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Abstract

The principal interest of this thesis is in computational haemodynamics and in particular
in the interaction between non-linear isotropic arterial wall-mechanics and blood flow. The
starting point of this work is therefore to correctly describe the mechanical behavior of the
artery wall in regime of finite deformations with the nonlinear structural models commonly
used to describe biological tissues, ie hyperelastic materials. Subsequently, the nonlinear
structural models are coupled using a partitioned (segregated) strategies to the fluid equa-
tions.
All of the present work is developed with the Free Software object-oriented with license
LGPL called LifeV that works on parallel architecture. In particular, the software is a
finite element library that solves several physical problems, such as fluid dynamics, reaction-
diffusion-transport and mechanical problems in a multiphysics contest. In particular the
algorithms developed, simulate the three-dimensional, time-varying fluid-structure interac-
tion (FSI) problems and the nonlinear three-dimensional, time-varying mechanical problems.

Keywords: Nonlinear fluid-structure interaction, hyperelasticity, haemodynamics, par-
allel computing, nonlinear structural models, large deformations.
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Sommario

I principali interessi di questa tesi sono relativi all’emodinamica computazionale ed in par-
ticolare all’interazione tra la meccanica della parete arteriosa, modellata come materiale
nonlineare isotropo, e il flusso sanguigno. Il punto di partenza di questo lavoro è stato quindi
quello di descrivere correttamente il comportamento della parete di un’arteria in regime di
deformazioni finite con modelli strutturali nonlineari tipicamente utilizzati per modellare
tessuti biologici, quali sono i materiali iperelastici. Successivamente si è provveduto ad ac-
coppiare tali modelli con un solutore fluido-struttura partizionato (segregato).

Il presente lavoro è stato interamente sviluppato con un Software orientato a oggetti,
libero con licenza LGPL chiamato LifeV in grado di lavorare in parallelo. Il Software è una
libreria ad elementi finiti scritta in linguaggio C++ che risolve diversi problemi fisici quali
ad esempio, problemi in ambito fluidodinamico, meccanico, di diffusione-trasporto-reazione
in un contesto multiscala. In particolare, gli algoritmi sviluppati modellano problemi di in-
terazione fluido-struttura e di meccanica nonlineare, tridimensionali e tempo-varianti.

Parole chiave: Interazione fluido-struttura nonlineare, iperelasticità, emodinamica, cal-
colo parallelo, modelli strutturali nonlineari, grandi deformazioni.
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Chapter 1

Introduction and motivations

The chapter is structured in four parts. The first one presents the motivations and targets of
this work with a general overview of the more common cardiovascular diseases and how they
may relate to haemodynamic factors. The second part considers the state-of-the-art of the
mechanical description of an artery and the state-of-the-art of fluid-structure interaction (FSI)
in haemodynamics. The third part presents the contribution of this work in the mechanical
and haemodynamic fields. The last section presents the outline of this thesis.

1.1 Motivations and goals

The development of increasingly accurate simulation tools in hemodynamics, allows to better
understand the phenomena at the basis of development of cardiovascular diseases (CVD) such
as atherosclerotic plaques, blood clots and aneurysms. In recent years substantial progress
has been made in this field of research, which, in the long terms should be able to better
describe the patologies mentioned, but at the same time provide tools for accurate diagnosis
and prevention. In perspective, it may be able to provide guidance to medical intervention,
such as the exclusion of an aneurysm or the application of a stent.

The growing interest in the simulations of the cardiovascular system is mainly linked to
the considerable resources the cure of the cardiovascular diseases require from the health
system. There is certainly a need to a change of lifestyle to prevent diseases induced, for
example, by smoking or an incorrect diet, such as heart attack or atherosclerosis. At the
same time, however, it is necessary to provide effective investigative tools to treat existing
diseases and better understand the phenomena behind this type of problems and provide a
more effective prevention. To understand the size of the problem, it is enough to recall that
CVD is the leading cause of death in the industrialised world. About 30% of deaths in fact,
happens for such diseases. In 2010, 18.1 million people died of CVD. In particular, stroke is
the second leading cause of death globally, and the leading cause of acquired disability, killing
5.7 million people every year, of whom 85% live in the developing world. Today, 1.3 billion
people smoke worldwide, 600 million have hypertension, and 220 million live with diabetes
which puts more than 2 billion individuals at risk of heart disease, stroke, or a related health
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Chapter 1. Introduction and motivations

problem [2]. It has been estimated that only in USA, the medical costs of CVD in 2010
amounted to 171 billion dollars. By 2030 it is estimated a cost increase of 61% to reach the
level of 275.8 billion dollars [3].

Also in European Union (EU), the CVD medical cost are very relevant. The financial
charge on EU health systems was estimated at just under 110 billion e in 2006. This equates
to a cost per person of 223 e per year, approximately 10% of total healthcare expenditure
in the EU [4].

The interest of this thesis, is aimed to the correct description of the behavior of an artery.
Specifically, we want to describe more accurately the mechanical behavior of the arterial wall,
using nonlinear structural models, and their mutual influence with the fluid-dynamic field of
the blood.

In particular, we have considered three models: St.Venant-Kirchhoff, Neo-Hookean and
Exponential. The reason for the choice is due to the fact that these models have some
properties similar to biological tissues as well known in literature [5], [6], [7] and [8]. Moreover,
the last two models mentioned above could be combined with a multi-mechanism approach
(briefly described in the next section) to grasp more accurately the structural mechanics of
an artery and the first stages of formation of a aneurysm. Finally, the description of the FSI
problem with nonlinear structural models allows to have haemodynamic indices more precise
with respect to the use of linear model.

Summarizing, the principal motivation and perspectives of this work are the following:

1. Better understanding of the structural dynamics behaviour of arteries.

2. Development of fexible and efficient algorithms that can be reused in other contest
different than haemodynamics.

3. Development of the efficient tools be able to describe FSI problem with large added-
mass effect using nonlinear structural models.

4. Development of a prototype code that constitutes a first step toward a complete tool
for diagnosis and prevention in cardiovascular field.

The work carried out in this thesis is a first step in this direction and concentrates most on
issues 1 and 2.

1.2 State of the art

Artery wall mechanics

Arteries are subdivided into two types, elastic and muscular. The first one presents an
elastic behaviour while the second type is characterized by an important viscoelastic effect
[7]. Another important characteristics of the passive mechanical behaviour of an artery is that
the stress-strain response during loading and unloading stages is highly non-linear. Infact

2



1.2. State of the art

at low strain levels the structural response is mainly governed by elastina (soft tissue) while
at high levels of strain the structural response is governed by fibers of collagen that stiffen
the behaviour of the wall’s artery. Moreover, in large strain, the mechanical beahaviour is
anisotropic because of the collagen fibers structure [5].

The arterial wall is divided into three different layers: tunica intima, tunica media and
tunica externa as shown in figure 1.1. The first layer is the innermost, and does not contribute
to the passive wall-mechanical response in the young arteries [6], although, in the pathological
case (i.e. atherosclerosis), its contribution is very important. The second layer is the most
important for arterial structural behaviour because in this part there are the elastin and
the collagen that are the key in the description of artery wall-mechanics. Finally the third
arterial layer is the outermost and has a small contribution to structural response [9].
Actually, some research groups are oriented towards a description of the arterial wall that

Figure 1.1: Schematic representation of the artery wall [1]

takes into account a multi-mechanism, that of the elastin and collagen [10], [11],[12]. The
multi-mechanism models are based on the physiological assumption that the elastin works at
low strain levels, then enters into a region of deformation in which collagen and elastin work
together, and finally enters into a region of deformation in which only collagen works.

As anticipated, elastin can be considered an isotropic material with Young’s modulus of
about 1.1 MPa, while collagen is composed of fibers that make it anisotropic and has a stiffness
greater than elastin with a Young’s modulus of about 1.1GPa. From a computational point
of view, this behavior can be effectively described using two different nonlinear constitutive
laws, the first working under a certain threshold of strain and the second working above it.

3



Chapter 1. Introduction and motivations

Furthermore, with regard to collagen, it is possible to build a model that includes anisotropic
behaviour.

The first interest of this thesis is to implement the typical material models that describe
the biological tissues like arterial wall in regime of finite deformations and, at the same time,
to couple these models to the fluid equations. In particular, the hyperelastic material models
are tipically used to describe soft-biological tissues. The peculiarity of these types of models is
the nonlinear relation between stress and strain. Moreover, the request of finite deformations
is a good starting-point to describe one of the most important pathological cases that affectes
the arteries: aneurysm.

This work, is thus the basis for more complex models to describe the real behavior of the
wall of an artery subjected to large deformations and is able itself to provide more precise
information on the status of stress and deformation in the wall than the model of linear
elasticity.

FSI in haemodynamic problems

Fluid-structure interaction problems (FSI) is very important in many engineering situations
like vibrations of aeronautics structures and suspended bridge, flow into pipelines, oscilla-
tions of long electrical cables’ spans and many others. In the last years FSI has developed a
relevant attention even in the life science context.

FSI problems can be modeled using two different approaches: monolithic or partitioned
(segregated) procedures [13]-[14]. In the monolithic approach the fluid and structural equa-
tions are solved simultaneously, while in the partitioned procedures the fluid and structural
equations are solved separately. Monolithic approach is a stable method while the partitioned
approach may be unstable but it is more flexible because it allows to reuse possible existing
algorithms and codes for the structural and fluid problems.

The numerical solution of FSI problems is very complex due to the nonlinearity present
in the constitutive equations and induced by the coupling. In addition to these, within hemo-
dynamics, it is necessary to pay close attention to the added mass effect that occurs when
the density of the fluid and solid are similar [15]. In fact, in this case it is possible to notice
a deterioration in the convergence properties of the numerical problem. Some techniques are
used to improve the convergence properties of the algorithms and to reduce the computational
costs to solve an FSI problem. In particular, for partitioned approaches, Robin-Neumann and
Robin-Robin transmission conditions allow to reduce the number of iterations per time-step
to reach convergence [16],[17], [18].

In many works, the structure problem is described by a linear model which is not true in
this work. In fact, the nonlinearities of the FSI problem are added to the nonlinearity of the
structural part. This implies an increase of computational costs and a possible deterioration
of the convergence of the overall problem. It is clear therefore, the need of using algorithms
that are efficient enough and reduce the deterioration of the convergence properties caused
by the added mass. To solve the FSI problem a partitioned interface Newton Krylov method
[19], [20], [21], [22] has been used in this work, which has a good computational efficiency
compared to other approaches such as fixed-point methods with relaxation [23]. In addition,

4



1.3. Contribution of the thesis

the solution of FSI problems with the use of partitioned algorithms, allows easier implement-
ation of individual sub-problems, enabling to implement state of the art algorithms for the
structural and fluid dynamics problems. This last point is very important because the non-
linear structural solver should be further manipulated to introduce more complex models. It
is therefore necessary to have an easy way to insert it into an FSI solver.

1.3 Contribution of the thesis

In the first part of this thesis, we have implemented a parallel1 structural (mechanical) solver
into the open-source finite-element library LifeV, starting from a pre-existent algorithm. In
particular, we have added to existing material, St. Venant-Kirchhoff, two nonlinear materials
typically used for biological tissues: Neo-Hookean model and Exponential model. St. Venant-
Kirchhoff material is a hyperelastic compressible material, while the other two materials,
Neo-Hookean and Exponential, are nearly-incompressible hyperelastic materials [24]-[25]-[26]-
[27]. Therefore, the mechanical solver that we have implemented, is able to solve mechanical
problems in regime of finite deformations using three different nonlinear constitutive laws:

• St. Venant-Kirchhoff;

• Neo-Hookean;

• Exponential.

We have then validated the solver from a quantitative point of view, using a simple academic
test case of uniaxial traction on a cube. Moreover, we have done some test cases of infla-
tion of an hollow cylinder. In this case, a closed form of the exact solution is not available
for the three nonlinear structural models implemented. However, we can compare, from a
qualitative point of view, the solution obtained using nonlinear structural models with the
solution obtained using linear material for which an analytical solution exists. In this way,
we can see if the results are reasonable in modulus and shape. Moreover, we have seen if the
solution is symmetric as expected, evaluating the radial displacement for each node around
the circumference of a certain section of the hollow cylinder. Finally, we have done a mesh
convergence test for all materials.

In the second part of this thesis, we have coupled the mechanical solver with a fluid
solver. In particular, we have integrated the structural solver in a parallel partitionated FSI
solver. We have done some simulations, using a simple geometry (straight cylinder) and the
different structural models (including linear structural model) to evaluate the correctness of
the results from a qualitative point of view, as again the exact solution is not known.

Completed preliminary testing, we have evaluated the performance of mechanical and
FSI codes. In particular we have evaluated the residual vs. Newton iterations, the number
of Newton iterations per time-step, the dimensionless CPU-time to perform the main sub-
routines and to complete a standard simulation using the different structural models.

1with the term parallel we mean that the algorithm works in a parallel architecture
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Chapter 1. Introduction and motivations

Finally, we have performed a simulation on a geometry of the carotid artery. In this case,
we have evaluated the fluid velocity field, the fluid pressure and the structure displacement
at certain sections of the carotid. Moreover, we have evaluated the wall-shear stress, a para-
meter tipically used in haemodynamics, and we have compared the results obtained using
the different materials.

Summarizing, the present work has produced the following results:

• Development of a parallel nonlinear mechanical solver.

• Integration of the nonlinear mechanical solver in a parallel FSI solver.

• Creation of some academic test cases (with related documentation) to evaluate the
correctness of the results of the mechanical and FSI solvers.

• Haemodynamics results on the carotid arteries.

1.4 Outline of the thesis

In Chapter 2, we briefly introduce three-dimensional finite elasticity and the structural mod-
els we have implemented. Moreover, the finite element formulation, time discretization and
design of the structural solver are outlined and we present the numerical validation of the
structural solver on simple test cases.

In Chapter 3, we briefly introduce the FSI problem and present the algorithm adopted
and implemented in this work. To show the effectiveness of the algorithm we present an ideal
test case on a straight cylinder and compare qualitatively the solution obtained with linear
elasticity and nonlinear structural models.

In Chapter 4, we provide some implementation details and discuss the performances of
the structural solver and FSI solver. In particular we show the correct parallelization of the
structural solver with a test of scalability on the Lagrange cluster of CILEA.

In Chapter 5, we consider an haemodynamic problem on real carotid geometry. In par-
ticular we emphasize the differences between linear and nonlinear structural models in hae-
modynamic indices and in the fluid velocity, fluid pressure and structural displacement at
certain sections of the carotids.

In Chapter 6, we comment critically the results obtained in this work and we suggest
possible future developments.

6



Chapter 2

Nonlinear structural model

One of the purposes of this work is to implement nonlinear models of isotropic materials in
the FE (finite-element) library LifeV. In particular we have created a class to implement three
constitutive laws: St. Venant-Kirchhoff model, Neo-Hookean model and Exponential model.
In the present chapter, three-dimensional finite elasticity is introduced and we describe the
implementation of the three constitutive laws in LifeV. Moreover we provide a validation of
the code on simple test cases. We remark that the code works on parallel architecture, that
why we sometimes indicate it by LifeV-parallel to emphazise this peculiarity.

2.1 Three-dimensional finite elasticity

2.1.1 Kinematics

Three-dimensional finite elasticity describes the behaviour of a continuous body β in terms of
kinematics, stress and deformation states. The body is assumed to occupy a compact domain
in the three-dimensional Euclidean space, denoted by E. β is made of material points whose
position relative to a generic observer O at a time t defines the configuration of the body
itself.

A configuration is a smooth-mapping of β onto a region of E. It is possible to define one
configuration that is constant in time, namely the reference configuration which describes
the position of each material point with respect to its position in the reference configuration.
The reference configuration is also called undeformed configuration, while the current con-
figuration is also called deformed configuration. Furthermore, we assume that the reference
configuration is at its natural state, that is the Cauchy stresses are everywhere zero. A trans-
formation from undeformed configuration denoted by Ω̂ to current configuration, denoted by
Ω, is defined by a one-to-one, orientation-preserving vector field L:

x = L(x̂, t) ,
x̂ = L−1(x, t) .

(2.1)

7



Chapter 2. Nonlinear structural model

where x ∈ Ω and x̂ ∈ Ω̂.

The position of a material point in the reference configuration is denoted by ·̂ (i.e. x̂).
Furthermore, the differential operators and the element of area or volume are indicated by ·̂
(i.e. ∇̂, ∂̂Ω, Ω̂) when they are referred to the reference configuration.

Remark 1. When it is clear from the context that a quantity belong to the reference config-
uration we omit ·̂.

Using the transformation from reference configuration to the current configuration, (2.1),
the displacement field η in the reference configuration is defined as1:

η(x̂) = L(x̂)− x̂ . (2.2)

Moreover it is possible to define a primary measure of deformation F called deformation
gradient, as:

F = ∇̂ L componentwise: Fij =
∂Li

∂x̂j
.

In addition it is possible to introduce a symmetric positive-define tensor called right
Cauchy-Green tensor denoted by C which measures the length of a vector δx after a generic
deformation. In fact, a vector defined in the reference configuration δx̂ that follows the
material points is transformed within the first order into the vector δx = Fδx̂ and the
length of δx is given by: |δx|2 = δx̂T(FTF)δx̂. Hence it is convenient to introduce the right
Cauchy-Green tensor:

C = FTF . (2.3)

It is important for the following analisys to define the principal invariants, I1(C), I2(C),
I3(C) of C; they are necessary to analyze homogeneus pure strain and to describe the hyper-
elastic constitutive laws. The three principal invariants are:

I1(C) = tr(C) ,

I2(C) =
1

2

[
(trC)2 − tr(C2)

]
,

I3(C) = det(C) .

(2.4)

We also introduce the Green-Lagrange tensor E which is another useful measure of de-
formation:

E =
1

2

(
C− I

)
. (2.5)

The Cauchy stress tensor Ts represents the state of stress of the elastic body β in the
current configuration Ω. It is a symmetric second order tensor and it depends on the position
x and time t:

T = Ts(x, t) .

1For the displacement field in the reference configuration, we omit the superscript ·̂
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2.1. Three-dimensional finite elasticity

Through the Piola tranformation it is possible to push back the state of stress of the
elastic body β into the reference configuration Ω̂:

P = JTsF
−T , (2.6)

where P is called the first Piola-Kirchhoff tensor, which indeed describes the stress state in
the reference configuration and J = det(F).

2.1.2 The equations of motion

It is possible to describe the equations of motion through the second law of dynamics. In fact
it is well known that the rate of change of the linear momentum equals the sum of surface and
volume forces. The equations of motion applied to an arbitrary volume V(t), with boundary
∂V(t) become:

D

Dt

∫

V(t)

ρη̇ dV =

∫

V(t)

ρb dV +

∫

∂V(t)

t dS , (2.7)

where ρ is the density associated to the elastic body β and η̇ is the first time-derivative of
the displacement. Defining the continuity of the mass:

Dρ

Dt
+ ρ∇ · η̇ = 0 , (2.8)

where Dρ
Dt

= ∂ρ
∂t

+ η̇ ·∇ρ, it is possible to rewrite the equations of motion using the transport
theorem and (2.8): ∫

V(t)

ρη̈ dV =

∫

V(t)

ρb dV +

∫

∂V(t)

t dS , (2.9)

where η̈ is the second time-derivative of the displacement. The substitution of the stress
vector with its representation by means of the Cauchy stress tensor Ts and the use of the
Gauss theorem allows to write:

∫

V(t)

ρη̈ dV =

∫

V(t)

ρb dV +

∫

V(t)

∇ ·Ts dV . (2.10)

This equation describes the motion by Eulerian variables in the current configuration.
It is more convenient to rewrite the equations of motion in terms of Lagrangian variables.

From this point of view it is necessary to relate an infinitesimal volume and an infinitesimal
oriented surface in Ω(t) to their counterpart in the reference configuration. Using the Jacobian
J of the deformation gradient and the Piola transformation we have:

{
dΩ = JdΩ̂

ndS = JF−Tn̂dŜ .

Using these relations it is possible to rewrite (2.7) in the reference configuration:
∫

V̂

Jρ η̈ dV̂ =

∫

V̂

Jρb dV̂ +

∫

∂V̂

JTsF
−Tn̂ dŜ . (2.11)
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Chapter 2. Nonlinear structural model

The quantity J TsF
−T is the first Piola-Kirchhoff tensor. Hence the last equation becomes:

∫

V̂

ρ̂ η̈ dV̂ =

∫

V̂

ρ̂b dV̂ +

∫

∂V̂

P n̂dŜ . (2.12)

Finally, through the Gauss theorem, it is possible to transform the surface integral into
the volume integral. The final integral expression of the equation of motion is the following:

∫

V̂

ρ̂ η̈ dV̂ =

∫

V̂

ρ̂b dV̂ +

∫

V̂

∇̂ ·P dV̂ . (2.13)

Which is valid for any V̂ ⊂ Ω̂, therefore we may infer the differential equations of the linear
momentum in the reference configuration:

ρ̂ η̈ = ρ̂b+ ∇̂ ·P . (2.14)

The differential problem needs to be finalized by setting the initial and boundary condi-
tions. The initial conditions reads:

η(x̂, 0) = η0(x̂) ,
η̇(x̂, 0) = η̇0(x̂) ,

(2.15)

while, the most common boundary conditions are the following:

• Dirichlet conditions:
η(x̂, t) = g , x̂ ∈ Γ̂D , (2.16)

where Γ̂D ⊂ ∂̂Ω.

• Neumann conditions:
Pn̂(x̂, t) = h , x̂ ∈ Γ̂N , (2.17)

where Γ̂N ⊂ ∂̂Ω.

Moreover it is necessary to define the relation between the stress tensor and the kinematics
variables to characterize the mechanical properties of the continuum body β. In particular it
is necessary to define the constitutive law that characterizes the material model adopted. In
the next paragraph, the hyperelastic materials are introduced from a general point of view.

