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“Abbiamo tutti problemi di cuore. . . ”
Sv.



Abstract

This Master Thesis is the result of a six month internship in the REO
group of the Insitut Nationale de Recherche Informatique et Automatique
(INRIA) of Rocquencourt - Paris (France), under the supervision of Jean-
Frédéric Gerbeau and Muriel Boulakia. This work aim is the application of
the Proper Orthogonal Decomposition (POD) as a reduced model technique
in cardiac electrophysiology. The main features used to solve and treat this
problem are the bi-domain model, the Mitchell and Schaeffer ionic model
and the Electrocardiogram (ECG). Particularly, we focused on two medical
studies: myocardial transmural infarction and accelerated beats. In both
cases we numerically solved the problem with a complete model and with
a reduced one and we faced with an inverse problem. In the study of the
myocardial infarction we are aimed to find the infarcted area starting from a
simulated ECG, applying a genetic algorithm. In the case of the simulation
of a long sequence of accelerated beats, the solutions and the correspond-
ing ECG are used to build the so-called restitution curve. Once obtained
the restitution curve, i.e. a relationship between the two main phases of a
cardiac beat, we applied some theoretical results in order to estimate some
parameters of the ionic model. Dealing with this last part, here is presented
a preliminary study useful for future work.
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Introduction

The first aim of this project is to study some applications of a model re-
duction method, which is a very important technique used to decrease the
computational time of various kinds of problems. The model reduction
method that we used is the Proper Orthogonal Decomposition technique,
described in chapter 2 and the application domain presented here is the
cardiac electrophysiology.

The cardiac electrophysiology is the study of the electrical activity of the
heart tissues and the main tool used to measure it is the Electrocardiogram.
To simulate the evolution of the heart potential we choose the bidomain
model described hereafter. Both the resolutions of the direct problem and
of the inverse problem, i.e. the identification of the parameters of the corre-
sponding equations, are very useful. Particularly, we decided to apply our
studies to two main applications: the case of an infarction and the study of
accelerated beats.

Hereafter we give a brief description of the functioning of the heart and
of the procedure of the electrocardiogram. Further details can be found in
the doctoral thesis of Néjib Zemzemi [22], which constitutes the starting
point of the presented work. We end this introduction with a presentation
of the objectives of this work.

The heart

The heart is a hollow muscle located in the chest between the lungs behind
the sternum and above the diaphragm. Its role is to pump the blood to
the whole body: most of the human organs cannot survive more than few
minutes without supply of oxygenated blood.

The heart is divided into four parts (two atria and two ventricles) and
it is mainly composed of oriented fibers. The blood is pumped by the heart
thanks to a series of contractions (systoles) and relaxations (diastoles) of
atria and ventricles. The heart contracts regularly, at rest about 70 times
a minute and it can reach the 180 beats a minute, or even 210 in case of
great efforts. Contractions of the heart are intrinsic: each cardiac cell beats
regularly and spontaneously.

vi
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Figure 1: The anatomy of the heart (Source: bembook [10]).

The cardiac beats are controlled by a group of cells, located in the
right atrium at the superior vena cava and called sinus node, that are self-
excitatory. From the sinus node, activation propagates throughout the atria
to the ventricles. Propagation from the atria to the ventricles is provided
by a specialized conduction system, composed of a common bundle called
the bundle of His. This system separates into a left and a right bundle
brunches, propagating along each side of the septum, then the bundles ram-
ify into Purkinje fibers.

The electrocardiogram

Electrocardiogram (ECG) is the most used exam providing an interpretation
of the heart’s electrical activity. In practice, it records by skin electrodes
the voltage of different body’s points, these measures (or leads) are then
represented as twelve graphs of the recorded voltage vs time. There are
many exams that can be done to study the heart behavior, the ECG is
largely used since it is a non invasive and inexpensive one.

The voltage between the body surface’s points is measured by the elec-
trocardiograph, i.e. the device that allows to do an ECG, and it is printed
on a display, called electrocardioscope, or on a so-called graph paper. Figure
3 shows the first ECG lead in an healthy case. The different waves we can
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Figure 2: Cardiac mechanical activity steps and corresponding ECG com-
ponents (Source: bembook [10]).

see are called (from left to right) P, Q, R, S, T and U waves. The P wave
represents the auricular depolarization, the QRS complex represents the
ventricular depolarization, the segment QT is the plateau of the ventricular
action potential, the T wave corresponds to the ventricular re-polarization
and the U wave (generally absent) is due to a mechanical factor that corre-
sponds to the myocardium relaxation.

Objectives

As we want to use the ECG as main tool to analyze our results, we need
to describe the evolution of the potential of the hearth during each beat.
To study the electrical behavior of the heart we use the so-called bidomain
model. The biological principles and the mathematical equations that de-
scribe this model are exposed in the next chapter.

Once the model is defined, our aim is to apply the POD method. In
a first step this method is used for the resolution of the direct problem in
the case of a patient suffering of a stroke or infarction. Infarction is a very
common pathology: it is due to a lack of blood supply in a zone of the
heart which leads to the damage of the tissue. We simulate different kinds
of infarctions located in some area of the left ventricle and we verify that
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Figure 3: The normal electrocardiogram (Source: bembook [10]).

the corresponding simulated ECG is in accordance with the medical theory.
Then, using a well chosen POD basis (for further details see chapter 2) we
simulate an infarction located in a random point of the left ventricle.

Once this basis is build, we can use it also to solve the inverse problem.
The idea is to use an ECG (real or simulated) to find out some parameters
of the model. In the case of the study of infarction our aim is to find the
coordinates on the left ventricle surface of the infarcted zone, using a genetic
algorithm. Genetic algorithms (described in chapter 3) are a heuristic kind
of optimization method based on the subsequent resolution of the function
that has to be minimized. The use of the POD allows to reduce significantly
the computational time of resolution.

The second application of the POD is the resolution of a long sequence of
accelerated beats. This simulation allows to obtain the so-called restitution
curve, i.e. the dependence between diastolic interval (DI) and the succes-
sive duration of a cardiac action potential (APD). This curve is known to
be important in the understanding of some arrhythmias ([19], [12]). The
simulation of the restitution curve is extremely challenging for 3D models
since it requires several dozen of heart beats, whereas the simulation of one
heart beat is already very demanding. The study of a restitution curve, by
definition, can be conducted on a single cell, recording its transmembrane
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potential, or looking at the ECG first lead. In fact, DI and APD can be
respectively compared to the TQ time (time between the T and the Q wave)
and the QT time ([11]). Once obtained the restitution curve, we used them
to find some parameters of the ionic model. In this work we presented only
a preliminary study of these tools, future developments will probably lead
to more interesting results.

Contents of the work

In the first part of the work we present the mathematical instruments: first
chapter describes the bidomain model and the ionic model, while second
and third ones respectively deal with the POD method and the genetic al-
gorithms description.

The second part treats the first application: the simulation of a trans-
mural myocardial infarction. We first face to the numerical simulation of
an infarction, then we look for a good POD basis and we use it to solve the
inverse problem of identification of the infarcted area.

The third part deals with the study of long sequence of accelerated beats
and the restitution curves. First, a preliminary study on the single cell model
and the corresponding restitution curve, used to estimate some ionic param-
eters, is done. Then this results are extended to the 3D model: the numerical
solution and the corresponding restitution curve is calculated both with the
complete and the reduced models, and a first approach to the identification
of ionic parameters is presented.

Finally, some conclusions and future possibility of works are drawn.



Introduzione

Il principale obiettivo della presente tesi é l’applicazione del metodo di
riduzione dei modelli, tecnica di largo utile alla diminuzione dei tempi di
calcolare in una vasta categoria di problemi. Il metodo di riduzione dei
modelli utilizzato per questo progetto è la Proper Orthogonal Decomposi-
tion, descritta nel capitolo 2, ed é stata applicata in particolare al campo
dell’elettrofisiologia cardiaca.

L’elettrofisiologia cardiaca è lo studio dell’attività elettrica del cuore e il
principale strumento utilizzato per questo studio è l’elettrocardiogramma.
Per simulare l’andamento del potenziale elettrico cardiaco abbiamo scelto
il cosiddetto modello bidomain descritto nel seguito. Sia la risoluzione del
problema diretto, sia quella del problema inverso, ovvero l’identificazione dei
parametri delle equazioni caratteristiche del modello, sono di largo uso. In
particolare, abbiamo deciso di fare riferimento a due casi di interesse medico:
la simulazione di un infarto del miocardio e lo studio di battiti accelerati.

Di seguito, una breve descrizione del funzionamento del cuore e della
procedura per ottenere un elettrocardiogramma. Maggiori dettagli possono
essere trovati nella tesi di dottorato di Néjib Zemzemi [22], che costituisce
il punto di partenza del presente lavoro. Concludiamo questa introduzione
con una presentazione degli obiettivi del lavoro.

Il cuore

Il cuore è un muscolo cavo collocato nella cassa toracica tra le costole e lo
sterno, al di sopra del diaframma. Il suo ruolo è quello di pompare il sangue
nell’intero corpo: la maggior parte degli organi umani non può sopravvivere
più di qualche minuto senza apporto di sangue ossigenato.

Il cuore è diviso in quattro parti (due atri e due ventricoli) ed è princi-
palmente composto da fibre orientate. Il sangue è pompato dal cuore grazie
ad una serie di contrazioni (sistole) e di rilassamenti (diastole) di atri e ven-
tricoli. Il cuore si contrae regolarmente, a riposo circa 70 volte al minuto
e può raggiungere i 180 battiti al minuto, o anche i 210 in caso di grande
sforzo. Le contrazioni del cuore sono intrinseche: ogni cellula cardiaca batte
regolarmente in modo spontaneo.

xi
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I battiti cardiaci sono controllati da un gruppo di cellule, chiamate nodo
sinusale, collocate nell’atrio destro, nella vena cava superiore, e che sono
auto-eccitanti. Dal nodo sinusale, l’attivazione si propaga attraverso gli
atri e i ventricoli. La propagazione dagli atri ai ventricoli è garantita da un
sistema di conduzione specializzato, composto da un fascio comune chiamato
fascio di His. Questo sistema si separa in una branca destra ed in una branca
sinistra, che si propagano lungo i due lati del setto, successivamente i fasci
si ramificano nelle fibre di Purkinje.

L’elettrocardiogramma

L’elettrocardiogramma (ECG) è l’esame più usato per avere un’interpreta-
zione dell’attività elettrica del cuore. In pratica, la differenza di potenziale
in diversi punti del corpo viene registrata tramite elettrodi cutanei, queste
misure (dette derivazioni) sono quindi rappresentate come dodici grafici
della differenza di potenziale in funzione del tempo. Ci sono molti esami
che possono essere usati per lo studio del comportamento cardiaco, l’ECG è
largamente diffuso in quanto risulta non invasivo e poco costoso.

La differenza di potenziale tra i punti della superficie del corpo è misu-
rata dall’elettrocardiografo, ovvero una macchina che permette di calcolare
un ECG, ed è stampato su un display, chiamato elettrocardioscopo, o sulla
cosiddetta carta millimetrata. La Figura 3 mostra la prima derivazione
dell’ECG in un caso sano. Le diverse onde che si possono vedere sono chia-
mate (da sinistra verso destra) onde P, Q, R, S, T e U. L’onda P rappresenta
la depolarizzazione auricolare, il complesso QRS rappresenta la depolariz-
zazione ventricolare, il segmento QT è il plateau del potenziale d’azione
ventricolare, l’onda T corrisponde alla repolarizzazione ventricolare e l’onda
U (generalmente assente) è dovuta a un fattore meccanico corrispondente al
rilassamento del miocardio.

Obiettivi

Poichè abbiamo usato l’ECG come strumento principale di misura dei risul-
tati, abbiamo bisogno di descrivere il potenziale elettrico del cuore durante
ogni singolo battito. Per studiare il comportamento elettrico del cuore usi-
amo il cosiddetto modello bi-dominio. Il principio biologico e le equazioni
matematiche che descrivono questo modello sono riportati nel capitolo suc-
cessivo.

Definito il modello, il nostro obiettivo è di applicare il metodo di riduzione
del modello in analisi: la Proper Orthogonal Decomposition (POD). La
prima applicazione riguarda la risoluzione numerica del problema, ovvero
delle equazioni che descrivono il potenziale cardiaco in grado di simulare
l’ECG di un paziente colpito da ictus o infarto. L’infarto è una patologia
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molto comune: si tratta di un mancato apporto di flusso sanguigno in una
zona del cuore che può causare complicazioni e morte. Il nostro obiettivo è di
simulare diversi tipi di infarto, in particolare di tipo transmurale, posizionati
in alcune zone del ventricolo sinistro. Risolto il sistema di equazioni, ver-
ifichiamo che il corrispondente ECG sia in accordo con la teoria medica.
Quindi, usando una base POD scelta in modo opportuno (per maggiori det-
tagli riferirsi al capitolo 2), simuliamo un infarto posizionato in un qualunque
punto del ventricolo sinistro.

