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Sommario

L’obiettivo del progetto è lo sviluppo di un robot adatto ad implementare

giochi robotici altamente interattivi in un ambiente domestico. Il robot

verrà utilizzato per sviluppare ulteriori giochi robotici nel laboratorio AIR-

Lab. Il progetto è stato anche utilizzato come esperimento per la linea di

ricerca relativa alla robotica a basso costo, in cui i requisiti dell’applicazione

e il costo costituiscono le specifiche principali per il progetto del robot. È

stato sviluppato l’intero sistema, dal progetto del robot alla realizzazione del

telaio, delle componenti meccaniche e elettroniche utilizzate per il controllo

del robot e l’acquisizione dei dati forniti dai sensori, ed è stato implementato

un semplice gioco per mostrare tutte le funzionalità disponibili. I compo-

nenti utilizzati sono stati scelti in modo da costruire il robot con il minor

costo possibile. Sono infine state introdotte alcune ottimizzazini ed è stata

effettuata una accurata messa a punto per risolvere i problemi di impreci-

sioni nati dall’utilizzo di componenti a basso costo.
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Summary

Aim of this project is the development of a robot suitable to implement

highly interactive robogames in a home environment. This will be used in

the Robogames research line at AIRLAB to implement even more interesting

games. This is also an experiment in the new development line of research,

where user needs and costs are considered as a primary source for speci-

fication to guide robot development. We have implemented a full system,

from building a model of the robot and the design of the chassis, mechanical

components and electronics needed for implementation robot control and

the acquisition of sensory data up to the design of a simple game showing

all the available functionalities. The selection of the components made in a

manner that will make it with the lowest cost possible. Some optimizations

and tuning have been introduced, to solve the inaccuracy problem arisen,

due to the adaption of low-cost components.
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Chapter 1

Introduction

1.1 Goals

The aim of this thesis is to develop an autonomous robot implementing the

main functionalities needed for low-cost, but interesting robogames. There

are some predefined constraints for the robot. One of the most important

property is being the lowest cost possible. We limit the maximum cost to

250 euro. In order to satisfy this constraint, we focused on producing and

reusing some of the components or choosing the components that barely

work. Another constraint is the target environment of the robot, which is

home environment. The size and the weight of the robot have been chosen

in a way that it can move easily in home environments. The choice of the

kinematics and the wheels are made according to these needs.

1.2 Context, Motivations

Finding solutions for building robots capable of moving in home environ-

ment and to cooperate with people is a subject of much study prevalent in

recent years; many companies are investing in this area with the conviction

that, in the near future, robotics will represent an interesting markets.

The aim of this work has been to design and implement a home-based

mobile robot able to move at home and interacting with users involved in

games. The presented work concerns the entire development process, from

building a model of the system and the design of the chassis, mechanical

components and electronics needed for implementation robot control and

the acquisition of sensory data, up to the development of behaviors.
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The preliminary phase of the project has been to study the kinematics

problem, which led to the creation of a model system to analyze the rela-

tionship between applied forces and motion of the robot.

The work proceeded with the design of mechanical parts, using solutions

to meet the needs of system modularity and using standard components as

much as possible. After modeling the chassis of the robot, and having se-

lected the wheels, the actuators have been chosen.

The hardware design has affected the choice of sensors used for estimat-

ing the state of the system, and the design of a microcontroller-based control

logic.

The last part of the work consisted in carrying out experiments to es-

timate the position of the robot using the data from the sensors and to

improve the performance of the control algorithm. The various contributors

affecting the performance of the robot behavior have been tested, allowing

to observe differences in performance, and alternative solutions have been

implemented to cope with limitations due to low cost of HW and low com-

putational power.

1.3 Achievements

We have been able to develop a robot that is able to follow successfully a

predefined colored object, thus implementing many interesting capabilities

useful for robogames. We have faced some limitations due to the low-cost

constraints. The main challenges have been caused by the absence of motor

encoders and low-cost optics. We have done some optimizations and tunings

to overcome these limitations.

1.4 Thesis Structure

The rest of the thesis is structured as follows: In chapter 2 we present the

state of the art, which is concentrated on similar applications, the tech-

niques used, and what has been done previously. Chapter 3 is about the

mechanical construction and hardware architectures. Chapter 4 is the de-
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tailed description of the control, what is necessary to replicate the same

work. Chapter 5 is the vision system description in detail, what has been

done, which approaches are used, and the implementation. Chapter 6 con-

cerns game design for the tests made and the evaluation of the game results.

Chapter 7 concludes the presentation.



4 Chapter 1. Introduction



Chapter 2

State of the Art

Advances in computer engineering artificial intelligence, and high–tech

evolutions from electronics and mechanics have led to breakthroughs in

robotic technology [23]. Today, autonomous mobile robots can track a per-

son’s location, provide contextually appropriate information, and act in re-

sponse to spoken commands.

Robotics has been involved in human lives from industry domain to daily

life applications such as home helper or, recently, entertainment robots. The

latter introduced a new aspect of robotics, entertainment, which is intended

to make humans enjoy their lives from a various kind of view-points quite

different from industrial applications [17].

Interaction with robot is thought of a relatively new field, but the idea

of building lifelike machines that entertain people has fascinated us for hun-

dreds of years since the first ancient mechanical automaton. Up to our days,

there have been major improvements in the development of robots.

We will review the literature for the robots that are related with our de-

sign. We divided the review in subsections like Locomotion, Motion Models,

Navigation, and Interaction and Games.

2.1 Locomotion

There exists a great variety of possible ways to move a robot, which makes

the selection of a robot’s approach to motion an important aspect of mobile

robot design. The most important of these are wheels, tracks and legs [33].
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The wheel has been by far the most popular motion mechanism in mo-

bile robotics. It can achieve very good efficiency, with a relatively simple

mechanical implementation and construction easiness. On the other hand,

legs and tracks require complex mechanics, more power, and heavier hard-

ware for the same payload. It is suitable to choose wheels for robot that is

designed to work in home environment, where it has to move mainly on a

plain surface.

There are three major wheel classes. They differ widely in their kinemat-

ics, and therefore the choice of wheel type has a large effect on the overall

kinematics of the mobile robot. The choice of wheel types for a mobile robot

is strongly linked to the choice of wheel arrangement, or wheel geometry.

First of all there is the standard wheel as shown in Figure 2.1(a). The

standard wheel has a roll axis parallel to the plane of the floor and can

change orientation by rotating about an axis normal to the ground through

the contact point. The standard wheel has two DOF. The caster offset

standard wheel, also know as the castor wheel shown in Figure 2.1(b), has

a rotational link with a vertical steer axis skew to the roll axis. The key

difference between the fixed wheel and the castor wheel is that the fixed

wheel can accomplish a steering motion with no side effects, as the center

of rotation passes through the contact patch with the ground, whereas the

castor wheel rotates around an offset axis, causing a force to be imparted to

the robot chassis during steering [30].

(a) Standard Wheel (b) Castor Wheel

Figure 2.1: The standard wheel and castor wheel

The second type of wheel is the omnidirectional wheel (Figure 2.2). The

omnidirectional wheel has three DOF and functions as a normal wheel, but
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provides low resistance along the direction perpendicular to the roller di-

rection as well. The small rollers attached around the circumference of the

wheel are passive and the wheel’s primary axis serves as the only actively

powered joint. The key advantage of this design is that, although the wheel

rotation is powered only along one principal axis, the wheel can kinemati-

cally move with very little friction along many possible trajectories, not just

forward and backward.

Figure 2.2: Omniwheels

The third type of wheel is the ball or spherical wheel in Figure 2.3. It

has also three DOF. The spherical wheel is a truly omnidirectional wheel,

often designed so that it may be actively powered to spin along any direc-

tion. There have not been many attempts to build a mobile robot with ball

wheels because of the difficulties in confining and powering a sphere. One

mechanism for implementing this spherical design imitates the first com-

puter mouse, providing actively powered rollers that rest against the top

surface of the sphere and impart rotational force.

Figure 2.3: Spherical Wheels

The wheel type and wheel configuration are of tremendous importance,
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they form an inseparable relation and they influence three fundamental char-

acteristics of a: maneuverability, controllability, and stability. In general,

there is an inverse correlation between controllability and maneuverability.

The number of wheels is the first decision. Two, three and four wheels

are the most commonly used each one with different advantages and disad-

vantages. The two wheels drive has very simple control but reduced ma-

neuverability. The three wheels drive has simple control and steering but

limited traction. The four wheels drive has more complex mechanics and

control, but higher traction [38].

The differential drive is a two-wheeled drive system with independent

actuators for each wheel. The motion vector of the robot is the sum of the

independent wheel motions. The drive wheels are usually placed on each

side of the robot. A non driven wheel, often a castor wheel, forms a tripod-

like support structure for the body of the robot. Unfortunately, castors can

cause problems if the robot reverses its direction. The castor wheel must

turn half a circle and, the offset swivel can impart an undesired motion vec-

tor to the robot. This may result in to a translation heading error. Straight

line motion is accomplished by turning the drive wheels at the same rate in

the same direction. In place rotation is done by turning the drive wheels at

the same rate in the opposite direction. Arbitrary motion paths can be im-

plemented by dynamically modifying the angular velocity and/or direction

of the drive wheels. The benefits of this wheel configuration is its simplicity.

A differential drive system needs only two motors, one for each drive

wheel. Often the wheel is directly connected to the motor with internal

gear reduction. Despite its simplicity, the controllability is rather difficult,

especially to make a differential drive robot move in a straight line. Since

the drive wheels are independent, if they are not turning at exactly the

same rate the robot will veer to one side. Making the drive motors turn at

the same rate is a challenge due to slight differences in the motors, friction

differences in the drive trains, and friction differences in the wheel-ground

interface. To ensure that the robot is traveling in a straight line, it may be

necessary to adjust the motor speed very often. It is also very important to

have accurate information on wheel position. This usually comes from the

encoders. A round shaped differential drive configuration is shown in Figure

2.4.

In a tricycle vehicle (Figure 2.5) there are two fixed wheels mounted
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Figure 2.4: Differential drive configuration with two drive wheels and a castor wheel

on a rear axle and a steerable wheel in front. The fixed wheels are driven

by a single motor which controls their traction, while the steerable wheel

is driven by another motor which changes its orientation, acting then as a

steering device. Alternatively, the two rear wheels may be passive and the

front wheel may provide traction as well as steering.

Figure 2.5: Tri-cycle drive, combined steering and driving

Another three wheel configuration is the synchro drive. The synchro

drive system is a two motor drive configuration where one motor rotates all

wheels together to produce motion and the other motor turns all wheels to

change direction. Using separate motors for translation and wheel rotation

guarantees straight line translation when the rotation is not actuated. This

mechanical guarantee of straight line motion is a big advantage over the

differential drive method where two motors must be dynamically controlled

to produce straight line motion. Arbitrary motion paths can be done by

actuating both motors simultaneously. The mechanism which permits all

wheels to be driven by one motor and turned by another motor is fairly



10 Chapter 2. State of the Art

complex. Wheel alignment is critical in this drive system, if the wheels are

not parallel, the robot will not translate in a straight line. Figure 2.6 shows

MRV4 a robot with this drive mechanism.

Figure 2.6: MRV4 robot with synchro drive mechanism

The car type locomotion or Ackerman steering configuration is used in

cars. The limited maneuverability of Ackerman steering has an important

advantage: its directionality and steering geometry provide it with very

good lateral stability in high-speed turns. The path planning is much more

difficult. Note that the difficulty of planning the system is relative to the

environment. On a highway, path planning is easy because the motion is

mostly forward with no absolute movement in the direction for which there

is no direct actuation. However, if the environment requires motion in the

direction for which there is no direct actuation, path planning is very hard.

Ackerman steering is characterized by a pair of driving wheels and a separate

pair of steering wheels. A car type drive is one of the simplest locomotion

systems in which separate motors control translation and turning this is a

big advantage compared to the differential drive system. There is one condi-

tion: the turning mechanism must be precisely controlled. A small position

error in the turning mechanism can cause large odometry errors. This sim-

plicity in line motion is why this type of locomotion is popular for human

driven vehicles.

Some robots are omnidirectional, meaning that they can move at any

time in any direction along the ground plane (x, y) regardless of the ori-

entation of the robot around its vertical axis. This level of maneuverabil-

ity requires omnidirectional wheels which present manufacturing challenges.

Omnidirectional movement is of great interest to complete maneuverability.
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Omnidirectional robots that are able to move in any direction (x, y, θ) at

any time are also holonomic. There are two possible omnidirectional config-

urations.

The first omnidirectional wheel configuration has three omniwheels, each

actuated by one motor, and they are placed in an equilateral triangle as de-

picted in Figure 2.7. This concept provides excellent maneuverability and is

simple in design, however, it is limited to flat surfaces and small loads, and

it is quite difficult to find round wheels with high friction coefficients. In

general, the ground clearance of robots with Swedish and spherical wheels

is somewhat limited due to the mechanical constraints of constructing om-

nidirectional wheels.

Figure 2.7: Palm Pilot Robot with omniwheels

The second omnidirectional wheel configuration has four omniwheel each

driven by a separate motor. By varying the direction of rotation and relative

speeds of the four wheels, the robot can be moved along any trajectory in

the plane and, even more impressively, can simultaneously spin around its

vertical axis. For example, when all four wheels spin ’forward’ the robot as

a whole moves in a straight line forward. However, when one diagonal pair

of wheels is spun in the same direction and the other diagonal pair is spun

in the opposite direction, the robot moves laterally. These omnidirectional

wheel arrangements are not minimal in terms of control motors. Even with

all the benefits, few holonomic robots have been used by researchers because

of the problems introduced by the complexity of the mechanical design and

controllability.

In mobile robotics the terms omnidirectional, holonomic and non holo-

nomic are often used, a discussion of their use will be helpful. Omnidirec-

tional simply means the ability to move in any direction. Because of the

planar nature of mobile robots, the operational space they occupy contains
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only three dimensions which are most commonly thought of as the x, y

global position of a point on the robot and the global orientation, θ, of the

robot. A non holonomic mobile robot has the following properties:

• The robot configuration is described by more than three coordinates.

Three values are needed to describe the location and orientation of the

robot, while others are needed to describe the internal geometry.

• The robot has two DOF, or three DOF with singularities.

A holonomic mobile robot has the following properties:

• The robot configuration is described by three coordinates. The inter-

nal geometry does not appear in the kinematic equations of the robot,

so it can be ignored.

• The robot has three DOF without singularities.

• The robot can instantly develop a force in an arbitrary combination

of directions x, y, θ.

• The robot can instantly accelerate in an arbitrary combination of di-

rections x, y, θ.

Non holonomic robots are most common because of their simple design

and ease of control. By their nature, non holonomic mobile robots have

fewer degrees of freedom than holonomic mobile robots. These few actuated

degrees of freedom in non holonomic mobile robots are often either inde-

pendently controllable or mechanically decoupled, further simplifying the

low-level control of the robot. Since they have fewer degrees of freedom,

there are certain motions they cannot perform. This creates difficult prob-

lems for motion planning and implementation of reactive behaviors.

However, holonomic offer full mobility with the same number of degrees of

freedom as the environment. This makes path planning easier because there

are no constraints that need to be integrated. Implementing reactive be-

haviors is easy because there are no constraints which limit the directions

in which the robot can accelerate.
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2.2 Motion Models

In the field of robotics the topic of robot motion has been studied in depth

in the past. Robot motion models play an important role in modern robotic

algorithms. The main goal of a motion model is to capture the relation-

ship between a control input to the robot and a change in the robot’s pose.

Good models will capture not only systematic errors, such as a tendency of

the robot to drift left or right when directed to move forward, but will also

capture the stochastic nature of the motion. The same control inputs will

almost never produce the same results and the effects of robot actions are,

therefore, best described as distributions [41]. Borenstein et al. [32] cover

a variety of drive models, including differential drive, the Ackerman drive,

and synchro-drive.

Previous work in robot motion models have included work in automatic

acquisition of motion models for mobile robots. Borenstein and Feng [31]

describe a method for calibrating odometry to account for systematic er-

rors. Roy and Thrun [41] propose a method which is more amenable to

the problems of localization and SLAM. They treat the systematic errors

in turning and movement as independent, and compute these errors for

each time step by comparing the odometric readings with the pose estimate

given by a localization method. Alternately, instead of merely learning two

simple parameters for the motion model, Eliazat and Parr [15] seek to use

a more general model which incorporates interdependence between motion

terms, including the influence of turns on lateral movement, and vice-versa.

Martinelli et al. [16] propose a method to estimate both systematic and

non-systematic odometry error of a mobile robot by including the parame-

ters characterizing the non-systematic error with the state to be estimated.

While the majority of prior research has focused on formulating the pose es-

timation problem in the Cartesian space. Aidala and Hammel [29], among

others, have also explored the use of modified polar coordinates to solve

the relative bearing-only tracking problem. Funiak et al. [40] propose an

over-parameterized version of the polar parameterization for the problem

of target tracking with unknown camera locations. Djugash et al. [24] fur-

ther extend this parameterization to deal with range-only measurements

and multimodal distributions and further extend this parameterization to

improve the accuracy of estimating the uncertainty in the motion rather

than the measurement.
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2.3 Navigation

A navigation environment is in general dynamic. Navigation of autonomous

mobile robots in an unknown and unpredictable environment is a challenging

task compared to the path planning in a regular and static terrain, because

it exhibits a number of distinctive features. Environments can be classified

as known environments, when the motion can be planned beforehand, or

partially known environments, when there are uncertainties that call for a

certain type of on-line planning for the trajectories. When the robot nav-

igates from original configuration to goal configuration through unknown

environment without any prior description of the environment, it obtains

workspace information locally while it is moving and a path must be incre-

mentally computed as the newer parts of the environment are explored [26].

Autonomous navigation is associated to the capability of capturing infor-

mation from the surrounding environment through sensors, such as vision,

distance or proximity sensors. Even though the fact that distance sensors,

such as ultrasonic and laser sensors, are the most commonly used ones, vision

sensors are becoming widely applied because of its ever-growing capability

to capture information at low cost.

Visual control methods fall into three categories such as position based,

image based and hybrid [28]. The position based visual control method re-

constructs the object in 3D space from 2D image space, and then computes

the errors in Cartesian space. For example, Han et al [25] presented a posi-

tion based control method to open a door with a mobile manipulator, which

calculated the errors between the end-effector and the doorknob in Carte-

sian space using special rectangle marks attached on the end-effector and

doorknob. As Hager [28] pointed out, the position based control method has

the disadvantage of low precision in positioning and control. To improve the

precision, El-Hakim et al [39] proposed a visual positioning method with 8

cameras, in which the positioning accuracy was increased through iteration.

It has high positioning accuracy but poor performance in real time.

The image based visual control method does not need to reconstruct

in 3D space, but the image Jacobian matrix needs to be estimated. The

controller design is difficult. And the singular problem in image Jacobian

matrix limits its application [28]. Hybrid control method attempts to give a

good solution through the combination of position and image based visual

control methods. It controls the pose with position based method, and the

position with image based method. For example, Malis et al [35] provided
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a 2.5 D visual control method. Deguchi et al. [22] proposed a decoupling

method of translation and rotation. Camera calibration is a tedious task,

and pre-calibration cameras used in visual control methods limit a lot the

flexibility of the system. Therefore, many researchers pursue the visual

control methods with self-calibrated or un-calibrated cameras. Kragic et

al. [34] gave an example to self-calibrate a camera with the image and the

CAD model of the object in their visual control system. Many researchers

proposed various visual control methods with un-calibrated cameras, which

belong to image based visual control methods. The camera parameters are

not estimated individually, but combined into the image Jacobian matrix.

For instance, Shen et al. [43] limited the working space of the end-effector

on a plane vertical to the optical axis of the camera to eliminate the camera

parameters in the image Jacobian matrix. Xu et al. [21] developed visual

control method for the end-effector of the robot with two un-calibrated cam-

eras, estimating the distances based on cross ratio invariance.

2.4 Games and Interaction

Advances in the technological medium of video games have recently included

the deployment of physical activity-based controller technologies, such as the

Wii [27], and vision-based controller systems, such as Intel’s Me2Cam [13].

The rapid deployment of millions of iRobot Roomba home robots [14] and

the great popularity of robotic play systems, such as LEGO Mindstorms

and NXT [5] now present an opportunity to extend the realm of video game

even further, into physical environments, through the direct integration of

human-robot interaction techniques and architectures with video game ex-

periences.

Over the past thirty to forty years, a synergistic evolution of robotic

and video game-like programming environments, such as Turtle Logo [36],

has occurred. At the MIT Media Lab, these platforms have been advanced

through the constructionist pedagogies, research, and collaborations of Sey-

mour Papert, Marvin Minsky, Mitch Resnick, and their colleagues, leading

to Logo [7], Star Logo [37], programmable Crickets and Scratch [6] and Lego

MindStorms [37]. In 2000, Kids Room [18] demonstrated that an immersive

educational gaming environment with projected objects and characters in

physical spaces (e.g., on the floor or walls), could involve children in highly

interactive games, such as hide-and-seek. In 2004, RoBallet [20] advanced

these constructionist activities further, blending elements of projected vir-
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tual environments with sensor systems that reacted to children dancing in

a mediated physical environment. The realm of toys and robotic pets has

also seen the development of a wide array of interactive technologies (e.g.,

Furby, Aibo, Tamagotchi) and more recently Microsoft’s Barney [9], which

has been integrated with TV-based video content. Interactive robotic en-

vironments for education are now being extended to on-line environments,

such as CMU’s educational Mars rover [8], and becoming popular through

robotics challenges such as FIRST Robotics Competition [3], BattleBots [1],

and Robot World Cup soccer tournaments, such as Robocup [42].

The games related with robots, so called robogames, are categorized

into four branches according to AIRLab report [19]. One is the videogames,

where robot characters are simulated. Soccer Simulation League in RoboCup-

Soccer is an example of this kind of games. The Simulation League focuses

on artificial intelligence and team strategy. Independently moving software

players (agents) play soccer on a virtual field inside a computer. This pro-

vides a context to the game, but also allows to escape all the limitations

of physical robots. Another one is the tele-operated physical robots, where

the player is mainly in the manipulation of remote controllers similar to the

ones used in videogames, or, eventually, in the physical building of the tele-

operated robots, as it happens with RoboWars [11]. A third main stream

concerns robots that have been developed by roboticists to autonomously

play games (e.g., Robocup). Here, the accent is on the ability to program

the robots to be autonomous, but little effort is spent in the eventual playful

interaction with people, often avoided, as in most of the Robocup leagues.

The last main stream concerns robots that act as more or less like mobile

pets. In this case, interaction is often limited to almost static positions, not

exploiting rich movement, nor high autonomy; the credibility of these toys

to really engage healthy people, such as kids, is not high.

According to the AIRLab report [19], a new category of games where

the players are involved in a challenging and highly interactive game ac-

tivity with autonomous robots called as Highly Interactive, Competitive

RoboGames (HI-CoRG) is introduced. The idea is to take the videogame

players away from screen and console, and to make them physically interact

with a robot in their living environment. In this context some heuristics

from videogames adapted to be applied on this HI-CoRG games.

