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Sommario 
 
Col presente lavoro, si propone un algoritmo per l'analisi d’immagini a infrarossi da 

poter impiegare in tutte quelle applicazioni volte al rilevamento di aree danneggiate 

in strutture o componenti meccanici.  Un primo studio riguarda immagini ottenute 

da controlli non distruttivi basati sulla tecnica di Laser spot thermography e mira a 

rilevare la presenza di difetti superficiali. Una sorgente laser è utilizzata per la 

scansione di un provino attraverso la generazione d’impulsi singoli. La 

distribuzione di temperatura prodotta da questa fonte termoelastica è misurata 

attraverso una termocamera a infrarossi e processata con un algoritmo a due stadi. 

Nella prima fase, si utilizzano semplici parametri matematici e statistici per rilevare 

la presenza di aree danneggiate. Una volta segnalata la presenza del difetto, si 

calcola derivata spaziale prima e seconda dell'immagine termica e si applicano due 

filtri spaziali con l’intento di aumentare il contrasto, individuare e dimensionare il 

difetto. Tra i vantaggi del metodo proposto rispetto ad approcci esistenti vi sono 

l'automazione del processo di rilevamento del difetto e un migliore isolamento della 

zona danneggiata. L'algoritmo è prima testato su immagini termiche ricostruite 

artificialmente e quindi sperimentalmente validato con la scansione della superficie 

di una piastra in composito con difetti indotti. Nella seconda applicazione, lo stesso 

algoritmo è applicato a immagini a infrarossi acquisite durante prove di trazione su 

campioni di acciaio. Manifestazioni di calore accompagnano la trasformazione 

elastoplastica durante i test. L'algoritmo, ancora una volta, è in grado di valutare 

automaticamente lo stato di danneggiamento del campione e di evidenziare 

l'evoluzione della deformazione. 

Parole chiave: Image Processing, Radiazione a infrarossi, Controlli non distruttivi, 

Laser Spot Thermography, Prove di trazione, Correlazione di segnali, Filtri spaziali. 



 
 

Abstract 

In the present work, an algorithm for the analysis of raw thermal infrared images is 

proposed and exploited in two different applications: a nondestructive evaluation 

test and a tensile test. In the first one, the images are obtained by using the laser 

spot thermography and aim at detecting the presence of surface defects. A laser is 

used to scan a test specimen through the generation of single pulses. The 

temperature distribution produced by this thermoelastic source is measured by an 

infrared camera and processed with a two-stage algorithm. In the first stage, simple 

mathematical and statistical parameters are used to flag of the presence of damage. 

Then, once damage is detected, the thermal image’s first and second spatial 

derivative and two spatial filters are computed to enhance contrast, and to locate 

and size the defect. Some of the advantages of the proposed method with respect to 

existing approaches include automation in the defect detection process and better 

defective area isolation through increased contrast. The algorithm is first proven by 

analyzing simulated thermal images and then it is experimentally validated by 

scanning the surface of a CFRP composite plate with induced defects.  

In the second application, the same algorithm is applied to infrared images recorded 

during tensile tests on steel samples. Calorific manifestations accompany the 

elastoplastic transformation during tests. The algorithm, once more, is able to 

estimate automatically the state of damage of the specimen and to highlight the 

evolution of the deformation. 

Keywords:  Image Processing, Infrared Radiation, Nondestructive Evaluation, 

Laser Spot Thermography, Tensile test, Signal Correlation, Spatial Filtering. 



 
 

Introduction  
 

Infrared thermography is a technique addressed to the visualization and acquisition 

of thermal images. 

A body capable of absorbing radiation is also capable in the emission of radiation, 

according to the Kirchhoff’s law. This emission is characterized by radiation of 

wavelength beyond the visible spectrum, and thus, it is called infrared radiation. 

The total emissive power of a body is measured through the Stefan-Boltzmann’s 

law that states the total radial emittance is proportional to the forth power of its 

absolute temperature. Measuring this kind of energy is possible to evaluate the 

temperature distribution onto the object surface. This can be realized thanks to 

suitable thermocameras that detect the intensity of the emitted radiations, convert it 

into digital signals making it possible to display data in numerical or graphical 

form, thus building the thermal image visible to the naked eye. 

Infrared thermography is used in various fields, from clinical diagnostics to 

industrial preventive and predictive evaluation. In both cases, it is important to 

reveal oddities and irregularities in the distribution of the analyzed bodies’ 

temperature as these are indicators of anomalous, and therefore undesired, 

situations. For example, areas of higher temperature than the standard conditions 

may identify infections or muscle injuries in the medical field, or damaged isolators 

and overheated joint, signs of incipient failure, in the industrial field. 

In the engineering field, this method is widely used for nondestructive evaluation 

techniques. The nondestructive testing (NDT) is the sum of examinations, tests and 

surveys accomplished through methods that do not alter the material and do not 

require the destruction or removal of samples from the structure in question aimed 

at the detection and identification of structural defects. This kind of tests enables to 



 
 

evaluate the damage into the analyzed object without impairing its future use. As a 

result, maintenance and repair costs decrease while safety and reliability increase. 

Several non-destructive techniques have been developed by the 1920s; each has its 

own advantages, flaws and areas of application. In the last few decades, the non-

destructive techniques based on the infrared thermography (IRNDT) have widely 

spread. This was possible thanks to the development of accurate devices and their 

entrance in the market at affordable prices. These methods are able to provide 

immediate measurements of the temperature without contact. They are therefore 

widely used in all applications where achieving the test object is physically difficult 

or dangerous. They are widely used in the control of power lines where, for 

example, the malfunction of an insulator of a cable can increase the risk of fire. The 

local overheating of the insulator is shown as a hot spot through the thermal camera, 

suggesting the operator a maintenance intervention. In the nuclear field, checks on 

the integrity of the reactors are necessary to ensure safe operation. Given the 

harmfulness of nuclear radiation, personnel should hold off from machinery. The 

possibility of performing measurements at a distance brings obvious advantages. 

Infrared thermography is commonly exploited also in standard applications such as 

quality control of mechanical components that undergo several cycles of load with 

risk of nucleation of fatigue cracks, or damage induced by impacts with external 

bodies. It is often preferred over other techniques because it enables to inspect large 

areas very quickly in a completely non-invasive way. 

In particular, the present work is addressed to the detection of damages of different 

nature in different materials through the analysis of raw thermal images acquired 

from Laser spot thermography. Tests based on this methodology fall into the 

category of active thermography. An external stimulus is required to create the 

temperature difference between defect and host material necessary for the detection 



 
 

of the singularity. In this case, a laser source generates pulsed beams reaching the 

surface inspected. The energy released produces a local increase in temperature 

displayed by the camera as a hot spot. Heat tends to propagate in the material 

equally in all directions (under the assumption of homogeneous material). The 

presence of a crack or impact damage prevents the lateral heat flow, thereby 

altering the circular shape of the hot spot. An expert operator that carefully observes 

each thermogram acquired can detect this asymmetry of the warmer area. 

