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Introduction: 

 

This work is framed into the research activity performed at Politecnico di Milano 

within the field of seismic isolation of NPP (Nuclear Power Plant) buildings. One of the most 

challenging objectives for advanced NPPs is to identify cost effective engineering solutions to 

increase the current level of safety. Literature presents many factors affecting NPPs safety, 

among which an important role is played by the plant protection against external events, 

naturally or man-induced. The significant number of investigations recently performed 

worldwide has shown that earthquakes are among the most impacting external events in 

defining the annual damage frequency of nuclear reactor core. Moreover, it has been 

noticed that the risk induced by seismic events can be considered comparable with the risk 

caused by internally initiated events, because of the specific attitude of earthquakes to 

initiate multiple failure events. In the framework of a seismic Probabilistic Safety Assessment 

(PSA), fragility evaluation of safety related components is, therefore, a fundamental issue for 

a correct evaluation of risk. The seismic fragilities of single equipments shall be combined 

with the seismic hazard, i.e. the frequency of occurrence of a given intensity of the 

earthquake motion, to evaluate the probability of different core damage states. 

The NPPs are designed for Serviceability Limit State (SLS) earthquake and for Ultimate 

Limit State (ULS) earthquake. The first is of medium intensity with higher return probability, 

after which the plant shall be operative with minor maintenance. The latter is of higher 

intensity with a lower return probability, after which a huge crisis shall be prevented by 

keeping all radioactive components contained and cooled. 

Recent seismic events in Japan induced significant damages to NPPs (July 2007 - 

Kashiwakazi NPP; March 2011 – Fukushima NPP) and focused world public opinion on the 

risk due to major earthquakes. In particular, Fukushima NPP, put into operation in the 70’s-

80’s, suffered accelerations widely bigger than designed at the time (the registered 

acceleration were between 3,3 and 6,4 m/s²; design ones were between 2,4 and 3,2 m/s²). 

Recent studies performed at Politecnico the Milano (2006-2011) adopted the IRIS 

reactor (International Reactor Innovative and Secure) as reference case to develop 

innovative solutions in reducing the seismic hazard. IRIS is an integral, modular, medium size 

(335MWe) Pressurized Water Reactor (PWR), whose preliminary design was developed 

through an international partnership including over twenty organizations from nine 

countries, which provides a viable bridge to Generation IV reactors. Its features include 

safety equipments which can be activated without human intervention or electricity, also 

known as passive systems, and base isolation system at foundation level. 

 

Results of these studies identified base isolation system as one of the most effective 

technical solution to mitigate seismic risk. In particular: 

- Isolation system leads to much lower horizontal peak accelerations. The 

frequency energy content of the absolute accelerations at different locations 

is significant only in low frequency range (0.3÷2 Hz), and common NPPs 

components usually exhibit natural frequencies higher than 5÷10 Hz. 
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- The Soil-Structure Interaction (SSI) becomes less important for horizontal 

vibration modes. Safety assessments and design procedures become less 

dependent on the actual soil dynamic stiffness and damping. 

- Horizontal accelerations are almost the same throughout the building. This 

facilitates the design of safety related components, since the seismic demand 

is the same regardless of the floor level, allowing a simpler and less 

conservative design, which leads to more standardized equipments. 

- the main contributor to seismic risk becomes the isolation system itself. 

Reliable limit state domains shall be defined both for first-damage and 

complete failure conditions, in order to perform PSA. 

In previous works published by Politecnico di Milano, a complete FE HDRB model, 

consisting of alternate high damping rubber and steel layers, was set and extensive 

numerical tests were performed to identify the most suitable element type, mesh 

refinement and analysis parameters, in order to account for highly nonlinear geometric and 

mechanical material properties. At the same time, a refined FE model of a single rubber layer 

was developed to investigate in detail different ANSYS® hyperelastic material models and 

tune them against experimental results.  

In the present study, the development of a new FE model of a HDRB in ANSYS® has 

been pursued, mainly aimed at the definition of a reliable limit state domain under seismic 

excitation. Along with the numerical domain, an analytical approach was developed to 

support designers with a computational efficient tool. A theoretical framework of 

mechanical continuum is firstly given and, after a comprehensive study of the global and 

local behavior of numerical and analytical models, a limit state domain for delamination 

mode is assessed in terms of both stresses and global actions. Finally, the influence of the 

compressibility on stresses and on limit state domains is approached. 
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I. Seismic protection of Nuclear Power Plants: 

 

A. Seismic design: 

 

In the NPP of the new generation like IRIS the probability of internal failure has been 

drastically reduced of 2 to 3 orders of magnitude, thus the external risks have become the 

determinant one. The seism is one important external risk and has to be studied precisely. 

The seismic isolation considerably increases the performance the building in terms of 

acceleration response to design seismic actions. To ensure this they are themselves put 

through great displacements. The isolator can therefore become the critical components.  

Seismic design of traditional and isolated buildings will be presented in the following 

part. The traditional building will be considered linear while for the isolated one mechanical 

non linearity will be taken into account. The seismic risk will be defined as the combination 

of the structure fragility and the hazard of the site. Then the calculus of the vulnerability 

through the response surface methodology and the Monte Carlo simulation will be detailed. 

For the isolated building once the new risk variable defined, the response surface is 

calculated through the failure domain. 

 

1.  Seismic risk: 

 

The following variable will be used in the definition of the seismic risk: 

 �� = ������	���	
��; 	���	���
�	��� ��� = ���������	������	��������� �� = �����	��	���	
�� 

 

The EDP is the dynamic excitation (acceleration, displacement…) due to the global 

response and imposed to the structure. 

The IM (Peak Ground Acceleration, spectral acceleration …) give the severity of 

earthquake motion on the NPP site. 

According to the Pacific Earthquake Engineering Research (PEER), the seismic risk can 

be expressed as: 

 

�� = ��(�� > ���|��� = ������������|�� = ���������������(�) 
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In a first approach, the damage analysis step is avoided and the risk can directly be 

expressed through EDP: 

 

�� = ��������� > ����|�� = ���������(�) 

 

The seismic risk is the convolution product between structure vulnerability and site 

hazard. The fragility function is defined as: 

 �����, �� = ����� > ���|�� = �� = 1 − ����(���/�� = �) ��������	/�� = ��:		���������	����	������	��� 
����	���	���	����!�� 

 

2. Fragility analysis: 

 

a) Traditional building: 

 

First the EDP and the IM taken into consideration need to be defined. The fragility 

function will be expressed in function of its associated limit state function. This limit state 

function depends on a response. In this case this response will be expressed trough finite 

element simulation; the fitted values are the mean and the standard deviation. Once the 

response and thus the limit state function determined the fragility will be calculated 

integrating the density of probability with Monte Carlo Simulation. The fragility curve will be 

plotted calculating the fragility for different peak amplification. 

 

For a non isolated building, the maximum value A of the acceleration at the 

component supports should be considered as EDP; the most severe peak ground horizontal 

acceleration Ag defined IM. 

The traditional non isolated building is considered linear (as all the non linearity can 

be treated in the damage analysis). In this case the fragility function can be seen as the 

probability to exceed a noted dynamic amplification: 

 �����, �� = �"# > �$#� = ��% = ��	
&�, ��' = ��	
&�/��' 
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If the seismic input is stochastic the probability to exceed a value is associated to a 

limit state function:  

 �&(, �, ��' = ) − �&(, ��' = � − *�(��� = 0 �:	�����������	�
����� (: ������	��	�ℎ�	������	����!��	 *: ��	���	�	��	�	
��	���+	���
��	����������� 

 

The expression can be written taking the peak amplification factor 
�

��
 as EDP: 

 

�, -(,
���. =

��� − *(() 

  

 

 The fragility function thus becomes: 

 

�����, �� = ���,�(� < 0� = / ����, 0����0
���

 

 

Once the distributions of probability of X and the probability of exceeding limit state 

R have been chosen, the integral can be calculated by the method of Monte Carlo 

simulation.  

R can be found through a structural dynamic analysis of a finite elements model for 

every realization of random variable X. For complex model as the number of iteration in the 

Monte Carlo method is consequent, the numerical cost can be high.  

R is determined trough the response surface method. The response function is 

approximated by a function; the mean 1� and the standard deviation 2� are the fitted 

quantities. 

In this case R is found with a simulation approach. With the spectral parameters 

appearing in X, the ground motion is simulated. For each random vibration problem the 

mean and the variance of R are estimated from the finite element model solution. This 

operation is repeated the needed number of time in order to determinate the parameter of 1� and2�.  

To compute the fragility curve the fragility function has to be calculated for different 

peak amplification (a/�� ) but the response function stays the same. 
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b) Isolated building: 

 

To reduce accelerations in the building, the system is isolated with HDRB devices. To 

ensure this reduction these isolator are submitted to important horizontal displacement. 

The isolators are the critical elements: the failure of the system is closely linked to the failure 

of the isolator. 

 Therefore the choice of the EDP is changed; the significant value with respect to the 

failure is now the displacement of the most strained isolator. Thus the fragility function 

becomes: 

 �����, �� = �&3 > 
$#� = ��' = ��	
&
, ��' 

   

 The behavior of the isolator is non linear, indeed no linearization are used. For a fixed 

ag, the response surface could be determined as before, the integral can be computed with 

Monte Carlo method: 

 

��	
&
, ��' = / ��
, 0��
�0
���

 

 

 

 Nevertheless due to non linearity, to plot the failure curve the response surface will be 

different for every peak acceleration (ag). This potentially represents a really high numerical 

cost even if the structural model can be much simple. 