In our thesis, we focused on developing a robot for games that can be

count to the HI-CoRG category.
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We introduce now some of the robots developed in the past, related to

the human robot interaction and games.

Kismet (Figure 2.8(a)) is a robot made in the late 1990s at Massachusetts

Institute of Technology with auditory, visual and expressive systems in-

tended to participate in human social interaction and to demonstrate sim-

ulated human emotion and appearance. This project focuses not on robot-

robot interactions, but rather on the construction of robots that engage

in meaningful social exchanges with humans. By doing so, it is possible

to have a socially sophisticated human assist the robot in acquiring more

sophisticated communication skills and helping it to learn the meaning of

these social exchanges.

A Furby (Figure 2.8(b)) was a popular electronic robotic toy resembling

a hamster/owl-like creature which went through in 1998. Furbies were the

first successful attempt to produce and sell a domestically-aimed robot. A

newly purchased Furby starts out speaking entirely Furbish, the unique lan-

guage that all Furbies use, but are programmed to speak less Furbish as

they gradually start using English. English is learned automatically, and

no matter what culture they are nurtured in, they learn English. In 2005,

new Furbies were released, with voice-recognition and more complex facial

movements, and many other changes and improvements.

AIBO (Artificial Intelligence Robot) (Figure 2.8(c)) was one of several

types of robotic pets designed and manufactured by Sony. There have been

several different models since their introduction on May 11, 1999. AIBO is

able to walk, ”see” its environment via camera and recognize spoken com-

mands in Spanish and English. AIBO robotic pets are considered to be

autonomous robots since they are able to learn and mature based on ex-

ternal stimuli from their owner, their environment and from other AIBOs.

The AIBO has seen use as an inexpensive platform for artificial intelligence

research, because it integrates a computer, vision system, and articulators in

a package vastly cheaper than conventional research robots. The RoboCup

autonomous soccer competition had a ”RoboCup Four-Legged Robot Soc-

cer League” in which numerous institutions from around the world would

participated. Competitors would program a team of AIBO robots to play

games of autonomous robot soccer against other competing teams.

The developments in Robocup lead to improvements in the mobile robots.
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(a) Kismet (b) Furby (c) AIBO

(d) Spykee (e) Rovio

Figure 2.8: Robots developed for games and interactions

The domestically-aimed robots become popular in the market. One of them

is Spykee (Figure 2.8(d)), which is a robotic toy made by Meccano in 2008.

It contains a USB webcam, microphone and speakers. Controlled by com-

puter locally or over the internet, the owner can move the robot to various

locations within range of the local router, take pictures and video, listen to

surroundings with the on-board microphone and play sounds/music or vari-

ous built-in recordings (Robot laugh, laser guns, etc.) through the speaker.

Spykee has a WiFi connectivity to let him access the Internet using both

ad-hoc and infrastructure modes.

Similar to Spykee, with different kinematics models and more improve-

ments, RovioTM(Figure 2.8(e)) is the groundbreaking new Wi-Fi enabled

mobile webcam that views and interacts with its environment through video

and audio streaming.

According to our goals, we investigated the previously made robots, since

we thought we could benefit from the techniques used. Furbies have expres-

sions, but they don’t move. While Rovio has omnidirectional, Spykee has

tracks for the motion, but they lack entertainment. AIBO has legs and a
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lot of motors, but these brings more cost and high complexity for the devel-

opment.
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Chapter 3

Mechanical Construction

We started our design from these specifications of the robot.

• a dimension of about 25 cm of radius, 20 cm height

• a speed of about 1 m/sec

• sensors to avoid obstacles

• a camera that can be moved up and down

• power enough to move and transmit for at least 2 hours without

recharging

• the robot should cost no more than 250 euro.

In the development process we faced some problems due to the limita-

tions from the specifications. Main causes of these problems are related with

low-cost, that is coming with our design constraints.

The mechanical construction of the robot is focused on construction

of the robot chassis, motor holders, motor and wheel connections, camera

holder, the foam covering the robot, batteries and hardware architectures.

3.1 Chassis

The main principles for the construction of the chassis are coming from

similar projects from the past, which are the simplicity of assembly and

disassembly, the ease of access to the interior and the possibility of adding
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and modifying elements in the future. We decided to use some design con-

straints, revising these according to our goals.

The design is started with the choice of the chassis made of plexiglas.

One advantage of using plexiglas, it is 43% lighter than aluminum [10]. An-

other advantage that is affecting our choice is the electrical resistance of the

plexiglas, that will isolate any accidental short circuit. One of the major

problems with plexiglas is the difficult processing of the material. However,

it has to be processed only once, hence this is negligible.

Figure 3.1: The design of robot using Google SketchUp

The preliminary design has been created with Google SketchUp, allow-

ing to define the dimensions of the robot and the arrangement of various

elements shown in Figure 3.1. This model has been used to obtain a descrip-

tion of the dynamics of the system. The robot is 125 mm in diameter wide

and 40 cm in height, meeting the specification to be contained in a footprint

on the ground in order to move with agility in the home. The space between

the two plates is around 6 cm, which allows us to mount sensors and any

device that will be added in the future. The total weight of the structure is

approximately 1.8 kg, including motors and batteries.
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The initial design of the chassis was a bit different from the final configu-

ration seen in Figure 3.1. Even though the shape of the components did not

change, the position and orientation are changed in the final configuration.

The motor holders initially were intended to be placed on the top of the

bottom plexiglas layer. At the time when this decision was taken, we were

not planning to place the mice boards, but only to put the batteries and the

motor control boards. Later, with the decision of placing the mice boards in

this layer, in order to get more space, we decided to put the motors to their

final position. So this configuration increases the free space on the robot

layers to put the components, and also increases the robot height from the

ground that will result to better navigation.

Another change has been made by placing the second plexiglas layer.

Initially, we placed that layer using only three screws with each a height of

6 cm. The idea was using minimum screws, so that the final weight will

be lighter and the plexiglas will be more resistant to damage. Later, when

we placed the batteries, motor controller boards and the camera with its

holder, the total weight was too much to be handled by the three screws.

And additionally, we placed 6 more screws with the same height as before.

These screws, allowed us to divide the total weight on the plate equally on

all the screws and also enabled us to install springs and foams, to implement

bumpers that protect the robot from any damage that could be caused by

hits.

3.2 Motors

The actuator is one of the key components in the robot. Among the possible

actuation we decided to go with DC motors. Servo motors are not powerful

enough to reach the maximum speed. Due to noise and control circuitry

requirements, servos are less efficient than uncontrolled DC motors. The

control circuitry typically drains 5-8mA on idle. Secondly, noise can draw

more than triple current during a holding position (not moving), and almost

double current during rotation. Noise is often a major source of servo inef-

ficiency and therefore they should be avoided. Brushless motors are more

power efficient, have a significantly reduced electrical noise, and last much

longer. However, they also have several disadvantages, such as higher price

and the requirement for a special brushless motor driver. Since they are

running at high speed we need to gear them down. This would also add
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some extra cost. Also the Electronic Speed Controllers(ESC) are costly and

most of them do not support multiple run motors. The minimum price for

the motor is about 20 dollars, and for the ESC is around 30 dollars. The

minimum expected price for motors and controller will be a least 90 dollars

if we can run the 3 motors on a single controller. Also there should be an

extra cost to gear them down.

We made some calculations to find the most suitable DC motor for our

system. In order to effectively design with DC motors, it is necessary to

understand their characteristic curves. For every motor, there is a specific

torque/speed curve and power curve. The graph in Figure 3.2 shows a

torque/speed curve of a typical DC motor.

Figure 3.2: The optimal torque / speed curve

Note that, torque is inversely proportional to the speed of the output

shaft. In other words, there is a trade-off between how much torque a motor

delivers, and how fast the output shaft spins. Motor characteristics are

frequently given as two points:

• The stall torque, τs, represents the point on the graph at which the

torque is a maximum, but the shaft is not rotating.

• The no load speed, ωn, is the maximum output speed of the motor

(when no torque is applied to the output shaft).

The linear model of a DC motor torque/speed curve is a very good ap-

proximation. The torque/speed curves shown below in Figure 3.3 are calcu-

lated curves for our motor, which is Pololu 25:1 Metal Gearmotor 20Dx44L

mm.
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Figure 3.3: The calculated curve for the Pololu 25:1 Metal Gearmotor 20Dx44L mm

Due to the linear inverse relationship between torque and speed, the

maximum power occurs at the point where ω = 1
2
ωn, and τ = 1

2
τs. The

maximum power output occuring at no load speed with, τ = 500rpm =

52.38rad/sec, and the stall torque, ω = 0.282Nm is calculated as follows:

P = τ ∗ ω

Pmax =
1

2
τs ∗

1

2
ωn

Pmax = 26.190rad/sec ∗ 0.141Nm = 3.692W

Keeping in mind the battery life, the power consumption, the necessary

torque and the maximum speed, we selected the Pololu motors shown in

Figure 3.4.

In the design of the robot we decided to use low cost components. In

that sense we focused on producing components or re-using components that

can be modified according to our demands. The mechanical production of

the components took some time both for the design and the construction

process (e.g. the connectors between motors and wheels are milled from an

aluminum bar), however this reduced the overall cost. The connection of

motors with robot is made by putting the motor inside an aluminum tube,

merging it with the U-shaped plate (Figure 3.5). Using such a setup helps
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Figure 3.4: Pololu 25:1 Metal Gearmotor 20Dx44L mm. Key specs at 6 V: 500 RPM

and 250 mA free-run, 20 oz-in (1.5 kg-cm) and 3.3 A stall.

not only protecting the motor from the hit damage, but also cooling of the

motor since aluminum has great energy-absorbing characteristics [12]. The

connection can be seen clearly in Figure 3.5. The component is attached to

the plexiglas from the L-shaped part using a single screw. This gives us the

flexibility to dis-attach the component easily and to change the orientations

of them if needed.

Figure 3.5: The connection between the motors, chassis and wheels

3.3 Wheels

The target environment of our robot is a standard home. The character-

istic properties of this environment that are important for our work are as

follows. Mainly the environment is formed by planes, surfaces such as par-

quet, tile, carpet etc... In order to move freely to any direction on these

surfaces and reach the predefined speed constraint, we selected the wheels

and a proper configuration for them. The decision to choose omnidirectional

wheel was motivated, but there are lots of different omnidirectional wheels

available on the market. Among them, we made a selection considering the
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target surface, maximum payload, weights of the wheels, and price. The

first selected wheel was the omniwheel shown in Figure 3.6(a). The wheel

consists of three small rollers, which may affect the turning since the cover-

age is not good enough. Also the wheel itself is heavier than the one with

the transwheel shown in Figure 3.6(b) A single transwheel is 0.5 oz lighter

than an omniwheel. Another model is the double transwheel seen in Figure

3.6(c), which is produced by merging two transwheels, where the rollers are

covering all the wheel, which will enable the movement in any direction eas-

ily and more consisting model by reducing the possible power transmission

loss that can be occur, when merging the two wheels by hand.

(a) Omniwheel (b) Transwheel (c) Double Transwheel

Figure 3.6: Wheels

In order reach the maximum speed of 1 m/sec., we should have the

following equation.

speed = circumreference ∗ rps

speed = diameter ∗ pi ∗ rps

As it can be seen from the equation the speed is also related with the rota-

tion per second (rps) of the wheels, which is determined by the motor. So

the dimension choice of the wheels are made keeping the rps in mind. The

rpm necessary to turn our wheels with the maximum speed of 1 meter/sec-

ond the is calculated as follows:

1000mm/second = diameter ∗ pi ∗ rps

1000mm/second = 49.2mm ∗ pi ∗ rps

rps ∼= 6.4
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rpm ∼= 388

As a result of the calculation, using the omniwheel with outer diameter

of 49.2 m., we will need a motor that can run around 388 rpm to reach the

maximum speed.

Figure 3.7: The wheel holder bar, that is making the transmission between motors and

wheels

The transmission between motors and wheels is achieved by the bar,

which is lathed from an aluminum bar (Figure 3.7). The bar is placed inside

the wheel and locked with a key using the key-ways in the wheel and the bar.

For the wheel configuration we preserved the popular three wheeled con-

figuration (Figure 3.8). The control is simple, the maneuverability is enough

to satisfy the design specifications. The details of this configuration will be

mentioned in Control Chapter.

3.4 Camera

The camera positioning is tricky. We needed a holder that should be light in

the weight, but also provide enough height and width to enable vision from

the boundary of the robot at ground to the people face in the environment.

The initial tests have been made by introducing a camera holder using parts

from ITEM [4]. These parts are useful during the tests since they are easily

configurable for different orientations, and easy to assemble. But, the parts

are too heavy and we decided to use an aluminum bar for the final configu-

ration. The movement of the camera is done by the servo placed at the top

of the aluminum bar; this gave us the flexibility to have different camera
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Figure 3.8: Three wheel configuration

positions, that will be useful to develop different games.

The camera is placed in a position on top of a mounted-on aluminum

bar that allows us to have the best depth of field by increasing the field

of view. The idea is to detect objects and visualize the environment be-

tween the boundary of the robot to all the way in the ground and up to

2 meters in height, which allows also to see faces of people or the objects

not on the ground. Mechanically, the camera itself is connected to a servo

that enables the camera head to move freely in 120◦in the vertical axis, as

shown in Figure 3.9 and 3.10. This configuration gives us the flexibility to

generate different types of games using the vision available in a wide angle

and interchangeable height.

3.5 Bumpers

The last mechanical component is the collision detection mechanism, to

avoid obstacles in the environment. There are lots of good solutions to this

issue. By using different types of sensors such as sonars, photo resistors,
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Figure 3.9: The position of the camera

Figure 3.10: The real camera position

IR sensors, tactile bumpers, etc. Among them, the simplest are the tactile

bumpers. A tactile bumper is probably one of the easiest way of letting a

robot know if it’s colliding with something. Indeed, they are implemented

by electrical switches. The simplest way to do this is to fix a micro switch to

robot in a way so that when it collides the switch will be pushed in, making

an electrical connection. Normally the switch will be held open by an inter-

nal spring. Tactile bumpers are great for collision detection, but the circuit
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itself also works fine for user buttons and switches as well. There are many

designs possible for bump switches, often depending on the design goals of

the robot itself. But the circuit remains the same. They usually implement

a mechanical button to short the circuit, pulling the signal line high or low.

An example is the micro switch with a lever attached to increase its range,

as shown in Figure 3.11. The cost is nothing if compared to the other solu-

tions such as photo-resistors and sonars, and the usage is pretty simple since

the values can be read directly from the microcontroller pins without having

any control circuits. Major drawback is its limited range, but we tried to

improve the range using the foam and the external springs attached to the

foam. Since the robot is light in the weight and collision can be useful in

development of games, we decided to use tactile bumpers.

Figure 3.11: Bumpers are mechanical buttons to short the circuit, pulling the signal

line high or low.

The collision detection for robot is made with bumpers, which are placed

on the plexiglas every 60◦(Figure 3.12). The coverage was not enough, so the

bumpers are covered with foams which are connected to the springs. The

springs are enabling the push back of the switches, the foams are increasing

the coverage of the collision detection and also enhance the safety both for

the damage that could be caused by the robot and to the robot from en-

vironment (Figure 3.13). After some tests we realized there are still dead

points which the collision are not detected. We decided to cut the foam into

three, placing the around the robot leaving the parts with the wheel open.

The best results are obtained using this configuration so we decided to keep

it.

3.6 Batteries

The robot’s battery life without the need of recharging is crucial for the

game. The game play must continue for about 2 hours without any in-

terruption. This brings the question of how to choose the correct battery.

LiPo batteries are suitable battery choice for our application over conven-
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Figure 3.12: The bumper design

Figure 3.13: Robot with foams, springs and bumpers

tional rechargeable battery types such as NiCad, or NiMH, for the following

reasons :

• LiPo batteries are light in weight and can be made in almost any shape

and size.

• LiPo batteries have large capacities, meaning they hold lots of power

in a small package.

• LiPo batteries have high discharge rates to power the most demanding

electric motors.
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In short, LiPo provide high energy storage to weight ratios in an endless

variety of shapes and sizes. The calculation is made to find the correct

battery. The motors are consuming 250 mA at free-run and 3300 mA for

the stall current. For the all three motors we should have the following

battery lives:

Battery Capacity/Current Draw = Battery Life

2 ∗ 2500mAh/750mA ∼= 6.6hours

2 ∗ 2500mAh/9900mA ∼= 0.5hours

using the 2 batteries each having a capacity of 2500 mAh. The battery

life shows changes according to the current draw of the motors. In case,

each motor is consuming 250 mA in free-run current will result 6.6 hours of

batteries life. On the other hand, with the stall current it will be 0.5 hour

battery life. Since the motor will not always work in stall current or the

free-run current; the choice of 2500 mA batteries (Figure 3.14) seems to be

enough to power the robot for at least 2 hours.

Figure 3.14: J.tronik - Battery Li-Po Li-POWER 2500 mA 2S1P 7,4V 20C

3.7 Hardware Architecture

During the development of the robot, we used several hardware pieces such

as microprocessor, camera, motor control boards, voltage regulator circuit,

voltage divider circuit. Most of them were already developed systems and

we did not focus on the production details of them. We only created the

voltage regulator and divider circuit, which we used in order to power the

boards and measure the battery level of charge.
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The main component in our system is the the STL Main Board, known

also as STLCam. The STL Main Board is a low-cost vision system for ac-

quisition and real-time processing of pictures, consisting of a ST-VS6724

Camera (2 Mpx), a ST-STR912FA Microcontroller (ARM966 @ 96MHz)

and 16MB of external RAM (PSRAM BURST). The schematics of the STL

Main Board is shown in Appendix D.2.

ST-STR912FAZ44 Microcontroller

The microcontroller main components are: a 32 bit ARM966E-S RISC

processor core running at 96MHz, a large 32bit SRAM (96KB) and a high-

speed 544KB Flash memory. The ARM966E-S core can perform single-cycle

DSP instructions, good for speech recognition, audio and embedded vision

algorithms.

ST-VS6724 Camera Module

The VS6724 is a UXGA resolution CMOS imaging device designed for

low power systems, particularly mobile phone and PDA applications. Man-

ufactured using ST 0.18µ CMOS Imaging process, it integrates a high-

sensitivity pixel array, digital image processor and camera control functions.

The device contains an embedded video processor and delivers fully color

processed images at up to 30 fps UXGA JPEG, or up to 30 fps SVGA YCbCr

4:2:2. The video data is output over an 8-bit parallel bus in JPEG (4:2:2 or

4:2:0), RGB, YCbCr or Bayer formats and the device is controlled via an I2C

interface. The VS6724 camera module uses ST’s second generation SmOP2

packaging technology: the sensor, lens and passives are assembled, tested

and focused in a fully automated process, allowing high volume and low cost

production. The VS6724 also includes a wide range of image enhancement

functions, designed to ensure high image quality, these include: automatic

exposure control, automatic white balance, lens shading compensation, de-

fect correction algorithms, interpolation (Bayer to RGB conversion), color

space conversion, sharpening, gamma correction, flicker cancellation, NoRA

noise reduction algorithm, intelligent image scaling, special effects.

MC33887 Motor Driver Carrier

All electric motors need some sort of controller. The motor controller

may different features and complexity depending on the task that the mo-

tors will have to perform.
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The simplest case is a switch to connect a motor to a power source, such

as in small appliances or power tools. The switch may be manually operated

or may be a relay or conductor connected to some form of sensor to auto-

matically start and stop the motor. The switch may have several positions

to select different connections of the motor. This may allow reduced-voltage

starting of the motor, reversing control or selection of multiple speeds. Over-

load and over-current protection may be omitted in very small motor con-

trollers, which rely on the supplying circuit to have over-current protection.

Figure 3.15: Structure of an H bridge (highlighted in red)

The DC motors cannot be controlled directly from the output pins of

the microcontroller. We need the circuit so called ’motor controller’, ’motor

driver’ or an ’H-Bridge’. The term H-Bridge is derived from the typical

graphical representation of such a circuit. An H-Bridge (Figure 3.15) is

built with four switches (solid-state or mechanical). When the switches S1

and S4 are closed (and S2 and S3 are open) a positive voltage will be ap-

plied across the motor. By opening S1 and S4 switches and closing S2 and

S3 switches, this voltage is reversed, allowing reverse operation of the motor.

To drive motors we used a PWM signal and vary the duty cycle to act

as a throttle: 100% duty cycle = full speed, 0% duty cycle = coast, 50%

duty cycle = half speed etc. After some testing we optimized the percentage

of the duty cycle in order achieve a better performance. This optimization

will be mentioned later in Control Chapter.

For the motor control, we started by using the H-Bridge motor control

circuits provided by our sponsor. The initial tests have been performed by

implementing the correct PWM waves using these boards. Later, we real-
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ized that the boards were configured to work at 8 V. This forced us to make

the decision of buying new batteries or new control circuits. Evaluating the

prices, we ended up buying new control circuits that are rated for 5 V.

MC33887 motor driver integrated circuit is an easy solution to connect

a brushed DC motor running from 5 to 28 V and drawing up to 5 A (peak).

The board incorporates all the components of the typical application, plus

motor-direction LEDs and a FET for reverse battery protection. A micro-

controller or other control circuit is necessary to turn the H-Bridge on and

off. The power connections are made on one end of the board, and the con-

trol connections (5V logic) are made on the other end. The enable (EN) pin

does not have a pull-up resistor, so it be must pulled to +5 V in order to

wake the chip from sleep mode. The fault-status (FS, active low) output pin

may be left disconnected if it is not needed to monitor the fault conditions of

the motor driver; if it is connected, it must use an external pull-up resistor

to pull the line high. IN1 and IN2 control the direction of the motor, and

D2 can be PWMed to control the motor’s speed. D2 is the ”not disabled“

line: it disables the motor driver when it is driven low (another way to think

of it is that, it enables the motor driver when driven high). Whenever D1

or D2 disable the motor driver, the FS pin will be driven low. The feedback

(FB) pin outputs a voltage proportional to the H-Bridge high-side current,

providing approximately 0.59 volts per amp of output current.

Voltage Divider and Voltage Regulator Circuit

Batteries are never at a constant voltage. For our case 7.2 V battery will

be at around 8.4 V when fully charged, and can drop to 5 V when drained.

In order to power microcontroller (and especially sensors) which are sen-

sitive to the input voltage, and rated to 5 V, we need a voltage regulator

circuit to output always 5 V. The design of the circuit that will be used in

voltage regulation merged with the voltage divider circuit that will be used

for battery charge monitor shown in Figure 3.16.

To operate voltage divider circuit, the following equation is used to de-

termine the appropriate resistor values.

Vo =
Vi

R1 +R2

∗R2

Vi is the input voltage, R1 and R2 are the resistors, and Vo is the output

voltage.
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With the appropriate selection of resistor R1 and R2 based on the above

information, Vo will be suitable for the analog port on microcontroller. The

divider is used to input to the microcontroller a signal proportional to the

voltage provided by the battery, so to check its charge. Note that a fully

charged battery can often be up to 20% more of its rated value and a fully

discharged battery 20% below its rated value. For example, a 7.2 V battery

fully charged can be 8.4 V, and fully discharged 5 V. The voltage divider

circuit allows to read the battery level from the microcontroller pins directly,

that will be used in order to monitor battery charging level changes.

