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Sommario

Lo scopo di questa tesi è quello di presentare lo sviluppo dell’interfaccia
grafica VMTKGui da affiancare ad un software pre-esistente, the Vascu-
lar Modeling Toolkit (VMTK ), per poter creare un tool in grado di pro-
cessare un’immagine medica di tipo DICOM (DIgital COmmunication
in Medicine) in modo da passare da essa a una ricostruzione tridimen-
sionale della stessa che permetta di effettuare simulazioni numeriche su
quello che è il flusso nei vasi, come è spiegato dettagliatamente in [5].
A questo scopo si sfruttano alcune funzioni offerte da un software open-
source per l’analisi e visualizzazione di immagini (Visualization ToolKit,
VTK ). Lo scopo del tool che si intende realizzare è quello di poter rico-
struire la geometria di una parte anatomica non banale (nello specifico
il fine ultimo è quello di ricostruire la zona a cavallo della valvola mitra-
le, vale a dire ventricolo sinistro, valvola mitrale stessa e ultimo tratto
di aorta ascendente) per poter successivamente fare un’analisi numerica
del flusso in quell’area. Per la realizzazione dell’interfaccia grafica si uti-
lizza il linguaggio Python: si è preferito andare in questa direzione dal
momento che la totalità delle librerie VMTK ha un’interfaccia evoluta
proprio in questo linguaggio.

Il presente lavoro è così suddiviso: nel primo capitolo viene presentato il
progetto nelle sue linee generali. Viene dunque dedicato ampio spazio a
quello che è lo stato dell’arte di VMTK per quel che concerne la visua-
lizzazione di immagini in campo medico; di seguito sono presentati gli
obbiettivi che ci si è posti all’inizio del lavoro; nell’ultima sezione, inve-
ce, si dà ampio spazio alle applicazioni pratiche che potrebbero prendere
piede a partire dal tool sviluppato per poi sottolineare l’importanza del
lavoro svolto.

Nel secondo capitolo si tratta della ricostruzione geometrica da un punto
di vista teorico: si presentano, nella prima sezione, le possibili tecniche
per ricostruire una certa geometria partendo da un’immagine in formato
DICOM ; nella seconda sezione sono presentati i dettagli del metodo di
ricostruzione utilizzato in questo lavoro di tesi, vale a dire il Level Set
Segmentation (LSS), individuando i vantaggi che questa tecnica presenta
rispetto alle altre, mettendo in evidenza quali sono i motivi che ci hanno
portato a una tale scelta.

Nel terzo capitolo, invece, si è redatto un manuale per l’utente del soft-
ware VMTKGui. Si presentano i vari passi per arrivare ad una ricostuzio-
ne della geometria desiderata su cui verrà poi eventualmente costruita
una mesh.
Per ogni step sono presentate le varie problematiche, il metodo di utilizzo
del comando e, infine, l’applicazione dello stesso in un esempio pratico.

Nel quarto ed ultimo capitolo c’è una prima sezione in cui si discute
un’attenta analisi di quelli che sono stati i risultati ottenuti in rappor-
to agli obbiettivi che ci si era posti in partenza. Inoltre, nella sezione
finale si offre una discussione relativa a possibili sviluppi futuri, al fine
di migliorare e ultimare il tool realizzato rendendolo disponibile a tut-



ti gli utilizzatori del software VMTK, sicuri del fatto che un tool con
queste potenzialità possa suscitare interesse nell’ambito di simulazioni
in campo medico.



Abstract

The main target of this thesis is to describe the development of the
graphic interface, VMTKGui. This tool can be used with Vascular
Modeling ToolKit (VMTK ), an already-existing software used to pre-
cess medical images, in particular vascular vessels, as the name suggests
in order to reconstruct a certain geometry. This graphic interface has
the goal to partly automate the reconstruction of vascular geometries,
starting from a medical CT -series in DICOM format. To do this, we
use some libraries offered from another software, VTK which is an open-
source, freely available software system for 3D computer graphics, image
processing and visualization. The tool that we realize should be able to
reconstruct the geometry we want (in this specific case we should re-
construct the left ventricle, the mitral valve and the final part of the
ascending aorta) in order to build a three-dimensional mesh needed for
numerical simulations of the flow in that area. The GUI has been coded
in Python, for which VMTK provides a clear interface.

This work is divided into 4 chapters: in the first chapter an overview
of the project is presented. The state of the art of medical images vi-
sualization is described at the very beginning. Furthermore, the targets
of the project are pointed out; also, in the final section, some practi-
cal applications are discussed and the importance of the VMTKGui is
clarified.

In the second chapter we give the theoretical details about the tech-
nique we decided to use, i.e. the Level Set Segmentation (LSS) technique.
Thanks to this technique it is possible to reconstruct a 3D geometry that
can be meshed and then used for simulations. In the first section of this
chapter we present different algorithms for geometrical reconstruction,
while in the second one we give the details about the LSS and its imple-
mentation and we explain why such a choice.

The third chapter contains the VMTKGui user’s guide: all the steps are
detailed. And, for each step, we list the problem, we give some hints
about the command and its usage and, finally, we present a practical
example (in this case we reconstruct the descending aorta).

Finally, in the fourth chapter, we analyze the results and we compare
them with the goals we had at the beginning of this project. We also
discuss possible future development in order to build a better tool and
in order to make the tool available to the VMTKcommunity. In fact, we
are sure it could be interesting to have such a tool that anyone can use
and develop: it could be a way to make VMTK more user-friendly. And
it will inspire huge interest in the medical environment.
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Prefazione

Il vostro tempo è limitato, per cui non
lo sprecate vivendo la vita di qualcun
altro. Non fatevi intrappolare dai dog-
mi, che vuol dire vivere seguendo i ri-
sultati del pensiero di altre persone.
Non lasciate che il rumore delle opi-
nioni altrui offuschi la vostra voce in-
teriore. E, cosa più importante di tut-
te, abbiate il coraggio di seguire il vo-
stro cuore e la vostra intuizione. In
qualche modo loro sanno che cosa vo-
lete realmente diventare. Tutto il re-
sto è secondario.

Steve Jobs

Implementare il codice che mi ha portato alla realizzazione dell’interfac-
cia grafica VMTKGui e, in seconda battuta, alla stesura della presente
tesi, è stato per me motivo di orgoglio. Ritengo opportuno riassumere
ciò che mi ha spinto ad una tale scelta, dal momento che l’argomento
centrale di questa tesi è lontano anni luce dal campo aeronautico che,
invece, è l’argomento centrale del corso di studi che - con oggi - final-
mente porto a termine. Andrò quindi a discernere ed analizzare quelle
che sono le obiezioni che è possibile muovere, spiegando i motivi che mi
hanno spinto, nonostante ciò, a svolgere un lavoro di tesi di questo tipo.

In primo luogo, la mia scelta è stata dettata dalla passione per la nume-
rica: tra tutti i corsi seguiti, quelli che hanno maggiormente destato il
mio interesse sono stati i corsi a carattere computazionale. Ecco perché
ho pensato di rivolgermi al Dipartimento di Matematica del Politecnico
di Milano e, nello specifico, al MOX.

Si potrebbe obiettare che - pur restando in ambito numerico - avrei
potuto scegliere un argomento prettamente aeronautico: vero, ma alla
base della mia scelta c’era anche un forte desiderio di fare un’esperienza
all’estero. E, dal momento che mi si è presentata questa occasione, non
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ho voluto lasciarmela sfuggire. Sono consapevole del fatto che questa
non era l’unica scelta possibile, ma è stata sicuramente un’ottima scelta.
E sono orgoglioso di aver vissuto questa esperienza.

Inoltre - come mi è stato più volte ripetuto nel corso di questi 5 anni
- l’ingegnere è una figura caratterizzata da una forte duttilità: è questo
che mi ha spinto ad andare a esplorare altri campi, lontani da quel-
lo aeronautico. Sempre animato da una forte curiosità e dal desiderio
di imparare cose nuove: mi ritengo (citando alcuni versi della canzone
intitolata “Addio”, di Francesco cuccini) “un eterno studente perché la
materia di studio sarebbe infinita e, soprattutto, perché so di non sapere
niente”.

Da ultimo, ma non per importanza, vi è un motivo più personale, che
non ha nulla a che vedere con la didattica: vale a dire la mia passione per
la medicina. Oltre ad essere stata la facoltà che avrei scelto se non avessi
optato per ingegneria, il mio amore per la medicina si manifesta anche
nel desiderio di poter salvare una vita. È vero, l’ingegnere può fare aerei
sempre più veloci che permettano ad un medico di essere a migliaia di
chilometri di distanza in poche ore. Oppure può costruire un ponte o un
tunnel per collegare 2 città altrimenti divise da una profonda vallata o
da un monte invalicabile. Ma - alla fine - è sempre il chirurgo che deve
agire. Ecco perché ho deciso di dedicarmi allo sviluppo di questo software,
pur consapevole del fatto che non sono un chirurgo, né mai lo sarò. Mi
accontento dell’idea che un giorno un chirurgo sfrutterà il software che
ho contribuito a sviluppare: questo è per me motivo di immensa gioia.

Concludo dicendo che sarei dispiaciuto se leggendo questa prefazione
resterete delusi, in quanto non avete tra le mani una tesi “aeronautica”.
Vi invito comunque ad andare oltre e a non fermarvi qui; spero che,
nello scrivere questo lavoro, sia riuscito a trasmettere almeno una parte
della passione che ho dedicato ad esso e una parte dell’entusiasmo che si
leggeva nei miei sorrisi quando le cose andavano bene, ma anche quando
qualcosa non funzionava perfettamente.
Rimango a disposizione per ogni tipo di chiarimento e per ogni curiosità
in merito al lavoro svolto.

Buona lettura,

Samuele Zampini
samuele.zampini@gmail.com
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Preface

Your time is limited, so don’t waste
it living someone else’s life. Don’t
be trapped by dogma - which is liv-
ing with the results of other people’s
thinking. Don’t let the noise of others’
opinions drown out your own inner
voice. And most important, have the
courage to follow your heart and in-
tuition. They somehow already know
what you truly want to become. Ev-
erything else is secondary.

Steve Jobs

I am really proud to have written the code that allowed me to create the
VMTKGui graphic interface and to have published this thesis. In this
preface I would like to sum up all the reasons that drove me in such a
choice. It is a subject that is very very far from the main subjects that
characterized my studies. Why such a choice? I think this is the right
place where I can give you the motivations. I know you could object that
this job is not linked to what I studied. But I think that - as you can
read in the epigraph - everyone should follow his/her heart and intuition.
That is what I did.

A great motivation that suggested me to accept this thesis that professor
Quarteroni offered me is my love for the numerical subjects. That is why
I asked to the Maths Department for a thesis.

The first objection you could move is that I could have found an aero-
nautical subject for a numerical research. That is true. But one more
reason is that my dream was to go abroad for the thesis. And as soon
as I heard about the opportunity to go to Lausanne I said: “Yes, I am
ready to leave.” and I left. This was not the only possible choice. Maybe
there were many other choices. I am sure that my choice has been a
great choice and I am proud of what I did.
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Furthermore, in these years of university, I was often told that an engi-
neer should be a very ductile figure. So I decided to explore fields far
from “airplanes”, which are the main subject of an aeronautical faculty.
In fact I am very curious and (quoting some verses of the song “Addio”
by Francesco Guccini)I am “an eternal student, since the field of study
would be endless and above all because I know to know nothing”1.

Also, there is a very personal motivation that I want to share with you:
I like medicine. Not only because I would have chosen Medicine if I had
not chosen Engineering, but also because the idea to be able to help
other people is something that really makes me happy. It is true that an
engineer could build a faster airplane that allows the surgeon to go from
a place to another in a blink or he could build a bridge to reach a city
in a couple of hours instead of two days. Also, engineers could create a
tunnel to link to towns. But it is the surgeon who has the power and
the possibility to save a patient or not. He is the surgeon who can save
a person. I am also aware that I am not a surgeon and I will never be
a surgeon. However, it is enough to know that a person will be saved
thanks to the software I have contributed to develop, to make me proud
and happy of what I have done through this report.

Finally, let me tell you that I would be very sorry if, reading this preface,
you will be disappointed since you are reading a non aeronautical report.
In this case, I will invite you to go further in reading this thesis, hoping
that reading it, you will feel the passion and the enthusiasm I tried to
convey while I was writing it.
Obviously, feel free to contact me if you have any question or curiosity
that deals with the developed work.

Enjoy your reading,

Samuele Zampini
samuele.zampini@gmail.com

1 “Francesco Guccini, eterno studente, perché la materia di studio sarebbe infinita e
soprattutto perché so di non sapere niente”
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1. Introduction

If you can’t solve a problem, then
there is an easier problem you can
solve: find it.

George Polya

The aim of this first chapter is to give to the reader a general overview of
the work developed in this thesis, without any technical detail. Details
that - as we can see - are analyzed in the next chapters (read chapters
2 and 3). This first chapter is divided in four sections: in section 1.1 we
discuss about the state of the art of the visualization in the medical ap-
plications and we offer a description of the different techniques available
to acquire data.

In section 1.2 we define the targets we want to reach with our tool. Here,
the final goals are presented and we discuss about the targets of both
the VMTKGui and the VirtualValveStent project. What it is important
to remind is that the final target of the VirtualValveStent project is not
a goal we want to reach through this report; nevertheless, we would like
to pave the road for those who may be interested in developing such a
tool.

Finally, in section 1.3, we discuss about the importance of the tool we
develop in this thesis, describing its main features and its possible appli-
cations. The key point of this section is that the reader could appreciate
the ductility of the tools developed in this report.
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Chapter 1

1.1 Medical visualization: the state of the art1

Angiographic image acquisition techniques (see [40] for further details)
provide detailed anatomic data on vascular structures. Graphic work-
stations usually linked to Computed (Axial) Tomography (C(A)T) or
Magnetic Resonance (MR) scanners are used in the clinical practice to
produce tridimensional patient-specific representations on the basis of
the acquired data. The techniques used today for such purposes are in
general not adequate for accurate geometric analysis and Computational
Fluid Dynamics (CFD) which we address here, since the main effort is
directed toward producing high-quality visual feedback rather than accu-
rate geometric modeling of a particular anatomic structure: physicians,
in fact, prefer a better graphic visualization instead of an accurate geome-
try. In our case, vascular modeling requires, as a first step, the extraction
of vascular wall position from medical images. In this very first section it
is useful to give a brief overview of the principal imaging techniques used
in the clinical practice for the acquisition of tridimensional anatomy of
vascular segments. Since we use data coming from CT images, we give a
detailed description of this technique in the first subsection. In the sec-
ond and third ones we give a list of other widely used techniques with
very short descriptions.

1.1.1 Computed Tomography

Computed Tomography (for further details see [43] and [6]) imaging is
also known as CAT -scanning, where the “middle” A stands for axial.
The word tomography is from the Greek words “tomos” meaning “slice”
or “section” and “graphia” meaning “describing”: in fact, we reconstruct
the volume we are interested in taking many “shots”, slice by slice.
CT -scanning is a quite recent technique, since it was invented in 1972
by Godfrey Hounsfield (see [37]) of EMI Laboratories, and by Allan
Cormack (see [34]) of Tufts University. Hounsfield and Cormack were
later awarded the Nobel Peace Prize for their contributions to medicine
and science.
The first clinical CT -scanners were installed between 1974 and 1976.
The original systems were dedicated to head imaging only, but “whole
body” systems with larger patient openings became available in 1976.
CT -scanning became widely available by about 1980. There are now
about 30 000 CT -scanners installed worldwide.
The first CT -scanners developed by Hounsfield in his lab at EMI took
several hours to acquire the raw data for a single scan or “slice” and
took days to reconstruct a single image from this raw data. The latest
multi-slice CT systems can collect up to 4 slices of data in about 350 ms
and reconstruct a 512 x 512-matrix image from millions of data points
in less than a second. An entire chest (forty 8mm slices) can be scanned

1 Please, refer to [17], [15], [13], [14], [9], [8] e [? ] for details about the state of the art
in the clinical imaging.
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in five to ten seconds using the most advanced multi-slice CT -scanning
system.
During its 35-year history, CT -scanning has made great improvements
in speed, patient comfort, and resolution. As CT -scanning times have
gotten faster, more anatomy can be scanned in less time. Faster scanning
helps to eliminate artifacts from patient motion such as breathing or
peristalsis even tough we still have a certain noise in the reconstruction
we do. But this noise could be attenuated as analyzed further, thanks
to some post-processing tools. Here, we are referring to the “smoothing”
tool that eliminates the noise introduced during the acquisition.

Tremendous research and development has been made to provide excel-
lent image quality for diagnostic confidence at the lowest possible x-ray
dose. Nowadays, in fact, it is possible to get very detailed images in a
quite short time. Also, it is possible to have a colored reconstruction
and this is certainly a great advantage both for the doctors and for
the patients who would like to understand something more about their
situation.

Why is CT -scanning becoming more and more popular? One of the great
advantages is that it is a non-invasive technique: it is used widely both
for the diagnose and also to simulate the surgery. In fact, thanks to CT -
scanning, the doctor can both simulate a surgery (in order to analyze all
the difficulties he may have to face) and make a clear and sure diagnose
about some malformations or diseases, avoiding the biopsy, which is an
invasive operation.
Furthermore, this kind of visualizations are very useful if you have to
insert a stent (e.g. the VirtualValveStent project) in a patient’s vessel:
in fact, through visualizations, it is possible to reconstruct the geometry,
to virtually build the stent and to virtually install it properly. And this
helps the doctor and allows him to “study” in advance the surgery he is
going to do. This means that - generally - the doctor has an idea about
what he is going to find, making the operation be safer.
Also, in these days, imaging visualizations are used for a mathematical
purpose, too: in fact, thanks to this visualization it is possible to obtain
high-fidelity reconstruction of any anatomic area we are interested in.
Once we get this reconstructions, it is possible to build a mesh either
over the surface or in the volume and to analyze either the blood flow in
the vessel or the air flow through a cavity, depending on what we need
to study. That is another point that makes the visualizations very very
important nowadays.

How does the CT -scanning technique work? To better understand this
point, with animations, please visit [7]. This is a technique that consists
of imaging cross-sections of a body using series of X-ray measurements
taken at many different angles around it. The intensity of X-rays passing
through the scanned body is attenuated according to the density of
tissues that the rays encounters, so that the line integral of tissue density
is measured. The source and the detector rotate around the subject and
register a row of X-ray measurements for each angle during the rotation.
In helical CT scanners, the subject is continuously moved through the
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plane of the rotating source and detector, so that an helical trajectory
around the subject is generated. In multi-row helical CT scanners, the
actual state of the art scanners, the signal is acquired simultaneously
from up to four rows, thus optimizing the trade-off between acquisition
time, z-resolution and noise.

The signal resulting from the acquisition is called sinogram, and is repre-
sented as a series of images with detected attenuation on the x-axis and
rotation angle on y-axis. The image is then reconstructed by solving the
inverse Radon transform (see [42]) on the image grid. The reconstructed
image contains attenuation values expressed by Hounsfield units (HU),
for which water is conventionally represented by 0. Consequently, fat is
associated with negative values, connective tissue by low positive val-
ues and calcium by high positive values. Scanners today available in
the clinical context allow in-plane resolution smaller than 0.5mm and
slice thickness smaller than 1mm of anatomical structures in a single
breath-hold.

In the image 1.1 we have an example of a thoracic CT. It is possible to
see the different HU values that indicates the different tissues. We have
pointed out the ascending and the descending aorta, which is the area
that we analyze in this report.

Figure 1.1. Example of a thoracic CT -scanning, got with the VMTKGui tool.

It is possible to appreciate the different HU values depending on different kind

of tissues.

1.1.2 Magnetic Resonance

There are two more important techniques that are used in the clinical
practice; they are the magnetic resonance and the ultrasound imaging.
In this subsection we give a brief description of the first one, i.e. the
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magnetic resonance, while the second one, i.e. the ultrasound imaging,
is presented in the next subsection (see Subsection 1.1.3).

Magnetic resonance (see [39] for further details) is based on the mea-
surement of relaxation times of the net magnetization vectors induced
in tissues when a magnetic field at a given frequency is applied. Net
magnetization occurs because the magnetic momentum of nuclei, whose
Larmor frequency (see [38]) is that of the applied field, tends to ori-
entate along the direction of the field. In medical imaging the Larmor
frequency of hydrogen nuclei is usually employed. When the magnetic
field is ceased, the magnetic momentum of hydrogen nuclei return to
equilibrium by local field inhomogeneities and by interaction with other
relaxing nuclei, and the net magnetization returns to 0. Both relaxation
processes are exponential, and their time constants (named T1 and T2
), which are characteristic of different tissues, can be measured. As a
result, images can reflect proton density, T1, T2 or a mixture of these
quantities. Localization of the voxels from the decaying magnetization
signal (or Free Induction Decay, FID [36]) is accomplished by additional
magnetic fields, acting as gradients along the directions if imaging axes.
Signal is collected in lines of data in the frequency domain (the k-space),
and is then brought to the image domain by Fourier transform tech-
niques. Several sequences of application of magnetic fields and gradients
are available, which offer great flexibility in imaging different anatomical
structures.

It is important to underline that potentially harmful effects of mag-
netic fields have not been demonstrated, so that MR is considered a
non-invasive investigation, as well. Recent developments of MR imaging
techniques allow 1mm resolutions within a single breath hold: speed and
resolution are lower than the CT ones, but they are good, too and this
makes MR technique a very good and used technique. Also, there is an
advantage of MR over CT: in fact, in the MR technique the imaging
planes can be oriented by changing the direction of gradients, hence you
could choose the orientation you like best.

1.1.3 Ultrasound imaging

Ultrasound imaging (see [41] for further details) is based on the gener-
ation of ultrasounds from a piezoelectric transducer which is then used
as a receiver for the waves reflected at the interfaces between two tissues
with different acoustic impedance. The brightness modulation imaging
modality produces morphologic images which represent the echogenity
of the tissues and of tissue interfaces. Recently, image processing tech-
niques allow to combine acquired 2D images into volumes, yielding 3D
ultrasound. Although image resolution still cannot compete with CT or
MR angiography and the investigation is limited to superficial vessels,
such acquisition method is attractive for the possibility of accurately
discerning the morphology of the vessel wall, and for the relative inex-
pensiveness and flexibility of the technique.
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A useful imaging modality is Doppler ultrasound, which accounts for the
frequency shift of waves reflecting over flowing red blood cells. Thanks to
this technique, velocity measurements can be performed real-time with
high temporal resolution in a sample volume.

1.1.4 How to store data

A very good reference to refer to, in order to understand how the data
acquisition works, is [1]. To sum up, let’s say that for our purpose, what
is important is to store the data we have acquired. And we have to do
it in a smart way. The interesting point is that, independently from the
image acquisition technique employed (either CT, MR or ultrasound),
the acquired 3D images, usually in the form of stacks of 2D images, are
stored on workstations linked to the scanners, and must be transferred
to calculators for processing. This has to be accomplished without loss
of information. Since medical images are usually represented by a num-
ber of gray levels greater than 256, 8-bit image formats, such as TIFF,
handled by usual image-editing software are not suited for the represen-
tation of medical data. Hence, we need something different, also because
due to the number of informations associated with acquisition, such as
patient’s and investigator’s data, image number, image position, image
resolution, acquisition time, acquisition modality and scan parameters,
the need of a consistent way to handle such amounts of data has led to
the definition of a standard for communication and storage of medical
image data, the DICOM format. Images stored in the DICOM format
contain a header which, in turn, encloses a number of tags organized into
groups, followed by image data, which for CT and MR is represented in
signed 16-bit label. By reading the tags and the image data it is possible
to reconstruct the acquired volume from the image stack without the
need of further information. For a detailed description of the DICOM

standard see [23].

1.2 Targets

After the brief overview just presented, let’s focus on our targets.