Una volta trovata la base adatta, essa può essere usata anche per la
risoluzione del problema inverso. L’idea è di utilizzare un ECG (reale o
simulato) per trovare alcuni parametri del modello. Nel caso dello studio
di un infarto il nostro obiettivo è trovare le coordinate sulla superficie del
ventricolo sinistro corrispondenti alla zona colpita, usando delgli algoritmi
genetici. Gli algoritmi genetici (descritti nel capitolo 3) sono metodi di
ottimizzazione euristici basati sulla ripetuta risoluzione della funzione che si
vuole minimizzare, da cui l’importanza di usare la POD per ridurre il tempo
computazionale di risoluzione.

La seconda applicazione nella quale è stata utilizzata la tecnica della
POD è la simulazione di una lunga sequenza di battiti. È di particolare in-
teresse lo studio della cosiddetta curva di restituzione, ovvero la dipendenza
tra l’intervallo diastolico (DI) e la successiva durata del potenziale d’azione
(Action Potential Duration - APD). Questa curva è importante per capire
alcuni tipi di aritmia cardiaca ([19], [12]). La ricostruzione della curva di
restituzione è estremamente costosa per un modello 3D poichè richiede la
simulazione di decine di battiti cardiaci. Ricordiamo che la simulazione di
un solo battito è già computazionalmente molto onerosa. Lo studio della
curva di restituzione, per la definizione di APD, può essere condotto su una
singola cellula, misurando il suo potenziale d’azione, oppure osservando la
prima derivazione di un ECG. Infatti, DI e APD possono essere comparati
rispettivamente con il tempo TQ (tempo trascorso tra l’onda T e l’onda Q)
e il tempo QT ([11]). Una volta ottenuta la curva di restituzione, essa viene
usata per trovare alcuni dei parametri del modello ionico. In questo lavoro
viene presentato uno studio preliminare di questi strumenti, sviluppi futuri
porteranno probabilmente a migliori risultati.

Piano del lavoro

Nella prima parte del lavoro vengono presentati gli strumenti matematici
utilizzati: il primo capitolo descrive il modello bi-dominio ed il modello
ionico, mentre nel secondo e nel terzo vengono rispettivamente decritti il
metodo della POD e gli algoritmi genetici.

La seconda parte del lavoro è inccentrata sullo studio di un’applicazione
medica: la simulazione di un infarto transmurale del miocardio. Abbiamo
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prima affrontato la simulazione numerica di un infarto, cercato una base
POD adatta ad approssimare il problema e l’abbiamo utilizzata per risol-
vere il problema inverso di identificazione dell’area malata.

La terza parte si occupa dello studio di lunghe sequenze di battiti ac-
celerati e delle curve di restituzione. Innanzitutto, viene presentato uno
studio preliminare condotto sul modello di una singola cellula e sulla curva
di restituzione corrispondente. Quest’ultima viene poi utilizzata per sti-
mare alcuni parametri ionici. Successivamente i risultati ottenuti sul sistema
0D vengono estesi al sistema 3D: le soluzioni numeriche e le corrispondenti
curve di restituzione vengono calcolate sia con il modello completo che con
quello ridotto, e viene presentato un primo approccio all’identificazione dei
parametri ionici.

Infine, vengono esposte le principali conlcusioni e i possibili sviluppi del
lavoro.



Part I

Modeling of the electrical
activity of the heart

1



Chapter 1

Mathematical models

In this first chapter, we introduce the mathematical model used in this
work to describe the behavior of the electrical activity of the heart. In the
last section 1.4, we briefly present the numerical methods and the results
obtained in [2] and [22].

1.1 Heart model

Here we use the so-called bidomain model to describe the electrical behavior
of the heart. This model is based on the assumption that at microscopic
scale the cardiac tissue is composed of two different domains: the intra and
the extra-cellular ones. To better understand the model, we first present
what occurs at the cellular scale and we then present the model at the
macroscopic scale.

1.1.1 Microscopic scale

Each cell is surrounded by a membrane, this membrane is uncovered of
proteins whose role is to assure the flux of different substances from intra
to extra-cellular zones, and viceversa. These proteins can have a passive or
an active behavior, and the exchange of certain chemical substances causes
the cellular depolarization and repolarization. We can classify this ionic
transport into three types: ionic channels, pumps and exchangers.

A ionic channel allows a chemical substance to pass through the cellu-
lar membrane in the direction of electrochemical gradient. It doesn’t need
any energy contribution of the cell. Then this kind of transport is called
passive. The cell’s depolarization is caused by the opening of ionic channel
corresponding to the sodium Na+. The opening of this channel causes the
creation of a ionic current INa+ (of the order of a pico-ampére).

On the contrary to ionic channels, pumps allow substances to get through
the membrane in the opposite direction. This exchange obviously needs the

2
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Figure 1.1: Electrophysiology of the cardiac muscle cell (Source: bembook
[10]). Ionic channels and pumps are represented for the transports of Na+

and K+.

work of some proteins: the Adenosine Tri Phosphate molecules (ATP).
The most important pump is the one that allows sodium/potassium

(Na/K) exchanges. This pump lets two potassium ions K+ enter into the
cell while three sodium ions Na+ get out. At rest, the cell is strongly con-
centrated in potassium and weakly concentrated in sodium, during depolar-
ization phase the ionic channels let the sodium sin and let the potassium
out. Once the cell is depolarized, it is enriched in sodium and poor in
potassium, the activation of Na/K pump allows the cell to find its natu-
ral concentrations back. When activated, the Na/K pump creates a ionic
current INa/K .

Finally, the exchangers transport ions between the intra and extra-
cellular domain. The ions are exchanged using the electrochemical gra-
dient energy of another kind of ions. For instance, we can consider the
Na+/Ca2+ exchanger: it uses the energy of the Na/K pump to transport
Na+ and Ca2+ and allows the concentrations of these substances to find
the equilibrium again.

To sum up, each cell polarization cycle can be divided into four parts.

� At rest the cell is strongly concentrated inK+, and the transmembrane
potential Vm (the difference in potential between the intra and the
extra-cellular domain potentials) is negative.

� In the first phase the Na ionic channel opens and lets ions Na+ enter
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into the cell, so we finally have a higher concentration of Na+; this
movement creates a negative current INa+ and the transmembrane
potential increases.

� Then there is a phase of plateau, the Ca/Na exchanger lets ions Ca2+

in and lets ions Na+ out, in this phase the total ionic current is neg-
ligible and Vm is almost constant.

� During the third phase the action of the Na/K pump induces the in-
creasing of the K+ concentration in the cell and creates a current pos-
itive INa/K , consequently the transmembrane potential Vm increases.

� Finally, the Na+/Ca2+ exchanger brings back the concentrations to
the equilibrium: ions Na+ come into the cell and ions Ca2+ go out,
while the ionic current in this phase is negligible and Vm is almost
constant.

The intra-cellular domain is composed of cardiac muscle cells, while the
extra-cellular domain is composed of the rest of the media. We denote ΩH

the total domain occupied by the heart, and ΩHi , ΩHe the intra and the
extra-cellular subdomains: ΩH = ΩHi ∪ ΩHe .

We denote by ji, je, ui, ue and σi, σe, respectively, the current density,
the electric potential and the conductivity of the intra and the extra-cellular
domains. Thanks to Ohm’s law we can write:

ji = −σi∇ui,
je = −σe∇ue.

The intra and the extra-cellular domains are separated by a membrane
Γm = ∂ΩHi ∩ ∂ΩHe . Applying the conservation of the charge on Γm we
obtain

Im = ji · n = −je · n, (1.1)

where Im is the surface current density on Γm and n is the outer unit normal
vector of ∂ΩHi . The ionic exchanges are described by a ionic current Iion,
so we can write the surface current density as

Im = Iion + Cm
∂Vm

∂t
+ iapp, (1.2)

where Cm is the membrane capacity (per surface unit), Vm is the transmem-
brane potential:

Vm = ui − ue,

and iapp is the applied current (we can say from an external source). Iion

depends on Vm and on a variable field w, which represents different chemical
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concentrations and some variables on which the opening and closing of ionic
channels gates depend: Iion = Iion(Vm,w). In general we can write

∂w

∂t
+ g(Vm,w) = 0,

where g is a function which will be described by a model representing the
ionic exchanges through the cellular membrane. In this paper we have con-
sidered the Mitchell and Schaeffer model (see section 1.3).

1.1.2 Macroscopic scale

Equation (1.2) represents a discrete description of the model on the different
domains ΩHi , ΩHe . Doing an homogenization process we can find a model,
continuous on the global domain ΩH, in which each variable is replaced by
its mean value. So we can write (1.1) as

div(σi∇ui + σe∇ue) = 0, on ΩH,

or, since Vm = ui − ue,

div((σi + σe)∇ue) = −div(σi∇Vm), on ΩH. (1.3)

From (1.2) we can find the homogenized equation

Am

(
Cm

∂Vm

∂t
+ Iion(Vm,w)

)
− div(σi∇Vm) = div(σi∇ue) + Iapp, on ΩH,

(1.4)
where Am is a geometric constant which represents the average rate of sur-
face membrane per volume unit and Iapp is the applied current.

We still need boundary conditions to close the equations system. The
boundary of the heart is divided into two different zones: the endocardium
(that we denote Γendo), which is the internal membrane, and the epicardium
(Γepi), the external one. We just have to impose that on the surface of the
heart Σ = Γendo∪Γepi the intra-cellular current ji does not propagate outside
the heart:

σi∇ui · n = 0, on Σ,

where n is the outer unit normal vector of Σ. In terms of Vm and ue:

σi∇ue · n = −σi∇Vm · n, on Σ. (1.5)

Finally, if we consider an uncoupled heart-thorax model, we can impose
that the heart is isolated from the outside:

σe∇ue · n = 0, on Σ. (1.6)
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We obtain the isolated bidomain model:

Am

(
Cm

∂Vm
∂t + Iion(Vm,w)

)
− div(σi∇Vm) = div(σi∇ue) + Iapp, ΩH

div((σi + σe)∇ue) = −div(σi∇Vm), ΩH

∂tw + g(Vm,w) = 0, ΩH

σi∇Vm · n = −σi∇ue · n, Σ
(σi + σe)∇ue · n = −σi∇Vm · n, Σ.

(1.7)

Figure 1.2: Heart cut with bidomain model (Source: [22]).

1.2 Thorax model and coupling

To simulate an electrocardiogram we need to evaluate the voltage in some
thorax points, so we want to write a model for the thorax and to couple it
with the heart’s one.

We denote ΩT and uT the domain and the electric potential of the thorax
and we consider it as a passive conductor, so we just have to solve a Poisson
equation. If we denote jT the volume current density of the thorax, applying
Ohm’s law, we find

jT = −σT∇uT, on ΩT,

where, as usual, σT represents the thorax conductivity tensor. The conser-
vation of the charge can be simply written as

div(σT∇uT) = 0, on ΩT. (1.8)

The boundary conditions to impose are the non conductivity outside the
external domain Γext:

σT∇uT · nT = 0, on Γext,
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Figure 1.3: Heart cut with
epicardium and endocardium
(Source: [22]).

Figure 1.4: Cardiac do-
main and thorax domain
(Source: [22]).

with nT the outer unit normal vector of Γext, and a coupling condition with
the heart on ∂ΩT \ Γext = Σ.

To complete our coupled model we have to impose some transmission
conditions of potential and current from ΩH to ΩT. So, we suppose on Σ
the potential and current continuity between the extra-cellular values and
the thorax ones. These conditions can be reduced to:

ue = uT, on Σ,
σe∇ue · n = σT∇uT · nT, on Σ.

So, we can conclude that the complete bidomain coupled model is:

Am

(
Cm∂tVm + Iion(Vm,w)

)
− div(σi∇Vm) = div(σi∇ue) + Iapp,

div((σi + σe)∇ue) = −div(σi∇Vm),
∂tw + g(Vm,w) = 0,

div(σT∇uT) = 0,

(where the first three equations are in ΩH × (0, T ) and the last one in ΩT ×
(0, T )) with border conditions:

σi∇ue · n = −σi∇Vm · n, on ∂ΩH = Σ ∪ Γendo

(σi + σe)∇ue · n = −σi∇Vm · n, on Γendo × (0, T )
σT∇uT · nT = 0, on Γext × (0, T )
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coupling conditions:

uT = ue, on Σ× (0, T )
(σi + σe)∇ue · n = σT∇uT · nT − σi∇Vm · n, on Σ× (0, T )

and initial conditions:

Vm(x, 0) = V 0
m(x), w(x, 0) = w0(x), ∀x ∈ ΩH.

