
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica

Enabling Technologies for Android-based Self-Aware Mobile

Devices

Relatore: Prof. Marco D. Santambrogio

Tesi di Laurea di:

Alessandra BONETTO

Matricola n. 739372

Anno Accademico 2010–2011

To my family

Contents

1 Introduction 1

1.1 Introduction to the problem 1

1.2 Research context: autonomic computing systems 3

1.2.1 Definitions and pillars for autonomic computing . . . 3

1.2.2 Realization issues . 6

1.3 Related works on adaptive techniques 7

1.3.1 Control Loop models 7

1.3.2 Monitoring and acting 8

1.3.3 Deciding . 12

1.4 Related works on complete adaptive systems: the SEEC frame-

work . 13

1.5 Target devices and power management 14

1.5.1 Power management: overview and techniques 15

1.6 Summary . 18

2 Operating systems for mobile device systems 20

2.1 OS overview . 21

2.1.1 Symbian . 21

2.1.2 iPhone and iOS . 23

2.1.3 BlackBerry OS . 24

2.1.4 Windows Phone 7 . 24

iii

CONTENTS iv

2.1.5 Android . 25

2.2 Market analysis . 25

2.3 Power management in mobile OS 26

2.4 The choice of Android . 29

2.5 Android OS . 29

2.5.1 Android OS Architecture 30

2.5.2 Android kernel vs Linux kernel 32

2.5.3 Dalvik machine . 33

2.5.4 Android security . 34

3 Proposed Approach 36

3.1 The CHANGE approach . 37

3.1.1 Terminology . 38

3.1.2 ODA loop . 39

3.1.3 Mobile devices: a different approach 41

3.2 Analysis phase: requirements, scenarios and goals 41

3.3 Adaptive System structure . 45

3.3.1 Observe . 46

3.3.2 Decide . 48

3.3.3 Act . 49

3.4 Applications . 51

3.4.1 Self-adaptive applications 51

3.5 Application monitored by the SC 53

3.6 Services . 54

3.7 Summary . 56

4 Proposed Implementation 57

4.1 Porting Heartbeats API . 57

4.1.1 File based . 58

4.1.2 Shared Memory based 59

CONTENTS v

4.1.3 Binder Interface to implement a shared memory . . . 60

4.2 Native library Implementation 67

4.3 From native library to Java library 67

4.4 Services Coordinator . 70

4.5 Frequency scaler actuator implementation 71

4.5.1 Using userspace governor 73

4.5.2 Actuator implementation 74

4.6 Network-type changer actuator implementation 75

4.6.1 Network types . 75

4.6.2 Actuator implementation 77

5 Experimental Results 79

5.1 Testing platform . 79

5.2 Test system structure . 82

5.3 Testing Heartbeat Framework 84

5.4 Case studies: self-adaptive and SC guided applications . . . 88

5.5 Testing self-aware applications 92

5.5.1 Application knobs . 92

5.5.2 Implementation changing 95

5.5.3 Reaction times . 96

5.6 Testing services . 96

5.6.1 FrequencyScaler4Power service 97

5.6.2 FrequencyScaler4Performance service 100

5.6.3 Performance and power tradeoff 101

5.6.4 NetManager4Fluctuation 103

5.6.5 NetManager4Power 103

5.7 Results summarization . 106

6 Conclusions 108

List of Figures

1.1 Different usage of heartbeats API. The first scenario repre-

sents a self-adaptive application, while in the second one an

external observer takes care of monitoring the controlled ap-

plication. 11

1.2 Areas of power saving technologies 16

2.1 Symbian Architecture Model 22

2.2 iOS Achitecture Model . 23

2.3 Q1 2011 global country-level smart phone market data[1]. . 26

2.4 Android Power Management architecture 28

2.5 Android OS architecture . 30

3.1 The system model in CHANGE vision 38

3.2 CHANGE ODA loop . 40

3.3 System structure: monitors are able to observe specific pa-

rameters, the Services Coordinator manages different services

that can be based on different actuators or on the same actu-

ator with different policies. Applications are allowed to by-

pass the SC and self-control themselves. 45

4.1 Communication through the Binder Driver 61

4.2 Binder implementation class diagram 64

4.3 Sequence diagram of a client call 66

vi

LIST OF FIGURES vii

5.1 LG Optimus One P500 . 80

5.2 Test system structure . 82

5.3 Comparison between the execution times of heartbeat calls

using the file based and the shared memory based imple-

mentations . 85

5.4 Heartbeat call execution times, both using file and shared

memory version, 10 executions 85

5.5 Sequence diagrams of the monitoring process using heart-

beats API in MP3 Decoder and PhotoViewer applications . . 91

5.6 Heart rate progress with the introduction of an external dis-

turb, starting at the 100th iteration, without adaptation. . . . 94

5.7 Heart rate progress with the introduction of an external dis-

turb, adaption enabled with buffer resizing. 94

5.8 Heart rate progress with the introduction of an external dis-

turb, adaption enabled with implementation changing. . . . 95

5.9 Heart rate progress of the MP3 decoder application on which

the service considered is enabled. Buffer size is 40KB and the

final frequency is set to 122MHz 98

5.10 Heart rate progress of the MP3 decoder application on which

the service considered is enabled. Buffer size is 160KB and

the final frequency is set to 245MHz 99

5.11 Loading time of 10 images of different sizes at different CPU

frequencies . 100

5.12 Heart rate and buffer size of an application on which are ac-

tivated both a performance and a power service 102

5.13 Heart rate during the buffering process, using the 2G and the

3G net . 104

5.14 Prepare phase, using the 2G and the 3G net 105

LIST OF FIGURES viii

6.1 Loading time of a 250KB image at different frequencies. The

idle time is computed with respect to the longest execution. 111

List of Tables

3.1 Actuators classes classification 51

4.1 Performance data of different network types 76

4.2 Power consumption of different tasks using different networks 77

5.1 Available frequencies . 81

5.2 Actuators available in each service and its target. 84

5.3 JNI overhead over an heartbeat_init function 87

5.4 Impact of the Heartbeats framework over an application ex-

ecution . 87

5.5 Heartbeats rate with different buffer sizes, miniMP3 93

5.6 Reaction times using different actuators 97

ix

Listings

4.1 Heartbeat record type . 68

4.2 Heartbeat Initialization . 69

4.3 AppHeartBeatInterface . 70

x

List of abbreviations

List of Abbreviations

ACRONYM EXPANSION

3G Third-Generation Cell Phone Technology

ADB Android Debug Bridge

AES Advanced Encryption Standard

API Application Programming Interface

ARM Advance RISC Machine

BAA Broad Agency Announcement

CDMA Code Division Multiple Access

CHANGE Computing in Heterogeneous, Autonomous ’N’ Goal-

oriented Environment

CPU Central Processing Unit

DARPA Defense Advanced Research Projects Agency

DES Data Encryption Standard

DPM Dynamic Power Management

DRAM Dynamic Random-Access Memory

xi

xii

ACRONYM EXPANSION

EDGE Enhanced Data for GSM Evolution

EKA2 EPOC Kernel Architecture 2

GLA Generic Log Adapter

GPRS General packet radio service

GSM Global System for Mobile Communications

HB HeartBeat

HSDPA High-Speed Downlink Packet Access

IBM International Business Machines

IPC Inter Process Communication

JIT Just In Time

JNI Java Native Interface

JVM Java Virtual Machine

JVMTI Java Virtual Machine Tool Interface

JXM Java Management Extensions

LTA Log Trace Analyzer

MAPE-K Monitor Analyze Plan Execute

MIPS Microprocessor without Interlock Pipeline Stages

NDK Native Development Kit

xiii

ACRONYM EXPANSION

ODA Observe-Decide-Act

OOM Out Of Memory

OS Operating System

PC Personal Computer

PDA Personal Digital Assistant

POSIX Portable Operating System Interface [for Unix]

QoS Quality Of Service

RAM Random Access Memory

RIM Research In Motion

SC Services Coordinator

SEEC SElf-awarE Computational

SEFOS SElf-aware Factored OS

UI User Interface

UMTS Universal Mobile Telecommunications System

USB Universal Serial Bus

VM Virtual Machine

WCDMA Wideband Code Division Multiple Access

WP7 Windows Phone 7

xiv

ACRONYM EXPANSION

XML eXtensible Markup Language

YAFFS2 Yet Another Flash File System, 2nd Edition

Abstract

Nowadays the complexity of computing systems is skyrocketing. Com-

puting systems have become extremely powerful and devices type can

greatly vary from supercomputer to mobile devices, desktops and servers.

All of them have different resources and it would be desirable to have the

system able to adapt to the mutating conditions, both internal and external.

Architecture that makes it possible for a computing system to observe its

current status and its current performance, to decide which modifications

to undertake, and to act to modify its behavior, to reacting to unpredictable

situations are known as self-adaptive or autonomic systems.

These systems have proved to be effective in desktop environment. The

objective of this thesis is to prove that such approach can be effective even

in a mobile environment. Mobile environment is a constrained and fluc-

tuating environment, resources are limited both in terms of performance

(e.g. usually architectures are single-core and CPU frequency is limited)

and power (battery’s energy is a non-renewable resource). In addition, also

the external environment influences the system behavior, e.g. in case of a

fluctuating signal strength the power needed to keep a good signal quality

can increase. For these reasons, the choice of an adaptive system can help

the device to best manage those resources and to react to unpredictable

external conditions.

The final aim of this work is to develop a complete adaptive system and

run it on a real device, to prove the effectiveness of the adaptive approach

xv

xvi

in different scenarios. We will need monitoring systems, both for perfor-

mance and for power and actuators to change the applications behavior.

Applications should be either self-adaptive or controlled by an external ob-

server, that is in charge of deciding what action apply on each application.

The dissertation is organized as follows.

Chapter 1 describes the research context and provides an introduction

to the basic concepts involved in autonomic computing. In addition, it re-

views related works on both techniques used in adaptive systems and in

complete systems.

Chapter 2 gives an overview of the main OSes for mobile devices avail-

able in the market. Then, it is presented the OS chosen in the implementa-

tion of this work, Android, and the motivations of this choice.

Chapter 3 describes in detail the proposed solution. First it is proposed

an analysis of problems and goals of porting an adaptive system on a mo-

bile device. Then, it is identified a minimum set of components and re-

quirements that should be implemented in the adaptive system, in order to

prove its effectiveness in various scenarios.

Chapter 4 presents the implementation details of the adaptive system.

This chapter is focused on the monitoring (porting heartbeat library) and

acting (implement a frequency scaler) phases, that require Android specific

implementations.

Chapter 5 proposes many tests to prove the effectiveness of the pro-

posed approach on different scenarios, from self-adaptive applications to

controlled applications, and with different targets, whether performance

or power. The overhead of the ported heartbeat library is also computed.

Chapter 6 concludes with a final discussion and outlines future works.

Sommario

La complessità dei sistemi informatici è cresciuta esponenzialmente negli

ultimi anni, indipendentemente dal tipo di dispositivo considerato, che

può variare dai supercomputer ai dispositivi mobili, ai desktop e ai server.

In particolar modo, i dispositivi mobili hanno subito una notevole crescita,

sia dal punto della vista di potenza di calcolo che di diffusione. Gli at-

tuali dispositivi mobili sono chiamati smartphones e uniscono alla capacità

di chiamare l’utilizzo di applicazioni come browser, calendari, navigatori

GPS, player audio o video. Essendo molto più leggeri e portabili di un PC

portatile, possono rappresentare il vero punto di connessione tra l’uomo e

l’ambiente che lo circonda dato che, essendo sempre a disposizione in tutti

gli spostamenti dell’utente, possono adattarsi ai diversi ambienti per offrire

diverse funzioni a seconda delle diverse necessitá.

Per interagire con l’ambiente che lo circonda, in un vicino futuro un dis-

positivo mobile dovrà essere in grado di osservare il suo comportamento

in relazione all’ambiente e di adattarsi alle condizioni per offrire un sem-

pre migliore servizio all’utente. Questa caratteristiche sono note come self-

awareness, context-awareness e self-adaption e sono principi basi ella disciplina

nota come autonomic computing.

Il lavoro di questa tesi si è concentrato nella progettazione e realiz-

zazione delle tecnologie necessarie per abilitare le citate caratteristiche negli

attuali dispositivi mobili, per provare che un approccio di questo tipo è uti-

lizzabile con successo anche in questo tipo di dispositivi. Questo lavoro si

xvii

xviii

inserisce nel progetto di ricerca Computing In Heterogeneous Autonomous

aNd Goal-oriented Environments (CHANGE) del Laboratorio di Micro-

Architetture del Politecnico di Milano, che si prefigge la realizzazione di

un completo sistema operativo adattativo, capace di operare in diversi am-

bienti, che spaziano dai dispositivi mobili, al sistemi desktop, fino al cloud

computing. In questo progetto, questo lavoro di tesi si occuperá di iniziare

la transizione dall’ambiente desktop all’ambiente mobile.

Il sistema proposto si propone di estendere gli attuali dispositivi mo-

bili per integrare capacità self-aware, integrando il ciclo Observe-Decide-

Act (ODA) all’interno del sistema operativo. Questo modello fornisce al

sistema la capacità di osservare sé stesso e l’ambiente che lo circonda, e

la capacità di reagire a cambiamenti che possono accadere, internamente

o esternamente ad esso, nel migliore dei modi. L’azione migliore dipen-

derà dagli obiettivi del sistema e dal risultato della fase di osservazione,

effettuata tramite diversi sensori. Le azioni vengono concretizzate tramite

attuatori, nel nostro sistema utilizzati attraverso dei componenti chiamati

servizi, a cui è riservato il compito di utilizzare gli attuatori disponibili sec-

ondo le politiche decisionali specificate.

Il sistema operativo per dispositivi mobili utilizzato è Android, scelto

per la sua ampia diffusione e la possibilità di modificarne i suoi sorgenti.

Per provare il reale funzionamento di questa metodologia, il sistema è stato

testato su un dispositivo reale basato su questo sistema operativo. I test

effettuati mirano a provare l’abilità del sistema nel reagire a diversi eventi

inaspettati, sia interni al dispositivo che esterni ad esso.

La tesi è organizzata come segue. Nel Capitolo 1 viene descritto il con-

testo di ricerca e vengono illustrati i concetti fondamentali che compon-

gono i sistemi adattativi. Inoltre, sono descritti alcuni lavori relativi allo

Stato dell’Arte sia riguardanti singole tecniche utilizzate per implementare

sistemi self-aware, sia sistemi completi.

xix

Nel Capitolo 2 viene proposta una panoramica dei principali Sistemi

Operativi per dispositivi mobili che sono presenti ad oggi sul mercato.

Questa sezione porterà alla scelta di Android come sistema operativo uti-

lizzato nell’implementazione di questo lavoro di tesi, verranno illustrate

le motivazioni di questa scelta e alcuni dettagli relativo a questo sistema

operativo.

Il Capitolo 3 descrive nel dettaglio la soluzione proposta per lo sviluppo

di un dispositivo mobile self-aware. Partendo da un’analisi degli obiettivi, è

stata identificata una struttura di base del sistema da implementare, costru-

ita sul modello dell’ODA loop e composta da tutti i componenti necessari

per provare la validità della soluzione proposta in diversi scenari d’uso.

Nel Capitolo 4 vengono illustrati alcuni dettagli implementativi relativi

allo sviluppo su una piattaforma mobile, riguardanti i componenti che sono

stati implementati. Particolare attenzione è stata posta all’implementazione

del sistema di performance monitoring basato su Heartbeats e all’imple-

mentazione degli attuatori utilizzati nel sistema.

Il sistema di test utilizzato per validare la soluzione proposta viene de-

scritto nel Capitolo 5. In questa sezione vengono prima illustrate le appli-

cazioni sviluppate come supporto alla validazione del sistema, successiva-

mente viene proposta una serie di test effettuata per testare la reazione del

sistema in diverse situazioni. I risultati provano la correttezza dell’imple-

mentazione e l’abilità del sistema nel reagire alle diverse situazioni per ot-

timizzare diversi obiettivi. Sono riportati inoltre i dati di overhead del sis-

tema di monitoring.

Infine, il Capitolo 6 conclude la tesi con alcune considerazioni relative

al lavoro svolto e a possibili sviluppi futuri di esso.

Chapter 1

Introduction

This Chapter provides an introduction to Adaptive system, the context

this work is based on, and the basic concepts used in it. Then, related works

on adaptive techniques and on complete adaptive system are presented.

Finally, the mobile environment and its problems are introduced.

1.1 Introduction to the problem

Computing systems are rapidly evolving and nowadays devices have

become extremely powerful and heterogeneous. Additionally, new device

categories have come into being in last years. From supercomputers to mo-

bile devices, through desktops and servers, each kind of device has its own

features and resources, and those have to be managed in the best possible

way.

In order to make the best possible usage of the available resources, the

system first of all must be aware. It must be aware of the type of device it is

running on and its global condition, past and present. It must be aware of

the available resources and how the environment can influence the system.

An aware system is able to manage different devices and different situa-

tions without the need to change how the system has been designed.

1

CHAPTER 1. INTRODUCTION 2

Aware systems are the base of adaptive computing. The stimulus for

an improvement or optimization should not only be driven by an external

entity but might be advocated by the system itself. Adaptive computing can

react to unpredictable changes in the environment (e.g. an external disturb)

and react to changes inside the system (e.g. a resource is no more available).

Mobile devices are a constrained and fluctuating environment. Resources

are limited, both in terms of performance and power, and their availabil-

ity can greatly vary over time. The battery energy is an example of a re-

source that influences the whole system functioning and it has to be care-

fully managed. Nowadays systems do not provide control or feedback on

energy consumption. This limited control and visibility of energy is espe-

cially problematic for mobile phones, where energy and power define sys-

tem lifetime. As mobile devices have evolved from low-function devices

to complex systems with applications from different sources, the need of

a system able to manage and control energy as a resource has become ex-

tremely important.

There is a strong need to make future Operating System (OS) aware

of the situation. The importance of different resources should be decided

depending on the device type. If e.g. for a smart phone battery energy is

a fundamental resource, it is less important for a device always plugged

in. The situation in the middle is a device that can run both using battery

power and using powerline. In that case a good system should be able to

understand the current situation and decide if it is necessary to save any-

way energy for future use or if it is best, given the situation, to prioritize

another resource over power.

CHAPTER 1. INTRODUCTION 3

1.2 Research context: autonomic computing systems

This work finds its natural position into the autonomic computing or self-

aware adaptive field, which is an information technology field strictly related

to autonomous systems. An autonomic system is defined as a system able

to operate and manage itself even in case of environmental changes, with-

out any external intervention. It can involve hardware (e.g. CPUs, Field

Programmable Logic Devices), software or both.

Some definitions and requirements of autonomic systems are now pre-

sented.

1.2.1 Definitions and pillars for autonomic computing

Among several existing definitions for self-adaptive software, one of

the firsts was provided in the DARPA BAA in December 1997 [2]:

Self Adaptive Software evaluates its own behavior and changes behavior when

the evaluation indicates that it is not accomplishing what the software is intended

to do, or when better functionality or performance is possible.

This definition has strong background in control theory. It implies that

the self-adaptive software should have a sensor-evaluate-adjust executing

loop, just like the feedback control. Furthermore, the adaptation model

could have some adjustable parameters and a mechanism to adjust them.

