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Two is not equal to three, not even for large values of two.
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Abstract

Very powerful tools to model blood�ow in the arteries have been developed
in recent years, giving an accurate description of how important variables,
like pressure, section area and velocity change during a heartbeat. Howe-
ver, the physical parameters that intervene can vary considerably between
patients, making predictions di�cult in speci�c cases.

In order to adapt the simulation to each patient, a Kalman �lter has
been implemented, �rst in its classical version, then generalised into an
extended Kalman �lter (EKF). This method uses the knowledge of how a
state vector evolves in time along with in vivo measurements to �lter the
measurement error and the inaccuracy we insert by making a guess on the
parameters. If we apply it to a state vector made up of the section area, the
mean velocity and the parameter β, which is related to the compliance of
the vessel wall, we arrive to an estimation of the parameter in the speci�c
patient. The procedure, especially the EKF, attains good accuracy in most
of the tested cases, and shows robustness towards measurement errors. In
addition it can be applied to cases where we only have measurements on one
state variable and where we only have a low frequency of measurements.

Having an estimate of the parameter can help choosing the treatment in
case of need. For instance it could help dimensioning the stent that has to
be inserted, since it gives us the possibility to simulate the result of a local
increase of sti�ness of the wall.
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Abstract

In anni recenti sono stati sviluppati degli strumenti molto potenti per
simulare il �usso sanguigno, che descrivono accuratamente come cambiano
durante un battito cardiaco delle variabili importanti, come l'area, la pres-
sione e la velocità. Tuttavia, i parametri �sici in gioco possono di�erire
considerevolmente tra un paziente ed l'altro, rendendo la predizione di�cile
nei casi speci�ci.

Nell'ottica di adattare la simulazione a ciascun paziente, abbiamo quindi
implementato un �ltro di Kalman, prima nella sua versione classica, e poi
nella generalizzazione EKF (Extended Kalman Filter). Questo metodo
sfrutta la conoscenza del modo in cui uno stato evolve nel tempo e delle
misurazioni in vivo del paziente per �ltrare gli errori di misura e l'errore
compiuto nello stabilire la stima iniziale dei parametri sconosciuti. Ap-
plicando il metodo ad un vettore di stato composto da area della sezione,
velocità media ed il parametro β, che è legato alla rigidezza della parete
dell'arteria, si arriva alla stima del parametro sullo speci�co paziente. La
procedura, ed in particolare il metodo EKF, ottiene una buona accuratezza
nella maggior parte dei casi studiati, e mostra robustezza rispetto ad errori
di misura. Inoltre può essere applicato a casi in cui si misura una sola delle
variabili di stato, e in cui il numero di misure temporali è ridotto.

Avere una stima del parametro può essere d'aiuto nel de�nire la terapia
in alcuni casi. Per esempio potrebbe servire a dimensionare lo stent da
inserire, poiché permette di simulare gli e�etti di un irrigidimento locale
della parete.



Introduction

In recent years, mathematical modeling has gained attention in a vast and
evergrowing number of �elds of science and engineering. Its role in simpli-
fying prototyping and reducing costs cannot be questioned, and has partially
determined its success. However, there are �elds where simulations can have
an even more important outcome: that of reducing the risk of certain types
of surgery, by using more e�ective methods.

This is the domain on which this thesis focuses. In particular it aims
at estimating an important parameter of the arterial wall, its compliance,
in an in vivo scenario. The compliance can then be used to simulate the
blood�ow if a stent is inserted inside the vessel, and foresee if there are
areas which will be under excessive stress. This could lead to the choice of
a certain type of stent instead of another, to a more realistic evaluation of
the risks, and even to the de�nition of the ideal stent for a certain patient.

In order to obtain an estimation of the compliance, we have chosen to
use a Kalman �lter. This method consists in having knowledge about how
a certain state evolves in time, and having some measurements of values
related to the state vector. The power of the method lies in the fact that at
each measuring-step we can have much fewer measurements than degrees
of freedom of the state, meaning that it is a hidden state estimator. For
instance, in one of the tests discussed further on, we had 9 measurements
at each time step, while the state was a vector of 63 elements. Starting
from an initial guess, at each time-step the values we predict from the state
evolution and the measurements are confronted, and the state is corrected
accordingly, through an optimal (in the linear case) bayesian estimation.

In particular, we have applied this strategy on an augmented state vec-
tor, made up of the physical variables (area and mean velocity) and the
compliances of the di�erent vessels of our domain. In this case the method
tends to �lter the measurement error (which is inevitable) and then adapt
the compliances so that they yield values similar to the measurements, thus
converging towards the �real� values of the parameters. It is very important
not to have ambiguities in the system, as to say di�erent sets of parameters
that yield the same output, but such problems have not been observed in
our test cases.

The measurements can come from di�erent instruments, with the rela-
ted measurement error, frequency of measure and number of measurements
along the vessel. For instance we can measure the area through tomography,
or the velocity through Doppler ultrasound. Any of these strategies, or all
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of them together if possible, can be applied; we only need the measurements
to be related to the state vector.

This work has its foundations in a previous project, completely imple-
mented in MATLAB by the author and a colleague (Federico Bonelli) during
a course of computational �uid dynamics at Politecnico di Milano. In turn,
that project consisted in reproducing the results found in [SFP03], regar-
ding non-linear blood �ow simulations. The methods implemented during
that project have then been being slightly modi�ed and embedded into a
surrounding structure, then used in this thesis in the extended Kalman �lter
and as a �real case� to produce measurements.

The linearised models we use are generated from those, but have been
heavily manipulated in this thesis in order to reach a form that is compatible
with Kalman �ltering. The choice of using a Kalman �lter to estimate the
parameters is inspired by [MCT08], and has yielded three di�erent Kalman
�ltering methods. These have entirely been coded from scratch in MATLAB
by the author for this thesis, or in a small part for the previous project. The
measurements are all generated synthetically, by inserting the real value of
the parameters into the models.

As for the structure of this document, the �rst chapter will introduce
the model that simulates blood�ow in a bifurcation and its numerical ap-
proximation through a Discontinous Galerkin method. The second chapter
describes the Kalman �lter, from its Bayesian foundations to how the algo-
rithm is structured and derived. Three di�erent cases have been developed:
the classical Kalman �lter, the time-varying matrix Kalman �lter and �nally
the extended Kalman �lter.

Chapter three merges the previous two, de�ning a state-parameter es-
timation procedure, based on our blood�ow case. Additionally, it details
the linearisation of the �uxes. Finally, the fourth chapter presents the re-
sults of the study, in the di�erent cases. After having tackled some speci�c
problems that are related to the linearised and time-varying matrix models,
good stability and convergence properties are found in nearly all cases we
have studied. The estimation procedure yields accurate values for the βs
even if we only use measurements on the area, and even if the measurements
are temporally distant one from another.



Chapter 1

Blood �ow simulation

1.1 Model

In order to simulate the blood �ow we have chosen to use the following 1D
model, which is obtained by integrating the Navier-Stokes equations on the
transverse section of the artery:{

∂A
∂t

+ ∂Q
∂x

= 0
∂Q
∂t

+ ∂
∂x

(
Q2

A

)
+ A

ρ
∂p
∂x

= 0
(1.1)

where A(x, t) is the area of the vessel section, Q(x, t) the mass �ux
through this surface, ρ the density of the �uid (that we assume to be
constant, equal to 1.021) and p the average pressure on the section. In
order to solve these two equations in three variables we are forced to add a
relationship between two of the variables. In particular we have chosen to
relate the area and the pressure through the following:

p = pext + β(
√
A−

√
A0) (1.2)

having represented the equilibrium area of the vessel by A0 = A0(x).
This value is reached when the vessel is empty, which corresponds to having
a pressure that is equal to the external pressure, as can easily be seen from
(1.2). The external pressure pext is a constant value of reference. In our
case it is arbitrary, since the pressure only enters the equation (1.1) under a
partial derivative. Therefore, without losing generality, we will assume that
it is equal to zero.

The term β which appears in the equation (1.2) is a parameter which
is related to the elasticity of the vessel wall. It is assumed to be constant
in each artery, but di�erent from a vessel to another. However, a variation
of β in the x direction can easily be inserted in the blood �ow simulation,
to achieve a more realistic modeling or for example to study the e�ects of
inserting a stent.
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12 CHAPTER 1. BLOOD FLOW SIMULATION

1.1.1 Alternative models

The set of equations (1.1) is not the only way in which we can face the
problem. Indeed, by manipulating these we can obtain equivalent systems
of equations, for instance in the variables (A, u, p) instead of (A,Q, p). Here
the variable u denotes the average velocity on the section A, so the change
in variables takes place through the relationship Q = Au. Therefore we
obtain: {

∂A
∂t

+ ∂Au
∂x

= 0
∂u
∂t

+ u∂u
∂x

+ 1
ρ
∂p
∂x

= 0
(1.3)

This system of equations can be rewritten as a general conservation law:

∂U
∂t

+
∂F
∂x

= 0 (1.4)

Here we have de�ned the variable vectors U and F as follows:

U =
[
A
u

]
, F = F(U) =

[
Au
pt

]
(1.5)

where pt denotes the total pressure, de�ned as:

pt =
u2

2
+
p

ρ

As we will see further on, in order to impose the border conditions and
information transfer, it will be more useful to have another manipulation of
(1.4) at hand. In particular we want the conservation law to be in a quasi-
linear form, which can easily be attained by rewriting (1.4) in the following
way:

∂U
∂t

+ H
∂U
∂x

= 0 (1.6)

where the H matrix clearly is de�ned as:

H =

[ ∂F1

∂U1

∂F1

∂U2
∂F2

∂U1

∂F2

∂U2

]
=

[
u A
β

2ρ
√
A

u

]
Here the subscript (i) in Fi and Ui denotes the extraction of the i-th

component from the vector. For further details see [SFP03].

1.1.2 Simulation domain

The problem is solved on a domain which is made up of three arteries: the
ascending aorta (artery number 1), the aortic arch (artery number 2) and
the brachiocephalic artery (artery number 3). The input signal is imposed
on the �rst node of artery 1, and then transmits to the two arteries in which
this one splits.
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Figure 1.1: Anatomical drawing of the arteries, from [GH08]. Here the
brachiocephalic artery is called �Innominate�.

Figure 1.2: Left: the bifurcation we consider. Right: the 1D simulation
domain. The proportions between vessels is kept in both images.

In particular, the numerical method we have chosen gives us the op-
portunity of considering the three arteries as separate domains, which only
communicate through their interface conditions, in a way which we will
explain further on.
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1.1.3 Numerical method

Our problem is not a classical modeling problem on a single domain, hence
we are forced to take some time to think about which method to use. In-
deed we are making a mono-dimensional simulation of a naturally three-
dimensional problem, which brings some di�culties in treating the bifurca-
tion. In particular we have to face the issue of connecting the arteries: in
one dimension it is impossible to have a real bifurcation. In addition we
have to transfer the signal from the vessel before the bifurcation to the two
that are after it in a way that resembles the actual physical behaviour as
much as possible.

Furthermore in our case we have that the physical parameters vary bet-
ween the vessels, and in particular A0 is discontinuous across the bifurcation.
Therefore it is unreasonable to impose that the solution is continuous at that
point. As a consequence, in order to avoid problems at the bifurcation we
will use a discontinuous Galerkin method.

Bearing in mind that this is our �nal goal, we multiply the conservation

law (1.4) by a generic test vector function ϕ =
[
ϕ1

ϕ2

]
de�ned upon the

whole domain Ω and integrate on the simulation domain to obtain its weak
form:

ˆ
Ω

∂U
∂t
· ϕdx+

ˆ
Ω

∂F
∂x
· ϕdx = 0

Through the additivity of the integral we can rewrite this equation in
the following way, which will be of higher interest further on:

Ne∑
e=1

(ˆ
Ωe

∂U
∂t
· ϕdx+

ˆ
Ωe

∂F
∂x
· ϕdx

)
= 0

where Ne denotes the total number of elements in which we have divided
Ω and

´
Ωe

denotes the integral on the element Ωe.
At this point we can integrate the second term by parts, which yields

the following form:

Ne∑
e=1

(ˆ
Ωe

∂U
∂t
· ϕdx−

ˆ
Ωe

F · ∂ϕ
∂x

dx+ [F · ϕ]xe(right)
xe(left)

)
= 0

where we have used the notation xe(left) and xe(right) to respectively
denote the �rst and the last node of the element Ωe. We observe that
the functions are all de�ned in their natural functional spaces, and haven't
been numerically approximated yet. In order to take this further step we
use a Galerkin method, and in particular we choose a functional space which
brings to the following discontinuous Galerkin method:

�nd Uh ∈ W r
h =

{
vh ∈ L2(Ω) s.t. vh|Ωe

∈ Pr, ∀Ωe ∈ Th
}
, where Th is

the triangulation of the domain Ω, such that
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{∑Ne

e=1

(´
Ωe

∂Uh

∂t · ϕdx−
´

Ωe
F(Uh) · ∂ϕ∂x dx+ [Fu · ϕ]xe(right)

xe(left)

)
= 0

b.c.

holds for all ϕ ∈W r
h .

We have denoted the �ux at the border of every element by Fu, and here
we will insert the transfer of information between elements, as we will see
shortly. Finally, we can counter-integrate the term we integrated by parts
before. Having inserted Fu in the expression the two terms we obtain will
generally not cancel out, and we will attain the following problem:

�nd Uh ∈W r
h such that

{∑Ne

e=1

(´
Ωe

∂Uh

∂t · ϕdx+
´

Ωe

∂F(Uh)
∂x · ϕdx+ [(Fu−F(Uh)) · ϕ]xe(right)

xe(left)

)
= 0

b.c.