Here we will consider V 0
m = Vmin and w0 = (Vmax − Vmin)−2.

Finally, to calculate the conductivity tensor in the heart we need to
observe that the heart is made of fibers and that the electrical conductivity
is higher along the fiber direction than along cross-fiber direction. Intra and
extra-cellular media are anisotropic, so we define the conductivity tensor σe

and σi by:
σi = σt

i I + (σl
i − σt

i )a(x)⊗ a(x),
σe = σt

eI + (σl
e − σt

e)a(x)⊗ a(x),

where a(x) is a unit vector parallel to the local fiber direction and σtx and
σlx are respectively the conductivity coefficients measured along the fibers
direction and in the transverse direction.

For the conductivity tensor in the thorax we can assume that the thorax
has isotropic conductivity: σT = σTI and we take three different values:

σT =


σl

T in lungs,
σb

T in bone,
σt

T in remaining regions.

The constant parameters for σi and σe are reported in Table 1.1 and the
constants for σT are reported in Table 1.2 (all expressed in S cm−1). We
will also take Am = 200cm−1 and Cm = 10−3mF .

1.3 Ionic current: Mitchell and Schaeffer model

To complete the model we need to define the functions g and Iion that depend
on the considered cell ionic model, i.e. the model that defines the ionic
current described in section 1. We consider ionic models with only two state
variables: the transmembrane potential Vm and a gate variable w. They will
reproduce the four phases of a cell polarization and depolarization described
above, even if they are not derived from physiological observations. The
first model with only two variables that has been proposed is the FitzHugh-
Nagumo ([8], [13]) model in 1961. Then, Roger and McCulloch ([20]) and
Aliev and Panfilov ([1]) adapted this model to cardiac cells.

� FitzHugh-Nagumo:

Iion(v, w) = kv(v − a)(v − 1) + w, g(v, w) = −ε(γv − w).
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� Roger-McCulloch:

Iion(v, w) = kv(v − a)(v − 1) + vw, g(v, w) = −ε(γv − w).

� Aliev-Panfilov:

Iion(v, w) = kv(v − a)(v − 1) + vw, g(v, w) = ε(γv(v − 1− a) + w).

The parameters 0 > a > 1, k, ε, γ are positive constants.
Here, we consider the model proposed by Mitchell and Schaeffer [12]

which has been obtained more recently (2003):

Iion(Vm, w) = − w

τin

(Vm − Vmin)2(Vmax − Vm)

Vmax − Vmin
+

1

τout

Vm − Vmin

Vmax − Vmin

g(Vm, w) =


w

τopen
− 1

τopen(Vmax − Vmin)2
, if Vm < Vgate

w

τclose
, if Vm > Vgate

(1.9)
where τin, τout, τopen, τclose, Vgate, Vmin and Vmax are the ionic parameters
of model. For this model we will refer in all our work to the values in Table
1.3. We see that τclose takes different values: τRV

close on the right ventricle
and different τclose on the left ventricle varying on the transmural direction
(τ endo

close near the endocardium, τ epi
close near the epicardium and τmcell

close in rest
of the myocardium). Let us notice that the gate variable w depends on the
change-over voltage Vgate and on the time constants of opening and closing
of the ionic channels that permit the ionic exchanges (and so, depolarization
and repolarization) while the time constants τin and τout are related to the
length of depolarization and repolarization phases.

σl
i σl

e σt
i σt

i

3.0× 10−3 3.0× 10−3 3.0× 10−4 1.2× 10−3

Table 1.1: Ionic parameters.

σl
T σb

T σt
T

2.4× 10−4 4× 10−5 6× 10−4

Table 1.2: Ionic parameters.
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Figure 1.5: Einthoven triangle (Source: bembook [10]).

τin τout τopen τclose τRV
close τ endo

close τmcell
close τ epi

close Vgate Vmin Vmax

16 360 300 100 120 130 140 90 −67 −80 20

Table 1.3: Ionic parameters.
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1.4 Numerical resolution and results

In the whole work we used a weak coupling and the Mitchell and Schaeffer
ionic model as illustrated above. The solutions are obtained using a finite
element method for the space resolution of equations and a second order
BDF (backward differentiation formulae) method for the time discretization.
The tool used to obtain the solutions is the C++ LifeV library. More details
can be found in [2] and [22].

Once solution of equations (1.7)-(1.8) is computed we need to represent
the ECGs. The ECGs are computed according to the standard 12-lead ECG
definition:

I = uT(L)− uT(L) aV R = 3
2(uT(R)− uw)

II = uT(F )− uT(R) aV L = 3
2(uT(L)− uw)

III = uT(F )− uT(L) aV F = 3
2(uT(F )− uw)

V1 = uT(V1)− uw V4 = uT(V4)− uw

V2 = uT(V2)− uw V5 = uT(V5)− uw

V3 = uT(V3)− uw V6 = uT(V6)− uw

where uw = (uT(L) + uT(R) + uT(F ))/3 and L, R and F indicate different
body locations (left and right arm, and right leg, see the Einthoven triangle
in Figure 1.5). We report in Figure 1.6 a simulated ECG in an healthy case.
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Figure 1.6: Simulated healthy case ECG (time period = [0, 400]ms).
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1.4.1 Applied stimulus

Physiologically, the activation wave begins at the sinusal node in the right
atria, it propagates to ventricles through the atrioventricular node and join
the endocardium. In the model we used, atria are not included and it is
supposed that only endocardium is stimulated. A given volume current
density is applied to a thin subendocardial layer of ventricles during a small
period of time tact = 10ms. So the source current Iapp involved in the
model’s equations is parametrized as:

Iapp(x, y, z, t) = I0(x, y, z)1S(x, y, z)1[0,tact](t)ψ(x, z, t),

where S = {(x, y, z) ∈ ΩH : c1 ≤ ax2 + by2 + cz2 ≤ c2} is the stimulated
area, I0 is a function that depends on the coefficient of amplitude iapp:

I0(x, y, z) = iapp

( c2

c2 − c1
− 1

c2 − c1
(ax2 + by2 + cz2)

)
,

and ψ is the characteristic function of the activation angle:

ψ(x, z, t) =

{
1 if atan

(
x
z

)
≤ α(t)

0 if atan
(
x
z

)
> α(t)

with α(t) = πt
2tact

, i.e. only a “cone” which vertex is in the sinusal node is
stimulated.



Chapter 2

Reduced models

As the resolution of the model presented in Chapter 1 requires a long time1

we want to solve it using a reduced order model. In general, if we need to
solve a numerical problem, the reduced model approach finds a basis that
can be used to approximate the solution of the problem. The dimension
of the reduced basis is small (typically we will ask to his dimension to be
much smaller than the dimension of a finite element basis, i.e. the number
of nodes of the mesh).

In our case, we use a method based on the Proper Orthogonal Decom-
position (POD). Essentially, POD is a linear procedure that creates an or-
thogonal base using a given collection of input data. In our case, the input
data are the solutions of the problem solved with finite element.

The POD basis we are looking for is made of functions estimated as
the solution of an integral eigenvalue problem known as Fredholm equation.
From a mathematical point of view, it is strictly based on the Singular
Value Decomposition. Basically, this technique allows to extract the most
information from a matrix in the most compact way possible. POD approach
will be used also in the next chapter that deals with the inverse problem
and the parameters identification.

In the next paragraphs we describe the main points of the POD method,
for further details see for instance [7].

2.1 The Singular Value Decomposition

We first need to introduce the Singular Value Decomposition (SVD). If we
consider a full rank matrix A ∈ RM×N , r = rank(A) = min(M,N), the SVD
of A is the factorization

A = UΣV †

1It takes about 40 minutes to solve a weak coupling problem of 400msec.

13
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where U and V are (non unique) unitary respectively M ×M and N × N
matrices (i.e. UU † = IM and V V † = IN ) and the first r lines of Σ are
Σr = diag(σ1, . . . , σr), σ1 ≥ σ2 ≥ . . . ≥ σr while the last M − r ones are
null vectors. The σi are called singular values of A, the first r columns of
U = (u1, u2, . . . , uM ) the left singular vectors and the first r columns of
V = (v1, v2, . . . , vN ) the right singular vectors.

The SVD is very useful to approximate a matrix with another one which
has a specific (smaller) rank. Approximating A ∈ RM×N by a matrix X such
that rank(X) = k < r = rank(A) is equivalent to solving the minimization
problem min ‖A−X‖· in a norm that has to be specified. If we consider the
Frobenius norm2, then the solution of this minimization problem is given by
the Eckart-Young theorem:

min
X:rank(X)≤k

‖A−X‖F = ‖A−Ak‖F =

√√√√ r∑
i=k+1

σ2
i (A), (2.1)

where

Ak = U

(
Σk 0
0 0

)
V † = σ1u1v

†
1 + . . .+ σkukv

†
k,

and Σk = diag{σ1, . . . , σk}.
This is exactly the idea of the POD: we want to keep from the solution

of a finite element problem the most information we can in the most reduced
form possible, and use this information to create a basis used which will be
used to solve similar problems.

2.2 POD method

Generally, when we want to find numerically a solution u(x, t), depending
on space variable x ∈ Ω and on time t ∈ [0;T ], we approximate it by a finite
sum in the variable-separated form

u(x, t) '
K∑
k=1

ak(t)φk(x),

where the basis functions φk are given a priori. For example they can be
Legendre polynomials or Chebyshev polynomials, and the time-functions
ak depend on the choice of the base. In that case, the basis functions are
determined independently of the solution to compute. Another possibility
is to compute the basis using a collection of data on u.

Suppose that we have chosen orthonormal basis functions:∫
Ω
φk(x)φl(x)dx = δkl,

2‖B‖F =
√∑n

i=1 σ
2
i (B) for any B s.t. rank(B) = n
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then the coefficients ak, ∀k = 1, 2, . . . ,K, only depend on the kth basis
function φk and they are given by:

ak(t) =

∫
Ω
u(x, t)φk(x)dx.

Then the approximation of u(x, t) can be written as

u(x, t) '
K∑
k=1

(
u(x, t), φk(x)

)
φk(x),

when (·, ·) is the L2 inner product. So, if we can measure at Nt different in-
stants of time, n realizations of u(x, t) in n different locations x1, x2, . . . , xn,
the approximation problem is equivalent to solve

min

Nt∑
i=1

‖u(x, ti)−
K∑
k=1

(
u(x, t), φk(x)

)
φk(x)‖2L2 , (2.2)

i.e. to find the corresponding orthonormal functions {φk(x)}Kk=1 (K ≤ n).
In practice, we arrange the set of data U = {u(x, t1), . . . , u(x, tNt)} in a

matrix called Snapshot Data Matrix of dimensions n×Nt with Nt ≤ n:

A =


u(x1, t1) u(x1, t2) . . . u(x1, tNt)
u(x2, t1) u(x2, t2) . . . u(x2, tNt)

...
...

...
...

u(xn, t1) u(xn, t2) . . . u(xn, tNt)

 ∈ Rn×Nt .

The snapshots u(x, ti) are assumed to be linearly independent, i.e. the data
matrix has full column rank. Then the solution of the minimization problem
is given by the truncated SVD of length K of A.

If we consider a finite element resolution each vector function of U can
be written as

u(x, ti) ' un(x, ti) =
n∑
j=1

u(j)(ti)ϕ
(j)(x)

i.e. in terms of nth order finite element basis functions {ϕ(j)(x)}nj=1. Then,
we can define the finite element mass matrix M ∈ Rn×n, the associated
inner product (u, v) = uTMv and theM-norm ‖u‖M = (M1/2u)1/2, where
u,v ∈ Rn. So we can write the minimization problem (2.2) as

min

Nt∑
i=1

‖un(x, ti)−
K∑
k=1

(
un(x, ti), φ

(k)(x)
)
Mφ

(k)(x)‖2M (2.3)

where the POD basis functions {φ(k)(x)}Kk=1 are assumed to be in the linear
space spanned by the finite element functions {ϕ(j)(x)}nj=1:

φ(k)(x) =

n∑
j=1

φ
(k)
j ϕ(j)(x).
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We can find out that the minimization problem (2.3) can be written in
matrix representation as

min
Z∈Rn×K :ZTZ=IK

‖Â− ZZTÂ‖2F, s.t. ZZT = IK (2.4)

where Â = (M1/2)TA, Z = (M1/2)TΦ ∈ Rn×K , Φ ∈ Rn×K is the matrix
collecting the finite element coefficients of the unknown POD functions. We
can summarize that we are looking for a K dimensional subspace Φ such
that X = ZZTÂ is the best approximation to Â compared with all subspaces
of dimension K. Then, thanks to Eckart-Young theorem (2.1), the solution
is given by the truncated SVD of Â = (M1/2)TA of length K:

ÂK = UKΣKV
T
K

where ΣK = diag{σ1, . . . , σK} is the diagonal matrix of the first K singular
value of Â, UK corresponds to the first K columns of U and VK to the first
K columns of V . Finally, comparing ÂK and X, we can find that Φ solves:

(M1/2)TΦ = UK ∈ Rn×K ∈ Rn×K .