A similar definition has been given later in 1999 by Oreizy et Al. [3]:

Self-adaptive software modifies its own behavior in response to changes in its op-

erating environment. By operating environment, we mean anything observable by

the software system, such as end-user input, external hardware devices and sen-

sors, or program instrumentation

The first autonomic computing characterization was formulated only in

2001 by IBM with its Autonomic Computing Manifesto [4], presented by Dr.

Paul Horn’s during the National Academy of Engineering meeting of the

CHAPTER 1. INTRODUCTION 4

same year. From that presentation eight self-* properties that an autonomic

system should have were outlined (Section 1.2.1). In 2009 Salehie et Al.

proposed an hierarchical division of the eight self-* properties and a set

of six questions to elicit adaptation requirements (Section 1.2.1).

IBM Pillars

Horn explained that the inspiration for automating the behavior of a

complex system, hardware or software, was found in one of the most com-

plex system available, that is the human body. A human body embeds the

autonomic nervous system, that is an obtrusive system that manages many

vital functions across a wide range of external conditions, e.g. it monitors

the body temperature and it adjusts the blood flow and the skin functions

to keep them into correct values. That is the example kept in mind when

he defined eight general properties and attributes a system should have to

constitute to be able to manage itself:

1. Self-Awareness To be autonomic, a computing system needs to know

itself, it needs detailed knowledge of its components, current status,

and all connections with other systems to govern itself.

2. Self-Reconfiguration An autonomic computing system must config-

ure and reconfigure itself under varying and unpredictable condi-

tions.

3. Self-Optimization An autonomic computing system never settles in

a certain situation, it always looks for ways to optimize its workings.

4. Self-Healing An autonomic computing system must be able to re-

cover from routine and extraordinary events that might cause some

of its parts to malfunction. More than simply responding to a compo-

nent failure, or running periodic checks for symptoms, an autonomic

CHAPTER 1. INTRODUCTION 5

system will need to remain on alert, anticipate threats, and take nec-

essary actions.

5. Self-protection An autonomic computing system must be an expert

in self-protection, it must detect, identify and protect itself against

various types of attacks to maintain overall system security and in-

tegrity.

6. Context-awareness An autonomic computing system knows its en-

vironment and the context surrounding its activity, and acts accord-

ingly. It will need to be able to describe itself and its available re-

sources to other systems, and it will also need to be able to automati-

cally discover other devices in the environment.

7. Openness An autonomic computing system cannot exist in a her-

metic environment, it must function in a heterogeneous world and

implement open standards of system identification, communication

and negotiation.

8. Anticipation and transparency Perhaps most critical for the user, au-

tonomic computing system will anticipate the optimized resources

needed while keeping its complexity hidden.

Adaptation Requirements Elicitation

Another way[5] to capture the requirements of self-adaptive software is

getting help from the six questions What, Where, Who, When, Why and How.

• Where At which level of granularity and at which layer adaptivity

should be applied? Information about attributes of adaptable soft-

ware, dependency between its components and layers have to be col-

lected to locate the problem.

CHAPTER 1. INTRODUCTION 6

• When When does a change need to be applied, and when is it feasible

to do so? Can it be applied anytime? Is it enough to perform adapta-

tion actions as needed or do we need to predict some changes?

• What This set of questions identifies what attributes or artifacts of the

system can be changed through actions, what alternatives are avail-

able for the actions, what events and attributes have to be monitored

to follow-up on the changes, and what are the resources needed.

• Why These questions are used to motivate the building of a self-

adaptive application and to found the objectives or goals addressed

by the system.

• Who This set of questions addresses the level of automation and hu-

man involvement in self-adaptive software.

• How Determine how to proceed with the changing process, deciding

which actions are suitable for any given condition.

These questions have to be answered in two principal phases: while the

system is being developed (developing phase) and when it is responding to

changes (operating phase).

1.2.2 Realization issues

After answering to the previously described questions, the next step

should be deciding how to develop the system and apply adaption. There

are different approaches for incorporate adaptivity into a system:

• Static/Dynamic decision-making, how the decision process can be

constructed and modified:

– static: the deciding process is hard-coded (e.g. as a decision tree)

and its modification requires recompiling and redeploying the

system or some of its components;

CHAPTER 1. INTRODUCTION 7

– dynamic: policies or rules are externally defined and managed,

and can be changed at runtime;

• Internal/External adaption, decide the separation between the adap-

tation mechanism and the application logic:

– internal: adaption logic is integrated into the application, gener-

ally using programming logic features, such as conditional ex-

pressions;

– external: an adaption engine external to the application contains

the adaptation process;

• Making/Achieving adaption, deciding whether self-adaptivity is in-

troduced into the system at the developing phase or it is achieved

through adaptive learning.

1.3 Related works on adaptive techniques

As introduced in Section 1.2, all autonomic systems have in common

a feedback control implemented as a sensor-evaluate-adjust executing loop.

In literature, several control loop models and many mechanisms to imple-

ment the single phases of the control loop have been proposed.

1.3.1 Control Loop models

The adaption control loop is a component of every autonomous system

and it is a notion taken from control theory. A control loop is open (non-

feedback loop) if the controller uses only the current state and its model of the

system to make its decisions or closed (also called feedback-loop) if there is

also a feedback system that helps the decision phase. In self-adaptive soft-

ware a closed-loop approach is used, meaning that the software monitor

CHAPTER 1. INTRODUCTION 8

itself and the surrounding environment while executing. A feedback loop

for a self-aware adaptive system is generally described by four processes:

• monitoring: it is the phase in which data from sensors are collected

and converted into symptoms;

• detecting: here symptoms are analyzed to decide whether and when a

change is required;

• deciding: in this phase the questions about what needs to be changed

and how a change has to be performed are addressed;

• acting: this process is responsible for applying the actions decided in

the previous phase through actuators.

One of the first descriptions of an adaption loop and its phases is pre-

sented in [6]. The so called MAPE-K loop stands for Monitoring, Analyzing,

Planning and Executing, working on a knowledge base K. In this loop the

four phases are the same of the phases of the general model previously

presented, just with different names. In addition, there is a knowledge base

representing the system information.

Another loop model is the Observe-Decide-Act (ODA) loop, where the

second phase Detecting has been integrated into the Deciding phase.

1.3.2 Monitoring and acting

A monitoring activity is everything that observe a system for any change

inside the system itself or in its external environment. Depending on the

system we are working on and which is our goal, several types of monitor-

ing can be applied:

• Logging: viewing an application’s logs it is one of the simplest tech-

niques to collect data from it. Those logs have to be processed and

mined to obtain useful information. The Generic Log Adapter (GLA)[7]

CHAPTER 1. INTRODUCTION 9

and the Log Trace Analyzer (LTA)[8] are examples of tools for this pur-

pose.

• Profiling: examples of performance profiling tools are:

– Oprofile[9] collects system-wide profile information without re-

quiring any modification to the compiled executables, since it is

based on hardware counters;

– dproc[10] is an extension of the Linux’s /proc to monitor infor-

mation about both local and remote cluster nodes;

– Java Virtual Machine Tool Interface (JVMTI)[11] provides both a

way to inspect the state and to control the execution of applica-

tions running in the Java virtual machine.

• Signal monitoring: Pulse monitoring is a technique adopted from

Grid Computing and used in [12], while an heartbeats monitor frame-

work has been proposed in [13] and explained in Section 1.3.2.

• Management framework: collections of tools for software manage-

ment and monitoring. Examples are Java Management Extensions (JXM)[14],

IBM Tivoli [15] and K42 resource management [16].

Monitoring involves obtaining and analyzing performance information

from one or more components of the system. Acting involves using the

information retrieved in the monitoring phase, to perform actions on the

system. Actions that can be applied to a system are strictly related to the

nature of the system itself. Some examples of actions include:

• change data quality or data types[17];

• tune parameters in order to meet a particular goal [18];

• change the implementation of an algorithm [3];

CHAPTER 1. INTRODUCTION 10

• perform Just In Time (JIT) compiler optimizations [19];

• loop perforation [20].

In next Section it is explained in details the Heartbeats monitoring frame-

work, the pulse monitoring technique that it is used in this work to monitor

applications’ performances.

Heartbeats

A simple way to observe current and target performance of applica-

tions is described in [13] and [21]. The framework proposed, named Appli-

cation Heartbeats (or, more simply, heartbeats), provides a simple yet effective

infrastructure to measure and monitor application progress toward goals.

Crucial points in the design of the framework are simplicity and portability,

while keeping a standardized interface.

To monitor an application, programmers have first to define application

goals using heartbeats API. Then, the basic function HB_heartbeat it is used

in the application whenever there is a significant point in which application

progress toward a goal wants to be monitored. During the initialization

phase, goals can be expressed in terms of a window between a minimum

and a maximum threshold, such as the lowest and highest heart rate the ap-

plication should generate or the minimum and maximum latency between

two heartbeats.

To reduce programmers effort while inserting heartbeats into their ap-

plications, the standard heartbeats API consist of only few functions and,

to ensure portability, only standard function calls are used, that do not rely

on OS mechanisms.

An heartbeats monitor is created for each monitored application and its

task is to collect generated heartbeats and provide information about the

application history and its rate over time.

CHAPTER 1. INTRODUCTION 11

In Figure 1.1 the two scenarios in which heartbeats can be used are

shown.

Figure 1.1: Different usage of heartbeats API. The first scenario represents a self-adaptive

application, while in the second one an external observer takes care of monitoring the con-

trolled application.

In the first one, the application is self-adaptive and the monitor is em-

bedded into the application itself, which generates heartbeats, monitors its

progresses and tunes its parameters, as needed. In the second scenario, the

application still generates heartbeats, but this time they are collected by

an external observer. Since this time there is a global vision of the system,

actions can tune also its parameters.

The heartbeats framework is composed of a set of APIs, which include:

HB initialize Initialized the Heartbeat runtime system and specifies how

many heartbeats will be used to calculate the default average heart

rate and how many heartbeats to buffer.

HB heartbeat Issue a heartbeat to indicate progress.

HB current rate Returns the average heart rate calculated from the last

window heartbeats.

HB get current heartbeat Returns the tag, timestamp, and current heart

rate measured the last time a heartbeat was generated.

CHAPTER 1. INTRODUCTION 12

HB set target rate Called by the application to indicate to an external ob-

server the average heart rate it wants to maintain.

HB get target min rate Called by the application or an external observer to

retrieve the minimum target heart rate.

HB get target max rate Called by the application or an external observer

to retrieve the maximum target heart rate.

HB set target latency Called by the application to indicate to an external

observer the average latency it wants to achieve between two heart-

beats with the given tags.

HB get target min latency Called by the application or an external observer

to retrieve the minimum target latency.

HB get target max latency Called by the application or an external observer

to retrieve the maximum target latency.

HB get history Returns the timestamp, tag, and thread ID of the last n

heartbeats.

1.3.3 Deciding

The deciding phase will take care of deciding whether a change has to

be performed and, in that case, the set of actions that are suitable given

the current situation and the data it receives from the sensors. Many of

the approaches used during the deciding phase are taken from Artificial

Intelligence. The most common are:

• Rule based: this approach is simple and very common[22]. It works

well if the system is completely known and rules guarantee a fairly

deterministic behavior. They allow actions to be taken in response to

an event, usually if a threshold is crossed;

CHAPTER 1. INTRODUCTION 13

• Decision tree: this approach is static and it is generally more hard to

extend than the rule based approach, but it is often more efficient.

• Fuzzy logic: it is known[23] for working particularly well in the con-

text of conflicting goals and poorly understood optimization spaces.

• Reinforcement learning: it is used[24] to implement an agent aiming at

maximizing the long-term reward.

1.4 Related works on complete adaptive systems: the

SEEC framework

The Angstrom project [25] has been recently created to deal with auto-

nomic systems and to meet the challenges of extreme-scale computing.

Project Angstrom’s vision to address the four major challenges of extreme-

scale computing (energy efficiency, scalability, programmability and de-

pendability) is based on two key foundations: creating a SElf-awarE Com-

putational model called SEEC[26], and a SElf-aware Factored OS called SE-

FOS[27].

The SEFOS goal is to create a highly scalable operating system for many-

cores computing systems while SElf-awarE Computing (SEEC) framework[26]

is an example of a framework that embeds the ODA loop in both applica-

tions and system software. In the SEEC model applications specify their

goals, system software specifies a set of possible actions, and the SEEC

framework is responsible for deciding how to use the available actions to

meet the applications goals. The SEEC framework uses input from applica-

tions and systems developers to implement a closed-loop system with three

distinct phases: Observation, Decision, and Action and three distinct par-

ticipants: application developer, system software developer and the SEEC

framework itself.

CHAPTER 1. INTRODUCTION 14

Observation In these phase two entities are involved, the application de-

veloper and the SEEC framework. The former has the only task to

identify the application goals and its progress toward them and to

make those information available to the entire system. The Applica-

tion Heartbeats Interface is used for this purpose. The latter will read

the goals and the performance of each heartbeat-enabled application.

Decision This phase is entirely executed by the SEEC framework, with the

final purpose of deciding how much to speed up the application. The

SEEC control system takes a series of heartbeats observations as in-

put and produces a series of desired speedups which are then used

to determine what actions the system should take, to achieve the ap-

plication’s desired heart rate.

Action In this phase, the participants involved are the system developer

and the SEEC framework. The system developer needs to indicate a

set of possible actions, the speedups associated with these actions,

and a function that can take a specified action. On the other hand, the

SEEC framework, using those three inputs provided by the system

developer, is responsible for mapping speedups into actions and call-

ing the function provided by the system’s developer to realize those

actions.

Examples of controllers used in the framework are a frequency scaler, a

core allocator and a DRAM allocator.

1.5 Target devices and power management

Adaptability is the key aspect in every system that has a large variety of

heterogeneous resources to manage, and those resources can vary in type

and number and complexity. How to manage them to offer the best ser-

CHAPTER 1. INTRODUCTION 15

vice depends on which type of system we are considering. Systems can be

broadly divided in three categories:

• Cloud computing refers to both the applications delivered as services

over the Internet and the hardware and systems software in the data

centers that provide those service.

• Workstations and PC are high-end computers intended to be used

by one person at a time, but nowadays connected to a network and

providing a multi-user operating system.

• Mobile devices are pocket size computing devices, usually providing

a touch screen as input interface.

Especially in mobile devices, but it is true for every energy constrained

system, there is an additional resource that have to be taken into consider-

ation, that is energy, and an additional parameter, that is power consump-

tion. For devices that rely on battery power (e.g. mobile devices and lap-

tops), power management has become extremely important to manage at

the best the available energy. Since in this work the device used is a mobile

device, next Section will give an overview of power management and its

most used dynamic techniques.

1.5.1 Power management: overview and techniques

Power management is a feature that turns off the power or switches

the system to a low-power state when inactive. Researches in energy sav-

ing spans over several areas of interest, Figure 1.2 shows the hierarchy of

those areas. The areas below the blue line are related to the power sources:

battery models and electrochemistry. The upper level of the power sources hi-

erarchy, battery modeling, deals mainly with abstracting from the behavior

of batteries to predict their discharge times. The lower level of the source

CHAPTER 1. INTRODUCTION 16

hierarchy is electrochemistry, here new battery families are created, increas-

ing the energy per mass and energy per volume available for mobile sys-

tems. The areas above the blue line line are related to the power consumers:

hardware and software. Creating low power software means reducing power

consumption by changing algorithms, reducing performance needs, and

using lower power instructions. Developing low power hardware means

providing new mechanisms for power savings to the higher levels and im-

plementing novel circuit structures or devices. Power management, the ex-

plicit scheduling of device accesses and shutdowns to save power, may be

implemented in hardware, software, or some combinations of the two. The

most important thing is that power management can be applied at runtime.

Figure 1.2: Areas of power saving technologies

The main motivation for power management is to reduce the overall

energy consumption. This saving has many consequences:

• Extend battery life: an accurate use of the battery energy will make

its life last longer.

• Reduce cooling requirements: changing the battery working point

can reduce its cooling requirements.

• Reduce noise: reducing cooling requirements will reduce fans speed

CHAPTER 1. INTRODUCTION 17

and consequently their noise.

• Reduce heat dissipation: heat dissipation depends on the working

temperature of the battery, working on this last parameter can reduce

also heat dissipation.

Techniques to achieve power management can be applied to several

components including, e.g. hard disks, communication devices, display de-

vices and processors. Techniques that operate on processors can be static or

dynamic, the first ones are applied at design time, while the latter ones are

applied at run-time. For the scope of this work, we are interested only in

Dynamic Power Management (DPM) techniques, that can be applied at run-

time in order to react to changes

DPM techniques are primarily used to reduce power dissipation. The

average power dissipation can be described by the following equation:

Pavg = Pdynamic + Pshort + Pleakage + Pstatic (1.1)

Pdynamic is the dynamic power consumption, Pshort is the short-circuit

power consumption, Pleakage is the leakage consumption while Pstatic is

the static power consumption.

The most dominant factor is usually dynamic power consumption, its

average is expressed by the following formula:

Pdynamic = KCoutV
2
ddf (1.2)

where K is the average number of transitions in a clock cycle, Cout is the

output capacitance, Vdd is the power supply and f is the clock frequency.

As the equation illustrates, reducing the operating voltage or frequency, or

both, can result in lowering the overall system power consumption, and

that is the underlying principle of DPM. DPM identifies low processing re-

quirement periods and reduces operating voltage (voltage scaling) and fre-

CHAPTER 1. INTRODUCTION 18

quency (frequency scaling), resulting in reduced average operating power

consumption.

It is also possible to act on the output capacitance or the average number

of transitions to reduce the power dissipation, but these techniques, since

they can be applied only statically, are not investigated in this work.

Dynamic frequency scaling [28, 29] is a technique used to adjust at run-

time the clock frequency in order to reduce the power dissipation or

the heat. This technique is simple yet effective on energy saving, but

as it reduces the number of instructions a processor can issue in a

given amount of time, it has as side effect a reduction of performance.

Dynamic voltage scaling [30, 31, 32] is a technique in which the voltage

used in a component is increased or decreased depending on needs.

If voltage is increased, dynamic scaling is called overvolting, other-

wise it is called undervolting. Usually undervolting is performed not

only to save power but also to increase stability and reduce tempera-

ture. Reducing the voltage in a circuit means reducing the maximum

frequency at which that circuit can work. This, in turn, reduces the

rate at which program instructions can be issued, which may increase

run time for program segments. This is why dynamic voltage scaling

is generally done in conjunction with dynamic frequency scaling, at

least for CPUs.

1.6 Summary

In this Chapter we have outlined the pillars of autonomic computing

system, their characteristics and realization issues. Every adaptive system

has integrated a control loop, based on the observing, deciding and act-

ing phases. Different techniques have been proposed, in related works, to

deal with each of these phases and Heartbeats API has been described as a

CHAPTER 1. INTRODUCTION 19

simple and effective way to monitor applications performance toward their

goals.

After describing different kinds of devices and their resources, it has

emerged that, for energy constrained devices, power consumption is a pri-

mary issue. For this reason, we have presented some dynamic techniques

related to power management that can be effective in an adaptive system

with a power target, in particular those which permit CPU frequency and

CPU voltage scaling.

Chapter 2

Operating systems for mobile

device systems

A mobile operating system is the operating system that is used on a mo-

bile device. Typical examples of devices running a mobile operating system

are PDAs, Smartphones and Tablets. In these Sections are taken into con-

sideration the main operating systems currently available in the market, to

see their lacks and necessities and to choose which is the most suitable OS

to be used in this work.