2.1.3 Constitutive laws: hyperelastic materials

The law that relates the stress tensor Ts and the kinematics variables is called constitutive
law. This relation characterizes the mechanical properties of the continuum body β. A
material is defined elastic if the stress tensor P depends on the position of the material
points2 x and the deformation gradient F:

P = P̃(x,F) . (2.18)

2If we have to implement an anisotropic constitutive law, the dependence on x is necessary
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2.1. Three-dimensional finite elasticity

When the previous relation is indipedent of the position of the material points x the
material is called homogeneous. Finally a material is hyperelastic when it does not dissipate
energy during cyclic homogeneous deformations:

Wcycle =

∫ T

0

∫

Ω̂

P : Ḟ dΩ̂dt = 0 , (2.19)

along any deformation characterized by x(t = T) = x(t = 0) at any point of β. To define an
hyperelastic material it is common to introduce the strain-energy function W that represents
the amount of elastic energy locally stored in the body β during the deformation L. The form
of the strain-energy function characterizes a material from another one. In addition, for hy-
perelastic materials it is common to distinguish between compressible, nearly incompressible
and incompressible materials.

Hyperelastic compressible materials

An admissible homogeneous deformation for compressible materials reads:

L(x̂, t) = F(t)x̂+ c(t) , (2.20)

with the constraint J >0. With the change of variable t → F(t) the equation (2.19)
becomes:

Wcycle = vol(Ω̂)

∫
F(τ)=F(0)

F(0)

P̃(F) : dF = 0 . (2.21)

This relation implies that it must exist a scalar function whose gradient is equal to the first
Piola-Kirchhoff stress tensor P. In particular this scalar function is exactly the strain-energy
function W previously defined. Thus it is possible to write:

P(F) =
∂W(F)

∂F
. (2.22)

The strain-energy function W has to respect the axiom of frame indifference. In particular
W must be independent of rigid motion, since it depends only on the deformation L. We can
explain this concept introducing a generic rotation tensor R. The axiom of frame indifference,
in this case, reads:

W(RF) = W(F) . (2.23)

Choosing R =
√
CF−1 it is possible to rewrite the equation (2.23) as:

W(F) = W(
√
C) = W̃(C) . (2.24)

Hence the axiom of frame indifference implies that the strain-energy function depends
only on the right Cauchy-Green tensor C. Using equation (2.22) and the definition of F we
have:

dW =
∂W̃(C)

∂C
: dC . (2.25)
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Chapter 2. Nonlinear structural model

Finally using the definition (2.3), the simmetry of the right Cauchy-Green tensor and
using the chain rule:

dW =
∂W̃

∂C
: dC = 2F

∂W̃

∂C
: dF . (2.26)

Therefore, the first Piola-Kirchhoff stress tensor assumes the following form:

P = 2F
∂W̃

∂C
. (2.27)

By inversion of the relation (2.6) it is possible to define also the Cauchy stress tensor Ts that
reads:

Ts = 2J−1F
∂W̃

∂C
FT . (2.28)

To rewrite the strain-energy function for isotropic materials it is possible to use the Rivlin-
Ericksen representation theorem:

Theorem 2.1.1. For any isotropic hyperelastic materials the strain-energy function can be
written as:

W̃(x̂,F) = W(x̂, I1(C), I2(C), I3(C)) . (2.29)

For further information and proof of the theorem see also [26]. Hence for isotropic hyperelastic
materials the expression that defines the stress tensors ((2.27) and (2.28)) can be rewritten
only as a function of first derivative of the principal invariants of the right Cauchy-Green
tensor C. Employing the notation Ij = Ij(C) the first Piola-Kirchhoff and Cauchy stress
tensors becomes:

P = 2F

[(∂W
∂I1

+ I1
∂W

∂I2

)
I− ∂W

∂I2
C+ I3

∂W

∂I3
C−1

]
;

Ts = 2I
−1/2
3

[(∂W
∂I1

+ I1
∂W

∂I2

)
B− ∂W

∂I2
B2 + I3

∂W

∂I3
I

]
.

(2.30)

Where B is the left Cauchy-Green tensor defined as B = FFT.

Remark 2. Any compressible hyperelastic material depends on volume changes through the
third principal invariant I3. In fact I3 is related to J by the following relation: I3 = J2.

Hyperelastic incompressible materials

Incompressible materials have to satisfy the constraint J = 1. To be more precise an incom-
pressible material does not change volume during the deformation. An admissible deforma-
tion for this kind of materials is:

{
L(x̂, t) = F(t)x̂ + c(t) ,
det(F) = 1 .

(2.31)
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2.1. Three-dimensional finite elasticity

It is possible to prove [26] that the first Piola-Kirchhoff tensor has the following expression:

P =
∂W

∂F
(F)− p

∂J

∂F
, (2.32)

where p is a scalar field called pressure. As for compressible materials, the axiom of frame
indifference implies that W is a funtion of right Cauchy-Green tensor C only. So, it is possible
to derive the following relations for the stress tensors:

P = 2F
∂W̃

∂C
− pF−T ,Ts = 2F

∂W̃

∂C
FT − pI . (2.33)

Using the same considerations made for compressible materials it is possible to define the
stress tensors as a function of the invariants of C:

P = 2
(∂W
∂I1

+ I1
∂W

∂I2

)
F− 2

∂W

∂I2
FC− pF−T . (2.34)

For incompressible materials the hydrostatic pressure plays the role of Lagrange multiplier
associated to the incompressibility constraint J = 1.

Hyperelastic nearly incompressible materials

A nearly incompressible material can be associated to any incompressible material. In fact,
it is possible to demonstrate that for any strain energy function of an incompressible material
Winc there exists a nearly incompressible material with the following constitutive law:

P =
∂Wǫ

∂F
(x̂, I+∇η) , (2.35)

where

Wǫ = Winc(x̂, [det(F)]
−1/3F) +

1

2ǫ
(detF− 1)2 .

For practical applications it is common to divide the strain-energy function into two
parts. The first one is the isochoric part Wiso that preserving volume during deformation.
The second one is the volumetric part Wvol that depends on the Jacobian of the deformation
gradient J:

W(I1(C), I2(C), J) = Wiso(I1(C), I2(C)) +Wvol(J) , (2.36)

where C is the so-called unimodular right Cauchy-Green tensor, defined as C = J−2/3C
and such that det(C) = 1. The nearly incompressible materials are preferred to the in-
compressible materials because it is more common to have small compressibility in the hy-
perelastic materials and tipically also in the biological tissues [5]. Thus, the use of nearly
incompressible materials is the correct choice to well describe the arterial wall. Moreover, the
problem is simpler than in incompressible materials since we do not have to treat the incom-
pressibility constraint. Nevertheless, the price to pay for the simplicity of the formulation is
that the resultating problem is badly conditioned.
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Chapter 2. Nonlinear structural model

2.1.4 Well-posedness of the mathematical problem: Polyconvexity

It is not possible to choose the form of the strain-energy function W arbitrarily otherwise
under some conditions it is not guaranteed the well-posedness of the mathematical problem:





ρ̂ η̈ = ρ̂b+ ∇̂ ·P ,
η(x̂, 0) = η0(x̂) ,
η̇(x̂, 0) = η̇0(x̂) ,

η(x̂, t) = g , x̂ ∈ Γ̂D ,

Pn̂(x̂, t) = h , x̂ ∈ Γ̂N ,

(2.37)

To have the correct solution of (2.37) it is necessary that W respects some constitutive
inequalities. The most important, in this sense, is the Baker-Ericksen inequality:

(ti − tj)(λi − λj) ≥ 0 1 ≤ i 6= j ≤ 3 , (2.38)

where ti, tj are the principal stresses (eigenvalues of the Cauchy stress tensor) and λi, λj are
the corresponding eigenvalues of F [28].
To satisfy (2.38), it is sufficient the strict ellipticity of the strain-energy function for all
deformations, that is W must satisfy the following strict Legendre-Hadamard condition:

Theorem 2.1.2 (Legendre-Hadamard). The strain-energy function W ∈ C2(M3×3,R) is
strictly elliptic if and only if:

∀F ∈ M3×3, ∀υ, ε ∈ R3 :
D2W (F)

DF2
· (υ ⊗ ε, υ ⊗ ε) > 0 .

(2.39)

Another method can be employed to solve problem (2.14): the minimization of the strain-
energy function with respect to the deformations. It is possible to demonstrate that the well-
posedness, is ensured by the quasi-convexity of the strain-energy function [29]. This request
is very difficult to verify. A simpler sufficient condition is the request of polyconvexity [30].

Definition 2.1. Polyconvexity: Let W ∈ C2(M3×3,R), be a given scalar-valued energy
density. The function F → W(F) is polyconvex if and only if there exists a function G:
M3×3 ×M3×3 × R → R such that:

W(F) = G(F,AdjF, detF) , (2.40)

where AdjF = (CofF)T is the Adjugate of F, and the function G(·, ·, ·) is convex.

From this point of view, it is very simple to verify that the following strain-energy function

W(F) = W1(F) +W2(AdjF) +W3(detF) (2.41)

is polyconvex if and only if W1, W2, W3 are convex with respect to their arguments.
The polyconvexity property guarantees two main things. The first one is the existence of
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2.1. Three-dimensional finite elasticity

solutions to all boundary value problem with physical boundary conditions. The second one
is the ellipticity of W for all deformations. Hence, if the strain-energy function is polyconvex,
the mathematical problem (2.14) is well-posed.

In the next paragraph we introduce the structural models we have implemented and we
specify if the strain-energy function satisfies the constraint of polyconvexity.

2.1.5 Structural models implemented

St.Venant-Kirchhoff model

The St.Venant-Kirchhoff model is the simplest compressible material. Its strain-energy func-
tion is defined as a quadratic isotropic function of the Green-Lagrange tensor:

W = W(E) =
λ

2
(trE)2 + µtr(E2) , (2.42)

where λ and µ are the first and the second Lamè constants of the material:

λ =
νE

(1 + ν)(1− 2ν)
, (2.43)

µ =
E

2(1 + ν)
, (2.44)

where ν and E are respectively the poisson’s ratio and the Young modulus. Using first
equation of (2.30) it is possible to define the corrisponding first Piola-Kirchhoff stress tensor
in terms of F and E:

P =
λ

2
(I1(C)− 3)F− µF+ µFC . (2.45)

It is more convenient to rewrite (2.45) in terms of displacements η:

P(η) = λ(∇ · η)I+ µ(∇η +∇ηT)

+
λ

2
(∇η : ∇η)I+ µ∇ηT

∇η

+λ(∇ · η)∇η +
λ

2
(∇̂η : ∇̂η)∇̂η

+µ∇̂η(∇̂η + ∇̂ηT) + µ∇̂η∇̂ηT
∇̂η .

(2.46)

This material does not satisfies the constraint of policonvexity. Because of this, it is not
usually used for problems with large levels of deformation. More details can be found in
[31]-[27].

Neo-Hookean nearly incompressible model

The Neo-Hookean is a model of a nearly incompressible material. It presents a behaviour
similar to a rubber. We are interested in this model because it can represent the first part of
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Chapter 2. Nonlinear structural model

the stress-strain curve (first stages of deformation), using a multi-mechanism model, intro-
duced in Chapter 1. The strain-energy function of Neo-Hookean material is divided into two
parts: the isochoric part and the volumetric part:

W =
µ

2

(
I1(C)− 3

)
+

κ

4

[
(J− 1)2 + (ln J)2

]
. (2.47)

The first Piola-Kirchhoff stress tensor is also divided into isochoric and volumetric part.
After some calculations it assumes the following form:

P = µJ−2/3
(
F− 1

3
I1(C)F−T

)
+ J

κ

2

(
J− 1 +

1

J
ln J

)
F−T , (2.48)

where κ is the bulk modulus of the material and has the dimensions of a pressure. It represents
also the penalty to the volumetric part with respect the isochoric part. In particular, for high
value of κ we have incompressible materials. For Neo-Hookean nearly incompressible material
the polyconvexity of the strain-energy function W is satisfied. Hence the mathematical
problem is well-posed.

Exponential nearly incompressible model

As the Neo-hookean model, the exponential model used is a nearly incompressible material.
In particular, this material is widely used for soft bilogical tissues like the walls of the arteries.
From a multi-mechanism point-of-view, Exponential model can be used as a second part of
the curve, for large deformations. The strain-energy function, also in this case, is divided
into isochoric and volumetric part:

W =
α

2γ

(
eγ(I1(C)−3) − 1

)
+

κ

4

[
(J− 1)2 + (ln J)2

]
, (2.49)

where α and γ are respectively the pre-exponential coefficient and the exponetial coefficient.
The first Piola-Kirchhoff stress tensor after some calculation reads:

P = αJ−2/3
(
F− 1

3
I1(C)F−T

)
eγ(I1(C)−3) + J

κ

2

(
J− 1 +

1

J
ln J

)
F−T . (2.50)

Also in this case the mathematical problem is well-posed, because the strain-energy function
W satifies the policonvexity constraint.

Remark 3. The same volumetric part is used for both nearly incompressible models. It is
possible to relate the bulk modulus κ with the poisson’s ratio and the Young modulus:

κ =
E

3(1− 2ν)
, (2.51)

for the consistency of the nonlinear consitutive laws with the linear constitutive law, in the
region of small deformations. In the structural and FSI numerical analysis these coefficients
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are not strictly related with (2.51), but we have used typical values for biological tissues from
the literature. In fact, [26], suggest to use a parameter κ in the following range:

µ102 ≤ κ ≤ µ106

This choice does not influence strongly the comparison between materials because the
stress-strain response in the region of small deformations is very similar for nonlinear struc-
tural models and linear elasticity also with our parameters.
However, for a systematic comparative analysis between the different consitutive laws, could
be necessary to use the relation (2.51) or, eventually, another one that takes into account a
possible linearization with a pre-stress model.

2.2 Finite-element formulation

The finite-element formulation is the core of the solver. Here the matrix of the system are
computed and the overall algebraic system are assembled. The solution of a time-varying
problem needs also of a temporal scheme to integrate the equations. In this section we give
a brief explanation of these issues.

2.2.1 Weak formulation of the structural problem

We derive the weak form in a formal way by multiplying the equation (2.14) by a test function

δv and integrating on Ω̂.
∫

Ω̂

ρ̂ η̈ · δv dΩ̂ =

∫

Ω̂

ρ̂b · δv dΩ̂ +

∫

Ω̂

(∇̂ ·P) · δv dΩ̂ . (2.52)

In particular the test function has to respect the constraint:

δv = 0 on Γ̂D (2.53)

Using the Gauss theorem and the boundary conditions of (2.16) we obtain:
∫

Ω̂

ρ̂ η̈ · δv dΩ̂ =

∫

Ω̂

ρ̂b · δv dΩ̂−
∫

Ω̂

∇̂(δv) : P dΩ̂ +

∫

∂̂Ω

t̂ · δv d∂̂Ω . (2.54)

If we assume that δv is a velocity, so, ∇̂(δv) is equal to δḞ and the last equation assumes
the following expression:

∫

Ω̂

ρ̂ η̈ · δv dΩ̂ =

∫

Ω̂

ρ̂b · δv dΩ̂−
∫

Ω̂

δḞ : P dΩ̂ +

∫

∂̂Ω

t̂ · δv d∂̂Ω . (2.55)

In particular, we are interested on the stiffness term
∫
Ω̂
δḞ : P dΩ̂ that depends by the

constitutive law adopted.
We are now in the position of giving the correct functional setting of (2.14) by employing

the Sobolev spaces introduced in appendix A.
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Chapter 2. Nonlinear structural model

Weak-formulation 2.1 (Continuous setting). For any t > 0 find η = η(t) ∈ V(Ω̂):




∫

Ω̂

ρ̂ η̈ · φ dΩ̂ + a(η,φ) = F(φ) ∀φ ∈ V(Ω̂) ,

η(0) = η0 ,

η̇(0) = η̇0 ,

(2.56)

where V(Ω̂) = H1
0(Ω̂) and bilinear form a(·,·), and right-hand side F(·) assume the following

definitions:

a(η,φ) =

∫

Ω̂

P : ∇̂φ dΩ̂ ,

F(φ) =

∫

∂̂Ω

t̂ · φ d∂̂Ω +

∫

Ω̂

ρ̂b · φ dΩ̂ .

(2.57)

We have assumed, for simplicity, only homogeneous Dirichlet boundary conditions (for
non-homogeneous Dirichlet boundary conditions see for example [32]. The discrete version

of (2.56) is obtained by the Galerkin method [32] where V(Ω̂) is replaced by a subspace Vh

of finite dimension. As usual a finite element formulation employs a mesh of the reference
domain Ω̂ to build Vh. The space discretization is thus defined as:

Ω̂ =
⋃

K∈τ̂h

K , (2.58)

where K indicates the generic element of the mesh τ̂h. Using Lagrangian finite elements, we
have the following functional space:

χr
h = {φh ∈ C0(Ω̂h) : φh |Kj

∈ Pr , ∀Kj ∈ τ̂h , } r = 1, 2, ... , (2.59)

where Pr is the polynomial space of degree r. Vh is then a subspace of χr
h obtained by

imposing the essential boundary conditions. The discrete version of (2.56) becomes:

Weak-formulation 2.2 (Discrete setting). For any t > 0 find ηh = ηh(t) ∈ Vh(Ω̂h) :




∫

Ω̂h

ρ̂ η̈h · φh dΩ̂ + a(ηh,φh) = F(φh) ∀φh ∈ Vh(Ω̂h)

ηh(0) = ηh0

η̇h(0) = η̇h0

(2.60)

Finally, introducing the following approximate solution, associated to the discretization:

ηh(x̂) =
∑

j∈Nh

ηjφj(x̂) , (2.61)
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2.2. Finite-element formulation

where the φj are a basis of Vh, it is possible to rewrite the discrete weak formulation as
a system of ordinary differential equations (ODEs):

Mη̈ + k(η) = f , (2.62)

where η is the vector of the unknowns of the discret problem and the other components are
defined as follow:

Mij =

∫

Ω̂h

ρ̂φjφi dΩ̂ ,

k(η)i =

∫

Ω̂h

P
( ∑

j∈Nh

ηjφj(x̂)
)
: ∇φi dΩ̂ ,

fi =

∫

Ω̂h

∑

j∈Nh

t0jφjφi dΩ̂ +

∫

Ω̂h

∑

j∈Nh

bjφjφi dΩ̂ .

(2.63)

In particular Mij is the mass matrix, k(η)i is the non-linear stiffness vector and fi is the
known term.

2.2.2 Time discretization

The Newmark scheme is used to perform the time-discretization. In particular, from equation
(2.62), the time discretization is obtained in the following manner:

• Definition of a time interval I = [0,T];

• Uniform discretization of interval I → In = [tn, tn+1], with δt = tn+1 − tn;

• Application of the Newmark scheme to system of ODEs (2.62)





Mη̈n+1 + k(ηn+1) = fn+1 ,

η̇n+1 = η̇n + δt[(1− θ)η̈n + θη̈n+1] ,

η̈n+1 =
2

ζδt2
ηn+1 − 2

ζδt2
(ηn + δtη̇n)− 1− ζ

ζ
η̈n ,

(2.64)

↓

2

δt2
Mηn+1 + ζk(ηn+1) =

2

δt2
M(ηn + δtη̇n)− (1− ζ)k(ηn)

+(1− ζ)fn + ζfn+1 ,
(2.65)
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Chapter 2. Nonlinear structural model

where we have set: gs = g(ts). Here, ζ and θ are the coefficients of the Newmark’s method.
The stability of the Newmark’s method depends on the choice of ζ and θ and from the viscous
damping (when it is present). The following relations describe the stability conditions for
a general Newmark’s method applied to a second order dynamical system without viscous
damping (see also [33]).

Unconditional stability ζ ≥ θ ≥ 1
2
, (2.66)

θ ≥ 1
2
,

Conditional stability ζ < θ ,
ωhδt ≤ Ωcrit ,

(2.67)

where ωh is the maximum natural frequency and Ωcrit is defined by the following relation:

Ωcrit =
(θ
2
− ζ

2

)−
1

2

. (2.68)

In the table 2.1 we summarize the well-known members of the Newmark family of methods
[33]:

Table 2.1: Well-known Newmark methods

Method Type ζ θ Stability condition OA

Average acceleration Implicit 0.5 0.5 Unconditional 2
Linear acceleration Implicit 0.33 0.5 Conditional 2
Fox-Goodwin Implicit 0.1667 0.5 Conditional 2
Central difference Explicit 0 0.5 Conditional 2

The choice of Average acceleration method gives the optimal time convergence rate. How-
ever it may cause spurios oscillations since there is no numerical damping. It is possible to
introduce damping by using a parameter ζ bigger than 0.5. For example the choice of ζ = 1
and θ = 0.5 is a fully dissipative method that cuts the spurious oscillations of the solution.
This choice has been used for quasi-static problems. For dynamical problems it is necessary to
have a good order of accurancy (OA), hence a second order method like average acceleration
is preferred.

2.2.3 Linearization

As previously remarked, the stiffness term k(η) is non-linear with respect to the displacement
η. Hence to solve the system (2.62) it is necessary to find the solution as the limit of solutions
of suitable linearized problems. The linearization is obtained by a Newton method. In fact,
the solution of (2.62) is equivalent to find the root η of the following problem:
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2.2. Finite-element formulation

Z(η) =
2

δt2
Mη + ζk(η)− 2

δt2
M(ηn − δtη̇n) + (1− ζ)k(ηn)+

−(1 − ζ)fn − ζfn+1 = 0 .
(2.69)

The unknown of the problem at each Newton iteration k is the displacement η(k) which
is set initially to ηn. It is necessary to introduce the Jacobian3 JZ(η

(k)) = DZ(η(k)) and the
increment of solution δη(k) = η(k+1) − η(k).
Hence the problem becomes:

Let η(0) ∈ R3 be given (for instance from the previous time-step), iterate for k = 1, 2, ...
until convergence:

solve JZ(η
(k))δη(k) = −Z(η(k)) ,

define η(k+1) = η(k) + δη(k) ,
(2.70)

and set ηn+1 = ηk+1. The test for convergence is the infinity norm of the residual. In
particular, defining a tolerance εR = εRabs

+ | Z(η(0)) | εRrel
the stopping criterion for the

Newton method is the following:

‖ Z(η(k)) ‖L∞(Ω̂) < εR . (2.71)

Remark 4. The test for convergence of the Newton method is in fact imposed on the forces.