Through this thesis we want to write and test a procedure that - starting
from a CT -scanning series - allows to faithfully reconstruct the geome-
try of a certain area. This target could be achieved using the existing
software VMTK : the interesting point that makes the VMTKGui2 tool
innovative is that, thanks to it, we provide a user friendly graphical in-
terface, that does not exist in VMTK. The latter, in fact, is handled by
command line. Commands are often long and non-intuitive: that is why
the physicians or the scientists may find it difficult to use VMTK. Also,
this tool will be available for the VMTK -community, making it easier
and faster to reconstruct a certain area, starting from a CT -scanning

2 As the name suggests, this tool is developed starting from VMTK
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series, since “everything that deals with a GUI is welcome in our com-
munity” as a VMTK -developer stated.
To get our goal - as you can see reading the code in appendix B - we
use Python language: this choice seems to be the right one, since this
language is very intuitive and flexible and - above all - since VMTK has
the proper interfaces to do this.

To sum up, the first step is to build a GUI : the intent of this work
includes the identification of clear interfaces between VMTK and the
user.
Once the data are loaded into VMTK, it is possible to act on it, in
order to smooth it, since the surface reconstruction by LSS (i.e. the
algorithm we use to reconstruct the geometry we need, see 2) is pretty
noisy. Furthermore, in order to make it easier to reconstruct and to
compute the centerlines, we use another VMTK function, the “clipping”,
that allows to get a well-defined inlet and outlet surfaces (all this features
are detailed further, in chapter 2).

Hence, to present VMTKGui, we say that the it is a smart and an
innovative way to manage the most of the VMTK functions (the missing
ones can be added) thanks to a user friendly graphic interface; we decided
to start from this point since a GUI is the worst lack we noticed in the
VMTK software.

Another important target that we reached through VMTKGui is the
possibility to build a mesh readable from different finite element solvers.
So that, such a tool could be used from the researchers in order to
build meshes over a “real geometry” to do a patient ad-hoc numerical
simulation. This makes VMTKGui tool a tool used in the pre-processing
for a FE analysis.

In the Figure 1.2 it is possible to observe how the GUI is with all its
features that will be discussed and detailed in chapter 3.
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Figure 1.2. An overview of the GUI where it is possible to appreciate all the

features available through VMTKGui tool.

Let’s now discuss about the long term goal, named VirtualValveStent,
that is a somewhat ambitious project. This is the reason for which we
decided to go ahead step by step, decomposing the original project into
three sub-targets. Even tough in this thesis we develop the VMTKGui

software, we think it is better (for a better understanding of the main
project and also to make it possible its future developments) to give a
short description of the final target, too.
It is clear, once again, that VirtualValveStent is a great project, but it
is very ambitious and too heavy to be developed in a master thesis.

After the creation of a GUI (thanks to the VMTKGui), there are two
more steps:

- insertion of the stent above the reconstructed geometry;

- possibility - thanks to a joint control - to choose the best inserting-point
for the stent.

As you can appreciate, VirtualValveStent (i.d. of the second and the
third sub-target) is a very ambitious project and it is going to be both a
medical and an engineering tool. In fact, to place the stent in the right
position you have to put the center of the stent itself in the center of
the aortic valve. Also, once found the exact position, we have to find the
right orientation: this is possible once we compute the centerlines of the
stent and of the aorta. In this case, we make them fit and what we get
is the exact positioning of the stent.
Furthermore, as far as the third sub-target is concerned, we can find
out the best inserting point for the stent. This means that the opera-
tion will be the least invasive possible. Also, thanks to this trick, the
doctor can simulate many ways to insert the stent, choosing the best
one. This possibility to make different simulations makes the software
VirtualValveStent very interesting. Also, the doctor has to choose and to
perform the simulation that offers the best results in terms of feasibility,
safety and comfort (both for the patient and for him). One more step
could be an automation of this process, thanks to a joint control that
minimizes a certain figure of merit properly studied.

1.3 The importance of VMTKGui and its possible applications

On the one hand, the VMTKGui is only an intermediate step toward
the VirtualValveStent and one could wonders if it is smart to develop
and use such a tool. Of course, the answer is “Yes, it is!”. Why can we
assert this? The reply is pretty easy: in fact VMTKGui is a flexible tool
that can be used in many applications. One of its best feature is the
possibility to get a detailed and high-fidelity geometrical reconstruction:
thanks to this tool, in fact, we can get a surface in the tridimensional
space. And this surface can be used as the starting point by people
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interested in generating a mesh over a certain surface or in a certain
volume, starting from a CT -series. This is why - as it is explained in the
chapter 4, section 4.2 - we think that the software has to be developed
and specialized in order to make it easier and faster to load a DICOM -
series, to extract the volume we are interested in and to generate the
corresponding surface/volume mesh. After we get a good mesh - and
this is the key point - we can start with a numerical simulation. In
fact, nowadays, the computer power is growing faster and faster and
the Computational Fluid Dynamics (CFD: for further details visit, for
example, [35] and A) is becoming more and more important and used.
In fact, CFD is spreading in many different fields, also in medicine, for
example.
And the base for a good CFD simulation is to have a good mesh. That is
why the possibility to generate a mesh makes VMTKGui a very ductile
tool.
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2. The Level Set Segmentation

You do not really understand some-
thing unless you can explain it to your
grandmother.

Albert Einstein (1879-1955)

This is the theoretical chapter1 of this report where a detailed description
of the Level Set Segmentation (LSS) technique is given. In the first
section of this chapter it is appropriate to introduce different techniques
that could be used to extract a tridimensional reconstruction, starting
from a CT -series. What we would like to achieve is to underline all
the pros and the cons of each technique, in comparison with the LSS
technique.

2.1 Techniques for reconstruction of tridimensional models

In this section we give a brief overview of the techniques that can be
used in order to get a tridimensional reconstruction of a certain geome-
try starting from DICOM medical images. Medical images describe the
region of interest by level of grey. Each level correspond to a different
density, hence to a different tissue. Therefore, geometry reconstruction
relies on identifying borders between different grey levels. There are at
least three important techniques for geometry reconstruction:

- contouring;

- parametric deformable models (e.g. snakes and balloons);

- implicit models (e.g. LSS).

In this section let’s examine the contouring and the parametric de-
formable model; the implicit models are discussed in Section 2.2. As far

1 To edit this chapter we revise Antiga [1] and Sethian’s [26] PhD thesis.
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as contouring is concerned, the idea that stands behind this method is
that - in a rough approximation - different tissues correspond to different
grey levels in the CT -scanning. Hence, the easiest approach is to create
a surface in correspondence of a certain grey-level. The advantage of this
technique is that it can be performed on a single two-dimensional image
constituting the three-dimensional volume or directly on the tridimen-
sional image. The most popular contouring algorithm is the marching

cubes algorithm2. This algorithm has been introduced by Lorensen et. al
[20] in 1987 and, although quite old, this technique is still widely used;
it is also used to validate newer and more sophisticate improvements [3]
or alternatives [44].
Let’s now discuss about how this algorithm works: we start from a three
dimensions CT -series and we set a level of gray that allows us to extract
the tissues we are interested in. Then we create a grid and it is possible
to label image grid vertices, i.e. the voxels, as above or below the given
level by reading their scalar value and comparing it with the chosen level.
Let’s now consider the set of one voxel-wide cubes, which is defined by
eight neighboring voxels: hence, it is possible to select which are the
cubes intersected by the isosurface of the value of interest as the ones
in which some of the voxels are labeled above and the rest below. The
idea at the base of this algorithm is that the above and below voxels of
each cube can be partitioned by a set of triangles whose vertices lie on
cube edges in a finite number of ways, called cases. That is why we can
construct a table of these cases: this table should contain all topologi-
cal configurations of above and below voxels and triangles partitioning
them, regardless the exact position of triangle vertices along cube edges
(as in Figure 2.1; it is important to underline that this picture only has
a topological meaning. Triangle vertices must be considered in a generic
position along cube edges and their coordinates are found by interpola-
tion).

Figure 2.1. Marching cubes cases (courtesy of L. Antiga, see [1]).

2 This is the technique implemented to initialize the geometry we are interested in.
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A great advantage of this technique is that - in most cases - there is
only one possible configuration of surface triangles: this means that the
surface reconstruction can be performed independently for each cube
constructed in the contoured image, retrieving the proper surface con-
figuration from the case table. To find the exact position of the triangle
vertices along the cube edges we use a linear interpolation of voxel scalar
values on cube vertices. The surface produced by marching through the
whole image volume is therefore first-order sub-voxel accurate.
Figure 2.1 shows the table of cases reduced to 15 by symmetries. Now
a technical detail arises: in fact, for a small number of cases, namely 3,
6, 7, 10, 12 and 13 in the Figure 2.1 there is more than one possibility
of constructing a surface partitioning above and below voxels. These are
called complementary cases and they are represented in Figure 2.2.

Figure 2.2. Marching cubes complementary cases (courtesy of L. Antiga, see

[1]).

These complementary cases are generated from the base case by swap-
ping above and below voxels. This possibility generates ambiguity in sur-
face reconstruction, since an arbitrary choice among ambiguous cases can
give rise to changes in surface topology (e.g. holes). The way to avoid this
problem is to introduce a set of rules. From a theoretical point of view,
the rules can be avoided if contouring problem statement, besides image
and contouring level, also includes the definition of different connectiv-
ity neighborhoods for above and below voxels, so that above voxels that
are considered connected would not necessarily considered connected if
labeled below. This way above/below swapping does not produce indis-
tinguishable configurations in terms of cube voxel partitioning, therefore
resolving ambiguity. In practice, it is not always possible to choose the
proper neighborhoods for the whole three dimensions image prior to con-
structing the isosurface, so the use of local rules is often preferred.
This technique presents some limitations. Nevertheless we often use it,
since angiographic tridimensional images represent scalar fields sampled
on regular grids and this marching cubes algorithm is a good way to
reach our goal: in fact it is possible to apply it to construct the isosurface
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Figure 2.3. Change in surface position and topology due to a slight change in

contouring level. These levels are A: 215HU; B: 235HU.

located over the transition from vessel lumen to the surrounding tissue.
Thanks to its simplicity, this approach is currently implemented in soft-
ware applications for radiological visualization. Though it is very useful
for the purpose of visualization, it is not adequate if we are interested in
reconstructing an accurate geometric for the CFD analysis. The major
limitation is that resulting surface depends on the scalar value we choose
for the contouring and this choice is made by the operator who, being
a man, can make a mistake. In fact there is not any fixed scalar level
for vessel lumen boundary, but this level depends on different conditions
(it is different from one patient to another, it depends on the environ-
ment and also on the quality of the CT -scan itself). Moreover, interfaces
are the areas where the gray-level variation is bigger: this means that
a slight change in contouring level may produce great changes in geo-
metric and even topological features of the resulting surface, as shown
in Figure 2.3, where models are generated by different levels contouring.
One more problem is that a single contouring value may be not suitable
for an angiographic acquisition if the contrast medium is used. In fact,
the blood flow makes the concentration of the contrast medium change.
Hence, the opacization level change, as well, time after time.
The same problem can be experienced in time of flight3 and phase con-
trast4 MR angiographic acquisitions, due to complex blood flow patterns
altering the received signal.

One more issue involving isosurface extraction is the impossibility of se-
lectively reconstruct vessels of interest ignoring branching vessels, or to
avoid the reconstruction of calcified plaques on CT images (see Figure
(2.4)), since they have a higher gray value than the contrast medium,
without manually editing the source images. This task can introduce op-
erator dependency if the edited regions extend over several serial images

3 Time of Flight is a modality for the MR acquisition where flowing blood is excited
in one plane and its signal acquired in a downstream plane. This allows to enhance
saturated blood over the unexcited static tissue without using contrast agents, with
the drawbacks of low spatial resolutions, slow acquisition and artifacts from complex
flow

4 Phase Contrast technique relies on velocity induced phase shifts of the transverse
magnetization. Since in the presence of complex flow patterns velocity measurements
can be affected by artifacts, acquisition is usually performed in relatively straight
vessels. This technique provides information about different velocity components.
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and involve geometrically complex regions. That’s why other techniques
have been developed, even tough each of them presents its pros and its
cons and it is impossible to say which is the best way to acquire images.
That is why CT -scan is still widely used, nowadays.

Figure 2.4. Problems linked to the contouring model: a manual editing is

necessary.

Let’s give now a brief description about the two most-widely used para-
metric deformable models. These models have been introduced since
there is a lack of absolute correspondence between tissues and grey level
of a CT -series. These models, in fact, are based on image features in-
stead of absolute gray level ranges. The two most popular models are
the snakes - for two-dimensional analysis - and its three-dimensional
counterpart, i.e. the balloons. These models evolves in the image space
and a Lagrangian approach is used: with the expression “Lagrangian
approach” we mean that deformations are referred to the undeformed
initial configuration and each material point is followed [45]. The next
two subsections are dedicated to a description5 of these two models.

2.1.1 Snakes

In this subsection we give an overview of the “snakes” model, which is
developed in [45]. This technique may be used for two-dimension prob-
lems, only. A snakes is a parametrized curve evolving on the basis of
image feature and intern constraints and not on absolute values. The
key point is that - in a two dimensions setting - any closed curve evolve
in a circle and finally collapses into one point since its curvature shrinks
it. So, snakes are usually initialized as closed lines surrounding regions
of interest. Then they move and shrink until the functional gets the
desired result. In the blood vessel reconstruction, indeed, we can also
initialize an “internal snakes” inside the lumen of the vessel itself. Then
we inflate it until when the desired value (the HU value corresponding
to the wall) is encountered. These active contours are often used for a
three dimensions reconstruction - e.g. for vessels - even tough snakes

5 We give a qualitative description. For technical details see [1].
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are in two dimensions. And this is possible since we can reconstruct a
stack of two dimensions images and then we put them together to build a
tridimensional reconstruction. The snakes are widely used since they are
very easy to be implemented. Of course they present some limitations:
the shape retrieval is not simple. The image slice direction is not aligned
with the vessel axis and it could be difficult to reconstruct accurately
the vessel. Also, it is not easy to construct a surface from a set of two
dimensions contours, especially if there is a bifurcation. In fact, through
the interpolation, it may happen that the fidelity of the reconstruction
is not high enough for a well-done CFD simulation. That is the reason
that leads the VMTK developers toward a different choice.

2.1.2 Balloons

Balloons are the three dimensions counterparts of the snakes. In this
case is not true that each surface evolves into a sphere before collapsing
in a point. That is why - as far as balloons technique is concerned - we
usually perform an “inverse” process: starting from a small surface, we
inflate it until the functional reaches the set value. This is also commonly
used for initialization since it is enough to give a point inside the vessel
(let’s say its axis) and then we inflate it. The advantage is that - us-
ing balloons for the blood-vessels reconstruction (see [19]) - we can deal
with the tridimensional geometry directly. This is a gain in speed and
in operator independence. But there is also a drawback: the parametric
nature of balloons may make it necessary to introduce some constraints
on their evolution in order to avoid interpolation problem after a too
large deformation. Also, there is a problem in the merging area between
two balloons. In fact this area requires an ad-hoc parametrization. De-
tails about this problem are discussed in [11] and [22]. Please refer to
the mentioned articles.

Although these methods are widely used, we prefer - in accordance with
the VMTK software - using the LSS technique that is described in the
next section.

2.2 Theoretical concepts behind the LSS

The LSS is an implicit technique and it is a good alternative to paramet-
ric deformable models presented in the previous section (e.g. snakes and
balloons). These models are scalar functions defined in R

2 or R
3 whose

isosurface of level k is the model of interest. LSS technique is introduced
from an Eulerian point of view, while equations that rule the deformable
models and written in the Lagrangian approach.
Let’s anticipate the content of this section: we discuss the evolution equa-
tions for implicit models, hence the very first step is to switch from the
Lagrangian to the Eulerian point of view. This means that we have to
give the deformations referring to the deformed configuration at the step
before.
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Also, we give some numerical and implementation details and in the fi-
nal subsection an application of the LSS technique to vessels modeling is
presented. One of the great advantage of this technique is that the equa-
tions we write are independent from the number of dimensions. That’s
why we present the three-dimensional equations only. Another reason is
that the tridimensional model is the model implemented in VMTK.

Also, we suggest the reader to carefully read a very important section
(i.e. Section 2.7) in Antiga’s thesis [1] that report e validation for the
LSS method. Validation that has been done using synthetic images of
cylinders with different features (e.g. resolution, orientation and noise
level). The function studied is the following:

F (r) = C

(

1
2

−
1

1 + e−a(r−R)

)

where R is the radius of the cylinder, which is the distance between the
symmetry axis and the zero level set of F (r), and controls the steepness
of the sigmoid at the inflection point (the gradient modulus at the in-
flection point is a), and C is a scale factor. For results and more details
see the cited reference (i.e. Antiga’s thesis [1]).

2.2.1 Evolution equation

The first thing to do is to introduce the evolution equation. Hence, the
first step is to switch from the Lagrangian approach to the Eulerian
one. We discuss about the three-dimensional problem, assuring that the
extension to a different number of dimensions is easy and leads to the
same equations. We start from the equation we got for the balloons
(details are available in [1]), in the Lagrangian form:

∂S

∂t
= w1G(S)N + w2(Srr + Sss) − w3∇P(S) (2.1)

where:

- t is time;

- S is the time-evolving surface, such that S(t) = {x|F (x, t) = k};

- x is a point in R
3;

- G(S) is scalar inflation speed;

- N is the outward surface normal;

- (Srr + Sss) is an average second-order smoothing term;

- P is the attraction term. It is a scalar potential function that takes into
account image features (e.g. P(x) = −|∇I(x)|);

- w1, w2 and w3 are three coefficients that allow the user to optimize the
function.
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To switch from the Eulerian to the Lagrangian equations we have to
remember that a surface evolving in time could be written as S : R

2 ×

R
+ → R

3. And it also can be represented as an isosurface of k-level of
a scalar function: F : R

3 × R
+ → R.

Being S the k-level set of F over time, we can write:

∂F (S, t)

∂t
= −∇F (S, t) ·

∂S

∂t
= −|∇F (S, t)| ·

∂S

∂t
· N, (2.2)

where N = ∇F
|∇F |

is the outward normal to level sets. It is important to
underline that equation (2.2) is nothing but the implicit counterpart of
the “balloons equations”, written at the beginning of this section (see
equation (2.1)). However this equation has the great advantage that the
description of the embedded version of S(t) does not require a global
parametrization, but relies only on local geometric properties of F (x, t).
We have to rewrite the equation (2.1) in the Eulerian form, starting from
the Lagrangian one. Following [1] and [26], after some technical details
we can write the localized level sets equation for F (x, t), yielding

∂F (x, t)

∂t
= −w1G(x)|∇F | + 2w2H(x)|∇F | + w3∇P · ∇F , (2.3)

which is the equation that represents a deformable surface (e.g. a bal-
loon) embedded as a level set of a scalar field evolving in time. In this
formulation there is a great advantage that is absent with a balloon
model: there is no parametrization. Hence, our geometry could deform
freely and we do not need to use any re-parametrization strategies or
ad-hoc merging rules. Another advantage is that if we are in a three
dimensions setting, equation (2.3) can be solved on the regular grid by
one of the classical numerical methods as is detailed in subsection 2.2.2.
To better understand the different terms of Equation 2.3, once again we
suggest the reader to refer to Antiga’s work [1] where the definitions
introduced by Malladi [21] are explained.

2.2.2 Numerical approximation

To solve the problem we rearrange the equation (2.3), writing it in a
slightly different way, namely

∂F (x, t)

∂t
= −w1G(x)|∇F | + 2w2G(x)H(x)|∇F | + w3∇P · ∇F , (2.4)

where we weight the curvature term by function G, so that smoothing
effect is stronger in regions of lower image gradient magnitude which are
zones where less image features are present.
To solve equation (2.4) many methods are available. We can use, e.g.,
the finite difference method where the image domain is used as the struc-
tured grid for the problem discretization. It is possible to observe that
equation (2.4) is an equation in the Hamilton-Jacobi class. The general
form of this class of equations is:

∂F (x, t)

∂t
+ H(x, ∇F (x, t)) = 0 (2.5)
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and its specialization for our problem becomes:

∂F (x, t)

∂t
= G(x, t)|∇F (x, t)| (2.6)

which is a class of nonlinear, hyperbolic PDEs. Let’s apply a forward
scheme for the numerical approximation.

It is known that hyperbolic equations have a particular behavior: infor-
mation flows from the direction of front advancement. Hence, using a
central two-sided finite differences could lead to instabilities. Instabili-
ties that arise in the ∇F (x) approximation if we have a region where
two level set fronts moving along incident directions merge: in this case
we have an incorrect result despite arbitrary grid refinement, because
information from each side of first-order discontinuity is averaged in
calculating gradient values. This error can propagate to the neighbor-
ing points and instabilities may arise. To remedy to this inconvenience,
Sethian et al. (see [26]) proposed to use an up-wind method, that is to
say:

Fx|xijk
≈ D+x

ijk =
F (i+ 1, j, k)− F (i, j, k)

h

Fx|xijk
≈ D−x

ijk
=

F (i, j, k)− F (i − 1, j, k)

h

Fy|xijk
≈ D

+y
ijk

=
F (i, j + 1, k)− F (i, j, k)

h

Fy|xijk
≈ D

−y
ijk =

F (i, j, k)− F (i, j − 1, k)

h

Fz |xijk
≈ D+z

ijk =
F (i, j, k + 1)− F (i, j, k)

h

Fz |xijk
≈ D−z

ijk
=

F (i, j, k)− F (i, j, k − 1)
h

(2.7)

Let’s analyze the equations above: even though they are a first-order
accurate equations, these expressions can approximate regions with a
cusp-solution. Being a one-sided approximation, we need to introduce
a numerical viscosity, which does not have any physical meaning, but
that allows us to solve the problem. The solution converges to the exact
solution for h → 0, but it is a slow convergence (see [24]). Higher-order
schemes can be used, with all the difficulties that they imply.

Using up-wind finite difference for the level set approximation, we get:

F (x, t + ∆t) = F (x, t) − [max(G(x), 0)∇+ + min(G(x), 0)∇−]∆t.
(2.8)

For the definition of ∇+ and ∇−, please refer to [1].

As demonstrated in [25], this scheme yields stable viscosity solution to
equation (2.6).

Another numerical issue is that, in equation (2.3) we have to deal with
the second-order derivatives. These are the terms related to the level sets
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curvature H(x) for the smoothing term. But second-order derivatives are
naturally diffusive, that is why we can use - for these derivatives - the
central finite differences.

There is one more numerical issue that has to be analyzed: the dis-
cretization in time. Discretization of Equation (2.4) leads to an equa-
tion which is not unconditionally stable, so that ∆t must respect the
Courant-Friedrich-Levy (CFL) condition, i.e. (see [24]) there must be a
relationship between the space and the time spacing:

max
(

∂F

∂t

)

≤
h

∆t

that in this specific case becomes:

∆t ≤
h

max(G(x, t)|∇F (x, t)|)

This is a very good method, but it inevitably presents its drawback: if on
the one hand, embedding the parametric deformable surface into a scalar
function allows to achieve topology independence and let us menage
great deformations, on the other hand there is the needing of defining
a function on the whole image volume instead of a parametric function.
Hence, the complexity of the problem depends on three dimensions image
size rather than on model surface size. Computationally, this is very
expensive and it can be impossible to gain real time control on model
evolution, tough computer performances are growing very fast.

One of the possible solution is the Sparse Field Approach (as demon-
strated by Whitaker, see [33]): we get our objective by tracking the set
of voxels, called active set, intersected by the level set of interest (usually
the 0-level set) at each time step, as well as two layers of voxels around
the active set, to compute the required derivatives.

Thanks to this idea, the problem is computationally much cheaper: in
fact we have to update only the voxels in the active set, and the com-
plexity depends, once again, on model size. One more advantage of the
Sparse Field Approach is that 0-level set position can be estimated from
the values of F (x) and ∇F (x) of the voxels in the active set, so that all
the image-based quantities can be computed with a good accuracy, i.e.
sub-voxels accuracy.