Figure 3.16: The schematics of voltage divider and voltage regulator circuit

From the Figure 3.16, the pin V out is used in order to monitor the bat-

tery life, which is placed on the left side of schematics. The divided voltage

is read from the analog input of the microcontroller. The voltage regulator

circuit which is placed on the right part of the schematics is used to power

the STLCam board with 5 V through the USB port. It can be also used in

order to make the connection with the PC, to transmit some data, which

we use for debug purposes.
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Chapter 4

Control

The motion mechanism is inspired from the ones that have been introduced.

In this Chapter, we will explain the wheel configuration model, move-

ment types, the script that is used to calculate the motor contributions

according to a set point, motor control behavior and the software imple-

mentation.

4.1 Wheel configuration

The configuration space of an omnidirectional mobile robot, is a smooth

3-manifold and can then be locally embedded in Euclidean space R3. The

robot has three degrees of freedom, i.e., two dimension linear motion and

one dimension rotational motion. There are three universal wheels mounted

along the edge of the robot chassis 120◦apart from each other, and each

wheel has a set of rollers aligned with its rim, as shown in Figure 3.8. Be-

cause of its special mechanism, the robot is able to simultaneously rotate

and translate. Therefore, the path planning can be significantly simplified

by directly defining the tracking task with the orientation and position er-

rors obtained by the visual feedback.

For a nonholonomic robot, the robot’s velocity state is modeled as the

motion around its instantaneous center of rotation (ICR). As a 2D point in

the robot frame, the ICR position can be represented using two indepen-

dent parameters. One can use either Cartesian or polar coordinates, but

singularities arise when the robot moves in a straight line (the ICR thus lies

at infinity). Hence, we used a hybrid approach that is defining the robot
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position both in Cartesian and polar coordinates.

Normally, the position of the robot is represented by Cartesian coordi-

nates which is a point in X-Y plane. By polar coordinates, the position

is described by an angle, and a distance to the origin. Instead of repre-

senting robot position with a single coordinate, the hybrid approach is used

as follows. The robot pose is defined as {XI , YI , α} where XI and YI are

linear positions of the robot in the world. Let α denote the angle between

the robot axis and the vector that connects the center of the robot and the

target object.

The transformation of the coordinates into polar coordinates with its

origin at goal position:

p =
√

∆x2 +∆y2 and α = −θ + atan2(∆x,∆y) (4.1)

Then the calculated angle α is passed as the parameter to the simulator

in order to test the motor contributions calculated for the motion. Later,

the behavior tested with simulator is implemented for microcontroller with

Triskar function (in Appendix A.1), and the angle α calculated after ac-

quiring the target, is passed to Triskar function, to calculate the motor

contributions on-board, to reach the target.

The inverse kinematics model is simple. It was considered that the rep-

resentative coordinates of the robot were located in its center. Each wheel is

placed in such orientation that its axis of rotation points towards the center

of the robot and there is an angle of 120◦between the wheels. The velocity

vector generated by each wheel is represented on Figure 4.1 by an arrow

and their direction relative to the Y coordinate (or robot front direction)

are 30◦, 150◦and 270◦respectively.

For this type of configuration, the total platform displacement is achieved

by summing up all the three vectors contributions, given by:

−→
FT =

−→
F1 +

−→
F2 +

−→
F3

First of all, some definitions need to be considered. Figure 4.1 represents

the diagram of the mobile robot platform with the three wheels. It was

assumed that the front of the robot is in positive Y direction, and the posi-

tive side to counter clockwise. The three wheels coupled to the motors are

mounted at angle position -60, +60 and +180 degrees, respectively. It is
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Figure 4.1: The wheel position and robot orientation

important to remember that the wheel driving direction is perpendicular to

the motor axis (therefore 90 degrees more). The line of movement for each

wheel (when driven by the motor and ignoring sliding forces) is represented

in Figure 4.1 by solid, black arrows. The arrow indicates positive direction

contribution. The total platform displacement is the sum of three vector

components (one per motor) and is represented as a vector, applied to the

platform body center.

In order to find out the three independent motor contributions, the com-

position of the vectors represented by red arrows is projected on axes rep-

resenting the line of movement of each wheel.

The calculation of the independent motor contributions is made using

the following formulas:







V t1

V t2

V t3






= MF ∗ V
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where MF =







−cosA sinA −1

cosA sinA −1

0 −1 −1






, V =







VF

VL

omega ∗Rrobot







A is the angle of the front wheels, which is 30◦for our robot. Indeed the

values (0.866, 0.5 ; -0.866, 0.5 ; 0, -1) in the Figure 4.1 coming from the

projection of cosine and sine of the motor vectors in the X-Y plane, which

are later used statically in the microcontroller for the calculation of the mo-

tor contributions. VF represents the frontal speed, VL lateral speed and

omega ∗Rrobot represents the angular velocity of the body.

The vector of tangential wheel speed is represented as Vt1,Vt2,Vt3 and

vector of ”sliding” velocity of the wheels due to rollers is represented as

Vn1,Vn2,Vn3. The vectors can have a positive or negative direction which

represents the direction in which the motor has to move (forward or back-

wards respectively). The desired speeds set as frontal speed (VF ) and lateral

speed (VL) are projected through the motor axes in order to find motor con-

tributions.

The angular velocity of the wheels is found by dividing the Vt of the

desired wheel to the radius of the wheel. It can be formulated as follows:







ω1

ω2

ω3






=







V t1

V t2

V t3






/Rwheel

4.2 Matlab Script

In order to test the behavior we implemented a software simulator in Matlab,

that is calculating the motor contributions in order to go a specified position

in the world. It is possible to obtain three different movement model using

the inverse kinematics model. These are:

• Linear Movement

• Rotation

• Mixed Angular and Linear Movement

Linear Movement
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This is case where the angular speed of robot should be zero, and there

should be a linear movement in the displacement, which is the composition

of VF and VL vectors.

The software simulator that we built calculates the motor contribution.

The user inputs three variables (frontal speed, lateral speed and angular

speed) and the program outputs each motor contribution. Figure 4.2 shows

the result of the simulator for the linear movement forward.
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Figure 4.2: A linear movement going slightly on the left on a line calculated by simulator

In Figure 4.2 VF represents the frontal speed is set to 3500 mm/s, VL

lateral speed to 350 mm/s and WR represents the angular velocity,which is

always 0 rad/s for the linear movement. The resulting motion is a linear

movement towards the direction which is the composition of VF and VL. The

motor contributions and their angular velocities are also shown in Figure 4.2.
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Rotation

The second case is the rotation. For that particular configuration, we

only considered the movement caused by rotation without any displacement.

In the software simulator, the frontal speed and lateral speed are set to zero,

and the angular speed is calculated from the robot’s pose α using (4.1). An

example outcome of the simulator is shown in Figure 4.3. The robot is mov-

ing around its center with an angular speed of -0.099669 rad/s, without any

displacement in X-Y plane.
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Figure 4.3: The angular movement calculated by simulator

All the theory for the calculation of the angular movement is same as

in the linear movement case, only values for some parameters change. The

angular velocity of the robot body ωR is calculated with α in the hybrid

approach we mentioned in the beginning of the section.
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Mixed Angular and Linear Movement

This is the case where the movement of the robot is composed of both the

angular and linear movement. In other words, the robot goes to the spec-

ified target while it is also rotating. The calculation made by the software

simulator uses all the parameters (frontal speed, lateral speed and angular

movement). The calculation of the frontal and lateral speed is found by sub-

tracting the desired position of the robot from the initial position (Figure

4.4).
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Figure 4.4: The mixed angular and linear movement calculated by simulator

In Figure 4.4, the resulting motion is not only a linear movement towards

the direction which is the composition of VF and VL, but also an angular

movement in clockwise direction with an angular speed of -0.099669 rad/s.

All these three different configurations are used in the implementation

of the robot. The whole script is found in Motion Simulator in Appendix
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B.3. The most common used one is the mixed angular and linear movement.

Almost every path was initially implemented with this movement approach.

Others have been used where optimization is needed to cover problems due

to the lack of encoders to control the position of the motors.

4.3 PWM Control

Motors are controlled by applying a PWM signal to the H-Bridges. In order

to control velocity we did not use any encoders, so we don’t have feedback

about the motor rotation, or the displacement achieved with the result of the

applied PWM. To have an odometry information without using encoders,

we decided to review and replicate the work done at AIRLab about using

the mice odometry to get feedback from the motors. On the previously

work, a set of mice were reconfigured to obtain the position information,

and calculations were made from these readings to find the odometry. The

working configuration was able get a feedback when the distance between

the mouse sensors and lens was about 1mm, and the distance between lens

and ground was also 1 mm, but this distance is too small for our robot. In

order to increase the distance to 3 cm which is the distance between the

ground and the chassis of the robot, we experimented changing the lens of

the mice.

The mice work like a camera, and the image is captured by the sensor

inside it through a lens placed in front of it. We tested lenses with different

focal lengths and different orientations in order to achieve the 3 cm con-

figuration. During the experiments, we obtained different performance on

different grounds and different lighting conditions. We tried several illumi-

nation alternatives, such as laser, led, and table lamp. We were able to find

the correct illumination using the led with a wave length readable from the

sensor. And for the lens we used a configuration with a focal length of 10

mm, leaving the distance between the lens and the sensor at 15 mm and

lens to ground at 30 mm. Instead of using encoders that each cost around

50 euro, the possible configuration costs around 5 euro, but the work is not

finished yet and we decided to include this on the robot later.

Since there is no information on the motor speed and displacement of

the robot, the control process mainly depends on vision, and it is not very

precise. There are situations where we cannot determine whether the motor

is moving. When the robot is stuck in a place and the sensors do not detect
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a collision, such as entrance of the wheels to a gap in the floor, since we don’t

have a feedback on the motors we cannot determine whether the motors are

turning.

The motors are controlled by PWM generated from the microcontroller.

To drive motors we used a PWM signal and varied the duty cycle to act as

a throttle: 100% duty cycle = full speed, 0% duty cycle = coast, 50% duty

cycle = half speed, etc. After some testing we realized that the percentage

of the duty cycle and the speed are not changing with the same ratio (e.g.

50% of the duty cycle does not correspond the half speed). Also there is a

minimum percentage of the duty cycle which the wheels start turning, and

a maximum percentage of the duty cycle at which the speed remains as full

speed after that. The minimum PWM value to start the motion is % 45 of

the duty cycle and the speed set to full speed after exceeding the % 90 of the

duty cycle which is the maximum PWM that can be applied. Since there is

a non-linear increase between the ratio of rotation of the motors and applied

PWM rather than a linear one, the speed changes are not distinguishable.

In other words, the range of PWM signal that enables movement is very

narrow and the difference between the minimum speed and maximum speed

is not very apparent.

The script that is calculating the motor contributions according to the

target position is not taking into account the motor’s maximum or mini-

mum speed. The script can return a motor contribution with 4000 mm/s or

3 mm/s which is cannot be performed physically by the motors. After some

experiments, to limit the script that calculates the motor contributions, we

decided to bound the PWM signal value to be applied to the motors. The

maximum PWM value defined for a motor is 2.5 meters/second and the

minimum PWM value is around 300 millimeters/second. Using both the

limits coming the physical characteristic of motor, and the PWM-rotation

limitations, we implemented a map that transforms the motor contribution

calculated by the script into a PWM signal. To do so, all the speeds between

2500 mm/s and 300 mm/s should be mapped to PWM signals between 45%

and 90% of duty cycle. Mapping 300 mm/s to the 45% and 2500 mm/s

to 90% did not resulted as expected since reflecting speed changes is not

possible.

In order to express most of the speeds, we decided to tune the PWM

sent to motors. Main idea is to bound to speeds in a dynamically changeable

manner. We introduced, a fuzzy-like behavior that is based on the robot’s
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distance to the target position. Each distance is divided by a constant, then

multiplied with the multiplier defined as FAST, NORMAL and CLOSE.

Then another constant which is the minimum value that can initiate the

motors movement is added. Hence, the mapping that each value set by the

PWM signal generates a motion, is achieved. The multipliers are defined

according to the distance of the robot to the target object. For the distances

between 1200 mm and greater, the corresponding multiplier is classified as

FAST, between 1200 mm and 750 mm the multiplier is NORMAL, and for

the distances between 750 mm and 300 mm it is CLOSE. By defining such

control mechanism as FAST, NORMAL, CLOSE we are able to create three

different speed limits for the motors, which are all mapped from 60% to 85%

of the duty cycle where the motion is visible. As an example case, when

the robot detects a target at 3 meters, the motor speeds will be set with

multiplier FAST until the distance to the target reaches 1.2 meters. When

reached to 1.2 meters, the motor speed will be set with multiplier NORMAL

until the detected target distance is less than 700 millimeters. And finally,

the motors speeds will be set with multiplier CLOSE from 700 mm until the

target is reached. This mechanism allows to achieve more precision in the

motion, since the mapping guarantees that each motor speed set by PWM

will generate a reasonable motion. Moreover, instead of trying to map all the

speeds uniquely, indeed we are trying to map only one third of the speeds,

from the predefined speed ranges to 60%-85% of the PWM value in the duty

cycle. Even though the robot goes to target with an unexpected path, the

path is corrected as the robot comes closer since the slow motor speeds are

more precise and easy to achieve.

Even though the solution is not working perfectly, the robot is able to

go to the target successfully almost every time. The travel time and number

of movements in order to reach the target are not optimal, but this result

should be regarded as normal since we are not using any encoder to detect

the movement in the motors.

The need for an optimization of the PWM signal is also related to the

result of the miscalculation of the required torque. We selected motors that

do not have enough torque power for our robot. This brought the problem

of the arrangement of the PWM signal in order to run the motors. Since

the motors have less torque than we expected, almost 50% of the PWM is

wasted. First trials to optimize this inefficiency have been made by chang-

ing the frequency of the PWM to a higher or a lower frequency, but these

trials did not give good results. Later, we found the proper configuration,
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mentioned previously, by limiting the minimum and maximum PWM values

of the motors and by introducing the fuzzy-like control to introduce differ-

ent limits for the different distances to target. Even though the lack of the

encoders reduced the performance, we were able to produce an acceptable

configuration.

Another step is initialization of the motors. The corresponding pins in

the microcontroller for the motors are set to control the direction of motors

and PWM generation. The PWM generation is made by using the timers

available in the microcontroller. Output compare mode of the timers is

used in order to create the PWM needed to run the motors. Output compare

function is used to control the output waveform and indicates when a period

of time has elapsed. When a match is found between the output compare

register and the counter, the output compare function:

• Assigns a value to pins

• Sets a flag in the status register

• Generates an interrupt

Using the described output comparison, we created the desired PWM

wave to run the motors. At, first the timer clock is set to 8 mHZ. Then

output compare register 1 is set for the desired motor speed as some per-

centage of the full period of the cycle. Output compare register 2 is set

to full cycle that will set the pin to HIGH, and update the desired motor

speed of the output compare register 1. When counter reaches the defined

value, the motor speeds will be updated and the pins will be reset. It will

remain LOW until output compare register 2 value (which is the full period)

is reached. Using that algorithm we generate the PWM signal to run the

motor. For each motor, we decided to use a separate timer, since the timers

are available to use and not needed by other applications. It is also possible

to use only one timer to generate the PWM’s for all the motors using the

interrupts and output compare registers, but we decided not to use like this

for the simplicity of the algorithm, since this will need a better synchroniza-

tion, and optimization to run efficiently.

The control of the servo that is changing the camera head pointing direc-

tion is also implemented using PWM signals. For the servo PWM, we don’t

have the problem of control that we faced with the motors. So, no tunings
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are implemented for this case, and the PWM creation is implemented sim-

ply as follows. The PWM which controls the servo position is implemented

with the first timer at with the motor. The period of PWM in first timer,

to control the motor, is divided by a constant in order to achieve a smaller

PWM period, which is around 2ms for the servo. The rest of the idea is the

same. The PWM is generated with the help of the output compare mode.

The servo position is initialized at the same time with the motors, then

the position is controlled calling the Position Camera(); function that can

take SERVO TOP, SERVO MID, SERVO BOTTOM as the different posi-

tions for the camera servo. Indeed this camera positions are used during the

vision inspection to reach the target and calculate the motor contribution

according the distance of the target object. 3 unique camera head position

are implemented using the visual feedback from the ST software, to find the

best configuration in terms of depth of field and field of view. If the target

is more far than 750 mm the camera position is set to SERVO TOP, which

can see the environment from 750 mm to robot up to 4-5 meters. If the

target is closer than 750 mm to robot, the camera head position is lowered

to SERVO MID, in order to provide a vision from robot boundary to 750

mm. The last position is implemented for testing reasons, and also provides

a ready configuration to set the camera head in any position.
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Vision

The vision system is focused on the implementation of the camera for object

detection and calculating the position of this object according to the robot.

To do so, the relation between different coordinate systems, which are image

plane coordinate system, robot coordinate system, and real world coordinate

system, should be defined. In order to go to the target, it is necessary to

know where the object is placed. Using the blob search algorithm, we ac-

quire the position of the object in the pixel coordinates. We need a mapping

between those three coordinates to command the movement. There are sev-

eral approaches to determine the object position according to the robot, as

mentioned in Chapter 2. Among those, we will use the one for the calibrated

cameras.

The rest of Chapter describes camera calibration, the script that calcu-

lates the transformation, color definition, and the script to define the color.

5.1 Camera Calibration

The initial step for the algorithm is to find the camera calibration. The

Camera Calibration Toolbox [2] is used to calculate the camera calibration

matrix that is necessary to find the projection between the world and image

points represented by homogeneous vectors. Normally, the object is placed

on the real world coordinate systems, and its position can be measured from

the origin. In order to find the distance of the camera plane to the object,

we need a transformation that maps the 3D points (for the object that is

assumed to place in ground, the point is a 2D point in world coordinates,

since height is 0 all the times) of the objects in the 3D world coordinates to
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the 2D points in the image plane coordinates. To find the transformation

matrix, we use the camera calibration matrix, calculated from Camera Cal-

ibration Toolbox [2]. In general, the Camera Calibration Toolbox works as

follows. The sample pictures of the checker board it taken by the camera in

order to calculate the camera matrix (Figure 5.1). By taking the pictures of

the checker board makes it possible to use the information of its dimensions

in order to calibrate the camera, by that the unknown parameters of the

camera can be calculated such as focal length, principal point, skew, radial

distortion, etc.

Figure 5.1: The images used in the camera calibration

In order to calculate the homography matrix, which makes the transfor-

mation of the points from camera coordinate to robot coordinate, we wrote

a script that makes the calculation for us. Having the camera calibration

matrix from the toolbox, the homography matrix (H) is calculated by the

script.

The whole camera calibration and the projection between the world

points and camera as explained in details as follows. The matrix K is called

the camera calibration matrix.

K =







fx px
fy py

1







where fx and fy represent the focal length of the camera in terms of pixel

dimensions in the x and y direction respectively. Similarly, px and py are
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the principal points in terms of pixel dimension.

x = K[I|0]Xcam

where Xcam as (X,Y,Z, 1)t to emphasize that the camera is assumed to be

located at the origin of a Euclidean coordinate system with the principal

axis of the camera point straight down the z-axis, and the point Xcam is

expressed in the camera coordinate system.

In general, points in the space will be expressed in terms of a different

Euclidean coordinate frame, known as the world coordinate frame. The two

frames are related via a rotation and a translation. The relation between

the two frames can be represented as follows:

x = KR[I| −C]X

where X is now in a world coordinate frame. This is the general map-

ping given by a pinhole camera (In Figure 5.2). A general pinhole camera,

P = KR[I| − C], has a 9 degrees of freedom: 3 for K, 3 for R, 3 for C.

The parameters contained in K are called internal camera parameters. The

parameters of R and C which relate the camera orientation and position to

a world coordinate system are called the external parameters. In a compact

form, the camera matrix is

P = K[R|t]

where t = −RC.

The camera matrix, which consists of internal and external camera pa-

rameters, is calculated by the camera calibration toolbox automatically.

Having the internal and external camera parameters from the toolbox, we

compute the homography H. Homography is an invertible transformation

from the real projective plane to the projective plane.

We developed two different approaches to determine the position of a

target according to the robot coordinates. In the first case, the target ob-

ject is a ball, and we are using the information coming from the diameter

of the ball. In this case, the transformation should be a 3D to 2D, since the

ball can be represented in world coordinates system with the X,Y,Z and in

the camera coordinates with two values X,Y. In the second case, we assume

that the target object is on the ground and we are using the information

coming from the intersection point of the object with the ground. This
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Figure 5.2: Perspective projection in a pinhole camera

means the object can be represented by a X,Y,Z position in the world co-

ordinate system, with Z=0. This reduces the transformation into a 2D-2D

transformation, and needs a new H matrix.

We need to calculate the transformation matrix between the robot and

camera (TR
C ) coordinates. The transformation matrix between world frame

and camera (TC
W ) coordinates is known from the external camera parameters.

The world frame to robot frame transformation matrix TR
W is calculated by

the target object position and robot center (shown in Figure 5.3). TR
C is

derived as follows:

TR
C = TR

W ∗ TW
C

For the ball localization case, the calculation is made for the pixel diam-

eter Dpx of the ball at known distance l and the real diameter Dball. For the

camera, we introduced a parameter f∗, to indicate the dimension of a unit

pixel, which is a statical parameter of the camera. Using this information,

the distance of the ball lnew can be calculated by counting the pixels of the

diameter of the ball Dpx and by multiplying this by f∗ .

f∗ =
l

Dball

∗Dpx

lnew =
f∗

Dpx

∗Dball

The next step is converting the direction from camera to the ball
−−−→
dcball
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Figure 5.3: Camera robot world space

into the direction vector, and its normalized vector
−−−−→
dcnorm in order to find

the direction from camera plane to the ball.

−−−→
dcball = K-1 ∗







u

v

1







−−−−→
dcnorm =

−−−→
dcball

|
−−−→
dcball|

From the direction
−−−−→
dcnorm and the line lnew, the point P c

ball that is 3D

homogeneous coordinates of the points with respect to camera.

P c
ball =

[

lnew ∗
−−−−→
dcnorm
1

]
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To calculate PR
ball which is 3D homogeneous coordinates of the point in

world, the transformation matrix camera to robot (TR
C ) is used.

PR
ball = TR

C ∗ PC
ball

The second configuration is for the object on the ground. This case is

simpler since it requires a 2 D to 2 D transformation. The transformation

between camera and robot is used again and the calculation is the same as

the previous configuration. The homography is defined for this case as:

H = K ∗ TC
R ∗











1 0 0

0 1 0

0 0 0

0 0 0











The third row of the matrix is all zeros since the we assume that the

object is at ground with Z=0, hence this reduces the mapping from 3D to 2D.

To calculate the object position Pobject, we will use the inverse homography

on the image point Pimage.

P object = H -1 ∗ P image.

Pobject is then normalized. The resulting point is the distance of the

robot to the target object. This information is later used to calculate the

motor contributions.