 The limit state function can otherwise be expressed in terms of horizontal and 

vertical loads applied on the most strained isolator. The definition of an accurate domain to 

define precisely the fragility curve is the scope of this study. 

 Once the domain defined we will be able to obtain the failure curve through the limit 

state function defined as: 

 

��(, ��� = 1 −
4)((, ��)45((, ��)

= 0 
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 It has been shown the importance to have an accurate H/V domain for the isolator to 

obtain the failure curve which is an essential step to proceed with the seismic risk analysis. 
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B. High Damping Rubber Bearings (HDRB): 

 

 

The device studied is a seismic isolator HDRB (High Damping Rubber Bearings) used in 

nuclear power plants made under IRIS program. It’s made of alternative layer of rubber and 

steel as shown on the picture: 

 

 

Figure 1: Picture of an isolator (not actual dimensions) 

Its characteristics (geometry, materials, mechanic behavior...) are recapitulated in the 

following tables: 

 

Isolator external diameter D 1000 mm 

Steel reinforcing plate diameter D’ 980 mm 

Thickness of the internal steel plates ts 4 mm 

Number of elastomeric layers  10  

Thickness of one elastomeric layer ti 10 mm 

Total elastomeric thickness  Te 100 mm 

First shape factor S 24  

Second shape factor S 9,6  

Dynamic shear modulus G 1,4 Mpa 

 

The mechanical characteristics of the isolator have been found for the scaled isolator 

1/2, for accuracy reason they will be given for this scaled isolator: 
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Figure 2: mechanicals proprieties of the ½ scaled isolator 
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II. Basics of elasticity: 

 

A. Basics of linear algebra: 

 

The main mathematical object we are dealing with in continuum mechanics are the 

tensor, they are represented by matrix. In many cases those matrix are real and symmetric. 

In order not to repeat them every time, the main proprieties of those matrixes will be 

described in this paragraph. 

 

1. Diagonal form: 

 

Real symmetric matrixes have real eigenvalues and can be put in a diagonal form in 

an orthonormal basis.  

For example if 6�, 6� , 6�   are the three eigenvalues of a real symmetric matrix of 

the third order #̿, and ��, ��, �� are the associated eigenvectors; ��, ��,�� can be chosen 

in order to form an orthonormal basis and: 

 

#̿ = [�� �� ��] 86� 0 0
0 6� 0
0 0 6�9 :

���������; 
 

2. Invariant of a matrix: 

 

For a square matrix some quantities don’t depend on the basis in which the matrix is 

expressed, these quantities are called invariant.  

The determinant, the trace and the eigenvalues of a square matrix are invariants. 

For the further developments we will define three invariants I1 I2 and I3, referring to 

the case of a square matrix 3*3, which is our usual situation. They correspond to the 

coefficient of the characteristic polynomial R(6); the roots of this polynomial are the 

eigenvalues: 

 *�6� = −6� + �16� − I26 + �3 
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They have the following definition: 

 �1 = ��&#̿' = ��� + ��� + ��� �2 = 	�����	����	��	# = ������ + ������ + ������ − ������ − ������ − ������ �3 = det	(#̿) 

 

They can be easily expressed in function of the eigenvalues: 

 �1 = 6� + 6� + 6� �2 = 6�6� + 6�6� + 6�6� �3 = 6�6�6� 
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B. Continuum mechanics: 

 

1. Cauchy’s continuum: 

 

We consider a continuum that occupies a volume V and is delimitated by a surface S. 

On this continuum are acting body loads and surface loads. The resultant of these actions on 

a finite part of the volume or the surface can be seen as the resultant of the forces ΔR 

applied on a point and the resultant of the moment ΔM with respect to this point. 

The hypothesis of the Cauchy’s continuum stipulates that: 

lim
∆�→�

� ΔR/∆V
 � F 

lim
∆�→�

� ΔR/∆S
 � f 
	 lim
∆�→�

� ΔM/∆V
 � 0 

lim
∆�→�

� ΔM/∆S
 � 0 

 

Due to this hypothesis all the concentrated load should always considered distributed 

on a surface even really small. 

 

2. Cauchy’s stress tensor: 

 

We now consider a Cauchy continuum in equilibrium. We make the hypothesis to 

divide this continuum ideally in two parts. For this continuum to remain in equilibrium 

actions should exchanged by the separation surface. 

We consider a point P that stands on the separation surface of one of the piece of 

continuum, Δ� a finite area around P and the vector ��  the outgoing normal to the surface 

Δ�. 

 

Figure 3: Cauchy continuum ideally split into two parts 
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 We suppose that: 

lim
∆�→�

� ΔR/∆S
 � Δp � σ� 

lim
∆�→�

� ΔM/∆S
 � Δw � 0 

 σ� is called stress and it has the following propriety: 

σ�� � �σ� 

The Cauchy stress is entirely determined if its components are known on an 

orthonormal basis: 

σ� � σ�n� 

 Where σ� is the Cauchy stress tensor which is symmetric and noted as: 

 

σ� � �		 �	
 �	��	
 �

 �
��	� �
� ��� 

 

These stresses can be seen on the following figure: 

 

 

3. The different components of the deformation: 

 

We consider an undeformed continuum Г� at the time �� .  We put it trough changes 

that gives it a different configuration Г at the time t.  

We choose a point P on this continuum, at the time �� its coordinates are �� whereas 

at the time t its position is given by x(��, �
. The displacement of P between �� and t is given 

by the vector s. 

 � �� ! " 

 

The compatibility hypothesis stipulates that the displacement occurs without 

superposition of material. For this to be verified the displacement should depend only on �� 

and should be a continuous function of this variable. Furthermore the displacement should 

verify the boundary conditions. 
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Let’s consider two points �� and � on the continuum in the initial configuration, after 

the deformation they become ��  and p.  The velocity of P is done by the following relation 

as the initial position of P, (� does not depend on the time: 

��0, �� =
�0�� =

�	��  

 

We can express the velocity of p in function of the velocity of ��  and of the relative 

velocity dv: 

��0, �� = �� + �� = �� +
<�<0 �0 = �� + 5=�0 

 

The quantity 5= can be defined from this relation.  5= is a tensor and is called velocity 

gradient.  5= can be decomposed in two parts: the symmetric part �> and the antisymmetric 

part ?> , then: 

��0, �� = �� + �>�0 + ?>�0 

 

 The velocity is now decomposed in three components: @� the rigid translation, A=== 

the rigid rotation and B>  the pure strain. This last component is the one that interest us the 

most. 

 

4. A measure of the pure deformation: Green-Lagrange tensor 

  

 A finite measure of strain will be introduced in the following paragraph. It can be 

introduced from two points of view: focusing on the initial configuration or on the current 

one. The first one is called Lagrangian approach the second one Eulerian approach. For our 

case the Lagragian approach has been chosen. 

 

 We look for a relationship between dx (the distance between p and	��) and d(�  (the 

distance between P and	��): 

�0 = �=�(� =
dx

d(� =
d�(� + 	�

d(� = I ̿ + ds

d(�		 
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 �= is named strain gradient, it’s a strain measure but not of pure deformation as it 

also include the deformation due to the rigid rotation. In order to separate the two 

contributions we calculate the square of the distance: 

 

d(�� = d(��d(� �0² = �0��0 = d(���=��=d(� �0² − d(�� = d(��&�=��= − I'̿d(� = 2d(���=d(� 

  

 �= is the Green-Lagrange strain tensor and it’s an actual measure of pure deformation. 

We can also define C the right Cauchy-Green tensor and B the left Cauchy-Green tensor: )̿ = �=��= C = �=�=� 
 

5. The stress tensor associated with	�> : the Piola-Kirchhoff tensor 

 

The velocity of deformation tensor �>  is associated to the Cauchy stress tensor 

through the virtual work principle. 
�	��

��
 is analogous to  �> . We define the Piola-Kirchhoff 

stress tensor 4̿ as the associated quantity to 
�	��

��
 trough the virtual work principle. 

 

�2���0�����0��D =
�

� 4��(
��

(�)���E ((�)�D� 

 

In order to determine a relation between 4̿ and 2= we have to express 
�	��

��
in function 

of	�>  and to define the transformation x=x((�). 

 

To express the derivate of �= with respect of time with first have to determine	�	��
��

 

�	�>�� =
��� dx

d(� =
���(� =

���0 �0�(� = 5=�= 

�	�>�� =
1

2

��� (�=��= − I)̿ = 	1
2
-���===�� �= + �=� ��=�� . =

1

2
�=�(5=� + 5=)	�= = �=��>	�= 

�> = �=�� �	�>�� 	�=�� 
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 The determinant of �= is the Jacobian of the transformation x=x((�): F = det	(�=) 

 

 We can now transform the integral: 

�2���0�����0��D =
�

� 2���0� �( �0��

�(!�0� � !E �0��D 

� 2���0� �( �0��

�(!�0� � !E �0��D = � F2�� �( �0���

�(!�0� � !E �D� = � 4��(
��

(�)���E ((�)�D� 

 

  

We can deduce that: 4̿ = F�=��2=	�=�� 

2= =
1F �=�4̿	�= 

 

6. Small displacement hypothesis: infinitesimal strain tensor 

 

The two assumptions of the small displacement hypothesis are: 

1. The displacements and the deformations are small enough to be able to assimilate 

the initial speed to the displacement. 

