
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

An Efficient FPGA-Based System for Complete Evolution of

Hardware Components

Relatore: Marco D. Santambrogio

Correlatore: Fabio Cancarè

Tesi di Laurea di:

Matteo RENESTO

Matricola n. 734678

Anno Accademico 2010–2011

Alla mia famiglia

Contents

1 Introduction 1

1.1 Evolutionary computing and Genetic Algorithms 1

1.1.1 Basic Definitions . 4

1.2 Evolvable Hardware . 6

1.3 FPGAs as targets for Evolvable Hardware 7

1.3.1 FPGA reconfiguration approaches 8

1.3.2 Relation between FPGAs and Evolutionary Algorithms 10

1.3.3 Hardware Evolution with Genetic Algorithms 11

1.3.4 Issues . 13

1.4 Classification of Evolvable Hardware Systems 13

1.5 Objectives of this thesis . 16

2 Genetic Algorithms 18

2.1 Genetic Algorithms . 18

2.1.1 Simple Genetic Algorithm 20

2.1.2 Messy Genetic Algorithm 22

2.1.3 Compact Genetic Algoritm 23

2.1.4 Extended Compact Genetic Algorithm 26

2.1.5 Other Genetic Algorithms 27

2.2 Hardware-based Genetic Algorithms 28

2.2.1 First Hardware-based Genetic Algorithms 28

iii

2.2.2 Hardware-based Compact Genetic Algorithms 33

2.3 Conclusions . 39

3 FPGA-Based Evolvable Architectures 40

3.1 Extrinsic Approaches . 41

3.2 Intrinsic Approaches . 44

3.3 A Xilinx Virtex 4-based Evolvable Architecture 51

3.3.1 The Target Device . 52

3.3.2 Virtex 4 Bitstream Manipulation 53

3.3.3 Evolvable Region Design 58

3.3.4 Individuals Interface 59

3.3.5 Performance . 61

4 Proposed Methodology 63

5 Extrinsic Evolution Analysis 68

5.1 Simulation Framework . 68

5.1.1 Simple Genetic Algorithm Implementation 71

5.1.2 Messy Genetic Algorithm Implementation 73

5.1.3 Compact Genetic Algorithm Implementation 75

5.1.4 Extended Compact Genetic Algorithm Implementation 78

5.2 Results Analysis . 79

5.2.1 Parity generators . 79

5.2.2 Complex multi-outputs functions 82

5.3 Preliminary considerations . 84

6 The System-on-Chip Implementation 87

6.1 The System-on-Chip Architecture 88

6.2 Individuals evaluation . 89

6.3 Hardware portability of Genetic Algorithms 91

6.4 New Hardware-based Compact Genetic Algorithm 94

iv

6.4.1 Initialization . 95

6.4.2 Generation phase . 95

6.4.3 Update phase . 99

6.5 Additional features . 101

6.5.1 Elitism . 101

6.5.2 Additional Mutation 102

6.6 Random Numbers Generation 103

6.7 Input-outputs operations and individuals deployment . . . 107

6.8 The Complete Architecture Deployed 109

7 Performance Analysis 111

7.1 Introduction to the case studies 111

7.2 Parity generator evolution . 112

7.2.1 Optimal tuning . 113

7.2.2 4 bits input function 113

7.2.3 5 bits input function 114

7.2.4 6 bits input function 116

7.2.5 7 bits input function 116

7.2.6 8 bits input function 117

7.2.7 Results summary . 117

7.3 Extrinsic, Intrinsic and Complete evolution comparison . . . 119

7.4 Future Works . 121

7.5 Not Only Evolvable Hardware 123

8 Conclusions 125

8.1 Results Achieved . 125

8.1.1 Extrinsic Evolution System 126

8.1.2 Intrinsic Evolution System 126

8.1.3 Proposed System . 127

8.2 Further Experiments . 128

v

8.3 Concluding Remarks . 129

vi

List of Figures

1.1 FPGA structure . 9

1.2 Genetic Algorithm for EHW 12

2.1 First Hardware Genetic Algorithm. [1] 29

2.2 Another Hardware-based Genetic Algorithm [2]. 32

2.3 One block of the Hardware Compact Genetic Algorithm . . 34

2.4 Topology of the Cellular CGA 37

3.1 Tyrrell’s evolvable cell . 48

3.2 Multi-device FPGA-based Evolvable Hardware 49

3.3 Virtex 4 CLB, with 4 slices . 52

3.4 Internal structure of a slice, some details 53

3.5 Bitstream data flow. [3] . 57

3.6 Evolvable region, structure of an individual. [4] 58

3.7 Evolvable region, individual interface 59

4.1 Steps toward a complete system 64

5.1 Cell simulation function . 69

6.1 SoC EHW architecture . 90

6.2 The testing module . 91

6.3 Phases of the hardware-based CGA 95

6.4 Implementation of the hardware CGA 96

vii

6.5 Generation phase . 97

6.6 Update phase . 101

6.7 High parallelism architecture 102

6.8 Random Numbers Generator, black box model 104

6.9 LFSR noise bit generator . 105

6.10 Partial autocorrelation, computed with Matlab 107

6.11 Architecture implemented, FPGA Editor view 110

7.1 Hardware-based CGA evolution 4 bits 114

7.2 Hardware-based CGA evolution 5 bits 115

7.3 Hardware-based CGA evolution 6 bits 115

7.4 Hardware-based CGA evolution 7 bits 116

7.5 Hardware-based CGA evolution 8 bits 117

7.6 Hardware-based CGA evolution 118

7.7 Comparison between Extrinsic, Intrinsic and Complete evo-

lution results . 120

7.8 Comparison between Extrinsic and Complete evolution results122

7.9 The implemented CGA solving 16384 bits OneMax problem 124

8.1 Evolution time with the implemented System 127

8.2 Estimation of larger system performance 128

8.3 Extended Evolvable Component 129

8.4 Evolution of an 8 bits parity generator, with the Extended

Architecture . 130

viii

List of Tables

1.1 Classification of Evolvable Hardware systems 14

2.1 Hardware-based Genetic Algorithm performance 31

2.2 CGA, CoCGA and CCGA performance 38

3.1 Frame Address Register structure 55

3.2 EHW communication interface 60

5.1 GAs evolving parity generators 81

5.2 Performance evolving an accumulative counter 84

5.3 Performance evolving a multiplier 84

6.1 Random number sequence properties 106

7.1 Hardware-base CGA performance summary 118

7.2 CGA, hardware-based and software-based comparison . . . 119

8.1 Summary of achieved performance 129

ix

List of Algorithms

1 Simple Genetic Algorithm . 20

2 Compact Genetic Algorithm 25

3 Extended Compact Genetic Algorithm 27

4 Compact Genetic Algorithm Implementation 76

x

List of Abbreviations

EHW Evolvable Hardware

EA Evolutionary Algorithm

ES Evolutionary Strategy

FSA Finite State Automata

GP Genetic Programming

PSO Particle Swarm Optimization

GA Genetic Algorithm

CGA Compact Genetic Algorithm

SGA Simple Genetic Algorithm

MGA Messy Genetic Algorithm

ECGA Extended Compact Genetic Algorithm

MPM Marginal Product Model

BB Basic Block

CoCGA Co-operative Compact Genetic Algorithm

CCGA Cellular Compact Genetic Algorithm

xi

VRA Virtual Reconfigurable Architecture

PV Probabilistic Vector

HGA Hardware-based Genetic Algorithm

pe-CGA Persistant elitism Compact Genetic Algorithm

ne-CGA Non-persistant elitism Compact Genetic Algorithm

FPGA Filed Programmable Gate Array

FPAA Filed Programmable Analog Array

ASIC Application Specific Integrated Circuit

LUT Look-Up-Table

CLB Configurable Logic Block

FF Flip-Flop

IOB Input-Output Block

BRAM Block Random Access Memory

PPC PowerPC

ICAP Internal Configuration Access Port

LFSR Linear Feedback Shift Register

MUX Multiplexer

PLA Programmable Logic Array

CPLD Complex Programmable Logic Device

CT Circuit Parameter Tuning

CD Complete Circuit Design

xii

SoC System-on-Chip

RNG Random Number Generator

FAR Frame Address Register

FDRI Frame Data Register Input

xiii

Summary

Evolvable Hardware (EHW) is a new field of research. It concerns the

creation and the adaptation of physical circuits, through the usage of evo-

lutionary techniques. Its key elements are (i) the Evolutionary Algorithms

(EAs), (ii) the device on which the circuits can be deployed and (iii) the in-

tegration of these two elements. There exist two main techniques of evolu-

tion: Extrinsic evolution and Intrinsic evolution. The former is a simulation-

based evolution done offline. The latter is an online approach. Evolution is

accomplished by deploying each individual.

Due to their characteristics, Field Programmable Gate Arrays (FPGAs)

are the most used hardware devices in EHW works.

In this work we use a Xilinx Virtex 4 FPGA, its Configurable Logic

Blocks (CLBs) are composed of four Slices. Each slice is composed of two

LUTs (Look-Up-Tables) whose functionality is determined by a 16 bits ar-

ray stored into a configuration memory. Through modifications of the con-

tent of the configuration memory it is possible to change the functionalities

implemented on the device. The definition of an individual, the circuit that

is evolving, as a portion of the reconfigurable area of an FPGA makes pos-

sible to change the function that it implements. When a new population is

generated the old one can be wiped out and the area can be used to imple-

ment the new one.

An important element embedded in the Virtex 4 FPGA is the Inter-

nal Configuration Access Port (ICAP). It allows a self-adaptive behavior,

xiv

providing to the implemented architecture access to its own configuration

memory. Thanks to the ICAP, multi-device solutions are no more required

to use an intrinsic approach, because ICAP allows deployment of new in-

dividuals at runtime.

The purpose of this thesis is to develop an efficient system to evolve

hardware circuits. That is done implementing an hardware architecture for

the Complete evolution of hardware components with an 8 bits data-path

and a genotype of 1024 bits. A Complete evolvable system is a step forward

from the Intrinsic systems. In such kind of systems also the Evolutionary

Algorithm is hardware implemented on the same device of the evolvable

circuit. To implement a System-on-Chip (SoC), able to make Complete evo-

lution, without the needs of external interaction, may help to increase the

efficiency of the system. The reasons beyond a complete implementation

are various, such architecture is able to achieve higher speed, respect to a

software implementation or a multi-device implementation constrained by

communication bottlenecks.

In this thesis, an efficient SoC, with an hardware genetic algorithm, has

been designed and implemented. To prove the validity of the proposed ap-

proach, the implementation of a Complete Evolvable System, the proposed

architecture has been evaluated, to estimate its performance, evolving some

hardware component.

The thesis is organized as follows. Evolvable Hardware is introduced

in Chapter 1. This chapter describes the key elements, it presents the ter-

minology and the classification most widely used. The last section of this

chapter introduces the approach proposed in this thesis and presents the

issues that are addressed. Chapter 2 focuses on the first key element of

Evolvable Hardware, describing the state of the art in Genetic Algorithms

field. A good understanding of the main Genetic Algorithms is important

for the objectives of this thesis. Chapter 3 describes works proposed in liter-

xv

ature on EHW. In Chapter 4 the methodology used to analyze EHW issues,

and to develop an efficient hardware architecture, is described. The two

most important preliminary step of such methodology are described with

more details in Chapter 5. In Chapter 6 the implementation of the proposed

hardware system is described, a lot of details are provided.

Chapter 7 shows the results obtained evolving some hardware compo-

nents with the developed system. Such results are compared to those that is

possible to achieve with Intrinsic and Extrinsic evolution methodologies to

highlight le capability of the developed system. In this chapter some possi-

ble future works are also proposed. Chapter 8 presents the results obtained

in this thesis making furthers theoretical considerations.

xvi

Sommario

L’Hardware Evolvibile costituisce un nuovo campo di ricerca. Esso ri-

guarda lo sviluppo e l’adattamento di circuiti fisici tramite l’utilizzo di tec-

niche evolutive. Ie sue componenti principali sono quindi gli Algoritmi

Evolutivi (i), i dispositivi su cui i circuiti vengono implementati (II) e l’inte-

grazione tra questi elementi. Esistono due principali tecniche di evoluzione

hardware: l’evoluzione Estrinseca e quella Intrinseca. La prima è basata su

di una simulazione offline del dispositivo. La seconda è un approccio online,

in cui tutti gli individui generati vengono implementati.

Grazie alle loro caratteristiche, le Field Programmable Gate Arrays (FP-

GAs) sono i dispositivi hardware più utilizzati per la creazione di sistemi

hardware evolvibili. L’FPGA utilizzata per questa tesi è la Xilinx Virtex 4,

i sui blocchi logici configurabili (CLB) sono composti da 4 slices ciascuno.

Ogni slice è composta da due Look-up-tables (LUTs), la cui funzionalità è

determinata da stringe di 16 bits contenute nella memoria di configurazio-

ne. Tramite modifiche al contenuto di questa memoria, è possibile cambia-

re le funzioni implementata sul dispositivo. La definizione di un Indivi-

duo, ovvero del circuito che sta evolvendo, come una porzione dell’area

di una FPGA, rende possibile cambiare la funzione implementata da essa.

Ogni qualvolta una nuova popolazione di individui è generata, quella vec-

chia può essere cancellata, e l’area dell’FPGA utilizzata per implementare

la nuova.

Di particolare importanza, sulla FPGA Virtex 4, è l’ Internal Configu-

xvii

ration Access Port (ICAP). Essa permette il funzionamento auto-adattativo

del dispositivo consentendo l’accesso alla memoria di configurazione al-

l’architettura implementata sul FPGA. Grazie all’ICAP non sono più neces-

sarie soluzione multi-dispositivo per poter implementare sistemi basati su

Evoluzione Intrinseca, in quanto permette l’adattamento a runtime delle

funzionalità implementate.

Lo scopo di questa tesi è sviluppare un Sistema efficiente per l’evolu-

zione di componenti hardware. Ciò è fatto implementando un architettura

hardware per l’evoluzione Completa di componenti hardware con un data

path di 8 bits ed un genotipo di 1024 bits. L’evoluzione Completa costitui-

sce un ulteriore ottimizzazione dell’evoluzione Intrinseca, in quanto nei si-

stemi di evoluzione Completa anche l’algoritmo evolutivo è implementato

in hardware sullo stesso dispositivo del circuito che sta evolvendo. Imple-

mentare una architettura System-on-Chip (SoC), in grado di fare evoluzio-

ne Completa, senza bisogno di interazioni esterne può aiutare a migliora-

re l’efficienza del sistema. Le ragioni dietro tale soluzione sono varie, essa

raggiunge maggiore velocità di evoluzione rispetto ad un implementazio-

ne software o ad un architettura basata su multipli dispositivi e vincolata

da collo di bottiglia dovuti alla comunicazione.

In questa tesi è stata implementata una efficiente architettura SoC, con

una algoritmo genetico implementato in hardware. Al fine di mostrare la

validity dell’approccio proposto, ovvero l’implementazione di un sistema

che esegua evoluzione Completa, le performance dell’architettura imple-

mentata sono state valutate evolvendo alcuni componenti hardware.

Questo documento di tesi è organizzato come segue. L’Hardware Evol-

vibile è introdotto nel Capitolo 1. Questo capitolo descrive descrive gli ele-

menti chiave e presenta la terminologia e la classificazione più largamente

usate. L’ultima sezione di questo capitolo introduce l’approccio proposto e

le problematiche che sono affrontate. Nel Capitolo 2 l’attenzione è rivolta

xviii

al primo degli elementi chiave dell’hardware Evolvibile, qui è descritto lo

stato dell’arte nel campo degli Algoritmi Genetici. Il Capitolo 3 presenta

brevemente la letteratura nel capo dell’Hardware Evolvibile. Nel Capito-

lo 4 è descritta la metodologia utilizzata per analizzare le problematiche

dell’Hardware Evolvibile e sviluppare un architettura hardware efficiente.

I due passi preliminari più importanti di questa metodologia sono descritti

con più dettagli nel Capitolo 5. Nel Capitolo 6 è descritta l’implementa-

zione del sistema hardware proposto, numerosi dettagli sono qui forniti. Il

Capitolo 7 mostra i risultati ottenuti evolvendo alcuni componenti hard-

ware con il sistema sviluppato. Al fine di sottolineare le possibilità di tale

sistema, i risultati ottenuti sono stati comparati con quelli che è possibi-

le ottenere tramite evoluzione Estrinseca e Intrinseca. Alla fine del capitolo

sono proposti alcuni possibili sviluppi futuri. Il Capitolo 8 discute i risultati

di questo lavoro presentando ulteriori considerazioni teoriche.

xix

Chapter 1

Introduction

This thesis work focuses on Evolvable Hardware (EHW), a new field of re-

search. It concerns the creation or the adaptation of physical circuits through

the usage of evolutionary techniques. Its key elements are the Evolution-

ary Algorithm (EA), the device on which the circuits can be deployed and

the integration between these two elements. The first section of this chapter

introduces the main concepts and definitions about evolvable computing.

While the methods applicable to the hardware are explained in the second

section. In the third section the classification usually adopted for Evolvable

Hardware will be presented. Finally, the objectives of this thesis are intro-

duced in the last section of this chapter.

1.1 Evolutionary computing and Genetic Algorithms

The evolutionary computing concept has been introduced in the ’60 by

L.Fogel with a series of works [5] on Artificial Intelligence. He proposed to

build intelligent agents able to predict the environment and turn the pre-

diction to an adeguate response. The environment and the response can

be described both as sequences of symbols. Fogel populated the environ-

ment with an initial set of different Finite State Automatas (FSAs) and de-

1

CHAPTER 1. INTRODUCTION 2

fined a fitness function to measure the correctness of their behaviour. Such

automatas were able to take as input the description of the environment

and return as output a response. The structure of all the initial machines

was randomly created. They were characterized by a different number of

states and different transitions between these states. The fitness of these

machines has been evaluated in the environment simulating a biological

behaviour. The next step was to put all these machines in a list, sorted ac-

cording to their fitness value. The list was divided in two halves saving

the top half best performing automata and discarding the remaining ones.

Machines belonging to this top half were able to reproduce themselves. New

machines were generated from random mutations of those considered. Mu-

tations were introduced adding a state to a machine or modifying its tran-

sitions with uniform probability. The new offspring were evaluated in the

environment as the previous one. Proceeding iteratively it was possible to

obtain a population able to adapt to the environment. Fogel’s work is par-

ticularly relevant because it is the first research in which concepts that be-

long to biology, as population, offspring, fitness, mutations and selection

are introduced also in the computer science world. Subsequently several

approaches that exploit evolutionary concepts have been proposed. It is

possible to group them in some main categories: Evolution Strategies (ES)

[6], Genetic Programming (GP) [7], Particle Swarm Optimization (PSO) [8], Ge-

netic Algorithms (GAs) [9].

Evolution Strategies [10] have been the first approach developed after

Fogel’s researches by Rechenberg and Schwefel which aim to simulate evo-

lution. Fogel’s work is not usually classified as an Evolutionary Strategy.

In Fogel’s methodology it is possible to identify the structure of a FSA as

the genotype and its implementation as the fenotype. Generally speaking,

in Evolutionary strategies the difference is not so strict. In recent years also

hardware implementations of evolutionary strategies have been proposed

CHAPTER 1. INTRODUCTION 3

[11] Particle Swarm Optimization [8] techniques are similar to Evolutionary

Strategies [6]. In this case there is a population, whose members are called

particle. They have to explore an n-dimensional space. They procede with a

certain speed, that depends on the size of each update of their representa-

tion. The overall goal is to minimize (or maximize) an objective function.

Another application of evolutionary concepts in computer science is Ge-

netic Programming [7]. It has been proposed the first time by J. R. Koza [12].

It has been suggested that also programs, or at least structures, can be sub-

ject to an evolutive process. Following the Genetic Programming approach

it is necessary to define first a series of atomic operations. From these el-

ements it is possible to build a program defining the relation between the

atomic operations by organizing them within a tree. Nodes are the elemen-

tary operations and connections define which values are taken as input by

an operation. Every function takes as inputs the return values of its leafs

and forward its outputs to its parent node. Such structure has the impor-

tant characteristic to be dynamic. The trees can be changed by adding or

removing nodes, or modifying the connections among them. These trees

can be used as individuals of a population. Similarly to Fogel’s approach,

it is possible to select the bests, apply mutations or crossover and improve

in this way the overall performance. All these techniques have been devel-

oped to address some specific categories of problems, but the most general

approach inspired from biological evolution are Genetic Algorithms [9].

Genetic Algorithms have been proposed by Holland as an efficient search

mechanism in artificially adaptive systems [9]. GAs provide an higher decou-

pling between the genotype of an individual and its phenotype, mutations

are no more seen as addition of a state, or a module, but as an operation

done on genotype. They simulate the evolutionary process of a popula-

tion that happens in nature. A population is a set of candidate solutions

for a given problem. GAs procede toward better solutions by iteratively

CHAPTER 1. INTRODUCTION 4

evolving the population. Following a more biology-like terminology, these

elements can also be called individuals. Every individual is described by a

series of symbols called genes. They constitute the genotype of the indi-

vidual. It can be implemented as a series of bits. A function F associates

every possible genotype to a value called fitness. The goal of a Genetic

Algorithm is to maximize the fitness of the population, and generally re-

turn the individual with the best fitness, that is nothing different from the

best solution reached. The fitness evaluation can be an extremely complex

function or a trivial operation as counting the number of bits in the geno-

type that are set to one. The main operations, generally done by a Genetic

Algorithm, beyond the evaluation of the individuals are: Selection, Mutation

and Crossing-over.

• Selection follows the same principle of the selection done by Fogel, but

GAs instead of taking the best half may use other criteria.

• Mutation consists in modifying randomly one or more elements in

the genotype.

• Crossing-Over consists, given a pair of individuals, in swapping ele-

ments between their two genotypes.

Crossing-Over introduces mutations that are not random but obtained prop-

agating the genotype of an individual in the population. More modern GAs

[13] [14] introduce also other operations, different implementations or a dif-

ferent representation of the population [15]. Genetic Algorithms are among

the most important tools used in this thesis work, they will be further ana-

lyzed and described in Chapter 2 and Chapter 5.

1.1.1 Basic Definitions

Evolutionary Computing terminology comes from the natural science

world, but terms used have often a slightly different meaning in computer

CHAPTER 1. INTRODUCTION 5

science literature [16]. The most important terms that is necessary to intro-

duce are:

• Individual: it is a candidate solution generated by the evolutionary

strategy. It is completely described by a chromosome which defines

its behaviour, that is the relation between its inputs and its outputs.

For each individual a fitness value can be computed. How it can be

done will be discussed later.

• Population: a set of individuals. Usually it has a defined and fixed

size.

• Chromosome: often is represented as an array of bits, it is a list of

symbols that defines in an unique manner all the characteristics of

the individual which it refers to. It is the abstract representation of

the individual that will be subject to the evolution process. The chro-

mosome is the part that is manipulated by the evolutionary strategy.

• Genotype: it is used as synonym of Chromosome when one talks

about genotype of an individual.

• Gene: one element of the chromosome. If the chromosome is a string

of bit, it will be one bit. Usually random mutations act at this level of

granularity.

• Allele: it is the value that a specific gene may assume in a chromo-

some.

• Locus: the position of a Gene in a chromosome.

• Fitness: the measure of how good is the individual performing in the

given task. It may consider multiple objectives.

CHAPTER 1. INTRODUCTION 6

1.2 Evolvable Hardware

Evolvable Hardware (EHW) is a new field of research firstly explored

by Higuchi since 1993 in his research on Evolvable Hardware with Genetic

Learning [17]. It concerns the creation or the adaptation of physical circuits,

through the usage of evolutionary techniques. Its aim is to create optimal

performance devices by tailoring the architecture to the specific require-

ments of a given problem. EHW can become useful in many cases:

• To achieve a more efficient implementation, that saves more resources

or allows an higher performance respect to a traditional approach;

• To be able to develop an hardware component also when its task can

not be described completely in an analytic way, but only partially, or

when it is too complex to do it;

• To implement a component whose characteristics may chance at run-

time.