The coefficients of the POD basis functions can be found solving this
system, where we can obtain the left singular vectors U of Â = UΣV T

computing the eigenvalues of the matrix ÂÂT ∈ Rn×n (or, as Nt � n, we
can compute the right singular vectors V of the matrix ÂTÂ ∈ RNt×Nt).



Chapter 3

Inverse problem resolution

3.1 Optimization method

Our aim is to identify N parameters of the problem by comparing the cor-
responding ECG to the reference one, i.e. we want to find the parameters
that give the closest ECG compared to the reference one. If we consider
a subset I ⊂ RN of parameters we look for the j∗ ∈ I that minimizes the
function:

Ψ(j) = δt

Nt∑
i=1

(
|I(j)(ti)− I(ref)(ti)|2 + |II(j)(ti)− II(ref)(ti)|2 + . . .

. . .+ |V (j)
6 (ti)− V (ref)

6 (ti)|2
)

where I(j), . . . , V
(j)

6 are the leads of the ECG associated to the solution

corresponding to the set of parameters j in I and I(ref), . . . , V
(ref)

6 are those
of the reference one. Finally, the problem we need to solve is:

j∗ = arg min
j∈I

Ψ(j).

To solve this optimization problem we use a genetic algorithm. In gen-
eral genetic algorithms are heuristic methods to find the solution of an op-
timization problem: an initial population is created and manipulated using
techniques inspired by natural genetic evolution such as mutation, selection
and crossover. At each iteration of the algorithm, the population members,
i.e. the solutions of the problem, are evaluated, a part of them is saved and
other members are generated. Finally, the solution is taken as the best one
of the population. In section 3.2 and 3.3 we can find more details about the
algorithm we used. Genetic algorithms can also be very easily executed in
parallel: at each generation each member of the population can be evalu-
ated in parallel compared with the others. So if we run our algorithm, for
instance, on a 8 processors computer we can calculate the cost function, i.e.

17
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solve the bidomain problem, of 8 points at the same time and divide the
computational time by 8.

3.2 Genetic Algorithms

In general, a genetic algorithm follows the evolution of a population, i.e. a
number Np of possible solutions. Each individual j ∈ I of the population
is evaluated compared with the function that has to be minimized Ψ(j).
The genetic algorithm is iterative and at each of the Ng iterations a new
population of size Np is generated by modifying the previous one and it is
added to the total population. The regeneration of a population is made by
using selection, crossover and mutation that are stochastic principles based
on the “survival of the fittest” biological laws.

At each iteration a new population Xnew is created, collecting randomly
existing members of the previous population, then selection is applied to
these units. Selection consists in choosing randomly Np/2 couples of the
new population Xnew. Crossover and mutation are applied to each couple.

Crossover consists in creating two new elements starting from those of
the selected couple. It takes a barycentric combination of them with random
and independent coefficients (see Algorithm 1).

Algorithm 1 Crossover

for each couple X(i), X(i+ 1) do
u = random coefficient ∈ [0, 1]
Xnew(i) = uX(i) + (1− u)X(i+ 1)
Xnew(i+ 1) = uX(i+ 1) + (1− u)X(i)

end for

Mutation replaces randomly a member of the population by one of its
neighbors, where neighbor indicates an element of the population similar to
the considered one: in the case of a real parameter it is a perturbation of
its value (see Algorithm 2).

Algorithm 2 Mutation

for each member of the population X(i) do
u1 = random coefficient ∈ [0, 1]
u2 = random coefficient ∈ [0, 1]
if u1 < 1/2 then
Xnew(i) = X(i) + u2(Xmax −X(i))

else
Xnew(i) = X(i)− u2(X(i)−Xmin)

end if
end for
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To be sure to keep the most suitable solutions there is also a one-elitism
principle. Once the new population is created and each new member has
been evaluated with respect to the objective function, the elitism keeps into
the new population to be build the best solution still found, so that mutation
will introduce elements near this one.

The genetic algorithm can be written as in Algorithm 3, for further
details we can refer to [5].

Algorithm 3 Genetic Algorithm

Choice an initial population P1 ⊂ I s.t. ∀x ∈ P0, xi ∈ [ximin, x
i
max]

ng = 1
while ng < Ng do

evaluate Ψ(x) ∀x ∈ Png

m = minx∈Png
Ψ(x)

Xng = arg minx∈Png
Ψ(x)

elitism :
if ng > 2 and J(Xng−1) < m then
xing

= Xng for a random i
end if
for k from 1 to Np/2 do

selection of (xαng
, xβng)

replace (xαng
, xβng) with (yαng

, yβng) by crossover

replace (yαng
, yβng) with (zαng

, zβng) by mutation
end for
ng = ng + 1
Png = Png

⋃
Xnew

end while
return X = arg minx∈PNg

Ψ(x)

3.3 Approximated Genetic Algorithm

As the computation of the exact evaluation of the objective function is very
expensive (we remember that it is the resolution of the bidomain model
for a one beat time period), we can use an approximated evaluation of Ψ
for some members of the population. Particularly, the objective function is
evaluated exactly for the first Nexac population, then the number of exact
evaluations at each iteration decreases with a rate r ∈ (0, 1). The approxi-
mated functions are computed with an interpolation method called Radial
Basis Function (RBF) interpolation. The idea of the RBF interpolation is
to make a linear combination of Ψ in b the nearest points.



Part II

The myocardial infarction
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Chapter 4

Simulation of a myocardial
infarction

Heart attacks are one of the leading causes of death for both men and
women worldwide. The myocardial infarction (also called heart attack) is
the consequence of the occlusion of a coronary artery, that causes a deficit of
blood in an heart region (ischemia). If the ischemia is left untreated during
a long period of time, it can cause an infarction (damage or death of part of
the myocardium). One of the tests that can be used to detect heart muscle
damage is the ECG.

There are two main kinds of myocardial infarctions: transmural and
subendocardial. The last ones involve only a small area in the subendocar-
dial wall of the left ventricle, while the transmural ones are usually result
of a complete occlusion of area’s blood supply and they extend through the
whole thickness of the heart muscle. We will only consider transmural in-
farctions, that can be classified into posterior, anterior, lateral and inferior.
Moreover, we will focus on infarction in the left ventricle because usually
the infarction is located in the left ventricle, that is thicker than the right
one.

4.1 Modeling of an infarction

A way to simulate this pathology is to act on τout, the ionic parameter of
the Mitchell and Schaeffer model (see section 1.3) related to the repolariza-
tion phase length. To simulate this heart tissue damage we can modify the
constants τin and τout that govern the length of depolarization and repo-
larization phases in a restricted area where the infarction is assumed to be
located, defined as:

Sinf = {(x, y, z) ∈ ΩH : (x− x0)2 + (y − y0)2 + (z − z0)2 ≤ r2},

where (x0, y0, z0) is a point of the left ventricle epicardium.
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If we modify the constants τin and τout in Sinf, this area will be depolar-
ized and repolarized in a different way.

In an infarcted area of the heart, there is an increase of the extra-cellular
concentration of ions K+ ([K+]o) as explained in details in [15]. As said
in the introduction, the heart tissue can not conduct any more, this leads
to a lack of oxygen and consequently to a reduction of ATP production
(see section 1). The deficiency of ATP prevents the Na/K pump to be
activated, so the flux of ions K+ and the associated current are negligible.
As a consequence, all the phases of the polarization cycle are modified.

So, as in repolarization phase an active exchange occurs, i.e. with ex-
penditure of energy, we decide to act on the associated current and, as a
consequence, the others phase will be modified. Particularly, we decide to
act only on τout, even if a similar manipulation can be done with good results
also on τin (see section 4.3).

Our aim is to reduce the K+ current due to the pump activation, that
is an inward current. We recall that the ionic current used in the Mitchell
and Schaeffer model (1.9) is:

Iion(Vm, w) = − w

τin

(Vm − Vmin)2(Vmax − Vm)

Vmax − Vmin
+

1

τout

Vm − Vmin

Vmax − Vmin
.

It is easy to see that there is a negative term (Iin = − w
τin
v2(1 − v), where

v = (Vmax−Vm)/(Vmax−Vmin)) that corresponds to the inward current, and
a positive one (Iout = v

τout
) that corresponds to the outward current. So it

is sufficient to decrease the value of τout in Sinf to make the outward current
prevailing on the inward one.

If we simulate an anterior infarction1 with this technique we find the
results showed in Figure 4.1: the value of τout is divided by ten compared
with the healthy case (τ inf

out = 36). We can see that the infarcted area is well
defined and stays completely polarized during all the beat. So, enforcing the
repolarization phase is sufficient to modify the whole cycle of the infarcted
cells and well simulate an infarction.

1The center of the anterior infarct has coordinates (x0, y0, z0) = (5.49930 ×
10−1,−3.86215,−1.12360)
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(a) t = 60ms (b) t = 70ms

(c) t = 80ms (d) t = 200ms

(e) t = 300ms (f) t = 360ms

Figure 4.1: Depolarization and repolarization phases of an anterior infarc-
tion generated by modifying the value of τout.
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4.2 Simulation of ECG with infarction

As said above, one of the tests used to detect a myocardial infarction is
the ECG. The main observation in a real ECG when infarction occurs is a
elevation or depression of the ST segment in different leads. More details of
an infarction consequences can be find for instance in [4]. The main features
we should find are:

� in the case of a posterior infarction: a depression in the ST segment
in the V1 and V2 leads;

� in the other cases: an elevation in the ST segment with an inverted T
wave;

� in the case of an anterior infarction we should look at V1, V2 or V3, in
the case of a lateral one I or aV L and for an inferior one to II, III or
aV F .

Finally, in the case of a recent infarction we can also find a Q wave.
Many studies have been conducted to investigate the consequences of an

infarction on the ECG, but it is still not fully understood. The main ECG
observation that conducts to the diagnosis of infarction is ST elevation or
depression.

The main cause of ST elevation (or depression) is exactly the myocardial
ischemia, particularly [16], [17], [18] explain this elevation or depression as
a consequence of the increased concentration of K+ in the extra-cellular
domain ([K+]o). Increasing [K+]o leads to a less negative resting transmural
potential Vm and to a reduction of the action potential duration (APD). A
higher resting Vm and a decreased APD cause a lower plateau potential at
cell scale, that leads to an ST elevation or depression depending on the lead
we consider and its position with respect to the infarcted area, as explained
above. So, a technique to simulate an infarction in the case of the use of
a physiological model could be to modify the transmural potential values
in the infarcted area, while in this work we prefer act on the ionic current
because of the chosen models.

With the technique described above, we simulate the four kinds of in-
farction mentioned, the results we find are summarized in Figures 4.2 and
4.3. Looking at the V1 lead, as expected, we can see that the posterior in-
farction (blue line in Figure 4.2) presents a depression in the ST segment
compared with the healthy case (black line), while the anterior one (green
line) presents an elevation. Also in the V2 lead we find an elevation for the
anterior infarction and we can see no differences with the healthy case in V3,
while the posterior one presents depression in both V2 and V3 leads.

If we look at the lateral infarction (green line in Figure 4.3) we find out
that there are elevations in the first lead I and in the aV L as expected.
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Figure 4.2: Simulated ECGs for different infarcted zones: green line cor-
responds to an anterior infarction, blue line to a posterior infarction (time
period = [0, 400]ms). Black line represents the healthy case of reference.
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Figure 4.3: Simulated ECGs for different infarcted zones: green line corre-
sponds to a lateral infarction, blue line to an inferior infarction (time period
= [0, 400]ms). Black line represents the healthy case of reference.
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Finally, we point out that the inferior infarction (blue line) is the worst
one to simulate: we do not notice any difference in aV F lead and we find
a sub-elevation instead of an over-elevation in the third lead (III), but we
have a good result in II where we see an elevation of ST. At the same time,
we can observe that strong elevations (about 2mV ) occur in the pericordial
leads V3, V4, V5 and V6. The problems we found simulating inferior infarction
are probably due to the fact that it is located near the stimulation area.