(1.7)
holds for all ϕ ∈W r

h .
This �nal form highlights the fact that it is preferable to choose a

consistent Fu, which eliminates the last term whenever the method is ap-
plied on the exact solution. In addition it is interesting to see that now
the problem can be split into Ne separated problems which only interact
through the �ux Fu, which gives us the possibility of parallelising the pro-
blem.

1.2 Matrix form

In order to follow the standard Galerkin procedures we now have to de�ne a
basis for the functional space W r

h . We have chosen to consider characteris-
tic polynomials of degree r, de�ned on the Gauss-Legendre-Lobatto nodes.
They have the following trends:

Figure 1.3: Characteristic basis functions of degree 5 on GLL nodes.

By characteristic on the i-th node we mean a function whose value is
zero on all nodes except the i-th, where its value is 1. Having de�ned a basis,
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every function of the space W r
h can be expressed as a linear combination

of the basis functions. In particular this holds for Uh and ϕ, that can be
decomposed as

Uh(t, x) =
r+1∑
j=1

uj(t)Ψj(x)

ϕ(x) =
r+1∑
j=1

ϕjΨj(x)

where Ψj(x) =
[
ψ1
j

ψ2
j

]
denotes the j-th basis function, uj(t) and ϕj the

corresponding coe�cients. Since the modi�ed conservation law (1.7) must
hold for every function ϕ ∈ W r

h , just as in standard Galerkin methods we
impose the law only to hold for every basis function. This does not bring
to a loss of generality, since all operations involving ϕ in (1.7) are linear,
meaning that if it holds for all basis functions it will also hold for all linear
combinations of these.

Substituting Uh with its expansion Ud
h upon the basis we reach the ma-

trix form of the problem, written separately on each Ωe of the triangulation
Th:

M
∂Ud

h

∂t
+ SHUd

h + H∂Ωe
Ud
h + PFu

h = 0 (1.8)

All the terms of this equation will be explained in detail in the following

subsections. In this equation the matrices have to multiply Ud
h =

[
Ad
h

udh

]
,

where now Ad
h and udh have r + 1 components each. As a consequence all

matrices have to be of the size 2(r+ 1)× 2(r+ 1), and virtually partitioned
into four blocks of equal size, (r+ 1)× (r+ 1). Every block shows how one
of the variables (A, u) in�uences one of the equations in (1.4). In M and S,
as we will see shortly, there is no di�erence between the blocks, so we will
call each submatrix m or s and will drop the superscripts of the scalar basis
functions ψ1

i and ψ
2
i . The resulting matrices will be structured as follows:

M =
[

m 0
0 m

]
S =

[
s 0
0 s

]
As for H and H∂Ω this does not hold, and we will be forced to write the
matrix as a block matrix made up of four di�erent submatrices.

1.2.1 The mass matrix

The submatrix m is a mass matrix, with the components mij =
´

Ωe
ψjψidx.

With the current choice of basis and quadrature rule, it becomes diagonal,
since the basis functions are characteristic. In order to compute the value
of this integral we use a GLL quadrature rule, of order N = r:
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ˆ

Ωe

ψjψidx ≈
N+1∑
k=1

wkψj(xk)ψi(xk) =
N+1∑
k=1

wkδjkδik (1.9)

where xk are the GLL nodes and wk the corresponding weights, de�ned
as wi =

´
Ωe
ψidx. In the notation, δjk and δik are Kronecker deltas, and

show that the i-th basis function is null on all nodes except the i-th, where
its value is 1. The result of the integral approximation will only be di�erent
from zero if i = j, as to say if we are on the diagonal of the matrix m.

It is known that the GLL quadrature rule gives an exact result if the
polynomial is at most of degree 2N − 1 if we use N + 1 nodes. Thus, in our
case we are actually approximating, since both ψi and ψj are of degree N .

In order to speed up the computation it is a common choice to work
on a reference element, for instance such that Ωref =

[
−1 1

]
, and then

transfer the result on the actual domain. By doing this, the values on the
diagonal of the m matrix on the reference element, as can be seen in the

equation 1.9, will simply be the quadrature weights ŵi =
´ 1

−1
ψ̂idx, where

ψ̂i denotes the basis on the reference element. Moreover, we will not be
forced to change them throughout the simulation.

1.2.2 Transfer from the reference element to the cur-
rent element

In order to get from the value of m that we have attained on the reference
element to the value which is found on the real domain, we have to take
some facts into consideration:

- the reference element has ξ ∈
[
−1 1

]
as its variable, and we have

to compute
´ 1

−1
ψ̂i(ξ)ψ̂j(ξ)dξ

- the element Ωe of the domain Ω has x ∈
[
xe0 xeN

]
as its variable,

and the integral is
´ xeN

xe0
ψi(x)ψj(x)dx

We can observe that the basis functions are di�erent in these two cases.
This is easily understandable, since the domain has been �stretched� from
one case to the other, while the basis functions have to stay characteristic
on the nodes, which have moved. However, the trend of these functions is
the same, since their de�nition is unambiguous once we have de�ned the
nodes. As a consequence we can state that ψ̂i(ξ) = ψi(x(ξ)) ∀i .

The relationship between ξ and x is easy to �nd: x = (ξ+1)
2 (xeN − xe0),

which yields the relationship between the di�erentials: dx = (xeN−xe0)
2 dξ.

This justi�es the following manipulations:

´ xeN

xe0
ψi(x)ψj(x)dx = (xeN−xe0)

2

´ 1

−1
ψi(x(ξ))ψj(x(ξ))dξ

= (xeN−xe0)
2

´ 1

−1
ψ̂i(ξ)ψ̂j(ξ)dξ

Therefore, to transfer the value from the reference element to Ωe we only
have to multiply m by half the length of Ωe.
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If instead we have to transfer the value of an integral like
´

Ωe

dψj

dx ψidx,
as soon will be the case, we also have to �nd a way to convert the derived
term:

dψj(x(ξ))
dx

=
dψ̂j(ξ)
dξ

dξ

dx
=

2
(xeN − xe0)

· dψ̂j(ξ)
dξ

By following the same line of thought as above, we �nd out that we have
to multiply and divide by 2

(xeN−xe0) , so the value is actually the same on

the reference element and the real one, and it is not necessary to convert it.

1.2.3 The spatial derivation matrix

The submatrix s, made up of the components sij =
´

Ωe

dψj

dx ψidx, can be
obtained from the di�erentiation matrix d through the operation s = md.
Indeed, d has the components dij = dψj

dx (xi), as to say the value of the
spatial derivative of the j-th basis function in the i-th node, and we can
construct the following component-by-component proof:

(md)ij =
r+1∑
k=1

mikdkj =
r+1∑
k=1

ˆ
Ωe

ψiψkdx
dψj
dx

(xk)

=
ˆ

Ωe

ψi

r+1∑
k=1

(
ψk
dψj
dx

(xk)
)
dx =

ˆ

Ωe

ψi
dψj
dx

dx = sij

The next to last step is justi�ed by the fact that the function
dψj

dx is of
degree N − 1 ≤ N , and is therefore exactly represented by its projection
upon the basis.

1.2.4 The �ux de�nition matrix

The matrix H that �gures in (1.8) is the Galerkin version of the matrix
H that we had in the equation (1.6). Indeed, now instead of the vector

U =
[
A
u

]
we have the vector Ud

h =
[

Ad
h

udh

]
, and we have to multiply

Ad
h and udh adequately to compute the �uxes. Writing these operations as

matrix multiplications may seem excessively complicated, since calculating
the �uxes is a punctual operation, and we could simply write a function
which �nds the numerical �uxes at each node. However this way of facing
the problem will turn out to be of fundamental importance further on.

H was structured as follows:

H =

[
u A
β

2ρ
√
A

u

]
In order to obtain a similar result, we build the matrix H in this way:

H(Ud
h) = H =

[
diag(udh) diag(Ad

h)
diag( β

2ρ
√

Ad
h

) diag(udh)

]
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where diag does not denote the extraction of the diagonal, but the
construction of a diagonal square matrix, with a number of rows (and co-
lumns) equal to the length of the vector, and with the values of the vector
on the diagonal.

1.2.5 The border �ux matrix

The matrixH∂Ωe
in equation (1.8) comes from the expression [−F(Uh) · ϕ]xe(right)

xe(left) .

This matrix is very sparse, since it represents the border values. Indeed the
only rows that are not equal to zero are those that correspond to the �uxes
at the �rst and last node (each has two �uxes), and the only non-zero co-
lumns are those that multiply the area and the velocity of the �rst and last
node. The sparsity pattern is as follows:

Figure 1.4: Sparsity pattern of the matrix HdΩe . This �gure shows an
example with 9 nodes on one vessel.

In considering the matrix HdΩe
we have not included Fu, since the

latter involves not only the element on which we are working, but also the
bordering ones, as we will see in depth further on. An alternate strategy
to using the separate elements Ωe is that of considering the whole domain,
which brings us to construct matrices thrice the size of those we have seen
so far. This gives us the possibility of putting vessel interactions in matrix
notation too.

This procedure will be mandatory when we arrive to the implementation
of the Kalman �lter, but has several drawbacks when we simulate the blood
�ow. Indeed, as we will see, Fu is calculated through the resolution of a set
of non-linear equations, which could be manipulated into a quasi-linear form
involving the values at border nodes. However this is only a complicated
way of translating what the MATLAB function fsolve does excellently, and
adds nothing to our reasoning, since in the Kalman �lter case we will have
linearised this set, and matrix notation will be much easier. In addition,
creating a global matrix has another major disadvantage, since the problem
cannot be parallelised as easily anymore.
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Indeed, this means that if we consider a larger tree of arteries than a
single bifurcation we cannot simply solve the problem on di�erent vessels
concurrently. Anyhow, the matrix is �almost� block diagonal, so operations
can be split on several processors with little communication between them.

1.2.6 The upwind �ux matrix

Finally, the term PFu
h comes from the term [Fu · ϕ]xe(right)

xe(left) , and simply is

the expansion of the vector made up of the values of Fu at the borders (the
way in which these are calculated will soon be explained in detail) in order
to make it long 2r. The fact that we only have the values at the borders
is justi�ed by the scalar product, which will only be di�erent from zero for
ϕi such that ϕi(xe(right)) 6= 0 or ϕi(xe(left)) 6= 0. The basis functions for
which this holds are the �rst and the last, so PFu

h has to be a vector of only
zeros except the �rst and last entries. If we build Fu

h this way:

Fu
h =


F1(xe(left))
F2(xe(left))
F1(xe(right))
F2(xe(right))


the matrix P has to be as follows:

P =


1 0 0 0

0r−2 0r−2 0r−2 0r−2

0 0 1 0
0 1 0 0

0r−2 0r−2 0r−2 0r−2

0 0 0 1

 (1.10)

where 0r−2 denotes a vector long r − 2 made up of all zeros.

1.3 Time discretisation

The problem (1.8) is still continuous in time. It clearly cannot be solved
as it is, but we have to set up a time advancing scheme. For the blood
�ow simulation, if we were to follow [SFP03], we should choose a second
order Adams-Bashforth method. This method is completely explicit, and
for ∂U

∂t = f(t, U) uses the following formula:

Un+2 = Un+1 +
3
2
4t · f(tn+1, Un+1)− 1

2
4t · f(tn, Un)

However this approach does not �t our needs completely. In fact we must
bear in mind our �nal purpose: �nding a model to insert in the Kalman
�lter. As we will �nd out further on, the Kalman �lter is a Markov model,
meaning that the current state can only depend on the previous state, and
not from values further back in time. Because of this, we have chosen to
use a forward Euler method instead:
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Un+1 = Un +4t · f(tn, Un)

This of course reduces the time accuracy to �rst order.

1.4 Boundary conditions

If we only had one vessel, with one element, the resolution of (1.8) with
some appropriate physical boundary conditions would be enough. However
our case is slightly more complicated, with di�erent kinds of boundaries,
and on each of these we have to bear in mind that we want the equations
to be physically reasonable.

Indeed, in addition to the bifurcation issue, on each artery we can use
an arbitrary number of elements. The discontinuous Galerkin approach we
have chosen lets us treat every element separately from the others, creating
additional boundaries, and Fu ensures the information transfer between
elements. The superscript u denotes the fact that this �ux is calculated in
an upwind manner, the meaning of which will soon be clear. This strategy
has to be applied to our three types of boundaries: physical boundaries of
Ω, the boundary between three elements in a bifurcation and the boundary
between two elements on the same vessel.

1.4.1 Bifurcation conditions

Whenever the pipe in which a �uid is �owing bifurcates, the mass �ux splits
up. The way in which it divides depends on several variables, for instance
the pipe diameters, the angle at which they are connected and how the pipe
network is made up downstream. However, we can always write down a
mass �ux conservation law:

Apup = Ach1uch1 +Ach2uch2 (1.11)

where the subscript p denotes the parent vessel, while ch1 and ch2 are
the two child arteries.

In addition, if we suppose not to have any friction loss, two other equa-
tions can be found by imposing continuity of total pressure between the
parent vessel and the children:

u2
p

2
+
βp
ρ

(
√
Ap −

√
A0p) =

u2
ch1

2
+
βch1

ρ
(
√
Ach1 −

√
A0ch1) (1.12)

u2
p

2
+
βp
ρ

(
√
Ap −

√
A0p) =

u2
ch2

2
+
βch2

ρ
(
√
Ach2 −

√
A0ch2) (1.13)

this assumption brings the equation (1.4) to hold in stationary conditions
(A = A0, u = u0) not only on points inside the elements, but also on the
point where the vessels bifurcate.
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The three equations we have so far have six variables, the area and
velocity at each side of the bifurcation, and are therefore not su�cient to
�nd an unambiguous solution. In order to face this issue we can add some
equations that derive from mathematical considerations.