This last scenario requires an online adaptation of the hardware devices

that is usually not possible with a traditional implementation of the hard-

ware component. An online adaptation can be also exploited to deal with

errors or damages to the hardware devices. The capability of the system to

self-repair though the evolution of a different configuration can improve its

reliability [18].

It does not exist yet a formal definition, accepted by the whole academic

world, of what Evolvable Hardware is. However, it is possible to consider

as a good definition the one proposed by Jim Torresen:

• Evolvable Hardware (EHW) is a scheme inspired by natural evolu-

tion, for automatic design of hardware systems. By exploring a large

design search space, EHW may find solutions for a task, unsolvable,

CHAPTER 1. INTRODUCTION 7

or more optimal than those found using traditional design methods

[16].

The key elements of an EHW system are (i) the Evolutionary Algorithm

(EA), (ii) the device on which the circuits can be deployed and (iii) the inte-

gration between these two elements. For what concerns EA, the application

of Genetic Programming (GP) to the hardware world can be seen as a first

example of Evolvable Hardware. Works proposed in literature that exploits

GP often focus on evolution with a set of predefined high level functions,

or modules. Differently, proposed works that use GAs generally focus on

a more fine-graned approach. The main difference between Genetic Pro-

gramming and Genetic Algorithms is that the first allows to modify the

size of the solution adding or removing funcional blocks, while the second

kind of works on a predefined number of evolvable cells. In GP the individ-

ual representation is based on trees, it allows to remove leafs or branches,

in GAs representation is based on chromosomes, that are often arrays of

bits of fixed length. To reduce the search space, in many proposed works

with GAs the connections among the cells are fixed.

1.3 FPGAs as targets for Evolvable Hardware

For what concerns physical devices, Filed Programmable Gate Arrays

(FPGAs) are the most used ones. Few projects have been developed using

Application Specific Integrated Circuits (ASICs) technology [19]. As well

some EHW-oriented architectures [20] have been developed, but they have

not obtained success among the researchers. This is probably due to the

high cost of using non-commercial devices. The largest part of EHW solu-

tions have been developed using programmable logics, such as Program-

mable Logic Arrays (PLAs), Complex Programmable Logic Devices (CPLDs)

or FPGAs. Few exploit Filed Programmable Analog Arrays (FPAAs) or other

CHAPTER 1. INTRODUCTION 8

analog solutions for the evolution in materio [21]. The idea beyond this last

approach is that conventional methodologies for the creation of EHW sys-

tems do not exploit at best all the hardware possibilities. Moreover, the us-

age of non conventional devices allows to reach extremely efficient results

[22] However this is an extremely fine-grained approach, if compared with

a more traditional FPGA-based solution, since it works with lower level

components. Devices as FPAAs allow to work at transistor-level in order to

compose logic blocks [23]. The usage of FPGAs or CPLDs allows to define

better the level of granularity, although a more structural rigidity, they are

less affected by problems related to scalability. In particular FPGAs allow

also to have an higher flexibility respect to CPLDs. Using Complex Program-

mable Logic Devices it is only possible to modify the configuration of the

connections between the base elements. FPGAs allows a further flexibility

due to the possibility to change also the configuration of their logic blocks

called Configurable Logic Blocks (CLBs). FPGAs are configured applying a

binary configuration called bitstream. This bitstream can be sent to the con-

figuration memory of the FPGA through a configuration port. Most FPGAs

allow to change configurations multiple times. Only few of them can be

configured only once. Obviously this last family of FPGA is not suitable for

building Evolvable Hardware.

Figure 1.1 shows the structure of a generic FPGA. It is possible to see

that on the boundary there are Input-Output Blocks (IOBs). While config-

urable nets connect a grid of Configurable Logic Blocks (CLBs). The in-

ternal structure of the CLB depends strictly on the FPGA considered but

generally it is made of one or more Look-Up-Tables (LUTs) and other addi-

tional resources like Flip-Flops (FFs), multiplexers or multipliers.

1.3.1 FPGA reconfiguration approaches

There are three main approaches reconfigure an FPGA:

CHAPTER 1. INTRODUCTION 9

Figure 1.1: FPGA structure

• The first is called complete [24], because it modifies the configuration

of the whole FPGA.

• The second is called module based [25], because it alters just a portion

of the area of the FPGA. It allows to change the hardware module

implemented in a predefined area of the FPGA. It requires to define

fixed connections between the reconfigurable module and the static

part.

• A third one is called difference based [25], because it makes small changes

to the configuration of the FPGA acting just on the configurations of

those components which have to change the implemented function-

ality. How it is possible to modify the configuration of the FPGA is a

detail which depends strictly on the FPGA used and the development

tools available.

In particular, the majority of the works proposed in literature, including

this thesis, use Xilinx FPGAs. Xilinx Inc. is a leader in the market of FPGAs

and it produces devices with high flexibility and characteristics suitable for

CHAPTER 1. INTRODUCTION 10

the implementation of dynamic components.

1.3.2 Relation between FPGAs and Evolutionary Algorithms

For what concerns the integration between EA and device, there are two

main categories of systems according to the structure of the architecture

that is evolving. It is possible to distinguish between Complete Circuit Design

or Circuit Parameter Tuning. The two architectures can be described as fol-

low:

• Circuit Parameter Tuning (CT) consists in designing an hardware com-

ponent whose functionality is determined by a series of parameters.

• Complete Circuit Design (CD) consists in the evolution of the whole

circuit, where all the features that characterize the hardware compo-

nent can evolve.

However it is not always possible to classify an EHW system accord-

ing to this schema. It is possible to say that to design an ad-hoc core whose

functionality depends from values contained in a configuration register is an

architecture based on Parameter Tuning. While to design an architecture at

low level with an evolutionary approach is a Complete Circuit Design. Un-

certainty in the classification may come from the usage of programmable

logics. In this case only a set of parameters of the circuit can be changed.

The configuration of the FPGA changes, but the structure of the device does

not. Architectures based on programmable logics are classified as CD and

not as CT because the architecture itself has not been designed with an ad-

hoc purpose.

It is possible to say that an EHW architecture has a certain degree of

evolvability based on the amount of its characteristics that it is possible to

evolve and the amount of those which are statically defined. Due to their

relatively small price and large commercial availability configurable hard-

CHAPTER 1. INTRODUCTION 11

ware is the most commonly used device for the implementation of EHW

architectures. Focusing on this case it is possible to give a new definitions

of CT and CD architecture design:

• Circuit Parameter Tuning means that on the programmable logic is

implemented a preliminary hardware component whose functional-

ity is defined by a chromosome.

• Complete Circuit Design means that directly the functionality that the

programmable logic, or just a portion of it, implements it is evolved.

Methodologies based on CT often use Virtual Reconfigurable Architectures

(VRAs) [26], building ad hoc IP Cores that simulate the behaviour of a

generic programmable logic just overcoming some limits concerning the

reconfigurability. Approaches that focus on CP act directly on the function

implemented on the target devices. In the case of programmable logics it

is defined by the content of a configuration memory. Such memory is up-

dated using bitstreams. For this reason techniques for CD are often called

Bitstream manipulation techniques. They build custom bitstreams to deploy

the EHW component.

1.3.3 Hardware Evolution with Genetic Algorithms

Figure 1.2 shows the steps of a Genetic Algorithm that can be used to

generate EHW components. Different solutions proposed may apply differ-

ent genetic operators, as selection, mutation and crossing over. Usually just

the overall approach is shared between different algorithms. At the begin-

ning a set of circuits, the population, is randomly generated. Every circuit

is evaluated computing its fitness. If none of the already generated circuits

reaches a sufficient grade of performance, new circuits are generated from

the best ranked in the current population through the usual operations of

Mutation and crossing over.

CHAPTER 1. INTRODUCTION 12

Figure 1.2: Genetic Algorithm for EHW

CHAPTER 1. INTRODUCTION 13

1.3.4 Issues

Nowadays there are three main issues concerning the realization of

EHW systems. They are:

• Scalability;

• Fitness Computation Time;

• Behavioural and Structural Analysis capability.

True hardware components are described by an high number of param-

eters. This leads to a long chromosome and a large genotype. A growing

genotype size means a growing search space and an higher number of gen-

erations necessary to converge to an optimal solution. It increases also the

concrete risk of stalling in local maximum. It may happen that the popu-

lation converge toward a suboptimal solution and the variation size is not

enough to step out from that partial result. All EHW architectures must

take care of this Scalability problem. Fitness computation is also a computa-

tionally expensive task which may have high time requirements. The third

problem Behavioural and Structural Analysis capability is common to other

logics as Neural Networks, where the dynamic implementations may in-

crease the difficulty to understand exactly the behavior of the implemented

component. In Chapter 3 it will be described how works proposed in liter-

ature deal with these three issues. Analyzing the main Genetic Algorithms,

it will be discussed how these issues impact on them.

1.4 Classification of Evolvable Hardware Systems

The most important classification of EHW systems can be done mainly

based on how are evaluated the individuals and how is implemented the

Genetic Algorithm. There are four main categories of evolution: Extrinsic,

Intrinsic, Complete and Open-Ended.

CHAPTER 1. INTRODUCTION 14

Table 1.1: Classification of Evolvable Hardware systems

Extrinsic Intrinsic Complete Open-Ended

Task Definition SW SW SW HW

Evolution SW SW HW HW

Evaluation SW HW HW HW

Final Deployment HW HW HW HW

Extrinsic evolution is the first EHW approach and the most simple. The

key characteristic that allows to classify an evolvable architecture as Extrin-

sic is that no individual is implemented in hardware but the best perform-

ing solution obtained after the evolution process.

In Extrinsic evolution, the key phases of the realization of an EHW sys-

tem are subdivided between software (SW) and hardware(HW) how it is

in table 1.1. All intermediate solutions are evaluated estimating their fit-

ness but without being implemented. This is usually done implementing

a framework able to simulate the behavior of a candidate individual by

its genotype and to return its expected fitness. Often, also the evolution-

ary strategy is implemented with a software approach. Extrinsic Evolution

main constraint is the limited capability of the software to exploit the high

parallelism typical of Genetic Algorithms.

Intrinsic Evolution approach aims to improve the efficiency of the sys-

tem thanks to a real implementation of all the individuals. As Table 1.1

shows the key aspect that distinguishes Intrinsic evolution from the Extrin-

sic is that the evaluation of all the generated individuals is not done es-

timating their fitness with a software simulation, but implementing them

all in hardware. This allows to hardware accelerate the fitness computation

and to parallelize the operation on different individuals concurrently. To

have real benefit from an Intrinsic approach it needs that the overhead of

time required to implement the individuals is smaller than the speed-up

CHAPTER 1. INTRODUCTION 15

achieved thanks to the hardware implementation. It is considered Extrinsic

Evolution also the case in which the evolutionary strategy is, partially or

completely hardware accelerated, but on a third part device.

Complete Evolution approach consists in implement both the evolution-

ary strategy and the EHW components in a System-on-Chip architecture.

Such definition has been introduces by P. Haddow and G. Tufte presenting

their hardware robotic controller [27]. As Table 1.1 shows, the only external

interaction consists in the task definition which is set by the user loading

the evolution data in an on-chip memory or with an equivalent approach.

The reasons beyond an Intrinsic implementation are various, such architec-

ture is able to achieve higher speed, respect to a software implementation or

a multi-device implementation constrained by communication bottlenecks.

Unfortunately it is immediate to see that there are two main issues with this

approach. First, it is necessary to have a device that allows to modify its

behavior following the evolution requirements at runtime and internally.

It needs to be dynamically internally reconfigurable. Deploying new indi-

viduals on the evolvable area requires to be able to change the logic func-

tion implemented. Only few hardware devices allow to do that. The sec-

ond issue concerns the scalability of the evolvable architecture. As already

discussed real hardware components may be defined by a large chromo-

some. To hardware implement a parallel Genetic Algorithm that manages

them may become expensive in terms of occupied resources. Availability

of area puts limits to the exploitable parallelism. With the given definitions

may remain uncertain the classification of an embedded evolvable systems

that implements in hardware the EHW components but run the Genetic

Algorithm in software or with a partial hardware acceleration. It could be

classified both as Intrinsic or Complete. However it is possible to label a

system in which the software part is the main one as Intrinsic and an archi-

tecture that executes the Genetic Algorithm mainly in hardware as Com-

CHAPTER 1. INTRODUCTION 16

plete.

The last class is Open-Ended evolution. An Open-Ended evolvable archi-

tecture consists in an architecture for complete evolution that is also able to

evaluate the behavior of the evolutionary strategy and the evolved EHW

component. To see if it is correct or not, and in the latter case to evolve a

new hardware component that matches with the new requirements of the

environment, without having necessity of input from the user but having a

Sense-Plan-Act approach [28].

1.5 Objectives of this thesis

The main objective of this thesis is to develop efficient FPGA-based ar-

chitecture for the evolution of hardware components. With this aim, it has

been implemented an efficient Complete Evolvable System able to achieve

good performance, thanks to an hardware-based implementation of the

Genetic Algorithm on the same device used to evaluate the fitness of the

evolvable individuals.

To be able to make good design choices and to implement such system,

it has been first developed an Extrinsic Evolvable Hardware system, which

is able to evolve, using the main Genetic Algorithms and EHW individual

that could allow also Intrinsic or Complete evolution. It improves the state

of the art, by allowing better understanding on how the problems of scala-

bility, observability and fitness computation impact on the design and the

implementation of Extrinsic and Complete Evolvable Hardware systems.

One of the limits of Extrinsic approaches is the computation complexity

of the fitness evaluation. Intrinsic techniques that implement in hardware

the fitness evaluation can allow to overcome this limit. However, systems

based on Intrinsic evolution need to be connected to workstation to achieve

reasonable time1 performance during the evolution. Once implemented in
1Few hours can be a reasonable time, but it depends on the complexity of the considered

CHAPTER 1. INTRODUCTION 17

hardware the fitness computation, a step forward, that has been done, is

the hardware acceleration of the whole architecture, with also an hardware-

based implementation of the Evolutionary Algorithm.

This field of research has not been extensively explored yet, but the im-

plementation a System-on-Chip (SoC) architecture can help to increase the

efficiency of the system, because it will able to make Intrinsic evolution,

without the needs of external interactions. The reasons behind a Complete

Evolvable system are various, it can be able to achieve higher speed, with

respect to a software implementation or a multi-devices implementation

constrained by communication bottlenecks.

In this thesis a Complete EHW system has been realized. In Chapter 6

the proposed SoC Complete Evolvable architecture is described, then some

case studies are presented to show the efficiency of the system.

The next chapter will introduces the main families of Genetic Algo-

rithms, while Chapter 3 will describe the state of the art in Evolvable Hard-

ware field.

system.

Chapter 2

Genetic Algorithms

To develop an efficient Evolvable Hardware (EHW) system is a com-

plex problem, it requires first a deep understanding of Genetic Algorithms.

In this chapter the main GAs are presented. The first section contains a de-

scription of the GAs rationale and basic concepts; then some of the most

significant GAs developed are presented. The second section of the chapter

describes some GA implementations based on parallel hardware technolo-

gies. Some Genetic Algorithms have already been implemented in hard-

ware, it is useful to see if some of them match good with the Evolvable

Hardware requirements. However, not all Genetic Algorithms are suitable

for being implemented using parallel hardware.

2.1 Genetic Algorithms

In the introduction it has been recalled the first Genetic Algorithm pro-

posed by Holland [9]. With respect to the previous evolutionary approaches,

Holland introduced the idea of decoupling phenotype and genotype by

introducing the chromosome. According to such approach, the genetic op-

erators are applied to the chromosome, while the fitness of the individ-

ual is generally calculated on the phenotype. In the earliest evolutionary

18

CHAPTER 2. GENETIC ALGORITHMS 19

approach proposed by Fogel [6] and in the first Evolutionary Strategies

by Rechenberg and Schwefel [10], the new individuals were obtained just

through mutation. Holland proposed a new genetic operator: crossing-over.

Another innovation brought Holland studies concerns the selection pro-

cess. According to the selection method proposed by Fogel, the best per-

forming half of the population is selected to generate new individuals. Hol-

land introduced a different methodology for selection, he proposed to re-

produce each parent in proportion to its relative fitness. The same approach

has been implemented by Goldberg with the Roulette Wheel Selection [29].

It consists in selecting the chromosomes, to be used as parents of the next

generation, with a likelihood that depends on their relative fitness.

These two selection methodologies are not the only existing. In 1995

Goldberg and Miller proposed also Tournament Selection [30]. They stated

that the convergence speed of a Genetic Algorithm depends heavily on the

selection pressure. It is possible to define the selection pressure as the likeli-

hood of the best individual to be selected. In the earliest simple selection

method there is high selection pressure, because the best individuals are

are always selected. In the Roulette Wheel Selection there is potentially a low

selection pressure. If all individuals have similar fitness the probability of

being selected is almost uniform.

Goldberg and Miller noticed that a too low selection pressure slows

down the convergence speed, while a too high selection pressure increases

the risk of stalling in a sub-optimal solution. Tournament Selection allows

to scale the selection pressure by defining the size of the tournaments. It

allows further degree of freedom in tuning the algorithm parameters. In

tournament selection the population is randomly divided into groups of

equal size. In each group the best individual is selected as tournament win-

ner. The group of the tournament winners can be subject to a further se-

lection, by discarding those individuals that have a fitness value below the

CHAPTER 2. GENETIC ALGORITHMS 20

average. Selection pressure can be increased by just increasing the size of

the tournaments. On average the winner of a large tournament is expected

to have a fitness higher than the winner of a smaller tournament.

After Holland researches many Genetic Algorithms have been proposed.

The most relevant and widely used are: Simple Genetic Algorithm, Messy

Genetic Algorithm, Compact Genetic Algorithm and Extended Compact Genetic

Algorithm. These algorithms will be descried in detail in the next subsec-

tions.

2.1.1 Simple Genetic Algorithm

The Simple Genetic Algorithm (SGA) is the most used GA, it was pro-

posed by Goldberg in 1989 [29]. It defines concepts belonging to the origi-

nal proposal by Holland in a more formal way. It has a general purpose aim

and can be implemented using one or more genetic operators. Algorithm

1 describes the SGA structure. At the beginning the first population is ob-

tained generating random individuals. The genetic operators are applied

on the chromosomes, the individuals representation stored in memory. The

phenotype is considered only during the fitness Evaluation.

Algorithm 1 Simple Genetic Algorithm

1: t← 0

2: P(t)← NewRandomPopulation()

3: Evaluation(P(t))

4: while !Termination(P(t)) do

5: t← t + 1

6: P(t)← Selection(P(t − 1))

7: CrossingOver(P(t))

8: Mutations(P(t))

9: Evaluation(P(t))

10: end while

CHAPTER 2. GENETIC ALGORITHMS 21

The algorithm iterates until a final conditions is fulfilled. Usually there

are three kinds of possible termination conditions:

• An individual with fitness above a predefined target threshold is gen-

erated;

• At least N iterations have been performed;

• Variance in chromosomes or fitness values is below a threshold.

The first termination condition requires to know in advance what is the best

fitness value achievable. The second is often useful when there is no such

knowledge, as for example when the algorithm is used to solve a min-cut

problem. The third condition avoids useless iterations with a population

that is not optimal and neither has sufficient variance to lead to improve-

ments. The second and the third condition can be used also to avoid infinite

loops.

At every iteration selection is done; all the three presented methodolo-

gies of selection can be used with Simple Genetic Algorithm. The choice of

which one has to be used is up to the developer, and it generally depends on

the characteristics of the problem to be solved. In SGA new individuals are

obtained through crossing-over after the selection. For each pair of parent

individuals in the selection set, it is possible to obtain new individuals for

the new generation by crossing-over. It is also possible to introduce elitism

in the generation. It is also known as replace-the-worsts policy and it avoids

to lose solutions already reached increasing the convergence rate, but it in-

creases also the risk of stalling in local maximum. After having generated

the new population, mutations are applied to its individuals. Introducing

mutation after crossing-over allows to explore new solutions introducing

new alleles in the genes of the chromosome.

CHAPTER 2. GENETIC ALGORITHMS 22

2.1.2 Messy Genetic Algorithm

The intuition behind the Messy Genetic Algorithm [13] (MGA) is to in-

troduce further flexibility by building first Basic Blocks (BBs) and then com-

bine them. The algorithm works executing two different phases:

• Primordial Phase. A series of Basic Blocks (BBs) are identified within the

chromosome.

• Juxtapositional Phase. Basic Blocks identified during Primordial Phase

are combined to obtain a candidate optimal solution.

Basic Blocks are sets of genes of a chromosome, not necessarily contiguous.

Using Simple Genetic Algorithm it is possible to consider the linkage be-

tween contiguous genes increasing the granularity of the crossing over. For

example swapping two couples of bits instead of just one. Such approach is

not able to consider linkage between non contiguous genes. Messy Genetic

Algorithm overcomes this limit by building basic blocks that can include

also non-contiguous genes.

Primordial phase firstly creates a series of candidate Basic Blocks from

the individuals belonging to the population, then it evaluates them to de-

termine the set with the best Basic Blocks. To evaluate the fitness of these

BBs to determine the bests is not a simple operation. The authors suggest

to evaluate directly just a chunk of the chromosome, if it is possible, but

such approach breaks the convention of Genetic Algorithm to think the

individual as a Black-Box. It is not always possible, or recommendable to

do that. Aiming to solve this issue an alternative methodology to evalu-

ate blocks has been proposed. It consists in completing the missing part

of a Basic Block with those from a template chromosome. Once obtained a

complete individuals from the Basic Blocks it is possible to evaluate them

without issues. As template chromosome it can be used the one describ-

ing the best individual of the previous generation, or a random template

CHAPTER 2. GENETIC ALGORITHMS 23

during the first generation.

Best Blocks identified are used in the second phase to build the individ-

uals of the population. “The objective of doing so is to create an enriched

population of Basic Blocks whose combination will create optimal or very

near optimal strings” [13]. Selection among individuals is done with Tour-

nament selection without replacement.

The algorithm is called Messy because, once identified a set of parents,

an offspring is no more obtained just with a neat crossing over but with the

Messy operators Cut and Splice. The aim of these new operators is not to

break BBs already identified, reducing the perturbation introduced by the

crossing-over recombination. During the Cut operation a couple of individ-

uals are each split in two chunks, without breaking their BBs. Splice oper-

ator recombines chunks from a couple of individuals creating two new in-

dividuals. Small random mutations are introduced in the new individuals

to allow exploration of novel solutions considering new Basic Blocks. An-

other innovation introduced in Messy Genetic Algorithm is the possibility

to shift a BB from a position in the chromosome to another. This operation

is used seldomly, since in the largest part of the works the chromosome de-

fines with a gene in specific locus some specific feature. It is meaningless to

move genes from one locus to another, because they have no relationship.

The overall flow of the algorithm does not introduce further changes to

the one of SGA besides those just described.

2.1.3 Compact Genetic Algoritm

The Compact Genetic Algorithm (CGA) [15] is inspired by the Simple

Genetic Algorithm, but it does not simulate directly any biological process.

It is equivalent to a SGA with uniform crossing-over and mutations. CGA

changes the population representation. It makes this algorithm more effi-

cient in term of resources and memory requirements. The population of the

CHAPTER 2. GENETIC ALGORITHMS 24

Compact Genetic Algorithm is no more represented as a set of individuals

but as a Probabilistic Vector (PV) whose length is the same of the individual

chromosomes. The assumption behind CGA is that a large population can

well be modeled as a Probabilistic Vector with less memory requirements,

it allows to represent in a compact form individuals described by chromo-

somes with binary genes. The Algorithm 2 shows how CGA works. At the

beginning all the values in the PV are set to 0.5. This allows to generate

the first two individuals randomly. At every iteration a series of random

number is generated, one for each gene of the genotype. The genes of a

chromosomes are set to 1 if the corresponding value in the PV is greater

than the generated random number, otherwise they are set 0. At the first it-

eration all the genes of all the chromosomes have 50% chance of being one

or zero. For each iteration two individuals are generated and evaluated to

determine a winner, with an higher fitness value.