Obviously, this procedure is onerous especially in terms of time and subjected by 

the human error. 

The main purpose of this study is therefore the development of an algorithm for the 

image processing able to locate damaged areas that may be present in the analyzed 

specimen, in a completely automated way. The images are analyzed in the first 

instance to extract features to compare with characteristics of sound areas. Only in 

case of a discrepancy between these parameters, the suspicious frame is processed 

in order to improve its quality and to highlight the defect signature through spatial 

filters and balance of contrasts. 

The same algorithm is then applied to images relating to proof for the 

characterization mechanical features on steel samples. The specimen is subject to 

tensile tests to obtain its stress-strain curve. In parallel, thermal images showing the 

fracture behavior of the specimen can be acquired. During the deformation, some 

energy is dissipated as heat right by the area affected by plasticization. Thus 

monitoring the temperature enables to indicate the evolution of the damaged area. 

Through the image processing it is possible to assess the specimen’s state of 

damage, to identify the moment of rupture, and to highlight the concentration of 

temperature around the fracture point. 



 
 

The presentation of what mentioned above is organized into four chapters. In the 

first chapter, the main areas of application of infrared thermography are presented, 

with particular attention to those applications studied experimentally, i.e. Laser spot 

thermography for the detection of defects in composite materials or Tensile testing 

for the characterization of high performance steel. In the second chapter, a 

bibliographic research concerning the state of the art about the image processing is 

provided, with explanations about the application of filters, histogram equalization, 

and noise reduction. In the third chapter, the presentation of simulation models on 

which the algorithm developed in Matlab environment is pre-tested and validated 

follows. In the fourth chapter, a detailed description of the experimental studies is 

reported. The results of four different experimental studies are discussed: the first 

three studies concern the detection of defects of various geometries, types, and sizes 

through Laser spot nondestructive technique and the last one presents the 

application of the infrared thermography to traditional tensile tests.  

Finally, conclusions and observations on experiments and possible further 

developments of the work done so far are reported. 
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Chapter 1                                                          

The infrared thermography  

1.1 Overview about thermal imaging science   
 

Infrared thermography, thermal imaging, and thermal video are examples of 

infrared imaging science. Thermal imaging cameras detect radiation in the infrared 

range of the electromagnetic spectrum (roughly 9–14 µm) and produce images of 

that radiation, called thermograms. Since infrared radiation is emitted by all objects 

above absolute zero according to the black body radiation law, thermography makes 

it possible to see one's environment with or without visible illumination. The 

amount of radiation emitted by an object increases with temperature; therefore, 

thermography allows one to see variations in temperature. When viewed through a 

thermal imaging camera, warm objects stand out well against cooler backgrounds; 

humans and other warm-blooded animals become easily visible against the 

environment, day or night. As a result, thermography is particularly useful to 

military and other users of surveillance cameras but its use in many different fields 

has increased dramatically with the commercial and industrial applications of the 

past fifty years. Government and airport personnel used thermography to detect 

suspected swine flu cases during the 2009 pandemic. Firefighters use thermography 

to see through smoke, to find persons, and to localize the base of a fire. 

Maintenance technicians use thermography to locate overheating joints and sections 

of power lines, which are a telltale sign of impending failure. Building construction 
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technicians can see thermal signatures that indicate heat leaks in faulty thermal 

insulation and can use the results to improve the efficiency of heating and air-

conditioning units. Some physiological changes in human beings and other warm-

blooded animals can also be monitored with thermal imaging during clinical 

diagnostics. 

Infrared thermography is also used in the engineering filed, for instance, in material 

testing (as tensile tests) or quality control through nondestructive testing (NDT) 

techniques. 

Before the discussion of these two applications in pursuance of the present work, a 

brief overview about NDT methodologies and material characterization tests is 

presented below.  

 

 

1.2 Application in nondestructive testing techniques 
 

In the field of quality control of structures and mechanical components, several 

methods have been developed to evaluate the integrity or the state of damage of the 

testing object.  Some material investigations involve taking a sample of the 

inspected part. Due to the loss of material, the test object has to be removed from 

service permanently. Since 1920s, the art of testing without destroying the test 

object has developed from laboratory curiosity to an indispensable tool of 

production. Nondestructive testing has been defined as comprising those test 

methods used to examine or inspect a part, material, or system without impairing its 

future usefulness [1]. NDT testing is used to investigate specifically the material 

integrity of the sample in order to avoid failures, prevent accidents, ensure customer 
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satisfaction, and even save human life. Several methodologies can be included in 

this category as discussed below. 

 

 

1.2.1 Review of nondestructive techniques 

Common NDT techniques can be classified into seven major categories: visual 

(e.g., visual inspection using borescope), penetrating radiation (e.g., X-ray, and 

neutron imaging), magnetic-electrical (e.g., magnetic particle, and Eddy current), 

mechanical vibration (e.g., ultrasonic, acoustic emission, and tapping), 

chemical/electrochemical (e.g., chemical spot testing), thermal (e.g., infrared 

thermography) and other optical methods (e.g., Moire  ́interferometry, holography, 

and shearography). Research efforts are being directed at developing and perfecting 

NDT techniques capable of monitoring: 1) materials production processes, 2) 

material integrity during transportation, storage and fabrication and, 3) the amount 

and rate of degradation during service. In addition, efforts are underway to develop 

new NDT techniques capable of measuring the discontinuity of the flaws 

quantitatively, permitting determination of material response using fracture 

mechanics analysis, and replacing the qualitative materials characterization 

techniques used in the past by quantitative techniques. 

Among the various new NDT techniques developed recently, infrared 

thermography NDT techniques has attracted considerable interest in a wide variety 

of industries including medical diagnostic, electronic, rubber, aerospace, 

automotive, and construction. In order to adapt and develop thermography NDT 

technique for evaluating particular materials, especially for real-time and mass 

inspection, it is important to have the knowledge of the capabilities as well as 

limitations of this technique. This methodology is relatively fast, provides full-field 
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information, is non-contacting, and has been shown to be reliable for detecting 

material defects in specific metallic, nonmetallic and composites materials [2]. It is 

based on the analysis of the temperature distribution on the surface of tested 

sample. It proves not to be suitable if the damage has no effect in perturbing this 

distribution, for example when the defect lies in depth of a thick specimen. 

More details about nondestructive evaluation (NDE) methods based especially on 

infrared thermography are presented in the next section. 

 

 

1.2.2 Review of infrared based nondestructive techniques 

As mention above, infrared thermography is a contact-less optical imaging 

technique for detecting invisible infrared radiation. It can be used to assess and 

predict the structure or behavior lightly beneath the surface by measuring the 

distribution of infrared radiation and converting the measurements into a 

temperature scale. Infrared thermography is generally divided into two main 

streams: passive infrared thermography (PIT) and active infrared thermography 

(AIT). In PIT, abnormal temperature profiles indicate suspicious problem. This 

technique is mainly used for qualitative inspection to pinpoint the anomalies and 

has important applications in several fields such as production process, predictive 

maintenance, medicine, building thermal efficiency survey programs.  