To solve the linearized system (2.70) the preconditioned GMRES (P-GMRES) method
[34] has been used. The criterion to stop the P-GMRES method is to compare the norm of
displacement η between iteration ℓ + 1 and iteration ℓ of the method4. If εP−GMRES is the
tolerance of P-GMRES, the convergence test is:

‖ η(ℓ+1) − η(ℓ) ‖L∞(Ω̂) < εP−GMRES . (2.72)

When P-GMRES method reaches to convergence, the solution is used to recompute the
system (2.70) and in particular the residual of the system to verify the convergence of Newton
method. The P-GMRES method will be more efficient when the number of iterations for
convergence is small. Summarizing, the steps for the solution of the nonlinear system (2.62)
at each time-step are the following:

1. Choose an initial guess η(0) ∈ R3 and choose the tolerances εR and εGMRES;

2. Build the system (2.62), compute the Jacobian of the system and the residual;

3. Enter into Newton’s loop and compare the residual with the tolerance εR;

4. If the residual is larger than εR, solve the linearized system (2.70) with P-GMRES
method until ‖ η(ℓ+1) − η(ℓ) ‖L∞(Ω̂) < εP−GMRES;

3DZ(η(k)) is the directional derivative of Z(η(k)). For more details see [9], [31]
4ℓ is the iteration of the P-GMRES method
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Chapter 2. Nonlinear structural model

5. Re-build the system (2.62) (step 2);

6. Compare the residual with the tolerance of Newton method εR;

7. If the residual is larger than εR return to step 4, else the solution has been found and
it is possible to go to the next time-step;

2.2.4 Quadrature rules and computation of integrals

The calculation of the integrals required in the finite element formulation of the structural
problem, are obtained by quadrature formulas. For each quadrature point a local tensor is
defined. A loop on quadrature points perform the computation of the integrals. In particular
for a generic stiffness term, we have:

∫

K

P(ηh) : ∇̂φidVK ≈
∑

ig

P(η)ig∇̂φig ωig , (2.73)

where ig indicate the quadrature point and ωig are the corresponding weights. Here we sum-
marize the terms that we have implemented in the classes elemOper and elemOperStructure.
In particular, we associate for each stiffness term of each material the corresponding method.

Stiffness term computation: St.Venant-Kirchhoff

We are interested in the computation of the stiffness term (2.73). For St.Venant-Kirchhoff
material, the first Piola-Kirchhoff tensor is defined in (2.46), here reported:

P(η) = λ(∇̂ · η)I+ µ(∇̂η + ∇̂ηT)

+
λ

2
(∇̂η : ∇̂η)I+ µ∇̂ηT

∇̂η

+λ(∇̂ · η)∇̂η +
λ

2
(∇̂η : ∇̂η)∇̂η

+µ∇̂η(∇̂η + ∇̂ηT) + µ∇̂η∇̂ηT
∇̂η .

The calculation of the bilinear form a(η,φ) is performed as:

∫

K

P(ηh) : ∇̂φidVK ≈
∑

ig

(
λ(∇̂ · ηig)I+ µ(∇̂ηig + ∇̂ηT

ig)

+
λ

2
(∇̂ηig : ∇̂ηig)I+ µ∇̂ηT

ig∇̂ηig

+λ(∇̂ · ηig)∇̂ηig +
λ

2
(∇̂ηig : ∇̂ηig)∇̂ηig

+µ∇̂ηig(∇̂ηig + ∇̂ηT
ig) + µ∇̂ηig∇̂η

T
ig∇̂ηig

)
∇̂φig ωig ,

(2.74)

where each term is defined in the following method into elemOper class:

1.
∑

ig λ(∇̂ · ηig)I∇̂φig ωig: method stiff div;
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2.2. Finite-element formulation

2.
∑

ig µ(∇̂ηig + ∇̂ηT
ig)∇̂φig ωig: method stiff strain;

3.
∑

ig
λ
2
(∇̂ηig : ∇̂ηig)I∇̂φig ωig: method stiff derdiv;

4.
∑

ig µ∇̂η
T
ig∇̂ηig∇̂φig ωig: method stiff dergradbis;

5.
∑

ig λ(∇̂ · ηig)∇̂ηig∇̂φig ωig: method stiff divgrad;

6.
∑

ig
λ
2
(∇̂ηig : ∇̂ηig)∇̂ηig∇̂φig ωig: method stiff gradgrad;

7.
∑

ig µ∇̂ηig(∇̂ηig + ∇̂ηT
ig)∇̂φig ωig: method stiff dergrad gradbis;

8.
∑

ig µ∇̂ηig∇̂η
T
ig∇̂ηig∇̂φig ωig: method stiff gradgradTr gradbis.

For St.Venant-Kirhhoff model, the linearization of the stiffness term is obtained using the
directional derivatives [31]-[9]. Here, we write the linearization of the stiffness term for
St.Venant-Kirchhoff model:

DP(η)[δη] = λ(∇̂ · δη) + µ(∇̂δη + (∇̂δη)) + λ∇̂η : ∇̂δη

+λ(∇̂ · η)∇̂δη + λ(∇̂ · δη) + λ

2
(∇̂δη : ∇̂η)∇̂η

+
λ

2
(∇̂η : ∇̂δη)∇̂η +

λ

2
(∇̂η : ∇̂η)∇̂δη

+µ(∇̂η)T∇̂δη + µ(∇̂δη)T∇̂η + µ∇̂η∇̂δη + µ∇̂δη∇̂η

+µ∇̂η(∇̂δη)T + µ∇̂δη(∇̂η)T + µ∇̂δη(∇̂η)T∇̂η

+µ∇̂η(∇̂δη)T∇̂η + µ∇̂η(∇̂η)T∇̂δη

(2.75)

Stiffness term computation: Neo-Hookean

We are interested in the computation of the stiffness term (2.73). For St.Venant-Kirchhoff
material, the first Piola-Kirchhoff tensor is defined in (2.48), here reported:

P = µJ−2/3
(
F− 1

3
I1(C)F−T

)
+ J

κ

2

(
J− 1 +

1

J
ln J

)
F−T ,

The calculation of the bilinear form a(η,φ) is performed as:

∫

K

P(Fh) : ∇̂φidVK ≈
∑

ig

[
µJ−2/3

(
Fig − 1

3
I1(C)F−T

ig

)

+J
κ

2

(
J− 1 +

1

J
ln J

)
F−T

ig

]
∇̂φig ωig ,

(2.76)

where each term is defined in the following methods into elemOperStructure class:
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1.
∑

ig

[
µJ−2/3

(
Fig − 1

3
I1(C)F−T

ig

]
∇̂φig ωig: method source P1iso NH;

2.
∑

ig

[
Jκ
2

(
J− 1 + 1

J
ln J

)
F−T

]
∇̂φig ωig: method source Pvol;

The linearization of the stiffness term is performed with respect to F. In particular, we
introduce the fourth order tensor C:

C =
∂P

∂F
, (2.77)

and we linearize the stiffness term using the directional derivatives with respect F separating
the isochoric and the volumetric part:

Ciso : δF = −2

3
µJ−2/3(F−T : δF)F+

2

9
µI1(C)(F−T : δF)F−T

−2

3
µJ2/3(F : δF)F−T + µJ−2/3δF+

µ

3
I1(C)F−TδFTF−T .

(2.78)

Cvol : δF =
κ

2
J
(
2J− 1 +

1

J

)
(F−T : δF)F−T

−κ

2
(J2 − J + lnJ)F−TδFTF−T .

(2.79)

where each term is defined in the following methods into elemOperStructure class:

1. −2
3
µJ−2/3(F−T : δF)F: method stiff Jac P1iso NH 1term;

2. 2
9
µI1(C)(F−T : δF)F−T: method stiff Jac P1iso NH 2term;

3. −2
3
µJ2/3(F : δF)F−T: method stiff Jac P1iso NH 3term;

4. µJ−2/3δF: method stiff Jac P1iso NH 4term;

5. µ
3
I1(C)F−TδFTF−T: method stiff Jac P1iso NH 5term;

6. κ
2
J
(
2J− 1 + 1

J

)
(F−T : δF)F−T: method stiff Jac Pvol 1term;

7. −κ
2
(J2 − J + lnJ)F−TδFTF−T: method stiff Jac Pvol 2term;

Stiffness term computation: Exponential

We are interested in the computation of the stiffness term (2.73). For St.Venant-Kirchhoff
material, the first Piola-Kirchhoff tensor is defined in (2.50), here reported:

P = αJ−2/3
(
F− 1

3
I1(C)F−T

)
eγ(I1(C)−3) + J

κ

2

(
J− 1 +

1

J
ln J

)
F−T .
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2.2. Finite-element formulation

The calculation of the bilinear form a(η,φ) is performed as:

∫

K

P(Fh) : ∇̂φidVK ≈
∑

ig

[
αJ−2/3

(
Fig −

1

3
I1(C)F−T

ig

)
eγ(I1(C)−3)

+J
κ

2

(
J− 1 +

1

J
ln J

)
F−T

ig

]
∇̂φig ωig ,

(2.80)

where each term is defined in the following methods into elemOperStructure class:

1.
∑

ig

[
αJ−2/3

(
F− 1

3
I1(C)F−T

)
eγ(I1(C)−3)

]
∇̂φig ωig: method source P1iso Exp;

2.
∑

ig J
κ
2

[
J− 1 + 1

J
ln J

)
F−T

]
∇̂φig ωig: method source Pvol;

As done for the Neo-Hookean model, we obtain the linearization of the stiffness term with
respect to F, separating the isochoric and volumetric part:

Ciso : δF = −2

3
αeγ(I1(C)−3)J−2/3(1 + γI1(C))(F−T : δF)F

+
2

9
αeγ(I1(C)−3)I1(C)(1 + γI1(C))(F−T : δF)F−T

−2

3
αeγ(I1(C)−3)J−2/3(1 + γI1(C))(F : δF)F−T

+2αeγ(I1(C)−3)J−4/3(F : δF)F

+αeγ(I1(C)−3)J−2/3δF

+
2

3
αeγ(I1(C)−3)I1(C)F−T : δFTF−T .

(2.81)

Cvol : δF =
κ

2
J
(
2J− 1 +

1

J

)
(F−T : δF)F−T

−κ

2
(J2 − J + lnJ)F−TδFTF−T .

(2.82)

where each term is defined in the following methods into elemOperStructure class:

1. −2
3
αeγ(I1(C)−3)J−2/3(1 + γI1(C))(F−T : δF)F: method stiff Jac P1iso Exp 1term;

2. 2
9
αeγ(I1(C)−3)I1(C)(1 + γI1(C))(F−T : δF)F−T: method stiff Jac P1iso Exp 2term;

3. −2
3
αeγ(I1(C)−3)J−2/3(1 + γI1(C))(F : δF)F−T: method stiff Jac P1iso Exp 3term;

4. 2αeγ(I1(C)−3)J−4/3(F : δF)F: method stiff Jac P1iso Exp 4term;

5. αeγ(I1(C)−3)J−2/3δF: method stiff Jac P1iso Exp 5term;

6. 2
3
αeγ(I1(C)−3)I1(C)F−T : δFTF−T: method stiff Jac P1iso Exp 6term;
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7. κ
2
J
(
2J− 1 + 1

J

)
(F−T : δF)F−T: method stiff Jac Pvol 1term;

8. −κ
2
(J2 − J + lnJ)F−TδFTF−T: method stiff Jac Pvol 2term;

For further information [35].

2.3 The design of the structural solver

The architecture of the solver that has been implemented in the finite element library LifeV,
which exploits parallelism, is shown in 3.3.

The core of the solver is the class NonLinearStructureSolver (NLSS) where we define the
materials implemented and the principal methods to define the problem. NLSS uses Ven-
antKirchhoffSolver (VKS) to define some variables and methods shared between linear and
non-linear elasticity. Moreover into NLSS the template nonLinRichardson (NLR) is recalled

NonLinear-

StructureSolver
nonLin-

Richardson

dataElastic-
Structure

data

elemOper-
Structure

elemOper

Venant-
Kirchhof-
Solver

structure

Figure 2.1: Structural solver: general view

to solve the nonlinear system (2.62). Into the classes elemOper (EO), elemOperStructure
(EOS) the FE implementation of the materials are defined. Finally, the class dataElastic-
Structure (DES) is the communicator from data file and NLSS, VKS and the file structure.
structure is the main, where the methods defined in NLSS are recalled to solve the problem
of non-linear elasticity. Into structure it is also possible to define the boundary conditions
for a specific problem.
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2.3. The design of the structural solver

2.3.1 NLSS principal methods

NLSS is composed of some methods that are recalled from structure that is the main of the
solver for nonlinear elasticity. The principal methods are setup, that initializes the para-
meters, buildSystem that computes the mass matrix M and the linear part of the stiffness
term Klin, updateSystem that builds the right-hand side without boundary conditions of
the problem, rhsnbc, and iterate that recalls NLR. Althought other methods defined into
NLSS are recalled internally. The most important methods from this point of view are up-
dateNonlinearTerms that computes the nonlinear part of the stiffness term Knl and k(η),
updateNonlinearMatrix and computeMatrix that compute the non-linear part of stiffness term
and assembles the last one respectively. These two methods are recalled by evalResidual
that compute the Newton residual resR. To build the Jacobian of the linearized system the
methods updateJacobian that computes the Jacoabian and solveJacobian that assembles the
Jacobian are used.
Finally, to calculate the kinematics variables used to build the nonlinear part of the stiffness
term and to build the Jacobian of the linearized system, the method computeKinematicsVari-
ables is used.

The list below summarizes the principal methods of NLSS and their functions.

• setup: Inizializes parameters;

• buildSystem : Computes the mass matrix and the linear part of the stiffness term Klin;

• initialize: Imposes the initial conditions η0 and η̇0;

• updateSystem: Computes the right hand side (rhsnbc) of the system without boundary
conditions:
rhsnbc =

2
δt2

M(ηn + δtη̇n)− (1− ζ)Klinη
n − (1− ζ)Knlη

n − (1− ζ)k(ηn);

• updateNonlinearTerms: Computes the non-linear stiffness terms Knl, k(η
n)

• iterate: Recalls nonLinRichardson and go to the next time-step when the Newton
convergence test is satisfied;

• evalResidual: Evaluates the Newton residual (resR) defined as:
resR = 2

δt2
Mηn+1

k + ζ(Klin +Knl)η
n+1
k + ζk(ηn+1

k )− rhsnbc + b.c.;

• computeMatrix: Assembles the stiffness terms ζ(Klin, Knl)η
n+1
k , ζk(ηn+1

k );

• updateNonlinearMatrix: Computes the non-linear stiffness terms Knl, ζk(η
n+1
k );

• computeKinematicsVariables: Computes the kinematics variables F, Cof(F), Tr(C),
Tr(C), det(F);

• solveJacobian: Assembles the Jacobian of the linearized system calling updateJacobian,
applies the boundary conditions calling applyBoundaryConditions and solve the linearized
system calling P-GMRES;
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2.3.2 Structural solver architecture

The figure 2.2 gives a general scheme that explains how the structural solver works and shows
the interaction among the various components.

structure

EO

EOS

NLSS

VKS

NLR

DES data

GMRES

setup

buildSystem

initialize

updatesytem

iterate

NLSS

STRUCTURAL SOLVER

updateNonlinearTerms

NLR

evalResdual

solveJacobian

updateNonlinearMatrix

updateJacobian

GMRES
VKS

Figure 2.2: Structural solver design

2.4 The validation of the structural solver

In this section we perform a validation of the structural solver by comparing the results on
academic test cases of which there is an analytical solution. We remarks that all materials
implemented are isotropic.
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2.4.1 Analytical test case

We consider the case of homogeneus pure strain of a cube. For this simple case exists an
analitycal solution for some compressible hyperelastic materials. The problem reads:

∇̂ ·P+ ρ̂b = 0 , in [0, L]3 ,
η(x = 0) · ex = 0 ,
η(x = L) · ex = p ,

(2.83)

where ex is the unit vector in the x direction and p is a prescribed pressure. The test
is the normal traction of a cube in direction of the Cartesian axis x, with homogeneous
Dirichlet condition in the same direction and on the opposite face. To correctly reproduce
the elastostatic response (2.83) we have waited the end of the transitory of the elastodynamic
system.

This simple case allows to find an analitycal expression for the first Piola-Kirchhoff stress
tensor. In fact, it is possible to define the deformation tensor and the right Cauchy-Green
tensor in terms of principal strain:

F =




λ1 0 0
0 λ2 0
0 0 λ3


 , C =




λ2
1 0 0
0 λ2

2 0
0 0 λ2

3


 . (2.84)

In this simple case the strain-energy function only depends on deformation tensor F. Hence
we are allowed to write:

W = W(λ1, λ2, λ3) . (2.85)

Furthermore, for isotropic materials the strain-energy function is subject to the following
simmetries:

W(λ1, λ2, λ3) = W(λ1, λ3, λ2) = W(λ3, λ1, λ2) . (2.86)

The Jacobian of F is J = λ1 λ2 λ3 and because of the symmetry of the test case, λ2 = λ3. So
we can write:

λ2 = λ3 =

√( J

λ1

)
. (2.87)

Hence, formally it is possible to write the following relation for the strain-energy function:

W = W

(
λ1,

√( J

λ1

))
. (2.88)

From the last equation it is possible to calculate the first Piola-Kirchhoff stress tensor in an
analytical way. Indeed, through the expression of P22 it is possible to compute the Jacobian
J as a function of λ1 only. Hence, the principal stress P11 is only a function of λ1 and it is
possible to calculate P11 from the numerical data and to compare it with the applied pressure
on Neumann surface. The principal stress components we are interested (i.e. P11,P22) to
become, for each material, are the following:
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• St.Venant-Kirchhoff :

P11 = 2F11

( ∂W

∂C11

)
=

λ

2

(
I1(C)− 3

)
λ1 − µλ1 + µλ3

1 ;

P22 = 2F22

( ∂W

∂C22

)
=

λ

2

(
I1(C)− 3

)
λ1 − µλ2 + µλ3

2 ;

(2.89)

• Neo-Hookean:

P11 = 2F11

( ∂W

∂C11

)
= µJ−2/3

(
λ1 −

I1(C)

3λ1

)
+

κ

2

(
J2 − J + log(J)

) 1

λ1
;

P22 = 2F22

( ∂W

∂C22

)
= µJ−2/3

(
λ2 −

I1(C)

3λ2

)
+

κ

2

(
J2 − J + log(J)

) 1

λ2
;

(2.90)

• Exponential :

P11 = 2F11

( ∂W

∂C11

)
= α exp

[
I1(C)− 3

]
J−2/3

(
λ1 −

I1(C)

3λ1

)
+

+
κ

2

(
J2 − J + log(J)

) 1

λ1

;

P22 = 2F22

( ∂W

∂C22

)
= α exp

[
I1(C)− 3

]
J−2/3

(
λ2 −

I1(C)

3λ2

)
+

+
κ

2

(
J2 − J + log(J)

) 1

λ2

;

(2.91)

The second relation of (2.89), (2.90), (2.91) is equal to zero. Therefore, we can calculate
from it the Jacobian J and from the first expression of (2.89), (2.90), (2.91) we can compute
P11 which now is only dependent on λ1. Then it is possible to compare the applied pressure
(Neumann condition) with P11 calculated from the numerical results in terms of λ1.

2.4.2 Numerical test case

The test case for the validation of the code uses a structured mesh composed of tetrahedra
with 125 nodes. The finite elements used are the first order polynomial (P1) hence the nodes
of the mesh are also the degrees of freedom. To perform the validation of structural solver
we have taken the numerical results in terms of principal strain λ1, λ2, λ3. Then we have
calculated the component P11 of the first Piola-Kirchhoff stress tensor from the analytical
expressions reported in the previous paragraph. Finally, the Neumann condition applied to
the cube has compared with P11 calculated from the numerical results. Further we have
computed the relative error as:

err =
P11an − P11num

P11an

. (2.92)
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2.4. The validation of the structural solver

Table 2.2: Set of structural parameters used for validation

Set1 Set2 Set3 u.d.m

κ 1e8 5e8 1e9 [dyne/cm2]
ν 0.45 0.45 0.45 -
E 6e6 7e6 8e6 [dyne/cm2]
α 2e6 2.5e6 3e6 [dyne/cm2]
γ 0.80 0.75 0.70 -

We have choosen three sets of structural parameters (table 2.2) to evaluate the sensitivity
of the solver to the variation of structural data for each structural model. The three set used
are typical values for biological tissues [9]-[25]-[12]-[11].

In the figures 2.3, 2.4, 2.5 for the first set of structural parameters we observe that the
analitycal and the numerical solution are overlapped. In particular the relative error is less
than 1010.

Using the second and third sets of structural parameters we obtain the same results in
terms of error. In particular, also in this case the relative error is less than the Newton toler-
ance and the numerical curve is overlapped to the analytical solution. Hence the accurancy
of the solution is not sensitive to the choice of structural parameters, with a reasonable range.
Finally in figure 2.12 we show the difference between three structural models. We recognize
the correct trend for the 3 models considered [25].
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Figure 2.3: St.Venant-Kirchhoff, first set of structural parameters
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Figure 2.4: Neo-Hookean, first set of structural parameters
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(a) P11 vs. λ1: Numerical vs. Analytical
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Figure 2.5: Exponential, first set of structural parameters
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(a) P11 vs. λ1: Numerical vs. Analytical
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Figure 2.6: St.Venant-Kirchhoff, second set of parameters
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(a) P11 vs. λ1: Numerical vs. Analytical
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Figure 2.7: Neo-Hookean, second set of parameters
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Figure 2.8: Exponential, second set of parameters
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(a) P11 vs. λ1: Numerical vs. Analytical
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Figure 2.9: St.Venant-Kirchhoff, third set of parameters

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.5

1

1.5

2

2.5

3
x 10

6

λ
1

pr
in

ci
pa

l s
tr

es
s 

P 11
 [d

yn
e/

cm
2 ]

NH

 

 
Numerical
Analitical

(a) P11 vs. λ1: Numerical vs. Analytical
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Figure 2.10: Neo-Hookean, third set of parameters
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(a) P11 vs. λ1: Numerical vs. Analytical
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Figure 2.11: Exponential, third set of parameters
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Figure 2.12: Comparison between three nonlinear structural models and linear elasticity: P11

vs. λ1

2.5 Hollow cylinder inflation test

We have also created an inflation test of a hollow cylinder. In particular we have fixed the
structural parameters equal to set1 (table 2.3) in accord with the common data used for
structural simulations of biological tissues [25]-[31].