4.3 Remarks

The modification of the τout parameter is not the only way to simulate an
infarction, as mentioned above we can also act on the τin. We can also notice
that we can simply modify the conductivity coefficients to have quite good
results. Here is a brief description of these techniques.

Reduction of the inward current

As notice in section 4.1, the most important phase, i.e. the phase we are
induced to force, is the repolarization one because of its active nature. We
also noticed that, to decrease the K+ inward current generated by the Na/K
pumps, the outward current Iout corresponding to Na+ has to be dominant.
So, an alternative choice that can be done is to augment the τin in the
infarcted zone Sinf such that |Iion| ' |Iout|. Particularly, simulations shows
that it is sufficient to multiply τin by 10 to obtain good results.

On the left column of of Figures 4.4, we have represented some snap-
shots of the heart potential in the case of a posterior infarction modeled by
a reduction of the inward current, i.e. the value of τin. During the depo-
larization phase (approximately the first 100ms after the stimulation, first
and second rows) we notice that the infarcted area is less sharp than in the
previous case and it is subjected to a partial depolarization, this happens
because during depolarization phase there is only the inward current due to
the Na ionic channel, while the outward current previously modified does
not play any role. During repolarization phase too (see Figure 4.4c) we can
notice few differences, even if negligible.

Conductivity coefficients

As observed, an infarction induces a non-depolarization of an heart’s area.
To simulate this heart tissue damage we can simply modify the coefficients
of the conductivity tensor σi, σe described in chapter 1. In Sinf we put σl

i,
σt

i , σ
l
e and σt

e to zero (in fact their values will be 10−13 in order to keep the
coercivity of the problem).

We can see in the right column of hearts of Figure 4.4 the evolution of the
depolarization and repolarization phases at different time steps in the case
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(a) t = 60ms

(b) t = 80ms

(c) t = 300ms

Figure 4.4: Depolarization and repolarization phases of a posterior infarction
generated by modifying the ionic parameter τin (left) or the conductivity
constants (right).
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of a posterior infarction obtained by modifying the conductivity coefficients.
First we can see that, when we modify the conductivity, the infarction area
is better defined, its border is less regular than in the previous cases but the
interested area remains completely polarized for the whole period.

Also if we look at the ECG simulated with the three techniques (Figure
4.5) we notice that there are only slight differences even if the increasing
outward current seems to be a better method to reproduce the ST elevations
and depressions expected.
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Figure 4.5: Simulated ECGs with different infarction simulation techniques
for a posterior infarction: green line corresponds to the modification of τout,
blue line to the modification of τin and the pink one to the conductivity
coefficients (time period = [0, 400]ms). Black line represents the healthy
case of reference.



Chapter 5

Application of the POD

Our aim is now to use a reduced model in order to simulate different kinds
of infarction. Particularly we would like to build a unique POD basis which
can be used to solve a problem with a generic infarction point (not only the
four mentioned in the last chapter). To do so, we will simply apply the tools
described in chapter 2. Then we will use genetic algorithms described in
chapter 3 to solve the inverse problem of finding the infarcted center looking
at the simulated ECG. At each iteration of the genetic algorithm the POD
method will be used to reduce the computational time of the resolution of
the direct problem.

5.1 Numerical simulation with a reduced model:
first approach

The first approach to simulate a transmural myocardial infarction with the
POD method is to use a basis generated from the resolution of the problem
in a healthy case. Let us consider an anterior infarction for which we expect
an ST elevation in V1, V2 or V3 leads. As in chapter 4, we impose an
heterogeneous τout to simulate the infarction and we use a reduced model: we
take the POD basis generated from the numerical simulation of an healthy
case. The results we find are shown in Figure 5.1: the simulation with
the reduced model is unable to reproduce the infarction. The POD basis
“impose” an homogeneous transmembrane potential even if we are trying
to simulate a discontinuous one, while the heterogeneous τout modify the
infarcted area increasing the repolarization phase.

Also looking at the ECG in Figure 5.2 we notice that the reduced model
built on the healthy case (green line) is unable to reproduce the pathology:
the ECG has the same shape as the healthy case (black line) and it is not
able to reproduce the ST elevation or depression of the complete model
simulated infarction (blue line). We also notice that the T wave in the case
of POD application is much greater than the healthy ECG.
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(a) t = 80ms (b) t = 200ms

Figure 5.1: Simulated anterior infarction: comparison between the complete
model solution (left) and the “healthy” POD reduced model one.
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Figure 5.2: Simulated ECG for an anterior infarction: black line represents
the healthy case ECG, green one corresponds to the complete model simu-
lated infarction and blue one to the “healthy POD” reduced solution.
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A second approach could be to build the POD basis using the numerical
solution of an anterior infarction to simulate both an anterior or a posterior
ones. This approach obviously produces excellent results for the anterior
one while does not approximate the posterior one. In the next section we
will propose methods to construct enriched POD basis and this will allow
to get round this problem.

5.2 Numerical simulation with POD method: im-
provement

As exposed in [3] different techniques can be applied when parameters vary.
The first one is to compute many POD basis for different values of the
parameters, in this case different infarcted points, and then use the POD
basis corresponding to the closest infarcted center already computed to solve
a generic infarction problem. The second approach they propose is to store
the solutions of a set of problems, i.e. of different infarcted centers, and build
a unique snapshots matrix A collecting all the solutions: the POD basis is
then obtained with a SVD on this composed matrix. Here, we present the
second approach as a reasonable solution: even if the snapshots matrix has
a lot of columns, its SVD has to be calculated once for all. We will see
that only 100 modes of the SVD of A are sufficient to reproduce a generic
infarction.

The first step is to simulate infarctions located at different positions such
that the whole of the external left ventricle surface can be covered. So, we
build a kind of coarse mesh on the left ventricle epicardium and we choose
18 infarction points as in Figure 5.6 (which coordinates are expressed in
Table 5.1) and we solve these problems without using POD reductions. The
results we find are then used to build the POD basis.

We will create a snapshots matrix U (see chapter 2) containing snapshots
up(x, ti), p = 1, 2, . . . , 18, i = 0, 1, 2, . . . , 2001, extracted from the different
infarction problems described above and also from the healthy case problem.
Particularly we decide to extract 100 snapshots from the healthy problem
and 50 snapshots from each infarction one. As we know that most of the
solutions variation occurs during the first 100msec we decide to keep half
of the total snapshots in this period, i.e. for the healthy problem we keep
u(x, t0), u(x, t2), . . ., u(x, t48), u(x, t50), u(x, t56), . . ., u(x, t194) while for
each infarction problem we keep u(x, t0), u(x, t4), . . ., u(x, t48), u(x, t50),
u(x, t62), . . ., u(x, t194). Then we write a snapshots matrix U which dimen-
sions are Nnodes×1000. We finally set the POD basis dimension to K = 100,
i.e. we keep the truncated SVD of U of length K.

1We remind that the time variable t ∈ [0, 400]msec, we solve the problem with a time
step of ∆t = 0.5msec and we save the solutions each 4 iterations, i.e. each 2msec. So
t0 = 0ms, t1 = 2ms, t2 = 4ms, . . . , t200 = 400ms.
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x y z

point a −9.70328× 10−2 −3.84531 −1.66581

point b −9.19247× 10−02 −3.25782 −4.024400

point c −9.70332× 10−02 −2.36176 −5.71067

point d −9.70330× 10−02 −3.95123 8.02269× 10−1

point e 2.69873 −2.84974 8.21607× 10−1

point f 2.69354 −2.74906 −1.66581

point g 2.69293 −1.82947 −4.03178

point i 2.36941 −5.46018× 10−3 −5.71558

point l 3.84298 −5.46018× 10−3 −1.67281

point m 3.83000 −9.52023× 10−1 8.04630× 10−1

point n 3.83142 9.57373× 10−1 8.04390× 10−1

point o 2.70480 2.87882 8.04390× 10−1

point p 2.69992 2.74469 −1.66581

point q 2.70503 1.87246 −4.02440

point r −9.70330× 10−2 3.95074 7.96123× 10−1

point s −9.70330× 10−2 3.84690 −1.67340

point t −9.76190× 10−2 3.26934 −4.02440

point u −9.70331× 10−2 2.39998 −5.71810

Table 5.1: Coordinates of the infarction points used to build the POD base.

Once the POD basis functions are obtained, we first check that we can
find exactly the same solution if we use this basis for one of the infarction
problems used to build the basis. If we compare the ECGs obtained using
POD and the ones obtained with the complete model (respectively blue line
and green one in Figure 5.3 for the “point a” infarction case) we can see that
they are exactly superimposed, even if the basis is composed of snapshots
of several simulations. This result implies that, even if we keep only few
snapshots for each simulated infarction, the POD takes into account enough
information to reproduce each one of these solutions.

Next we also would like to apply our POD basis to a generic infarction
point problem different from any of the points mentioned above. Let us
consider the arbitrary point w2 indicated by the arrow in Figure 5.6 and let

2The coordinates of this point are w = (1.53154,−3.34528,−2.70672).
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Figure 5.3: Simulated ECG for an infarction centered in point a =
(−9.70328 × 10−2,−3.84531,−1.66581): in black the healthy case ECG, in
green the ECG obtained modifying the τout with the complete model and in
blue the ECG obtained using the reduced model (always modifying τout).

us compare the results obtained without using POD and the results with
POD method (respectively green and blue line of the corresponding ECGs
in Figure 5.4). If we look at the resulting ECGs, we can see that the curve
trend is similar but there is a considerable difference in magnitude: the
ECG coming from the POD in most leads has ST segment more elevated
or depressed than the one obtained with the complete model. To better
understand this result we can look at the transmembrane potential: if we
plot it in the whole domain of the heart (Figure 5.5, on top, the solution
of the complete model and, on the left, the solution of the POD model) we
can see the influence of the POD approach. While with the complete model
the infarcted area is well defined, with the POD method the solution tends
to superimpose the solutions coming from the nearest infarction points used
in the POD basis construction and to create an infarction area which is the
union of these, so the radius of the infarction that we simulate is larger than
the one that we are imposing (r = 2).

To compensate for this problem, we decide to use a smaller radius in the
case of POD model application: it is sufficient to look at the transmembrane
potential to notice that the infarction areas of the solution obtained are more
similar to those we previously obtained without using POD (respectively
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Figure 5.4: Simulated ECG for an infarction centered in point w =
(2.09143, 3.24679,−1.55201) not considered in the POD basis: in black the
healthy case ECG, in green the ECG obtained modifying the τout with the
complete model and a radius r = 2, in blue the ECG obtained using POD
model (always modifying τout) with the same radius r = 2 and in pink the
one obtained using POD and a smaller radius r = 1.5.

right columns and top images of Figure 5.5). Finally, if we compare the
resulting ECG (pink line, Figure 5.4) with the complete model one, we
notice that the two solutions are not exactly superimposed as in the “point
a” case (which is used to build the basis), but the curves are closer than in
the case of equal radius. Anyhow, we can see that trend and magnitude are
the same and we have a good approximation of the curve, even if the section
between the QRS complex and the ST segment is still difficult to detect.

We remark that using a smaller radius for POD is not totally satisfactory.
It is nevertheless conjectured that this would be unnecessary with a larger
number of precomputed infarcted regions. In fact, simulating an infarction
in a region closer to one of precomputed points conducts to better results
without manipulating the radius in the reduced problem. Of course, using
a POD basis built with a large number of solutions requires a bigger matrix
hardly supported by usual computers memory.

This will be investigated in future works.
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(a) t = 60ms

(b) t = 70ms

(c) t = 300ms

Figure 5.5: Infarction in point w = (2.09143, 3.24679,−1.55201) generated
by modifying the τout constants, using the complete model on the left and
the POD method on the right and a reduced infarction ray.
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5.3 Inverse problem

The most interesting application presented here is the resolution of the in-
verse problem: we want to identify few parameters of the model looking at
the ECG. Particularly, in this case, we are looking for the infarction cen-
ter. The reference ECG is synthetic, obtained by simulating an infarction
centered in a given point with a complete model resolution. This problem
has not yet been studied deeply because of the high computational costs of
the resolution of the direct problem. We can however mention that different
techniques have been explored, see for instance [14]. Our approach is the
closest to the medical practice, in the sense that we look directly at the ECG
results to keep information on the ischemia.

The procedure used to solve the inverse problem is based on the approx-
imated genetic algorithm described in chapter 3. At each iteration of the
genetic algorithm, the exact evaluations of the objective function are com-
puted with a reduced order approximation of the direct problem (in this
case based on the POD). The use of reduced order approach makes this
technique reasonable in terms of computational time. The cost function is
the difference in the ECG as previously described. This criteria can be im-
proved giving for instance more weight to the ST deviation, as suggested in
[9].