In the first Section an overview of each OS and its internal and architec-

tural characteristics is given, when this information is available. Section 2.2

will analyze the current smartphone market situation and Section 2.3 will

describe the features introduced by some OSes to deal with power man-

agement.

In Section 2.4, the motivations behind the choice of Android as the OS

used in this work are explained, while the last Section will describe An-

droid OS in all the relevant details.

20

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS21

2.1 OS overview

With the rapid development of smartphone market, more and more

kinds of smartphone operating system (OS) are emerging[33, 34]. There are

many different operating systems, but five of them hold the great part of

the market: Symbian, Windows Phone 7, RIM Blackberry, Apple iOS and

Google Android. Each device or manufacturer has chosen a different OS

and they have personalized it with their own custom User Interface. Im-

portant differences between them are:

• license: Symbian and Android are open source, while iOS, BlackBerry

RIM and Windows Phone 7 are proprietary;

• underlying CPU architecture: all of them support ARM architecture,

while iOS can also run on MIPS, Power Architecture, x86;

• programming language: the most used languages are C++ and Java,

while iOS is programmed in Objective C;

In the next paragraphs, each one of the most used OSes is presented in

details.

2.1.1 Symbian

Symbian[35] is an open source operating system and software platform

designed for smart phones and maintained by Nokia. The Symbian plat-

form is the successor of Symbian OS, which needed to be integrated with

an additional user interface system, while nowadays the Symbian platform

includes a user interface component based on S60 5th Edition. The latest

version, Symbian 3[35], was officially released in 2010 and first used in the

Nokia N8[36].

In December 2008, Nokia bought Symbian Ltd., the company behind

Symbian OS. As a result, Nokia has become the major contributor to Sym-

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS22

bian code and on 4 February 2010 the code was published under Eclipse

Public License (EPL). Recently, on February 11th 2011, Nokia announced that

it would migrate away from Symbian to Windows Phone 7.

The Symbian System Model[37] is shown in Figure 2.1 and its structure

has remained nearly identical through the different versions of the operat-

ing system. The OS is represented as a series of logical layers with the Ap-

plication Services and the UI framework layers at the top, a middleware layer

with extended services in the middle, and the Kernel services and Hardware

Interface layer at the bottom. Each layer is subdivided in blocks and sub-

blocks by functionality and each block is a collection of components.

Figure 2.1: Symbian Architecture Model

The Symbian kernel is called EPOC Kernel Architecture 2 (EKA2)[38].

Symbian has a microkernel architecture that contains the basic minimum

functionalities for maximum robustness, availability and responsiveness.

It contains a scheduler, memory management and device drivers. The in-

clusion of device drivers means the kernel is not a true microkernel. The

EKA2 real-time kernel, which has been termed a nanokernel, contains only

the most basic primitives and requires an extended kernel to implement

any other abstractions. It is single-user, no concept of multiple logins, but

it supports preemptively and priority-based multi-tasking.

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS23

2.1.2 iPhone and iOS

iPhone operating system (iOS)[39] is a mobile operating system devel-

oped and marketed by Apple Inc. It is the default operating system for the

iPhone and the iPad. The iPhone OS was derived from Mac OS X and the

version history of iPhone OS began in June 2007 with the release of the first

iPhone.

The iPhone OS is derived from Mac OS X and is therefore a Unix-like

operating system. It is composed of a number of different software layers,

each of which provides programming frameworks for the development of

applications that run on top of the operating system. These operating sys-

tem layers are presented in Figure 2.2:

Figure 2.2: iOS Achitecture Model

Top-to-bottom, the layers are:

• The Cocoa Touch layer sits at the top of the iPhone OS stack and con-

tains the frameworks that are most commonly used by iPhone appli-

cation developers. Cocoa Touch is primarily written in Objective-C,

is based on the standard Mac OS X Cocoa API and has been extended

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS24

and modified to meet the needs of the iPhone.

• The role of the Media layer is to provide the iPhone OS with audio,

video, animation and graphics capabilities. As with the other layers

comprising the iPhone OS stack, the Media layer comprises a number

of frameworks that can be utilized when developing iPhone apps,

such as Open Audio Library, Media Player framework and OpenGL

ES framework.

• The Core Services layer provides the fundamental system services

that all applications use, such as networking, XML support and SQLite

database.

• The Core OS Layer is the bottom layer of the iPhone OS stack and

sits directly on top of the device hardware. The layer provides a vari-

ety of services including low level networking, access to external ac-

cessories and the usual fundamental operating system services such

as memory management, file system handling and threads manage-

ment.

2.1.3 BlackBerry OS

BlackBerry OS is a mobile operating system developed by Research In

Motion for its BlackBerry line of smartphone handheld devices. Blackberry

OS is proprietary and no significant information about its structure is made

public.

2.1.4 Windows Phone 7

Windows Phone 7 (WP7)[40] is a mobile operating system developed by

Microsoft, and it is the successor to the Windows Mobile platform. There’s

a minimum set of hardware specifications that all phones must meet in

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS25

order to run WP7. They include an ARM7 CPU, a DirectX capable GPU, a

camera, and a multi-touch capacitive display.

Windows Phone 7 will employ two different file systems, depending on

the fact that it is dealing with a system file or a user file. IMGFS is used for

system files and TexFAT, an extended version of the FAT file system capable

of addressing files larger than 4GB, is employed for user files, which can be

stored on removable or internal memory.

The shell and application platform reside in user space, while the ker-

nel, drivers, file systems, network, graphics/rendering, and the phone up-

date system run in the kernel space. Since we are talking about a 32 bit

operating system, it can only address 4GB of memory, 2GB for processes

and 2GB for the kernel.

2.1.5 Android

Android is a mobile operating system initially developed by Android

Inc. and then bought by Google in 2005[41]. The Android operating system

software stack consists of Java applications running on a Java-based, object-

oriented application framework on top of Java core libraries running on a

Dalvik virtual machine featuring JIT compilation. It is based upon a modified

version of the Linux kernel. Section 2.5 will cover in details all the aspect of

this OS, since it is the OS chosen during the implementation of this work.

This OS was chosen among the others because it is open source, it is cur-

rently the most used (as it is shown in next Section) and it is linux based.

2.2 Market analysis

The increasing importance of mobile devices has triggered intense com-

petition among technology giants, like Google, Microsoft, Apple, and Nokia,

in order to capture a large portion of the current market. Canalys[1] in May

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS26

2011 published its Q1 2011 global country-level smart phone market data,

which revealed that Google Android has become the leading platform.

Figure 2.3: Q1 2011 global country-level smart phone market data[1].

Figure 2.3 shows the division of the market between the main OS. As

said before, Android is the leader OS with 35%, while the year before its

total was just 8.7%, making a huge step ahead. The second OS is Symbian,

whose share decreased from 31% to 24%. After the big two, Apple iOS takes

the 19% and RIM Blackberry OS the 14%, while Windows phones and Bada

phones have the 2.5% and the 3.5% of the market, respectively.

2.3 Power management in mobile OS

This section takes into account how and if power management is taken

into account in the previously described mobile OS.

• iPhone does not have the power management toolkit as Mac OS does.

Instead, the power management system in iOS conserves power by

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS27

shutting down any hardware features that are not currently being

used.

• Symbian, with its EKA2 kernel, introduces a power management frame-

work based on the concept of power domains, where each domain

is a set of processes that shares the same power management char-

acteristics. The power manager is embedded into the kernel, which

implements the power management executive calls. Device-specific

power controllers are implemented as kernel modules to manage the

different power states and sleep modes supported by the device.

• Android supports its own Power Management (on top of the stan-

dard Linux Power Management) designed with the premise that the

CPU should not consume power if no applications or services require

power. Android allows applications and services to request CPU re-

sources with wake locks through the Android application framework

and native Linux libraries. A locked wakelock, depending on its type,

prevents the system from entering suspend (WAKE_LOCK_SUSPEND)

or other low-power states (WAKE_LOCK_IDLE). If there are no ac-

tive wakelocks, Android will shut down the CPU.

Figure 2.4 shows the architecture that implements this mechanism

inside the Android framework.

The Android Framework exposes power management to services and

applications through the PowerManager class, that allows applica-

tions in the upper level to request and release wakelocks. Even user

space native libraries should never call into Android Power Manage-

ment directly, but have to use the PowerManager class. Bypassing

the power management policy in the Android runtime will destabi-

lize the system. All calls into Power Management should go through

the Android runtime PowerManager APIs.

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS28

Figure 2.4: Android Power Management architecture

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS29

2.4 The choice of Android

The OS for mobile devices chosen for this work is Android, in particular

its last version, namely Android 2.3 Gingerbread, is used.

The first reason behind this choice is the fact that Android is an open

source project, all its source code it is available via the Apache v2 license

through a public accessible repository. The Apache License requires preser-

vation of the copyright notice and disclaimer, but it is not a copyleft license,

it allows the usage of the source code for the development of proprietary

software as well as free and open source software. This license was chosen

to allow manufacturers to innovate using the platform without the require-

ment to contribute those innovations back to the open source community.

Another reason is that nowadays Android is the most used OS for mo-

bile, with a 33% part of the actual smartphone market (Section 2.2). Addi-

tionally, it has a very good community support and this is a great resource

since, when this project will be made public, community can contribute

to it. The last reason is that it is a linux-based system and both the kernel

structure and the programming language (C and Java) are well known.

The only other OS that at the moment is open source is Symbian, but

since Nokia is going to abandon this OS in favor of Window 7, Symbian

diffusion will considerably decrease due to the loss of its main manufac-

turer.

2.5 Android OS

Android[42] is a software stack for mobile devices that includes an op-

erating system, middleware and key applications. The first version was

Android 1.0, released the 23 September 2008. Current release is Android

2.3 Gingerbread, released the 6th December 2010 and based on Linux kernel

2.6.35. On February 22 2011, a tablet-only version was released, Android 3.0

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS30

Honeycomb. Android has been available under a free software/open source

license since 21 October 2008. Google published the entire source code un-

der the Apache License, a free software license that allows the use of the

source code for the development of both proprietary software and free and

open source software. This section will provide many useful details about

this operating system and its middleware, the structure of the Dalvik Vir-

tual Machine (VM), the one used in Android, and a comparison between

Android kernel and linux base kernel, on which it is based.

2.5.1 Android OS Architecture

The stack architecture of Android OS is shown in Figure 2.5. From top-

to-bottom, it is made of four main levels: Applications, Application Frame-

work, Libraries (with Android Runtime) and Linux kernel.

Figure 2.5: Android OS architecture

The Applications level contains all the key applications used by a user,

like email or SMS client, browser, calendar, maps. All applications are writ-

ten in Java language and are called Activities. In addition to the core ap-

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS31

plications found in a standard Android build, all new user applications are

inserted into this level.

The Application Framework level is a set of framework APIs used both

by core applications and by developers to build new applications. These

APIs provide access to the underlying libraries through a set of services

and managers such as:

• views: a set of components like buttons and grids used to build an

application UI;

• content providers: a system that allows applications to share data;

• resource manager: a system that provides access to extra-resources

such as layouts or

graphics;

• activity manager: the entity that manages the lifecycle of applications

and provides a common navigation back-stack.

The Libraries layer contains a set of C and C++ libraries exposed by

the upper layer to applications. This level and the kernel level below use

C/C++ language, in contradiction to the upper levels that use Java. To

make the levels communicate, even if they use different languages, a toolset

called Android NDK is used, that generates native code libraries from C and

C++ sources and wraps those native libraries in application package files (apk)

using Java Native Interface (JNI). In this layer it is also included the Android

Runtime, that contains a set of core libraries like data structures, file access,

networking and graphics and the implementation of the Dalvik Virtual ma-

chine, a VM designed for embedded environments that supports multiple

VM processes per device.

The Linux kernel layer is based on the Linux kernel with some impor-

tant differences and enhancements, that are described in details in the next

paragraph.

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS32

2.5.2 Android kernel vs Linux kernel

Android relies on Linux version 2.6 for core system services such as

security, memory management, process management, network stack, and

driver model. The kernel also acts as an abstraction layer between the hard-

ware and the rest of the software stack.

Although Android uses a Linux kernel, there are significant differences

between the Android platform stack and the conventional desktop Linux

stack. Even starting from the very first version of Android, there are some

differences between the two:

• Yet Another Flash File System, 2nd Edition (YAFFS2): Unlike PCs, which

store files on disks, mobile phones store files in solid-state flash mem-

ory chips. It provides a high-performance interface between the Linux

kernel and NAND flash devices. YAFFS2 was already freely available

for Linux, however it is not part of the standard 2.6.25 Linux kernel.

Starting from Android 2.3, ext4 filesystem is also supported.

• Alarm driver: A driver which provides timers that can wake the device

up from sleep.

• Ashmem: Standard shared memory is not available in Android, Ash-

mem has been introduced as an Anonymous or Android SHared MEM-

ory system that adds interfaces to allow processes to share named

blocks of memory. The advantage of Ashmem over traditional Linux

shared memory is that it provides a means for the kernel to reclaim

these shared memory blocks if they are not currently in use.

• IPC binder: it is an Inter-Process Communication (IPC) mechanism. It

facilitates inter process communication since data can be shared by

multiple applications through the use of shared memory. A service

registered as an IPC service does not have to worry about different

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS33

threads because the binder will handle, monitor and manage them.

The binder also takes care of synchronization between processes. It

substitutes standard SysV IPC.

• Power management: it is built on the top of standard Linux Power Man-

agement and introduces the concept of wakelocks, used by applica-

tions and services to request CPU resources (see Section 2.3)

• Low memory killer: Android adds a low-memory killer that, based on

hints from the userspace, can kill off processes to free up memory as

necessary. It is designed to provide more flexibility than the Out Of

Memory (OOM) killer in the standard kernel.

• RAM Console and Log Device: To aid in debugging, Android adds the

ability to store kernel log messages to a RAM buffer. Additionally,

Android adds a separate logging module so that user processes can

read and write user log messages.

• Android Debug Bridge: to make debugging easier, Google created the

Android Debug Bridge (ADB), which is a protocol that runs over a

USB link between a mobile device running Android and a desktop

PC.

• PMem: the PMem driver is used to manage large physically contigu-

ous regions of memory shared between userspace and kernel drivers.

2.5.3 Dalvik machine

Dalvik[43] is the VM in Google Android operating system, originally

written by Dan Bornstein. Before execution, Android applications are con-

verted into the compact Dalvik Executable (.dex) format, which is designed

to be suitable for systems that are constrained in terms of memory and pro-

cessor speed, on an OS without swap space.

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS34

Unlike Java VMs, which are stack machines, the Dalvik VM is a register-

based architecture. Starting from version 2.2, Dalvik VM in Android has a

JIT compiler. JIT compilers represent a hybrid approach, with translation

occurring continuously, as with interpreters, but with caching of translated

code to minimize performance degradation. It also offers other advantages

over statically compiled code at development time, such as handling of

late-bound data types and the ability to enforce security guarantees.

Dalvik uses its own bytecode, not Java bytecode. Moreover, Dalvik has

been designed so that a device can run multiple instances of the VM effi-

ciently. Multiple java classes are included in a single .dex file and Java byte-

code is also converted into an alternate instruction set used by the Dalvik

VM. An uncompressed .dex file is typically a few percent smaller in size

than a compressed .jar (Java Archive) derived from the same .class files.

2.5.4 Android security

Android is a privilege-separated operating system, in which each appli-

cation runs with a distinct system identity (Linux user ID and group ID).

Linux thereby isolates applications from each other and from the system.

In addition, each application runs on a different VM instance, and different

instances can communicate only using specific interfaces, like the Binder

interface, but the kernel is the only responsible to sandbox each applica-

tion.

The main point in Android security is that no application, by default,

has permission to perform any operations that would adversely impact

other applications, the operating system, or the user. Every critical oper-

ation, such as reading user’s private data or reading another application

data has to grant an explicit permission. Application must explicitly share

resources and data by declaring the permissions they need to operate, if

those operations are out of the sandbox the kernel has applied to each ap-

CHAPTER 2. OPERATING SYSTEMS FOR MOBILE DEVICE SYSTEMS35

plication. No permission can be acquired at runtime, instead applications

declare the permissions they need statically and those are stored in a file

specified for each application.

All android applications have to be signed with a certificate whose pri-

vate key is held by its developer. This certificate has the only reason to dis-

tinguish application authors, it does not need to be signed by a certificate

authority.

Practically, Android security policy forces applications that want to com-

municate to use specific interfaces to implement IPC calls (e.g. the Binder

interface) and to expose the permissions they want to obtain in a XML file.

Chapter 3

Proposed Approach

Mobile devices are an example of fluctuating systems, constrained both

in computing and power resources. In these particular devices, self-aware

systems can help to best manage those resources. The development of self-

aware adaptive computing systems is strictly linked with the basic capa-

bilities the ODA loop provides: observation, decision and action. How to

implement at the best this feedback loop is the first step in building a self-

aware adaptive system.

The first Section of this Chapter shows the vision and the approach pro-

posed by the Computing in Heterogeneous, Autonomous ’N’ Goal-oriented

Environment (CHANGE) group, in which this work is integrated. One of

the main group goal is to build a system able to run on different kinds of

computing devices, from server to mobile devices, keeping the same un-

derlying structure.

In the current state of the art of the project, implemented features are

build on top of a Linux environment, for desktops and servers. Aim of this

thesis work is preparing the enabling technologies to export the CHANGE

approach on mobile devices and proving that this approach can be effective

even in a mobile environment.

36

CHAPTER 3. PROPOSED APPROACH 37

3.1 The CHANGE approach

CHANGE is a research group of the Dipartimento di Elettronica e In-

formazione (DEI) of the Politecnico di Milano. The research objective of the

group is the creation of self-aware devices able to operate in different en-

vironments, from mobile devices to desktops and servers. The CHANGE

approach takes into consideration the whole system including hardware

and software components, divided and grouped in three separate layers.

The model for autonomic computing systems, that is extended on all the

layers, is the ODA control loop. One of the final aims of the group is to

allow application developers to concentrate their efforts only on applica-

tions, leaving all the architecture-dependent details to be managed by the

autonomic features of the systems where applications will be deployed.

The system model shown in Figure 3.1 explains how CHANGE vision

will become a complete adaptive system. Starting from the bottom, the first

one is the Adaptive Hardware Architecture layer, on top of it there is the Self-

Aware and Adaptive Operating System which supports a layer composed of a

set of Adapting Applications.

Each layer has mechanisms to communicate with the adjacent layers

and with the external environment.

In the Adaptive Hardware Architecture layer we find hardware com-

ponents divided into categories, e.g cores, memories, devices and reconfig-

urable devices. Adaptive Applications, on the opposite side, are heartbeat-

enabled applications that can monitor themselves or be monitored by the

OS. Those applications can rely on a JIT compilation[44].

The architectural and the application layers exchange data with the

middle one. The Operating System Layer collects the monitoring infor-

mation from those two layers, information that is used by an optimiza-

tion engine based on the ODA loop. The ODA loop is used to optimize

resource management through observation and control interfaces that are

CHAPTER 3. PROPOSED APPROACH 38

Figure 3.1: The system model in CHANGE vision

added to all applications, to software and hardware components. The OS

uses component performance models to decide how to meet a goal given

the system global conditions. To reach a goal, the OS can rely on many

adaptive mechanisms, e.g. hot-swap[45], adaptive locks[46, 47] and adap-

tive schedulers[48, 49].