2. The displacements and the deformations are small enough not to influence the way 

how this equilibrium is established. I.e. the equilibrium can be imposed in the initial 

configuration.  

 

We can define the displacement gradient (analog to �= ) that will be noted G= : 

G= =
ds

dx
 

 

As before the pure deformation part of the displacement gradient is its symmetric part: 

H ̿ = 1

2
&G= + G=�' 

H ̿ =
IJ
JJ
JJ
K <	�<0� 1

2
L<	�<0� +

<	�<0�M 1

2
L<	�<0� +

<	�<0�M
1

2
L<	�<0� +

<	�<0�M <	�<0� 1

2
L<	�<0� +

<	�<0�M
1

2
L<	�<0� +

<	�<0�M 1

2
L<	�<0� +

<	�<0�M <	�<0� NO
OO
OO
P
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C. Constitutive law: 

 

In the precedent part we have introduced stresses and strains in the case of finite 

deformation and small displacement theory. We now need to define a link between these 

two quantities. This link mainly depends on the material; the mathematical model created to 

describe this relation is called constitutive law. 

 

1. Linear elasticity: 

 

The existence of a deformation potential is assumed. This potential is named 

deformation energy and has the following expression: 

Q�H� = � 2���
"��

�

H�� 
 

The energy depends only on the final point and not on how it arrives on the final 

point. To verify this condition Q	should an exact differential. Thus: <2��<H!# =
<2!#<H��  

 

 

We have supposed an elastic linear constitutive law; therefore we can assume the 

existence of a tensor of the 4
th

 order	���!#: 2�� = 	���!#H!#  
	���!# =

<2��<H!# 
The exact differential condition reduces the number of parameters. Furthermore the 

material is considered isotropic; the energy can therefore be express in function of the three 

deformation invariants.  Combining all those conditions the constitutive law takes the 

following form: 

2= =

IJ
JJ
JK6 + 2R 6 6 0 0 06 6 + 2R 6 0 0 06 6 6 + 2R 0 0 0

0 0 0 R 0 0
0 0 0 0 R 0
0 0 0 0 0 RNO

OO
OP H  ̿
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� = R 36 + 2R6 + R  

S =
6

2(6 + R)
 

 

2. Hyperelasticity: 

 

The material is considered hyperelastic or elastic non linear.  Indeed the relation 

between strain and stress is not linear but the phenomenon is reversible and does not 

dissipate energy. The case incompressible material will be seen. The material will also be 

considered isotropic. 

 

a) Finite deformation theory: 

(1)  Hyperelastic isotropic material: 

 

In the previous paragraph the following quantities have been introduced: T> ∶ )�
�ℎ�		���			���	��	 U>:����		���			���	�� V:�	���������	������ W> = � ̿+ ����=======�	�	4����	���	�� X> = �=�=�	5���	)�
�ℎ�/R����	���	�� Y> = �=��=	*�ℎ�	)�
�ℎ�/R����	���	�� Z = det&�=' 	F���!���	 
 

The following relation has been established: 2= = F���=4̿�=�	 
 

C and B are real symmetric matrix so they have tree real eigenvalues. They have the 

same invariant I1 I2 and I3: �1 = )11 + )22 + )33 �2 = )11)22 + )11)33 + )22)33 − )12� − )13� − )23� �3 = det	()) 
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Our material is hyperelastic, thus we can suppose the existence of a strain energy 

function W. For the rubber model several form of the strain energy functions have been 

tested and the more accurate has been chosen (POLY-2P). The generic equation of 2 

(express in function of W) will be presented first, and then the equation of the model chosen 

will be developed.  

The derivative of W with respect to one of the strain tensor is the corresponding 

stress S: 

2
<?<)̿ = 4̿ 

 

 The second hypothesis is that the material is isotropic; therefore W only depends on 

the invariant I1 I2 I3. ?&)̿' = ?(�1, �2, �3) 

 

We differentiate W with respect to the invariant: <?<)̿ =
<?<�1 <�1<)̿ +

<?<�2 <�2<)̿ +
<?<�3 <�3<)̿  

<?<)̿ =
<?<�1 � ̿+ <?<�2 &�1� ̿− )̿' +

<?<�3 �3)̿�� 

  

We know calculate the Cauchy stress: 

2= = F���=4̿�=� = 2F�� L�=��̿=� L<?<�1 + �1 <?<�2M −
<?<�2 �=)�=� +

<?<�3 �3�=)̿���=�M 

Due to the form of B and C we have the following simplifications: �=)�=� = �=�=�	�	> 	�> � = C=² �=��̿=� = C=  �=)̿���=� = �=�=��		�> ��	�> � = � ̿
2= = 2F�� L<?<�3 �3[= + L<?<�1 + �1 <?<�2MX> −

<?<�2 X>$M 

 

 Using the fact that I1 I2 and I3 are the invariant of B we have the following equation: C=� − �1C=� + �2C= − �3 = 0 

 

Multiplying the equation byC=��, we have: 

C=� = �1C= − 	�2� ̿+ 	�3C=�� 
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 Replacing C=�	with its new expression in the previous form of 2=: 

2= = 2F�� \L<?<�3 �3 +
<?<�2 �2M [= + L<?<�1MX> −

<?<�2 �3X>�%] 

 

(2) Isotropic hyperelastic incompressible material: 

  

The incompressibility traduced itself as: �3 = 0 

In order to take into account the incompressibility in the strain energy p is introduced 

as a Lagrange multiplier: 

?&)̿' = ?��1, �2� +
1

2
�(�3 − 1) 

The Piola stress becomes: 

4̿ = 2
<?<)̿ +

<�(�3 − 1)<)̿  

 

As done previously we differentiate W with respect to I1 and I2: 

4̿ = 2
<?<�1 � ̿+ 2

<?<�2 &�1� ̿− )̿' + �)̿�� 

 

Using the same method as before the Cauchy stress has been calculated: 

2= = L�[= + L2
<?<�1MX> −

2<?<�2 X>�%M 

 

(3) Constitutive law the isolator: POLY-2P 

 

Different model for the strain energy have been tested on ANSYS® . The criteria that 

have been used to choose the most reliable model were: convergence of the solution, 

accuracy of the solution respect to experimental results, verification of the principle of 

superposition. 

The form that has been adopted is: ? = ���(�1 − 3) + ���(�2 − 3) + ���(�1 − 3)² + ���(�2 − 3)² + ���(�1 − 3)(�2 − 3) 
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For an incompressible material, the principal stresses have the following form: 

 

C= = ^6²� 0 0

0 6²� 0

0 0 6²�

_ ; 	C=�� = ^6��� 0 0

0 6��� 0

0 0 6���_			 
 

2� = L� + 2
<?<�1 6²� −

2<?<�2 6���M 

2� = L� + 2
<?<�1 6�� −

2<?<�2 6���M 

2� = L� + 2
<?<�1 6�� −

2<?<�2 6���M 
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III. HDRB stress analysis: 

 

A. Assessment of hyperelastic parameters: 

 

In the precedent part we have seen that a hyperelastic law was characterized by a 

strain energy function. This function can have various forms (Mooney Rivlin, Poly-2P…). All 

these functions depends on parameters, these have to be determined to reproduce as well 

as possible the comportment of the material. 

For the example the Poly-2P has the following strain energy function: ? = ���(�1 − 3) + ���(�2 − 3) + ���(�1 − 3)² + ���(�2 − 3)² + ���(�1 − 3)(�2 − 3)     ���, ���, ���, ��� and	��� are the parameters, they depend on the material that has to be 

model and should be chosen to fit the material behavior. 

 In order to determined these parameters standard tests have been defined: uniaxial 

tension test, uniaxial compression test, biaxial tension test, pure shear test, simple shear 

test, volumetric test.  After a brief description of the different tests we will see how the tests 

to take into account have been chosen. Indeed it’s not necessary to use all of them. 

 

1. Standard tests: 

 

The characteristic of the standard test will be given in function of the stresses 2� and 

of the stretches 6� , where: 6� = H� + 1 

 

a) Uniaxial tensile test: 

 

The aim of this test is to reach a state of pure tensile strain: 

2� = 2 =
�# ; 		2� = 2� = 0 

6� =
55� ; 	6� = 6� = `# #�⁄  

 

To reach this state the specimen must be much longer in the load direction than in width 

and thickness dimensions (10 times approximately). The state will be reached in the middle 

of the specimen (where edge effects can be neglected).  
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The following pictures  show the shape of the specimen and the kind of machine that 

can be use. 

