow in a simple channel obtained respectively

with a DNS and a LES: the large eddy simulation sensibly overestimates the

velocity. On the contrary, in presence of an obstacle -a cube, in this case- the
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Figure 5.10: Comparison between LES and DNS in a simple channel.

flow around it is characterised by larger scales with higher energy content

and the effects of the smallest scales can be supposed to be negligible.

The results of the performed simulations are therefore affected, for what

concerns the upper part of the channel, by the two problems mentioned
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above; nonetheless, since the aim of the simulations is the reconstruction

of turbulence in proximity of the cube and the prediction of the local heat

transfer coefficient on the cube surfaces, this lack of accuracy for y/H > 1 is

not of great importance. Close to the cube, all the other models (5.9) perform

worse than the LES. Starting from the top face, the small recirculation bubble

is captured only by the k − ω, as it can be seen in figure 5.11. Furthermore
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Figure 5.11: Mean streamwise velocity (u) along the vertical pathline x/H =
0.3 at z/H = 0.

URANS models show a lack of accuracy in the reconstruction of the profiles

in x/H = −0.3 andx/H = 2.3, which are located approximately in the centre

of the recirculation in front of the cube and close to the reattachment point

in the wake.

The difference between the profiles can be better understood analysing

the streamline plots obtained with each model shown in figure 5.12. The

positions of the centres of the recirculations in front of the cube and in the

wake are incorrectly predicted by all models, as well as their dimension.

In figure 5.13 are shown the velocity profiles along the vertical pathlines

x/H = −0.3, x/H = 1.3, x/H = 1.7, x/H = 2.3, fory/H < 1.2. In these and

in the following plots it is also possible to notice that the results -with the

exception of the LES- do not strictly depend on the grid resolution. The main

problem is that all the URANS models fail to reconstruct the recirculation

zone close to the leeward face of the cube and do not correctly predict the
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(d) k − ω: y/H = 0.006
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(f) SAS: y/H = 0.006
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Figure 5.12: Streamline plots with contours of the mean velocity in the plane.
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(a) x/H = −0.3
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(b) x/H = 1.3
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(c) x/H = 1.7
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(d) x/H = 2.3

Figure 5.13: Vertical profiles of the mean streamwise component of velocity
(u) at z/H = 0.
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position of the reattachment point, which is shown by the measurements to

be approximately in y/H = 2.5. This yields a too slow flow recovery in

x/H = −0.3, which leads to an underestimation of u upstream of the cube

and to an incorrect prediction of the position of the centre of the upstream

vortex, which is located by all models in y/H > 2.5.

Among all URANS models, the one that gives the best prediction of the

position of the reattachment point is the non linear k − ε, but this model is

not able to accurately reconstruct the upstream vortex -which is consider-

ably stretched compared with the other models- and gives the poorest con-

formance with experimental results for u in x/H = −0.3. A plausible cause

of the stretching could be an influence of the third order terms which appear

in the definition of the Reynolds stress tensor: similar results have in fact

ben obtained with the non linear models which are available in FLUENT;

this issue remains however unresolved and further investigation is needed.

On the other side the sensible underestimation of u just upstream of the

windward face of the cube leads -in order to maintain mass conservation-

to an overestimation of u for |z/H| > 0.5 on the horizontal pathlines at

y/H = 0.5, as shown in figure 5.14, where the u profiles along the horizontal

pathlines of table 5.1 are shown; this also explains the high velocity values

visible in figure 5.12(h). On the contrary, since the standard k − ε gives the

best results -among the URANS simulations- for u along the vertical line at

x/H = −0.3, also the prediction of u along the horizontal pathlines is quite

accurate, although it is not able to detect the velocity decrease in the centre

of the channel.

It is important to remark that pointing out such a relationship between

the profiles of u in the vertical and in the horizontal plane is only possible

with the simulations performed with the k−ε models, because -as mentioned

above- even if the case was set as unsteady, the computations lead to a steady

velocity field. On the contrary, this is not possible in case of unsteady velocity

fields, because the time dependency makes this relationship less evident.

This is for example the case of the k − ω simulations, which in x/H = −0.3

underestimate u on the vertical line (for y/H < 1) as well on the horizontal

line (at y/H = 0.5).
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Figure 5.14: Horizontal profiles of the mean streamwise component of the
velocity (u) at y/H = 0.5.

Furthermore, as shown also in the plots in figure 5.15, consistently with

the overestimation of the reattachment length downstream of the cube, all

models predict -in disagreement with the experimental data- a reverse wake

flow for x/H = 2.3. Only the two k − ε lead to a positive u/ub value in

x/H = 2.3, coherently with the fact that -among all URANS simulations-

they give the best estimation of the position of the reattachment point and

of the velocity profile inx/H = 2.3. All models, with the only exception of

the non linear k−ε, are also able to capture the thin reverse flow on the side

faces of the cube (x/H = 0.3).

