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Abstract

The importance of sound in virtual reality and multimedia systems

has brought to the definition of today’s 3DA (Tridimentional Audio)

techniques allowing the creation of an immersive virtual sound scene.

This is possible virtually placing audio sources everywhere in the space

around a listening point and reproducing the sound-filed they generate

by means of suitable DSP methodologies and a system of two or more

loudspeakers.

The latter configuration defines multichannel reproduction tech-

niques, among which, Ambisonics Surround Sound exploits the concept

of spherical harmonics sound ‘sampling’.

The intent of this thesis has been to develop a software tool for

music production able to manage more source signals to virtually place

them everywhere in a (3D) space surrounding a listening point em-

ploying Ambisonics technique. The developed tool, called AmbiSound-

Spazializer belong to the plugin software category, i.e. an expantion of

already existing software that play the role of host.
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Sommario

L’aspetto sonoro, nella simulazione di realtà virtuali e nei sistemi multi-

mediali, ricopre un ruolo fondamentale. Ciò ha portato alla definizione

delle moderne tecniche di renderizzazione dell’audio tridimensionale

(3DA), attraverso le quali è possibile creare scene sonore realistiche po-

sizionando sorgenti virtuali nello spazio circostante il punto di ascolto.

Il campo sonoro da esse generato è riprodotto utilizzando appropri-

ate tecnologie di DSP e sistemi di riproduzione formati da due o più

altoparlanti.

Questi ultimi rientrano nella categoria dei sistemi multicanale e

impiegano specifiche tecniche di riproduzione e registrazione, tra cui

Ambisonics Surround Sound che sfrutta il concetto campionamento

spaziale del campo suono in armoniche sferiche.

Scopo di questa tesi è stato lo sviluppo di uno strumento software

per la produzione musicale che impiega la tecnica di spazializzazione

Ambisonics per gestire il posizionamento di più sorgenti sonore in uno

spazio tridimensionale.

Il software, denominato AmbiSound-Spazializer appartiene alla clas-

se dei plugins. Questi ultimi espandono le funzionalità di software, detti

‘host’, che li ospitano e ne gestiscono il flusso dati.
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Chapter 1

Introduction

1.1 Context overview: tridimentional audio (3DA)

Sound is becoming everyday more important in multimedia systems

and virtual reality. In fact, throughout tridimentional audio (3DA)

or ‘auralization’ techniques, it is possible to create a convincing and

efficient model of a tridimentional sound event. 3DA aims to offer to

the listener a more suggestive and realistic fruition for a given acoustic

information. There are many applications for these technologies: video

games, video conference systems, electrical musical instruments, enter-

tainment (digital cinema, etc.), Virtual Display systems, multichannel

audio systems (films on DVD and Virtual Home Teather (VHT)), etc.

The 3DA term defines a set of methodologies and techniques that

allow the creation of a virtual “sound scene” or rather everything in-

volved in the sound scene: the listening environment and the listener,

integrated and modelled using DSP technologies.

3DA techniques allows, especially, to virtually place one or more

sound sources everywhere in the space around a listening point. Hence,

by mean of the suitable DSP methodologies, with 3DA is possible to

reproduce every kind of sound field: static or dynamic, natural or

artificial ones by using two or more loudspeakers.

The reproduction methods can be divided into three principal cate-

gories:

• multichannel reproduction;

• binaural reproduction with two loudspeakers;
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• binaural reproduction with headphones.

In the last two techniques only two physical sources are used to

diffuse sound, hence to recreate the tridimentional sound space it is

necessary to rely upon a listener model (human ears, head and body

- trunk). Through this model, created by means of numerical filtering

techniques, it is possible to ‘trick’ the ear and place the virtual source

everywhere around the listener.

Obviously in multichannel systems, where sources are (ideally) phys-

ically distributed in each point of the surrounding space, the listener

model is no more necessary. Thus, from this point of view, using these

systems is easier to reach good results in sound field reproduction by

little efforts for each loudspeaker. On the other hand the whole systems

are bigger than binaural ones, hence they are more expensive, difficult

to manage and require more space to be setted. Moreover compar-

ing binaural reproduction with headphones and multichannel repro-

duction system it’s remarkable that the first doesn’t suffer of ‘sweet

spot’ problems despite the second one where the listener is bounded

into a restricted area (that can be enlarged in through appropriate

design specifications) inside the loudspeakers arrangement. For these

reasons multichannel systems have been mainly employed for sound

reproduction in big spaces till now (cinemas, theatres, concert halls,

etc.).

A further classification can be done in multichannel reproduction

systems between:

• systems that can be conceived as binaural systems expansions,

as linear arrays of loudspeaker and Vector Based Amplitude Pan-

ning (VBAP), that relies on a limited number of array and take

advantage on psychoacoustics laws;

• systems that aims to reproduce the acoustic field with a particular

loudspeakers disposition,

as Holophonic systems and Ambisonics systems that generally re-

lies on a large number of loudspeakers placed in a specific manner

(for example in circle or on a sphere surface) and employ the con-

cept of sound ‘sampling’ spherical harmonics and space domain.

The intent of this thesis has been to develop a software tool able

to manage more source signals to virtually place them everywhere in a
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(3D) space surrounding a listening point employing Ambisonics tech-

nique. The tool is an expantion of already existing software employed

in signal treatment, studio and home recording, sound editing, post-

processing and production. It takes the name of plugin: a set of soft-

ware components that adds specific abilities to a larger software appli-

cation often called ‘host’ application.

The whole software, named AmbiSound-Spatializer, has been

developed in C++ employing the Virtual Studio Technology (VST )

proposed by the well know German software house Steinberg. Com-

pared to existing VST plugins and other software developed during

last years, the work has been manly focused on the following purposes

of innovation:

• extension of adopted Ambisonics techniques to Higher Order Am-

bisonics (HOA), till 3rd order, in VST plugins;

• extension of the reproduction system supported by the VST plu-

gin from a 2D speakers array to a 3D disposition, hence possibility

to virtually position sources in a tridimentional space;

• many input feeds supported by the same plugin (max. 32 inputs)

to diminish the CPU resources usage granting a good real-time

feedback, allowing the plugin to be also employed for live execu-

tions;

• implementation of Near Field Compensation (NFC ) filters, giving

the possibility to use the plugin relying on small sized reproduc-

tion systems (with loudspeakers at least 1 meter distant from the

listener) adopted in little recording studios.

The obtained VST plugin can be considered as a starting platform

for further developments of more Higher Order Ambisonics plugins,

relying on more complex reproduction systems and to be connected

with plugins for the emulations of virtual environments to give the

listener also the perception of the interaction with the location where

the sound is placed in.

1.2 Work brief description

The developed software finds its theoretical roots mainly in Jérôme

Daniel’s doctoral thesis at Paris 6 University [2]. Some chapters of this
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document are dedicated to the description and definition of Ambisonics

theory and techniques [2, c. 2, 3 and a. A] and, in particular, Daniel

clearly defines the actions of encoding and decoding of Ambisonics

signals, from a mathematical point of view, for both 2D and 3D repro-

duction systems extending these definitions to a generic encoding order

M. Both encoding and decoding operations are written in a compact

form using matrices and vectors to represent discrete source signals and

spherical harmonics sampling of input and output signals. In addition

Daniel deepens how the loudspeakers arrangement affects the goodness

of the reproduction system and how it is possible to reach more simple

encoding/decoding operation forms on special arrangement conditions

defining form, loudspeaker number and disposition for the latter.

All these arguments have been the starting point for the work faced

in this thesis directed toward the realization of a software tool able

to encode signals in HOA (till the 3◦ order) and decode them in a

tridimentional reproduction system of regular form.1

Jérôme Daniel wrote also many articles exposing his research work

on HOA further investigations during the past years. One of these ([6])

deals with near field aliasing introduced by realistic sound fields that

generates spherical waves instead of plane waves, which the Ambison-

ics theory is based on. The study of a compensation technique for this

type of disturb has brought Daniel to the definition of Near Field Com-

pensation filters to be applied on Ambisonics signals and also to the

description of a rigorous method to be followed to design the digital

version of such filters.

The above mentioned method has been employed for the develop-

ment of the process part that realize the NFC filtering often neglected

in previous realizations of Ambisonics software tools. Ambisonics tech-

nique is based on far-field assumption so this improvement has given

the possibility for the plugin to be used also in small recording stu-

dios contexts without any lost of efficiency for the applied Ambisonics

spatialization technique.

As already said the source code implements a non-standalone soft-

ware that has to be recalled inside a host application to run its pro-

cesses. The type of host applications used for sound manipulation, pro-

cessing, production, post-production and play-back take the name of

Digital Audio Workstations (DAW). AmbiSound-Spatializer can man-

1What ‘regular form’ reproduction system is intend for will be explained in Chapter 4.
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age up to 32 input audio tracks and 36 output audio streams. The

latter signals are used to feed the reproduction system: up to 36 loud-

speakers arranged in hemispherical position.

The host application also provide a graphic user interface (GUI)

for those variables defined inside the code as adjustable parameters.

AmbiSound-Spatializer has been designed to give the user the possi-

bility of position each input source acting on azimuth, elevation and

distance controls. Moreover one can also set the distance of the repro-

duction system from the origin (listening point) and enable or disable

near field compensation.

The development work has been focused also on the research of a

computational strategy to diminish the CPU usage that grows faster

than linearly increasing the number of sources to be processed. A

decrease of 30% of the CPU usage has been reached for one source and

a linear growth when increasing the number of inputs.

Due to this improvement the plugin doesn’t require the employment

of an high-performance machine to run it and it can be used also in

live reproductions.

1.3 Thesis structure

This document is structured as follows:

Chapter 2 exposes the state of art inherent in Ambisonics tech-

nique, in tridimentional rendering technologies and researches by list-

ing and briefly describing all bibliographical sources used to acquire

the proper knowledge about this topic and useful for the project de-

veloping. Moreover many of the actual software projects regarding

Ambisonics are shown especially focusing on the history of VST plugin

realized for Ambisonics and their features.

Chapter 3 shows the whole panorama of today’s traditional spatial-

ization technologies by briefly describing each one and introducing the

possibility of a 3D mixing and of Ambisonics technique employment.

Then it gives an overview on today’s DAWs and how they are used

to realize modern mixing methodologies. The last part of the chapter

reports the reasons for the implementation technology chosen, telling

what is VST justifying the employment of this standard for the plu-

gin development deepening the relations with other DAWs supported

plugin technology.
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In Chapter 4 the various technologies involved in the project re-

alization are explained in more detail dividing all content into three

principal sections:

• Section 1 deepens Ambisonics Surround Sound, HOA and Field

Compensation theory and fully describes how the problem of

spherical harmonic sampling, aliasing compensation and repro-

duction with a loudspeaker system is solved by a mathematical

point of view.

• Section 2 expands the knowledge of VST technology explaining

how a VST plugin is structured from a logical point of view and

what are the actions carried out by the main plugin source code

parts.

• Section 3 illustrates the DAW (Reaper) chosen for the project

justifying the specific choice.

Chapter 5 shows the system architecture expanding the various

modules, in particular focusing on two modules: the encoding/decod-

ing and the NFC filtering blocks.

The last chapter, Chapter 6, takes conclusions from the work done

on this project telling about the research future perspectives in this

area, making some evaluations on what as been developed and giving

hints on what shall be the adjustments and addictions to be released

by the software next versions.

Then follow three appendixes:

Appendix A presents the whole source code developed to implement

AmbiSound-Spatializer fully commented.

Appendix B illustrates a user manual aiming to clarify to a possible

user how to set the DAW ambient to correctly use AmbiSound, to han-

dle all plugin parameters to obtain the reproduction of a desired virtual

sound environment and how it is possible to interact with the latter

using the DAW capabilities (for example to implement automations).

Appendix C gives and idea of what can be a possible application of

this software describing as a specific context of usage the audio editing

for cinema sound effects realization, showing an example of a 3D sound

scene render done by using AmbiSound plugin.



Chapter 2

State of the Art

2.1 State of the Art of Ambisonics realizations

Ambisonics (not to be confused with ambiophonics) is a series of record-

ing and replay techniques using multichannel mixing technology that

can be used live or in the studio. By encoding and decoding sound

information on an arbitrary number of channels, a 2-dimensional (“pla-

nar”, or horizontal-only) or 3-dimensional (“periphonic”, or full-sphere)

sound field can be presented. Ambisonics was invented by Michael Ger-

zon of the Mathematical Institute, Oxford, who – with Professor Peter

Fellgett of the University of Reading, David Brown, John Wright and

John Hayes of the now defunct IMF Electronics, and building on the

work of other researchers – developed the theoretical and practical as-

pects of the system in the early 1970s. [19]

In the basic version, known as first-order Ambisonics, sound infor-

mation is encoded into four channels: W, X, Y and Z. This is called

Ambisonic B-format. The W channel is the non-directional mono com-

ponent of the signal, corresponding to the output of an omnidirectional

microphone. The X, Y and Z channels are the directional components

in three dimensions. They correspond to the outputs of three figure-of-

eight microphones, facing forward, to the left, and upward respectively.

The B-format signals are based on a spherical harmonic decomposition

of the sound field and correspond to the sound pressure (W), and the

three components of the pressure gradient (X, Y, and Z) at a point

in space. Together, these approximate the sound field on a sphere

around the microphone; formally the first-order truncation of the mul-

tipole expansion. This first-order truncation is only an approximation
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of the overall sound field. Loudspeakers signals are derived by using a

linear combination of these four channels, where each signal is depen-

dent on the actual position of the speaker in relation to the center of

an imaginary sphere the surface of which passes through all available

speakers. [19]

Up to now many progresses have been made in Ambisonics research

that have brought to the definition of some standards encoding and

decoding formats based on modern reproduction systems and existing

transducers designed for signal recording and directional sampling.

Today’s traducers employed in Ambisonics are able to sample di-

rectional components of order zero (pressure microphones) and first

order (gradient pressure microphones). Higher orders correspond to an

acoustic sound field sampling done through microphones with higher

directivity and require a larger channels number (at least 9). [1]

Once derived from transducers, the signals can be encoded in many

ways. In fact different format have been developed:

• A-format. Used with directional microphones placed in a single

point and symmetrically oriented.

• B-format. Developed for studio equipments (most common) and

when the available microphones have directional features similar

to those in figure 2.1.

• C-format for transmission.

• D-format for decoding and reproduction.

• UHJ-format employed to make mono and stereo reproduction sys-

tems compatible with multichannel encoding.

[1]

A particularly active area of current research is the development of

“higher orders” of Ambisonics. For about eight years , the Ambisonics

extension to higher spatial resolution systems has been the object of

increasingly numerous studies which promising features are becoming

practicable. [4]

The main results obtained during these years can be summed up

in new encoding and decoding equations and the extension of the sup-

ported reproduction system to a tridimentional one exploiting Am-

bisonics encoding higher than first order.
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Figure 2.1: B-format 2D Polar diagram (z axis omitted).

Using more channels than the original first-order B-Format allows

to capture significantly more spatial information. At present,“real”

recording techniques using HOA are in their infancy, it is, however,

straightforward to compose synthetic recordings. Benefits include greater

localisation accuracy and better performance in large-scale replay en-

vironments such as performance spaces. The higher orders correspond

to further terms of the multipole expansion of a function on the sphere

in terms of spherical harmonics. In absence of obstacles, sound in a

space over time can be described as the pressure at a plane or over a

sphere – and thus if one reproduces this function, one can reproduce

the sound of a microphone at any point in the space pointing in any

direction. [19]

Encoding/decoding strategies developed up to now for HOA can be

divided into the following two categories.

The one described by Jérôme Daniel in [2] is an extension of Ger-

zon’s first order formalism and uses the 3D pressure wave equation

solution derived in [7, ch. 10] to define the signal spherical harmonic

decomposition and an algorithm to compute encoding coefficients re-

cursively (as illustrated in [6]). Daniel in [2] has defined the above

mentioned coefficients as functions of position parameters naming them

“Ambisonics Encoding Functions” and computing them for both Carte-

sian and spherical coordinate systems using different notations. Then

he has also introduced the corresponding Furse-Malham weights, al-

ready defined by Dave Malham in [13], as normalization terms for each

encoding function, used in practical systems.1 Others important results

1Both encoding and decoding theory for HOA treated by Daniel in [2] and [4] will be

deepen in detail in chapter 4 first section .
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discussed in [2] are the simplified encoding\decoding forms for repro-

duction systems regular arrangements (spheres, hemispheres, regular

polyhedra, etc.) and the algebraic relation with the pan-pot 3D spa-

tialization technique.

A different approach is introduced in [10] by Rabenstein and Spors.

Starting from the solution of wave equation derived in [7, ch. 1] ex-

tended for 3D pressure waves and moved in frequency domain they have

defined the “angular modes” wave decomposition done by “Fourier se-

ries coefficients” or “angular coefficients”. Hence Ambisonics signals

have been described as the inverse Fourier Transform of the latter.

However this strategy doesn’t seem to have found wide employ-

ment on 3D Ambisonics applications, thus the way followed during the

project development stars mainly from Daniel research work.

Another interesting topic developed in recent studies by Jérôme

Daniel modelling of real sound-fields. Previous literature only rarely

addressed the modelling of spherical waves, radiated by finite distance

sources. Nevertheless, correct encoding and reconstruction of realistic

sound fields require it, and couldn’t satisfy themselves with the usual

plane wave approximation. [4] This has brought Daniel to a complete

definition of near field compensating filters theory showing in [6] how

to obtain the impulse responses in digital domain and giving also some

computed coefficients up to 6th order.

2.2 Hardware Releases

Many Ambisonic recordings have been made using a special microphone

called Sound-Field Microphone (SFM). This kind of microphone can be

reconfigured electronically or via software to provide different stereo

and 3D polar response either during or after recording.

Other releases are Ambisonic pan-pots that, with differing degrees

of sophistication, provide the fundamental additional studio tool re-

quired to create an Ambisonic mix, by making it possible to localise

individual, conventionally-recorded multi-track or multi-microphones

sources around a 360◦ stage analogous to the way conventional stereo

pan-pots localise sounds across a front stage. However, unlike stereo

pan-pots, which traditionally vary only the level between two chan-

nels, Ambisonic panning provides additional cues which eliminate con-
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ventional localisation accuracy problems. This is especially pertinent

to surround, where our ability to localise level-only panned sources is

severely limited to the sides and rear. [19]

By the early 1980s, studio hardware were realized for the creation of

multi track-sourced, Ambisonically-mixed content, including the ability

to incorporate SFM-derived sources (for example for room ambience)

into a multichannel mix. This was thanks primarily to the efforts of Dr

Geoffrey Barton (now of Trifield Productions) and the pro-audio manu-

facturers Audio & Design Recording, UK (now Audio & Design Read-

ing Ltd). Barton designed a suite of outboard rack-mounted studio

units that became known as the Ambisonic Mastering System. These

units were patched into a conventional mixing console and allowed con-

ventional multi-track recordings to be mixed Ambisonically. The sys-

tem consisted of four units:

• Pan-Rotate Unit – This enabled eight mono signals to be panned

in B-format, including 360◦“angle” control and a “radius vector”

control allowing the source to be brought in towards the centre,

plus a control to rotate an external or internal B-format signal.

• B-Format Converter – This connected to four groups and an aux

send and allowed existing console pan-pots to pan across a B-

Format quadrant.

• UHJ Transcoder – This both encoded B-Format into 2-channel

UHJ and in addition allowed a stereo front stage and a stereo

rear stage (both with adjustable widths) to be transcoded direct

to 2-channel UHJ.

• Ambisonic Decoder – this accepted both horizontal (WXY) B-

format and 2-channel UHJ and decoded it to four speaker feeds

with configurable array geometry.

Versions of these units were subsequently made available in the late

1990s by Cepiar Ltd along with some other Ambisonics hardware. It

is not known if they are still currently available. [19]

The lack of availability of 4-track mastering equipment led to a ten-

dency (now regretted by some of the people involved) to mix directly to

2-channel UHJ rather than recording B-format and then converting it

to UHJ for release. The fact that you could mix direct to 2-channel UHJ
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with nothing more than the transcoder made this even more tempt-

ing. As a result there is a lack of legacy Ambisonically-mixed B-format

recordings that could be released today in more advanced formats (such

as G-Format). However, the remastering – and in some cases release

– of original 2-channel UHJ recordings in G-Format has proved to be

surprisingly effective, yielding results at least as good as the original

studio playbacks, thanks primarily to the significantly higher quality of

current decoding systems (such as file-based software decoders) com-

pared to those available when the recordings were made. [19]

2.3 Software Releases

The advent of digital audio workstations has led to the development

of both encoding and decoding tools for Ambisonic production. Many

of these have been developed under the auspices of the University of

York [12]. Most of them have been created using the VST plugin

standard developed by Steinberg and used widely in a number of com-

mercial and other software-based audio production systems, notably

Steinberg’s Nuendo. With the lack of necessity to interface to a con-

ventional console, the encoding tools have primarily taken the form

of B-Format pan-pots and associated controls. Decoder plugins are

available for monitoring.

2.3.1 Standalone software tools

Many software implementing 3D audio rendering techniques and Am-

bisonics has been realized up to know. The following lines briefly de-

scribe the most used and mentioned ones.

A& G Soluzioni Digitali (Italy) born in 1995 patent in 1998 the 3D

Enhanced Surround Technology based on concept exposed in the book

“Creating Soundscapes” (2007). It has developed under this technology

an hardware platform X-spat boX2 and a control software See’nSound

used for multichannel signals editing and reproduction. The choice of

a dedicate hardware could be very binding and expensive (an X-pat

player costs about 990 Euro much more then a common eight channel

audio board) on the other side the compatibility with formats stereo,

quad and 5.1 is noteworthy and Ambisonics can be rencoded in each

standard using the same plugin.
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Another tool has been realized by Thomas Chen (California) [18].

B-Format Mixer is a standalone software released by that emulates an

eight mono or stereo channels mixer with traditional features (as equal-

ization, compression, etc.) and permits sources spatialization through

Ambisonics Surround Sound technique but with a static approach for

sources number and encoding order setting.

A set of Max\MSP (www.cycling74.com) externals tool has been

released that implement Ambisonics Surround Sound by Graham Wake-

field [22]. The suite include Max patches for encoding, rotating and

decoding up to 3rd order for two or three dimensional speaker arrays.

It encodes up to 16 sources to distinct azimuth and elevation orienta-

tions, balances the components of an Ambisonic encoded sound-field

per order, using a set of pre-defined or user-defined weights and decodes

an Ambisonics encoded sound field to a user-defined speaker array of

up to 16 channels.

A similar set of tools [11] has been released by Jan C. Schacher

and Philippe Kocher including patches for encoding and decoding Am-

bisonics signals. To give the user an intuitive access to positions of

the source-sounds the GUI-object “ambimonitor” was developed. It

integrates seamlessly with the encoder, transmitting the correctly for-

matted indexed lists containing the position information for each point.

The graphic display is used to visualize positions on a two-dimensional

surface or with half (or full) sphere three-dimensional display using two

views (top and front). Sources are displayed as dots and are labelled

either with symbolic names or their indices.

2.3.2 Ambisonics VST plugins

Daniel Courville (France) has developed Ambisonic Studio’s B2X and

OBO-RO [17]. The former is an Ambisonics audio production com-

plete and free-ware VST/AU suite compatible with the main AU work-

stations and VST hosts as Logic, Cubase and Nuendo. The encod-

ing\decoding order reaches two for the periphonic reproduction and

five for the planar one but requires one plugin instance for each source

to be spatialized. OBORO permits only an encoding\decoding of order

three for planar reproduction.

Dave Malham and Ambrose Field from the University of York De-

partment of Music have implemented (2000-2001) several VST plugin

www.cycling74.com
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during last years available for download in the web page [14], described

as follows:

BPan. An Ambisonic encoder that comes in four basic forms, any or

all of which can be installed as VST plugins in a compatible host such

as Steinberg’s Nuendo, Audiomulch, Plogue Bidule, Tracktion and so

on. There are two variants without a custom Graphical User Interface

(GUI) of their own, relying on the host’s own interface and two variants

with their own GUI. The GUI-less and the GUI-based forms are each

configured as either ordinary send effect plugins or as spatializer plugin.

The reason for all these different variants is that each one has its own

advantages for different ways of working. The GUI-less versions offer

immediate access to all the parameters, using the host’s own interface

(usually sliders) . This gives much more flexibility (at the cost of ease of

control) than the GUI-based versions which, on the other hand, present

the more frequently used parameters in an easier to use form with the

other parameters available only through setting automation.” [14]

The B format signals generated by these plugins are routed to the

standard Nuendo output channels as follows, again, assuming that you

have a four (or more) channel sound card. [14]

B-dec. A 64-bit double precision Ambisonics decoder optimised for

sound quality and large listening spaces. The decoding method reflects

this means by not processing the signal inappropriately: there are no

shelf filters in this design. Instead, the decoding method is a clean

signal path, in-phase decode. [14] Up to eight output layouts are avail-

able. B-dec is designed to be used as part of the master effects section.