For reducing the sensitivity to variations in ambient condition and obtaining more 

accurate measurement, AIT has been developed to provide more accurate 

information by considering the amount of thermal radiation and heat transfer. It has 

been successfully employed for flaws inspection in many industrial applications, 

such as aircraft and automotive components inspection, adhesive bonding and spot 

welding investigations, pressure vessel and pipeline inspections [2]. In Active 
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thermography, an external stimulus is required to raise the temperature of a part of 

the structure and generate a heat flow towards colder areas and an infrared camera 

is utilized to capture the surface thermal pattern. Different techniques have been 

developed, depending upon the type of external stimulus exploited. The most 

common thermal stimulation methods in AIT are transient pulse, step heating (long 

pulse), periodic heating (lock-in), and thermal mechanical vibration. Figure 1.1 

provides a schematic representation of these techniques. 

 

 
Figure 1.1. Schematization of the data acquisition setup for different stimulation techniques. 

 

The selection of a method over another is dictated by factors as structure geometry 

and material, and by type and size of the defect to be identified. It has been proved 

that not every kind of defect can be easily detected using the same technique; and 

not all the materials respond with success to a particular heating source [3]. To 

investigate the potentiality of AIT, several studies were conducted and now present 

in literature.  

Pulsed thermography technique often exploits flash lamps to impart thermal energy 

on the test specimen [3,4,5]. This method has the advantage of being quick and 
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simple, and suitable to both metallic and non-metallic materials. It is effective for 

planar defect detection where the defect plane is reasonably parallel to the sample’s 

surface. However, pulse thermography may fail to identify the presence of micro-

cracks or of surface breaking cracks that run perpendicularly to the surface because 

they have little effect on the heat flow generated by the flash lamp [6]. Other active 

methods such as thermosonics, vibrothermography, or laser spot thermography can 

be adopted to overcome these limitations. 

Thermosonics uses a pulse of high power ultrasound in the 20 – 100 kHz range 

applied at one point of the test specimen to generate vibration in the structure. If a 

crack is present, its surfaces rub together causing a local temperature rise. The 

method is attractive for the quick assessment of complex components [7]. Usually 

the high power ultrasound is delivered to the structure by means of acoustic horns 

[7,8,9,10,11,12] or piezoelectric exciters [4,13]. Similar to thermosonics, 

vibrothermography uses continuous vibration excitation to generate a steady state, 

local temperature rise [7,8]. This method is particularly effective in poor thermal 

conductors, so that the temperature does not equalize rapidly over the component 

[7,10]. Like for thermosonics, the excitation sources are generally acoustic horns or 

piezoelectric transducers [5,10,14]. In laser spot thermography the external stimulus 

is given by means of CW or pulsed laser. The laser permits to realize the 

transmission of a well-controlled and positioned beam into the test object. The 

heating at the surface, caused by absorption of laser light (CW laser) or by 

thermoelastic shock (pulsed laser), spreads radially producing a circular heat spot 

that can be imaged by an infrared camera. Directional patterns can be also induced 

by interposing a cylindrical lens between the laser and the test specimen. In both 

cases, the area hit by the laser and the power of the source can be controlled fairly 

accurately. An argon ion laser yields output of few watts, whereas carbon dioxide 



Chapter 1. The infrared thermography 

7 
 

laser and neodymium-yttrium aluminum garnet laser can provide output power in 

excess of 20 W if necessary. A surface breaking crack near to the illumination point 

prevents the lateral flow of heat and produces a perturbation to the thermal image 

that can be useful to detect the presence of such cracks [6,8,15,16]. An application 

of this methodology for the detection of surface damages is discussed in the 

following chapters. 

 

 

1.3 Applications in material testing 
 

Tensile testing, also known as tension testing, is a fundamental materials science 

test in which a sample is subjected to uniaxial tension until failure. The results from 

the test are commonly used to select a material for an application, for quality 

control, and to predict how a material will react under other types of forces. 

Properties that are directly measured via a tensile test are ultimate tensile strength, 

maximum elongation, and reduction in area. From these measurements, the 

following properties can also be determined: Young's modulus, Poisson's ratio, 

yield strength, and strain-hardening characteristics.  

Recently the infrared thermography has been coupled to the traditional tensile 

testing measuring devices to investigate the fracture behavior and monitor failure 

mode during the test. [17] 

Infrared thermography provides quantitatively evaluation of the evolution of the 

temperature generated by the specimen under applied stresses. It has been 

successfully used as an experimental technique to detect the plastic deformation of 

steel plates under monotonic loading. The work done to the system by plastic 

deformation (evaluated, per unit of volume, by integrating the material stress-strain 
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curve) is identified as the major contribution to heat effect. There exists a general 

acceptance that not all mechanical work produced by the plastic deformation can be 

converted to the thermal energy in the solid. A portion of the work is believed to 

have been spent in the change of material microscopic structure.  

Thus, the material dissipativity can be considered and used as a highly sensitive and 

accurate manifestation of damage. Infrared thermography provides a 

nondestructive, real time and noncontact technique to observe the physical 

processes of degradation and to detect the occurrence of intrinsic dissipation in 

engineering materials and structures [1]. The application of the above-mentioned 

technique is discussed in the forth chapter where the heat pattern on the surface of a 

steel sample shows the evolution of the damage until failure.



 
 

 

Chapter 2                                                 

Thermal image processing 

For the sake of completeness, it must be remembered what an infrared radiation 

concerns and how an infrared image can be processed. 

Infrared (IR) light is electromagnetic radiation with a wavelength longer than that 

of visible light, measured from the nominal edge of visible red light at 0.7 

micrometers, and extending conventionally to 300 micrometers. These wavelengths 

correspond to a frequency range of approximately 430 to 1 THz, and include most 

of the thermal radiation emitted by objects near room temperature [18]. Figure 2.1 

shows the electromagnetic spectrum for different types of radiations. 

 

 

 

 
 
 
 

Figure 2.1. Classification of the electromagnetic radiations according to their wavelength and 

frequency. 

 

Infrared thermography in nondestructive testing provides images (thermograms) in 

which zones of interest (defects) appear sometimes as subtle signatures due to all 

Wavelength (meters) 

Radio      Microwave      Infrared      Visible       Ultraviolet       X-Ray       Gamma Ray 

103           10-2           10-5       10-6         10-8         10-10        10-12 

 104             108          1012                  1015     1016    1018    1020      
 

Frequency (Hz) 
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factors that degrade infrared images from self-emission of the IR camera to the 

nonuniform properties of the surface where data are collected. Moreover, with long 

wavelengths in IRthermal bands with respect to visible bands, signals in the thermal 

bands are intrinsically weak since liberated photonic energy W due to the 

oscillatory nature of particles inside matter is inversely proportional to the 

wavelength. In this context, raw images are not always appropriate since some 

details can be missed. In some other cases, what is needed is a quantitative analysis 

such as for defect detection and characterization. 