Another interesting flow feature highlighted by SAS and LES simulations

is an asymmetry of the u profiles on the horizontal pathlines with respect

to the centre of the channel (z/H = 2), as clearly visible in figure 5.14 and

in figure 5.15. With respect to the u component on the horizontal plane at

y/H = 0.5, SAS simulations lead to a sensibly asymmetric velocity field, since

the mean spanwise component of the velocity is non- zero. The under- and

overestimation of the local peaks of u respectively at z/H ≈ 1 and z/H ≈ 3

also suggest that the calculated velocity profiles might be specular to the

correct ones. This is also the case of the large eddy simulations, whose re-
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(a) x/H = −0.3
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(b) x/H = 0.3
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(d) x/H = 1.7
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(e) x/H = 2.3

Figure 5.15: Horizontal profiles of the mean streamwise component of velocity
(u) at y/H = 0.5.
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sults are in good conformance with measurements and accurately reproduce

their slight asymmetry; it was however surprisingly noticed that the results

of the LES varied according to the starting point of the time sampling, al-

though the number of data points was sufficiently large to ensure a correct

time averaging. Some calculations lead to results in good agreement with

the experimental data, as those shown in the figures above; others, on the

other side, lead to profiles which were specular to these ones. A plausible

cause could be some very-low-frequency phenomenon which could not be de-

tected because the computational time would have been too high. Otherwise

it is also possible that the asymmetry of the velocity field might actually

be physical and that the mean direction of the flow might not be exactly

parallel to the x-axis. If this is the case, an interesting question is how it

is possible that an asymmetric solution is obtained on a symmetric domain

with symmetric boundary conditions. However this currently remains an

unresolved issue requiring further investigation. Some similar cases can be

found in literature(e.g., [16]).

In figure 5.16 the mean profiles of the spanwise component (w) of the

velocity along the horizontal pathlines are shown. In conformance with the

measurements, all models capture the peak velocities close to the side faces

of the cube in x/H = 0.3, although the accuracy of the prediction of the w

profile changes among the different models. However, this suggests that the

length of the separation bubble originating from the sharp vertical edge of

the cube is not underestimated.

The best results are given by the LES on the fine grid, while on the

coarse grid the LES shows some lack of accuracy in certain stations; among

the URANS simulations, the best results, with the only exception of the

pathline at x/H = 0.3, are given by the k− ε model, and are very similar to

those of the LES on coarse mesh.

Since the sign of the mean w velocity changes between x/H = 1.3 and x/H =

1.7, the centres of the two downstream recirculations close to the leeward face

of the cube can be estimated to be somewhere between these two pathlines.

This result is in good conformance with experimental measurements: from

the streaklines on the horizontal plane (shown in figure 5.2) it can in fact
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(b) x/H = 0.3
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(d) x/H = 1.7
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(e) x/H = 2.3

Figure 5.16: Horizontal profiles of the mean spanwise component of velocity
(w) at y/H = 0.5.
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be clearly noticed that the two counter rotating foci are located exactly in

this position. The underestimation of w in x/H = 2.3 is due to the incorrect

prediction of the position of the reattachment point downstream of the cube,

which determines a too slow flow recovery.

Consistently with the prediction of an asymmetric velocity field, the w

profiles obtained with LES and SAS simulations are non-zero in the centre

of the channel (z/H = 2): the more the predicted asymmetry is strong,

the more the value of w differs from zero. It must however be noticed that

also the experimental profiles do not always exhibit a zero w-component of

the velocity in z/H = 2: for example in x/H = −0.3 and x/H = 0.3 the

measured value of w in the centre of the channel is approximately 10% of

the maximum measured value of w.

The presence of a horseshoe vortex close to the side faces of the cube is

revealed by the profiles of the normal component of the velocity v along a

horizontal pathline z/H > 0.5 at x/H = 0.5, y/H = 0.5, which are shown in

figure 5.17. Close to the side face of the cube, the velocity slightly increases
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Figure 5.17: Profile of the y component of the velocity on a horizontal path-
line (z/H > 0.5) at x/H = 0.5, y/H = 0.5.

due to a small corner vortex close to the bottom edge of the face, which

is caused by the downwash of the horseshoe vortex. This downwash also

determines negative velocities from z/H ≈ 0.6 to z/H ≈ 1.4. At z/H ≈ 1.4
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the horseshoe vortex interacts with the extensions of the outer horseshoe

vortex, which formed around the upstream cube, whose downwash nullifies

the upwash due to the inner vortex. Finally, according to the flow symmetry,

in the centre of the channel (z/H = 2) the effects of the upwash generated by

the outer vortex are superimposed to those of the outer vortex which bends

around the side-neighbouring cube, determining an acceleration of the flow

in the normal direction.