 

 

b) Biaxial tension test: 

 

The purpose of this experiment is to obtain the same state of strain in two directions: 

  �� � � � �;		�� � 0 

$ � $� � %%� ; 	$� � ��� 

It can be reached by radial stretching of a disc; the machine and the specimen are 

successively presented: 

 

 

c) Pure shear test: 

 

In order to create a pure shear state in the specimen, it is submitted to a very high 

tensile state.  The geometry of the specimen, the width should be at least ten times the 

length, and the fact that the rubber is quasi incompressible create a pure shear state at 45° 

of the stretching direction. The state reached is : 

 

� & 0	; 			�� � �;		�� � 0 

$ � 1; 		$� � $	; 		$� � $²���  
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The following figures show the specimen and the experiment: 

 

 

 

d) Simple shear test: 

 

The state that is sought is shear in the direction 1/2. The specimen is deformed as 

shown on the following figure: 

 

 

Stresses and strains take the following form: 

 

			�� � � � )*� 

$ � $; 		$� � 1$	; 		$� � 1 

 

2. Fitting curves for the studied isolator: 

 

The isolator that we are studying has the properties that were presented at the 

beginning. Thus it has a shear modulus G=1,4Mpa. All the tests we had at our disposition 

were made on the same rubber but with different shear modulus.  

The following figures show the different tests linearly scaled to reach G=1,4Mpa, in 

fact the curves were simply multiplied by a factor λ (λ=1,4/G where G is the true shear 

modulus of the material tested). 
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The linear scaling gives quite reasonable results and the method has thus been 

withheld to create the inexistent tests on the G=1,4Mpa rubber. Further developments 

should include a proper test battery.  

 

 The simple shear fitting test has been obtained thanks to the FIP horizontal load test 

on a 1/2 scaled isolator. Expect from the geometric scaling the tested isolator has all the 

proprieties of the real isolator. 

  

The result of the test and the method used are shown on the following figures: 
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3. Choice of the optimal fitting: 

 

Once all the curves are defined, we have to choose which combination of them we 

want to use. This choice has to be made on three criteria: the convergence of the solution, 

the accuracy of the fitting curves given by ANSYS® with respect to the input curves, the 

accuracy of the solution. 

 

 

 

The accuracy of the fitting curves given by ANSYS® did not allow us to make a 

significant difference between the models and was acceptable for all of them. 

The accuracy of the solution was based on criterion such has: effective vertical load 

close to the imposed one, pure horizontal load case corresponding to the simple shear fitting 

test, results close to the analytical solution for the vertical load. 
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B. Numerical model: 

 

1. Model description: 

 

The isolator is modeled through ANSYS® finite element software. Half isolator is 

modeled in its real dimension. The following characteristics of the model will be described: 

type of finite element, material proprieties, mesh generation, sensitivity of mesh to analysis, 

constraint of the model for upper and lower steel plates, constraint for symmetry, type of 

analysis, time and step divisions. 

The model is shown on the following figure: 

 

 

a) Finite element type: 

 

The finite elements used in the model are: Solid 185, Shell 63, and MPC 184. After a 

description of their properties, their use will be exposed.  

 

(1) Solid 185: 

 

This element is used for the rubber layer. The element has 8 nodes; each node has 

three degrees of freedom that are the translations. It has two degenerated forms to allow 

irregular shapes as shown on the next figure: 
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It’s used in the following options: the hyperlastic constitutive law, non-layered solid. 

The pure displacement formulation is used. The integration is a uniform reduced integration 

with hourglass control; it helps preventing the volumetric locking for quasi incompressible 

materials as it has only one point of integration. This method of integration introduces some 

fictive energy regulated by a real constant. The solution is considered valid if the real energy 

and the final energy coincide within 5%. 

 

 

 

(2) Shell 63 (thin shell): 

 

This element is used to model the steel layer. The element has six degrees of 

freedom at each node: three translations and three rotations. It can be loaded weather in 

the in plane or in the normal direction. It can have both a membrane and a bending 

behavior. It has the following forms: 

 

 

 

This element is used with the following options: both membrane and bending 

stiffness are activated. Large deflections effects are included and the stiffness matrix is 

approximated by the main tangent stiffness matrix. Extra displacement shapes are included, 

indeed the program automatically increase the stiffness of a small quantity to prevent the 

numerical instability of non warped elements. 
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(3) MPC 184: 

 

This element is used to apply kinematics constraints between nodes. Here they 

create the link between the elements of steel and rubber. It exists of few types of element 

to apply those constraints; the rigid beam has been chosen to model a rigid constraint 

between two deformable bodies (the steel and rubber layers). This element transmits forces 

and moments. It’s represented by the following figure: 

 

 

The rigid beam is used with the direct elimination method: kinematics constraints are 

imposed by multipoint constraints equations that are generated due to internal conditions. 

The dependent degrees of freedom are eliminated in favor of the dependant one. 

 

b) Material properties: 

 

The isolator is composed of two different materials: steel and rubber. The steel is 

considered as an elastic linear material whereas the rubber follows a hyperelastic law.  

 

(1) Steel: 

 

The steel is considered isotropic and is defined by its two constants: the young 

modulus (E=200000Mpa), the Poisson’s ratio (+=0,3). 

 

(2) Rubber: 

 

As said before the model used for the rubber is polynomial two parameters. The 

parameters have been obtained fitting the curves presented before with ANSYS®. 
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c) Mesh generation: 

 

The first inferior rubber disc is created. First a circular area is created then meshed 

automatically, this automatic mesh is controlled by a dimensional parameter es. The area is 

extruded into a volume; the volume is composed of layers, the number of layers is controlled 

by a parameter e that can be modified easily to study the influence of the mesh on the 

solution.  

The further layers of steel and rubber are alternately created at their respective 

heights with a cycle do. The layer of steel is created from a meshed area that has the 

thickness of a layer.  

Each correspondent elements of the layer of steel and of rubber are finally linked 

with a rigid beam element. 

 

d) Constraints: 

 

The isolator is submitted to three constraints: the two external layers are rigidly 

linked to the externals steel plates; the isolator is symmetric and submitted to boundaries 

conditions.  

 

(1)  Rigid body constraint: 

 

The two external layers of rubber are rigidly linked to the external steel plates which 

are both represented by a node situated on the barycenter of the plates.  

 

(2) Symmetry constraints: 

 

Only half isolator is represented as it has a symmetric behavior. To impose this 

symmetric behavior on the half isolator all the point located on radius where it has been cut 

(y=0) have the rotation around x and z and the translation along y blocked. 

 

(3) Boundary conditions: 

 

The isolator is totally constraint at its basis. The point that represents the basis steel 

plate is totally constraint. The point that represents the top plates is constraint in all 

rotations and in translation along y. 
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e) Analysis: 

 

The software performs a static analysis where the large deflections and large 

deformations are permitted. The full Newton Raphson method is used to solve the non 

linear equations. The load is applied step by step. First the vertical load is applied (in 15 

steps) then the horizontal displacement is imposed (in 40 steps) while the vertical load stays 

at its maximum. The loads are linearly interpolated step by step. 
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2. Global response of the model: 

 

The global response of the model is first studied. Two situations are studied: the 

vertical and horizontal load. Applying a vertical the response the error is of the order of 

magnitude of 10��&. The response to a horizontal displacement for the maximum and the 

minimum vertical load are compared to the simple shear test realized in the FIP laboratory: 

 

 

 

The correspondence between the model and the laboratory test is highly dependent 

on the parameters chosen in the constitutive law. The maximum error between the two 

curves is 8%, the global response of the model is accurate. 
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3. Mesh sensitivity: 

 

The mesh sensitivity of the model has been studied in terms of global and local 

response. The main parameter of the mesh sensitivity is the number of subdivisions in one 

rubber layer, this parameter is called e.  

For reason of numerical cost the study of the mesh sensitivity has been realized on a 

single layer. However the comportment of a single layer and of the isolator has been 

compared.  

The mesh sensitivity study is realized in the case of the incompressible rubber, the 

same comportments are observed in the compressible case. 

It will be shown that the global response is not influenced by the choice of e whereas 

the local solution changes in a significant way. 

 

a) Global response: 

 

For a single layer the global response has been studied in three cases: e=4, e=10, 

e=16. The models were first loaded in terms of vertical load (10000KN), and then submitted 

to displacement until the 400% of the thickness of the rubber layer. The horizontal resultant 

was plotted in function of the displacement. 
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b) Local response: 

 

The local response is studied in term of normal stress along the axis z (2'	which is 

negative for compression) and tangential stress (b	') for vertical and horizontal loads. This 

choice has been made since these stresses will be the one used in the definition of the 

failure domain. 

We first study the response in terms of stresses for a vertical load of 10000KN: 

 

 

 

 

 

The shape of the stresses is not influenced by the mesh choice, however the modulus 

is. The solution converges when the number of layer is increasing. 

The difference between b	' per e=4 and e=16 is 30%, this should be taken into 

account in further developments.  
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The local response has then been studied for a horizontal load that leads to a 

displacement of 300% of the rubber height: 

 

 

 

 

The mesh sensitivity due to the horizontal load is lower than due to the vertical load. 

The difference between the stresses for e=4 and e=16 is less than 10% for both normal and 

shear stresses.  

In conclusion the only quantity with will be considered mesh dependent is tauxz due 

to the vertical load. 
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4. Incompressibility hypothesis: 

 

Until now the material has been considered incompressible. The influence of the 

compressibility will be studied in the following paragraph. 

The way compressibility has been introduced will be presented, the stresses will be 

compared and the correction coefficients that will be used to build a first approach of a 

domain with the compressible rubber will be calculated. 