Table 2.3: Set of structural parameters used for hollow cylinder inflation test

ρs[g/cm
3] κ[dyne/cm2] ν[ ] E[dyne/cm2] α[dyne/cm2] γ[ ]

1.2 1×108 0.45 6×106 2×106 0.8

The test involves the application of an internal hydrostatic pressure as a function of time
only, with the following expression:

pin = 260000 sin(40πt) (2.93)

where t is the time and pin is measured in [dyne/cm2]. In addition to the internal pressure,
Dirichlet boundary conditions on the basis, parallel to the axis of the hollow cylinder and

35



Chapter 2. Nonlinear structural model

Neumann boundary conditions on the external surface in the radial direction are applied.
Formally, we have solved the following problem:





∇̂ ·Ts = 0 ,
Ts(Rin) = PineR ,
Ts(Rout) = 0 ,
η(z = −L/2) · eZ = 0 ,
η(z = L/2) · eZ = 0 ,

(2.94)

where, eR and eZ are the unit vectors associated to the radial and axial directions.
The mesh used is vessel22 and the finite-element discretization is performed by P1 elements.
In table 2.4 it is possible to see the mesh properties in details.

Table 2.4: Mesh properties of vessel22

Nodes Triangles Thetrahedra Length Inner radius Outer radius

3220 2912 14784 5 cm 0.5 cm 0.6 cm

Moreover the time interval of the test is between 0 and 0.025 seconds with a time-step of
0.001 seconds. Hence the temporal steps of the simulation are 25. For this academic test it is
possible to derive an analytical solution for linear elasticity only. Then, we can compare, from
a qualitative point of view, the solution obtained by nonlinear material models to evalute if
the results are reasonable in modulus and shape. The graphs obtained in the last part of the
results (section 2.5.2) are obtained by meaning the displacement of the internal nodes of the
mid section of the hollow cylinder as showed in figure 2.5

(a) Isometric visual of the mid section (b) Plane visual of the mid section

Figure 2.13: Visual of the mid section of the hollow cylinder for the structural analysis
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2.5.1 Linear elasticity: analytical solution

The test case can be effectively described in a cylindrical coordinate system, given the geo-
metry of the problem shown in figure 2.5.1.

Rin

Rout

Figure 2.14: Normal section of the hollow cylinder

In particular, for linear elasticity, the deformation gradient F is equal to identity. Further-
more, no distinction is made between the current configuration and reference configuration
as these are considered infinitesimal deformations. Therefore, the system of cylindrical co-
ordinates adopted is just one, (R̂, Θ̂, Ẑ). Since the gradient of deformation equal the identity
matrix, it follows that the Green-Lagrange tensor is:

E =
1

2

(
∇̂η + ∇̂η

)
, (2.95)

while, the constitutive law, valids for isotorpic materials, is:

Ts = λTr(E) + 2µE , (2.96)

where µ and λ are the Lamè constants introduced in (2.44)-(2.43). We have to solve the
problem (2.94), here reported:





∇̂ ·Ts = 0 ,
Ts(Rin) = PineR ,
Ts(Rout) = 0 ,
η(z = −L/2) · eZ = 0 ,
η(z = L/2) · eZ = 0 .

To determine the analytical solution, we assume that the displacement field η = (ηR̂, ηΘ̂,
ηẐ), has only one non-zero component, namely the component ηR̂, and that it depends only

on the radial coordinate R̂. Then, measuring the gradient of the displacement field ∇̂η in
cylindrical coordinates, it is possible to calculate the Green-Lagrange tensor E. The non-zero

37



Chapter 2. Nonlinear structural model

components of the Cauchy stress tensor are then:





Ts,R̂R̂ = (2µ+ λ)U′(R̂) +
λ

R̂
U(R̂)

Ts,Θ̂Θ̂ =
1

R̂
(2µ+ λ)U(R̂) + λU′(R̂)

Ts,ẐẐ = λ
(
U′(R̂) +

U(R̂)

R̂

)
(2.97)

By writing the balance equation of momentum in cylindrical coordinates and substituting
the components of the Cauchy tensor just obtained (2.97), we obtain the resolvent equation:

∂Ts,R̂R̂

∂R̂
+

1

R̂
(Ts,R̂R̂ −Ts,Θ̂Θ̂) = 0 , (2.98)

that leads to an equi-dimensional or Euler-Cauchy equation:

R̂
2
U′′(R̂) + R̂U′(R̂)−U(R̂) = 0 (2.99)

with solution:

U(R̂) = C1R̂ +
C2

R̂
(2.100)

The constants of integration are determined by imposing the boundary conditions defined in
(2.94) and have the following form:





C1 =
1

2(µ+ λ)

(
R̂

2

inPin − R̂
2

outPout

R̂
2

out − R̂
2

in

)

C2 =
R̂

2

inR̂
2

out

2µ

(
Pin − Pout

R̂
2

out − R̂
2

in

) (2.101)

The displacement field then becomes:





ηR̂ =
R̂

2(µ+ λ)

(
R̂

2

inPin − R̂
2

outPout

R̂
2

out − R̂
2

in

)
+

R̂
2

inR̂
2

out

2µR̂

(
Pin − Pout

R̂
2

out − R̂
2

in

)

ηΘ̂ = 0

ηẐ = 0

(2.102)

2.5.2 Results

In figure 2.15 we show the results at t = 0.012 s when the internal pressure is maximal.
The colors represent the modulus of the displacement and each figure shows a different
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material. More precisely, figure 2.15(a) shows linear elasticity and it has an intermedi-
ate value of displacement magnitude5, between the four materials, of |ηLin| = 0.10812 cm,
figure 2.15(b) is the St.Venant-Kirchhoff material and it has the smallest displacement of
|ηSVK| = 0.090227 cm, figure 2.15(c) is the Neo-Hookean material and it has the largest dis-
placement, |ηNH| = 0.12888 cm, finally, figure 2.15(d) is the Exponential material and it has
an indermediate value of displacement, |ηExp| = 0.117561 cm.

(a) Linear elasticity (b) St.Venant-Kirchhoff

(c) Neo-Hookean (d) Exponential

Figure 2.15: Comparison between three nonlinear structural models and linear elasticity,
global view

Remark 5. Note how the materials response are consistent with the ones obtained on the test
on the cube. In fact, we see that the nonlinear model of St.Venant-Kirchhoff is the most rigid,
while Neo-Hookean model, shows the largest displacement with equal load applied. Finally,
linear elasticity and nonlinear exponential model show an intermediate displacement.

5where the magnitude of the displacement is defined as |η| =
√
η2x + η2y + η2z
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Note that the trend of the solution, in terms of displacement, along the radius and the
circumference is reasonable.

In figure 2.16 we show a comparison of radial displacement of an internal node of the
hollow cylinder in its mid section, showed in the figure 2.5 versus time for four materials.
In particular, the results reflect what has been seen in previous figures. In particular, the
Neo-Hookean material presents the largest radial displacement while the St.Venant-Kirchhoff
material has the smallest radial displacement.
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Figure 2.16: Comparison of the radial displacement [cm] and strain vs. time [s] between 3
nonlinear structural models and linear elasticity for hollow cylinder inflation test

We have compared the numerical and analytical results for the linear material, superim-
posing the results of the three nonlinear materials. It is therefore possible to assess qualit-
atively if the values obtained in this test are reasonable. In figure 2.17 we show the radial
displacement 2.17(a) and the radial strain 2.17(b) as a function of undeformed radius.
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Figure 2.17: Comparison of the radial displacement [cm] and strain vs. undeformed radius
[cm] between 3 nonlinear structural models and linear elasticity for hollow cylinder inflation
test

For the nonlinear materials here considered, an analytical solution for this test does not
exist. Hence, it is not possible to have a quantitative validation of these results. However,
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2.5. Hollow cylinder inflation test

the results of the inflation test are qualitatively correct for both modulus and shape. In fact,
if we see the simmetry of the displacement around the cirmumference of the hollow cylinder
2.18, we obtain errors less than 3% using a very coarse mesh (as shown in figure 2.18(a)) and
error less than 0.2% using a fine mesh (as shown in figure 2.18(b)), for all nonlinear models.
These errors are due to the not perfect symmetry of the meshes used.
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Figure 2.18: Simmetry percentual error for linear structural model and three nonlinear struc-
tural models using two different meshes

We can also see, in table 2.5, the mean value and the standard deviation of the displace-
ment for each node around the circumference.

Table 2.5: Mean(cm) and standard deviation(cm) of the radial displacement for each node
around the circumference using two different meshes

LIN SVK NH Exp

Mean [cm] (very coarse) 0.1061 0.0881 0.1262 0.1153
Standard deviation[cm] (very coarse) 0.0024 7.9550e-04 0.0021 0.0018

Mean [cm] (fine) 0.1080 0.0902 0.1287 0.1175
Standard deviation[cm] (fine) 1.5805e-04 8.4974e-05 9.3832e-05 9.0698e-05

41



Chapter 2. Nonlinear structural model

Finally we show a mesh convergence test using three different meshes. It is possible to
see in figure 2.19 that the radial displacement vs. undeformed radius (for all materials) has
a stiffen behaviour using a mesh coarse.
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Figure 2.19: Mesh convergence test for hollow cylinder inflation test
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FSI model

A correct construction of the FSI model, requires an accurate description of the fluid and of
the structure. Blood can to be modeled as an incompressible Newtonian fluid while the wall
can to be modeled as a relatively thin structure. As previously remarked, the most important
part of this work was to implement nonlinear structural models to describe the arterial wall
mechanics.

It is well-known [16] that an FSI problem is highly nonlinear, even when using linear
elasticity. Indeed:

1. the position of the interface between fluid and structure is an unknown of the problem
−→ geometrical nonlinearity;

2. the convective term of the fluid problem is nonlinear. Moreover it depends also on the
velocity of the fluid domain and thus on the structural displacements, because of the
coupling conditions.

The integration of the nonlinear structural models into an FSI model adds a further
nonlinearity to the problem. However it allows to describe the behaviour of the arterial wall
and his interaction with blood flow (also in regime of large deformations) more precisely. In
particular, it was shown that structural models such as Neo-Hookean and Exponential can
be used to describe the arterial wall [36], [37] also in a multi-mechanism contest and using
fibers[11].

Thus, it is interesting to use these models to describe the arterial wall mechanics in a FSI
framework to better describe the typical haemodynamic indicators. The use of the St.Venant-
Kirchhoff model, is instead justified, because it is very similar to the linear model and can
be used as a benchmark for more complex models. We remark that this work is only a first
step toward more detailed models that involves for example, fibers and pre-stress.

The purpose of this chapter is to introduce the equations of the FSI problem and to
describe the numerical strategies to solve it. In particular we focus the attention on the
integration of the NLSS into FSI solver. Finally, we present a comparison between linear
elasticity and nonlinear elastic models on an academic FSI test case, with the objective of
verifying the algorithm.
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3.1 Fluid-structure interaction problem

Let us consider a mechanical system composed of a flow interacting with a deformable struc-
ture. In practice, it is necessary to calculate the solution in a time-varying computational
domain. Its evolution is not known a priori but is obtained by solving an FSI problem. The
domain Ω is divided into two subdomains Ωs, occupied by the structure and Ωf occupied by
the fluid. Both are varying in time. The interface Σ between fluid and structure is defined
as ∂Ωs ∩ ∂Ωf and is the boundary of the two subdomains.

Ωf

Ωs

Ωs

Σf,in

Σs,in Σs,out

Σf,out

Figure 3.1: A longitudinal view of a typical domain of interest

For the typical geometries of interest the domain is shown in 3.1. On the boundary of Ω
we can identify different layers. In particular ∂Ω ∩ ∂Ωf = Σf,in ∪ Σf,out and, where Σf,in is
the “inlet”or better the proximal fluid boundary, which correspond to the section nearer to
the heart. Conversely, Σf,out is the “outlet”, or better distal fluid section.
We have put the words “outlet”and “inlet”into quotes, because even if the mean blood flow
during a cardiac cycle in arteries is moving from the heart to perifery, we cannot exclude a
priori the presence of reverse flow at certain instants.
The proximal and distal sections of the structural part are indicated by Σs,in and Σs,out

respectively. The remaining portion of ∂Ω, all on the structural side, are indicated by Σs,w.
We wish to recall that the section Σin and Σout are artificial in the sense that they do
not correspond to a physical separation but they are introduced to delimit the portion of
artery under study. The issue of setting up appropriate conditions on these sections is rather
complex and some discussion may be found in [38]. In this work, since we are focusing on
the structural solver and on the FSI coupling we will use standard boundary conditions of
Dirichlet and Neumann type. However, the technique here developed may be extended to
treat more complex boundary conditions on those sections.

Furthermore we indicate with Ω̂ a reference configuration. In particular, Ω̂s is the reference
configuration for the structure, which is assumed to be a natural configuration (i.e. a zero-
stress configuration). This is questionable since it is well known that arteries are pre-stressed.
However, in this work we have decided to neglect this aspect, which may be taken into account
in a future extension. To describe the evolution of the domain we define two maps, one for
the fluid domain and one for the solid domain. In particular the fluid map A is defined as:

A : Ω̂f × (0,T) → Ωt
f , (x̂, t) → x = A(x̂, t) , (3.1)
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3.1. Fluid-structure interaction problem

while the solid map, in accordance with Chapter 2, is defined as:

L : Ω̂s × (0,T) → Ωt
s , (x̂, t) → x = L(x̂, t) . (3.2)

The union of these two maps defines a homeomorphism on Ω, with the following interface
condition:

Lt = At on Σt, ∀ t ∈ (0,T) . (3.3)

As previously stated, to describe the kinematics of the structure, we have used a Lagrangian
approach. The map Lt takes the following expression:

Lt = x̂ + η(x̂, t) , x̂ ∈ Ω̂s . (3.4)

Instead, to describe the fluid map, we build a suitable extension of its value on the interface
provided by the condition (3.3):

At(x̂) = x̂+ Ext(η(x̂, t)|Σ̂) , x̂ ∈ Ω̂f , (3.5)

where, for instance, “Ext” is the harmonic extension operator in the reference configuration[39].
In particular, the choice of the extension operator is rather arbitrary as long as (3.3) is sat-
isfied and the artificial boundaries are respected. For this reason At is called Arbitrary
Lagrangian Eulerian (ALE) map. For each function ĝ : Ω̂s → R defined in the solid reference
configuration, we denote by g = ĝ ◦ (L)−1 the same function in the current configuration. In
particular, we have the following relation between reference and current solid configuration:

g(x, t) = ĝ((Lt)−1(x), t) , x ∈ Ωs . (3.6)

Similarly for the fluid domain, given a function f : Ωt
f × (0,T) → R defined in the current

(Eulerian) configuration, the relation f̂ = f ◦At denotes its counterpart in the reference fluid
domain. In particular, we have the following relation between current and reference fluid
configuration:

f̂(x0, t) = f(At(x0), t) , x0 ∈ Ω̂f . (3.7)

In addition we define the ALE time derivatives to write the equations of fluid in the correct
reference frame:

∂f

∂t

∣∣∣∣
x̂

: Ωt
f × (0,T) → R ,

∂f

∂t

∣∣∣∣
x̂

(x, t) =
∂f̂

∂t
◦ (At)−1(x) , x ∈ Ωf . (3.8)

From the previous relation it is possible to calculate the fluid domain velocity as:

w(x, t) =
∂x

∂t

∣∣∣∣
x̂

=
∂At

∂t
◦ (At)−1(x) . (3.9)

The nonlinear elastic models used for the structure have been described in chapter two.
Regarding the fluid, the model used is the classical Newtonian incompressible fluid model.
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In particular the governing equations are the Navier-Stokes equations, which in the Eulerian
frame are the following:





ρf
∂u

∂t
+ ρf(u ·∇)u+∇p− 2∇ · (µfD(u)) = ρff f ,

∇ · u = 0 ,

(3.10)

in Ωt
f and for t > 0. They are supplemented by appropriate initial and boundary conditions

which will be described later. It is necessary to rewrite them in the ALE formulation, as
the computational domain Ωt is moving. To do so, we apply the chain rule to the velocity
time-derivative,

∂u

∂t

∣∣∣∣
A

=
∂u

∂t
+w ·∇u , (3.11)

by which we get:





ρf
∂u

∂t

∣∣∣∣
A

+ ρf[(u−w) ·∇]u+∇p− 2∇ · (µfD(u)) = ρff f ,

∇ · u = 0 .

(3.12)

By coupling (3.12) to the equations of the structural problem described in Chapter 2, the
FSI problem becomes the following:

Problem 3.1 (FSI problem).

1. Fluid-structure problem. Find the velocity u, pressure p and the structure displacement
η such that:





ρf
∂u

∂t

∣∣∣∣
A

+ ρf
[
(u−w) ·∇

]
u+∇p−∇ ·Tf = ρff f , in Ωt

f × (0, T ) ,

∇ · u = 0 , in Ωt
f × (0, T ) ,

ρ̂
∂2η

∂t2
= ρ̂b+ ∇̂ ·P , in Ω̂s × (0, T ) ,

u =
∂η

∂t
◦ (Lt)−1 , on Σt × (0, T ) ,

Ts · ns +Tf · nf = 0 , on Σt × (0, T ) ;

(3.13)
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2. Geometry problem. Find the fluid domain displacement and velocity:





At(x̂) = x̂ + Ext(η(x̂, t)|Σ̂) ,

w =
∂At

∂t
◦ (At) in Ω̂f × (0,T)

(3.14)

The system is completed by suitable boundary conditions on ∂Ω and initial conditions.
The fourth and fifth equations of system (3.13) are the coupling terms, and represent the
continuity of fluid and structure velocities and the continuity of stresses. Often, in the discrete
setting those conditions are decoupled, giving rise to the so-called partitioned (staggered)
schemes. However, for the problem at hand it has been shown that staggered procedures are
often unstable [15]-[40].

3.2 Weak formulation of the FSI problem

To derive the weak formulation (also called variational formulation) of the fluid-structure
interaction problem (3.13)-(3.14) it is necessary to define the following functional spaces:





Vt
f = {vf ∈ H1(Ωt

f)
d} ,

Qt = L2(Ωt) ,

V̂s = {vs ∈ H1(Ω̂s)
d} ,

St = {(vf,vs) ∈ Vt
f × V̂s : vf |Σt= vs |Σ̂ ◦L−1} ,

where Lp are Banach spaces and Hq are Sobolev spaces defined in appendix (A.1) and d is
the space dimension (d=2 for bidimensional problem; d=3 for three-dimensional problem).
Furthermore to obtain the weak formulation of the FSI problem, it is necessary to rewrite
the convective and diffusive terms of the momentum equation of the fluid problem:

a(u,vf) = µf

(
∇u+∇uT : ∇v

)
,

c(u−w,u,vf) =
∫
Ωt

f

[
(u−w) ·∇u

]
· vf dΩ ,

(3.15)

where (·, ·) is the inner product in L2(Ωt
f ) defined in (A.1).

Using the spaces introduced and (3.15) the weak formulation of FSI problem (3.13) reads:

Weak-formulation 3.1 (FSI problem). For each t ∈ (0, T ) find (u(t),η(t)) ∈ St, p(t) ∈ Qt

such that:

ρf

(
∂u

∂t

∣∣∣∣
A

,vf

)

Ωt
f

+ a(u,vf)Ωt
f
− (p,∇ · vf)Ωt

f
+ c(u−w,u,vf)Ωt

f
+

+ρs

(
∂2η

∂t2
,vs

)

Ω̂s

+ (Ts,∇vs)Ω̂s
+ (∇ · u, q)Ωt

f
= (ff ,vf)Ωt

f
+ (h,vf)Σt

N
+ (fs,vs)Ω̂s

,
(3.16)
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u |Σt=
∂η

∂t

∣∣∣∣
Σ̂

◦ L−1 , (3.17)

for any (vf ,vs) ∈ St and for any q ∈ Qt.

The continuity condition on the velocity is imposed in the strong form while the stress
continuity condition is imposed weakly. Moreover, the stress at the fluid interface can be
interpreted as the residual of the weak formulation of the momentum equation considering a
test function different from zero on Σt:

(Tf · nf,vf)Σt = ρf

(
∂u

∂t

∣∣∣∣
A

,vf

)

Ωt

f

+ a(u,vf)Ωt

f
+ c(u−w,u,vf)Ωt

f

−(p,∇vf)− (ff,vf)Ωt
f
− (h,vf)Σt

N
= −(Rf(u, p),vf)Ωt

f

And similarly, so that, we have:

(Tf · nf,vf)Σt + (Ts · ns,vs)Σt = 0 ∀(vf,vs) ∈ St .

Finally it is necessary to obtain the weak formulation of the geometry problem (3.14). To
derive the last one it is necessary to introduce the following functional spaces:

M = {ψ ∈ H1(Ω̂) : ψ · nf|Σt = 0}

M0 = {ψ ∈ M : ψ|Σt = 0}
(3.18)

Consequently the weak formulation of (3.14) reads:

Weak-formulation 3.2 (Geometrical problem). Find w ∈ M such that:





(∇w,∇ψ)Ω̂f
= 0 , ∀ψ ∈ M0 ,

w = u ◦ At , on Σ̂ .
(3.19)

3.3 Coupling strategies for the FSI problem

Before performing the time discretization of the system (3.13)-(3.14) we give an overview of
the possible procedures to solve it. The fluid-structure interaction problem is defined by fluid
equations, structure equations and by transmission conditions at the interface Σ, which we
recall here: {

u = η̇ ,
Tf · nf +Ts · ns = 0 .