The next section describes the terms and concepts widely used in this

Chapter, while Section 3.1.2 describes more in details the adaptive loop in-

tegrated in this middle layer.

3.1.1 Terminology

This Section explains the terms that are frequently used in this work,

some of them will also be described later in this Chapter into details.

System Device environment, usually composed of the OS and the set of all

applications running on it.

CHAPTER 3. PROPOSED APPROACH 39

Application Software written to accomplish a specific task.

Process Specific instance of an application.

Monitored process (application) Process that is making one or more enti-

ties of the system aware of its performance goals and actual progress.

Monitor Entity equipped with sensors able to gather information from the

monitored processes.

Actuator Component able to execute an action to modify an application’s

behavior.

Service Component able to use one or more actuators to perform changes

on monitored applications.

Target Objective of a service.

Policy Strategy to be used inside a service to decide how to use an actuator

on a target application.

Services Coordinator (SC) Entity that gathers and collects information from

monitors, knows the list of monitored applications and available ser-

vices and decides which service activate on a specific target.

3.1.2 ODA loop

Figure 3.2 illustrates the CHANGE vision on how to implement the

ODA loop.

The observe phase collects performance data from all the adaptive ap-

plications, that express their intention to be monitored exposing their goals

and current performance through a monitor API, e.g. Heartbeats API[13,

21].

Those data are collected by a central element, which has been called

Services Coordinator. This entity has a global vision of the system, knowing

CHAPTER 3. PROPOSED APPROACH 40

Figure 3.2: CHANGE ODA loop

which applications are currently being monitored, their goals and which

policies and actuators are available to meet these goals. Participants in the

decide phase are the SC, a set of policies and a set of targets. The act phase is

performed by one or more actuators, that are in charge of executing specific

actions on the system to vary actual performance.

A combination of a policy, a target and one or more actuators is called

a Service. Using this notation, the SC will be aware of all the available ser-

vices, where hypothetically a service is each combination of components

able to vary a system condition and in this way to make a step toward a

goal.

Even though in this case it is used a centralized approach, with a sin-

gle component (the SC) that acts as a decision engine, also a self-adaptive

application can be mapped into the proposed approach. In this situation,

the SC is bypassed, the application monitors itself and it chooses a suitable

actuator; monitor and actuators are integrated in the application itself.

CHAPTER 3. PROPOSED APPROACH 41

3.1.3 Mobile devices: a different approach

A mobile device is by nature a constrained system: computing resources

are usually limited and the life of the entire system is based on the device

battery lifetime. Therefore, we consider this scenario as the perfect one for

a self-aware approach, since we think that an adaptive system is suitable

in every environment where resources are constrained and have to be care-

fully managed.

The first step necessary to apply the CHANGE approach to mobile de-

vices, is the analysis of the requirements of our mobile system and the iden-

tification of its goals, highlighting how they differ from the general case.

The second step will be, given the results obtained from the analysis,

to identify a minimum set of elements necessary to prove the effectiveness

of this approach, within the ODA loop. Preparing the enabling technolo-

gies and validating such approach will be the base for future works in this

constrained environment.

3.2 Analysis phase: requirements, scenarios and goals

During the development phase, we were facing the problem to know

the characteristics of the external environment to find the requirements our

adaptive system should have to respond to our needs.

As we previously said, the environment of our system is fluctuating and

constrained both in terms of computing and power resources. Processing ca-

pabilities are reduced, since at the moment most mobile devices are single-

core and to meet low power constraints the Central Processing Unit (CPU)

maximum frequency is kept low. The energy resource is not renewable by

itself and it has to be carefully managed. It is fluctuating, both because in-

ternal device conditions can vary over time and because external device

conditions can modify our device behavior. The signal strength is a param-

CHAPTER 3. PROPOSED APPROACH 42

eter that can influence the system performance. In the case of low signal

strength or a signal fluctuating between two different nets (e.g. 3G and

EDGE), the system will make a huge effort to keep the signal stable, and

this causes an unusual power consumption.

These events are usually unpredictable, so what we can do is to use the

available resources at their best when we can control them, that includes

saving power if there is no need to waste it.

Keeping those needs in mind, we have answered to the 6 questions ex-

plained in Section 1.2.1:

Where : the loop will be integrated in the OS, as an extension of it;

When : when a process is under or over performing and whenever there is

a a possibility to make a better use of a resource;

What : changes are applied to application specific parameters, or global

parameters;

Why : to make a better use of the available resources while keeping a good

quality of service in running applications;

Who : applications can manage themselves, if they are self-adaptive, or be

managed by an external observer and decision engine, if a centralized

approach is used;

How : available actions can improve or decrease performance or resources

usage.

In addition, the self-aware system should be lightweight and transpar-

ent to the user.

Two scenarios are possible and can coexists in this system. In the first

scenario applications are self-monitored and self-adaptive, while in the sec-

ond one, they are monitored by an external entity (the Services Coordina-

CHAPTER 3. PROPOSED APPROACH 43

tor) which can enable actuators to perform actions to modify global sys-

tem conditions. Those two scenarios are not mutually exclusive. The only

restriction is that an application is denied to modify global parameters, be-

cause it does not have a global vision of the system condition. On the other

hand the SC, if necessary, can modify single application parameters. In de-

tails:

• a self-adaptive application integrates the ODA loop inside the appli-

cation itself. Such an approach is used when actions are performed to

tune application specific parameters, and a global vision of the system

is not necessary. In this case, only application specific performance

goals can be taken into consideration.

• a centralized approach uses an external observer (called SC) to mon-

itor all the applications and activate services on them. With such ap-

proach, there is a global vision of the entire system and system wide

actions can be applied. An external observer is necessary to monitor

and act on power consumption, since changes in power management

will reflect changes in all the applications running in the system.

Performance has always been the primary issue for every kind of de-

vices, but since we are dealing with mobile devices, also power consump-

tion is playing a key role. These goals are obviously not isolated the one

from the others. Power reduction cannot be blindly performed, just to save

as much energy as possible, because this may cause a loss in performance

and a discomfort for the user. Performance and power goals have to be

taken into consideration at the same time, to reach an adequate tradeoff

between the two.

The term performance used in the sense of "as-fast-as-possible execu-

tion" is not what we want in a mobile environment. Instead a concept of

Quality Of Service (QoS) will be used, determined within an heart rate

CHAPTER 3. PROPOSED APPROACH 44

window between the minimum heart rate and the maximum heart rate.

The performance goal will ensure to provide a user an adequate QoS, with

respect to the type of applications the user is demanding and the general

system conditions. Efforts will be done to ensure a minimum QoS in vary-

ing system conditions, not to provide always the best possible performance

for each application.

A power goal is used to ensure to not use more energy than required.

From an energetic point of view, we have divided applications in two main

groups:

• Streaming applications: those applications require the processor usage

for the entire length of their execution. An example is an application

that streams a source of data, such as a video stream or an audio

stream.

• One-shot applications: those applications have to perform an intensive

calculation in a specific moment of their execution, while for the re-

maining time they require few or none processor resources. An exam-

ple is a PDF reader or an images viewer: once the requested files are

loaded from disk, CPU usage is almost zero.

Different services, or different actions belonging to a certain service, are

necessary to deal with applications with different needs. Note that these

categories are just examples of classes of application needs, used to identify

services and tests for this work. Further analysis are necessary to identify

more specific categories.

Apart from these two main goals, many other smaller or composed

goals can be optimized in a mobile device. Those goals are usually not iso-

lated from the main two goals just described, but they are often parts of

them related to a specific problem. An example is the case of network man-

aging, whose target goal can be a mixed goal composed by a power goal

CHAPTER 3. PROPOSED APPROACH 45

and a stability goal. In this case, the primary goal is to avoid net fluctua-

tion to achieve a better net stability, but the side effect is a reduction of the

power dissipation due to the continue change of network.

3.3 Adaptive System structure

Based on the analysis provided in the last Section, some elements are

necessary to implement an aware system for a mobile device. The core of

the adaptive system is based on the ODA loop (Observe-Decide-Act) and

Figure 3.3 represents the situation.

Figure 3.3: System structure: monitors are able to observe specific parameters, the Services

Coordinator manages different services that can be based on different actuators or on the

same actuator with different policies. Applications are allowed to bypass the SC and self-

control themselves.

To prove the effectiveness in different scenarios and situations we may

need:

• A set of monitors, both to monitor performance, power consumption

or any target that the system wants to optimize;

CHAPTER 3. PROPOSED APPROACH 46

• A Services Coordinator, to decide which services activate on the ap-

plications;

• Self-adaptive applications, that will gather data directly from moni-

tors bypassing the SC;

• Applications controlled by the SC;

• Different services, to respond to different application needs;

• Each service will need a policy and at least one actuator.

These components together are the base of the ODA loop, whose phases

are now explained in details.

3.3.1 Observe

Observation is a crucial phase in the loop, and good outcomes relies on

the sensors and monitors ability to gather information from the system.

To monitor performance, the proposed solution makes use of the Appli-

cation Heartbeats API[13, 21]. The principle is the same in both scenarios:

each application is responsible for deciding its goals and expressing them

in such a way that they can be used by the heartbeat monitor. Then, the

application takes care of issuing an heartbeat each time there is a crucial

point in the code, in which current performance should be monitored. A

monitor is instantiated for each application that have to be monitored. It is

integrated inside the application itself, in the case of a self-adaptive appli-

cation, or inside the SC, if the application is externally controlled.

To monitor power consumption, in this approach there is currently no

sensors and no monitors able to gather directly such information. The pro-

posed solution will rely therefore on indirect information, such as the cur-

rent processor frequency or voltage, or informations relative to the battery

discharge provided by Android.

CHAPTER 3. PROPOSED APPROACH 47

To estimate the variation of the dynamic power consumption caused by

actions, it is possible to use a theoretical model and the data received from

the sensors available, that include the CPU frequency and voltage.

In Chapter 1 the formula to estimate the CPU dynamic power consump-

tion is is defined as:

Pdynamic = KCoutV
2
ddf (3.1)

We know that the output capacitance Cout does not vary over time.

For our purpose, that is to estimate if a service is able to reduce power

consumption, we can assume that the average number of transitions in a

clock cycle K is almost constant for different executions of the same process.

If we consider two different executions of the same application over the

same input data, the difference in power consumption between the two

executions will depend only on frequency and voltage, parameters that can

be measured by our sensors.

If frequency and voltage values change during the application execu-

tion, all the periods of time that have different frequency and voltage val-

ues have to be considered separately.

Unfortunately, Android provides little support for knowing the power

consumption of the system, and no data are provided about the power con-

sumption of a single application. Apart from information about the CPU

current frequency and voltage values, it is possible to retrieve information

about the current battery charge status and an estimation of the percentage

of battery consumed by certain types of applications during the discharge

time. In [50] is shown how both third parts tools, e.g. the Intel’s PowerTOP,

and the Android built in power meter are demonstrated to be inadequate

for accurately measuring the power consumption of Android devices. In

[51] it is proposed a precise model and a tool that can be used to have more

precise estimations, but still there is no way to know the power consumed

by a specific application in a certain amount of time. Future works can in-

CHAPTER 3. PROPOSED APPROACH 48

vestigate in that directions, since it is fundamental to have a better power

monitoring system.

3.3.2 Decide

The decision phase is performed either by the application itself or by

an external observer. In both cases, in this phase the data received from the

monitoring phase are parsed and analyzed, and a decision of which action

to be performed is taken.

In the case of a self-adaptive application, data about the current heart-

beat rate are analyzed and the decision follows a simple set of rules. The

functioning of the algorithm is based on a static decision tree (shown be-

low). This is not intended to be the best solution, but it is just an enabling

technology to prove the effectiveness of the approach.

Is current heartbeat rate between min and max?

Yes

Wait and retry

No

Is it below min?

Yes

Choose an action to increase the rate

No

Choose an action to decrease the rate

In the case of a centralized approach, the decision process will use the

SC in conjunction with a set of available policies and targets. The first deci-

CHAPTER 3. PROPOSED APPROACH 49

sion the SC has to perform is on what service to activate. Then, each service

provides one or more actions (available through actuators) that can be per-

formed to modify a behavior. It is duty of the policy integrated into the se-

lected service to choose which actuator should be activated on the selected

application.

At the moment, there is no way for the engine to know which is the

potential of each service (i.e. how much a given service can improve per-

formance) and, more in general, it does not have a description of the service

characteristics. The engine only knows if a service is available or not, the

list of the actions associated with it and its target.

3.3.3 Act

In the proposed implementation, actuators are integrated into the ser-

vices and are responsible for performing the action selected by the policy

associated with the service. Each service has at least two actions associated

with it, one UP action and one DOWN action. Those actions, specific for

each service, have the generic purpose of increasing o decreasing a certain

parameter. For specific services they can have different meanings, e.g to

select the next or previous implementation of an algorithm.

Examples of actuators are:

• Application knobs: this group identifies each service able to modify

and tune a specific parameter of the application taken into considera-

tion. Examples are: tuning the buffer size in a streaming application,

changing the number of rounds in an Advanced Encryption Standard

(AES) encryption or its key size.

• Application implementations: an application may use different algo-

rithms to complete the same task, usually with different performance

in time or quality, depending on the environment conditions. An ex-

CHAPTER 3. PROPOSED APPROACH 50

ample is whether to use Data Encryption Standard (DES) or AES im-

plementation to perform an encoding procedure.

• Core allocation: in a multi-core architecture, assigning a specific core

to each process will eliminate time sharing among processes. In addi-

tion, if cores are heterogeneous, each process can run on the best core

available for its needs, whether they are performance needs or power

saving needs.

• Memory allocation: if a process requires high memory resources (memory-

intensive process), a memory allocator could optimize it to acquire

memory easily and efficiently.

• Niceness adjusting: modify a process niceness may give this process

an higher priority over the other running processes and increase its

performance. Even if this enhancement can be done by the applica-

tion itself, it is a better idea to have anyway a global vision of all the

running processes.

• Frequency scaling: it is a common way of reducing the power con-

sumption of the overall system, by reducing the processor clock fre-

quency. Among the others, two usages of this actuator are relevant:

in the first case, under clocking is used for the entire length of the ap-

plication, in the second case over clocking is used until an intensive

computation finishes, and then the CPU is put in an idle state.

• Voltage scaling: this actuator is similar to the previous one, but it

acts on voltage rather than frequency. It is hard to implement as a

standalone service, but usually voltage is reduce or increased auto-

matically when frequency is changed.

Table 3.1 shows a classification of the previous described actuators de-

pending on whether they act on performance or power, and they are application-

CHAPTER 3. PROPOSED APPROACH 51

specific or system-wide tuners.

Table 3.1: Actuators classes classification

Performance Power
Application

specific

System

wide

Application knobs

Application implementation

Core allocation

Memory allocation

Niceness adjusting

Frequency scaling

Voltage scaling

3.4 Applications

An essential part of the adaptive system is represented by applications.

Applications as we saw can be self-adaptive or controlled by the SC. De-

pending on the application type, only certain actions can be performed and

certain actuators can be used. The scope of this Section is to give more de-

tails about the actuator types available depending on the application type

and about the role of the SC.

3.4.1 Self-adaptive applications

In self-adaptive application, the ODA loop is fully integrated into the

application itself. An application, to correctly implement the loop, should

both issue and monitor its heartbeats, have at least one service available

and a decision system. We decided that a self-adaptive application should

CHAPTER 3. PROPOSED APPROACH 52

deal only with local actions and modify only internal parameters of the

application itself. From Table 3.1 , application knobs and implementation

changing are the two actuators classes belonging to this group.

Application knobs are a simple way of changing an application perfor-

mance while keeping its functionality. Many parameters in an appli-

cation determine the quality of its results and many of those can be

changed at runtime. Taking an example from cryptography, perform-

ing an encryption with a different number of rounds or a different

length of the key will vary the level of security of the generated en-

crypted text. But lowering this parameters and still keeping a mini-

mum level of security, that will depend on the application that will

use that text, can reduce a lot the time spent performing the opera-

tion.

Changing algorithm implementation is another way of changing perfor-

mance that can be used by applications that perform a task that can

be done by different algorithms with different performance. Going

back to our cryptographic example, an encoding can be performed

using the DES algorithm or the AES algorithm, that provide different

security levels and different execution times. Changing algorithm is

slightly more difficult than tuning a parameter, because we have to

reach a quiescent state before performing the algorithm change.

The mechanism that handles the change of implementation is called

hot-swap. Hot-swap can be defined as the dynamic insertion and re-

moval of code in running systems[16]. In this work hot-swap is used

only to change between two different software implementations, but

other solutions[45] have been proposed to switch between software

and hardware algorithms. Many aspects have to be taken into account

to ensure that the transition is smooth and guarantees data integrity.

CHAPTER 3. PROPOSED APPROACH 53

For this to be possible K42[16] researches have identified three essen-

tial issues:

• Quiescent state: before it is possible to hot-swap, the involved

component must be brought into a safe state. The swap can only

be done when the component is not currently being used.

• State transfer: when it is safe to perform the hot-swap, the sys-

tem has to decide what state needs to be transferred and how to

transfer it to the new component.

• References swap: in case the swapped element is referred by its

clients (for instance, to allow bidirectional communication), the

system has to know how to swap all of the references held by the

clients of the component so that the references refer to the new

component.

3.5 Application monitored by the SC

In the centralized approach, the SC is the central element that is used

an as external observer that collects application monitoring data and decide

which sensor to activate. A central element is needed to have a global vision

of the system to apply system wide changes. Thus, it needs to be aware

of what applications have running processes heartbeat-enabled and what

services are available. This is called discovery phase.

Then the SC will start monitoring each process, initializing a heartbeat

monitor for each of them. This is the monitoring phase and it will take care

of the way SC and applications can communicate.

For each monitored application, if an action has to be performed, the

SC selects a suitable service and executes a service action on the target pro-

cess. This is called decision phase. These steps are continuously performed

to detect new processes and to monitor them.

CHAPTER 3. PROPOSED APPROACH 54

A shared memory area is used to manage all the information flows be-

tween the applications and the SC.

Applications will use the shared memory to:

• initialize their intention to be monitored;

• express their goals;

• issue heartbeats.

The SC will use the shared memory to:

• be aware of each process that have to be monitored;

• get the goals and the heart rate of each process.

Each application not only expresses its goals during the heartbeat ini-

tialization phase, but it can help the SC to be aware of its needs, using tags

associated to each heartbeat. The SC, depending on the service chosen and

its policy, can use those hints or ignore them.

3.6 Services

A service has been identified as an entity composed of a Policy, a Target

and one or more Actuators. In this section are proposed the structures of

different services and their components.

The first set of services is composed by two services that use the same

actuator, a frequency scaler. It is a simple yet effective way of influencing

the power consumption of a system, since increasing or decreasing the CPU

clock frequency will proportionally scale the energy consumed by the sys-

tem, but this actuator can also be effective in increasing an application per-

formance. Objectives and policies are specific for each service.

Frequency scaling mode varies depending on the type of applications

we are dealing with:

CHAPTER 3. PROPOSED APPROACH 55

• for streaming applications, that require constant CPU resources, a good

solution is to find the minimum frequency at which every running ap-

plication with streaming characteristics can keep its minimum QoS.