 

a) Compressible constitutive law: 

 

The compressibility will be introduced trough the bulk modulus K. This bulk modulus 

will be used to build a volumetric test; this curve will be fitted in ANSYS® and allow us to find 

the two additive parameter of the poly2P constitutive law. 

 

(1) Additive parameter of poly2P: 

 

The strain energy for compressible rubber takes the following form: 

 ?�� = ���(�1 − 3) + ���(�2 − 3) + ���(�1 − 3)² + ���(�2 − 3)² + ���(�1 − 3)(�2 − 3) 

?���� = ?�� +
1�� �F − 1�� +

1�� (F − 1)& 

 

 The parameters  (�� and �� ) have to be defined. They depend only on the 

compressive behavior of the material, i.e. they depend only on the volumetric test and not 

on the other tests (biaxial, axial…). 

 

 

(2) Bulk modulus K: 

 

For nearly incompressible material the bulk modulus is much more representative of 

the material behavior. It can be expressed in function of the Poisson’s ration S and of the 

shear modulus G. 

c =
2R(1 + S)

3(1 − 2S)
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We have one data of one type of rubber that is used for HDRB. To have a reasonable 

range of compressibility variation we take K1=0,7Krubber and K2=1,3Krubber. I.e. K=2450 

and K=4550. 

(3) Volumetric test: 

 

 The bulk modulus is the slope of the volumetric test. The volumetric test is 

performed measuring the variation of volume of a sample submitted to a variation of 

pressure. The volume decreases when the pressure rises. We want to express the stress 

(that is this case is equal to the variation of pressure) in function of the volume strain J. 

 

F =
DD°

 

 

We suppose the test linear. When the test starts the variation of pressure is zero and 

the volume strain is 1 as D = D°. We know that the slope is K we can deduce the following 

expression: 

 

∆� = c − cF 
 

 

 

To identify the parameter of the polynomial hyperlastic law the hydrostatic part of 

the stresses deduced from the strain energy function are equalized to the pressure variation: 

 

2 (�)* = −
�?�F =

−2�� �F − 1� −
4�� (F − 1)� = ∆� = −c(F − 1) 
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We can now identify the parameter: 

 

�1 =
2c 			�2 = ∞ 

 

To impose the law in the software we take �2 = 1000�1 

For the two bulk modulus chosen we have: 

�1+�&,� = 8,163�	
�&��²

�

 

�1+&,,� = 4,396�	
�&��²

�

 

 

b) Stress comparison: 

 

The stresses will be compared on the single layer model with 16 strata as it is the 

more accurate. The shear stress and normal stress along z will be compared for a vertical 

load of 10000KN and for a horizontal that correspond to k=3. 
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The two quantities that are sensible to compressibility on the border are the normal 

stress due the horizontal load and the shear stress due to the vertical load. The normal stress 

due the vertical load is sensible on the center of the isolator but not so much on the border. 

The general effect of compressibility is to absorb some of the compression by 

reducing the volume of the rubber. Therefore the compressions in the isolator are reduced.  
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c) Correction coefficients: 

 

In order to analyze the effect of the compressibility on the domain the stresses that 

are influenced by this phenomenon will be modified. As the points that enter in the domain 

definition are on the border the stresses will be modified with a correction coefficient: 

 

b	'����	
��
= db	'����	��
��

=
b	'����	
��	���	������b	'����	��
��	���	������

b	'
���	��
��
 

d+&,,� =
b	'����	
��	���	������b	'����	��
��	���	������

=
0,60827

0,49211
≅ 1,23 

d+�&,� =
b	'����	
��	���	������b	'����	��
��	���	������

=
0,68544

0,49211
≅ 1,4 

 

 

2'���
��
= e2'���	��
��

=
2'���	
��	���	������2'���	��
��	���	������

2'���	��
��
 

e+&,,� =
2'���	
��	���	������2'���	��
��	���	������

=
1,1434

1,6197
≅ 0,7 

e+�&,� =
2'���	
��	���	������2'���	��
��	���	������

=
1,0204

1,6197
≅ 0,63 
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B. Analytical model: 

 

In order to be able to handle the solution, in a first time the model has been created 

for a layer of the rubber that composes the seismic isolator. The normal stress due to the 

horizontal is really different for a single layer and for the whole isolator, a new model of 

stress that takes into account the behavior of the all isolator will be proposed. 

The material will be considered isotropic and incompressible. 

Two different approaches have been used: one for the vertical load case, one for the 

horizontal load case. 

In the case of the vertical load the horizontal, displacements at stake can be 

considered small compared to the height. Thus we can apply the small displacement 

hypothesis and the material will be considered elastic linear. The horizontal displacement 

imposed to the isolator by the seism (horizontal load case) is on the contrary comparable to 

the height, indeed for the project load the isolator is designed to be able to deform itself 

until 300% of the height. Therefore the finite deformation theory will be used and the 

material will be considered hyperelastic. 

In the analytical model stresses will be considered negative when of compression.  

 

1. Stresses due to vertical load: 

 

From a displacement model of a layer of rubber under a vertical load a stress model 

has been established. The hypotheses used are: small displacement, incompressible rubber, 

parabolic trend of the stresses along the radius, shear stress from this model equal of the 

shear stress found with incompressible model. 

The following behavior has been considered concerning the way the rubber deforms 

itself under a vertical load: 

 

 

 

 

 

 

 

 

 

Figure 5 : Model  of deformation of one layer of the rubber under vertical load 
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When the vertical load is applied the height of the rubber decreases and in the 

meantime the rubber overflows on the lateral part of the isolator. 

We place ourselves in a cylindrical coordinates. 

To describe this behavior we choose the following displacement model: 

 

4���, f� =
��* sin ghf

ℎ
i 

4-��, f� = 0 4'(�, f) = �(f) 

 

Where the trigonometric function describes the overflowing behavior and the 

function g will be chosen to satisfy further requirement.  

Thanks to the small displacement hypothesis and the compatibility equation, the 

normal and shear strains have the following form: 

 

H) =
<4�<� =

�* sin ghf
ℎ
i 

H- =
1� L<4-<j + 4�M =

�* sin ghf
ℎ
i 

H' =
<4f<f =

<�(f)<f  

k)' =
<4�<f +

<4f<� =
��* π

h
cos ghf

ℎ
i 

k'- =
1� <4'<j +

<4-<f = 0 

k)- =
<4-<� −

4-
r

+
1� <4)<j = 0 

 

It has been supposed that in this case the rubber was incompressible. Therefore the 

first strain invariant has to be zero. 

 

F� = H) + H- + H' = 2
�* sin ghf

ℎ
i +

<�(f)<f = 0 

lℎ
	:	 <��f�<f = −2
�* sin ghf

ℎ
i 
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Thanks to this hypothesis (H) + H- + H' = 0) the constitutive law adopts a simple 

form and the stresses are the following: 

 

2) = � + 2RH) = P + 2G
�* sin ghf

ℎ
i 

2- = 	� + 2RH- = 	P + 2G
�* sin ghf

ℎ
i 

2' = 	� + 2RH' = P − 4G
�* sin ghf

ℎ
i 

b') = Rk)' = R ��* π

h
cos ghf

ℎ
i 

 

The value of the medium pressure has been determined through the vertical 

equilibrium. As the vertical displacement is free no reaction forces are created and we have 

the following equation: 

 

−� = �2'�# = h*²(
.

	P(z) − 4G
�* sin ghf

ℎ
i) 

lℎ
		P�z� = 4G
�* sin ghf

ℎ
i −

�h*²
 

 

Along the radius the stress has been supposed parabolic, taking this hypothesis into 

account and replacing P by its formula founded previously we have: 

 

2) = 2 L6G
�* sin ghf

ℎ
i −

�h*�M -*� − ��*� . 

2- = 2 L6G
�* sin ghf

ℎ
i −

�h*�M -*� − ��*� . 

2' = 2 L−
�h*�M -*� − ��*� . 

 

The constant a should now be determined. As done in the article   another expression 

of the shear stress is found solving the differential equation that results from the 

incompressibility constraint: 

b)' =
2�ℎ�h*&  
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Imposing that the two stresses coincide in z=0 and r=R: 

 R�h
ℎ

=
2�ℎh*� → � =

2�ℎ²h²*�R 

 

Finally we have the following expression of the stresses: 

 

2) = −
�h*� -2 −

24ℎ²h*²
sin ghf

ℎ
i. -*� − ��*� . 

2- = −
�h*� -2 −

24ℎ²h*²
sin ghf

ℎ
i. -*� − ��*� . 

2' = −
2�h*� -*� − ��*� . 

b') =
2�ℎ�h*& cos ghf

ℎ
i 
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2. Stresses due to horizontal displacement: 

 

a) Corradi-Guiducci 

 

In this part we will present a simple analytical model, further on it will be analyzed 

how this simple model fit the reality. 

The isolator can be deformed horizontally until the 300% of its height. This cannot be 

considered a small displacement; therefore the analytical model will be based on the finite 

deformation theory.  

Introducing a displacement model the stresses will be calculated trough this theory, 

the principal stresses will be first calculated. The incompressible formulation of principal 

stresses will be chosen and the pressure will be determined referring to the initial situation 

(no deformation). The final result depends on the constitutive law chosen; it will be 

introduced at last in order to enable an easy change of law. 