(3.20)

There are several ways to solve the FSI problem in practice. A monolithic approach is
followed when fluid and structure are solved simultaneously in a single solver. Instead, a par-
titioned (modular or segregated) approach involves the use of possible pre-existing fluid and
structure solvers which are then coupled throug (3.20). Furthermore, partitioned techniques
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may be explicit or implicit, the latter requiring sub-iterations among fluid and structure solv-
ers. With a monolitic approach it is easier to guarantee the stability in the energy norm of
the discrete problem but we require a specific solver for a problem of a large size. The ad-
vantages of the partitioned procedures is that one can use a state-of-art method developed for
the fluid and structure subproblems independently. In this thesis we are interested on parti-
tioned algorithms. In an explicit partitioned algorithm, the fluid and structure sub-problem
are solved once (or just few times) per time step. This approach is typical in aeroelastic
problems, however is rather inconvenient in hemodynamics. In fact it can be shown that
an explicit approach to FSI problem with significant added-mass effect (like haemodynamic
problems where the structure and fluid densities are similar) is instable.

Stable partitioned schemes can be obtained by treating the interface conditions. This
leads to the need of subiterating among fluid and structure and geometry solvers.

An additional possibility, called semi-implicit, is to treat the position of the interface and
the convective term explicitly by the extrapolation of information from the previous time-
steps, while conditions at the interface between fluid and structure are treated implicitly. At
each time step the iterations between the two sub-problems are required. In this case there is
a perfect balance of energy between fluid and structure problems, so the numerical schemes
that are obtained with this approach are stable. However, the computational cost for prob-
lems with large added-mass effect, is very high because of the large number of sub-iterations
needed at each time step.

Another possibility is to solve the monolithic, fully implicit problem by some iterative
methods that iterate between fluid and structure subproblems. In this work the latter ap-
proach is adopted. It should also be noted that in addition to the inherent nonlinearity of
the fluid-structure issue, adding the nonlinear stiffness term in the structure sub-problem.

3.3.1 Time discretization of the FSI problem

The time discretization of the system (3.13)-(3.14) requires the introduction of the fluid mesh
displacement df and the interface displacement dΣ. We introduce also the fluid solver operator
F , the solid solver operator S, the mesh solver operator M and the coupling conditions
operators, Csf and Csm. Moreover, for simplicity, we use the convention: gp = g(tp). As shown
in [41], a general implicit time discretization reads:

Algorithm 3.1 (Implicit time-discretization). Solve the nonlinear system of algebraic equa-
tions: 




F(un+1, pn+1,dn+1
f ) = fn+1

f ,

S(ηn+1) = fn+1
s ,

M(dn+1
f ) = 0 ,

Csf(ηn+1
Σ ,un+1

Σ , pn+1) = 0 ,

Csm(ηn+1
Σ ,dn+1

f,Σ ) = 0 .

(3.21)

49



Chapter 3. FSI model

The dependence of the fluid solver operator on the movement of the fluid mesh should be
clear as the fluid equations are solved in an unknown domain Ωn+1

f = Ω̂f + dn+1
f .

It is possible to write the equations associated to each sub-problem as follows.

• Csf : the coupling equations between solid and fluid, reads:




un+1
Σ =

ηn+1
Σ − ηn

Σ

δt
,

Tf · nf +Ts · ns = 0 .

(3.22)

• Csm: the coupling equations between solid and mesh movement, reads:

dn+1
f,Σ = ηn+1

Σ (3.23)

• F : the fluid equations can be written using for instance the implicit-Euler algorithm
as:





ρf
un+1 − un

δt
+ ρf(u

n+1 −wn+1) ·∇un+1 −∇ ·Tn+1
f = fn+1

f in Ωn+1
f ,

∇ · un+1 = 0 in Ωn+1
f .

(3.24)

where the fluid domain Ωf is an unknown of the problem.

• S: the solid equations can be written using e.g. the Newmark method described in
Chapter 2 as:




ρs
η̇n+1 − η̇n

δt
−∇ ·Pn+1 = fs in Ω̂s ,

ηn+1 − ηn

δt
=

ζ

2θ
η̇n+1 +

(
1− ζ

2θ

)
η̇n − δtζ

2θ

[
1−

(
1 +

1− ζ

ζ

)
θ

]
η̈n in Ω̂s .

(3.25)

• M: the mesh equations can be written, for example, using the harmonic extension
operator “Ext” as:





An+1(x̂) = x̂+ Ext(ηn+1 |Σ̂) ,

wn+1 =
(An+1 −An) ◦ (An+1)−1

δt
, Ωn+1

f = An+1(Ω̂f) .
(3.26)

There are many techniques to compute the solution of (3.21) as explained for example in
[42]. Here we consider a partitioned procedure that involves the interface degrees of freedom.
In particular we use the Dirichlet-Neumann (DN) partitioned algorithm where the fluid is
solved with the Dirichlet condition imposed by the structure, while the structure is solved
with Neumann-type condition given by the fluid equations. Another possibility is to solve
the fully nonlinear coupled system as show e.g. in [43].
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3.3.2 Dirichlet-Neumann partitioned procedures

The Dirichlet-Neumann decoupling strategy, allows us to solve the fluid equations with a
fixed domain, imposed by structure. The algorithm is well described in [22]. Here we breifly
explain this method:

ALE map : Given the interface displacement ηΣ, the computed ALE map and its velocity
on the whole fluid domain is indicated by:

(Ak+1,wk+1) = D(ηk+1
Σ ) ; (3.27)

Fluid : The Navier-Stokes equations in ALE formulation are solved on the new domain and
pressure and velocity fields are obtained. We indicate this step as:

(uk+1, pk+1) = F(Ak+1,wk+1) ; (3.28)

Solid : The structure equations are solved using the Neumann condition imposed by fluid.
In particular, the solid displacement and velocity are obtained:

(η̇k+1,ηk+1) = S(uk+1, pk+1) . (3.29)

F is, in our case, the Navier-Stokes solution operator, S is the structure solution operator
previously introduced and D is the ALE map solution operator, in our case the harmonic
extension operator.
It is possible to compose the operator to obtain an operator on the interface displacement:

T = γΣ ◦ S ◦ F ◦ D , (3.30)

where γΣ is the operator that maps the solid displacement and velocity into interface dis-
placement:

γΣ : (η, η̇) → ηΣ .

Finally the fixed-point problem on the interface displacement is:

η
(k+1)
Σ = T (η

(k)
Σ ) , (3.31)

which looks for a ηΣ such that:
ηΣ = T (ηΣ) (3.32)

3.3.3 Interface Newton-Krylov method

The fixed point problem (3.32) can be solved with more efficient iterative methods that
(3.31). In this work we have used a Newton-Krylov method as proposed in [19] and [22]
reformulating the problem in the following manner: at each time-step, find ηΣ such that

R(ηΣ) = T (ηΣ)− ηΣ = 0 . (3.33)

Without going into details, which may be found in the cited literature, the Newton
algorithm applied to the nonlinear system (3.33) shall perform the following steps [19]:
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1. Choose an initial guess for structure interface displacement η
(0)
Σ .

2. Do until convergence:

(a) Solve the Harmonic extension problem.

(b) Evaluate the fluid solution operator u
(k+1)
f = F(η

(k)
Σ ).

(c) Evaluate the solid solution operator η
(k+1)
Σ = S(u(k+1)

f ).

(d) Evaluate the residual of the solid displacement R(η
(k)
Σ ) = η

(k+1)
Σ − η(k)

Σ .

(e) Solve the tangent problem
[
DηR(η

(k)
Σ )

]
δη

(k)
Σ = −R(η

(k)
Σ ).

(f) Update solid displacement: η
(k+1)
Σ = η

(k)
Σ + δη

(k)
Σ ,

where uf = (u, p,df) and df is the fluid displacement field. In particular, step 2-(e) is obtained
by a matrix free GMRES Krylov iterative solver [44]. Hence, it only requires the evaluation
of the operator [DηR(η)] applied to a solid state perturbations z:

[
DηR(η)

]
z =

[
DηT

]
z− z =

(
γΣ ◦

[
D(u,p)S

]
◦
[
D(A,w)F

]
◦
[
DηD

])
z− z . (3.34)

The linear operator DηR(η) can be an exact or an inexact Jacobian. In the first case we
speak of exact-Newton methods and the shape derivatives are used to calculate the perturb-
ations of the fluid variables with respect to the ALE map. In the second case, the matrix of
the tangent problem is approximated and we speak of quasi-Newton method. In this work
we have adopted the latter strategy and we have neglected the shape derivatives.

The steps described above are defined in the exactJacobianBase template (EJ). After

choosing the initial guess of the interface structure displacement η
(0)
Σ , the template nonLin-

Richardson is called, which recalls the method evalResidual into the template exactJacobian-
Base. Method evalResidual recalls the method eval that solves the harmonic extension, fluid
and solid subproblem using the pre-existing solvers HarmonicExtension, Oseen and Non-
LinearStructureSolver. In particular, the fluid solver Oseen, solves the fluid problem using
the Oseen approximation, hence the convective term is treated in a semi-implicit manner,
while the structural solver NonLinearStructureSolver uses the Newton algorithm to solve the
nonlinear part of the stiffness term as explained in Chapter 2.
Then the solid interface displacement residual is evaluated and compared with the prescribed
tolerance:

toll = ǫabs + ǫrel
∥∥R(η

(0)
Σ )

∥∥
L∞(Ω̂)

(3.35)

If the interface solid displacement residual is less than the tolerance we have un+1
f = u

(k+1)
f

and ηn+1 = η(k+1) else, return to step 2-(a).
In particular NLSS perform all Newton iterations until convergence before moving to the

tangent FSI problem solved with the GMRES method. This is a critical point, because we had
to extend our structural solver NLSS, to correctly solve the tangent FSI problem previously
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described. In particular, NLSS performs all Newton iterations until convergence, then the
Jacobian matrix at the last Newton iteration is passed to FSI solver. To implement correctly
the last point we have added two methods in NLSS, called iterateLin and applyBoundary-
ConditionsLin. The first one takes the structural Jacobian matrix when Newton method has
converged, the second one applies the boundary conditions to the linearized problem. The
schematic of the integration of NLSS into EJ is presented in the figure 3.3.3.
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Tangent problem

matrix-free GMRES
iterations

Figure 3.2: Integration of Nonlinear structural solver into FSI solver using Newton method

3.4 The design of the FSI solver

In the library LifeV-parallel, there were already two approaches to the solution of FSI problem
for linear structure. The first is that using the fixed point method (3.31) and the correspond-
ing solver is called fixedPointBase, while the second involves the use of Newton’s method
(3.33) and the corresponding solver is called exactJacobianBase. As remarked in the para-
graph 3.3, we have used the second one.
The two solvers are supported by a complex structure of classes that containing the methods
for the correct formulation of the problem and in particular we have the following archi-
tecture: The red circles in figure 3.3 indicate the main parts that we have modified and
integrated into FSI solver. In particular the principal modifications concern the structural
part of the solver with the addition of the NonLinearStructureSolver. Other manipulations of
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Figure 3.3: FSI solver: general view

the FSI solver are needed also in FSIOperator, FSISolver, dataFSI and exactJacobianBase.
Moreover, we emphasize the parts modified to obtain the FSI solver with nonlinear hyper-
elastic structural models. We note, however, that we have tried to build a structural solver
compatible with the existing FSI solvers. In the following list, we give a brief description
of each functional block, represented above, with two exception: fixedPointBase and ex-
actJacobianBase. In particular, for the FSI problem we have used the second algorithm,
exactJacobianBase which is described in the dedicated paragraph 3.4.3.

• FSISolver : is a class that contains four main methods, setData(const data PtrType&
data), setup(), initialize() and iterate(). The first one, recalls the data of FSI problem
from data file. Setup() initializes the FSI problem, while initialize() gives the initial
condition for time scheme. Finally, iterate(), is the temporal loop.
Here we have modified just one method, initialize() to recall the correct method of
NonLinearStructureSolver.

• FSIOperator : is a class that contains the definition of the solvers for Interface prob-
lem, fluid subproblem and structure subproblem. Moreover, it contains some methods
to provide the correct description of the problem. The main methods are partition-
Meshes() to manage the solid and fluid part of the mesh, setupFEspace() to manage the
finite-element space, setupDOF() to manage the degrees of freedom of the FSI problem,
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setupIDOF() to manage the interface degrees of freedom, setupFluidSolid() to recall the
harmonic extension, fluid and solid constructor and to initialize the members of fluid
and solid subproblems, buildSystem() to compute the constant matrices, updateSystem()
to update the non-constant matrices at each time-step. FSIOperator contains many
others methods to treat the conditions on interface and to set some parameters useful
as stop criteria that are not described because they are not the goal of this work.
Here we have modified some methods. First one is setupFluidSolid() to call the correct
constructor of the nonlinear structural solver. Moreover, buildSystem() and updateSys-
tem() are modified and now recalls also the methods of the NonLinearStructureSolver.

• DataFSI : is a class that contains some methods to manage the data of FSI problem.
DataFSI is connect to two other classes to manage structure and fluid data: dataElast-
icStructure and dataOseen.

• VenantKirchhofSolver : is a factory that provides some functions to characterize the
problem of elasticity. VenantKirchhofSolver has a derived class called LinearVen-
antKirchhofSolver to solve the linear elasticity problem.
We have modified this point with the addition of the NonLinearStructureSolver as a
derived class of VenantKirchhofSolver.

• OseenSolver : is a class to solve the fluid problem using the Oseen equations [45]. In
particular, the Oseen equations in the primitive variables u and p, are linear due to
the approximation of the convective term as: ρ(u ·∇)u ≈ ρ(U ·∇)u, where U is the
steady fluid velocity and u are the perturbations of steady fluid velocity.

• HarmonicExtensionProblem: is a class to solve the elliptic problem of the harmonic
extension.

• main: is the script that recalls the principal methods of the classes decribed above.
This script is connected with BoundaryConditions and ud functions to manage the
boundary conditions of FSI problem.

3.4.1 FSISolver and FSIOperator ’s principal methods

In this brief paragraph we show the principal methods of FSIOperator and FSISolver that
represent the core of FSI solver. The principal methods exactJacobianBase are explained in
the subsections 3.4.3. We want to remark that in the base classes of the FSI solver, such as
FSISolver and FSIOperator, we have not modified several methods, because we have adapted
the NonLinearStructureSolver to the FSI solver in an iterative process as specified previously.

FSISolver ’s principal methods

The principal method of FSISolver (FSIS) is iterate, which recalls the template NLR. Other
important methods are also setData, setup and Initialize. In the following list we describe the
tasks of each method.
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• setData: Manages MPI to parallel computing, define the data file and calls the method
of FSIOperator setData.

• setup: Calls three method of FSIOperator : setupFluidSolid, setupSystem and buildSys-
tem. In particular we have modified two of these three methods: setupFluidSolid and
buildSystem that now calls also the class related to the NLSS.

• Initialize: Initializes the temporal schemes. This method has been modified, because in
the previous solver the time scheme is a mid-point method that does not require the
initial data for the acceleration.

• iterate: Calls the method updateSystem of FSIOperator and calls the template NLR
to solve the nonlinear fluid-structure problem. Here we have not modified anything
because we have created the compatible methods in the NLSS.

FSIOperator ’s principal methods

FSIOperator (FSIO) implements a variety of methods to manage the boundary condition at
the interface, to compute and update the matrices of fluid and structure and many others
method. Principal methods are buildSystem, updateSystem, couplingVaribleExtrap and some
methods to setting up the data file, the FE space and other quantities. In the following list
we describe briefly the tasks of the main method of FSIO and the modifications we have
made.

• setDataFile: Initializes data using GetPot [46].

• setupFESpace: Setup the finite-element spaces. In particular defines the FE order and
the quadrature rules.

• setupDof: Identifies the degrees of freedom and related maps.

• createInterfaceMaps: Creates the interface maps and in particular the solid and fluid
variables.

• setupIDof: Identifies the interface degree of freedom.

• setupFluidSolid: Sets up the Harmonic extension, fluid and solid subproblems. In par-
ticular the constructors of each subproblem and their setup methods are recalled. Here,
we have modified in particular the call of the constructor of the solid subproblem. Now
this method calls in a correct way the constructor of the NonLinearStructureSolver.

• setupSystem: Reads the data files with the information of each subproblem.

• buildSystem: Calls buildSystem method of fluid and solid solvers that computes the
constant matrices.
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• updateSystem: Updates the Harmonic extension, fluid and solid subproblems. In par-
ticular updates the right-hand side of each subproblem. Moreover calls shiftSolution
and couplingVariableExtrap methods.

• shiftSolution: Updates the right-hand side of fluid subproblem.

• couplingVariableExtrap: Updates the interface displacement and velocity have to be
passed to the next time-step.

• initializeFluid: Gives the initial conditions for mesh and fluid subproblems calling the
specific methods of each solvers.

• initializeSolid: Gives the initial conditions for solid subproblem calling the specific
method of NLSS.

• moveMesh: Moves the mesh and recomputes the fluid matrices.

• transferFluidOnInterface: Transfers the fluid quantities on interface.

• transferSolidOnFluid: Transfers the solid quantities on fluid.

• trasferSolidOnInterface: Transfers the solid quantities on interface.

• trasferInterfaceOnSolid: Transfers the interface quantities on interface.

3.4.2 FSI solver architecture

As previously done for the structural solver, we show in the figure 3.4 the interaction between
blocks to give a schematic view on how the FSI solver works.

57



Chapter 3. FSI model

iterate

FP or EJ
MAIN

FSIS

NLR

GMRES

FSIO

STRUC. SOLVER

OS

HES DFSI

DES DNS

FLUID-STRUCTURE SOLVER

setup

NLR

FSIO

FSIS

updateSystem

setDataFromGetPot

setup

buildSystem

updateSystem

HES

OS

STRUC. SOLVER

HES

OS

STRUC. SOLVER

evalResidual

eval

iterate

NLR

FSIO NLR

Figure 3.4: FSI solver design

Principal methods of exactJacobianBase

To perform the steps described above there are some methods defined into the class exact-
JacobianBase. We are interested to show how it is possible to complete a time-step. Hence
the main methods of exactJacobianBase are evalResidual, eval, solveJac, solveLinearFluid and
solveLinearSolid which are also the methods modified to a correct integration of the NLSS
into the FSI solver. In the following list we give a short description of each method:

• evalResidual: Evaluates the stopping criterion on solid displacement residual. In par-
ticular here we have not done modifications. The stopping criterion is on interface
displacement between the actual iteration and the previous iteration.

• eval: Solves geometrical, fluid and solid subproblems, recalling the principal methods
of each solver. In particular recalls the iterate method for meshMotion, fluid and solid
subproblems. Here we have correctly interfaced the NLSS, recalling the methods of the
nonlinear structural solver.

• solveJac: Solves the linearized FSI problem.
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• Apply: Calls solveLinearFluid and solveLinearSolid and manages the transmission condi-
tions.

• solveLinearFluid: Solves the fluid linear problem used for transmission conditions subit-
erations.

• solveLinearSolid: Solves the solid linear problem used for transmission conditions subit-
erations. In particular, we have created a specific method for this class to solve the
linearized problem of the structure. Here we pass the Jacobian matrix obtained from
the Newton method on the solid subproblem when it arrives to convergence.

Architecture of exactJacobianBase

As done for the overall FSI solver, here we detail the architecture of the exactJacobianBase
template.
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iterate
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eval
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Figure 3.5: EJ architecture
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3.5 Test case on a cylindrical straight vessel

In this section we present the results obtained from 4 simulations, using a structured mesh
for fluid and structure. The radius of the straight cylinder in undeformed configuration is R0

= 0.5 cm with a length of L = 5 cm. Structure’s thickness is h = 0.1 cm. Data for fluid and
structure are reported in the table below:

Table 3.1: Structural and Fluid data set for cylindrical straight vessel test

µf[poise] ρf[g/cm
3] ρs[g/cm

3] E[dyne/cm2] ν γ κ[dyne/cm2] α[dyne/cm2]

0.03 1.0 1.2 6×106 0.45 0.80 1×108 2×106

The boundary conditions applied to the problem are the following:

• Structure basis: embedded;

• Structure outer surface: Stress free;

• Structure inner surface: Neumann condition from the fluid subproblem;

• Fluid inlet second case: p = 1.332e5sin( πt
0.003

) until t < 0.003s. p = 0 for t > 0.003s ;

• Fluid outlet: Adbsorbing boundary condition;

• Fluid inner surface: Dirichlet condition from the structure subproblem.

The space and time discretization parameters are in the table 3.2. The mesh used is sparse

Table 3.2: Space and time discretization parameters

t0[s] tN[s] δt[s] Displacement FE Pressure FE Velocity FE

0 0.01 0.0001 P1 P1 P1-Bubble

and its data are reported in table 3.3. Finite-element used are P1 for fluid pressure, P1
bubble for fluid velocity, and P1 for structure displacement.

Table 3.3: Mesh properties of solid subproblem (vessel20 ) and fluid subproblem (tube20 )

Nodes Triangles Thetrahedra Length Inner radius Outer radius

vessel20 1360 1760 4800 5 cm 0.5 cm 0.6 cm
tube20 1050 956 4680 5 cm – 0.5 cm
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3.5. Test case on a cylindrical straight vessel

It is possible to see in figure 3.6 a qualitative picture of the simulation. In particular two
different time-steps are shown and it is possible to note the pressure wave propagation in the
vessel.