Having a set of conservation laws as in (1.4), we can de�ne the charac-
teristic variables, which are obtained from the H matrix of the quasi-linear
form. Indeed, the eigenvalues and the corresponding left eigenmatrix of H
are:

λ1,2 = u±
√

β
2ρA

1/4 L =

 √
β
2ρA

−3/4 1

−
√

β
2ρA

−3/4 1


and the characteristic variables W = W(A, u) =

[
W1

W2

]
are found by

integrating the equation that de�nes them: ∂W
∂U = L. Thus we �nd the

following:

W1 = u+ 4A1/4

√
β

2ρ
(1.14)

W2 = u− 4A1/4

√
β

2ρ
(1.15)

The main advantage in using characteristic variables is that they give the
opportunity of decoupling the equations in the set. Indeed, if we multiply
L at the left of (1.6) and exploit the fact that ∂W

∂x = ∂W
∂U ·

∂U
∂x and that L

is an eigenmatrix we �nd the following:

∂W1

∂t
+ λ1

∂W1

∂x
= 0

∂W2

∂t
+ λ2

∂W2

∂x
= 0

In vivo measurements have shown that the �ux generally stays subsonic,

as to say |u| <
√

β
2ρA

1/4, so one eigenvalue is positive whereas the other is

negative. We can therefore assert that W1 travels at velocity λ1 > 0, which
means rightwards on our domain, while W2 travels leftwards at velocity
λ2 < 0. As a consequence we can state that at the boundary the upwinded
W1 is the one coming from the element to the left of the boundary, while
the upwinded W2 is the one coming from the right.

This gives us the possibility to write down the three equations we were
missing, simply by imposing the conservation of the upwinded characteristic
variables over the boundary. In particular we want the parent's W1 to be
conserved, along with both children's W2. This translates mathematically
into the following:

W1 = up + 4A1/4
p

√
βp
2ρ

(1.16)
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W21 = uch1 − 4A
1/4
ch1

√
βch1

2ρ
(1.17)

W22 = uch2 − 4A
1/4
ch2

√
βch2

2ρ
(1.18)

In order to understand how to use these equations, we have to bear in
mind that the resolution of the set of equations at the bifurcation aims at
modifying the values we have found through the �nite elements methods.
This means that at each time-step we have the values of (A, u) on the
boundary for each vessel. These values are used to compute the parent'sW1

and the children's W2, which will then be inserted as constants in equations
(1.16)-(1.18), while the variables are (Ap, up), (Ach1, uch1), (Ach2, uch2).

Since we now have six equations (1.11)-(1.13) (1.16)-(1.18) in six va-
riables we can solve the set, �nding new values to insert into the boundary
�uxes Fu. Through this procedure we have that if a signal arrives at the
parent's boundary, it will be transferred to the children realistically. The
�uxes are computed through the de�nitions (1.5), with each vessel using its
own modi�ed values (e.g. the parent artery uses the new values of (Ap, up)
we have found). The set can be solved through Newton's method.

1.4.2 Interface conditions between elements

Since we are looking for possible discontinuous solutions, we are also forced
to �nd a realistic way to transfer signals from one element to the next.
This can be done in a fashion which is very similar to that used for the
bifurcations, with the di�erence that we now only have to take two elements
into account. The set we have to solve is the following:

A1u1 = A2u2

u2
1

2
+
β1

ρ
(
√
A1 −

√
A01) =

u2
2

2
+
β2

ρ
(
√
A2 −

√
A02)

W1 = u1 + 4A
1/4
1

√
β1

2ρ

W2 = u2 − 4A
1/4
2

√
β2

2ρ

Exactly as before, the values we �nd through this method have to be
inserted into the �uxes Fu in the corresponding nodes.
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1.4.3 Discussions on the �ux Fu
h

It is useful to check whether the scheme is able to produce a constant solu-
tion. Let's therefore observe what happens at the bifurcation if we �nd all
arteries in the state (A0, 0). In this case the equation (1.11) automatically
holds with the original data. The two pressure continuity equations (1.12)
and (1.13) are satis�ed trivially, and the conservation of the characteris-
tic variables obviously holds. We therefore do not need to solve the set of
equations, since we already are at an equilibrium point. As a consequence
Fu will be equal to −H∂Ωe

Uh, and there will be no changes (in area and
velocity) at the bifurcation, which does not move from the equilibrium.

These arguments also hold for boundaries between elements on the same
vessel, where we can even take a further step. Indeed we know that the real
solution is continuous over these boundaries, and that β generally does not
have points of discontinuity (even in the case of stents we will model the
discontinuity with a smooth function). This means that for the real solution
the bifurcation conditions are automatically satis�ed, and once again Fu

and −H∂Ωe
Uh cancel out.

1.4.4 Conditions on the physical boundary

The borders (the �rst node of vessel 1 and the last node of vessels 2 and 3)
of the physical domain Ω can also be considered analogously to interfaces
between elements, and will be treated as such to impose the desired input
and output conditions. Even in this case we will use upwind information,
and in particular we will impose the boundary conditions weakly. This
means that the values the variables have at the border will not be exactly
the ones we impose, but will derive from these.

In this case we can still hold on to the considerations we have made
above: W1 travels leftwards, while W2 travels rightwards. This means that
we only can impose one of these variables on each border, while the other
information we need must come from inside the domain. In order to bring
this into light let us focus on the input border. If we could impose both
W1 and W2 we would have that at one point, the �rst node, we have two
di�erent values of W2: the one coming from inside the domain and the one
we impose. This brings to a point of discontinuity of W2, which could bring
a re�ection of the wave carrying this variable. This leads to an oscillatory
behaviour, which is only numerical, and therefore unwanted.

In order to avoid this problem, at the input we only impose variables
concerning W1, while W2 is calculated from the values (Aroot, uroot) inside
the domain. The subscript �root� is used to denote the fact that the input
signal is imposed on the root of the tree of arteries (in this case the tree
only has two leaves, but a more general case can be envisaged, as has been
done for the blood�ow simulation in the project that precedes this thesis).
In addition it is important thatW2 is conserved during the border condition
imposition, as to say that the values (A∗, u∗) that we insert in Fu have to
give the same W2 as the one we had originally.

From equations (1.14) and (1.15) we can obtain a way to calculate the
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velocity and the area:

u =
W1 +W2

2
A =

W1 −W2

8
√

βroot

2ρ

4

(1.19)

If for example we want to impose Abc as an input signal, we also have
to assign a value to the corresponding u. We will choose the unperturbed
value uinitial, for reasons that will be clear further on. We then calculate
W1 from these values, along with W2 from the values inside the domain,
and use equations (1.19) to �nd the values at the border (A∗, u∗). These
can then be inserted in Fu in the usual manner.

As we stated before, it is important that the outwards-traveling wave
exits the domain without being re�ected. The fact that this holds can easily
be proven:

Wnew
2 = u∗ − 4A∗1/4

√
βroot
2ρ

=
W1 +W2

2
− 4

√
βroot
2ρ

W1 −W2

8
√

βroot

2ρ

= W2

At the output the condition only di�ers slightly from this one. Indeed
we have no precise signal to impose, we only want the �ow to continue
steadily, without re�ections. This can be attained by imposing the conser-
vation of the outgoing characteristic variable, W1. At the outside of the
output section we suppose that we are in an equilibrium state, for instance
(Ainitial, uinitial). This choice is very important, since any other choice of
values of (A, u) creates a signal at the output boundary, which then travels
upstream.

From equations (1.19) we can obtain (A∗, u∗) exactly as before. However
we have to bear in mind that now (Ainitial, uinitial) is found at the right of
the domain, so must be inserted in W2 instead of W1.

Now it is important that W1 is not re�ected:

Wnew
1 = u∗ + 4A∗1/4

√
βleaf

2ρ
=
W1 +W2

2
+ 4

√
βleaf

2ρ
W1 −W2

8
√

βleaf

2ρ

= W1

Let's consider the calculation of u∗ in more detail:

u∗ =
uinitial + uleaf

2
+ 2

√
βleaf

2ρ

(
A

1/4
leaf −A

1/4
initial

)
(1.20)

where the subscript �leaf� denotes the variable on the border, calculated
from the numerical method on the corresponding element.

Here we see that if we start our simulation from an initial condition
(Ainitial, uinitial) and we impose values that are di�erent from these outside
the domain, the border value will change. Indeed, equation (1.20) will not
yield uinitial as we expect it to do (the input signal has not reached the end
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of the domain yet, so we expect it to stay unperturbed), and equation (1.19)
then modi�es A∗ too as a consequence. Since our conservation law causes
waves to travel both upstream and downstream, this perturbation will act
exactly as an input signal and in�uence neighboring nodes. In addition, in
this case, if we place the system in a constant initial condition and don't
vary the input signal, the wave propagating backwards from the output will
after a while arrive at the bifurcation, and in�uence the other vessels. In
this way, the whole system will be perturbed by a simple mis�tting choice
of values.

1.5 Input signal

The input somehow has to simulate the variations in pressure, area or velo-
city that a heartbeat causes. We have chosen to use a simple signal, a half
sine followed by a constant part, and have chosen to impose this signal on
the area. The signal is imposed weakly, in the way we saw in section (1.4.4).
The �rst choice, which well suited some cases but was inadequate in others,
was to use A0 of the root vessel for the constant part of the signal. The
equation of the input is:

A(t) = max{A0, A0 + a1A0(sin(2πt+ a2)− a3)}

Where a1 = 0.597, a2 = 0.628 and a3 = 0.588.
This gives the following trend:

Figure 1.5: First envisaged input signal

This kind of input is not realistic, since we suppose that between heart-
beats the artery is completely empty, with a pressure equal to the external
pressure. Additionally, if we use this function we have problems applying
the linearised Kalman �lter, as we will see further on. Therefore, a second
input signal can be envisaged.

There are certain properties that we want our input to have. To begin
with, it is preferable not to have input functions with discontinuities, since
they are physically unrealistic. To avoid these discontinuities it is necessary
to ensure compatibility between initial and boundary data. This simply
means that if the input signal starts at the value A1, the initial condition
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on the �rst node of the root vessel also has to be A1. If we do not impose this,
we would have a transient, where the system responds to the discontinuity,
which propagates along the vessel. On the contrary, if we chose compatible
conditions the behaviour would be smooth.

To construct our input function we simply add a constant to the previous
one. In particular we have chosen to impose the sine wave to depart from the
area that corresponds to pt = 70mmHg, with u = 0. This value represents
a realistic pressure in-between heartbeats (i.e. the constant part). As we
have seen before, this value is tightly related to the initial conditions we will
impose.

To �nd the initial conditions we give the (arbitrary) values Q = 0 and
p = 70 mmHg to the two �uxes on each vessel. The fact that the mass
�ux cancels out and the pressure is equal on all three elements that are
connected through the bifurcation means that the bifurcation conditions
are automatically veri�ed. In addition, if the initial condition is spatially
constant on each artery (meaning ∂F

∂x = 0) and we have the same value
(Ainitial, uinitial) outside the terminal elements, we have that the system is
at rest. To �nd which area corresponds to these conditions we simply use
the de�nition (1.2) and the fact that Q = Au = 0 =⇒ u = 0:

Ae =
(

70
β

+
√
A0

)2

In the units we have chosen, [A] = cm2, [u] = cm
s , [ρ] = g

cm3 , [β] = dyn
cm3

the pressure cannot be used in mmHg, but must be converted into dyn
cm2 .

The resulting input has the same trend as the previous one, but a dif-
ferent base value. The equation of this function is:

A(t) = max{Ae, Ae + 0.597Ae(sin(2πt+ 0.628)− 0.588)}

Figure 1.6: Alternative input function
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1.6 Results

Our simulations are made with a time-step of ∆t = 10−5, in order to ensure
that we respect the CFL condition, and we simulate ten heartbeats (i.e.
Tfinal = 10). The polynomials are chosen of degree nine. The values of β
and A0, along with the lengths of the vessels, are the following:

β A0 Length

Artery 1 97000 5.983 4 cm
Artery 2 87000 5.147 2 cm
Artery 3 233000 1.219 3.4 cm

Table 1.1: Values of the parameters for each vessel

The results are only shown for the �rst heartbeat, since all periods will
have the exact same behaviour. Indeed, there will not be any di�erence
between the �rst heartbeat and the following ones, since the initial condi-
tions are compatible with the input function and the boundary conditions .
We can notice that the input trend is kept quite precisely, with only small
overshoots corresponding to the sharp bend between the half-sine and the
constant part.

Figure 1.7: The system's response to the �rst input

The answer to the translated sine wave is the following. It is identical
to the previous one in trend, but translated to the new base value, and
stretched over the y axis, since we have Ae instead of A0 multiplying the
half-sine.
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Figure 1.8: The system's response to the second input



30 CHAPTER 1. BLOOD FLOW SIMULATION



Chapter 2

Kalman �lter

The Kalman �lter is a classical method of pursuit, used for instance in aug-
menting the accuracy of GPS devices and ballistic calculations. It is based
upon simple Bayesian procedures, under the assumption that all considered
distributions are Gaussian. In order to use it we need to have an idea of
how a state vector evolves in time (prediction), and we need to measure a
function of part of the actual state at some points in time in order to have
a feedback on our suppositions (correction).