A rubber layer has been taken into consideration; it has been assumed that it 

deformed itself like a parallelogram as shown on the figure: 

 

Figure 6: model of the deformation of a rubber layer under horizontal displacement 

The displacement model in the Cartesian coordinates has therefore been assumed as: 

 

"	 �	,- . � /. 

"
 � 0 

"� � 0 
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The strain gradient has been deduced: 

 

�= = I ̿ + ds

d(� = 81 0 k
0 1 0
0 0 1

9 
 

Following the Lagrangian approach to determine the stresses created by the 

horizontal load, the left Cauchy Green tensor has been calculated: 

 

C= = �=�=� = 81 + k� 0 k
0 1 0
k 0 1

9 
 

The hyperelastic law formulation is based on the value of the invariant of C= . They can 

be easily expressed in function of the eigenvalues that will be consecutively calculated: 

 

6�² =
2 + +² + `4+² + +&

2
 

6�² = 0 

6�² =
2 + +² − `4+² + +&

2
 

 

The associated eigenvectors have the following form: 

 

�� =

IJ
JJ
JK+

� + √4+� + +&
2+ √2`4 + +� + √4+� + +&

0√2`4 + +� + √4+� + +& NO
OO
OP
 

 

�� = 801
0
9 
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�� =

IJ
JJ
JK+

� − √4+� + +&
2+ √2`4 + +� − √4+� + +&

0√2`4 + +� − √4+� + +& NO
OO
OP
 

 

The expression of the invariant can be calculated: 

 �1 = 6�² + 6�² + 6�² = 3 + +² �2 = 6�²6�² + 6�²6�² + 6�²6�² = 3 + +² �3 = 6�²6�²6�² = 1 

 

 

Principal stresses can now be determined with the relations established before and 

we will have: 

2= = [�� �� ��] 82� 0 0
0 2� 0
0 0 2�9 :

���������; 
 

Principal stresses have been calculated with incompressibility assumption: 

 

2� = L� + 2
<?<�1 6²� −

2<?<�2 6���M 

2� = L� + 2
<?<�1 6�� −

2<?<�2 6���M 

2� = L� + 2
<?<�1 6�� −

2<?<�2 6���M 

 

Thus:  

	2= =

IJ
JJ
JK� + 2

<?<�1 +² + 2
<?<�1 − 2

<?<�2 0 2 L<?<�1 +
<?<�2M +

0 � + 2
<?<�1 − 2

<?<�2 0

2 L<?<�1 +
<?<�2M + 0 � + 2

<?<�1 − 2
<?<�2 − 2

<?<�2 +²NO
OO
OP
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In order to determined P it has been assumed that the normal stresses should be 

zero when k=0, indeed this situation correspond to the initial situation when no 

displacement are imposed and thus no loads are applied. 

� = −2
<?<�1 + 2

<?<�2 

 

2= =

IJ
JJ
K 2

<?<�1 +² 0 2 L<?<�1 +
<?<�2M +

0 0 0

2 L<?<�1 +
<?<�2M + 0 −2

<?<�2 +² NO
OO
P
 

 

The chosen constitutive law (Poly 2P) has a strain energy function of the following 

form: 

 ? = ���(�1 − 3) + ���(�2 − 3) + ���(�1 − 3)² + ���(�2 − 3)² + ���(�1 − 3)(�2 − 3) 

 

 

Thus: <?<�1 = ��� + 2�����1 − 3� + �����2 − 3� = ��� + 2���+² + ���+² 

<?<�2 = ��� + 2�����2 − 3� + �����1 − 3� = ��� + 2���+² + ���+² 

 

 

Finally we have: 

 2	 = 2+²(��� + 2���+² + ���+²) 2' = −2+²���� + 2���+² + ���+²� b	' = 2+(��� + ���) + 4+�(��� + ��� + ���) 

 

All the stresses present a uniform pattern, i.e. they are constant in space and depend 

only on the state of deformation and on the material that compose the rubber.  

 

The main assumptions that were made to reach this result were: incompressibility 

and vertical restraint of the displacement.  These assumptions will be discussed when the 

results of analytical and numerical models will be compared.  
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b) Modified Corradi-Guiducci: 

 

In the precedent model an artificial constraint has been introduced: the displacement 

along the axis z. Therefore the vertical resultant calculated as n2'dA is not zero.  

The Corradi-Guiducci analytical solution is based on the behavior of a single layer. 

Comparing the behavior of numerical and analytical isolator we can note that: the shear 

stress does not depend on the interaction of the layers (all layer of the isolator can be 

considered as single layer) and the numerical and analytical model are in good agreement. 

Nevertheless the situation concerning the normal stress is different: the uniform analytical 

solution of the single layer is far from the numerical solution where we can see compression 

and traction zone. Furthermore the influence of the isolator behavior is big (the single layer 

solution is really different from the whole isolator one). 

The traction behavior, that is very important for the definition of the domain, cannot 

be represented by the previous analytical model. A new model has been developed based on 

the general behavior observed on the numerical results. The model has been designed for 

the all isolator in the principal plan. The main hypothesis is that the vertical resultant in this 

plan is zero. The model has been developed for the traction zone as it’s the one that matters 

in the domain definition.  

The normal traction stress due to horizontal load depends on the value of the 

displacement k, on the height z of the point we are looking at in the isolator, on the abscissa 

x of the point. The chosen functions are out of phased with the height and the displacement. 

The following form has been assumed: 

 

2' = +��	 \h0* +
+h
3* Lf −

o
2
M] 

 

The resultant on the principal plan is zero as the wave length is R. 

This solution is compared to the numerical solution for traction zone 

(0pq0,*r	fp[
 

�
, ℎ]). This comparison is effectuated on the half isolator for z=H, z=H/2 for 

different displacement (k=2, 3, 4). The second traction zone (0pq−*, 0r	fp[0,
� 

�
]) has the 

same behavior that is ensure by the term gf −
/

�
i.  
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The general trends and the maximum value on the border are coherent; the model is 

not perfect but is a great step forward compared to the uniform solution.   
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C. Comparison – analytical and numerical models: 

 

The models would be compared in their local and global behavior, thus in terms of 

stresses and resultant.   

 

1. Global behavior 

 

The global behavior of the whole isolator is studied. The horizontal resultant of the 

numerical model is plotted for two different vertical loads: no vertical load (V=0KN) and the 

maximum vertical load (V=80000KN). In both case a displacement along the horizontal of 

400% of the rubber height is imposed. Those two responses are compared to the analytical 

model. In the analytical model the horizontal resultant is calculated from the b	' due to the 

horizontal load, a uniform trend of b	' along x has been hypothesized.  

 

 

 

The different curves cannot really be distinguished from each other on the graphic; 

the horizontal global response is accurate. 
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2. Local behavior 

 

The analytical model calculates 2'_0�)�, b	'_0�)� and b	'_ *) reasoning on a single 

rubber layer, while 2'_ *) reflects the behavior of the all isolator. The three first quantities 

will be compared for a single layer and then for a layer in the isolator. The rubber is 

considered incompressible; the same trends appear for compressible rubber. 

 

a) Single layer: 
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The analytical and numerical solutions match very well for a single layer, furthermore 

we had noticed that the numerical solution converge when the mesh is refined, indeed it 

converges toward the analytical solution.   

 

b) Whole isolator: 

 

The study will be carried on the whole isolator, for reason of numerical cost the e was 

chosen equal to 4.  The solution the upper layer of the isolator and of the single rubber layer 

will be compared to the analytical solution. 
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The single layer solution and the whole isolator solution can be considered equal for 

those three stresses, thus 0� due to the horizontal load is the only stress influence by the 

interaction between layers. 

To illustrate this fact the following picture represents the �	� due to the vertical load 

in the different layers of the rubber: 
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 We can therefore apply the conclusions found in the single layer study: T1 due to the 

vertical load and b	' due to horizontal load match between analytical and numerical model. b	' due to the vertical load converge to the analytical solution when the mesh is refined. 
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IV. HDRB limit state domain: 

 

 

A. Definition of the studied failure mode: 

 

In the conditions of strains and temperature that we are confronted to the rubber 

can be considered non-crystallized.   

 

1. Delamination: 

 

The delamination is the only studied failure mode that is linked to the whole isolator 

behavior. The behavior of the isolator is ensured by the interaction between the rubber and 

steel layer. If the two layers are detached in a certain zone the proprieties of the isolator are 

drastically reduced. 

In delamination our isolator is seen as a composite material. It can be assumed that it 

follows the failure criterion established for the composites introducing the limit parameters 

of our material.  

The phenomenon is shown on the following figure: 

 

2. Tensile rupture: 

 

The four following rupture modes are only linked to the material properties. The 

ultimate tensile strength is the maximum stress the material can withstand while being 

stretched or pulled before necking (when the section starts contracted).The ULS is usually 

found performing a tensile test and recording the stress and the strain. The highest point of 

the stress strain curve is the ULS.  

This property is a characteristic of the material and does not depend on the size on 

the sample. Nevertheless it depends on factor such as: the surface state of the sample, 

temperature. 
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3. Tearing: 

 

The tearing rupture occurs when the material is broken apart without the help of a 

cutting tool.  This phenomenon is govern by the function G called strain energy released 

rate.  G is the energy released during the propagation of the fracture per unit of new surface 

created by the rupture.  If the energy available is greater than R
 (the critical energy), the 

crack spreads. This critical energy is a material property, usually independent of the loads 

applied and of the solid geometry. 