The best results are those of the large eddy simulations: the one on the

fine grid is in good agreement with the measurements for z/H < 1, but shows

a certain lack of accuracy moving towards the centre of the channel, while

the LES on the coarse mesh tends to constantly underestimate v.

The non linear k−ε model gives instead the poorest conformance with the

experimental data: the prediction of the size and of the position of the horse-

shoe vortex is completely wrong. This result is coherent with the streamlines

on the horizontal plane shown in figure 5.8(b), which are sensibly different

from those obtained with the large eddy simulations: the size -and con-

sequently its influence on the flow- of the horseshoe vortex is excessively

underestimated.

All the other models tend to locate the vortex closer to the cube side

surface and to underpredict its size: v changes in fact sign in z/H ≈ 1.1.

The resulting corner vortex is therefore smaller and the velocity gradient for

z/H < 1 is higher. Furthermore since the horseshoe vortex remains closer to

the cube side surface, its effects on the flow in the centre of the channel are

weaker, and this results in an underestimation of v in z/H = 2.

5.5 Reynolds stresses

Figure 5.18 and figure 5.19 show the profiles of the streamwise component

u′u′ of the Reynolds stresses tensor on the vertical and horizontal pathlines.

Only the results obtained with the large eddy simulations have been con-

sidered, because the LES approach to the problem consists in resolving a wide

range of motion scales, thus implying the adoption of a turbulence model only

for the smallest scales. The prediction of the velocity fluctuations u
′
is there-
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fore much more accurate than the one obtained with URANS simulations,

where all turbulent scales are modelled, thus leading to fluctuations which

are sensibly smaller than the effective ones.

With reference to figure 5.18, the peaks of the Reynolds stresses are lo-

cated at y/H ≈ 1, in correspondence to the generation and development of

the thin intense shear layer on the rooftop of the cube. The maximum of

u′u′ is found at x/H = 0.3, where the shear layer is generated, due to the

separation on the top face of the cube. Moving downstream of this position,

the peak value attenuates, because of turbulent transport.

The profiles obtained with the LES on the fine mesh are in good agree-

ment with the measurements in the near-wall region and for y/H < 1. Some

discrepancies can be found in the centre of the channel, for 1.3 < y/H < 2.5:

they are very likely due to an insufficient grid resolution in this position; some

further small disagreement can also be found in x/H = −0.3 and x/H = 2.3.

It can also be observed that the results obtained with the coarse grid are

overestimated compared to those obtained with the fine one. Similar re-
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Figure 5.18: Profiles of streamwise Reynolds normal stress on the vertical
pathlines at z/H = 0. Each profile (except x/H = −0.3) has been offset of
0.1 units from that of the previous one.

marks can be made about figure 5.19: the fine LES shows generally a good
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agreement with the experimental data, and the coarse simulations tend to

overpredict the value of the stresses. The peak value of u
′
is in proximity of

the cube, as in the case of the vertical pathlines, according to the high shear

production, and attenuates in the wake flow. The LES on the coarse grid
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Figure 5.19: Profiles of streamwise Reynolds normal stress on the horizontal
pathlines at y/H = 0.5. Each profile (except x/H = −0.3) has been offset
of 0.1 units from that of the previous one.

still overestimates the Reynolds stresses: such a behaviour is typical for LES

simulations. The use of a coarse grid has the same effect of a filter with a

larger cutoff width and yields therefore overpredicted fluctuation values. In

figure 5.20 and 5.21 the profiles of the Reynolds normal spanwise stress are

shown. The value of the w′w′ stres increases moving downstream of the

cube, and has a maximum in x/H ≈ 2.3. There is quite good agreement with

the experimental data in x/H ≈ 0.3 and x/H ≈ 1.3 for both the horizontal

and the vertical profiles; along the remaining pathlines the stresses are in-

stead underestimated. In this case a direct influence of the grid refinement

on the accuracy of the results cannot be detected, since the profiles obtained

with the fine mesh show a higher discrepancy from the measured data. Fig-

ure 5.22 exhibits the profiles of the Reynolds shear stress on the horizontal

pathlines. The peak value approximately coincides with the separation line
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Figure 5.20: Profiles of spanwise Reynolds normal stress on the vertical path-
lines at z/H = 0. Each profile (except x/H = −0.3) has been offset of 0.1
units from that of the previous one.
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Figure 5.21: Profiles of spanwise Reynolds normal stress on the horizontal
pathlines at y/H = 0.5. Each profile (except x/H = −0.3) has been offset
of 0.1 units from that of the previous one.
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Figure 5.22: Profiles of u′w′ Reynolds shear stress on the horizontal pathlines
at y/H = 0.5. Each profile (except x/H = −0.3) has been offset of 0.1 units
from that of the previous one.