In our case the �nal goal is to �nd an estimate of the parameter β, so a
slightly modi�ed version of the Kalman �lter will be used, in which the state
has been �augmented� by making β part of it. In this way at each time-step
we estimate both the actual state and the parameter. The classical Kalman
�lter supposes that both the state evolution and the measurement function
are linear, but this can be generalised through the Extended Kalman Filter
(EKF), in which these functions are linearised at each time-step, or through
other variants and generalisations.

2.1 Variables and equations

The Kalman �lter assumes that we have a state vector x ∈ Rn which evolves
in the following way:

xk = Ak−1xk−1 + Bk−1uk + qk (2.1)

where Ak−1 ∈ Rn×n is the state transition matrix, qk ∈ Rn is a noise
which models the fact that our state evolution model may not be exact,
Bk−1 ∈ Rn×n is a matrix that multiplies the control vector uk ∈ Rn. The
control vector is the input of the system and must be treated independently
of the state since it is a source function. In our case the input is one of the
functions discussed in section 1.5, and Bk−1 denotes the weak imposition of
the border conditions. The subscripts of Ak−1 and Bk−1 denotes the fact
that these matrices may vary in time.

In addition we need to have some measures yk ∈ Rm, modeled as follows:

31
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yk = Hxk + rk (2.2)

Here H ∈ Rm×n denotes the measure matrix, and it being constant
means that we measure the same linear combinations of the state-vector
components at each time. The vector rk is another noise, which models
measurement errors.

If we could measure the whole state at all times the �lter would clearly
be of limited use: the beauty in the Kalman �lter lies in the fact that few
measures at few time-steps may be enough. This means that the matrix H
may have a much smaller rank than Ak−1, as to say m� n.

In order to use the Kalman �lter we need to suppose that the initial
distribution x0 from which it starts is Gaussian, and that the noises are
Gaussian zero-mean:

x0 ∼ N(µ0,Σ0) (2.3)

qk ∼ N(0,Σq) (2.4)

rk ∼ N(0,Σr) (2.5)

Additionally we need to suppose that the noises are not temporally cor-
related, as to say that E[qkqTj ] = Σqδkj and E[rkrTj ] = Σrδkj , and that
the noises and the state are mutually statistically independent, as to say
E[xkrTj ] = 0 ∀k, j and E[xkqTj ] = 0 ∀k < j (the state clearly is cor-
related with �previous� noises, k > j, since the noise appears in the state
evolution equation (2.1)). Finally the two noises are required to be mutually
independent : E[rkqTj ] = 0 ∀k, j.

2.1.1 State and measurement distributions

As a consequence of the de�nitions (2.3)-(2.5), yk|xk and xk|xk−1 (meaning
yk given xk and xk given xk−1 respectively), will be Gaussian too, since
they are linear combinations of Gaussian distributions. The control matrix
and vector are for our purposes considered as constants, since they only
vary over time but are deterministic at each time-step. This means that uk
isn't drawn from a probability distribution, and E[uk] = uk ∀k. We have
that equation (2.1) yields:

E[xk|xk−1] = Ak−1xk−1 + Bk−1uk + E[qk] = Ak−1xk−1 + Bk−1uk

Cov[xk|xk−1] = Ak−1Cov[xk−1]AT
k−1 + Σq

The same holds for the measurement equation (2.2), which gives:

E[yk|xk] = Hxk + E[rk] = Hxk

Cov[yk|xk] = Σr
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2.2 Bayesian foundations of the Kalman �lter

2.2.1 Applying Bayes' theorem

The Kalman �lter is an optimal Bayesian �lter, applied under Gaussian
assumptions. Its aim is �nding a MAP (Maximum A Posteriori) estimate
for the state, which we will denote x̂MAP

k . The fact that we can call a
MAP estimate optimal derives from the fact that our posterior distribution
will be Gaussian, thus some di�erent de�nitions of optimal are equivalent
(MAP and MMSE for instance, as is shown in Appendex A). A secondary
output of our method is the posterior covariance, and thus we will have a
full description of the posterior distribution.

To start with, we need to recall Bayes's theorem, which shows us how
to formally �nd the a posteriori distribution p(xk|Yk), having de�ned the
vector of past measures Yk = (yk, yk−1, . . .):

p(xk|Yk) =
p(xk,Yk)
p(Yk)

=
p(xk,yk,Yk−1)
p(yk,Yk−1)

(2.6)

Here p(xk,yk,Yk−1) denotes the joint probability density function, and
p(xk|Yk) is the probability density of xk given all the previous measure-
ments Yk.

The second step in (2.6)simply isolates the k-th measurement from the
set of all measurements prior to the time k. The numerator can be further
manipulated through the probability product law to become:

p(xk,yk,Yk−1) = p(yk|xk,Yk−1)p(xk|Yk−1)p(Yk−1)

If we then use the fact that rk is independent from previous measures
and states by hypothesis (which leads to yk|xk depending only from xk, i.e.
being independent from Yk−1), we can take a further step, arriving to:

p(xk,yk,Yk−1) = p(yk|xk)p(xk|Yk−1)p(Yk−1)

In this way, and by using the product law once again, we can rewrite
Bayes's law as follows:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)p(Yk−1)

p(yk|Yk−1)p(Yk−1)
=
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)

2.2.2 Finding the optimum

In order to get a MAP estimate, we now have to �nd the maximum of this
probability function (its argmax on xk). This o�ers the advantage that we
can ignore the denominator, since it is a strictly positive value. The only
two terms we have to consider are thus p(yk|xk) and p(xk|Yk−1). The �rst
one is simply

p(yk|xk) ∼ N(Hxk, Σr)

as we have seen before. The second one needs one more manipulation, since
xk is not directly related to Yk−1 (but xk−1 is):
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p(xk|Yk−1) = p(Ak−1xk−1 + Bk−1uk + qk|Yk−1)

which leads to:

p(xk|Yk−1) ∼ N(Ak−1E [xk−1|Yk−1]+Bk−1uk, Ak−1Cov[xk−1|Yk−1]AT
k−1+Σq)

In order to simplify the notation, we can de�ne the prediction estimate
x̂k,k−1 = Ak−1E [xk−1|Yk−1] + Bk−1uk. The covariance of xk|Yk−1 may
also be rewritten as Pk,k−1 = Ak−1Cov[xk−1|Yk−1]AT

k−1 + Σq, and repre-
sents the prediction covariance.

Since all probability functions we are using are Gaussian, the posterior
density will also be Gaussian. However, for our purposes it is enough only
to consider the numerator, which brings us to an improper density (the
denominator is the constant that makes it proper):

p(xk|Yk) ∝ exp
(
−1

2

(
(yk −Hxk)T Σ−1

r (yk −Hxk) +

+ (xk − x̂k,k−1)T P−1
k,k−1 (xk − x̂k,k−1)

))
This expression is obtained by simply multiplying the two Gaussian proba-
bility functions p(yk|xk) and p(xk|Yk−1).

We are looking for the maximum of this function:

∂p(xk|Yk)
∂xk

∣∣∣∣
xk=x̂MAP

k,k

= 0

Here we have chosen to use the notation x̂MAP
k,k to denote the MAP estimate,

calculated at time k through the measurements at times t ≤ k.
By simple derivation we obtain:

x̂MAP
k,k =

(
P−1
k,k−1 + HTΣ−1

r H
)−1 (

HTΣ−1
r yk + P−1

k,k−1x̂k,k−1

)
(2.7)

Now we can use Woodbury's matrix identity, which states:

(A + BCD)−1 = A−1 −A−1B
(
C−1 + DA−1B

)−1
DA−1 (2.8)

This brings us to the expression:

x̂MAP
k,k = x̂k,k−1 + Kk (yk −Hx̂k,k−1) (2.9)

where Kk ∈ Rn×m denotes the Kalman gain matrix, de�ned as follows:

Kk = Pk,k−1HT
(
Σr + HPk,k−1HT

)−1
(2.10)

The expression of Kk shows that the choice of Σr is not completely
arbitrary. Indeed we expect ‖Pk,k−1‖∞ to decrease considerably through
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the Kalman �lter, so the imposition of Σr must be strictly positive (we
cannot take it to be too small in norm in our test cases), in order not to let
the matrix inversion become too ill-conditioned. In real cases, where Σr is
given, we must bear this in mind, and even if the measurements are very
accurate the matrix has to be invertible. All the steps through which the
expression of x̂MAP

k,k was calculated can be found in Appendix A. The value

x̂MAP
k,k we have found through this procedure will be the �corrected� value

for the state at time k, and is the guess we will use for the next iteration.
It is interesting to notice that in equation (2.9) the term (yk −Hx̂k,k−1)

represents a residual of the measurement equation: the higher the di�erence
between the estimated measure Hx̂k,k−1 and the real measurement, the
more x̂k,k−1 will be modi�ed to become x̂MAP

k,k . The term Kk takes the
name of gain because it modulates these �uctuations.

We also need to know how to update the covariance matrix in order
to continue our estimation loop. Since x̂MAP

k,k is obtained through a linear
combination of normally distributed variables, the de�nition of yk (equation
(2.2)) leads to:

Pk,k = Cov
[
x̂MAP
k,k

]
= Cov [(I −KkH)x̂k,k−1] + Cov [Kkrk] =

= (I −KkH)Pk,k−1(I −KkH)T + KkΣrKT
k =

= (I −KkH)Pk,k−1 −Pk,k−1HTKT
k + Kk

(
Σr + HPk,k−1HT

)
KT
k (2.11)

In order to simplify this expression, we can use equation (2.10): let's
rename the matrix Sk =

(
Σr + HPk,k−1HT

)
. Equation (2.10) then states

that

Kk = Pk,k−1HTS−1
k

If we right-multiply this equation by SkKT
k , we �nd out that

KkSkKT
k = Pk,k−1HTKT

k

which means that the last to terms of (2.11) cancel out. This gives us
the �nal expression of our updated covariance matrix:

Pk,k = Cov
[
x̂MAP
k,k

]
= (I −KkH)Pk,k−1

2.2.3 Kalman �lter algorithm

What we have described up to this point is one step of the iterative Kal-
man method. In order to describe the whole method we need to use an
estimated probability function for xk−1|Yk−1, and in particular we will use
x̂MAP
k−1,k−1 for its mean (remembering that MMSE and MAP are equivalent

under Gaussian assumptions) and Pk−1,k−1 for its covariance. Its density
is Gaussian, because in turn it yields from an initial Gaussian distribution.



36 CHAPTER 2. KALMAN FILTER

Summing up, given an initial guess x̂MAP
0,0 and an initial covariance ma-

trix P0,0, the steps we have to take iteratively are:



x̂k,k−1 = Ak−1x̂MAP
k−1,k−1 + Bk−1uk (Predicting the state)

Pk,k−1 = Ak−1Pk−1,k−1AT
k−1 + Σq (Calculating the prediction covariance)

Sk =
(
Σr + HPk,k−1HT

)
(Calculating the measurement covariance)

Kk = Pk,k−1HTS−1
k (Calculating the Kalman gain matrix)

x̂MAP
k,k = x̂k,k−1 + Kk (yk −Hx̂k,k−1) (Correcting the estimation)

Pk,k = (I −KkH)Pk,k−1 (Updating the covariance matrix)

2.3 Generalising the Kalman �lter

As we have seen, the classical Kalman �lter has the drawback of only consi-
dering linear evolution and measurement laws. This means that if we want
to use it for our blood simulation problem we need to linearise the problem,
which yields results with low precision, as we will see further on. If we want
to increase accuracy we can use the extended Kalman �lter, which uses non-
linear state evolutions, and linearises the problem at each time-step (instead
of once and for all) in order to update the mean and covariance estimates.

2.3.1 Extended Kalman Filter (EKF)

Let's suppose that we have an evolution function

xk = a(xk−1,uk) + qk

and a measurement function

yk = h(xk) + rk

In these expressions the two noise functions qk and rk are exactly the
same as before, zero-mean Gaussian. It is important that these noises are
not included in the functions a and h, they need to be additive.

Next, we calculate the Jacobian of these two functions at each time-step,
and evaluate them with the appropriate state estimates:

Ak−1 = ∂a
∂xk−1

∣∣∣∣
x̂k−1,k−1,uk

Hk = ∂h
∂xk

∣∣∣∣
x̂k,k−1

These functions are constant at each time-step, and we can apply the
Kalman �lter in a slightly modi�ed version, as follows:

Given an initial guess x̂0,0 and an initial covariance matrix P0,0, itera-
tively compute
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

x̂k,k−1 = a(x̂k−1,k−1,uk) (Predicting the state)

Pk,k−1 = Ak−1Pk−1,k−1AT
k−1 + Σq (Calculating the prediction covariance)

Sk =
(
Σr + HkPk,k−1HT

k

)
(Calculating the measurement covariance)

Kk = Pk,k−1HT
k S−1

k (Calculating the Kalman gain matrix)

x̂k,k = x̂k,k−1 + Kk (yk − h (x̂k,k−1)) (Correcting the estimation)

Pk,k = (I −KkHk)Pk,k−1 (Updating the covariance matrix)

In this algorithm we have dropped the superscripts �MAP� on the esti-
mated values, since this approach is no longer optimal. Indeed we are no
longer certain that the posterior distribution is Gaussian, and since some
of our derivations were based on the Gaussianity of linear combinations of
Gaussian variables, the optimality results no longer hold.