From years to years, various methods of data analysis in IRNDT have been 

developed through the world [19]. Most of the existing methods require user input 

or intervention, and automation is not always possible. The most common steps in 

infrared image processing can be listed as follow: 

 

o Noise reduction: to augment the signal to noise ratio; 

o Contrast balance: to highlight some features not evident in the original image; 

o Edge detection: to define the discontinuities in the frame considered. 

 

One of the most common procedures for noise reduction is the subtraction 

technique. Simple subtractions such as subtracting two images acquired at the same 

moment from two different experiments (spatial reference technique) or from 

images recorded closely (temporal reference technique) allow to remove unwanted 

effects present in both experiments such as non-uniform heating [4,7,9,10,14,20]. 

Moreover, the application of spatial linear or nonlinear filters is often exploited to 

reduce the high-frequency components characterizing thermal noise [9,20,21]. 

Applying a linear filter means computing the convolution onto the image 

considered of a defined kernel, which is a square small matrix with an odd number 
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of elements. In the spatial domain, the convolution process multiplies the elements 

of the kernel by the matching pixel values when the kernel is centered over a pixel. 

The elements of the resulting array (which is the same size as the kernel) are 

averaged, and the original pixel value is replaced with this result. In particular, a 

kernel (n+1 x n+1) is passed through the image and the central pixel value p is 

replaced by p0 computed as follow: 

 
푝 = 퐵(푎 푝 + 푎 푝 +⋯푎( )	

	푝( ) )                           (2.1)                                          
                                           

with B is a scaling factor, ai are kernel weights and pi are the n+1 pixel values 

within the kernel centered on p [19].  

The mechanics of the linear spatial filtering are illustrated in Figure 2.2. Linear spatial 

filtering applicationFigure 2.2. 

 

 
Figure 2.2. Linear spatial filtering application. 

 

Nonlinear filters exploit the same mechanism but the relation between the value of 

the central pixel p and its replacing value p0 is not linear.  

Spatial filters can also be applied to enhance the defect signatures. For instance, Li 

et al. [21] proposed a three-dimensional matched filter (time is the third dimension) 

to detect cracks from a video sequence collected during a vibrothermographic 
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inspection. The use of a matched filter required the knowledge of the signal 

signature. As such, Li and collaborators [21] applied a matched filter assuming that 

the heat change signature due to the presence of cracks was known. To avoid this 

problematic aspect, it is possible to act on image histograms and contrasts. These 

procedures deal with images in gray scale; procedures for color images derive from 

them. Each pixel can assume one of 256 possible values: a value equal to zero 

correspond to the black color, a value of 255 correspond to the white color. 

An image histogram is a type of histogram that acts as a graphical representation of 

the tonal distribution of the picture. It plots the number of pixels for each tonal 

value. By looking at the histogram for a specific image a viewer is be able to judge 

the entire tonal distribution at a glance and eventually to identify the presence of a 

particular kind of noise on the picture. Adjusting the tonal distribution, noise can be 

reduced and certain details can be better visualized. A common procedure is the 

histogram equalization that generates an image whose intensity levels are equally 

likely. The net result is an image with increased dynamic range which tends to have 

higher contrast [22]. Figure 2.3 presents an example of the above. 
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Figure 2.3. Original image (a) and correspondent histogram (c). Enhanced image (b) and 

correspondent histogram (d). 
 

The last step mentioned above concerns the edge detection technique. This 

procedure is most exploited in IRNDT methods since it is often required to localize 

and size the damaged area in the testing sample. The techniques for the extraction 

of the contours, aim to remove from the image constant areas, leaving only the 

changes, in the case, often verified, that they retain all the relevant information. 

Contours are defined as local discontinuities in luminance, i.e. areas in the image 

where there are "abrupt" changes in luminance. These techniques can be divided in 

three main categories based on first derivative, second derivative and edge fitting. 
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The techniques based on the derivatives are the most effective and thus the most 

exploited. The goal of the method based on the first derivative is to pick out the 

maximum values of this feature.  

Figure 2.4 shows a possible intensity trend f(x) as a function of the spatial 

coordinate x.  

 

 
Figure 2.4. Intensity functions in correspondence of two different types of edges and 

corresponding first derivatives. 
 

The ramp indicates a change in the luminance level that leads to the identification 

of a contour. The first derivative is calculated as: 

 

푓 (푥) = ( )		                                                    (2.1) 
                                               

The peak corresponding to the maximum absolute value of f’(x) occurs in 

correspondence of the contour. Of course, in presence of noise there are several 

local maximum values; some of them related to real contours but some others 

related to the noise effect. Thus, it is possible to set a threshold level: peaks below 

this reference value are defined as “false” contours and not considered. 
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In the discrete domain, the first derivative of a sequence of intensity values x (n) is 

calculated as follow: 

  

푥′(푛) = ∑ ( ) 푥(푛 − 푘),                                     (2.2) 
                              

For instance: 

 

푥 (10) = 푥(11)− 푥(9) + ( ) − ( ) + ( ) − ( ) + ⋯            (2.3) 
          

In practice the sum is cut off and the result is approximated as illustrate below. 

Extending into the second dimension this concept, the gradient is considered: 

 

퐺(푥,푦) = ,                                                  (2.4) 

                                         

The magnitude of this vector stands for the “strength” of the contour and the phase 

indicates the direction. In the discrete case, the gradient is calculated along the rows 

or along the columns of the matrix representing an image, and then, combined as: 

 

퐺(푖, 푗) = 퐺 ( , ) + 퐺 ( , )                                      (2.5) 

                                   

An approximation often used of Equation 1.6 is: 

 

퐺(푖, 푗) = 퐺 ( , ) + 퐺 ( , )                                   (2.6) 
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Gr and Gc are estimated according to Equation 2.3 regarding the discrete first 

derivative stopped at the second term. In other words, it is calculated as the 

response of an impulse of the type [-1 0 1]. This procedure is very sensitive to the 

noise. For a more stable solution, a common method is to average in the orthogonal 

direction before calculating the difference. Table 2.1 shows examples of suitable 

operators for this procedure. 