originating from the back face of the cube, where the shear strain has its

maximum. The results are in quite good agreement with the measurements:

some discrepancy can be found in the wake, where the peak tends to remain

in z/H ≈ 0.5 instead of moving towards the centre of the channel and is

slightly underestimated.
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5.6 Temperature and heat transfer coefficient

profiles

Temperature and heat transfer coefficient profiles refer to the horizontal and

vertical pathlines summarised in figure 5.23 and in table 5.2. The measure-

(a) Horizontal pathlines (b) Vertical pathlines

Figure 5.23: Temperature and heat transfer coefficient pathlines.

ments carried out by Meinders et al [7]. were performed by means of liquid

crystal and infrared pictures of the surface temperature: the detailed profiles

were then reported for the pathlines shown in figure 5.23; the results were all

within the uncertainty limit of 10%. In the present work the heat transfer

coefficient was calculated as in the experiments, by means of the following

relation:

h =
Φ

Ts − Tref
(5.2)

where Φ is the convective heat flux, Ts is the surface temperature and Tref is

the reference temperature, which is the air inlet temperature (293 K ). Heat

flux through the base plate and radiative heat flux were not considered in the

simulations: this results in a general overestimation of the temperature and of

the heat transfer coefficient. The temperature field around the cube is strictly

dependent from the turbulence phenomena: the numerical results exhibit

therefore significant differences, which depend on the adopted turbulence

model.
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For the sake of clarity, with the only exception of the LES, only the results

obtained with the fine grid will be shown: as it was in fact already noticed

during the analysis of the velocity field, results are only slightly dependent on

the grid refinement. Figure 5.24 shows the temperature and the heat transfer

coefficient on the horizontal pathline at y = 7.75 mm. On the windward
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Figure 5.24: Temperature and heat transfer coefficient profiles along the
horizontal pathline y = 7.75 mm.

face temperature has a maximum in correspondence of the stagnation point,

which is located approximately in the centre of the face (point O), and then

sensibly decreases moving towards the front vertical edges. On the side faces

local maxima can be found in proximity of the leading edge, due to flow

separation, as it will be explained later on, discussing the results obtained for

the top face. Finally on the back face, moving towards its centre, temperature

first increases, as the cooling due to the shear weakens, and then slightly

decreases, because of the cold air imported by the reverse wake flow.

The simulation that best agrees with the experimental data is the fine

LES: the only discrepancies can be found in the section A-B, which is on the

right side face, where the temperature is overestimated.

It is however interesting to notice that on the left face the predicted

temperature is instead correct: there is therefore an asymmetry between

the surface temperature of the two side faces, which is a consequence of the
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asymmetry of the velocity field. This is also the case of the SAS model,

which yields asymmetric velocity profiles and, as a consequence, asymmetric

temperature profiles, especially in the wake region. On the other side the

LES on the coarse grid tends to underestimate the temperature value on the

front (sections O-A and D-O) and back faces (section B-C) of the cube, while

on the sides the results show a better agreement with the measurements.

All the URANS simulations exhibit relevant discrepancies from the ex-

perimental data, except in the centre of the section B-C (back face), where

the temperature value is correctly predicted: this is consistent with the cor-

rect reconstruction of the mean uprofiles along the vertical and horizontal

pathline in x/H = 1.3. On the front face the temperature overestimation

is due both to the overprediction of the size of the recirculation and to the

underestimation of the velocity: this causes a longer residence time of the

fluid in the vortex and, consequently, the temperature increases.

The underestimation of the velocity of the flow impinging on the front face

together with the incorrect reconstruction of the turbulence phenomena close

to the side walls of the cube (see figure 5.17) yields also the overprediction

of the side faces temperature.

Coherently with the prediction of the temperature profiles, the heat trans-

fer coefficient profiles obtained with the LES on the fine grid exhibit a good

agreement with the measurements. For what concerns the other simulations,

instead, overestimations of the surface temperature lead to underestimations

of the heat transfer coefficient, and vice versa. Local maxima of the heat

transfer coefficient can be found in correspondence of the front edges (points

A and D), where the strong acceleration of the flow enhances the heat re-

moval, thus determining also local temperature minima. Figure 5.25 refers

to the horizontal pathline at y = 3.75 mm. The conformance of all the re-

sults with the experimental data is quite poor: this is essentially due to the

fact that in proximity of the bottom wall -which is the case of the pathline

y = 3.75 mm- the heat transfer through the base plate, which was not mod-

elled, is not negligible in comparison with the convective heat flux. All the

performed computations yielded therefore an overestimation of the temper-

ature values. Consistently with this overestimation of the temperature, all
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Figure 5.25: Temperature and heat transfer coefficient profiles along the
horizontal pathline y = 3.75 mm.

models generally tend to underestimate the heat transfer coefficient. Finally

in figure 5.26 the results for the pathline y = 11.25 mm are shown. The
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Figure 5.26: Temperature and heat transfer coefficient profiles along the
horizontal pathline y = 11.25 mm.

most accurate results are still those of the LES on the fine grid, while the

simulation on the coarse grid tends to underestimate the local temperature.