2.3.2 Kalman �lter with time-varying matrices

Instead of the EKF we can use a less re�ned version of it, as has been done
further on to validate and debug the code that has been produced. The
algorithm is the following:

Given an initial guess x̂0,0 and an initial covariance matrix P0,0, itera-
tively compute



x̂k,k−1 = Ak−1x̂k−1,k−1 + Bk−1uk (Predicting the state)

Pk,k−1 = Ak−1Pk−1,k−1AT
k−1 + Σq (Calculating the prediction covariance)

Sk =
(
Σr + HkPk,k−1HT

k

)
(Calculating the measurement covariance)

Kk = Pk,k−1HT
k S−1

k (Calculating the Kalman gain matrix)

x̂k,k = x̂k,k−1 + Kk (yk −Hkx̂k,k−1) (Correcting the estimation)

Pk,k = (I −KkHk)Pk,k−1 (Updating the covariance matrix)

Here we have introduced the matrix Bk, the linearised control matrix,
de�ned as:

Bk−1 =
∂a
∂uk

∣∣∣∣
x̂k−1,k−1,uk

This approach has the advantage that we can use matrix calculations in
the whole process. However, in this case the Kalman gain is not optimal, and
the posterior distribution is not Gaussian, since the matrix Ak−1 depends
upon the state x̂k−1,k−1.

2.3.3 Applying the method

What we have seen in this chapter is a general description of the Kalman
�lter. The values we have to insert into Ak, Bk and Hk depend on the
particular problem we are solving. In our case Ak is given by the numerical
scheme we are using, and the evolution equation comes from equation (1.8)
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by applying the time discretisation we have chosen. Bk on the other hand
is de�ned by the way in which the boundary conditions are imposed on the
domain, and uk is a vector that contains the values outside the domain.
Finally, Hk is a constant matrix in our case, which shows which values we
are measuring.

The precise way in which the matrices are computed will be explained in
the following chapter. However, the general idea is translating the numerical
scheme we have found in the �rst chapter into a form that makes a Kalman
�lter applicable and pro�table.



Chapter 3

Joint state-parameter

estimation

Having introduced the tools we are going to use, we can �nally introduce
the method we will put in place to �nd an estimate of β. This simply is a
Kalman �lter (classical, extended or with time-varying matrices) applied on
an augmented state vector. For our purposes, uniquely �nding an approxi-
mate value of the parameter would be enough, but unfortunately this is not
possible through Kalman �ltering. Indeed, the Kalman �lter needs to use
the interaction between state and parameter to narrow the distribution of
β, so both must be estimated simultaneously.

3.1 General description

Having a state vector evolution and a measurement function

xk = a(xk−1, βk−1,uk) + qk

yk = h(xk, βk) + rk

which give us the possibility to use a Kalman �lter, and wanting to �nd
an estimate for a vector of parameters β ∈ Rd, we de�ne the augmented
state-vector as:

xaug =
[

x
β

]
with x being the regular state. Since the parameter is constant throu-

ghout time, we can de�ne its evolution function simply as:

βk = βk−1 (3.1)

This function has to be appropriately inserted in the new evolution ma-
trix Ãk−1 (this is the matrix that will be used in the algorithm):

39
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Ãk−1 =
[

Ak−1 Dk−1

0 Id

]
Where we have de�ned the matrices

Ak−1 =
∂a

∂xk−1
(x̂k−1,k−1,uk, βk−1,k−1)

Dk−1 =
∂a
∂β

(x̂k−1,k−1,uk, βk−1,k−1)

Here the term Id denotes the identity matrix in Rd. The matrix Dk ∈
Rn×d de�nes how the parameter in�uences the state vector, and is of fun-
damental importance. Indeed, if this matrix is made up of all zeros, the
parameters will not evolve through the Kalman �lter. This is quite reaso-
nable, since a null Dk matrix means that the state is not in�uenced by the
parameter (i.e. is independent from it).

The matrix which de�nes how the measurements are taken also needs
to be modi�ed to match the new conditions:

H̃k =
[

Hk Gk

]
Where we have de�ned the matrices

Hk =
∂h
∂xk

(x̂k,k−1, βk,k−1) Gk =
∂h
∂β

(x̂k,k−1, βk,k−1)

3.2 Vessel wall elasticity estimation

In our speci�c problem, the state vector isUd
h =

[
Ad
h

udh

]
. In building up the

Kalman �lter we need to �nd a global evolution matrix, which brings from
the solution at a given time-step to the next one. Unfortunately, because
of the interactions between elements (through boundaries between elements
and through the bifurcation) we cannot treat each element separately, but
will end up with a much larger matrix. From this point onwards, in order
to simplify notation, we will treat a simple bifurcation, made up of three
elements. However, generalising from our results is not a hard task. The
actual state we will consider is:

Uglobal =


A1
h

A2
h

A3
h

u1
h

u2
h

u3
h


where the superscripts indicate the vessel to which the variable (which

denotes the vector of Galerkin node values) refers. Additionally, we want
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to estimate the parameter vector β, ∈ R3 (to start with we suppose that
each vessel has a di�erent β, which is constant on each artery). Thus, the
augmented state vector is Uaug ∈ R6(r+1)+3 (where r is the polynomial
degree we have chosen in the Discontinuous Galerkin method):

Uaug =
[

Uglobal

β

]
In order to de�ne the evolution equation in our particular case we need

to start from equation (1.8), which through time-discretization becomes:

Ud
k+1 = Ud

k −∆tM−1(SHUd
k + H∂Ωe

Ud
k + PFu

k )

Here the subscript h, which in equation (1.8) shows that we are consi-
dering the Galerkin approximation, has been dropped to make place for
k, which denotes the time-step. However this is only due to notation
constraints, we are still in the Galerkin case. Each of the matrices involved
in this equation has to be adapted to �t the augmented-state form, and the
�uxes have to be linearised (once and for all or at each time step depending
on the method) in order to use a Kalman �lter.

Indeed, as we have seen in the previous chapter, the covariance update is
always done by multiplying the previous matrix byAk, which is the constant
or time-varying (depending on the method) linearisation of the �uxes. If
we then choose to use a linearised Kalman (with time-varying matrices or
not) this matrix will also be used to make the prediction step. If instead we
use an extended Kalman �lter the prediction is done through the non-linear
model.

Additionally, we need to make a distinction between state-evolution and
external input, and de�ne the matrix Bk, along with the control vector
uk. In the following subsections we will use H to denote the quasi-linear
matrices, and Hmeas to denote the measurement matrix. The problem is
written on three vessels, communicating through a bifurcation, but could
be expanded e�ortlessly.

3.2.1 The �ux de�nition matrix & border �ux matrix

In order to �nd the global linearized matrix Haug (which is the augmented-
state version of the matrix H in (1.8)) we need to linearise the �uxes in
(1.5):

Au ≈ Aeue +Ae(u− ue) + ue(A−Ae) (3.2)

u2

2
+
β

ρ

(√
A−

√
A0

)
≈ u2

e

2
+
βe
ρ

(√
Ae −

√
A0

)
+ ue(u− ue)+

+
βe

2ρ
√
Ae

(A−Ae) +

(√
Ae −

√
A0

)
ρ

(β − βe) (3.3)
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Here we have used the subscript �e� to denote the state around which
we are linearising. We take these values to be constant in each vessel,
but di�erent from one vessel to another. The values we insert in these
parameters determine which method we are using: if we take a time-constant
value we are using the classical Kalman �lter, while if we use the previous
state estimate we are using the Kalman �lter with time-varying matrices.
These cases have been studied in sections 4.1.1 and 4.1.2.

Through the linearised �uxes, by considering the variables (A, u, β),
and not the variables (A−Ae, u−ue, β−βe), we can build the augmented
quasi-linear matrix Hi, which holds for vessel i. This matrix will then,
after being translated into its Galerkin version, be inserted in the global
quasi-linear matrix Haug.

Hi =

 ue Ae 0
βe

2ρ
√
Ae

ue
(
√
Ae−

√
A0)

ρ

0 0 0


The third line is null because β's evolution function (3.1) has no term

that is derived spatially. We also obtain a constant vector from the linearised
�uxes (3.2) and (3.3):

fconst =

 −Aeue
−u

2
e

2 −
βe

√
Ae

2ρ

0


This vector plays no role in the wave propagation inside each element,

since the space-derivative eliminates it (we must bear in mind that Ae,
ue and βe are constant throughout each vessel), but intervenes at element
borders (bifurcation, between elements or physical boundaries).

In order to �nd the global quasi-linear matrix, we �rst need to expand
each Hi so that it describes the �nite elements case. This is done in a
straightforward manner, exactly as we did in the �rst chapter. Then we
have to assemble the three resulting matrices appropriately, to yield the
following:

Haug =

 H̃1 H̃2 03(r+1)×3

H̃3 H̃4 D̃
03×3(r+1) 03×3(r+1) 03×3


Where 03×3(r+1) denotes a matrix ∈ R3×3(r+1) of all zeros, and the

matrices H̃1 are de�ned as:

H̃1 = H̃4 =

 diag(u1
e) 0(r+1)×(r+1) 0(r+1)×(r+1)

0(r+1)×(r+1) diag(u2
e) 0(r+1)×(r+1)

0(r+1)×(r+1) 0(r+1)×(r+1) diag(u3
e)


H̃2 =

 diag(A1
e) 0(r+1)×(r+1) 0(r+1)×(r+1)

0(r+1)×(r+1) diag(A2
e) 0(r+1)×(r+1)

0(r+1)×(r+1) 0(r+1)×(r+1) diag(A3
e)


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H̃3 =


diag( β1

2ρ
√

A1
e

) 0(r+1)×(r+1) 0(r+1)×(r+1)

0(r+1)×(r+1) diag( β2

2ρ
√

A2
e

) 0(r+1)×(r+1)

0(r+1)×(r+1) 0(r+1)×(r+1) diag( β3

2ρ
√

A3
e

)


Where 0(r+1)×(r+1) denotes a matrix ∈ R(r+1)×(r+1) of all zeros.

The matrix D ∈ R3(r+1)×3 which de�nes the way in which the βs in-
�uence the �uxes is de�ned as:

D̃ =


(√

A1
e−
√
A1

0

)
ρ 0(r+1) 0(r+1)

0(r+1)

(√
A2

e−
√
A2

0

)
ρ 0(r+1)

0(r+1) 0(r+1)

(√
A3

e−
√
A3

0

)
ρ


where

(√
Ai

e−
√
Ai

0

)
ρ denotes the vector resulting from calculating β's

coe�cient for each component of the vector Ai
e, and 0(r+1) denotes a vector

∈ R(r+1) of all zeros.
The vector fconst also has to be expanded, to become:

faugconst =



−A1
e · u1

e

−A2
e · u2

e

−A3
e · u3

e

− (u1
e)2

2 − β1
e

√
A1

e

2ρ

− (u2
e)2

2 − β2
e

√
A2

e

2ρ

− (u3
e)2

2 − β3
e

√
A3

e

2ρ

03


where as above, 03 denotes a vector of length 3 of all zeros, and −

(ui
e)

2

2 −
βi

e

√
Ai

e

2ρ is the pointwise calculation, applied to each component of Ai
e and

uie. In the case of the border �uxes it is enough to suppose that for all i:

Ai
e =

 Aie1
08

Aie(r+1)

 uei =

 uie1
08

uie(r+1)


in order to get to the correct f∂Ωe

const. The same holds for H∂Ωe
aug . The

border �uxes are then calculated in the usual way:

F∂Ωe = H∂Ωe
augUaug + f∂Ωe

const

3.2.2 The bifurcation matrix

Since we are using global matrices (that consider all three vessels simul-
taneously), we now can describe the bifurcation conditions using a single
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matrix. In order to do this we need to use the linearised �uxes (equations
(3.2) and (3.3)), and apply the conditions on these �uxes instead of on the
non-linear ones. If we de�ne the coe�cients:

s =
βe

2ρ
√
Ae

d =

(√
Ae −

√
A0

)
ρ

k =

√
βe
2ρ
A
−3/4
e t = −u

2
e

2
− sAe

the set of equations we have to solve becomes:

upeu
p + tp + spAp + dpβp = uch1

e uch1 + tch1 + sch1Ach1 + dch1βch1

upeu
p + tp + spAp + dpβp = uch2

e uch2 + tch2 + sch2Ach2 + dch2βch2

Apeu
p+upeA

p−Apeupe = Ach1
e uch1+uch1

e Ach1−Ach1
e uch1

e +Ach2
e uch2+uch2

e Ach2−Ach2
e uch2

e

Ŵ1 = up + kpAp

Ŵ21 = uch1 − kch1Ach1

Ŵ22 = uch2 − kch2Ach2

In the last three equations we have linearised the characteristic variables,
and then we have neglected the constant terms (including β, which is sup-
posed constant). Indeed these appear on both sides of the equations, thus
cancel out. The notation Ŵ indicates this di�erent way of calculating W .