It will install itself as a ’surround effect’ in Nuendo. Make sure you

have sufficient hardware output channels available to run the process,

and that you have set-up and activated in ”Master Outputs” sufficient

output channels. B-dec does not worry about the speaker layout spec-

ified in Steinberg’s box, as this does not currently use the height (Z)

information.” [14]

B-Proc. Allows you to rotate, tilt and tumble a complete first order

B-Format sound-field. The order that these operations occur in is

important, since it affects the final orientation of the sound-field, as

all operations are with respect to the central listening position, not the
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sound-field – so, if you rotate by 30 degrees to the left, sounds that

were 30 degrees to the right are now at the front, if you then tumble

the field 20 degrees down, the sounds which were, after the rotate,

due front but 20 degrees up, move 20 degrees down to the horizontal

and then a tilt by 40 degrees to the left makes any sounds that were

(after the rotate and tumble) due left and horizontal, go to due left but

40 degrees down. This will produce a different result from any other

sequence of the operations. [14]

B-Zoom. Allows you to zoom in on, or away from, a point on a

complete first order B-Format sound-field. It has three controls, a pair

of direction controls, Azimuth and Elevation, which allow you to set the

point to which you will zoom (Azimuth in degrees anticlockwise from

due front, elevation in degree from horizontal ( 90 degrees is straight

up)) and a zoom control. This varies from no effect at the centre

point, to zoomed fully towards the zoom point at +1 and zoomed fully

towards the opposite direction at -1.0. The effect of zooming in is

to make sounds in that direction louder (and those in the opposite

direction quieter) and also to spread the angles between them (and

reduce the angular spread of sounds in the opposite direction). [14]

B-Plane Mirror. Allows you to distort a B-Format sound-field. It

has three controls, a pair of direction controls, Azimuth and Elevation,

which allow you to define the axis along which the mirroring takes place

(Azimuth in degrees anticlockwise from due front, elevation in degree

from horizontal ( 90 degrees is straight up)) and a mirror control. This

varies from collapsing the field onto the plane perpendicular to the axis

when it is at the centre point, to normal field presentation when fully

towards the ’Normal’ end point at +1 and mirrored fully towards the

opposite direction at -1.0, the ’Mirror’ end point. [14]

B-Mic. Allows you to generate a virtual coincident stereo pair of

microphones from a B-Format sound-field, either recorded or synthe-

sized. The plugin can also be used as the basis of a fully programmable

decoder matrix. You can do this by using multiple copies of the plu-

gin, each generating the feeds for two (usually diametrically opposed)

speakers. ” [14]

One big issue for all these plugins is that the user has to control his
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B-format signal is in W, X, Y, Z (1,2,3,4) format. Currently Nuendo

(and also other DAWs) does not offer a multichannel file input option

so any B Format recordings have to be provided as two stereo files

feeding separate input channels. Thus Nuendo has to be configured in

such a way that these two channels feed the Decoder on these busses,

then BPan connects itself correctly automatically. [14]



Chapter 3

Research problem

formulation

3.1 Traditional audio rendering techniques

To understand the application of a 3D mixing tool in audio production

studios is useful to illustrate today’s most used spatialization tech-

niques and their employment contexts. The following paragraphs re-

trace the development history of the above mentioned rendering tech-

niques during last years.

3.1.1 Stereophonic Sound

The term Stereophonic Sound, commonly called Stereo, refers to any

method of sound reproduction in which an attempt is made to create

an illusion of directionality and audible perspective. This is usually

achieved by using two or more independent audio channels through a

configuration of two or more loudspeakers in such a way as to create the

impression of sound heard from various directions, as in natural hear-

ing. Thus the term “stereophonic” applies to so-called ”quadraphonic”

and ”surround-sound” systems as well as the more common 2-channel,

2-speaker systems. Traditionally it is referred has a synonymous of a

reproduction system with two loudspeaker and it is often contrasted

with monophonic, or “mono” sound, where audio is in the form of one

channel, often centred in the sound field. Stereo sound is now common

in entertainment systems such as broadcast radio and TV, recorded

music and the cinema.

Stereophonic sound attempts to create an illusion of location for
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Figure 3.1: Label for 2.0 sound (stereo).

various sound sources (voices, instruments, etc.) within the original

recording. The recording engineer’s goal is usually to create a stereo

”image” with localization information. When a stereophonic recording

is heard through loudspeaker systems (rather than headphones), each

ear, of course, hears sound from both speakers. The audio engineer

may, and often does, use more than two microphones (sometimes many

more) and may mix them down to two tracks in ways that exaggerate

the separation of the instruments, in order to compensate for the mix-

ture that occurs when listening via speakers. In addiction, especially in

synthetic music editing, mixing and live reproduction, some techniques

defined in psychoacoustics are used to obtain the illusion of placing

sound sources between the two loudspeakers. This techniques are based

on the effects perceived by human hear when applying small differences

to signal amplitudes (interaural amplitude difference or IAD) or repro-

duction time delays (interaural time difference or ITD).

Reproduction systems with a stereophonic arrangement for com-

mercial use have been very common till early 1990s but now they are

disappearing, being replaced by modern surround sound formats.

3.1.2 Quadraphonic Sound

Quadraphonic (orQuadrophonic and sometimes Quadrasonic) sound –

the most-widely-used early term for what is now called 4.0 surround

sound – uses four channels in which speakers are positioned at the four

corners of the listening space, reproducing signals that are (wholly or in

part) independent of one another. Quadraphonic audio was the earliest

consumer offering in surround sound. It was a commercial failure due to

many technical problems and format incompatibilities. Quadraphonic

audio formats were more expensive to produce than standard two-
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channel stereo. Playback required additional speakers and specially

designed decoders and amplifiers. The rise of home theatre products

in the late 1980s and early 1990s brought multi-channel audio record-

ing back to into popularity, although in new digitally based formats.

Thousands of quadraphonic recordings were made during the 1970s,

and some of these recordings have been reissued in modern surround

sound formats such as DTS, Dolby Digital, DVD-Audio and Super

Audio CD.

Figure 3.2: Label for 4.0 sound (quadraphonic).

3.1.3 Dolby Surround and Home Theater

Dolby Surround was the earliest consumer version of Dolby’s multi-

channel analogue film sound decoding format Dolby Stereo introduced

to the public in 1982 during the time home video recording formats

(such as Betamax and VHS) were earlier introducing Stereo and Hi-Fi

capability. Dolby Surround is the earliest domestic version of theatrical

Dolby Stereo and has contributed to the birth of Home Theater con-

ception, that tries to reproduce a real “cinema experience” (or theatre)

at a private home by using a particular disposition of more than two

loudspeaker giving the listener the sensation of being immersed in the

middle of the sound scene. The term Dolby Surround also applies to

the encoding of material in this sound format.

When a Dolby Stereo/Dolby Surround soundtrack is produced, four

channels of audio information – left, center, right, and mono surround

– are matrix-encoded onto two audio tracks. The stereo information is

then carried on stereo sources such as videotapes, laser-discs and tele-

vision broadcasts from which the surround information can be decoded

by a processor to recreate the original four-channel surround sound.

Without the decoder, the information still plays in standard stereo or
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mono.

Dolby Surround Matrix Left Right Center Surround

Left Total (Lt) 1 0
√
2
2 j

√
2
2

Right Total (Rt) 0 1
√
2
2 −j

√
2
2

Table 3.1: Dolby Surround matrix. Note that j represents a 90◦ phase shift.

As the technology of a Dolby Surround decoder is virtually the same

as decoding the monaural surround soundtrack, many Dolby Stereo en-

coded films could be transferred with little change to the stereo sound-

track, lowering the costs of re-recording the audio of a film to video. In

fact, most L/R/S Dolby Surround decoders included a modified Dolby

B decoder as part of their design. The Dolby Surround decoding tech-

nology was updated during the mid-1980s and re-named Dolby Pro

Logic in 1987. The terms Dolby Stereo, Dolby Surround and LtRt

are used to describe soundtracks that are matrix-encoded using this

technique.

Figure 3.3: Label for 2.1 (Dolby surround).

3.1.4 Dolby Digital, 5.1 and 7.1

Digital audio introduction by Sony and Philips in 1982 has brought

radical changes in multichannel audio world thanks to the appearance

of laser-disc combined with contemporary data compression techniques.

In fact, these concepts led to the realization of a new support able to

store a huge amount of different nature information in digital format:

the DVD. Hence, it was possible to place audio, video and many other

information all in the same support and to use the available memory

to store more audio channels.
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Up to now the most used compression technologies are Dolby Digital

and DTS, that employs a less destructive compression algorithm. Dolby

Digital contains up to six discrete channels of sound (5.1 Surround

Sound reproduction system). The most elaborate mode in common

usage involves five channels for normal-range speakers (20 Hz – 20,000

Hz) (right front, center, left front, rear right, rear left) and one channel

(20 Hz – 120 Hz allotted audio) for the sub-woofer driven low-frequency

effects. Mono and stereo modes are also supported.

Figure 3.4: Formats allowed by digital supports

(a) Label for 5.1 (b) Label for 7.1

Another common standard derived from this technology is the 7.1

Surround Sound, name for eight channel surround audio systems. It

adds two additional rear speakers to 5.1 audio configuration using the

standard front, center, and LFE (bass) speaker configuration, but in

addition, includes two speakers positioned to the side and two to the

rear. With such a sound configuration, almost every angle of sound

can, theoretically, be captured for a completely immersive experience.

The just described rendering techniques rely on 2D reproduction sys-

tems and exploit mainly psychoacoustics concepts to obtain a better

listener involvement into the sound scene that consist on controlling the

amplitude and the delay of reproduced signals. Systems supporting

these multichannel audio formats increase their handling complexity

proportionally with their cardinality. Thus 3D reproduction systems,

able to improve listener sound experience, require the employment of

different rendering techniques to better exploit the higher number of

needed loudspeakers and to reduce system handling complexity.
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Ambisonics spatialization technique has been chosen to implement

a software tool for 3D studio mixing as one of today’s most known tech-

nologies, able to offer good sound rendering results by even employing

low number of loudspeakers in reproduction system (starting from 9

one can already render satisfying tridimentional sound scenes).

3.2 DAW employment in studio mixing

The term digital audio workstation (DAW) was born to define an elec-

tronic system designed solely or primarily for recording, editing and

playing back digital audio. DAWs were originally tape-less, microprocessor-

based systems such as the Synclavier and Fairlight CMI. Modern DAWs

are software running on computers with audio interface hardware.

A computer-based DAW has four basic components:

• a computer;

• an ADC-DAC (also called a sound card, audio interface, etc.);

• a digital audio editor software;

• and at least one input device for adding or modifying musical note

data (this could be as simple as a mouse, and as sophisticated as

a MIDI controller keyboard, or an automated fader board for

mixing track volumes, etc.).

The computer acts as a host for the sound card and software and

provides processing power for audio editing. The sound card (if used) or

external audio interface typically converts analogue audio signals into

digital form, and for playback converting digital to analogue audio; it

may also assist in further processing the audio. The software controls

all related hardware components and provides a user interface to allow

for recording, editing, and playback. Most computer-based DAWs have

extensive MIDI recording, editing, and playback capabilities, and some

even have minor video-related features.

As software systems, DAWs could be designed with any user in-

terface, but generally they are based on a multi-track tape recorder

metaphor, making it easier for recording engineers and musicians al-

ready familiar with using tape recorders to become familiar with the

new systems. Therefore, computer-based DAWs tend to have a stan-

dard layout (or mixer layout) which includes transport controls (play,
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rewind, record, etc.), track controls and/or a mixer, and a waveform

display (or edit layout). In single-track DAWs, only one (mono or

stereo form) sound is displayed at a time. Multi-track DAWs support

operations on multiple tracks at once. Like a mixing console, each track

typically has controls that allow the user to adjust the overall volume

and stereo balance (pan) of the sound on each track. In a traditional

recording studio additional processing is physically plugged in to the

audio signal path, a DAW however can also route in software or uses

software plugins to process the sound on a track.

DAWs are capable of many of the same functions as a traditional

tape-based studio set-up, and in recent years have almost completely

replaced them. Modern advanced recording studios may have multiple

types of DAWs in them and it is not uncommon for a sound engineer

and/or musician to travel with a portable laptop-based DAW, although

interoperability between different DAWs is poor.

Commonly DAWs feature some form of automation, often per-

formed through ”envelopes”. Envelopes are procedural line segment-

based or curve-based interactive graphs. The lines and curves of the au-

tomation graph are joined by or comprised between adjustable points.

By creating and adjusting multiple points along a waveform or control

events, the user can specify parameters of the output over time (e.g.,

volume or pan). Automation data may also be directly derived from

human gestures recorded by a control surface or controller. MIDI is a

common data protocol used for transferring such gestures to the DAW.

It follows that today DAWs are widely involved in sound productions

that make use of the audio rendering formats described in previous

section. In fact, the above mentioned layouts subdivision allows first

to edit each sound track using the edit layout with all its specific fea-

tures (audio cut, past, copy, invert, envelope drawing, automation,

etc.) then it gives the possibility to mix up the edited tracks by simple

controlling amplitudes, equalizations, effects and filters superposition,

routing, etc. All these functionality fully satisfy the requirements of a

stereo, 5.1 or 7.1 mixing console but they are not sufficient to imple-

ment a 3D mixing where the user is supposed to have the possibility to

control sources position adjusting dynamic parameters as azimuth, el-

evation and distance. However the mixer layout, especially the routing

section, is helpful also for this purpose. Therefore, what is needed is a

third layout to be placed between the edit and the mixer one. Such a
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Figure 3.5: Reaper DAW Edit layout (in red) and Mixer layout (in blue).

layout should be called 3D spatialization layout and must provide the

acceptance of k edited input tracks, a processing stage that computes

n output signals to be send to the mixer layout and a user interface

that allows to place virtual sources everywhere in space.

The plugin notion is very suitable for this aim, in fact it is defined

as an internal process that has to be recalled by the DAW and can

receive and send signals controlling the adjustable process parameters

interacting with a GUI (already implemented by the host as default).

There exist several plugin standards, the most diffused are:

• VST (standard created by Steinberg Media Technologies GmbH);

• Direct-X or DX (available for Microsoft Windows operative sys-

tem);

• Audio Units or AU (available for Apple MacOSX);

• RTAS (for Pro Tools systems);

• TDM (used by Pro Tools too but employing external added DSP

computational power instead of the CPU one)

Many plugin are available for more than one above listed standards

to allow their usage on different platforms and DAWs and their com-
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mercial diffusion, but there are also some DAWs, such as Reaper or Au-

dacity, that support different plugin standards. The plugin program-

ming algorithm remains the same with different ‘plugs’, thus adaptors

have been implemented to use VST plugins on DX hosts and vice-versa

,often called ‘wrappers’.

The choice of the technology adopted to develop AmbiSound plugin

has necessarily fall on the Steinberg’s VST standard, for sure the most

diffuse one and the only supported both by Windows and MacOSX

platforms. VST plugins can run on multi-platform hosts like Reaper,

Audacity (both free-ware), Cubase and Nuendo and doesn’t requires a

dedicate external hardware like TDM ones. Unfortunately this stan-

dard is not supported by two other DAWs often used in professional

sound productions: Logic (MacOSX) and Pro Tools.

The VST standard version employed is the 2.x, chosen instead of

the most recent 3.x to guarantee Reaper AmbiSound support – VST

3.x standard isn’t supported by the latter yet. In fact, the developed

plugin has been designed to primarily run on Reaper host and to be

completely configurable and best exploited inside this DAW.1

3.3 Project aims

Today’s Ambisonics software tools, already discussed in chapter 2, have

many disadvantages and aspects to be improved.

Some of them requires both dedicated hardware (external DSP,

soundboard, etc.) and software (as RTAS and TDM plugins that can

be hosted only by Pro Tools), causing huge costs only for system con-

figuration. In most cases they allow a limited reconfigurability of input

sources and encoding/decoding order. The number of accepted input

sources is often limited to only one signal except for those designed with

Max/MSP that reach up to 16 inputs. The orders of encoding/decod-

ing Ambisonics signals applied and correctly tested till today reach the

third spherical harmonic.

Moreover today’s diffused Ambisonics tools are supposed to be em-

ployed inside big recording/mixing studios or reproduction environ-

ments and don’t take into consideration the artefacts that can be pro-

duced when using them in small environmental contexts.

1The reasons for choosing Reaper to be the proper host to run AmbiSound plugin will

be analysed in detail on Sec. 4.3.
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Looking specifically at VST plugins available for Ambisonics mix-

ing also the low layout reconfigurability and platform supportability

are limitations. Many of the Malham VST suite plugins [14] aren’t

supported by MacOSX yet and output layout can be configured by

choosing a specific configuration from a limited list offering layout more

suitable for 2D rendering.

Hence the purposes of the Ambisonics plugin developed in this

project have been the following:

• increase the number of input signals processable by the plugin

avoiding an excessive usage of the CPU and realizing something

that can be considered a 3D mixing layout to be professionally

used in DAWs.

• enlarge the reconfigurability of the reproduction system intro-

ducing more degrees of freedom in setting up the loudspeakers

arrangement such as the user can decide the azimuth and eleva-

tion for each one and the distance from the listening point of the

overall system.

• realize a 3D mixing tool that takes into account the possibility

of being employed in little sound production studios using the

unexploited near field compensation theory.

• develop a cross-platform Ambisonics plugin that can run also on

free-ware DAWs (as Reaper) using a widely diffused technology

(as VST) that doesn’t necessitate dedicate hardware or software

to be correctly configured allowing the possibility of large diffusion

for this software tool also in small productions and even amateur

ones.
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Techniques and Technologies

This chapter will analyse in detail the fundamental aspects on which

the whole project is based. Starting form the Ambisonic Surround

Sound theory developed from 1970s (4.1) up to now (4.1.2), proceed-

ing by Virtual Studio Technology illustration (4.2), defining VST SDK

features and the technology architecture. The last section will intro-

duce Reaper digital audio workstation deepening the host important

features clarifying the differences with the ones that permit a better

use of AmbiSound plugin.

4.1 Ambisonics Surround Sound

Ambisonics theory was developed originally by Gerzon, Barton and

Fellgett in 1970s [3]. Its aim was to develop a multichannel sound

recording-reproduction technique capable to recreate a total listener

immersion sensation into a reproduced sound environment.

In Ambisonic systems, sound signals together with their directional

components are encoded into spherical harmonics vectorial form. Sim-

ilarly to Holophonic systems (for more details see [1, ch. 10]) applying

a decoding matrix to the just mentioned acquired components one can

obtain the feeding signals for the loudspeaker placed around the listen-

ing area. The main advantages of an Ambisonics system are:

1. a simple recording/encoding system, using more microphones (at

least four for 3D fields reconstruction) placed in the same point

(or coincident) at the centre of the acoustic scene;

2. the decoding/reproduction system (formed by a loudspeakers ar-

ray) is totally independent from the encoding stage. The signal
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can be decoded generating a stereo output, an output supported

by standard formats as Dolby Surround, 5.1 or 7.1 or even by

multichannel (4, 6, 8, . . . loudspeakers) systems.

Figure 4.1: Ambisonics system basic scheme.

Some disadvantages, derived from the assumptions made in Am-

bisonics technique formulation, are that:

1. sources must irradiate only plane waves (they have to be – phys-

ically or virtually – placed far from the recording or listening

point);

2. reproduced sound field must irradiate plane waves, thus loud-

speakers must be placed conveniently far from the listening point.

The last problem can’t be neglected especially in small sized reproduc-

tion environment (such as a car passenger compartment), instead, the

former isn’t too restrictive since any sound field configuration can be

reconstructed as linear combination of plane waves.

In practice, using Ambisonics method, the acoustic field directional

features are reconstructed by summing up the spherical harmonic com-

ponents of the field itself, illustrated up to the 3rd order in figure 4.2.

Each component should be acquired with a proper transducer having

the same directional features (the 0th order component with an omni-

directional, the 1st order components with ‘figure eight’ microphones

and so on). Alternatively an artificial sound-field can be obtained ap-

plying the Ambisonics encoding operation to mono signals.
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Signals obtained from the transducers can be both re-encoded or

decoded in many different formats that has been developed up to now.

The most significant one, especially in this project, is the B-format,

developed for studio equipments and employed to obtain the so call

Ambisonics signals (the actual Ambisonics encoding): the set of signal

spherical harmonics with directional features like those shown in figure

4.2.

Figure 4.2: Acoustic field spherical harmonics.

4.1.1 Acoustic waves remarks

The spherical wave equation written for acoustic pressure p has the

following form [2]:
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(4.1)

Figure 4.3 shows the relation between the spherical coordinate system



30 Chapter 4. Techniques and Technologies

Figure 4.3: Spherical coordinate system.

to the rectangular one. The functional relationships are:

x = r sinϑ cosϕ

y = r sinϑ sinϕ (4.2)

z = r cosϑ.

The separation of variable method leads to a solution in terms of:

• spherical Bessel and Neumann functions of order m: jm(kr) and

nm(kr) respectively, or alternatively in terms of convergent and

divergent Hankel functions: h+m = hm = jm + inm and h−m =

h∗m = jm − inm respectively;

• polar associated Legendre polynomials functions Pmn(cosϑ) =

Pmn(z) (from the relation z = cosϑ) with 0 ≤ n ≤ m;

• latitude functions cosnϕ and sinnϕ;

• temporal functions eiωt and e−iωt.

Assuming the product solution [7]

p(r, ϑ, ϕ) = R(r)Θ(ϑ)Φ(ϕ)T (t),

three different equations that leads to the solution can be obtained

(written in compact form with the notation used in [7]):

p =

{
h+m(kr)

h−m(kr)

}{
cosnϕ

sinnϕ

}
Pmn(cosϑ)

{
eiωt

e−iωt

}
. (4.3)
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From here on the term h−m(kr) will be neglected, considering only the

progressive wave, together with the temporal functions, neglected for

the presentation transparency, obtaining:

p = h+m(kr)

{
cosnϕ

sinnϕ

}
Pmn(cosϑ). (4.4)

The ‘spherical harmonics ’ of degree m and order n can be defined,

with 0 ≤ n ≤ m, as the product [2]

Y σ
mn(ϑ, ϕ) = Pmn(cosϑ)×

{
cosnϕ if σ = 1,

sinnϕ if σ = −1 and n ≥ 1.
(4.5)

To use these functions as basis for an expantion of the wave equa-

tion solution they must form an orthogonal or orthonormal basis. It’s

proved that orthogonal spherical harmonics can be obtained applying

the Schmidt semi-normalization to associated Legendre polynomials

(see [2]) that become:

P̃mn(cosϑ) =

√
εn

(m− n)!

(m+ n)!
Pmn(cosϑ), (4.6)

where εn = 1 if n = 0 and εn = 2 for n ≥ 1. The definition of

semi-normalized spherical harmonics follows as:

Y σSN
mn (ϑ, ϕ) = P̃mn(cosϑ)×

{
cosnϕ if σ = 1,

sinnϕ if σ = −1 and n ≥ 1.

(4.7)

Having fixed the order m of decomposition, they are 2m+ 1 and form

an orthogonal basis such in scalar product sense, i.e.:

〈Y σSN
mn , Y σ′SN

m′n′ 〉4π =
1

2m+ 1
δmm′δnn′δσσ′ ,

where δ is the Kronecker’s delta and the scalar product between the

spherical functions F (ϑ, ϕ) and G(ϑ, ϕ) is defined as:

〈F,G〉4π =
1

4π

∫ 2π

0

∫ π

0

F (ϑ, ϕ)G(ϑ, ϕ) sinϑdϑdϕ.

Then, an orthogonal basis can be obtained from the semi-normalized

spherical harmonics Y σSN
mn multiplying them by

√
2m+ 1:

⇒ Y σN
mn (ϑ, ϕ) = Ỹ σ

mn(ϑ, ϕ) = Y σSN
mn

√
2m+ 1, (4.8)

⇒ 〈Ỹ σ
mn, Ỹ

σ′

m′n′〉4π = δmm′δnn′δσσ′ .
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The Fourier-Bessel expantion of the wave equation solution (4.4)

can be written as:

p(r, ϑ, ϕ) =
∑
m,n,σ

AσmnỸ
σ
mn(ϑ, ϕ)imjm(kr), (4.9)

where Aσmn, called ‘expantion coefficients ’, can be computed for a radi-

ant source, inside a sphere of radius R and centred in the origin, using

the following expression:

〈pR, Ỹ σ
mn〉4π = imjm(kr)Aσmn, with pR = (r = R, ϑ, ϕ). (4.10)

4.1.2 Ambisonics theory

Problem formulation: waves Fourier-Bessel expansion

Ambisonics technique is based on two fundamentals assumptions here

transcribed for convenience:

• sources can only produce plan wave front. This is a non-restrictive

condition, as any sound-field can be modelled as the linear com-

bination of planar wave-fronts;

• in order to render the sound-field as a sum planar wave fronts,

loudspeakers must be placed sufficiently far from the listener.1

For the first assumption it will be necessary to start Ambisonics treat-

ment writing the Fourier-Bessel expantion for a tridimentional progres-

sive and plane sound wave.