For what concerns the other models, the temperature profiles and, conse-

quently, the heat transfer coefficient profiles show a better agreement with
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the experimental data then in the previous cases. For example in the sections

O-A and D-O the maximum difference between numerical and experimental

results reduces to 6.5% of the measured temperature, while for y = 3.75 mm

and y = 7.75 mm the maximum difference was respectively of 18% and 10%.

For y = 11.25 mm the influence of the recirculation in front of the cube

becomes in fact weaker, consistently with the fact that the reconstruction of

the mean streamwise velocity profiles on the vertical pathlines (see figure 5.9)

is in good conformance with the measurements for y/H ≈ 1. This implies

that in proximity of the pathline y = 11.25 mm the velocity of the impinging

flow is correctly predicted, thus leading to a more accurate prediction of the

temperature profiles.

The highest discrepancy -about 9.5% of the measured temperature- can

still be found on the side faces, but is less than along the two other horizontal

pathlines, respectively 22% for y = 3.75 mm and 13% for y = 7.75 mm. The

next figures illustrate the temperature and heat transfer coefficient profiles for

the vertical pathlines summarised in figure 5.23. The first two figures 5.27(a)

5.27(b) refer to the pathline z = 0.25 mm, which is the closest to the cube

midline. Like in the case of the horizontal pathlines, the best temperature
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Figure 5.27: Temperature and heat transfer coefficient profiles along the
vertical pathline z = 0.25 mm.

and heat transfer coefficient profiles are still those obtained with the LES;

the computation on the coarse grid has still the tendency to underestimate
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the temperature values, but the discrepancy with the one on the fine grid is

really appreciable only on the back face.

Since the heat flux through the base plate is not modelled, the tempera-

ture does not decrease in proximity of the bottom edge of the cube (points

O and D). There are instead local peaks, which are due to the small cor-

ner vortices induced respectively by the horseshoe vortex on the front face

and by the reverse wake flow on the back face. Heat is entrapped in these

small structures, which act as a kind of insulation layer, thus preventing

heat removal from the cube: this results in local minima of the heat transfer

coefficient. Similar considerations can be made for the two other vertical

pathlines, respectively z = 2.75 mm and z = 4.75 mm, which are shown

in figure 5.28. All the URANS simulations overestimate the temperature on

the windward face: as mentioned in the case of the horizontal pathlines, this

is due to the overestimation of the size of the recirculation in front of the

cube and underestimation of the velocity of the impinging flow. This error

becomes less important moving towards the top of the cube, as already no-

ticed analysing the horizontal pathline y = 11.25 mm, and consequently the

discrepancy between numerical and experimental data decreases.

A local maximum of the heat transfer coefficient -and consequently a tem-

perature minimum- can be found on the top leading edge (point B, figure

5.28(b) and 5.28(e)), where the heat removal benefits from the local acceler-

ation of the flow.

On the top face, a slight local temperature maximum can be found in

proximity of the leading edge, due to the small recirculation bubble which

originates from the flow separation; since the amplitude the vortex shedding

frequency is very high, the residence time of the fluid is quite low, thus

preventing the local temperature to increase sensibly. It must be noticed

that this flow feature is not detected by all models: the SAS and the two

k − ε are in fact not able to capture the effects of this small recirculation.

Another local temperature minimum is located at the upper edge of the back

face, where the cold air convected by the shear enhances the heat removal.

On the leeward face, moving towards the point D, the temperature first

increases, as the cooling effect of the shear layer becomes weaker, then tends
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Figure 5.28: Temperature and heat transfer coefficient profiles along the
vertical pathlines z = 2.75 mm and z = 4.75 mm.



CHAPTER 5. RESULTS 109

again to decrease, due to the cold air imported from the bottom by the wake

reverse flow. Finally, as mentioned above, a temperature maximum is found,

due to the corner vortex and the adiabatic boundary condition.

It must be noticed that, consistently with the good prediction of the

mean streamwise velocity profile along the vertical pathline x/H = 1.3, the

temperature profiles obtained with the URANS simulations for z = 0.25 mm

and z = 2.75mm are in good agreement with the measurements in the central

part of the section C-D. The pathline z = 4.75 mm is instead too close to the

back vertical edge and is therefore affected by the incorrect results obtained

for the side faces.

5.7 Temperature fluctuations

In the next paragraphs some further results will be presented, for which

experimental data are not available. As a consequence, the LES -in particular

the one on the fine grid- will be used as a reference, since they have been

proved to lead to the most accurate results.