Among the mentioned approaches, we started with the first configura-

tion (for the ball). The idea was to detect a ball, no matter whether it is

on the ground or up in the air. We started by testing with a red ball, since

the color red, blue, green were initially defined for the camera. The results

were not sufficient to follow the ball for greater distances because of several

effects. One of them is related with the camera resolution. Normally the

camera can work with 160x120 resolution for the blob search. This does

not cause a problem if the ball is close to the camera, but as the ball goes

further from the camera, the ball represented in the image is getting smaller

and smaller. Due to the low-cost optics, at the worst case the ball becomes

1 pixel in the picture. Using only this pixel, it is impossible to detect the

ball. Even though, we can recognize the ball for some cases, in most of the

cases we cannot. Due to the low-cost optics, it is possible to have several

other 1 pixel size red blobs that are not our ball. In order to detect the ball,

inside the blob search algorithm we need to eliminate the blobs that are not

the ball we are searching.
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Later, in order to solve this problem, we came up increasing the size of

the ball. Again, this trial did not resulted as we expected, since when the

ball gets further from the robot, the diameter information is not reliable.

This results to calculate a wrong value of the ball position. In this trials, we

realized also the effects of the white balance and exposure compensation for

the color information. The camera tries to automatically adjust the color

information as the ball gets further from the light source. Since the blob

elimination is dependent on both the shape of the ball and the color of the

blob, the information changed by the camera results to definition of wrong

blob information. To clarify with an example, the ball shape is checked by

the circularity information calculated by the camera, but the whole ball is

not composed of the same color, since the light is affecting the color, so the

center can be more bright or the corner more dark etc. The camera with the

automatic setting of the white balance and exposure compensation tends to

change the color in order to have a better picture, but by doing so the color

temperature is changed. So the blob search eliminates the non-color points

as well as the non-shape objects and detects the ball in another shape, such

as an open rectangle. This whole change also results to a change of the

diameter of the ball and the distance information is not calculated correctly.

The diameter of the ball is a problematic issue due to the low-cost optics.

Instead, we decided to change our ball into a cylindric shape and assume

that the object will always be on the ground. This reduces the mapping to

a 2 D to 2 D mapping problem, since Z (the height) will be always zero.

Instead of calculating the diameter of the ball, we determine the distance be-

tween the end of the image and the intersection point of the object with the

ground. This distance is easier to measure, independently from the shape

of the object, and will always change as the object’s position changes in the

world. The mentioned mapping also makes easier the blob search, since it

is not very important to detect the object clearly as a cylindric. If we can

recognize some part of the object we can ensure that the object is more or

less close to the calculated point. This also gave us the flexibility for the

color information, since we do not have the obligation to detect all the object,

we can define a more generic color code that is working for most of the cases.

We used the second configuration in both camera positions. Even the

internal camera parameters are always same in our camera, the external

parameters are effected with a translation or rotation. Indeed, when the

camera head position is changed, it results with the usage of a H matrix for

each transformation.
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The whole algorithm and script is found in Object’s Position section in

Appendix B.2

5.2 Color Definition

The camera we are currently using has a UXGA resolution CMOS and it is

set to 160x120 resolution for the blob search algorithm. One major problem

is the blob search algorithm. The algorithm used inside is unknown and

this forced us to define color information very precisely, since we cannot

eliminate the non-object blobs easily. We can eliminate the problem only

by using the area, perimeter and the circularity information which, in case

the target is a ball, is not enough for most cases to track the blob. So this

makes the color definition important. The color is defined in a RGB Cube,

using RGB444 format, and it is not very clear to understand the correctness

of the defined color from the color codes. In order to ease this process, the

color selection is made by the ST software by selecting the desired color from

the image, or directly programming the rules if the color values are known.

Since the resolution is very low, the color consists of shadows, or existence

of blob not belonging to the searched object made us to improve the color

selection. The current ST software is sufficient to visualize the selected color

and test the blob search, but color definition is difficult since, in order to

define the color, the pixels should be selected one by one, is not possible

to select an area. Moreover, the rules (which is the additions and subtrac-

tions of the color codes to RGB Cube) found by the ST software are not

in the compact form (the same rule for a color can be added or subtracted

more than one). To improve the color selection, we decided to use an of-

fline calculator, that calculates the histogram for the selected object’s colors.

As a first step, we started by disabling automatic white balance and au-

tomatic exposure control. Before getting into the white balance, the concept

of color temperature needs to be introduced. Color temperature is just a

way of quantifying the color of light. It is measured in degrees Kelvin (K).

Normal daylight has a color temperature of around 6,500K. Warmer light

has a lower color temperature. The warm light that occurs late in the after-

noon might have a color temperature of around 4,000K. Cooler light has a

higher color temperature. The bluish light that sometimes occurs in twilight

periods of the day might have a color temperature of about 7,500K. So, our

concept of warm and cool light is tied directly to the color temperature. The
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warmer (yellow) the light, the lower the color temperature; the cooler the

light (blue), the higher the color temperature.

Color Temperature Light Source

1000-2000 K Candle light

2500-3500 K Tungsten Bulb (household variety)

3000-4000 K Sunrise/Sunset (clear sky)

4000-5000 K Fluorescent Lamps

5000-5500 K Electronic Flash

5000-6500 K Daylight with Clear Sky (sun overhead)

6500-8000 K Moderately Overcast Sky

9000-10000 K Shade or Heavily Overcast Sky

Color temperature is also important for cameras. The camera manufac-

turers knew that the color of the light would affect the colors delivered by

the camera. Therefore, they decided to deal with the problem by designing

the cameras to automatically measure the light temperature and to make

adjustments as the light changes color. That is why we can shoot in the rel-

atively neutral light with camera in the afternoon and then shoot the next

day in the cool light of early morning and still, probably, get reasonable

colors in both situations even though the color of the light was different.

Cameras correct for the change in light temperature, using white balance.

With auto white balance, the camera attempts to determine the color

temperature of the light, and automatically adjusts for that color tempera-

ture. Auto white balance works reasonably well under the following condi-

tions:

• The application does not require absolute maximum color accuracy

• There is not a preponderance of one color in the scene being pho-

tographed

• Adjustments for the color temperature of the light

As mentioned in the previous paragraph, in auto white balance mode, the

camera does its best to determine the color of the light and make appropriate

adjustments. However, the methodology that is used to do this requires

that certain assumptions be made. These assumptions do not always match

perfectly the scene being photographed. As a consequence, the auto white

balance option does not always yield perfect results. Accordingly, problems
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may occur using auto white balance when the conditions listed above are

violated. Therefore, auto white balance may not be a good choice if:

• Absolute color accuracy is required

• There is a lot of one color in the scene: The preponderance of one

color can fool the auto white balance function into assuming that the

light has a lot of that color in it. This can result in an incorrect white

balance and a color cast.

• No adjustments made for the temperature of the light wanted: In

certain cases, the color of the light is what makes the photograph. A

sunset is an example. Without the rich, warm colors of the light, a

sunset just isn’t a sunset. Auto white balance may attempt to make

adjustments to correct for the warm color of the sunset light. This

would produce an image with less saturated colors or colors that were

different than what has been seen.

The camera we are using supports different settings for the balance. These

are:

• OFF - No White balance, all gains will be unity in this mode

• AUTOMATIC - Automatic mode, relative step is computed here

• MANUAL RGB - User manual mode, gains are applied manually

• DAYLIGHT PRESET - DAYLIGHT and all the modes below, fixed

value of gains are applied here.

• TUNGSTEN PRESET

• FLUORESCENT PRESET

• HORIZON PRESET

• MANUAL color TEMP

• FLASHGUN PRESET

Among the possible options, we set the white balance OFF. Because, in

the application we require absolute color accuracy and we don’t want the

camera to change the temperature of the color since we want to detect the

target with a constant color parameter defined using the samples we took.
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Another automatic adjustment can be done on exposure. Subjects lighter

than middle gray, such as a white china plate, reflect more than 18% of the

light falling on them. The exposure system doesn’t know that the scene

should look bright, so it calculates an exposure that produces a middle gray

image that is too dark. Subjects that are darker than middle gray such as

black cloth, reflect less than 18% of the light falling on them. The exposure

system calculates an exposure that makes the image middle gray and too

light.

The contrast or difference in brightness between the subject and the

background can fool an exposure system, particularly if the subject occu-

pies a relatively small part of the scene compared to the background. The

brightness of the background is so predominant that the automatic exposure

system adjusts the exposure to render the overall brightness as a middle gray.

If the main subject is lighter than the background, it will be overexposed

and too light. If it’s darker than the background, it will be underexposed

and too dark.

Depending on the arrangement of the lighting, some subjects may be

too contrasty with brightly lit highlights and deep shadows. The range of

brightness may exceed the range that can be captured by the camera. In

these cases adjustments should be made in the lights to balance out the

light and to lower the contrast. However, deciding whether the highlight or

shadow areas are most important for the final picture, the exposure setting

should be made appropriately.

The perfect exposure retains details in both the highlights and shadows.

For the auto exposure system, this is as difficult. If there is even a little too

much exposure, the image is too light and details are lost in the highlights.

If there is too little exposure, the image is too dark and details are lost in

the shadows.

When confronted with any subject lighter or darker than middle gray,

exposure compensation is used to lighten or darken the photograph that the

camera would otherwise produce.

To lighten a picture, the exposure is increased. This is useful for setups

where the background is much lighter than the subject, or when photograph-

ing very light objects, such as white china on a white tablecloth. To darken

an image, the exposure is decreased. This is useful for setups where the
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background is much darker than the subject, or when photographing very

dark objects, such as black china on a black tablecloth.

From the parameters available in our camera we disabled the automatic

exposure by setting DIRECT MANUAL MODE, in which the exposure pa-

rameters are input directly and not calculated by the camera. We don’t

want the camera automatically adjust the exposure, since this will cause to

lighten or darken the picture dynamically. Instead by setting the exposure

directly to a constant value, we ensure that the picture will remain with the

same enlightenment, together with the target we are searching for.

After setting the white balance and exposure compensation, we took

sample images (Figure 5.4) in order to define selected object’s color using

the script.

Figure 5.4: Samples are taken from different lighting conditions and different distance

to the target object

After acquiring the samples, the next step is creation of the histogram,

to find the distribution of the RGB values in the target object’s color. The

histogram created is shown in Figure 5.5.

An image histogram is a type of histogram that acts as a graphical repre-

sentation of the color distribution in a digital image. It plots the number of

pixels for each color value. By looking at the histogram for a specific image,
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Figure 5.5: The histogram formed from the samples taken for each color channel.

a viewer will be able to judge the entire color distribution at a glance. For

this we wrote a script in Matlab. We took as many samples as we could from

the environment where the object is placed in different lighting conditions.

From the sample images captured, the part with the object is cropped

(area with the target color) in order to find the color distribution of the

pixels forming the object.

(a) Mask R (b) Mask G (c) Mask B

Figure 5.6: The mask for each channel by setting the upper and lower bounds.

From that histograms we create the masks (Figure 5.6), by finding the

upper bounds and lower bounds for each color channel. As a final step we

create the total mask, that is returning the target object’s color boundaries
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in a form that can be converted into the rules. The result of the color selec-

tion script, with the original picture is shown in Figure 5.7.

(a) Mask to be Applied (b) Orginal Picture

Figure 5.7: The mask applied to the orginal picture.

The boundaries found for the object are converted into rules, that will

add or subtract the color from the RGB Cube. The rules are checked by

color selection program, provided with the ST software coming with the

camera. The script can be found in Appendix B.1 in Color Histogram Cal-

culator. Using both the color selecting program and an offline Matlab script,

we have been able to define the color in a more precise way, and improved

the results for object detection. But the results diverged as the lighting

conditions change in the environment. For example the laboratory where

we have performed tests is exposed to direct sunlight in the morning, while

in the afternoon it is not. We introduced different configurations for the

same color, to avoid the need for sampling of the previously defined color.

By controlling the color before each run manually and recalculating when

necessary resulted a stable solution to the problem.

5.3 Tracking

The final working configuration of the object detection is made by solving

the problems described previously. We can explain these in three titles.

First one is finding the correct color information. We start by disabling the

automatic white balance and automatic exposure compensation. This allows

us to have the color as it is seen directly from the camera, by not adjusting



5.3. Tracking 65

any color values. It means, if the object is exposed to light, the parts that

are exposed to light are not considered as white but a tone of target color,

similarly with the previous configuration the dark pixel such as the parts in

the shadow are considered as black, but with the new configuration they are

also considered as a tone of the target color.

Second step is calculation of the color information in a better way. Pre-

viously, we calculated the information by ST color picker software. With

this software we select the color region we want to assume as the blob color.

The problem of this approach is that the blob may not consists of a single

rule (RGB color code). Some parts of the object are darker, some parts

are lighter. Also with the distance, the color that is composing the object

is changing. Additionally, the colors that are not considered as red, blue,

green, represented again as rules (RGB color codes) and it is not possible to

understand by just looking at the color code whether it is the correct color

coding or not. These makes it very difficult to determine the color with the

ST color picker software. Instead, we decided to find the color histogram

that is the distribution of the selected color properly in the RGB channels

separately. To do so, we took several samples from the camera, in different

distances, in different illuminations to find a proper average. The calculated

results are later tested with the ST color picker software, since it offers a

good interface to see whether the color is selected correct or not, in a visual

way.

The third step is related to the estimation of the objects distance to the

robot. As mentioned before, the diameter of the ball is a problematic issue

due to the low-cost optics, hence we decided to use an object with cylindric

shape, and the second configuration for the transformation. This distance

is easier to measure, independently from the shape of the object, and will

always change as the object’s position changes in the world.

During the implementation to the microcontroller to increase the perfor-

mance, we tried to avoid matrix and floating point operations. The matrices

that can be defined statically are defined statically. To avoid floating point

operations, the floating points are converted into integer, then multiplied by

a constant (most of the times 1000). The operations are made in integer,

and the result is returned as floating point by dividing with the constant.

We ensure that the microcontroller will not spend too much time in matrix

and floating point operations, using this approach.
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Chapter 6

Game

The robot will be used as a testbed to develop robogames. As a testbed a

simple game is implemented, using almost all the components available on

the robot. The game is used also to verify the correctness of the solutions

implemented. We created a simple game to test the robot. Basically, the

robot has to go to several targets in a sequence, by avoiding obstacles, until

the final target is acquired.

The game flow can be expressed in a better way with an algorithmic

approach. The class diagram is shown in Appendix A.1 and the flow dia-

gram in Appendix A.2. The microcontroller starts by controlling the game

end status. The game end status is composed of conditions. First, it checks

whether the target is acquired. If it is acquired then it also checks whether

this is the last target and ends the game by staying at the current position.

If it is not the last target, the algorithm steps from the game status check

phase and continues the search. Before performing any other operation the

collision status is controlled. If a collision is detected, a proper command is

sent to motors to get rid of the obstacle.

The next step is blob search, and blob tracing. The camera searches for

the target at its vision side. If no blob is found, the robot performs a turn

around its center of rotation until a blob is found or a collision detected.

Normally, the collision should not be controlled for the turn around the

center of rotation but, as we discussed previously, we cannot guarantee the

correctness of the movement since we lack encoders for the motors. When a

blob is found, the first step is checking the color information of blob, since

the difference between targets is made by the color information. If the cor-
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rect target is found, we calculate the distance of the object from the robot.

According to the distance found, the motor contributions are calculated and

the robot starts going to the target.

We introduced two different camera head positions. At the start the

camera is always set at the normal position (which can see the environment

from 750 mm from the robot up to 4-5 meters). According to the result

of the distance calculated at the previous step, the camera head position

maybe be lowered in order to detect and go to the target in the next step.

The target is set as acquired when the distance between the robot and the

target is below a certain threshold. The whole algorithm we can be seen in

Appendix A A.2 in a clear way.

The software that is running the robot is working on-board, on the mi-

crocontroller. The software is divided into sub-modules in order to ease

the development of the process. In this section, we will give the details of

the software, introducing the sub-modules, supporting with the diagrams.

The software is composed of low-level and high-level modules. The low-

level modules are the assembly code that is coming with the ST tool-chain,

which already defines the registers, memory mappings, all the communica-

tions with the chips. We did not concentrate on the assembly code; all the

written software implements the high level part.

The development mainly focused on the generation of PWM using timers,

initialization of components, algorithms and utilities. Like all the microcon-

troller programs the core runs in the main loop. Before entering the main

loop we initialize all the components first. Initialization is made step by

step as follows:

• Configure the system clocks

• Configure the GPIO ports

• Configure x24 Camera

• Configure the USB

• Initialize camera parameters

• Initialize motors

• Set initial camera position
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• Initialize sensors

• Initialize the blob search and color parameters

In order to initialize the camera, the RGB Cube which contains the color

information and BlobSearch are initialized. We also set the automatic white

balance to off and exposure control to direct manual mode. The appropriate

parameters for the image format, frame rate, sensor mode and clock are set

for the blob search at this point.

The second step is initialization of the motors. The corresponding pins in

the microcontroller for the motors are set to control the direction of motors

and PWM generation. The PWM generation is made by using the timers

were available in the microcontroller. Output compare mode of the timers

used in order to create the PWM needed to run the motors. Output compare

function is used to control the output waveform and indicate when a period

of time has elapsed. When a match is found between the output compare

register and the counter, the output compare function:

• Assigns a value to pins

• Sets a flag in the status register

• Generates an interrupt

Using the described output comparison, we created the desired PWM

wave to run the motors and camera servo.

The sensors, which are the bumpers for the current state of the robot,

are initialized by setting the corresponding pins in the microcontroller.

As a final step in the initialization, the blob search and color parame-

ters are set. The blob search parameters, which are grid size, top, bottom,

left and right borders of the image are defined. Similarly the blob search

geometry options are defined, which are the color id, minimum-maximum

area of the blob, minimum-maximum circularity of the blob and minimum-

maximum perimeter of the blob. For each color, the blob search geometry

options should be defined separately with the proper coding.

Lastly, the color information should be defined for each color we are

searching. The color information is calculated either by the ST color picker
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software or from the Matlab script taking samples from the environment in

order to calculate the histogram to find the correct color coding. The color

values found from the Matlab script should be tested with the ST color

picker software in order to check the correctness of the results.

After the initialization phase completed, the main control loop starts.

Before entering the main control loop, the parameters, such as search direction,

game end, color done, blob found etc., that are going to be used locally in-

side the main loop are set to initial values. The main loop starts by reading

the values of the sensor data. Later, the ’color done’ status, which is con-

trolling the target acquired condition. Initially, it is set as ’FALSE’, since

the camera did not acquire any images. Before capturing any image, the

’control hit’ is checked to detect and clear the hit. Until no collision is

detected, the capturing of the images will not start. After the capturing is

complete, the blobs found with the correct color, if any, are sorted according

to the their area, and the one with the maximum area is set as ’myBlob’.

If no blob found in this step, ’myBlob’ is set to -1 to indicate no blob is

found within constraints. The sign of the ’myBlob’ is controlled to check

whether a blob is found or not. If no blob is found, ’blob found’ or ’counter’

status is checked. This part is implemented so that to decrease the number

of turns, for each time a blob is not found. Having the ’counter’ less then

3, we increment the counter, and do not perform any turns. In the case

the ’counter’ is greater than 3 or ’blob found=FALSE’, we perform a turn

around the center, and set the ’blob found=FALSE’. That mechanism en-

abled us to detect a target, that was not detected even if it is on side. Even

if the target is on side and it is not detected for 3 times, we perform the

turn. To process blob, in ’myBlob’ parameter, the first step is controlling

the camera position. Depending to the camera position, the position of the

target in real world is calculated. The motor contributions are calculated

using ’Triskar’ function. According to the calculated position of the target

the following cases is executed. If the camera is set to SERVO TOP and the

distance of the robot to the target is:

• Greater than 1200 mm.

The motor speeds from Triskar are set with multiplier FAST

• Between 1200 mm and 700 mm.

The motor speeds from Triskar are set with multiplier NORMAL

• Less than 700 mm.

The camera head position is changed to SERVO MID



71

If the camera is set to SERVO MID, the position of the target is cal-

culated with ’CalculatePositionGround’ function. The motor contributions

are calculated using ’Triskar’ function, and the motor speeds from ’Triskar’

are set with multiplier CLOSE. If the distance of the robot to target is less

than 300 mm, the target is marked as acquired by setting ’color done =

TRUE’.

The detection of target acquired and game-over is done by controlling

’color done’ on every loop. When the ’color done’ is set as ’TRUE’, the

camera head position is set to SERVO TOP, ’color done’ and ’blob found’

are flagged as ’FALSE’, and color is incremented by 1. Since the current

configuration is working with 2 colors, the case where ’color > 2’ is con-

trolled for the game-over case. For that case, we introduced a variable as

’reply counter’, which sets the number of replies/rounds to end the game.

In the code, this variable is set as 5, that made the game to find and go to

the targets 5 times, in the same color order defined. The work flow in the

main loop is shown in Appendix A.2.

The class diagram that is showing the relation between the modules

is reported in Appendix A A.1. We increased the modularity of the pro-

gram by separating the code to improve reuse; breaking a large system into

modules, makes the system easier to understand. By understanding the be-

haviors contained within a module, and the dependencies that exist between

modules, it’s easier to identify and assess the ramification of change. We

used the naming convention Init for initialization classes, functions. The

algorithm are implemented inside the Motion and Vision classes. The mo-

tion algorithm is implemented by porting the software simulator previously

written to the microcontroller. The vision algorithms are also implemented

in a similar manner. The camera calibration calculating the position of the

object was previously implemented in a Matlab script. Later, the script has

been ported to the microcontroller.

The rest of the implementation not mentioned above, focuses on pin

assignments (in Appendix D.3), definitions of the constants, creation of the

header files.
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Chapter 7

Conclusions and Future

Work

After the tests performed, proper modifications have been implemented to

solve the detected problems discussed previously. At last, we have been able

to obtain a working robot, satisfying most of the constraints defined at the

beginning. The robot dimensions are more or less same with the designed

dimensions. Even though, we don’t have a proper method to measure the

robot’s maximum speed, the maximum speed achieved by the robot is fast

enough as expected. The obstacle avoiding is implemented with bumpers,

and supported with foams and springs. The camera head is placed on a

servo, can be moved up and down. The fully charged batteries provide

enough power to move the robot for at least 2 hours. It is difficult to es-

timate the total price of the robot. The camera board that is used, is not

available in the market, and the total cost of the components in camera board

might be misleading to determine the cost of the camera board. Moreover,

for the other components, the prices show differences as the order quantity

changes. In conclusion, the final price might match the cost constraint 250

euro.

The robot is fully working autonomously, playing the designed game

without any interruption. The game is finding the predefined colored ob-

jects and going to them in the defined order. We tested the game with

two objects colored in orange and green. More colors and objects can be

introduced easily following the steps indicated in Appendix C. The color

detection must be made with the color calculator script and must be tested

with the ST color picker software. In order to have stable performance, it
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is advised to check the colors before each run, since the illumination of the

environment can change the color interpretation. We defined two different

configurations for each color, one for the sunny day, the other for the cloudy

day, both are working at our testing environment.

In order to solve the problems related to vision, color selection script,

a custom white balance and an auto exposure is used to improve the be-

havior of the system affected by low cost vision. The problems arisen from

the motor control is solved by limiting the minimum and maximum PWM

values of the motors and by introducing the fuzzy-like control to introduce

different limits for the different distances to target. The use of these tun-

ings and optimizations enabled us to select low cost components, which are

performing enough well to develop a robot framework that will be used as

a basis to implementing different robogames.