(a) t = 0.003s (b) t = 0.006s

Figure 3.6: Qualitative picture of the FSI test on straight cylinder

Figures, 3.7-3.8-3.9-3.10, indicate the fluid pressure in the plane section of the vessel and
the solid displacement. In particular we want to show the pressure wave propagation. Hence
the values of pressure and displacement are fixed at t = 0.003 s and are not rescaled at each
time-step.
Figures 3.11(a)-3.12(a)-3.13(a)-3.14(a), indicate the fluid velocity in the plane section of the
vessel. In this case we are interested in the modulus of the velocity field and data are rescaled
at each time-step.
From these figures it is already possible to note some qualitative properties. In particular
we note that the linear material presents less stiffness with respect to the other 3 nonlinear
materials. In fact, if we see the maximum magnitude of displacement of linear structure
model, we note a value of |ηLin| = 0.062709 cm, which compared with the nonlinear models,
|ηSVK| = 0.055542 cm, |ηNH| = 0.052501 cm, |ηExp| = 0.053375 cm, presents the highest
value. In addition, the pressure wave propagation is faster for nonlinear materials, which are
more rigid, in accord with the theory. Also, we can see that the speed in the planar section
is lower for nonlinear models. From these preliminary considerations we can conclude that
the results obtained are qualitatively reasonable and the FSI problem is solved correctly.
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(a) t = 0.0001s (b) t = 0.001s (c) t = 0.002s

(d) t = 0.003s (e) t = 0.004s (f) t = 0.005s

(g) t = 0.006s (h) t = 0.007s (i) t = 0.008s

Figure 3.7: Planar section of the vessel for 9 different time-steps, linear structural model.
Fluid pressure[dyne/cm2]and solid displacement[cm] using 133322 dyne/cm2 as inlet pressure
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(a) t = 0.0001s (b) t = 0.001s (c) t = 0.002s

(d) t = 0.003s (e) t = 0.004s (f) t = 0.005s

(g) t = 0.006s (h) t = 0.007s (i) t = 0.008s

Figure 3.8: Planar section of the vessel for 9 different time-steps, St.Venant-Kirchhoff struc-
tural model. Fluid pressure[dyne/cm2]and solid displacement[cm] using 133322 dyne/cm2 as
inlet pressure
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(a) t = 0.0001s (b) t = 0.001s (c) t = 0.002s

(d) t = 0.003s (e) t = 0.004s (f) t = 0.005s

(g) t = 0.006s (h) t = 0.007s (i) t = 0.008s

Figure 3.9: Planar section of the vessel for 9 different time-steps, Neo-Hookean structural
model. Fluid pressure[dyne/cm2]and solid displacement[cm] using 133322 dyne/cm2 as inlet
pressure
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(a) t = 0.0001s (b) t = 0.001s (c) t = 0.002s

(d) t = 0.003s (e) t = 0.004s (f) t = 0.005s

(g) t = 0.006s (h) t = 0.007s (i) t = 0.008s

Figure 3.10: Planar section of the vessel for 9 different time-steps, Exponential structural
model. Fluid pressure[dyne/cm2]and solid displacement[cm] using 133322 dyne/cm2 as inlet
pressure
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(a) t = 0.0001s (b) t = 0.001s (c) t = 0.002s

(d) t = 0.003s (e) t = 0.004s (f) t = 0.005s

(g) t = 0.006s (h) t = 0.007s (i) t = 0.008s

Figure 3.11: Planar section of the vessel for 9 different time-steps, Linear structural model.
Fluid velocity[cm/s] using 133322 dyne/cm2 as inlet pressure
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(a) t = 0.0001s (b) t = 0.001s (c) t = 0.002s

(d) t = 0.003s (e) t = 0.004s (f) t = 0.005s

(g) t = 0.006s (h) t = 0.007s (i) t = 0.008s

Figure 3.12: Planar section of the vessel for 9 different time-steps, St.Venant-Kirchhoff struc-
tural model. Fluid velocity[cm/s] using 133322 dyne/cm2 as inlet pressure
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(a) t = 0.0001s (b) t = 0.001s (c) t = 0.002s

(d) t = 0.003s (e) t = 0.004s (f) t = 0.005s

(g) t = 0.006s (h) t = 0.007s (i) t = 0.008s

Figure 3.13: Planar section of the vessel for 9 different time-steps, Neo-Hookean structural
model. Fluid velocity[cm/s] using 133322 dyne/cm2 as inlet pressure
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(a) t = 0.0001s (b) t = 0.001s (c) t = 0.002s

(d) t = 0.003s (e) t = 0.004s (f) t = 0.005s

(g) t = 0.006s (h) t = 0.007s (i) t = 0.008s

Figure 3.14: Planar section of the vessel for 9 different time-steps, Exponential structural
model. Fluid velocity[cm/s] using 133322 dyne/cm2 as inlet pressure
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Now, we present the most significant results obtained from the mean section of the cylinder
(z-coordinate = 2.5 cm). In particular, a comparison between linear material and three
nonlinear structural models is done in terms of primitive variables for fluid and structure.

In figure 3.16, the magnitude of displacement 3.16(a) and the magnitude of strain 3.16(b)
vs. time of an internal node of the structure are shown. We note how the nonlinear structural
models, for strain levels greater than 5%, show a higher stiffness than the linear model, as
indeed we see in the figure 3.15 for the radial displacement 3.15(a) and strain 3.15(b).

The curve of the mean axial velocity 3.17(a) and mean pressure 3.17(b) are very similar
between linear elasticity and nonlinear structural models. Finally we have compared the mean
radial fluid velocity 3.18(a) between 4 materials and the mean fluid pressure versus radial
strain 3.18(b). We note how the Neo-Hookean and Exponential materials have higher peaks
of radial velocity than linear elsticity and St.Venant-Kirchhoff models. Similarly, 3.18(b),
confirms the result observed in 3.15, ie the nonlinear structural models are more rigid than
linear model at high level of deformation.
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Figure 3.15: Comparison of solid radial displacement[cm] and strain vs. time[s] for linear
material and 3 nonlinear structural models. FSI simulation: straight vessel
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Figure 3.16: Comparison of solid magnitude of displacement[cm] and strain vs. time[s] for
linear material and 3 nonlinear structural models. FSI simulation: straight vessel
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Figure 3.17: Comparison of fluid pressure [dyne/cm2] and axial velocity[cm/s] vs. time[s] for
linear material and 3 nonlinear structural models. FSI simulation: straight vessel
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Figure 3.18: Comparison of fluid radial velocity[cm/s] vs. time[s] and pressure-strain curves
for linear material and 3 nonlinear structural models. FSI simulation: straight vessel
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Chapter 4

Details of the implementation

In this chapter we give some more details on the implementation of the algorithm in the
object-oriented open-source code LifeV. In particular we emphasize that the code works on
parallel architecture and we remember that we indicate it by LifeV-parallel. Furthermore we
explain the most important aspects of the structural solver implementation and its integration
into FSI algorithm.

4.1 LifeV-parallel

As previously remarked, LifeV is a finite element (FE) library that provides the implement-
ations of state of the art mathematical and numerical methods. It is a C++ object-oriented
open-source code under the LGPL license (for more details see [47]) and it serves both as
a research and production library. In particular it has been ported to GNU/Linux systems,
standard UNIX systems, Cygwin systems and AIX based systems. LifeV is a joint col-
laboration among four institutions: École Polytechnique Fédérale de Lausanne (CMCS) in
Switzerland, Politecnico di Milano (MOX) in Italy, INRIA (REO/ESTIME) in France and
Emory University (Sc. Comp) in the U.S.A. The software covers a wide range of problems,
such as fluid structure interaction, structural mechanics and fluid dynamics.

The parallel version of LifeV exists since 2006, it is based on the Trilinos packages [48]
and can be used on a wide range of computers, ranging from PCs to large supercomputers,
like the BlueGene/P, Cray XT5 and XE6. It contains around 50000 lines of C++ code
and it is growing. It is a project within the SourceForge like environment GForge hosted
on http://cmcsforge.epfl.ch providing bug tracking, task management, account management,
secure connection and a Git repository (for more details see [49]).

Parallel computing requires more a complex programming effort with to serial computing.
In fact, it is necessary to manage processes on multiple CPUs and handle their communication
properly. In particular, processes or objects must be able to send and receive messages
to other processes or objects. In LifeV-parallel this task relies on the standard Message
Passing Interface (MPI), developed by the Message Passing Interface Forum (MPIF) [50]. The
partition of the mesh is based on ParMETIS. ParMETIS is an MPI-based parallel library for
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partitioning unstructured graphs, meshes and for computing fill-reducing ordering of sparse
matrices. Moreover, as mentioned above, the parallel version of LifeV is based on Trilinos
packages that provide some specified mathematical tools. The principal Trilinos’ packages
used in LifeV-parallel and relevant for our work are the following1:

• Epetra: It manages vectors and matrices and it is organized in classes. LifeV-parallel
uses the primary parallel user classes, reported below:

1. Communicator class: Epetra Comm. Contains specific information about the par-
allel machine we are using. Currently supports serial (Epetra SerialComm), MPI
(Epetra MpiComm) and prototype hybrid MPI/threaded parallel programming
models.

2. Map classes: Epetra Map, Epetra LocalMap, Epetra BlockMap. Contain informa-
tion used to distribute vectors, matrices and other objects on a parallel (or serial)
machine.

3. Vector class: Epetra Vector. Real double precision vector class. Supports con-
struction and use of vectors on a parallel machine.

4. Multi-vector class: Epetra MultiVector. Real double precision multi-vector class.
Supports construction and use of multi-vectors on a parallel machine. A multi-
vector is a collection vectors. It is a generalizaion of a 2D array.

5. Sparse row graph class: Epetra CrsGraph. Allows construction of a serial or parallel
graph.

6. Pure virtual row matrix class: Epetra RowMatrix. Pure virtual class that specifies
interfaces needed to do most of the common operations required by a row matrix.
Any class that implements Epetra RowMatrix can be used with Epetra LinearProblem
and AztecOO.

7. Easier-to-implement row matrix class: Epetra BasicRowMatrix. Epetra RowMatrix
has many pure virtual functions that must be implemented by an adaptor.

8. Sparse row matrix class: Epetra CrsMatrix. Real double precision sparse matrix
class. Supports construction and use of row-wise sparse matrices. Epetra FECrsMatrix
is a specialization that supports finite element applications more naturally.

9. Sparse block row matrix class: Epetra VbrMatrix. Real double precision block
sparse matrix class. Supports construction and use of row-wise block sparse
matrices. Epetra FEVbrMatrix is a specialization that supports finite element ap-
plications more naturally.

10. Jagged diagonal sparse matrix class: Epetra JadMatrix. Real double precision
sparse matrix class for vector processors. Constructs and updates a jagged-
diagonal format sparse matrix from an existing Epetra RowMatrix.

1These short notes were taken from the site http://trilinos.sandia.gov and from the specific user-guide
supplied by Sandia National Laboratory
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11. Import/Export classes: Epetra Import and Epetra Export. Constructed from two
Epetra BlockMap (or Epetra Map or Epetra LocalMap). Allows efficient transfer of
objects built using one map to a new object with a new map. Supports local and
global permutations, overlapping Schwarz operations [51] and many other data
movement algorithms.

• Ifpack: It provides a suite of object-oriented algebraic preconditioners for the solution
of preconditioned iterative solvers. In fact, for the parallel solution of algebraic system,
are often used Krylov type iterative solvers (see, for example [52]). It is well-known that
the use of Krylov-type methods require good spectral properties of the iteration matrix
of the system A. In fact, to obtain high performance on the convergence properties it
is necessary that the matrix A is well conditioned. This rarely happens, in fact, for
large algebraic systems, the matrix A is often ill-conditioned. In addition, the stiffness
matrix resulting from the FEM discretization of the elasticity operator has a condition
number that scales like h−2, thus it degrades rapidly as h → 0. Therefore it is necessary
to formally manipulate the original system and solve a system of the form:

P−1AM−1y = P−1b ,Mx = y , (4.1)

where P and M are invertible matrices called left and right preconditioners, respectively.
Often, M = I and only the left preconditioner is active. The preconditioning matrices
have to satisfy the following requirements:

1. They must be “easily invertible”, that is the cost of solving Pz = r and Mx = y
must be much smaller than the cost of solving of solving Ax = b directly.

2. cond(P−1AM−1) << cond(A), that is the spectrum of the preconditioned matrix
P−1AM−1 has to be more “clustered” around 1 than the original matrix.

3. The condition number of the preconditioned matrix should be indipendent from
the matrix size and, in a parallel setting from the number of processors employed.

4. Clearly in a parallel setting, the cost of the application of the preconditioner should
scale with the number of processors. Of course, it is extremely difficult to obtain
all these requirements at the same time, the choice of a preconditioner is often a
matter of compromise.

Ifpack provides some single-level algebraic preconditioners for parallel large scale ap-
plications that can be classified as follows:

1. Relaxation schemes : Jacobi, Gauss-Seidel, Symmetric Gauss-Seidel, etc.

2. Polynomial preconditioner : Neumann, Least Square and Chebyshev.

3. Incomplete factorization preconditioner : IC, ILU, ILUT, etc.

4. One-level domain decomposition preconditioners of Schwarz-type.

5. Sparse Approximate Inverses : SPAI, AINV, etc.
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It is interesting to see the single-level preconditioner can be used in conjunction with
multilevel preconditioner. See for example [53]. For the structural problem and for the
fluid and geometrical problems, the preconditioner used is One-level domain decompos-
ition preconditioners of Schwarz-type which unfortunately does not scale well with the
number of subdomains. However it is possible to obtain scalability by adding a coarse
operator. For more details on Ifpack package see [54].

• ML: It is a multigrid preconditioning package that solves linear systems of type Ax
= b, where A is a generic sparse matrix, b is a known vector and x is the unknown.
In particular, the basic idea of a multigrid solver consists to approximate the original
problem on a hyerarchy of grids and use solutions from coarse grids to accelerate the
convergence on the finest grid. For more details see [53]. Multigrid techniques have
been originally developed as solvers, yet they have proved to be valid preconditioners.

• AztecOO: It is a collection of C++ classes that support the construction and use of
objects for solving linear systems of equations of the form Ax = b, via preconditioned
Krylov methods. For more details on AztecOO package see also [52].

• Amesos: It provides an object-oriented interface to several serial and parallel sparse
direct solvers libraries for the solution of the linear system of equations Ax = b, where
A is a real sparse, distributed matrix, defined as an Epetra RowMatrix object, and b
are defined as Epetra MultiVector objects. In particular, Amesos makes the following
steps to perform efficiently the solution of the linear system above:

1. Definition of the sparsity pattern of the linear system matrix;

2. Computation of the symbolic factorization;

3. Definition of the values of the linear system matrix;

4. Computation of the numeric factorization;

5. Definition of the values of the right-hand side;

6. Solution of the linear system.

For more details on Amesos package see also [55].

For a complete list and description of Trilinos’ packages, see [48].
y Finally, to solve unsymmetric sparse linear systems, Ax = b, Umfpack is used (see also
[56]).

LifeV is made up of seven modules, divided according to the task they perform. In figure
4.1 they are represented with their functionality. In particular, the folder LIFECORE, con-
tains the basic classes of LifeV, as for example Factory to manage the factories, or Chrono to
manage the timer. Folder LIFEALG, contains the interfaces with linear solvers as AztecOO,
Amesos and with the preconditioners as Ifpack and ML. Moreover it contains NonLinear-
Richardson template to linearize non linear system, and NonlinearLineSearch that implements
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4.2. Structural solver implementation and code performances

the line-search backtracking method. LIFEARRAY, contains some files for handling matrices
and vectors, and the management of tensors. LIFEFEM has some methods to manage the
Finite-elements as, for example, quadrature rules. Furthermore, it also contains the files for
the management of boundary conditions and some temporal schemes templates as TimeAd-
vance. LIFEFILTERS contains the classes to manage the pre and post-processing. In partic-
ular two exporter are defined, ensight (a visualization package) and hdf5 (a tool for parallel
i/o). LIFEMESH contains the classes to manage the mesh. Finally, LIFESOLVER contains
the classes to solve some mathematical and physical problem. In particular in this folder there
are the classes that defines mechanical problem, the classes that defines the fluid-structure
interaction problem and many others.

LIFECORE

LIFEALG

LIFEARRAY

LIFEFEM

LIFEFILTERS

LIFEMESH

LIFESOLVER

LIFEV 1.3.1

Linear Algebra

Preconditioners
and Solvers

Matrices and
Vectors

managment

Finite Element
implementation

Pre-Post-Processing
managment

Mesh
managment

Physical problem
implementation

Basic
functionalities

Figure 4.1: Principal folders of LifeV

4.2 Structural solver implementation and code perform-

ances

Having outlined in Chapter 2, the architecture of the structural solver, we detail now its
implementation. In particular, we analyze the steps necessary to perform a time step. Hence
the main methods of NLSS that we describe will be: setup, buildSystem, updateSystem, iter-
ate, evalResidual, solveJacobian, updateJacobian. Moreover we show a brief overview on the
constructor NonLinearStructureSolver and on the template nonLinRichardson used to linearize
the nonlinear system. Finally we evaluate the code performances in terms of CPU-time to
perform the main steps of the algorithm and the correct parallelization by a scalability test
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on Lagrange cluster.

4.2.1 Methods description

In the following list, we show the main methods of NLSS and the template NLR.

NonLinearStructureSolver():

The guidelines in the development of LifeV involve the use of constructors without argu-
ment. Initially, we have used a nonlinear solver’s constructor having as argument the finite
element space. The reason for this, is due to the implementation of the Neo-Hookean and
Exponential materials that currently require the use of local tensors. In fact, these local
tensors do not provide a constructor with no argument, but must be initialized by defining
the dimensions of each, thus necessitating the finite element space. To work around this
problem we have used pointers to local tensors. Surely this aspect will be improved in the
development of the solver. In particular the lines’ code that implement the constructor and
the local tensors’ pointer are the following:

//! Definition of local tensors

...

typedef KNMK<Real> KNMK_Type;

typedef boost::shared_ptr<KNMK_Type> KNMKPtr_Type;

//! Definition of Constructor

NonLinearStructureSolver( );

//! Local tensors as pointers

...

KNMKPtr_Type M_Fk;

//! Constructor

template <typename Mesh, typename SolverType>

NonLinearStructureSolver<Mesh, SolverType>::

NonLinearStructureSolver( ):

M_data ( ),

M_FESpace ( ),

...

...

M_First_PiolaK_Stress ( ),

M_elvecK ( ),

M_VecK ( )

where SolverType is Trilinos package previously introduced.

Setup:
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The setup will be reset all the objects defined in the constructor. There are three setup
methods that differ from each other for arguments that are passed. One of this three setup
is defined below:

template <typename Mesh, typename SolverType>

void NonLinearStructureSolver<Mesh, SolverType>::

setup( boost::shared_ptr<data_type> data,

const boost::shared_ptr< FESpace<Mesh, EpetraMap> >& dFESpace,

boost::shared_ptr<Epetra_Comm>& comm,

const boost::shared_ptr<const EpetraMap>& monolithicMap,

UInt offset ){

M_data = data;

M_FESpace = dFESpace;

...

M_trCisok.reset ( new KN_Type( dFESpace->fe().nbQuadPt() ) );

M_trCk.reset ( new KN_Type( dFESpace->fe().nbQuadPt() ) );}

It is interesting to note that in parallel version it is required a communicator between the
processes, implemented in the fifth line of the code above boost::shared ptr<Epetra Comm>&
comm.

buildSystem:

The method buildSystem computes the mass matrix of the system and the linear stiffness
matrix. The construction of the mass matrix:

Mij =
2

δt2

∫

Ω̂h

ρ̂ φjφi dΩ̂ (4.2)

is performed with the following lines of code and is done for all three nonlinear materials:

for ( UInt i = 1; i <= this->M_FESpace->mesh()->numVolumes(); i++ ){

this->M_elmatM->zero();

mass( dti2 * this->M_data->rho(), *this->M_elmatM,

this->M_FESpace->fe(), 0, 0, nDimensions );

for ( UInt ic = 0; ic < nc; ic++ ){

assembleMatrix( *this->M_mass, *this->M_elmatM,

this->M_FESpace->fe(), this->M_FESpace->dof(), ic, ic,

this->M_offset + ic*totalDof, this->M_offset + ic*totalDof);}}

In particular in the third line, the local matrix M_elmatM is initialized to zero, in the fourth-
fifth lines, method mass, defined into EO file, builds the mass term depending on the finite
element used. Finally the lines 8-9-10 assemble the mass matrix into the global variable
M_mass that corresponds to the matrix Mij defined in 4.2.
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The linear stiffness matrix is done only for St.Venant-Kirchhoff material and corresponds to
the following terms of the first Piola-Kirchhoff stress tensor:

P(η) = λ(divη)I+ µ(∇η +∇ηT) . (4.3)

Its implementation corresponds to the following lines of code:

for ( UInt i = 1; i <= this->M_FESpace->mesh()->numVolumes(); i++ ){

this->M_elmatK->zero();

switch (this->M_data->constitutive_law()){

case 0:

stiff_strain ( 2.0*mu, *this->M_elmatK, this->M_FESpace->fe() );

stiff_div ( lambda, *this->M_elmatK, this->M_FESpace->fe() );

break;

case 1:

break;

...}

for ( UInt ic = 0; ic < nc; ic++ ){

for ( UInt jc = 0; jc < nc; jc++ ){

assembleMatrix( *this->M_linearStiff, *this->M_elmatK,

this->M_FESpace->fe(), this->M_FESpace->fe(),

this->M_FESpace->dof(), this->M_FESpace->dof(), ic,

jc, this->M_offset +ic*totalDof, this->M_offset + jc*totalDof );}}}

where in the third line, the local matrix M_elmatK is initialize to zero, while in the lines 7-8
two terms of equation 4.3 are computed and in the lines 22-23-24-25 they are assembled.

updateSystem:

The method updateSystem is called once per time step. This method calculates the
right-hand side without boundary conditions. Also calculates the right-hand side of velocity
and acceleration, which are useful in the update of the two. As already mentioned the
method of time integration is Newmark. In particular, it called another method of NLSS,
updateNonLinearTerms which calculates the nonlinear stiffness terms. The principal code’s
line of updateSystem are reported below:

...

updateNonlinearTerms(mat_tmp, vec_tmp);

...

mat_tmp->GlobalAssemble();

*mat_stiff += *mat_tmp;

vec_tmp->GlobalAssemble();

*vec_stiff = *vec_tmp;

...

*mat_stiff += *M_linearStiff;

mat_stiff->GlobalAssemble();
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...