As we have seen previously, in order to apply the last three equations,
we have to compute Ŵ from our �nite elements solution at the boundary,
and then use it as a constant in the set of equations, whose variables are
(A, u) of each vessel. This translates into de�ning the matrix:

Cchar =


03 03 03 03 03 03 03×3

kp 0 0 1 0 0 0T3
0 −kch1 0 0 1 0 0T3
0 0 −kch2 0 0 1 0T3
03 03 03 03 03 03 03×3


This matrix has to multiply the vector which contains the bifurcation

values of U:
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Ubif =



Ap

Ach1

Ach2

up

uch1

uch2

βp

βch1

βch2


We then have to de�ne the �compatibility� matrix, which actually codes

the bifurcation compatibility conditions:

Ccomp =



sp −sch1 0 upe −uch1
e 0 dp −dch1 0

sp 0 −sch2 upe 0 −uch2
e dp 0 −dch2

upe −uch1
e −uch2

e Ape −Ach1
e −Ach2

e 0 0 0
kp 0 0 1 0 0 0 0 0
0 kch1 0 0 1 0 0 0 0
0 0 kch2 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


We also end up with a constant vector:

constcomp =



tch1 − tp
tch2 − tp

upeA
p
e − uch1

e Ach1
e − uch2

e Ach2
e

03

βp

βch1

βch2


The solution of the set of equation then simply is:

Unew
bif = C−1

comp(CcharUbif + constcomp)

This expression then needs to be expanded appropriately in order to
match the dimensions of the Galerkin problem. This can be done through
the matrices P1 ∈ R(6(r+1)+3)×9 and P2 ∈ R9×(6(r+1)+3) (whose de�nition
is simple, knowing how Unew

bif and Uaug are structured). Indeed they simply
have to put the values in the correct positions, leaving the rest of the matrix
values equal to zero, much like matrix P in (1.10) does.

Ubif
aug = P1C−1

compCcharP2Uaug + P1C−1
compconstcomp

This vector then has to be multiplied by Haug in order to �nd the upwind
�ux in this case
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Fbifupwind = HaugUbif
aug + f bifconst

where the vector f bifconst is found from the general expression of faugconst

simply by setting

Ap
e =

[
0r

Ape(r+1)

]
uei =

[
0r

upe(r+1)

]
for the parent vessel, while for the children vessels we have

Ach
e =

[
Ache1
0r

]
uei =

[
uche1
0r

]
In conclusion, the upwind �ux at the bifurcation can be expressed using

a matrix-vector multiplication

Fbifupwind = Hbif
augUaug + f bifconst + HaugP1C−1

compconstcomp

where the new quasi-linear matrix is de�ned as

Hbif
aug = HaugP1C−1

compCcharP2

3.2.3 The control matrix

We also have to put the border condition impositions in the form of a matrix-
vector multiplication. To start with, we de�ne the border vector and the
input vector:

U∂Ω =



Ar

Al1

Al2

ur

ul1

ul2

βr

βl1

βl2


Uinput =



Arin
Al1in
Al2in
urin
ul1in
ul2in
βrin
βl1in
βl2in


In this case we will use the same β inside and outside the domain (this

is the most reasonable choice, since the real βs are unknown, the only value
we have is βe), β = βe, so the linearised de�nitions of W1 and W2 simply
are Ŵ1 and Ŵ2. The expressions of Ŵ1 and Ŵ2 bring to the equations that
de�ne the area and velocity at the boundary:

u =
Ŵ1 + Ŵ2

2
A =

Ŵ1 − Ŵ2

2k

Recalling that Ŵ1 is calculated from the state at the left of the node,
while Ŵ2 is calculated from the values at the right, the augmented state
vector Uupwind can be computed as:
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Uupwind = CcontrolUinput + C∂ΩU∂Ω (3.4)

where we have de�ned the matrices

Ccontrol =



1
2 0 0 1

2kr 0 0 0T3
0 1

2 0 0 − 1
2kl1 0 0T3

0 0 1
2 0 0 − 1

2kl2 0T3
kr

2 0 0 1
2 0 0 0T3

0 −k
l1

2 0 0 1
2 0 0T3

0 0 −k
l2

2 0 0 1
2 0T3

03 03 03 03 03 03 03×3



C∂Ω =



1
2 0 0 − 1

2kr 0 0 0T3
0 1

2 0 0 1
2kl1 0 0T3

0 0 1
2 0 0 1

2kl2 0T3
−k

r

2 0 0 1
2 0 0 0T3

0 kl1

2 0 0 1
2 0 0T3

0 0 kl2

2 0 0 1
2 0T3

03 03 03 03 03 03 I3×3


The vector Uupwind then has to be multiplied by Hborders

aug (the quasi-
linear matrix that de�nes the �ux, evaluated at the border nodes) in order
to �nd the upwinded �uxes. As we have seen before this operation also
involves a constant term f∂Ω

const which comes from the linearised forms.

F∂Ω
upwind = Hborders

aug P3Uupwind + f∂Ω
const

Where the matrix P3 ∈ R(6(r+1)+3)×9 is another expansion matrix,
which brings Uupwind to be of the appropriate dimensions, and with the
entries at the appropriate positions. The vector f∂Ω

const most not be confused
for f∂Ωe

const.
In order to use the Kalman �lter properly we need to separate the contri-

butions from inside and outside the domain:

F∂Ω
upwind = BcontrolP3Uinput + Hborders

∂Ω Uaug + f∂Ω
const

Where P3Uinput is the expanded input vector. The matrices simply
become:

Bcontrol = Hborders
aug P3CcontrolP4

Hborders
∂Ω = Hborders

aug P3C∂ΩP4

The matrix P4 is yet another expansion matrix, whose purpose is to
make the C matrices of the right number of columns.

If we observe the two matrices Ccontrol and C∂Ω we see that one has an
identity matrix as last entry, while the other has a zero matrix. The choice
of whether to put the identity matrix in the �rst or the second matrix
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is arbitrary, but it is important that only one of them has it, otherwise
equation (3.4) does not hold.

The matrix Hborders
∂Ω is di�erent from H∂Ωe

aug , since it only has entries that
correspond to the physical boundaries of the domain. The way in which it
is calculated is also di�erent, so these terms will not cancel out in the �nal
expression.

3.2.4 The mass matrix and the derivation matrix

The conservation law that concerns β simply is:

∂β

∂t
= 0 (3.5)

This can be reinterpreted as

βk+1 = βk

Which means that the evolution matrix of the parameters simply is the
identity. This matrix has to be inserted in the mass matrix:

Maug =
[

M 0
0 I3

]
Augmenting the derivation matrix is even easier. Indeed equation (3.5)

does not contain any spatial derivatives, so we only need to make Saug of
the right dimensions by zero-padding of S.

3.2.5 Assembling the global evolution matrix

In the case of the blood �ow simulation we chose an Adams-Bashforth ap-
proach for the time discretisation. However, now we are about to use a
Kalman �lter, so this choice no longer suits our needs. Indeed, for a Kal-
man �lter to work we need to have a Markov process, meaning that the
future state can only depend on the current one, and not on ones further
back in time. Therefore we have chosen to use a simple Euler forward
method

∂u

∂t
= f(u, t) =⇒ un+1 = un + ∆tf(un, tn)

If we recall equation (1.8), we then �nd the following:

Uk+1
aug = Uk

aug−∆tM−1
aug

(
SaugHk

augU
k
aug + Psign

(
F∂Ω
upwind + Fbifupwind − F∂Ωe

))
Here the matrix Psign is a matrix which changes the signs of the �uxes

appropriately. Indeed we had the expression [(Fu−F(Uh)) · ϕ]xe(right)
xe(left) , which

means that the �uxes on the right side of each element have the sign �+�,
while those on the left have the sign �-�. The superscript �k� hasn't been
applied to F∂Ω

upwind, F
bif
upwind and F∂Ωe simply not to make the notation too
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complicated, but all these matrices can change at each time step k. The
same holds for the various fconst vectors.

Our �nal evolution equation is:

Uk+1
aug = Ak

renewUk
aug + B̂k

controlUinput + fkconst
where we have de�ned the matrices

Ak
renew = I−∆tM−1

aug

(
SaugHk

aug + Psign

(
Hborders
∂Ω + Hbif

aug −H∂Ωe
aug

))
B̂control = −∆tM−1

augPsignBk
controlP3

and the constant vector:

fkconst = −∆tM−1
augPsign

(
Hk
augP1C−1

compconstkcomp + f∂Ω
const + f bifconst − f∂Ωe

const

)
3.2.6 Measure equation

The �nal step towards applying the Kalman �lter to our problem is de�ning
the measure matrix Hmeas. Its de�nition obviously depends on which kind
of data we have. In our case we have chosen to generate the measures
(depending on the case from the linear, with time varying matrices or non-
linear blood �ow simulation), and have chosen to take three measures from
each vessel, for both A and u. The measures are taken at the nodes closest
to 25%, 50% and 75% of the number of nodes of the artery. With 10 nodes
this means at the second, �fth and seventh node.

Therefore the measure matrix becomes:

Hmeas =



hmeas 0 · · · 0
hmeas

0 hmeas
. . .

...
...

. . . hmeas
. . . hmeas 0

0 · · · 0 hmeas 0


with the submatrices de�ned as:

hmeas =

 0 1 0T2 0 0 0 0T3
0 0 0T2 1 0 0 0T3
0 0 0T2 0 0 1 0T3


Further on we will also test whether having measures only on the variable

A may be su�cient. The measure matrix changes accordingly, in an obvious
manner.

The measures we generate from our simulations are then modi�ed by
adding a Gaussian noise, in order to make them more realistic. The variance
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of this noise is chosen depending on what we want to test, but the noise is
always chosen to have zero-mean, according to the Kalman �lter hypotheses.



Chapter 4

Results

4.1 Linearised Kalman �lter

In this case the values of ue and Ae are chosen once and for all. As a
consequence all matrices are time-constant, and we can use the classical
Kalman �lter. Two di�erent choices for these variables have been studied:
(A0,u0) and ue = 0 and Ae that yield a pressure of 70 mmHg. In both
cases the values have been chosen constant throughout the vessel, in order
not to create perturbations. The initial conditions, which are at rest, are
taken to be (Ae,ue), and are also equal to the values we assign to the
unperturbed states outside our domain. In all the cases we will test the real
values of the parameters are β1 = 9.7 · 104, β2 = 8.7 · 104, β3 = 2.33 · 105.

4.1.1 Linearising around (A0,u0, β0)

This choice is reasonable if we insert the �rst input, the half sine that rises
from the equilibrium A0. Indeed with a quasi-linear matrix structured as
follows:

H =

 u0 A0 0
β0

2ρ
√
A0

u0
(
√
A0−

√
A0)

ρ

0 0 0

 (4.1)

we have that when we have a constant input equal to A0 the system is
at rest. This happens because the bifurcation conditions are automatically
satis�ed (for every choice of β0), and the border conditions �nd the same
value on the border and outside the domain (and therefore leaves it unper-
turbed). This means that when the input half sine has returned to its base
value, and after a short period in which the system relaxes, the arteries
return to the exact values (A0, u0).

However, if we take a look at matrix (4.1), we can see that the value
H32 is zero. This means that the variable β does not appear in any �ux,
thus does not appear in the conservation law we are considering. The only
value that appears is β0, a constant guess we make. In this case any hope of

51
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re�ning the estimation is vain, since we are trying to do so on an independent
parameter. The only thing we can achieve by this procedure is �ltering
the measurement noise, making a state estimation instead of a joint state-
parameter estimation.

4.1.2 Linearising around (Ae,ue, βe)

If we come back to observing matrix (4.1) we see that the problem that
β's coe�cient is zero is easily solved. Indeed, if we simply linearise around
another point the coe�cient H32 no longer will be zero. However this poses
several other problems.

Firstly, the values of ue and Ae have to be chosen wisely, otherwise the
bifurcation conditions will not be satis�ed, and a spurious signal will be
created at this point. Therefore we can for instance choose them to yield
a mass �ux Q = 0 and a pressure p = 70mmHg (this value is arbitrary),
as we have seen before. However, we have a problem in the selection of Ae
since the expression

Ae =
(

70
β

+
√
A0

)2

depends on β, which is the parameter we want to estimate. Which β
should we choose in calculating Ae? The most reasonable choice is the
initial guess of β, since it is the only value we have, but this is a dangerous
option. In fact, the value we use in�uences the problem, both in choosing
the linearisation point and in de�ning the various matrices. This leads to
the fact that di�erent initial guesses on β lead to di�erent results, yielding
stability issues (and we cannot hope to obtain convergence to the real value
in a system in which the �nal estimation depends on the initial guess).

In addition, let's observe what happens if we insert a constant input
Ain = A0 to the system in the initial conditions (Ainitial, uinitial) = (A0, u0).
As we have seen before, in the non-linear blood �ow simulation we have that
the system is at rest, and remains unchanged. In the linearised case this no
longer holds, because now the bifurcation conditions are not satis�ed auto-
matically, which leads to this state no longer being an equilibrium. Indeed,
whereas the mass �ux equation holds since ue = 0 for all the vessels, the
pressure equations do not hold if we use A = A0:

βpe
ρ

(
√
Ape−

√
Ap0)+

βpe
2ρ
√
Ape

(Ap0−Ape) =
βche
ρ

(
√
Ache −

√
Ach0 )+

βche

2ρ
√
Ache

(Ach0 −Ache )

βpe

(√
Ape
2
−
√
Ap0 +

Ap0
2
√
Ape

)
= βche

(√
Ache
2
−
√
Ach0 +

Ach0

2
√
Ache

)

Since Ae 6= A0 (which is clear from how it is de�ned), the parentheses
will never become zeros:
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√
Ae
2
−
√
A0 +

A0

2
√
Ae

= 0

2
√
A0Ae = Ae +A0

(
√
Ae −

√
A0)2 = 0

This means that unless we are in a very fortunate case of choices of βe,
which certainly is too restrictive for our purposes, the pressure equations
do not hold. This leads to the creation of a signal, which then travels
back to the root and forward to the leaves, as can be seen in the following
images. The �gures �A vessel� and �u vessel� show the variables at the
current time-step, while A_history and u_history show the time-evolution
of the variables.