As for the future developments, we plan two additions. The first one it

is the development of a dock station and implementation of the autonomous

charging behavior. The circuit to measure the battery level is already op-

erational. The software to check the battery level and then go to the dock

station must be implemented.

The second addition is the mice boards that we are going to use as

odometers. Experiments have been made to modify the previous work done

at AIRLab, using the mice as an odometry device. We have not been able

to design the working prototype, and the control circuit that calculates the

position information from the mice yet. Previously, the position informa-

tion was calculated with a PIC and a PC. The new design will work on the

ARM microprocessor, and the interface between the camera board and mice

should be designed and implemented.

The third addition is the self adaptation of the robot to battery charge

level. Using the output of battery monitoring circuit, the battery level can

be measured. These measurements are going to used in the implementation

to detect the battery level and change the speed multipliers to keep the

robot in the same speed, even if the battery level is going low. Also, the

robot is going to adapt itself to make the decision of going to the docking

station for reaching, when a low battery status detected.

Implementation of the future developments will result to have a better

control in motion mechanism and introduce more autonomous robot behav-
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ior, which will be useful in the research line to develop more interesting

robogames.
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Appendix A

Documentation of the

project logic

Documentation of the logical design which is documenting the logical de-

sign of the system and the design of SW. This appendix shows the logical

architecture implemented
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Figure A.1: The class diagram of the most used classes
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Figure A.2: The flow diagram of the game algorithm
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Appendix B

Documentation of the

programming

The microprocessor code, the scripts and other helper tools that are used

during the implementation, are included here.

B.1 Microprocessor Code

————–main.c——————

/* ******************* (C) COPYRIGHT 2007 STMicroelectronics ********************

* File Name : main .c

* Author : AST Robotics group

* Date First Issued : 11 May 2007 : Version 1.0

* Description : Main program body

********************************************************************************

* History :

* 28 May 2007 : Version 1.2

* 11 May 2007 : Version 1.0

********************************************************************************

* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS

* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME .

* AS A RESULT , STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT ,

* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE

* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING

* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS .

*******************************************************************************/

/* Includes ------------------------------------------------------------------*/

#include "91 x_lib.h"

#include "definitions .h"

#include "CamInt_x24 .h"
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#include "utils.h"

#include "math .h"

#include "usb_lib.h"

#include "usb_conf .h"

#include "usb_prop .h"

#include "usb_pwr.h"

#include "usb_config .h"

#include "definitionsLib .h"

#include "Misc .h"

#include "Camera_Init .h"

#include "Motor_Init .h"

#include "blobsearch .h"

/* Private typedef -----------------------------------------------------------*/

/* Private define ------------------------------------------------------------*/

/* Private macro -------------------------------------------------------------*/

/* Private variables ---------------------------------------------------------*/

extern u8 control_hit ;

/* Private function prototypes -----------------------------------------------*/

void SCU_Configuration (void );

void USB_Configuration (void );

void GPIO_Configuration (void );

/* Private functions ---------------------------------------------------------*/

/* ******************************************************************************

* Function Name : main

* Description : Main program

* Input : None

* Output : None

* Return : None

*******************************************************************************/

int main(void ) {

#ifdef DEBUG

debug();

#endif

/* Configure the system clocks */

SCU_Configuration ();

/* Configure the GPIO ports */

GPIO_Configuration ();

/* Configure x24 Camera */

x24_HwConfig (8000000);

x24_SendPatches ();
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/* Configure the USB */

USB_Configuration ();

USB_Init ();

LED_ON(LEDR );

MSDelay (200);

LED_OFF(LEDR );

MSDelay (200);

LED_ON(LEDR );

MSDelay (200);

LED_OFF(LEDR );

MSDelay (200);

LED_ON(LEDR );

MSDelay (200);

LED_OFF(LEDR );

/* To initialize camera parameters */

Init_Cam ();

/* To initialize motors , configure pins and PWM values */

Init_Motors ();

/* To arrange camera head position

* available position SERVO_TOP ,SERVO_MID ,SERVO_BOTTOM

* */

Position_Camera (SERVO_TOP );

/* To initialize bumpers , and configure pins */

Init_Bumpers ();

MSDelay (2000);

/* To define blob color & geometry */

Init_BlobParameters ();

/* the initial values */

bool search_direction = TRUE ;

u8 game_end = 0;

bool blob_found = FALSE;

bool color_done = FALSE;

u8 cam_position = SERVO_TOP ;

u8 counter = 0;

u8 color = 1;

s16 speed [3];

u8 replay_counter = 0;

while (1) {

/* reading the bumpers values */

u8 check_bumpers [6] = { 0 };

Bumpers( check_bumpers );

/*to blink led*/

Led_SM ();

/* controlling whether the first target acquired */
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if (color_done == TRUE) {

/* to check whether game_end satified */

Stop_Motor (3);

MSDelay (100);

cam_position = SERVO_TOP ;

Position_Camera (SERVO_TOP );

color++;

color_done = FALSE;

blob_found = FALSE;

if (color > 2) {

if ( replay_counter < 5) {

replay_counter ++;

color = 1;

} else {

Stop_Motor (3);

while (1)

;

}

}

} else { // else of color_1_done

if (control_hit == 1) { // checking collision

//do something

if ( check_bumpers [0] == 1

|| check_bumpers [4] == 1

|| check_bumpers [3] == 1

|| check_bumpers [5] == 1)// hit front

{//go back

speed[0] = 1000;

speed[1] = -1000;

speed[2] = 0;

Set_Speed (speed , NORMAL );

MSDelay (100);

} else if (check_bumpers [1] == 1) //hit right

{//go left

speed[0] = -750;

speed[1] = -750;

speed[2] = 1200;

Set_Speed (speed , NORMAL );

MSDelay (100);

} else if (check_bumpers [2] == 1) //hit left

{//go right

speed[0] = 750;

speed[1] = 750;

speed[2] = -1200;

Set_Speed (speed , NORMAL );

MSDelay (100);

}
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#ifdef NO_DEBUG

Print_Int (speed[0],"b1 motor send :");

Print_Int (speed[1],"b2 motor send :");

Print_Int (speed[2],"b3 motor send :");

#endif

} else { // control hit else

#ifdef NO_DEBUG

Print_Int (control_hit ,"hit?");

#endif

Blob_Search ();

#ifdef NO_DEBUG

Print_Int (BlobCount ," blobs found ...\ n");

#endif

TPoint n_point ;

u8 k;

s8 myBlob;

s16 maxArea ;

maxArea = 0;

myBlob = -1;

/*

* among the available blob the blob with the

* biggest size is selected as the blob

*/

for (k = 0; k < BlobCount ; k++) {

if (Blobs[k]. ColorSetID == color) {

if (maxArea < Blobs[k]. Area ) {

maxArea = Blobs[k]. Area ;

myBlob = k;

}

}

}

//if(BlobCount == 0){

if (myBlob < 0) {

// random search

#ifdef NO_DEBUG

USB_WriteString ("Searching  for a blob ...\ n");

#endif

/* in order to prevent continue turning to search for blob

* counter introduced .

*/

if (blob_found == TRUE) {

counter ++;

} else if (counter > 3 || blob_found

== FALSE) {

/* search_direction changes the turning side to left to

* right or vice versa
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*/

if ( search_direction == TRUE ) {

Turn (RIGHT);

} else {

Turn (LEFT );

}

blob_found = FALSE;

}

} else {

/*

* search direction is reversed

*/

search_direction = ! search_direction ;

/*

* controlling if the blob is with the correct color

*/

blob_found = TRUE ;

counter = 0;

n_point.X = Blobs[myBlob ]. Centroid .X;

n_point.Y

= Blobs[myBlob ]. OuterBox .Bottom;

s16 position [3];

/*

* for different camera positions different

* calibrations and motion mechanism is used

*/

if (cam_position == SERVO_TOP ) {

CalculatePositionTop (n_point ,

position );

#ifdef NO_DEBUG

Print_Int (n_point.X,"X in cam coordinates ");

Print_Int (n_point.Y,"Y in cam coordinates ");

Print_Int (position [0],"X in real  coordinates ");

Print_Int (position [1],"Y in real  coordinates ");

#endif

double alpha = 0;

alpha = atan2(position [1],

position [0]);

s8 omega_modifid = alpha * 100;

Triskar(position , omega_modifid ,

speed);

if (Abs( position [0]) > 1200) {

speed[2] = speed [2] / 2;

Set_Speed (speed , FAR );

} else if (Abs(position [0]) > 700) {
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Set_Speed (speed , NORMAL );

} else {

cam_position = SERVO_MID ;

Position_Camera (SERVO_MID );

}

#ifdef NO_DEBUG

Print_Int (speed[0],"1 motor send :");

Print_Int (speed[1],"2 motor send :");

Print_Int (speed[2],"3 motor send :");

#endif

}// servo_top

else {// servo_mid

CalculatePositionGround(n_point ,

position );

double alpha = 0;

alpha = atan2(position [1],

position [0]);

s8 omega_modifid = alpha * 100;

Triskar(position , omega_modifid ,

speed);

speed[2] = speed [2] / 2;

Set_Speed (speed , CLOSE);

if (n_point .Y > 115) {

color_done = TRUE ;

}

}

}// blob

}// else of control hit

}

}

}

/* ******************************************************************************

* Function Name : SCU_Configuration

* Description : Configures the system clocks.

* Input : None

* Output : None

* Return : None

*******************************************************************************/

void SCU_Configuration (void ) {

/* Initialize PLL */

SCU_MCLKSourceConfig ( SCU_MCLK_OSC );

SCU_FMICLKDivisorConfig(SCU_FMICLK_Div1 );

FMI_Config (FMI_READ_WAIT_STATE_2 ,

FMI_WRITE_WAIT_STATE_0 , FMI_PWD_ENABLE ,

FMI_LVD_ENABLE , FMI_FREQ_HIGH );
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SCU_RCLKDivisorConfig ( SCU_RCLK_Div1 );

SCU_HCLKDivisorConfig ( SCU_HCLK_Div1 );

SCU_PCLKDivisorConfig ( SCU_PCLK_Div2 );

SCU_BRCLKDivisorConfig( SCU_BRCLK_Div1 );

SCU_PLLFactorsConfig (192, 25, 2); /* PLL = 96 MHz */

SCU_PLLCmd (ENABLE ); /* PLL Enabled */

SCU_MCLKSourceConfig ( SCU_MCLK_PLL ); /* MCLK = PLL */

SCU_PFQBCCmd (ENABLE );

/* Enable GPIO 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Clocks */

SCU_APBPeriphClockConfig(__GPIO0 , ENABLE );

GPIO_DeInit (GPIO0);

SCU_APBPeriphClockConfig(__GPIO1 , ENABLE );

GPIO_DeInit (GPIO1);

SCU_APBPeriphClockConfig(__GPIO2 , ENABLE );

GPIO_DeInit (GPIO2);

SCU_APBPeriphClockConfig(__GPIO3 , ENABLE );

GPIO_DeInit (GPIO3);

SCU_APBPeriphClockConfig(__GPIO4 , ENABLE );

GPIO_DeInit (GPIO4);

SCU_APBPeriphClockConfig(__GPIO5 , ENABLE );

GPIO_DeInit (GPIO5);

SCU_APBPeriphClockConfig(__GPIO6 , ENABLE );

GPIO_DeInit (GPIO6);

SCU_APBPeriphClockConfig(__GPIO7 , ENABLE );

GPIO_DeInit (GPIO7);

SCU_APBPeriphClockConfig(__GPIO8 , ENABLE );

GPIO_DeInit (GPIO8);

SCU_APBPeriphClockConfig(__GPIO9 , ENABLE );

GPIO_DeInit (GPIO9);

/* Enable VIC clock */

SCU_AHBPeriphClockConfig(__VIC , ENABLE );

VIC_DeInit ();

/* Enable WIU clock */

SCU_APBPeriphClockConfig(__WIU , ENABLE );

WIU_DeInit ();

/* Enable WIU clock */

SCU_APBPeriphClockConfig(__I2C0 , ENABLE );

/* Enable DMA clock */

SCU_AHBPeriphClockConfig(__DMA , ENABLE );

DMA_DeInit ();

/* Enable TIM0123 clock */

SCU_APBPeriphClockConfig(__TIM01 , ENABLE );
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TIM_DeInit (TIM0 );

TIM_DeInit (TIM1 );

SCU_APBPeriphClockConfig(__TIM23 , ENABLE );

TIM_DeInit (TIM2 );

TIM_DeInit (TIM3 );

SCU_TIMPresConfig (SCU_TIM01 , 4800); // ~10 KHz

SCU_TIMExtCLKCmd (SCU_TIM01 , DISABLE ); // Disable external pin

SCU_TIMPresConfig (SCU_TIM23 , 4800); // ~10 KHz

SCU_TIMExtCLKCmd (SCU_TIM23 , DISABLE ); // Disable external pin

SCU_APBPeriphClockConfig(__I2C0 , ENABLE );

I2C_DeInit (I2C0 );

SCU_AHBPeriphClockConfig(__FMI , ENABLE );

SCU_AHBPeriphReset (__FMI , DISABLE );

}

/* ******************************************************************************

* Function Name : USB_Configuration

* Description : Configures the USB

* Input : None

* Output : None

* Return : None

*******************************************************************************/

void USB_Configuration (void ) {

GPIO_InitTypeDef GPIO_InitStructure ;

/* USB clock = MCLK /2 = 48 MHz */

SCU_USBCLKConfig ( SCU_USBCLK_MCLK2 );

/* Enable USB clock */

SCU_AHBPeriphClockConfig(__USB , ENABLE );

SCU_AHBPeriphReset (__USB , DISABLE );

SCU_AHBPeriphClockConfig(__USB48M , ENABLE );

/* Configure USB D+ PullUp pin */

GPIO_StructInit (& GPIO_InitStructure );

GPIO_InitStructure . GPIO_Direction = GPIO_PinOutput ;

GPIO_InitStructure .GPIO_Pin = USB_Dp_PullUp_GPIOx_Pin;

GPIO_InitStructure .GPIO_Type = GPIO_Type_OpenCollector;// GPIO_Type_PushPull ;

GPIO_InitStructure . GPIO_Alternate = GPIO_OutputAlt1 ;

GPIO_Init (USB_Dp_PullUp_GPIO , & GPIO_InitStructure );

USB_Dp_PullUp_OFF ();

MSDelay (100);

USB_Dp_PullUp_ON ();

USB_endPointConf ();

VIC_Config (USBLP_ITLine , VIC_IRQ , USB_Priority );

VIC_ITCmd (USBLP_ITLine , ENABLE );
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}

/* ******************************************************************************

* Function Name : GPIO_Configuration

* Description : Configures the different GPIO ports.

* Input : None

* Output : None

* Return : None

*******************************************************************************/

void GPIO_Configuration (void ) {

GPIO_InitTypeDef GPIO_InitStructure ;

/* Configure LEDR */

GPIO_StructInit (& GPIO_InitStructure );

GPIO_InitStructure . GPIO_Direction = GPIO_PinOutput ;

GPIO_InitStructure .GPIO_Pin = LEDR_GPIOx_Pin ;

GPIO_InitStructure .GPIO_Type = GPIO_Type_PushPull ;

GPIO_InitStructure . GPIO_Alternate = GPIO_OutputAlt1 ;

GPIO_Init (LEDR_GPIO , & GPIO_InitStructure );

/* Configure MY_GPIO */

GPIO_StructInit (& GPIO_InitStructure );

GPIO_InitStructure . GPIO_Direction = GPIO_PinOutput ;

GPIO_InitStructure .GPIO_Pin = MY_GPIOx_Pin ;

GPIO_InitStructure .GPIO_Type = GPIO_Type_PushPull ;

GPIO_InitStructure . GPIO_Alternate = GPIO_OutputAlt1 ;

GPIO_Init (MY_GPIO , & GPIO_InitStructure );

}

/* ****************** (C) COPYRIGHT 2007 STMicroelectronics ***** END OF FILE *** */

————–Camera Init.h.——————

/*

* Camera_Init .h

*

* Created on: Jan 19, 2011

* Author: Administrator

*/

#ifndef CAMERA_INIT_H_

#define CAMERA_INIT_H_

/* Includes ------------------------------------------------------------------*/

#include "91 x_lib.h"

#include "CamInt_x24 .h"

/* Exported types ------------------------------------------------------------*/
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/* Exported constants --------------------------------------------------------*/

/* Module private variables --------------------------------------------------*/

extern u8 *pImgBufferData ;

extern u32 BufferSize ;

extern u8 CamState ; // 0: Uniitialized , 1: Running , 2: Paused

extern Tx24_ImgJob * CompletedJob ;

/* Exported macro ------------------------------------------------------------*/

/* Private functions ---------------------------------------------------------*/

/* Exported functions ------------------------------------------------------- */

void Init_Cam (void );

void GetCompletedJob (void );

void CameraSetParam (u8 ImgFormat , u16 Width , u16 Height ,

u8 Framerate , u8 SensorMode , u8 HalfSysClock ,

u8 JpegCompr , u8 JpegDerat );

void Init_BlobParameters (void );

#endif /* CAMERA_INIT_H_ */

————–Camera Init.c.——————

/* Standard include ----------------------------------------------------------*/

#include "91 x_map.h"

#include "utils.h"

#include "definitions .h"

#include "definitionsLib .h"

#include "CamInt_x24 .h"

#include "usb_lib.h"

#include "usb_conf .h"

#include "usb_prop .h"

#include "usb_pwr.h"

#include "usb_config .h"

#include "RGBCube.h"

#include "blobsearch .h"

#include "math .h"

#include "Camera_Init .h"

/* Include of other module interface headers ---------------------------------*/

/* Local includes ------------------------------------------------------------*/

/* Private typedef -----------------------------------------------------------*/

#define BUFFERSIZE_DEMO_BS 160*120*2

/* Private define ------------------------------------------------------------*/

#define TimeDiv 250000000

/* Private macro -------------------------------------------------------------*/

/* Private variables ---------------------------------------------------------*/

const u16 SyncOutPeriods [150] = { 9999, 8332, 7142, 6249,

5555, 4999, 4545, 4166, 3846, 3571, 3333, 3125,

2941, 2777, 2631, 2500, 2381, 2272, 2174, 2083,
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2000, 1923, 1852, 1786, 1724, 1666, 1613, 1562,

1515, 1470, 1428, 1389, 1351, 1316, 1282, 1250,

1219, 1190, 1163, 1136, 1111, 1087, 1064, 1042,

1020, 1000, 980, 961, 943, 926, 909, 893, 877, 862,

847, 833, 820, 806, 794, 781, 769, 757, 746, 735,

725, 714, 704, 694, 685, 676, 667, 658, 649, 641,

633, 625, 617, 610, 602, 595, 588, 581, 575, 568,

562, 555, 549, 543, 538, 532, 526, 521, 515, 510,

505, 500, 495, 490, 485, 481, 476, 472, 467, 463,

459, 454, 450, 446, 442, 439, 435, 431, 427, 424,

420, 417, 413, 410, 406, 403, 400, 397, 394, 391,

388, 385, 382, 379, 376, 373, 370, 368, 365, 362,

360, 357, 355, 352, 350, 347, 345, 342, 340, 338,

336, 333 };

u8 * pImgBufferData ;

u32 BufferSize ;

Tx24_ImgJob Job[2], * CompletedJob = 0;

u8 CurrentJob ;

u8 CamState = 0; // 0: Uniitialized , 1: Running , 2: Paused

TTimeStamp Tcam1 , Tcam2;

vs32 OldErr = 0;

vs32 Ierr = 0, Nerr = 0;

/* Private function prototypes -----------------------------------------------*/

/* Private functions ---------------------------------------------------------*/

void Init_BlobParameters (void ) {

// Define blobsearch constraints

BlobSearchSetOption (5, 0, 120, 0, 160);

// Define blobsearch geometry options

// correct tihs

BlobSearchSetColParam (1, 30, 2000, 50, 13000 , 26, 153);

BlobSearchSetColParam (2, 30, 2000, 50, 30000 , 26, 153);

//my green

// day

// RGBCube_AddCube (0,6,4,8,0,1,1);

// cloudly

// day

// RGBCube_AddCube (0,6,4,8,1,3,1);

// RGBCube_SubCube (3,5,3,5,1,3,1);

// end day

RGBCube_AddCube (0, 6, 4, 6, 2, 3, 1);

RGBCube_SubCube (3, 5, 2, 4, 1, 3, 1);

RGBCube_SubCube (5, 7, 4, 6, 2, 4, 1);

// RGBCube_SubCube (3,5,4,6,2,4,1);

//my orange
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RGBCube_AddCube (6, 8, 3, 5, 1, 3, 2);

RGBCube_AddCube (5, 7, 1, 3, 0, 1, 2);

/* night

RGBCube_AddCube (0,6,4,8,0,2,1);

RGBCube_SubCube (3,5,3,5,1,3,1);

night*/

}

void Init_Cam (void ) {

u8 ImgBufferData [2 * BUFFERSIZE_DEMO_BS ];

u8 RGBCubeData [4096];

BufferSize = BUFFERSIZE_DEMO_BS ;

pImgBufferData = ImgBufferData ;

pRGBCubeData = RGBCubeData ;

RGBCube_Clear ();

BlobSearchInit ();

/*

* white balance & exposure compensation settings

*/

x24_WriteReg8 (0x1380 , 0); //wb

x24_WriteReg8 (0x1080 , 2); //ae

x24_WriteReg16 (0x1095 , 1000);

x24_WriteReg16 (0x109d , 240);

x24_WriteRegF900 (0x10a1 , 1.0);

u8 ImgFormat = x24_ImageFormat_RGB_565;

u16 Width = 160;

u16 Height = 120;

u8 Framerate = 25;

u8 SensorMode = x24_SensorMode_SVGA ;

u8 HalfSysClock = 80;

u8 JpegCompr = 150;

u8 JpegDerat = 10;

CameraSetParam (ImgFormat , Width , Height , Framerate ,

SensorMode , HalfSysClock , JpegCompr , JpegDerat );

}

void GetCompletedJob (void ) {

if (Job[CurrentJob ]. State == x24_StateAcquisitionEnd) {

CompletedJob = &Job[ CurrentJob ];

CurrentJob ^= 1;

}

}

void CameraSetParam (u8 ImgFormat , u16 Width , u16 Height ,
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u8 Framerate , u8 SensorMode , u8 HalfSysClock ,

u8 JpegCompr , u8 JpegDerat ) {

Tx24_InitTypeDef x24_InitStruct ;