Real DeltaT = M_data->dataTime()->getTimeStep();

vector_type M_z = *M_disp;

M_z += DeltaT*(*M_vel);

...

*this->M_rhsNoBC = *this->M_mass*M_z;

*this->M_rhsNoBC -= (*mat_stiff)*coef*(*this->M_disp);

*this->M_rhsNoBC -= (*vec_stiff)*coef;

*M_rhsA = (2.0 / (this->M_data->dataTime()->zeta() * pow(DeltaT,2))) * M_z +

((1.0 - this->M_data->dataTime()->zeta()) /

(this->M_data->dataTime()->zeta())) * (*M_acc);

*this->M_rhsW = *this->M_vel + ( 1 - this->M_data->dataTime()->theta() )*

DeltaT * (*M_acc);

where, first line recalls method updateNonLinearTerms and computes nonlinear stiffness
terms. Lines 4-5-6-7 assign the ausiliary variables to stiffness vector and stiffness matrix.
The call ->GlobalAssemble(); is necessary to assembly correctly vectors and matrices when
they are computed in a parallel way. Line 9, adds to the stiffness matrix the linear part of
stiffness, computes into buildSystem. The last line of the code computes the right-hand side
of the problem:

rhsNoBC =
2

δt2
M(ηn + δtη̇n)− (1− ζ)k(ηn) , (4.4)

and the right-hand side of the velocity and acceleration:

rhsW = η̇n + δt(1− θ)η̈n ,

rhsA =
2

ζδt2
(ηn + δtη̇n) +

(1− ζ)

ζ
η̈n .

(4.5)

iterate:

Method iterate calls template NLR where a Newton method used to linearize the problem
is implemented . The main lines of code of the method are as follows:

M_BCh = bch;

status = nonLinRichardson( *M_disp, *this, abstol, reltol, maxiter, etamax,

linesearch, M_out_res, M_data->dataTime()->getTime() );

updateVelocityandAcceleration();

where, in the first line, the boundary conditions of the problem specified on main file
structure are loaded, while in the second line the NLR template is called. NLR return 0 when
Newton converges and 1 when Newton failed to converge. Moreover in NLR two method of
NLSS are called : evalResidual and solveJac that are described in the following subsection.
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NLR template:

NLR template implements a Newton method for the linearization of the nonlinear struc-
tural problem. As mentioned, it is called by NLSS’s method, iterate. NLR, recalls two
methods of NLSS: evalResidual and solveJac. In particular, NLR, initially recalls evalResidual,
to compute the residual, and tolerances:

functional.evalResidual( residual, sol, iter );

Real normRes = residual.NormInf();

Real stop_tol = abstol + reltol*normRes;

Then, enters into the following while loop:

while ( normRes > stop_tol && iter < maxit ){

...

functional.solveJac(step, -1.*residual, linearRelTol);

sol += step;

functional.evalResidual( residual, sol, iter);

...}

where solveJac(step, -1.*residual, linearRelTol) is called. It computes the new Jacobian matrix and
solves the linearized system JL(η

(k))δη(k) = −L(η(k)), then updates the solution η(k+1) = η(k) +
δη(k) and recalls NLSS’s method evalResidual.

evalResidual:

Method evalResidual computes the residual L(η(k)) of algebraic system: JL(η
(k))δη(k) =

−L(η(k)). In particular, the NLSS’s method computeMatrix is called. It updates the nonlinear
stiffness term k(η) which depends on the solution:

computeMatrix(this->M_matrix_stiff, this->M_vector_stiff, sol, 1.);

Then, it updates the boundary conditions:

if ( !this->M_BCh->bdUpdateDone() )

this->M_BCh->bdUpdate( *this->M_FESpace->mesh(), this->M_FESpace->feBd(),

this->M_FESpace->dof() );

and applies these to the residual in the following form:

*M_matrix_stiff += *M_mass;

bcManageMatrix( *M_matrix_stiff, *M_FESpace->mesh(), M_FESpace->dof(),

*M_BCh, M_FESpace->feBd(), 1.0 );

vector_type rhsFull(*M_rhsNoBC, Unique);

bcManageVector( rhsFull, *M_FESpace->mesh(), M_FESpace->dof(),

*M_BCh, M_FESpace->feBd(), M_data->getTime(), 1.0 );

ie. on the matrix of the system and on the right-hand side separately. Finally, the residual with
boundary conditions is computed:
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res = *M_matrix_stiff*sol;

res -= *M_rhs;

solveJac:

SolveJac method, serves to solve the linearized system. First, it calls NLSS’s method update-
Jacobian:

updateJacobian( *this->M_disp, this->M_jacobian );

to update the Jacobian matrix. Then, the boundary conditions are applied on Jacobian matrix,
calling NLSS’s method applyBoundaryConditions:

applyBoundaryConditions( *this->M_jacobian, rhsFull, BCh);

Finally the Jacobian matrix is defined as iteration matrix and the algebraic system is solved, calling
a linear solver AztecOO and the preconditioners package Ifpack.

this->M_linearSolver->setMatrix(*this->M_jacobian);

int numIter = this->M_linearSolver->solveSystem( rhsFull, step, this->M_jacobian );

In particular the linear system is solved using GMRES method and additive Schwarz method as
preconditioner.

4.2.2 Structural problem: Solution and code performances

In this brief subparagraph we explain the steps for the solution of the structural problem from
an implementative point of view. In particular, the Newton loop and the iterative solution of the
linearized algebraic system are shown. Special attention is given to computational costs of the single
step to indicate which is the critical points and where it is possible to improve the solver. We have
evaluated mean quantities to perform a standard test such as the simulation presented in chapter
two: the inflation of the hollow cylinder. In particular the time-steps performed are 25 for each
simulation and the internal pressure is a physical shape.

The mesh used is more sparse than the mesh used in Chapter 2 for the hollow cylinder inflation
test. It is composed by 1360 nodes and the finite-element are P1. This choice allows to play the
test quickly and take the values of CPU-time averages. In table 4.1 it is possible to see the mesh
properties in details.

Table 4.1: Mesh properties of vessel20

Nodes Triangles Thetrahedra Length Inner radius Outer radius

1360 1760 4800 5 cm 0.5 cm 0.6 cm

We are interested in particular to the following quantities:

• Computational cost to build the system;
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• Computational cost to update the Jacobian;

• Number of Newton iteration per time-step;

• Newton residual vs. Newton iteration;

• Dimensionless CPU time to perform a test using three different structural models.

Finally, we have evaluated the correct parallelization of the code by scalability test on Lagrange
cluster.

Newton loop

As previously mentioned, NLSS perfom the following sub-routines to complete a single time-step.

1. Initialization of displacement, velocity and acceleration (first time-step only) or updating
velocity and acceleration;

2. Building the constant matrices of mass and linear stiffness (first step only);

3. Updating the right-hand side;

4. Enter on Newton Loop until to convergence:

(a) Computing residual and compare it with the tolerance. If residual is bigger then toler-
ance:

(b) Updating Jacobian;

(c) Solving linearized system using GMRES (see next subparagraph) till to convergence;

5. When convergence of Newton’s loop is done, go to the next time-step.

A simple table 4.2 is reported below, which specifies the computational costs for each material to
perform the steps above.

Steps St.Venant-Kirchhoff Neo-Hookean Exponential

1-2-3
0.5731 0.0472 0.0362

(2.6212 s) (1.1600 s) (1.1525 s)

4-(a)
0.4220 0.0215 0.0170

(1.9300 s) (0.5275 s) (0.5400 s)

4-(b)
1.0000 1.0000 1.0000

(4.5738 s) (24.5837 s) (31.8463 s)

4-(c)
0.0626 0.0155 0.0085

(0.2863 s) (0.3800 s) (0.2717 s)

Table 4.2: Computational costs to perform the sub-routines necessary to perform a single
time-step of the structural problem
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Moreover, in figure 4.2(a)-4.2(b), we show the trend of the residual versus the number of Newton
iterations and the Newton iterations versus time-step for St.Venant-Kirchhoff structural model. In
the figures 4.3 and 4.4 we show the same quantities for the other two model, respectively Neo-
Hookean and Exponential. It is possible to observe that the tolerance of Newton loop is, approx-
imately, 10−2 and the St.Venant-Kirchhoff model shows the best performance in terms of iteration
per time-step.
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Figure 4.2: St.Venant-Kirchhoff model: Trend of the residual vs. Newton iteration and
number of iteration per time-step
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Figure 4.3: Neo-Hookean model: Trend of the residual vs. Newton iteration and number of
iteration per time-step
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Figure 4.4: Exponential model: Trend of the residual vs. Newton iteration and number of
iteration per time-step

Plus the cost of the individual methods, also the convergence properties affect the computational
costs required to the CPU. Combining the two things, it is interesting to compare the dimensionless
CPU time required for the simulations performed with three structural models 4.3. The highest
CPU time, is required from Exponential model. In fact, this material presents the highest number
of Newton iterations per time-step. Moreover, the major contribute to the CPU time required is
the computation of the Jacobian matrix that is highest for the exponential model.

Table 4.3: Dimensionless CPU-time comparison for a standard structural simulation using
three different structural models

Model Total CPU-time Jacobian CPU-time Total Newton iterations

Exp 1.00 1.00 40
NH 0.68 0.73 35
SVK 0.19 0.20 32

Solution of algebraic system

A very important part for the solution of a finite-element problem is represented by the solution
of algebraic system. In fact, as anticipated, for large algebraic systems it is possible to have an ill-
conditioned iteration matrix. Hence, it is necessary to use adequate tools for resolving the problem.
Moreover, if we use parallel-computing, preconditioning and solution of algebraic system must be
made with great care.

In the nonlinear structural problem, for each iteration of the Newton method the Jacobian
matrix of the system and the residual are re-calculated, and the following problem is solved:

JZ(η
(k))δη(k) = −Z(η(k)) (4.6)

In general case, JZ(η
(k)) is a large sparse matrix n× n and the residual Z(η(k)) is a column vector

of size n. The solution of this algebraic system is performed by an iterative Krylov method and in
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particular by GMRES, using as precontitioning the additive Schwarz method. We now analyze the
two steps that we have to perform the solution of (4.6) using simplified notation J = JZ(η

(k)) and
r = −Z(η(k)).

• Additive Schwarz preconditioning: Is a domain decomposition method DD. In this type
of preconditioners the computational domain Ωh is divided into m smaller subdomains such
that the original problem is reformulated within each subdomain Ωi. To guarentee the correct
solution of the original problem additional interface conditions are added. In particular the
subproblems is coupled one to another by the values of the unknown solution at subdomain
interface. Hence to solve the preconditioning global problem it is necesessary to solve the
single preconditioning problem for each subdomain respecting to the coupling conditions.
The additive-Schwarz preconditioner reads in the following form:

P−1
AS =

m∑

i=1

Pi J
−1
i Ri , (4.7)

where Ji is a partition of J. In particular the number of subdomains m corresponds to the
CPUs involved in the computation. DD additive Schwarz preconditioners are used in particu-
lar when the algebraic system is solved with iterative Krylov type methods. GMRES method
is part of this category. For the last test case on the hollow cylinder, the mean time to com-
pute the preconditioner using 1 and 2 CPUs is evaluated, for each material. The results are
reported in the table 4.4(a).

• GMRES method: GMRES (Generalized Minimal RESiduals) is a method based on Krylov
subspaces’ iterations. It is used for the solution of algebraic system (4.6). In particular, if
J∈ Rn×n and r ∈ Rn a Krylov space of index r, is defined as the following set:

Kr = span(r, Jr, ..., Jr−1r) ⊆ Rn (4.8)

The projection method on Krylov’s subspaces gives for each r an approximated solution δηℓ of
the linear system (4.6) belonging to Kr. If all vectors J

kr for k=1,2,...,n-1 are indipendent, the
Krylov space corresponds to Rn and the algorithm terminates in n steps. While, if the above
condition is not verified, Kr < Rn and the algorithm converges in a number of iterations less
than n. The criterion to choice the vector δηℓ, distinguishes the GMRES method from the
other methods. In particular, at each iteration ℓ, a vector δηℓ ∈ Kℓ is chosen. In particular,
it minimizes the Euclidean norm of the residual defined as rℓgmres = Jℓδηℓ + rℓ.

As described above, the solution of the linearized algebraic system does not require an high
computational cost relative because the choice of preconditioner and linear solver is efficient. In
fact, it is possible to view in table 4.4 that the preconditioning of system is scalable (4.4(a)) and
gives a good condition number (4.4(b)).
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Table 4.4: Comparison of CPU-time using 1 and 2 CPUs for preconditioniing and solving
the linearized system using additive Schwarz as preconditioner and GMRES as linear solver
and evaluation of condition number

(a) CPU-time to compute the precondi-
tioner

1 CPU 2 CPU

CPU-time SVK 0.24 s 0.16 s
CPU-time NH 0.24 s 0.17 s
CPU-time EXP 0.23 s 0.16 s

(b) Estimate condition number for
additive-Schwarz preconditioner

1 CPU 2 CPU

Cond-n. SVK 1.06495 1.06544
Cond-n. NH 1.07207 1.07420
Cond-n. EXP 1.08335 1.08519

(c) CPU-time to compute the precondi-
tioner and solve the linearized system

1 CPU 2 CPU

CPU-time SVK 0.26 s 0.41 s
CPU-time NH 0.25 s 0.43 s
CPU-time EXP 0.27 s 0.40 s

Furthermore, the deterioration of spectral properties of the jacobian matrix using more CPUs is
low as shows in table 4.4(c). Table 4.5 shows the advantages of using ad hoc preconditioner instead
of reusing preconditioner in terms of CPU-time (4.5(a)-4.5(b)) and in terms of GMRES iterations
(4.5(c)-4.5(d)).

Table 4.5: CPU-time to solve the linearized system using and reusing preconditioner and
evaluation of GMRES iteration using 1 and 2 CPUs

(a) CPU-time to solve the linearized system
using specific preconditioner

1 CPU 2 CPU

CPU-time SVK 0.03 s 0.25 s
CPU-time NH 0.02 s 0.25 s
CPU-time EXP 0.03 s 0.25 s

(b) CPU-time to solve the linearized system
reusing preconditioner

1 CPU 2 CPU

CPU-time SVK 0.26 s 0.43 s
CPU-time NH 0.71 s 0.92 s
CPU-time EXP 1.25 s 1.36 s

(c) Number of GMRES iterations using specific
preconditioner

1 CPU 2 CPU

GMRES-iter SVK 1 15
GMRES-iter NH 1 18
GMRES-iter EXP 1 18

(d) Number of GMRES iterations reusing pre-
conditioner

1 CPU 2 CPU

GMRES-iter SVK 18 26
GMRES-iter NH 49 65
GMRES-iter EXP 82 99
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Scalability on multiple processors

It is very important to see the correct parallelization of the code because one of the aim of this work
is to have a code avalaible in a parallel version. To carry out the evaluation we used two indices:

1. Speed-up:

Sp =
T1

Tp
(4.9)

where p is the number of processors, T1 is the computing time using only one processor and
Tp is the computing time using p processors.

2. Efficiency:

Ep =
Sp
p

(4.10)

that characterizes the parallel performance.

In figure 4.5(a) we show the Speed-up index, while in figure 4.5(b) we show the second index,
Efficiency. The scalability test was done on Lagrange cluster of Cilea. It is composed of 208 dual-
processor nodes and each processor is an Intel Xeon quad-core X5460 with 3.166 GHz. In table 4.6
we show the principal characteristic of the cluster.
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Figure 4.5: Scalability test of the structural solver on Lagrange cluster

Table 4.6: Technical characteristics of Lagrange cluster

N.nodes CPUs Processor Clock Ram Capacity Interconnection

208 1664 2 Intel 3.166 GHz 16 GB 13 TB 1 Infiband 4X DDR
Xeon X5400 quad-core 2 Gigabit Ethernet

for more information about software LifeV on Lagrange cluster, see [57].
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4.3 FSI solver implementation and code performances

In this section we present the main useful methods for the solution of the fluid-structure problem.
Unlike the structural solver, we should start from the main file, following the branching of the calls
in the various templates that form the FSI solver. After an overview of the methods needed to carry
out a time step, we must analyze the computation time needed to perform the main processes of the
EJ algorithm. It also makes a comparison between the computation time to perform a simulation
with linear and non-linear structure.

4.3.1 Methods description

In the following list, the main methods to solve a fluid-structure problem are shown. In particular
we enter into implementation details, showing the most important rows of code and their tasks.

FSISolver

Class FSISolver contains the main methods are recalled into the main file that defines a FSI problem.
In particular the most important methods are the following:

-setup:

Method setup serves to initialize the solvers of each sub-problem and to make the preliminaries
routines such as parameters inizialization. It recalls three methods of FSIOperator with three code
lines below:

M_oper->setupFluidSolid();

M_oper->setupSystem();

M_oper->buildSystem();

-iterate:

It is the main method of FSISolver and it is used to start the external loop of FSI problem. In
particular it recalls the template nonLinRichardson with the following code lines:

status = nonLinRichardson( *lambda,

*M_oper,

M_data->absoluteTolerance(),

M_data->relativeTolerance(),

maxiter,

...

M_data->dataFluid()->dataTime()->getTime() );

where absolute and relative tolerance and other quantities are defined into data file.
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FSIOperator

FSIOperator contains some methods to manage the FSI problem such as the coupling conditions or
the solvers inizialization. In particular as previously mentioned, FSISolver recalls three method of
FSIOperator that are reported below.

-setupFluidSolid:

It resets all subproblem solvers and calls their setup methods.

M_meshMotion.reset ( new meshmotion_raw_type( *M_mmFESpace, M_epetraComm ) );

M_fluid.reset ( new fluid_raw_type( M_data->dataFluid(), *M_uFESpace,

*M_pFESpace, M_epetraComm, numLM ) );

...

M_solid.reset( solid_raw_type::StructureSolverFactory::

instance().createObject( M_data->dataSolid()->solidType( ) ) );

M_solid->setup( M_data->dataSolid(), M_dFESpace, M_epetraComm );

In particular, here the solid solver is defined as a factory, where VenantKirchhofSolver is the master
and LinearVenantKirchhofSolver and NonLinearStructureSolver are the derived classes.

-setupSystem:

It interfaces the data files of each subproblem with the FSI solver, using the following lines of
code:

M_fluid->setUp( M_dataFile );

M_meshMotion->setUp( M_dataFile );

...

M_solid->setDataFromGetPot( M_dataFile );

-buildSystem:

It recalls the buildSystem methods of fluid and solid subproblem.

M_fluid->buildSystem();

M_solid->buildSystem();

BuildSystem method for solid subproblem is the same described in the paragraph 4.2.

-updateSystem:

It recalls the updateSystem methods of each subproblem with the following code lines:

M_meshMotion->updateSystem();

...

transferMeshMotionOnFluid(M_meshMotion->disp(), *this->M_dispFluidMeshOld);

91



Chapter 4. Details of the implementation

if( M_fluid->solution().get() )

M_un.reset( new vector_type( *M_fluid->solution() ) );

...

this->M_solid->updateSystem();

Moreover, it transfers the mesh displacement on fluid subproblem.

-couplingVariableExtrap:

It manages the interface displacement and velocity that have to be passed at the next time-step:

*M_lambda = lambdaSolid();

*M_lambdaDot = lambdaDotSolid();

...

exactJacobianBase

As mentioned in chapter 3, exactJacobianBase, has some important methods. Here we show two
methods that represents the subroutines to perform a time-step. First method (evalResidual) is called
from the template nonLinRichardson, while the second method (eval) is called by evalResidual. In
particular eval represents the external loop of the FSI problem. In the following bulleted list we
show briefly the most important rows of these methods.

-evalResidual:

This method computes the residual of FSI problem needs to perform the solution of linearized
problem and also used as stopping criterion. In particular the main rows are the following:

this->setLambdaSolidOld(disp);

eval(disp, iter);

res = this->lambdaSolid();

res -= disp;

where in the second line eval method is recalled and in the last two lines residual is defined.

-eval:

This method represents the external loop. Here solid and fluid subproblems is recalled and the
coupling conditions are treated.

this->M_meshMotion->iterate(*M_BCh_mesh);

this->transferMeshMotionOnFluid(M_meshMotion->disp(), this->veloFluidMesh());

this->M_fluid->iterate( *M_BCh_u );

this->transferFluidOnInterface(-this->M_fluid->residual(), sigmaFluidUnique);

this->M_solid->iterate( M_BCh_d );

this->transferSolidOnInterface(this->M_solid->disp(), lambdaSolidUnique);

this->transferSolidOnInterface(this->M_solid->vel(), lambdaDotSolidUnique);

this->transferSolidOnInterface(this->M_solid->residual(), sigmaSolidUnique);
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4.3.2 FSI problem: Solution and code performances

As for the structural problem, here we explain the steps for the solution of the FSI problem from
an implementative point of view. In particular, the solution of the harmonic, fluid and solid sub-
problems are shown. Special attention is given to computational costs of the single step to indicate
which is the critical points and where it is possible to improve the solver. We have evaluated mean
quantities to perform a standard test with a physical sine-wave inlet pressure. The meshes used are
vessel20 for the structure and tube20 for the fluid previously described in the table 3.3.
Principal quantities investigated are reported in the bulleted list below:

• External Newton loop iterations per time-step;

• External Newton loop residual vs. external Newton loop iteration;

• Nonlinear structure Newton loop iterations per time-step;

• Nonlinear structure Newton loop residual vs. nonlinear structure Newton loop iteration;

• Dimensionless CPU time to perform a test using three different structural models and com-
parison with linear structure;

• Dimensionless CPU time of the GMRES matrix-free to solve the interface problem for three
different structural models and comparison with linear structure.

External and nonlinear structure Newton loop

EJ algorithm has two principal loops. The first one is a Newton loop on nonlinear interface problem,
called external or outer loop. While the second one is a Newton loop on nonlinear structure problem
(the same presented in chapter two) and it is called internal or inner loop. In particular, the
algorithm used perform the following sub-routines per time-step.