Before writing the acoustic pressure expression for such a sound

wave it is better to introduce a different convention for spherical co-

ordinates system representations. Figure 4.4 shows the new system

that takes the listener head as the reference point for the system origin

defining all the coordinate axes directions in relation with the head

possible movements. Basing on this convention the (4.2) become:

x = r cosϑ cosϕ

y = r cosϑ sinϕ (4.11)

z = r sinϑ.

1Later on it will be explained how to ‘straight’ the non-planar wave front produced by

a loudspeaker system near the listener.
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Figure 4.4: ‘Listener related’ spherical coordinate system.

Figure 4.5: 3D Plane wave that propagates along the direction up and received in r.

Now consider a sound-field produced by a tridimentional plane wave

that propagates along the direction up (unitary vector) from the source

S as shown in figure 4.5. Using the convention defined in figure 4.4, the

expression of acoustic pressure p detected on a listening point, defined

by r = rur, can be written as

p(r, ϑ, ϕ) = Pre
i(krT ·up−ωt) = Pre

i(krur
T ·up−ωt), (4.12)

where ur =

xryr
zr

 =

cosϑr cosϕr
cosϑr sinϕr

sinϑr

 ,
(4.13)

up =

xpyp
zp

 =

cosϑp cosϕp
cosϑp sinϕp

sinϑp
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and k = ±ω/c is the wave number. Thus one can write p using the

Fourier-Bessel expantion obtaining [2]:

p(r, ϑ, ϕ) = Pr

∞∑
m=0

(2m+ 1)imjm(kr)ejωtPm(ur · up), (4.14)

where Pm(ur·up) =
m∑
n=0

εn
(m− n)!

(m+ n)!
Pmn(sinϑr)Pmn(sinϑp) cos[n(ϕr−ϕp)].

Using the definition of normalized spherical harmonics Ỹ σ
mn(ϑ, ϕ) given

in (4.8), (4.14) becomes:

p(r, ϑ, ϕ) =
∑
m,n,σ

P̃ σ
r Ỹ

σ
mn(ϑr, ϕr)i

mjm(kr)ejωt, (4.15)

where P σ
r = PrỸ

σ
mn(ϑp, ϕp).

Matching conditions definition

The reconstruction of the above mentioned sound-field can be done

using an array of loudspeakers (see figure 4.6, where the z-axis has

been omitted to simplify the picture).

Figure 4.6: Circular array rig.

In a N loudspeakers layout only an approximation of the expan-

tion (4.15) can be reached. The approximation quality increases as N

goes to infinity. Every loudspeaker in figure 4.6 (considering also the
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polar component) emits a 3D plane wave if sufficiently far from the

listening point, ideally placed in the system origin:

pi(r, ϑ, ϕ) = Prie
i(krur·upi−ωt), (4.16)

where upi is the propagation direction of the wave irradiated by the i-

th loudspeaker. Written using the Fourier-Bessel expantion, the latter

becomes:

pi(r, ϑ, ϕ) =
∑
m,n,σ

P̃ σ
riỸ

σ
mn(ϑr, ϕr)i

mjm(kr)ejωt,

where P̃ σ
ri = PriỸ

σ
mn(ϑpi, ϕpi),

⇒ p̃ =
N∑
i=1

pi(r, ϑ, ϕ) =
N∑
i=1

∑
m,n,σ

P̃ σ
riỸ

σ
mn(ϑr, ϕr)i

mjm(kr)ejωt,

(4.17)

where p̃ notation is used to indicate the reconstructed (approximated)

version of p(r, ϑ, ϕ).

The aim of Ambisonics rendering stage is to reproduce the sound-

field radiated by S by the cooperation of plane waves pi(r, ϑ, ϕ) emitted

by each loudspeaker in the rig, keeping as much as possible of the

perceived position information from the sound-field. This means that

in the listening positioning the following relation must be satisfied:

p(r, ϑ, ϕ) ∼= p̃(r, ϑ, ϕ), (4.18)

where the symbol ∼= assumes the meaning of “as equal as possible”.

Using the Fourier-Bessel expantion for both members of (4.18) a set of

equations can be derived, called Matching Conditions, that have to be

satisfied in order to have the sound-field reconstruction. The Fourier-

Bessel expantion of (4.18) is:

∑
m,n,σ

P̃ σ
r Ỹ

σ
mn(ϑr, ϕr)i

mjm(kr)ejωt ∼=
N∑
i=1

∑
m,n,σ

P̃ σ
riỸ

σ
mn(ϑr, ϕr)i

mjm(kr)ejωt.

(4.19)

Comparing (4.19) right and left sides term by term, one can state that
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(4.18) and (4.19) are satisfied when

P σ
r =

N∑
i=1

P̃ σ
ri,

⇒ PrỸ
σ
mn(ϑp, ϕp) =

N∑
i=1

PriỸ
σ
mn(ϑpi, ϕpi). (4.20)

Recalling the spherical harmonics definition, the expression (4.20) Can
be decomposed into a set of three equations:

Pr =
∑N
i=1 Pri

PrP̃mn(sinϑp) cosnϕp =
∑N
i=1 PriP̃mn(sinϑpi) cosnϕpi

PrP̃mn(sinϑp) sinnϕp =
∑N
i=1 PriP̃mn(sinϑpi) sinnϕpi

for n = 0

for n ≥ 1 and σ = 1

for n ≥ 1 and σ = −1

(4.21)

called Matching Conditions, that are the core of Ambisonics Surround Sound

technology. The index m is the order of reconstruction while i = 1, . . . , N is

the loudspeaker index. As N tends to infinity, the N th-order approximation

tends to an exact matching and the sweet-spot2 expands.

From the matching conditions it’s noted that all is needed to reconstruct

a sound-field p with N loudspeakers is its Pr and directional PrY
σ
mn(ϑp, ϕp)

components. Ambisonics stores this information into a set of signals which

cardinality depends on the order of reconstruction. Table 4.1 shows the

spherical harmonic functions (semi-normalized) Ỹ σSN
mn (ϑ, ϕ) up to the third

order of reconstruction.

Ambisonics encoding

The Fourier-Bessel expantion of the plane wave just discussed can be written

into a more compact vectorial form. Neglecting the term responsible for time

dependence and separating the term of order zero, p can be written as:

p = PrỸ
+1
mn(ϑp, ϕp)Ỹ

+1
mn(ϑr, ϕr)j0(kr)+

Pr
∑
mnσ

Ỹ σ
mn(ϑp, ϕp)Ỹ

σ
mn(ϑr, ϕr)i

mjm(kr), (4.22)

for m,n = 1, . . . ,∞ and σ =

{
+1

−1.

The (4.22) first addend is equal to Prj0(kr) because Ỹ +1
00 (ϑ, ϕ) is equal to

1.3

2area around the listening point where the perception stays unaltered
3for m and n equal to 0 and σ = +1, cos(nϕ) = 1, the associated Legendre polynomial

P (cosϑ) = 1 [7] and the normalization term
√

2m+ 1 = 1
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Order (σmn) Y σSN
mn (u) Y σSN

mn (ϑ, ϕ)

0 (100) 1 1

(+1
11 ) ux cosϑ cosϕ

1 (−111 ) uy cosϑ sinϕ

(110) uz sinϑ

(+1
22 )

√
3(u2x − u2y)

√
3
2 cos(2ϕ) cos2 ϑ

(−122 )
√

3(uxuy)
√
3
2 sin(2ϕ) cos2 ϑ

2 (+1
21 )

√
3(uxuz)

√
3
2 cos(2ϕ) sinϑ

(−121 )
√

3(uyuz)
√
3
2 sin(2ϕ) sinϑ

(120)
3(u2z−1)

2
3(sin2 ϑ−1)

2

(+1
33 )

√
5
8ux(u2x − 3u2y)

√
5
8 cos(3ϕ) cos3 ϑ

(−133 )
√

5
8uy(3u

2
x − u2y)

√
5
8 sin(3ϕ) cos3 ϑ

(+1
32 )

√
15uz

u2x−u2y
2

√
15
2 cos(2ϕ) sinϑ cos2 ϑ

3 (−132 )
√

15uxuyuz
√
15
2 sin(2ϕ) sinϑ cos2 ϑ

(+1
31 )

√
3
8ux(5u2z − 1)

√
3
8 cosϕ cosϑ(5 sin2 ϑ− 1)

(−131 )
√

3
8uy(5u

2
z − 1)

√
3
8 sinϕ cosϑ(5 sin2 ϑ− 1)

(130)
uz(5u2z−3)

2
sinϑ(5 sin2 ϑ−3)

2

Table 4.1: Semi-normalized spherical harmonic functions up to 3rd order taken from [2]

– note that ϑ direction is inverted according to the convention adopted, defined in

figure 4.4.



38 Chapter 4. Techniques and Technologies

The vectorial form can be defined introducing the vectors:

cT =
[
1 Ỹ +1

11 (ϑp, ϕp) Ỹ −1
11 (ϑp, ϕp) · · · Ỹ σmn(ϑp, ϕp) · · ·

]
=

[
c0 c1 c2 · · · cm · · ·

]
,

hT =
[
j0(kr) ij1(kr)Ỹ +1

11 (ϑr, ϕr) ij1(kr)Ỹ −1
11 (ϑr, ϕr) · · · imjm(kr)Ỹ σmn(ϑr, ϕr) · · ·

]
,

hence the (4.22) becomes:

p(r, ϑ, ϕ) = Prc
T · h. (4.23)

This formulation enables a decoupling between the direction ur and up.

The plane wave information about spatial distribution, related to angles ϑp
and ϕp is totally described by the vector c. Ambisonics encoding signals can

be simply obtained multiplying vector c by the the plane wave amplitude

Pr:

bT = Prc
T = Pr

[
1 Ỹ +1

11 Ỹ −111 · · · Ỹ σ
mn · · ·

]
= Pr

[
c0 c1 c2 · · · cm · · ·

]
=
[
W X Y Z · · ·

]
.

(4.24)

Vector b contains the so called Ambisonics signals (B-format encoding).

The Ambisonics encoding stage estimates the elements in the vector c.

These elements can be somehow measured or created using a set of encoding

equations that act as a spherical harmonics sampler for the acoustic field.

This second approach is the one been followed for the project development,

considering only the sound-field pressure as known so that each source has

been implemented as a mono wave file s(t).

A monophonic signal can be encoded in Ambisonics, fixing its direction

of arrival (DOA) ϑp, ϕp or up, by using a simplified version of encoding equa-

tions (4.23) where Pr can be substituted with s(t), obtaining the equations

set showed in table 4.2.

Ambisonics decoding

The notation used in (4.23) can be employed also for the sound-field gener-

ated by a single loudspeaker:

pi(r, ϑ, ϕ) = Prici
T · h, (4.25)

where ci
T =

[
c0i c1i c2i . . . cmi . . .

]
.
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Order Bσ
mn (σmn) Encoding Functions

0 W (100) 1

X (+1
11 ) s(t) cosϑ cosϕ

1 Y (−111 ) s(t) cosϑ sinϕ

Z (110) s(t) sinϑ

R (+1
22 ) s(t)

√
3
2 cos(2ϕ) cos2 ϑ

S (−122 ) s(t)
√
3
2 sin(2ϕ) cos2 ϑ

2 T (+1
21 ) s(t)

√
3
2 cos(2ϕ) sinϑ

U (−121 ) s(t)
√
3
2 sin(2ϕ) sinϑ

V (120) s(t)3(sin
2 ϑ−1)
2

K (+1
33 ) s(t)

√
5
8 cos(3ϕ) cos3 ϑ

L (−133 ) s(t)
√
5
8 sin(3ϕ) cos3 ϑ

M (+1
32 ) s(t)

√
15
2 cos(2ϕ) sinϑ cos2 ϑ

3 N (−132 ) s(t)
√
15
2 sin(2ϕ) sinϑ cos2 ϑ

O (+1
31 ) s(t)

√
3
8 cosϕ cosϑ(5 sin2 ϑ− 1)

P (−131 ) s(t)
√
3
8 sinϕ cosϑ(5 sin2 ϑ− 1)

Q (130) s(t) sinϑ(5 sin
2 ϑ−3)

2

Table 4.2: Ambisonics encoding functions for a monophonic signal s(t), derived from

semi-normalized spherical harmonics up to the 3rd order taken from [2].
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The whole sound-field perceived in the listening area (sweet-spot around the

system origin) becomes:

p̃ =

N∑
i=1

Pi =

N∑
i=1

Prici
T · h

= Pr1c1
T · h + Pr2c2

T · h + · · ·+ PrNcN
T · h

= aTCTh,

(4.26)

with aT =
[
Pr1 Pr2 · · · PrN

]
,

C =
[
c1 c2 · · · cN

]
=

c01 c02 · · · c0N
c11 c22 · · · c1N
...

...
...

...

 .
For the perfect reconstruction the matching conditions have to be satisfied

so from (4.18):

p = p̃

Prc
Th = bTh = aTCTh, (4.27)

from which one can derive the decoding equations in matrix form:

bTh = aTCTh

⇒ b = Ca, (4.28)

where b represent the Ambisonics signals encoded from the sound source

and a the vector of speaker-feeds to be found. The equations set(4.28) can

be solved with least norm technique:4

⇒ a = CT (CCT )−1b

= C†b

= Db,

(4.29)

where D = C† is called the pseudo-inverse or left inverse of matrix C.

4finding the optimal solution aln for a such that ‖a‖ is minimized – optimal in least

norm sense.
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To compute the speaker-feeds in (4.28), the matrix C with dimension

(m+ 1)2 ×N has to be fat, i.e.

N ≥ (m+ 1)2, (4.30)

otherwise the system becomes over specified – more equations than vari-

ables. This is an hardware constraint for the Ambisonics decoding stage

because a N -loudspeakers system will be able to reproduce a sound-field

with maximum accuracy equal to the spherical harmonic order m that sat-

isfies (4.30)

Regularity property

A loudspeakers set-up for Ambisonics reproduction can be defined:

• regular if the basis ci preserve the orthonormal property, i.e. if vectors

ci are orthonormal in the scalar product sense

〈ci, ci′〉N = δmm′δnn′δσσ′ ,

that can be traduced in the compact form

1

N
CCT = Ik, (4.31)

where Ik is the identity matrix of rank K = (m+ 1)2,

• semi-regular if the basis ci preserve the orthogonality property. In this

case CCT becomes a diagonal matrix.

It follows that, for regular layout systems, in the Ambisonics decoding

stage the matrix C† can be obtained just as
1

N
CT . In fact substitut-

ing (4.31) in the pseudo-inverse formula it comes that

C† = CT (CCT )−1 = CT (NIk
−1) =

1

N
CT .

A 2D reproduction layout is regular when its loudspeakers are placed as

vertices of a regular polygon.

The case of 3D spatial sampling is more complicated, in fact the limited

number of existing regular polyhedra together with the constraint (4.30),

that fixes the number of vertices, don’t allow an easy solution for the lay-

out shape research. For example a regular polyhedron of 20 vertices don’t

represent a strictly regular support for a 3rd order reproduction that has
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16 components. [2] A better sampling of the sphere, allowing to obtain a

‘more regular’ reproduction support, can be done applying triangular tes-

sellation to the sphere (as shown in figure 4.7), increasing the reproduction

quality with the number of triangles (decreasing their size) and the order m

respectively.

Figure 4.7: From the top to the bottom and from left to right, the five existent regular

polyhedra (also called platonic solids): tetrahedron, octahedron, cube, icosahedron

and dodecahedron. Then two examples of tessellated spheres with 32 vertices and 14

vertices respectively

Independently from the loudspeakers number, the kind of systems shown

in figure, i.e. reproduction systems that include the listener, go inevitably

to deal with several practical problems: the loudspeakers placement under

listener feet and the interpersonal masking problem. For these reasons the

configuration that are typically employed in 3D sound reproductions are

the hemispherical ones (see figure 4.8). Apart from the cubical one and

parallelepipeds, used with a reduced audience and for first order systems.

4.1.3 Near field effects

Starting from expression (4.24), the spherical decomposition of a plane wave

of incidence (ϑp, ϕp) carrying a signal S, leads to the simple expression of

Ambisonics components:

Bσ
mn = S · Ỹ σ

mn. (4.32)

Thus a far field source signal S is encoded by simply applying real encoding

gains, which are the spherical harmonic functions. By the way, this means
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Figure 4.8: Two examples of hemispherical Ambisonics reproduction layout: a regular

pyramid with hexagonal base and the top part of the 32-vertices polyhedron in figure

4.7.

that the sound-field “derivatives” (spherical components of order bigger then

0) properties don’t vary with the frequency.

Spherical wave decomposition: near field effect

The modelling of the near field effect due to finite distance sources points

out a fundamental issue of natural or realistic sound fields that must be

considered as spherical waves. In [2] it is shown that the spherical decompo-

sition for this kind of wave, radiated by a point source at (ρ, ϑp, ϕp), leads

to:

Bσ
mn = S · Γm(kρ) · Ỹ σ

mn(ϑp, ϕp), (4.33)

with Γm(kρ) = kdref i
−(m+1)h−m(kρ),

where h−m(kρ) = jm(kρ)− inm(kρ) are the divergent spherical Hankel func-

tions, and dref is a reference distance. More conveniently it can be con-

sidered S as the pressure field captured at the origin O, so that the 1/ρ

attenuation and the delay ρ/c due to the finite distance propagation, which

are reflected by Γ0(kρ) are supposed to be already modelled. By removing

the latter form (4.33), the encoding equations of a source at finite distance
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ρ become:

Bσ
mn = S · F (ρ/c)

m (ω) · Ỹ σ
mn(ϑp, ϕp), ω = 2πf (4.34)

where F (ρ/c)
m (ω) =

Γm(kρ)

Γ0(kρ)
=

m∑
n=0

(m+ n)!

(m− n)!n!

(
−ic
ωρ

)n
. (4.35)

Such a finite distance encoding involves transfer functions Fm(ω) that affect

Ambisonics components especially at low frequencies, as shown in figure

4.9. In other words by comparison with the plane wave case of (4.32): the

near field disturbs the sound field derivatives as much as the source distance

(i.e. the curvature radius) is small regarding the wavelength, and as the

derivative order m is high. [6]

Figure 4.9: Low frequency infinite boost (m× dB/octave) of Ambisonics components

due to near field effect.

Encoding format limitations

The transfer functions Fm(ω) typically reflect integrating filters (for m ≥ 1),

which are unstable by nature (infinite bass-boost shown in figure 4.9). First

order encoding may still remain practicable provided that every encoded

signal S is centred (null mean value), but it is no longer the case for higher

orders.

Not only (4.34) involves impracticable filters for virtual source encod-

ing, but since it also models the physical reality, it would imply that the

Ambisonics representation of any natural sound field may have infinite am-

plitude components. This finally means that in spite of being mathemat-

ically powerful, the currently adopted HOA encoding format is unable to

physically represent and convey (i.e. by finite amplitude signals) natural
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or realistic sound fields, since these always include more or less near field

sources.

By addressing the decoding and reproduction issues, and introducing the

loudspeaker near field modelling at this stage, the following section suggests

a key to a viable encoding format.

Wave front curvature distortion and bass-boost effect

Figure 4.10 shows the case of an encoded plane wave. Its left parts, which

report a traditional decoding, show that the synthetic wave has the expected

propagation direction from the centred listener point of view. Nevertheless,

it clearly appears that with a high (15th) order rendering, this is not a

plane wave that is reconstructed, but a spherical one, as being radiated by a

point on the loudspeaker boundary. Therefore off-centred listeners localise

the virtual source on this point and not in the direction of the original

plane wave. This wave curvature distortion seems to have little impact

on the directional effect for a centred listener. Nevertheless, even for this

position and depending on the actual array radius, the difference with a

true plane may be audible as the so-called “bass-boost effect”, and also as

an emphasised Interaural Level Difference (ILD).

Figure 4.10: Reproduction of an encoded plane wave without (left) and with (right)

loudspeaker near field compensation (NFC). 2nd order (top) and 15th order (bottom)

Ambisonics.
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Loudspeaker near field compensation

In the context of earlier first Ambisonics systems, Gerzon recommended to

compensate for the bass-boost effect due to the finite distance of loudspeak-

ers. Considering higher orders and with the more general aim to preserve

the original curvature of the encoded wave fronts, it is now suggested to

introduce the loudspeaker near field modelling into the re-encoding equa-

tion (4.29). That means that the elements Ỹ σ
mn(ϑpi, ϕpi) of the re-encoding

matrix C would have to be “multiplied” by the near field transfer func-

tion F
R/c
m (ω) of same order.5 Finally, this leads to the following decoding

operation [2, 6]:

a = D · diag

[
· · · 1

F
R/c
m (ω)

· · ·

]
· b, (4.36)

where the decoding matrix is the same as defined in (4.29). Thus, this new

decoding consists in applying a near field compensation 1/F
R/c
m (ω) to the

Ambisonics components Bσ
mn (elements of vector b) before decoding them

classically. Unlike the near field modelling transfer functions F
R/c
m (ω), filters

1/F
R/c
m (ω) are practicable and stable.

As a result, the plane wave is actually reconstructed without curvature

distortion, which is clearly illustrated for the 15th order by figure 4.10 (right-

bottom part).

Distance coding / Near Filed Control Filters

After proving that for a proper sound field reconstruction, one has to com-

pensate for the loudspeaker near field effect anyway, a reasonable question

can be why not introduce this near field compensation from the encoding

stage. As a matter of fact, it rapidly appears that combining it to the near

field modelling of the virtual source leads to apply finite amplitude transfer

functions.

The combination of near field effect (for a source distance ρ) and com-

pensation (for a loudspeakers distance R) leads to the following transfer

functions:

HNFC(ρ/c,R/c)
m (ω) =

F
ρ/c
m (ω)

F
R/c
m (ω)

. (4.37)

Figure 4.11 shows that they cause a finite, low frequency amplification m×
20 log10(R/ρ) (in dB), which is positive for enclosed sources (ρ < R) and

negative for outside sources (ρ > R). They can be practically implemented

5Where R is the loudspeakers distance from the system origin
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as stable filters called ‘Near Field Coding ’ or ‘Control ’ filters, or simply

‘NFC filters’.

Figure 4.11: NFC filters frequency responses: finite amplification of Ambisonics com-

ponents from pre-compensated Near Field Effect (dashed lines: ρ/R = 2/3; continuous

lines: ρ/R = 2 ).

Now encoding equations (4.34) are replaced by the positional encoding

equations:

B̆σNFC(R/c)

mn = S ·HNFC(ρ/c,R/c)
m (ω) · Ỹ σ

mn(ϑp, ϕp). (4.38)

This new positional encoding scheme completes the earlier, purely di-

rectional one by introducing a distance-coding module (figure 4.12). The

latter consist of a NFC filter bank, which is preferably placed before the di-

rectional gain control in order to factorise the filtering of same order group

components. It’s worth recalling that with such an encoding scheme, the

encoded sound field only requires an “ordinary” matrix decoding (4.29). [6]

Design of distance coding filters

For the above defined NFC filters is preferable a lower cost, IIR (Infinite

Impulse Response) filter implementation. It appears that the bilinear trans-

form, which is well known in digital filter design, does perfectly the work.

The following lines define the successive steps of NFC filters design strategy.

With the final aim of describing filters with second and first order sections,

their poles and zeros must be found first. For convenience, this pole-zero

extraction is preferably done directly on the analogue domain filters, before

applying the bilinear transform. So, one can start rewriting the near field
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Figure 4.12: NFC-HOA positional encoding of a virtual sound source: a distance-coding

unit (NFC filter bank) completes the directional encoding.

modelling transfer function (4.35) as the Laplace function:

F (τ)
m (s) =

m∑
n=0

(m+ n)!

(m− n)!n!
(2τs)−n, (4.39)

with respectively τ = ρ/c or τ = R/c if the matter is to simulate the virtual

source distance or to compensate for the loudspeaker near field.

Pole-zero extraction. to find the poles and zeros of filter Fm(s), it is

convenient to set X = 2τs and rewrite (4.39) as:

Fm(X) = X−mQm(X),

where Qm(X) =
m∑
n=0

(m+ n)!

(m− n)!n!
Xm−n =

m∏
q=1

(X −Xm,q).
(4.40)

While the poles of Fm(p) are clearly null, its zeros pmq appear to be related

to the complex roots Xm,q = 2τpmq (with 0 ≤ q ≤ m) of the polynomial

Qm(X), which is a particular case of the generalized Bessel polynomials.

Some approximated values for Xm,q are given in table 4.3. In the follow-

ing Xm,q roots are considered as arranged in decreasing order of imaginary

parts.
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m Roots Xm,q of Qm

1 −2

2 −3.0000± i1.732

3 −3.6778± i3.5088; −4.6444

4 −4.2076± i5.3158; −5.7924± i1.7345

5 −4.6493± i7.1420; −6.7039± i3.4853; −7.2935

6 −5.0319± i8.9853; −7.4714± i5.2525; −8.4967± i1.7350

Table 4.3: Roots of Qm up to the first six orders m.