If we refer to the optimization problem previously described:

j∗ = arg min
j∈I

Ψ(j),

where

Ψ(j) = δt

Nt∑
i=1

(
|I(j)(ti)− I(ref)(ti)|2 + |II(j)(ti)− II(ref)(ti)|2 + . . .

. . .+ |V (j)
6 (ti)− V (ref)

6 (ti)|2
)
,

it remains to identify the subset I ⊂ R3. As we said before, the infarction
center is localized on the epicardium of the left ventricle so we look for a
subset I such that I ⊂ {(x, y, z) ∈ δΩH}. If we look at the geometry of the

left ventricle we can notice that it is an ellipsoid of the type {(x, y, z)s.t. x2
α2 +

y2

α2 + z2

β2 = 1}, where α = Rmax = 4, β = 7.2. It is truncated by an xy plane

and we also consider a truncation by an yz plane (x = 0) to be on the
external surface of the heart. The x coordinate of this geometry varies
between the values a = 0 and b = Rmax = 4, while its y coordinate variates
between the values c and d depending on x: c = c(x) = −

√
R2
max − x2,

d = d(x) = +
√
R2
max − x2. Finally, for each xy plane we can find two

corresponding z coordinates: z = z(x, y) = ±β
√

1− x2+y2

α2 .
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Algorithm 4 Approximated Genetic Algorithm

Choice an initial population P1 ⊂ I s.t. ∀x ∈ P0, xi ∈ [ximin, x
i
max]

ng = 1
while ng < Ng do

if ng < Nexact then
exact evaluation of Ψ(x) ∀x ∈ Png

else
approximated evaluation of Ψ(x) ∀x ∈ Png

exact evaluation of Ψ(x) for the best rng x ∈ Png

end if
m = minx∈Png

Ψ(x)
Xng = arg minx∈Png

Ψ(x)
elitism :
if ng > 2 and J(Xng−1) < m then
xing

= Xng for a random i
end if
for k from 1 to Np/2 do

selection of (xαng
, xβng)

replace (xαng
, xβng) with (yαng

, yβng) by crossover

replace (yαng
, yβng) with (zαng

, zβng) by mutation
end for
ng = ng + 1
Png = Png

⋃
Xnew

end while
return X = arg minx∈PNg

Ψ(x)
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Figure 5.6: The mesh and the 18 points used to build the POD basis. The
point out of the mesh lines, indicated by the pink arrow, is the ones we try
to find.

Once the minimization function and the subset of the feasible solutions
are defined, we can apply the genetic algorithm with approximated evalua-
tions as described in chapter 3 (Algorithm 4).

Now we apply the algorithm to find the point of coordinates w = (1.53154,
−3.34528,−2.70672) that has not been used to build the POD basis: the
center of the infarction is indicated in Figure 5.6 with an arrow, while the
others points are those used to build the POD basis. The reference ECG
is obtained solving the complete model for the point P infarction problem.
The genetic algorithm is run with Np = 80, Ng = 15 and Nex = 600, and
the parameters we estimate are θ = (xP , yP , zP ) ∈ I.

The solution given by the algorithm is the point of coordinates w̃ =
(1.12260,−3.64059,−2.19413). The corresponding results are exposed in
Figures 5.7 and 5.8. We notice that the reference ECG (blue line in Figure
5.7) is well approximated by the one obtained from the resolution of the
genetic algorithm (blue line) that leads to find an infarcted center (right
column of Figure 5.8) very close to the reference one (right column).
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Figure 5.7: Simulated ECG for an infarction located in point w:
green line represents the simulated reference ECG and blue line the
ECG corresponding to the infarcted center found with the resolution
of a genetic algorithm. Black line gives the healthy reference case.

(a) t = 80ms (b) t = 300ms

Figure 5.8: On the left column the transmembrane potential calculated in
the reference case solved with the complete model, on the right column the
transmembrane potential of the solution found with the genetic algorithm
obtained with the POD. The white dots indicate the center of the infarcted
areas.



Part III

The restitution curve

40



Chapter 6

Electrophysiology for a single
cell

The second application of the models seen in this work is the study of
characteristic times of diastole and systole phases, i.e. the time of relaxations
and contractions of the cardiac muscle. This two period have a strong link
with the depolarization and repolarization phases described by the electrical
model.

Even for a singular cell it is useful to study the so-called restitution
curve, that is the relationship between the time of depolarization and the
time of repolarization of the previous beat. To study this relationship we
need to simulate a long sequence of accelerated beats, about one hundred.
The computational time to make these simulations is very long, that is why
we first study and test the theory results on a simplified model. Particularly,
before dealing with the 3D simulation of the heart, we first look at a 0D
model of a single cell, at the trend of the ionic model used to describe it and
at the characteristics of its depolarization and polarization phases.

6.1 The ionic model

We consider a single cell, as in chapter 1 we still want to determine the
transmembrane potential of the cell, i.e. the difference between the potential
in the intra and the extra-cellular tissue, v = ui− ue. In the case of a single
cell it is sufficient to consider the ionic model described before. Equation
(1.2) can be simply written as an ordinary differential equation:

∂v

∂t
+ Iion + iapp = 0,

where the variable are dimensionless, and we only need a description of the
ionic current to close the model. In particular, if we consider iapp = 0 (not

41
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verified only in the first 2msec in which we apply the stimulus), we can say
that dv

dt = −Iion.
We consider again the Mitchell and Schaeffer model to describe the ionic

current, introduced in section 1.3. The considered functions are the trans-
membrane potential v(t) and the gating variable h(t), both functions are
dimensionless and vary between 0 and 1. The potential v depends on the

inward current Jin = hv2(1−v)
τin

and the outward current Jout = v
τout

,

dv

dt
= Jin − Jout,

where the parameters τin and τout are time constants. The gate variable h
describes the opening and closing of the ionic channel gate (i.e. it is equal to
1 when the gate is open and equal to 0 when it is closed). Also the behavior
of h depends on two parameters, τopen and τclose, that regulate the opening
and closing phases. The ODE system that governs the model is:

dv

dt
=

hv2(1− v)

τin
− v

τout

dh

dt
=


1− h
τopen

, v < vg

−h
τclose

, v > vg,

(6.1)

where vg is the change-over voltage. So, the system of ODE (6.1) it is
sufficient to describe the model of a single cell.

6.2 Response to a single stimulus

Mitchell and Schaeffer, in [12] show the solution of their ionic model and
conduct a study of the asymptotic times of depolarization and repolariza-
tion phases. We want to reproduce results of [12], neglecting the condition
imposed in their paper

τin � τout � τopen, τclose. (6.2)

In their paper this assumption is the basis of most of the relations they find
out, even if they point out that it doesn’t hold for all physiological models.
Moreover, in the 3D simulation, this assumption is not satisfied.

If we suppose to start with a rest state, it corresponds to point (v, h) =
(0, 1) at initial time. As described in section 1.1.1 the cell electrical cycle
is divided into four phases. First, as the gate is open (h = 1), it lets enter
into the cell the sodium Na: there is an inward ionic current (Iion < 0) so
v increases quickly to 1, i.e. the cell is depolarized, with the characteristic
time τin while the change in h in this period is negligible. Then the gate
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Figure 6.1: Electrophysiology of the cardiac muscle cell (Source: bembook
[10]). We can see the two main kind of ions transportation, ionic channels
and pumps, and the transmembrane potential Vm during a complete cycle.

closes, i.e. h decreases from 1 to its minimal value hmin, and we have the
phase of plateau: the ionic current is negligible, that implies that v stays
for a time of order τclose almost constant. The polarization phase follows
the plateau: the pump creates an outward ionic current (Iion > 0)1, so v
decreases rapidly during a time scale of order τout and the ionic channel is
still closed (h(t) ' hmin). Finally, during the fourth phase the ions tends to
go back to rest: the Na gate opens that implies h(t) ' 1, the inward current
caused by the sodium is balanced with the outward current of the calcium,
so Iion ' 0 and v is constant.

Particularly, if the time2

t∗ such that v(t∗) = vg (6.3)

is known, we can determine the minimal value risen by the gate variable
h during the plateau, h(t∗) = hmin, because of the solution of the second
equation of (6.1) is an exponential:

h(t) =

{
e−t/τclose , t < t∗

1− (1− hmin)e−(t−t∗)/τopen , t > t∗
(6.4)

1We remind that pump lets into the cell 2 ions of potassium K+ and lets out 3 ions of
sodium Na+.

2We suppose the time such that v < vg at the beginning of the simulation to be
negligible.
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If we simulate an impulse of period 1.1sec in a single cell, with and
without the assumption (6.2) we find the results illustrated in Figures 6.2
and 6.3: ionic parameters take values showed in Table 6.13. In Figure 6.2
we see that v and h follow the trend described above and that the minimal
value of h is reached at the time t∗ such that v(t∗) = vg. In Figure 6.3 we
see the relationship between h and v for different values of ionic parameters
and notice that the difference between the minimal values of h is important.

τAin τAout τin τout τopen τclose vg

0.08 1.8 1.6 36 100 300 0.13

Table 6.1: Ionic parameters, τAin and τAout correspond to the case when (6.2)
is true while τin and τout to the the case when (6.2) is not satisfied.

To find out an analytical expression of hmin which depends on the ionic
parameters, Mitchell and Schaeffer suppose that the solution (v, h) is on
the nullcline of the first equation of (6.1) (see Figure 6.3) thus it satisfies
equation

0 =
hv2(1− v)

τin
− −v
τout

,

so the relation between h and v is:

h =
τin

τout

1

v(1− v)

and the minimal feasible value for h is:

h̃ = 4
τin

τout
. (6.5)

If we go back to Figure 6.3 we can see that the minimum of h correspond-
ing to the green line (assumption (6.2) true) is close to the approximated
one, while the minimum of the blue one (assumption (6.2) false) is smaller.
We can justify this difference looking at the four different phases: the main
condition that has to be respected to correctly evaluate the minimum value
of h is τout � τopen, i.e. the third phase should be negligible compared to
the last one. So if we take a smaller τout this phase is quicker and h stays
close to the approximated value.

3We remember that here we are considering a dimensionless model.
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Figure 6.2: Gating variable h (green line) and voltage trace v (blue line) as
functions of time when the asymptotic condition (6.2) is violated. Horizontal
lines indicate the values of h and v at the changeover time t∗ defined in (6.3).

Figure 6.3: Nullcline (red line) and trajectory of (h, v) for different τin and
τout values: under hypothesis (6.2) (green line) we have taken τin = 0.08,
τout = 1.8; the case when this condition does not hold (blue line) corresponds
to τin = 1.6, τout = 36; τopen is always 100 and τclose is 300. Horizontal lines

indicate respectively (from top to bottom) the approximated value h̃ of hmin
defined in (6.5), the real value of hmin under hypothesis (6.2) and the real
value of hmin when hypothesis doesn’t hold.
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6.3 Multiple stimuli

Our aim is now to find a relationship between the diastolic and the systolic
time, i.e. the time of depolarization and polarization of the cell. To do so
we obviously have to study a (long) sequence of beats of different period:
we will consider a sequence of 60 accelerated beats, the first one of period
1.1sec and the next ones decreasing of 10msec at each beat.

According to Mitchell and Schaeffer [12], we define the action potential
duration (APD) as the time during which the voltage is greater than vg,
and DI the time during which v is smaller than (or equal to) vg. Mitchell
and Schaeffer say that for multiple stimuli, under assumption τin � τout �
τopen, τclose i.e. hmin ' h̃, the APD of the (n+ 1)th stimulus depends on the
DI of the nth one according to equation:

APD(DI) = τclose ln
(1− (1− hmin)e−DI/τopen

hmin

)
. (6.6)

The first observation is that if we replace t∗ defined in (6.3) with APD
in equation (6.4) we find:

h(t) =

{
e−t/τclose , t ≤ APD1

1− (1− hmin)e−(t−APD1)/τopen , APD1 < t ≤ APD1 +DI1.

More in general it is easy to find the exact solution of the second equation
of (6.1). If we define

t2k =
k−1∑
i=1

(APDi +DIi), t2k+1 =
k−1∑
i=1

(APDi +DIi) +APDk, k = 0, 1, 2, . . . ,

where APDi and DIi indicate respectively the action potential duration
and the diastolic time of the ith beat, we know that h(t2k+1) = hmin, k =
0, 1, 2, . . .. So for all k = 0, 1, 2, . . .

h(t) =

{
h(t2k)e

−(t−t2k)/τclose , t2k < t ≤ t2k+1

1− (1− hmin)e−(t−t2k+1)/τopen , t2k+1 < t ≤ t2k+2,

with h(t0) = 1 and for k > 1

h(t2k) = 1− (1− hmin)e−(t2k−t2k−1)/τopen = 1− (1− hmin)e−DIk−1/τopen .