To sum up the Sparse Field Approach, we introduce the following scheme:

i. initialize layers, by finding zero crossing;

ii. compute solution change for active layer voxels based on upwind finite
differences and Newton’s method for 0-level set location;

iii. Compute time increment based on CFL condition;

iv. Add (solution change*time increment) to active layer voxels;

v. update the active set;
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vi. update adjacent layers starting from the inner ones reconstructing the
signed distance transform;

vii. repeat operation ii) to vi) until RMS change is smaller than the toller-
ance;

viii. contour 0-level set;

ix. end.

2.2.3 Implementation

In this subsection we explain how the LSS solution is implemented in
VMTK.

First of all, images were transferred from CT -scanners and read using
a simple DICOM reader implemented by the VMTK -developers as a
subclass of vtkImageDataReader, on the basis of the DICOM standard
protocol.

The key point, as already stated, is the step that allows to reconstruct a
tridimensional model, starting from the CT -series. The marching cubes
algorithm, used for the inizialization, was implemented in C++ (and
then translated in Python) using VTK 4.1, on the basis of what R.
Whitaker implemented in VISPACK library. Also, VTK classes were
mainly used to provide basic data structures (vtkStructuredGrid and
vtkPolyData), input/output operations, image gradient computation
(vtkImageGradient) and the contouring algorithm (vtkMarchingCubes).

The sparse field LSS algorithm was implemented as a VTK filter, derived
from vtkStructuredPointsToStructuredPointsFilter class. A based sparse

field approach level sets solver (vtkLevelSetsMachinery) class was con-
structed as a derived class of vtkStructuredPointsToStructuredPointsFil-
ter class, which provided the sparse field level sets mechanism. The meth-
ods for the computation of image-based terms in level sets equation were
kept virtual, and were implemented in a derived class (vtkLevelSets), in-
herited from vtkLevelSetsMachinery. Class vtkLevelSets takes as input
an image, which is used for level sets initialization, and returns as out-
put the same image at the end of the evolution. Level sets initialization
can also be performed from the points of a vtkPolyData object, as in
the case of initialization from centerlines. Two more images are used as
input for the computation of the inflation (a scalar field, such as source
image gradient magnitude) and the force (a vector field, such as source
image gradient) terms. The evolution parameters and the number of it-
erations to perform with that parameters are also set. At the end of the
specified number of iterations it is possible to change parameter values.

Single vessel evolution is performed instantiating multiple vtkLevelSets
classes, and the merging step is handled outside the vtkLevelSets classes.
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2.2.4 Application to blood vessel tridimensional modeling

As far as the application of this level set method to the blood vessel
three dimensions modeling are concerned, it is important to underline
that this technique is widely applied, e.g.: [2], [12], [29], [30] and [31] and
references therein. This methods starts by performing the initialization
inside the vessel we are interested in. Carefully looking at equation (2.4),
we note that single points turn into spheres, due to the inflation term.
These spheres could merge together and the surface during the evolution
(and, also, at the end of the process) can be extracted by contouring the
0-level set of F (x, t) using a proper method.

About the inflation term, it is deactivated when the 0-level set gets very
close to the wall of the vessel. In that region the attraction term is
activated in order to ensure the convergence.

There are many methods (see [4], [27] and [28]) that have been proposed
to automate LSS evolution, from the initialization till the convergence
on the wall. Nevertheless, dealing with generic vessel segments, we think
that it is better to perform a LSS evolution driven by an operator, in
order to make it easier the control when acquisition artifacts affect the
angiographic images. This is a good way to avoid the application of
Gaussian-smoothing filters to the images for the calculation of image-
based terms and, this way, we reduce the effects that those filters could
have on reconstruction accuracy. Also, this method allows the operator
to receive feedback on LSS evolution:

- plots of 0-level set over serial angiographic images or their gradient mag-
nitude images;

- intermediate polygonal surfaces rendering;

- the maximum value of LSS speed.

This latter quantity is employed to automatically detect convergence in
the last phase of LSS evolution, the one driven by attraction potential,
after a convergence tolerance has been fixed.

This method presents a problem if we perform it over an entire vessel
tract that can include branches and vessels of different scales: in this
case level sets evolution can become difficult to tune, because vessel wall
will be approached earlier in smaller vessels than in bigger ones, so that
we can not use a single set of parameters for all scales. Using a single
level sets evolution for an entire branching vessel tract presents another
problem, linked to the CFL condition. ∆t, in fact, may become very
small because we encounter an image region of low gradient, and this
slows down the evolution for the remaining portion of the model. But
solutions to both the problems can be found, either by including locally
adaptive w1, w2 and w3 parameters in equation (2.4) or by adaptive grids
in which CFL condition is satisfied acting on h, by locally modifying the
image grid (i.e. a bigger “h” for a bigger vessel). But this approach is
not easy to be implemented. Following what the VMTK developers did,
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we instead adopt a simpler approach, made possible by the particular
nature of our problem: since evolution parameters are dependent on
vessel scale, we let level sets evolve into single vessels, or into groups of
vessels of similar scale. Thanks to the implicit nature of LSS, we later
merge the Fi(x) functions resulting from N single vessel evolutions, and
finally extract model surface by contouring the merged Fm(x) function
with the marching cubes algorithm. Since in the sparse field approach the
LSS represents the signed distance function from the 0-level set, with
negative values inside the model and positive values on the rest of the
domain, merging of N level sets scalar fields is performed selecting their
minimum value

Fm(x) = min
i∈[1,N ]

Fi(x) (2.9)

The evolution of LSS into vessels of similar scale has two beneficial ef-
fects. The first is the increased ease of interactively setting evolution
parameters (e.g. to switch from inflation to attraction to gradient mag-
nitude ridges). The second is that similar solution changes are computed
over the domain, so that more adequate time step values are chosen by
the CFL condition, effectively speeding up evolution.

23





3. VMTKGui user’s guide: from DICOM

to mesh generation

The theory is when you know every-
thing and nothing works. The prac-
tice is when everything works and
nobody knows why. We have put
together theory and practice: there
is nothing that works.. and nobody
knows why!

Albert Einstein

This chapter is the VMTKGui user’s guide: this is the crux of this job.
The structure of this chapter is the following1:

- in the first one we discuss about the problems and the difficulties we
met, while developing the code;

- the second subsection offers the instructions to use a certain tool;

- in the third one, an example2

In this example we start from the very beginning (i.e. we begin launching
the tool and loading the DICOM -series, till the mesh creation, step by
step). The patient in the example is Mr. Bianchi and we extract a branch

1 Each section (except the first one because it is not technical) is divided into 3 sub-
sections.

2 To write and develop the third subsection at each step, the paper by J. Bonnemain
(see [5]) has been studied and followed; we reproduced the same steps that Bonnemain
did with VMTK with our new tool. As it is shown in the mentioned paper, through
VMTK it is possible to reconstruct the desired geometry and then to build a mesh
over it. Also, as already discussed, the problem is that we need to learn lots of non-
simple and non-intuitive commands to be written in the command line. What we
would like to do with this tool is to do the same things that VMTK does but, and
this is a VMTK ’s great advantage, creating a GUI . So that, users who are not either
computer scientists or engineers could use this tool without learning any command,
but simply reading what the buttons in the new interface say and following this user’s
guide.
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of the descending aorta from a thoracic CT -scan; that’s why the file we
read is named “aorta” and we give the same name to the file we write.

Before writing the VMTKGui user’s guide, it is important to give an
overview of the structure of the code. This wants to be simply an intro-
duction. You can contact the author if you are interested in the Doxygen
documentation, to better understand the structure of the code.

Let’s start with a brief overview of the implemented files:

- vmtkgui.py: this is the main file. It is used to build a link between the
different files and to execute the program. In order to be a good main
file it has to be short and clear. It is divided in two sections: in the first
section there are the calls to the different functions, while in the second
one there is the command to execute the program;

- vmtkinterface.py: as the name suggests, this file is the interface be-
tween the GUI built with VMTKGui and the VMTK software. This
module contains all the VMTK functions needed for the VMTKGui

tool;

- canvas3D.py: this module is made up of two classes. This two classes
has to create an area to draw the DICOM images in and the 3D re-
construction. Also, through this module it is possible to manage the
interaction between the mouse and the window where we are represent-
ing the reconstruction;

- vmtkcenterlineswithrenderer.py: this file is very important to make
it possible to use the same render. Without this file, using the “original”
VMTK function vmtkcenterlines, we create a new render when we invoke
it. Since we need to use the same renderer we define this new function
that allows us to have a function with the same features of the original
one, using the same window;

- gui.glade: this is the file that allows to build the GUI. It is a file au-
tomatically generated by Glade and it is structured in a style that is
xml-like.

As one can see, there are not many files involved in this algorithm:
that means that our goal to keep the most of the original software (i.e.
VMTK ) has been achieved. And this is certainly a good starting point,
in order to have a “clear and user friendly” tool.

Let’s now start, step-by-step, to explain the usage of the software.

3.1 Pre-requisites, installation and launching the tool

The tool VMTKGui is built for a UNIX -based system3. So, a first prob-
lem is that you must use Linux to run the tool. Also, VMTKGui does

3 It is important to underline that in this report we work on a Debian-based system. In
this case the software used has ad-hoc packages for Debian-based distros that make it
very easy to install the software needed. For other distros, you may need to compile
the packages.

26



VMTKGui user’s guide

not need any installation: it is enough to launch in from the command
line, once all the pre-requisites are satisfied. Hence, let’s analyze these
pre-requsites:

- VMTK : the latest version is downloadable from http://www.vmtk.org.
On the same page one can also find the instructions to install and to use
this software;

- Python: see http://www.python.it in order to download and install it;

- VTK : once again, on http://www.vtk.org there are all the information
needed to download and install VTK.

When all the software needed is installed, it is possible to download the
files of the tool VMTKGui and to copy them into the desired folder.
Once all the files are properly copied, the user has to open a terminal
and change the directory, entering the folder where the VMTKGui files
have been saved. Everything is now ready and we can launch/use the
tool.
To launch the tool the right command to write in the terminal (see
Figure 3.1) is

python vmtkgui.py.

Figure 3.1. This is the command used to launch the VMTKGui ’s GUI.

The GUI appears (see Figure (3.2)) and the user can start using the
software.
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Figure 3.2. This is the GUI as it appears once we launch the tool VMTKGui.

3.2 Choosing the patient and loading the DICOM images

It is now necessary to insert the patient’s name and the name of the file
we want to analyze. In this example we want to examine the descending
aorta and our patient is Mr. Bianchi. The first thing to do is to write
“bianchi” in the right line (see Figure (3.3)) and press “Ok”. Then, we
can choose the name that we want to give to our file (e.g. “aorta”4 as
you can see in the same Figure (3.3)) and we press, once again, “Ok” to
confirm our choice.

Figure 3.3. Insertion of the patient’s name and of the name of the file we want

to analyze.

4 Note that the user does not have to care about the file extensions and the suffix: the
tool provides both of them automatically, in a smart and standard way.
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The second box that deals with the “Output file name” (see Figure (3.3))
may be left void. In this case, the file we create takes the same root-name
of the DICOM -series.

We now have to load the chosen DICOM -series: it is now enough to click
on the Load DICOM button, as shown in Figure (3.4).

Figure 3.4. Button that we have to press in order to load our DICOM series,

once that all the preliminaries have been done.

We have to wait till in the terminal we can read:
DICOM loaded successefully: please go ahead

(as you can see in Figure (3.5)).

Figure 3.5. This message confirms that the DICOM has been loaded successe-

fully.

Once the DICOM is loaded, we can view the CT by clicking on the
“Read & View” button (see Figure (3.6)). All the preliminaries have
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been done. We are now ready to go ahead.

Figure 3.6. This is the visualization of the DICOM -series we load.

3.3 Preparing the tridimensional reconstruction

Now the DICOM is loaded and we can visualize it. The following step
that the user has to do is to create a tridimensional reconstruction in
order to make it possible to generate a file that can be used with VMTK

and to create the mesh on it. As we can see in the next subsection, this
is a key point and some problems arose, while facing it.

3.3.1 Problems

The first problem deals with the CT. In fact, it was born for visualization
analysis and not for reconstruction ones. Hence, the geometry resolution
is often too thin and the fidelity of the reconstruction may be a problem.
That is way interpolation is needed. Also, as explained in the theoretical
chapter (see Chapter 2), the method to get the reconstruction (e.g. the
LSS) implies non-simple maths.

One more difficulty is that often we deal with a big volume and we need
a much smaller one for our analysis. That is way - in order to reduce
the the costs - the selection of a “Volume of Interest” is a smart tool to
reduce the size of the problem.

Also, we have to face with the complexity of the already existing code.
In fact, there is a very nested code that does not allow us to completely
manipulate the source code.
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3.3.2 Usage

To get our reconstruction, some steps are needed:

- the first step is to select a “Volume of Interest”: for example, if we are
interested in the reconstruction of the mitral valve and we have a thoracic
CT, it would be useless (and too expensive, computationally speaking)
to work on a big file. That’s why the “Volume of Interest” feature is
very simple but very useful: it allows the user to select a certain volume
of interest and to reduce the file size, simply by clicking on the proper
button.

This makes the following operations faster. Though it is not a compulsory
operation, it is very useful;

- once we have saved a certain volume of interest, we have to be able to
make a tridimensional reconstruction of the geometry that we want to
analyze. This is done thanks to the LSS technique. For the theory behind
this technique the user should read chapter 2 and all the bibliography
associated. What must be underlined here is that before clicking on the
“LSS” button we have to select some parameters5). Hence, the first thing
to do is to choose the requested parameters and to press. Then we can
make the reconstruction start, by pressing the proper button as we can
see in the next subsection.

Now the user has to interact a bit with the terminal since it is necessary
to press y/n once in order to/not to accept the result and to press y/n

once, to/not to initialize another branch. Once again, to save what we
have done and to quit it is necessary to press q;

- The last thing to do is to press the “Surface Generation” button in order
to create a .vtp surface from the .vti image. Now we do have a surface
and we are ready to go to the next step, that is to say to create the
mesh, over the surface and/or in the volume. It is very important to be
able to create both a surface mesh and a volume mesh since we could
need either the former or the latter, depending on the simulation we are
interested in.

After having created the surface it is necessary to smooth it and clip
both the inlet and the outlet sections: in fact, the surface reconstruction
has been done starting from the DICOM image and this image is pretty
noisy since it takes a certain time to scan all the sections during the CT -
scanning. Also, it is important to clip the inlet and the outlet sections:
this operation makes it easier both to compute the centerline and to
generate a mesh over the surface and/or in the volume (see the section
3.4). To smooth the surface it is enough to click on the right button,
while to clip it, it is necessary to interact a bit with the GUI after
having pressed the “i”, in order to be able to activate the image (to
launch the clipping command it is necessary to click on the clipping
button). The procedure is similar to the selection of a volume of interest.

5 It is important to point out that some parameters could be chosen directly in the
GUI, while others have to be chosen from the command line.
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A parallelepiped appears, we place it properly and we press the space
button to clip the surface.

3.3.3 Example

In this subsection we present an example in order to understand how the
reconstruction (explained in the previous subsection) works. This step
allows the user to convert the file from the DICOM -standard format to
the VMTK format. Once again, thanks to the VMTKGui, this is a very
easy step, since it is enough to click on the right buttons and interact a
little bit with the terminal, as explained in the following list.

- the first sub-step is to select a “Volume of Interest”: since in this example
we exctract a brench of the descending aorta, we are interested in the
volume that includes it. Hence, we press the “Select a VoI” and then we
press “i” to start our interaction with the image. Then we have to select
a parallelepiped that includes the descending aorta (see Figure (3.7)),
resizing and moving it with few clicks6.

Figure 3.7. In the figure above it is possible to notice the parallelepiped that

cointains the part of the geometry we are intereste in.

Once the parallelepiped is chosen it is necessary to press “q”, in order
to quit and save a smaller and lighter file that appears like the image in
the Figure (3.8);

6 With a middle-click of the mouse we can translate the parallelepiped, while with a
left-click on the “little spheres” we can resize it.
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Figure 3.8. This is the visualization of the Volume of Interest only.

- once we select a certain volume of interest, we have to be able to make
a tridimensional reconstruction of the area we want to analyze. This is
done thanks to the LSS technique. Actually, this is a theoretical step
since, practically, we simply need to press the “Level Set Segmentation”
button and everything is done automatically. We also have to interact a
little bit with the command line since we have to choose some parameters
(suggested in the GUI, see Figure (3.9) and - finally - we could see the
initialization of the surface we are trying to reconstruct (see again Figure
(3.9));

Figure 3.9. In the picture above there is the initial guess for the LSS procedure.

- the last thing to do is to press on the “Surface Generation” button (see
Figure 3.10) in order to create a surface (the file extension is .vtp) from
the .vti image.
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Figure 3.10. Circled in blue the button to generate the surface.

Now we do have a surface and we have to smooth it (see fig. 3.11) and
to clip both the inlet and the outlet section (see the procedure to clip a
surface in the 2 Figures (3.12) and (3.13): in the first one it is possible to
see the parallelepiped which indicates the region that must be clipped
while in the second picture the reader could enjoy the clipped surface).

Figure 3.11. In the picture above there is the smoothed surface.

In the pictures of Figures (3.12) and (3.13) we show the procedure to
clip the inlet section, only. Of course, the same can be done for the outlet
section, too.
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Figure 3.12. In the picture above there is the clipping parallelepiped.

Figure 3.13. In the picture above there is the clipped surface: the clipping has

been done before smoothing the surface.

3.4 Computing centerline(s) and generating mesh

In this section we deal with two very important features: the computing
of the centerlines and the mesh generation. Computing the centerline of
a vessel is very useful since centerlines are a powerful tool to describe
vessels geometry.
As far as the meshes are concerned, it is clear that they are very impor-
tand for a FEM analysis and/or for the study of a CFD simulation.
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3.4.1 Problems

The two features detailed in this section present some criticism:

- Computing of the centerlines: the idea of computing the centerlines is
very simple from a theoretical point of view. In fact, it is enough to
connect the centers of the vessel at each secion/slide7. Practically, this
is very difficult since we do not have a vessel the is straight, perpendic-
ular to the CT -slides and that does not have a circular section. So, the
definition of the center itself is not clear and unique.
Also, since the dimensions could be very small, a small absolute error
could be a big relative one, thus producing a wrong computation of the
centerlines. Hence, the results are far from the exact ones. E.g., thinking
about the insertion of a stent in a certain point, having a wrong center-
lines means to insert the stent with the wrong orientation with all the
problems that this can cause.

- Mesh generation: due to the complexity of the geometry, the mesh gen-
eration is a crucial point. We have to get the right compromise between
a good space-resolution and a not-too-big mesh. Also, since the surface
may be noisy, with an accurate choice of the mesh parameters, we could
get the good effect of a smoothing.

3.4.2 Usage

3.4 To compute the centerline of a vessel is matter of seconds: just a sin-
gle click on the right button and a window appears. In this window (as it
is shown in the next section) there is the tridimensional reconstruction
we did with clipped inlet and outlet. Each inlet and outlet section has a
number id: the user has to indicate in the command line which are the
inlet sections and which are the outlet ones. If the software could not
recognize any inlet/outlet sections, it is possible to select them manu-
ally. This is done by positioning the mouse where we want to place the
inlet/outlet section(s) and pressing the space bar.

Finally, the last step we could do, is the mesh creation: this step is very
important since the mesh generation is the starting point for the FE

analysis. By default this feature creates a volume mesh, but - if necessary
- we could generate a surface mesh, too. The goal of this step is to create
a mesh that is supported by different CFD solvers. It is enough to click
on the right button in order to generate the desired mesh. What we
have to do is to choose the edgelenght parameter: this parameter is very
important since it is the absolute nominal length of a surface triangle
edge. Once we have generate the mesh it is possible to transform it in
the right format, according to the CFD solvers the user wants to use.

This is done by typing

7 This could appear very simple since we have a CT-scanning.
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vmtkmeshwriter -ifile file_name.vtu -entityidsarray

CellEntityIds -ofile file_name.lifev

in the command line8.

3.4.3 Example

As explained in the subsection 3.4, both to compute centerlines and to
generate a mesh are important features that the tool VMTKGui offers:
with a single click on the proper button (see fig. 3.14 in the previous
section) we can compute the centerline of the descending aorta.

Figure 3.14. The figure shows the button (circled in blue) to compute the

centerline(s).

Also, in Figure (3.15), we can see both the vessel reconstruction with the
ids and the terminal where we have to insert which is/are the inlet(s) (0,
in this case) and which is/are our outlet(s) (1, in the example presented
here) are shown and the surface as it appears before the centerline(s)
is/are computed.

8 As it is shown in the section 4.2, one of the target is to insert a button in the GUI
that allows to convert the mesh and to make it possible to choose the mesh dimension
without modifying the source code.
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Figure 3.15. This figure shows the reconstructed geometry with the ids used

to identify each possible inlet/outlet. There is also the terminal where we have

to insert the inlet(s) and the outlet(s).

In this window there is the tridimensional reconstruction we did with
capped inlet and outlet. Each inlet and outlet section has a number id:
the user has to write in the command line which are the inlet sections
and which are the outlet ones. In this example - since we are dealing
with a simple geometry - we have only 2 sections that could be either
the inlet or the outlet of the flow. After having chosen which is the inlet
and the outlet, the tool starts to compute centerline(s) and the result is
presented in Figure (3.16).

Figure 3.16. This is the reconstruction of the centerline of the brench of the

descending aorta we have exctracted.

Also, if we are interested in a FE analysis and not in simulating the
insertion of a stent, we do not need the centerline computation, but we
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would need to generate a mesh.
We have, by default, the generation of a volume mesh but we can also
get a surface mesh9, when the surface mesh is our goal. What we would
like to do is to create a mesh that is readable from any CFD solver. It is
enough to click on the right button (see Figures (3.17) and (3.18)) in or-
der to generate a mesh. What we have to do is to choose the edgelenght
parameter: this parameter is very important since it is the absolute nom-
inal length of a surface triangle edge (see the difference beetween the Fig-
ure (3.17) and Figure (3.18): in these two pictures the only parameter
that changes is the absolute edgelenght. As one can immediately notice,
the dimension of the triangles in the two pictures is very different and
some details are better displayed in the thicker mesh reconstruction).

Figure 3.17. In this figure we choose a edgelenght parameter of 1.5.

9 This option has not been implemented yet, as you can read in the chapter 4, where
conclusion and future developements are given.
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Figure 3.18. In this figure we choose a edgelenght parameter of 3.0.
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4. Conclusions and future developments

The future belongs to those who be-
lieve in the beauty of their dreams.

Anna Eleanor Roosevelt (1884-1962)

Besides the theoretical concepts (chapter 2) and the user’s guide (chapter
3), it is very important to write a conclusive chapter in which we presents
a final digest of this report and where we can discuss about the possible
future developments to improve the tool presented here. Also, this is a
section in which we present an honest balance between the ideal targets
vs. the caught ones.
That being so, this final chapter is divided into two sections: the first
section deals with a balance between the targets we wanted to reach vs.
the target we reached, explaining which are the reasons that did not
allow us to catch all the goals we wanted to reach. In the second one
we provide some cues in order to make it possible, for the interested
reader, to develop and improve the VMTKGui tool and to realize the
VirtualValveStent tool1.

4.1 Conclusions

Honesty: this is the keyword of this section. Here we sum up all the
results we got and we analyze which are the targets we did not reach,
trying to explain the reasons that prevent us from reaching them.