/* Initialize the x24 module */

x24_StructInit (& x24_InitStruct );

x24_InitStruct . SensorMode = SensorMode ;

x24_InitStruct . DesiredFrameRate_Num = Framerate * 250;

x24_InitStruct . DesiredFrameRate_Den = 250;

x24_InitStruct . ExtClockFreqMhz_Num = 8;

x24_InitStruct . ExtClockFreqMhz_Den = 1;

x24_InitStruct . JPEGClockDerate = JpegDerat ;

x24_InitStruct . SyncEnabled = 0;

x24_InitStruct . ImageWidth = Width;

x24_InitStruct . ImageHeight = Height;

x24_InitStruct . ImageFormat = ImgFormat ; // x24_ImageFormat_RGB_565 x24_ImageF

x24_InitStruct . JPEGSqueezeValue = JpegCompr ; // use 100 [800 x600 ], 150 [1024 x

x24_InitStruct . SysClock = HalfSysClock * 2.0; // 35 MHz; Range: [35:270] MHz

320*240 @10Hz RGB_565

x24_InitStruct . MemBlocksNum = 2;

x24_InitStruct . ImgBlocksNum = 1;

x24_InitStruct . ImgBlockSize = BufferSize ;

x24_InitStruct . pDataMemory = pImgBufferData ;

x24_InitStruct . ExposureCompensation

= x24_biExposureCompensation;

x24_Init (& x24_InitStruct );

Job [0]. pNext = &Job [1];

Job [1]. pNext = &Job [0];

CurrentJob = 0;

x24_GrabFrameStart (& Job [0]);

}

————–Motor Init.h.——————

/*

* Motor_Init .h

*

* Created on: Jan 19, 2011

* Author: Administrator

*/

#ifndef MOTOR_INIT_H_

#define MOTOR_INIT_H_
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/* Includes ------------------------------------------------------------------*/

/* Exported types ------------------------------------------------------------*/

/* Exported constants --------------------------------------------------------*/

/* Module private variables --------------------------------------------------*/

/* Exported macro ------------------------------------------------------------*/

/* Private functions ---------------------------------------------------------*/

/* Exported functions ------------------------------------------------------- */

void Init_Motors (void );

void Calculate_Order (s16* speed , u8 size );

void Position_Camera (u8 position );

void Set_Directions (u8 Motor1 , u8 Motor2 , u8 Motor3 );

void Stop_Motor (u8 Motor);

void Bumpers (u8 bumper [6]);

void Set_Speed (s16* speed , u8 mod );

void Stop_Servo (void );

void Turn (u8 direction );

#endif /* MOTOR_INIT_H_ */

————–Motor Init.c.——————

/* Standard include ----------------------------------------------------------*/

#include "91 x_map.h"

#include "utils.h"

#include "definitions .h"

#include "definitionsLib .h"

#include "CamInt_x24 .h"

#include "usb_lib.h"

#include "usb_conf .h"

#include "usb_prop .h"

#include "usb_pwr.h"

#include "usb_config .h"

#include "math .h"

#include "Motor_Init .h"

/* Include of other module interface headers ---------------------------------*/

/* Local includes ------------------------------------------------------------*/

/* Private typedef -----------------------------------------------------------*/

/* Private define ------------------------------------------------------------*/

/* Private macro -------------------------------------------------------------*/

/* Private variables ---------------------------------------------------------*/

u8 control_hit ;

u8 servo_position = 0;

u8 servo_flag = 0;

u8 motor1_speed ;
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u8 motor2_speed ;

u8 motor3_speed ;

/* Private function prototypes -----------------------------------------------*/

void Init_Motors (void );

void Calculate_Order (s16* speed , u8 size );

void Position_Camera (u8 position );

void Set_Directions (u8 Motor1 , u8 Motor2 , u8 Motor3 );

void Stop_Motor (u8 Motor);

void Bumpers (u8 bumper [6]);

void Set_Speed (s16* speed , u8 mod );

void Stop_Servo (void );

void Turn (u8 direction );

/* Private functions ---------------------------------------------------------*/

void Set_Speed (s16* speed , u8 mod) {

u8 direction [ NUM_MOTORS ];

u8 k;

for (k = 0; k < NUM_MOTORS ; k++) {

direction [k] = (speed[k] > 0) ? 1 : 0, speed[k]

=Abs(speed[k]);

}

for (k = 0; k < NUM_MOTORS ; k++) {

if (speed[k] == 0) {

Stop_Motor (k);

}

if (speed[k] > 2500)

speed[k] = 2500;

}

for (k = 0; k < NUM_MOTORS ; k++) {

if (speed[k] != 0)

speed[k] = (speed[k] / 75 * mod) + 90;

}

Set_Directions ( direction [0], direction [1], direction [2]);

motor1_speed = (u8) speed [0];

motor2_speed = (u8) speed [1];

motor3_speed = (u8) speed [2];

#ifdef NO_DEBUG

Print_Int (motor1_speed ,"m1 applied ");

Print_Int (motor2_speed ,"m2 applied ");

Print_Int (motor3_speed ,"m3 applied ");
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#endif

}

void Stop_Motor (u8 Motor) {

switch (Motor) {

case 0: // stop 1

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR1_DIRECTION_A , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR1_DIRECTION_B , Bit_RESET );

break;

case 1: // stop 2

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR2_DIRECTION_A , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR2_DIRECTION_B , Bit_RESET );

break;

case 2: // stop 3

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR3_DIRECTION_A , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR3_DIRECTION_B , Bit_RESET );

break;

case 3: // stop all

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR1_DIRECTION_A , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR1_DIRECTION_B , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR2_DIRECTION_A , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR2_DIRECTION_B , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR3_DIRECTION_A , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR3_DIRECTION_B , Bit_RESET );

break;

}

}

void Set_Directions (u8 Motor1 , u8 Motor2 , u8 Motor3) {

if (Motor2 == FORWARD ) {

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR2_DIRECTION_A , Bit_SET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR2_DIRECTION_B , Bit_RESET );

} else {

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR2_DIRECTION_A , Bit_RESET );
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GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR2_DIRECTION_B , Bit_SET );

}

if (Motor1 == FORWARD ) {

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR1_DIRECTION_A , Bit_SET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR1_DIRECTION_B , Bit_RESET );

} else {

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR1_DIRECTION_A , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR1_DIRECTION_B , Bit_SET );

}

if (Motor3 == FORWARD ) {

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR3_DIRECTION_A , Bit_SET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR3_DIRECTION_B , Bit_RESET );

} else {

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR3_DIRECTION_A , Bit_RESET );

GPIO_WriteBit (MOTOR_DIRECTION_GPIO ,

MOTOR3_DIRECTION_B , Bit_SET );

}

}

void Calculate_Order (s16* speed , u8 size ) {

u8 pass = 1;

u8 sorted = 0;

u8 i;

while ((! sorted) && (pass < size )) {

sorted = 1;

for (i = 0; i < size - pass ; i++) {

if (speed[i] > speed[i + 1]) {

int temp = speed[i];

speed[i] = speed[i + 1];

speed[i + 1] = temp ;

sorted = 0;

}

}

pass ++;

}

}

void Stop_Servo () {

servo_flag = STOP_SERVO ;
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}

void Init_Motors () {

GPIO_InitTypeDef GPIO_InitStructure ;

GPIO_StructInit (& GPIO_InitStructure );

GPIO_InitStructure .GPIO_Direction = GPIO_PinOutput ;

GPIO_InitStructure .GPIO_Pin = MOTOR1_Pin | MOTOR2_Pin

| MOTOR3_Pin ;

GPIO_InitStructure .GPIO_Type = GPIO_Type_PushPull ;

GPIO_InitStructure .GPIO_Alternate = GPIO_OutputAlt1 ;

GPIO_Init (MOTOR_GPIO , & GPIO_InitStructure );

/* Config Servo PIN */

GPIO_StructInit (& GPIO_InitStructure );

GPIO_InitStructure .GPIO_Direction = GPIO_PinOutput ;

GPIO_InitStructure .GPIO_Pin = SERVO_Pin ;

GPIO_InitStructure .GPIO_Type = GPIO_Type_PushPull ;

GPIO_InitStructure .GPIO_Alternate = GPIO_OutputAlt1 ;

GPIO_Init (SERVO_GPIO , & GPIO_InitStructure );

GPIO_StructInit (& GPIO_InitStructure );

GPIO_InitStructure .GPIO_Direction = GPIO_PinOutput ;

GPIO_InitStructure .GPIO_Pin = MOTOR1_DIRECTION_A

| MOTOR1_DIRECTION_B | MOTOR2_DIRECTION_A

| MOTOR2_DIRECTION_B | MOTOR3_DIRECTION_A

| MOTOR3_DIRECTION_B ;

GPIO_InitStructure .GPIO_Type = GPIO_Type_PushPull ;

GPIO_InitStructure .GPIO_Alternate = GPIO_OutputAlt1 ;

GPIO_Init (MOTOR_DIRECTION_GPIO , &GPIO_InitStructure );

TIM_InitTypeDef TIM_InitStructure ;

TIM_StructInit (& TIM_InitStructure );

TIM_InitStructure .TIM_Mode = TIM_OCM_CHANNEL_12 ; // for both use 12

TIM_InitStructure .TIM_OC1_Modes = TIM_TIMING ;

TIM_InitStructure .TIM_OC2_Modes = TIM_TIMING ;

TIM_InitStructure .TIM_Clock_Source = TIM_CLK_APB ;

TIM_InitStructure .TIM_Prescaler = 47; //127

TIM_InitStructure .TIM_Pulse_Length_1 = 50;

TIM_InitStructure .TIM_Pulse_Length_2 = 200;

TIM_InitStructure .TIM_Pulse_Level_1 = TIM_HIGH ;

TIM_InitStructure .TIM_Pulse_Level_2 = TIM_HIGH ;

TIM_InitStructure .TIM_Period_Level = TIM_LOW ;

TIM_Init (TIM0 , &TIM_InitStructure );

TIM_Init (TIM1 , &TIM_InitStructure );

TIM_Init (TIM3 , &TIM_InitStructure );
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/* Enable TIM0 Output Compare1 interrupt */

TIM_ITConfig (TIM0 , TIM_IT_TO | TIM_IT_OC1 | TIM_IT_OC2 ,

ENABLE );

/* Enable TIM1 Output Compare1 interrupt */

TIM_ITConfig (TIM1 , TIM_IT_TO | TIM_IT_OC1 | TIM_IT_OC2 ,

ENABLE );

/* Enable TIM3 Output Compare1 interrupt */

TIM_ITConfig (TIM3 , TIM_IT_TO | TIM_IT_OC1 | TIM_IT_OC2 ,

ENABLE );

VIC_Config (TIM0_ITLine , VIC_IRQ , 9);

VIC_ITCmd (TIM0_ITLine , ENABLE );

VIC_Config (TIM1_ITLine , VIC_IRQ , 10);

VIC_ITCmd (TIM1_ITLine , ENABLE );

VIC_Config (TIM3_ITLine , VIC_IRQ , 11);

VIC_ITCmd (TIM3_ITLine , ENABLE );

/* Start*/

TIM_CounterCmd (TIM0 , TIM_START );

TIM_CounterCmd (TIM1 , TIM_START );

TIM_CounterCmd (TIM3 , TIM_START );

u8 i;

s16 speed [3];

for (i = 0; i < NUM_MOTORS ; i++) {

speed[i] = 0;

}

Set_Speed (speed , CLOSE);

}

void Position_Camera (u8 position ) {

servo_flag = 0;

servo_position = position ;

}

void Init_Bumpers () {

GPIO_InitTypeDef GPIO_InitStructure ;

GPIO_StructInit (& GPIO_InitStructure );

GPIO_InitStructure .GPIO_Direction = GPIO_PinInput ;

GPIO_InitStructure .GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3 ;

GPIO_InitStructure .GPIO_Type = GPIO_Type_PushPull ;

GPIO_Init (GPIO5 , &GPIO_InitStructure );

GPIO_StructInit (& GPIO_InitStructure );
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GPIO_InitStructure .GPIO_Direction = GPIO_PinInput ;

GPIO_InitStructure .GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_7 ;

GPIO_InitStructure .GPIO_Type = GPIO_Type_PushPull ;

GPIO_Init (GPIO1 , &GPIO_InitStructure );

GPIO_StructInit (& GPIO_InitStructure );

GPIO_InitStructure .GPIO_Direction = GPIO_PinInput ;

GPIO_InitStructure .GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 ;

GPIO_InitStructure .GPIO_Type = GPIO_Type_PushPull ;

GPIO_Init (GPIO4 , &GPIO_InitStructure );

}

void Bumpers (u8 bumper [6]) {

control_hit = 0;

if (GPIO_ReadBit (GPIO5 , BUMPER_FRONT_LEFT ) == Bit_SET) {

bumper [0] = 1;

}

if (GPIO_ReadBit (GPIO4 , BUMPER_FRONT_RIGHT ) == Bit_SET) {

bumper [4] = 1;

}

if (GPIO_ReadBit (GPIO1 , BUMPER_LEFT ) == Bit_SET ) {

bumper [2] = 1;

}

if (GPIO_ReadBit (GPIO5 , BUMPER_RIGHT ) == Bit_SET ) {

bumper [1] = 1;

}

if (GPIO_ReadBit (GPIO1 , BUMPER_BACK_LEFT ) == Bit_SET) {

bumper [3] = 1;

}

if (GPIO_ReadBit (GPIO4 , BUMPER_BACK_RIGHT ) == Bit_SET) {

bumper [5] = 1;

}

u8 i;

for (i = 0; i < 6; i++) {

if (bumper[i] == 1) {

control_hit = 1;

#ifdef NO_DEBUG

Print_Int (i,"no");

Print_Int (bumper[i],"Bumper");

#endif

}

}

}

void Turn (u8 direction ) {
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s16 left_speed [3] = { 550, 550, 550 };

s16 right_speed [3] = { -550, -550, -550 };

if (direction == LEFT ) {

Set_Speed (left_speed , NORMAL );

} else {

Set_Speed (right_speed , NORMAL);

}

MSDelay (100);

Stop_Motor (3);

MSDelay (100);

}

————–Vision.h.——————

/*

* Vision.h

*

* Created on: Jan 19, 2011

* Author: Administrator

*/

#ifndef VISION_H_

#define VISION_H_

/* Includes ------------------------------------------------------------------*/

#include "91 x_lib.h"

#include "CamInt_x24 .h"

/* Exported types ------------------------------------------------------------*/

/* Exported constants --------------------------------------------------------*/

/* Module private variables --------------------------------------------------*/

extern u8 *pImgBufferData ;

extern u32 BufferSize ;

/* Exported macro ------------------------------------------------------------*/

/* Private functions ---------------------------------------------------------*/

/* Exported functions ------------------------------------------------------- */

void CalculateBallPosition (u8 X, u8 Y, u8 Dpx ,

double result [4]);

void CalculatePositionTop (TPoint point , s16 result [3]);

void CalculatePositionGround(TPoint point , s16 result [3]);

void Blob_Search (void );

#endif /* VISION_H_ */

————–Vision.c.——————
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/* Standard include ----------------------------------------------------------*/

#include "91 x_map.h"

#include "utils.h"

#include "definitions .h"

#include "definitionsLib .h"

#include "CamInt_x24 .h"

#include "usb_lib.h"

#include "usb_conf .h"

#include "usb_prop .h"

#include "usb_pwr.h"

#include "usb_config .h"

#include "RGBCube.h"

#include "blobsearch .h"

#include "math .h"

#include "Misc .h"

#include "Vision.h"

#include "Camera_Init .h"

#include "Motion.h"

/* Include of other module interface headers ---------------------------------*/

/* Local includes ------------------------------------------------------------*/

/* Private typedef -----------------------------------------------------------*/

/* Private define ------------------------------------------------------------*/

//#define PRINT_ON

/* Private macro -------------------------------------------------------------*/

/* Private variables ---------------------------------------------------------*/

u8 * pImgBufferData ;

u32 BufferSize ;

double BlobSample [10][2];

u8 index = 0;

extern Tx24_ImgJob Job [2];

extern CurrentJob ;

extern u8 control_hit ;

/* Private function prototypes -----------------------------------------------*/

// see header

/* Private functions ---------------------------------------------------------*/

void Blob_Search (void ) {

if (Job[CurrentJob ]. State == x24_StateAcquisitionEnd) { // Image is acquired

MY_ON();

CompletedJob = &Job[ CurrentJob ];

BlobSearch (( u16*) CompletedJob ->pFirstBlock ->pData);

MY_OFF ();

CurrentJob ^= 1;

}

}

void CalculatePositionTop (TPoint point , s16 result [3]) {

// Homography for servo_top
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double K[3][3] = { { 191.7146 , 0, 80.3591 }, { 0,

191.2730 , 61.2765 }, { 0, 0, 1 } },

T_cr [3][4] = { { -0.0755, -0.9948, 0.0683 ,

-8.6194 }, { -0.1867, -0.0531, -0.9810,

271.8015 }, { 0.9795 , -0.0868, -0.1817,

-72.3125 } }, C[3][4] = {

{ 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0,

0, 0 } },

H[3][3] = { { 0, 0, 0 }, { 0, 0, 0 },

{ 0, 0, 0 } },

InvH [3][3] = { { 0, 0, 0 }, { 0, 0, 0 }, { 0,

0, 0 } }, t_ [4][3] = { { 1, 0, 0 }, {

0, 1, 0 }, { 0, 0, 0 }, { 0, 0, 1 } };

Matrix_Mult3334 (K, T_cr , C);

Matrix_Mult3443 (C, t_ , H);

Inverse (H, InvH );

double position [3] = { 0, 0, 0 };

double image_point [3] = { point.X, point.Y, 1 };

vectorByMatrix3x1 (InvH , image_point , position );

result [0] = (s16) (position [0] / position [2]);

result [1] = (s16) (position [1] / position [2]);

result [2] = (s16) (position [2] / position [2]);

}

void CalculatePositionGround(TPoint point , s16 result [3]) {

// Homography for servo_top

double K[3][3] = { { 191.7146 , 0, 80.3591 }, { 0,

191.2730 , 61.2765 }, { 0, 0, 1 } },

T_cr [3][4] = { { -0.0160, -0.9987, 0.0478 ,

-0.6271 }, { -0.6634, -0.0252, -0.7478,

245.6112 }, { 0.7481 , -0.0437, -0.6622,

44.2694 } }, C[3][4] = {

{ 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0,

0, 0 } },

H[3][3] = { { 0, 0, 0 }, { 0, 0, 0 },

{ 0, 0, 0 } },

InvH [3][3] = { { 0, 0, 0 }, { 0, 0, 0 }, { 0,

0, 0 } }, t_ [4][3] = { { 1, 0, 0 }, {

0, 1, 0 }, { 0, 0, 0 }, { 0, 0, 1 } };

Matrix_Mult3334 (K, T_cr , C);

Matrix_Mult3443 (C, t_ , H);
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Inverse (H, InvH );

double position [3] = { 0, 0, 0 };

double image_point [3] = { point.X, point.Y, 1 };

vectorByMatrix3x1 (InvH , image_point , position );

result [0] = (s16) (position [0] / position [2]);

result [1] = (s16) (position [1] / position [2]);

result [2] = (s16) (position [2] / position [2]);

}

void CalculateBallPosition (u8 X, u8 Y, u8 Dpx ,

double result [4]) {

double image_point [3] = { X, Y, 1 };

double inv_K [3][3] = { { 0.005216086284917 , 0,

-0.419160051539105 }, { 0, 0.005228129700905 ,

-0.320361489617536 }, { 0, 0, 1 } };

double position [3] = { 0, 0, 0 };

vectorByMatrix3x1 (inv_K , image_point , position );

double norm ;

norm = sqrt (( position [0] * position [0]) + (position [1]

* position [1]) + (position [2] * position [2]));

position [0] = position [0] / norm ;

position [1] = position [1] / norm ;

position [2] = position [2] / norm ;

int X_axis = 300;

int Y_axis = -150;

int Dreal = 62; // red ball w 6.2 cm diam

double fstar = 160.9969;

double Pc [4] = { (fstar * Dreal / Dpx) * position [0],

(fstar * Dreal / Dpx) * position [1], (fstar

* Dreal / Dpx) * position [2], 1 };

double T_wr [4][4] = { { 1, 0, 0, X_axis }, { 0, 1, 0,

Y_axis }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 } };

double T_wc [4][4] = { { 0.0012 , -0.3587, 0.9334 ,

-350.8669 }, { -1.0000, -0.0039, -0.0002,
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140.5637 }, { 0.0037 , -0.9334, -0.3587,

203.8752 }, { 0, 0, 0, 1.0000 } };

double inv_T [4][4] = { 0, 0, 0, 0 };

Matrix_Mult (T_wr , T_wc , inv_T);

vectorByMatrix4x1 (inv_T , Pc , result );

}

————–Motion.h.——————

/*

* Motion.h

*

* Created on: Jan 19, 2011

* Author: Administrator

*/

#ifndef MOTION_H_

#define MOTION_H_

/* Includes ------------------------------------------------------------------*/

/* Exported types ------------------------------------------------------------*/

/* Exported constants --------------------------------------------------------*/

/* Module private variables --------------------------------------------------*/

/* Exported macro ------------------------------------------------------------*/

/* Private functions ---------------------------------------------------------*/

/* Exported functions ------------------------------------------------------- */

void Triskar (s16* destination , s8 omega , s16* vt);

void Direct_Motion (s16* destination , s8 angle , s16* speed);

#endif /* MOTION_H_ */

————–Motion.c.——————

/* Standard include ----------------------------------------------------------*/

#include "91 x_map.h"

#include "utils.h"

#include "definitions .h"

#include "definitionsLib .h"

#include "usb_lib.h"

#include "usb_conf .h"

#include "usb_prop .h"

#include "usb_pwr.h"

#include "usb_config .h"
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#include "math .h"

#include "Misc .h"

/* Include of other module interface headers ---------------------------------*/

/* Local includes ------------------------------------------------------------*/

/* Private typedef -----------------------------------------------------------*/

/* Private define ------------------------------------------------------------*/

/* Private macro -------------------------------------------------------------*/

/* Private variables ---------------------------------------------------------*/

/* Private function prototypes -----------------------------------------------*/

void Triskar (s16* destination , s8 omega , s16* vt);

void Direct_Motion (s16* destination , s8 angle , s16* speed);

/* Private functions ---------------------------------------------------------*/

void Triskar (s16* destination , s8 omega , s16* vt) {

s16 frontal_speed = destination [0];

s16 lateral_speed = destination [1];

double alpha = 0;

s16 velocity [2];

velocity [0] = frontal_speed * cos(-alpha)

- lateral_speed * sin(-alpha);

velocity [1] = frontal_speed * sin(-alpha)

+ lateral_speed * cos(-alpha);

#ifdef NO_DEBUG

USB_WriteString ("Calculating  Motion \n");

Print_Int (velocity [0],"frontal ");

Print_Int (velocity [1],"lateral ");

#endif

u8 R_robot = 250;

s16 v_F = velocity [0];

s16 v_L = velocity [1];

double d_cosA = 0.8660;

double d_sinA = 0.5000;

u8 cosA = d_cosA * 100;

u8 sinA = d_sinA * 100;

s16 v[3] = { v_F , v_L , (omega * R_robot) / 100 };

#ifdef NO_DEBUG

// print velocity vector

Print_Int (v[0],"v0");

Print_Int (v[1],"v1");

Print_Int (v[2],"v2");

#endif

u8 k, l;

s16 MF [3][3] = { { -cosA , sinA , -100 }, { cosA , sinA ,

-100 }, { 0, -100, -100 } };
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#ifdef NO_DEBUG