Considering the kth beat and rescaling for t ∈ (0, APDk +DIk) we find

h(k)(t) =

{
h

(k)
0 e−t/τclose , 0 < t ≤ APDk

1− (1− hmin)e−(t−APDk)/τopen , APDk < t ≤ APDk +DIk,

where
h

(k)
0 = 1− (1− hmin)e−DIk−1/τopen

h(k)(APDk) = hmin = h
(k)
0 e−APDk/τclose , k > 2.
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Finally we have

hmin =
(
1− (1− hmin)e−DIk−1/τopen

)
e−APDk/τclose

that leads to

APDk = τclose ln
(1− (1− hmin)e−DIk−1/τopen

hmin

)
, k = 1, 2, . . . .

So we can conclude that the relationship between APDk+1 and DIk is
exact and holds even when assumption τin � τout � τopen, τclose is not re-
spected.

If we are not under assumption (6.2) and we assume that hmin is given
by h̃ = 4 τin

τout
, we can see in Figure 6.4 that there is a gap of about 100msec

between the analytic curve (green line) and the curve obtained with simu-
lation (red crosses), while if we use the analytic expression of hmin that we
can find out looking at the first beat:

hmin = e−APD1/τclose = e−APDmax/τclose , (6.7)

we find a curve (blue line in Figure 6.4) perfectly superimposed to the ex-
perimental one.

Finally, we point out that APDmax is the asymptotic value of the so-
called restitution curve APD(DI). In fact, if we substitute the value of hmin
we find:

APD(DI) = τclose ln
(1− (1− e−APDmax/τclose)e−DI/τopen

e−APDmax/τclose

)
=

(6.8)

= APDmax + τclose ln
(
1− (1− e−APDmax/τclose)e−DI/τopen

)
,

so it’s easy to verify that

lim
DI→∞

APD(DI) = APDmax.

Conclusions

It is shown in [12] that the relationship 6.6 holds with hmin = 4 τin
τout

under
the restrictive assumption τin � τout � τopen, τclose. We have shown here
that the formula is in fact valid without restrictions if we define hmin by
(6.7). Nevertheless, this expression of APD(DI) is easier to calculate as it
depends only on the two ionic parameters τopen and τclose and on the value
of APDmax. We finally remark that the value of APDmax can be simply
find looking at the asymptotic value of an experimental restitution curve
or simulating two long beats (corresponding to a very low frequency as for
instance 40 or 50 beats per minute).
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Figure 6.4: Red crosses represent the restitution curve obtained with 60
stimuli, the first one of period 1sec, and decreasing of 10msec each iteration.
Blue line is the analytic function of APD(DI) with the real value of hmin
and the green one with the approximated one.
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6.4 Parameters identification

Now that the model is well defined and that we have verified that the analytic
value of the restitution curve

APD(DI) = APDmax + τclose ln
(
1− (1− e−APDmax/τclose)e−DI/τopen

)
,

holds without any additional hypothesis we would like to use this informa-
tion to estimate the parameters of the model. The idea is to compare the
simulated curve and an analytic one and to minimize the difference between
them with respect to the ionic parameters. It is clear that we expect to
estimate only three parameters: τopen, τclose and APDmax. The τin and τout

are strictly linked to the variation of v and they are lie into the model.
Referring to [11], we use a non linear least squared method to mini-

mize the error between the simulated values APDn and the analytical ones
APD(DIn, θ):

min
θ

N∑
n=1

(APD(DIn, θ)−APDn+1)2,

where θ = (τopen, τclose, APDmax). Particularly, we used the software R to
calculate these parameters. Here are the command of the Nonlinear least
square regression (NLS) described in [6]:

> f<-function(DI,tau_open,tau_close,APDmax){

APDmax+

tau_close*log(1-(1-exp(-APDmax/tau_close))*exp(-DI/tau_open))

}

>

> NLS<-nls(APD~f(DI,tau_open,tau_close,APDmax),

start=c(tau_open=150,tau_close=150,APDmax=1100))

>

> summary(NLS)

Formula: APD ~ f(DI, tau_open, tau_close, APDmax)

Parameters:

Estimate Std. Error t value Pr(>|t|)

tau_open 100.01538 0.04478 2234 <2e-16 ***

tau_close 300.19651 0.21092 1423 <2e-16 ***

APDmax 695.92985 0.01475 47180 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.02868 on 44 degrees of freedom



CHAPTER 6. ELECTROPHYSIOLOGY FOR A SINGLE CELL 50

Number of iterations to convergence: 6

Achieved convergence tolerance: 8.537e-07

It requires the sample to be fitted (APD,DI), the analytical expression
of the curve and an initial point θ0. We impose the analytical expression
of f(DI) = APD(DI) as described above and we choose a feasible initial
value supposed to be a feasible solution, θ0 = (150, 150, 1100).

As the sample is calculated artificially we know that the exact solution
is θ∗ = (100, 300, 691.1) while looking at the R output we find that the
estimated solution is θ = (100.01538, 300.1965, 695.92985), which is very
close to the exact one. We can also look at the second and third columns
of the R output: the Std. Error indicates the standard deviation of the
estimated parameter and the t value the inverse of the relative confidence
interval length, i.e. the ratio between the first and the second columns. We
can observe that the standard error is small and that the t value is more
than 103 for all the parameters that means that our solution is estimated
with a tiny incertitude.

Finally we plot the simulated values of APD and DI (blue points) and
the analytical curve obtained with the estimated parameters (red line) in
Figure 6.5: we verify that the two curves are completely superimposed, i.e.
the estimated values perfectly fit the used ones.
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Figure 6.5: Blue points represent the restitution curve obtained with 60
stimuli, the first one of period 1sec, and decreasing of 10msec each itera-
tion. Red line is the analytic function of APD(DI) obtained substituting the
estimated parameters.



Chapter 7

ECG-based restitution curve

The previous chapter shows how to estimate some parameters of the ionic
model using only the so-called restitution curve obtained from a 0D model
for one cell. In this chapter we try to extend these results to a 3D model
of the heart, using the restitution curve of a single cell belonging to the
heart or a restitution curve obtained from an ECG. In the last case, the
restitution curve is assumed to give the dependence of the QT time (time
between the Q and the T waves) in function of the preceding TQ time, that
can be respectively compared with the APD and DI of the single cell. In the
complete heart model we have taken four different values for the τclose (more
details can be found in section 1.3) we decide to impose only one constant
value of τclose, i.e. to use just one type of cells. This assumption leads to
a false ECG with inverted T waves, future developments of the problem
will probably allow to identify the ionic parameters also in the case of an
heterogeneous heart tissue.

7.1 POD applications

Long sequences of beats with decreasing periods between each beat allows
to construct the so-called restitution curve, i.e. the relationship between the
action potential duration (APD) and the diastolic interval (DI) preceding
the action potential. This is a medical test which can highlight arrhythmia
like fibrillation. As the simulation of a sequence of beats requires a long
computational time, we propose to use a POD approach.

Let us consider a long sequence of accelerated beats. In our simulation,
the first beat last 1.1s (it corresponds to about 55 beats per minute) and, at
each beat, the period decreases of 50ms. The total simulation lasts 10s, that
leads at the end to a frequency of about 110 beats per second. The normal
heart frequency is between 60 and 100 beats per minute. For a frequency
greater than about 100 beats per minute we have tachycardia, in our case
ventricular tachycardia, and the shape of the ECG becomes unusual.

52
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The simulation is first run with the full order model until the end of the
last first beat. Then the POD basis is constructed from this simulation (in
particular it is sufficient to keep the first 400ms of the solution) and this
basis is used for the long-time simulation. Figure 7.1 shows the first lead
of the ECGs: we notice that the two solutions are, as expected, perfectly
superimposed during the whole simulation.
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Figure 7.1: Simulated ECG for long period (10 seconds) for accelerated
beats (55 beats per minute to 110 beats per minute) with complete model
(continuous line) and reduced model (dotted line).

As mentioned before, simulations of realistic ECG have been obtained
with an heterogeneous ionic parameter τclose in the Mitchell and Schaeffer
ionic model (1.9) to obtain a true ECG, in order to have four different kinds
of cells depending on the position in the heart domain. A study of the
restitution curve based on a real ECG can be subject of future works.

Dealing with the identification of ionic parameters from the restitution
curve we can estimate for the moment only one value of τclose, so we decide
to take it constant in the whole heart domain, even if it leads to a wrong
ECG: we obtain a negative T wave, opposed to the real one. Results corre-
sponding to this hypothesis are given in Figure 7.2, both with a complete
model and a reduced one. In this case too, the POD approach allows to
approximate accurately the complete model solution, particularly the two
ECG are perfectly superimposed in the first part of the simulation and they
present a negligible difference in T wave magnitude during last beats.
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Figure 7.2: Single type cell simulated ECG for long period (10 seconds)
for accelerated beats (55 beats per minute to 110 beats per minute) with
complete model (continuous line) and reduced model (dotted line).

7.2 RC of a single cell of the 3D model

Once verified that the solution obtained with a reduced model well ap-
proximates the complete model one, we want to compare the corresponding
restitution curves. The first approach is to evaluate the transmembrane
potential of a generic single cell and verify if the results of the 0D model
exposed in chapter 6 are still valid.

If we look at the restitution curve obtained by recording the transmem-
brane potential and the corresponding APD and DI times in a cell localized
on the epicardium in the right ventricle we find the results showed in Figure
7.3. Let us compare the restitution curve obtained with the solution of the
complete model (black curve) and the curve obtained with the reduced one
(red curve). We can observe that the two curves are very close. Figure 7.4
shows the same results for a cell localized on the left ventricle. Similar ob-
servations can be done, even if the two restitution curves differ more than in
the case of the right ventricle cell. We can explain this difference by noticing
that the left ventricle is thicker than the right one, so it is more subjected
to approximations.

As in chapter 6 we apply again the Nonlinear least square regression
(NLS) to identify the ionic parameters τopen and τclose and the maximal
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Figure 7.3: Restitution curve of a single cell on the right ventricle, with an
homogeneous heart domain, obtained with complete model (black line) and
reduced model (red line).

Figure 7.4: Restitution curve of a single cell on the left ventricle, with an
homogeneous heart domain, obtained with complete model (black line) and
reduced model (red line).
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value of APD in these cells. We suppose that the analytical expression of
APD(DI) that holds for a single cell model is still valid:

APD(DI) = APDmax + τclose ln
(
1− (1− e−APDmax/τclose)e−DI/τopen

)
,

and we try to approximate the simulated restitution curve with these func-
tion. For the left ventricle, using the complete model we obtain results
summarized in Table 7.1 while the real parameters are τopen = 300 and
τclose = 100. In the case of the reduced model results are summarized in
Table 7.2

Parameters Estimate Std. Error t value

τopen 282.9535 8.1793 34.59

τclose 151.3286 8.5411 17.72

APDmax 275.1944 0.4583 600.43

Table 7.1: Results obtained with the NLS R algorithm for the curve of
Figure 7.3: right ventricle cell with homogeneous heart tissue and complete
model. Starting point of the algorithm is θ0 = (200, 150, 300). The algorithm
converges is 5 iterations and re Residual standard error is 0.1264 on 7 degrees
of freedom. The exact solution is θ∗ = (300, 100, APDmax).

Parameters Estimate Std. Error t value

τopen 248.052 7.878 31.48

τclose 219.069 20.496 10.69

APDmax 275.41 0.483 570.21

Table 7.2: Results obtained with the NLS R algorithm for the curve of
Figure 7.3: right ventricle cell with homogeneous heart tissue and reduced
model. Starting point of the algorithm is θ0 = (200, 150, 300). The algorithm
converges is 5 iterations and re Residual standard error is 0.161 on 7 degrees
of freedom. The exact solution is θ∗ = (300, 100, APDmax).

We first notice that the complete model estimation of the parameters is
better than the POD one, even if both do not lead to the right value. They
converge at the same APDmax that is well defined (the t value in both case is
more than 550 that means that the Standard Error compared with the mean
value is very small, i.e. the parameter is estimated with a tiny incertitude),
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but the two ionic parameters are not very close to the real ones. The τopen

is estimated to be 282.9535 in the case of complete model while is correct
value is 300, that implies a relative error of the 5%, while with the reduced
model the relative error is 17%. If we look at the τclose value we notice that
the relative errors with the complete model and with the reduced one are
respectively 50% and 175%, i.e. the model can not estimate this parameter
at all.