As already mentioned, one of the aims of the present work is to inves-

tigate the accuracy of the prediction of the surface-temperature values and

the possibility to capture local overheating; furthermore, an accurate predic-

tion of the characteristics of the cyclic thermal loading is needed in order to

allow a correct estimate of the thermal fatigue. It is therefore interesting to

compare the prediction of the temperature fluctuations in different points of

the cube faces. Figure 5.29 shows the three different points which have been

considered; the coordinates are summarised in the adjacent table.
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Figure 5.29: Measurement points of
the fluctuations.

Point x/H y/H z/H

p1 0 0.25 0.25

p2 0.25 0.25 0.5

p3 0.25 1 0.25

Table 5.4: Point coordinates

Since the results do not sensibly depend on the grid refinement, only

simulations on the fine grid have been taken into account. In figure 5.30 the

results obtained with the k − ω, SAS and LES models are shown.

It is possible to notice that the LES predicts a fluctuation with the highest

amplitude and frequency, thus leading to the most accurate reconstruction of

the cyclic thermal loading. URANS models lead instead to smoother fluctua-

tions with lower amplitude and a fundamental frequency which is the same of

the vortex shedding. Furthermore, consistently with the results shown above,

temperature values predicted by URANS simulations are sensibly higher.

All simulations capture the structure which forms in front of the cube,

therefore in point p1 the amplitude of the temperature fluctuation is almost

the same (circa 1◦C) for all the three considered models; however, the fre-

quency predicted by the LES is sensibly higher and this results in a more

efficient heat removal which determines a lower mean temperature value.

Another important remark is that the fluctuations predicted by the SAS

and by the k−ω model are very similar: the SAS adds a random component

but amplitude and frequency remain almost the same of the k − ω. Similar

remarks can be made for point p2 : the fluctuation reconstructed by the k−ω

behaves like a sinusoid with the same frequency of the vortex shedding, as

well the one of the SAS, which still exhibits in addition also a weak random
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Figure 5.30: Temperature fluctuation.
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component. On the other side the LES predicts a sensibly higher amplitude

and frequency.

Finally on the top of the cube (point p3 ) the most considerable differences

can be found: the URANS models predict a very smooth fluctuation, with a

peak amplitude of circa 0.5◦C and the same frequency obtained in the two

previous points; the LES predicts instead a very high fluctuation amplitude

(circa 3◦C) and, again, a very high frequency.

5.8 Q iso-surfaces

Assuming that local pressure minima can be found in the centre of the vor-

tices, it is possible to visualize turbulent structures by means of the following

function:

Q =
∇2p

2ρ
(5.3)

Q has been evaluated all over the computational domain, then all surfaces (Q

iso-surfaces) on which Q·H2

u2
b

= 7.55 have been plotted, yielding the following

figures (figure 5.31). With reference to figure 5.31 it can be noticed that

LES are able to resolve a sensibly higher number of scales than the URANS

simulations: the horseshoe vortex in front of the cube is clearly visible, as

well as the recirculation bubbles on the side and on the top leading edge.

Furthermore it is also possible to see structures which formed on the edges

and are successively dragged away from the flow in the wake.

All these structures are not captured by the URANS models: the k − ω

only detects the recirculation bubbles on the edges, the corner vortex at

the bottom edge of the rear face and a small vortex in front of the cube,

which bends around the corner. The SAS is instead also able to detect the

presence of a more developed horseshoe vortex, but the visible structures are

essentially the same of the k − ω.

These results are consistent whit the prediction of the temperature fluc-

tuation discussed in the previous chapter: although with some differences,

unsteady phenomena in proximity of point p1 (front face) are in fact cap-

tured by all models, therefore the fluctuation amplitude is almost the same
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(a) k − ω

(b) SAS

(c) LES

Figure 5.31: Q iso-surfaces.
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in all cases. On the other side, considering URANS simulations, the absence

of other significant structures and the lower frequency of the captured fluctu-

ations (which results in a less efficient heat removal) determines a smoother

fluctuation of the temperature.

5.9 Streamlines and temperature contours on

the cube faces

In order to better appreciate the role of the turbulence model in the cooling

of the cube faces, in the next figures the near-surface streamlines and the

surface temperature contours will be shown. The five faces are folded out

and mapped into a plane and the flow is from left to right; the colours are

intended to give only a qualitative indication of the temperature distribution,

and the colour scale is not the same for every figure. With reference to

(a) Coarse LES (b) Fine LES

Figure 5.32: Near-surface streamlines and surface temperature contours.

figures 5.32(a) and 5.32(b), it can be noticed that the streamlines and the

temperature contours on the front and back face are not affected by the

different grid resolution. The impinging flow determines a stagnation line on

the windward face, in proximity of the upper edge, while the imprint of the
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corner vortex is visible close to the bottom edge. The temperature is low on

the edges, where the flow strongly accelerates, and increases in the region of

the corner vortex, due to the recirculation and to the absence of heat transfer

through the base plate.