Every generation consists in one binary tournament between two in-

dividuals. After that, the population is updated according to the alleles

present in the winner chromosome. The aim of the update is to make more

likely the generations of individuals whose alleles are more similar to those

of the winner chromosome and less to those of the loser one. It is done in-

crementing or decrementing the elements of the Probabilistic Vector with

a step of 1/n, where n is often called population size, because it determines

the number of possible levels that a value can assume.

Termination conditions are different from those of SGA and MGA. It is

always possible to keep the first termination condition, ending the execu-

tion when an individual with sufficient fitness is generated, or to halt the

execution after a predefined number of iterations, but the CGA terminates

the execution also when all the values in the Probabilistic Vector converged

to zero or one. This last condition is equivalent to the third one introduced

for the SGA, but in the CGA, when that condition is filled, the Probabilistic

CHAPTER 2. GENETIC ALGORITHMS 25

Algorithm 2 Compact Genetic Algorithm

1: for i = 1 to ChromosomeSize do

2: P(i)← 0.5

3: end for

4: repeat

5: a← NewIndividual(P)

6: b← NewIndividual(P)

7: winner, loser← Evaluate(a, b)

8: for i = 1 to ChromosomeSize do

9: if winner[i] < loser[i] then

10: P(i)← max(0, P(i) − 1/n)

11: end if

12: if winner[i] > loser[i] then

13: P(i)← min(1, P(i) + 1/n)

14: end if

15: end for

16: until Termination(P)

CHAPTER 2. GENETIC ALGORITHMS 26

Vector itself represents the chromosome of the best individual.

2.1.4 Extended Compact Genetic Algorithm

In the previous section it has been presented the Compact Genetic Algorithm.

One of the limits of that algorithm is that it considers all the genes indepen-

dently one to each other. Therefore, it does not consider potential linkage

between different genes. Since it has been demonstrated that linkage learn-

ing in GAs improves their search capabilities [31], it may allow algorithms

that implement it to increase their convergence rate. Therefore in literature

it has been proposed an improved version of the CGA that includes linkage

learning. It is called Extended Compact Genetic Algorithm (ECGA) [32]. It

exploits the same probabilistic approach presented in CGA, but ECGA in-

troduces linkage learning building more complex probabilistic models. A

class of probabilistic models that can be used is the class of Marginal Prod-

uct Models (MPMs). They are the product of marginal distributions on a

partition of the genes. They are similar to the probabilistic model used by

the CGA, but they consider at the same time the probability distribution

over more than one gene. Authors selected MPMs because they have two

useful characteristics:

• They are relatively simple.

• Their structure can be directly translated into a Linkage Map which

defines precisely probabilistic relationship between different genes.

Different models can be compared using Combined Complexity Criterion.

It combines the Minimum Description Length (MDL) criterion and the com-

plexity of the population represented, which is derived from the entropy of

the marginal distribution.

The Algorithm 3 shows the ECGA overall structure. As in the CGA the

individuals are not maintained permanently in memory but they are gen-

CHAPTER 2. GENETIC ALGORITHMS 27

Algorithm 3 Extended Compact Genetic Algorithm

1: t← 0

2: P(t)← NewRandomPopulation()

3: repeat

4: t← t + 1

5: Evaluation(P(t))

6: P(t)← Selection(P(t − 1))

7: MPM← GreedyMPMsearch(P(t))

8: P(t)← NewPopulation(MPM)

9: until Termination(P)

erated at every iteration from a probabilistic MPM. All the individuals are

evaluated with the usual methods, as well selection is done. individuals

selection and evaluation is accomplished using traditional methods. The

most complex operator used by the ECGA is the constructor of MPMs. It is

done with a greedy search. The magnitude of the improvement achievable

using ECGA, with respect a CGA, depends on the number of subproblems

that is possible to identify in the task.

2.1.5 Other Genetic Algorithms

The largest part of the developed Genetic Algorithms can be classified

in the four families described above. Search capabilities and performance of

GAs can be improved with competent implementations, which take care of

the peculiarity of the problem addressed, hybrid implementations or par-

allelization. Some additional family of GAs can be identified:

• Multi-Objective Genetic Algorithms. They do not consider a single

fitness value for an individual but an objective vector. Such modifi-

cation over fitness evaluation impacts on the selection operation. It

is still possible to select those individual with an overall score higher

CHAPTER 2. GENETIC ALGORITHMS 28

than others but other ad-hoc approaches have been introduced. It is

possible to select individuals that dominates other, in the sense that

they have an higher score for all the objectives (NPGA) [33], or to

rank individuals following a domination relationship and assign them

a fitness value according to it (NSGA) [34]. It is also possible to intro-

duce elitism (CNSGA) [35].

• Co-operative Co-evolutionary Genetic Algorithms can be a further

adaptation of GAs for Multi-Objective search [36]. Their basic princi-

ple is to divide the population into a set of sub-populations, each con-

verging toward a different objective. Periodically, sub-populations are

combined to guarantee convergence toward a global optimum.

2.2 Hardware-based Genetic Algorithms

In this section a series of hardware Genetic Algorithms implemented on

Filed Programmable Gate Arrays (FPGAs) will be presented. Implementing

Genetic Algorithm in hardware allows to better exploit parallelism. It can

be done pipelining Genetic Operators or implementing multiple hardware

modules that work concurrently.

Initially, two architectures based on Simple Genetic Algorithm will be

presented. The first is a preliminary implementation of a hardware Genetic

Algorithm, the latter introduces some improvements to make it more suit-

able for real scenarios. After that an hardware Compact Genetic Algorithm

will be introduced. Its structure has been also used in a cooperative multi-

population version that will be presented later.

2.2.1 First Hardware-based Genetic Algorithms

The first Hardware-based Genetic Algorithm (HGA) [1] has been pro-

posed in 1995. The authors argued that if a Genetic Algorithm runs with

CHAPTER 2. GENETIC ALGORITHMS 29

Figure 2.1: First Hardware Genetic Algorithm. [1]

a population of m individuals and takes g generations to converge to the

optimal result it will repeat mg times the same set of operations. Consider-

ing that 100 is a suitable size for the population and 104 or 105 are realistic

numbers for the generation, parallelization, pipelining and hardware accel-

erations could provide useful improvements. For these reasons the authors

proposed a modular hardware implementation of the most Simple Genetic

Algorithm (SGA) proposed by Goldberg [29] and based on selection, mu-

tation and crossing-over.

Figure 2.1 shows a black-box schematic of the Hardware-based Genetic

Algorithm implemented with a parallelization of the selection operator.

The designed architecture operates the following seven steps:

1. All the parameters that characterize the algorithm are loaded to the

Memory Interface Module (MIM). It acts as the control unit of the hard-

ware GA and it is the only interface to the external environment.

2. The MIM initializes all the other modules: the Fitness Module (FM), the

CrossoverMutation Module (CMM), the Pseudo Random Number Genera-

CHAPTER 2. GENETIC ALGORITHMS 30

tor (RNG) and the Population Sequencer (PS).

3. The PS starts the execution requesting the individuals in the current

population to the MIM and passing them to the selection module.

4. The SM receives new individuals and evaluates them until a pair of

them with a sufficient fitness level is found. Later, the SM passes them

to the CMM and resets itself restarting the selection process.

5. The CMM module receives a couple of individuals from SM, follow-

ing random numbers generated from the RNG it applies crossover

and mutations. Once the operation is completed the new individuals

are sent to the Fitness Module.

6. The FM evaluates the two new individuals and it writes them to the

memory through the MIM. The Fitness Module also notifies to the

MIM when a sufficient fitness is reached to end the execution of the

HGA.

7. The previous steps are repeated until the execution is completed.

From the above description of the steps and of how the modules work, it is

clear how the proposed HGA architecture implements the pipelining, stage

after stage. Such architecture has been deployed to a multi-FPGAs solution

in order to be evaluated, while a software version of the same algorithm

was executed on a MIPS architecture to be compared to.

Table 2.1 shows results obtained with such architecture. With respect

to a software implementation there is a substantial reduction in the num-

ber of clock cycles and an execution time speed-up between 15x and 17x.

Moreover the authors claimed that the use of more complex fitness func-

tion will increase the speed-up of the hardware implementation. As it was

already highlighted, fitness evaluation is an expensive operation that hard-

ware can do much better than software. Presenting their hardware Genetic

CHAPTER 2. GENETIC ALGORITHMS 31

Table 2.1: Hardware-based Genetic Algorithm performance

Fit. Fun. F(x) N. Gens SGA clk cycles HGA clk cycles Speedup

x 10 97064 5636 17.22x

x 20 168034 10622 15.81x

x+5 10 99825 5585 17.87x

x+5 20 170279 10945 15.58x

x2 10 334210 22892 14.59x

x2 20 574046 45019 12.75x

Algorithm, a last topic analyzed by the authors is how it scales with re-

spect to the complexity of the faced problems. The area requirements grow

according to some parameters as: the size of the population (m), the size of

the chromosome (n) and the width of the fitness (fw). A limit of this archi-

tecture is that the number of the communication pins between the different

modules grows linearly following the chromosome length. This problem

can be partially overcome introducing time multiplexing and memory ele-

ments. This is strictly constrained by the availability of memory onboard.

The module that most suffers from scalability issue is the selection module.

Following their estimations, authors reported that the number of Config-

urable Logic Blocks required increase according to Equation 2.1.

NofCLBs = (fw + log(m))2 (2.1)

Recently, a new implementation of the same algorithm has been proposed

[2]. The authors, of this new architecture, address also the problem of effi-

ciency of area utilization. Their aim was to propose an hardware Genetic

Algorithm with reduced hardware requirements. Also this new architec-

ture is designed following a modular approach, but there are two impor-

tant differences from the previous one:

CHAPTER 2. GENETIC ALGORITHMS 32

Figure 2.2: Another Hardware-based Genetic Algorithm [2].

• The control module is decoupled from the memory;

• All the modules have access to the same memory.

The memory is no longer a functional module as the others, but it is

an external resource that every module can access. Figure 2.2 shows the

structure of the proposed architecture. As it is possible to see, there are still

signals between the different modules but they do not need any longer to

pass the whole chromosome each time, they just need to pass the memory

address of the considered element from one stage to the next one. Such im-

plementation is much more area efficient although it suffers more the risk

to be bottlenecked by the memory access. Another issue to be considered is

the higher complexity of the module that manages memory access and of

the module that serves as main controller.

To validate their approach the authors presented results obtained in cir-

cuit partitioning. Authors shown that the hardware GA approach allows

to be between 10 and 100 times faster than software solutions, compar-

CHAPTER 2. GENETIC ALGORITHMS 33

ing the performance obtained on FPGA at 50mhz and software executed

on SUN ULTRA10 440 MHz processor system. Also area requirements are

contained. This hardware-based Genetic Algorithm requires 167 CLBs to

be implemented on a Virtex XCV2000E, with a population of 20 individu-

als with 8 bits of chromosome length.

2.2.2 Hardware-based Compact Genetic Algorithms

After the first hardware implementations of the Simple Genetic Algorithm

some researches argued that such algorithm was not suitable for an hard-

ware implementation. When the population size or the chromosome length

grow, the amount of memory required to store the population dramatically

increases. Population requires wide memories to be stored in and it limits

the exploitable parallelism. The memory bottleneck is inevitable. In 2001

two researchers proposed a first hardware implementation [37] of the com-

pact Genetic Algorithm [15] described in section 2.1.3. In this GA the popu-

lation is no more represented in memory as a set of individuals but with

a more compact Probabilistic Vector, this influences also the hardware im-

plementation. Moreover the algorithm operates in parallel over all the ele-

ments in the Probabilistic Vector by executing a series of simple operations.

Figure 2.3 shows one block of the proposed architecture. The number of the

blocks depends on the length of the chromosome and each block operates

on just one gene. Each block is composed of few simple hardware compo-

nents, a Random Number Generator (RNG), a Probability module (PRB) a

comparator (CMP) and a buffer (BUF). Besides an array of these blocks, the

architecture implements also other three modules: two Fitness Evaluators

and a comparator. RNGs have been implemented with Linear Feedback

Shift Registers (LFSRs) technology [38] to generate pseudo-noise bits. The

PRB is composed of a memory and an adder-subtractor to increment or

decrement the value. CMPs and BUFs are standard elements available on

CHAPTER 2. GENETIC ALGORITHMS 34

Figure 2.3: One block of the Hardware Compact Genetic Algorithm

almost every FPGA. FEVs need to be customized following the task to be

considered.

The architecture operates the following steps:

1. At the startup a probability value of 0.5 is used to initialize the PRB;

2. RNG generates the first random number;

3. The CMP compares the value from the RNG with that one in PRB and

returns as output the result of such comparison;

4. The output of CMP is stored in the BUF;

5. The RNG generates a second random number. As the first one it is

compared with the Probabilistic Vector;

6. The value stored in the BUF and the result of the last comparison

become two genes, one belonging to the chromosome of the first in-

dividual, one belonging to the chromosome of the second one. Their

relative position inside the chromosome depends on the index of the

block considered;

7. The FEV modules compute the fitness of these two individuals;

CHAPTER 2. GENETIC ALGORITHMS 35

8. The CMP module, that gathers the output of the FEVs, determines

the winner individual;

9. The value of the PRB is updated. The PRB receives two input a the

from the winner chromosome and one from the looser. The proba-

bilistic value stored slowly converge toward 1 if the input from the

winner chromosome is 1, toward 0 else;

10. All the previous operatios are repeated until the FEV modules do not

find a chromosome with a sufficient fitness.

The authors claim that this extremely parallel implementation is able

to complete a whole generation in just three clock cycles when the fitness

evaluation consists in counting the number of ones in the chromosome

(one-max task). Operating with chromosome of 32 bits length and random

number with 8 bits of precision this architecture requires 813 slices on an

old Virtex V1000FG680. It shows a speedup of 1000x respect to a software

implementation that runs on a 200Mhz Ultra Sparc 2. In literature it has

been proposed a linkage learning version of this algorithm to enhance the

problem solving capability, that as been described in section 2.1.4 of this

chapter. However the linkage learning used in ECGA [32] is not suitable for

an hardware implementation, so the authors decided to try to implement

other improvements to extend their research. The two proposed improve-

ments are the Cooperative Compact Genetic Algorithm and the Cellular

Compact Genetic Algorithm [39]. They take inspiration from techniques

adopted in parallel GAs [40] and cooperative approaches [36].

The Co-operative Compact Genetic Algorithm (CoCGA) introduces the

cooperative coevolutionary concept in the compact Genetic Algorithm. In

the CoCGA there is a series of CGA cells, each one able to manage a lo-

cal population and to communicate with its neighbours. Special cells are

called group leaders: they manage the communications between the CGA

CHAPTER 2. GENETIC ALGORITHMS 36

cells. CGA cells are implemented as described above, except for the in-

troduction of a confidence counter. The following steps characterized their

behaviour:

1. Two individuals are generated. As in normal CGAs.

2. They are compared and evaluated.

3. The probability vector is updated and the confidence counter is incre-

mented according to the fitness value.

4. The probability vector (p) and the confidence counter (cc) are sent to

the group leader.

5. The execution of the previous step is repeated until termination con-

ditions are not reached. Usually, until an individual with a sufficient

fitness is generated.

While the group leader executes different operations:

1. It checks the confidence counter of each neighbour cell and selects the

highest one.

2. It updates its own probability vector according to the valus in the

probability vector from the cell with the highest confidence counter.

3. It updates the probability vector of all the neighbour cells with the

new probability vector of the group leader.

4. It repeats such operations until the execution is completed.

The topology of the cell can be different, they can be arranged in arrays

or grids. Later the same authors proposed also a Cellular Compact Genetic

Algorithm. The theoretical approach is similar to that of the CoCGA, but

the implementation is different and some modifications have been intro-

duced. First of all, there is no more distinction between group leaders and

CHAPTER 2. GENETIC ALGORITHMS 37

Figure 2.4: Topology of the Cellular CGA

cells. All the cells are equal and embed also the functionalities to manage

the communication and the migration of the population. Having no more

group leaders, the probability vectors are passed directly from a cell to its

neighbours. In the same ways also the confidence is computed and passed

to neighbour cells. Once received external probability vectors from neigh-

bours, the cell itself selects the one with the highest confidence counter and

updates its own probability vector by adaptive combination of the two. The

highest confidence counter underlines the highest probability to reach the

best solution. Migration of probability vectors is asynchronous. Different

cells have different update rate of their confidence counter, this leads to

different rate of migration. Figure 2.4 shows the topology of the Cellular

Compact Genetic Algorithm. It is possible to see the grid of homogeneous

cells and the arrows that show the connections between neighbour cells.

Such algorithm decreases the risk of stalling in local maxima with re-

spect to the normal CGA because it introduces multiple populations that

slowly converge towards the optimal solution. A scenario in which all the

populations stall is unlikely. In the proposed implementation, the confi-

CHAPTER 2. GENETIC ALGORITHMS 38

Table 2.2: CGA, CoCGA and CCGA performance

OneMax F1 F2 Speed-up Speed-up Speed-up

OneMax F1 F2

CGA 43362 126967 80027 1x 1x 1x

CoCGA 11492 25542 27757 3.77x 4.97x 2.88x

CCGA 12321 28853 26591 3.51x 4.44x 3.0x

dence counter of a population is realized as a 5 bits counter that is in-

creased every time that a candidate individual has a fitness that is higher

than the best fitness previously achieved by that cell. Confidence counter

width should depend on the number of possible fitness levels available.

Table 2.2 shows the results obtained with the above implementations.

The three tests considered are one-max and two functions, F1 and F2. F1 is

a non-continuous function while F2 is a simple equation. The speed-ups

are significant but the area requirements of such implementations grow

considerably. The CGA requires 1062 Look-Up-Tables on a Xilinx Virtex

LX50, while the CCGA requires 1932 LUTs for just one cell on the same

board. A 2x2 grid,that has been used for the results in table 2.2, requires

5500 LUTs. As highlighted by the authors a good feature is also the possi-

bility to scale the architecture depending on the complexity of the problem

to be addressed. Both the cellular and the cooperative version allow to de-

cide an arbitrary number of cells to be implemented. If this allows to deal

with scalability issues of the problem it rises a scalability issue about the

implementation.

When the size of the chromosome grows, or multiple cells are imple-

mented, the algorithm shows two limits:

• The integrated communication unit may constitute a bottleneck. To

evaluate, monitor and transfer all the Probabilistic Vectors of all the

cells may become a critical activity with a large size Probabilistic Vector.

CHAPTER 2. GENETIC ALGORITHMS 39

It will require heavy time multiplexing due to the impossibility to

have a large bus.

• At every iteration, all the cells in the grid need to test a pair of indi-

viduals concurrently. This may become extremely expensive in terms

of area if the testing module has to perform complicated tests. To run

more complex tests may require to have a complex testing module

with large area requirements. The cellular approach needs two test-

ing modules for each cell and multiple cells. If testing module is large,

the total amount of area required may become excessive.

2.3 Conclusions

In this chapter a series of evolvable algorithms have been presented,

they are the base for the largest part of modern researches in the GA field.

Proposed works that exploit Genetic Algorithms often consider the algo-

rithms that have been described in this chapter and try to improve them to

solve some specific problems. Multiple optimization problems have been

solved thanks to Genetic Algorithms, adapting or accelerating them. The

best performance is often achieved by tailoring a Genetic Algorithm on

the characteristics of the problem to be addressed. To do that requires a

deep understanding of the specific problem features, for this reason the

next chapter will focus on the specific task of Evolvable Hardware. Know-

ing characteristics of the target problem is fundamental to be able to imple-

ment efficiently the GAs.

Chapter 3

FPGA-Based Evolvable

Architectures

In this Chapter some recent works on Filed Programmable Gate Array-

based Evolvable Hardware systems will be discussed, with particular fo-

cus on how the solutions proposed in literature deal with the three issues

presented in section 1.3.4: scalability, fitness evaluation and observability. First

the most relevant Extrinsic evolvable systems will be introduced. In the

second section the Intrinsic approaches will be presented. Different tech-

niques have been proposed according to the different characteristics of the

hardware devices. In particular, Virtual Reconfigurable Architectures and Bit-

stream manipulation techniques will be presented. The third section describes

a more efficient architecture implemented with a modern Xilinx Virtex 4. It

exploits bitstream manipulation and dynamic reconfiguration, opening the

way to the implementation of Complete or Open-Ended architectures. Such

system is that one considered for this thesis, it will be used both for Extrin-

sic and Complete evolution.

40

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 41

3.1 Extrinsic Approaches

Extrinsic Evolution of hardware component consists in evolution done

offline, simulating the behavior of the target device. There are two main ex-

trinsic approaches: Direct Methods and Indirect Methods. In Direct Methods

the chromosome bits represent directly the architecture encoding, while in

indirect method they do not. In this latter case, the architecture configura-

tion does not evolve directly, but the Evolutionary Algorithm operates just

on an abstraction of the device. It may represent just connections between

predefined components, or configurable modules, that can implement a re-

duced set of functionalities, but independently from the device structure.

A chip for the six-multiplexor problem [41] has been evolved using direct

methods.

The usage of a Direct Methods requires to implement a software simula-

tor of the architecture. It requires a deep knowledge of the architectural

structure of the target device. Such simulator has been used to evaluate the

behaviour of a 108 bits chromosome, where 12 bits were used to define the

functionality of a logic cell and the others 96 to define its connections. The

circuit has been evolved using a Simple Genetic Algorithm (SGA) with the

basic operations of selection, mutation and crossing-over. Having a pop-

ulation of 100 individuals and testing each of them over all the possible

64 combinations of inputs. In such conditions, a performance of 100% has

been reached after 2000 generations. The same authors have validated their

approach also evolving a XOR and a 3 bits accumulator, with similar per-

formance [42] [43]. However, to implement just a slightly larger component

with such approach would have led to a wider search space, so new more

complex solutions have been explored. Since the first researches in EHW

field, one question that rised was if it was better to focus on algorithm

speed-up or rather to design a better algorithm, able to achieve evolution

goals in less iterations. Indirect extrinsic implementations have been pro-

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 42

posed following this second idea [44]. Among the solutions proposed in

literature to address this issue, it is possible to find approaches based on

variable length chromosome [45], functional level evolution [46] [47], decomposi-

tion and incremental resolution [48].

The variable length chromosome approach has been introduced to han-

dle the scalability problem by using the most compact representation of the

chromosome. This approach consists in changing the chromosome length

at runtime. It is done by dynamically associating some features of the indi-

vidual to just one gene of the chromosome, including in the genotype only

those features that are identified as bringing a relevant contribution to the

circuit functioning.

Such method has shown good results in image recognition [49], so it

has been applied also for hardware evolution. Theoretically this approach

could be applicable also to an intrinsic evolution, because it does not put

requirements on the evaluation and neither it modifies the approach used

for the fitness computation. Much more unlikely is to apply variable length

chromosome to hardware-based systems. It is immediate to see that the dy-

namic properties of this structure match bad with the rigidity of an hard-

ware implementation, which is based on registers of fixed length.

Another extrinsic approach is the functional level evolution [46]. This

technique has shown good results [50] in the image recognition area. Such

approach for EHW design allows to explore the behavior of the component

that is going to be implemented. Moreover, the chromosome size is reduced

thanks to high level components that reduce the search space size, allow-

ing to handle scalability issue. The genes need only to define what task to

perform in what block and the topology of the connections. Blocks usually

implement only a reduced set of functionalities, so small chromosomes are

enough to define their behavior.