Applying the bilinear transform. The second step is to transpose the

pole-zero filter form from the analogue (Laplace) domain to the digital do-

main (z-transform). For this purpose,the bilinear transform consist in ap-

plying the substitution p = 2fs(1− z−1)/(1 + z−1):

⇒ F τm(z) = F τm(p)
∣∣∣
p=2fs

(1−z−1)

(1+z−1)

, (4.41)

with fs being the sampling frequency. Therefore, it’s easy to write the zeros

zmq of Fm(z) in terms of the zeros pmq of the Laplace function Fm(p):

z−1mq =

1− pmq
2fs

1 +
pmq
2fs

, i.e. zmq(τ) =
1 +Xm,q/(4τfs)

1−Xm,q/(4τfs)
. (4.42)

Finally, by setting X = 2τp = α(1− z−1)/(1 + z−1), with α = 4fsτ , the

“near field compensating” digital filter can be written in the pole-zero form:

1

F
(τ)
m (z)

=
(1− z−1)m∏m

q=1

[(
1− Xm,q

α

)
−
(

1 +
Xm,q

α

)
z−1
] . (4.43)

More generally, a near field control filter Hm is formed by the ratio of

two version of (4.43) with different implicit parameters τ and τ ′.

Second and first order sections. Any mth order IIR filter can be im-

plemented under the Direct Form II (4.44), with m/2 second order sections

(or “cells”) for even m, or (m− 1)/2 second order sections plus a first order
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one for odd m:

Hm(z) =

m/2∏
q=1

bq0 + bq1z
−1 + bq2z

−2

aq0 + aq1z
−1 + aq2z

−2 ×
b
m+1

2
0 + b

m+1
2

1 z−1

a
m+1

2
0 + a

m+1
2

1 z−1

= g

m/2∏
q=1

b′q0 + b′q1z
−1 + b′q2z

−2

a′q0 + a′q1z
−1 + a′q2z

−2 ×
b′
m+1

2
0 + b′

m+1
2

1 z−1

a′
m+1

2
0 + a′

m+1
2

1 z−1
,

(4.44)

the right factor (first order cell) being present only for odd orders m – when

the product goes from q = 1 to (m− 1)/2.

In order to define the NFC filter coefficients, first consider the denomina-

tor of (4.44) as related to the “near field compensation” part: it equals the

denominator of (4.43), with τ = R/c as an implicit parameter. Each second

order cell denominator aq0 + aq1z
−1 + aq2z

−2 derives from the 1st order cells

of (4.43) that involve conjugate complex roots Xm,q and Xm,m−q+1 = X∗m,q:

aq0 = 1− 2
Re(Xm,q)

α
+
|Xm,q|2

α2
,

aq1 = −2

(
1− |Xm,q|2

α2

)
, for 1 ≤ q ≤ m/2 or (m− 1)/2

aq2 = 1 + 2
Re(Xm,q)

α
+
|Xm,q|2

α2
.

(4.45)

For odd order filters, the coefficients of the additional first order cell merely

derive from the remaining real root Xm,(m+1)/2 as follows:

a
m+1

2
0 = 1−

Xm,(m+1)/2

α
,

a
m+1

2
1 = −

(
1 +

Xm,(m+1)/2

α

)
.

(4.46)

Numerator coefficients bqi , related to the “virtual source distance coding”

part, are computed exactly the same way, but with τ = ρ/c as an implicit

parameter instead of τ = R/c. [6]
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4.2 Virtual Studio Technology

4.2.1 VST plugins overview

The Virtual Studio Technology (VST), developed at Steinberg and first

launched in 1996, allows the integration of virtual instruments and effect

processors into every software or hardware audio environment supporting

this protocol. They can be software reproductions of hardware effect units

or instruments and even new creative effect components into a VST system.

All are integrated seamlessly into the host application.

VST and similar technologies use Digital Signal Processing to implement

software tools such as digital audio synthesizer or plugins. These tools can

be employed to simulate traditional recording studio hardware. Plugins are

generally run within a Digital Audio Workstation (DAW ), enhancing the

host application with additional functionality. Most of them can be classified

as either instruments (VSTi) or effects, although there are other categories.

VST plugins generally provide a custom GUI, displaying controls similar to

the physical switches, knobs and faders of audio hardware. VST is supported

Figure 4.13: Virtual Studio Technology logo.

by a large number of audio applications: Cubase, Nuendo, Audacity, Reaper,

etc. For this reason thousand of plugins exist, both commercial and free-

ware, for any kind of usage.

In computer music the term plugin (derived from plugged in) refers to an

additional software component, to be used in applications for audio/video

production, providing audio effects or generating new sounds. In practice

it can be defined as a module containing a list of instructions for signal

processing or signal generation. The audio process implemented by the

plugin generally doesn’t work autonomously, but needs an host application

that feeds the audio input streams and receives the processed signals.6 Thus,

the host sees the plugin as a kind of “black box” with several inputs, outputs

and associated parameters. Knowing nothing about the process carried out

6Today we can also find some examples of standalone plugins.
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Figure 4.14: VST plugin working scheme.

by the plugin, the host is responsible only of its instantiation, destruction

and routing of digital audio and MIDI to and from the plugin.

The VST plugin standard is the audio plugin standard created to allow

any third party developers to create VST plugins. VST requires separate

installations for Windows, Mac OS X and Linux. The majority of VST

plugins are available for Windows having .dll file extension. But today

most of them have a Mac OS X version with .bundle file extension.

A VST plugin performs its process using the computer processor, it does

not necessarily needs dedicated digital signal processors. The host splits the

audio streams into sequential blocks and the block size can be set by the

user changing host settings. The VST-plugin maintains all parameters and

status that refer to the running process: the host does not retain information

about any data processed by the plugin as shown in figure 4.14.
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4.2.2 Introduction to VST Software Development Kit

Steinberg provides a Software Development Kit (SDK ), available on their

site www.steinberg.net, that contains a set of C++ classes based on C API.

In addition, Steinberg developed the VST GUI, another set of C++ classes,

that can be employed to build a user graphical interface, with buttons,

sliders, displays etc. These are low level C++ classes and the look and feel

still have to be created by the plugin manufacturer.

VST SDK base classes are AudioEffectX and AudioEffect. The lat-

ter is the base class, which represent VST 1.0 plugins, and has its decla-

rations in audioeffect.hpp, the implementation in audioeffect.cpp and

structure definitions in aeffect.h. The files aeffectx.h (more structures),

audioeffectx.h and audioeffectx.cpp are similar to the ones above, and

extend them to the 2.0 version specifications (see figure 4.15 for SDK ar-

chitecture). AudioEffectX is inherited by the plugin class created by the

Figure 4.15: VST plugin working scheme.

programmer , and contains several methods that can be divided mainly into

two categories:

• methods for plugin parameters handling: setting up, initialization,

values getting, displaying, tagging and mapping;

• methods for signal processing (relative to effect plugins) – essentially

processRepalcing() and processDoubleReplacing(), for hosts that

support 64-bit floating-point numbers;

The latter two form the real plugin core, where the signal processing takes

place. They take input data, apply the processing algorithm and then over-

write the output buffer. The host provides both input and output buffers

for these methods.

http://www.steinberg.net/en/home.html
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Basic files required for a VST plugin implementation are a .hpp file,

containing the plugin base class declaration, and a .cpp file containing the

plugin class implementation, where the behaviour of parameters handling

methods, processing methods and plugin variables are defined. One can use

an additional .cpp file that contains the method called by the host to create

a plugin instance otherwise defined into the just mentioned .cpp file.

4.3 Reaper DAW

Figure 4.16: An example of Reaper working environment appearance.

REAPER (Rapid Environment for Audio Production, Engineering, and

Recording) is a software for recording, editing, mixing, mastering and out-

putting audio, known as a digital audio workstation, created by Cockos. It

is distributed with an uncrippled evaluation license. It is currently available

for Microsoft Windows and Mac OS X. Reaper, like all DAW software, is

similar in function to a digital multi-track tape recorder, digital mixing desk

and effects. It implements additional features that are only possible because

the software processes an audio stream before it is needed so as to reduce

CPU peak loads.
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4.3.1 Reaper main features and layouts

This section lists the main features that Reaper has in common with today’s

most popular DAWs.

Reaper supports ASIO, Kernel Streaming, WaveOut (MME) and Di-

rectSound (WDM) for playback and recording; it is able to read and record

WAV, OGG, AIFF, Wavpack, FLAC, APE, MP3 (with the lame encoder)

and MIDI files, as well as many other formats. The reading and playback

of the most used video formats, such as AVI, MPG, MOV, is also allowed.

Reaper lets the user arrange any number of items (volume, pan controls

and envelopes) in any number of tracks, limited only by the performance

of the user’s hardware rather than the software. An easily understandable

and very usable graphic interface is provided for the user and also customiz-

able. Audio and MIDI items (clips) can be mixed within the same track and

hardware effects integration is permitted.

The company’s own plug-in and FX scripting API, called Jesusonic (JS),

are integrated within the DAW. JS effects are text files which, when inter-

preted and loaded by the DAW, function as plugins. Reaper can function

both as a ReWire7 slave and host, supporting real-time audio processing

plugins with automation in addition to JS ones. The following plugin APIs

are supported: VST and VSTi, DX and DXi (Windows only), AU (OS X

only). As many of the most used DAWs, Reaper provides also a basic user

interface for plugins that haven’t one implemented, handling the plugin ad-

justable parameters with objects that reflect the DAW’s graphic style. Is is

also allowed, for plugins with their own GUI, to switch between the latter

visualization and the one provided by the DAW.

As any other DAW, Reaper audio manipulations can be carried out in-

teracting with basic working layouts.

Editing layout. For each audio stream, or “item”, reaper displays an

amplitude time graph on which the user can manipulate the signal with

actions like split, delete, copy or move, choosing the type of manipulation

action from the “Edit” menu or using keyboard short-cuts. In Reaper the

editing is non-destructive. Edit is unique per item and do not alter the

content of the source file. So original recorded files are safe from any modi-

fication. Reaper edit layout also permit the user to set fade-in and fade-out

7ReWire is a software protocol, jointly developed by Propellerhead and Steinberg,

allowing remote control and data transfer among digital audio editing and related software.

Originally appearing in the ReBirth software synthesizer in 1998, the protocol has evolved

into an industry standard.
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effects acting directly on the signal graph and choosing the fade curvature

between six different ones (see figure 4.17). One can also increase or decrease

the amplitude of the whole item by simply dragging the mouse on the item

graph. All items parameters can be automated “drawing” its values time

trajectory on the specific parameter associated graph.

Figure 4.17: Reaper typical time graph in edit layout where the user is going to change

fade-out envelope shape.

Mixing layout. This one consist in a series of graphical objects such as

knobs, sliders, buttons, Vu-meters that one can use to implement some basic

actions. Each item has its proper channel-strip that contain all the needed

objects to perform any traditional mixing action on it. The main controls

are for muting the item, soloing it, change its volume, its panning, enabling

the recording. The button “Env”, available in each item panel, shows the

list of parameters that can be chosen to be automated.

Mixing panels can be placed both on the top part of the layout, called

“Track list”, and on the bottom one, called “Mixer”, where the default

view shows also the mixing controls for the “Master channels”, so called in

analogy with real mixers (for more details see figure 4.18).

Reaper allow user to customize the mixing layout deciding where to place

each track panel and even to hide it. It also possible to select some controls

to be visible or not by choosing them from an available “Mixer options” list.

For example it can be chosen to visualize in every item panel the names of

applied effects together (or not) with effect parameters controllers. Thus

different mixer layouts can be set by the user. Some of them are shown in

figure 4.19.

4.3.2 Additional features compared with other DAWs

The main differences between Reaper and other DAWs, such as Nuendo

and Cubase, are audio routing special capabilities. In Reaper each item
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Figure 4.18: Reaper Track List (in the blue rectangle) and Mixer (in red rectangle).

can receive several items as inputs and send its output to each item in the

project. This action can be implemented using the “IO” button present in

each item mixing panel (see figure 4.20). Clicking that button causes the

routing for that track to be displayed in a “Track Routing window” shown

in figure 4.21. The exact contents of an item Track Routing window will

vary according to the project structure and DAW’s hardware set-up (e.g.

sound card and audio devices, MIDI devices etc.). Therefore, the window

display should be similar to that shown in figure 4.21, but not necessarily

identical. Notice in particular:

• Master/Parent Send – Enabling this ensures that the track’s output

will be directed to the Master.

• Audio Hardware Outputs – In addition to (or instead of) directing

output to the Master Bus, it is possible also to direct output of any

track directly to Hardware Outputs on the user audio device. If au-

dio device has multiple outputs, this can be useful, for example, for

creating a separate headphone mix, or as series of separate headphone

mixes.

• MIDI Hardware Output – Useful to direct MIDI output to an external

device or to the Microsoft GS Wavetable Synth, or any other synthe-

sizer.

• Receives – Enabling project tracks output to be routed via a “Receive”

to any other.
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Figure 4.19: 3 Different mixer layouts

(a) Mixer 1

(b) Mixer 2

(c) Mixer 3

• Sends – Enabling output to be routed via a “Send” from any track to

any others.

When a send/receive is created, the user is are automatically presented
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Figure 4.20: Reaper control panel in a track list where the user is going to click on IO

button.

Figure 4.21: Track Routing window.

with volume and pan faders which can be used to control this. It can

be also specified whether to send/receive audio output, MIDI output,

or both.

Another interesting feature is the “Routing Matrix” (see figure 4.22(a)), a

window that display a summary table of the overall project’s track routing.

The user can act directly on this table to change tracks direction and faders,

for example, send levels and panning by just right clicking on the specific

routing relation cell.

4.3.3 Reaper relevant features for AmbiSound-Spatializer

project

The above mentioned features have fixed Reaper as the appropriate DAW

to be used as host for AmbiSound plugin. In fact, it has been implemented

to take advantage of Reaper advanced routing capabilities, especially those

regarding plugins send/receive options.

Reaper is up to now the only DAW able to see explicitly all inputs and

outputs of multichannel plugins and to handle easily the related routing set-

up. After the user has added a plugin to a project item (or items group), he

can route the track different inputs to each plugin input channel by using
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Figure 4.22: Routing Matrix

(a) Routing Matrix window

(b) Track routing controls

the plugin “Pin Connector” window shown in figure 4.23. The same tool al-

lows also the routing of plugin output channels to the item outputs. Hence,

Reaper supports plugins that can accept (and handle) more than one track

as input, providing different output streams for each plugin output channel.

This means that one can process N tracks to create multiple channel signal

feeds using a single plugin, decreasing the processor workload. The men-

tioned action reflects perfectly the concept of audio mixing denoting Reaper

the most suitable host for AmbiSound plugin.

To complete this section, some application examples are presented show-

ing how to use Reaper introduced capabilities to implement actions con-

nected to the 3D mixing employing AmbiSound plugin. The next two ex-

amples extracted from [23] illustrate in details how to route a multichannel

track outputs to a multichannel plugin for signal bands splitting and how

to implement a surround mix in 5.1 format.
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Figure 4.23: Plugin Pin Connector window.

Splitting Channels.

1. Create a Reaper project, insert a new audio track and save it with

.RRP extension.

2. Create other three tracks – calling them Ghost Tracks – to mirror

each of the three frequency bands the first inserted track is going to

be split into. Create these three tracks and label them Low, Medium,

and High. See illustration in figure 4.24.

Figure 4.24: Example of track list for Splitting Channels application.

3. Display the IO Window for the first track. Set the number of Channels

(near the top) to 6, and create sends to each of the just created three

tracks.
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4. Send Audio from Channels 1/2 to the Low track, Channels 3/4 to the

Medium track, and Channels 5/6 to the High track. (see figure 4.25).

5. Now open the FX window for the first track and insert the JS LOSER/3-

BandSplitter (a Reaper plugin).

Figure 4.25: Split Channels application send/receive assignments.

6. Set the first frequency fader to about 200 Hx and the second to about

2000 Hz (see figure 4.26).

Figure 4.26: Plugin set-up in Splitting Channels application.

7. Solo the Low track and play. Notice that only the Low frequencies are

heard. Repeat the operation also for Medium and High track.
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8. Finally experiment adjusting the faders in the 3 Band Splitter and

playing back, until a satisfied band mixing isn’t reached.

Surround Mixing. The diagram in figure 4.27 illustrates one way that

one could set up a project template ready for Surround Mixing, in this

case using 5.1 showed in figure 4.28. This diagram represents the following

set-up:

Figure 4.27: Surround Mixing diagram.

• Four special tracks have been set up to act as Surround Busses. Each

of these tracks is defined as having 8 channels.

• Sends are established from every other track (or perhaps folder) to each

of these busses. All receives to the Front L/R bus are thru channels

3/4, all receives to the Rear L/R bus are thru channels 5/6, and so

on.

• All tracks and the four special busses have their output directed to the

Master Track.

• Assuming a sound-card with sufficient audio outputs, all six speakers

are physically connected to each one of six audio outputs.
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Figure 4.28: 5.1 format scheme.

• The Master is set up as an eight channel Master, with outputs routed

to the various speakers as shown right.

• Mixes for the various output can be controlled using the Routing win-

dows of the four special bus tracks.

• Relative overall output levels to each and all of the speakers can be

controlled from the Master Track’s output window, shown in figure

4.29.

• FX and plug-ins within the Master Track can now be assigned to any

or all of various hardware outputs.

• A separate stereo mix can be still created, if wished, in this example

using Channels 1 and 2 for this purpose.
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Figure 4.29: Surround Mixing application send/receive window.
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Chapter 5

System Architecture

To implement 3D audio mixing, once a DAW supporting VST plugins (prefer-

ably Reaper) has been properly set, one can make the host instantiate the

AmbiSound-Spatializer simply selecting it from the plugin menu. Then a

window containing all plugin controls is displayed as GUI.

AmbiSound control window will appear, apart from the layout graphical

style decided by the specific host, as the one shown in figure 5.1.

Figure 5.1: AmbiSound - Spatializer GUI provided by Reaper.

The user is allowed to set the virtual position of each input source ad-

justing the related elevation, azimuth or distance slider. Then AmbiSound

provides the 3D source spatialization using Ambisonics technique and gen-

erates N output signals to feed the N -loudspeakers reproduction system.
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The following sections will illustrate the architecture of the developed

software starting from an high level system overview. Then each macro-

block will be described in details with its functions and interactions.

5.1 AmbiSound-Spatializer : top level view

Summing up what has been said in Sec. 4.2, every VST plugin can be iden-

tified with a process that runs inside an host application for audio treat-

ment. Narrowing this definition to AmbiSound plugin the following sys-

tem diagram can be introduced. Figure 5.2 shows an high-level scheme of

Figure 5.2: AmbiSound-Spatializer top level scheme.

AmbiSound-Spatializer and specifies its interaction with the host, the user

and the soundboard (or reproduction system).

Up to 32 input sources can be routed toward each one of AmbiSound 32

inputs when the plugin is inserted into a DAW work session. Multiple input

routing can be handled only if the host provides this kind of capability.

The user can control the sources virtual positioning in the surrounding
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3D environment acting on AmbiSound-Spatializer GUI, setting the plugin

parameters values such as: sources azimuth, elevation and distance from

the listening point. Hence the plugin accepts as inputs also the parameters

values for each sources positioning (up to 96 = 32 × 3) and other 7 values

from other GUI controls that will be discussed on next section.

AmbiSound process generates up to 36 audio signals routed on 36 audio

tracks respectively. These tracks are used to feed an Ambisonics 3D repro-

duction system employing the soundboard physical outputs, cabled with a

maximum of 36 loudspeakers.

5.2 Plugin architecture overview

In this section AmbiSound-Spatializer architecture is introduced. The scheme

reported in figure 5.3 shows the basic structure of the developed software.

Figure 5.3: AmbiSound-Spatializer architecture.

AmbiSound is defined as a C++ class inherits AudioEffectX class from
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VST SDK. All methods and variables declared in ambiSound class are in-

volved in the plugin processing. ambiSound constructor (see the pseudo-code

below) creates a plugin instance defining 32 inputs and 36 outputs to be pro-

cessed (when activated by the user).

// ambiSound Class Constructor

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ambiSound : : ambiSound ( ) : AudioEffectX

( audioMaster , kNumPrograms , kNumParameters ) {
setNumInputs ( 3 2 ) ;

setNumOutputs ( 3 6 ) ;

setUniqueID ( kUniqueId ) ;

canProcessReplac ing ( ) ; // supports r ep l a c i n g

// output

canDoubleReplacing ( ) ; // supports double

// p r e c i s i o n p ro c e s s i ng

i n i t ( ) ; // does a l l p lug in v a r i a b l e s

// i n i z i a l i z a t i o n

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Then the init() routine is recalled to load system default settings. Inside

this method setLoudspPos() is used to read “loudspPos.dat” file (see

figure 5.3 and 5.4) created by the user. This file specifies the reproduction

system layout: loudspeakers distance from the listening point, number (up

to 36) and positions in terms of azimuth and elevation. Reading these data,

the method setLoudspPos() creates the N × 2 matrix loudspPos to store

loudspeakers position values inside it.

Figure 5.4: “loudspPos.dat” file content example.

Other two basic routines, already declared in AudioEffectX class, are

setParameter() and processReplacing() (or processDoubleReplacing()

for host that supports 64-bit precision in computations). These methods

must be overwritten in ambiSound class to implement plugin specific ac-

tions (see figure 5.3).

setParameter() and processReplacing() are run by the host on two

separate threads. The first takes as inputs the index of the parameter to

be set and the related value. So an integer index must be assigned to
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each plugin parameter to be identified. AmbiSound parameters handled

by setParameter() are:

• azimuth, elevation and distance for each one of the 32 input sources;

• azimuth, elevation and distance of the entire system, to be used for

global rotation and distancing actions;

• sources number, used to select the number of active sources, i.e. the

ones really processed by the plugin;

• NFC filtering switch, used to enable/disable NFC function and to set

the reproduction system distance which filter impulse response is com-

puted on;

• “loudspPos.dat” file reading enabler;

• An indicator of the mathematical technique employed to invert C ma-

trix.1

The host recalls setParameter() every time the user change one of these

parameters value using GUI controllers (sliders). The variable corresponding

to the controller index is then set to the controller value, as shown in the

pseudo code below.

// setParameter ( ) r ou t in e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ambiSound : : setParameter ( index , va lue ){

switch ( index ){
case 0 : numSources = in t ( va lue ) ;

break ;

case 1 : nfcSwitch = in t ( va lue ) ;

break ;

case 2 : r eadF i l eF lag = in t ( va lue ) ;

break ;

case 3 : i nve r s eF l ag = in t ( va lue ) ;

break ;

case 4 : 5 : 6 :

g loba lPos [ index −2] = value ;

break ;

d e f au l t :

vector Index = ( index − 7 )/3 ; // f i nd what source has to be s e t

po s i t i on Index = ( index − 7)%3; // f i nd what source parameter has

// to be s e t

sourcePos [ vector Index ] [ po s i t i on Index ] = value ;

break ;

}
}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1Matrix of loudspeakers spherical harmonic components.
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Thus setParameter() updates values stored in theK×3 matrix sourcesPos

that contains the virtual position values for each one of the activated K-

sources. setParameter() updates also globalPos vector that contains the

three values of the entire system configuration and the integer variable

numSources; nfcSwitch; readFileFlag and inverseFlag whose task will

be shown later on.

All these variables matrices and vectors are created and initialized with

default values by init() method (recalled in ambiSound constructor) and

together with the above mentioned setLoudpsPos() method are employed

in processReplacing() routine.

The latter takes in input two pointers to audio buffer vectors for input

and output samples frames respectively. After the entire process – involving

the input audio buffers and others methods and variables shown in details on

next sections – has been carried out, processReplacing() rewrites the out-

put buffers. The convention, used for processReplacing() scheme in the

block diagram that shows AmbiSound architecture in figure 5.3, is based on

the analogy with a typical analogue system block diagram that has in-coming

inputs and out-coming outputs. As already told processReplacing(), in-

stead, takes as arguments both input and output buffers pointers overwriting

the output buffer. Then the host will read the overwritten audio buffer.

5.3 Plugin process architecture

A more correct architecture for AmbiSound’s processReplacing() routine

is illustrated in figure 5.5.

All variable shown in the scheme top part are employed in same way by

the routine to implement the plugin process - Ambisonics mixing. Apart

from those already mentioned in last section, they are:

• sourcesMatrix, a 16×K matrix (denoted with Y) that contains the

spherical harmonics functions of all activated sources up to the 3rd

order (M = 16) that have to be computed before the output replacing

process;

• loudspMatrix, a N×16 matrix (C† or CT ) used by the plugin to store

the Ambisonics 3rd order decoding matrix, computed for the specific

reproduction system before the output replacing process;

• gainsMatrix, a N × K matrix (denoted with G) used to store the

result of the matrix product C† × Y. Hence the value stored into
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Figure 5.5: AmbiSound’s processReplacing() method external scheme.

gainsMatrix j-th row and i-th column is obtained as the scalar prod-

uct between C† j-th row and Y i-th column and represent the gain

coefficient to be applied to the i-th input to determine its contribute

to the j-th output signal generation. These gain coefficients are com-

puted before the plugin output replacing process;

• denCoeff, a 3×3 lower triangular matrix (with non-existing zero cells)
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that contains the NFC filter denominator coefficients that are eventu-

ally computed and uploaded before the output replacing process;

• numCoeff, a 3D vector with K cells, each one containing the same

structure as denCoeff, filled with the NFC filter numerator coeffi-

cients computed for each input sources. When the user change a source

distance value, the related NFC filter numerator coefficients are com-

puted – basing on the new distance value – before the output replacing

process.