The very first thing to say is that we are very happy and proud of what
we did and that we are sure that this tool is very useful.
Moreover, let’s start saying that this project started with the idea to
create the VirtualValveStent tool and not the VMTKGui tool. The orig-
inal request came from “Symetis”, a Swiss firm which deals with stent

1 The author strongly believe in the VirtualValveStent project and is available for any
question about the implemented algorithm. Feel free to contact him, if interested
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fabrication. We immediately observed that this was a too heavy project
to be developed in a master thesis. That is why we decided to divided
the master project in three different sub-projects. And we decided to
develop only the first of this sub-targets. This has been done to avoid to
begin with a too demanding work that we would have given up in the
middle of the project itself.
Also, there is something to say about the programming language used:
we started modifying the C++ libraries and not the Python ones. But
it was more complicated and that choice did not offer any particular ad-
vantage. That is why we have found it very useful and smart to change
our mind, working with Python. In fact, VMTK has the right interface
for a Python-coding.
Furthermore, since the source code is terribly nested, we have found it
very difficult to supplement the new code with the already existing files
and it took a long time to cope with this matter. That is why it has
been impossible, up to now, to remove each kind of interaction with the
command line. As we will see later (read section 4.2), this is going to be
a very challenging point to be developed in the future.

What it is very important to underline is that we spent much time and
many resources to develop such a tool, with the hope that it could be
a help in the medical field. Also, we hope that the reader could find
it useful the “Users’ Guide” available in chapter 3 and also the Python

code reported in Appendix B.

To end this report, the author wants to assure that he works honestly
and with nothing but a target: to make something useful and available
for other people. This could sound crazy, but he thinks that he is not “a
number” (i.e. the graduation score): that is why he decided to develop
such a tool that does not match with an aeronautical contest.

4.2 Future developments

In this final section, all the possible future developments are summarized:
this part is very important since it has the hope to avoid to make this
report and above all the VMTKGui tool a mere loss of time. We strongly
believe in this tool and in the possible developments it offers. That is why
we think it would be mindless to throw to the wind what we have done.
About this section, it is divided into two subsections: the first deals with
the short-term targets, while in the second one the longer-term goals are
listed.

4.2.1 Short-term targets

In this first subsection the short-term targets are presented: these targets
deal with the presence of some bugs in the code. Bugs that can be fixed
soon. Also, there are some improvements that require a pretty simple
work in order to be done. Here is a list:
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- the VMTKGui tool can be considered complete. Nevertheless, some fea-
tures could be improved. For example, it could be useful to add the
possibility to choose the edgelenght parameter directly from the GUI,
avoiding to modify the source code (even tough it is nothing but a num-
ber that must be changed);

- another feature that we want to insert in the VMTKGui tool is the
button that allows to choose to generate either the surface or the volume
mesh;

- also, it would be smarter to have pop-up windows (since they draw
the user’s attention much more than a black command-line) instead of
the an interaction with the terminal (which is boring and, at times,
not so “visible”). We write here this target, even tough we suppose it
probably takes a long time to completely eliminate any interaction with
the command line, since the source-code is very nested;

- also, it could be useful (but this is a not-so-important goal) to create
a nicer graphic. Even tough this is not a conceptual goal, this would
make the software more user-friendly and the VMTK -community and
the users in general should appreciate it much more.

Once the short-term goals are reached, we can state that VMTKGui is
complete and finished. Let’s now check the longer-terms targets.

4.2.2 Long-term targets

Here, we collect the long-term goals that will be hopefully reached from
any interested user. Our dream is to see, soon or later, the Virtual-

ValveStent project ended and used for the purpose it has been thought.
Let’s sum up all the long-term targets that must be achieved:

- we must shape the stent properly, in order to have a correct simulation
of the operation that we have to do. Actually, this is a simple target,
since once the surgeon gives to the user the shape of the stent he is
interested in, it is matter of minutes to reproduce it;

- once the stent has been modeled, it is important to insert it in the same
window where we have our geometry reconstruction in order to be able
to simulate the operation;

- once we get these two targets, the most has been done and we will have
reached the purposes we wanted to reach with the VirtualValveStent

project. However, there is one more step we could do, that is to say that
we can automate recognizing the different geometry, giving a certain
color depending on the HU value. This helps to make it easier to identify
the different part of the area we are studying. We think it is honest to
state here that there already exist open-source codes that do this (e.g.
3D Slicer, Osirix2), but we prefer to embed this feature in our own tool.

2 Actually Osirix is free only for the Mac-OSX users
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Once we will have reached all this goals, we have a good software that
allows to reconstruct a certain geometry starting from a DICOM -series.
Also, we can specialize ourselves in the mitral valve area reconstruction.
This will allow us to simulate the transcatheter mitral valve replacement

that was the original target. The author’s hope is that this will become
available soon. He also thinks that - thanks to the help of many people3 -
he paved the road to reach that goal. The next step is to find volunteers
interested in developing this tool. We are aware that it is not matter of
days or weeks, but it will be a great satisfaction to complete this project
and to make it available worldwide.

3 I would like to dedicate here a special thank to Dr. Simone Deparis for his great help
and to Professor Alfio Quarteroni for the chance he offeres me.
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A. Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the art of replacing the partial
differential equations (which represent conservation laws for the mass,
momentum and energy) by a set of algebraic equations which can be
solved digitally.

CFD provides a qualitative (and sometimes even quantitative) prediction
of fluid flows, using a mathematical modeling first, then a numerical
method and, finally, running software tools.

As we can see in the Figure A.1, CFD is nowadays used in many different
fields, from aeronautical problem, to biomedical one; from automotive,
to civil engineer.

The governing equation for a fluid, according to the fundamental laws
of mechanics are the equation for the conservation of the mass and the
equation for the conservation of the momentum:

∂ρ

∂t
+ ∇ · (ρu) = 0 (A.1)

and

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p + ρg + ∇τij . (A.2)

Also, there is the energy equation. These three equations form a set of
coupled nonlinear PDEs. And this system, in the most of the engineering
problems, can not be solved analytically. However, we can solve this
system thanks to the Computational Fluid Dynamics (CFD).

To justify this appendix, it is important to underline that biomedical
engineering is a field that is growing rapidly and it uses CFD for studies
about the circulatory and respiratory systems. As an example, we show
below (see Figure A.2) a blood pump that plays the role of heart in the
open-heart surgery.
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Figure A.1. Some of the possible applications CFD can be used for.

Figure A.2. CFD in blood pump that plays the role of heart in the open-heart

surgery.

To solve problems in CFD, it’s necessary to specify the problem, i.e.
its geometry, the flow conditions and the requirements for simulation
(precision level, require time, solution of the interest parameters).

So, why is CFD so important? In CFD it’s possible to model and evaluate
the fluid flow performance in our study model. The application of CFD

simulations offers a set of advantages when compared to theoretical and
experimental studies:

- it has purchase and operation low cost;

- it offers detailed information about the fluid flow studied;

- it allows the quick change of parameters in the flow analysis;

- it allows simulating flows in detailed and complex geometries and study
phenomena impossible to do in experimental model (ex: explosions).

But, an important warning we want to remark is that the CFD does
not substitute the theory and experience; we should always make an ap-
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proach of three, to interpret the results. The comparison with experience
or with simple cases, the solution of which is known, gives us the accu-
racy achieved by the simulation. In fact it could be dangerous to perform
a simulation without any experiment and/or theoretical comparison.

A.1 How CFD works

The strategy of CFD is to replace the continuous problem domain (with
infinite degrees of freedom) with a discrete domain (with a limited num-
ber of dof).

Figure A.3. Continuous and discrete domain: from the analytical to the nu-

merical problem.

Analyzing the two domains (the continuous and the discrete one) in
Figure A.4, and calling q a certain quantity we are interested in, in the
continuous case we know

q = q(x), 0 < x < 1,

while in the discrete problem we only know the value of q in the different
nodes, i.e.

qi = q(xi), i = 1, 2, .., N

So, with CFD we know the values of the relevant variable at the grid
points. We have to interpolate, to get the values at different locations.
On the other hand, both the equations themselves and the boundary
conditions are continuous: we have to extract the values in the grid
points. Hence, we have a large system of coupled algebraic equations.

A.2 Discretization: “Finite Difference method” vs. “Finite Volume

method”

In this section we will introduce the two techniques used to discretize
the system of PDEs.
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A.2.1 Finite Difference method

In this subsection (since this appendix wants to be an introduction to
CFD) we analyze a 1D linear equation, i.e.:

du

dx
+ u = 0; 0 ≤ x ≤ 1; u(0) = 1 (A.3)

Let’s consider the grid in Figure A.4.

Figure A.4. Grid used to solve the Equation (A.3).

Now we can write the Equation A.3 on the grid points, thus leading to
the following:

(

du

dx

)

i

+ ui = 0

We have to evaluate
(

du
dx

)

i
. We can write ui−1 in a Taylor’s series:

ui−1 = ui − ∆x

(

du

dx

)

i

+ O(∆x2),

that leads to:
(

du

dx

)

i

=
ui − ui−1

∆x
+ O(∆x),

where O(∆x) is the truncation error. Excluding higher order terms we
can write:

ui − ui−1

∆x
+ ui = 0,

which is an algebraic equation.

A.2.2 Finite Volume method

In the finite volume method for discretization, we have to introduce the
“cells” and the “nodes”. If you look at Figure A.5, you can see a cell and
the for vertexes are called nodes.
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Figure A.5. Rectangular cell used for the finite volume approach.

Using this approach, we have to apply the integral form of the conser-
vation equations. As far as the mass conservation is concerned, we can
write:

∫

s

u · n dS = 0. (A.4)

This equation implies that the net volume flow inside the control volume
is 0. Considering the cell of Figure A.5, the velocity at the face i is
ui = uiî+ vi ĵ. Applying the mass conservation (through Equation (A.4))
to the control volume (i.e. the cell), we have:

−u1∆y − v2∆x+ u3∆y + v4∆x = 0.

Once again, we have an algebraic equation that can be solved.

And the same can be done both with the momentum and the energy
equation. In this case - as in the “Finite Difference” approach - we have
an algebraic system that can be solved.

A.3 Main difficulties

It is clear that CFD must have its drawback, too. We analyze here the
2 main problems that may arise while performing a CFD analysis. The
first problem is the numerical stability of the method used. The second,
is the turbulence modeling.

A.3.1 Numerical Stability

We just give here a brief introduction to this problem. Depending on
which kind of method we are using, i.e. either implicit or explicit, we
may have to face with the numerical instability.

Explicit method, in fact, needs a temporal step that must be smaller
than a certain value. This value is known as the Courant number, C.
The CFL1 condition states that C ≡ c∆t

∆x ≤ 1.

If the limitation due to the CFL condition is too restrictive, we can use
an implicit method. Of course, we have a fee to be paid: we have to
solve a system of algebraic equations, instead of solving each equation
detached from the others.

A.3.2 Turbulence Modeling

Finally, let’s introduce the problem of the turbulence modeling. The
most of the flows are turbulent2, hence the turbulence must be consid-
ered when we are studying a high Reynolds number flow.

1 Courant, Friedrichs and Lewy
2 Laminar flows are characterized by smoothly varying velocity fields in space and time
in which individual “laminae” (sheets) move past one another without generating
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The equations governing a turbulent flow are, as for the laminar flows,
the Navier-Stokes equations. The problem is that - in this regime - the
solution is much more complicated (due to fluctuations of the variable
we want to evaluate). The first idea is to solve the equations with the
Direct Numerical Simulation (DNS). This means that we resolve all the
spatial and temporal scales. This offer an accurate results, but it is very
expensive, computationally speaking.

The alternative to DNS are the Reynolds Averaged Navier Stokes
(RANS) equations. They care about the mean velocity and pressure.
But models are needed, in order to close the problem. And the key-
point is to be able to model the small scales properly. There are myriads
of turbulence models. And each CFD solver allows us to choose the most
appropriate model.

The most used is the k − ǫ model: this mean that we model two turbulen
parameters, i.e. the turbulent kinetic energy and the turbulent energy
dissipation.

Since this appendix wants to be nothing but an introduction, we recom-
mend the interested reader to refer to [10], [18], [32], [16] and [35].

cross currents. These flows arise when the fluid viscosity is sufficiently large to damp
out any perturbations to the flow that may occur due to boundary imperfections
or other irregularities. These flows occur at low-to-moderate values of the Reynolds
number.
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In this chapter we list all the files needed to run the tool we have de-
veloped. This is a very technical appendix and it is addressed to people
who want to develop and study what there is under the hood.

B.1 vmtkgui.py

This is the “main” file and it contains all the links between the different
files.

1 ## @package vmtkgui
2 # This i s the main module . To be a good main , i t needs to

be short and c l e a r : that i s why i t s imply c a l l s the
f unc t i on s we need . A l l the f unc t i on s are contained in
d i f f e r e n t modules .

3 # At the end o f the module , ther e i s the execut i on o f the
module .

4
5 #! / usr / bin /python
6
7 try :
8 import gtk
9 import gtk . g lade
10 except :
11 sys . e x i t (1)
12
13 # from vmtk import pypes
14
15 import vmtk inter f ace
16 import vtkcones
17 import math
18 import canvas3D
19
20 from gtk import gdk
21 import vtk
22 from vtk import ∗
23
24 ## This class conta ins a c e r t a i n number o f f unc t i on s that

are invoked when a button i s c l i c k e d . And the ta r g e t o f
this f unc t i on s i s s imply to c a l l the cor r espond ing
f unc t i on in another f i l e . The f unc t i on s in the new f i l e
( s ee vmtk inter f ace . py ) do what the u s e r s wants to do

c l i c k i n g on the button .
25 class VmtkGui :
26
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27 ## The con s t r uc to r .
28 # @param s e l f The ob j e c t po i n t e r
29 de f __init__ ( s e l f ) : # ( o r i g i n a l v e r s i on )
30
31
32 #Set the Glade f i l e
33 s e l f . g l a d e f i l e = " gui . g lade "
34
35 #This i s the command to open my GUI
36 s e l f . wTree = gtk . g lade .XML( s e l f . g l a d e f i l e )

#( o r i g i n a l v e r s i on )
37
38 #Create our d i c t i onay and connect i t
39 d i c = { " on_name_in_clicked " : s e l f . call_namein ,
40 " on_name_out_clicked " : s e l f . call_nameout ,
41 " on_f i l e_view_cl i cked " : s e l f . c a l l _ f i l e v i ew ,
42 " on_patient_cl i cked " : s e l f . ca l l_pat i ent ,
43 " on_load_DICOM_clicked " :

s e l f . call_loadDICOM ,
44 " on_img_viewer_clicked " :

s e l f . ca l l_imageviewer ,
45 " on_VOI_clicked" : s e l f . call_VOI ,
46 " on_Lev_Set_Seg_clicked " : s e l f . call_LSS ,
47 " on_surf_gen_cl icked " : s e l f . cal l_SurfGen ,
48 " on_sm_sur_clicked " : s e l f . cal l_SmoothSurf ,
49 " on_gensm_sur_clicked" :

s e l f . call_GenSmoothSurf ,
50 " on_sur f_cl ipp_cl i cked " :

s e l f . ca l l_Sur fC l ipp ,
51 " on_CenterLines_cl i cked " :

s e l f . ca l l_CenterLines ,
52 " on_Mesh_Gen_clicked" : s e l f . call_MeshGen ,
53 " on_viewimg_clicked " : s e l f . cal l_viewimg ,
54 " on_viewsur f_cl i cked " : s e l f . ca l l_v i ewsur f ,
55 " on_viewmesh_clicked " : s e l f . call_viewmesh ,
56 " on_readviewimg_cl icked " :

s e l f . cal l_readviewimg ,
57 " on_readviewsur f_cl i cked " :

s e l f . ca l l_readv i ewsur f ,
58 " on_readviewmsh_clicked " :

s e l f . cal l_readviewmsh ,
59 " on_setva lues_c l i cked " : s e l f . c a l l_ s e tva l u e s ,
60 " on_MainWindow_destroy " : gtk . main_quit ,
61 " on_imagemenuitem5_destroy " : gtk . main_quit }
62
63
64 s e l f . wTree . s ignal_autoconnect ( d i c )
65
66 # de f i n i ng new Canvas
67 s e l f . vtkda =canvas3D . Canvas3D(None )
68 s e l f . vtkda . show ( )
69
70 # adding Canvas to gtk
71 hbox = gtk .HBox( spac ing=5)
72 hbox . show ( )
73 hbox . pack_start ( s e l f . vtkda )
74
75 # s e t t i n g window to widget
76 s e l f . window = s e l f . wTree . get_widget ( " hbox2 " )
77 s e l f . window . connect ( " des t roy " , gtk . main_quit )
78 s e l f . window . connect ( " delete_event " , gtk . main_quit )
79 s e l f . window . add (hbox )
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80 s e l f . window . s et_s i ze_reques t (800 , 600)
81 # s e l f . window . show ( )
82
83 s e l f . ren = vtk . vtkRenderer ( )
84 s e l f . ren . SetBackground ( . 9 5 , . 9 5 , . 9 5 )
85
86 s e l f . vtkda . GetRenderWindow ( ) . AddRenderer ( s e l f . ren )
87
88 # de f i n e i n s tance o f VmtkInterfacevtkWindow
89 # s e l f . vtkcones = vtkcones . vtkWindow ( s e l f . wTree ,

s e l f . ren )
90 s e l f . vtkcones = vtkcones . vtkWindow ( s e l f . ren )
91
92 # de f i n e i n s tance o f VmtkInterface
93 s e l f . vmtk inter f ace =

vmtk inter f ace . VmtkInterface ( " img " , s e l f . ren ,
s e l f . vtkda )

94
95 s e l f . vmtk inter f ace . input_f i l ename = None
96
97 ## Function used to read the name of the pa t i en t
98 # @param widget gdk widget
99 de f ca l l_pa t i en t ( s e l f , wTree ) :

100 s e l f . vmtk inter f ace . read_patient ( s e l f . wTree )
101
102 ## Function used to read the name of the f i l e we want to

use
103 # @param widget gdk widget
104 de f cal l_namein ( s e l f , wTree ) :
105 s e l f . vmtk inter f ace . read_in_name( s e l f . wTree )
106
107 ## Function used to read the name of the f i l e we want to

use
108 # @param widget gdk widget
109 de f call_nameout ( s e l f , wTree ) :
110 s e l f . vmtk inter f ace . read_out_name ( s e l f . wTree )
111
112 ## Function used to read the name of the f i l e we want to

use
113 # @param widget gdk widget
114 de f c a l l _ f i l e v i ew ( s e l f , wTree ) :
115 s e l f . vmtk inter f ace . f i l e_to_view ( s e l f . wTree )
116
117 ## Function used to read the name of the f i l e we want to

use
118 # @param widget gdk widget
119 de f ca l l_ s e tva l u e s ( s e l f , wTree ) :
120 s e l f . vmtk inter f ace . s e tva l u e s ( s e l f . wTree )
121
122 ## Function used to load a DICOM f i l e and to convert the

DICOM in a proper format for vmtk
123 # @param s e l f The ob j e c t po i n t e r
124 # @param widget gdk widget
125 de f call_loadDICOM ( s e l f , widget ) :
126
127 # i f not s e l f . vmtk inter f ace . input_f i l ename :
128 # s e l f . vmtk inter f ace . input_f i l ename = " example "
129 # i f not s e l f . vmtk inter f ace . output_fi lename :
130 # s e l f . vmtk inter f ace . output_fi lename =

s e l f . vmtk inter f ace . input_f i l ename
131
132 # i f not s e l f . vmtk inter f ace . input_f i l ename :
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133 # pr i n t " I n s e r t ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣ that ␣you␣
want␣ to ␣ load "

134 # else :
135 s e l f . vmtk inter f ace . loadDICOM( s e l f . vmtk inter f ace . input_fi lename ,

s e l f . vmtk inter f ace . output_fi lename )
136
137 ## Function used to view the image ( a f t e r havindg loaded

the DICOM f i l e and converted i t i n a more s u i t a b l e
format )

138 # @param s e l f The ob j e c t po i n t e r
139 # @param widget gdk widget
140 de f cal l_imageviewer ( s e l f , widget ) :
141 # i f not s e l f . vmtk inter f ace . input_f i l ename :
142 # pr i n t " I n s e r t ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣ that ␣you␣

want␣ to ␣ load "
143 # else :
144 s e l f . vmtk inter f ace . t e s t = 1
145 s e l f . vmtk inter f ace . imagereader ( s e l f . vmtk inter f ace . input_f i l ename )
146 s e l f . vmtk inter f ace . imageviewer ( )
147
148 ## Function used to view the image ( a f t e r havindg loaded

the DICOM f i l e and converted i t i n a more s u i t a b l e
format )

149 # @param s e l f The ob j e c t po i n t e r
150 # @param widget gdk widget
151 de f cal l_readviewimg ( s e l f , widget ) :
152 s e l f . vmtk inter f ace . f l a g = 0
153 s e l f . vmtk inter f ace . read_view ( )
154
155 ## Function used to view the image ( a f t e r havindg loaded

the DICOM f i l e and converted i t i n a more s u i t a b l e
format )

156 # @param s e l f The ob j e c t po i n t e r
157 # @param widget gdk widget
158 de f ca l l_ r eadv i ewsu r f ( s e l f , widget ) :
159 s e l f . vmtk inter f ace . f l a g = 1
160 s e l f . vmtk inter f ace . read_view ( )
161
162 ## Function used to view the image ( a f t e r havindg loaded

the DICOM f i l e and converted i t i n a more s u i t a b l e
format )

163 # @param s e l f The ob j e c t po i n t e r
164 # @param widget gdk widget
165 de f cal l_readviewmsh ( s e l f , widget ) :
166 s e l f . vmtk inter f ace . f l a g = 2
167 s e l f . vmtk inter f ace . read_view ( )
168
169 ## Function the a l l ows the user to exc t r a c t a Volume of

I n t e r e s t
170 # @param s e l f The ob j e c t po i n t e r
171 # @param widget gdk widget
172 de f call_VOI ( s e l f , widget ) :
173 s e l f . vmtk inter f ace .VOI( s e l f . vmtk inter f ace . output_fi lename )
174
175 ## This f unc t i on j u s t per forms a Level Set Segmentation ,

i . e . i t ad j u s t s con t r a s t and so on to have a be t t e r
generated su r f a c e

176 # @param s e l f The ob j e c t po i n t e r
177 # @param widget gdk widget
178 de f call_LSS ( s e l f , widget ) :
179 s e l f . vmtk inter f ace . LevSetSeg ( s e l f . vmtk inter f ace . output_fi lename )
180
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181 ## This i s the f unc t i on to c r ea t e a su r f a c e from the
DICOM f i l e , i n order to be ab l e to compute i t e a s i l y

182 # @param s e l f The ob j e c t po i n t e r
183 # @param widget gdk widget
184 de f cal l_SurfGen ( s e l f , widget ) :
185 s e l f . vmtk inter f ace . SurfGen ( s e l f . vmtk inter f ace . output_fi lename )
186
187 ## This i s the command we need in order to smooth the

su r f a c e .
188 # @param s e l f The ob j e c t po i n t e r
189 # @param widget gdk widget
190 de f cal l_SmoothSurf ( s e l f , widget ) :
191 s e l f . vmtk inter f ace . SmoothSurf ( s e l f . vmtk inter f ace . output_fi lename )
192
193 ## This i s the command we need in order to smooth the

su r f a c e .
194 # @param s e l f The ob j e c t po i n t e r
195 # @param widget gdk widget
196 de f call_GenSmoothSurf ( s e l f , widget ) :
197 s e l f . vmtk inter f ace . GenSmoothSurf ( s e l f . vmtk inter f ace . output_fi lename )
198
199 ## This command a l l ows us to c l i p the volume . This i s

used to have a be t t e r top /bottom sur f a c e and to make
i t e a s i e r to compute the normal

200 # @param s e l f The ob j e c t po i n t e r
201 # @param widget gdk widget
202 de f ca l l_Sur fC l ipp ( s e l f , widget ) :
203 s e l f . vmtk inter f ace . Sur fC l ipp ( s e l f . vmtk inter f ace . output_fi lename )
204
205 ## Function used to compute the c e n t e r l i n e s
206 # @param s e l f The ob j e c t po i n t e r
207 # @param widget gdk widget
208 de f ca l l_CenterL ines ( s e l f , widget ) :
209 s e l f . vmtk inter f ace . CenterLines ( s e l f . vmtk inter f ace . output_fi lename )
210
211 ## Function needed to generate a mesh ( i f needed :−) )
212 # @param s e l f The ob j e c t po i n t e r
213 # @param widget gdk widget
214 de f call_MeshGen ( s e l f , widget ) :
215 s e l f . vmtk inter f ace .MeshGen( s e l f . vmtk inter f ace . output_fi lename )
216
217
218 ## Function used to load a DICOM f i l e
219 # @param s e l f The ob j e c t po i n t e r
220 # @param widget gdk widget
221 de f call_dicom_path ( s e l f , widget ) :
222 p r i n t " Trying ␣ to ␣ load ␣ the ␣DICOM␣ f i l e "
223 # planeWidgetX . In t e r a c t i onO f f ( )
224 # planeWidgetY . In t e r a c t i onO f f ( )
225 # planeWidgetZ . In t e r a c t i onO f f ( )
226 # i n t e r a c t o r S t y l e . EnabledOn( )
227
228 ## This i s the command we need in order to smooth the

su r f a c e .
229 # @param s e l f The ob j e c t po i n t e r
230 # @param widget gdk widget
231 de f cal l_viewimg ( s e l f , widget ) :
232 s e l f . vmtk inter f ace . imageviewer ( )
233
234 ## This i s the command we need in order to smooth the

su r f a c e .
235 # @param s e l f The ob j e c t po i n t e r
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236 # @param widget gdk widget
237 de f ca l l_v i ewsu r f ( s e l f , widget ) :
238 s e l f . vmtk inter f ace . s u r f a c ev i ewe r ( )
239
240 ## This i s the command we need in order to smooth the

su r f a c e .
241 # @param s e l f The ob j e c t po i n t e r
242 # @param widget gdk widget
243 de f cal l_viewmesh ( s e l f , widget ) :
244 p r i n t " I l ␣ bottone ␣ funz i ona ! "
245 s e l f . vmtk inter f ace . meshviewer ( )
246
247 ## This i s tha c a l l i n g to the main . We need this c a l l i n g to

launch and execute the code .
248 i f __name__ == "__main__" :
249
250 hwg = VmtkGui ( )
251 gtk . main ( )
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B.2 vmtkinterface.py

In this file, as the name could suggest, we create and set all the stuff
that deal with the GUI.