Parameters Estimate Std. Error t value

τopen 308.552 8.4535 36.5

τclose 89.4160 2.7855 32.1

APDmax 307.5238 0.4004 768.1

Table 7.3: Results obtained with the NLS R algorithm for the curve of
Figure 7.4: left ventricle cell with homogeneous heart tissue and complete
model. Starting point of the algorithm is θ0 = (200, 150, 300). The algorithm
converges is 6 iterations and re Residual standard error is 0.0992 on 7 degrees
of freedom. The exact solution is θ∗ = (300, 100, APDmax).

Parameters Estimate Std. Error t value

τopen 323.4783 10.5936 30.54

τclose 76.3837 2.5343 30.14

APDmax 309.7547 0.4516 685.86

Table 7.4: Results obtained with the NLS R algorithm for the curve of
Figure 7.4: left ventricle cell with homogeneous heart tissue and reduced
model. Starting point of the algorithm is θ0 = (200, 150, 300). The algorithm
converges is 5 iterations and re Residual standard error is 0.106 on 7 degrees
of freedom. The exact solution is θ∗ = (300, 100, APDmax).

If we look at the cell on the left ventricle considered above, the estima-
tions that we find with the complete model are summarized in Table 7.3
while with the reduced one are summarized in Table 7.4. The solutions
θ = (308.5529, 89.4160, 307.5238) and θPOD = (323.4783, 76.3837, 309.7547)
are much closer to the real ones: the relative errors with the POD approach
are 7% in the case of τopen and 23% for τclose. This results leads to the con-
clusion that results given by the algorithm strongly depend on the chosen
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cell, so a good choice of the cell can lead to the right parameters, while for
some other cells the results are completely wrong. We can anyway notice
that the POD approach leads to results comparable to those obtained with
the complete model, both in case of good or bad estimation. So, in future
developments of the subject, the POD can be applied.

Finally, we use the “four type of cells” model and we conduct the same
studies. We consider a long sequence of beats simulated as in Figure 7.1 and
we look at the restitution curve of two different epicardium cells, the first
one on the right ventricle and the second one on the left one. The obtained
restitution curve are respectively shown in Figures 7.5 and 7.6: we notice
again that the results obtained with the reduced model (red curves) are very
close to those obtained with the complete one (black ones).

Parameters Estimate Std. Error t value

τopen 264.8388 6.3775 41.53

τclose 219.9267 14.6239 15.04

APDmax 277.8336 0.4138 671.41

Table 7.5: Results obtained with the NLS R algorithm for the curve of
Figure 7.5: right ventricle cell with heterogeneous heart tissue and complete
model. Starting point of the algorithm is θ0 = (200, 150, 300). The algorithm
converges is 7 iterations and re Residual standard error is 0.1224 on 7 degrees
of freedom. The exact solution is θ∗ = (300, 120, APDmax).

Parameters Estimate Std. Error t value

τopen 268.668 15.212 17.661

τclose 197.385 27.751 7.113

APDmax 278.305 0.956 291.103

Table 7.6: Results obtained with the NLS R algorithm for the curve of
Figure 7.5: right ventricle cell with heterogeneous heart tissue and reduced
model. Starting point of the algorithm is θ0 = (200, 150, 300). The algorithm
converges is 7 iterations and re Residual standard error is 0.2746 on 7 degrees
of freedom. The exact solution is θ∗ = (300, 120, APDmax).

As we are dealing with single cell restitution curve, even if τclose varies
from cell to cell, we can try to estimate the ionic parameters locally. If we
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investigate the restitution curve of Figure 7.5 for a cell in the right ventricle
cell with the same technique used above we obtain for the complete model
the values in Table 7.5 and for the reduced one the values in Table 7.6, while
the exact solution is θ∗ = (300, 120, APDmax).

If we consider the left ventricle cell, with the complete model we obtain
results in Table 7.7 and with the reduced model the results summarized in
Table 7.8 while the exact solution is θ∗ = (300, 130, APDmax).

Parameters Estimate Std. Error t value

τopen 310.5017 9.2177 33.69

τclose 109.4269 3.2441 33.7

APDmax 370.4724 0.6276 590.3

Table 7.7: Results obtained with the NLS R algorithm for the curve of
Figure 7.6: left ventricle cell with heterogeneous heart tissue and complete
model. Starting point of the algorithm is θ0 = (200, 150, 300). The algorithm
converges is 5 iterations and re Residual standard error is 0.1481 on 7 degrees
of freedom. The exact solution is θ∗ = (300, 130, APDmax).

Parameters Estimate Std. Error t value

τopen 310.874 12.466 24.94

τclose 112.482 4.681 24.03

APDmax 362.380 0.847 427.82

Table 7.8: Results obtained with the NLS R algorithm for the curve of
Figure 7.6: left ventricle cell with heterogeneous heart tissue and reduced
model. Starting point of the algorithm is θ0 = (200, 150, 300). The algorithm
converges is 5 iterations and re Residual standard error is 0.1943 on 7 degrees
of freedom. The exact solution is θ∗ = (300, 130, APDmax).

As in the case of homogeneous heart tissue we can conclude that the
POD solutions conduct to the same results as the complete model, that
allows for future studies to use this “cheaper” approach. Also, as previously
observed, the single cell restitution curve does not lead to good results in
the parameter estimation as it does not take into account the interactions
between cells that modify the single cell cycle intervals.
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Figure 7.5: Restitution curve of a single cell on the right ventricle, of a “four
type of cells” model, obtained with complete model (black line) and reduced
model (red line).

Figure 7.6: Restitution curve of a single cell on the left ventricle, of a “four
type of cells” model, obtained with complete model (black line) and reduced
model (red line).
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7.3 ECG-based RC

The next step proposed in this work is to estimate the ionic parameters
τopen and τclose directly from an ECG first lead using the same technique
applied for the study of a single cell. This study is based on [11] and it
has been conducted with the SYSIPHE team, using their QT/TQ detection
algorithm.

Figure 7.7: The normal electrocardiogram (Source: bembook [10]).

Particularly, [11] explains the relationship between the QT interval and
the TQ interval preceding it. The QT interval is the time between the Q
and the T waves and represents the systole, i.e. the contraction phase of
the heart, while the TQ interval represents the diastole, i.e. the relaxation
phase. These two periods can be respectively associated to duration of the
ventricular electrical activity and to the next rest period. As the APD
represents the depolarization time of a single cell, we can imagine the QT
period as the APD of a large number of cells. Therefor, the relationship
between the QT and the TQ time is similar to the relationship between the
APD and the DI.

The results exposed in [11] show that the restitution curve obtained by
plotting the QT interval against the preceding TQ interval has a similar
shape compared to the single cell restitution curve APD(DI). We remark
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that an essential factor is the use of a good algorithm for the detection of
QT and TQ interval, as the one proposed by [11].

Let us consider the simulated long sequence of (realistic) beats shown
in Figure 7.1. Using the T-wave detection algorithm implemented in [21],
we plot the corresponding restitution curve both with the complete and
reduced models (Figure 7.8). As the complete and reduced model ECG
are superimposed, the restitution curves too are very close. We notice also
that on the right of the plot (blue and green curves) the curve trend is
completely wrong: we split the curve into two parts. The curves on the
left (black and red ones) correspond to the first part of the ECG while the
the curves on the right (blue and green ones) are the second part of the
simulated ECG. We can say that the left part of the restitution curve is
the good one: looking at the ECG in Figure 7.1 we notice that until about
5 seconds the ECG has an usual trend, so the T-wave end algorithm can
detect the good QT/TQ intervals. After 5 seconds we see the apparition of
a second inverted wave, the detection algorithm does not keep any more the
T-wave end but it detects the end of this second wave as the end of the QT
interval. This problem leads to a completely wrong restitution curve. Of
course, future works can improve the solution of the ionic model in the case
of accelerated beats and a more realistic ECG could be obtained. For the
time being, the simulated ECG does not lead to an useful restitution curve.

Figure 7.8: Restitution curve obtained from ECG in Figure 7.1 with com-
plete model (black and blue lines) and reduced model (red and green lines).
The T-wave detection algorithm given in [21] is used.

The second approach deals with the study of the “one cell” ECG with
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inverted T wave: even if the obtained ECG is not realistic the T wave does
not present any oscillations, so the T-wave detection algorithm is supposed
to find a well defined restitution curve. In order to have a more detailed
restitution curve, we consider a longer sequence of beats: 60 beats are sim-
ulated, starting from a period of 1.1 seconds and decreasing of 10msec each
beat (from 50 beats per minute to 120 beats per minute). The results of
the QT/TQ ECG-detection are showed in Figure 7.9: blue points are the
ECG-based restitution curve and red line is their interpolation.

Figure 7.9: Restitution curve obtained from 60 beats ECG (50 to 120 beats
per minute) with complete model: blue points represent the numerical values
of QT/TQ, red line is their interpolation and green curve is the analytical
restitution curve for the real ionic parameters.

As for the one cell case, we apply the Nonlinear least square regres-
sion (NLS) in order to identify the ionic parameters of the model: we
want to verify if the analytical expression of the Action Potential Dura-
tion (APD) in function of the Diastolic Interval (DI) that holds for a 0D
model can be assumed valid also for a large number of cells represented
by a 3D model. The solution of the R algorithm is summarized in Table
7.9. The optimum is θ = (343.550, 64.501, 341.674) while the exact value is
θ∗ = (300, 100, APDmax). We notice that the points on the curve present
a much variability than in the case of the 0D model so the parameters are
estimated with a large incertitude (t values less than 20). Also, the rel-
ative error of the mean value is 14% for the τopen and 35% for the τclose:
the “analytical” and the numerical restitution curves are not perfectly su-
perimposed, but we can observe a similar trend. These preliminary results
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obtained with an heterogeneous heart tissue, combined with a better ionic
model able to reproduce realistic accelerated beats, can be used for future
works concerning a “four cells model”.

Parameters Estimate Std. Error t value

τopen 343.550 24.477 14.04

τclose 64.501 3.349 19.26

APDmax 341.674 1.115 306.31

Table 7.9: Results obtained with the NLS R algorithm considering the
QT/TQ restitution curve (Figure 7.9) obtained from a 60 beats ECG (50
to 120 beats per minute) with complete model. Starting point of the algo-
rithm is θ0 = (200, 150, 300). The algorithm converges is 5 iterations and
re Residual standard error is 0.9561 on 59 degrees of freedom. The exact
solution is θ∗ = (300, 130, APDmax).

Conclusions

Restitution curves approach to estimate ionic parameters can be improved
and conduct to excellent results. Nevertheless even if we are not yet able to
find the parameters with a good approximation we remark that the proposed
technique is extremely fast. If we compare it with the genetic algorithms
used to find the infarcted area in the precedent part we observe that genetic
algorithms lead to a more precise solution but they require a very long
computational time. At the state of the art, restitution curves and nonlinear
least square regression solution can be used for instance as starting point of
an heuristic method as genetic algorithms.



Conclusions

In this work we have presented two main examples where reduced model and
POD approach can be applied in cardiac electrophysiology. Both of them
leads to good results and has a useful role in the inverse problem resolution.

The first part deals with the study of the myocardial transmural infarc-
tion. We illustrate that it is sufficient to modify one of the ionic parameters
of (1.9) to obtain a good simulated infarction and its corresponding ECG.
Then, we applied different POD techniques to obtain the solution with a
reduced model. We showed that the use of a POD basis generated with an
healthy case is not able to reproduce an infarction not included in the POD
basis, while a composed POD basis can be used. Particularly, an efficient
basis is obtained by collecting snapshots of the solution for multiple located
infarctions. This basis can be used to simulate a random point infarction
problem with good results.

Then, the inverse problem is explored. We use genetic algorithms to
solve a minimization problem and find out the infarcted zone from a sim-
ulated ECG obtained with the full model. As genetic algorithms require a
lot of resolutions of the problem, POD approach proved to be very useful
to decrease the computational time. The resolution of the inverse problem
leads to a good approximation of the infarcted area, even with a small num-
ber of generations.

The second application concerns the simulation of long sequences of
beats. We show that the POD solution can accurately approximate the
complete model solution. The use of reduced models leads to much shorter
computational time. The simulation of a long sequence of accelerated beats
is at the basis of the study of the so-called restitution curve, that is very
useful for the detection of arrhythmia. We show that the study of this curve
can lead to the identification of some parameters of the ionic model (1.9).
Once obtained a realistic ECG, future works could use the simple Nonlin-
ear least square regression, as proposed in the present work, to identify the
parameters. We remark that this approach is very cheaper in terms of com-
putational cost, while genetic algorithms need the resolutions of the direct
problem at each iteration. So restitution curves represent a new approach
to be explored in terms of resolution of inverse problems.
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Du transport de particules à l’optimisation globale sous contrainte
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