From what has been told since now, the processReplacing() method

can be seen as divided into two subsections.

The first, before the actual output replacing process, initializes, creates,

updates and checks all the conditions useful for the successive section.

The latter processes each input buffer filled with an audio samples frame.

It writes the results into each output buffer and keeps on performing this

operation until the frame end. This condition is checked after every replacing

cycle is completed (output buffers are totally rewritten) using sampleFrames

integer variable, which keeps track of how many samples in each frame are

left to be processed.

The flow diagram in figure 5.6 shows what are the specific actions taken

by processReplacing() in both “Init” and “Process” phase. The following

paragraphs illustrate in details the methods introduced in figure 5.6 describ-

ing also their interaction.

setLoudspPos(). Recalled if loudspPos.dat file reading is enabled by

readFileFlag. This method, already discussed in Sec. 5.2, will update the

layout system configuration resetting values in loudspPos matrix (see the

pseudo-code below).

// setLoudspPos ( ) r ou t in e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ambiSound : : setLoudspPos ( ){

open f i l e = ‘ ‘ loudspPos . dat ’ ’ ;

l oudspDist = f i l e [ 0 ] ;

numLoudsp = f i l e [ 1 ] ;

f o r ( i =0; i<=(numLoudsp ) ; i++){
loudspPos [ i−th row]= i−th loudspeaker f i l e data ;

}
setLoudspMatrix ( ) ;

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Figure 5.6: AmbiSound’s processReplacing() method internal scheme.

setLoudspMatrix(). Recalled in setLoudspPos(), computes the matrix

C of loudspeakers spherical harmonic functions for the new system layout

configuration. Then computes the Ambisonics decoding matrix D (= C†)

storing its values in loudspMatrix.

As shown in the pseudo-code below D computation technique can be se-
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lected by the user between the usual C pseudo-inverse or a simple C trans-

position. The first is implemented using the pinv() routine of Armadillo

API2 [24]. This one takes respectively the inverse, left-inverse, right-inverse

of a matrix basing on its dimensions.

// setLoudspMatrix ( ) r ou t in e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ambiSound : : setLoudspMatrix ( ){

reset loudspMatrix ;

f o r ( i =0; i<=(numLoudsp ) ; i++){ // computation o f t rans (C)

compute spharm = i−th loudspeaker sph . harmonic f un c t i on s ;

loudspMatrix [ i−th row ] = spharm ;

}
i f ( i nve r s eF l ag == 1){
C = trans ( loudspMatrix ) ;

loudspMatrix = pinv (C) ;

}
}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

setNfcNumFilterCoeff() & setNfcDenFilterCoeff(). These methods

are recalled when the user change respectively a source distance or the loud-

speaker system distance. When a source distance is set into a new value,

setNfcNumFilterCoeff(), that takes as arguments the source id and the

new distance value, computes NFC filter numerator coefficients for the spe-

cific source and updates the related numCoeff vector cell (see the pseudo-

code below).

// NfcNumFilterCoeff ( ) r ou t in e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ambiSound : : NfcNumFilterCoeff ( sourceIndex , sourceDi s t ){

c = 340 m/ s ;

f s = Host sample f requency ;

sourceDi s t += globa lPos [ 2 ] ;

alpha = (4∗ f s ∗ sourceDi s t )/ c ; // f a c t o r introduced in NFC f i l t e r des ign

c o e f f i e n t s [ ] ;

i = sourceIndex ;

compute H1 bCoe f f i c i en t s ( alpha ) ;

c o e f f i e n t s = H1 bCoe f f i c i en t s ;

numCoeff [ sourceIndex ] [ 0 ] = c o e f f i c i e n t s ;

compute H2 bCoe f f i c i en t s ( alpha ) ;

c o e f f i e n t s = H2 bCoe f f i c i en t s ;

numCoeff [ sourceIndex ] [ 1 ] = c o e f f i c i e n t s ;

2A C++ API for linear Algebra computations based on Lapack and Blas libraries.
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compute H3 bCoe f f i c i en t s ( alpha ) ;

c o e f f i e n t s = H3 bCoe f f i c i en t s ;

numCoeff [ sourceIndex ] [ 2 ] = c o e f f i c i e n t s ;

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Similarly as loudspeakers distance is changed setNfcDenFilterCoeff().,

taking the new distance value as argument, provides computing and upload-

ing new NFC filter denominator coefficients into denCoeff matrix as in the

pseudo-code below.

// NfcDenFi l t e rCoe f f ( ) r ou t in e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ambiSound : : NfcDenFi l t e rCoe f f ( d i s t ance ){

c = 340 m/ s ;

f s = Host sample f requency ;

alpha = (4∗ f s ∗ d i s t ance )/ c ; // f a c t o r introduced in NFC f i l t e r des ign

c o e f f i e n t s [ ] ;

compute H1 aCoe f f i c i e n t s ( alpha ) ;

c o e f f i e n t s = H1 aCoe f f i c i e n t s ;

denCoef f [ 0 ] = c o e f f i c i e n t s ;

compute H2 aCoe f f i c i e n t s ( alpha ) ;

c o e f f i e n t s = H2 aCoe f f i c i e n t s ;

denCoef f [ 1 ] = c o e f f i c i e n t s ;

compute H3 aCoe f f i c i e n t s ( alpha ) ;

c o e f f i e n t s = H3 aCoe f f i c i e n t s ;

denCoef f [ 2 ] = c o e f f i c i e n t s ;

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The coefficients computational technique implemented in C++ within

these two methods has been fully described in Sec. 4.1.3 and makes use of

Table 4.3 values to obtain filter zeroes.

setSourcesMatrix(). Always recalled in processReplacing() before the

‘while’ cycle, it computes values to be stored in sourcesMatrix. Starting

from each sources azimuth and elevation value stored in sourcesPos matrix,

the spherical harmonic functions are computed according to the formulas

introduced in Table 4.1. Then all c vectors (defined in Section 4.1.2) are

stored as sourcesMatrix columns (see the following pseudo-code).



78 Chapter 5. System Architecture

// setSourcesMatr ix ( ) r ou t in e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ambiSound : : s e tSourcesMatr ix ( sou r c e s ){

reset sourcesMatr ix ;

f o r ( i =0; i<=(sourc e s ) ; i++){ // computation o f Y

// va r i a b l e s used in spharm computation

azimuth = sourcesPos [ i ] [ 0 ] + g loba lPos [ 0 ] ;

e l e v a t i o n = sourcesPos [ i ] [ 1 ] + g loba lPos [ 1 ] ;

a t t enuat ion = 1/( sourcesPos [ i ] [ 2 ] + g loba lPos [ 2 ] ) ;

compute spharm = i−th source sph . harmonic f unc t i on s ;

sourcesMatr ix [ i−th c o l ] = spharm ;

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

From now on the vector c of the i-th source spherical harmonic functions

will be denoted with yi to avoid the confusion with those related to loud-

speaker spherical harmonic function. Hence sourcesMatrix will be often

denoted as matrix Y.

setGainsMatrix(). Always recalled in processReplacing() before the

‘while’ cycle to implement the matrix product between loudspMatrix (D =

C†) and sourcesMatrix (Y). The values obtained are then stored into

gainsMatrix (G) as shown in the routine’s pseudo-code below.

// setGainsMatr ix ( ) r ou t in e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ambiSound : : setGainMatrix ( sources , n fcFlag ){

reset gainsMatr ix ;

row [ ] ;

i f ( n fcFlag=0){
f o r ( j =0; j<=(numLoudsp ) ; j++){// pinv (C) x Y

f o r ( i =0; i<=(sourc e s ) ; i++){// ‘ ‘ expanded ’ ’ s c a l a r product

compute g = . . .

. . . expand loudspMatrix [ j−th row ]∗ sourcesMatr ix [ i−th c o l ] ;

row [ i ] = g ;

}
gainsMatr ix [ j−th row ] = row ;

}
}
e l s e {

f o r ( j =0; j<=(numLoudsp ) ; j++){// pinv (C) x Y

f o r ( i =0; i<=(sourc e s ) ; i++){// usua l s c a l a r product

compute g=loudspMatrix [ j−th row ]∗ sourcesMatr ix [ i−th c o l ] ;

row [ i ] = g ;

}
gainsMatr ix [ j−th row ] = row ;

}
}

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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The gji coefficient of gainsMatrix (placed at the j-th row i-th column)

represents the gain factor to be applied on the i-th input signal to obtain

its contribute to the j-th loudspeaker signal feed generation.

This implementation of Ambisonics technique differs a little from the

one explained in Sec. 4.1.2 for the order signals encoding and decoding are

taken. In fact Ambisonics theory suggests to keep the encoding operation

(yis(t)i = bi) separated from the decoding one: C†bi = oi, where bi is

the Ambisonics signals vector defined in Sec. 4.1.2 for the i-th input signal

s(t)i. This product gives the vector oi whose components are the contribute

of the i-th source to each one of the N system loudspeakers feeding signal.

To determine the total loudspeaker feeds vector o (displayed as outputs in

figure 5.6), the following sum has to be computed:

o =

K∑
i=1

oi, (5.1)

so that o j-th component is obtained summing up all the j-th components

of vectors in (5.1) sum’s argument.

Implementing this technique in AmbiSound processReplacing() rou-

tine requires to do the following steps into the ‘while’ cycle – which keeps

busy the computer processor: for each source compute

1. Ambisonics signals bi = yi · si(t);

2. its outputs contribute oi = C†bi;

3. the total output signals o += oi.

Thus (16 +K2 ·N) ·K = 16K +K3N multiplications are computed in each

cycle.

The actual technique employed in AmbiSound-Spatializer is more com-

pact and permits to keep the most part of Ambisonics encoding and decoding

operations before the ‘while’ cycle (output replacing) decreasing the proces-

sor usage. In fact, once G = C† × Y is computed in setGainsMatrix(),

the only operation left to be done into the ‘while’ cycle is the product G× s
3 which implies a computation of NK2 multiplications.

The scheme in figure 5.7 compares the operational stages for the two

different Ambisonics techniques.

What follows is the demonstration that these two technique are equiva-

lent.

3s denotes the input signals vector



80 Chapter 5. System Architecture

Figure 5.7: Two possible VST plugin implementations of Ambisonics encoding/decod-

ing technique: the first, usual technique, requires more multiplications in the plugin

‘while’ cycle than the latter.

Starting from Ambisonics components of the i-th source signal, the en-

coding is obtained with:

bi = yi · si(t), (5.2)

where yi is the vector of the spherical harmonic functions computed up to the

3rd order basing on the virtual position set for the i-th source. The N -dim

vectors oi and o, already defined in (5.1), are reported here for convenience:

oi = C†bi =
[
o1i o2i · · · oji · · · oNi

]T
, (5.3)

and o =

K∑
i=1

oi, (5.4)

where K represents the number of active input signal.
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Substituting oi with (5.3) and using (5.2) the expression (5.4) can be

written as

o =
K∑
i=1

C†bi =
K∑
i=1

C†(yi · si(t))

= C†(y1 · s1(t)) + C†(y2 · s2(t)) + · · ·+ C†(yK · sK(t)).

(5.5)

Now defining the i-th addend of (5.5) as the N -dim vector gi = C†yi,

expression (5.5) becomes

o = g1 · s1(t) + g2 · s2(t) + · · ·+ gK · sK(t),

that can be written in a more compact form using matrix formalism:

o = G′s, (5.6)

where G′ columns are vectors g1,g2, . . . ,gK, and s components are input

signals s1(t), s2(t), . . . , sK(t).

Having defined C† as the Ambisonics decoding matrix D (loudspMatrix),

and Y (sourcesMatrix) as the matrix whose K columns are the spherical

harmonics vectors y1,y2, . . . ,yK related to each source signal, one can state

that

G′ =

 | | |
g1 g2 · · · gK

| | |


=

 C†

×
 | | |

y1 y2 · · · yK

| | |


= C† ×Y.

That is also the way G (gainsMatrix) has been defined.

nfcFilter(). Recalled inside the ‘while’ cycle of processReplacing()

routine when NFC filtering is enabled by nfcSwitch. This method imple-

ments near field compensation on input signals before they are converted

in loudspeakers feeds. From the scheme introduced in Figure 4.12 (here re-

ported for convenience) one can deduce that each source must be filtered

separately with three different filters (as the encoding/decoding order):

HNFC
1i (ω); HNFC

2i (ω); HNFC
3i (ω) , for the i-th source.
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Figure 5.8: NFC-HOA positional encoding of a virtual sound source: a distance-coding

unit (NFC filter bank) completes the directional encoding.

This is the reason of choosing the storage structures previously described

for these filter coefficients.

Hence nfcFilter() takes as arguments the signal to be filtered and the

filter type index. The filtering operation is then implemented using the

relation:

SNFCmi (ω) = HNFC
mi (ω) · Si(ω).

This is implemented in the time domain with its related difference equation

and solved for sNFCmi (t) term, that represents HNFC
mi filter output. A generic

form of this equation is (written in discrete time n):

sNFCmi (n) =
b0
a0
si(n) +

b1
a0
si(n− 1) +

b2
a0
si(n− 2) + · · ·

+
a1
a0
sNFCmi (n− 1) +

a2
a0
sNFCmi (n− 2) + · · · ,

where all coefficients computation has been already defined in Sec. 4.1.3.

This filtering technique requires the storage of filter input and output p

past samples, with p specified by the filter order. For this purpose two stor-

age matrices (pastInsMatrix and pastOutsMatrix) have been used within

nfcFilter() method. Thus another input argument is used by the latter

to index correctly these matrices (see the following pseudo-code).



5.3. Plugin process architecture 83

// n f c F i l t e r ( ) r ou t in e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f i l t S i g n a l ambiSound : : n f c F i l t e r ( pastOutsIndex , s i gna l , f i l t e r I n d e x ){

f i l t S i g n a l ;

i = pastOutsIndex ;

j = f i l t e r I n d e x ;

switch ( j ){ // convo lut ion (h(n)∗ s i g n a l (n−i ) )

case 0 : f i l t S i g n a l = . . .

. . . convolve s i gna l , past InsMatr ix [ i ] , pastOutsMatrix [ i ]

with numCoeff [ i ] [ j ] , denCoef f [ j ] ; // h1 (n)

update pastInsMatr ix ;

update pastOutsMatrix ;

break ;

case 1 : f i l t S i g n a l = . . .

. . . convolve s i gna l , past InsMatr ix [ i ] , pastOutsMatrix [ i ]

with numCoeff [ i ] [ j ] , denCoef f [ j ] ; // h2 (n)

update pastInsMatr ix ;

update pastOutsMatrix ;

break ;

case 2 : f i l t S i g n a l = . . .

. . . convolve s i gna l , past InsMatr ix [ i ] , pastOutsMatrix [ i ]

with numCoeff [ i ] [ j ] , denCoef f [ j ] ; // h3 (n)

update pastInsMatr ix ;

update pastOutsMatrix ;

break ;

}

r e turn f i l t S i g n a l ;

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

As already shown in Sec. 4.1.3 the Ambisonics signals achievable from

a near field compensated source are computed multiplying each NFC filter

output for the source spherical harmonic functions of order corresponding

to the specific filter index. This means that, when NFC filter is enabled, the

i-th source’s spherical harmonic functions, in vector yi, aren’t multiplied for

the same si(n) signal. The multiplication can be split – for the 3rd case –

into four sub-multiplication that give the following near field compensated

Ambisonics signals b̆NFCi for the i-th source:
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b̆NFCi =



WNFC
i

XNFC
i

Y NFC
i

ZNFCi

RNFCi

SNFCi

TNFCi

UNFCi

V NFC
i

KNFC
i

LNFCi

MNFC
i

NNFC
i

ONFCi

PNFCi

QNFCi



,

obtained from the ‘split filtering’

s0i
NFC = Y 1

0 si(n) = si(n) = Wi = WNFC
i ,

s1i
NFC =

Y +1
11

Y −111

Y 1
10

 sNFC1i (n) =

XNFC
i

Y NFC
i

ZNFCi

 ,

s2i
NFC =


Y +1
22

Y −122

Y +1
21

Y −121

Y 1
20

 sNFC2i (n) =


RNFCi

SNFCi

TNFCi

UNFCi

V NFC
i

 ,

s3i
NFC =



Y +1
33

Y −133

Y +1
32

Y −132

Y +1
31

Y −131

Y 1
30


sNFC3i (n) =



KNFC
i

LNFCi

MNFC
i

NNFC
i

ONFCi

PNFCi

QNFCi


.

This splitting cause a little modification of the previously described tech-
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nique employed to encode/decode a signal in AmbiSound plugin. When NFC

filters are enabled, the computation of gainsMatrix (G) and consecutively

of the loudspeakers feeds (G × s) are simply split or “expanded” in four

parts. Hence, after being filtered, s dimension is quadruplicated obtaining

sNFC =



s1(n)

sNFC11 (n)

sNFC21 (n)

sNFC31 (n)

s2(n)

sNFC12 (n)

sNFC22 (n)

sNFC32 (n)

...

sK(n)

sNFC1K (n)

sNFC2K (n)

sNFC3K (n)



.

This requires also an expantion of matrix G = C† ×Y, obtained splitting

the scalar product cj
† ·yi (where cj

† is C† j-th row and yi is Y i-th column)
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into the following four sub-scalar products:

g
(0)
ji = c†0 · y0;

g
(1)
ji =

[
c†1 c†2 c†3

]y1y2
y3

 ;

g
(2)
ji =

[
c†4 c†5 c†6 c†7 c†8

]

y4
y5
y6
y7
y8

 ;

g
(3)
ji =

[
c†9 c†10 c†11 c†12 c†13 c†14 c†15

]


y9
y10
y11
y12
y13
y14
y15


.

Hence the term gji of G non-expanded matrix is replaced with the row

vector [
g
(0)
ji g

(1)
ji g

(2)
ji g

(3)
ji

]
= Gji.

With this procedure one can obtain a G matrix with dimensions N×4K

G =


G11 G12 · · · G1K

G21 G22 · · · G2K
...

... · · ·
...

GN1 GN2 · · · GNK

 ,

that can be correctly multiplied for sNCF obtaining loudspeaker feeds for a

reproduction system compensated from near field effects.

Linear Combination: G×s. Inside processReplacing() routine ‘while’

cycle, after being eventually filtered, the input sources vector s is multiplied

by the gainsMatrix G to obtain loudspeakers feeds vector o.
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Testing and evaluation

AmbiSound plugin has been tested using the Ambisonics system installed

at ‘Laboratorio di Elaborazione e produzione dei segnali Audio e Musicali’

of ‘Politecnico di Milano’ in Como.

The following sections describe the test performed on the system trying

to define and evaluate the software behaviour as far as the reproduction

system concerns.

6.1 AmbiSound-Spatializer testing

6.1.1 System overview

Figure 6.1 shows the Ambisonics reproduction system installed in the above

mentioned laboratory recording room.

The system employs 12 loudspeakers arranged in hemispherical fashion

displaced at 1.30 meters away from the origin (sweet-spot). 8 loudspeakers

are placed at elevation 0◦, approximately at same height of the listener head

and 4 loudspeakers are placed at elevation 45◦ above the listener.

Reaper DAW has been used as host for the plugin testing. Each test

has been implemented within a different Reaper 3D mixing session where

the AmbiSound has been applied to a single empty track that receives the

audio sources as inputs and sends the processed outputs to 12 empty output

tracks. Then each output track is routed to the related input channel of the

external sound-device used to send audio signals to the loudspeakers.

6.1.2 Tests realization

In order to test AmbiSound 34 listeners have been involved once a time to

answer a multiple-choice test realized with four questions, each one with
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Figure 6.1: Ambisonics reproduction system installation in the recording room of the

sound laboratory‘Laboratorio di Elaborazione e produzione dei segnali Audio e Musicali

of ‘Politecnico di Milano’ in Como.

Figure 6.2: Ambisonics reproduction system plan.

four possible answers, two of them completely wrong and only one correct.

The fourth choice, similar to the correct one, is introduced to confuse the

listener. Therefore, if it is taken as correct, it can still be considered for the

system positive evaluation.
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ID azimth(◦) elevation(◦)

1 40.0 0.0

2 67.5 0.0

3 112.5 0.0

4 157.5 0.0

5 202.5 0.0

6 247.5 0.0

7 292.5 0.0

8 −22.5 0.0

9 135.0 45.0

10 −135.0 45.0

11 −45.0 45.0

12 45.0 45.0

Table 6.1: System loudspeakers positions.

The test consist in proposing to the listener four 3D spatialized audio

samples (one for each question). The listening of each sample will be re-

peated 2 times before answering, one with the listener inside the sweet-spot

and one outside. So the same question could be answered in two different

ways for the two different positions.

The following paragraphs describe tests implementations and questions.

Test 1. A video track has been added together with an audio track into

a Reaper session. The video shows four little spheres of different colours

(white, yellow, blue and red) that move along different trajectories. Am-

biSound has been set to take as input a beaten 440 Hz sinusoid and spatialize

it to follow one of the four sphere trajectories. By watching the video and

hearing the spatialized track the listener has to understand which sphere

has been rendered.

Test 2. A beaten 440 Hz sinusoid has been spatialized using AmbiSound

to simulate a very fast circular trajectory around the listener (40 m/s for

20 m perimeter). He has to indicate which type of trajectory (Test 2/a) he
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thinks to have heard between those shown in figure 6.3 and how many spins

the source has done around him (Test 2/b).

Figure 6.3: Test 2 possible choices.

Test 3. Six audio tracks have been added into a Reaper session to be

used as input sources for the plugin. Five of them are street environment

recordings and are virtually positioned in different places around the listen-

ing point. The sixth is a police siren that is spatialized to follow a specific

trajectory, around the listener, between those in figure 6.4. The listener has

to indicate which type of trajectory he thinks to have heard.

At the end of this test each listener has been asked to describe the

feeling of immersion, inside the rendered sound scene, after having heard

once again the system reproduction, this time having disabled the NFC

filtering (enabled in all tests mixing). Therefore, each listener has also been

asked to do a comparison of the immersion degree between the last and the

previous listenings.

Figure 6.4: Test 3 possible choices.

Test 4. A white noise signal has been spatialized using AmbiSound to

simulate a semicircular trajectory above the listener. The latter has to

indicate which type of trajectory he thinks to have heard between those

shown in figure 6.5.

Figure 6.5: Test 4 possible choices.
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6.1.3 Test results

Figure 6.6 shows the plugin test results a makes a comparison between the

different question showing each answer chart.

Before doing the plugin evaluation (next section) it’s better to clarify

some aspects regarding the reproduction system arrangement, to justify

some unexpected results remarkable in the two graphs of figure 6.6.

First of all the number of loudspeakers is not sufficient for a proper

Ambisonics reproduction. As already explained in Sec. 4.1.2 the reproduc-

tion layout must respect the hardware constraint (4.30) here reported for

convenience:

N ≥ (m+ 1)2,

where N is the loudspeakers number to be used for a correct mth order

Ambisonics decomposition. Therefore, for a 3rd order reproduction, a system

of at least 16 loudspeakers should have been used instead of 12. This absence

has produced some uncertainties and misunderstandings in detecting sound

sources trajectories due to the fact that the system (4.28) is solved using

least square approximation instead of least norm one, finding a different

solution for (4.29).

Then, also the reproduction layout configuration (in figure 6.1 and 6.2)

must be noticed. From what has been said in Sec. 4.1.2 it’s deducible that

not only the used loudspeakers arrangement isn’t a regular one but it also

lacks one of the crucial reproduction points in 3D rendering, the loudspeaker

placed precisely above the listening point, at 90 degrees of elevation. This

lack has increased the uncertainty in detecting vertical trajectories.

Finally, as shown in figure 6.1 and 6.2, the most part of the reproduction

space is taken up by a piano, and a LCD monitor has been positioned in

place of the piano note-holder to make the video of test 1 visible. The inter-

action between the reproduced sound-field and these objects has produced

some side-effects due to the introduction inside the listening space of sound

reflected components and sound masking. The latter have affected the de-

tection, especially inside the sweet-spot, of sources placed behind or in front

of the piano and the monitor. This can justify the fact that the best results

in some tests has been obtained for listenings done outside the sweet-spot.

All the above mentioned system irregularities have been introduced for

a specific purpose: testing the plugin behaviour in adverse conditions, as

close as possible to reality.
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Figure 6.6: AmbiSound-Spatializer test results graphs

(a) Near the sweet-spot listenings

(b) Far from the sweet-spot listenings

6.2 Project evaluation

At first sight, from the graphs reported in figure 6.1 and 6.2, it can be

noticed that the most part of listeners have taken the correct or near correct

answer for each question. So it can be said that the plugin test has globally

given a positive result.