1 ## @package vmtk inter f ace
2 # This i s the module that r e c a l l and uses the vmtk

f unc t i on s ( s ee on l i n e documentation @
http : //www. vmtk . org ) t h a t we want to " perform " when we
c l i c k on a c e r t a i n but ton .

3 #! / usr / bin /python
4
5 try :
6 import gtk
7 import gtk . g lade
8 except :
9 sys . e x i t (1)
10
11 import vtk
12 from vtk import ∗
13
14 import vmtk
15 from vmtk import ∗
16
17 import vtkcones
18 import vmtkgui
19 import vmtkcenter l i n e sw i thr ende r e r
20
21 from gtk import gdk
22 import math
23
24
25 ## This class conta ins the vmtk f unc t i on s needed to load a

DICOM, to make i t r eadab l e from vmtk , to act on the
image i t s e l f and to do what we need for our purpose .

26 class VmtkInterface :
27
28 ## The con s t r uc to r .
29 # @param s e l f The ob j e c t po i n t e r .
30 # @param img the f o l d e r where the DICOM s e r i e i s

contained .
31 # @param ren I t i s the r ender e I am going to use both

for the va l v e s t en t and for the image .
32 # @param vtkda I t i s the canvas we want to use for a l l

our ob j e c t s .
33 de f __init__ ( s e l f , img , ren , vtkda ) :
34 # Pr e l im ina r i e s : i n i t i a l i z a t i o n o f some g l oba l

v a r i a b l e s
35 s e l f . subd i r =

" /home/samiam/Documents/TESI/gui_python / "
36 # s e l f . subd i r =

" / usr / s c r a t ch /zampini/vmtk/working_space / pa t i en t s / "
37 s e l f . vtkda = vtkda
38 s e l f . ren = ren
39 s e l f . ImgVOI = None
40 s e l f . Sur f ace = None
41 s e l f . Image = None
42 s e l f .Mesh = None
43 s e l f . i n i t_type = 0
44 s e l f . thres_lower = 100
45 s e l f . thres_upper = 600
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46 s e l f . number_iterat ion = 300
47 s e l f . prop_scal ing = 0.0
48 s e l f . curve_sca l i ng = 0.0
49 s e l f . adv_scal ing = 1.0
50 s e l f . vmtkRenderer = vmtkrenderer . vmtkRenderer ( )
51 s e l f . f l a g = 0
52 s e l f . f i r s t_ t ime = 1
53 # s e l f . t e s t = 1
54 # Comment or uncomment ( i t depends on which r ender er

we want to use − usua l l y the f o l l ow i ng l i n e must
be commented )

55 # s e l f . vmtkRenderer . I n i t i a l i z e ( )
56 # s e t t i n g RenderWindow to the a l r eady e x i s t i n g one

in vtkda ( i t en t e r e s in the f o l l ow i ng ’ i f ’ , only
when I have not de f ined the r ender er yet )

57 i f not s e l f . vmtkRenderer . Renderer :
58 s e l f . vmtkRenderer . Renderer = s e l f . ren
59 s e l f . vmtkRenderer . RenderWindow =

s e l f . vtkda . GetRenderWindow ( )
60 s e l f . vmtkRenderer . RenderWindow . AddRenderer( s e l f . vmtkRenderer . Ren
61 s e l f . vmtkRenderer . RenderWindow . Se tS i z e ( s e l f . vmtkRenderer . WindowS
62 s e l f . vmtkRenderer . WindowSize [ 1 ] )
63 s e l f . vmtkRenderer . RenderWindow . SetPointSmoothing \
64 ( s e l f . vmtkRenderer . PointSmoothing )
65 s e l f . vmtkRenderer . RenderWindow . SetLineSmoothing\
66 ( s e l f . vmtkRenderer . LineSmoothing )
67 s e l f . vmtkRenderer . RenderWindow . SetPolygonSmoothing \
68 ( s e l f . vmtkRenderer . PolygonSmoothing )
69 # Note that i f I use the

vtkGenericRenderWindowInteractor ( ) I get
image i the r i gh t window but I can not

i n t e r a c t with i t , while i f I use the
vtkRenderWindowInteractor ( ) I get an
image I can " e l abo r a t e " as I l i k e , but
i t does not appear in the r i gh t window .

70 s e l f . vmtkRenderer . RenderWindowInteractor =
s e l f . vtkda . GetRenderWindow ( ) . GetInteractor ( )

71 s e l f . vmtkRenderer . RenderWindowInteractor =
vtkRenderWindowInteractor ( )

72 # s e l f . vmtkRenderer . RenderWindowInteractor =
vtkGenericRenderWindowInteractor ( )

73 s e l f . vmtkRenderer . RenderWindowInteractor . SetRenderWindow\
74 ( s e l f . vtkda . GetRenderWindow ( ) )
75 s e l f . vmtkRenderer . RenderWindowInteractor . S e t I n t e r a c t o r S t y l e \
76 ( vtkInteractorSty l eTrackba l lCamera ( ) )
77 s e l f . vmtkRenderer . RenderWindow . Se t In t e r a c to r \
78 ( s e l f . vmtkRenderer . RenderWindowInteractor )
79 s e l f . vmtkRenderer . RenderWindowInteractor . I n i t i a l i z e ( )
80
81 s e l f . vmtkImageViewer =

vmtkimageviewer . vmtkImageViewer ( )
82 s e l f . vmtkSurfaceViewer =

vmtksur faceviewer . vmtkSurfaceViewer ( )
83 s e l f . vmtkMeshViewer =

vmtkmeshviewer . vmtkMeshViewer ( )
84
85 s e l f . vmtkImageViewer . vmtkRenderer =

s e l f . vmtkRenderer
86 s e l f . vmtkSurfaceViewer . vmtkRenderer =

s e l f . vmtkRenderer
87 s e l f . vmtkMeshViewer . vmtkRenderer =

s e l f . vmtkRenderer
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88
89 s e l f . vmtkSurfaceWriter =

vmtksur f acewr i te r . vmtkSurfaceWriter ( )
90 s e l f . vmtkMeshWriter =

vmtkmeshwriter . vmtkMeshWriter ( )
91
92 s e l f . vmtkImageVOISelector = None
93
94 s e l f . input_f i l ename = " aorta "
95 s e l f . output_fi lename = " aorta "
96 s e l f . pa t i en t = " b ianch i "
97
98
99 ## Function to read the name of the input f i l e

100 # @param s e l f The ob j e c t po i n t e r
101 # @param wTree The d i c t i ona r y where I get my in format i on
102 de f read_patient ( s e l f , wTree ) :
103 s e l f . wTree = wTree
104 s e l f . patient_name = s e l f . wTree . get_widget ( " pa t i en t " )
105 s e l f . pa t i en t = s e l f . patient_name . get_text ( )
106 p r i n t " ␣ "
107 p r i n t "The␣ pa t i en t ␣ i s ␣Mr( s ) ␣ " + s e l f . pa t i en t
108 p r i n t " I f ␣ t h i s ␣ i s ␣ the ␣ r i gh t ␣ pat i ent , ␣go␣ahead . ␣

Otherwise ␣ re−type ␣ the ␣name ! "
109 p r i n t " ␣ "
110
111 ## Function to read the name of the input f i l e
112 # @param s e l f The ob j e c t po i n t e r
113 # @param wTree The d i c t i ona r y where I get my in format i on
114 de f read_in_name( s e l f , wTree ) :
115 s e l f . wTree = wTree
116 s e l f . in_fi le_name =

s e l f . wTree . get_widget ( " in_fi le_name " )
117 s e l f . input_f i l ename = s e l f . in_fi le_name . get_text ( )
118 s e l f . output_fi lename = s e l f . input_f i l ename
119 p r i n t " ␣ "
120 p r i n t "You␣have ␣ s e l e c t e d ␣ the ␣ f i l e ␣ " +

s e l f . input_f i l ename + " . v t i "
121 p r i n t " I f ␣ t h i s ␣ i s ␣ the ␣ r i gh t ␣ choice , ␣go␣ahead . ␣

Otherwise ␣ re−type ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣ that ␣you␣
want␣ to ␣ load "

122
123 ## Function to read the name of the input f i l e
124 # @param s e l f The ob j e c t po i n t e r
125 # @param wTree The d i c t i ona r y where I get my in format i on
126 de f read_out_name ( s e l f , wTree ) :
127 " " " This ␣ f unc t i on ␣ w i l l ␣ read ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣we␣

want␣ to ␣ save " " "
128 s e l f . wTree = wTree
129 s e l f . out_file_name =

s e l f . wTree . get_widget ( " out_file_name " )
130 s e l f . output_fi lename = s e l f . out_file_name . get_text ( )
131 p r i n t " ␣ "
132 p r i n t "The␣output␣ f i l e ␣ w i l l ␣be␣named␣ " +

s e l f . output_fi lename + " . v t i "
133 p r i n t " I s ␣ t h i s ␣name␣ok? "
134
135 ## Function to read the name of the f i l e that you want

to do

136 # @param s e l f The ob j e c t po i n t e r
137 # @param wTree The d i c t i ona r y where I get my in format i on
138 de f f i l e_to_view ( s e l f , wTree ) :
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139 s e l f . wTree = wTree
140 s e l f . f i l e_v i ew = s e l f . wTree . get_widget ( " f i l e_v i ew " )
141 s e l f . f i l e t o v i ew = s e l f . f i l e_v i ew . get_text ( )
142 p r i n t " ␣ "
143 p r i n t "You␣ chose ␣ to ␣ v i s u a l i z e ␣ the ␣ f i l e ␣ " +

s e l f . f i l e t o v i ew + " . ␣ I f ␣ i t ␣ i s ␣ cor r ect , ␣ continue . ␣
I f ␣not , ␣ re−type "

144 s e l f . t e s t = 0
145
146 ## Function to read the name of the f i l e that you want

to do

147 # @param s e l f The ob j e c t po i n t e r
148 # @param wTree The d i c t i ona r y where I get my in format i on
149 de f read_view( s e l f ) :
150
151 i f s e l f . f l a g == 0 :
152 # pr i n t "Read␣&␣View␣an␣ image "
153 s e l f . imagereader ( s e l f . f i l e t o v i e w [ : −4 ] )
154 s e l f . imageviewer ( )
155 p r i n t "Well ␣done . ␣ S e l e c t ␣a␣new␣ act i on ! "
156 e l i f s e l f . f l a g == 1 :
157 # pr i n t " Leggi /Vedi␣una␣ s u p e r f i c i e "
158 s e l f . s u r f a c e r eade r ( s e l f . f i l e t o v i ew [ : −4 ] )
159 s e l f . s u r f a c ev i ewe r ( )
160 p r i n t "Well ␣done . ␣ S e l e c t ␣a␣new␣ act i on ! "
161 e l i f s e l f . f l a g == 2 :
162 # pr i n t " Leggi /Vedi␣una␣mesh "
163 s e l f . meshreader ( s e l f . f i l e t o v i ew [ : −4 ] )
164 s e l f . meshviewer ( )
165 p r i n t "Well ␣done . ␣ S e l e c t ␣a␣new␣ act i on ! "
166 else :
167 p r i n t " F i l e ␣not ␣ supported . ␣Check␣ the ␣name␣ o f ␣ the ␣

f i l e ␣ p l ea s e ! "
168
169
170
171
172 ## Function to a s s i gn c e r t a i n va lues ( chosen by the user )
173 # @param s e l f The ob j e c t po i n t e r
174 # @param wTree The d i c t i ona r y where I get my in format i on
175 de f s e tva l u e s ( s e l f , wTree ) :
176 " " " This ␣ f unc t i on ␣ w i l l ␣ read ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣we␣

want␣ to ␣ save " " "
177 s e l f . wTree = wTree
178 s e l f . num_iter = s e l f . wTree . get_widget ( " num_iter " )
179 s e l f . number_iterat ion_str = s e l f . num_iter . get_text ( )
180 s e l f . number_iterat ion =

int ( s e l f . number_iterat ion_str)
181 s e l f . prop_sc = s e l f . wTree . get_widget ( " prop_sc " )
182 s e l f . prop_scal ing_str = s e l f . prop_sc . get_text ( )
183 s e l f . prop_scal ing = f l o a t ( s e l f . prop_scal ing_str )
184 s e l f . curve_sc = s e l f . wTree . get_widget ( " curve_sc " )
185 s e l f . curve_sca l i ng_str = s e l f . curve_sc . get_text ( )
186 s e l f . curve_sca l i ng = f l o a t ( s e l f . curve_sca l i ng_str )
187 s e l f . adv_sc = s e l f . wTree . get_widget ( " adv_sc " )
188 s e l f . adv_scal ing_str = s e l f . adv_sc . get_text ( )
189 s e l f . adv_scal ing = f l o a t ( s e l f . adv_scal ing_str )
190 p r i n t " "
191 p r i n t "The␣ va lues ␣has ␣been␣ as s i gned "
192 p r i n t " "
193
194 ## func t i on used to c l ean the r ender er
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195 # @param s e l f The ob j e c t po i n t e r
196 de f c l e a rAc to r s ( s e l f ) :
197 # c l e a r i n g r ender er
198 i f s e l f . vmtkSurfaceViewer . Actor :
199 s e l f . vmtkRenderer . Renderer . RemoveActor\
200 ( s e l f . vmtkSurfaceViewer . Actor )
201 i f s e l f . vmtkMeshViewer . Actor :
202 s e l f . vmtkRenderer . Renderer . RemoveActor\
203 ( s e l f . vmtkMeshViewer . Actor )
204 i f s e l f . vmtkImageViewer . PlaneWidgetX :
205 s e l f . vmtkImageViewer . PlaneWidgetX . Off ( )
206 i f s e l f . vmtkImageViewer . PlaneWidgetY :
207 s e l f . vmtkImageViewer . PlaneWidgetY . Off ( )
208 i f s e l f . vmtkImageViewer . PlaneWidgetZ :
209 s e l f . vmtkImageViewer . PlaneWidgetZ . Off ( )
210 i f s e l f . vmtkImageVOISelector :
211 s e l f . vmtkImageVOISelector . PlaneWidgetX . Off ( )
212 s e l f . vmtkImageVOISelector . PlaneWidgetY . Off ( )
213 s e l f . vmtkImageVOISelector . PlaneWidgetZ . Off ( )
214
215 ## Function that a l l ows us to load a DICOM and to wr i te

a f i l e i n the r i gh t format
216 # @param s e l f The ob j e c t po i n t e r
217 # @param input_f i l ename This i s the name of the f i l e

that we want to load
218 # @param input_f i l ename This i s the name of the f i l e

that we want to c r ea t e
219 de f loadDICOM( s e l f , input_fi lename , output_fi lename ) :
220 p r i n t "E ’ ␣ l a ␣prima␣ vo l ta ?␣ [ 1 ␣−␣ s i ; ␣0␣−␣no . ] "
221 p r i n t s e l f . f i r s t_ t ime
222 i f s e l f . f i r s t_ t ime == 0 :
223 s e l f . ren . RemoveAllViewProps ( )
224 s e l f . f i r s t_ t ime = 0
225 # dicom_dir =

" / usr / s c r a t ch /zampini/vmtk/working_space / co r ona r i e s / "
226 vmtkImageReader = vmtkimagereader . vmtkImageReader ( )
227 vmtkImageReader . Format = " dicom "
228 # vmtkImageReader . InputDirectoryName = dicom_dir
229 vmtkImageReader . InputDirectoryName = s e l f . subd i r +

s e l f . pa t i en t + " /DICOM/ "
230 vmtkImageReader . Execute ( )
231 p r i n t " ␣ "
232 p r i n t "DICOM␣ loaded ␣ s u c c e s s f u l l y ! "
233 p r i n t " ␣ "
234 s e l f . Image = vmtkImageReader . Image
235 s e l f . imagewr i ter ( output_fi lename + " . v t i " )
236 p r i n t " ␣ "
237 p r i n t " F i l e ␣ " + output_fi lename + " . v t i ␣has ␣been␣

wr i t ten . ␣Please , ␣go␣ahead . "
238 p r i n t " ␣ "
239 s e l f . t e s t = 1
240
241 ## func t i on that a l l ows us to view the . v t i image j u s t

cr eated
242 # @param s e l f The ob j e c t po i n t e r
243 # @param input_f i l ename The name of the . v t i f i l e we

want to view ( i n s e r t e d from the user )
244 de f imagereader ( s e l f , output_fi lename ) :
245 p r i n t " s e l f . t e s t "
246 p r i n t s e l f . t e s t
247 p r i n t " output_fi lename " + output_fi lename
248 # i f s e l f . t e s t == 0 :
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249 # output_fi lename = s e l f . f i l e t o v i ew [ : −4 ]
250 vmtkImageReader = vmtkimagereader . vmtkImageReader ( )
251 vmtkImageReader . InputFileName = s e l f . subd i r +

s e l f . pa t i en t + " /img/ " + output_fi lename + " . v t i "
252 vmtkImageReader . Execute ( )
253 s e l f . Image = vmtkImageReader . Image
254 # s e l f . imageviewer ( )
255
256 ## func t i on that execute the f unc t i on ’ imagereader ’
257 # @param s e l f The ob j e c t po i n t e r
258 de f imageviewer ( s e l f ) :
259 s e l f . c l e a rAc to r s ( )
260 # pr i n t s e l f . f l a g
261 # i f s e l f . f l a g == 0 :
262 s e l f . vmtkImageViewer . Image = s e l f . Image
263 p r i n t " ␣ "
264 p r i n t " Press ␣ ’q ’ ␣ to ␣ continue "
265 p r i n t " ␣ "
266 s e l f . vmtkImageViewer . Execute ( )
267 # e l i f s e l f . f l a g == 1 :
268 # s e l f . vmtkImageViewer . ArrayName =

s e l f . f i l e t o v i ew
269 # pr i n t " ␣ "
270 # pr i n t " Press ␣ ’q ’ ␣ to ␣ continue "
271 # pr i n t " ␣ "
272 # s e l f . vmtkImageViewer . Execute ( )
273
274
275 ## func t i on that execute wr i te a vtk−xml f i l e
276 # @param s e l f The ob j e c t po i n t e r
277 # @param output_fi lename This i s the name of the f i l e

we have cr eated
278 de f imagewr i ter ( s e l f , output_fi lename ) :
279 vmtkImageWriter = vmtkimagewriter . vmtkImageWriter ( )
280 vmtkImageWriter . Image = s e l f . Image
281 vmtkImageWriter . OutputFileName = s e l f . subd i r +

s e l f . pa t i en t + " /img/ " + output_fi lename
282 s e l f . Image = vmtkImageWriter . Image
283 vmtkImageWriter . Execute ( )
284
285 ## func t i on that a l l ows us to view the . v t i image j u s t

cr eated
286 # @param s e l f The ob j e c t po i n t e r
287 # @param input_f i l ename The name of the . v t i f i l e we

want to view ( i n s e r t e d from the user )
288 de f s u r f a c e r eade r ( s e l f , output_fi lename ) :
289 p r i n t " s e l f . t e s t "
290 p r i n t s e l f . t e s t
291 p r i n t " output_fi lename " + output_fi lename
292 # i f s e l f . t e s t == 0 :
293 # output_fi lename = s e l f . f i l e t o v i e w [ : −4 ]
294 vmtkSurfaceReader =

vmtksur facereader . vmtkSurfaceReader ( )
295 vmtkSurfaceReader . InputFileName = s e l f . subd i r +

s e l f . pa t i en t + " /img/ " + output_fi lename + " . vtp "
296 vmtkSurfaceReader . Execute ( )
297 s e l f . Sur f ace = vmtkSurfaceReader . Sur f ace
298
299 ## func t i on that execute the f unc t i on ’ imagereader ’
300 # @param s e l f The ob j e c t po i n t e r
301 de f s u r f a c ev i ewe r ( s e l f ) :
302 s e l f . c l e a rAc to r s ( )
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303 s e l f . vmtkSurfaceViewer . Sur f ace = s e l f . Sur f ace
304 p r i n t " ␣ "
305 p r i n t " Press ␣ ’ q ’ ␣ to ␣ continue "
306 p r i n t " ␣ "
307 s e l f . vmtkSurfaceViewer . Execute ( )
308
309
310 ## func t i on that al low to view a vtk−xml f i l e
311 # @param s e l f The ob j e c t po i n t e r
312 # @param output_fi lename This i s the name of the f i l e

we have cr eated
313 de f s u r f a c ew r i t e r ( s e l f , output_fi lename ) :
314 vmtkSurfaceWriter =

vmtksur f acewr i te r . vmtkSurfaceWriter ( )
315 vmtkSurfaceWriter . Sur f ace = s e l f . Sur f ace
316 vmtkSurfaceWriter . OutputFileName = s e l f . subd i r +

s e l f . pa t i en t + " /img/ " + output_fi lename
317 s e l f . Sur f ace = vmtkSurfaceWriter . Sur f ace
318 vmtkSurfaceWriter . Execute ( )
319
320 ## func t i on that a l l ows us to view the . v t i image j u s t

cr eated
321 # @param s e l f The ob j e c t po i n t e r
322 # @param input_f i l ename The name of the . v t i f i l e we

want to view ( i n s e r t e d from the user )
323 de f meshreader ( s e l f , output_fi lename ) :
324 p r i n t " s e l f . t e s t "
325 p r i n t s e l f . t e s t
326 p r i n t " output_fi lename " + output_fi lename
327 # i f s e l f . t e s t == 0 :
328 # output_fi lename = s e l f . f i l e t o v i ew [ : −4 ]
329 vmtkMeshReader = vmtkmeshreader . vmtkMeshReader ( )
330 # pr i n t s e l f . subd i r + s e l f . pa t i en t + " /img/ " +

output_fi lename + " . vtu "
331 vmtkMeshReader . InputFileName = s e l f . subd i r +

s e l f . pa t i en t + " /img/ " + output_fi lename + " . vtu "
332 vmtkMeshReader . Execute ( )
333 s e l f .Mesh = vmtkMeshReader .Mesh
334 # s e l f . imageviewer ( )
335
336 ## func t i on that a l l ows to view the vtk−xml f i l e
337 # @param s e l f The ob j e c t po i n t e r
338 de f meshviewer ( s e l f ) :
339 s e l f . c l e a rAc to r s ( )
340 s e l f . vmtkMeshViewer .Mesh = s e l f .Mesh
341 p r i n t " ␣ "
342 p r i n t " Press ␣ ’ q ’ ␣ to ␣ continue "
343 p r i n t " ␣ "
344 # s e l f . vmtkMeshViewer . Renderer = s e l f . vmtkRenderer
345 s e l f . vmtkMeshViewer . Execute ( )
346
347 ## func t i on that al low to view a vtk−xml f i l e
348 # @param s e l f The ob j e c t po i n t e r
349 # @param output_fi lename This i s the name of the f i l e

we have cr eated
350 de f meshwriter ( s e l f , output_fi lename ) :
351 vmtkMeshWriter = vmtkmeshwriter . vmtkMeshWriter ( )
352 vmtkMeshWriter .Mesh = s e l f .Mesh
353 vmtkMeshWriter . OutputFileName = s e l f . subd i r +

s e l f . pa t i en t + " /img/ " + output_fi lename +
"_mesh . vtu "