Usually also the connections schema is simplified, with respect to di-

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 43

rect approaches, and just an high level representation is provided. To use

an high functional level decomposition makes also the problem suitable

for the application of Cartesian Genetic Programming technique, already de-

scribed in section 1.1. On the other hand this solution leads to a reduction

in the flexibility of the system, because it puts a lot of additional constraints

on the implementable components.

Incremental Evolution aims to improve the possibility of the extrinsic

evolutions by introducing the innovative element of functional decomposi-

tion and trying to achieve an higher flexibility. The principle of Bidirectional

Incremental Evolution is “to divide a complex task into simpler sub-tasks, to

evolve each of these sub-tasks and then merge incrementally the evolved

sub-systems, reassembling a new evolved complex system” [48]. Partition-

ing the problem and evolving the single parts allows to reduce the global

complexity of the system. Merging the evolved parts is a task with the

same complexity of the functional evolution. However, improvements are

achieved because also the subparts themselves are evolved. Such decom-

position of the system must be possible and meaningful for the component

that is evolving. In the methodology proposed by T. Kalganova a further

degree of freedom has been achieved by introducing the possibility to have

a dynamic number of functional elements in the design. The key elements

considered in that approach are: how decomposition is done and how it is

possible to evolve such modular system.

A first method of decomposition is output based. According to the Shan-

non’s theorem [51], a multi-outputs function can be decomposed in a series

of simpler functions, one for each output. Subsequently, the incremental

evolution is obtained solving smaller problems first and more complicated

later, adapting slowly the individual to them. Once the subparts tailored

for solving the smaller tasks are identified, they are grouped into larger

units that evolve to handle more complicated tasks. The approach has been

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 44

called bidirectional because the already identified groups can be splitted,

when they do not lead to improvements of the fitness value. T. Kalganova

obtained as result that her methodology allows to hit a performance of

100% after 150 000 generations evolving an EHW that implements a func-

tion with 7 inputs and 10 outputs. While by comparison, a simple direct

evolutionary methodology obtains no more than 91% after the same num-

ber of generation, stalling. Probably also other evolutionary methodologies

are able to obtain comparable results, but this methodology shows well

what is the direction of the research in Extrinsic approaches. Incremental

evolution is an other technique not suitable for Intrinsic architecture. Incre-

mental evolution may require to explore intermediate results of the compo-

nent and this is not always possible in real implementations, and when it is

possible it may require to introduce in the evolvable architecture modules

customized for this task.

3.2 Intrinsic Approaches

A first step forward, from the extrinsic evolutions, is to evaluate real im-

plementations of the EHW candidates with the Intrinsic approaches. This

choice allows to speed-up the evaluation phase, drastically decreasing the

number of clock cycles necessary to compute the fitness of an individual.

The Fitness Evaluation is generally a repetitive operation that hardware can

do in parallel, over more individuals at the same time. On the other hand

a new problem is introduced: how to deploy quickly at run-time new indi-

viduals. With the Extrinsic approach it was possible to evolve a component

and then synthesize or implement it using the methodologies usually ap-

plied in hardware design. The usage of intrinsic methods requires to make

the evolutionary strategy able to modify quickly the configuration of the

hardware device that is evolving. How this can be done is heavily influ-

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 45

enced by the target device considered.

One of the first intrinsic EHW system has been proposed by Thompson

in 1996 [52]. An evolvable core able to distinguish between a square wave

with frequency 1 kHz from one with frequency 10 kHz was designed. The

target device of this evolution was a portion of the Xilinx XC6216 FPGA.

It was a square area of 10x10 CLBs. The Evolutionary Algorithm was run-

ning on an external workstation. Every time that a new individual had to be

tested, a new configuration bitstream was created and the new configura-

tion was deployed on the FPGA. Individuals were evaluated by providing

inputs and monitoring the outputs. Thompson was able to achieve a work-

ing component after three weeks of evolution. Such evolvable architecture

was strictly dependent on the target device selected, it was not possible to

use it with different FPGAs, and it was susceptible to external conditions.

However he demonstrated the effectiveness of the EHW approach to solve

real tasks.

Thompson developed also a new system called evolvatron [53]. It was

still based on Xilinx XC6216, but no more dependent on the specific de-

vice used and external factors like the temperature. Also other researchers

proposed solutions based on this FPGA [54] [55].

Nowadays there are two main approaches develop Intrinsic Evolvable

Hardware Systems: Virtual Reconfigurable Architectures and Bitstream manip-

ulation techniques.

Virtual Reconfigurable Architectures [57] have already been introduced

presenting the approaches based on functional decomposition. In that case

the aim was to simulate the behavior of some hardware modules to evolve

the component to be implemented on FPGA. In the intrinsic evolution case

the purpose was slightly different. It is always possible to develop an archi-

tecture that implements high level functions, but now the aim was to have

an architecture that allows a rapid deployment of the individual. Now the

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 46

deployed architecture itself is reconfigurable. An example could be a vir-

tual FPGA with a rapidly accessible configuration memory. The cost of this

approach is an higher area requirement for the deployment of the circuit,

but it allows to achieve good time performance.

Bitstream manipulation consists in modifying directly the FPGA config-

uration. It requires to know how the FPGA is configured and how such

configuration can be changed. Not all FPGAs are suitable for this approach

and not all the parameters of the FPGA can be easily modified. A partial so-

lution to this problem is to modify only those parameters that can be easily

changed.

A first Virtual-Reconfiguration-Circuit system has been proposed in 1998

by P. Haddow and G. Tufte [58]. Later, the most recent Virtual Reconfig-

urable Architecture (VRA) for the intrinsic design of evolvable hardware

it that one proposed by P. Ke, X. Nie and Z. Cao [26]. They implemented

a VRA, described in Hardware Design Language, as a second layer of re-

configuration over an FPGA with the purpose to provide a genotype of

reduced size and fast internal reconfiguration. It allows to deal with sev-

eral of the previously identified issues: fitness computation can be hard-

ware accelerated, chromosome size is reduced thanks to a more functional

approach and deployment of individuals is fast. Such virtual architecture

can be synthesized and deployed on a wide range of FPGAs due to its high

level description in HDL. They selected the 2x2 multipler as case study and

defined an optimal Virtual Reconfiguration Architecture to solve that spe-

cific problem. They confirmed the validity of their architecture by evolv-

ing such multiplier in 4928 generations of 20 individuals each. The authors

claim to have in this ways a speed-up of 100 times with respect to an extrin-

sic implementation of the same architecture. On the other hand such imple-

mentation requires around 1000 slices for 20 individuals, which means 50

slices for each individual. Considering that a 2x2 multiplier is a function

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 47

with 4 inputs and 4 outputs that could be implemented with 4 Look-Up-

Tables (LUTs) of a Virtex 2 FPGA, it appears clearly how inefficient were

VRAs in terms of area, although they provide extremely high performance

in terms of hardware speed-up and good algorithmic optimization possi-

bilities.

Bitstream manipulation techniques allow to use a direct approach on

FPGA. These approaches have been made possible with the modern FPGAs

when JBits [59] has been released. It is a Java tool able to modify the specific

content of a Configurable Logic Block or a Look-Up-Table without having

to synthesize a new architecture. It overcomes the need to have a VRA by

allowing to make quickly partial modifications to the architecture. It makes

possible to use as evolvable components directly the FPGA CLBs and the

communication lines among them. The same tool is also able to read back

the configuration of the FPGA, allowing to explore the current configura-

tion of the device. This new tool has been first used by two Xilinx researches

that proposed an evolvable architecture called GeneticFPGA [60]. However

the purpose of their work was no to create an efficient EHW component to

address some real problem, but only to show the capability of an approach

based on bitstream manipulation to build working individuals that can be

implemented in a safe and stable way. They introduced the idea that is

possible to map directly the content of a Look-Up-Table (LUT) on a series

of genes. Each value of a LUT can be mapped into a single gene. It allows

to define the chromosome as the content of a series of LUTs. In this way

the chromosome can be directly implemented on FPGA, without having to

pass through a process of hardware synthesis, placement and routing. Jbits

takes as input parameters which property of the design is going to be mod-

ified and the new configuration, that is a chunk of the chromosome. Then

it builds a partial bitstream applying modifications to the FPGA configura-

tion, through the SelectMAP port [61].

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 48

Figure 3.1: Tyrrell’s evolvable cell

More recently some applications to robotics and implementations of

logic circuits [56] have been proposed by Tyrrell and others. They proposed

an important improvement that allowed to boost the performance reducing

the size of the problem that has to be solved when evolving an individual.

They introduced the idea to use partial reconfiguration provided by Jbits

only to modify the content of the LUTs. Connections between LUTs can

be statically defined or implemented with a customizable communication

infrastructure. The main limit of this approach consists in the absence of

memory elements available in the design. A further improvement of the

same architecture consists in the introduction of a multiplexer, associated

to each LUT. The multiplexer allows to decide if the next stage will be di-

rectly the connection to the output or a connection to a FF where the output

value can be stored.

Figure 3.1 shows the idea besides the last version of the evolvable cell

developed by Tyrrell. It uses two LUTs and one register. In this way he ob-

tained a sequential component with one register. The final output depends

on the current primary inputs and on the state-value memorized in the

register. A more recent system that exploits Jbits has been proposed by C.

Lambert, T Kalganova and E. Stomeo. [62].

As shows in Figure 3.2, their proposed system is divided in three differ-

ent parts. There is one FPGA that represents the individual. A second FPGA

on which is implemented the evolution strategy. A third element to manage

the system, allowing to deploy on the first FPGA the bitstream generated

in the evolution phase by the second FPGA. This approach works also in

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 49

Figure 3.2: Multi-device FPGA-based Evolvable Hardware

the case in which it is not used just one FPGA for implementing an individ-

ual, but multiple FPGAs. In this way it is possible to implement at the same

time multiple individuals making parallel evaluations. Common parts, as

the hardware modules belonging to the Evolutionary Algorithm core and

the bitstream manipulation core, are implemented in a first FPGA, then a

series of FPGAs are connected to it. They implement EHW modules and

their number depends on how many individuals it is necessary to evaluate

concurrently.

Also according to this methodology, the functionalities required to re-

configure the target EHW are still provided by Jbits.

A methodology that avoid to use Jbits has been proposed by Upegui

and Sanchez [63]. Not using such tool makes possible to work also with

devices not supported by it. They proposed to use two additional method-

ologies for the partial reconfiguration of the FPGA, supported by Xilinx:

Module Based and Difference Based [25]. The first allows to implement a mod-

ular design in which it is possible to change just one module. It requires to

be able to generate the partial bitstreams of that specific module, so if theo-

retically it can be used, practically it is not suitable for a rapid deployment

of individuals. The latter, called Difference Based, is more suitable for the

task. It allows to generate partial bitstreams to make small modification

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 50

to the configuration of the FPGA, changing just some components as the

configuration of a LUT.

This methodology needs however the usage of an external tool such as

FPGA editor to generate a partial bitstream that modifies the FPGA config-

uration. That is a low level design tool, given the low level design of an

architecture it allows to make local modification and to generate a partial

bitstream. Such bitstream can be downloaded on the FPGA configuration

memory to deploy the changes. The evolutionary strategy can generate

a script that given the implementation files of the architecture can apply

some small changes to the EHW modules. Then a partial bitstream is ob-

tained much more quickly than synthesizing an architecture and can be

deployed on the FPGA. To apply such methodology it is necessary to know

exactly the position of what CLBs must be modified. They are the CLBs that

implement EHW modules. Authors proposed to use arrays of hard macros

to implement evolvable cells. The usage of hard macros allows to define a

priori the placement coordinates and partially also the routing.

In bitstream manipulation techniques, the next step is to manipulate

the bitstream directly without having to use external tools, but it requires

a deep reverse engineering work due to the lack of official documentation.

Direct bitstream manipulation techniques have three requirements:

• Knowledge about the bitstream format. It is necessary to know how

to build a bitstream that implements a specific functionality.

• Capability to build up the bitstream that configures the FPGA to de-

ploy an individual on an evolvable hardware module.

• Capability to do the previous operations quickly.

In the past years some methodologies [64] [65] to exploit also this approach

have been proposed but some constraints remain. Researchers proposed to

analyze and compare partial bitstreams obtained with FPGA editor to un-

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 51

derstand how they are built. That made possible to build partial bitstreams,

to deploy on the board the evolvable individuals. An additional issue is

rised by the fact that each FPGA model uses different bitstream formats.

Bitstreams for different family FPGAs have different format, so a lot of ef-

fort in bitstream analysis is required every time that one changes device.

Moreover, an evolvable system that can be deployed on a certain FPGA-

model cannot be deployed on another one without re-implementing the

bitstreams generation phase, adapting it to the new device. Once under-

stood the exact structure of a bitstream, it is neither trivial to exploit it.

Generally bitstreams are not small enough to be stored on FPGA memo-

ries. This requires the availability of an external memory to store them. A

third problem is how to deploy quickly bitstreams on the FPGA once they

are successfully built. If the evolutionary strategy that builds bitstream is

not on the same board that will implement EHW, they can be downloaded

into the configuration memory through the SelectMAP port.

3.3 A Xilinx Virtex 4-based Evolvable Architecture

Xilinx Virtex 4 is one of the devices that allow the highest flexibility

in EHW implementations. An EHW architecture that uses such FPGA has

been developed at Politecnico di Milano in the last years [4]. Since it will be

used also in this thesis work as object of the evolution, it will be described

with more details. It follows the same principles used also in [66], where

the target of the evolution is the content of the FPGA LUTs. Such evolution

is done with bitstream manipulation techniques.

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 52

Figure 3.3: Virtex 4 CLB, with 4 slices

3.3.1 The Target Device

This system has been implemented on a Xilinx XC4VFX12 [67], belong-

ing to the Virtex 4 family [68]. Its CLBs are composed of four slices. Every

slice is composed of two LUTs (Look-Up-Tables) with four input nets. The

top LUT is called LUT-G, the bottom LUT-F. Their functionality is deter-

mined by a 16 bits array stored into the configuration memory. Among the

additional elements available inside a slice there are two Flip-Flops (FFs)

and two Multiplexers (MUXs).

Figure 3.3 shows the structure of a CLB with four Slices, while figure

3.4 shows some details of the internal structure of a slice. In the CLB shown

in the first figure it is possible to see also an element on the left. It is the

multiplexer that manages the local routing lines inside the CLB and the

inputs of the different slices.

Through modifications of the content of the configuration memory, it is

possible to mutate the behaviour of the slices. It makes this devices useful

for the implementation of EHW components. CLBs are not the only ele-

ments available on a Virtex 4, there are also Input-Output Blocks (IOBs),

Block Random Access Memorys (BRAMs), Flip-Flops (FFs), and other em-

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 53

Figure 3.4: Internal structure of a slice, some details

bedded devices such as an integrated PowerPC (ppc405). An important

element embedded in the Virtex 4 FPGA is the Internal Configuration Ac-

cess Port (ICAP) [69] . It allows a self-adaptive behavior, providing to the

implemented architecture access to the configuration memory.

To create an efficient System-on-Chip EHW System, that is the purpose

of this thesis, it is required to be able to deploy the individuals at runtime

through the ICAP. For this reason in the next section a detailed description

of the Virtex 4 bitstreams manipulation is provided.

3.3.2 Virtex 4 Bitstream Manipulation

Among the different techniques available for bitstream manipulation

that has been proposed in literature, it has been used the one firstly pro-

posed by Upegui and Sanchez in [63] and that has been also applied to the

Virtex 4 device [64]. This is based on a direct manipulation of the bitstream

without using external Xilinx tools. That makes such approach suitable to

design an adaptable architecture for single-chip implementation. In order

to avoid damages to the device due to random modifications of the configu-

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 54

ration memory of the FPGA and to simplify the bitstream analysis process,

the idea is to modify only the content of the LUT on the FPGA. The choice

of what connections will be used is done before the implementation and it

is not subject to runtime modifications. This approach allows to partially

overcome routing limits highlighted in literature [62], due to lack of public

available documentation. In this way the definition of such communication

infrastructure between the evolvable LUTs becomes a fundamental charac-

terization of the EHW architecture design. Due to the characteristics of the

Virtex 4 device, that allows a two dimensional reconfiguration, it is possi-

bile to relax some area constraints typical of older FPGAs [70]. It allows to

build a parallel architecture that, on the same device, manages at the same

time multiple evolvable individuals. That was not possibile for Upegui and

Sanchez due to the reconfiguration limit of their Virtex 2 FPGA.

Bitstream manipulation has been already introduced in section ?? and it

has been said that the bitstream format depends on the target device. Now

it will be described how to build a partial bitstream that modifies the con-

tent of the FPGA LUTs, to deploy the individuals on a Xilinx Virtex 4. First,

since the implemented EHW system needs to change the configuration of

one or more LUTs, it is necessary to know how to retrieve the Frame Address

from the slice coordinates. The Frame Address is used to specify the por-

tion of the FPGA area that frame is going to modify. When writing a frame

a bitstream needs to change to write first the frame address into the Frame

Address Register (FAR). The FAR is a 32 bits register divided into 6 fields, as

3.1 shows.

It must be written at the beginning, but while writing large contigu-

ous frame it is update automatically. The values to be written into FAR are

linked to the slice coordinates. The equations that state that relation have

been obtained through bitstream analysis and now they can be found in

literature [4].

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 55

Table 3.1: Frame Address Register structure

Field index

Top/Bottom 22

Block Type 19 to 21

Row Address 14 to 18

Mayor Address 6 to 13

Minor Address 0 to 5

unused 23 to 31

Total 32 Bits

Through bitstream analysis [4], it has been derived that these parame-

ters are linked to the slice coordinates by the following equations:

MayorAddress = Mayor(X) =
∣∣∣x
2

∣∣∣ + Adj(X) (3.1)

Adj(x) =

1 if0 6 X 6 23

3 if24 6 X 6 31

4 if32 6 X 6 47

(3.2)

MinorAddress = Minor(x) =

21 ifXiseven

19 ifXisodd
(3.3)

RowAddress = Row(Y) =

1 if96 6 Y 6 127or

if0 6 Y 6 31

4 if32 6 Y 6 95

(3.4)

Top/Bottom = Top/Bottom(Y) =

1 if0 6 Y 6 63

0 if64 6 Y 6 127
(3.5)

Then, after having specified the frame address it is necessary to write

into the Frame Data Register Input (FDRI) the configuration of the resources

within the frame. The LUT-F and LUT-G configurations bytes have not a

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 56

fixed starting point in the bitstream data flow, but their position depends

on X and Y coordinates of the slice which they belongs to [4]. The follow-

ing set of equations states the starting position, in the case in which the

Top/Bottom value is 1, otherwise equations are slightly different.

TopByteStart(Y, LUT) = 5(Y%32) + AdjLUT (LUT) + AdjY(Y) (3.6)

AdjLUT (LUT) =

0 ifLUT = LUTF

2 ifLUT = LUTG
(3.7)

AdjY(Y) =

4 ifY%32 > 15

0 ifY%32 6 15
(3.8)

ByteStart(Y, LUT) =

 TopByteStart(Y, LUT) ifY%32 > 64

162 − ByteStart(Y, LUT) − AdjG(LUT) ifY%32 6 63
(3.9)

AdjG(LUT) =

0 ifLUT = LUTF

1 ifLUT = LUTG
(3.10)

Figure 3.5 shows the complete bitstream dataflow. It is composed of:

1. Comment data. They are informations like bitstream filename, date

and FPGA model.

2. Two synchronization words. They are 0xFFFFFFFF and 0xAA995566.

3. Init. data. A series of packets that is sent to begin the reconfiguration

process and set registers like FAR.

4. Conf. Words. They are contained into a large packet with the config-

uration information that are written into FDRI to set LUTs content.

Such packet has also a checksum as central word.

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 57

he
ad

er
 ty

pe
 1

pa
ylo

ad
he

ad
er

 ty
pe

 1
pa

ylo
ad

he
ad

er
 ty

pe
 1

pa
ylo

ad
he

ad
er

 ty
pe

 1
pa

ylo
ad

he
ad

er
 ty

pe
 1

he
ad

er
 ty

pe
 2

co
nfi

gu
ra

tio
n

wo
rd

co
nfi

gu
ra

tio
n

wo
rd

co
nfi

gu
ra

tio
n

wo
rd

co
nfi

gu
ra

tio
n

wo
rd

co
nfi

gu
ra

tio
n

wo
rd

co
nfi

gu
ra

tio
n

wo
rd

he
ad

er
 ty

pe
 1

pa
ylo

ad
he

ad
er

 ty
pe

 1
pa

ylo
ad

he
ad

er
 ty

pe
 1

pa
ylo

ad

0x
AA

99
55

66

co
m

m
en

t
da

ta

0x
FF

FF
FF

FF

initial register
writes

configuration words final register
writes

Figure 3.5: Bitstream data flow. [3]

5. Final writes. Finalization packages are sent to complete the execution.

The following algorithm shows how the checksum central word is built.

1 def computeWord(Y, LUT, BitPos):

2 CheckWord = 704 + BitStart(Y,LUT)

3 #Check if it is necessary to add an offset

4 if Y>63 and Y%32>7:

5 CheckWord += 32

6 if Y<=63 and Y%32<=23:

7 CheckWord -= 32

8 #Computes the odd parity bit

9 if len(filter(lambda x: x == ’1’,bin(CheckWord))) % 2 == 1:

10 CheckWord += 0x800

11 return CheckWord

Bitstreams can be sent both to the SelectMAP port and ICAP port, to do

in the first case external reconfiguration, while in the latter an internal re-

configuration of the device. In the prospective to create a System-on-Chip

(SoC) architecture with an intrinsic evaluation of the individuals, it is nec-

essary to be able to internally reconfigure the portion of FPGA that imple-

ments the EHW modules.

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 58

Figure 3.6: Evolvable region, structure of an individual. [4]

3.3.3 Evolvable Region Design

The target EHW individual considered has an 8 bit data path, with 8

bits of input and 8 bits of output. It is composed of 32 smaller evolvable

cells, each with five inputs and one output. The five inputs of such cells

are 4 external inputs plus one bit for the actual state, a loop back from the

output value. They can be primary inputs or nets from other cells outputs.

The cell is designed such that the resources which it needs to be imple-

mented can be found into a single slice. It needs just a LUT-F, a LUT-G and

a Multiplexer (MUX). In this way it is possible to allocate four cells for each

CLB. In a cell, the two LUTs receive the same 4 inputs, while the MUX is

driven by the additional value from the state register and determines LUT

output signal will be forwarded to the Flip-Flop. Further detailed informa-

tions on the FPGA structure can be found into the Virtex 4 user guide [71].

The behaviour of a single cell is defined by 32 bits: 16 for the LUT-F and

16 for the LUT-G. This mapping between the cells of an individual and the

resources of the FPGA allows to minimize reconfiguration time.

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 59

Figure 3.7: Evolvable region, individual interface

Figure 3.6 shows the complete structure of the 8 bits data-path EHW

individual, on the left, and of the basic cell, on the right. The loopback of the

output value has been introduced to avoid stability problem. As the right

part of the Figure shows the 8 bits data-path is obtained with a composition

of two columns of 8 4-bits-cells each. Connections between different cells

are statically defined at design time and are not subject to evolution.

The solution adopted is to connect the odd cells of a column with the 4

less significant bits that come from the previous column (or from the pri-

mary input) and the even cells to the 4 most significant ones. The proposed

element needs in this way two columns of eight bits each. One cell is de-

fined by 32 bits, there are 32 cells over the two columns and the whole

EHW individual is described by a 1024 bits chromosome. The static com-

munication architecture has been implemented through an FPGA editor

script, realizing an Hardware Macro [72].

3.3.4 Individuals Interface

In order to be able to use the EHW individual, it has been realized a

wrapper module with a synchronous Finite State Automata (FSA) designed

in VHDL. This module manages input signals and gather outputs when

they are ready allowing communication with the evolvable hardware com-

ponent that it wraps.