• for one-shot applications, that have to perform mainly only one inten-

sive computational task, a good solution is to over clock the CPU to

the maximum frequency possible and keep this frequency for the en-

tire duration of the task. Then, after this operation has completed, the

CPU can be set to an idle state, in it which it consumes almost zero

energy.

Thinking about those two classes, we have identified two services that

use the the frequency scaler actuator with different targets and different

policies.

The target of the first service is power. The service tries to minimize

the power consumption of the system given the currently running appli-

cations. The service policy at first checks the list of frequencies supported

by the device. Then, it retrieves the current frequency. Finally, the new fre-

quency value is set to the value previous to the current one in the list.

The target of the second service is performance. Given an application

that have to perform a computational task, the policy will make the appli-

cation compute its task as soon as possible, increasing the frequency at the

maximum value available in the device. This policy uses over clocking fea-

tures, if the device support this capability. When the task has finished, the

CPU frequency is scaled down.

While the first set of services is intended to react to and perform internal

changes, the second set of services is able to respond to external changes.

The first service is able to observe the network fluctuation and, in case of

frequent changes between different networks, it will stabilize the connec-

tion on a stable net. The target of this service is power/stability, since the

frequent change of network will cause an excessive power consumption

CHAPTER 3. PROPOSED APPROACH 56

and the data connection instability. The second service will ensure that the

network type selected is the network that will ensure both a minimum ap-

plications performance and the minimum power consumption.

Services that use the same actuator, even if with different targets, cannot

be activated at the same time. For this reason the SC has to know which

services are available and which ones are not available due to the fact that

their actuators are already in use.

3.7 Summary

In this Chapter the proposed approach of the work has been outlined.

Following the CHANGE vision of autonomic systems, this work aims to

propose the same approach on mobile devices. We have started with an

analysis of the goals and the requirements of an adaptive system for mobile

devices. The main targets are power and performance and it is important to

find an adequate tradeoff between the two. We have identified two possi-

ble scenarios for applications. In the first case, applications are self-adaptive

and all the phases of the ODA loop are integrated in the applications them-

selves. Applications that do not have self-adaptive features are controlled

by and external entity called SC. The SC can retrieve the information about

applications from different monitors. The fundamental monitor is perfor-

mance monitor, that retrieves data about the applications heart rates. Other

monitors can observe e.g. the CPU frequency or the network status. The

SC is aware of the list of the monitored applications and of the available

services. Several services are currently implemented in the system, each

one with different targets and actuators. The SC chooses which service to

activate on each application depending on its needs.

Chapter 4

Proposed Implementation

In Chapter 3, we have identified the minimum set of components needed

in our system. These components include two monitors, one for perfor-

mance and one for power, a service manager and two services that use the

same actuator, a frequency scaler.

To implement a performance monitor, heartbeats API is used and have

to be integrated into the Android framework to be used both from native C

applications and from Java applications. Then, to both monitor frequency

and implement the frequency scaler actuator, a driver that allows changing

the frequency at runtime is needed.

In the next Sections is shown how these requirements have been imple-

mented using Android features.

4.1 Porting Heartbeats API

To implement the monitoring phase, the first step was to port the Heart-

beats API to the Android platform. Then, heartbeats API should be made

available both to native C applications and to Java applications. In order to

accomplish this task, two libraries have been developed, one native shared

library written in C and one Java library that uses the native implementa-

57

CHAPTER 4. PROPOSED IMPLEMENTATION 58

tion through the JNI framework.

Heartbeats API is written in C language and is provided in two different

versions: one file-based and one shared-memory based. In the initialization

phase the memory necessary for maintaining heartbeat states is allocated.

In the file-based implementation this memory takes the form of a binary

file, while in the shared-memory implementation the initialization function

allocates a buffer in the POSIX shared memory using the shmget and shmat

functions. Both versions have been ported to the Android platform.

4.1.1 File based

The file-based version of the heartbeat library can be ported to Android

without any source code modification, as it uses only compatible functions.

These are the steps performed to build the library:

1. For compatibility reasons, C code has to be wrapped into CPP files as

it is the standard for Android library source code.

2. The correct namespace has to be added, the standard namespace has

been used and it is called android.

3. A specific Android makefile has to be created to build the library in

the framework.

Android makefiles[52] have a specific syntax and the mk extension, but

apart from this, they do not differ from a common unix makefile. The in-

formation that have to be provided in the makefile are the module name

(that will also be the output name), which are the sources that have to be

compiled, the name of the static and shared libraries and a build type for

each module. The framework will take care of placing the output of the

compilation based on the build type provided. Common build types are:

BUILD_EXECUTABLE for a binary file, STATIC_LIBRARY and SHARED_LIBRARY

for native libraries, JAVA_LIBRARY for java libraries.

CHAPTER 4. PROPOSED IMPLEMENTATION 59

4.1.2 Shared Memory based

The Android kernel does not provide support to POSIX shared memory,

so the shared memory version of the heartbeat library as it is cannot be used

on the Android platform. The proposed solution to port the shared memory

version on Android makes use of ashmem (Android Shared Memory) and

the Binder interface.

Android uses its own shared memory implementation, called Ashmem.

Ashmem is integrated into the Android kernel, the memory allocated with

this implementation is virtual and not physically contiguous. If physically

contiguous memory is needed, pmem can be used, but it has no reference

counting and is not part of the standard Android kernel. Ashmem has ref-

erence counting so that, if many processes use the same area, it will not be

removed until all the processes has released it.

First it is created a file descriptor and then this will be used to allocate

a memory map through a call to mmap() function, as it is illustrated.

1 fd = ashmem_create_region("SharedRegionName", size);

2 data = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

The problem is that the memory pointer ("data" in our example) just

created is process specific and cannot be shared, and the same occurs to

the file descriptor. Additionally, for security reasons, the name assigned to

the region in the call to the function ashmem_create_region() in the example

above is not shared between processes. That means that another process

that wants to access the same shared memory area cannot just use a ash-

mem_create_region() with the same name to get access to the same physical

memory area.

The solution generally used in Android is to share the file descriptor

with the binder interface, since the Binder has special functions that can be

used to transfer file descriptors over its interface. Next Section shows how

CHAPTER 4. PROPOSED IMPLEMENTATION 60

to use the Binder interface in conjunction to ashmem to allocate a shared

memory area.

4.1.3 Binder Interface to implement a shared memory

Binder interface has been used to share a memory area between pro-

cesses. This shared memory area will be used in the shared memory based

version of the Heartbeats library and the same area will be used also by the

SC to retrieve the list of processes that have to be monitored.

Binder is a kernel device driver used to achieve efficient, secure IPC. De-

velopers can create their own Binder clients and servers. Servers generally

subclass the android Binder class and implement the onTransact() method,

whereas clients receive a Binder interface as an IBinder reference and call

its transact() method. Both transact() and onTransact() use instances of Parcel

class to exchange data efficiently.

An implementation of the Binder Interface is used to allocate a shared

memory area and to make it available to the Heartbeats API. A client-server

architecture is required: applications will act as clients and the service,

named HeartBufferService, is the server-side application.

Figure 4.1 shows the client and the server stacks, on the left and on

the right respectively, that a generic application and the HeartBufferService

must follow to communicate through the Android Binder Driver.

At the highest level, an application that wants to access the shared mem-

ory, should get a connection with the HeartBufferService through RPC calls,

and then request the memory base address. The memory is physically allo-

cated into the server address space, so the service knows the real memory

base address and can communicate it to the client applications.

This high level call is pushed down to the underlying levels, where the

objects BpHeartBuffer and BnHeartBuffer, that implement BpInterface and

BnInterface, communicate using the transact() and onTransact() calls. The

CHAPTER 4. PROPOSED IMPLEMENTATION 61

Figure 4.1: Communication through the Binder Driver

lowest levels are BpBinder and BBinder that are allowed to communicate

with the Android Binder kernel driver and can rely on IPC calls to exchange

the memory address.

Once the client knows the base memory address, it can access the mem-

ory area.

This stack structure is implemented into the Binder framework as a set

of interfaces. Clients and servers that want to share data using Binder have

to implement those interfaces.

The framework has a class named IInterface that is the base of all user-

defined interfaces. Its principal public method is asBinder(), used to retrieve

a reference to the IBinder interface.

The IBinder interface describes the abstract protocol for interacting with

a remote object. The key IBinder API is transact() matched by Binder.onTransact().

These methods allow to send a call to an IBinder object and receive a call

coming in to a Binder object, respectively. The data sent through transact() is

a Parcel, a generic buffer of data that also maintains some metadata about

its contents. The metadata is used to manage IBinder object references in

CHAPTER 4. PROPOSED IMPLEMENTATION 62

the buffer, so that those references can be maintained as the buffer moves

across processes. The Parcel class can be seen as a generic container for a

message (data and object references) that can be sent through an IBinder.

BBinder and BpBinder are the classes that implement the IBinder in-

terface for the client and the server side, respectively.

Except for these generic classes and interfaces, it is necessary to imple-

ment other ones to manage our specific communication through the binder

interface. Specifically:

• IHeartBuffer it is the interface that implements a generic IInterface,

used with BnInterface and BpInterface, client and server interfaces

respectively, that have to perform transact and onTransact operations.

The IHeartBuffer interface provide a function called getBuffer, used

to retrieve the shared memory buffer address, that is implemented in

two different ways on client and server sides.

• BpHeartBuffer is the client side class that extends BpInterface through

IHeartBuffer interface. It has to implement the getBuffer() function on

the client side through a transact call, that will give as result a refer-

ence to the memory passed through the IHeartBuffer interface.

1 sp<IMemoryHeap> getBuffer()

2 {

3 Parcel data, reply;

4 sp<IMemoryHeap> memHeap = NULL;

5 data.writeInterfaceToken(IHeartBuffer::getInterfaceDescriptor());

6 // This will result in a call to the onTransact() method on the

server

7 remote()->transact(GET_BUFFER, data, &reply);

8 memHeap = interface_cast<IMemoryHeap> (reply.readStrongBinder());

9 return memHeap;

10 }

• BnHeartBuffer is the server side class that extends BnInterface through

IHeartBuffer interface. Its implementation of getBuffer() is a simple

CHAPTER 4. PROPOSED IMPLEMENTATION 63

return to the available shared memory. More importantly, this class

must override the onTransact() method, provided in the BnInterface as

a pure virtual method. This method in our case has to write a binder

to the allocated memory area, to make this binder available on the

client side. This action is performed whenever a transact call is per-

formed on client side.

1 CHECK_INTERFACE(IHeartBuffer, data, reply);

2 sp<IMemoryHeap> Data = getBuffer();

3 if (Data != NULL)

4 {

5 reply->writeStrongBinder(Data->asBinder());

6 }

• HeartBufferService is the real server class that extends BnHeartBuffer.

When the server is firstly initialized, a memory area is allocated as

MemHeapBase, a library class used to allocate a memory using mmap

and ashmem. This class has a specific interface called IMemoryHeap

that can be transferred through the Binder framework. Additionally

on initialization, the service has to register itself to the ServiceMan-

ager with a unique name, for its future identification.

Figure 4.2 shows how the presented classes are related.

Classes colored in Orange are defined in binder and are the base classes

and interfaces that have to be implemented to make a binder connection.

Classes colored in Blue are utilities classes, while classes in Yellow are the

classes implemented to share a buffer for Heartbeats API communication.

The RefBase class implements basic reference counting facility and the

template class sp refers to strong pointer implementation. Both RefBase and

sp types indicate that binder objects are reference counted.

How can a client use this architecture to retrieve the address of allo-

cated buffer? It can use the function getBufferMemPointer, that will execute

CHAPTER 4. PROPOSED IMPLEMENTATION 64

Figure 4.2: Binder implementation class diagram

CHAPTER 4. PROPOSED IMPLEMENTATION 65

all the necessary steps. The client gets a service reference from the service

manager, it retrieves the binder interface and than calls the transact method

using the getBuffer function.

1 unsigned int * getBufferMemPointer(void)

2 {

3 static android::sp<android::IHeartBuffer> heartBuffer = 0;

4 if (heartBuffer == NULL)

5 { android::sp<android::IServiceManager> sm =

android::defaultServiceManager();

6 android::sp<android::IBinder> binder;

7 binder = sm->getService(android::String16("vendor.heart.Buffer"));

8 if (binder != 0)

9 { heartBuffer = android::IHeartBuffer::asInterface(binder); }

10 }

11 if (heartBuffer == NULL)

12 { LOGE("The HeartBufferServer is not published");

13 return (unsigned int *)-1;

14 }

15 else

16 {

17 receiverMemBase = heartBuffer->getBuffer();

18 return (unsigned int *) receiverMemBase->getBase();

19 }

20 }

Figure 4.3 shows the sequence diagram of the initialization phase and

of a client call, showing how the different classes interact.

When the memory is allocated by the service, its dimension in bytes

has to be chosen. Then, the block of memory is converted to a structure,

which is composed of an integer, used to count the registered applications,

and a list of heartbeat_state and heartbeat_log for each application. There

is no need to store other information about each process in this structure,

because some useful information, e.g. the process pid, are already stored in

the heartbeat_state of each application.

CHAPTER 4. PROPOSED IMPLEMENTATION 66

Figure 4.3: Sequence diagram of a client call

CHAPTER 4. PROPOSED IMPLEMENTATION 67

4.2 Native library Implementation

To make native C applications use heartbeats API, these functions have

to be compiled into a shared library.

Each application that wants to initialize heartbeats API and the SC itself

can use this library and they are clients in the process of retrieving the ad-

dress of the shared memory from the binder interface. This process is any-

way transparent to applications, because the functions to access the shared

memory have been integrated inside the heartbeat API shared memory im-

plementation. The client function getBufferMemPointer is used directly in

the library, the address is retrieved and then it is casted to the structure rep-

resenting the shared memory. This phase is performed in the heartbeat_init

function, and once it has completed, the shared memory can be used in all

functions of heartbeats API.

The HeartBufferService has to be available every time a function re-

quires to access the shared memory. It has been implemented as a back-

ground service and included in the init.rc list of the processes that are exe-

cuted at the OS start.

4.3 From native library to Java library

Since our library is written in C++ and compiled as a native shared li-

brary, in order to use the Heartbeats API also into Java applications, library

functions have to be exported and wrapped into Java functions using NDK

and JNI. The Android NDK is a toolset that lets you embed components

that make use of native code in your Android applications. Using the JNI

framework, native functions are implemented in separate .c or .cpp files.

When the JVM invokes the function, it passes a JNIEnv pointer, a jobject

pointer, and any Java arguments declared by the Java method.

The JNIEnv pointer is a structure that contains the interface to the JVM.

CHAPTER 4. PROPOSED IMPLEMENTATION 68

It includes all the functions necessary to interact with the JVM and to work

with Java objects. Also native data types can be mapped to/from Java data

types. Some conversions are predefined, e.g. integer is mapped to jinteger

and float to jfloat, while objects and pointers have to be correctly refer-

enced.

The first step is to wrap the native heartbeats API using JNI. The created

file in this step is still in C++.

If a data structure is just used in a library function like it is the case

of heartbeat_t type, its pointer is mapped to a jlong and no explicit wrap-

per for the type has to be created. While, if an object reference is passed

to a function to modify the object content, the object data type has to be

wrapped into a JNI data structure. That is the case of the type heartbeat_record_t.

Heartbeat_record_t is the structure that stores information about an is-

sued heartbeat, like its timestamp, the tag associated with it or the current

rate until this heartbeat. In JNI, it is wrapped in this way:

1 static inline jint HBRecordWrapper(JNIEnv* env,

2 heartbeat_record_t* record, jobject recordObj){

3

4 //Init wrapper object

5 jclass recordClass = env->GetObjectClass(recordObj);

6

7 //Get field beat for the structure

8 jfieldID field = env->GetFieldID(recordClass, "beat",

"J");

9 //Store field in the object

10 env->SetLongField(recordObj, field,record->beat);

11

12 //To be repeated for all field

13 }

Listing 4.1: Heartbeat record type

Then, each function in the library has to be wrapped in a JNI function.

Here are listed the most significative ones.

CHAPTER 4. PROPOSED IMPLEMENTATION 69

1 static jlong android_heartbeat_AppHeartBeatInterface_init

2 (JNIEnv* env, jobject thiz,

3 jdouble min_target, jdouble max_target,

4 jlong window_size, jlong buffer_depth, jstring

log_name)

5 { const char *logNameStr = env->GetStringUTFChars(log_name, NULL);

6 heartbeat_t* hb = (heartbeat_t*) malloc(sizeof(heartbeat_t));

7 rc = heartbeat_init(hb, min_target, max_target,

window_size,buffer_depth,

8 logNameStr);

9 env->ReleaseStringUTFChars(log_name, logNameStr); }

10

11 static jlong android_heartbeat_AppHeartBeatInterface_heartbeat(JNIEnv*

env,

12 jobject thiz, jlong lpHeartbeat, jint tag)

13 { heartbeat_t* hb = (heartbeat_t*)lpHeartbeat;

14 rc = heartbeat(hb, tag); }

15

16 static jint android_heartbeat_AppHeartBeatInterface_getCurrent(JNIEnv*

env,

17 jobject thiz, jlong lpHeartbeat, jobject recordObj)

18 { heartbeat_t* hb = (heartbeat_t*) lpHeartbeat;

19 heartbeat_record_t* record = (heartbeat_record_t*)malloc

20 (sizeof(heartbeat_record_t));

21 hb_get_current(hb, record);

22 HBRecordWrapper(env, record, recordObj);

23 free(record); }

Listing 4.2: Heartbeat Initialization

This JNI interface has to be registered to be called from Java side. Each

function has to be registered into a static array of JNINativeMethod, with

its signature. Than those methods are registered in the declared Class Name.

Than, Java code must wrap those JNI functions. A Java class has been

created as HeartBeatRecord.class to store the heartbeat record type, and an-

other class AppHeartBeatInterface to wrap the API functions. The HeartBeat-

Record class is just made of one function and a constructor. The AppHeart-

BeatInterface has to load the JNI library (called heartbeat_jni) and declare

CHAPTER 4. PROPOSED IMPLEMENTATION 70

native functions that can be used in Java and match exacly the signature of

the JNI functions declared in the library.

1 static { System.loadLibrary("heartbeat_jni"); }

2

3 public static native long heartbeat_init(double min_target, double

max_target,

4 long window_size, long buffer_depth, String log_name);

5 public static native int heartbeat_finish(long lpHb);

6 ...

Listing 4.3: AppHeartBeatInterface

The same methodology has been used to wrap the HeartbeatMonitor

native library, resulting in a JNI library heart_rate_monitor_jni and a Java

class HeartRateMonitorInterface. The three generated classes (AppHeart-

BeatInterface, HeartRateMonitorInterface and HeartBeatRecord) are com-

piled into the same JAR archive. This Java library can be imported in any

Java project to use Heartbeats API into an Android Activity.

4.4 Services Coordinator

The SC has been identified as the entity in charge of monitor applica-

tions and activate services on them.These are the most important functions

available in the SC implementation:

GetBufferMemPointer it is the function used to retrieve the base address

of the shared memory to be used in heartbeats operations. It is the

same previously defined and it is used in the SC initialization phase.