 
Table 2.1. Masks for edge detection 

 

 Gradient for rows Gradient for columns 

Prewitt 
1
3

1 0 −1
1 0 −1
1 0 −1

 
1
3

−1 −1 −1
0 0 0
1 1 1

 

Sobel 
1
4

1 0 −1
2 0 −2
1 0 −1

 
1
4

−1 2 −1
0 0 0
1 2 1

 

Roberts 
0 0 0
0 −1 0
0 1 0

 
0 0 0
0 −1 1
0 0 0

 

 

A practical application of these masks is presented in the next chapters. In literature, 

several studies exploited the edge detection based on the first derivative. For 

instance, T. Li et al. [16] used a crack imaging method to process infrared images 

collected by means of the laser spot thermography. The image processing was based 

on the computation of this spatial derivative since it reflects the amplitude change 

rate in an image. Furthermore, they evaluated the second derivative to better 

enhance the edge effect. 
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Methods based on the second derivative seek for the passages of the function f’’(x) 

for values equal to zero that occur in correspondence of the boundary. Figure 2.5 

helps in visualizing the concept: 

 

 
Figure 2.5. Intensity function in correspondence of an edge and its first and second derivative. 

 

The second derivative is sensitive to the noise so that some zero values can be 

dictated by the noise effect. A strategy to avoid the “false” boundary is to take into 

account only the zeros surrounded by “high” absolute values (maximum and 

minimum). Working in two dimensions, the second derivative becomes the Laplace 

operator, defined for a continuous function F(x, y) as: 

 

퐺(푥,푦) = −∇ 퐹(푥, 푦) = 퐹(푥,푦) + 퐹(푥, 푦)                 (2.7) 

 

The Laplacian is equal to zero when F(x, y) is constant or changes linearly. 

In the discrete domain, the easiest way to evaluate this operation is to compute the 

difference of the differences along each direction as follow: 
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퐺(푗, 푘) = [퐹(푗, 푘) − 퐹(푗,푘 − 1)]− [퐹(푗, 푘 + 1)− 퐹(푗,푘)] + 
+[퐹(푗, 푘)− 퐹(푗 + 1,푘)]− [퐹(푗 − 1,푘) − 퐹(푗,푘)]										      (2.8) 

 

The same result can be obtained through the convolution with a matrix H (j, k) 

defined in Equation 2.11:  

 

퐺(푗, 푘) = 퐹(푗,푘) ∗ 퐻(푗,푘)                                     (2.9) 
 

퐻 =
0 0 0
−1 2 −1
0 0 0

+
0 −1 0
0 2 0
0 −1 0

										퐻 =
0 −1 0
−1 4 −1
0 −1 0

           (2.10) 

 

The sum of the two matrices yields the evaluation of the second derivatives along 

the rows and the columns. 

In the next chapters of the present work, it is possible to appreciate the effectiveness 

of this operator since it is able to highlight the discontinuities in the thermal 

distribution on the surface tested both in the laser spot thermography application 

and in the tensile tests. These discontinuities represent the anomalous situations that 

we are looking for while testing a sample. 



 
 

 

Chapter 3                                                   

Infrared image simulations 

In order to become more familiar with the image processing, we conduct a 

preliminary study exploiting the Matlab software and, in particular, the Image 

acquisition, the Image processing and the Wavelet toolbox. This study helps us in   

acquiring more awareness about the potentiality of the commands reported in 

dedicated Matlab environment. It leads to a conscious management of a two 

dimensional (2D) signal such as matrices representing the thermal images. 

We provide two types of simulations, both with the aim of realizing an algorithm 

for the image processing of thermographs. In particular, the first model simulates 

the temperature trend on the sample surface subjected to a generic pulsed 

thermography testing. The second one tends to recreate the reaction of a sample 

tested with laser spot thermography technique. The two models are presented in 

details in the next sections. 

 

 

3.1 Simulations for pulsed thermography 
 

In this section, we present two models consisting of recreated videos or snapshots to 

simulate the acquisition of thermal images from pulsed thermography testing. The 

first situation represents the radial heat propagation from a central point toward the 

extremes. It is realized by generating consequential frames characterized by 
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incremental temperature steps. The second situation represents the ideal Gaussian 

temperature distribution generated onto a surface hit by a laser beam. The laser is 

mainly exploited in the NDT techniques based on the pulsed thermography. 

This kind of testing usually requires user input or intervention to evaluate the 

integrity of the specimen through the observation of single frames or surface 

temperature trends as a function of the time (heating and cooling transient). Our 

goal is to write an algorithm able to detect automatically the presence of a defect 

and to process only the thermal frames marked as suspicious.  In particular, the 

study yields to the realization of a two-stage algorithm. In the first stage, it 

evaluates simple mathematical and statistical parameters used to warn of the 

presence of damage. Then, once damage is detected, it computes the thermal 

image’s first and second spatial derivative and two spatial filters to enhance 

contrast, and to locate and size the defect. Some of the advantages of the proposed 

method with respect to existing approaches include automation in the defect 

detection process and better defective area isolation through increased contrast.  

Details and results from this image processing are reported below. 

 

3.1.1 First simulation: radial heat propagation  

In this preliminary study, we carry out a basic simulation in order to calibrate the 

image processing. We recreate five video sequences composed of 14 frames each. 

These movies represent the heat flow starting from a central point and propagating 

in both directions (vertical and horizontal) towards the extremes of the image. In 

particular, the first movie is associated with a baseline situation, and the remaining 

four are related to four damage scenarios, namely small 45° crack, large 45° crack, 

horizontal crack, and vertical crack. Figure 3.1 shows six consequential frames of 

the baseline video. 
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Figure 3.1 First simulation. Six frames of the video sequence associated with no damage case. 

 

The temperature of the object increases progressively according to a square pattern. 

The temperature increment is of 0.8° Celsius at each step. The other four sequences 

(testing images) consist of similar temperature patterns. After few frames, we 

simulate the presence of a defect. Figure 3.2 shows the 14th frame for these four 

scenarios. 
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Figure 3.2. First simulation. Last frames of the four video sequences that simulate the presence 

of damage. (a) Small 45º defect. (b) Large 45º defect. (c) Horizontal defect. (d) Vertical defect. 

 

Note that the presence of damage would create a local temperature increase in the 

proximity of the damage itself. For the sake of simplicity, we decide not to simulate 

this temperature rise.  

We extract from each frame of each movie the eccentricity value.  

The eccentricity e of an arbitrary 2-D boundary is defined as: 

 

푒 = 1− 	                                                       (3.1) 

           

In Equation 3.1, a is the line segment connecting the two farthest points of the 

boundary, and b is the line segment perpendicular to a and of such length that a box 

passing through the outer four points of intersection of the boundary with the two 
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line segments completely encloses the boundary [22]. 

This parameter is usually exploited to estimate the similarity of a boundary to a 

perfect circle. In our study, we calculate the eccentricity value using the Matlab 

command regionprops and retrieving the property “Eccentricity”. 

It assumes values between 0 and 1. In particular, for a circular shape the 

eccentricity value is equal to zero.  