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 60

Table 3.2: EHW communication interface

Name Value Description

Control RESET 0x02 Prepare for a new exection.

START 0x01 Start to process the input

EMPTY 0x00 Empty word

State WAIT 0x02 System waiting for data

RUNNING 0x02 System processing data

COMPLETE 0x03 Execution completed

As Figure 3.7 shows there are two inputs and two outputs besides clock

(clk) and reset (rst) signals. The module receives 8 bits words as input and

returns 8 bits results as output. The two additional registers, control and

state, manage the execution. Through the control signal, input commands

are provided, while from the state register it is possibile to read information

on the state of the execution. Table 3.2 provides more detailed information.

Between two different commands it is necessary to write an EMPTY

word into the INPUT register. After that an execution has completed, to

begin a new one it needs to receive the RESET input command. When the

STATE is no more on COMPLETE it is possibile to send the START com-

mand, the system will read the input data and start a new execution. Look-

ing into the internal structure of the automata, there are 8 states: WAIT_DATA,

RESET_FF, ASSERT_CE, CLOCK_1, CLOCK_2, CLOCK_3, CLOCK_4, DE-

ASSERT_ALL. When the FSA is into DEASSERT_ALL state, the execution is

completed and the STATE register contains 0x03. If the CONTROL register

is EMPTY, the next clock cycle the automata moves into the WAIT_DATA

state and the state register will contain 0x02. Now The RESET command

will reset the internal state of the EHW element and it will set the out-

put value to 0x00. The START command enables the transition toward AS-

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 61

SERT_CE state. In this phase the input is red and the execution starts. It

will last between the state CLOCK_1 and CLOCK_4. Then the execution is

completed and the FSA is back to the state DEASSERT_ALL, with the state

register set to 0x03, the last bit means that the execution is completed.

3.3.5 Performance

The evaluation of an individual with a four columns depth needs four

clock cycles to complete, plus other three clock cycles for input/output re-

lated operations and other three to reset the internal FFs before a new exe-

cution. In total it takes 10 clock cycles. An extrinsic software simulation of

the same hardware individual may require hundreds clock cycles.

Until now, few works have been carried out on Complete Hardware

Evolution. The first [27] is the work in which the definition of complete

evolution has been introduced. It concerns robotic, the creation of a sim-

ple hardware robot controller using an evolvable strategy, that is hardware

implemented as well. However it is not a good sample of hardware compo-

nent. It is extremely tailored on a peculiar task and there are no considera-

tion concerning scalability issues, deployment and many other typical con-

straints. The robot has been realized with Lego Mindstorm, implementing

the controller on an FPGA following the approach proposed by Thomp-

son and described in subsection 3.2. The innovation consisted in putting

also the evolvable algorithm on the same chip. Nowadays there are not

yet open-ended hardware architecture. In his Phd. thesis [65] A. Upegui

argued that this is the only category that can be considered truly EHW.

For this reason he tried to identify some open-ended task that could the-

oretically benefit from an evolvable hardware implementation. However

to be able to realize Open-Ended system in the future, it is necessary to be

able to realize first reliable complete systems that exploit the most modern

devices and powerful evolutionary algorithms. Realizing complex system

CHAPTER 3. FPGA-BASED EVOLVABLE ARCHITECTURES 62

requires to deal efficiently with EHW issues. Aiming to improve the state

of art in this direction, the next chapters first will focus on the integration

between an evolvable individual and Genetic Algorithm. Then a efficient

hardware implementation of a selected GA will be proposed to show how

issues related to EHW can be addressed efficiently implementing a Com-

plete Evolvable Hardware system.

Chapter 4

Proposed Methodology

In this Chapter, the approach used in this thesis to address Evolvable

Hardware issues and to develop a Complete system, that efficiently settle

them, is presented. First the overall approach to the problem is presented.

Then, details on the single steps are provided.

In Chapter 3 several Evolvable Hardware systems have been presented,

including the architecture that is used in this thesis, that is described in

Section 3.3. In the largest part of the evolvable systems the Evolutionary

Algorithm is provided with a software-based implementation. However,

it is better to have also an hardware-based evolutionary algorithm, to cre-

ate a real Complete evolvable system, on a System-on-Chip evolvable ar-

chitecture. The computation performance of PowerPC (PPC) embedded on

Xilinx programmable logics are not comparable with those of a worksta-

tion. For this reason it is necessary to implement an hardware-based Ge-

netic Algorithm, designing a Complete architecture. However, solutions

adopted to address EHW issues with Extrinsic Evolution may not be suit-

able for a Complete architecture.

The flow chart in Figure 4.1 shows the five key steps of the proposed

methodology to address the problem of creating a Complete Evolvable

Hardware architecture, beginning from the definition of an EHW system

63

CHAPTER 4. PROPOSED METHODOLOGY 64

Figure 4.1: Steps toward a complete system

CHAPTER 4. PROPOSED METHODOLOGY 65

and arriving to an efficient hardware architecture. The first step can be con-

sidered the statement of problem, while the last one as its solution. The

three intermediate steps are the procedure to approach the problem.

The first step is the definition of the Evolvable Hardware system that

will be used. To make an efficient implementation it is necessary to focus

on one evolvable system. Considering its characteristics and the relation

between the Evolvable Hardware genotype and the functionalities imple-

mented. The considered EHW system has already been presented in section

3.3 and it will be used in the next steps.

The second step is the implementation of a software framework able to

simulate the specific Evolvable Hardware system, allowing to evolve it with

various algorithms. In particular it is necessary to consider the algorithms

present in literature and to make an implementation of them that can work

with simulated EHW system. To choose what algorithm to implement in

hardware for the Complete Evolvable system, it is important to study the

behaviour of a software implementation first. This framework allows Ex-

trinsic Evolution of hardware components and its details are described in

the next chapter.

From the simulation-based Extrinsic evolution results, it will be possi-

ble to gather information about how efficient are different algorithms, with

different characteristics. These results are important in order to take correct

design choices, that can allow to create an efficient hardware Complete ar-

chitecture. The evolution has been executed running the framework on an

Intel Core2Duo 2.20 Ghz with 4gb of RAM.

The results obtained from Extrinsic evolution need to be analyzed with

a precise methodology. The most relevant information that are necessary in

order to take wise design choices go besides the simple time performance of

a software execution, because an hardware implementation may be parallel

and structurally different from a software one.

CHAPTER 4. PROPOSED METHODOLOGY 66

The most relevant characteristics to be considered, of the different algo-

rithms, are:

• Convergence Rate: How many generations are necessary to obtain

en evolved Evolvable Hardware that achieves the best performance.

The software framework allows to evaluate how complexity impacts

on the convergence rate of the various algorithms. It may be useful to

know also the convergence rate after a certain number of generation.

• Population size: It indicates how many individuals are tested for ev-

ery generation. From the convergence rate and the population size,

it will be possible to determines the absolute number of evaluation

done. It determine often the execution time required by the evolu-

tion. If it is generally true that larger the population is less generation

are required, on the other hand increasing the population size may in-

crease unnecessarily the number of evaluation to be done. Therefore,

it may lead to a slowdown of the system.

• Memory requirement: Usually it is not a relevant aspect to run an evo-

lution on a workstation, but moving toward an hardware implemen-

tation on Filed Programmable Gate Array, it may become a critical

aspect. Memory availability on FPGAs is constrained and, moreover,

the memory access to a Block Random Access Memory (BRAM) is not

a parallel operation, but sequential. This fact constraints further the

achievable parallelism. Memory requirement is usually proportional

to the number of individuals that needs to be available in memory at

the same time.

The same algorithm may have different convergence rate, population size

or memory requirement depending on some parameters. These parame-

ters need so to be evaluated in function of the time required to evolve

an Evolvable Hardware component. Moreover, implementing an algorithm

CHAPTER 4. PROPOSED METHODOLOGY 67

with hardware it is not likely possibile to choose freely parameters as popu-

lation size, but there are constraints depending on the hardware resources,

as area and memory, available.

Once that the an efficient Genetic Algorithm with a correct parameter-

ization has been identified as suitable for an hardware implementation, a

Complete EHW architecture can be implemented.

In this thesis, this methodology has been used to develop of an efficient

hardware architecture for the Complete Evolution, with individuals evalua-

tion and evolution, both implemented in hardware. The next chapter fo-

cuses the key steps of the above methodology while Chapter 6 focuses on

the description of the implemented hardware architecture.

Chapter 5

Extrinsic Evolution Analysis

This chapter focus on the two most important phases of the proposed

methodology described in the previous chapter. The extrinsic evolution

with the Simulation Framework, that is described in the first section, and the

Analysis of the results obtained, that is described in the latter section.

5.1 Simulation Framework

The Simulation Framework is an application composed of three main

parts, the Simulation Function, the Testing Unit and the Evolutionary Algo-

rithm.

The Simulation Function is the software part that models the behaviour

of an hardware evolvable system. It receives as a parameters a data struc-

ture that represents an Evolvable Hardware individual and the input data.

Simulating the behaviour of that individual, it computes the expected out-

put value. Such procedure is a composition of a key function compute, which

simulates the behaviour during a clock cycle of one basic evolvable cell. The

cell considered is the one described in section 3.3.3, it is composed of two

Look-Up-Tables (LUTs) connected to a multiplexer (MUX) driven by the

former output value of that cell, which is stored in the Flip-Flop (FF).

68

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 69

Figure 5.1: Cell simulation function

The procedure in Figure 5.1 shows how the behaviour of the cell is sim-

ulated with bitwise operations. The cell receives an input of four bits, that

is implemented in the simulator as an integer number in the interval 0 to

15. These primary inputs are negated and forwarded to both the Look-Up-

Tables (LUTs) in the cell, as it happen on the real device, but only one of

the two must be considered, depending on the value of the Flip-Flops (FF).

This is done adding the FF value as the most significant bit of the input.

Now the two LUTs can be considered as just a larger one, of 32 bits instead

of 16. If the value in the FF is 0, the output value will be selected on the

second LUT, so the most significant bits of the luts variable, because the in-

put complement will be in the range 16 to 31. Elsewhere the output will be

selected in the range 0 to 15. Having two LUTs with 4 inputs and a MUX

driven by an additional input, it allows to have a component that behaves

as a single LUTs with 5 inputs, one of which is the state. The negation of the

input serves as a index of what element of the LUT is taken as output value

of the cell. This describes exactly the behavior of the cells implemented on

the Filed Programmable Gate Array. Modifying the content of the luts vari-

ables, it is possible to simulate a modification in the contend of the LUTs

that may change the output of the cells.

This function needs to be called multiple times, over all the cells of the

individual, to simulate the whole behaviour by forwarding the outputs of

an earlier cell to the input of the next one.

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 70

The final output consists in the last 8 outputs gathered from the last 8

cells of the simulated individual. It is necessary to guarantee that the con-

nections between the simulated cells match with those of the Hard Macro

implementing them on the device, in order to have a consistent behaviour

of the results obtained. It is a known fact that Xilinx hardware synthesis,

placement, and routing tools may modify the internal connections of the

Hard Macros. To have a consistent behavior, that still match with that one

simulated, it is necessary to restore the original connections between the

cells of the individuals. This can be done editing the placed design after the

routing phase and before the bitstream generation. However this must be

done just when the overall evolvable architecture is implemented. Individ-

uals deployment does not suffer of such issues, because the connections are

fixed.

The framework receives as input a parameter that defines what Genetic

Algorithm must be used for the current simulation and the name of the

file that contains the configuration parameters. In such configuration file

is specified also the path to the tests database. It is a textual database which

contains the set of tests that must be used to evaluate the individuals fitness

during the evolution. For different Genetic Algorithms, there are different

parameters to be specified, but some may be common. For example the

population size is a common parameter for almost all the algorithms. In

the following section, presenting the implementation of the algorithms, the

parameters which characterize them will be presented too.

The fitness calculation is the last important aspect to be considered be-

fore to discuss the details about the algorithms. Generally speaking, the

goal of the evolution is usually to have an individual able to hit a perfor-

mance of 100%. Such individual will make no mistake when it works with

the test cases used during the evolution phase. The database that imple-

ments the test set contains couples of two words of eight bits length each.

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 71

The first is the input word, while the second is the the expected output.

An output word that may also contain don’t care (DC) bits. Where there is

a DC bit, both one or zero are considerable as correct results. Once defined

test sets, there are still two general methods to calculate the fitness. The

first is an All or nothing approach. It is possible to add one to the fitness

value, for each test for which the result of the simulation matches with the

expected results. Otherwise the hamming distance between the expected

solution and that one obtained can be considered, smaller the divergence

is, higher will be the fitness. In the case in which the simulated function F

has as target domain the set {0,1}, these two methods are equivalent.

For this thesis purposes four Genetic Algorithms have been implemented,

together with some modification of them. They are: the Simple Genetic

Algorithm (SGA), the Messy Genetic Algorithm (MGA), the Compact Ge-

netic Algorithm (CGA) and the Extended Compact Genetic Algorithm (ECGA).

In the next subsection, the implementation of these Genetic Algorithms,

that is used by the framework, will be described in details.

5.1.1 Simple Genetic Algorithm Implementation

The first algorithm implemented is the Simple Genetic Algorithm (SGA),

proposed by Goldberg in 1989 [29], and described from a theoretical point

of view in section 2.1.1.

To implement the algorithm, a customized implementation of each of

its genetic operators has been provided:

• Evaluation. It uses the simulation function introduced in the frame-

work to obtain the outputs. The hamming distance between the out-

puts and the expected outputs is the score obtained by a chromosome

in a specific test case. Fitness is computed running all the test cases

and summing the scores.

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 72

• Selection. This operator has been implemented as Tournament Selec-

tion. It receives as input the evaluated population and returns a subset

that contains the selected individuals.

• Crossing-over. It has been implemented an uniform probability crossing-

over. It returns from a couple of chromosomes a new one. It is used to

generate the new population by applying it multiple times to all the

possible couples in selection set.

• Mutation. Also this operator acts with uniform probability and single

gene granularity.

• Termination condition. All the three termination conditions have been

implemented. The execution terminates when there is no more vari-

ance in the population, a maximum number of generations has been

executed, or an optimal individual is generated. The highest score

possible is the product of two factor: the number of tests and the out-

put width.

A replace-the-worsts policy is applied to the population, selected individ-

uals are maintained and worsts discarded. Then, selected individuals are

inserted in the new population together with the newly generated.

To customize the behavior of the algorithm, the following parameters

have been defined in the configuration file:

• Population Size (n). It defines how many individuals there are in the

population. N individuals are initialized at the begin and N must be

at the end of every iteration of the algorithm. So all pruned elements

need to be replaced.

• Mutation probability (mp). It is the probability to mutate one single

gene of a chromosome, from 0 to 1 or vice versa.

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 73

• Crossing-over probability (cp). Given two individuals it is the proba-

bility to have a crossing-over between a pair genes in the same posi-

tion.

• Tournament Size (ts). It is an important parameter for the selection,

besides the already discussed properties it determine indirectly also

how many individuals are selected. The population is randomly di-

vided is a series of set each of ts size, for each of them is selected the

individual with the highest fitness. So, the number of selected indi-

viduals is N/ts.

This algorithm generally benefits from a large population, it reduces the

number of generation required to converge to an individual with the best

fitness. Unfortunately, on the other hand increasing the population size also

increases the amount of time required to perform an iteration. Especially,

evaluation time may become a bottleneck. To achieve the best performance

it is necessary to budget will the population size, but there is no systematic

methodology to do that. This is a topic often discussed in literature [73].

An additional parameter that generally caracterize the algorithm is the

number of bits, or genes, of the genotype. Due to the fact that the simulator

is not with general purposes but address a specific problem the individual

structure has been hardcoded.

5.1.2 Messy Genetic Algorithm Implementation

The Messy Genetic Algorithm (MGA) has been implemented with the

most significant customization with respect to its original formulation, al-

ready presented in section 2.1.2. Authors introduced MGA with the pur-

pose to handle complex problems, with unknown structure, by identifying

first subproblems and Basic Blocks (BBs) that solve them. Differently, now

the task is to implement a messy approach to address a specific problem,

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 74

which structure is in large part known. That allows to make some prelimi-

nary considerations and to adapt the implementation according to them. In

particular, looking into the evolvable individual structure and the specific

feature of the problem it is possible to say:

• There are no clear subcomponents that may address some subprob-

lems, because the connections among cells constitute a dense mesh.

Analyzing paths between primary inputs and outputs, it is evident

that all the outputs depend on almost all the other cells, except other

output cells and half of the 3rd column cells. All the output values

depend on 65% of the cells. Moreover, the cells belonging to the first

and the second column influence all the outputs.

• Partial evaluation of a chromosome is not possible, to be simulated

an individual must be complete. Exploiting a template chromosome

may not lead to significant results, still due to the structure of the

Evolvable Hardware module.

• Having to multiple test Basic Blocks may require a large increase in

the number of simulation to be done. In Evolvable Hardware fitness

evaluation is a critical operation, extremely time consuming and it is

better to minimize the number of evaluations required.

The solution adopted has been to implement a pseudo-MGA, such that

it makes more greedy the identification of the Basic Blocks following the

Evolvable Hardware characteristics. It has been done according to the fol-

lowing guidelines:

• Chunks of 16 contiguous bits are considered instead of single genes

as base to build Basic Blocks.

• Primordial phase searching should not require too many additional

evaluation.

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 75

Blocks of 16 contiguous bits in the chromosomes represent Look-Up-

Tables (LUTs), they will not be split over more Basic Blocks. That allows

to handle contiguous linkage. The algorithm procedes alternating the two

phases, one Primordial and one Juxtapositional. The Primordial phase gen-

erates individuals by evaluating some candidate blocks with a template

chromosome. Candidate blocks are obtained by taking some 16-bits chunks

from the selected individuals and merging them with a template chromo-

some. Those 16-bits chunks belonging to a candidate Basic Blocks are la-

beled in order to be able to identify them in the next phase. High-fitness

blocks are divided from low-fitness blocks applying selection on the chro-

mosomes generated during primordial phase. During Juxtapositional, phase

the Cut operator will unlikely break those blocks identified in the previous

phase. Primordial and Juxtapositional phases both act generating the same

number of individuals and running the same number of tests.

Operations of Fitness Evaluation, Mutation and Selection are implemented

and parametrized as in the Simple Genetic Algorithm.

5.1.3 Compact Genetic Algorithm Implementation

The Compact Genetic Algorithm (CGA) [15], presented in section 2.1.3,

introduces further innovations modifying how the population is represented

in memory. In MGA and SGA the population is a set of N individuals. It

requires N*1024 bit to be stored. The Compact Genetic Algorithm uses in-

stead a Probabilistic Vector (PV) of 1024 elements. How many bits it takes

in memory depends on the precision of the numbers in the Probabilistic

Vector, but generally they are less than those required by the population of

MGA and SGA.

The Algorithm 4 shows the CGA in the version that has been imple-

mented in the framework.

The additional parameters that characterize the proposed Compact Ge-

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 76

Algorithm 4 Compact Genetic Algorithm Implementation

1: for i = 1 to ChromosomeSize do

2: P(i)← 0.5

3: end for

4: repeat

5: a← NewIndividual(P)

6: b← NewIndividual(P)

7: a.fitness← Evaluate(a)

8: b.fitness← Evaluate(b)

9: winner, looser← CompareFitness(a, b)

10: for i = 1 to ChromosomeSize do

11: if winner.dna[i] < looser.dna[i] then

12: P(i)← max(d, P(i) − t)

13: end if

14: if winner.dna[i] > looser.dna[i] then

15: P(i)← max(1 − d, P(i) + t)

16: end if

17: end for

18: until Termination()

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 77

netic Algorithm are the step size (t) and the margin (d):

• Step Size (t). It defines the size of the step used to update the Proba-

bilistic Vector. An higher t allows to converge faster to a solution but

increases the risk of stalling in local maxima.

• Threshold (d). It is the margin that defines the minimum probabil-

ity that every element has to be 0 or 1. Consequently the maximum

probability will be 1-d.

It is not necessary to define a population size because at every iteration

just two individuals are generated and the best is taken as winner with

probability 1, through a binary tournament.

The main customization that has been done, with respect to the original

implementation, concerns the termination condition. CGA execution usu-

ally ends when all the elements in the Probabilistic Vector that describes

the population converge to 1 (max) or 0 (min), but in this implementation

the execution ends when an individual with a sufficient performance has

been obtained, or after a maximum number of generations. The elements

of the probabilistic array are prevented to converge to 1 or 0 thanks to the

introduction of the parameter d, so there is always variance and the third

termination condition becomes useless. Such limit has been introduced to

guarantee always a minimal possibility to generate a novel individual not

yet obtained or to have a mutation in a sequence that has almost converged

to 0 or 1. For trivial tasks this may reduce the convergence speed but for

more complicated execution it increases the capability of the algorithm to

explore new solutions.

It has been shown that one of the limits of Genetic Algorithm is the

needed amount of memory required to represent the whole population,

and that this limit is overcome by CGA. However, not having a represen-

tation of all the generated individuals rises some issues. Since the CGA

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 78

operates on each gene independently, it may lose linkage information. The

pe-CGA and ne-CGA algorithms proposed in [74] try to handle this prob-

lem and to increase the convergence rate, when the size of the problem

grows.

• The pe-CGA finds a near optimal solution, called elite chromosome,

that is maintained as long as other solutions generated from proba-

bility vectors are no better. Pe means persistent elitism.

• The ne-CGA further improves the performance of the pe-CGA by

avoiding strong elitism that may lead to premature convergence. Ne

means non-persistent elitism. In this algorithm, after every N iterations,

the elite chromosome is reinitialized with random values. This may

lead to a slowdown in the convergence speed, but avoid situations in

which the algorithm does not converge.

In the simulation framework a slight modification of the described non-

persistent elitism has been implemented. Instead of discarding the elite vec-

tor after a fixed amount of N generations, the implemented algorithm dis-

cards it with a certain probability at every iteration. Such probability can be

tuned in order to have that the expected value of generations, for discard-

ing the elite individual, it is exactly N.

5.1.4 Extended Compact Genetic Algorithm Implementation

The Extended Compact Genetic Algorithm (ECGA) [75] has been intro-

duced as an improvement of the search capability of the Compact Genetic

Algorithm, it is described in section 2.1.4. ECGA has been implemented

in the simulator by embedding a customization a library described in a

technical report from Illinois Genetic Algorithm Lab [14]. The Greedy Search

strategy to build the probabilistic models is the one from Illigal and, as in

CGA, there is no operation of crossing-over. The Selection implemented is

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 79

Tournament Based and the size of the tournaments can be arbitrary defined.

Fitness evaluation function is the one implemented in the simulation for the

other algorithms presented above. Mutations are introduced with uniform

probability. An issue of the ECGA concerns the population size. In CGA the

population is fixed to 2, in SGA and MGA it can be defined as an integer

positive number greater than 0, but in ECGA the greedy search strategy

requires it to be greater than or equal to 50. Moreover, a negative aspect of

this algorithm is that if CGA requires 1024 ∗ sizeof(float) bits of memory,

ECGA requires 10242 ∗ sizeof(float) of them to represent its probabilistic

model.

5.2 Results Analysis

In this section results obtained from the Extrinsic evolution analysis are

presented, this is an important step of the design flow. Average data refers

to the mean value of 10 iterations, when not specified differently. Time per-

formance have been measured executing the software framework on a Intel

Core2Duo 2.20 Ghz with 4gb of RAM.

5.2.1 Parity generators

It has been decided to use the evolution of parity generators as first

benchmark of the evolvable system, because it is a not complex function, it

has one output and allows to decide arbitrary the input to be considered,

within the range allowed by the component data-path.