If the buffer service is not published, execution quits. The pointer re-

trieved with this function is casted to the type representing the mem-

ory area.

updateAppList is used to retrieve the list of applications that are running

and have requested to be monitored. Heartbeat-registered applica-

CHAPTER 4. PROPOSED IMPLEMENTATION 71

tions have a state registered into the shared memory, associated with

their pid.

updateRegistryInfo is a function used to initialize a monitor for each ap-

plication to be monitored. At each iteration, current information re-

trieved from the heartbeat monitor are saved locally to be used by

the decision engine.

ServicesRegistration at the moment it is not based on shared memory.

The list of possible services is hard-coded in the engine and this func-

tion checks the list to see what services are really published and avail-

able to be used.

ExecuteActions is the function that implements the decision engine and it

activates a service when needed.

The SC should implement a system to retrieve information from the OS,

in this particular case we have methods to read information about the CPU

current state.

getCpuUsage this function parses information from /proc/stat file to re-

trieve information about CPU kernel, user-space and idle time.

4.5 Frequency scaler actuator implementation

In order to implement a frequency scaler, a driver that enable changing

the CPU frequency at runtime is required. One of these drivers is called

CPUfreq and it is the one used. A CPUfreq policy consists of a couple of

values (min, max) that are the minimum and maximum possible frequency

that can be set. Governors are used to decide which frequency within the

CPUfreq policy should be used. Usually CPU can work only at specific fre-

quencies, that are device dependent and are stored in a system file. The

CHAPTER 4. PROPOSED IMPLEMENTATION 72

CPUfreq governor decides (dynamically or statically) which frequency to

set within the limits of the policy. The frequency is set to the feasible value

nearest to the chosen one, if it is within the policy limits, otherwise no

changes are applied.

The available governors are the following:

Performance The CPUfreq governor "performance" sets the CPU statically

to the highest frequency within the borders of the policy.

Powersave The CPUfreq governor "powersave" sets the CPU statically to

the lowest frequency within the borders of the policy.

Userspace The CPUfreq governor "userspace" allows the user, or any userspace

program running with UID root, to set the CPU to a specific fre-

quency.

Ondemand The CPUfreq governor "ondemand" sets the CPU depending

on the current usage. To do this the CPU must have the capability

to switch the frequency very quickly. Parameters like the sampling

rate (how often to look at CPU usage and to make a decision) and the

up_threshold (the average CPU usage needed to make a decision to

increase the frequency).

Conservative similarly to the "ondemand" governor, it sets the CPU de-

pending on the current usage. It differs in the fact that it gracefully

increases and decreases the CPU speed rather than jumping to max

speed the moment there is any load on the CPU, like it is done in the

ondemand governor.

The CPUfreq driver stores its system files into the directory <sysfs root>/devices/system/

cpu/cpuX/cpufreq/, where <sysfs root> is the device root and cpuX is the

number of the core into consideration. The most important configuration

files are now listed:

CHAPTER 4. PROPOSED IMPLEMENTATION 73

scaling_available_governors is list of available governors;

scaling_available_frequencies is list of available frequencies, device de-

pendent;

scaling_min_freq corresponds to the minimum frequency of the policy;

scaling_max_freq corresponds to the maximum frequency of the policy;

scaling_cur_freq shows the current frequency of the system;

scaling_governor is used to set the governor to be used;

scaling_setspeed is used to set a frequency value and can be used only

with the userspace governor;

stats provides frequency statistics.

4.5.1 Using userspace governor

In order to dynamically change the frequency of the selected CPU, some

steps have to be performed. Here are listed the commands, in bash code

for better readability, that have to be issued to scale frequency. These com-

mands can be converted in I/O operations on the same files.

1. Set the governor Userspace governor has to be selected

echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

2. Set the policy min value To set e.g. 800MHz as the maximum fre-

quency:

echo 800000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

3. Set the policy max value To set e.g. 122.8MHz as the minimum fre-

quency:

echo 122800 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq

CHAPTER 4. PROPOSED IMPLEMENTATION 74

4. Set a specific frequecy To set e.g. a 300MHz frequency:

echo 300000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

The list of device-specific available scaling frequencies and the current

frequency can be retrieved using the commands:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

and

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

Those actions have to be repeated every time the system is rebooted.

4.5.2 Actuator implementation

The actuator used in the frequency service is a frequency scaler and

it has the ability to perform two actions, an UP action and a DOWN one.

Both actions at first make sure that the correct governor is selected and read

the current frequency. Then, if it is an UP action, the frequency selected is

increased to the next frequency available greater than the current one. On

the other hand, if it is a DOWN action, the frequency is decreased with the

same principle. Those action accept a flag: if it is set, the frequency is set to

the maximum possible in the UP action, or to the minimum possible, in the

DOWN action.

CHAPTER 4. PROPOSED IMPLEMENTATION 75

1 void Upfreq(bool flag){

2 //get available frequencies list

3 list=..

4

5 //get current frequency

6 fd=fopen("/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq","r");

7 fgets(currentS,7,fd);

8

9 //find current frequency in the list and select new frequency

10 if(flag)

11 newFrequency=maxFrequency;

12 else

13 newFrequency= nextInTheList;

14

15 //write and set new frequency

16 fd=fopen("/sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed","a");

17 fputs(newFrequency,fd);

18 }

A similar implementation is used also for the DOWNfreq() function.

4.6 Network-type changer actuator implementation

In order to implement an actuator able to change at runtime the net-

work that have to be used for data connection, there is not necessity for

a specific driver, since the Android SDK provides all the necessary func-

tions. At first it is provided a description of the network types that can be

accessed by current devices, then some details about the actuator imple-

mentation on the Android platform are provided.

4.6.1 Network types

Current phones can belong to the CDMA enabled category or GSM en-

abled category. Global System for Mobile Communications (GSM) is the mo-

bile communications technology originating in Europe that it is now the

CHAPTER 4. PROPOSED IMPLEMENTATION 76

most popular mobile standard in the world, at about 80% of the world’s

more than 4 billion cell phone users. Conversely, competitor Code Division

Multiple Access (CDMA) is a mobile technology that originated in the U.S.

that serves upwards of 10% of the world’s cell phones. In this work we are

dealing only with GSM phones.

The GSM family of data technologies include GPRS, EDGE, UMTS -

WCDMA and HSDPA, each one with different performances and power

consumptions. Usually the GSM/GPRS/EDGE technologies are considered

2G networks, while WCDMA/HSDPA are considered 3G networks.

GPRS is a globally available network that makes many applications fea-

sible, including messaging, e-mail, Web browsing and some multimedia

applications. EDGE significantly expands the capability of GPRS, enabling

richer Internet browsing, streaming applications and more multimedia ap-

plications. Then, with UMTS and HSDPA, users can video call, listen to

high-fidelity music and use rich multimedia applications. These different

network types are characterized by different performance, different power

consumption and different coverage.

Data about different networks performances are reported in Table 4.1

and they are taken from [53]

Table 4.1: Performance data of different network types

Type Peak Network Downlink Speed Average User Throughputs

GPRS 115 kbps 30 - 40 kbps

EDGE 473 kbps 100 - 130 kbps

WCDMA 2Mbps 220 - 320 kbps

HSDPA 14 Mbps 550 - 1100 kbps

With respect to power consumption, some data about the different con-

sumptions of 2G nets and 3G nets are provided in [54] and reported in Table

CHAPTER 4. PROPOSED IMPLEMENTATION 77

4.2.

Table 4.2: Power consumption of different tasks using different networks

Task 2G UMTS

Receiving a voice call 612.7 mW 1224.3 mW

Making a voice call 683.6 mW 1265.7 mW

Idle mode 15.1 mW 25.3 mW

The device network choice is influenced by the preferred network type

selected. Types of preferred network type modes than can be selected are:

WCDMA preferred : The GSM phone is capable of using both 2G and 3G

data communication and when signal strength is low 3G is favored

more.

GSM only : The GSM phone is capable of using only 2G data communica-

tion. When the 2G signal is too low, no connection is established.

WCDMA only : The GSM phone is capable of using only 3G data commu-

nication. When the 3G signal is too low, no connection is established.

GSM auto : The GSM phone is capable of using both 2G and 3G data com-

munication and when signal strength is low 2G is favored more.

Usually, current phones are set to WCDMA preferred, if another mode

is not forced by the user. In our actuator, to have complete control on the

network selected, we are using only the GSM only mode, to have a 2G net,

or the WCDMA only, to have a 3G net.

4.6.2 Actuator implementation

This actuator has the ability to change the network to which the phone

is connected. The change is performed not directly changing the connec-

CHAPTER 4. PROPOSED IMPLEMENTATION 78

tion, but changing the phone preferred network. The actuator has to belong

to the process android.phone in order to call these functions, because they

are internal to the phone management system and has to access the method

setPreferredNetworkType specifying the GSM only constant to force the con-

nection to use the 2G network, or specifying the WCDMA only constant to

force the 3G network usage.

Chapter 5

Experimental Results

In this Chapter the results of the various tests performed to prove the

effectiveness of the approach in a mobile environment are described, and

in the very first Section the device used in all tests is presented . Tests per-

formed aim to prove that both versions of the heartbeats library (file based

and shared memory based) are correctly integrated into Android frame-

work and that the shared memory based implementation is faster than the

the file based implementation.

Then, tests are performed to prove that, in this approach, applications,

both self-adaptive and managed by the SC, are able to respond to changes

to keep a good QoS over time. Self-adaption is tested using as actuators

both an application knob and an actuator able to perform a change in the

implementation of an algorithm. The SC has different services available

that use different actuators with different targets. Tests prove that these

services can be used with effectiveness to reach different goals.

5.1 Testing platform

The Android SDK provides a mobile device emulator to be used to test

applications and libraries on a generic Android system. Using the emulator

79

CHAPTER 5. EXPERIMENTAL RESULTS 80

for testing is very easy and handy, but it is not precise as a real device

and some features are not available (e.g. frequency cannot be changed at

runtime). To test our aware system, we used a real device equipped with an

Android OS patched to integrate self-aware capabilities. The device used in

all our tests is the LG Optimus One P500. This device is equipped with an

Android OS, version 2.2 Froyo and relevant characteristics are:

• 600 MHz ARM 11

processor, Adreno

200 GPU, Qualcomm

MSM7227 chipset

• 418MB RAM

• FT capacitive touch-

screen, 256K colors, 320

x 480 pixels, 3.2 inches

• Battery Li-ion 1500mAh

Figure 5.1: LG Optimus One P500

This device does not run the last Android version, Gingerbread. An of-

ficial update for this device has not been released yet by LG and probably

will never be made available. Apart from the official versions, there ex-

ists alternative and customized ROM developed by community users and

made public. Usually these ROMs are experimentally but provide addi-

tionally features the official update does not have.

Our first configuration step will be to upgrade the OS of the device to

Android Gingerbread 2.3. The ROM used is a version of Cyanogen Mod for

LG P500 device, the only one at the moment available for this device and

still in alpha release. This ROM provides a 2.3 Android version and a kernel

2.6.32.9. This kernel has been patched to integrate the CPUfreq driver and

CHAPTER 5. EXPERIMENTAL RESULTS 81

to support over clocking.

A preliminary step is to grant root access to the device, a privilege that

is normally denied. After that, the selected ROM has been flashed on the

device using a custom recovery image.

Using the CPUfreq driver, the available frequencies of this device have

been extracted. They range from 122 Mhz to 844 MHz as shown in Table

5.1.

Table 5.1: Available frequencies

Frequency (Hz)

Standard

122880

245760

320000

480000

600000

Over clocked

729600

748800

768000

787200

806400

825600

844000

The maximum frequency allowed in this processor is 600MHz, frequen-

cies over this threshold are due to CPU over clocking and have to be tested

to see if the device is still stable at all these speeds. Tests show that this

device can handle frequencies until 806 MHz.

For each frequency, the device assigns a voltage, defining the working

CHAPTER 5. EXPERIMENTAL RESULTS 82

point of the CPU. We have tested all frequencies and for each one the volt-

age is almost costant. Maximum and minimum values allowed are 4200

and 3200, respectively. All tests have been performed first on the emulator

and then on the device, but since results on the device are more relevant,

they will be the only ones taken into consideration in this Chapter.

5.2 Test system structure

In order to perform a set of test cases, needed to verify the correctness

of the proposed approach on a mobile devices, a test system has been im-

plemented on the previously described device. The structure of the system,

based on the structure exposed in Section 3, and its components are shown

in Figure 5.2.

Figure 5.2: Test system structure

The monitoring phase is composed by:

• Performance monitor: based on the Application Heartbeats frame-

work and used to retrieve informations about the applications per-

formances.

CHAPTER 5. EXPERIMENTAL RESULTS 83

• CPU monitor: used to retrieve informations about the CPU current

frequency and voltage values, through the CPUfreq driver.

• Network monitor: used to retrieve information about the mobile data

connection status, in particular the network type and the signal strength.

• Battery monitor: indicates the percentage of battery charge.

The SC has the availability of different services, that include:

• FrequencyScaler4Performance: a service that uses the CPU frequency

scaler actuator with a performance target. Its policy is to increase the

CPU frequency to an higher value to help an application compute an

intensive task as soon as possible, than restore the frequency to nor-

mal values.

• FrequencyScaler4Power: a service that uses the CPU frequency scaler

actuator with a power target. Its policy is to decrease the CPU fre-

quency to reduce the device power consumption.

• NetController4Fluctuation: a service that uses the actuator able to

change the preferred network type to avoid network fluctuation. Its

policy is to stabilize the network type on a lower performance net-

work if the fluctuation between different networks is too frequent.

• NetController4Power: a service that uses the actuator able to change

the preferred network type to reduce the device power consumption

with respect to the applications performance. Its policy is to try to

set the connection on a low power network to reduce the power con-

sumption and check the application performance to ensure that the

applications are having good performance even after the change. If

they are not, connection is set back to its initial type.

Table 5.2 summarizes the use of different actuators in services and their

targets.

CHAPTER 5. EXPERIMENTAL RESULTS 84

Table 5.2: Actuators available in each service and its target.

Service Target Actuators

FrequencyScaler4Performance Performance CPU frequency scaler

FrequencyScaler4Power Power CPU frequency scaler

NetController4Fluctuation Stability/Power Network type changer

NetController4Power Power/Performance Network type changer

The system runs a set of test applications, both self-adaptive and con-

trolled, that includes an MP3decoder, a photo viewer and a streaming video

player. Those applications will be described in Section 5.4.

5.3 Testing Heartbeat Framework

This Section is intended to analyze the impact of the Heartbeats frame-

work into an Android system. Such investigation is extremely important

in the context of autonomic systems, since the monitoring infrastructure

must be as lightweight as possible. Both versions of Heartbeats API, file-

based and shared memory based, have been ported into Android frame-

work. The first test is performed to decide which one provides the better

performance, to choose which implementation is more suitable to be used

in our final system.

The most frequently used function of the API set is the heartbeat() func-

tion and it requires constantly access to files or to the shared memory.

In this test, the execution times of those eighty calls of this function are

measured, both using the file based and the shared memory based imple-

mentation. Results are shown in Figure 5.3.

The solid line is the execution using the file based implementation.

Its average is 2813473,48 ns and execution times suffer from a great vari-

CHAPTER 5. EXPERIMENTAL RESULTS 85

Ti
m

e
(n

s)

0

5

10

15

20

25

30

35

40

45

50×105

Iteration
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Shared memory based implementation
File based implementation

Figure 5.3: Comparison between the execution times of heartbeat calls using the file based

and the shared memory based implementations

ance, due to the unpredictability of disk accesses. The same calls, using the

shared memory based version, have an average execution time of 42538.46

ns, 66 times faster than the file based implementation. In addition, the vari-

ance characterizing the execution times is very low.

Execution times of ten calls to the HB_heartbeat() function are also shown

in Figure 5.4, using a logarithmic scale.

0

1

2

3

4

5

6

7

8

9

10

11

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

File Shared memory

Figure 5.4: Heartbeat call execution times, both using file and shared memory version, 10

executions

CHAPTER 5. EXPERIMENTAL RESULTS 86

It is easy to understand that the best choice is to use the shared memory

version rather than the file based one. From now on, all tests refer always

to the shared memory based implementation.

The Heartbeats framework has been tested also from the Java layer, to

check the correctness of the class from Java to C and reversed and to see the

overhead introduced by JNI. Execution times of native calls through JNI are

influenced by the number of input parameters, because those parameters

have to be correctly wrapped an passed to the lower levels. Due to this fact,

we have tested the overhead on the function in the Heartbeats API that has

the greatest number of input parameters, that is the heartbeat_init function,

to compute the worst case overhead.

Its Java signature is long heartbeat_init(double min_target, double max_target,

long window_size, long buffer_depth, String log_name).

Table 5.3 shows the results of ten calls to the heartbeat_init function,

both from Java and natively from C, and their average.

Note that Java and C execution times have been recorded separately.

That is, on a single row of the previous Table, Java and C execution times

are not related. Related execution times cannot be easily measured because

the Java call does not provide information on the native function it wraps.

JNI introduces an overhead, in the worst case, that duplicates the time

necessary to perform the initialization call. Nevertheless, to have a better

idea of the impact of the framework, we should measure its impact on ap-

plications execution.

To test the overhead introduced during an execution, we have used the

MP3 decoder application. Several tests have been performed using input

streams of different sizes. The buffer size is the same in all tests performed

and it has been set to 40KB. Table 5.4 shows the results of the tests per-

formed. The overhead introduced is, in average, 0.15% of the execution

time.

CHAPTER 5. EXPERIMENTAL RESULTS 87

Table 5.3: JNI overhead over an heartbeat_init function

Java C

Execution time (ns)

15435000 5770000

13883334 7093333

10726667 5613333

20070000 7933334

14726667 6551667

14456666 6636666

8440000 6113333

11203333 6473333

14886667 6530000

14631667 6499999

Average time (ns) 13846000,1 6521499,8

Average JNI overhead 7324500,3

Average JNI impact (%) 52,9

Table 5.4: Impact of the Heartbeats framework over an application execution

Input size (MB) Heartbeats time Total execution time Impact (%)

1.1 74178334 45636491690 0.16254171

2.8 281066678 176528440028 0.159218921

3.4 259400057 158665350013 0.163488788

4.2 279718317 175273043354 0.159590038

5.5 364231606 235572626693 0.15461542

CHAPTER 5. EXPERIMENTAL RESULTS 88

5.4 Case studies: self-adaptive and SC guided appli-

cations

Three applications have been developed to be used as case studies for

many of the tests following in this Chapter. The first one is an MP3 decoder

and it is a self-adaptive application. It is written in C++ and therefore it runs

in the low level of the Android stack. The second one is a photo viewer, this

time written in Java and wrapped in an Android activity.1 This application

has not self-adaptive characteristics and it can be controlled by the SC. The

last one is a video player, able to stream and play a video file from a server.

No self-adaptive features have been integrated inside this application.

Adaptive Mp3Decoder One of the applications developed as a case study,

is an adaptive MP3 decoder. This application is a streaming applica-

tion, since it has to decode a new buffer of data when the previous one

has been played and so it requires constantly CPU resources over its

execution. This application is written in C++, and it has been chosen

to do not write this application in Java in order to report times and

overheads without the additional overheads caused by JNI. This ap-

plication does not have a graphical user interface, but a demo of the

tests performed using this application with self-adaption has been

proposed using Java to provide a simple GUI.