Analysing in details each question chart, it can be said that:

1. the interaction between audio and video helps the listener to easily
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detect the correct sources position and trajectory. This suggest that

AmbiSound can be particularly suitable also for cinema music produc-

tions;

2. when implementing very fast sound circular trajectories the listener

may have some problem in the detection of the turning direction, but

the circular movement perception stays unaltered;

3. without a video integration the listener may have some uncertainty in

detecting complex trajectories as spirals. This defect together with the

one in reported in point 2 can be widely attributable to the reproduc-

tion aliasing previously described as sound masking and reflections;

4. without the loudspeaker placed above him at 90 elevation degrees, the

listener has great difficulties in detecting correctly a totally vertical

trajectory. This can be easily deduced from Test 2 chart, that shows

how the most part of the listeners were convinced to have heard a

slightly diagonal trajectory instead of the vertical one;

5. the employment of filters that compensate near field effects cause a

marked increasing of the listener immersion feeling in the sound scene.

The last has been described from many listeners as a sensation of

sound sources major presence associated with a lower frequencies am-

plification.

In conclusion, taking into consideration that the testing results have been

obtained using a non-appropriate reproduction system and the test questions

themselves have been thought to stress the listener auditive capabilities,

AmbiSound-Spatializer can be regarded as a suitable tool to be used for

3DA mixing.

The implemented NFC filtering has resulted as an efficient tool for sim-

ulate sound scene placed nearby the listening point. It allows an advanced

manipulation of the signal frequency content, in order to obtained an in-

crease of the “sound presence” perception, obtained automatically only by

setting loudspeakers and sources distance from the system origin.

In addition the test results show, at least on sound perception level, a

sizeable sweet-spot area although some sound reflecting and masking objects

have been placed in the reproduction space.
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Chapter 7

Next research directions and

conclusions

After the testing phase, the project last step has been to detect the lacks and

limitations of the developed software tool. Starting from this critical view it

has been possible to draw a conclusion on the whole work done, showing the

research directions that may be taken into account for AmbiSound plugin

further developments.

Before listing and discuss the above mentioned research directions, other

plugin aspects has to be considered to complete the critical analysis done

during the evaluation phase.

The following aspects haven’t nothing to do with the goodness of Am-

biSound plugin process, but concern some side issues that anyway should

be considered as crucial.

First of all the implemented Ambisonics decomposition order, that is re-

sponsible of audio reproduction fidelity independently from the plugin pro-

cess, has to be considered. To reach an higher defined sound spatialization

using AmbiSound, the realization of higher order Ambisonics (HOA) encod-

ing/decoding stages is aimed, with a corresponding increase of loudspeakers

number in the reproduction layout.

A good solution could be to implement Legendre polynomials recursive

formulas ([2] [7]) to compute dynamically the spherical harmonic function

for different Ambisonics decomposition orders. This will allow the user to

decide the reproduction accuracy from time to time, making the most of the

employed system .

Other aspects involved in AmbiSound diffusion as a 3DA mixing tool are

the plugin usability and the Ambisonics format support diffusion.
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The plugin usability is strongly dependent from its graphical user inter-

face (GUI). Therefore, one can increase AmbiSound usability implementing

a more user-friendly GUI to be used instead of the one provided by the host

(typically a very poor and basic one).

In the specific case of 3D sound spatialization it can be very useful to re-

alize a GUI that, once established a correspondence between sound sources

and 3D geometric shapes, makes use of this parallelism to directly handle

graphical objects as sound sources. In this way the user will have an imme-

diate visual feedback that, together with the auditive one, will help him to

better understand the sources configuration in space.

An example of such GUI is shown in figure 7.1, where the following scene

is displayed: a 3D Cartesian system with the listener placed in the origin and

sound sources represented as spheres of different colors. All this can be easily

implemented using computer graphics developing tools such as Processing

or OpenGL APIs. These permit to complete the GUI in figure 7.1 through

the realization of control panels where the user can change sources position

and graphical appearance by means of sliders, knobs, menus, etc.

Figure 7.1: An example of a possible AmbiSound GUI.

A further step could be to consider input sources first as graphical ob-

jects inside the plugin process itself, using computer graphics techniques to

determine sources position in space and related spherical harmonic func-

tions. This introduces the possibility of an easy and low computational cost

implementation for system global positioning actions such as translations,

http://processing.org/
http://www.opengl.org/
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rotations around the three axis, etc. In fact a source positioning stage can

be developed and placed before the loudspeaker feeds computation (see fig-

ure 7.2). This positioning stage could use only the software methods defined

for graphical objects operations in order to compute each source spherical co-

ordinates and set it in a 3D virtual scene. Then the spherical coordinates will

be used by the plugin to compute each source spherical harmonic functions,

avoiding the implementation of translation and rotation matrix operation

higher than first order to obtain the same result at higher computational

costs. Obviously this is possible only while using, as input signals, artificial

sources for which spherical harmonic functions have to be computed.

Figure 7.2: Example of a possible AmbiSound plugin architecture employing a source

positioning stage that use computer graphics defined operations to compute sources

azimuth and elevation.

The last aspect is the already mentioned diffusion of Ambisonics format

support by today’s multimedia player software and devices. This one can

be considered as an indirect improving factor because it is clear that the

more Ambisonics mixed audio is supported the more tools implementing

Ambisonics mixing will be employed in 3DA rendering and the more these

tools will be improved to obtain better performances.

A first step in Ambisonics format diffusion could be achieved realizing

three things:

• a digital audio encoding format for Ambisonics mixed audio that fixes
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the maximum number of Ambisonics signals to be encoded and stored

in an audio file;

• a software encoding tool able to compute and store the data related

to Ambisonics signals (B-format) according to the above mentioned

audio format, obtaining a multi-channels audio file container. This

operation should be implemented at the end of a 3DA mixing session

exporting all the data as a reproducible audio file;

• a digital audio tool that serve as decoder for audio files encoded in

the previous format, able to reproduce the entire mixed audio stream,

exploiting the knowledge of the specific loudspeakers configuration and

the decomposition order used for the encoding operation.



Appendix A

Listing

Basic files required for a VST plugin implementation are a .hpp file, contain-

ing the plugin base class declaration, and a .cpp file containing the plugin

class implementation, where the behaviour of parameters handling methods,

processing methods and plugin variables are defined.

The following script has been developed as header source file for AmbiSound-

Spazializer plugin. It contains all the usual VST plugin variable and routine

declarations inside AmbiSound class declaration. The latter contains also

declarations of plugin specific variables and methods already discussed in

Chapter 5.



100 Appendix A. Listing

Page 1 of 4

AmbiSound_Spat.h 24/06/11 18:00

/*
 *  AmbiSound_Spatializer - AmbiSound_Spat.h
 *  Created by Daniele Magliozzi on 24/06/11
 *  Copyright (c) 2011 Politecnico Milano, All rights reserved
 */

#ifndef __AmbiSound_Spat__
#define __AmbiSound_Spat__

#ifndef __audioeffect__
#include "audioeffectx.h"
#endif

//-----------------------------------------------------------------------------------
// PREPROCESSORS
//-----------------------------------------------------------------------------------

// Libraries
//*****************************************

#include <vector>
#include "armadillo"
#include <Accelerate/Accelerate.h>
using namespace std;
using namespace arma;
#include <iostream>
using std::cout;
using std::endl;
#include <cstdlib>
using std::exit; 
#include <fstream>       
using std::ifstream;
using std::ofstream;
using std::fstream;
using std::ios_base;
#include <string>
#include <math.h>
#include <sstream>

// Conversion Constants
//*****************************************

#define DEGTORAD_CONV 2*3.14159/360
#define RADTODEG_CONV 360/(2*3.14159)
#define FTORAD_CONV 2*3.14159
#define RADTOF_CONV 1/(2*3.14159)
#define FTOSRAD_CONV 3.14159
#define FTOMET_CONV 99
#define MAX_LOUDSP_NUM 36
#define MAX_SOURCES_NUM 32
#define MAX_LOUDSP_DIST 30.f

//-----------------------------------------------------------------------------------
// GLOBAL VARIABLES DECLARATION
//-----------------------------------------------------------------------------------

// Plugin Variables
//*****************************************

const int kNumInputs = MAX_SOURCES_NUM; 
const int kNumOutputs = MAX_LOUDSP_NUM;
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AmbiSound_Spat.h 24/06/11 18:00

const int kNumParameters = kNumInputs*3 + 7;
const int kNumPrograms = 0;
const unsigned long kUniqueId = 'AmbiSp';

//-----------------------------------------------------------------------------------
// CLASSES DECLARATION
//-----------------------------------------------------------------------------------

// Plugin Class
//*****************************************

class ambiSound : public AudioEffectX {

public:
ambiSound(audioMasterCallback audioMaster);
~ambiSound();

// Plugin Initialization Method
virtual void init();

// Processing Methods
virtual void processReplacing (float** inputs, float** outputs, ...

 ... VstInt32 sampleFrames);
virtual void processDoubleReplacing (double** inputs, double** outputs, ...

 ... VstInt32 sampleFrames);

// Program Methods
virtual void setProgramName (char* name);
virtual void getProgramName (char* name);

// Parameters Handling Methods
virtual void setParameter (VstInt32 index, float value);
virtual float getParameter (VstInt32 index);
virtual void getParameterLabel (VstInt32 index, char* label);
virtual void getParameterDisplay (VstInt32 index, char* text);
virtual void getParameterName (VstInt32 index, char* text);

// Tagging Methods
virtual bool getEffectName (char* name);
virtual bool getVendorString (char* text);
virtual bool getProductString (char* text);
virtual VstInt32 getVendorVersion ();

// AmbiSettings Methods (for float-based computations)

/* NOTE: every methods or variable that takes the prefix d- is meant to be 
 * used when 64-bit precision is required by the host in computations hence
 * it handles double variables but it does/is used for the same action as its 
 * 'double' without the d- prefix.
 */

virtual void setLoudspPos();    // initializes the reproduction system 
                                // loudspeakers arrangement

virtual void setLoudspMatrix(); // creates the matrix C - spherical 
                                // harmonics of each loudspeaker - and 
                                // computes C' or pinv(C) depending on 
                                // inverseFlag value (0 - 1)

virtual void setSourcesMatrix(int sources); // create a matrix Y containing 
                                            // sheprical harmonics of each 
                                            // source

virtual void setGainsMatrix(int sources, int nfcFlag); // computes the matrix 
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Page 3 of 4

AmbiSound_Spat.h 24/06/11 18:00

                                                       // product G=(C'/N)*Y
                                                       // or G=pinv(C)*Y

virtual void loudspPosFileUpdate(); // updates loudspeaker distance value 
                                    // stored in "loudspPos.dat" file

// AmbiSettings Methods (for double-based computations)
virtual void setdLoudspPos();
virtual void setdLoudspMatrix();
virtual void setdSourcesMatrix(int sources);
virtual void setdGainsMatrix(int sources, int nfcFlag);

// NFC Methods
virtual void initNumCoeffMatrix(); // methods to be called in init() for the 
virtual void initdNumCoeffMatrix();// allocation of numCoeff cells

virtual void setNfcDenFilterCoeff(float distance);  // methods to compute NFC 
virtual void setdNfcDenFilterCoeff(double distance);// denominator filters 

// coefficients 

virtual void setNfcNumFilterCoeff(int sourceIndex, float sourceDist); 
virtual void setdNfcNumFilterCoeff(int sourceIndex, double sourceDist);                                                   

  // methods to compute NFC
                                                    // numerator filters 

  // coefficients 

float nfcFilter(int pastOutsIndex, float signal, int filtIndex);
double dNfcFilter(int dPastOutsIndex, double signal, int filtIndex);                                                                 
                                                    // methods to implement 
                                                    // the NFC filtering 
                                                    // action

protected:

// Program Variables
char programName[kVstMaxProgNameLen + 1];

// AmbiSettings Variables
int encodingOrder;  // Ambisonics enc/dec order
int numSphHarm;     // spherical harmonics used in Ambisonics decomposition
int numSources;     // number of active sources
int numLoudsp;      // number of active loudspeakers
int readFileFlag;   // enable/disable flag for file "loudspPos.dat" reading
int inverseFlag;    // enable/disable flag for psudo-inverse computation
int oldInverseFlag; // var for loudspMatrix update
float loudspDist;   // loudspeakers distance from the system origin
float oldLoudspDist;// var for loudspDist variable update
float globalPos [3];// sources global manipulations storing

vector < vector <float> > loudspPos;      // storing cells for loudspeaker 
vector < vector <double> > dLoudspPos;    // positions data

vector <float> oldSourcesDist;            // storing cells for NFC filters
  // numerator updating var 

vector < vector <float> > sourcesPos;     // storing cells for source 
                                          // positions data

vector < vector <float> > sourcesMatrix;  // matrix Y - contains sources 
vector < vector <double> > dSourcesMatrix;// shperical harmonics 

fmat loudspMatrix;                        // matrix C'or pinv(C) - C contains
mat dLoudspMatrix;                       // loudspeakers spherical harmonics

vector < vector <float> > gainsMatrix;    // matrix G - used to store the 
vector < vector <double> > dGainsMatrix;  // result of the product pinv(C)*Y
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  // or C'*Y

// NFC variables
int nfcSwitch;      // enable/disable flag for NFC filtering

vector < vector <vector <float> > > numCoeff;         // storing cells for 
vector < vector <vector <double> > > dNumCoeff;       // the numerator 
                                                      // cofficients of each 

// NFC filter

vector < vector <float> > denCoeff;                   // storing cells for
vector < vector <double> > dDenCoeff;                 // the denominator 
                                                      // coefficients of each
                                                      // NFC filter

vector < vector <float> > pastInsMatrix;              // matrices used to 
vector < vector <double> > dPastInsMatrix;            // implement NFC filter
                                                      // input delay line

vector < vector < vector <float> > > pastOutsMatrix;  // matrices used to 
vector < vector < vector <double> > > dPastOutsMatrix;// implement NFC filter
                                                      // output delay line

};

#endif
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The following script shows the content of AmbiSound Spat.cpp source file.

Both VST plugin usual methods and AmbiSound plugin specific ones are

implemented within this file. The plugin main methods working has been

already deepened in Chapter 5. Here one can read the entire source devel-

oped for the project to understand all the process implementation details.

This script is a ready-to-use one, i.e. it can be copied together with

AmbiSound Spat.h, introduced before, into a VST plugin software project

and just built to obtain a perfectly working AmbiSound-Spatializer plugin.

Additional comments have been inserted into the illustrated source files

to describe the principles operation and to provide a better comprehension.

As already discussed the process implementation and all related variables

and methods are doubled to create a plugin that is supported both by hosts

that use single precision in computation or by those that use double one.

Thus, to avoid useless and redundant descriptions, in the major part of

the script related to the implementation of the process supporting double

precision computation, comments have been neglected.
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/*
 *  AmbiSound_Spatializer - AmbiSound_Spat.cpp
 *  Created by Daniele Magliozzi on 24/06/11
 *  Copyright (c) 2011 Politecnico Milano, All rights reserved
 */

#ifndef __AmbiSound_Spat__
#include "AmbiSound_Spat.h"
#endif

//-----------------------------------------------------------------------------------
// PLUGIN RECALLING METHOD
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
/* This method is called by the host application when the user select a plugin from 
 * the releated list creating an istance of the specific effect - VST plugin
 */
AudioEffect* createEffectInstance(audioMasterCallback audioMaster) {

return new ambiSound(audioMaster);
}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
// PLUGIN CLASS
//-----------------------------------------------------------------------------------

// Class Constructor
//*****************************************
//-----------------------------------------------------------------------------------
ambiSound::ambiSound(audioMasterCallback audioMaster)
: AudioEffectX(audioMaster, kNumPrograms, kNumParameters) {
setNumInputs(kNumInputs);  // set plugin available input channels
setNumOutputs(kNumOutputs);// set plugin available output channels
setUniqueID(kUniqueId);    // set plugin ID
canProcessReplacing ();   // supports replacing output
canDoubleReplacing ();    // supports double precision processing
init();                    // initialize all plugin variables

}
//-----------------------------------------------------------------------------------

// Class Destructor
//*****************************************
//-----------------------------------------------------------------------------------
ambiSound::~ambiSound() {}
//-----------------------------------------------------------------------------------

// Plugin Initialization Method
//*****************************************
// Used to set plugin parameters to default values 
//-----------------------------------------------------------------------------------
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AmbiSound_Spat.cpp 24/06/11 18:00

void ambiSound::init() {

encodingOrder = 3;                             // 3rd Ambisonics enc/dec order
numSphHarm = pow(float(encodingOrder + 1), 2); // 16 spherical harmonics
loudspDist = 0.f;                              // loudspeakers default distance 1m
oldLoudspDist = loudspDist;
nfcSwitch = 0;                                 // default NFC filter on
numSources = 1;                                // input source default 1 
numLoudsp = 16;                                // output loudspeakers default 16
readFileFlag = 0;                              // "loudspPos.dat" reading disabled
inverseFlag = 0;                               // default use transposition rule 
oldInverseFlag = inverseFlag;                  // for system solving

//Setting sources global position to az=0°; el=0°; d=0m
for(int i=0; i<=2; i++)
globalPos[i]=0.0;

//Setting the system speaker arrangement and computing matrix C'
vector <float> initPos;
initPos.push_back(0.0); initPos.push_back(0.0);
vector <double> initdPos;
initdPos.push_back(0.0); initdPos.push_back(0.0);
for(int n=0; n<=(kNumOutputs - 1); n++){
loudspPos.push_back(initPos);
dLoudspPos.push_back(initdPos);

}
setLoudspPos();
setdLoudspPos();

//Setting NFC filters impulse responses denominator
setNfcDenFilterCoeff(loudspDist);
setdNfcDenFilterCoeff(double(loudspDist));

//Allocating space for NFC filters numerator coefficients cells
initNumCoeffMatrix();
initdNumCoeffMatrix();

//Setting default source positions to az=0°; el=0°; d=1m, and NFC filter numerators
vector <float> defaultSourcesPos;

defaultSourcesPos.push_back(0.f);                   // azimuth
defaultSourcesPos.push_back(0.f);                   // elevation
defaultSourcesPos.push_back(1.f);                   // distance

for(int i=0; i<=(kNumInputs - 1); i++){
sourcesPos.push_back(defaultSourcesPos);          // i-th source position
oldSourcesDist.push_back(defaultSourcesPos.at(2));// i-th source old distance

//Setting NFC filters impulse responses numerator coefficients
setNfcNumFilterCoeff(i, oldSourcesDist.at(i));
setdNfcNumFilterCoeff(i, double(oldSourcesDist.at(i)));

}

//Default program name
vst_strncpy (programName, "Default", kVstMaxProgNameLen);

//Setting pastOutsMatrix - for filters output delay line
vector <float> row;
vector < vector <float> > initPastOuts; 
for (int j=0; j<=2; j++){
row.push_back(0.0);    // default sample amplitude 0.0
initPastOuts.push_back(row);

}
for(int i=0; i<=(kNumInputs - 1); i++)
pastOutsMatrix.push_back(initPastOuts);

//Setting dPastOutsMatrix - for dfilters output delay line
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vector <double> dRow;
vector < vector <double> > dInitPastOuts; 
for (int j=0; j<=2; j++){
dRow.push_back(0.0);   // default sample amplitude 0.0
dInitPastOuts.push_back(dRow);

}
for(int i=0; i<=(kNumInputs - 1); i++)
dPastOutsMatrix.push_back(dInitPastOuts);

//Setting pastInsMatrix - for filters input delay line
row.clear();
for (int j=0; j<=2; j++){
row.push_back(0.0);    // default sample amplitude to 0.0

}
for(int i=0; i<=(kNumInputs - 1); i++)
pastInsMatrix.push_back(row);

//Setting dPastInsMatrix - for dfilters input delay line
dRow.clear();
for (int j=0; j<=2; j++){
dRow.push_back(0.0);   // default sample amplitude to 0.0

}
for(int i=0; i<=(kNumInputs - 1); i++)
dPastInsMatrix.push_back(dRow);

}
//-----------------------------------------------------------------------------------

// Program Methods
//*****************************************
//-----------------------------------------------------------------------------------
void ambiSound::setProgramName (char* name){
vst_strncpy (programName, name, kVstMaxProgNameLen);

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::getProgramName (char* name){
vst_strncpy (name, programName, kVstMaxProgNameLen);

}
//-----------------------------------------------------------------------------------

// Parameters Handling Methods
//*****************************************
// NOTE: the 'index' variable contain the parameter ID - an integer between 0 and
// kNumParameters-1
//-----------------------------------------------------------------------------------
void ambiSound::setParameter (VstInt32 index, float value){
// set par. values into variables

switch (index) {
case 0:                 // set sources number par.
numSources = int(floor(value*(kNumInputs - 1)) + 1);
break;

case 1:{                // loudspeakers distance parameter setting
if(value<=0.5)
loudspDist = (value/0.5)+1;

if(value>0.5 && value<=0.779999)
loudspDist = ((value-0.5)/0.25)*8 + 2;

if(value>0.779999)
loudspDist = ((value-0.75)/0.25)*22 + 8;
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loudspPosFileUpdate();

if(loudspDist >= 30.0)// NFC filter enabling flag parameter setting 
nfcSwitch = 1;

else
nfcSwitch = 0;

}
break;

case 2:                 // set read "loudspPos.dat" enabling/disabling flag par.
int a = int(floor(value));
if(readFileFlag == 2 && a==1)
readFileFlag = 0;

else
readFileFlag = a;

break;

case 3:{                // set matrix inverse computation technique flag par.
if(value <= 0.500000)
inverseFlag = 0;

if(value > 0.500000)
inverseFlag = 1;

}
break;

case 4: case 5: case 6: // set global azimuth, elevation and distance par.
switch(index - 4){
case 0: case 1:     // global azimuth and elevation
globalPos[index - 4]=value*FTORAD_CONV;
break;

case 2:             // global distance
if(value<=0.125)
globalPos[2] = (value/0.125)*0.99+0.01;

if(value>0.125 && value<=0.5)
globalPos[2] = ((value-0.125)/(0.5-0.125))+1;

if(value>0.5 && value<=0.759999)
globalPos[2] = ((value-0.5)/0.25)*8 + 2;

if(value>0.759999)
globalPos[2] = ((value-0.75)/0.25)*92 + 8;

break;
}
break;

default: {              // set sources azimuth, elevation and distance par.

int vectorIndex = (index - 7)/3;  // find what source has to be set
int positionIndex = (index - 7)%3;// find what source parameter has to be set
if(positionIndex==2){ // sources distance setting (positionIndex=2)
if(value<=0.125)
sourcesPos.at(vectorIndex).at(positionIndex) = (value/0.125)*0.99+0.01;

if(value>0.125 && value<=0.5)
sourcesPos.at(vectorIndex).at(positionIndex) = ...