With the given EHW system, it is possible to run tests from 1 bit of input

to 8 bits of input, non-relevant input bits are just set to 0. Being only one of

the output bit relevants for the output value, the others will not be consid-

ered for the fitness computation. The Simple Genetic Algorithm (SGA), the

Messy Genetic Algorithm (MGA), the Compact Genetic Algorithm (CGA)

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 80

and the Extended Compact Genetic Algorithm (ECGA) will be evaluated

with two selected relevant test cases, not with all the 8 possibile. These two

selected case are the 4 bits parity generator and the 8 bits parity generator.

The first, due to its data-path, is simple but not trivial. It allows 16 pos-

sible input words. It is already a simple task, to use smaller input width

will be meaningless. The latter test case, with 8 bits of input width, is the

generation of the most complex parity generator that can be evolved by the

system.

Table 5.1 shows the summary of the analyzed algorithms performance,

evolving parity generators with 4 and 8 bits. For what concerns the time,

it is necessary to consider that the framework implements output, logging

and debug operations at every generations. Their impact on the perfor-

mance depends on the number of the genrations, therefore it becomes more

relevant when there are less individuals in the population. For the Compact

Genetic Algorithm, the average number of individuals evaluated has been

computed counting two per generations. For the ne-CGA is has been con-

sidered one individual per generation.

From the analysis of this data it is possible to make a series of considera-

tions:

• Simple Genetic Algorithm works fine for simple tasks, but its perfor-

mance drops while working with more complex. It heavily suffers the

reductions in the population size.

• Messy Genetic Algorithm allows to achieve the best performance in

both the test cases. Moreover, when the number of individuals in the

population is comparable, and the number of generations is almost

the same, MGA results to be faster than SGA.

• Compact Genetic Algorithm requires more evaluation than MGA, but

the execution time remains small, since the algorithm instructions are

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 81

Table 5.1: GAs evolving parity generators

Algorithm Pop. Size Avg Ind. gen. time(s)

Parity 4 bits

SGA 32 14464 7.62

SGA 64 4416 3.66

SGA 96 5664 1.8

SGA 128 7168 3.2

MGA 32 4800 1.2

MGA 64 3968 1.1

MGA 96 4704 1.3

MGA 128 5760 1.45

CGA 2 7650 2.0

ne-CGA 1-2 5528* 2.5

ECGA 64 13312 1123

ECGA 96 10944 845

ECGA 128 10240 660

Parity 8 bits

SGA 64 16000 75.8

SGA 96 13632 61.9

SGA 128 16512 76.3

MGA 32 9504 50.0

MGA 64 6016 51.7

MGA 96 6912 51.9

MGA 128 8448 62.3

CGA 2 13776 51.8

ne-CGA 1-2 13286* 75.6

ECGA 64 38592 2996

ECGA 96 18912 1635

ECGA 128 29952 2203

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 82

all simple.

• Non-persistent elitism CGA (ne-CGA) requires an absolute number

of evaluations that is comparable with that one of CGA, but the time

to execute the algorithm results to be higher. Probably operations in-

volved in generations management and logging lead to a too high

overhead, since they are done at each generation.

• Extended Compact Genetic Algorithm requires an average amount of

generations to converge, but the time overhead to manage the proba-

bilistic models seems to be a too high price respect to the performance

that allows to obtain. Unnecessary complexity makes this algorithm

the slowest tested.

5.2.2 Complex multi-outputs functions

In the previous section, the results obtained evolving a hardware com-

ponent with one bit of output has been shown. Unfortunately, with the

selected evolvable individual, it is not possible to obtain the same perfor-

mance for every kind of task. Now, two 4-bits-output scenarios will be an-

alyzed. Here, all the algorithms that has been considered under perform,

with respect to the previous case.

A first case is the evolution of an accumulative counter of four bits

length. The task is to implement an hardware component that, given a

value N of input, returns as output the value N+1, or 0 if the input string is

1111. The remaining 4 bits of input are set to 0, while the 4 outputs bit not

used are considered don’t care values. Having a multibits output, the fitness

value is computed as the sum of the correct bits for every test case. Thus

having 16 test cases, encoded by 4 bits, and 4 bits of output there are 64

possible levels of fitness. Table 5.2 shows the experimental results obtained

with the simulation framework. Despite running the algorithms with large

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 83

populations, of 128 or 256 individuals, difficulties in convergence has been

highlighted. The Simple Genetic Algorithm has never been able to evolve

a component that works in 100% of the cases. The performance decreases

slowly reducing population from 256 to 128 but however the maximum

level of fitness has never been achieved. Compact Genetic Algorithm does

not shows good results too, but they were neither expected due to the fact

that CGA allow to reduce the memory required for the population repre-

sentation, but it does not have a search capability higher than the Simple

Genetic Algorithm. The only algorithm able to evolve correctly the compo-

nent is the Messy Genetic Algorithm, with a population of 256 individuals.

It allows to achieve fitness 100% only in 20% of the cases but is the best

result reached. Such results can not be considered good at all, because they

identify a limit in the evolution of the hardware component.

If evolving a counter with only 4 bits of data-path requires 626 genera-

tions with 256 individuals each, we can guess that evolving a counter with

8 bits of data-path would be worst. It is possible to see that, to evolve a 4

bit counters 256 individuals have been tested for 626 times. Each test set is

composed by 16 test cases, one for each input value. If all individuals are

tested all the times with all the tests it means that to evolve a 4 bits counter

almost 16k individuals are generated and 2.5 million of tests executed. If

for hypotesis 626 generations are enough to evolve also a 8 bits counter, at

least 41 million of tests would need to be executed. If one considers that,

in a more realistic scenario, to evolve an 8 bits counter would require more

than 626 generations, it becomes evident that this is a limit case in which the

evolution fails. Looking experimental results, just evolving a 6 bits counter

it is no more possible to achieve fitness higher than 85%. A worse case is

the evolution of a 2x2 multiplier. As table 5.3 shows, no algorithm is albe to

complete the evolution of the component having a 100% fitness. The best

result is still obtained with the Messy Genetic Algorithm, but it is lower

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 84

Table 5.2: Performance evolving an accumulative counter

Algorithm Pop. Size Avg. gen. best fitness avg. fitness 100% rate

SGA 256 - 91% 89% 0%

SGA 128 - 89% 88% 0%

MGA 256 626 100% 91% 20%

MGA 128 - 95% 91% 0%

CGA 2 - 82% 81% 0%

ECGA 96 - 85% 81% 0%

Table 5.3: Performance evolving a multiplier

Algorithm Pop. Size Avg. gen. best fitness avg. fitness 100% rate

SGA 256 - 95.52% 94.3% 0%

SGA 128 - 93.75% 91.1% 0%

MGA 256 - 98.43% 96.87% 0%

CGA 2 - 93.75% 91.5% 0%

ne-CGA 1-2 - 93.75% 93.75% 0%

than expected. Only 98.3%. Moreover, always form table 5.3, it is possible

to see that more than one algorithm tends to stall at fitness 93.75%. There is

likely a local maximum, which corresponds to that value, from which it is

difficult to come out.

5.3 Preliminary considerations

Previous results, concerning the number of generations required for the

evolution, can be considered valid also in the intrinsic case. To implement

all the generated individuals, instead of to use a simulation of their behav-

ior, has no impact on convergence rate and algorithm behavior.

From the analysis done, it is possible to make some considerations.

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 85

Among those analyzed, the best Genetic Algorithm, with the best search ca-

pability, is the Messy Genetic Algorithm. When the Algorithm works with a

population between 64 and 96 individuals it allows to achieve better results

than others algorithms tested. To use more individual introduces unneces-

sary fitness evaluations, that slowdown the execution. In second place, it is

possible to say that also SGA and CGA, which have similar search capabil-

ity, allow to reach the solution showing good performance. Simple Genetic

Algorithm seems to suffer too heavily from reduction in the population

size. Compact Genetic Algorithm allows to overcome such issue. Its limit

is the absence of elitism which in some circumstances may lead to slow-

down. For this reason it has been analyzed also the implementation with

non persistent elitism, that however led to uncertain results. Different con-

sideration need to be done on the Extended Compact Genetic Algorithm.

For the analyzed case studies, the additional cost of managing the proba-

bilistic models overcomes the improvements achievable in term of conver-

gence rate.

Generally all the presented algorithms scale well, when moving from

the evolution of a 4 bits parity generator, to the evolution of an 8 bits parity

generator. Doubling the input data-path of the component that is evolving,

it doubles the amount of generations required to reach the best solution.

For what concerns task as evolving a parity generator, increasing the com-

plexity leads to a linar increasing in the number of generations required.

Scalability leads to issues only with reduced population size. Difficulties

of SGA to handle more complex problems, with reduced populations has

already been highlighted. In that cases it is not possible to say that the al-

gorithm scales well. Problems rise evolving multi-outputs functions. While

evolving the counter, success are achieved only thanks to the usage of a

large population of 256 individuals, and not always. To evolve such multi-

output complex components, it would probably require to modify the fixed

CHAPTER 5. EXTRINSIC EVOLUTION ANALYSIS 86

structure of the connections among cells designing a new individual, but

that goes beyond the goals of this thesis work. The analysis conduced with

the framework has allowed to identify the behaviour of the algorithms in

function of the characterization parameters. Such knowledge achieved has

been used to design the complete Evolvable Hardware system described in

the Chapter 6.

Chapter 6

The System-on-Chip

Implementation

In this Chapter, the implemented efficient hardware-based Complete

Evolvable Hardware (EHW) system is described. That has been developed

to evolve real hardware components. The first section will introduce the

System-on-Chip (SoC) architecture, at high level first, identifying which are

its main parts. The second section will deal with the problem of the fitness

computation, describing how to speed-up such process with an hardware-

based implementation. In the third section, the motivation behind the de-

sign choices, taken while implementing the hardware-based Genetic Algorithm,

are explained. They are based on the results of the extrinsic evolution pre-

sented in Chapter 4. The fourth section will present the implementation of

the hardware-based Compact Genetic Algorithm (CGA) used in this sys-

tem. The fifth section will focus on how a Random Number Generator has

been implemented, to provide random values to the Genetic Algorithm.

The sixth section describes the software application that manages the input-

output operations and the deployment of the individuals. The last section

shows the Complete architecture deployed on the FPGA.

87

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 88

6.1 The System-on-Chip Architecture

The SoC architecture can be divided into three main parts:

• Dynamic Part, The Evolvable Hardware (EHW). It implements the in-

dividuals, one or more. This component will change at runtime the

functionality that its EHW modules implement.

• Static Part. It is composed by the base system, the processor PowerPC

PPC405, available on the board, the communication infrastructure,

the DDR-RAM, the Internal Configuration Access Port (ICAP) core

and the Evolutionary core. These elements are present on-board, or im-

plemented at design time, and no more modified.

• Software Part. It is the executable binary code, that runs on the PPC.

It just manages the execution performed by the hardware part.

The FPGA used is a Virtex 4 [67] XC4VFX12. It is one of the smallest

board available, so it will be important to be able to design an architecture

that scales well with the size of the FPGA and that is not too expensive

in terms of area. The area requirement is a mayor issue to be addressed,

especially in the prospective to implement more complex EHW systems on

larger FPGAs.

The Evolvable Hardware module, the Evolution module and the Software

Application will be presented in the next sections. First the basic architecture

will be introduced.

The overall architecture includes a series of predefined components:

the PPC405 processor, the central memory and the RS-232 [76], for the in-

put/output communications. The ICAP manager core has been added to

allow internal reconfiguration with bitstream manipulation. All these ele-

ments are connected to a PLB [77] bus.

The Complete evolution of hardware components can be seen as a se-

quence three main phases, which are repeated until the optimal solution

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 89

is achieved. While the number of the generations depends mainly on the

quality of the evolutionary strategy used, and on the size of the problem,

the time required by a single generation depends on how it is implemented.

6.1 shows the time required by a single generation. It is the sum of the time

required by the generation of the individuals (Gen), by their deployment

(Dep), and the time that fitness evaluation (Fev) takes. Fitness value is used

by the next generation phase to generate the new individuals.

Tg = Gen + Dep + Fev (6.1)

To implement real hardware components it is necessary to speed-up

these three phases as much as possible, budgeting well how many hard-

ware resources to dedicate to a phase or to an other. To implement all

the generated individuals makes also possible a parallel hardware-based

fitness evaluation, faster than a software-based simulation. On the other

hand, increasing the problem size will increase considerably also the num-

ber of generations that are necessary to achieve the convergence to the op-

timal solution. It is not enough to optimize just the fitness computation, but

it is also necessary to focus on the overall system performance.

Figure 6.1 shows the overall architecture with its main components.

It consists in two main entities, one that evaluates the fitness of all the

individuals, while the other acts on the genotype and on the population

representation. This second part uses the results obtained from the test

cases to determine which individual has an higher fitness.

6.2 Individuals evaluation

Differently from what done with the software framework, the hardware

architecture implements in a certain region of the FPGA the individuals.

That makes available to the testing an hardware modules that implements

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 90

Figure 6.1: SoC EHW architecture

the individuals that must be evaluated. Figure 6.2 shows the testing mod-

ule for K individuals with an N bits data-path. Into a Block Random Ac-

cess Memory is stored the testing set. Every element of the set is a triplet

(I,O,D), each element of the triplet is a N bits word. The element I is the

input word for the individual to be evaluated. The word O is the expected

correct output. When the set has a small size, that do not need N bits to

be described, but less, it becomes useful the third word: D. It is the "don’t

care" array, it allows to specify that the values of some output bits are ir-

relevant. To build a parity generator, that need just to divide a set in two

class, one bit of output it is enough. The input word I is forwarded to all the

K elements implemented on the device which, thanks to the parallelism of

the hardware, after 4 clock cycles returns K output words. Comparing the

results obtained from the logic OR between the result and the D word and

the logic OR between the expected result and the D word allows to deter-

mine if the behaviour of the EHW module is correct or not. This, for all the

K EHW modules which are under testing. The results are stored into an

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 91

Figure 6.2: The testing module

accumulator for all the tests that are executed. It is important to notice that,

with a N bits data path, there can be at most 2N tests. As already described,

the considered individuals that are evolved have a data-path of 8 bits. The

number K, of EHW individuals to be evaluated in parallel, depends on the

evolutionary algorithm used and on the availability of area on the FPGA.

6.3 Hardware portability of Genetic Algorithms

Which Genetic Algorithm to implement it has been decided accord-

ing to the simulation results, obtained with the software framework. The

Genetic Algorithms have been considered, not only analyzing their con-

vergence rate, but also with focus on the expected resource requirements.

From the results obtained with the extrinsic evolution and from a first anal-

ysis of the considered Genetic Algorithms structure it is possible to make

the following considerations:

• Simple Genetic Algorithm (SGA) is not the best algorithm for an hard-

ware implementation. In Chapter 2 two hardware-based implementa-

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 92

tions, that use this algorithm, have been introduced. In both of them

there were issues concerning the area requirements and the popu-

lation management, although small populations and small chromo-

somes were used. The considered EHW application needs a chro-

mosome that is 1024 bits. It is 128 times more width than the chro-

mosome used by Kooner and others [2]. Such problem rises serious

scalability issues. Moreover, the algorithm to work at its best needs a

population colse to 100 individuals. This causes two main problems.

First, it would require a large amount of memory to store the entire

population. Second, if theoretically it is possible to test all the individ-

uals concurrently, practically it is not. It would require to dedicate to

the EHW more area than what is available. A reduction of the popu-

lation size may reduce the resources required by the implementation.

But, in that case, it has been shown that SGA has difficulties to con-

verge toward the optimal solution . Moreover, crossing-over remains

a critical operation for the implementation, because it needs to access

to two chromosomes at the same time. Access to memory is not par-

allel and neither it is possible to store two individuals in Flip-Flops. It

would require thousandths of slices only for them. The only solution

to this issue could be to have heavy time multiplexing.

• Messy Genetic Algorithm (MGA) provides significant improvements

to the performance of SGA. The convergence rate is higher. For what

concerns tests done in simulation, MGA has succeeded evolving a

parity generator with 8 bits, also with just 32 individuals instead of

100, but it fails if the number is further reduced to 16. The main limit

of this algoritm is the difficulty to make a parallel implementation of

the generation phase. The splice and cut approach suffers of the same

limits discussed about crossing over, but identification of Basic Blocks

requires more complex data structures. Differently from the case of

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 93

SGA, it is realistic to implement a Genetic Algorithm with a popula-

tion of 32 individuals on the device, but it is not certain that is the best

option. Another element to be considered is how the algorithm could

exploit hardware parallelism. In this case the implementation will be

not so different from those proposed in literature for the SGA, with

similar limits.

• Compact Genetic Algorithm (CGA) presents good performance in ex-

trinsic evolution, comparable to those of MGA, and no major issue

for an hardware implementation. As it has been shown by the imple-

mentation proposed in literature [78]. Memory requirement are much

reduced, and the amount of memory used depends on the precision

of the number into the Probabilistic Vector, which length is fixed. The

number of individuals that have to be implemented and evaluated

for each generation is two, and two individuals can be deployed and

tested at the same time without too high area requirements. This al-

lows to achieve an higher degree of freedom in hardware implemen-

tation. However, working with EHW and large chromosome would

require to use a more flexible implementation than those proposed

in literature for CGA. That allows to makes a good tradeoff between

resources available and parallelism achievable.

• Extended Compact Genetic Algorithm (ECGA) presents major issues

also implemented in software. The number of generations required is

comparable those of others Genetic Algorithms, but the management

of the Marginal Product Model is an extremely expensive operation.

In this case is neither guarantee that the individuals generation phase

depends linearly from the number of individuals in the population

and the chromosome size. Therefore, it is possible to conclude that

this algoritm is not the best solution for an hardware implementation.

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 94

These considerations led to choose for the implementation the Com-

pact Genetic Algorithm. It seems to have the best ratio between hardware

requirements and performance achievable. It allows to decide how much

memory to dedicate to the Genetic Algorithm with less constraints. The

availability of memory impacts only on the precision of the number in the

Probabilistic Vector.

6.4 New Hardware-based Compact Genetic Algorithm

There is already an hardware-based Compact Genetic Algorithm pro-

posed in literature [37], but the implementation proposed in this thesis has

substantial differences. The architecture presented in literature is based on

a series of blocks each aimed to generate a single bit of the chromosome and

to update the probabilistic value that drive the generation of that bit. Hav-

ing a chromosome of 1024 bits and limited area availability makes impos-

sible to replicate the same approach just putting 1024 blocks. It is necessary

to have a more scalable implementation. Figure 6.3 shows the phases of the

algorithm. The only phase that requires to have access to the whole indi-

vidual is the fitness evaluation (Fev), which has already been described,

since it does not depend on the algorithm. All the other parts can work on

the whole genotype, or on some chunks of arbitrary length. The genotype

can be divided in two, four or eight parts, and the hardware modules could

work in parallel on all them. For reasons of simplicity, an implementation

that uses just one chunk on length 1024 will be now presented. After it will

be described some small adaptation of the implemented hardware mod-

ules to work with multiple chunks, increasing parallelism, since multiple

hardware modules can work concurrently.

Figure 6.4 shows the structure of the implemented CGA. The different

hardware modules implement the main functionalities that corresponds to

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 95

Figure 6.3: Phases of the hardware-based CGA

those shown in figure 6.3. The fitness computation has been described pre-

senting the individuals evaluation. In the next sections the hardware mod-

ules that implement the generation phase and the update phase will be

described. First a brief description of the hardware core initialization will

be done.

6.4.1 Initialization

The first phase is the initialization. First the pseudo Random Number

Generator are initialized with a random seed. RNGs will be discussed in

details later. Then all the values of the Probabilistic Vector, stored in BRAM,

are initialized to 0.5. It has been decided to use 16 bits of precision. The

memory that stores the PV has 1024 elements of 16 bits each. Such memory

is accessible through an address of 10 bits.

6.4.2 Generation phase

The next phase is the generation (gen). Such operation is parallel, sine

two individuals are generated cuncurrently by the same hardware module.

Two memory blocks are used, each of them contains 32 values of 32 bits

each. Each BRAM stores a chromosome of 1024 bits. The generation is done

using a component called LUTFG generator, it generates two sequences of

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 96

Figure 6.4: Implementation of the hardware CGA

32 bits each. One belonging to a chromosome, one to the other. 32 bits are

exactly the representation of the content of the LUTF and LUTG of one

evolvable cell.

Figure 6.5 shows in a schematic way how the two chromosome are gen-

erated with the LUTFG hardware module. The part a of the Figure focuses

on the complete generation of the chromosome. That is done gathering all

the genes of the cells from the LUTFG, while the part b describes internal

details of that component. The Generator procedes iteratively for 32 times

filling the buffer that contains the genes. It acts simultaneously on two indi-

viduals, having two Random Number Generators. Once the enable signal

(en) is set to 1, it procedes through a series of step:

1. Initialize the counter (count) to 00000.

2. Read the input (value) from memory.

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 97

Figure 6.5: Generation phase

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 98

3. Each Random Number Generator (RNG) generates a 16 bits random

number.

4. Compare the values from the RNGs to that one from input. An RNG

returns 1 if the value from RNG is smaller than that from input.

5. Write the result of the comparison in the buffer array.

6. If counter is smaller than 11111 increment the counter by 1 and repeat

from step 2.

7. Set the Ready signal to 1, to notify that the execution is completed and

output is available. When en is set to 0 it resets and waits for a new

executions.

For the generation of the whole chromosome, the same approach used

inside the cell generator is used on larger scale. If there is only one gener-

ator, it must be used 32 times to generate all the 32 cells of the two indi-

viduals. A memory pointer (MemPTR) store the address of the cell that is

currently being generated. It constraints a LUTFG Generator to access only

to the portion of the Probabilistic Vector that contains value referred to a

certain cell. Memory pointer also addresses what element in the chromo-

some is going to be written. Incrementing the memory pointer allows to

generate the next cell changing the portion of memory which the LUTFG

Generator can access to.

After to have generated the two individuals, the next phase is their

deployment. In the hardware GAs presented in chapter 2.1 there was no

deployment of EHW individuals, but directly fitness evaluation. In EHW

case, it is necessary to stall the execution of the hardware-based GA to

deploy the Evolvable component. The hardware module goes into WREC

state, it waits for the individuals deployment. In this phase the multiplex-

ers, that control the access to the core memories, connect them to externally

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 99

accessible registers. That allows the software application to read the two

chromosomes, to generate the partial bitstreams and to send them to the

ICAP. When the two individuals are completely deployed the application

notify it to the hardware CGA core through a control register and the sys-

tem procedes to the next step.

The core uses the testing module already described, implemented with

two EHW individuals. When it complete its execution the fitness of the two

individuals is gathered. The two fitness values are compared to determine

the one with the highest score which is the winner.

6.4.3 Update phase

The next phase is the update of the memory. The values of the PV need

to be increased or decreased according to the results obtained from the test-

ing. The update is a parallel operation over all the element of the Proba-

bilistic Vector, but parallelism is limited by the BRAM accessibility. Using

only one memory for the Probabilistic Vector, and one for each chromo-

some, just an update for each iteration can be done. Such operations are

performed by two Finite State Automatas (FSAs). The first has two states

called READONE and UPDATE. When the Finite State Automata is in the

first state memories are in read mode. The FSA iterates over all the genes of

the chromosome chunk considered. For a given gene, when the FSA is in

the first state, three values are red from memory and stored in buffers: the

actual value of the PV for that gene, the gene value in the first chromosome

(0) and the gene value in the second one (1). When values are red, the FSA

switches to the second state. It implements a sequence of 4 micro phases,

each of them lasts one clock cycle:

1. Set The Address (STA) phase. The value taken from the Probabilistic

Vector is forwarded as input to an addsub module, which receives as

a second input the update step size. In STA phase the core need to set

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 100

the two control bits of the addsub module. First is determined if the

operation to be done is a sum or a subtraction, and an add flag is set.

Then it is determined if to enable or not the execution of the memory

update. The update is executed only if the current probabilistic value

is within a certain margin. That prevents not only overflow, but it

also avoids the value to converge to 1 or 0 prematurely, maintaining

in this way a certain probability of mutation. Exactly as it has been

done in the framework with the software-based implementation of

the algorithm. In the next clock cycle, the FSA switches to ne next

state.