354 vmtkMeshWriter . Execute ( )
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355
356 ## func t i on to check i f the f i l e has been loaded
357 # @param s e l f The ob j e c t po i n t e r
358 de f DICOMinteract ( s e l f ) :
359 i f vmtkImageViewer :
360 vmtkImageViewer . Execute ( )
361 else :
362 p r i n t " Image␣not ␣ loaded ␣ yet "
363
364 ## func t i on that a l l ows us to s e l e c t a volume of i n t e r e s t
365 # @param s e l f The ob j e c t po i n t e r
366 # @param output_fi lename This i s the name of the f i l e

we have cr eated
367 de f VOI( s e l f , output_fi lename ) :
368 s e l f . c l e a rAc to r s ( )
369 s e l f . vmtkImageVOISelector =

vmtk imagevo i s e l ec tor . vmtkImageVOISelector ( )
370 s e l f . vmtkImageVOISelector . Image = s e l f . Image
371 s e l f . vmtkImageVOISelector . vmtkRenderer =

s e l f . vmtkRenderer
372 s e l f . vmtkImageVOISelector . I n t e r a c t i v e = 1
373 p r i n t " Press ␣ i ␣ to ␣ ac t i va t e ␣ the ␣volume␣ s e l e c t o r ␣and␣q␣

( twice ) ␣when␣you␣have ␣done "
374 p r i n t " ␣ "
375 s e l f . vmtkImageVOISelector . Execute ( )
376 s e l f . Image = s e l f . vmtkImageVOISelector . Image
377 s e l f . imagewr i ter ( output_fi lename + "_VoI . v t i " )
378 p r i n t " ␣ "
379 p r i n t " F i l e ␣ " + output_fi lename + "_VoI . v t i ␣has ␣been␣

wr i t ten . ␣ P l ease ␣ s e l e c t ␣a␣new␣ act i on ␣ or ␣ e x i t ␣ the ␣
program"

380 p r i n t " ␣ "
381
382 ## func t i on that a l l ows us to do a l e v e l s e t

segmentation : i t i s important to under l i ne that i f

we s e t a Number o f I t e r a t i o n h igher than 0 , then i t
w i l l perform only one loop for the l e v e l s e t ( i . e .
you can add only a branch ) . And we want to point out
that i t ’ s ␣not ␣a␣ l im i t a t i o n ␣ i f ␣you␣ think ␣about ␣ the ␣
f i n a l ␣ ta r g e t ␣ o f ␣ the ␣whole␣ pro j ect , ␣ s i n c e ␣you␣do␣not ␣
need␣ to ␣use ␣ b i f u r c a t i o n ␣ in ␣ order ␣ to ␣ r e con s t r u c t ␣ the ␣
area ␣around ␣ te ␣mitral−valve .

383 ␣␣␣␣#␣␣@param␣ s e l f ␣The␣ ob j e c t ␣ po i n t e r
384 ␣␣␣␣#␣␣@param␣output_fi lename ␣This ␣ i s ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣

we␣have␣ cr eated
385 ␣␣␣␣ de f ␣LevSetSeg ( s e l f , ␣ output_fi lename ) :
386 ␣␣␣␣␣␣␣␣ s e l f . c l e a rAc to r s ( )
387 ␣␣␣␣␣␣␣␣ i f ␣not ␣ s e l f . Image :
388 ␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . imagereader ( output_fi lename ␣+␣ "_VoI " )
389 ␣␣␣␣␣␣␣␣ vmtkLevelSetSegmentation ␣=␣

vmtk l eve l s e t s egmentat i on . vmtkLevelSetSegmentation ( )
390
391 ␣␣␣␣␣␣␣␣ vmtkLevelSetSegmentation . Propagat i onSca l i ng␣=␣

s e l f . prop_scal ing
392 ␣␣␣␣␣␣␣␣ vmtkLevelSetSegmentation . CurvatureScal ing ␣=␣

s e l f . curve_sca l i ng
393 ␣␣␣␣␣␣␣␣ vmtkLevelSetSegmentation . Advect ionScal ing ␣=␣

s e l f . adv_scal ing
394
395 ␣␣␣␣␣␣␣␣##␣ i f ␣ s e l f . number_iterat ion ␣>␣0␣we␣ only␣do␣one␣ loop ␣

f o r ␣ l e v e l s e t
396 ␣␣␣␣␣␣␣␣ i f ␣ s e l f . number_iterat ion ␣>␣ 0 :
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397 ␣␣␣␣␣␣␣␣␣␣␣␣ ImageSeeder␣=␣ vmtkscr ipts . vmtkImageSeeder ( )
398 ␣␣␣␣␣␣␣␣ ␣␣␣␣ ImageSeeder . vmtkRenderer ␣=␣ s e l f . vmtkRenderer
399 ␣␣␣␣␣␣␣␣ ␣␣␣␣ ImageSeeder . Image␣=␣ s e l f . Image
400 ␣␣␣␣␣␣␣␣ ␣␣␣␣ ImageSeeder . Display ␣=␣0
401 ␣␣␣␣␣␣␣␣ ␣␣␣␣ ImageSeeder . Execute ( )
402 ␣␣␣␣␣␣␣␣ ␣␣␣␣ ImageSeeder . Display ␣=␣1
403 ␣␣␣␣␣␣␣␣ ␣␣␣␣ ImageSeeder . BuildView ( )
404
405 ␣␣␣␣␣␣␣␣ ␣␣␣␣ vmtk Image In i t i a l i z a t i on␣=␣

vmtkscr ipts . vmtk Image In i t i a l i z a t i on ( )
406 ␣␣␣␣␣␣␣␣ ␣␣␣␣ vmtk Image In i t i a l i z a t i on . Image␣␣␣␣␣␣␣␣␣=␣

s e l f . Image
407 ␣␣␣␣␣␣␣␣ ␣␣␣␣ vmtk Image In i t i a l i z a t i on . vmtkRenderer ␣␣=␣

s e l f . vmtkRenderer
408
409 ␣␣␣␣␣␣␣␣ ␣␣␣␣ vmtk Image In i t i a l i z a t i on . ImageSeeder␣␣␣=␣

ImageSeeder
410 ␣␣␣␣␣␣␣␣ ␣␣␣␣ vmtk Image In i t i a l i z a t i on . Sur faceViewer ␣=␣

s e l f . vmtkSurfaceViewer
411 ␣␣␣␣␣␣␣␣ ␣␣␣␣ vmtk Image In i t i a l i z a t i on . OwnRenderer ␣␣␣=␣0
412
413 ␣␣␣␣␣␣␣␣ ␣␣␣␣ vmtk Image In i t i a l i z a t i on . Execute ( )
414
415 ␣␣␣␣␣␣␣␣ ␣␣␣␣vmtkLevelSetSegmentation . I n i t i a l L e v e l S e t s ␣␣␣=␣

vmtk Image In i t i a l i z a t i on . I n i t i a l L e v e l S e t s
416 ␣␣␣␣␣␣␣␣ ␣␣␣␣vmtkLevelSetSegmentation . NumberOfIterations ␣=␣

s e l f . number_iterat ion
417 ␣␣␣␣␣␣␣␣##
418
419
420 ␣␣␣␣␣␣␣␣ vmtkLevelSetSegmentation . Image␣=␣ s e l f . Image
421 ␣␣␣␣␣␣␣␣ vmtkLevelSetSegmentation . vmtkRenderer ␣=␣

s e l f . vmtkRenderer
422 ␣␣␣␣␣␣␣␣ vmtkLevelSetSegmentation . Execute ( )
423 ␣␣␣␣␣␣␣␣ s e l f . Image␣=␣vmtkLevelSetSegmentation . Leve lSets
424 ␣␣␣␣␣␣␣␣ s e l f . imagewr i ter ( output_fi lename ␣+␣ "_VoI_LSS. v t i " )
425 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
426 ␣␣␣␣␣␣␣␣ p r i n t ␣ " F i l e ␣ " ␣+␣output_fi lename ␣␣+␣ "_VoI_LSS. v t i ␣has ␣

been␣ s u c c e s s f u l l y ␣ wr i t ten . ␣P l ease ␣go␣ahead . "
427 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
428
429 ␣␣␣␣##␣ func t i on ␣ that ␣ a l l ows ␣us␣ to ␣ generate ␣a␣ su r f a c e ␣ from␣

the ␣ f i l e ␣we␣have␣ j u s t ␣ wr i t ten
430 ␣␣␣␣#␣␣@param␣ s e l f ␣The␣ ob j e c t ␣ po i n t e r
431 ␣␣␣␣#␣␣@param␣output_fi lename ␣This ␣ i s ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣

we␣have ␣ cr eated
432 ␣␣␣␣ de f ␣SurfGen ( s e l f , ␣ output_fi lename ) :
433 ␣␣␣␣␣␣␣␣ s e l f . c l e a rAc to r s ( )
434 ␣␣␣␣␣␣␣␣#i f ␣not ␣ s e l f . Image :
435 ␣␣␣␣␣␣␣␣ s e l f . imagereader ( output_fi lename ␣+␣ "_VoI_LSS" )
436 ␣␣␣␣␣␣␣␣ vmtkMarchingCubes ␣=␣

vmtkmarchingcubes . vmtkMarchingCubes ( )
437 ␣␣␣␣␣␣␣␣ vmtkMarchingCubes . Image␣=␣ s e l f . Image
438 ␣␣␣␣␣␣␣␣ vmtkMarchingCubes . Execute ( )
439 ␣␣␣␣␣␣␣␣ s e l f . Sur f ace ␣=␣vmtkMarchingCubes . Sur f ace
440 ␣␣␣␣␣␣␣␣ s e l f . s u r f a c ew r i t e r ( output_fi lename ␣+␣

"_VoI_LSS_mc . vtp " )
441 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
442 ␣␣␣␣␣␣␣␣ p r i n t ␣ " F i l e ␣ " ␣+␣output_fi lename ␣␣+␣ "_VoI_LSS_mc . vtp␣

has ␣been␣ s u c c e s s f u l l y ␣ wr i t ten . ␣ (Now␣ pr e s s ␣ " " q " " ␣ to ␣
continue ) "

443 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
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444 ␣␣␣␣␣␣␣␣ s e l f . s u r f a c ev i ewe r ( )
445 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
446 ␣␣␣␣␣␣␣␣ p r i n t ␣ "The␣ su r f a c e ␣ i s ␣now␣ di sp l ayed . ␣P l ease ␣go␣ahead␣

( s e l e c t ␣a␣new␣ act i on ␣ or ␣ e x i t ␣ the ␣program) . "
447 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
448 ␣␣␣␣␣␣␣␣ p r i n t ␣ "The␣ f i l e ␣has ␣been␣wr i t ten ! ␣Choose␣a␣new␣

act i on ! "
449
450 ␣␣␣␣##␣This ␣ f unc t i on ␣ i s ␣used ␣ to ␣make␣ the ␣ su r f a c e ␣we␣have ␣

generated ␣ smoother
451 ␣␣␣␣#␣␣@param␣ s e l f ␣The␣ ob j e c t ␣ po i n t e r
452 ␣␣␣␣#␣␣@param␣output_fi lename ␣This ␣ i s ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣

we␣have␣ cr eated
453 ␣␣␣␣ de f ␣SmoothSurf ( s e l f , ␣ output_fi lename ) :
454 ␣␣␣␣␣␣␣␣ vmtkSurfaceSmoothing ␣=␣

vmtksurfacesmoothing . vmtkSurfaceSmoothing ( )
455 ␣␣␣␣␣␣␣␣vmtkSurfaceSmoothing . NumberOfIterations ␣=␣100
456 ␣␣␣␣␣␣␣␣vmtkSurfaceSmoothing . PassBand␣=␣ 0 .01
457 ␣␣␣␣␣␣␣␣ vmtkSurfaceSmoothing . Sur f ace ␣=␣ s e l f . Sur f ace
458 ␣␣␣␣␣␣␣␣ vmtkSurfaceSmoothing . vmtkRenderer ␣=␣ s e l f . vmtkRenderer
459 ␣␣␣␣␣␣␣␣ vmtkSurfaceSmoothing . Execute ( )
460 ␣␣␣␣␣␣␣␣ s e l f . s u r f a c ew r i t e r ( output_fi lename ␣+␣

"_VoI_LSS_mc_sm. vtp " )
461 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
462 ␣␣␣␣␣␣␣␣ p r i n t ␣ " F i l e ␣ " ␣+␣output_fi lename ␣␣+␣

"_VoI_LSS_mc_sm. vtp␣has ␣been␣ s u c c e s s f u l l y ␣ wr i t ten . "
463 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
464 ␣␣␣␣␣␣␣␣ s e l f . Sur f ace ␣=␣vmtkSurfaceSmoothing . Sur f ace
465 ␣␣␣␣␣␣␣␣ s e l f . s u r f a c ev i ewe r ( )
466 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
467 ␣␣␣␣␣␣␣␣ p r i n t ␣ "The␣ su r f a c e ␣ i s ␣now␣ di sp l ayed . ␣P l ease ␣go␣ahead␣

( s e l e c t ␣a␣new␣ act i on ␣ or ␣ e x i t ␣ the ␣program) . "
468 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
469
470 ␣␣␣␣##␣This ␣ f unc t i on ␣ i s ␣used ␣ to ␣make␣ the ␣ su r f a c e ␣we␣have ␣

generated ␣ smoother
471 ␣␣␣␣#␣␣@param␣ s e l f ␣The␣ ob j e c t ␣ po i n t e r
472 ␣␣␣␣#␣␣@param␣output_fi lename ␣This ␣ i s ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣

we␣have␣ cr eated
473 ␣␣␣␣ de f ␣GenSmoothSurf ( s e l f , ␣ output_fi lename ) :
474 ␣␣␣␣␣␣␣␣ s e l f . SurfGen ( output_fi lename )
475 ␣␣␣␣␣␣␣␣ s e l f . SmoothSurf ( output_fi lename )
476
477 ␣␣␣␣##␣This ␣ f unc t i on ␣ i s ␣used ␣ to ␣make␣ the ␣ su r f a c e ␣we␣

generater ␣ smoother
478 ␣␣␣␣#␣␣@param␣ s e l f ␣The␣ ob j e c t ␣ po i n t e r
479 ␣␣␣␣#␣␣@param␣ input_f i l ename␣This ␣ i s ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣we␣

have␣ cr eated
480 ␣␣␣␣ de f ␣ Sur fC l ipp ( s e l f , ␣ output_fi lename ) :
481 ␣␣␣␣␣␣␣␣ vmtkSur faceCl ipper␣=␣

vmtksur f acec l i pper . vmtkSur faceCl ipper ( )
482 ␣␣␣␣␣␣␣␣ vmtkSur faceCl ipper . Sur f ace ␣=␣ s e l f . Sur f ace
483 ␣␣␣␣␣␣␣␣ vmtkSur faceCl ipper . vmtkRenderer ␣=␣ s e l f . vmtkRenderer
484 ␣␣␣␣␣␣␣␣ vmtkSur faceCl ipper . Execute ( )
485 ␣␣␣␣␣␣␣␣ p r i n t ␣ " Executed "
486 ␣␣␣␣␣␣␣␣ s e l f . Sur f ace ␣=␣ vmtkSur faceCl ipper . Sur f ace
487 ␣␣␣␣␣␣␣␣ s e l f . s u r f a c ew r i t e r ( output_fi lename ␣+␣

"_VoI_LSS_mc_sm_cl. vtp " )
488 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
489 ␣␣␣␣␣␣␣␣ p r i n t ␣ " F i l e ␣ " ␣+␣output_fi lename ␣␣+␣

"_VoI_LSS_mc_sm_cl. vtp␣has ␣been␣ s u c c e s s f u l l y ␣ wr i t ten . "
490 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
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491 ␣␣␣␣␣␣␣␣ s e l f . Sur f ace ␣=␣ vmtkSur faceCl ipper . Sur f ace
492 ␣␣␣␣␣␣␣␣ s e l f . s u r f a c ev i ewe r ( )
493 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
494 ␣␣␣␣␣␣␣␣ p r i n t ␣ "The␣ su r f a c e ␣ i s ␣now␣ di sp l ayed . ␣P l ease ␣go␣ahead␣

( s e l e c t ␣a␣new␣ act i on ␣ or ␣ e x i t ␣ the ␣program) . "
495 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
496
497 ␣␣␣␣##␣This ␣ f unc t i on␣ i s ␣used ␣ to ␣compute ␣ the ␣ c e n t e r l i n e s
498 ␣␣␣␣#␣␣@param␣ s e l f ␣The␣ ob j e c t ␣ po i n t e r
499 ␣␣␣␣#␣␣@param␣ input_f i l ename␣This ␣ i s ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣we␣

have ␣ cr eated
500 ␣␣␣␣ de f ␣CenterLines ( s e l f , ␣ output_fi lename ) :
501 ␣␣␣␣␣␣␣␣ vmtkCenter l ines ␣=␣

vmtkcenter l i n e sw i th r ende r er . vmtkCenter l inesWithRenderer ( )
502 ␣␣␣␣␣␣␣␣ vmtkCenter l ines . Sur f ace ␣=␣ s e l f . Sur f ace
503 ␣␣␣␣␣␣␣␣ vmtkCenter l ines . vmtkRenderer ␣=␣ s e l f . vmtkRenderer
504 ␣␣␣␣␣␣␣␣ vmtkCenter l ines . SeedSelectorName␣=␣ ’ op en p r o f i l e s ’
505 ␣␣␣␣␣␣␣␣ vmtkCenter l ines . AppendEndPoints ␣=␣1
506 ␣␣␣␣␣␣␣␣ vmtkCenter l ines . Execute ( )
507 ␣␣␣␣␣␣␣␣ p r i n t ␣ "The␣ c e n t e r l i n e ␣has ␣been␣computed "
508 ␣␣␣␣␣␣␣␣ s e l f . Sur f ace ␣=␣ vmtkCenter l ines . Sur f ace
509 ␣␣␣␣␣␣␣␣ s e l f . s u r f a c ew r i t e r ( output_fi lename ␣+␣

"_VoI_LSS_mc_sm_cl_clns . vtp " )
510 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
511 ␣␣␣␣␣␣␣␣ p r i n t ␣ " F i l e ␣ " ␣+␣output_fi lename ␣␣+␣

"_VoI_LSS_mc_sm_cl_clns . vtp␣has ␣been␣ s u c c e s s f u l l y ␣
wr i t ten . ␣ P l ease ␣go␣ahead . "

512 ␣␣␣␣␣␣␣␣ p r i n t ␣ " ␣ "
513
514 ␣␣␣␣##␣ func t i on ␣ that ␣ a l l ows ␣us␣ to ␣do␣a␣ l e v e l ␣ s e t ␣

segmentat i ongenerate␣a␣ su r f a c e ␣ from␣ the ␣ f i l e
515 ␣␣␣␣#␣␣@param␣ s e l f ␣The␣ ob j e c t ␣ po i n t e r
516 ␣␣␣␣#␣␣@param␣ input_f i l ename␣This ␣ i s ␣ the ␣name␣ o f ␣ the ␣ f i l e ␣we␣

have ␣ cr eated
517 ␣␣␣␣ de f ␣MeshGen( s e l f , ␣ output_fi lename ) :
518 ␣␣␣␣␣␣␣␣ s e l f . c l e a rAc to r s ( )
519 ␣␣␣␣␣␣␣␣ vmtkMeshGenerator␣=␣

vmtkmeshgenerator . vmtkMeshGenerator ( )
520 ␣␣␣␣␣␣␣␣ vmtkMeshGenerator . Sur f ace ␣=␣ s e l f . Sur f ace
521 ␣␣␣␣␣␣␣␣ vmtkMeshGenerator .Mesh␣=␣ s e l f .Mesh
522 ␣␣␣␣␣␣␣␣ vmtkMeshGenerator . edge l ength␣=␣3
523 ␣␣␣␣␣␣␣␣ vmtkMeshGenerator . vmtkRenderer ␣=␣ s e l f . vmtkRenderer
524 ␣␣␣␣␣␣␣␣ vmtkMeshGenerator . Execute ( )
525 ␣␣␣␣␣␣␣␣ s e l f .Mesh␣=␣vmtkMeshGenerator .Mesh
526 ␣␣␣␣␣␣␣␣ s e l f . meshwriter ( output_fi lename )
527 ␣␣␣␣␣␣␣␣ p r i n t ␣ "Well ␣done , ␣ the ␣mesh␣has ␣been␣wr i t ten ! "
528 ␣␣␣␣␣␣␣␣ s e l f . meshviewer ( )
529 ␣␣␣␣␣␣␣␣ p r i n t ␣ "The␣mesh␣ i s ␣now␣ di sp lyed ! "
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B.3 canvas3D.py

This is another “graphical” file that helps to prepare and set the canvas
where we represent the scene we are studying.

1 ## @package canvas3D
2 #In this package we have 2 c l a s s e s that c r ea t e a

drawing area where we want to r ep r e s en t the
s t en t ( s ) and the DICOM image . Also , ther e are a
s e r i e o f events we can use to enjoy the mouse
i n t e r a c t i o n with what we r ep r e s en t in the drawing
area .

3
4 try :
5 import gtk
6 import gtk . g lade
7 except :
8 sys . e x i t (1)
9
10 from gtk import gdk
11 import vtk
12
13 import vtkcones
14
15 import math
16
17 ## This class conta ins the ba s i c f unc t i on s needed to

c r ea t e a s u i t a b l e drawing area ab l e to host our
images .

18 class Canvas3DBase ( gtk . DrawingArea ) :
19
20 ## The con s t r uc to r
21 # @param s e l f The ob j e c t po i n t e r
22 # @param ∗ args The s p e c i a l syntax , ∗ args in

f unc t i on d e f i n i t i o n s i s used to pass a
va r i ab l e number o f arguments to a
f unc t i on . The s i n g l e a s t e r i s k form (∗ args )
i s used to pass a non−keyworded ,
var i ab l e −l ength argument l i s t .