// print MF

for(k=0; k<3;k++) {

USB_WriteString ("\n");

for(l=0; l <3;l++) {

Print_Int (MF[k][l],"MF [][] ");

}

}

#endif

vectorByMatrix3x1_s16 (MF , v, vt);

#ifdef NO_DEBUG

// motor speeds found

Print_Int (vt[0],"vt0");

Print_Int (vt[1],"vt1");

Print_Int (vt[2],"vt2");

#endif

}

void Direct_Motion (s16* destination , s8 angle , s16* speed) {

s16 frontal_speed = destination [0];

s16 lateral_speed = destination [1];

double alpha = 0;

s16 velocity [2];

velocity [0] = frontal_speed * cos(-alpha)

- lateral_speed * sin(-alpha);

velocity [1] = frontal_speed * sin(-alpha)

+ lateral_speed * cos(-alpha);

#ifdef NO_DEBUG

USB_WriteString ("Calculating  Motion \n");

Print_Int (velocity [0],"frontal ");

Print_Int (velocity [1],"lateral ");

#endif

Triskar (velocity , angle , speed);

#ifdef NO_DEBUG

Print_Int (speed[0],"speed0");

Print_Int (speed[1],"speed1");

Print_Int (speed[2],"speed2");

#endif

}

————–Misc.h.——————
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/*

* Motion.h

*

* Created on: Jan 19, 2011

* Author: Administrator

*/

#ifndef MOTION_H_

#define MOTION_H_

/* Includes ------------------------------------------------------------------*/

/* Exported types ------------------------------------------------------------*/

/* Exported constants --------------------------------------------------------*/

/* Module private variables --------------------------------------------------*/

/* Exported macro ------------------------------------------------------------*/

/* Private functions ---------------------------------------------------------*/

/* Exported functions ------------------------------------------------------- */

void Triskar (s16* destination , s8 omega , s16* vt);

void Direct_Motion (s16* destination , s8 angle , s16* speed);

#endif /* MOTION_H_ */

————–Misc.c.——————

/* Standard include ----------------------------------------------------------*/

#include "91 x_map.h"

#include "utils.h"

#include "definitions .h"

#include "definitionsLib .h"

#include "CamInt_x24 .h"

#include "usb_lib.h"

#include "usb_conf .h"

#include "usb_prop .h"

#include "usb_pwr.h"

#include "usb_config .h"

#include "RGBCube.h"

#include "blobsearch .h"

#include "math .h"

/* Include of other module interface headers ---------------------------------*/

/* Local includes ------------------------------------------------------------*/

/* Private typedef -----------------------------------------------------------*/

/* Private define ------------------------------------------------------------*/

/* Private macro -------------------------------------------------------------*/

/* Private variables ---------------------------------------------------------*/

/* Private function prototypes -----------------------------------------------*/
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void Led_SM(void );

void Print_Int (int a, u8 * str);

void vectorByMatrix3x1 (double A[][3] , double x[3],

double b[3]);

void vectorByMatrix4x1 (double A[][4] , double x[4],

double b[4]);

void Matrix_Mult (double a1 [][4] , double a2 [][4] ,

double a3 [][4]);

void Matrix_Mult3334 (double a1 [][3] , double a2 [][4] ,

double a3 [][4]);

void Matrix_Mult3443 (double a1 [][4] , double a2 [][3] ,

double a3 [][3]);

void Inverse (double A[][3] , double X[][3]);

void vectorByMatrix3x1_s16 (s16 A[][3] , s16 x[3], s16 b[3]);

/* Private functions ---------------------------------------------------------*/

void Led_SM(void ) {

static int Count = 0;

Count ++;

if (Count < 50000) {

LED_ON(LEDR );

} else {

LED_OFF (LEDR );

if (Count > 60000) {

Count = 0;

}

}

}

void Print_Int (int a, u8 * str) {

u8 myStr [10];

USB_WriteString (str);

USB_WriteString (":");

Num2String (a, myStr);

USB_WriteString (myStr);

USB_WriteString ("\r\n");

}

void vectorByMatrix3x1 (double A[][3] , double x[3],

double b[3]) {

b[0] = A[0][0] * x[0] + A[0][1] * x[1] + A[0][2] * x[2];

b[1] = A[1][0] * x[0] + A[1][1] * x[1] + A[1][2] * x[2];

b[2] = A[2][0] * x[0] + A[2][1] * x[1] + A[2][2] * x[2];

}

void vectorByMatrix3x1_s16 (s16 A[][3] , s16 x[3], s16 b[3]) {

b[0] = A[0][0] * x[0] / 100 + A[0][1] * x[1] / 100

+ A[0][2] * x[2] / 100;
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b[1] = A[1][0] * x[0] / 100 + A[1][1] * x[1] / 100

+ A[1][2] * x[2] / 100;

b[2] = A[2][0] * x[0] / 100 + A[2][1] * x[1] / 100

+ A[2][2] * x[2] / 100;

}

void vectorByMatrix4x1 (double A[][4] , double x[4],

double b[4]) {

b[0] = A[0][0] * x[0] + A[0][1] * x[1] + A[0][2] * x[2]

+ A[0][3] * x[3];

b[1] = A[1][0] * x[0] + A[1][1] * x[1] + A[1][2] * x[2]

+ A[1][3] * x[3];

b[2] = A[2][0] * x[0] + A[2][1] * x[1] + A[2][2] * x[2]

+ A[2][3] * x[3];

b[3] = A[3][0] * x[0] + A[3][1] * x[1] + A[3][2] * x[2]

+ A[3][3] * x[3];

}

void Matrix_Mult (double a1 [][4] , double a2 [][4] ,

double a3 [][4]) {

int i = 0;

int j = 0;

int k = 0;

int a = 4;

int b = 4;

int c = 4;

for (i = 0; i < a; i++)

for (j = 0; j < b; j++)

for (k = 0; k < c; k++)

a3[i][j] += a1[i][k] * a2[k][j];

}

void Matrix_Mult3334 (double a1 [][3] , double a2 [][4] ,

double a3 [][4]) {

int i = 0;

int j = 0;

int k = 0;

for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)

for (k = 0; k < 3; k++)

a3[i][j] += a1[i][k] * a2[k][j];

}

void Matrix_Mult3443 (double a1 [][4] , double a2 [][3] ,

double a3 [][3]) {

int i = 0;

int j = 0;

int k = 0;
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for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

for (k = 0; k < 4; k++)

a3[i][j] += a1[i][k] * a2[k][j];

}

void Inverse (double A[][3] , double X[][3]) {

float B[3][3]; // the transpose of a matrix A

float C[3][3]; // the adjunct matrix of transpose of a matrix A not adjunct of

int i, j;

float x, n = 0;//n is the determinant of A

for (i = 0, j = 0; j < 3; j++) {

if (j == 2)

n += A[i][j] * A[i + 1][0] * A[i + 2][1];

else if (j == 1)

n += A[i][j] * A[i + 1][j + 1] * A[i + 2][0];

else

n += A[i][j] * A[i + 1][j + 1]

* A[i + 2][j + 2];

}

for (i = 2, j = 0; j < 3; j++) {

if (j == 2)

n -= A[i][j] * A[i - 1][0] * A[i - 2][1];

else if (j == 1)

n -= A[i][j] * A[i - 1][j + 1] * A[i - 2][0];

else

n -= A[i][j] * A[i - 1][j + 1]

* A[i - 2][j + 2];

}

if (n != 0)

x = 1.0 / n;

else {

}

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

B[i][j] = A[j][i];

}

}

C[0][0] = B[1][1] * B[2][2] - (B[2][1] * B [1][2]);

C[0][1] = (-1) * (B[1][0] * B[2][2] - (B[2][0]

* B[1][2]));

C[0][2] = B[1][0] * B[2][1] - (B[2][0] * B [1][1]);

C[1][0] = (-1)
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* (B[0][1] * B[2][2] - B[2][1] * B[0][2]);

C[1][1] = B[0][0] * B[2][2] - B[2][0] * B[0][2];

C[1][2] = (-1)

* (B[0][0] * B[2][1] - B[2][0] * B[0][1]);

C[2][0] = B[0][1] * B[1][2] - B[1][1] * B[0][2];

C[2][1] = (-1)

* (B[0][0] * B[1][2] - B[1][0] * B[0][2]);

C[2][2] = B[0][0] * B[1][1] - B[1][0] * B[0][1];

for (i = 0; i < 3; i++) {

for (j = 0; j < 3; j++) {

X[i][j] = C[i][j] * x;

}

}

}

————–definitions.h.——————

/* ******************* (C) COPYRIGHT 2007 STMicroelectronics ********************

* File Name : definitions .h

* Author : AST Robotics group

* Date First Issued : 11 May 2007 : Version 1.0

* Description : generic definitions and pin assignments file for Dongle.

********************************************************************************

* History :

* 28 May 2007 : Version 1.2

* 11 May 2007 : Version 1.0

*******************************************************************************

THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH

CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME .

AS A RESULT , STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT , INDIRECT

OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT

OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION

CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS .

*******************************************************************************/

/* Define to prevent recursive inclusion ------------------------------------ */

#ifndef __DEFINITIONS_H

#define __DEFINITIONS_H

// *-------------*-------------*------------*

// | UART2_RxD | N.A. | UART2_RxD |

// | UART2_TxD | N.A. | UART2_TxD |

// | I2C_SCL | P3.4 | SW_I2C_SCL |

// | I2C_SDA | P3.5 | SW_I2C_SDA |

// | CAM_CE | P3.6 | GPIO_OUT |
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// | CAM_PCLK | P3.0 | Ext_Dma_In |

// | CAM_VSYNC | P3.2 | EXT_INT_2 |

// | CAM_CLK_IN | P3.7 | T1_PWM_OUT |

// | CAM_BUS | P9.ALL | GPIO_IN |

// | LED_R | P6.0 | GPIO_OUT |

// | SW_1234 | P7 .0123 | GPIO_IN |

// | USB_Dp | P7.5 | GPIO_OUT |

// *-------------*-------------*------------*

//#define RVS_MB

#define STL_MB

//#define NO_DEBUG

#define PresentationStringConst "STLCam\nV :0.41\ nAST -Robotics \ nSTMicroelectronics \n"

#define TMsg_EOF 0xF0

#define TMsg_BS 0xF1

#define TMsg_BS_EOF 0xF2

#define TMsg_MaxLen 128

#define DEV_ADDR 0x32

#define USB_Dp_PullUp_GPIO GPIO0

#define USB_Dp_PullUp_GPIOx_Pin GPIO_Pin_1

#define Cam724

// IRQ Priority // 0 Highest , 15 Lowest

//#define SERVO_TIM_ITPriority 0

//#define x24_DMA_ITPriority 1

//#define x24_VSYNC_INT_ITPriority 2

//#define x24_SYNC_TIM_IPriority 3

#define USB_Priority 5

/*

#define MOTOR1_Priority 9

#define MOTOR2_Priority 10

#define MOTOR3_Priority 11

*/

#ifdef STL_MB

#define LEDR_GPIO GPIO3

#define LEDR_GPIOx_Pin GPIO_Pin_7

#endif

#define DE_GPIO GPIO4

#define DE_GPIOx_Pin GPIO_Pin_3

#define x24_VSYNC_GPIO GPIO7

#define x24_VSYNC_GPIOx_Pin GPIO_Pin_7

#define x24_VSYNC_INT_WIU_Line (( u32)WIU_Line31 )
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#define x24_VSYNC_INT_WIU_Line_N 31

#define x24_VSYNC_INT_ITx_LINE EXTIT3_ITLine

#define MY_GPIO GPIO3

#define MY_GPIOx_Pin GPIO_Pin_2

#define MY MY_GPIO ->DR[MY_GPIOx_Pin <<2]

#define MY_ON() MY =0xFF

#define MY_OFF () MY =0x00

#define LEDR LEDR_GPIO ->DR[LEDR_GPIOx_Pin <<2]

#define USB_Dp_PullUp USB_Dp_PullUp_GPIO ->DR[USB_Dp_PullUp_GPIOx_Pin <<2]

#define DE DE_GPIO ->DR[DE_GPIOx_Pin <<2]

#define LED_ON(Led) Led =0 xFF;

#define LED_OFF (Led) Led =0 x00;

#define LED_TOGGLE (Led) Led=~ Led;

#define DE_ON(De) De=0xFF;

#define DE_OFF(De) De=0 x00;

#define IS_BTN_PRESSED (Btn) (Btn ==0)

#define WAIT_BTN (Btn) { while(! IS_BTN_PRESSED (Btn )); while( IS_BTN_PRESSED (Btn ));}

#define USB_Dp_PullUp_OFF (); USB_Dp_PullUp =0 xFF;

#define USB_Dp_PullUp_ON (); USB_Dp_PullUp =0 x00;

// define motor direction

#define FORWARD 1

#define REVERSE 0

// define servo position

#define SERVO_TOP 0

#define SERVO_MID 1

#define SERVO_BOTTOM 2

#define STOP_SERVO 1

// the servo pins on micro

#define SERVO_GPIO GPIO1

#define SERVO_Pin GPIO_Pin_1

// motor pins

#define NUM_MOTORS 3

#define MOTOR_GPIO GPIO1

#define MOTOR1_Pin GPIO_Pin_6

#define MOTOR2_Pin GPIO_Pin_4

#define MOTOR3_Pin GPIO_Pin_3

#define MOTOR_DIRECTION_GPIO GPIO0

//X for the first input which is INA

#define MOTOR1_DIRECTION_A GPIO_Pin_4

#define MOTOR1_DIRECTION_B GPIO_Pin_5

#define MOTOR2_DIRECTION_A GPIO_Pin_2

#define MOTOR2_DIRECTION_B GPIO_Pin_3

#define MOTOR3_DIRECTION_A GPIO_Pin_6
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#define MOTOR3_DIRECTION_B GPIO_Pin_7

// bumper pins

#define BUMPER1 GPIO5

#define BUMPER2 GPIO0

#define BUMPER3 GPIO4

#define BUMPER_FRONT_LEFT GPIO_Pin_2 // 5.2

#define BUMPER_FRONT_RIGHT GPIO_Pin_0 // 4.0

#define BUMPER_BACK_LEFT GPIO_Pin_7 // 1.7

#define BUMPER_BACK_RIGHT GPIO_Pin_1 // 4.1

#define BUMPER_RIGHT GPIO_Pin_3 // 5.5

#define BUMPER_LEFT GPIO_Pin_0 //1.0

#define LEFT 1

#define RIGHT 0

#define CLOSE 8

#define NORMAL 4

#define FAR 2

#endif

/* ****************** (C) COPYRIGHT 2007 STMicroelectronics ***** END OF FILE *** */

B.2 Color Histogram Calculator

————–color calculator.m——————

%% data s t r u c t u r e to keep images

R = [ ] ;

G = [ ] ;

B = [ ] ;

%% the sample images shou ld be read 1−by−1

im = imread ( ’ tab l e3 . png ’ ) ;

fpr intf ( ’ done \ t ’ ) ;

%% the part con ta in ing the o b j e c t shou ld be s e l e c t e d

[ sub ] = imcrop ( im ( : , : , 1 : 3 ) ) ;

imshow ( sub ) ;

subR = double ( sub ( : , : , 1 ) ) ;

subG = double ( sub ( : , : , 2 ) ) ;

subB = double ( sub ( : , : , 3 ) ) ;
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R = [R subR ( : ) ’ ] ;

G = [G subG ( : ) ’ ] ;

B = [B subB ( : ) ’ ] ;

%save

%load matlab

%% After t a k i n g a l l samples , the histogram drawn au toma t i c a l l y

R = R / 16 ;

G = G / 16 ;

B = B / 16 ;

subplot ( 1 , 3 , 1 ) ;

hist ( double (R) ,16)

t i t l e ( ’R ’ ) ;

hold on ;

subplot ( 1 , 3 , 2 ) ;

hist ( double (G) ,16)

t i t l e ( ’G ’ ) ;

hold on ;

subplot ( 1 , 3 , 3 ) ;

hist ( double (B) ,16)

t i t l e ( ’B ’ ) ;

hold on ;

%% bound f i nd i n g & the mask and the o b j e c t shown to see the r e s u l t o f

%%the co l o r coding

im = imread ( ’ tab l e3 . png ’ ) ;

%the bounds f o r each co l o r channel

%the va l u e s t ha t shou ld be pass the microprocessor f o r c o l o r coding

bR = p r c t i l e (R, [25 −12.5 75+12.5 ] )

bG = p r c t i l e (G, [ 1 0 90 ] )

bB = p r c t i l e (B, [ 2 5 75 ] )

maskR ( : , : ) = im ( : , : , 1 ) / 1 6 > f loor (bR(1 ) ) & im ( : , : , 1 ) / 1 6 < ce i l (bR( 2 ) ) ;
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maskG ( : , : ) = im ( : , : , 2 ) / 1 6 > f loor (bG(1 ) ) & im ( : , : , 2 ) / 1 6 < ce i l (bG( 2 ) ) ;

maskB ( : , : ) = im ( : , : , 3 ) / 1 6 > f loor (bB(1 ) ) & im ( : , : , 3 ) / 1 6 < ce i l (bB ( 2 ) ) ;

mask =maskB & maskR & maskG ;

subplot ( 1 , 3 , 1 ) ;

hold on

t i t l e ( ’mask R ’ ) ;

hold on

imshow (maskR ) ;

subplot ( 1 , 3 , 2 ) ;

hold on

t i t l e ( ’mask G’ ) ;

imshow (maskG ) ;

subplot ( 1 , 3 , 3 ) ;

hold on

t i t l e ( ’mask B ’ ) ;

imshow (maskB ) ;

figure ;

subplot ( 1 , 2 , 1 ) ;

hold on

t i t l e ( ’mask RGB’ ) ;

imshow (mask ) ;

subplot ( 1 , 2 , 2 ) ;

hold on

t i t l e ( ’ o r g i n a l p i c tu r e ’ ) ;

imshow ( im ) ;

B.3 Object’s Position Calculator

—————-position calculator.m————-

%% 1−) Ba l l Pos i t i on Ca l cu la tor

% This s c r i p t does trans format i on f o r the 3D b a l l p o s i t i o n to 2D robo t
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% Trans la t ion vec tor :

% po s i t i o n o f chesboard in camera r e f e r enc e system

Tc ext = [ 17.929188 −0.849442 64.715079 ] ;

% Rotation matrix :

Rc ext = [ −0.042070 −0.998317 −0.039914

−0.614786 0.057357 −0.786605

0.787571 −0.008554 −0.616165 ] ;

%trans format i on o f camera to chess board

T cch=[Rc ext Tc ext ’ ] ;

H0=[eye (3 ) [ 0 0 0 ] ’ ] ;

% the po s i t i o n o f the o r i g i n

image point = [81 62 1 ] ’ ;

%K −c a l i b r a t i o n matrix

K=[191.71462 0 80.35911

0 191.27299 61.27650

0 0 1 ] ;

% T rch i n d i c a t e s the trans format ion robo t to chess board

% x , y , z the d i s t anc e o f the chess board from the robo t s cen te r in mm.

x=600;

y=0;

z=0;

T rch =[1 0 0 x

0 1 0 y

0 0 1 z ] ;

%trans format i on are r ewr i t t e n f o r c l a r i f i c a t i o n

% camera to world

T cw =[T cch ; 0 0 0 1 ] ;

%world to camera

T wc = inv (T cw ) ;

%world to robo t

T wr =[T rch ; 0 0 0 1 ] ;

% robo t to world

T rw = inv (T wr ) ;
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p o s i t i o n=inv (K)∗ image point ;

l=sqrt ( xˆ2+y ˆ2 ) ;

%l the d i s t anc e o f the o r i g i n po in t s e l e c t e d in the image to the robo t

%% cente r

Dreal =200; %diameter o f the b a l l in mm

Dpx=29; %p i x e l counter o f diameter in image

%the f ∗ cons tant p i x e l / un i t (mm)

f s t a r = Dpx ∗ l / Dreal ;

%the po s i t i o n shou ld be normalized s ince po s i t i o n (3) i s not 1

p o s i t i o n= po s i t i o n /norm( p o s i t i o n ) ;

Pc=[( f s t a r ∗Dreal /Dpx)∗ p o s i t i o n ; 1 ] ;

inv (T cw∗T rw)∗Pc ;

r e s u l t= T wr∗T wc∗Pc ;

r e s u l t

%ans g i v e s the p o s i t i o n o f the b a l l in r e a l world in mm

% ans (1) x ; ans (2) y ; ans (3) z ; coord ina te s in r e a l world

%% 2−) Ca l i b r a t i on f o r the o b j e c t at Ground

%t r an l a s t i o n matrix−coming from image t oo l b ox

Tc ext = [ 160.700069 27.498986 492.532634 ] ;

%ro ta t i on matrix−coming from image t oo l b ox

Rc ext = [ −0.009783 −0.999883 −0.011800

−0.428525 0.014854 −0.903408

0.903477 −0.003781 −0.428620 ] ;

%trans format i on o f camera to chess board

T cch=[Rc ext Tc ext ’ ] ;

% K in t e r n a l camera parameters−from image t oo l b ox

K=[191.71462 0 80.35911

0 191.27299 61.27650

0 0 1 ] ;

% x , y , z the d i s t anc e o f the chess board from the robo t s cen te r in mm.

x=550;
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y=−150;

z=0;

% T rch i n d i c a t e s the trans format ion robo t to chess board

T rch =[1 0 0 x

0 1 0 y

0 0 1 z ] ;

%trans format i on are r ewr i t t e n f o r c l a r i f i c a t i o n

% camera to world

T cch1 =[T cch ; 0 0 0 1 ] ;

%world to camera

T chc = inv ( T cch1 ) ;

%world to robo t

T rch1 =[T rch ; 0 0 0 1 ] ;

% robo t to world

T chr = inv ( T rch1 ) ;

T rc=T rch1∗T chc ;

T cr = inv ( T rc ) ;

T cr = T cr ( 1 : 3 , : ) ;

ROBOT( 1 , : , : , : ) =T cr ( 1 , : , : , : ) ;

ROBOT( 2 , : , : , : ) =T cr ( 2 , : , : , : ) ;

ROBOT( 3 , : , : , : ) =T cr ( 3 , : , : , : ) ;

t =[1 0 0

0 1 0

0 0 0

0 0 1 ] ;

H= K∗T cr∗ t ;

Hinv=inv (H) ;

po int = Hinv ∗ [ 72 119 1 ] ’ ;

r e s u l t= point / point ( 3 ) ;

r e s u l t

%% 3−) Ca l i b r a t i on f o r s e r v o t op po s i t i o n at ground

%t r an l a s t i o n m

Tc ext = [ 100.613176 95.664945 539.117313 ] ;
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%ro ta t i on matrix

Rc ext = [ 0.025851 −0.998468 0.048927

−0.364120 −0.054986 −0.929727

0.930993 0.006219 −0.364984 ] ;

%trans format i on o f camera to chess board

T cch=[Rc ext Tc ext ’ ] ;

% K in t e r n a l camera parameters−from image t oo l b ox

K=[191.71462 0 80.35911

0 191.27299 61.27650

0 0 1 ] ;