2. Read From Adder (RFA) phase. The result obtained from the addsub

module is taken and the enable bit is set to 0.

3. Write (WRT). It set the write bit of the population memory to one.

4. Complete (CMP). It waits that the memory write is completed. After

that it is possible to execute a new READONE, processing the next

element.

Figure 6.6 shows the sequence of the operations in the case in which

the update operation is executed. Once the update of all the genes in the

considered chunk of memory is done, the iteration is completed and a new

generation is the next step.

Further parallelism can be easy achieved splitting the Probabilistic Vector

and the chromosomes on more BRAMs and replicating the hardware mod-

ules that execute the generation of the individuals and the update of the Prob-

abilistic Vector. Figure 6.7 shows the schema of an high parallelism version

of the proposed hardware-based Compact Genetic Algorithm, with multi-

ple hardware modules that operates concurrently. However, that architec-

ture has not been implemented, since there is lack of resources availabil-

ity and no possibility to introduce parallelism in deployment, which is the

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 101

Figure 6.6: Update phase

most complex operation of the considered system.

6.5 Additional features

To the hardware-based implementation of the CGA a series of addi-

tional features has been added. They are: the possibility to introduce Elitism

and the possibility to introduce an additional Mutation. Such features can

be used or not, depending on the characteristics of the problem to be ad-

dressed.

6.5.1 Elitism

Despite its performance in the analyzed case studies have shown no

real improvement, it has been decided to implement also the possibility to

introduce elitism because it is extremely easy and requires flew hardware

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 102

Figure 6.7: High parallelism architecture

resources. It has been added the possibility for the user to set an elitism flag

to one, to introduce elitism. The implementation of this feature is based

on a small modification of the generation phase. The only difference from

the base implementation is that, when elitism is enabled, the generation

module is prevented from writing the memory that contains the winner

chromosome.

Elitism can be enabled and disabled at runtime, without further modi-

fications persistent elitism and non persisted elitism [74] are available both.

6.5.2 Additional Mutation

To step out from local maxima and to increase the probability to find the

global maximum another mechanism has been introduced: additional mu-

tation. In the implemented Compact Genetic Algorithm is already embed-

ded an uniform probability mutation mechanism with a single-gene gran-

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 103

ularity. The level of such mutation, defined by the threshold d, needs to be

large to reduce the risk of stalling in local maxima, but at the same time

small enough to do not generate too noisy chromosomes. These two goals

are in contrast, for this reason it has been introduced an additional muta-

tion to step out from local maxima. The single-gene mutation is kept small

to avoid noisy chromosomes, that are likely to be pruned by the high selec-

tion pressure threshold. The additional mutation introduces, with an uni-

form probability, a mutation over a whole LUT, so 16 contiguous bits in the

chromosome. In this way, it is possible to have a large mutation but without

noisy effects on the chromosomes. The probability of this 16-genes-size can

be defined, by the user, according to the characteristics of the problem to be

solved. The time require by the introduction of the additional mutation is

extremely reduced since the population-led chromosome and the random

mutated chromosome can be generated in parallel.

6.6 Random Numbers Generation

To provide random numbers to the hardware-based Genetic Algorithm,

an Hybrid Random Number Generator [79] has been implemented. It gen-

erates predetermined highly uncorrelated sequences, depending on an ini-

tial seed.

Figure 6.8 shows a black box image of a Random Number Generator.

The first bit of the control signal is the REQUEST bit, when an edge rises the

core starts to generate the next random number. The second bit of the con-

trol signal is the REINIT bit, it forces the core to reset its internal state and

load a new seed into its memory. Two outputs bit describe the internal state.

The first is used to notify when the random number is ready; while the sec-

ond bit is 1 when the system is available, 0 otherwise. There are two cases

in which the core can be unavailable: when a request is being processed

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 104

Figure 6.8: Random Numbers Generator, black box model

or when it is reading a new seed value. The Random Number Generator

consists in a noise bit generator that fills an output buffer register. The size

of the output buffer depends from the size of the output. The implemented

evolvable algorithm uses 8 bits random number, so the output size is set to

8. Every noise bit generator requires a 32 bit seed and generate one noise

bit for each clock cycle. Using just one noise bit generator, it takes N clock

cycles to generate a N bits output number. The Pseudo Noise [79] genera-

tor has been implemented using Linear Feedback Shift Registers (LFSRs),

as described in the Xilinx applicative guide [38]. This because a Virtex 4

LUTs can be configured as a 16 bits Shift Register. It makes such approach

an extremely efficient implementation for area consumption and required

clock period.

Figure 6.9 shows an example of the structure that a Linear Feedback

Shift Register (LFSR) based noise generator could have. The LFSR has a se-

quence of 2N -1 states, given a 16 bit initial seed, it can generate a sequence

of up to 65535 random bits before to loop back and restart with the very

same sequence. At each clock cycle, the content of the registers is shifted

right by one position and the left most register is set to a value that de-

pends from the feedback of some intermediate stages. All the implemented

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 105

Figure 6.9: LFSR noise bit generator

LFSRs have the following characterization.

• The Number of stages is set to 16

• The Number of taps in the feedback path is set to two or four. There are

two different categories of nose bit generator.

• The Position of the taps: It’s 6-0 for the 2-taps LFSRs and 9-5-4-0 for the

4-taps ones.

• The initial seed must be provided.

Following the Xilinx recommendations, the last output, the tap 0, is al-

ways connected to the last XOR, in the case of the 4-taps LFSR there are

three xor. To achieve better correlation properties, for the Random Noise

bit used by the Random Number Generator two different LFSRs, one 2-taps

and one 4-taps, have been used. That’s why the RNG needs a 32 bits seed,

it have to initialize two different 16 bits LFSRs. How the Random Noise bit

is derived from the two LFSRs is stated by the 6.2, where lfsr_i is a 2-taps

LFSR and lfsr_q is a 4-taps LFSR. The former is initialized with the first less

significant 16 bits of the seed sequence while the latter with the remaining

16 most significant bits.

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 106

Table 6.1: Random number sequence properties

value

Mean 307.2

Max 32767

Min -32768

Bias 0.93%

noiseBit = lfsri ⊕ lfsrq (6.2)

The XOR between the two signal is introduced with the purpose to re-

duce the possibility to have biases into the sequence of noise bits. A 16

bits Random Number Generator has been used to generate a sequence of

2000 random numbers that has been analyzed with MatLab in order to de-

termine its quality. Let us call S the sequence obtained considering 2000

numbers of eight bits length each, encoded as signed number. All numbers

n that belong to S are in the interval [-32768,+32767]. As is possibile to see

in 6.1, from the results obtained by an early analysis, that the sequence has

just a small bias of 1%.

However, this is not enough to say that S is a random sequence, but

this can be done using the Matlab function runstest(S). This function per-

form a test of the hypotheses H0, that the number in S come in random

order, against the alternative H1, that they do not. The test should return

H1 if reject the null hypotheses with a significance level of 5%, H0 other-

wise. Running the test on the sequence S, it returns H0, so the hypotheses

that numbers in the sequence are random is accepted. The analysis of Auto-

Correlation function, which results are shown in Figure 6.10, gives confir-

mation of this result.

The Auto-Correlation is the partial cross correlation of a signal with

itself. It aims to identify repeated patterns. As it is possible to see from

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 107

Figure 6.10: Partial autocorrelation, computed with Matlab

Figure 6.10 the correlation is maximum with lag 0, because the sequence is

obviously identical to itself but besides that the correlation level is always

extremely low, so we can conclude that there are no repeated patterns.

6.7 Input-outputs operations and individuals deploy-

ment

The last part of the evolvable architecture to be analyzed is the software

application that runs on the PowerPC. Since the algorithm is hardware im-

plemented, it has just two simple taks to perform.

• Manage the overall flow

• Connect the evolutionary core with the ICAP for the deployment.

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 108

For what concerns the overall workflow, first the application sets the

update step, then the command to start the execution initializes the random

number generators. At this point the application starts to execute the main

loop. It repeats a sequence of operations until an individual with the best

fitness is obtained. The execution can be described with the following steps:

1. The core is initialized, then the execution starts.

2. The application reads the two chromosome from the evolutionary

core. The driver procedure that reads these elements is blocking. Ex-

ecution does not procede until they are not available.

3. Partial bitstreams are builded and two individuals are deployed.

4. Once deployment is completed, that is notified to the evolutionary

core, which procedes with the testing.

5. The application reads back the two fitness values. This is an other

blocking operation for the software. Fitness is returned when is avail-

able, in the while the application waits.

6. If fitness is below the target value, the execution goes back to step

two, else the it is completed.

Optionally, other functions provided by the evolutionary core driver can

be called. When the core is waiting for the individual deployment, it is

possible to:

• Reset the Random Number Generator, initializing them with a differ-

ent seed.

• Gather some debug information, about the internal state of the core.

• Read the Probabilistic Vector content. It may be useful to implement

an adaptive behavior, that modifies the update step or some the op-

tion following the convergence of the memory.

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 109

• Read, not only the fitness value, but also the results of the two EHW

modules in each test case. It has been added a register to the testing

unit to keep trace of the results.

6.8 The Complete Architecture Deployed

Figure 6.11 shows a view of the implemented architecture obtained with

FPGA Editor. It is possible to see two red box on top right. They label the

two EHW modules implemented for the individuals testing. Such architec-

ture, implemented with one LUTFG Generator, requires up to 90% of the

slices available on the FPGA. The yellow box identifies the static part of

the evolvable architecture with the hardware-based Compact Genetic Al-

gorithm and the communication infrastructure. The blue box identifies the

onboard PowerPC used to run the application that manage the hardware-

based evolution.

In this chapter the proposed EHW system has been described in de-

tails. The clock frequency of the implemented architecture has been set to

100 MHz, which is the highest affordable. In that condition, the architec-

ture is able to run between 226 and 247 binary generations for second, the

performance variance depends on the number of tests to be executed for

each fitness evaluation. In the next chapter performance will be analyzed

in details, presenting some case studies and comparing the results with Ex-

trinsics and Intrinsics software-based executions of the Compact Genetic

Algorithm.

CHAPTER 6. THE SYSTEM-ON-CHIP IMPLEMENTATION 110

Figure 6.11: Architecture implemented, FPGA Editor view

Chapter 7

Performance Analysis

In this chapter, the performance obtained with the implemented Com-

plete Evolvable Hardware System, described in the previous Chapter, are

analyzed in details. The first section introduces the case studies and de-

scribes the rational behind them. The second section describes the tuning

of the algorithm and the results obtained in the different case studies. The

third section compares the results obtained with the Complete EHW sys-

tem with the results that it is possible to obtain with an Extrinsic and an

Intrinsic system, with a software-based execution of the considered Ge-

netic Algorithm. The last two sections of this chapter focus on possible fu-

ture works and discuss the capability of the implemented hardware-based

Genetic Algorithm independently from evolvable hardware. Average data

that is presented in the next sections refer to the mean value of 10 iterations,

when not specified differently.

7.1 Introduction to the case studies

The aim of this Chapter is to show the performance of the hardware-

based implementation of the Genetic Algorithm with respect to an Extrinsic

or an Intrinsic software-based execution. The case study presented will be

111

CHAPTER 7. PERFORMANCE ANALYSIS 112

the same that in the early evaluation of the Genetic Algorithms, done with

software framework allowed to evolve successfully the component. The

focus is on a single output function with a variable number of inputs.

7.2 Parity generator evolution

The task used to evaluate the system performance is the creation of a

parity generator [80]. That is a component which implements a function

that associate an input represented by an arbitrary number of bits, within

the data-path width, to one output bit. The value of the output bit is 1, if

the number of input bits set to one is odd, else it is 7.1 states such definition

in a more formal way.

parity = count(input == 1)%2 (7.1)

It has been decided to use the evolution of this component as first bench-

mark of the evolvable system, because it is a not complex function, it has

one output and allows to decide arbitrary the input to be considered, within

the range allowed by the component data-path.

With the considered Evolvable Component, it is possible to run tests

from 1 bit of input to 8 bits of input, non-relevant input bits are just set to 0.

Being only one of the output bit relevants for the output value, the others

will not be considered for the fitness computation. For them, the "don’t care"

value in the testing memory is set to one. Only parity generators between

4 bits of inputs and 8 bits of input have been evolved, with less than 4 bits

the evolution would be trivial and meaningless, while 8 is the max data-

path width of the considered evolvable hardware component. The 4 bits

parity generator is simple but not trivial, the 8 bits parity generator is the

most complex that is possible to evolve. The other cases with 5, 6 and 7 are

useful to see how the performance change changing the complexity of the

target component and the number of test to be done. To compute the fitness

CHAPTER 7. PERFORMANCE ANALYSIS 113

of a candidate parity generator with N bits of input requires to run 2 n test

cases. If the 4 bits parity generator evolution requires to run just 16 tests for

each fitness evaluation, the 8 bits parity generator requires to run 256 test.

7.2.1 Optimal tuning

Before to be able to evaluate the performance of the architecture, the

characterization parameters of the hardware-based Compact Genetic Al-

gorithm need to be tuned. Running a series of test, it has been determined

that the optimal step size is 1.57%, for all the case studies. According to

the theory on CGAs [15] , that defines the step size as 1/N, where N is the

population size; the identified optimal step size refers to a simulated popu-

lation of 64 individuals. Such population size is what has been found to be

an optimal population size for the largest part of the cases, in the prelimi-

nary analysis of the Genetic Algorithms. The proper value for the mutation

threshold has been found to be 3%, exactly as for the software-based exe-

cution of the CGA.

7.2.2 4 bits input function

The evolution of a 4 bits parity generator is completed successfully, on

average, after 4437 generations, and 22 seconds of execution. The best evo-

lution completed the execution after 3487 generations, while the worst after

6157 generations. Figure 7.1 shows the best performing evolution of a 4 bits

parity generator. The blue line shows the fitness of the best ever generated,

while the red line identifies the fitness value of a random individual sam-

pled with period of 50 generations.

In the case of the 4 bits parity generator the task is still really simple,

with flew generations is possible to obtain an high fitness individual, over

80%.

CHAPTER 7. PERFORMANCE ANALYSIS 114

Figure 7.1: Hardware-based CGA evolution 4 bits

7.2.3 5 bits input function

The evolution of a 5 bits parity generator is a slightly more complex

taks. On average it is completed successfully after 5772 generations and it

requires 25 seconds of execution. The best execution, that is shown in Fig-

ure 7.2, completes after 5153 generations, while the worst after 6352. Figure

7.2 shows the blue line that refers to the best solution achieved, and the red

line that identifies individuals randomly sampled at every 50 generation.

Differently from the case of the 4 bits parity generator, here it becomes pos-

sible to see better how updating the Probabilistic Vector allows not only

to evolve an individual with the best fitness but increases slowly also the

average fitness of the individuals that are generated.

CHAPTER 7. PERFORMANCE ANALYSIS 115

Figure 7.2: Hardware-based CGA evolution 5 bits

Figure 7.3: Hardware-based CGA evolution 6 bits

CHAPTER 7. PERFORMANCE ANALYSIS 116

Figure 7.4: Hardware-based CGA evolution 7 bits

7.2.4 6 bits input function

The evolution of a 6 bits parity generator is completed successfully, on

average, after 6351 generations and 30 seconds. The best result obtained is

successful evolution in 5714 generations, such result is shown in Figure 7.3,

while the worst execution completed the evolution in 8431 generations.

7.2.5 7 bits input function

The evolution of a 7 bits parity generator is completed successfully, on

average, after 7921 generations and 34 seconds. The best result obtained is

successful evolution in 6547 generations, such result is shown in Figure 7.4,

while the worst execution completed the evolution in 9848 generations.

CHAPTER 7. PERFORMANCE ANALYSIS 117

Figure 7.5: Hardware-based CGA evolution 8 bits

7.2.6 8 bits input function

The evolution of a 8 bits parity generator is completed successfully, on

average, after 9112 generations and 39 seconds. The best result obtained is

successful evolution in 7221 generations, such result is shown in Figure 7.5,

while the worst execution completed the evolution in 11506 generations.

7.2.7 Results summary

Table 7.1 shows the experimental results obtained with the architecture

described when evolving some parity generators with 4,5,6,7 and 8 bits. As

it is possibile to see the evolution has been successful in all the cases.

Figure 7.6 shows all the evolutions plotted on the same graph.

CHAPTER 7. PERFORMANCE ANALYSIS 118

Table 7.1: Hardware-base CGA performance summary

Parity bits N. Gens: avg N. Gens: best N. Gens: worst fitness

4 4437 3875 4955 100%

5 5772 5153 6532 100%

6 6351 5714 8471 100%

7 7921 6547 9848 100%

8 9112 7221 11506 100%

Figure 7.6: Hardware-based CGA evolution

CHAPTER 7. PERFORMANCE ANALYSIS 119

Table 7.2: CGA, hardware-based and software-based comparison

Parity bits Software N° of Gen. Hardware N° of Gen.

4 3852 4437

5 5502 5772

6 6932 6351

7 8387 7921

8 6888 9112

7.3 Extrinsic, Intrinsic and Complete evolution com-

parison

Table 7.2 shows the comparison between the number of generations re-

quired by the hardware-based CGA implemented in the architecture and

the software-based CGA implemented in the simulation framework. As ex-

pected, they are almost the same. More interesting is the analysis of the time

performance.

To highlight the validity of the proposed approach and the performance

of the architecture implemented, it has been conducted also a comparative

analysis of the performance that is possible to obtain from Extrinsic, Intrin-

sic and Complete evolution. That has been done comparing the time perfor-

mance measured with the Complete evolvable hardware architecture with

the time performance measured performing Extrinsic Evolution with the

software-based simulation framework and the same algorithm. The Extrin-

sic Evolution is executed on a workstation with an Intel Core 2 Duo 2.2 ghz

and 4 gb of RAM. The performance of the Intrinsic system are not mea-

sured but estimated, considering that the hardware-based CGA runs 16.5

times faster than the software-based version on the onboard PPC405. De-

ployment and Fitness Evaluation in the Complete system and in the Intrin-

CHAPTER 7. PERFORMANCE ANALYSIS 120

Figure 7.7: Comparison between Extrinsic, Intrinsic and Complete evolution results

sic System are done in the same way by the same components.

The graph in Figure 7.7 shows the comparison between the performance

obtained with Extrinsic, Intrinsic and Complete systems. It is a semi-logarithmic

graph, to better highlight de difference between the three curves, despite

the different order of magnitude between the Intrinsic and the Complete

performance. It is possible to see that, in the considered interval, the time

complexity of the Intrinsic Evolution and the Complete evolution can be

approximated with a polynomial curve, while the Extrinsic Evolution com-

plexity is much more high. It is exponential according to the data-path size,

since the number of tests to be executed grow exponentially. Theoretically,

also in Intrinsic and Complete evolution the number of tests to be done

grows exponentially, but such operation is executed with high hardware

CHAPTER 7. PERFORMANCE ANALYSIS 121

acceleration.

While de difference between Intrinsic and Complete evolution depends

just on the speed-up achievable with the hardware acceleration of the Ge-

netic Algorithm, the Figure 7.8 focuses on the difference between Extrin-

sic and Complete evolution. There it is possible to see clearly the different

shape between the two curves, that one representing the Extrinsic evolu-

tion and that one representing the Complete evolution. For simple cases,

where the numbers of tests to be done to compute the fitness is small, the

computation power of the workstation used overtakes limits concerning

the simulation of the component. But when just 256 tests need to be done,

the Complete EHW system results to be faster than the Extrinsic system.

On average, it complete the execution in 39 seconds, while the workstation

requires 51.

In the case of the 8 input bits function the achieved speed-up with

respect to the software workstation is 1.3x, and is expected to be greater

evolving larger components.

7.4 Future Works

Once implemented a working efficient architecture, the next step is to

try to expand its capability, partially this has already been done. In par-

ticular a series of problems need to be addressed to improve further the

performance and to deal with always more complex task:

1. The current EHW module does not support functional decomposi-

tion, but it may help a lot to increase convergence rate, by reducing a

complex problem to a series of smaller ones.

2. Larger and more recent FPGAs, like Xilinx Virtex 5, can allow better

implementations, that exploit higher parallelism. Moreover, Virtex 5

CHAPTER 7. PERFORMANCE ANALYSIS 122

Figure 7.8: Comparison between Extrinsic and Complete evolution results

CHAPTER 7. PERFORMANCE ANALYSIS 123

has Look-Up-Tables with 6 inputs instead of 4, that gives to LUTs

higher expressivity.

3. Random Number Generation can be improved as well ,with ad-hoc

studies, since it has been identified as a potential critical aspect.

7.5 Not Only Evolvable Hardware

For what concerns the Genetic Algorithm implemented, Hardware-based

Genetic Algorithms proposed in literature work with chromosome of 8

[23], 10 [1] or 32 [39] bits. The implemented hardware-based Compact Ge-

netic Algorithm uses chromosomes up to 16384 bits, because the Evolvable

Hardware requires such large genotypes. The consideration done analyz-

ing the Extrinsic evolution and the Genetic Algorithms allowed to imple-

ment a working Complete evolvable system able to solve complex tasks,

as evolving real hardware components. Figure 7.9 shows the implemented

hardware Genetic Algorithm, not evolving an hardware component but

solving another problem, OneMax [81] with 16384 bits. That is a sample

execution with no particular tuning, but it shows that the algorithm can be

used also to address other problems, besides EHW. It become useful when-

ever a fitness evaluation could benefit from an hardware acceleration, as

the GA.

In this chapter, the experimental results obtained have been presented

to show the capability and the performance of the implemented Complete

Evolvable Hardware architecture. In Chapter 8 some further theoretical

considerations will be done to better highlight the efficiency of the Com-

plete approach to Evolvable Hardware.

CHAPTER 7. PERFORMANCE ANALYSIS 124

Figure 7.9: The implemented CGA solving 16384 bits OneMax problem

Chapter 8

Conclusions

The conclusions of this thesis are illustrated in this chapter. In the first

Section, the results achieved with the systems implemented are presented

to highlight the efficiency of the Complete Evolvable Hardware architec-

ture developed. In the second sections, preliminary results obtained by fur-

ther experiments with a larger Evolvable Component are briefly proposed.

The third section summarizes some concluding remarks.

8.1 Results Achieved

In the introduction, the three main issues of Evolvable Hardware (EHW)

have been presented: Scalability, Fitness Evaluation Complexity and Behavioural

and Structural Analysis capability. It has been argued that Fitness Evaluation

Complexity slowdowns the performance of Extrinsic Evolvable Systems

and such limit is overcome in Intrinsic Systems, thanks to an hardware im-

plementation of the individual. But Intrinsic system are bottlenecked by

multidevice communication, or less efficient for what concerns the execu-

tion of the Genetic Algorithm if it runs on an embedded architecture. The

proposed Complete Evolvable Hardware System, based on a System-on-

Chip architecture address all these issues and it results to be more efficient

125

CHAPTER 8. CONCLUSIONS 126

than Extrinsic or Intrinsic Implementation, especially for the evolution of

large components. The next subsection analyze characteristics and the per-

formance to prove the validity of the proposed System.

8.1.1 Extrinsic Evolution System

The considered Extrinsic Evolvable System is that one implemented

with the software framework and executed on an Intel Core2Duo at 2.20

GHz. It has been able to evolve successfully parity generators with 4 and

8 bits of inputs. It has shown limits evolving multi-outputs function that

likely depends on the structure of the evolvable component. But for what

concerns the performance, results obtained show the exponential growth

of time required by the evolution, due to the lack of efficiency of the ap-

proach based on a simulation of the hardware components. The Extrinsic

approach results to be not suitable for the implementation of real hardware

components, when the data path size increases. Moreover it is necessary

to consider that, whenever the goal is to have an autonomous evolvable

system Extrinsic evolution cannot be used.