 ... ((value-0.125)/(0.5-0.125))+1;
if(value>0.5 && value<=0.759999)
sourcesPos.at(vectorIndex).at(positionIndex) = ((value-0.5)/0.25)*8 + 2;

if(value>0.759999)
sourcesPos.at(vectorIndex).at(positionIndex) = ((value-0.75)/0.25)*92 + 8;

}
else{                 // source azimuth or elevation setting 
sourcesPos.at(vectorIndex).at(positionIndex) = value*FTORAD_CONV;

}
}
break;

}
}
//-----------------------------------------------------------------------------------
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//-----------------------------------------------------------------------------------
float ambiSound::getParameter (VstInt32 index){
// get par. values

float v = 0; 

switch (index) {
case 0:              // get sources number par. value
v = (float(numSources) - 1)/(kNumInputs - 1);
break;

case 1:              // get loudspeakers distance par. value
if(loudspDist<=2.0)
v = (loudspDist - 1)*0.5;

if(loudspDist>2.0 && loudspDist<=10.639912)
v = ((loudspDist - 2)/8)*0.25 + 0.5;

if(loudspDist>10.639912)
v = ((loudspDist - 8)/22)*0.25 + 0.75;

break;

case 2:              // get sources number par. value
v = readFileFlag;
break;

case 3:              // get NFC filtering flag value
v = inverseFlag;
break;

case 4:case 5:case 6:// get global sources position par. value
switch(index - 4){
case 0: case 1:  // global azimuth and elevation
v = globalPos[index - 4]*RADTOF_CONV;
break;

case 2:          // global distance
if(globalPos[2]<=1)
v = ((globalPos[2] - 0.01)/0.99)*0.125;

if(globalPos[2]>1 && globalPos[2]<=2)
v = ((globalPos[2] -1)*(0.5-0.125)) + 0.125;

if(globalPos[2]>2 && globalPos[2]<=10.319968)
v = ((globalPos[2] - 2)/8)*0.25 + 0.5;

if(globalPos[2]>10.319968)
v = ((globalPos[2] - 8)/92)*0.25 + 0.75;

break;
}
break;

default: {           // get source positions par. value
                   // azimuth(positionIndex=0)
                   // elevation(positionIndex=1)
                   // distance(positionIndex=2)
int vectorIndex = (index - 7)/3;   // find what source has to be set
int positionIndex = (index - 7)%3; // find what source parameter has to be set
if(positionIndex==2){ 
if(sourcesPos.at(vectorIndex).at(positionIndex)<=1)
v = ((sourcesPos.at(vectorIndex).at(positionIndex) - 0.01)/0.99)*0.125;

if(sourcesPos.at(vectorIndex).at(positionIndex)>1 && ...
... sourcesPos.at(vectorIndex).at(positionIndex)<=2)

v = ((sourcesPos.at(vectorIndex).at(positionIndex) -1)*(0.5-0.125))+0.125;

if(sourcesPos.at(vectorIndex).at(positionIndex)>2 && ...
  ...sourcesPos.at(vectorIndex).at(positionIndex)<=10.319968)
v = ((sourcesPos.at(vectorIndex).at(positionIndex) - 2)/8)*0.25 + 0.5;

if(sourcesPos.at(vectorIndex).at(positionIndex)>10.319968)
v = ((sourcesPos.at(vectorIndex).at(positionIndex) - 8)/92)*0.25 + 0.75;
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}
else{
v = sourcesPos.at(vectorIndex).at(positionIndex)*RADTOF_CONV;

}
}
break;

}

return v; 
}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::getParameterName (VstInt32 index, char* label){
// display par. names

char name [50] ;

switch (index) {
case 0:                // display sources number par. name
sprintf(name, "Sources No.");
break;

case 1:                // display NCF filter flag name
sprintf(name, "NFC Filter");
break;

case 2:                // display "loudspPos.dat" reading flag name
sprintf(name, "Set LS positions");
break;

case 3:                // display inverse computation technique flag name
sprintf(name, "Inverse Comp.");
break;

case 4:case 5:case 6:{ // display global sources position par. name
switch(index - 4){
case 0:
sprintf(name, "Environment Azimuth");
break;

case 1:
sprintf(name, "Environment Elevation");
break;

case 2:
sprintf(name, "Environment Distance");
break;

default:
break;

}
}
break;

default: {             // display source positions par. name
int vectorIndex = (index - 7)/3;
int positionIndex = (index - 7)%3;

switch (positionIndex) {
case 0:
sprintf(name, "Source%d Azimuth  ", int(vectorIndex + 1));
break;

case 1:
sprintf(name, "Source%d Elevation ", int(vectorIndex + 1));
break;

case 2:
sprintf(name, "Source%d Distance  ", int(vectorIndex + 1));
break;

default:
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break;
}

}
break;

}

vst_strncpy (label, name, 30);
}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::getParameterDisplay (VstInt32 index, char* text){
//display par. values

switch (index) {
case 0:                // display the number of active sources 
int2string(numSources, text, 30);
break;

case 1:{               // display the NFC flag/loudspeakers distance value

if(nfcSwitch == 1)   // display NFC filtering disabled
vst_strncpy (text, "off", 30);

else                 // display loudspeakers distance - NFC enabled 
float2string(loudspDist, text, 30);

}
break;

case 2:                // display read "loudspPos.dat" flag status
if(readFileFlag == 0) 
vst_strncpy (text, "disabled", 30);

else 
vst_strncpy (text, "enabled", 30);

break;

case 3:{               // display the technique used to compute C inverse
switch(inverseFlag){
case 0:
vst_strncpy (text, "regular layout", 30);
break;

case 1:
vst_strncpy (text, "non-regular layout", 30);
break;

}
}
break;

case 4:case 5:case 6:{ // display global sources position values
float v = 0.0;

switch(index - 4){
case 0:            // diplay global azimuth value
v = globalPos[0]*RADTODEG_CONV;
float2string(v, text, 30);
break;

case 1:            // diplay global elevation value
v = globalPos[1]*RADTODEG_CONV;
float2string(v, text, 30);
break;

case 2:            // diplay global distance value
v = globalPos[2];
if(v<=0.01999)
v=0.f;

float2string(v, text, 30);
break;

default:
break;
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}
}
break;

default: {             // diplay source positions par. values
int vectorIndex = (index - 7)/3;
int positionIndex = (index - 7)%3;
float v = 0.0;

switch (positionIndex) {
case 0:            // display source azimuth value  
v = sourcesPos.at(vectorIndex).at(positionIndex)*RADTODEG_CONV;
float2string(v, text, 30);
break;

case 1:            // display source elevation value
v = sourcesPos.at(vectorIndex).at(positionIndex)*RADTODEG_CONV;
float2string(v, text, 30);
break;

case 2:            // display source distance value
v = sourcesPos.at(vectorIndex).at(positionIndex);
if(v<=0.01999)
v=0.f;

float2string(v, text, 30);
break;

}
}
break;

}
}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::getParameterLabel (VstInt32 index, char* label){
// display par. unity measure (um)

switch (index) {
case 0:               // display no um for sources number
break;

case 1:               // display no um if NFC filter is disabled
if(nfcSwitch==0)    // display loudspeakers distance um - NFC enabled  
vst_strncpy(label, "metres", 20);

break;
case 2:               // display no um for "loudspPos.dat" read flag 
break;

case 3:               // display no um for inverse computation technique flag 
break;

case 4:case 5:case 6:{// display global sources position um
switch(index - 4){
case 0:           // global source azimuth um
vst_strncpy(label, "degrees" , 20);
break;

case 1:           // global source elevation um
vst_strncpy(label, "degrees", 20);
break;

case 2:           // global source distance um
vst_strncpy(label, "metres", 20);
break;

default:
break;

}
}
break;

default: {            // display source positions um
int positionIndex = (index - 7)%3;

switch (positionIndex) {
case 0:           // source azimuth um



113

Page 9 of 28

AmbiSound_Spat.cpp 24/06/11 18:00

vst_strncpy(label, "degrees" , 20);
break;

case 1:           // source elevation um
vst_strncpy(label, "degrees", 20);
break;

case 2:           // source distance um
vst_strncpy(label, "metres", 20);
break;

default:
break;

}
}
break;

}
}
//-----------------------------------------------------------------------------------

// Tagging Methods
//*****************************************
//-----------------------------------------------------------------------------------
bool ambiSound::getEffectName (char* name){
vst_strncpy (name, "AmbiSound Spatializer", kVstMaxEffectNameLen);
return true;

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
bool ambiSound::getProductString (char* text){
vst_strncpy (text, "ambiSound_Spat", kVstMaxProductStrLen);
return true;

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
bool ambiSound::getVendorString (char* text){
vst_strncpy (text, "Daniele Magliozzi", kVstMaxVendorStrLen);
return true;

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
VstInt32 ambiSound::getVendorVersion (){ 
return 1000; 

}
//-----------------------------------------------------------------------------------

// Processing Methods
//*****************************************
//-----------------------------------------------------------------------------------
void ambiSound::processReplacing (float** inputs, float** outputs, ... 

...VstInt32 sampleFrames){
    
vector<float*> ins; // vector that will contain pointers at the beginning of each 
                    // input buffer

vector<float*> outs;// vector that will contain pointers at the beginning of each 
                    // output buffer

float q = 1/4.00;

int sources = numSources;  // define active sources number in this 
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 // scope
 

int filtFlag = nfcSwitch;                // define NFC filter state in this scope

int readLoudspPos = int(getParameter(2));// define read "loudspPos.dat" flag state
                                         // in this scope

int systemFlag = int(getParameter(3));   // define the Ambisonics system solving 
                                         // method in this scope

for(int i=0; i<=(sources - 1); i++)      // assign inputs buffer pointers
ins.push_back(inputs[i]);

if(readLoudspPos==1){                    // update loudspeaker positions
readFileFlag = 2;
setLoudspPos();

}
else{
if(systemFlag == 1)
setLoudspMatrix();

}

for(int i=0; i<=(numLoudsp - 1); i++)    // assign output buffer pointers
outs.push_back(outputs[i]);

// Compute NFC filter coefficients

for(int k=0; k<=(sources - 1); k++){     
if(oldSourcesDist.at(k)!=sourcesPos.at(k).at(2)){// update filter numerator  
oldSourcesDist.at(k) = sourcesPos.at(k).at(2); // coefficients for sources 
setNfcNumFilterCoeff(k, oldSourcesDist.at(k)); // whose distance has been
                                               // changed

}
} 

if(filtFlag==0 && oldLoudspDist!=loudspDist){      // upadate filter denominator 
oldLoudspDist = loudspDist;                      // coefficients if loudspeakers
setNfcDenFilterCoeff(oldLoudspDist);             // distance has been changed

}

// Create inputs spherical harmonic functions matrix Y
setSourcesMatrix(sources);

// Compute and store matrix product [pinv(C)*Y] or [(C'/N)*Y] in G  
setGainsMatrix(sources, filtFlag);

// Next cycle is used by the plugin to implement the process - Ambisonics 
// spatialization - on inputs buffer samples replacing outputs buffer content 
while (--sampleFrames >= 0)
{
// Process with NFC filtering
if(filtFlag == 0){

vector <float> signals;                // vector of input signals samples

/* NOTE:
 * the NFC filter separates each sample of the input signal into 4 components, 
 * one for each order of spherical harmonics (0-1-2-3° order), for this reason
 * also the G matrix should devide each gain component into 4 so that the 
 * moltiplication G*S will return the vector of outputs properly filtered
 */

// NFC filtering
for(int k=0; k<=(sources*4 - 1); k+=4){// the cycle step is 4 to live free 
                                     // space inside vector 'signals' for  
                                     // the 3 filtered components
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signals.push_back(*ins.at(k*q)++);   // the 0th component is left unfiltered 
                                     // 'cause it correspond to the 

 // spherical harmonic of order zero 
                                     // that hasn't to be  filtered

float f1 = nfcFilter(k*q, signals.at(k), 0); // apply the NFC for the 1st 
signals.push_back(f1);                       // order harmonics

float f2 = nfcFilter(k*q, signals.at(k), 1); //apply the NFC for the 2nd
signals.push_back(f2);                       // order harmonics

float f3 = nfcFilter(k*q, signals.at(k), 2); //apply the NFC for the 3rd 
signals.push_back(f3);                       // order harmonics

}

// Gains application and output feeding
for(int n=0; n<=(numLoudsp - 1); n++){
float outputSignal = 0.0;

for(int k=0; k<=(sources*4 - 1); k++){       // scalar product g_(ji)*s
outputSignal += (gainsMatrix.at(n).at(k))*(signals.at(k));

}

(*outs.at(n)++) = outputSignal;              // output feeding
}

signals.clear();
}

// Process without NFC filtering
else{

vector <float> signals;                // vector of input signals samples

for(int k=0; k<=(sources - 1); k++)    // 'signal' feeding
signals.push_back(*ins.at(k)++);

// Gains application and output feeding
for(int n=0; n<=(numLoudsp - 1); n++){
float outputSignal = 0.0;

for(int k=0; k<=(sources - 1); k++){ // scalar product g_(ji)*s
outputSignal += (gainsMatrix.at(n).at(k))*(signals.at(k));

}

(*outs.at(n)++) = outputSignal;      // output feeding
}

signals.clear();
}

}
}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::processDoubleReplacing (double** inputs, double** outputs, ...

... VstInt32 sampleFrames){

vector<double*> ins; 
vector<double*> outs;
float q = 1/4.00;

int sources = numSources;
int filtFlag = nfcSwitch;
int readLoudspPos = int(getParameter(2)); 
int systemFlag = int(getParameter(3));   
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for(int i=0; i<=(sources - 1); i++)      
ins.push_back(inputs[i]);

if(readLoudspPos==1){
readFileFlag = 2;
setdLoudspPos();

}
else{
if(systemFlag == 1 && systemFlag != oldInverseFlag){
setdLoudspMatrix();
oldInverseFlag = systemFlag;

}

if(systemFlag == 0 && systemFlag != oldInverseFlag){
setdLoudspMatrix();
oldInverseFlag = systemFlag;

}
}

for(int i=0; i<=(numLoudsp - 1); i++)
outs.push_back(outputs[i]);

for(int k=0; k<=(sources - 1); k++){
if(oldSourcesDist.at(k)!=sourcesPos.at(k).at(2)){
oldSourcesDist.at(k) = sourcesPos.at(k).at(2);
setdNfcNumFilterCoeff(k, double(oldSourcesDist.at(k)));

}
} 

if(filtFlag==0 && oldLoudspDist!=loudspDist){
oldLoudspDist = loudspDist;
setdNfcDenFilterCoeff(double(oldLoudspDist));

}

setdSourcesMatrix(sources);
 
setdGainsMatrix(sources, filtFlag);

while (--sampleFrames >= 0)
{
if(filtFlag == 0){
vector <double> signals;

for(int k=0; k<=(sources*4 - 1); k+=4){
signals.push_back(*ins.at(k*q)++); 

double d1 = dNfcFilter(k*q, signals.at(k), 0); 
signals.push_back(d1);
double d2 = dNfcFilter(k*q, signals.at(k), 1); 
signals.push_back(d2);
double d3 = dNfcFilter(k*q, signals.at(k), 2); 
signals.push_back(d3);

}

for(int n=0; n<=(numLoudsp - 1); n++){
double outputSignal = 0.0;

for(int k=0; k<=(sources*4 - 1); k++){
outputSignal += (dGainsMatrix.at(n).at(k))*(signals.at(k));

}
(*outs.at(n)++) = outputSignal;

}
signals.clear();

}
else{
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vector <double> signals;

for(int k=0; k<=(sources - 1); k++)
signals.push_back(*ins.at(k)++);

for(int n=0; n<=(numLoudsp - 1); n++){
double outputSignal = 0.0;

for(int k=0; k<=(sources - 1); k++){
outputSignal += (dGainsMatrix.at(n).at(k))*(signals.at(k));

}
(*outs.at(n)++) = outputSignal;

}
signals.clear();

}
}

}
//-----------------------------------------------------------------------------------

// AmbiSettings Methods (float methods)
//*****************************************
//-----------------------------------------------------------------------------------
void ambiSound::setLoudspPos() {
// Open "loudspPos.dat" file          
ifstream inFile( "/Library/Audio/Plug-Ins/VST/loudspPos.dat", ios::in );

// Exit program if could not open file
if ( !inFile )
{
cerr << "File could not be opened" << endl;
exit( 1 );

} 

inFile.seekg(0);               // point file beginning
inFile >> loudspDist;                // read loudspeakers distance
if(loudspDist > MAX_LOUDSP_DIST){    // upper bound loudspeakers distance
loudspDist = MAX_LOUDSP_DIST;
nfcSwitch = 1;

}
else{                          // lower bound loudspeakers distance
if(loudspDist < 1.00)
loudspDist = 1.f;

}

inFile >> numLoudsp;           // read active loudspeakers number
if(numLoudsp > MAX_LOUDSP_NUM) // upper bound active loudspeakers number (36)    
numLoudsp = MAX_LOUDSP_NUM;

else                           // lower bound active loudspeakers number
if(numLoudsp < 2)
numLoudsp = 2;

for (int n=0; n<=(numLoudsp -1); n++){ // read loudspeaker positions data: az; el 
float position;
if (!inFile.eof()){                  // feed 'loudspPos' vector with position 
                                   // infos for each loudspeaker

inFile >> position;                // azimuth 
loudspPos.at(n).at(0) = (fmod(position, float(360.0))) * DEGTORAD_CONV;

inFile >> position;            // elevation
loudspPos.at(n).at(1) = (fmod(position, float(360.0))) * DEGTORAD_CONV;

}
}
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setLoudspMatrix();               // update C matrix
} 
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setLoudspMatrix() {

loudspMatrix.reset();
loudspMatrix.set_size(numLoudsp, numSphHarm);

for(int i=0; i<=(numLoudsp - 1); i++){// Compute the spherical harmonic function 
                                    // for each loudspeaker till 3rd order and
                                    // fill C' rows
loudspMatrix(i,0) = 1.0;

loudspMatrix(i,1) = sqrt(3.0)*cos(loudspPos.at(i).at(0))* ... 
                    ... cos(loudspPos.at(i).at(1));

loudspMatrix(i,2) = sqrt(3.0)*sin(loudspPos.at(i).at(0))* ...
                    ... sin(loudspPos.at(i).at(1));

loudspMatrix(i,3) = sqrt(3.0)*sin(loudspPos.at(i).at(1));

loudspMatrix(i,4) = (sqrt(24.0)/2)*cos(2*loudspPos.at(i).at(0))* ...
                    ... pow(cos(loudspPos.at(i).at(1)),2);

loudspMatrix(i,5) = (sqrt(24.0)/2)*sin(2*loudspPos.at(i).at(0))* ... 
                    ... pow(cos(loudspPos.at(i).at(1)),2);

loudspMatrix(i,6) = (sqrt(24.0)/2)*cos(loudspPos.at(i).at(0))* ...
... sin(2*loudspPos.at(i).at(1));

loudspMatrix(i,7) = (sqrt(24.0)/2)*sin(loudspPos.at(i).at(0))* ...
                    ... sin(2*loudspPos.at(i).at(1));

loudspMatrix(i,8) = (sqrt(5.0)/2)*((3*pow(sin(loudspPos.at(i).at(1)),2)) - 1);

loudspMatrix(i,9) = (sqrt(35.0/8.0))*cos(3*loudspPos.at(i).at(0))* ... 
                    ... pow(cos(loudspPos.at(i).at(1)),3);

loudspMatrix(i,10) = (sqrt(35.0/8.0))*sin(3*loudspPos.at(i).at(0))* ...
                     ... pow(cos(loudspPos.at(i).at(1)),3);

loudspMatrix(i,11) = (sqrt(7.0*15.0)/2)*cos(2*loudspPos.at(i).at(0))* ...
 ... sin(loudspPos.at(i).at(1))* ...
 ... pow(cos(loudspPos.at(i).at(1)),2);

loudspMatrix(i,12) = (sqrt(7.0*15.0)/2)*sin(2*loudspPos.at(i).at(0))* ...
 ... sin(loudspPos.at(i).at(1))* ...

                     ... pow(cos(loudspPos.at(i).at(1)),2);

loudspMatrix(i,13) = (sqrt(21.0/8.0))*cos(loudspPos.at(i).at(0))* ...
                     ... cos(loudspPos.at(i).at(1))* ...
                     ... (5*pow(sin(loudspPos.at(i).at(1)),2) - 1);

loudspMatrix(i,14) = (sqrt(21.0/8.0))*sin(loudspPos.at(i).at(0))* ... 
                     ... cos(loudspPos.at(i).at(1))* ...
                     ... (5*pow(sin(loudspPos.at(i).at(1)),2) - 1);

loudspMatrix(i,15) = (sqrt(7.0)/2)*sin(loudspPos.at(i).at(1))* ...
                     ... (5*pow(sin(loudspPos.at(i).at(1)),2) - 3);

}

if(inverseFlag == 1){                 // Compute C pseudo-inverse (left or right)
fmat C = trans(loudspMatrix);
loudspMatrix.reset();
loudspMatrix = pinv(C);
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}

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setSourcesMatrix(int sources) {

float azimuth ;
float elevation ;
float distance ;
float sphHarm;
float attenuation;

sourcesMatrix.clear();

for (int k=0; k<=(sources - 1) ; k++){// Compute the spherical harmonic function 
                                    // for each source till 3rd order taking
                                    // into account also the distance attenuation
                                    // and fill Y matrix colums

azimuth = fmod(float(sourcesPos.at(k).at(0) + globalPos[0]), float(FTORAD_CONV));
elevation = fmod(float(sourcesPos.at(k).at(1) + globalPos[1]), ...

 ...float(FTORAD_CONV));

distance = sourcesPos.at(k).at(2) + globalPos[2];
attenuation = 1.000/distance; 

vector <float> column;
sphHarm = 1.0*attenuation;
column.push_back(sphHarm);
sphHarm = sqrt(3.0)*cos(azimuth)*cos(elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = sqrt(3.0)*sin(azimuth)*sin(elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = sqrt(3.0)*sin(elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(24.0)/2)*cos(2*azimuth)*pow(cos(elevation),2)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(24.0)/2)*sin(2*azimuth)*pow(cos(elevation),2)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(24.0)/2)*cos(azimuth)*sin(2*elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(24.0)/2)*sin(azimuth)*sin(2*elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(5.0)/2)*((3*pow(sin(elevation),2)) - 1)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(35.0/8.0))*cos(3*azimuth)*pow(cos(elevation),3)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(35.0/8.0))*sin(3*azimuth)*pow(cos(elevation),3)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(7.0*15.0)/2)*cos(2*azimuth)*sin(elevation)* ... 
           ... pow(cos(elevation),2)*attenuation;

column.push_back(sphHarm);
sphHarm = (sqrt(7.0*15.0)/2)*sin(2*azimuth)*sin(elevation)* ...

 ... pow(cos(elevation),2)*attenuation;

column.push_back(sphHarm);
sphHarm = (sqrt(21.0/8.0))*cos(azimuth)*cos(elevation)* ...

 ... (5*pow(sin(elevation),2) - 1)*attenuation;

column.push_back(sphHarm);
sphHarm = (sqrt(21.0/8.0))*sin(azimuth)*cos(elevation)* ...
           ... (5*pow(sin(elevation),2) - 1)*attenuation;

column.push_back(sphHarm);
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sphHarm = (sqrt(7.0)/2)*sin(elevation)*(5*pow(sin(elevation),2) - 3)*attenuation;
column.push_back(sphHarm);

sourcesMatrix.push_back(column);
column.clear();

}

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setGainsMatrix(int sources, int nfcFlag) {

gainsMatrix.clear();
float normFactor;                       //output normalization factor 
if(inverseFlag == 0)
normFactor = 1/float(numLoudsp);

// Matrix product (loudspMatrix*sourcesMatrix) = (C'/N)*Y or pinv(C)*Y
if(nfcFlag == 0){                      // NFC filter enabled

/* if NFC filter is enabled the scalar product between the i-th row of C' and 
 * the j-th column of Y is split into 4 parts giving as result a 4 components 
 * vector, one for each spherical harmonic order that will be filtered with a 
 * different h(t) filter
 */

for(int n=0; n<=(numLoudsp - 1); n++){// gains computation
vector <float> row;

for(int k=0; k<=(sources - 1); k++){
float gain = 0.0;
// 0th spherical harmonic group
gain += loudspMatrix(n,0)*(sourcesMatrix.at(k).at(0));
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

// 1st spherical harmonics group
for(int m=1; m<=3; m++){
gain += (loudspMatrix(n,m))*(sourcesMatrix.at(k).at(m));

}
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

 
// 2nd spherical harmonics group
for(int m=4; m<=8; m++){
gain += (loudspMatrix(n,m))*(sourcesMatrix.at(k).at(m));

}
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

// 3rd spherical harmonics group
for(int m=9; m<=15; m++){
gain += (loudspMatrix(n,m))*(sourcesMatrix.at(k).at(m));

}
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

}



121

Page 17 of 28

AmbiSound_Spat.cpp 24/06/11 18:00

gainsMatrix.push_back(row);
row.clear();

}
}
else{                                   // usual scalar product - NFC filter 
                                      // disabled

for(int n=0; n<=(numLoudsp - 1); n++){// gains computation
vector <float> row;

for(int k=0; k<=(sources - 1); k++){
float gain = 0.0;

for(int m=0; m<=(numSphHarm - 1); m++){
gain += (loudspMatrix(n,m))*(sourcesMatrix.at(k).at(m));

}
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

}

gainsMatrix.push_back(row);
row.clear();

}
}

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::loudspPosFileUpdate(){

fstream outFile( "/Library/Audio/Plug-Ins/VST/loudspPos.dat", ios::in  | ios::out );
// exit program if fstream cannot open file
if ( !outFile )
{
cerr << "File could not be opened." << endl;
exit( 1 );

} 

outFile.seekp(0);
outFile << dist;
outFile.close();

}
//-----------------------------------------------------------------------------------

// AmbiSettings Methods (double methods)
//*****************************************
//-----------------------------------------------------------------------------------
void ambiSound::setdLoudspPos() {
         
ifstream inFile( "/Library/Audio/Plug-Ins/VST/loudspPos.dat", ios::in );

if ( !inFile )
{
cerr << "File could not be opened" << endl;
exit( 1 );

}

inFile.seekg(0);               
inFile >> loudspDist;                
if(loudspDist > MAX_LOUDSP_DIST){    
loudspDist = MAX_LOUDSP_DIST;
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nfcSwitch = 1;
}
else{                          
if(loudspDist < 1.00)
loudspDist = 1.f;

}

inFile >> numLoudsp;
if(numLoudsp > MAX_LOUDSP_NUM)
numLoudsp = MAX_LOUDSP_NUM;

else
if(numLoudsp < 2)
numLoudsp = 2;

for (int n=0; n<=(numLoudsp -1); n++){
double position;
if (!inFile.eof()){
inFile >> position; 
dLoudspPos.at(n).at(0) = fmod(position, 360) * DEGTORAD_CONV;
inFile >> position;
dLoudspPos.at(n).at(1) = fmod(position, 360) * DEGTORAD_CONV;

}
}
setdLoudspMatrix();

} 
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setdLoudspMatrix() {
 
dLoudspMatrix.reset();
dLoudspMatrix.set_size(numLoudsp, numSphHarm);

for(int i=0; i<=(numLoudsp - 1); i++){
dLoudspMatrix(i,0) = 1.0;

dLoudspMatrix(i,1) = sqrt(3.0)*cos(loudspPos.at(i).at(0))* ...
                     ... cos(loudspPos.at(i).at(1));

dLoudspMatrix(i,2) = sqrt(3.0)*sin(loudspPos.at(i).at(0))* ... 
                     ... sin(loudspPos.at(i).at(1));

dLoudspMatrix(i,3) = sqrt(3.0)*sin(loudspPos.at(i).at(1));

dLoudspMatrix(i,4) = (sqrt(24.0)/2)*cos(2*loudspPos.at(i).at(0))* ...
                     ... pow(cos(loudspPos.at(i).at(1)),2);

dLoudspMatrix(i,5) = (sqrt(24.0)/2)*sin(2*loudspPos.at(i).at(0))* ...
                     ... pow(cos(loudspPos.at(i).at(1)),2);

dLoudspMatrix(i,6) = (sqrt(24.0)/2)*cos(loudspPos.at(i).at(0))* ... 
                     ... sin(2*loudspPos.at(i).at(1));

dLoudspMatrix(i,7) = (sqrt(24.0)/2)*sin(loudspPos.at(i).at(0))* ... 
 ... sin(2*loudspPos.at(i).at(1));

dLoudspMatrix(i,8) = (sqrt(5.0)/2)*((3*pow(sin(loudspPos.at(i).at(1)),2)) - 1);

dLoudspMatrix(i,9) = (sqrt(35.0/8.0))*cos(3*loudspPos.at(i).at(0))* ...
                     ... pow(cos(loudspPos.at(i).at(1)),3);

dLoudspMatrix(i,10) = (sqrt(35.0/8.0))*sin(3*loudspPos.at(i).at(0))* ... 
                      ... pow(cos(loudspPos.at(i).at(1)),3);

dLoudspMatrix(i,11) = (sqrt(7.0*15.0)/2)*cos(2*loudspPos.at(i).at(0))* ...
... sin(loudspPos.at(i).at(1))* ...