1. Computing constant matrices for harmonic extension, fluid and solid subproblems and ini-
tializing parameters;

2. Updating system and right-hand side;

3. Loading adsorbing boundary conditions and initial data;

4. Entering in the external Newton loop until to convergence:

(a) Harmonic problem:

i. Applying boundary conditions and solving linear system;

(b) Fluid problem:

i. Moving mesh;[63]

ii. Updating mass term on right-hand side;

iii. Computing constant matrices and finalizing them;

iv. Updating and applying boundary conditions;

v. Solving linear system;
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(c) Solid problem:

i. Building the constant matrices of mass and linear stiffness;

ii. Updating the right-hand side;

iii. Enter on internal Newton loop until to convergence:

A. Computing residual and compare it with the tolerance. If residual is bigger
then tolerance:

B. Updating Jacobian;

C. Solving linearized system using GMRES until to convergence;

(d) Evaluating of external Newton loop residual and comparing it with the tolerance. If the
residual is smaller than the tolerance, go to the next time-step, however, if the residual
is bigger than the tolerance:

(e) Solving the linearized interface problem with matrix free GMRES method and return
to step (4).

As for the structural solver (NLSS) it is interesting to evaluate the CPU time required to complete
the single processes because to improve the solver and evaluate its performances2. In table 4.7 the
computational costs for each material are reported.

Table 4.7: Computational costs to perform the sub-routines necessary to perform a single
time-step of the FSI problem

Steps Linear St.Venant-Kirchhoff Neo-Hookean Exponential

1-2-3
1.0000 0.4424 0.1142 0.0937

(4.4121 s) (6.4200 s) (4.8701 s) (4.9307 s)

4-(a)-i
0.0116 0.0035 0.0012 0.0010

(0.0513 s) (0.0510 s) (0.0511 s) (0.0510 s)

4-(b)-i–iv
0.8416 0.2536 0.0868 0.0705

(3.7134 s) (3.6801 s) (3.6981 s) (3.7098 s)

4-(b)-v
0.1955 0.0580 0.0200 0.0160

(0.8625 s) (0.8415 s) (0.8532 s) (0.8430 s)

4-(c)
0.6303 1.0000 1.0000 1.0000

(0.2781 s) (14.5102 s) (42.6312 s) (52.5907 s)

4-(d)–(e)
0.9250 0.5411 0.1834 0.1521

(4.0812 s) (7.8520 s) (7.8191 s) (8.0001 s)

Figures 4.6(a), 4.7(a), 4.8(a) and 4.9(a) represent the number of Newton iterations per time-step
of the external and internal loops for three nonlinear structural models and for linear elasticity. It

2Analysis of the solid problem has already been carried out in section 4.2. Then, for it, the total CPU-time
is evaluated only
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is interesting to see that the number of outer Newton iterations for Neo-Hookean and Exponential
models are the same of linear elasticity and St.Venant-Kirchhoff model.
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(b) Residual vs. Newton iteration

Figure 4.6: Linear elasticity: Trend of the residual vs. Newton iteration and number of
iteration per time-step
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Ext−loop: time−step = 1
Ext−loop: time−step = 10
Ext−loop: time−step = 20
Int−loop: time−step = 1 (conv)
Int−loop: time−step = 10 (conv)
Int−loop: time−step = 20 (conv)

(b) Residual vs. Newton iteration

Figure 4.7: St.Venant-Kirchhoff model: Trend of the residual vs. Newton iteration and
number of iteration per time-step
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Ext−loop: time−step = 1
Ext−loop: time−step = 10
Ext−loop: time−step = 20
Int−loop: time−step = 1 (conv)
Int−loop: time−step = 10 (conv)
Int−loop: time−step = 20 (conv)

(b) Residual vs. Newton iteration

Figure 4.8: Neo-Hookean model: Trend of the residual vs. Newton iteration and number of
iteration per time-step
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Ext−loop: time−step = 1
Ext−loop: time−step = 10
Ext−loop: time−step = 20
Int−loop: time−step = 1 (conv)
Int−loop: time−step = 10 (conv)
Int−loop: time−step = 20 (conv)

(b) Residual vs. Newton iteration

Figure 4.9: Exponential model: Trend of the residual vs. Newton iteration and number of
iteration per time-step

However, the number of inner Newton iterations for Neo-Hookean and Exponential models are
bigger than other two structural models. This finding is consistent with the structural results
obtained in Chapter 2 where we see an increase in the number of Newton iterations per time-step
for the two models NH and Exp.

The convergence properties of the external loop are comparable with the results obtained in [19].
Clearly, the computational cost to make a simulation with nonlinear structural models is greater
than the use of linear elasticity to describe the structural model. In particular in the table 4.8 it is
possible to compare the CPU-time to perform a standard simulation with 20 time-steps and with
the space discretization described previously.

Here, it in not possible to perform a scalability test on the overall problem, because the interface
map is still not parallel. In fact, the fluid sub-problem only is parallel at the moment.
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Table 4.8: Dimensionless CPU-time comparison for a standard FSI simulation using 4 differ-
ent structural models

Model Total CPU-Time Total FSI Newton iterations

Exp 1 (16551 s) 158
NH 0.8563 (14181 s) 162
SVK 0.1730 (2864 s) 80
Linear 0.0849 (1406 s) 84
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Chapter 5

FSI: haemodynamic results

One of the most important hemodynamic parameters is certainly the wall-shear stress (WSS). In
this chapter we want to evaluate this parameter to the healthy carotid arteries using linear elasticity
and 3 nonlinear structural models to compare the results. Moreover, we compare also the primitive
variables such as fluid velocity and pressure and structural displacement.

5.1 WSS parameter

The role played by the parameter WSS in hemodynamics is well known in the literature [58], [59].
Recent studies have classified it as a parameter of significant interest in the atherosclerotic disease
[60], [61]. In particular, with regard to vessel bifurcations, such as the carotid arteries shown in this
chapter, we know that atherosclerosis affects in particular regions of the external wall immediately
after the bifurcation [62], [63]. In these areas, WSS acting on the endothelial cell surface [60], is
weaker than other regions of the vessel. Two areas of WSS values have been identified, that appear
to induce opposite effects on the arterial wall:

• WSS > 15 dyne/cm2: Induces endothelial quiescence and an atheroprotective gene expression
profile.

• WSS < 4 dyne/cm2: It is prevalent at atherosclerosis-prone sites, stimulates an atherogenic
phenotype.

It is also possible to demonstrate the correlation between arteriovenous malformations in cerebral
arteries and WSS [64]. Hence, a proper evaluation of this hemodynamic parameter can then provide
relevant clinical data for a correct treatment of artheriosclerosis and correlated patologies in arteries.
The WSS index represents the surface stress on the wall induced by fluid dynamic field:

W̃SS = −µ[(∇ux · nΣ)ex + (∇uy · nΣ)ey + (∇uz · nΣ)ez] ,

WSS = W̃SS− (W̃SS · nΣ)nΣ ,

(5.1)

where ux, uy, uz are the velocity components in cartesian coordinates, nΣ is the normal vector with
respect to the interface and ex, ey, ez are the cartesian versors.
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In the figure 5.1, taken from [60], it is possible to see the mechanism of plaque formation.
While, in the table 5.1, it is possible to show the range of the WSS parameters for healty arteries
and pathological arteries.

Table 5.1: Range of the WSS parameter for different pathological and non-pathological cases

Normal artery Atherosclerosis Thrombosis (complex plaque)

Range WSS[dyne/cm2] 10÷70 -4÷4 70÷ >100

High WSS

 (>15 dyne/cm^2)

High WSS

 (>15 dyne/cm^2)

Low WSS, high

atheroslerosis

risk

Low WSS, high

atheroslerosis

risk

Figure 5.1: Typical values of WSS for carotids

5.2 FSI simulation results on carotid

From the discussion in Section 5.1, the first parameter of interest is the WSS. However, it is interest-
ing to evaluate the values of velocity and pressure of the fluid, and the displacement of structure on
certain sections of the carotid. In particular, the differences between linear elasticity and nonlinear
structural models are emphasized. We have evaluated the structure displacement, the mean fluid
pressure and the mean fluid velocity at three different sections along the axis of the carotid, as
shown in figures 5.2-5.3-5.4.

We have used a space discretization for fluid (carotid fluid) and structure (carotid solid) with
the characteristics reported in the table 5.2.

Nodes Triangles Thetrahedra Length[cm]

carotid solid 24100 43388 78640 5.42
carotid fluid 20072 17704 92188 5.42
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We have used P1-P1-P1 finite-element to discretize structure displacement, fluid pressure and
fluid velocity. In particular, a stabilization term is used to solve correctly the fluid sub-problem.
Moreover, we have used t0 = 0s, tN = 0.01s and δt = 0.0005s.

The boundary conditions applied to the problem are the following:

• Structure basis: embedded;

• Structure outer surface: Stress free;

• Structure inner surface: Neumann condition from the fluid subproblem;

• Fluid inlet: p = 1.332e4sin( πt
0.003 ) until t < 0.003s. p = 0 for t > 0.003s ;

• Fluid outlet: Homogeneous Neumann condition;

• Fluid inner surface: Dirichlet condition from the structure subproblem.

Remark 6. Using higher pressures than p = 1.332e4sin( πt
0.003 ), we have found some instabilities in

inflow section, still under investigation.

(a) Isometric visual of the first section (b) Plane visual of the first section

Figure 5.2: First section of the carotid
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(a) Isometric visual of the first section (b) Plane visual of the first section

Figure 5.3: Second section of the carotid

(a) Isometric visual of the first section (b) Plane visual of the first section

Figure 5.4: Third section of the carotid

Figure 5.5 is the maximum value of the WSS parameter for each time-step. It is possible to
note how the WSS has the minimum in proximity of the inlet of the bifurcation. In fact, the wave
pressure arrives at the bifurcation about in 0.004-0.0045 seconds. This results is in accord with the
theory [60].
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Figure 5.5: WSS[dyne/cm2] vs. time[s]

(a) F- velocity field at t = 0.0005s (b) F- pressure and structure displacement
at t = 0.0005s

(c) F- velocity field at t = 0.005s (d) F- pressure and structure displacement
at t = 0.005s

Figure 5.6: F- velocity field and pressure; Structure displacement at 2 different time-step

The fluid velocity field, fluid pressure and the structure displacement are shown in figure 5.6
at two different time-steps. Moreover, in figure 5.7, we show the pressure wave propagation at t =
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0.0015s and t = 0.005s and in figure 5.8 we show the streamlines at t = 0.005s and t = 0.0055s. It
is possible to see, in the last case (5.8), how the velocity field assumes a shape similar to figure 5.1.

(a) Pressure at t = 0.0015s (b) Pressure wave at t = 0.005s

Figure 5.7: Pressure wave at two different time-steps

(a) F- streamlines at t = 0.005s (b) F- streamlines at t = 0.0055s

Figure 5.8: F- streamlines at 2 different time-step for SVK material

The mean structure displacement of the internal nodes of the 3 sections is shown in figure 5.9.
It is possible to note how the nonlinear structural models cut the amplitude of the oscillations and
they are more rigid than linear material.

In figure 5.10-5.11 we show the mean pressure and the mean velocity magnitude on the 3 sections
presented above. Also for the fluid dynamic variables it is possible to note the same behaviour we
saw for the structure displacement. In particular, about the pressure, we note the cutting of the
amplitude of the oscillations using nonlinear structural models. Moreover, the pressure wave for
linear material is slower than nonlinear structural models, because the wall response is less rigid as
shown in 5.9. From the sequences of figures 5.10(a) to 5.10(e) it is also possible to see the space
evolution of the pressure wave.
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(b) Section 2, left
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(c) Section 2, right
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Figure 5.9: Comparison of structure displacement magnitude[cm] vs. time[s] between 3
nonlinear structural models and linear elasticity for FSI carotid simulations
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Figure 5.10: Comparison of pressure[dyne/cm2] vs. time[s] between 3 nonlinear structural
models and linear elasticity for FSI carotid simulations
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Figure 5.11: Comparison of velocity[cm/s] vs. time[s] between 3 nonlinear structural models
and linear elasticity for FSI carotid simulations
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Chapter 6

Conclusions and perspectives

In this Chapter, we analyze critically the results obtained in this work and described the possible
perspectives.

In the second Chapter we have introduced the structural problem. In particular we have shown
the nonlinear structural models implemented and tipically used for biological tissues. Moreover, we
have presented the numerical test on a cube under uniaxial constant stretch for the validation of the
structural solver which showed the correctness of the code. We have also set a second test case, the
hollow cylinder inflation test, that shows a reasonable response from a qualitative point of view. A
quantitative comparison is hard as for this test because the exact solution is not known. However,
the comparison of the response of the 3 nonlinear structural models with the linear model for the
hollow cylinder inflation test, reflects a consistent behaviour of the materials with respect to the
test on the cube. With regard to the implementation of the structural solver, we have shown, in
Chapter 4, its performances and the parallelization of the code with a scalability test on Lagrange
cluster at CILEA. The results show a correct scalability of the algorithm but the performances are
not optimized. In particular the NH and Exp materials show the highest dimensionless CPU-time
to perfom a standard simulation. This issue is due to the construction of the Jacobian matrix that
is still not optimized.

In the third Chapter we have introduced the FSI problem and we have shown the integration of
the nonlinear structural solver into a FSI solver. In particular, we have used an already implemented
solver based on an interface Newton Krylov method to solve the FSI problem. We have integrated
our nonlinear structural solver into that algorithm and assessed its correctness on an academic test
case on a straight cylinder. For this test case, we have compared the response of the linear structural
model and of the nonlinear models. The results obtained show a more rigid behaviour of the wall
for the nonlinear materials with respect to the linear elasticity. In Chapter 4 we have evaluated the
performances of the FSI solver. The CPU-time required to perform a simulation are very high, using
nonlinear structural models due to the not optimized structural algorithm as shown previously.

In the fifth Chapter we have set a haemodynamic test case to evaluate the robustness of the
algorithm on complex problems. As mentioned in the Chapter 1, one of the goals of this thesis is to
use the code developed in an haemodynamic contest. The results are also in this case, reasonable
if compared with linear elasticity. Moreover, it is believed that the models of nonlinear structure
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better describe the behavior of the arterial wall.
Overall, we have built a parallel nonlinear structural solver that is the first target of this thesis

as mentioned in the first Chapter and we have valiated it on academic test cases.
We have integrated it in a parallel FSI solver and tested on both academic and haemodynamic test
cases.

Future developments

As mentioned in Chapter 1, NH and Exp materials can be reused for damage models of the wall of
arteries such as multi-mechanism model proposed by Robertson et al. [10]. Moreover, the nonlin-
ear structural solver developed in this work can be easily extended to include also the anisotropic
behaviour, and the pre-stress, tipically present in the arterial walls.
One of the most interesting aspects, from a hemodynamic point of view, is to accurately simulate
physiological flows (for example into carotids but also in other vessels) in order to provide thera-
peutic indications to the doctors. For example, when a vascular surgeon operate a patient to remove
an atherosclerotic plaque from the carotids, one of the critical points is to decide if operate with
direct suture or by applying a patch. In the first case the operation may take up to 10 minutes with
a reduction of the risks for the patient, while in the second case the operation may take up to 30
minutes, increasing the risks for the patient. The surgeon has not precise guidelines on what path
to follow. So it would be interesting to provide a standard in this issue using the FSI simulations
to predict the principal haemodynamic indices pre and post-intervent.

From an implementative point of view, the code is parallel but is not optimized, hence, the
computational cost required can be improved.
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Appendix A

Functional spaces

In this appendix we recall the main functional spaces used in this work. In particular, to derive
the weak formulation of the structural and FSI problems we have used the space Lp and Hq. They
belong to the family of Banach spaces where the latter is defined as follows:

Definition A.1. A Banach space is a normed linear space that is a complete metric space with
respect to the metric derived from its norm.

For example, the space Rn or Cn equipped with the p-norm defined as:

||(x1, x2, ..., xn)||p = (|x1|p + |x2|p + ...+ |xn|p)(1/p) ,

for p < ∞, and

||(x1, x2, ..., xn)||∞ = max{|x1|, |x2|, ..., |xn|} , for p = ∞ ,

is a finite-dimensional Banach space.

Definition A.2. The space Lp(Ω), 1 ≤ p < ∞ is the set of measurable functions v(x) in Ω ⊂ Rn

defined as:

Lp(Ω) = {v : Ω 7→ R such that

∫

Ω
|v(x)|p dΩ < ∞ , }

with the following norm:

||v||Lp(Ω) =

(∫

Ω
|v(x)|p dΩ

)1/p

More precisely Lp is the space of equivalence classes of measurable functions where the equivalence
relation is defined in the following manner: v is equivalent to w if and only if v and w are equal
almost everywhere in Ω [32].
A special case of the spaces Lp(Ω) is that of square integrable functions Lp(Ω), with p = 2:

L2(Ω) = {f : Ω 7→ R such that

∫

Ω
|f(x)|2 dΩ < +∞ , }

The L2(Ω) norm is associated to the scalar product[32]:

||f||L2(Ω) =
√

(f, g)L2(Ω) ,
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where

(f, g)L2(Ω) =

∫

Ω
f(x)g(x)dΩ , (A.1)

is the scalar product in L2(Ω). It can be shown that the functions belonging to L2(Ω) are special
distributions. However, it is not granted that their distributional derivatives are still functions of
L2(Ω). Therefore it is appropriate to introduce the following spaces:

Definition A.3. Given Ω ⊂ Rn, the Sobolev space of order k in Ω, is the space formed by all
functions of L2(Ω) having all distributional derivatives up to order k, belonging to L2(Ω):

Hk(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω), ∀α : |α| ≤ k} .

For the Sobolev spaces it is possible to demonstrate the following result:

Property A.1. If Ω is an open subset of Rn with sufficiently smooth edge,then:

Hk(Ω) ⊂ Cm(Ω) if k > m+ n
2 .

A particular case of Hk(Ω) is the space H1
0(Ω); this space is very useful and it is defined as:

H1
0(Ω) = {f ∈ L2(Ω) : D1f ∈ L2(Ω) and f(∂Ω) = 0} .
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Nomenclature

(·, ·) Inner product in L2 -

β Generic elastic body -

ηΣ Interface displacement -

x̌ Cartesian versor in x direction -

y̌ Cartesian versor in y direction -

ž Cartesian versor in z direction -

δv Generic test function -

δx Length vector [cm]

δt Time-step [s]

E Eucledian space -

Pr Polynomials’ space of degree r -

nΣ Normal vector to interface between fluid and structure -

w Interface velocity [cm/s]

φj Basis functions -

Hq Sobolev spaces -

K Generic element of the mesh -

Lp Banach spaces -

θ Second Newmark parameter -

τ̂h Mesh discretization -

V̂ Control volume [cm3]

ζ First Newmark parameter -
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Nomenclature

Configurations and coordinate systems

x Coordinates in current configuration [cm]

Ω Current configuration [cm3]

Σ Interface between fluid and structure -

Γ̂D Boundary of Ω̂ where it is applied Dirichlet condition -

Γ̂N Boundary of Ω̂ where it is applied Neumann condition -

x̂ Coordinates in reference configuration [cm]

Ω̂ Reference configuration [cm3]

∂̂Ω Boundary of Ω̂ [cm2]

Notation

(·)Σ Interface quantities -

(·)f Fluid quantities -

(·)s Structure quantities -

∇ = ∇x Del operator in current configuration [1/cm]

∇̂ = ∇x̂ Del operator in reference configuration [1/cm]

Maps

γΣ Map from structure displacement to interface displacement -

A Fluid map -

D ALE solution map -

F Fluid solution map -

L Structure map -

S Structure solution map -

T Operator of the interface displacement -

Tensors

B Left Cauchy-Green tensor -

C Right Cauchy-Green tensor -
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Nomenclature

E Green-Lagrange tensor -

F Deformation gradient -

P First Piola-Kirchhoff tensor -

R Rotation tensor -

Tf Cauchy stress tensor for fluid -

Ts Cauchy stress tensor for structure -

J Determinant of F -

I1(C) First invariant of C -

I2(C) Second invariant of C -

I3(C) Third invariant of C -

Structure quantities

α Pre-exponential coefficient of Exponential material [dyne/cm2]

η Displacement vector [cm]

η̈ Acceleration vector [cm/s2]

η̇ Displacement vector [cm/s]

γ Exponential coefficient of the Exponential material -

κ Bulk modulus [dyne/cm2]

λ First Lamè coefficient -

λi, λj Principal stretches of the deformation tensor -

fs Forcing term [dyne]

z Solid state perturbations cm

µ Second Lamè coefficient -

ν Poisson’s ratio

W Strain energy function [g·m/s3]

ρs Density [g/cm3]

E Young modulus [dyne/cm2]

Wiso Isochoric part of the strain energy function [g·cm/s3]
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Nomenclature

Wvol Volumetric part of the strain energy function [g·cm/s3]

ti, tj Principal stresses of the Cauchy stress tensor [dyne/cm2]

Fluid quantities

d Displacement vector

ff Forcing term [dyne]

u Velocity vector [cm/s]

uf Fluid variables (d,u,p) -

µf Dynamic viscosity poise

ρf Density [g/cm3]

ux Velocity in x direction [cm/s]

uy Velocity in y direction [cm/s]

uz Velocity in z direction [cm/s]

p Pressure [dyne/cm2]
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Acronyms

ALE Arbitrary Lagrangian Eulerian

DES DataElasticStructure class

DFSI dataFSI class

DN Dirichlet-Neumann condition

EJ exactJacobianBase template

EO ElemOper class

EOS ElemOperStructure class

Exp Exponential model class

FE Finite Element

FSI Fluid-Structure Interaction

FSIO FSIOperator class

FSIS FSISolver class

GMRES Generalized Minimal RESiduals

HES HarmonicExtensionSolver

NH Neo-Hookean model

NLSS NonLinearStructureSolver

NLR NonLinearRichardson template

OA Order of Accurancy

OS OseenSolver

RN Robin-Neumann condition

RR Robin-Robin condition

SVK St.Venant-Kirchhoff model
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Acronyms

VKS VenantKirchhoffSolver
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