It has been showed that in our case G depend on the tearing rate and the 

temperature. It is also sensible to visco-elastic properties, nevertheless changes in visco-

elastic properties can be traduced in terms of tearing rate and temperature variations. Thus 

the sensibility is only studied for the two first quantities. G increases with the tearing rate 

and decreases with temperature. 

 

4. Fatigue: 

 

Fatigue can be observed in a material when progressive weakening of material 

properties occurs (like stiffness). It’s a local failure provoked by variation of stresses or 

strains over time. It’s a three-phase rupture mechanism: the initiation of the crack, the 

propagation and the rupture.  

Fatigue proprieties depend on many factors as: geometry, surface quality, 

temperature. Square holes and sharp corners leads to elevate local stresses; surface 

roughness create local concentration of stresses; this local state of stress favors the fatigue 

mechanism. High and low temperature can also accelerate the phenomenon.   

The characteristics of this phenomenon have not yet been entirely studied on rubber 

or in an empirical way; the only well established quantity is the mechanical limit fatigue 

which is the stress condition where fatigue can’t happen in any reasonable time. 

 

5. Cavitations: 

 

The cavitation is the infinite expansion of empty cavities trapped in the rubber during 

its formation and the vulcanization process. This expansion occurs when a critical hydrostatic 

tension is reached.   

 The stability of the cavities has been studied in a linear case, but this theory does not 

give satisfying theory for our material which is highly non linear.  

 Even if the stability is satisfied the study of the cavities size can be of first interest for 

the tearing mode or the fatigue mode where the size of the initial crack is an essential data. 
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6. Localization of the failure: 

 

a) Numerical model: 

 

We have the following schematic form of stresses: 

 

 

The first damage will happen in the zone where the total shear stresses are the 

higher; from the previous figure we can see that the maximum stress will be reach on the 

border of the isolator. 

At equivalent shear stress, the failure will occur first in the traction zone if it exits. 

The border points that are in traction for a pure horizontal load situation (the vertical load 

makes the tractions decreased) will be chosen. 

 

b) Analytical model: 

 

We have the same schematic forms of the stresses; for the reason of maximum shear 

we select the point on the upper strata of the rubber layers: 
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 At equivalent shear stress, the failure will occur first in the traction zone if it exits. We 

will choose the point with the highest traction stress on the border. 
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B. Mohr-Coulomb model for delamination: 

 

1. Theoretic definition of the domain: 

 

Yen and Caiazzo have been modeling the delamination failure of both unidirectional 

and fabric composites. Our isolator is made of alternative layers of steel and rubber. The 

layer are made of isotropic materials (in the case of fabric composites, the fabric cannot be 

considered isotropic), thus our isolator can be considered as a unidirectional composite.  

 

 

The axis number 3 is defined as the one perpendicular to the layers of the composite 

as shown on the figure. With this convention the criterion takes the following form: 

 

1���2��3
� ! 1 ��2�� ! 2��3

� � 1 

2�� � ��� ∗ 5 

���: �7�"897	"�:7""	;9<�=	�-7	; 8"	3 

���: ?<@A:7""8<�	"�:7""	;9<�=	�-7	; 8"	3 

��: "-7;:	"�:7"" 

2��: �-:<B=-	�-7	�-8?/�7""	�7�"897	"�:7�=�-	 2��: :757:7�?7	"-7;:	"�:7�=�- 

5: 8��7:�;9	5:8?�8<�	5;?�<: 

 

We can decompose this criterion in two parts: the tensile and the compression part. 

Under tensile load the criterion becomes: 

 

��� � 0 → 2�� � 0 

1���2��3
� ! 1 ��2��3

� � 1 → �� � 2��D1 � 1 ��2��3
�		 
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The effect of the compressive load is taking into account according to the Mohr-

Coulomb theory: 

��� � 0 

1 ��2�� ! ��� ∗ 53
� � 1 → �� � 2�� ! �� ∗ 5 

 

Therefore the σ/E failure domain due to the phenomenon of delamination has the 

following shape: 

 

 

2. Determination of the constants of the domain: 

 

a) Presentation of the methods used: 

 

We want to define a first damage domain, i.e. when for the first time one element of 

the all isolator can be considered in failure, when the failure starts. 

To define the domain as presented before we have to determine three constants: 2��, 2��, 5. We will first describe the test that can be use to determine these constant and 

then explain how the test have been taken into account in order to define a first ply domain. 

2�� is the tensile stress reached when there is no shear stress, it can be determined 

stretching a specimen of the rubber until the first signs of degradation appear.  

2�� on the contrary occurs for a state of pure shear.  Referring to the analytical 

model that has been presented before, we assume that for a vertical load on the edge of the 

isolator (r=R) and on the top of the rubber layer (z=h) we have the following state of stress: 

 

�� � 0 

��� � 2G-HI� 
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Therefore the limit strength 2�� will be determined as the shear stress reached in this point 

under a compression load that leads to the first sign of failure. 

 Due to a lack of data on the isolator the Mohr-Coulomb friction coefficient f, will be 

considered zero. This assumption ensure safety standards as in compression 2�� is always 

reached before 2�� ! �� ∗ 5. On further developments the value of f should be sought. 

 

b) Determination of J��: 

 

The producer furnishes the tensile strength to be 17,5Mpa.  

 

c) Determination of  J���: 

 

We have to determine when the first signs of failure are reached in our isolator when 

it is submit to a compression load. A compression test on the scaled ½ isolator has been 

performed, the results are presented in the following figure: 

 

This graph represents the behavior of the isolator under a compression load, this is a 

global behavior. We have to find out what are the signs on the global behavior that indicates 

that on a local point of view the crisis has started. 

We can simplify the constitutive law of the rubber in the following way: 
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We can now traduce this local behavior in term of global behavior tracing the 

moment curvature graphic: 

 

 

The three different parts of the curves in the local scale are represented by the same 

colors in the global scale. The transition from one slope to another in the local scale traduces 

itself by a change of curvature in the global scale.  

In the local scale the first ply occurs when the yield limit is reached (first change of 

slope), this traduce itself in the global scale by a change of curvature. Therefore the first ply 

limit is reached in the global approach as soon as the behavior is not linear anymore. 

 

 

Thus we have G?:8� � 20000KL for the ½ scaled isolator. 

 

����� � 2G-HI� � 2 ∗ �20 ∗ 10�
 ∗ 5H ∗ 245� � 4,33OA; 

 

d) Definition of f: 

 

We have seen before that choosing f equal to zero ensures safety standards. The 

choices of the points where the first damage will be sought limit the value of the 

compression reached. This definition of f will allow us find the first damage for small 

compression, the choice of points ensures that the criterion will not be too powerful. 
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e) Final domain: 
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C. Analytical H/V domain: 

 

1. Stresses in function of the considered failure point: 

 

It has been assumed that the first damage is reached when for the first time the σ/s 
criterion is exceeded. 

The thickness of a rubber layer will be noted h while the height of the isolator will 
be named H. 

For the shear stresses and the normal stress due to the vertical load the single layer 

solution will be use.  The normal stress due to the horizontal load is taken from the solution 

on the whole isolator and will decide at what height the failure occurs. The principal of 

superposition will be used. 

We’ve seen that we consider that the failure will occur on the border of the isolator 

(x=R) and on the top of one of the rubber layer because it’s were the total shear stresses are 

the higher. This mean that for the three stresses calculated on the single layer solution z will 

be taken equal to h. Therefore we will have the following expressions: 

 

b'	_0�)��
�# =
2�ℎ�h*& cos ghf

ℎ
i =

2�ℎh*� 

2'_0�)��
�# = −
2�h*� -*� − ��*� . = 0 

b	'_ *)�'*2��# = 2+(��� + ���) + 4+�(��� + ��� + ���) 

 

 We also showed that the failure will occur first in the traction zone if it exits. 

Therefore to calculate the normal stress due to the horizontal load we chose the height were 

the traction is the higher on the border (x=R), this occurs for z=H/2 and the stress has the 

following form: 

 

2'_ *)�'*2��# = +��	 \h0* +
+h
3* Lf −

o
2
M] = + 
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2. Resultants once the failure is identified: 

 

Using the repartition of the stresses that were obtained in the analytical model we 

determined the resultants in function of the stresses: 

 o = b	'_ *)�'*2��#	h*² 

D = 	 b'	_0�)��
�# h*�ℎ
 

 

3. Procedure to calculate the domain: 

 

Every vertical load is associated to a different a horizontal load that leads to first 

damage. We can seek the first damage varying the horizontal or the vertical load. For 

simplicity reason the domain has been calculated by browsing the possible horizontal loads. 

The value that in fact has been browsed is the relative displacement k as it is directly linked 

to the horizontal load. k starts with the value 0 (pure vertical load) and is increased until 

when the associated vertical load that leads to the crisis is 0 (pure horizontal load). 