On the leeward face, a stagnation point is clearly visible in proximity

of the bottom edge, due to the inward rotation of the wake vortex. The

reverse flow imports low-temperature fluid which causes a local temperature

minimum in the stagnation point; the fluid then heats up in the upwash flow

towards the top edge. Like on the front face a local maximum can be found

in the recirculation region close to the bottom edge.

The side and top faces exhibit more sensible differences: recirculations

predicted by the LES on the coarse grid are larger than those obtained with

the fine grid, due to the lack of resolution. A cooling effect can be detected

close to the leading edges, due to the highly fluctuating character of the re-

circulations, which enhances the heat removal, and to the strong acceleration

of the flow. Finally, a slight asymmetry of the streamlines can be noticed,

consistently with the asymmetry of the velocity and temperature field. Also

(a) k − ω (b) SAS

Figure 5.33: Near-surface streamlines and surface temperature contours.

the streamlines obtained with the k−ω and the SAS are quite similar (figure

5.33); for what concerns the front, top and back faces, the differences with
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the results of the LES (which have been taken as a reference) are not very

strong, except for the size of the recirculation on the top, which is smaller

in the URANS simulations. The temperature distributions are also similar

to those obtained with the LES, but, as noticed explaining the temperature

profiles on the cube faces (section 5.6), the values are sensibly higher.

On the side faces, instead, the imprints of the recirculations are sensibly

larger: as a consequence, heat is trapped in the side vortices and decreases

the convective heat transfer. Finally in figure 5.34 the results of the standard

(a) k − ε (b) Non linear k − ε

Figure 5.34: Near-surface streamlines and surface temperature contours.

k − ε and non linear k − ε are shown. The streamlines obtained with the

standard model are quite similar to those obtained with the fine LES: besides

some slight differences on the front and on the back side, the most significant

discrepancy is the size of the imprints of the recirculations on the side faces,

which are larger than those of the LES. Also the temperature contours do not

exhibit considerable differences, except on the side faces, where a maximum

can be found in proximity of the reattachment point.

With reference to figure 5.24 it can however be noticed that the predicted

temperatures are -with the exception of the back face- higher than those

obtained with the LES.

Finally the streamlines -and, consequently, the temperature contours-
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obtained with the non linear k − ε figure 5.34(b) are the ones which more

sensibly differ from the results of the LES. The most remarkable character-

istics are the two stagnation lines close to the vertical edges of the front face

and the location of the recirculations on the top and side faces, which is

slightly downstream of the edges. Furthermore, compared with the results

of the LES, the size of the imprints of these recirculations is sensibly smaller

and, in addition, a small corner vortex close to the bottom edge of the side

faces appears: these are probably effects of the third order terms; this issue

remains however currently unresolved, and requires further investigation.
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6.1 Computational costs

In the conclusion of the description of the adopted turbulence models (see

paragraph 2.7), it has already been remarked that one of their fundamental

characteristics is the number of further equations that they introduce, in

order to achieve the closure of the system of equations discussed in chapter 2

and 3. Every additional transport equation due to turbulence modelling does

in fact sensibly increase the computational costs, since its solution requires

the complex discretization procedure explained in chapter 3.

As already mentioned, in this work mainly two-equations models have

been adopted; two additional transport equations need therefore to be solved:

one for the turbulence production and one for the turbulence dissipation.

This is for example the case of the standard k − ε and k − ω SST models.

Although they are also labelled as two-equations models, the non linear

k − ε and the SAS model are instead expected to be more expensive, un-

der the point of view of the computational costs, because they introduce

more operations in the solution procedure, mainly due to the evaluation of

the source terms. This can be in fact a very complex procedure, since the

evaluation of higher order derivatives is needed and consequently a further

operation of discretization has to be carried out.

Finally large eddy simulations have been performed: in the LES approach

no additional equations are introduced, since all the large turbulent scales

are solved, while the smallest ones are modelled without the introduction

of further transport equations. However, although less operations need to

be carried out, it must be noted that to ensure a correct resolution of all

captured scales a sufficiently fine computational grid has to be adopted, and

this results in higher computational costs. LES are therefore sensibly affected

by the grid characteristics, since the filter cutoff width Δ as well as the models

for the subgrid scale turbulent viscosity strictly depend on the cell dimension

Δ. It goes without saying that, if the Reynolds number increases, the range

of turbulent scales becomes increasingly wider, thus implying the adoption

of finer grids and hence the rise of the computational costs.