23 de f __init__ ( s e l f , ∗ args ) :
24
25 gtk . DrawingArea . __init__ ( s e l f )
26 s e l f . _RenderWindow = vtk . vtkRenderWindow ( )
27
28 # private a t t r i b u t e s
29 s e l f . __Created = 0
30 # used by the LOD acto r s
31 s e l f . _DesiredUpdateRate = 15
32 s e l f . _Sti l lUpdateRate = 0.0001
33 s e l f . ConnectSignal s0 ( )
34 # need this to be ab l e to handle

key_press events .
35 s e l f . s e t_ f l ag s ( gtk .CAN_FOCUS)
36 # default s i z e
37 s e l f . s e t_s i ze_reques t (300 , 300)
38
39 ## The connect i ons beetween an act i on and i t s

consequences
40 # @param s e l f The ob j e c t po i n t e r
41 de f ConnectSignal s0 ( s e l f ) :
42
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43 s e l f . MouseMoveConnected = None
44
45 s e l f . connect ( " r e a l i z e " , s e l f . OnReal ize )
46 s e l f . connect ( " expose_event " , s e l f . OnExpose )
47 s e l f . connect ( " conf igure_event " ,

s e l f . OnConfigure )
48 s e l f . connect ( " button_press_event " ,

s e l f . OnButtonDown )
49 s e l f . connect ( " button_release_event " ,

s e l f . OnButtonUp)
50
51 s e l f . connect ( " enter_noti fy_event " ,

s e l f . OnEnter )
52 s e l f . connect ( " l eave_noti fy_event " ,

s e l f . OnLeave )
53 s e l f . connect ( " key_press_event " ,

s e l f . OnKeyPress )
54 s e l f . connect ( " delete_event " , s e l f . OnDestroy )
55 s e l f . add_events ( gdk .EXPOSURE_MASK |
56 gdk .BUTTON_PRESS_MASK

|
57 gdk .BUTTON_RELEASE_MASK

|
58 gdk .KEY_PRESS_MASK

|
59 gdk .POINTER_MOTION_MASK

|
60 gdk .POINTER_MOTION_HINT_MASK

|
61 gdk .ENTER_NOTIFY_MASK

|
62 gdk .LEAVE_NOTIFY_MASK)
63
64
65 ## The connect i ons beetween an act i on and i t s

consequences
66 # @param s e l f The ob j e c t po i n t e r
67 de f ConnectSignal s ( s e l f ) :
68 i f s e l f . MouseMoveConnected :
69 s e l f . d i s connect ( s e l f . MouseMoveConnected)
70 s e l f . MouseMoveConnected =

s e l f . connect ( " motion_noti fy_event " ,
s e l f .OnMouseMove )

71
72 ## The connect i ons beetween an act i on and i t s

consequences
73 # @param s e l f The ob j e c t po i n t e r
74 de f ConnectSignal s2 ( s e l f ) :
75 i f s e l f . MouseMoveConnected :
76 s e l f . d i s connect ( s e l f . MouseMoveConnected)
77 s e l f . MouseMoveConnected =

s e l f . connect ( " motion_noti fy_event " ,
s e l f . OnMouseMove2)

78
79 ## The f unc t i on to get a Render Window
80 # @param s e l f The ob j e c t po i n t e r
81 de f GetRenderWindow( s e l f ) :
82 return s e l f . _RenderWindow
83
84 ## The f unc t i on to begin a new Renderer
85 # @param s e l f The ob j e c t po i n t e r
86 de f GetRenderer ( s e l f ) :
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87 s e l f . _RenderWindow . GetRenderers ( ) . I n i tT r ave r s a l ( )
88 return

s e l f . _RenderWindow . GetRenderers ( ) . GetNextItem ( )
89
90 ## Mirrors the method with the same name in

vtkRenderWindowInteractor .
91 # @param s e l f The ob j e c t po i n t e r
92 # @param ra t e . . .
93 de f SetDesiredUpdateRate ( s e l f , r a t e ) :
94 s e l f . _DesiredUpdateRate = ra t e
95
96 ## Mirrors the method with the same name in

vtkRenderWindowInteractor .
97 # @param s e l f The ob j e c t po i n t e r
98 de f GetDesiredUpdateRate ( s e l f ) :
99 return s e l f . _DesiredUpdateRate

100
101 ## Mirrors the method with the same name in

vtkRenderWindowInteractor .
102 # @param s e l f The ob j e c t po i n t e r
103 # @param ra t e . . .
104 de f SetSt i l lUpdateRate ( s e l f , r a t e ) :
105 s e l f . _Sti l lUpdateRate = ra t e
106
107 ## Mirrors the method with the same name in

vtkRenderWindowInteractor .
108 # @param s e l f The ob j e c t po i n t e r
109 de f GetSti l lUpdateRate ( s e l f ) :
110 return s e l f . _Sti l lUpdateRate
111
112 ## Sets the r ender er
113 # @ param s e l f The ob j e c t po i n t e r
114 de f Render ( s e l f ) :
115 i f s e l f . __Created :
116 s e l f . _RenderWindow . Render ( )
117
118 ## Creates the window
119 ## @ param s e l f The ob j e c t po i n t e r
120 ## @ param ∗ args The s p e c i a l syntax , ∗ args

in f unc t i on d e f i n i t i o n s i s used to pass a
va r i ab l e number o f arguments to a

f unc t i on . The s i n g l e a s t e r i s k form (∗ args )
i s used to pass a non−keyworded ,
var i ab l e −l ength argument l i s t .

121 de f OnReal ize ( s e l f , ∗ args ) :
122 i f s e l f . __Created == 0 :
123 # you can ’ t ␣␣ get ␣␣ the ␣␣ xid ␣␣without ␣␣

the ␣␣window␣␣ being ␣␣ r e a l i z e d .
124 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . r e a l i z e ( )
125 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣win_id␣␣=␣␣ s t r ( s e l f . widget . window . xid )
126 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

s e l f . _RenderWindow . SetWindowInfo (win_id )
127 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . __Created␣␣=␣␣1
128 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
129
130 ␣␣␣␣␣␣␣␣ de f ␣␣Created ( s e l f ) :
131 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣ s e l f . __Created
132
133 ␣␣␣␣␣␣␣␣ de f ␣␣OnConfigure ( s e l f , ␣␣wid , ␣␣ event=None ) :
134 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . widget=wid
135 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ sz ␣␣=␣␣ s e l f . _RenderWindow . GetSize ( )
136
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137 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ ( event . width␣␣!=␣␣ sz [ 0 ] ) ␣␣ or ␣␣
( event . he i ght ␣␣!=␣␣ sz [ 1 ] ) :

138 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
s e l f . _RenderWindow . Se tS i z e ( event . width , ␣␣ event . he i ght )

139 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
140
141 ␣␣␣␣␣␣␣␣ de f ␣␣OnExpose ( s e l f , ␣␣∗ args ) :
142 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . Render ( )
143 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
144
145 ␣␣␣␣␣␣␣␣ de f ␣␣OnDestroy ( s e l f , ␣␣∗ args ) :
146 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . h ide ( )
147 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ de l ␣␣ s e l f . _RenderWindow
148 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . des t r oy ( )
149 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
150
151 ␣␣␣␣␣␣␣␣ de f ␣␣OnButtonDown ( s e l f , ␣␣wid , ␣␣ event ) :
152 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ " " " Mouse␣␣button␣␣ pres s ed . " " "
153 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

s e l f . _RenderWindow . SetDesiredUpdateRate ( s e l f . _DesiredUpdateRate)
154 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
155
156 ␣␣␣␣␣␣␣␣ de f ␣␣OnButtonUp( s e l f , ␣␣wid , ␣␣ event ) :
157 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ " " " Mouse␣␣button␣␣ r e l e a s e d . " " "
158 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

s e l f . _RenderWindow . SetDesiredUpdateRate ( s e l f . _Sti l lUpdateRate)
159 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
160
161 ␣␣␣␣␣␣␣␣ de f ␣␣OnMouseMove ( s e l f , ␣␣wid , ␣␣ event ) :
162 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ " " " Mouse␣␣has ␣␣moved . " " "
163 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
164
165 ␣␣␣␣␣␣␣␣ de f ␣␣OnMouseMove2( s e l f , ␣␣wid , ␣␣ event ) :
166 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ " " " Mouse␣␣has ␣␣moved . " " "
167 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
168
169 ␣␣␣␣␣␣␣␣ de f ␣␣OnEnter ( s e l f , ␣␣wid , ␣␣ event ) :
170 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ " " " Enter ing ␣␣ the ␣␣vtkRenderWindow . " " "
171 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
172
173 ␣␣␣␣␣␣␣␣ de f ␣␣OnLeave ( s e l f , ␣␣wid , ␣␣ event ) :
174 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ " " " Leaving ␣␣ the ␣␣vtkRenderWindow . " " "
175 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
176
177 ␣␣␣␣␣␣␣␣ de f ␣␣OnKeyPress ( s e l f , ␣␣wid , ␣␣ event ) :
178 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ " " " Key␣␣ pres s ed . " " "
179 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
180
181 ␣␣␣␣␣␣␣␣ de f ␣␣OnKeyRelease ( s e l f , ␣␣wid , ␣␣ event ) :
182 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ "Key␣␣ r e l e a s e d . "
183 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
184
185
186 ##␣␣An␣␣example ␣␣ o f ␣␣a␣␣ f u l l y ␣␣ f un c t i o n a l ␣␣

GtkGLExtVTKRenderWindow␣␣ that ␣␣ i s ␣␣based ␣␣on␣␣ the ␣␣
vtkRenderWidget . py␣␣ provided␣␣with ␣␣ the ␣␣VTK␣␣ sources .

187 c l a s s ␣␣Canvas3D(Canvas3DBase ) :
188
189 ␣␣␣␣␣␣␣␣##␣␣The␣␣ con s t r u c to r
190 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣ s e l f ␣␣The␣␣ ob j e c t ␣␣ po i n t e r
191 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣demowindow
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192 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣∗ args ␣␣The␣␣ s p e c i a l ␣␣ syntax , ␣␣∗ args ␣␣ in ␣
␣ f unc t i on ␣␣ d e f i n i t i o n s ␣␣ i s ␣␣used ␣␣ to ␣␣ pass ␣␣a␣␣ va r i ab l e ␣␣
number␣␣ o f ␣␣arguments ␣␣ to ␣␣a␣␣ f unc t i on . ␣␣The␣␣ s i n g l e ␣␣
a s t e r i s k ␣␣ form␣␣ (∗ args ) ␣␣ i s ␣␣used ␣␣ to ␣␣pass ␣␣a␣␣
non−keyworded , ␣␣ var i ab l e −l ength ␣␣argument␣␣ l i s t .

193 ␣␣␣␣␣␣␣␣ de f ␣␣__init__ ( s e l f , ␣␣demowindow , ␣␣∗ args ) :
194
195 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Canvas3DBase . __init__ ( s e l f )
196
197 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentRenderer ␣␣=␣␣None
198 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentCamera␣␣=␣␣None
199 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentDolly ␣␣=␣␣ 1 .0
200 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentLight ␣␣=␣␣None
201
202 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _ViewportCenterX␣␣=␣␣0
203 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _ViewportCenterY␣␣=␣␣0
204
205 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _ClippingRange␣␣=␣␣ (0 , 0 )
206
207 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _OldFocus ␣␣=␣␣None
208
209 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#␣␣ these ␣␣ r ecord ␣␣ the ␣␣ prev i ous ␣␣mouse␣␣

po s i t i o n
210 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastX␣␣=␣␣0
211 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastY␣␣=␣␣0
212
213 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#␣␣keeps ␣␣ r e f e r e n c e ␣␣ to ␣␣window␣␣−␣␣a␣␣hack ␣␣

to ␣␣ l e t ␣␣ t h i s ␣␣ c l a s s ␣␣manipulate ␣␣ the ␣␣ g r ea t e r ␣␣ gui
214 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . demowindow␣␣=␣␣demowindow
215
216
217 ␣␣␣␣␣␣␣␣ de f ␣␣OnButtonDown ( s e l f , ␣␣wid , ␣␣ event ) :
218 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

s e l f . _RenderWindow . SetDesiredUpdateRate ( s e l f . _DesiredUpdateRate)
219 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣ s e l f . StartMotion (wid , ␣␣ event )
220
221
222 ␣␣␣␣␣␣␣␣ de f ␣␣OnButtonUp( s e l f , ␣␣wid , ␣␣ event ) :
223 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

s e l f . _RenderWindow . SetDesiredUpdateRate ( s e l f . _Sti l lUpdateRate )
224 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ ( ( event . s t a t e ␣␣&␣␣gdk .SHIFT_MASK) ␣␣==␣␣

gdk .SHIFT_MASK) :
225 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣m␣␣=␣␣ s e l f . get_pointer ( )
226 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . Voxel Info (m[ 0 ] ,m[ 1 ] )
227 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣ s e l f . EndMotion (wid , ␣␣ event )
228
229 ␣␣␣␣␣␣␣␣##␣␣Function ␣␣ that ␣␣ deac t i va t e ␣␣ the ␣␣

mouse−i n t e r a c t i o n ␣␣ i f ␣␣ the ␣␣ s h i f t ␣␣key␣␣ i s ␣␣ pr es s ed .
230 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣ s e l f ␣␣The␣␣ ob j e c t ␣␣ po i n t e r
231 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣wid␣␣ . . .
232 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣ event=None␣␣ . . .
233 ␣␣␣␣␣␣␣␣ de f ␣␣OnMouseMove ( s e l f , ␣␣wid , ␣␣ event=None ) :
234 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#␣␣don ’ t do anything i f the s h i f t key

i s pr es s ed
235 i f ( ( event . s t a t e & gdk .SHIFT_MASK) ==

gdk .SHIFT_MASK) :
236 pass
237 e l i f ( ( event . s t a t e & gdk .BUTTON2_MASK)

== gdk .BUTTON2_MASK) :
238 m = s e l f . get_pointer ( )
239 s e l f . MouseTumble (m[ 0 ] , m[ 1 ] )
240 return True
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241 e l i f ( ( event . s t a t e & gdk .BUTTON3_MASK)
== gdk .BUTTON3_MASK) :

242 m = s e l f . get_pointer ( )
243 s e l f . MouseTrack (m[ 0 ] , m[ 1 ] )
244 return True
245 e l i f ( ( event . s t a t e & gdk .BUTTON1_MASK)

== gdk .BUTTON1_MASK) :
246 m = s e l f . get_pointer ( )
247 s e l f . MouseDolly (m[ 0 ] , m[ 1 ] )
248 return True
249 else :
250 return Fal s e
251
252
253 ## Function that deac t i va t e the

mouse−i n t e r a c t i o n i f the s h i f t key i s
pr es s ed .

254 # @param s e l f The ob j e c t po i n t e r
255 # @param wid . . .
256 # @param event=None . . .
257 de f OnMouseMove2( s e l f , wid , event=None ) :
258 # don ’ t ␣␣do␣␣ anything ␣␣ i f ␣␣ the ␣␣ s h i f t ␣␣key␣␣

i s ␣␣ pr es s ed
259 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ ( ( event . s t a t e ␣␣&␣␣gdk .SHIFT_MASK) ␣␣==␣␣

gdk .SHIFT_MASK) :
260 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣pass
261 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ e l i f ␣␣ ( ( event . s t a t e ␣␣&␣␣gdk .BUTTON1_MASK)␣␣

==␣␣gdk .BUTTON1_MASK) :
262 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣m␣␣=␣␣ s e l f . get_pointer ( )
263 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . MouseTumble (m[ 0 ] , ␣␣m[ 1 ] )
264 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
265 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ e l i f ␣␣ ( ( event . s t a t e ␣␣&␣␣gdk .BUTTON2_MASK)␣␣

==␣␣gdk .BUTTON2_MASK) :
266 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣m␣␣=␣␣ s e l f . get_pointer ( )
267 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . MouseTrack (m[ 0 ] , ␣␣m[ 1 ] )
268 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
269 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ e l i f ␣␣ ( ( event . s t a t e ␣␣&␣␣gdk .BUTTON3_MASK)␣␣

==␣␣gdk .BUTTON3_MASK) :
270 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣m␣␣=␣␣ s e l f . get_pointer ( )
271 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . MouseDolly (m[ 0 ] , ␣␣m[ 1 ] )
272 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
273 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ e l s e :
274 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣ Fa l s e
275
276 ␣␣␣␣␣␣␣␣ de f ␣␣OnEnter ( s e l f , ␣␣wid , ␣␣ event=None ) :
277 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . grab_focus ( )
278 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣w␣␣=␣␣ s e l f . get_pointer ( )
279 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . UpdateRenderer (w[ 0 ] , ␣␣w [ 1 ] )
280 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
281
282 ␣␣␣␣␣␣␣␣ de f ␣␣OnLeave ( s e l f , ␣␣wid , ␣␣ event ) :
283 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
284
285
286 ␣␣␣␣␣␣␣␣ de f ␣␣Render ( s e l f ) :
287 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ ( s e l f . _CurrentLight ) :
288 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ l i g h t ␣␣=␣␣ s e l f . _CurrentLight
289 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

l i g h t . S e tPos i t i on ( s e l f . _CurrentCamera . GetPos i t ion ( ) )
290 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

l i g h t . SetFocalPoint ( s e l f . _CurrentCamera . GetFocalPoint ( ) )
291
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292 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Canvas3DBase . Render ( s e l f )
293
294 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#i f ␣␣ s e l f . GetCurrentRenderer ( ) ␣␣ i s ␣␣not ␣␣

None :
295 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#␣␣␣␣␣␣␣␣ s e l f . demowindow . updateCameraInfo ( )
296
297
298 ␣␣␣␣␣␣␣␣##␣␣UpdateRenderer ␣␣ w i l l ␣␣ i d e n t i f y ␣␣ the ␣␣ r ender er ␣␣

under ␣␣ the ␣␣mouse␣␣and␣␣ s e t ␣␣up␣␣_CurrentRenderer , ␣␣
_CurrentCamera , ␣␣and␣␣_CurrentLight .

299 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣ s e l f ␣␣The␣␣ ob j e c t ␣␣ po i n t e r
300 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣x , ␣␣y␣␣The␣␣2␣␣ coo rd i na t e s
301 ␣␣␣␣␣␣␣␣ de f ␣␣UpdateRenderer ( s e l f , x , y ) :
302 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣windowX ,windowY␣␣␣␣=␣␣

s e l f . widget . window . get_s i ze ( )
303
304 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r ende r e r s ␣␣=␣␣

s e l f . _RenderWindow . GetRenderers ( )
305 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣numRenderers␣␣=␣␣ r ende r e r s . GetNumberOfItems ( )
306
307 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentRenderer ␣␣=␣␣None
308 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r ende r e r s . In i tT r ave r s a l ( )
309 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ f o r ␣␣ i ␣␣ in ␣␣ range (0 , numRenderers ) :
310 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r ender er ␣␣=␣␣ r ende r e r s . GetNextItem ( )
311 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣vx , vy␣␣=␣␣ (0 , 0 )
312 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ (windowX␣␣>␣␣ 1) :
313 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣vx␣␣=␣␣ f l o a t (x ) /(windowX−1)
314 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ (windowY␣␣>␣␣ 1) :
315 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣vy␣␣=␣␣

(windowY−f l o a t (y )−1)/(windowY−1)
316 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ ( vpxmin , vpymin , vpxmax , vpymax ) ␣␣=␣␣

render er . GetViewport ( )
317
318 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ ( vx␣␣>=␣␣vpxmin␣␣and␣␣vx␣␣<=␣␣

vpxmax␣␣and
319 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣vy␣␣>=␣␣vpymin␣␣and␣␣vy␣␣<=␣␣

vpymax ) :
320 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentRenderer ␣␣=␣␣

render er
321 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _ViewportCenterX␣␣=␣␣

f l o a t (windowX) ∗(vpxmax−vpxmin ) /2.0\
322 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣+vpxmin
323 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _ViewportCenterY␣␣=␣␣

f l o a t (windowY) ∗(vpymax−vpymin ) /2.0\
324 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣+vpymin
325 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentCamera␣␣=␣␣

s e l f . _CurrentRenderer . GetActiveCamera ( )
326 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ l i g h t s ␣␣=␣␣

s e l f . _CurrentRenderer . GetLights ( )
327 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ l i g h t s . In i tT r ave r s a l ( )
328 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentLight ␣␣=␣␣

l i g h t s . GetNextItem ( )
329 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣break
330
331 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastX␣␣=␣␣x
332 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastY␣␣=␣␣y
333
334 ␣␣␣␣␣␣␣␣ de f ␣␣GetCurrentRenderer ( s e l f ) :
335 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣ s e l f . _CurrentRenderer
336
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The implemented code

337 ␣␣␣␣␣␣␣␣ de f ␣␣StartMotion ( s e l f , ␣␣wid , ␣␣ event=None ) :
338 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣x␣␣=␣␣ event . x
339 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣y␣␣=␣␣ event . y
340 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . UpdateRenderer (x , y )
341 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
342
343 ␣␣␣␣␣␣␣␣ de f ␣␣EndMotion ( s e l f , ␣␣wid , ␣␣ event=None ) :
344 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ s e l f . _CurrentRenderer :
345 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . Render ( )
346 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣True
347
348
349 ␣␣␣␣␣␣␣␣##␣␣By␣␣manipulat ing␣␣ the ␣␣camera␣␣ po s i t i on , ␣␣ c r ea t e ␣

␣ the ␣␣ appearance ␣␣ o f ␣␣ tumbling␣␣ the ␣␣micros t ructur e ␣␣
us ing ␣␣ the ␣␣mouse .