Figure 4.1: The �rst step, where immediately a signal is created at the
bifurcation.
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Figure 4.2: The signal then is propagated, just as any other wave

Figure 4.3: The signal then travels backward and forward, stabilising on an
equilibrium
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Finally the system attains an equilibrium, which obviously is di�erent
from (A0, u0) (which is the equilibrium point it reaches in the non-linear
case), but for which the bifurcation conditions hold. The importance of
these observations lay in the fact that the results are di�erent from those
found in the non-linear simulation, from which we draw the measurements.
This means that there is a positive inferior bound to the residual, meaning
that it cannot tend to zero. In turn, this leads to convergence issues.

It is also interesting to observe how the input signal is imposed weakly:
at the end of this simulation the value we �nd at the input section is di�erent
from what we are trying to impose.

The fact that (A0, u0) is not an equilibrium leads to the system behaving
di�erently when we impose the sine wave too. Indeed it does not return to
A0, but to the equilibrium values we found previously:

Figure 4.4: The linearised (around (Ae, ue)) system's response to a half-sine
wave input.
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4.1.3 Linearising around (Ae,ue, βe), changing the input

In order to avoid the aforementioned problems, a possible solution is using
a di�erent input function. Indeed, using A0 as base value is a particular
case, and not a very realistic one. If we use the second input we introduced
in section 1.5 instead, we have that β's coe�cient is not zero, and that the
base value is an equilibrium state. However, we still have the problem that
linearising by using our guess of β instead of the real value makes us solve
a di�erent problem, with a systematic linearisation error.

The linearised problem actually has a very restricted use. If we consider
the ideal case in which we use the actual β in calculating the matrices, the
measures aren't perturbed and are generated from the linearised model and
we use the real β outside the domain, the method converges excellently.
However this case does not need such a complicated procedure, and is of
limited interest since we suppose that we already know the value we are
estimating.

Figure 4.5: Parameter estimation without perturbing the measures. This is
a plot of the values of β (in order: vessel 1, vessel 2 and vessel 3) against
the estimation step. The values are β1 = 9.7000 · 104, β2 = 8.7000 · 104,
β3 = 2.3300 · 105 after 8 steps. The estimation error is due to the fact that
the measure covariance matrix cannot be imposed null, since it must be
invertible.

Even if we perturb the measures considerably (with a variance of 0.1, but
keeping the error zero-mean), make a guess that di�ers from the real value
by 104, and keep the real value outside the domain (this is not a realistic
case), the precision is still very good:
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Figure 4.6: Parameter estimation with perturbed measures. This is a plot
of the values of β (in order: vessel 1, vessel 2 and vessel 3) against the
estimation step. The values are β1 = 9.7000 · 104, β2 = 8.7001 · 104, β3 =
2.3300 · 104.

However, if we realistically suppose not to know the real value of β, the
performance is much worse, and in some cases we are not even ensured that
the Kalman �lter betters the estimate. This is the case in the following
example, where the initial guesses are β1 = 9.8 · 104, β2 = 8.8 · 104, β3 =
2.34 · 105, and the measures have not been perturbed. The stable values
we �nd through Kalman �ltering are β1 = 9.8139 · 104, β2 = 8.8218 · 104,
β3 = 2.3566 · 105, which all are further from the real values than the initial
guesses.



58 CHAPTER 4. RESULTS

Figure 4.7: The linearised Kalman �lter does not ensure a lowering of the
estimation error. This is a plot of the values of β (in order: vessel 1, vessel
2 and vessel 3) against the estimation step.

This fact is certainly not related to the Kalman �lter itself, which as we
have proven above is optimal. Instead it is due to the fact that we use an
approximated problem, i.e. we solve a di�erent problem from the one we
started o� with.

In addition there is another issue, regarding the foundations of Kalman
�ltering. Indeed, the quasi-linear matrix in equation (1.6) contains the
parameter β. This means that if we perturb the parameter in order to get
the guess βe = β + δβ, the perturbation δβ will multiply the variable A.
This modeling error is multiplicative rather than additive, and cannot be
inserted in the evolution equation, since it is in contrast with the hypotheses
of the Kalman �lter.

4.2 Kalman �lter with time-varying matrices

The next step towards getting better estimates of the parameters is letting
the matrices vary, following the variation of the estimated value. This means
that they are recalculated at each time-step, so that the linearisation takes
place repeatedly instead of only once for the entire simulation time. In this
case we can choose to use any of the two inputs, since β's coe�cient will
not be zero throughout the entire heartbeat in either of the cases. However,
as we will see, the time-varying matrix approach gives rise to new stability
problems.
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4.2.1 Coding validation

In order to control if the program is correctly implemented, a step-wise
control has been made. The �rst test consists in checking that if the mea-
sures are not perturbed, convergence is found quickly and precisely. As a
start, we have chosen to use measures that are generated in the exact same
time-varying matrix way in which the prediction evolves (clearly using an
exact guess for the β parameters). The �rst result is that if we make an
exact initial guess the estimates aren't perturbed, since the residual is zero.

Figure 4.8: No matter which covariance matrices we choose, the estimates
are not worsened if we make an exact guess. This is a plot of the values of
β (in order: vessel 1, vessel 2 and vessel 3) against the estimation step.

However this only tells us that the Kalman �lter is implemented cor-
rectly, at least in some parts, and says nothing about the resolution of the
conservation laws. These can also be tested stepwise, in order to validate the
linearisation at every step. The �rst thing to control is that no numerical
signals are created at the output and at the bifurcation. This can be noted
by observing the variables throughout the simulation, by plotting them on
a regular basis. A snapshot of this can be seen in the following �gure:

Figure 4.9: The instantaneous values of A and u on the three vessels
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In this �gure we can see that there is no peculiar behaviour on the
borders, the signal is transferred without discontinuity at the bifurcation,
and the �ow continues steadily at the output, without re�ections.

We then also have to control that the time-varying matrix signal is not
too dissimilar to the non-linear �ow, in order to hope for the Kalman �lter
to work. This can be done by plotting the di�erence between the two signals
during the �rst heartbeat (all the others are identical).

Figure 4.10: Di�erence between the values found through the non-linear
and the time-varying matrix simulation at the measurement nodes.

The di�erences are all below 1.6% of the maximum value for the areas,
and 16% of the maximum velocity. However we can see that the velocity
errors are not far from having a zero integral, which means that the error
is almost zero-mean.
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4.2.2 Results with the �rst input

Another important test is seeing where an exact guess leads us in the case
of perturbed measures. In the following �gure we can see that the estimated
value oscillates around the real value, but staying within a range of less than
0.01% of the real value:

Figure 4.11: Estimation with an exact guess and perturbed measures. This
is a plot of the values of β (in order: vessel 1, vessel 2 and vessel 3) against
the estimation step.

However, if we let the simulation continue, we observe a problem that
will also be present further on: the estimated values suddenly and simul-
taneously increase or decrease considerably, until the β parameters or the
areas become negative.

Figure 4.12: Unstable behaviour. This is a plot of the values of β (in order:
vessel 1, vessel 2 and vessel 3) against the estimation step.
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The same behaviour can be observed if we make a random guess of β
(with a given perturbation covariance). Indeed the estimation �rst converges
to the correct values, then suddenly the estimated values increase or de-
crease, without returning to the equilibrium. The values found in the follo-
wing �gure are β1 = 9.7001 · 104, β2 = 8.7003 · 104, β3 = 2.3301 · 105.

Figure 4.13: Convergence of the method with perturbed measures. This is
a plot of the values of β (in order: vessel 1, vessel 2 and vessel 3) against
the estimation step.

However, if we let the simulation continue, we �nd that it exits the
equilibrium state, diverging towards unacceptable values of A and β.

Figure 4.14: The method arrives to good estimates, then diverges. This is
a plot of the values of β (in order: vessel 1, vessel 2 and vessel 3) against
the estimation step.
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4.2.3 Changing the input

This stability problem can also be observed if we change the input signal.
This rules out the hypothesis that the instability could be due to the fact
that β's coe�cient could change sign when the input value is near A0.
Otherwise this could have been an explanation, since the coe�cient multi-
plies the covariance matrix, making covariating variables countervariate.

Figure 4.15: Estimates from perturbed measures, with an exact initial guess.
This is a plot of the values of β (in order: vessel 1, vessel 2 and vessel 3)
against the estimation step.

It is also interesting to observe the �rst section of this behaviour, which
is shown in the following �gure. Indeed, the estimate begins oscillating,
following the measure perturbation, but then stabilises on the correct value
before diverging.
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Figure 4.16: First part of the estimation evolution. This is a plot of the
values of β (in order: vessel 1, vessel 2 and vessel 3) against the estimation
step.

By observing the same phenomenon in a case where the coe�cient never
goes below zero, we have to �nd alternative explanations. One possibility
could be that the system is self-sustaining: when the state-covariances have
reached a very low value (which always happens after a while, since we are
adding new measures) a slightly too high (or low) guess for β is made. As
can be seen in most �gures, all βs tend to have a similar trend (they are all
covariating), which can be explained by the fact that a pressure continuity
is imposed.

Since the system is �sure� about the state, it reduces the corresponding
residuals (bringing the state to correspond to the measured value). This
�pins� down the solution in certain points, but the other points do not
necessarily follow. The high order polynomial then propagates, following
the conservation law, which tends to increase the residuals at the measure
points. Since the state cannot be corrected considerably, the βs are corrected
instead. If underestimated βs give underestimated states (which often is the
case), the estimation diverges.
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Figure 4.17: The state sometimes is pinned down at the measure points

However, this is only one of the possible explanations, and the problem
has not been investigated further, since the behaviour disappears in consi-
dering the actual Extended Kalman �lter.

4.2.4 Using measures from the non-linear process

All the aforementioned tests were made using measures that were generated
in a time-varying matrix manner. However, the method we wanted to imple-
ment uses the output of the non-linear simulation as its measures. However,
we still have the same stability problems, as can be seen in the following �-
gures, obtained with perturbed measures and with non-exact initial guesses
for β.
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Figure 4.18: Estimation with the �rst input. This is a plot of the values of
β (in order: vessel 1, vessel 2 and vessel 3) against the estimation step.

Figure 4.19: Estimation with the second input. This is a plot of the values
of β (in order: vessel 1, vessel 2 and vessel 3) against the estimation step.

4.2.5 Measuring only one state-variable

In real-life cases it may sometimes be impossible to obtain measures on
both area and velocity. Additionally, if we have these measures, they may
not be taken at the exact same time instants, which could cause additio-
nal problems. In order to face these issues, tests with only one measured
variable have been made. In particular we have chosen only to consider
measurements of the area.

This only needs slight changes in the coding: the measurement matrix
has to be reduced in dimensions, and the vector of the measurements is half
its prior length. The results are that the simulation takes much longer to
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converge, as could easily be foreseen, but the accuracy is very good.
The �nal estimates are β1 = 9.7000 ·104, β2 = 8.7000 ·104, β3 = 2.3300 ·

105. These are obtained with initial guesses that are 1000 above the actual
values, with a measurement covariance of 10−2, an initial covariance of

P00 = diag(ones(length(U)); 10002ones(3))

and the measurements, taken from the non-linear case, were perturbed
with a standard deviation of 10−6. The second input was chosen.

Figure 4.20: Estimates through measurements on the area alone. This is a
plot of the values of β (in order: vessel 1, vessel 2 and vessel 3) against the
estimation step.

However, given the prior stability problems, one could think that these
results are only partial, and that if the simulation continued it would diverge
exactly as before. In order to check that this would not happen, it is useful
to test the behaviour if we make an exact guess with perturbed measures.
The results can be seen in the following �gure:
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Figure 4.21: Estimation through an exact guess of β, with perturbed mea-
sures. This is a plot of the values of β (in order: vessel 1, vessel 2 and vessel
3) against the estimation step.

The values found at the last step, when the simulation was interrupted,
are β1 = 9.7000 · 104, β2 = 8.7000 · 104, β3 = 2.3300 · 105. The errors are
therefore about 10−5 percent of the values. In addition it is very interesting
to see that the trend is approximately periodical. This is given by the fact
that the program uses the same measurements several times, repeatedly, in
order to dramatically increase the actual number of values available. This
strategy can be used since the parameters we are estimating are constant,
and since the input signal is periodical, and we have measurements over the
entire period.

4.2.6 Estimating at rare�ed time-steps

In order to make the estimation process more realistic, we also have to
consider that hoping to have measures at the frequency of the time-step
we have chosen (∆t = 10−5) may be too optimistic. Indeed this value was
chosen to ensure stability in the simulation, by satisfying the CFL condition.
However, taking measures at this rate means ending up with 105 measures
during a single heartbeat, which could be too costly or even impossible in
some cases.

This leads to the urgency to adapt the Kalman �lter to work with less
measures. Fortunately this task is not di�cult to implement, it's enough to
take the prediction step at all times, while the correction step is only taken
every n time-steps. This strategy has been put in place in the previous case,
where only measurements of the area were at hand. A measurement cova-
riance of 10−2 has been chosen, along with a perturbation of the measures
with standard deviation of 10−5 and an initial error on the guess of β with
a standard deviation of 103. If we only take the correction step every 103

steps (resulting in 103 measures in 10 heartbeats) the resulting estimates
are β1 = 9.7000 · 104, β2 = 8.7000 · 104, β3 = 2.3300 · 105. The measure-
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ments are taken from a time-varying matrix model as a start, in order not
to introduce too many changes at once. The convergence is shown in the
following �gure:

Figure 4.22: Estimates with measurements taken every 103 time-steps. This
is a plot of the values of β (in order: vessel 1, vessel 2 and vessel 3) against
the estimation step.