In laser spot thermography the eccentricity can be used to represent a measure of 

how much the thermal spot on the testing specimen deviates from being circular 

irrespective of the thermal distribution within the spot. (This concept is discussed in 

detail in the next simulation). For the present simulation, we expect a value equal to 

zero for the eccentricity regarding all the baseline frames. In fact (see Equation 3.1), 

a and b present the same length since they correspond to the two perpendicular 

diagonals of the square pattern. In presence of defect, the square shape is cut off and 

thus, the eccentricity value is expected to be closer to 1. 

In image processing, the correlation coefficient is used to establish a relationship 

between two or more images. One of the principal applications is in the area of 

template or prototype matching, where the closest match between a test image and a 

reference image is sought. The closest match can be found by choosing the image 

that yields the largest correlation value [21]. In literature, several correlation 

coefficients establish the degree of correlation. One of the most common is the 

Pearson coefficient, which assesses the linear relationship between two variables. It 

is defined as: 

 

   
YX

YX

YX
YX

YXEYX









),cov(

,
                                

(3.2) 
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where cov(X,Y) is the covariance of random variables X and Y, σX and σY  are their 

standard deviations,  E is the expected value operator, and µX and µY are the means 

of the two variables. 

The correlation coefficient ρX,Y can assume values between -1 and 1. It is equal to 1 

when a linear positive relationship exists between the two variables: if a variable 

increases, the other one increases proportionally. It is equal to -1 (anticorrelation) 

when a linear negative relationship occurs between the two variables: if a variable 

increases, the other decreases proportionally. It is equal to zero when there is no 

tendency for the values of a variable to increase or decrease with the values of the 

second variable. 

For a series of n measurements, Equation 3.2 can be rewritten as:  

 

푟 = ∑ ( ̅)( )
( )

= ∑ ( ̅)( )

∑ ( ̅) ∑ ( )
                           (3.3) 

 

where xi and yi (i = 1, 2, ..., n), x  and y  and sx and sy are respectively the measures, 
the means and the standard deviations of X and Y. When the variables are two-
dimensional such as images, Equation 3.3 becomes:  
 

푟 = ∑ ∑ ( ̅)( )
(∑ ∑ ( ̅) )(∑ ∑ ( ) )

                                  (3.4) 

 

where A and B are two images represented by two matrices, and A  and B  are 

respectively the means of elements of the elements populating matrix A and matrix 

B. In the framework of our algorithm, we expected correlation coefficients close to 

1 for tested regions with no damage and low correlation values for damaged areas.  

Figure 3.3a and Figure 3.3b show the correlation and the eccentricity, respectively, 



Chapter 3. Infrared image simulations 

25 
 

for the five sequences simulated.  

 

 

 
Figure 3.3. First simulation. (a) Correlation coefficient and (b) eccentricity associated with the 

frames of the five video sequences. 
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The correlation coefficient of the testing frames is computed by correlating each 

frame to the correspondent frame of the baseline. For both parameters the presence 

of damage is readily detected. Baseline frames have all eccentricity equal to zero 

and correlation equal to one (auto-correlation). All the frames associated with 

damage denote an eccentricity greater than zero. The highest value (0.71) refers to 

the last frame of the large 45° crack. Similar trend is noticeable for the correlation 

coefficient.  

In the second stage, the proposed algorithm processes those images whose 

correlation or eccentricity deviate from the baseline. The first and the second spatial 

derivatives are calculated by evaluating the image thermal gradient across two 

consecutive pixels along the horizontal and the vertical axis. The first derivative 

reflects the amplitude change rate in an image and thus extracts the edge effect in an 

image. However, in the future perspective to apply the algorithm in pulsed 

thermography testing, the second derivative is preferable as it can further enhance 

the edge effect. As pointed out by Li et al. [16,24], in laser spot thermographic 

images the background heat flow caused by the laser spot is still strong and mixed 

together with the crack when the spot is close to the crack. Thus, the second 

derivative provides higher values and then a more evident visualization of the 

damaged area. Figure 3.4 shows the derivatives along the coordinate axes of the 

first frame (the sixth) that had both parameters significantly different from the 

baseline values relatively to the large 45º defect case. 
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Figure 3.4. First simulation. Spatial derivative of the fifth frame of the sequence that simulate 

the presence of the large oblique crack. (a) First derivative along horizontal and vertical 

direction. (b) Second derivative along horizontal and vertical direction. (c) Absolute values of 

plots in (a). Absolute values f plots in (b). 
 

 The contours of the largest derivatives unfold the position and the size of damage. 

Since the defect was skewed at an angle of 45°, the derivatives in the vertical and 

horizontal direction yield to the same results. The horizontal and vertical grids 

visible in the figures are numerical artefacts due to the temperature edges of the 

original simulated images.  It should be noted that the values of these grids are 

smaller than the values of the crack’s edges. Not shown here, the derivatives of the 

images having higher eccentricity and smaller correlation yield to similar results.  

In order to highlight the contour of the defected area, we also propose to apply two 

image filters. In particular, we applied the Roberts and the Laplacian filters as they 

provide good results. The first filter belongs to the category of directional filter and 

it is suitable for enhancing the edges at 0º, 45º, 90º, ... The kernel associated with 

the Roberts filter is [23]: 
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푹 = 	
	0 0 0	
	0 	−1 0
	0 	1 0

	                                                  (3.5) 

 

The Laplacian filter is used to compute the second derivatives of an image to 

determine the presence of edges in adjacent pixels. The kernel for this filter is [21]: 

 

푳 =
0 −1 0
−1 4 −1
0 −1 0

                                                    (3.6) 

 

Figure 3.5 presents the images obtained from the Laplacian and the Roberts filters 

associated with the last frame of the large oblique crack.  

 

   
Figure 3.5. First simulation. Results of the (a) Laplacian and (b) Roberts filter applied to the 

13th frame of the sequence associated with the large oblique defect. 

 

Both filters show the location of damage clearly. The results presented in the 

previous figures clearly demonstrate the capability to identify the position and the 

size of the crack. 

(b) (a) 
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3.1.2 Second simulation: Gaussian temperature distribution 

In the second simulation, we assumed a Gaussian temperature distribution of a test 

specimen. This simulation intended to move closer to the experimental setup, 

discussed in the next chapter, where an unfocused laser beam has a nominal 

Gaussian distribution of the pulse’s intensity.  

Figure 3.6a shows the temperature distribution of the surface of a pristine specimen. 

Similarly to the first simulation, we assumed the presence of a vertical crack that 

prevented the propagation of the heat flux along a certain direction. Under this 

scenario, we simulated the temperature distribution like the one presented in Figure 

3.6b. Figure 3.6c is the projection of Figure 3.6a and it simulates the thermal 

pattern imparted by a Gaussian laser pulse onto a homogeneous material. Similarly, 

Figure 3.6d is the projection of Figure 3.6b. 
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Figure 3.6. Second simulation. (a) Gaussian temperature distribution over a flat pristine 

surface. (b) Gaussian temperature distribution over the same surface having a vertical defect. 