8.1.2 Intrinsic Evolution System

The considered Intrinsic system is an embedded system that uses for

the deployment and testing of the individuals the same core used by the

Complete System, but uses a software-based implementation of the GA.

The limits identified in the Extrinsic System can be overcome by the Intrin-

sic system that implements the individuals and run the same Genetic Algo-

rithms on the onboard PPC405. An high speed-up in the evaluation phase

makes the system more scalable, but there is no global speed-up since the

execution of the Genetic operators become more slow.

Considering the case of the 8 bits parity generator, despite fitness com-

putation complexity, the Extrinsic Evolution with the software framework

CHAPTER 8. CONCLUSIONS 127

Figure 8.1: Evolution time with the implemented System

is still more than 10 times faster.

8.1.3 Proposed System

Thanks to an hardware-based implementation of the Genetic Algorithm,

the proposed SoC architecture of the Complete Evolution of hardware com-

ponents addresses all the three presented issues and can be more efficient

than Extrinsic and Intrinsic Systems. The Figure 8.1 shows the time perfor-

mance obtained evolving parity generators with 4,5,6,7 and 8 bits of input.

But interesting may be also to study what could happen with a larger data-

path.

Figure 8.2 highlights the efficiency of the Complete evolution with re-

spect to the Extrinsic Evolution. Since the evolvable component used has a

maximum data-path up to 8 bits, a lower bound of the performance cases

with more than 8 bits have been estimated considering a linear increase of

the number of generations required.

CHAPTER 8. CONCLUSIONS 128

Figure 8.2: Estimation of larger system performance

8.2 Further Experiments

Unfortunately to evolve components with a larger data path do not re-

quire just to execute more tests to evaluate the fitness, but it requires to

have a more complex evolvable component with a larger genotype. Some

experiments has been conducted on an architecture with a data path up to

32 bits.

Figure 8.3 shows such larger evolvable component. It is composed of 16

8-bits-datapath components. Its genotype is 16 times larger than that one

of the small system.

The only component that has been evolved with this architecture, to

shows validity of the proposed implementation, is an 8 bits parity gen-

erator. Figure 8.4 shows the result obtained in the evolution process. The

evolution is completed after 67900 and 1358s of execution (22 minutes).

A software-based implementation of the same algorithm, executed on the

CHAPTER 8. CONCLUSIONS 129

Figure 8.3: Extended Evolvable Component

Table 8.1: Summary of achieved performance

Architecture Algorithm Genotype tests generations time

Std CGA 1024bits 256 9112 39s

Ext CGA 16384bits 256 67900 1358 s

onboard PPC405, would require 50 times more time to complete. Such evo-

lution has been performed enabling High Selection Pressure and Additional

Mutation.

Table 8.1 shows the performance achieved with both the architectures

used and the hardware-based CGA.

To be able to evolve other more complex hardware component requires

to have an FPGA with more hardware resources, in order to have more

degree of freedom in implementing a Genetic Algorithm with a more pow-

erful search capability , able to accomplish much more complex tasks.

8.3 Concluding Remarks

The proposed Complete Evolvable Hardware System, addressing all

the EHW issues, allowed to evolve efficiently hardware components. In

CHAPTER 8. CONCLUSIONS 130

Figure 8.4: Evolution of an 8 bits parity generator, with the Extended Architecture

particular, Fitness Computation Complexity is handled with the parallel hardware-

based evaluation of the individuals. It has also been shown, in the sections

above, that the system Scales better than Extrinsic and Intrinsic Systems.

Behavioural and Structural Analysis of the evolved circuit can be done ex-

ploiting the software framework that allows to simulate the circuit.

Bibliography

[1] Stephen D. Scott, Ashok Samal, and Shared Seth. Hga: a hardware-

based genetic algorithm. In Proceedings of the 1995 ACM third inter-

national symposium on Field-programmable gate arrays, FPGA ’95, pages

53–59, New York, NY, USA, 1995. ACM.

[2] G. Kooner, Shawki Areibi, and Medhat Moussa. A genetic hardware

accelerator for vlsi circuit partitioning. International Journal of Comput-

ers and Their Applications, 12:163–280, July 2007.

[3] Davide Candiloro. Thesis: Management and analysis of bitstreams genera-

tors for Xilinx FPGAs. Politecnico di Milano, Italy, 2008.

[4] Fabio Cancare, Marco Castagna, Matteo Renesto, and Donatella Sci-

uto. A highly parallel fpga-based evolvable hardware architecture.

Workshop PARAFPGA, in Parallel Computing, Lyon France, Sept. 2009.

[5] David B. Fogel. Applying fogel and burgin’s ‘competitive goal-

seeking through evolutionary programming’ to coordination, trust,

and bargaining games, 2000.

[6] David B. Fogel. Evolutionary Computation: Toward a New Philosophy

of Machine Intelligence (IEEE Press Series on Computational Intelligence).

Wiley-IEEE Press, 2006.

131

[7] IEEE Intelligent Systems staff. Genetic programming. IEEE Intelligent

Systems, 15:74–84, May 2000.

[8] Peter J. Angeline. Evolutionary optimization versus particle swarm

optimization: Philosophy and performance differences. In Proceedings

of the 7th International Conference on Evolutionary Programming VII, EP

’98, pages 601–610, London, UK, 1998. Springer-Verlag.

[9] John H. Holland. Adaptation in natural and artificial systems. MIT Press,

Cambridge, MA, USA, 1992.

[10] Thomas Back, Frank Hoffmeister, and Hans paul Schwefel. A survey

of evolution strategies. In Proceedings of the Fourth International Confer-

ence on Genetic Algorithms, pages 2–9. Morgan Kaufmann, 1991.

[11] T. Kalganova C. Lambert and E. Stomeo. Fpga-based system for evolv-

able hardware. Transactions on Engineering, Computing and Technology,

2006.

[12] J. R. Reza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[13] Deb Goldberg and Krob. Messy genetic algorithms: motivation, anal-

ysis and first results. In Complex Systems, volume 3, pages 493–530,

1989.

[14] Fernando G-Lobo andGeorges R. Harik. Technical report:Extended Com-

pact Genetic Algorithm in C++. Illinois Genetic Algorithm Lab, 6 1999.

[15] D.E. Goldberg G.R. Harik, F.G. Lobo. The compact genetic algorithm.

Evolutionary Computation, IEEE Transactions, 3:287–297, 1999.

[16] Jim Torresen. An evolvable hardware tutorial. In In Proceedings of the

14th International Conference on Field Programmable Logic and Applica-

tions (FPL’2004, pages 821–830, 2004.

132

[17] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya.

Evolvable hardware with genetic learning. In Proceedings of Simulated

Adaptive behavior. MIT Press, 1992.

[18] M. Garvie and A. Thompson. Scrubbing away transients and jiggling

around the permanent: Long survival of FPGA systems through evo-

lutionary self-repair. In C. Metra, R. Leveugle, M. Nicolaidis, and J.P.

Teixeira, editors, Proc. 10th IEEE Intl. On-Line Testing Symposium, vol-

ume 2606 of LNCS, pages 155–160. IEEE Computer Society, 2004.

[19] Nicholas J. Macias. The pig paradigm: The design and use of a mas-

sively parallel fine grained self-reconfigurable infinitely scalable ar-

chitecture. In Proceedings of the 1st NASA/DOD workshop on Evolvable

Hardware, EH ’99, pages 175–, Washington, DC, USA, 1999. IEEE Com-

puter Society.

[20] Paul Layzell. A new research tool for intrinsic hardware evolution. In

Lecture Notes in Computer Science, pages 47–56. Springer-Verlag, 1998.

[21] Julian F. Miller and Keith Downing. Evolution in materio: Looking

beyond the silicon box. In Proceedings of the 2002 NASA/DoD Conference

on Evolvable Hardware (EH’02), EH ’02, pages 167–, Washington, DC,

USA, 2002. IEEE Computer Society.

[22] S. Harding and J. Miller. Evolution in materio: Looking beyond the

silicon box. In Evolution in materio: A tone discriminator in liquid crystal,

volume 2, pages 1800–1807, Washington, DC, USA, 2004. Proceedings

of the Congress on Evolutionary Computation 2004.

[23] Ricardo Zebulum, Didier Keymeulen, Raoul Tawel, Taher Daud, and

Anil Thakoor. Reconfigurable vlsi architectures for evolvable hard-

ware: from experimental field programmable transistor arrays to

133

evolution-oriented chips. IEEE Trans. Very Large Scale Integr. Syst.,

9:227–233, February 2001.

[24] Xilinx. ISE Design Suite Software Manuals and Help. Xilinx Corp., 20 10.

[25] Xilinx. Application Note: Two flows for partial reconfiguration: Module

based or difference based. Xilinx Corp., 9 2004.

[26] Peng Ke, Xin Nie, and Zhichao Cao. A generic architecture of com-

plete intrinsic evolvable digital circuits. In Proceedings of the 2010 3rd

International Symposium on Knowledge Acquisition and Modeling, KAM,

pages 379–382, Wuhan,China, 2010. IEEE Computer Society.

[27] P. Haddows and G. Tufte. Evolving a robot controller in hardware. In

Norwegian Computer Science Conference (NIK99), pages 141–150, 1999.

[28] Naveed Arshad. Automated dynamic reconfiguration using ai plan-

ning. In Proceedings of the 19th IEEE international conference on Auto-

mated software engineering, pages 402–405, Washington, DC, USA, 2004.

IEEE Computer Society.

[29] David E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1st edition, 1989.

[30] B. L. Miller and D. Goldberg. Technical report:Genetic Algorithm, Tour-

nament Selection and the Effect of Noise. Illinois Genetic Algorithm Lab,

1995.

[31] Dirk Thierens and David E. Goldberg. Mixing in genetic algorithms.

In Proceedings of the 5th International Conference on Genetic Algorithms,

pages 38–47, San Francisco, CA, USA, 1993. Morgan Kaufmann Pub-

lishers Inc.

134

[32] G. Harik. Linkage Learning via Probabilistic Modeling in the ECGA. Illi-

nois Genetic Algorithm Lab, 1999.

[33] J. Horn and N. Nafpliotis. Technical report:Multiobjective optimization

using the niched Pareto genetic algorithm. Illinois Genetic Algorithm Lab,

1993.

[34] N. Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using

nondominated sorting in genetic algorithms. Evol. Comput., 2:221–248,

September 1994.

[35] Kalyanmoy Deb and Tushar Goel. Controlled elitist non-dominated

sorting genetic algorithms for better convergence. In Proceedings of the

First International Conference on Evolutionary Multi-Criterion Optimiza-

tion, EMO ’01, pages 67–81, London, UK, 2001. Springer-Verlag.

[36] Maneeratana Kuntinee, Boonlong Kittipong, and Chaiyaratana Na-

chol. Co-operative co-evolutionary genetic algorithms for multi-

objective topology design. Computer-Aided Design & Applications,

2:437–496, 2005.

[37] Chatchawit Aporntewan and Prabhas Chongstitvatana. A hardware

implementation of the compact genetic algorithm. In IEEE Congress on

Evolutionary Computation, pages 624–629, 2001.

[38] Andy Miller and Micheal Gulotta. Application Note: PN Generators Us-

ing the SRL Macro. Xilinx Corp., 2004.

[39] Yutana Jewajinda and Prabhas Chongstitvatana. Fpga implementa-

tion of a cellular compact genetic algorithm. In Proceedings of the 2008

NASA/ESA Conference on Adaptive Hardware and Systems, pages 385–

390, Washington, DC, USA, 2008. IEEE Computer Society.

135

[40] E. Cantu-Paz. Efficient and accurate parallel genetic algorithms. Boston,

MA:Kluwer Academic Publisher, 2000.

[41] Tetsuya Higuchi, Tatsuya Niwa, Toshio Tanaka, Hitoshi Iba, Hugo

de Garis, and Tatsumi Furuya. Evolving hardware with genetic learn-

ing: a first step towards building a darwin machine. In Proceedings of

the second international conference on From animals to animats 2 : simula-

tion of adaptive behavior: simulation of adaptive behavior, pages 417–424,

Cambridge, MA, USA, 1993. MIT Press.

[42] Tetsuya Higuchi, Masaya Iwata, Isamu Kajitani, Hitoshi Iba, Yuji Hi-

rao, Tatsumi Furuya, and Bernard Manderick. Evolvable hardware

and its applications to pattern recognition and fault-tolerant systems.

In Papers from an international workshop on Towards Evolvable Hardware,

The Evolutionary Engineering Approach, pages 118–135, London, UK,

1996. Springer-Verlag.

[43] Tetsuya Higuchi, Hitoshi Iba, and Bernard Manderick. Massively par-

allel artificial intelligence. chapter Evolvable hardware, pages 398–

421. MIT Press, Cambridge, MA, USA, 1994.

[44] Xin Yao and Tetsuya Higuchi. Promises and challenges of evolvable

hardware. In Proceedings of the First International Conference on Evolv-

able Systems: From Biology to Hardware, pages 55–78, London, UK, 1996.

Springer-Verlag.

[45] Masaya Iwata, Isamu Kajitani, Hitoshi Yamada, Hitoshi Iba, and Tet-

suya Higuchi. A pattern recognition system using evolvable hard-

ware. In Proceedings of the 4th International Conference on Parallel Prob-

lem Solving from Nature, PPSN IV, pages 761–770, London, UK, 1996.

Springer-Verlag.

136

[46] Masahiro Murakawa, Shuji Yoshizawa, Isamu Kajitani, Tatsumi Fu-

ruya, Masaya Iwata, and Tetsuya Higuchi. Hardware evolution at

function level. In Proceedings of the 4th International Conference on Par-

allel Problem Solving from Nature, PPSN IV, pages 62–71, London, UK,

1996. Springer-Verlag.

[47] Julian Francis Miller and Simon L. Harding. Cartesian genetic pro-

gramming. In Proceedings of the 2008 GECCO conference companion

on Genetic and evolutionary computation, GECCO ’08, pages 2701–2726,

New York, NY, USA, 2008. ACM.

[48] Tatiana Kalganova. Bidirectional incremental evolution in extrinsic

evolvable hardware. In Proceedings of the 2nd NASA/DoD workshop

on Evolvable Hardware, pages 65–, Washington, DC, USA, 2000. IEEE

Computer Society.

[49] Venkatesh Katari, Suresh Ch, Ra Satapathy, Member Ieee, Jvr Murthy,

and Pvgd Prasad Reddy. Hybridized improved genetic algorithm

with variable length chromosome for image clustering, 2007.

[50] A. Antola, M. Castagna, P. Gotti, and M.D. Santambrogio. Evolvable

hardware: A functional level evolution framework based on impulse

c. In Proceedings of the 2007 International Conference on Engineering of Re-

configurable Systems and Algorithms, ERSA, pages 216–219, Las Vegas,

Nevada, USA, 2007. ERSA.

[51] Claude E. Shannon. Claude Elwood Shannon: collected papers. IEEE Press,

Piscataway, NJ, USA, 1993.

[52] Adrian Thompson. An evolved circuit, intrinsic in silicon, entwined

with physics. In Proceedings of the First International Conference on Evolv-

able Systems: From Biology to Hardware, pages 390–405, London, UK,

1996. Springer-Verlag.

137

[53] Adrian Thompson. On the automatic design of robust electronics

through artificial evolution. In Proceedings of the Second International

Conference on Evolvable Systems: From Biology to Hardware, pages 13–24,

London, UK, 1998. Springer-Verlag.

[54] Adrian Thompson and Paul J. Layzell. Evolution of robustness in an

electronics design. In Proceedings of the Third International Conference on

Evolvable Systems: From Biology to Hardware, ICES ’00, pages 218–228,

London, UK, 2000. Springer-Verlag.

[55] Didier Keymeulen, Masaya Iwata, Yasuo Kuniyoshi, and Tetsuya

Higuchi. Online evolution for a self-adapting robotic navigation sys-

tem using evolvable hardware. Artif. Life, 4:359–393, October 1998.

[56] Gordon Hollingworth, Steve Smith, and Andy Tyrrell. Safe intrinsic

evolution of virtex devices. In Proceedings of the 2nd NASA/DoD work-

shop on Evolvable Hardware, pages 195–, Washington, DC, USA, 2000.

IEEE Computer Society.

[57] Lukáš Sekanina. Virtual reconfigurable circuits for real-world appli-

cations of evolvable hardware. In Proceedings of the 5th international

conference on Evolvable systems: from biology to hardware, ICES’03, pages

186–197, Berlin, Heidelberg, 2003. Springer-Verlag.

[58] PC Haddow and G. Tufte. Evolution of robustness in an electronics

design. In An evolvable hardware FPGA for adaptive hardware. In: Proceed-

ings of the Congress on Evolutionary Computation, CEC00, pages 553–560,

Los Alamitos, CA, 2001. IEEE.

[59] S. A. Guccione, Delon Levi, and P. Sundararajan. Jbits: a java-based

interface for reconfigurable computing. MAPLD, 1999.

[60] Delon Levi and Steven A. Guccione. Geneticfpga: Evolving stable cir-

cuits on mainstream fpga devices. In Proceedings of the 1st NASA/DOD

138

workshop on Evolvable Hardware, EH ’99, pages 12–, Washington, DC,

USA, 1999. IEEE Computer Society.

[61] Xilinx. User Guide: Virtex-II Pro and Virtex-II Pro X. Xilinx Corp., 11

2007.

[62] T. Kalganova C. Lambert and E. Stomeo. Fpga-based system for evolv-

able hardware. International Journal of Electrical, Computer and System

Engineering, 3:62–68, 1 2009.

[63] A. Upegui and E. Sanchez. Evolving hardware by dynamically recon-

figuring Xilinx FPGAs. In J.M. Moreno et al., editor, Evolvable Systems:

From Biology to Hardware, volume 3637 of LNCS, pages 56–65, Berlin

Heidelberg, 2005. Springer-Verlag.

[64] Fabio Cancare, M. D. Santambrogio, and D. Sciuto. A direct bitstream

manipulation approach for virtex4-based evolvable systems. In IEEE

International Symposium on Circuits and Systems, Paris, pages 853–856.

IEEE Computer Society, 2010.

[65] A. Upegui. Dynamically Reconfigurable Bio-inspired Hardware, Phd The-

sis. EPFL, Lausanne, CH, 2006.

[66] Pauline C. Haddow and Gunnar Tufte. Bridging the genotype-

phenotype mapping for digital fpgas. In Proceedings of the The 3rd

NASA/DoD Workshop on Evolvable Hardware, EH ’01, pages 109–, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[67] Xilinx. Product Specification: Virtex-4 FPGA Data Sheet: DC and Switching

Characteristics. Xilinx Corp., 9 2009.

[68] Xilinx. Product Specification: Virtex-4 Family Overview. Xilinx Corp., 8

2010.

139

[69] Xilinx. Datasheet: LogiCORE IP XPS HWICAP v5.00a. Xilinx Corp.,

2010.

[70] C. Schuck, M. Kuhnle, M. Hubner, and J. Becker. A framework for

dynamic 2d placement on fpgas. In Parallel and Distributed Processing,

2008. IPDPS 2008. IEEE International Symposium on, pages 1 –7, april

2008.

[71] Xilinx. User Guide: Virtex-4. Xilinx Corp., 12 2008.

[72] Xilinx. FPGA Editor Guide. Xilinx Corp., 20 10.

[73] Alan Piszcz and Terence Soule. Genetic programming: optimal popu-

lation sizes for varying complexity problems. In Proceedings of the 8th

annual conference on Genetic and evolutionary computation, GECCO ’06,

pages 953–954, New York, NY, USA, 2006. ACM.

[74] Chang Wook Ahn and R.S. Ramakrishna. Elitism-based compact ge-

netic algorithms. Evolutionary Computation, IEEE Transactions, 7:367–

385, 2003.

[75] Kumara Sastry and David E. Goldberg. On extended compact ge-

netic algorithm. Technical report, GECCO-2000, LATE BREAKING

PAPERS, GENETIC AND EVOLUTIONARY COMPUTATION CON-

FERENCE, 2000.

[76] Xilinx. Datasheet: Seriel communication port. Xilinx Corp.

[77] Xilinx. Datasheet:Processor Local Bus (PLB). Xilinx Corp.

[78] Y. Jewajinda and P. Chongstitvatana. A cooperative approach to com-

pact genetic algorithm for evolvable hardware. IEEE Congress on Evo-

lutionary Computation, pages 624–629, 2006.

140

[79] Jennifer L. Brady. Thesis: Limitations of a True Random Number Genera-

tor in a FPGA. Air Force Institute of Technology,Wright-Patterson Air

Force Base, Ohio, 2008.

[80] Texas Instruments. Datasheet: 9-Bit Parity Generators/Checkers (Rev. C).

Texas Instruments Corp., 1994.

[81] Bulent Buyukbozkirli. Modeling genetic algorithm dynamics for one-

max and deceptive functions. PhD thesis, East Lansing, MI, USA, 2004.

AAI3145986.

141

Personal

• Matteo Renesto

Education

• M.S. Computer Engineering, Politecnico di Milano, 2008 - present.

• M.S. Computer Science, University of Illinois at Chicago, 2009 - 2011.

• B.S. Computer Engineering, Politecnico di Milano, 2005 - 2008.

Employment

• Spring, 2009. Laboratory Tutor for Software Engineering 1. Prof. C.Ghezzi,

at Politecnico di Milano.

Publications

• F. Cancarè, M. Castagna, M. Renesto and D. Sciuto - A Highly Parallel

FPGA-based Evolvable Hardware Architecture - Advances in Parallel

Computing, Volume 19 - 2010. Pages: 608-615.

142

	Introduction
	Evolutionary computing and Genetic Algorithms
	Basic Definitions

	Evolvable Hardware
	FPGAs as targets for Evolvable Hardware
	FPGA reconfiguration approaches
	Relation between FPGAs and Evolutionary Algorithms
	Hardware Evolution with Genetic Algorithms
	Issues

	Classification of Evolvable Hardware Systems
	Objectives of this thesis

	Genetic Algorithms
	Genetic Algorithms
	Simple Genetic Algorithm
	Messy Genetic Algorithm
	Compact Genetic Algoritm
	Extended Compact Genetic Algorithm
	Other Genetic Algorithms

	Hardware-based Genetic Algorithms
	First Hardware-based Genetic Algorithms
	Hardware-based Compact Genetic Algorithms

	Conclusions

	FPGA-Based Evolvable Architectures
	Extrinsic Approaches
	Intrinsic Approaches
	A Xilinx Virtex 4-based Evolvable Architecture
	The Target Device
	 Virtex 4 Bitstream Manipulation
	Evolvable Region Design
	Individuals Interface
	Performance

	Proposed Methodology
	Extrinsic Evolution Analysis
	Simulation Framework
	Simple Genetic Algorithm Implementation
	Messy Genetic Algorithm Implementation
	Compact Genetic Algorithm Implementation
	Extended Compact Genetic Algorithm Implementation

	Results Analysis
	Parity generators
	Complex multi-outputs functions

	Preliminary considerations

	The System-on-Chip Implementation
	The System-on-Chip Architecture
	Individuals evaluation
	Hardware portability of Genetic Algorithms
	New Hardware-based Compact Genetic Algorithm
	Initialization
	Generation phase
	Update phase

	Additional features
	Elitism
	Additional Mutation

	Random Numbers Generation
	Input-outputs operations and individuals deployment
	The Complete Architecture Deployed

	Performance Analysis
	Introduction to the case studies
	Parity generator evolution
	Optimal tuning
	4 bits input function
	5 bits input function
	6 bits input function
	7 bits input function
	8 bits input function
	Results summary

	Extrinsic, Intrinsic and Complete evolution comparison
	Future Works
	Not Only Evolvable Hardware

	Conclusions
	Results Achieved
	Extrinsic Evolution System
	Intrinsic Evolution System
	Proposed System

	Further Experiments
	Concluding Remarks