350 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣ s e l f ␣␣The␣␣ ob j e c t ␣␣ po i n t e r
351 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣x , ␣␣y␣␣The␣␣2␣␣ coo rd i na t e s
352 ␣␣␣␣␣␣␣␣ de f ␣␣MouseTumble ( s e l f , x , y ) :
353 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ s e l f . _CurrentRenderer :
354
355 ␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣ s e l f . _CurrentCamera . Azimuth ( s e l f . _LastX␣␣−␣␣

x )
356 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentCamera . E l evat i on (y␣␣−␣␣

s e l f . _LastY)
357 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

s e l f . _CurrentCamera . OrthogonalizeViewUp ( )
358
359 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastX␣␣=␣␣x
360 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastY␣␣=␣␣y
361
362 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . ResetClippingRange ( )
363 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . Render ( )
364
365 ␣␣␣␣␣␣␣␣#␣␣ convert ␣␣x , y␣␣ t r an s l a t i o n ␣␣ in ␣␣Display ␣␣

coo rd i na t e s ␣␣ to ␣␣World␣␣Coordinates
366 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣ s e l f ␣␣The␣␣ ob j e c t ␣␣ po i n t e r
367 ␣␣␣␣␣␣␣␣#␣␣␣␣@param␣␣x , ␣␣y␣␣The␣␣2␣␣ coo rd i na t e s
368 ␣␣␣␣␣␣␣␣ de f ␣␣MouseTrack ( s e l f , x , y ) :
369 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ s e l f . _CurrentRenderer :
370
371 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r ender er ␣␣=␣␣ s e l f . _CurrentRenderer
372 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣camera␣␣=␣␣ s e l f . _CurrentCamera
373 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ ( pPoint0 , pPoint1 , pPoint2 ) ␣␣=␣␣

camera . GetPos i t ion ( )
374 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ ( fPoint0 , fPoint1 , fPo int2 ) ␣␣=␣␣

camera . GetFocalPoint ( )
375
376 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#␣␣ Spec i f y ␣␣a␣␣ point ␣␣ l o c a t i o n ␣␣ in ␣␣

world␣␣ coo rd i na t e s
377 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

r ender er . SetWorldPoint ( fPoint0 , fPoint1 , fPoint2 , 1 . 0 )
378 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r ender er . WorldToDisplay ( )
379 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#␣␣Convert␣␣world␣␣ point ␣␣

coo rd i na t e s ␣␣ to ␣␣ d i s p l ay ␣␣ coo rd i na t e s
380 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dPoint ␣␣=␣␣ render er . GetDisplayPoint ( )
381 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ focalDepth ␣␣=␣␣dPoint [ 2 ]
382
383 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣aPoint0 ␣␣=␣␣ s e l f . _ViewportCenterX␣␣+␣

␣ (x␣␣−␣␣ s e l f . _LastX)
384 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣aPoint1 ␣␣=␣␣ s e l f . _ViewportCenterY␣␣−␣

␣ (y␣␣−␣␣ s e l f . _LastY)
385
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Chapter B

386 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
r ender er . SetDisplayPoint ( aPoint0 , aPoint1 , focalDepth )

387 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r ender er . DisplayToWorld ( )
388
389 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ ( rPoint0 , rPoint1 , rPoint2 , rPoint3 ) ␣␣=␣

␣ render er . GetWorldPoint ( )
390 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ ( rPoint3 ␣␣!=␣␣ 0 . 0 ) :
391 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ rPoint0 ␣␣=␣␣ rPoint0 / rPoint3
392 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ rPoint1 ␣␣=␣␣ rPoint1 / rPoint3
393 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ rPoint2 ␣␣=␣␣ rPoint2 / rPoint3
394
395 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastX␣␣=␣␣x
396 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastY␣␣=␣␣y
397
398 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . Track ( fPo int0 ␣␣−␣␣

rPoint0 , fPo int1 ␣␣−␣␣ rPoint1 , fPo int2 ␣␣−␣␣ rPoint2 )
399
400
401 ␣␣␣␣␣␣␣␣ de f ␣␣Track ( s e l f , x , y , z ) :
402 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣camera␣␣=␣␣ s e l f . _CurrentCamera
403 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ ( pPoint0 , pPoint1 , pPoint2 ) ␣␣=␣␣

camera . GetPos i t ion ( )
404 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ ( fPoint0 , fPoint1 , fPo int2 ) ␣␣=␣␣

camera . GetFocalPoint ( )
405 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣camera . SetFocalPoint (x␣␣+␣␣ fPoint0 ,
406 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣y␣␣

+␣␣ fPoint1 ,
407 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣z␣␣

+␣␣ fPo int2 )
408
409 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣camera . S e tPos i t i on ( x␣␣+␣␣pPoint0 ,
410 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣y␣␣+␣␣

pPoint1 ,
411 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣z␣␣+␣␣

pPoint2 )
412
413 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . Render ( )
414
415
416 ␣␣␣␣␣␣␣␣ de f ␣␣MouseDolly ( s e l f , x , y ) :
417 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ do l l yFactor ␣␣=␣␣

math . pow ( 1 . 0 2 , ( 0 . 5 ∗ ( s e l f . _LastY␣␣−␣␣y ) ) )
418 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentDolly ␣␣=␣␣

s e l f . _CurrentDolly ␣␣∗␣␣ do l l yFactor
419 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . Dol ly ( do l l yFactor )
420 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastX␣␣=␣␣x
421 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _LastY␣␣=␣␣y
422
423 ␣␣␣␣␣␣␣␣ de f ␣␣Dol ly ( s e l f , do l l yFactor ) :
424 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ s e l f . _CurrentRenderer :
425
426 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r ender er ␣␣=␣␣ s e l f . _CurrentRenderer
427 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣camera␣␣=␣␣ s e l f . _CurrentCamera
428
429 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣camera . Ge tPar a l l e lP r o j e c t i on ( ) :
430 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ p a r a l l e l S c a l e ␣␣=␣␣

camera . Ge tPar a l l e l S ca l e ( ) / do l l yFactor
431 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

camera . S e tPa r a l l e l S c a l e ( p a r a l l e l S c a l e )
432 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ e l s e :
433 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣camera . Dol ly ( do l l yFactor )
434 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . ResetClippingRange ( )
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435
436 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . Render ( )
437
438 ␣␣␣␣␣␣␣␣ de f ␣␣Reset ( s e l f ) :
439 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ i f ␣␣ s e l f . _CurrentRenderer :
440 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _CurrentRenderer . ResetCamera ( )
441
442 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . Render ( )
443
444
445 ␣␣␣␣␣␣␣␣ de f ␣␣ResetClippingRange ( s e l f ) :
446 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣

s e l f . _CurrentRenderer . ResetCameraClippingRange ( )
447 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s e l f . _ClippingRange␣␣=␣␣

s e l f . _CurrentCamera . GetClippingRange ( )
448 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#s e l f . demowindow . c l i p p i n g ad j . set_value (100)
449
450 ␣␣␣␣␣␣␣␣ de f ␣␣GetClippingRange ( s e l f ) :
451 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r eturn ␣␣ s e l f . _ClippingRange
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B.4 vmtkcenterlineswithrenderer.py

This file is very important since it modifies the existing “vmtkcenterlines”
module, allowing the user to use the same canvas created before and not
a new one, for the centerline(s) computation.

1 ## @package vmtkcenter l i n e sw i th r ende r e r
2 #This module has been used in order to reproduce what i t

happens in the al ready−e x i s t i n g f unc t i on
vmtkcenter l i nes . This changing a l l ows the user to use
h i s own render er and not the r ender er cr eated by
vmtkcenter l i nes i t s e l f , s i n c e the al ready−e x i s t i n g
f unc t i on c r e a t e s − by default − i t s own render er .

3 #! / usr / bin /env python
4
5
6 try :
7 import gtk
8 import gtk . g lade
9 except :
10 sys . e x i t (1)
11
12 import vtk
13 from vtk import ∗
14
15 import vmtk
16 from vmtk import ∗
17
18 import vtkcones
19 import vmtkgui
20
21 from gtk import gdk
22 import math
23
24 # import vmtkcenter l i nes
25 # from vmtkcenter l i nes import ∗
26
27 class

vmtkCenter l inesWithRenderer ( vmtkcenter l i nes . vmtkCenter l ines ) :
28
29 de f __init__ ( s e l f ) :
30
31 vmtkcenter l i nes . vmtkCenter l ines . __init__ ( s e l f )
32
33 s e l f . vmtkRenderer = None
34 de f Execute ( s e l f ) :
35
36 i f s e l f . Sur f ace == None :
37 s e l f . Pr intEr ror ( ’ Error : ␣No␣ input ␣ su r f a c e . ’ )
38
39 s e l f . PrintLog ( ’ NonManifold ␣ check . ’ )
40 vmtkcenter l i nes . nonManifoldChecker =

vmtkcenter l i nes . vmtkNonManifoldSurfaceChecker ( )
41 vmtkcenter l i nes . nonManifoldChecker . Sur f ace =

s e l f . Sur f ace
42 vmtkcenter l i nes . nonManifoldChecker . Pr intEr ror =

s e l f . Pr intEr ror
43
44 i f ( vmtkcenter l i nes . nonManifoldChecker . \
45 NumberOfNonManifoldEdges > 0) :
46 s e l f . PrintLog ( vmtkcenter l i nes . nonManifoldChecker . \
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47 Report )
48 return

49
50 s e l f . PrintLog ( ’ Cleaning␣ su r f a c e . ’ )
51 vmtkcenter l i nes . s u r f a c eC l eane r =

vtk . vtkCleanPolyData ( )
52 vmtkcenter l i nes . s u r f a c eC l eane r . SetInput ( s e l f . Sur f ace )
53 vmtkcenter l i nes . s u r f a c eC l eane r . Update ( )
54
55 s e l f . PrintLog ( ’ Tr i angu lat ing ␣ su r f a c e . ’ )
56 vmtkcenter l i nes . s u r f a c eTr i angu l a to r =

vtk . v tkTr i ang l eF i l t e r ( )
57 vmtkcenter l i nes . s u r f a c eTr i angu l a to r . SetInput ( vmtkcenter l i nes \
58 . s u r f a c eC l eane r . GetOutput ( ) )
59 vmtkcenter l i nes . s u r f a c eTr i angu l a to r . PassLinesOf f ( )
60 vmtkcenter l i nes . s u r f a c eTr i angu l a to r . PassVertsOf f ( )
61 vmtkcenter l i nes . s u r f a c eTr i angu l a to r . Update ( )
62
63 vmtkcenter l i nes . c en t e r l i n e Inpu tSu r f a c e =

vmtkcenter l i nes . s u r f a c eTr i angu l a to r . GetOutput ( )
64
65 vmtkcenter l i nes . capCenter Ids = None
66
67 i f ( s e l f . SeedSelectorName == ’ op enp r o f i l e s ’ ) |

( s e l f . SeedSelectorName == ’ c a r o t i d p r o f i l e s ’ ) |
( s e l f . SeedSelectorName == ’ p i ckpo int ’ ) :

68 s e l f . PrintLog ( ’ Capping␣ su r f a c e . ’ )
69 vmtkcenter l i nes . sur faceCapper =

vtkvmtk . vtkvmtkCapPolyData ( )
70 vmtkcenter l i nes . sur faceCapper . SetInput \
71 ( vmtkcenter l i nes . s u r f a c eTr i angu l a to r . GetOutput ( ) )
72 vmtkcenter l i nes . sur faceCapper . SetDisplacement\
73 ( s e l f . CapDisplacement )
74 vmtkcenter l i nes . sur faceCapper . SetInPlaneDisplacement \
75 ( s e l f . CapDisplacement )
76 vmtkcenter l i nes . sur faceCapper . Update ( )
77 vmtkcenter l i nes . c en t e r l i n e Inpu tSu r f a c e =

vmtkcenter l i nes . sur faceCapper . GetOutput ( )
78 vmtkcenter l i nes . capCenter Ids =

vmtkcenter l i nes . sur faceCapper . GetCapCenterIds ( )
79
80 i f s e l f . S e edSe l e c to r :
81 pass
82 e l i f s e l f . SeedSelectorName :
83 i f s e l f . SeedSelectorName == ’ p i ckpo int ’ :
84 s e l f . S e edSe l e c to r =

vmtkPickPointSeedSelector ( )
85 s e l f . S e edSe l e c to r . vmtkRenderer =

s e l f . vmtkRenderer
86 e l i f s e l f . SeedSelectorName == ’ op enp r o f i l e s ’ :
87 s e l f . S e edSe l e c to r =

vmtkcenter l i nes . vmtkOpenProf i l e sSeedSelector ( )
88 s e l f . S e edSe l e c to r . SetSeedIds ( vmtkcenter l i nes . sur faceCapper . \
89 GetCapCenterIds ( ) )
90 s e l f . S e edSe l e c to r . OutputText =

s e l f . OutputText
91 s e l f . S e edSe l e c to r . InputText = s e l f . InputText
92 s e l f . S e edSe l e c to r . vmtkRenderer =

s e l f . vmtkRenderer
93 e l i f s e l f . SeedSelectorName == ’ c a r o t i d p r o f i l e s ’ :
94 s e l f . S e edSe l e c to r =

vmtkcenter l i nes . vmtkCarot idPro f i l e sS e edSe l ec to r ( )
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95 s e l f . S e edSe l e c to r . SetSeedIds ( vmtkcenter l i nes . sur faceCapper . \
96 GetCapCenterIds ( ) )
97 e l i f ( s e l f . SeedSelectorName == ’ i d l i s t ’ ) :
98 s e l f . S e edSe l e c to r =

vmtkcenter l i nes . vmtkIdL i s tSeedSe l ector ( )
99 s e l f . S e edSe l e c to r . SourceIds = s e l f . SourceIds

100 s e l f . S e edSe l e c to r . TargetIds = s e l f . TargetIds
101 e l i f ( s e l f . SeedSelectorName == ’ p o i n t l i s t ’ ) :
102 s e l f . S e edSe l e c to r =

vmtkcenter l i nes . vmtkPointL i s tSeedSe l ector ( )
103 s e l f . S e edSe l e c to r . SourcePoints =

s e l f . SourcePoints
104 s e l f . S e edSe l e c to r . TargetPoints =

s e l f . TargetPoints
105 else :
106 s e l f . Pr intEr ror ( " SeedSelectorName␣unknown␣

( a v a i l a b l e : ␣ p i ckpo int ␣ | ␣ op enp r o f i l e s ␣ | ␣
c a r o t i d p r o f i l e s ␣ | ␣ i d l i s t ␣ | ␣ p o i n t l i s t ) " )

107 return

108 else :
109 s e l f . Pr intEr ror ( ’ vmtkCenter l ines ␣ e r r o r : ␣ e i t h e r ␣

SeedSe l e c to r ␣ or ␣SeedSelectorName␣must␣be␣
s p e c i f i e d ’ )

110 return

111
112 s e l f . S e edSe l e c to r . SetSur f ace ( vmtkcenter l i nes . \
113 cen t e r l i n e Inpu tSu r f a c e )
114 s e l f . S e edSe l e c to r . InputText = s e l f . InputText
115 s e l f . S e edSe l e c to r . OutputText = s e l f . OutputText
116 s e l f . S e edSe l e c to r . Pr intEr ror = s e l f . Pr intEr ror
117 s e l f . S e edSe l e c to r . PrintLog = s e l f . PrintLog
118 s e l f . S e edSe l e c to r . Execute ( )
119
120 vmtkcenter l i nes . i n l e t S e ed I d s =

s e l f . S e edSe l e c to r . GetSourceSeedIds ( )
121 vmtkcenter l i nes . ou t l e tS e ed Id s =

s e l f . S e edSe l e c to r . GetTargetSeedIds ( )
122
123 s e l f . PrintLog ( ’Computing␣ c e n t e r l i n e s . ’ )
124 vmtkcenter l i nes . c e n t e r l i n e F i l t e r =

vtkvmtk . vtkvmtkPolyDataCenter l ines ( )
125 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetInput ( vmtkcenter l i nes . \
126 cen t e r l i n e Inpu tSu r f a c e )
127 i f ( s e l f . SeedSelectorName == ’ op enp r o f i l e s ’ ) |

( s e l f . SeedSelectorName == ’ c a r o t i d p r o f i l e s ’ ) :
128 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetCapCenterIds \
129 ( vmtkcenter l i nes . capCenter Ids )
130 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetSourceSeedIds \
131 ( vmtkcenter l i nes . i n l e t S e ed I d s )
132 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetTargetSeedIds \
133 ( vmtkcenter l i nes . ou t l e tS e ed Id s )
134 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetRadiusArrayName\
135 ( s e l f . RadiusArrayName)
136 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetCostFunction \
137 ( s e l f . CostFunction )
138 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetFl ipNormals\
139 ( s e l f . Fl ipNormals )
140 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . \
141 SetAppendEndPointsToCenter l ines ( s e l f . AppendEndPoints )
142 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetS impl i f yVorono i\
143 ( s e l f . S impl i fyVoronoi )
144 i f s e l f . De l aunayTes se l l a t i on != None :
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145 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . \
146 GenerateDe launayTes se l l a t i onOf f ( )
147 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetDe launayTes s e l l a t i on \
148 ( s e l f . De l aunayTes se l l a t i on )
149 i f s e l f . UseTetGen==1:
150 s e l f . PrintLog ( ’Running␣TetGen . ’ )
151 import vmtkscr ipts
152 vmtkcenter l i nes . surfaceToMesh =

vmtkscr ipts . vmtkSurfaceToMesh ( )
153 vmtkcenter l i nes . surfaceToMesh . Sur f ace =

vmtkcenter l i nes . \
154 cen t e r l i n e Inpu tSu r f a c e
155 vmtkcenter l i nes . surfaceToMesh . Execute ( )
156 vmtkcenter l i nes . te tgen = vmtkscr ipts . vmtkTetGen ( )
157 vmtkcenter l i nes . te tgen .Mesh =

vmtkcenter l i nes . surfaceToMesh .Mesh
158 vmtkcenter l i nes . te tgen .PLC = 1
159 vmtkcenter l i nes . te tgen . NoMerge = 1
160 vmtkcenter l i nes . te tgen . Qual i ty = 0
161 i f s e l f . TetGenDetectInter == 1 :
162 vmtkcenter l i nes . te tgen . Detect Inter = 1
163 vmtkcenter l i nes . te tgen . NoMerge = 0
164 vmtkcenter l i nes . te tgen . OutputSurfaceElements = 0
165 vmtkcenter l i nes . te tgen . Execute ( )
166 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . GenerateDe launayTes se l l a t i onOf f ( )
167 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetDe launayTes s e l l a t i on \
168 ( vmtkcenter l i nes . te tgen .Mesh )
169 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetCenter l ineResampl ing \
170 ( s e l f . Resampling )
171 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . SetResamplingStepLength \
172 ( s e l f . ResamplingStepLength )
173 vmtkcenter l i nes . c e n t e r l i n e F i l t e r . Update ( )
174
175 s e l f . Cen t e r l i n e s =

vmtkcenter l i nes . c e n t e r l i n e F i l t e r . GetOutput ( )
176 s e l f . VoronoiDiagram =

vmtkcenter l i nes . c e n t e r l i n e F i l t e r . \
177 GetVoronoiDiagram ()
178 s e l f . De l aunayTes se l l a t i on =

vmtkcenter l i nes . c e n t e r l i n e F i l t e r . \
179 GetDelaunayTesse l l at ion ( )
180 s e l f . Po l e Ids =

vmtkcenter l i nes . c e n t e r l i n e F i l t e r . GetPoleIds ( )
181
182 s e l f . EikonalSolutionArrayName =

vmtkcenter l i nes . c e n t e r l i n e F i l t e r . \
183 GetEikonalSolutionArrayName ( )
184 s e l f . EdgeArrayName =

vmtkcenter l i nes . c e n t e r l i n e F i l t e r . \
185 GetEdgeArrayName ( )
186 s e l f . EdgePCoordArrayName =

vmtkcenter l i nes . c e n t e r l i n e F i l t e r . \
187 GetEdgePCoordArrayName ( )
188 s e l f . CostFunctionArrayName =

vmtkcenter l i nes . c e n t e r l i n e F i l t e r . \
189 GetCostFunctionArrayName ( )
190
191
192 i f __name__==’__main__ ’ :
193
194 main = pypes . pypeMain ( )
195 main . Arguments = sys . argv
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196 main . Execute ( )
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B.5 vtkcones.py

This file is not needed for the VMTKGui itself, but it paves the road for
the VirtualValveStent project. That is why we think it is useful to insert
this file, too

1 ## @package vtkcones
2 #This package conta ins a s i n g l e class i n which we can f i nd a

way to bu i ld and r ep r e s en t the cone ( s ) in the r i gh t
window . Also , this i s the f i l e used to s e t up the
r ender er . That ’ s ␣why␣ i t ␣ i s ␣needed ␣ a l s o ␣ in ␣ the ␣1 s t ␣ part ␣
o f ␣ the ␣ pro j ect , ␣where␣we␣do␣not ␣ s t i l l ␣have ␣ the ␣ s t en t .

3
4 try :
5 import gtk
6 import gtk . g lade
7 except :
8 sys . e x i t (1)
9
10 import vtk
11
12
13 ## "vtkWindow␣ c l a s s " i s the class that a l l ows us to

p r i n t /remove the cones . Choosing the de s i r ed button , we
could p r i n t /remove e i t h e r 1 or 2 cones .

14 class vtkWindow :
15
16 ## The con s t r uc to r .
17 # @param s e l f The ob j e c t po i n t e r
18 # @param wTree . . .
19 # def __init__ ( s e l f , wTree , ren ) :
20 de f __init__ ( s e l f , ren ) :
21
22 s e l f . ren = ren
23
24 s e l f . cone1_actor = vtk . vtkActor ( )
25 s e l f . cone2_actor = vtk . vtkActor ( )
26 s e l f . cone1_actor = None
27 s e l f . cone2_actor = None
28
29 ## Function that a l l ows us to p r i n t 2 cones
30 # @param s e l f The ob j e c t po i n t e r
31 # @param widget gdk widget
32 de f both_cones ( s e l f , widget ) :
33
34 s e l f . ren . AddActor ( s e l f . cone1_actor )
35 s e l f . ren . AddActor ( s e l f . cone2_actor )
36 s e l f . ren . ResetCamera ( )
37
38
39
40 ## With this f unc t i on we could p r i n t 1 s t cone
41 # @param s e l f The ob j e c t po i n t e r
42 # @param widget gdk widget
43 de f cone1 ( s e l f , widget ) :
44
45 i f not s e l f . cone1_actor :
46
47 cone1 = vtk . vtkConeSource ( )
48 cone1 . SetHeight (100)
49 cone1 . SetRadius (50)
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50 cone1 . SetReso lut i on (150)
51
52 # Map to graph i cs l i b r a r y
53 cone1_map = vtk . vtkPolyDataMapper ( )
54 cone1_map . SetInputConnect ion (

cone1 . GetOutputPort ( ) )
55
56 # Actor coo rd i na t e s geometry , p r ope r t i e s ,

t r ans f ormat i on
57 s e l f . cone1_actor = vtk . vtkActor ( )
58 s e l f . cone1_actor . SetMapper ( cone1_map )
59 s e l f . cone1_actor . S e tPos i t i on (0 , 3 , 0 )
60 s e l f . cone1_actor . GetProperty ( ) . SetColor (0 , 0 , 0 )
61
62 # Create a c l i p p i n g plane to c l i p cone 1
63 plane1 = vtk . vtkPlane ( )
64 plane1 . SetOr i g in ( 0 . 0 5 , 0 . 0 , 0 . 0 )# [ ∗ 1 ]
65 plane1 . SetNormal ( −1 . 0 , 0 . 0 , 0 . 0 )
66 cone1_map . AddClippingPlane ( plane1 )
67
68 s e l f . ren . AddActor ( s e l f . cone1_actor )
69 s e l f . ren . ResetCamera ( ) #(Or i g i na l v e r s i on )
70
71
72 ## With this f unc t i on we could p r i n t 2nd cone
73 # @param s e l f The ob j e c t po i n t e r
74 # @param widget gdk widget
75 de f cone2 ( s e l f , widget ) :
76
77 i f not s e l f . cone2_actor :
78
79 # Cone2
80 cone2 = vtk . vtkConeSource ( )
81 cone2 . SetHeight (100)
82 cone2 . SetRadius (50)
83 cone2 . SetReso lut i on (150)
84
85 # Map to graph i cs l i b r a r y
86 cone2_map = vtk . vtkPolyDataMapper ( )
87 cone2_map . SetInput ( cone2 . GetOutput ( ) )
88
89 # Actor coo rd i na t e s geometry , p r ope r t i e s ,

t r ans fvaormat i on
90 s e l f . cone2_actor = vtk . vtkActor ( )
91 s e l f . cone2_actor . SetMapper ( cone2_map )
92 s e l f . cone2_actor . S e tPos i t i on (0 , 3 , 0 )
93 # Cone_actor . RotateY (90)
94 s e l f . cone2_actor . RotateZ (180)
95 s e l f . cone2_actor . GetProperty ( ) . SetColor (1 , 0 , 0 )
96
97 ## Create a c l i p p i n g plane to c l i p cone 2
98 plane2 = vtk . vtkPlane ( )
99 plane2 . SetOr i g in ( 0 . 0 5 , 0 . 0 , 0 . 0 )

100 plane2 . SetNormal ( 1 . 0 , 0 . 0 , 0 . 0 )
101 cone2_map . AddClippingPlane ( plane2 )
102
103 s e l f . ren . AddActor ( s e l f . cone2_actor )
104 s e l f . ren . ResetCamera ( ) #(Or i g i na l v e r s i on )
105
106 ## With this f unc t i on we could remove 1 s t cone
107 # @param s e l f The ob j e c t po i n t e r
108 # @param widget gdk widget
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109 de f rem_cone1 ( s e l f , widget ) :
110 s e l f . ren . RemoveActor ( s e l f . cone1_actor )

#(Or i g i na l v e r s i on )
111 s e l f . cone1_actor = None
112
113 ## With this f unc t i on we could remove 2nd cone
114 # @param s e l f The ob j e c t po i n t e r
115 # @param widget gdk widget
116 de f rem_cone2 ( s e l f , widget ) :
117 s e l f . ren . RemoveActor ( s e l f . cone2_actor )#

( Or i g i na l v e r s i on )
118 s e l f . cone2_actor = None
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