This application goal is to keep a good QoS, monitoring its perfor-

mance and using an actuator to modify its internal parameters. We

have developed two different versions of this application, that differ

from the actuator used during the adaptation phase. In the first case,

the actuator belongs to the class of application knobs while, in the

second one, the actuator performs an implementation change.

In both the two versions, the monitor phase is performed through
1An activity represents a single screen with a user interface

CHAPTER 5. EXPERIMENTAL RESULTS 89

the usage of the Heartbeats API, both to define goals and to monitor

progresses toward them. For an MP3 decoder application, the mini-

mum QoS should guarantee is to provide a stable data stream, so that

the song can be played without any interruption. Given this goal, we

have decided to generate an heartbeat every time a buffer of data

has been decoded. The metric used to decide if a change is needed

will be the rate of heartbeats issued in a window of time. This pa-

rameter can be extracted using the Heartbeats API with the function

get_windowed_rate(). Goals are expressed in terms of the minimum

and maximum heart rate that the application should keep. These pa-

rameters depend on the device the application is running on and on

the system conditions. Usually these data are hard coded into the ap-

plication, but in the future a learning phase, in which the application

learns its optimal minimum and maximum rate, can be implemented.

MP3 data read from input file have to be decoded into PCM samples,

in order to be played using the Android audio framework. We have

included two decoding algorithms into the Android framework: the

MPG123 algorithm and the MiniMP3 algorithm. These algorithms are

written in C and they provide different output performance, in terms

both of the decoding speed and the quality of the audio played.

ReadSamples is a generic function that decodes a buffer of data, using

the selected implementation of a decoding algorithm, from the input

MP3 file. The buffer size can vary. The monitoring phase is the same

in both versions of our application. Instead, the deciding and acting

phases are specific for each version, given the fact that different ver-

sions have different actuators. The common point is that since both

versions are self-adaptive, they can only modify internal parameters

of the application itself.

CHAPTER 5. EXPERIMENTAL RESULTS 90

PhotoViewer Another application used in these tests is a photo viewer and

it has been developed in Java, to test the Heartbeats framework ex-

ported with JNI and the ability of the Services Coordinator to interact

also with Java applications. The goal of this application is to load a

set of photos and visualize them on the device display. The photo are

preloaded first, and then they are all visualized at the same time. This

allows tests on execution times of an intensive task at different fre-

quencies. During this preloading phase, an heartbeat is issued each

time a photo has been loaded. Then the application acts only as a

visualizer and its CPU usage is almost zero. Ten photos of different

sizes are used, and photo paths are hard coded into the application.

This application is not self-aware but instead it is monitored by the

SC, that will record its monitoring data and decide which service ac-

tivate on it, if necessary.

Audio-Video streaming player The last application implemented is an audio-

video player, written in Java, that is able to stream an audio file or

video from a web server. While audio files are streamed correctly

without any limitation of format, Android has the ability to play video

only using the HTTP progressive download technique, not imple-

menting a real video streaming. This technique provides an end user

experience similar to streaming media, since the user is able to watch

the video while the rest of the video is loading into the player, caching

the video into the users temporary internet files. The application has

not self-aware abilities and heartbeats are issued during the buffering

phase.

Figure 5.5 shows the interaction of the first two applications with the

Heartbeats Framework during the monitoring phase. The interaction be-

tween the Audio-Video Player application and the Heartbeats framework

is similar to the mp3decoder one.

CHAPTER 5. EXPERIMENTAL RESULTS 91

Figure 5.5: Sequence diagrams of the monitoring process using heartbeats API in MP3 De-

coder and PhotoViewer applications

CHAPTER 5. EXPERIMENTAL RESULTS 92

5.5 Testing self-aware applications

This section will test the ability of self-aware applications to keep a good

QoS. In the first test, the actuator is an application knob, while in the second

one a changing in the algorithm implementation is performed. After these

two tests have been performed, a comparison between the reaction times

of these two self-adaptive applications is shown.

5.5.1 Application knobs

The first version of the MP3 decoder reacts to changes by modifying an

application parameter. The parameter chosen is the buffer size, a parameter

used in the readSample function to know the amount of data to be decoded

from the input file. The buffer size influences the time needed to decode

and send a block of data to the player. A smaller buffer size will prevent

the CPU from being blocked for a long time and so it is better to reduce the

buffer size in periods where the CPU is heavily loaded. On the other hand,

a larger buffer size helps in avoiding streaming skips. Table 5.5 shows how

the heartbeat rate varies depending on the buffer size. Data have been re-

trieved using the MPG123 algorithm. In the first column is shown the av-

erage heart rate in the first thirty iterations using different block sizes. The

first ten iterations are a settlement, due to the window filling process, while

a more accurate measure is provided considering the last twenty iterations.

Its average is shown on the second column.

Results show that acting on the buffer size modifies the application

heart rate and therefore its performance. The decision system has been

implemented using the decision tree shown in Section 3.3.2. If the heart

rate is within the decided limits of a good QoS, therefore within the mini-

mum and maximum heart rate limits, no action is performed. While, if the

current heart rate is below the minimum acceptable heart rate, the buffer

CHAPTER 5. EXPERIMENTAL RESULTS 93

Table 5.5: Heartbeats rate with different buffer sizes, miniMP3

Block size Avg over Avg over

(Byte) 30 iters last 20 iters

8 18.662591 21.574667

16 9.535203 10.780328

24 6.608230 7.176518

32 4.954121 5.377346

40 4.013479 4.304207

64 2.532456 2.692246

80 1.041693 1.076222

size is decreased by a predefined amount called buffer_change_step. Other-

wise, if the heart rate is over the maximum rate, the buffer is increased by

a buffer_change_step. This step has been set to 1KB, to slowly decrease or in-

crease the buffer size at each iteration. Changing the size of the buffer step

will modify how fast the application reacts to changes. Desired heart rate is

within 3 and 5. The policy reduces the buffer by a buffer_change_step every

time the rate is under the minimum threshold but it is allowed to increase

the buffer size only if for ten iterations the heart rate is over the maximum

rate.

To test our adaptive application, we have manually introduced a con-

trolled disturb that simulates a falling heart rate. The disturb was intro-

duced starting from the hundredth iteration and it lasts fifty iterations. Fig-

ure 5.6 shows the rate progression in the application, without adaptivity

enabled.

When the hundredth iteration is reached, the heart rate starts dropping

and no change is performed to increase the heart rate. The blue area in

the graph indicates the desired heart rate. Figure 5.7 shows the heart rate

CHAPTER 5. EXPERIMENTAL RESULTS 94
H

ea
rt

R
at

e

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Iteration
0 20 40 60 80 100 120 140 160

2

3

4

95 100 105 110 115 120 125
No adaption

Figure 5.6: Heart rate progress with the introduction of an external disturb, starting at the

100th iteration, without adaptation.

progression, with the adaptive system enabled. At the hundredth iteration

the heart rate starts dropping and, when it is considered under threshold,

the buffer size is decreased at each iteration to make the heart rate increase.

After few iterations, a correct heart rate is restored to regular values.

H
ea

rt
R

at
e

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Iteration
0 20 40 60 80 100 120 140 160

2

3

4

95 100 105 110 115 120 125

Self-adaptivity, buffer resizing

Figure 5.7: Heart rate progress with the introduction of an external disturb, adaption en-

abled with buffer resizing.

CHAPTER 5. EXPERIMENTAL RESULTS 95

5.5.2 Implementation changing

The second version of the self-adaptive MP3 decoder makes use of an

implementation changing as actuator to perform adaptivity. The miniMP3

decoding library is an implementation of a decoding library that provides

a slightly better quality in the music played but the decoding process for

each buffer is slower. Changing implementation will increase the buffer

decoding process, that will consequently increase the heart rate. Note that

in this test the maximum desired heart rate has been increased to 9, while

the minimum desired heart rate is set to 3, like in the previous test.

Figure 5.8 shows the heart rate progress using the adaptive system with

implementation changing.

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

2.5

3.0

3.5

4.0

4.5

95 100 105 110

Self adaptivity, implementation changing

Figure 5.8: Heart rate progress with the introduction of an external disturb, adaption en-

abled with implementation changing.

As in the previous test, if the application rate is within the limits no

changing is performed. If the rate is below the minimum threshold, the

algorithm implementation is changed from miniMP3 to mpg123. However,

if the heart rate is over the threshold, the implementation is not changed

back to miniMP3, because we have seen that if the algorithm is changed

frequently the application becomes unstable and not able to keep a good

CHAPTER 5. EXPERIMENTAL RESULTS 96

QoS.

Since to change implementation it is required a quiescent state, we have

decided that a change is possible only when the data in the current buffer

have finished to be decoded with the previous implementation. Then, the

change is performed, and the next data in the buffer will be decoded using

the new algorithm.

5.5.3 Reaction times

The test previously explained shows that both two versions of our self-

aware adaptive application are able to react correctly to an external disturb,

that causes a falling heart rate. On these tests we have measured the time

needed to the application to react to a falling heart rate. This time has been

calculated as the interval between the first heart rate identified as low (un-

der threshold) and the first heart rate within the QoS limits. We have taken

into account ten executions of the application with the same characteristics,

with both the self-adaptive methods.

Table 5.6 shows the results. The average reaction time of the adaption

system with implementation changing is nine times faster than the adap-

tive system that uses the application knob. Anyway, the implementation

changing technique has a drawback. Once the second implementation is

chosen the implementation cannot be changed back and the system is vul-

nerable to new disturbs. A good approach can mix both techniques and

apply first an implementation changing and then, if needed, a buffer resiz-

ing.

5.6 Testing services

In this Section services available in the system are tested. Services are

tested independently and also a test on how services can be applied by the

CHAPTER 5. EXPERIMENTAL RESULTS 97

Table 5.6: Reaction times using different actuators

Buffer Resizing Implementation Changing

Reaction time (s)

0.208 0.022

0.212 0.021

0.212 0.024

0.207 0.024

0.211 0.024

0.211 0.022

0.206 0.022

0.206 0.023

0.207 0.024

0.209 0.022

Average time (s) 0.209 0.023

SC at the same time is shown.

5.6.1 FrequencyScaler4Power service

In this test we have used the MP3 decoder application, a streaming ap-

plication, to test the service that uses the frequency scaler actuator with the

goal to save as much power as possible. In this case the MP3 decoder, even

if it has been designed as a self-adaptive application, is controlled by the SC

and its self-adaptive features are blocked. The SC monitors the application

and, if possible, activates this service on it.

The frequency scaler tries to change the frequency every ten iterations

to perform a gradual change. Anyway lowest values are possible and de-

pend on the application taken into consideration.

In the first test, the initial frequency has been set to 600MHz and the

CHAPTER 5. EXPERIMENTAL RESULTS 98

MP3 decoder uses a 40KB buffer.

600

480

320

245

122

H
ea

rt
R

at
e

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

C
PU

 Frequency

100

200

300

400

500

600

Iteration
5 10 15 20 25 30 35 40 45 50

Heart Rate
CPU Frequency

Figure 5.9: Heart rate progress of the MP3 decoder application on which the service consid-

ered is enabled. Buffer size is 40KB and the final frequency is set to 122MHz

Figure 5.9 shows the heart rate of the application while the service is

acting on it. Starting from the initial frequency value, the frequency is de-

creased every ten iterations until it reaches the lowest value, 122MHz. De-

sired heart rate is within 3 and 5, for the entire execution the heart rate is

always within this range.

A second test has been performed, keeping the initial frequency to 600MHz

but changing the buffer size to 160KB. In this case, desired heart rate is

within 1.058 and 1.090. This time, when the frequency is set to 122MHz, the

heart rate starts dropping.

In Figure 5.10 are shown the results using a slightly different policy, in

this case the execution of the service will not blindly scale down the fre-

quency, but it will be guided by the heartbeat monitor to keep the applica-

tion performance over its QoS minimum value. It is an example of a power

target with a performance feedback.

This service tries to lower the CPU frequency to its lowest value, start-

ing from the current frequency, at each step monitoring how good are the

application performance. If this performance is too low (the heart rate is

CHAPTER 5. EXPERIMENTAL RESULTS 99

600

122

245

320

480

245

H
ea

rt
R

at
e

0.98

1.00

1.02

1.04

1.06

1.08

C
PU

 Frequency

100

200

300

400

500

600

Iteration
5 10 15 20 25 30 35 40 45 50 55 60 65

Figure 5.10: Heart rate progress of the MP3 decoder application on which the service con-

sidered is enabled. Buffer size is 160KB and the final frequency is set to 245MHz

below the threshold), the frequency is increased until a frequency stable for

the application is reached.

When the frequency is set to 122MHz, the heart rate starts dropping.

The application cannot keep its minimum QoS and so the service decides

to increase the frequency one step at a time until the minimum heart rate is

restored. Only one step is necessary, the final frequency is set to 245MHz.

In the first case, the frequency was changed from its initial value of

600MHz to a value of 122MHz. Using the theoretical model shown in Sec-

tion 3.3.1 and given the fact that the voltage is constant and the execution

time is the same in both executions, the power consumption can decrease of

a factor up to 79%. In the second case, the frequency changed from 600MHz

to a value of 245MHz and the decrease can be up to 50%. For a more precise

estimation, we should compute the time the application executed in each

frequency from the initial value to the final value.

CHAPTER 5. EXPERIMENTAL RESULTS 100

5.6.2 FrequencyScaler4Performance service

In this service, performance is the primary issue. An application has

to perform an intensive task and this task has to be performed as soon as

possible. The application used in the following tests is the photo visualizer

and the most intensive task it has to perform is to load into memory all the

images before visualizing them. The ten images have different sizes. Each

photo has been loaded separately to measure the loading time at different

frequencies. Figure shows the results.

Ti
m

e
(n

s)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750×106

Image size (KB)
8 20 41 70 98 135 209 250 315 393

122 MHz
245 MHz
300 MHz
470 MHz
600 MHz
748 MHz
787 MHz
806 MHz

Figure 5.11: Loading time of 10 images of different sizes at different CPU frequencies

Images sizes vary from 8KB to 393KB and frequencies taken into con-

sideration are all the available frequencies between 122MHz and 806MHz.

Note that frequencies over 600MHz are over clocked frequencies. The obvi-

ously result is that the highest the frequency is, the lowest is the execution

time needed to finish the task. Therefore the service, when activated, sets

the frequency to the highest value possible. This value is kept until the in-

tensive task has finished its computation. Since an heartbeat is issued each

time a photo is loaded, when no more heartbeats are issued, it means that

the task has completed. At this time, cpu can be put in an idle state as no

CHAPTER 5. EXPERIMENTAL RESULTS 101

more computation is required for this application.

Considering an average value of 320MHz of frequency, increasing the

cpu clock speed using over clock until the value of 806MHz will result in a

reduction of the execution time of 54 %, in average. Considering the highest

value of frequency possible without over clock, that is 600MHz, the reduc-

tion is 22%, in average.

5.6.3 Performance and power tradeoff

This test aims to prove the ability of the system in finding a tradeoff

between performance and power. The application used in the test is the

mp3 decoder with a buffer size of 160KB, and power target has priority

over performance during the choice of services.

The SC starts searching for a service whose target is power. The only

service available with this target is the service that uses the frequency scaler

to reduce power dissipation and this one is chosen to be activated on the

application into consideration.

Then, it is searched for a service able to control application performance.

The SC has two options: selecting the service that uses the frequency scaler

to adjust performance or delegating the performance management to the

application, since it has self-adaptive features. Since the frequency scaler

actuator is already in use in the service applied for power management,

it cannot be activated. The obliged choice will be then to use application

self-adaptivity features.

The actuator that implements a buffer reduction is the one used in this

test. As it is shown in last Section, using a buffer size of 160KB, the power

service is not able to set the frequency to the minimum value (122MHz)

without making the application lose its QoS. Introducing a performance

service in the test in conjunction with the power one, we are expecting to

be able to set the frequency to 122MHz and keep the desired QoS, reducing

CHAPTER 5. EXPERIMENTAL RESULTS 102

the buffer when needed. Desired heart rate is within 1.058 and 5. Note that

the upper threshold has been increased with respect to the previous test.

With the introduction of the buffer resizing technique, higher heart rates

are allowed.

Figure 5.12: Heart rate and buffer size of an application on which are activated both a per-

formance and a power service

Figure 5.12 shows the results.

Starting from 600MHz, the frequency is scaled each ten iterations. When

the frequency is set to 122MHz, the application heart rate drops below the

minimum threshold. The application recognizes that the performance is

below the minimum QoS and starts decreasing the buffer size. After this

action, the application is able to keep its QoS and the frequency is set to the

minimum value.

CHAPTER 5. EXPERIMENTAL RESULTS 103

5.6.4 NetManager4Fluctuation

This test aims to prove the correct functioning of the service used to

avoid the network fluctuation. The rationale of this service is the elimina-

tion of the unnecessary power consumption due to the changing between

different networks. Usually, the preferred network type in current devices

is set to WCDMA preferred, meaning that the device will always try to con-

nect to the 3G net, if available. In a situation in which the user is changing

many times its position in a short period of time, e.g. during a train journey,

the probability that the connection will continuously fluctuate between the

3G and the EDGE net is very high. This situation causes an high power

consumption and the network instability.

This service is activated when the SC recognizes a number of network

changes higher than usual and the service stabilizes the connection on a

lower-speed but available network. Periodically the SC has to check if a

stable high-speed connection has become available.

The rationale of this service is based on data provided in [54], since

at the moment is missing a precise power monitoring system. In this work

data relative the power and the energy consumed when the network switches

between the 2G and the 3G and vice versa are provided. The handoff be-

tween 2G and 3G requires 1389,5 mW and 2,4J, while the switching be-

tween the 3G and the 2G net requires 591,9 mW and 2,5J. It is clear that

the continuos switching between different nets will cause an useless power

consumption.

These data justify the usage of this service to manage the frequent changes

of network type, to reduce a useless power consumption.

5.6.5 NetManager4Power

This service has the goal to select the best network to be connected to,

with respect to the running applications. The best network is intended to

CHAPTER 5. EXPERIMENTAL RESULTS 104

be the network with the lower power consumption that will ensure a min-

imum QoS for all the running applications. Given the list of the available

networks, from GSM (2G) to HSPA (3G), they are characterized by an in-

creasing speed but also an increasing power consumption. At he moment

the WiFi connection is not taken into consideration, therefore we are deal-

ing only with the network associated with the rmnet interface.

When this service is activated, the SC has to check the running applica-

tions and the current network status. The service will scale down the cur-

rent network to a lower-speed network to try to reduce power consump-

tion. As a consequence of this action, a running application may not able

to provide an adequate QoS. In this case, the service will restore an higher-

speed connection to ensure the QoS of all the applications. Applications

performance are monitored, as usual, using the Heartbeats framework.

In this test case, we have executed on the device the VideoPlayer appli-

cation, previously instrumented. The size of the video it has to download

and play is 11,3 MB. Figure 5.13 shows the different heart rate of the two

different execution, using only the 2G net or only the 3G net.

H
ea

rt
ra

te

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Buffer (%)
0 5 10 15 20 25 30 35 40 45 50

3G network
2G network

Figure 5.13: Heart rate during the buffering process, using the 2G and the 3G net

Both executions using different network are able to provide a good QoS,

CHAPTER 5. EXPERIMENTAL RESULTS 105

the only different visible to the user is in the prepare phase. The MediaPlayer

of the Android framework has to follow some specific steps in order to play

a video. In particular, a MediaPlayer object must first complete the prepare

phase before playback can be started. In this phase an initial buffer is filled,

which size depends on the file size, and in this amount of time the user just

sees a black screen, so it is important to reduce as much as possible this

time. Figure 5.14 shows the times needed to complete the prepare phase on

files of different sizes, using the 3G network and using the 2G network.