                      ... pow(cos(loudspPos.at(i).at(1)),2);
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dLoudspMatrix(i,12) = (sqrt(7.0*15.0)/2)*sin(2*loudspPos.at(i).at(0))* ...
                      ... sin(loudspPos.at(i).at(1))* ...
                      ... pow(cos(loudspPos.at(i).at(1)),2);

dLoudspMatrix(i,13) = (sqrt(21.0/8.0))*cos(loudspPos.at(i).at(0))* ... 
... cos(loudspPos.at(i).at(1))* ... 

                      ... (5*pow(sin(loudspPos.at(i).at(1)),2) - 1);

dLoudspMatrix(i,14) = (sqrt(21.0/8.0))*sin(loudspPos.at(i).at(0))* ...
                      ... cos(loudspPos.at(i).at(1))* ... 
                      ... (5*pow(sin(loudspPos.at(i).at(1)),2) - 1);

dLoudspMatrix(i,15) = (sqrt(7.0)/2)*sin(loudspPos.at(i).at(1))* ...
                      ... (5*pow(sin(loudspPos.at(i).at(1)),2) - 3);

}

if(inverseFlag == 1){
mat C = trans(dLoudspMatrix);
dLoudspMatrix.reset();
dLoudspMatrix = pinv(C);

}
}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setdSourcesMatrix(int sources) {

double azimuth ;
double elevation ;
double distance ;
double sphHarm;
double attenuation;
double dist[2];

dSourcesMatrix.clear();

for (int k=0; k<=(sources - 1) ; k++){

azimuth = fmod(double(sourcesPos.at(k).at(0) + globalPos[0]), ...
 ...double(FTORAD_CONV));

elevation = fmod(double(sourcesPos.at(k).at(1) + globalPos[1]), ...
 ...double(FTORAD_CONV));

distance = sourcesPos.at(k).at(2) + globalPos[2];
attenuation = 1.000/distance; 

vector <double> column;
sphHarm = 1.0*attenuation;
column.push_back(sphHarm);
sphHarm = sqrt(3.0)*cos(azimuth)*cos(elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = sqrt(3.0)*sin(azimuth)*sin(elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = sqrt(3.0)*sin(elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(24.0)/2)*cos(2*azimuth)*pow(cos(elevation),2)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(24.0)/2)*sin(2*azimuth)*pow(cos(elevation),2)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(24.0)/2)*cos(azimuth)*sin(2*elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(24.0)/2)*sin(azimuth)*sin(2*elevation)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(5.0)/2)*((3*pow(sin(elevation),2)) - 1)*attenuation;
column.push_back(sphHarm);
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sphHarm = (sqrt(35.0/8.0))*cos(3*azimuth)*pow(cos(elevation),3)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(35.0/8.0))*sin(3*azimuth)*pow(cos(elevation),3)*attenuation;
column.push_back(sphHarm);
sphHarm = (sqrt(7.0*15.0)/2)*cos(2*azimuth)*sin(elevation)* ...

 ... pow(cos(elevation),2)*attenuation;

column.push_back(sphHarm);
sphHarm = (sqrt(7.0*15.0)/2)*sin(2*azimuth)*sin(elevation)* ... 

   ... pow(cos(elevation),2)*attenuation;

column.push_back(sphHarm);
sphHarm = (sqrt(21.0/8.0))*cos(azimuth)*cos(elevation)* ...
           ... (5*pow(sin(elevation),2) - 1)*attenuation;

column.push_back(sphHarm);
sphHarm = (sqrt(21.0/8.0))*sin(azimuth)*cos(elevation)* ...
           ... (5*pow(sin(elevation),2) - 1)*attenuation;

column.push_back(sphHarm);
sphHarm = (sqrt(7.0)/2)*sin(elevation)*(5*pow(sin(elevation),2) - 3)*attenuation;
column.push_back(sphHarm);

dSourcesMatrix.push_back(column);
column.clear();

}

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setdGainsMatrix(int sources, int nfcFlag) {

dGainsMatrix.clear();
double normFactor;
if(inverseFlag == 0)
normFactor = 1/double(numLoudsp);

if(nfcFlag == 0){
for(int n=0; n<=(numLoudsp - 1); n++){
vector <double> row;

for(int k=0; k<=(sources - 1); k++){
double gain = 0.0;
gain += dLoudspMatrix(n,0)*(dSourcesMatrix.at(k).at(0));
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

for(int m=1; m<=3; m++){
gain += (dLoudspMatrix(n,m))*(dSourcesMatrix.at(k).at(m));

}
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

for(int m=4; m<=8; m++){
gain += (dLoudspMatrix(n,m))*(dSourcesMatrix.at(k).at(m));

}
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

for(int m=9; m<=15; m++){
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gain += (dLoudspMatrix(n,m))*(dSourcesMatrix.at(k).at(m));
}
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

}

dGainsMatrix.push_back(row);
row.clear();

}
}
else{
for(int n=0; n<=(numLoudsp - 1); n++){
vector <double> row;

for(int k=0; k<=(sources - 1); k++){
float gain = 0.0;

for(int m=0; m<=(numSphHarm - 1); m++){
gain += (dLoudspMatrix(n,m))*(dSourcesMatrix.at(k).at(m));

}
if(inverseFlag == 0)
row.push_back(gain*normFactor);

else
row.push_back(gain);

}

dGainsMatrix.push_back(row);
row.clear();

}
}

}
//-----------------------------------------------------------------------------------

// NCF filtering methods
//*****************************************
//-----------------------------------------------------------------------------------
void ambiSound::initNumCoeffMatrix(){

for(int k=0; k<=(kNumInputs - 1); k++){
vector <float> coefficients;
vector < vector <float> > allCoefficients;
coefficients.push_back(0.0); //setting default coefficients value to 0.0 

for(int i=0; i<=2; i++){
coefficients.push_back(0.0);
allCoefficients.push_back(coefficients);

}

numCoeff.push_back(allCoefficients);
allCoefficients.clear();
coefficients.clear();

}
}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::initdNumCoeffMatrix(){

for(int k=0; k<=(kNumInputs - 1); k++){
vector <double> coefficients;
vector < vector <double> > allCoefficients;
coefficients.push_back(0.0); //setting default coefficients value to 0.0 
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for(int i=0; i<=2; i++){
coefficients.push_back(0.0);
allCoefficients.push_back(coefficients);

}

dNumCoeff.push_back(allCoefficients);
allCoefficients.clear();
coefficients.clear();

}
}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setNfcDenFilterCoeff(float distance){

// Denominator filter coefficients computation 
vector <float> zeroes;                // vector to store related zeroes
vector <float> coefficients;          // vector to store coefficients
float c = 340.f;                      // speed of sound
float alpha = 4*sampleRate*dist/c;         // factor used in computation

denCoeff.clear();
coefficients.clear();

float ar0 = 1.000 - (-2.000)/alpha;  
float ar1 = -(1.000 + (-2.000)/alpha);
coefficients.push_back(ar1/ar0);     // 1 coefficient for H1(z) denominator
denCoeff.push_back(coefficients);
coefficients.clear();
zeroes.clear();                       
coefficients.clear();

zeroes.push_back(-3.0000);            // f2(w) zeroes computation
zeroes.push_back(pow(3.0000, 2) + pow(1.7321, 2));

float ac0 = 1 - 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));
float ac1 = -2 * (1 - zeroes.at(1)/(pow(alpha, 2)));
float ac2 = 1 + 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));

coefficients.push_back(ac1/ac0);      // 2 coefficients for H2(z) denominator
coefficients.push_back(ac2/ac0);
coefficients.push_back(ac0);          // actually doesn't take part on filtering 
denCoeff.push_back(coefficients);
coefficients.clear();
zeroes.clear();                       
coefficients.clear();

zeroes.push_back(-3.6778);            // f3(w) zeroes computation
zeroes.push_back(pow(3.6778, 2) + pow(3.5088, 2));
zeroes.push_back(-4.6444);

ar0 = 1 - zeroes.at(2)/alpha;
ar1 = -(1 + zeroes.at(2)/alpha);
ac0 = 1 - 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));
ac1 = -2 * (1 - zeroes.at(1)/(pow(alpha, 2)));
ac2 = 1 + 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));

float a_0 = ac0*ar0;
float a_1 = ac1*ar0 + ac0*ar1;
float a_2 = ac2*ar0 + ac1*ar1;
float a_3 = ac2*ar1;

coefficients.push_back(a_1/a_0);      // 3 coefficients for H3(z) denominator
coefficients.push_back(a_2/a_0);
coefficients.push_back(a_3/a_0);
coefficients.push_back(a_0);          // actually doesn't take part on filtering
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denCoeff.push_back(coefficients);
coefficients.clear();

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setdNfcDenFilterCoeff(double distance){

// Denominator filter coefficients computation 
vector <double> zeroes;               // vector to store related zeroes
vector <double> coefficients;         // vector to store coefficients
double c = 340.0000;                  // speed of sound
double alpha = 4.0*sampleRate*dist/c;    // factor used in computation

dDenCoeff.clear();
coefficients.clear();

double ar0 = 1.000 - (-2.000)/alpha;
double ar1 = -(1.000 + (-2.000)/alpha);

coefficients.push_back(ar1/ar0);      // 1 coefficient for H1(z) denominator
dDenCoeff.push_back(coefficients);
coefficients.clear();
zeroes.clear();                       
coefficients.clear(); 

zeroes.push_back(-3.0000);            // f2(w) zeroes computation
zeroes.push_back(pow(3.0000, 2) + pow(1.7321, 2));

double ac0 = 1 - 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));
double ac1 = -2 * (1 - zeroes.at(1)/(pow(alpha, 2)));
double ac2 = 1 + 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));

coefficients.push_back(ac1/ac0);      // 2 coefficients for H2(z) denominator
coefficients.push_back(ac2/ac0);
coefficients.push_back(ac0);          // actually doesn't take part on filtering
dDenCoeff.push_back(coefficients);
coefficients.clear();
zeroes.clear();                       
coefficients.clear();

zeroes.push_back(-3.6778);            // f3(w) zeroes computation
zeroes.push_back(pow(3.6778, 2) + pow(3.5088, 2));
zeroes.push_back(-4.6444);

ar0 = 1 - zeroes.at(2)/alpha;
ar1 = -(1 + zeroes.at(2)/alpha);
ac0 = 1 - 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));
ac1 = -2 * (1 - zeroes.at(1)/(pow(alpha, 2)));
ac2 = 1 + 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));

double a_0 = ac0*ar0;
double a_1 = ac1*ar0 + ac0*ar1;
double a_2 = ac2*ar0 + ac1*ar1;
double a_3 = ac2*ar1;

coefficients.push_back(a_1/a_0);      // 3 coefficients for H3(z) denominator
coefficients.push_back(a_2/a_0);
coefficients.push_back(a_3/a_0);
coefficients.push_back(a_0);          // actually doesn't take part on filtering
dDenCoeff.push_back(coefficients);
coefficients.clear();

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setNfcNumFilterCoeff(int sourceIndex, float sourceDist){
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// Numerator filter coefficients coputation 
vector <float> zeroes;                // vector to store related zeroes
vector <float> coefficients;          // vector to store coefficients
float c = 340.f;                      // speed of sound
float alpha = 4*sampleRate*sourceDist/c;   // factor used in computation

float br0 = 1.000 - (-2.000)/alpha;
float br1 = -(1.000 + (-2.000)/alpha);

coefficients.push_back(br0/denCoeff.at(0).at(0));// 2 coefficients for H1(z) 
coefficients.push_back(br1/denCoeff.at(0).at(0));// numerator
numCoeff.at(sourceIndex).at(0) = coefficients;   // numCoeff storing
coefficients.clear();

zeroes.push_back(-3.0000);                       // f2(w) zeroes computation
zeroes.push_back(pow(3.0000, 2) + pow(1.7321, 2));

float bc0 = 1 - 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));
float bc1 = -2 * (1 - zeroes.at(1)/(pow(alpha, 2)));
float bc2 = 1 + 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));

coefficients.push_back(bc0/denCoeff.at(1).at(2));// 3 coefficients for H2(z)
coefficients.push_back(bc1/denCoeff.at(1).at(2));// numerator
coefficients.push_back(bc2/denCoeff.at(1).at(2));
numCoeff.at(sourceIndex).at(1) = coefficients;   // numCoeff storing
coefficients.clear();
zeroes.clear();

zeroes.push_back(-3.6778);                       // f3(w) zeroes computation
zeroes.push_back(pow(3.6778, 2) + pow(3.5088, 2));
zeroes.push_back(-4.6444);

br0 = 1 - zeroes.at(2)/alpha;
br1 = -(1 + zeroes.at(2)/alpha);
bc0 = 1 - 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));
bc1 = -2 * (1 - zeroes.at(1)/(pow(alpha, 2)));
bc2 = 1 + 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));

float b_0 = bc0*br0;
float b_1 = bc1*br0 + bc0*br1;
float b_2 = bc2*br0 + bc1*br1;
float b_3 = bc2*br1;

coefficients.push_back(b_0/denCoeff.at(2).at(3));// 4 coefficients for H3(z) 
coefficients.push_back(b_1/denCoeff.at(2).at(3));// numerator
coefficients.push_back(b_2/denCoeff.at(2).at(3));
coefficients.push_back(b_3/denCoeff.at(2).at(3));
numCoeff.at(sourceIndex).at(2) = coefficients;   // numCoeff storing
coefficients.clear();
zeroes.clear();

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
void ambiSound::setdNfcNumFilterCoeff(int sourceIndex, double sourceDist){

// Numerator filter coefficients coputation
vector <double> zeroes;                 // vector to store related zeroes
vector <double> coefficients;           // vector to store coefficients
double c = 340.000;                     // speed of sound
double alpha = 4.0*sampleRate*sourceDist/c;// factor used in computation

double br0 = 1.000 - (-2.000)/alpha;
double br1 = -(1.000 + (-2.000)/alpha);

coefficients.push_back(br0/dDenCoeff.at(0).at(0));// 2 coefficients for H1(z)
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coefficients.push_back(br1/dDenCoeff.at(0).at(0));// numerator
dNumCoeff.at(sourceIndex).at(0) = coefficients;   // dNumCoeff storing
coefficients.clear();

zeroes.push_back(-3.0000);                        // f2(w) zeroes computation
zeroes.push_back(pow(3.0000, 2) + pow(1.7321, 2));

double bc0 = 1 - 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));
double bc1 = -2 * (1 - zeroes.at(1)/(pow(alpha, 2)));
double bc2 = 1 + 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));

coefficients.push_back(bc0/dDenCoeff.at(1).at(2));// 3 coefficients for H2(z)
coefficients.push_back(bc1/dDenCoeff.at(1).at(2));// numerator
coefficients.push_back(bc2/dDenCoeff.at(1).at(2));
dNumCoeff.at(sourceIndex).at(1) = coefficients;   // dNumCoeff storing
coefficients.clear();
zeroes.clear();

zeroes.push_back(-3.6778);                        // f3(w) zeroes computation
zeroes.push_back(pow(3.6778, 2) + pow(3.5088, 2));
zeroes.push_back(-4.6444);

br0 = 1 - zeroes.at(2)/alpha;
br1 = -(1 + zeroes.at(2)/alpha);
bc0 = 1 - 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));
bc1 = -2 * (1 - zeroes.at(1)/(pow(alpha, 2)));
bc2 = 1 + 2*(zeroes.at(0)/alpha) + zeroes.at(1)/(pow(alpha, 2));

double b_0 = bc0*br0;
double b_1 = bc1*br0 + bc0*br1;
double b_2 = bc2*br0 + bc1*br1;
double b_3 = bc2*br1;

coefficients.push_back(b_0/dDenCoeff.at(2).at(3));// 4 coefficients for H3(z)
coefficients.push_back(b_1/dDenCoeff.at(2).at(3));// numerator
coefficients.push_back(b_2/dDenCoeff.at(2).at(3));
coefficients.push_back(b_3/dDenCoeff.at(2).at(3));
dNumCoeff.at(sourceIndex).at(2) = coefficients;   // dNumCoeff storing
coefficients.clear();
allCoefficients.clear();
zeroes.clear();

}
//-----------------------------------------------------------------------------------

//-----------------------------------------------------------------------------------
float ambiSound::nfcFilter(int pastOutsIndex, float signal, int filtIndex){

float filtSignal = 0.f;    // output initialization

switch (filtIndex) {
case 0:                  // 1st order harmonic components filtering
{                        // convolution operation: signal(n)*h1(n)

filtSignal = numCoeff.at(pastOutsIndex).at(filtIndex).at(0)*signal ...
             ... + numCoeff.at(pastOutsIndex).at(filtIndex).at(1)* ...
             ... pastInsMatrix.at(pastOutsIndex).at(0) ...
             ... - denCoeff.at(filtIndex).at(0)* ...

 ... pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(0);

if(encodingOrder == 1){// past input samples update
pastInsMatrix.at(pastOutsIndex).at(0) = signal;

}
                       // past output samples update
return pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(0) = filtSignal;

}
break;

case 1:                  // 2nd order harmonic components filtering
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{                        // convolution operation: signal(n)*h2(n)

filtSignal = numCoeff.at(pastOutsIndex).at(filtIndex).at(0)*signal ...
             ... + numCoeff.at(pastOutsIndex).at(filtIndex).at(1)* ...
             ... pastInsMatrix.at(pastOutsIndex).at(0) ...
             ... + numCoeff.at(pastOutsIndex).at(filtIndex).at(2)* ...
             ... pastInsMatrix.at(pastOutsIndex).at(1) ...

 ... - denCoeff.at(filtIndex).at(0)* ...
             ... pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(0) ...
             ... - denCoeff.at(filtIndex).at(1)* ...
             ... pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(1);

if(encodingOrder == 2){// past input samples update
pastInsMatrix.at(pastOutsIndex).at(1) = ... 

... pastInsMatrix.at(pastOutsIndex).at(0);

pastInsMatrix.at(pastOutsIndex).at(0) = signal;
}
                       // past output samples update
pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(1) = ... 
                     ... pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(0);

return pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(0) = filtSignal;
}
break;

case 2:                  // 3rd order harmonic components filtering
{                        // convolution operation: signal(n)*h3(n)

filtSignal = numCoeff.at(pastOutsIndex).at(filtIndex).at(0)*signal ...
             ... + numCoeff.at(pastOutsIndex).at(filtIndex).at(1)* ...
             ... pastInsMatrix.at(pastOutsIndex).at(0) ...
             ... + numCoeff.at(pastOutsIndex).at(filtIndex).at(2)* ...
             ... pastInsMatrix.at(pastOutsIndex).at(1) ...
             ... + numCoeff.at(pastOutsIndex).at(filtIndex).at(3)* ...
             ... pastInsMatrix.at(pastOutsIndex).at(2) ...
             ... - denCoeff.at(filtIndex).at(0)* ...
             ... pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(0) ...
             ... - denCoeff.at(filtIndex).at(1)* ...
             ... pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(1) ...
             ... - denCoeff.at(filtIndex).at(2)* ... 
             ... pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(2);

                       // past input samples update
pastInsMatrix.at(pastOutsIndex).at(2) = ...
                                    ... pastInsMatrix.at(pastOutsIndex).at(1);

pastInsMatrix.at(pastOutsIndex).at(1) = ...
                                    ... pastInsMatrix.at(pastOutsIndex).at(0);

pastInsMatrix.at(pastOutsIndex).at(0) = signal;

                       // past output samples update
pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(2) = ... 
                     ... pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(1);

pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(1) = ... 
                     ... pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(0);

return pastOutsMatrix.at(pastOutsIndex).at(filtIndex).at(0) = filtSignal;
}
break;

default: return signal;
break;

}
}
//-----------------------------------------------------------------------------------
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//-----------------------------------------------------------------------------------
double ambiSound::dNfcFilter(int dPastOutsIndex, double signal, int dFiltIndex){

double filtSignal = 0.0;

switch (dFiltIndex) {
case 0:
{
filtSignal = dNumCoeff.at(dPastOutsIndex).at(dFiltIndex).at(0)*signal ...
             ... + dNumCoeff.at(dPastOutsIndex).at(dFiltIndex).at(1)* ...
             ... dPastInsMatrix.at(dPastOutsIndex).at(0) ...
             ... - dDenCoeff.at(dFiltIndex).at(0)* ...
             ... dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(0);

if(encodingOrder == 1){
dPastInsMatrix.at(dPastOutsIndex).at(0) = signal;

}

return dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(0) = filtSignal;
}
break;

case 1:
{
filtSignal = dNumCoeff.at(dPastOutsIndex).at(dFiltIndex).at(0)*signal ...
             ... + dNumCoeff.at(dPastOutsIndex).at(dFiltIndex).at(1)* ...
             ... dPastInsMatrix.at(dPastOutsIndex).at(0) ...

 ... + dNumCoeff.at(dPastOutsIndex).at(dFiltIndex).at(2)* ...
             ... dPastInsMatrix.at(dPastOutsIndex).at(1) ...
             ... - dDenCoeff.at(dFiltIndex).at(0)* ...
             ... dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(0) ...
             ... - dDenCoeff.at(dFiltIndex).at(1)* ...
             ... dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(1);

if(encodingOrder == 2){
dPastInsMatrix.at(dPastOutsIndex).at(1) = ...
                                 ...dPastInsMatrix.at(dPastOutsIndex).at(0);

dPastInsMatrix.at(dPastOutsIndex).at(0) = signal;
}

dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(1) = ... 
                  ... dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(0);

return dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(0) = filtSignal;
}
break;

case 2:
{
filtSignal = dNumCoeff.at(dPastOutsIndex).at(dFiltIndex).at(0)*signal ...
             ... + dNumCoeff.at(dPastOutsIndex).at(dFiltIndex).at(1)* ...
             ... dPastInsMatrix.at(dPastOutsIndex).at(0) ...
             ... + dNumCoeff.at(dPastOutsIndex).at(dFiltIndex).at(2)* ...
             ... dPastInsMatrix.at(dPastOutsIndex).at(1) ...

 ... + dNumCoeff.at(dPastOutsIndex).at(dFiltIndex).at(3)* ...
             ... dPastInsMatrix.at(dPastOutsIndex).at(2) ...
             ... - dDenCoeff.at(dFiltIndex).at(0)* ...
             ... dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(0) ...
             ... - dDenCoeff.at(dFiltIndex).at(1)* ...
             ... dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(1) ...

 ... - dDenCoeff.at(dFiltIndex).at(2)* ...
             ... dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(2);

dPastInsMatrix.at(dPastOutsIndex).at(2) = ...
                                  ... dPastInsMatrix.at(dPastOutsIndex).at(1);

dPastInsMatrix.at(dPastOutsIndex).at(1) = ...
                                  ... dPastInsMatrix.at(dPastOutsIndex).at(0);



132 Appendix A. Listing

Page 28 of 28

AmbiSound_Spat.cpp 24/06/11 18:00

dPastInsMatrix.at(dPastOutsIndex).at(0) = signal;

dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(2) = ...
... dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(1);

dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(1) = ...
                  ... dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(0);

return dPastOutsMatrix.at(dPastOutsIndex).at(dFiltIndex).at(0) = filtSignal;
}
break;

default: return signal;
break;

}
}
//-----------------------------------------------------------------------------------
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