If instead we correct the state by the Kalman �lter every 5 · 103 time-
steps (resulting in 200 measures on 10 heartbeats), we �nd β1 = 9.6998 ·104,
β2 = 8.6998 · 104, β3 = 2.3300 · 105 and the following trend:

Figure 4.23: Estimates with measurements taken every 5 · 103 time-steps.
This is a plot of the values of β (in order: vessel 1, vessel 2 and vessel 3)
against the estimation step.

If we take measurements from the non-linear model instead, approaching
a real-life case even further, we have the following trend:
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Figure 4.24: Estimates with measurements (from the non-linear model)
taken every 5 · 103 time-steps. This is a plot of the values of β (in order:
vessel 1, vessel 2 and vessel 3) against the estimation step.

In this case we have used a measurement covariance of 10−2, an initial
covariance guess of

P00 = diag(ones(length(U)); 10002ones(3))

and initial guesses of β which are 103 higher (not random) than the real
ones. The values we end up with after 10 heartbeats are β1 = 9.7101 · 104,
β2 = 8.7045 ·104 and β3 = 2.3297 ·105. Considering that we are in a case in
which we only measure one of the main variables, a di�erent structure of the
covariance matrix could turn out to be more realistic. Indeed the estimates
of the area will always be more accurate than those on the velocity, and we
could use a matrix like this:

\beta

P00 = diag(ones(length(A)); 10 ∗ ones(length(u)); 10002ones(3))

this also gives the possibility of making a more ��at� guess on the velo-
city, as to say increase its covariance. This was not possible before since the
areas must remain positive (a Gaussian model is not very accurate), which
limits the maximum covariance value. The same holds for the βs: having too
high initial covariances could lead to negative elasticity parameters, which
is unacceptable for our model.

4.3 Extended Kalman �lter

Upon considering the extended Kalman �lter, we need to go through a
control phase similar to the one above. The �rst thing to check is whether
exact guesses on the parameters and unperturbed measures yield exact re-
sults. This actually happens, which reassures us on the correct loading of
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the measurements and on the way in which the residual is calculated. This
also means that the way in which we calculate everything is identical in the
two cases: upon taking the measures and upon applying the prediction step
of the Kalman �lter. In the EKF case we clearly only use the non-linear
measurements, other kinds of measurements would introduce unnecessary
errors. We have chosen to use the most realistic input signal, as to say the
second one.

Figure 4.25: Estimates with exact guesses and unperturbed measures. This
is a plot of the values of β (in order: vessel 1, vessel 2 and vessel 3) against
the estimation step.

4.3.1 Introducing measurement errors or inaccurate guesses

The second test consists in observing what happens if the measures are
perturbed, but keeping exact guesses on the variables. We expect that the
estimates become perturbed too, since the system does not know that the
non-null residual is only due to measurement errors. However, we also hope
to have a certain robustness, leading the estimates back to their correct
values. This is what we actually observe, and after many iterations the
estimates stabilize on the values β1 = 9.7000 · 104, β2 = 8.7000 · 104 and
β3 = 2.3300 ·105, upon having perturbed the measurements with a standard
deviation of 10−5. This leads us to the conclusion that the Kalman �lter
e�ectively �lters the noise if left active long enough.
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Figure 4.26: Estimates with perturbed measures and exact guesses on the
βs. This is a plot of the values of β (in order: vessel 1, vessel 2 and vessel
3) against the estimation step.

If on the other hand we only make inaccurate guesses, but keep unper-
turbed measures, we also want the system to converge. This is equally im-
portant, since afterwards we will have to face real-life cases, with perturbed
measures and unknown parameters, and a failure or major inaccuracy in this
test would leave little or no hope for convergence further on. Here we �nd a
good convergence trend, and the values β1 = 9.6993 · 104, β2 = 8.6994 · 104

and β3 = 2.3298 ·105. Here the guesses have an initial error with a standard
deviation of 103.

Figure 4.27: Estimates with inaccurate guesses and unperturbed measure-
ments. This is a plot of the values of β (in order: vessel 1, vessel 2 and
vessel 3) against the estimation step.

In order to push the test even further, we could try to use a standard
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deviation of 105 on the initial guesses of β. This resembles the case in which
we actually have no clue of their real values more. The values we �nd in
this case are β1 = 9.7045 · 104, β2 = 8.7040 · 104 and β3 = 2.3310 · 105.

Figure 4.28: Estimates with highly inaccurate guesses and unperturbed
measurements. This is a plot of the values of β (in order: vessel 1, vessel 2
and vessel 3) against the estimation step.

4.3.2 Inaccurate guesses and perturbed measurements

The next step is testing the case in which both perturbations are present.
If we use a measure error that has a standard deviation of 10−5 and make
initial guesses on the parameters that are drawn from N (β, 108), where
β denotes the real value, we �nd the estimates: β1 = 9.7008 · 104, β2 =
8.7007 · 104 and β3 = 2.3302 · 105.
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Figure 4.29: Estimates with inaccurate guesses and perturbed measure-
ments. This is a plot of the values of β (in order: vessel 1, vessel 2 and
vessel 3) against the estimation step.

If we increase the standard deviations of both the measurement error
(to 10−3) and the initial guesses (to 105), we still obtain acceptable results:
β1 = 9.7029 · 104, β2 = 8.7026 · 104 and β3 = 2.3307 · 105.

Figure 4.30: Estimates with highly inaccurate guesses and perturbed mea-
surements. This is a plot of the values of β (in order: vessel 1, vessel 2 and
vessel 3) against the estimation step.

4.3.3 Measuring only one variable

Exactly as in the time-varying matrix case, it is interesting to test whether
the method works adequately if we only measure one of the physical va-
riables A and u. We have again chosen only to measure the area. With
a standard deviation of 10−5 and a guess inaccuracy of 1000 we �nd the
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following values: β1 = 9.6940 · 104, β2 = 8.6946 · 104 and β3 = 2.3286 · 105.
The following �gure shows that initially the convergence rate is quite high,
but soon slows down, arriving to an asymptotic behaviour.

Figure 4.31: Estimates by measuring only the area, with inaccurate guesses
and perturbed measurements. This is a plot of the values of β (in order:
vessel 1, vessel 2 and vessel 3) against the estimation step.

If we take measurements at rare�ed time-steps, one every 103 for ins-
tance, and only measure the area, we arrive to a close-to-real case. The
values we �nd are β1 = 9.6860 · 104, β2 = 8.6874 · 104 and β3 = 2.3268, ·105,
with a trend that is as follows:

Figure 4.32: Estimates at rare�ed time-steps (one measure every 1000
steps), with measurements only on the area. This is a plot of the values of
β (in order: vessel 1, vessel 2 and vessel 3) against the estimation step.
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4.3.4 Using a β that varies with x

In real cases the compliance of the wall may vary, it is clearly an approxima-
tion to assume that it is constant in the entire vessel. In order to describe
this case the �rst, optimistic, attempt is that of letting β be di�erent on
each node.

This leads to little or no change in the concept we applied previously;
simply the augmented state vector is longer, as are the various covariance
matrices and the evolution matrix. By doing this we allow the parameter
to have a r-th grade polynomial trend. However, this approach (in its
�rst naive version) turns out to be ine�ective. Indeed, the simulations end
because of a negative area, due to instability problems, as can be seen in
the following �gure:

Figure 4.33: Estimates of one β for every node. This is a plot of the 10
values of β on each vessel (in order: vessel 1, vessel 2 and vessel 3) against
the estimation step.

Here, each parameter has been perturbed with a di�erent value and the
measurements have been slightly perturbed (with a standard deviation of
10−5). The node on which the β changes the most is the �rst one for all
the vessels. On the �rst vessel the values on the second, third and last node
also move from their initial guesses. It is interesting to notice how all the
other estimates remain perfectly unperturbed.

This behaviour suggests that the system tends to change its �rst β in
order to match the measurements, but the information is not transferred to
neighbouring nodes. This was clearly not the case when we only had one β
for each vessel, where a change in its value had e�ects all along the vessel.
In addition, if we watch the time-evolution of the areas and velocities, we
see that the systems �prefers� not to change these variables, but tends to
modify the βs instead. It is possible that this behaviour disappears through
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an accurate tuning of the covariance matrices, which however di�ers from
the ��at� uninformative conditions in which we would be in a real case.

An interesting study would be that of testing how many di�erent values
of β we can estimate on a vessel without having ambiguity problems. If
we use fewer than r + 1 parameters we also have to think about a way to
interpolate them in order to �nd out the values of β on the remaining nodes.
In imposing these trends we have to consider that continuous functions are
preferable, since they are more realistic and generate fewer re�ections of the
waves. For the same reason smooth functions are preferable.
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Chapter 5

Conclusions

Kalman �ltering has turned out to be an e�cient way to estimate the com-
pliance of the vessel walls. Its time-varying and extended versions are accu-
rate, robust and neither need many measurements, nor need them to come
from di�erent sources (measurements on one variable are enough). The es-
timated values can subsequently be inserted in the non-linear blood �ow
simulation, bringing to a patient-speci�c forecast of the e�ects of a local
increase in β.

During the development of this project, several problems of di�erent
nature have appeared. These range from trivial, but very time-consuming,
implementation errors (for instance looping with an increment of 10−5 yields
roundo� errors thay may unphase the Kalman �lter steps) to the task of
interpreting abnormal behaviour. For instance, the stability problem that
was highlighted in section (4.2.2) could at �rst analysis be misinterpreted
as a bug in the code. This could then be very hard to exclude without
seeing the very same code behave correctly in other cases. In addition, the
mere fact of reinterpreting a CFD problem in a statistical perspective is not
immediate, and deriving the matrix notation, which is original to this work,
required many reformulations (even though it may seem trivial).

Some interesting further developments of this thesis could be a more de-
tailed study of the case in which β varies along the vessel and the estimation
of β together with the area A0. Additionally, the study may be extended
to a wider portion of the human arterial tree, and completed with termi-
nal resistances, which simulate the re�ections caused by smaller arteries or
capillaries at the end of the tree.
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Appendix A

The correction equation

A.1 MAP and MMSE equivalency

As we have seen in section 2.2.1, the MAP estimation procedure arrives to
the result:

x̂MAP
k,k =

(
P−1
k,k−1 + HTΣ−1

r H
)−1 (

HTΣ−1
r yk + P−1

k,k−1x̂k,k−1

)
the exact same result can be found if we look for the a posteriori mean,

instead of the mode. Indeed we had the posterior distribution in the follo-
wing form:

p(xk|Yk) ∝ exp
(
−1

2

(
(yk −Hxk)T Σ−1

r (yk −Hxk) +

+ (xk − x̂k,k−1)T P−1
k,k−1 (xk − x̂k,k−1)

))
the exponent can be manipulated into making the distribution Gaussian.

If we expand all terms, leaving out − 1
2 :

(yk −Hxk)T Σ−1
r (yk −Hxk) + (xk − x̂k,k−1)T P−1

k,k−1 (xk − x̂k,k−1) =

= xTkHTΣ−1
r Hxk − 2xTkHTΣ−1

r yk + yTk Σ−1
r yk +

+xTkP−1
k,k−1xk − 2x̂Tk,k−1P

−1
k,k−1xk + x̂Tk,k−1P

−1
k,k−1x̂k,k−1

If we impose this expression to be of the form

(xk − x̃)T Σ̃−1 (xk − x̃)

we �nd that
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Σ̃ =
(
HTΣ−1

r H + P−1
k,k−1

)−1

x̃ = Σ̃(HTΣ−1
r yk + P−1

k,k−1x̂k,k−1)

this last expression is exactly the same that we found when we were
looking for a MAP estimate. This proves that in the case of Gaussian
distributions MAP and MMSE estimates are equivalent.

A.2 Kalman gain derivation

We want to prove that expression (2.7) is equivalent to expression (2.9).
Starting from (2.7) we apply the matrix inversion identity (2.8):(

P−1
k,k−1 + HTΣ−1

r H
)−1 (

HTΣ−1
r yk + P−1

k,k−1x̂k,k−1

)
=

=
(
Pk,k−1 −Pk,k−1HT

(
Σr + HPk,k−1HT

)−1
HPk,k−1

)(
HTΣ−1

r yk + P−1
k,k−1x̂k,k−1

)
=

=
(
Pk,k−1HTΣ−1

r −Pk,k−1HT
(
Σr + HPk,k−1HT

)−1
HPk,k−1HTΣ−1

r

)
yk+

−Pk,k−1HT
(
Σr + HPk,k−1HT

)−1
Hx̂k,k−1 + x̂k,k−1

Since the coe�cients that multiply x̂k,k−1 already correspond to those
in equation (2.9), we only have to prove that yk's coe�cient matches:

(
Pk,k−1HTΣ−1

r −Pk,k−1HT
(
Σr + HPk,k−1HT

)−1
HPk,k−1HTΣ−1

r

)
=

= Pk,k−1HT
(

Σ−1
r −

(
Σr + HPk,k−1HT

)−1
HPk,k−1HTΣ−1

r

)
In this expression we can recognise the use of Woodbury's identity. If

we now use its inverse, with A = Σr, B = C = I and D = HPk,k−1HT ,

and bear in mind that (AB)−1 = B−1A−1, we obtain:

Pk,k−1HT
(
Σr + HPk,k−1HT

)−1

which is the exact coe�cient we �nd in expression (2.9).
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