Pr
ep

ar
e

tim
e

(m
s)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Video size (KB)
414 1900 6533 7946 9333 11006

3G connection
2G connection

Figure 5.14: Prepare phase, using the 2G and the 3G net

While, as seen in Figure, 5.13, one the initial buffers has been filled, the

user will not note any difference in the playback using 3G with respect to

the playback using the 2G network.

Due to these conclusions, the policy used in this service is to check the

availability of the 3G network and in that case complete the prepare phase

and the first 5% of the execution through this network connection. Then,

the service will complete the remaining of the buffering process using the

CHAPTER 5. EXPERIMENTAL RESULTS 106

2G network, to save power.

Note that the service NEtManager4Fluctuation take priority over this

service.

5.7 Results summarization

In this Section, the results provided in this Chapter are summarized.

At first, the performance of the file based and shared memory based im-

plementation of the heartbeats API have been compared, and results show

that the shared memory based version is the best one to use.

After this choice, tests have been performed on the heartbeats frame-

work, both using its API compiled as a native shared library and compiled

as a Java library through the use of JNI. Results of these tests have proved

that this monitoring framework has a low overhead in both cases with re-

spect to the application execution times.

The set of tests on self-adaptive applications aimed to prove the effec-

tiveness of such approach in reacting to environmental changes, in that case

an external disturb. Both tests, that used different actuators, have proved

the ability of such applications to keep a good QoS even in fluctuating con-

ditions.

The last set of tests wanted to test the ability of a Services Coordinator,

an external entity, to monitor both native C and Java applications, to react

to both internal and external conditions and to perform adaptivity enabling

a service on them, when needed. Two services employ the frequency scaler

actuator, to perform different adaption actions with different goals on in-

ternal changes, while other two services use the actuator able to change the

network type to react to different external conditions.

In the first group of services, the first one concentrates its efforts in sav-

ing as much power as possible, alway monitoring the applications perfor-

CHAPTER 5. EXPERIMENTAL RESULTS 107

mance to keep a minimum QoS in all applications, while the second one

wants to boost performance in applications that perform intensive tasks

that have to be completed as soon as possible. Thanks to over clocking ca-

pabilities, the execution time is drastically reduced. Both services worked

as expected and they have been proved effective in reaching their goals.

The second group of services is used to control the device connection

status, the first service is used to avoid the network fluctuation that causes

an excessive power consumption, while the second one is used to select the

network with the lower power consumption given the QoS of the running

applications. Both services have proved to be effective in power reduction,

even if a more precise power monitoring service is needed to know the

amount of power saving.

Finally, the last test shows that a tradeoff between performance and

power can be reached, applying two services with different targets at the

same time.

Chapter 6

Conclusions

The aim of this thesis has been to prove the effectiveness of an adaptive

approach in constrained and fluctuating systems, specifically in the case

of mobile devices. In this context the proposal was to implement an auto-

nomic architecture capable of monitoring its current status and its progress

towards specific goals, capable of performing optimizations on itself, and

capable of adapting to unpredictable, unknown, and unfavorable condi-

tions. To prove the effectiveness of the approach, a set of tests in different

system conditions, had to be performed.

After stating the problem and its related works in Chapter 1 and show-

ing in Chapter 2 that the best Operating System for mobile devices on

which integrate our adaptive system is Android, the remaining Chapters

have outlined the proposed solution, its implementation and the results

obtained.

In Chapter 3 the work has been divided in two steps. The first is an

analysis of the goals and different scenarios that it is possible to find in a

mobile environment and what characteristics should have an autonomic

system on such devices. Primary targets have been identified as perfor-

mance and power and possible scenarios include self-adaptive applications

and applications controlled by an external observer called Service Coordi-

108

CHAPTER 6. CONCLUSIONS 109

nator. The second step aims to identify a minimum set of requirements and

components that we need to implement in order to have a complete adap-

tive system. Those components include two monitors, one for performance

and one for power. The former uses heartbeats API to control application

performance, while the latter monitors the CPU frequency.

Usually monitors send the information to the Service Coordinator, the

one in charge of monitor applications, but self-adaptive application can use

the performance monitor directly, bypassing the Service Coordinator. The

SC reacts to changes by activating services on application. Services cur-

rently available are two and they use the same actuator, a frequency scaler,

with different targets. One acts on power consumption, the other on ap-

plication performance. Self-adaptive application are not allowed to modify

system parameters, so they can use only application knobs or implementa-

tion changing actuators.

All those components have been implemented and in Chapter 4 are dis-

cussed Android-specific implementation details. To port heartbeats API in-

side the Android framework, the Binder interface has been used to create

and share a memory area between processes, since standard POSIX shared

memory implementation is not available in Android. Then, since usually

Android applications are written in Java, heartbeats API has been com-

piled into a Java library through JNI. To build a frequency scaler, the actu-

ator used in two of the implemented services, a driver that allows chang-

ing at runtime the CPU frequency was necessary. The driver used is called

CPUfreq and the actuator implementation makes use of its configuration

files to change the frequency when needed.

In Chapter 5 the results of tests performed on the final system were

shown. Three applications have been developed as case studies: an mp3

decoder, self-adaptive and written in C, a photo viewer and an audio-video

player, Service Coordinator controlled and written in Java. Those applica-

CHAPTER 6. CONCLUSIONS 110

tion have been employed to test the correct functioning of heartbeats API

in both native C code and Java code. Since both versions of heartbeats API,

file and shared memory based, have been ported to Android, those two ver-

sions were compared in terms of efficiency and the shared memory version

resulted the fastest one.

The self-adaptive application was tested using two different actuators

to prove its ability to keep a good Quality of Service in varying conditions.

In the first test it was employed an application knob to change the buffer

size, in the second one the actuator has the ability to change the algorithm

used to decode the stream. Both tests were successful.

Services were tested using the Service Coordinator. The service Fre-

quencyScaler4Power, used to control power consumption, was tested in

conjunction with the mp3 decoder application, this time used without self-

adaptive capabilities. Reducing the CPU frequency while using heartbeats

information to control Quality of Service resulted in a reduction of the

power used. The FrequencyScaler4Performance service, used to maximize

performance, was tested using the photo viewer application. Since this ap-

plication has to perform an intensive task and it has to be completed as

soon as possible, the frequency scaler was used to increase the frequency at

its maximum possible value, thanks to over clock. The task execution was

visibly reduced. The NetManager4Fluctuation service was used to control

the network fluctuation between different net types, to avoid unnecessary

power consumption, while the NetManager4Power service was used to re-

duce the power consumption of the video player application on a stream-

ing playback, with respect to the application QoS.

In addition, the last test shows that it is possible to reach an adequate

tradeoff between performance and power targets, applying different ser-

vices at the same time.

Even if there is still a lot of work to be done before the described ar-

CHAPTER 6. CONCLUSIONS 111

chitecture can be considered completed to a public audience, we have de-

signed and built an enabling technology for adaptive systems in mobile

environments. An interesting future work can be shown using one of the

tests of the previous Chapter, the one that uses the frequency scaler in a

service whose target is performance. In that test, the frequency value was

set to the maximum feasible value in order to complete a task as soon as

possible. Setting the CPU in an idle state after the task completion can re-

duce the total application power consumption. Taking into consideration

the loading time of an image with size 250KB, Figure 6.1 shown the idle

time than can be gained using higher frequency values, with respect to the

average case in which the frequency is set to 320MHz.

Ti
m

e
(n

s)

0

50

100

150

200×106

CPU Frequency (MHz)
300 470 600 748 787 806

Figure 6.1: Loading time of a 250KB image at different frequencies. The idle time is com-

puted with respect to the longest execution.

At the moment we have no means to estimate the power reduction due

to setting the CPU to an idle state with respect to an execution at a specific

power, but further analysis in that direction can prove if this method is

useful to reduce power consumption.

An important future work will be the implementation of a power mon-

itor able to retrieve precise information about the power consumption of

a single process. Then other ideas may include implementing an actuator

able to scale the CPU voltage or developing a system able to detect the kind

CHAPTER 6. CONCLUSIONS 112

of device on which it is running and apply policies consequently.

Bibliography

[1] Canalys. Q1 2011, May 2011.

[2] R. Laddaga. Self-adaptive software. DARPA BAA 98-12, December

1997.

[3] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heim-

bigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S.

Rosenblum, and Alexander L. Wolf. An architecture-based approach

to self-adaptive software. IEEE Intelligent Systems, 14:54–62, May 1999.

[4] Paul Horn. Autonomic computing: Ibm’s perspective on the state of

information technology. Computing Systems, 2007(Jan):1–40, 2001.

[5] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Land-

scape and research challenges. ACM Trans. Auton. Adapt. Syst., 4:14:1–

14:42, May 2009.

[6] Jeffrey O. Kephart and David M. Chess. The vision of autonomic com-

puting. Computer, 36:41–50, January 2003.

[7] IBM. [a practical guide to the ibm autonomic computing toolkit. 2004.

[8] IBM. Log and trace analyzer for autonomic computing. AlphaWorks

Release.

113

BIBLIOGRAPHY 114

[9] Cohen. Multiple architecture characterization of the linux build pro-

cess with oprofile. Proceedings of the IEEE International Workshop on

Workload Characterization, 2003.

[10] Jasmina Jancic, Christian Poellabauer, Karsten Schwan, Matthew Wolf,

and Neil Bright. dproc - extensible run-time resource monitoring for

cluster applications. In International Conference on Computational Sci-

ence (2)’02, pages 894–903, 2002.

[11] D. Gonzalez-Pea and F. Fernandez-Riverola. Understanding jpda (de-

bugging) and jvmti (profiling) java apis within javatraceit.

[12] Roy Sterritt. Pulse monitoring: Extending the health-check for the au-

tonomic grid, 2003.

[13] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E.

Miller, and Anant Agarwal. Application heartbeats for software per-

formance and health. In Proceedings of the 15th ACM SIGPLAN sympo-

sium on Principles and practice of parallel programming, PPoPP ’10, pages

347–348, New York, NY, USA, 2010. ACM.

[14] J. Steven Perry. Java Management Extensions. O’Reilly, Beijing, 1. edi-

tion, 2002.

[15] Günter Karjoth. Access control with ibm tivoli access manager. ACM

Trans. Inf. Syst. Secur., 6:232–257, May 2003.

[16] Andrew Baumann, Jeremy Kerr, Jonathan Appavoo, Dilma Da Silva,

Orran Krieger, and Robert W. Wisniewski. Module hot-swapping

for dynamic update and reconfiguration in k42. In IN 6TH

LINUX.CONF.AU, 2005.

[17] Arun Mukhija and Martin Glinz. The casa approach to autonomic

applications, 2005.

BIBLIOGRAPHY 115

[18] Gabor Karsai, Akos Ledeczi, Janos Sztipanovits, Gabor Peceli, Gyula

Simon, and Tamas Kovacshazy. An approach to self-adaptive software

based on supervisory control. In Proceedings of the 2nd international

conference on Self-adaptive software: applications, IWSAS’01, pages 24–38,

Berlin, Heidelberg, 2003. Springer-Verlag.

[19] J Aycock. A brief history of just-in-time. ACM Comput. Surv, 2003.

[20] S. Sidiroglou A. Agarwal H. Hoffmann, S. Misailovic and M. Rinard.

[21] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E.

Miller, and Anant Agarwal. Application heartbeats: a generic inter-

face for specifying program performance and goals in autonomous

computing environments. In Proceeding of the 7th international confer-

ence on Autonomic computing, ICAC ’10, pages 79–88, New York, NY,

USA, 2010. ACM.

[22] Hua Liu and Manish Parashar. Rule-based monitoring and steer-

ing of distributed scientific applications. Int. J. High Perform. Comput.

Netw., 3:272–282, December 2005.

[23] A. Boulkroune, M. Tadjine, M. M’Saad, and M. Farza. How to design a

fuzzy adaptive controller based on observers for uncertain affine non-

linear systems. Fuzzy Sets Syst., 159:926–948, April 2008.

[24] Frank L. Lewis and Draguna Vrabie. Reinforcement learning and

adaptive dynamic programming for feedback control. Cir. and Sys.

Mag., 09:32–50, September 2009.

[25] Various Authors. The mit angstrom project: Universal technologies

for exascale computing. Mar 2011.

BIBLIOGRAPHY 116

[26] Santambrogio Leva Hoffmann, Maggio and Agarwal. Seec: A frame-

work for self-aware computing. Technical Report MIT-CSAIL-TR-2010-

049, CSAIL, MIT, October 2010.

[27] David Wentzlaff and Anant Agarwal. Factored operating systems

(fos): the case for a scalable operating system for multicores. SIGOPS

Oper. Syst. Rev., 43:76–85, April 2009.

[28] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen, Ram Raja-

mony, and Raj Rajkumar. Critical power slope: understanding the

runtime effects of frequency scaling. In Proceedings of the 16th inter-

national conference on Supercomputing, ICS ’02, pages 35–44, New York,

NY, USA, 2002. ACM.

[29] Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pe-

dram. Frame-based dynamic voltage and frequency scaling for a

mpeg decoder. In Proceedings of the 2002 IEEE/ACM international con-

ference on Computer-aided design, ICCAD ’02, pages 732–737, New York,

NY, USA, 2002. ACM.

[30] Trevor Pering, Tom Burd, and Robert Brodersen. Dynamic voltage

scaling and the design of a low-power microprocessor system. In In

Power Driven Microarchitecture Workshop, attached to ISCA98, 1998.

[31] Johan Pouwelse, Koen Langendoen, and Henk Sips. Dynamic voltage

scaling on a low-power microprocessor. In Proceedings of the 7th annual

international conference on Mobile computing and networking, MobiCom

’01, pages 251–259, New York, NY, USA, 2001. ACM.

[32] Thomas D. Burd and Robert W. Brodersen. Design issues for dynamic

voltage scaling. In Proceedings of the 2000 international symposium on

Low power electronics and design, ISLPED ’00, pages 9–14, New York,

NY, USA, 2000. ACM.

BIBLIOGRAPHY 117

[33] Steven J. Vaughan-Nichols. Oss battle in the smart-phone market.

Computer, 36:10–12, June 2003.

[34] Feida Lin and Weiguo Ye. Operating system battle in the ecosystem

of smartphone industry. In Proceedings of the 2009 International Sym-

posium on Information Engineering and Electronic Commerce, pages 617–

621, Washington, DC, USA, 2009. IEEE Computer Society.

[35] Symbian Foundation. The symbian blog.

[36] Nokia. Nokia N8 Technical Specifications.

[37] Ben Morris. The Symbian OS Architecture Sourcebook. John Wiley and

Sons, 2007.

[38] Jane Sales. Symbian OS Internals: Real-time Kernel Programming. John

Wiley and Sons, 2005.

[39] Apple Inc. ios overview.

[40] Microsoft. Windows phone 7 guide for iphone application developers.

[41] Ben Elgin. Google buys android for its mobile arsenal. Businessweek,

08 2005.

[42] Google Inc. What is android?

[43] Dan Bornstein. Presentation of dalvik vm internals.

[44] A. Krall. Efficient javavm just-in-time compilation. In Proceedings of

the 1998 International Conference on Parallel Architectures and Compilation

Techniques, PACT ’98, pages 205–, Washington, DC, USA, 1998. IEEE

Computer Society.

[45] F. Sironi, M. Triverio, Henry Hoffmann, M. Maggio, and Marco D. San-

tambrogio. Self-aware adaptation in fpga-based systems. In FPL’10,

pages 187–192, 2010.

BIBLIOGRAPHY 118

[46] Jonathan Eastep, David Wingate, Marco D. Santambrogio, and Anant

Agarwal. Smartlocks: lock acquisition scheduling for self-aware syn-

chronization. In Proceeding of the 7th international conference on Auto-

nomic computing, ICAC ’10, pages 215–224, New York, NY, USA, 2010.

ACM.

[47] Jonathan Eastep, David Wingate, Marco D. Santambrogio, and Anant

Agarwal. Smartlocks: lock acquisition scheduling for self-aware syn-

chronization. In Proceeding of the 7th international conference on Auto-

nomic computing, ICAC ’10, pages 215–224, New York, NY, USA, 2010.

ACM.

[48] Paul Richardson, Larry Sieh, and Ali M. Elkateeb. Fault-tolerant adap-

tive scheduling for embedded real-time systems. IEEE Micro, 21:41–51,

September 2001.

[49] J. H. Abawajy. An efficient adaptive scheduling policy for high-

performance computing. Future Gener. Comput. Syst., 25:364–370,

March 2009.

[50] Joshua A. Wise Wei Lin. Precise power characterization of modern

android devices. October 2010.

[51] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang,

Robert P. Dick, Zhuoqing Morley Mao, and Lei Yang. Accurate online

power estimation and automatic battery behavior based power model

generation for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthe-

sis, CODES/ISSS ’10, pages 105–114, New York, NY, USA, 2010. ACM.

[52] Android Open Source Project. Android build system.

[53] P. Rysavy. Data capabilities: Gprs to hsdpa and beyond. Whitepaper,

Rysavy Research, September 2005.

BIBLIOGRAPHY 119

[54] Gian Paolo Perrucci, Frank Fitzek, Giovanni Sasso, Wolfgang Kellerer,

and Joerg Widmer. On the impact of 2G and 3G network usage for mo-

bile phones’ battery life. In European Wireless 2009, Aalborg, Denmark,

5 2009.

	Introduction
	Introduction to the problem
	Research context: autonomic computing systems
	Definitions and pillars for autonomic computing
	Realization issues

	Related works on adaptive techniques
	Control Loop models
	Monitoring and acting
	Deciding

	Related works on complete adaptive systems: the SEEC framework
	Target devices and power management
	Power management: overview and techniques

	Summary

	Operating systems for mobile device systems
	OS overview
	Symbian
	iPhone and iOS
	BlackBerry OS
	Windows Phone 7
	Android

	Market analysis
	Power management in mobile OS
	The choice of Android
	Android OS
	Android OS Architecture
	Android kernel vs Linux kernel
	Dalvik machine
	Android security

	Proposed Approach
	The CHANGE approach
	Terminology
	ODA loop
	Mobile devices: a different approach

	Analysis phase: requirements, scenarios and goals
	Adaptive System structure
	Observe
	Decide
	Act

	Applications
	Self-adaptive applications

	Application monitored by the SC
	Services
	Summary

	Proposed Implementation
	Porting Heartbeats API
	File based
	Shared Memory based
	Binder Interface to implement a shared memory

	Native library Implementation
	From native library to Java library
	Services Coordinator
	Frequency scaler actuator implementation
	Using userspace governor
	Actuator implementation

	Network-type changer actuator implementation
	Network types
	Actuator implementation

	Experimental Results
	Testing platform
	Test system structure
	Testing Heartbeat Framework
	Case studies: self-adaptive and SC guided applications
	Testing self-aware applications
	Application knobs
	Implementation changing
	Reaction times

	Testing services
	FrequencyScaler4Power service
	FrequencyScaler4Performance service
	Performance and power tradeoff
	NetManager4Fluctuation
	NetManager4Power

	Results summarization

	Conclusions