% x , y , z the d i s t anc e o f the chess board from the robo t s cen te r in mm.

x=600;

y=−100;

z=0;

% T rch i n d i c a t e s the trans format ion robo t to chess board

T rch =[1 0 0 x

0 1 0 y

0 0 1 z ] ;

%trans format i on are r ewr i t t e n f o r c l a r i f i c a t i o n

% camera to world

T cch1 = [ T cch ; 0 0 0 1 ] ;

%world to camera

T chc = inv ( T cch1 ) ;

%world to robo t

T rch1 = [ T rch ; 0 0 0 1 ] ;

% robo t to world

T chr = inv ( T rch1 ) ;

T rc = T rch1∗T chc ;

T cr = inv ( T rc ) ;

T cr = T cr ( 1 : 3 , : ) ;

ROBOT( 1 , : , : , : ) =T cr ( 1 , : , : , : ) ;

ROBOT( 2 , : , : , : ) =T cr ( 2 , : , : , : ) ;

ROBOT( 3 , : , : , : ) =T cr ( 3 , : , : , : ) ;

t =[1 0 0

0 1 0
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0 0 0

0 0 1 ] ;

H= K∗T cr∗ t ;

Hinv=inv (H) ;

po int = Hinv∗ [ 19 99 1 ] ’ ;

r e s u l t = point / point ( 3 ) ;

r e s u l t

B.4 Motion Simulator

—————-robot distance.m——————

%% The d i s t anc e shou ld be expre s sed in terms o f f r on t a l− l a t e r a l

%% ( car t e s i an coordinate , ang le to the o b j e c t ( po lar coord ina te )

X = 3500;

Y= −350;

deltaX=X;

deltaY=Y;

p = sqrt ( deltaX ∗deltaX+deltaY ∗deltaY ) ;

angle = atan2 (Y,X) ;

alpha = 0 ;

f r on t a l s p e ed = 3500;

l a t e r a l s p e e d = −350;

v f= f r on t a l s p e ed ∗cos(−alpha)− l a t e r a l s p e e d ∗ sin(−alpha ) % new x

v l=f r on t a l s p e ed ∗ sin(−alpha)+ l a t e r a l s p e e d ∗cos(−alpha )

% new y

%% The t r i s k a r func t i on c a l l e d l i k e t h i s

[ vt , omega w , vn ] = TriskarOdometry (250 , 24 .6 , pi /6 , vf , vl , angle , 1 ) ;

———————Triskar.m———————
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function [ vt , om, vn ] = TriskarOdometry ( R robot , R wheel , alpha , v F ,

v L , omega , plot )

% − R robot : robo t rad iu s ( by mean o f d i s t anc e o f the whee l s from the

% cen te r o f the robo t ) [mm]

% 25 cm in our case −− 250 mm

% − R wheel : whee l rad iu s [mm]

% 24.6000 mm yaricap

% − a lpha : ang le o f the f r on t whee l s [ rads ] ( in our case a lpha = pi /6)

% − vF : f r o n t a l speed s e t p o i n t [mm/s ] −−−x ax i s

% − vL : l a t e r a l speed s e t p o i n t [mm/s ] , > 0 i f or i en ted to r i g h t −y ax i s

% − omega : angu lar v e l o c i t y s e t p o i n t [ rad/ s ] > 0 i f CCW

% − p l o t : draw a p l o t wi th a l l v e c t o r s (1 = p lo t , 0 = don ’ t p l o t )

%

% t h i s func t i on re tu rns :

% − v t : v e c tor o f t an g e n t i a l whee l v e l o c i t i e s [mm/s ]

% − vn : vec tor o f ” s l i d i n g ” v e l o c i t y o f the whee l s due to r o l l e r s [mm/s ] ,

% > 0 i f d i r e c t e d from the cen te r to the ex t e rn

% − omega w : angu lar v e l o c i t y o f the whee l s [mm/s ] , > 0 i f CW look i n g at

% the whee l from the cen te r o f the robo t

%

% You can c a l l t ha t f unc t i on l i k e :

% [ vt , omega w , vn ] = TriskarOdometry (250 , 24.6 , p i /6 ,1000 ,1000 ,0 ,1)

cosA = cos ( alpha ) ;

sinA = sin ( alpha ) ;

v = [ v F , v L , omega∗R robot ] ’

MF = [−cosA sinA −1;

cosA sinA −1;

0 −1 −1]

ML = [ sinA cosA 0 ;

sinA −cosA 0 ;

−1 0 0 ] ;

vt = MF∗v ;

om = vt/R wheel ;

vn = ML∗v ;
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i f (plot == 1)

% sca l a t u r e

k1 = max(abs ( v F ) ,abs ( v L ) ) ;

v1 = v F/k1∗R robot /2 ;

v2 = v L/k1∗R robot /2 ;

p1 = R robot /2 ;

m arr = [0 0 .04∗ p1 −0.04∗p1 ; 0 .1∗ p1 0 0 ] ;

v tx t = [ 0 . 0 5∗ p1 ; 0 .2∗ p1 ] ;

s1 = R robot /( 2 ∗ max(abs ( [ vt ; vn ] ) ) ) ;

%p l o t

figure (1 )

hold on

h1 = l ine ( [ 0 , R robot∗cosA ] , [ 0 R robot∗ sinA ] ) ;

h2 = l ine ([0 ,−R robot∗cosA ] , [ 0 R robot∗ sinA ] ) ;

h3 = l ine ( [ 0 , 0 ] , [ 0 −R robot ] ) ;

set ( h1 , ’ Color ’ , [ 0 . 2 0 .2 0 . 2 ] ) ;

set ( h2 , ’ Color ’ , [ 0 . 2 0 .2 0 . 2 ] ) ;

set ( h3 , ’ Color ’ , [ 0 . 2 0 .2 0 . 2 ] ) ;

set ( h1 , ’ L in eS ty l e ’ , ’−. ’ ) ;

set ( h2 , ’ L in eS ty l e ’ , ’−. ’ ) ;

set ( h3 , ’ L in eS ty l e ’ , ’−. ’ ) ;

i f ( v F ˜= 0)

l ine ( [ 0 0 ] , [ 0 v1 ] , ’ Color ’ , [ 1 0 0 ] ) ;

i f ( v F < 0)

f i l l ( [ 0 p1 ∗0.05 −p1 ∗ 0 . 0 5 ] , [ v1 v1+0.12∗p1 v1+0.12∗p1 ] , ’ r ’ )

else

f i l l ( [ 0 p1 ∗0.05 −p1 ∗ 0 . 0 5 ] , [ v1 v1−0.12∗p1 v1−0.12∗p1 ] , ’ r ’ )

end

text (0 . 15∗ v1 , v1 , ’ v F ’ ) ;

end
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i f ( v L ˜= 0)

l ine ( [ 0 v2 ] , [ 0 0 ] , ’ Color ’ , [ 1 0 0 ] ) ;

i f ( v L < 0)

f i l l ( [ v2 v2+0.12∗p1 v2+0.12∗p1 ] , [ 0 p1 ∗0.05 −p1 ∗0 . 0 5 ] , ’ r ’ )

else

f i l l ( [ v2 v2−0.12∗p1 v2−0.12∗p1 ] , [ 0 p1 ∗0.05 −p1 ∗0 . 0 5 ] , ’ r ’ )

end

text ( v2 , 0 . 1∗ v2 , ’ v L ’ ) ;

end

i f ( omega ˜= 0)

i f ( omega > 0)

theta = linspace (−pi /3 ,pi /2 ,100) ;

f i l l ( [−0.12∗p1 0 0 ] , [ R robot /6 R robot/6+p1 ∗0.05 R robot/6−p1

∗0 . 0 5 ] , ’ b ’ ) ;

text (−0.14∗p1 , R robot/6+p1 ∗0 .05 , ’ \omega ’ )

else

theta = linspace (pi /2 ,4∗ pi /3 ,100) ;

f i l l ( [ 0 . 1 2∗ p1 0 0 ] , [ R robot /6 R robot/6+p1 ∗0.05 R robot/6−p1∗

0 . 0 5 ] , ’ b ’ ) ;

text (0 . 12∗ p1 , R robot/6+p1 ∗0 .05 , ’ \omega ’ ) ;

end

rho = ones (1 ,100)∗ R robot /6 ;

[ xr , yr ] = pol2cart ( theta , rho ) ;

l ine ( xr , yr ) ;

end

% ruota 1

i f ( vt (1 ) ˜= 0)

l ine ( [ R robot∗cosA , R robot∗cosA+vt (1)∗ s1∗ sinA ] , [ R robot∗ sinA , R robo

∗sinA−vt (1)∗ s1∗cosA ] , ’ Color ’ , [ 0 1 0 ] ) ;

o f f s e t 1 = [ R robot∗cosA+vt (1)∗ s1∗ sinA ; R robot∗sinA−vt (1)∗ s1∗cosA ] ;

i f ( vt (1)∗ s1 ∗ sinA < 0)

M = m rot ( alpha ) ;

else

M = m rot(−pi + alpha ) ;

end

m arr1 = M∗m arr + [ o f f s e t 1 o f f s e t 1 o f f s e t 1 ] ;

v tx t1 = M∗ v tx t + o f f s e t 1 ;
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f i l l ( m arr1 ( 1 , : ) , m arr1 ( 2 , : ) , ’ g ’ ) ;

text ( v tx t1 ( 1 ) , v tx t1 ( 2 ) , ’ v { t1 } ’ ) ;

end

i f ( vn (1) ˜= 0)

l ine ( [ R robot∗cosA , R robot∗cosA+vn (1)∗ s1∗cosA ] , [ R robot∗ sinA , R robo

sinA+vn (1)∗ s1 ∗ sinA ] , ’ Color ’ , [ 0 1 0 ] )

o f f s e t 1 = [ R robot∗cosA+vn (1)∗ s1∗cosA ; R robot∗ sinA+vn (1)∗ s1∗ sinA ] ;

i f ( vn (1)∗ s1 ∗cosA < 0)

M = m rot (pi/2+alpha ) ;

else

M = m rot(−pi/2 + alpha ) ;

end

m arr1 = M∗m arr + [ o f f s e t 1 o f f s e t 1 o f f s e t 1 ] ;

v tx t1 = M∗ v tx t + o f f s e t 1 ;

f i l l ( m arr1 ( 1 , : ) , m arr1 ( 2 , : ) , ’ g ’ ) ;

text ( v tx t1 ( 1 ) , v tx t1 ( 2 ) , ’ v {n1} ’ ) ;

end

% ruota 2

i f ( vt (2 ) ˜= 0)

l ine ([−R robot∗cosA , −R robot∗cosA+vt (2)∗ s1∗ sinA ] , [ R robot∗ sinA , R ro

∗ sinA+vt (2)∗ s1∗cosA ] , ’ Color ’ , [ 0 1 0 ] ) ;

o f f s e t 1 = [−R robot∗cosA+vt (2)∗ s1 ∗ sinA ; R robot∗ sinA+vt (2)∗ s1∗cosA ] ;

i f ( vt (2)∗ s1 ∗ sinA < 0)

M = m rot(−pi−alpha ) ;

else

M = m rot(−alpha ) ;

end

m arr1 = M∗m arr + [ o f f s e t 1 o f f s e t 1 o f f s e t 1 ] ;

v tx t1 = M∗ v tx t + o f f s e t 1 ;

f i l l ( m arr1 ( 1 , : ) , m arr1 ( 2 , : ) , ’ g ’ ) ;

text ( v tx t1 ( 1 ) , v tx t1 ( 2 ) , ’ v { t2 } ’ ) ;

end

i f ( vn (2) ˜= 0)

l ine ([−R robot∗cosA , −R robot∗cosA−vn (2)∗ s1∗cosA ] , [ R robot∗ sinA , R ro

∗ sinA+vn (2)∗ s1∗ sinA ] , ’ Color ’ , [ 0 1 0 ] )
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o f f s e t 1 = [−R robot∗cosA−vn (2)∗ s1 ∗cosA ; R robot∗ sinA+vn (2)∗ s1∗ sinA ] ;

i f ( vn (2)∗ s1 ∗ sinA < 0)

M = m rot(−pi/2−alpha ) ;

else

M = m rot (pi/2−alpha ) ;

end

m arr1 = M∗m arr + [ o f f s e t 1 o f f s e t 1 o f f s e t 1 ] ;

v tx t1 = M∗ v tx t + o f f s e t 1 ;

f i l l ( m arr1 ( 1 , : ) , m arr1 ( 2 , : ) , ’ g ’ ) ;

text ( v tx t1 ( 1 ) , v tx t1 ( 2 ) , ’ v {n2} ’ ) ;

end

% ruota 3

i f ( vt (3 ) ˜= 0)

l ine ( [ 0 , −vt (3)∗ s1 ] , [−R robot , −R robot ] , ’ Color ’ , [ 0 1 0 ] ) ;

o f f s e t 1 = [−vt (3)∗ s1 ; −R robot ] ;

i f (−vt (3)∗ s1 < 0)

M = m rot (pi /2 ) ;

else

M = m rot(−pi /2 ) ;

end

m arr1 = M∗m arr + [ o f f s e t 1 o f f s e t 1 o f f s e t 1 ] ;

v tx t1 = M∗ v tx t + o f f s e t 1 ;

f i l l ( m arr1 ( 1 , : ) , m arr1 ( 2 , : ) , ’ g ’ ) ;

text ( v tx t1 ( 1 ) , v tx t1 ( 2 ) , ’ v { t3 } ’ ) ;

end

i f ( vn (3) ˜= 0)

l ine ( [ 0 , 0] , [−R robot , −R robot−vn (3)∗ s1 ] , ’ Color ’ , [ 0 1 0 ] )

o f f s e t 1 = [ 0 ; −R robot−vn (3)∗ s1 ] ;

i f (−vn (3)∗ s1 < 0)

M = m rot (pi ) ;

else

M = m rot ( 0 ) ;

end

m arr1 = M∗m arr + [ o f f s e t 1 o f f s e t 1 o f f s e t 1 ] ;

v tx t1 = M∗ v tx t + o f f s e t 1 ;

f i l l ( m arr1 ( 1 , : ) , m arr1 ( 2 , : ) , ’ g ’ ) ;
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text ( v tx t1 ( 1 ) , v tx t1 ( 2 ) , ’ v {n3} ’ ) ;

end

y r e f = 0 ;

d e l t a = −0.095∗R robot ;

text ( R robot ∗0 .6 , y r e f , [ ’ v { t1 } : ’ ,num2str ( vt ( 1 ) ) , ’ mm/ s ’ ] )

text(−R robot ∗0 .8 , y r e f , [ ’ v {F} : ’ ,num2str ( v F ) , ’ mm/s ’ ] )

y r e f = y r e f + de l t a ;

text ( R robot ∗0 .6 , y r e f , [ ’ v {n1 } : ’ ,num2str ( vn ( 1 ) ) , ’ mm/ s ’ ] )

text(−R robot ∗0 .8 , y r e f , [ ’ v {L} : ’ ,num2str ( v L ) , ’ mm/s ’ ] )

y r e f = y r e f + de l t a ;

text ( R robot ∗0 .6 , y r e f , [ ’ v { t2 } : ’ ,num2str ( vt ( 2 ) ) , ’ mm/ s ’ ] )

text(−R robot ∗0 .8 , y r e f , [ ’ \omega {R} : ’ ,num2str ( omega ) , ’ rad/ s ’ ] )

y r e f = y r e f + de l t a ;

text ( R robot ∗0 .6 , y r e f , [ ’ v {n2 } : ’ ,num2str ( vn ( 2 ) ) , ’ mm/ s ’ ] )

y r e f = y r e f + de l t a ;

text ( R robot ∗0 .6 , y r e f , [ ’ v { t3 } : ’ ,num2str ( vt ( 3 ) ) , ’ mm/ s ’ ] )

y r e f = y r e f + de l t a ;

text ( R robot ∗0 .6 , y r e f , [ ’ v {n3 } : ’ ,num2str ( vn ( 3 ) ) , ’ mm/ s ’ ] )

y r e f = y r e f + de l t a ;

text ( R robot ∗0 .6 , y r e f , [ ’ \omega 1 : ’ ,num2str (om(1 ) ) , ’ rad/ s ’ ] )

y r e f = y r e f + de l t a ;

text ( R robot ∗0 .6 , y r e f , [ ’ \omega 2 : ’ ,num2str (om(2 ) ) , ’ rad/ s ’ ] )

y r e f = y r e f + de l t a ;

text ( R robot ∗0 .6 , y r e f , [ ’ \omega 3 : ’ ,num2str (om(3 ) ) , ’ rad/ s ’ ] )

axis equal

hold o f f

end
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Appendix C

User Manual

This document gives information about the robot, the settings that needs

to be made before the starting a run. We use two different programs in

the robot. The first one is the ST software, that is used during the color

selection and other demo features provided with the software. The second

one is the software which we implemented for the Thesis, the game software.

In order to run the game, we need also the ST color selection interface, since

it offers a good visual feedback on the selection process. The ST program

uses the QT Framework, and installation is necessary to use the ST color

selection interface.

C.1 Tool-chain Software

In order to implement the robot, to flash the written software in to the mi-

croprocessor, we use the ST-ARM Toolchain. Unzip the archive “STLCam

XXXz Redistrib.zip” in the Eclipse workspace directory. Now you need

to import the project. From Eclipse choose File-Import-General-Existing

project into workspace, browse for the “STLCam“ directory and then click

”Finish” shown in Figure C.1.

After the import completed, and the compilation ended successfully, we

need to import the ”Launch Configurations“ to the tool-chain. From Eclipse

choose File-Import-Run/Debug-Launch Configurations, and browse for the

”Launch Configurations 003“ and then click ”Finish“. The step can be seen

from the Figures C.2, C.3 below.

Before programming the microprocessor, the drivers for the ”JTAG pro-
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Figure C.1: The import screen of Eclipse

Figure C.2: The import screen for Launch Configurations
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Figure C.3: The second step at importing Launch Configurations

grammmer“ and the ”Virtual COM Port“ for the USB driver of the board,

provided in the CD, should be installed. The PC should be restarted if it is

necessary.

After installing the drivers successfully, the next step is flashing ST’s

software into the microprocessor. You can program the microprocessor by

clicking the ”program USB“ from the ”Make“ view.

If the programming is finished successfully, you should see ”Flash Pro-

gramming Finished.“ from the ”Console“.
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C.2 Setting up the environment (Qt SDK Open-

source)

Download the 2009.04 version of the Qt SDK from here: ftp://ftp.qt.nokia.com/qtsdk/qt-

sdk-win-opensource-2009.04.exe Do not download the last version, at the

moment our software works only with Qt 4.5.x. Run the executable that

will install on your pc the Qt Framework 4.5.3 and the Qt Creator IDE.

Unzip the archive ”STRVS-Serial Executable.zip“ in a directory of your

choice. If you receive the following error (Figure C.4) while trying to launch

the ”STRVS-Serial 046.exe“, place the executable file in the installed direc-

tory of the Qt Framework and launch from that location.

Figure C.4: The error that can be caused if Qt libraries not found. To solve the problem,

place the executable file under Qt libraries folder.

From the ”Windows Device Manager“ under ”Ports(COM & LPT)“ find

the ”STM Virtual COM Port“ and check port number. In the example it

is ”COM4“ (Figure C.5). Use this information in the software. In the fol-

lowing order, we first ”Open“ the port. Then ”Start Camera“ with the

”BlobSearch“ option. Then ”Get Image“ to check the camera started cor-

rectly. ”Continuous“ should be selected if we can to see the image as a video

stream (Figure C.6).

Since there is no mechanism to save the pictures, we capture the pictures

by taking a ”snapshot“ in the windows. The important point in capturing

the images is to set ”Zoom“ parameters to ”%100“ in order not to change

the resolution of 160x120. The images should be cut also at the orginal res-

olution (160x120) from the ”snapshot“ images to achieve the correct values.

The matlab script ”color calculator“ that can be found at Appendix B.1, is

used to calculate the color histogram of the demanded object. It is advised

to take as many samples as you can, with different distances to robot and

with different illumination to have better histogram.
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Figure C.5: The drivers can be validated from Device Manager

To test the color found with ”color calculator” the following steps should

be followed. From the tabs at the top, ”BlobSearch“ should be selected. In-

side ”BlobSearch“ tab, color class number should be set accordingly with

the number of the color we want to control (Figure C.7). Under the ”Blob

Color“ tab, ”Visual Rule Editor“ should be checked to control the color.

The color code defined with inside the ”main software“ for the thesis (will

be explained in details in a few steps) could be tested at that tab, by adding

the color codes to the ”Rules List“ that can be found on the lower right

bottom of the software.

When the color information is ready, it should be captured by clicking

the ”Get from Visual Rule Editor“ in the ”Custom“ menu. The next step

is setting the ”Blob Geometry“ that defines the size of the color we are

searching for. After finishing these steps, we should deselecting the ”Visual

Rule Editor“ and ”Save settings“. In order to test the whole process, we

should select ”continuous“ and click ”Get Blobs“. The selected color will be
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Figure C.6: The main screen of the ST’s software

represented according to the parameters defined under the ”Visualization“

tabs (Figure C.7).

C.3 Main Software - Game software

The project should be imported to the Eclipse in the same way with the

ST’s software. The color information and the blob geometry parameters are

found under the source-Camera Init.c . The function that contains these
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Figure C.7: The second step at importing Launch Configurations

information are placed in the Init BlobParameters function. BlobSearchSet-

ColParam(u8 IDCol, u16 MinPer, u16 MaxPer, u16 MinArea, u16 MaxArea,

u8 MinCirc, u8 MaxCirc) taking the parameters defined, should be updated

with the values found in the previous step, with ST’s software. ”IDCol“ is

the color class defined and it is be the same also with the corresponding

RGBCube AddCube(u8 RMin, u8 RMax, u8 GMin, u8 GMax, u8 BMin, u8

BMax, u8 IDCol); and RGBCube SubCube(u8 RMin, u8 RMax, u8 GMin,

u8 GMax, u8 BMin, u8 BMax, u8 IDCol); functions that defines the color

coding. The values that are tested with ST’s software should be updated in

RGBCube AddCube and RGBCube SubCube functions.
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The robot is ready to play the game, after building the code and pro-

gramming the microprocessor through ”program USB“ that can be found

in Eclipse from the ”Make“ view (Figure C.8).

Figure C.8: The programming of the microprocessor is done through ”program USB.

The process can be controlled through the console.



Appendix D

Datasheet

The pin mappings of the board to the corresponding GPIO port of the mi-

crocontroller can be seen in the figure D.3.

Mainly GPIO pins 1.6, 1.4, 1.3 represents the PWM wave outputs for

the motor1, motor2, motor3 in the same order. The pins 0.6, 0.2, 0.4 and

0.7, 0.3, 0.5 are the direction pins for the motor control; that is used to

control which direction is forward, which is reverse and also to break-down

the motors. The pins 5.3, 5,2, 1.0, 4.0, 4.1 are for the tactile bumper sen-

sors. The detailed description can be found in “definitions.h” inside main

software.
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Figure D.1: The schematics for the RVS Module board
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Figure D.2: The schematics for the STL Mainboard
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Figure D.3: The pin-mappings of the board with corresponding GPIO in the microcon-

troller
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