(c) Simulated thermal image of (a). (d) Simulated thermal image of (b). 
 

Table 1 shows the values of the correlation coefficents and the eccentricity 

associated to both cases. We remeber that an eccentricity equal to zero corresponds 

to a perfect circle, given that a and b have the same length (see Equation 3.1). Any 

deviation from this shape can be inferred to the presence of a structural anomaly, 

and the value of the eccentricity is expected to increase. 
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Table 1 - Values of the correlation coefficient and eccentricity for the Gaussian thermal 

surface distribution.  

 

 Baseline Damage 
Correlation coefficient 1 0.9103 

Eccentricity 0 0.7664 
 

Both parameters indicate the presence of a structural anomaly since they depart 

from the reference values. 

Once the presence of a defect was ascertained, the image processing was applied to 

visualize the location and the size of the defect. Figure 3.7 presents the first and 

second derivatives of both images and the location of damage is visible. As the 

defect extended along the vertical direction, the spatial derivatives along the 

horizontal axis are more sensitive.  
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Figure 3.7. Second simulation. (a) First and second derivative along the horizontal axis for 

undamaged case. (b) First and second derivative along the vertical axis for undamaged case. 

(c) First and second derivative along the horizontal axis for the case with damage. (d) First and 

second derivative along the vertical axis for the case with damage. 
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Finally, Figure 3.8 illustrates the image of the damaged specimen processed with 

the Laplacian (Figure 3.8a) and Roberts (Figure 3.8b) filters.  

 

 
Figure 3.8. Second simulation. Results of the (a) Laplacian and (b) Roberts filter applied to the 

“damaged” surface. 
 

These filters seem to outperform the spatial derivatives in terms of contrast 

enhancement. With respect to Figure 3.4 and Figure 3.5a, Figure 3.7 and Figure 

3.8a do not have the vertical and horizontal grids that were, as is said earlier, 

numerical errors due to the step-wise temperature distribution simulated in the first 

example.

(b) (a) 



 
 

 

Chapter 4                                                                        

Experimental study 

In the present chapter, we present some experimental studies carried out at the 

laboratory of the Civil and Environmental Department of the University of 

Pittsburgh.  

First, we propose three different experiments based on laser spot thermography 

technique with the purpose of detecting surface damages through the application of 

the algorithm validated in the last chapter. Then, we show the application of the 

same algorithm in tensile testing experiments with the aim of monitoring the failure 

behavior of thin samples. 

 

 
4.1 The algorithm  
 

The next two sections recall the principal steps computed by the algorithm for the 

image processing. 

Two work environments are used: the ExaminIR software for the acquisition and 

exportation of the data and the Matlab software for the analysis. 

 

4.1.1 ExaminIR environment 

Once the system setup is prepared, the camera must be connected to the computer 

through a firewire cable. The ExaminIR software must be opened and, before 
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starting the data acquisitions, few object parameters must be set. Instructions for 

their evaluation are showed in Table 4.1.  

 
Table 4.1. Object parameters, setting instruction and unit of measurement 

 

Parameter How to set Units 

Reflected 
temperature 

The reflected temperature is the apparent temperature 
recorded on the sample surface due to the reflection of 
some radiation coming from the surrounding. This radiation 
can alter and even invalidate the measurement. Thus for a 
correct acquisition, it is necessary to take it into account. 
The FLIR User’s manual [24] provides an easy method to 
estimate this reflected temperature. It briefly states:  

o crumble up a large piece of aluminum foil;  
o uncrumble it and put it in front of the sample facing the 

camera;  
o set the emissivity to 1 and measure the temperature.  
o Set this value as reflected temperature in the camera 

settings. 

[°C] 

Emissivity 

The importance of this parameter is discussed above. 
However, it is possible to consult tabulated values available 
in literature for different materials at different temperatures. 
For more accurate measurements, it is possible to set the 
own emissivity value following the procedure described in 
the FLIR User’s manual [24]:  

o attach  a piece of electrical tape of known emissivity 
(usually around 0.97) onto the specimen; 

o set the emissivity mentioned above  in the camera 
device, focus and write down the tape temperature; 

o assuming that the tape and the specimen are in 
condition of thermal equilibrium, point now to the 
sample surface and change the emissivity setting until 

-- 
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the camera displays the same temperature as the one 
previously recorded.  

Humidity 

The presence of water into the atmosphere has effect in the 
absorption of the radiation emitted by the specimen. 
Anyway, if no humidity instruments are available, it is 
possible to set the value at 50%. 

-- 

Distance 
object -
camera 

 

The distance between the specimen and the camera lens is 
doable easily by means of a ruler. See the technical data 
sheet for the camera lens in order to respect the minimum 
focal length. 

[m] 

Atmosphere 
temperature 

 

The temperature of the atmosphere normally has not a big 
influence, assuming of working in standard conditions (-20 
to 400 °C). The estimation is very simple and can be done 
using a common thermometer or reading the room 
thermostat display.  

[°C] 

 

Three other parameters must be set. They regard the acquisition features, and they 

are acquisition time, frame rate (frequency) and window size. The smaller the 

window size is, the higher the frame rate can be. 

At this point, video acquisitions can be recorded, saved and exported as movies or 

as multiple separated images in jpg or csv (comma separated value) format. A 

single video is recorded for each scanning point and the data set is stored in the 

corresponding folder, ready to be elaborated by the Matlab scripts. 

 

 
4.1.2 Matlab environment 

The data analysis and the image processing are completely performed with the 

Matlab software. Eight consequential steps are planned and reported in the block 
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diagram below. The algorithm can be divided in two stages. The first one regards 

the evaluation of mathematical and statistical parameters (step 1 to 6). The second 

regards the image enhancement (step 7 and 8).  

 

Step 1 
Load the data set for the video acquisition 
considered. 
 
Compute four statistical parameters for each frame 
of the video: average temperature of the entire 
frame, standard deviation, skewness and kurtosis 
coefficient. (Skewness and kurtosis are measures 
of outliers of a sample of data. They present a 
spike in those frames where the hot laser spot is 
evident). 
 
Point out the instant in which the laser excitation 
stars looking at the frame presenting the highest 
value (peak) in the statistics feature graphs, named 
afterward first shot frame. 

Estimate the coordinates of the laser spot center 
extracted from the first shot frame. 

Statistical 
parameters  

Starting 
excitation instant 

Laser spot 
coordinates 

 

Step 2 Create the so-called cold frame by computing the 
2D mean of a hundred frames before the excitation 
starts. This is done with the aim of reducing the 
thermal noise and creating a reference frame 
representing the background temperature 
distribution in normal condition (no laser 
excitation). 

“Cold” reference 
frame 
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Step 3 Cut out a small region of interest from the entire 
frame keeping the center of the laser spot (of know 
coordinates, see Step 1) in the middle of the ROI 
(region of interest). This step helps in the 
computational time. 