Nevertheless, in the present work LES turned out to be the most efficient
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Figure 6.1: Average wall clock time per iteration: comparison between dif-
ferent simulations.

simulations: although they were designed for URANS applications, both the

computational grids were in fact found to ensure a good accuracy of the

results in proximity of the cube. Therefore, as no additional equations had

to be solved, the LES computations were sensibly faster than those with

other models. In figure 6.1 and 6.2 the average wall clock time per iteration

(based on 100 iterations) needed by every model is shown. The time is made

dimensionless by means of the wall clock time of the LES, which have been

taken as a reference, since they needed the lowest computational time. As it

was expected, the k − ω SST model requires more computational time than

a LES for every single iteration, because two additional transport equations

have to be solved. Furthermore, the SAS model turns out to be even slower,

as it implies the evaluation of a complex source term. The computational

times obtained with the fine grid are shown in figure 6.2: The LES is still

the fastest simulation, while the k − ω and the SAS still need an increasing

computational time.

The standard k− ε model also needs mor time than a LES; however it is

important to remark that, in spite of a higher computational time for single

iteration, it allowed to obtain results very quickly, since it was not able to

capture the unsteadiness of the flow and it was therefore not necessary to
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Figure 6.2: Average wall clock time per iteration: comparison between dif-
ferent simulations (fine grid). The scale on the right refers to the non linear
k − ε.

collect time statistics, thus drastically reducing the needed computational

time. Furthermore, since the obtained results were relatively good, the stan-

dard k − ε was proved to be an excellent model to yield a fast qualitative

description of the mean characteristics of the flow around the cube.

On the other side the non linear k − ε model turned out to be the most

costly one, due both to the complexity of the source terms which had to

be evaluated and to its implementation, which prevented to adopt a non-

iterative time advancement. Furthermore the stiffness of the introduced

source terms made particularly difficult the convergence of the outer iter-

ations cycle. As a consequence, a large number of iterations (40) per time

step was needed, thus making the non linear k−ε model circa 40 times slower

than the LES.
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7.1 Conclusions

Different turbulence models were used to simulate the fully developed turbu-

lent flow and heat transfer from a matrix of wall-mounted cubes in a plane

channel: the results were then compared with the corresponding experimen-

tal data of Meinders et al. [7]. From the analysis of the obtained results it

is possible to draw the following conclusions:

1. Although the computational grids were not specifically designed for

large eddy simulations, these turned out to be the most accurate and

less costly computations. Both the flow and the heat transfer were ac-

curately reconstructed, with good conformance with the experimental

data (also slight asymmetries of the velocity field were captured). Some

slight discrepancies were due to an excessive cell-size grading, which af-

fected the results in the upper part of the channel; these problems did

however not affect the region in proximity of the cube, where the grid

resolution was instead high enough and similar among the two adopted

grids.

2. SAS simulations, which should be an hybrid between LES and URANS

computations, did not lead to the expected results: they behaved in fact

mainly as a k−ω model, without introducing sensible modifications due

to the resolution of smaller scales. The most plausible causes of this are

two: first of all the Reynolds number of the analysed case was relatively

small, so there might have been a non optimal separation between

URANS and LES features of the model. Second, the use of periodic

boundary conditions, together with very different grid resolutions inside

the domain, could have led to a not optimal activation of the LES mode

of the model.

3. The k−ε model was not able to detect the unsteadiness of the flow, but

it could quite accurately reconstruct the mean flow features, although it

was not able to capture local peaks of the velocity profiles, especially in

correspondence of recirculations. However the very low computational

time, due to the fact that the collection of time statistics was not
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needed, made it the model with the best cost-benefit ratio, if only a

qualitative evaluation of the mean flow features is needed.

4. The k − ω SST model was instead able to capture the unsteadiness of

the flow, but failed to reconstruct the position of the recirculations up-

and downstream of the cube. Unlike the SAS model, it was not able

to detect the slight flow asymmetry.

5. The non linear k−ε model turned out to be the most problematic one:

it lead to an excessive stretching of the upstream vortex and failed

to reconstruct the structures in proximity of the cube, probably due

to effects of the third order terms. These terms also determined a

considerable stiffness of the model, which had convergence problems

inside the outer iterations cycle. Furthermore the model implemen-

tation prevented to adopt a non-iterative time advancement method,

thus implying a sensibly higher computational time.

6. It has not been possible to give a proper explanation of the asymmetry

of the velocity fields obtained with SAS and LES: this is however an

interesting feature of the flow and should be carefully investigated.

7. For what concerns the temperature field, the most accurate predictions

are those of the LES on the fine grid. The LES on the coarse grid has

instead a tendency to underestimate temperatures. URANS simula-

tions, on the other side, constantly overestimate temperatures: good

agreement with the experimental data can be found only on the back

face.

8. The results of the URANS simulations do not strictly depend on the

adopted grid: those obtained with the fine mesh are in fact only slightly

more accurate than those of the coarse mesh. On the other side, as it

was expected, the LES exhibit a stronger grid-dependence, especially

in the computation of the Reynolds stresses and the temperature field.
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