A value of k is chosen; from this value the stresses due to the horizontal load can be 

calculated. The normal stress due to the vertical load is considered zero thus the criterion 

depends only on the value of the total shear stress. Therefore this total shear stress can be 

calculated to impose the crisis through the following expression: 

 

b�*��# = b
)�3�3t1 − L2'���������� + 02
)�3�3 M�		 
 

The shear stress due to the vertical load is calculated using the superposition principal: 

 b'	_0�)��
�# = b�*��# − b	'_ *)�'*2��# 
 

 The resultant are then calculated in function of the stresses with the previous formula. 
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This procedure is presented in the following figure: 
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4. Result: 

 

The maximum horizontal relative displacement that is reached when V=0KN is 2,5. 

The following graphic is obtained: 
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D. Numerical domain: 

 

1. Calculus of the post-processed shear stress: 

 

For reason of numerical cost the numerical domain was calculated with an isolator 

which parameter e is 4. We have shown before that the optimal parameter will be around 

16. In further developments if the total number of elements allowed is increased (license 

problems) the analysis should be effectuated with the optimal number e.   

It has been demonstrated that the only quantity that was sensitive to the mesh 

refinement was b'	_0�)��
�# and that the refined solution was assimilable to the analytical 

solution. In the post processing of the data the value of b'	_0�)��
�#will be replaced by the 

analytical value. The following formula will be used; the superposition principal is used in the 

procedure and has been proven before: 

 b	'�*��#_4*3�4)*
�33�2� = b	'�*��#_�23(3 − b	'0�)��
�#_�23(3 + b	'0�)��
�#_�2�#(��
�#  
 

2. Procedure: 

 

The domain has been plotted with 12 points. The model is first loaded with an 

assigned vertical load and then deformed until the 400% of the isolator height. The data are 

then post processed and the displacement where the failure criterion is exceeded (when the 

following formula is more than one) for the first time in one node is sought.  

The calculated criterion is  

 

Lb	'�*��#�����
������b	'
)�� M ² + L 2'2'
)��M ² = 1 
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3. Results:  

 

The following domain has been calculated: 

 

 

 

The maximum displacement is 2,4. 

 

E. Comparison of the domains: 

 

The previous results are compared: 
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The domains are really closed. The differences that appear can partly be explained by 

the fact that in the numerical method the horizontal displacement is imposed step by step. If 

the crisis occurs between two steps it generates imprecision. 

The normal numerical and analytical normal stresses are a bite different at the 

border; the domain is not influenced by these differences. In fact we can conclude that the 

model is much more sensible to the shear stress than to the normal stress (along z). 
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F. Compressibility effects on the domain: 

 

From the compressibility study we know that the main stress sensitive to 

compression is the shear stress due to the vertical load. To take into account this effect the 

shear stress will be modified in both analytical and numerical cases to match with the stress 

of a single compressive layer with e 16. 

First we have to redefine the new σ/s domain. We can have to approach to redefine 

it: we want to define a more accurate domain of our isolator taking into account the 

compressibility and working with the data we have or we want to study the effect of taking 

into account or not the compressibility when defining a domain with standard data. 

In the first case the fixed data is the vertical load that leads the system to crisis, in the 

second one the standard data that define the domain for an isolator is the limit shear stress. 

Both cases will be studied. 

In both cases we have b
*54 = db�2
*54 

 

1. The domain of the studied isolator with compressibility: 

 

The data we have for our isolator is the maximum vertical load (pure compression) 

80000KN. I.e. the critical shear stress have to coincide with a vertical load of 80000KN in all 

the cases. For every new material (K=2450 and K=4550) we define a new critical shear stress 

with the following expression: 

 

b
)��
��6
b
)����
��

b��7_
*54b��7_�2
*54 = db
)����
��
 

 

The new critical stress is bigger than the incompressible one.  

The vertical load calculated to plot the numerical domain takes the following form: 

 

D =
b	'0�)�
*54h*�

2ℎd  
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The results are presented comparing the two compressible solutions and the 

incompressible one: 

 

 

2. Influence on the compressibility in a standard procedure: 

 

In a standard procedure the quantity that should be defined is the limit shear stress 

because it characterizes the material local behavior and it’s therefore independent of the 

geometry. 

In this case �����is a data and the vertical load takes the following form: 

 

) � �	�������� HI�2-  

 

The result is the following: 
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Conclusion: 

 

The work is framed in the research activities performed at the Department of 

Structural Engineering of Politecnico di Milano on seismic isolation of NPPs buildings, with 

specific attention to IRIS™ project (International Reactor Innovative and Secure™), a medium 

size pressurized water reactor, under development by an international consortium. In 

particular, the study presented here, related to HDRB isolation systems, is mainly functional 

to accomplish step 4 (first damage limit state domain) of the procedure described by F. 

Perotti et al. [1], proposing an innovative approach for the evaluation of seismic fragility for 

isolated buildings:  

- step 1: performance of laboratory tests on high damping rubber and HDRB isolating 

devices; 

- step 2: development of a reliable and efficient isolator FE model, taking into account 

all significant sources of mechanical and geometrical nonlinearities; the model, after having 

been validated against experimental data, will be used to simulate additional and more 

complex numerical tests; 

- step 3: FE model calibration based on laboratory tests; 

- step 4: statement of limit state conditions for the isolator, expressing the 

interaction between horizontal and vertical load at first damage and failure; 

- step 5: isolation system fragility analyses. 

A recent study published by Politecnico di Milano ([9]) dealt with step 2 and 3, whose 

results were assumed as basis for the present study. In the paper, a refined FE model of a 

single thin rubber layer was developed to investigate the capabilities of multiple hyperelastic 

material models (Ogden, Polynomial and Mooney-Rivlin), in terms of numerical convergence 

and goodness of fit, tuned against laboratory tests on rubber specimens. Subsequently, a 

complete FE HDRB model, closely representing the alternate rubber and steel layers, was set 

using the best material models, derived from single rubber layer analyses. This preliminary 

work permitted to develop a robust FE model for a HDRB and to identify Polynomial 

hyperelasticity as the most promising constitutive law for actual tasks. 

In the present work, the geometry and mechanical properties of the HDRB studied in 

([9]) were changed to account for the most recent design of IRIS™ isolated layout. It has to 

be noted that general conclusions about FE modelling and constitutive law assessments 

obtained from previous isolator matched current results. 

The first part of the work analyzed the stress state in the HDRB. A refined FE model of 

a single rubber layer was set to perform preliminary evaluation on mesh sensitivity and 

potential sources of numerical instabilities. It has been shown that the number of FEs 

adopted in thickness plays a crucial role in tangential stresses due to vertical load, whose 

magnitude affects the limit state domain significantly. Furthermore, global behavior of the 

FE model was compared with experimental results performed at FIP laboratories on 1:2 

scaled isolators. It resulted in optimum agreement for what concerns horizontal stiffness, 

while vertical stiffness is highly affected by exact estimation of rubber compressibility. 

The paper Corradi et al. [10] proposed an analytical formulation for stresses in a  

single rubber layer (Corradi-Guiducci solution), subjected to vertical and horizontal loading 
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separately, based on approximate solution in large displacement, for different hyperelastic 

constitutive laws. The Corradi-Guiducci solution was found to be accurate in predicting all 

but one stress state also in the HDRB, since rubber layers behave almost as single individual 

rubber layers in series. The present work extended and applied this solution to the complete 

isolator, allowing predicting also vertical normal stresses in the complete isolator, which is 

significantly different than the Corradi-Guiducci solution for a single rubber layer. The 

proposed Modified corradi-guiducci analytical formulation was compared to numerical 

solutions and was considered to be accurate in predicting the stress field in the HDRB 

devices subjected to vertical load and horizontal displacement, at least in regions was first 

damage is more likely to occur.  

Extensive numerical tests were performed to verify the possibility to decouple 

horizontal and vertical actions. The error due to superimposing the effects of each load 

condition was found small enough to confirm that analytical solutions developed separately 

for horizontal and vertical loads could be superimposed, without significant error in first 

damage domain assessment. 

Rubber compounds may suffer damage and fail for delamination, tensile rupture, 

tearing, fatigue and cavitation. Delamination damage condition is accounted in present 

study by a Mohr – Coulomb limit state domain, tuned against mechanical properties 

provided by the manufacturer, in terms of rubber tensile strength and maximum tangential 

stress due to maximum vertical load. In the second part of the work, the HDRB first damage 

domain was addressed by means of the FE model and analytical solution. Both approaches 

led to convergent bi-dimensional first damage domains, expressed in terms of maximum 

horizontal load for a given vertical load. The domain represents the combination of forces 

that provoke the very first damage at a single location inside the HDRB, whose bearing 

capacity and stiffness properties are still unchanged. 

The study has been mostly developed for full incompressible rubber, although 

significant results were obtained in case of nearly incompressible rubber. It has been shown 

that tangential stresses due to vertical load and vertical normal stresses due to horizontal 

displacement are highly affected by actual rubber bulk modulus, whose precise evaluation 

becomes mandatory and has to be provided by the manufacturer. In particular, for current 

geometry and mechanical properties, the tangential stresses due to vertical load was found 

to strongly affect the domain, since they significantly increase as compressibility is slightly 

increased. Thus, considering rubber full incompressible may lead to not conservative safety 

assessments. The manufacturer should obligatorily provide the tangential limit stress of the 

rubber and the compound at interface. 
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