ROI cut out 

 

Step 4 Load the sequences of images surely regarding 
sound areas. Calculate the first shot frame for each 
baseline video. Compute the 2D mean between the 
different acquisitions for each frame after the first 
shot one with the aim of reducing the thermal 
noise and recreating a reference video, named 
baseline video. 

Baseline 
reference video  

 

Step 5 
Load the data set for the acquisition correlated to 
the scanning point considered.  

Compute the correlation coefficient comparing the 
first shot frame of the data sequence considered 
and the one selected from the baseline video 
(Matlab command: corr2). If the correlation 
coefficient lies below a fixed threshold then mark 
the acquisition as suspected. 

Correlation  

 

Step 6 
Load the data set for the acquisition correlated to 
the scanning point considered.  

Compute the eccentricity of the laser spot (Matlab 
command: regionprops). Compare this parameter 
to the eccentricity regarding the first shot frame of 
the baseline video. If the value lies below a fixed 
threshold then mark the acquisition as suspected. 

Eccentricity  
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Step 7 
Load the data set from the acquisition marked as 
suspicious. 

Compute the first and second derivatives of the 
first shot frame in both directions, vertical and 
horizontal. 

Visualize the gradients in color scale images to 
better visualize the damaged area.  

Derivatives  

 
 

Step 8 
Load the first shot frame of the flagged acquisition 
and apply the Roberts and Laplacian spatial filter 
(Matlab command: imfilter).  

Visualize the results in gray scale images to 
highlight the defect edges. 

Filtering  

 

Next sections show a practical application of the above and the results obtained for 

laser spot and tensile testing. 

 

 

4.2 Laser spot thermography experiments  
 

We report two tests conducted onto a unidirectional carbon fiber plate and one test 

regarding a bidirectional glass fiber reinforced composite material widely used in 

the aeronautic industry. 

Following we provide the description of the experimental setup with details about 

the main devices and the explanation of the problems related to the acquisition of 

the images. Then, we show the experimental results. 
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4.2.1 System setup 

A unidirectional carbon fiber plate of dimensions 605 x100 x 2 mm and a 

bidirectional glass reinforced composite plate of dimensions 600 x300 x 3 mm are 

inspected. Surface damages were previously performed by means of a cutter or by 

the impact of a falling mass onto the plates. For each test, the specimen is fixed to a 

marked horizontal guide to ease the scan of the specimen. For each scanning point, 

few seconds sequences are recorded in order to capture enough information about 

the temperature distribution prior and after the release of the laser pulse.  

A 10 Hz repetition rate Nd:YAG pulse laser operating at 1064 nm wavelength and 

intensity equal to 3.85 mJ/mm2 is used to impart a single 8 nanosecond 7 mm 

diameter pulse on the test specimen. The use of a large circular spot instead of a 

focused line or point as conventionally done in laser-spot thermography [6,8,15,16] 

allows to increase the scanning speed because the region of interest (ROI) 

associated with each scanning point is greater.  

The infrared images are recorded with a FLIR SC660 camera with an aSi 

(amorphous silicon) infrared detector and thermal sensitivity (NETD) lower than 30 

mK at room temperature. The full frame dimensions are 640 x 480 pixels and the 

corresponding sampling frequency is 30 Hz. The thermograms are transferred to a 

PC via FLIR ExaminIR software thanks to a firewire connection. Figure 4.1 shows 

the components of the system setup.  
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Figure 4.1. Experimental setup: marked horizontal guide, composite plate, laser source, 

infrared camera, cardboard box. 

 

The distance between the camera and the test specimen was approximately 300 mm, 

the minimum required for a well focused image according to the objective mounted 

on the camera (see the FLIR User’s manual [25]). 

Despite the dark surfaces, the specimens present lightly reflective faces. Radiations 

from the surroundings can hit these reflective planes and reach the infrared device 

altering the temperature measure. Thus, the entire system setup is enclosed by a big 

cardboard box to screen the infrared radiation from possible external sources. 

Moreover, to measure temperature accurately the following object parameters must 

be set: emissivity, reflected temperature, humidity and atmosphere temperature. The 

most important is the emissivity value that represents a measure of how much 

radiation is emitted from the object, compared to that from a perfect blackbody at 

the same temperature: 

 

휀 =                                                    (4.1) 
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where W is the radiation power measured in Watt/m2  according to the Stefan-

Boltzmann’s law: 

 

푊 = 휎푇                                              (4.2) 
 

T stands for the temperature of the black body and σ is a constant value equal to 

5.67 ٠10-8 Watt/ (m2 K4). The higher the temperature, the more the power emitted. 

The camera output signal mostly depends on the emissivity value. In particular, for 

the temperature measure, the infrared device takes into account three terms: 

radiation emitted from the object, radiation from the surrounding reflected by the 

object and radiation emitted from the atmosphere. If the specimen is well screened, 

the last two terms can be neglected. Then the output signal can be approximated as: 

 
푈 = 퐶	휀	푊                                          (4.3) 

 

where C is a constant. 

Ideally, the emissivity can assume values between 0 and 1 and it is a function of the 

temperature (see Equation 4.1 and Equation 4.2). Normally, object materials and 

surface treatments exhibit emissivity ranging from approximately 0.1 to 0.95. A 

highly polished (mirror) surface falls below 0.1, while an oxidized or painted 

surface has a higher emissivity. (Human skin exhibits an emissivity 0.97 to 0.98). 

Non-oxidized metals represent an extreme case of perfect opacity and high 

reflexivity, which does not vary greatly with wavelength. Consequently, the 

emissivity of metals is low, only increasing with temperature. For non-metals, 

emissivity tends to be high, and decreases with temperature. 
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4.2.2 First study: unidirectional CFRP plate, detection of surface cracks 

The analysis presented here refers to the unidirectional carbon fibre plate. Surface 

damages were created by means of a cutter performing four cracks of a width gap 

and a depth of approximately 0.5 mm. The length of these cracks varied from 4 to 

150 mm. In total there are 16 scanning points, the first eight associated with pristine 

areas and the last eight associated with damaged areas. Figure 4.2 schematizes the 

defects on the surface of the plate and the scanning point locations (representation 

not in scale). 

 

 
 
 
 
 
 
 
 
 
 

Observing the instructions reported in Table 4.1, the object and acquisition 

parameters are set as follow: 

 
Table 4.2. Object parameters and acquisition features set for the first experiment 

Object parameters 

Reflected temperature [°C] 23 
 Emissivity 0.86 
Humidity 50% 

Distance [m] 0.3 
Atmosphere temperature [°C] 23  

Figure 4.2. Schematization of the defects (blue color) and the scanning points 

(transparent circles) for the first experiment.  

16 1 2 3 … 
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Acquisition parameters 

Acquisition time [s] 5 
Frame rate [Hz] 30 

Window size [pixel x pixel] 640x480 
 

Following the procedure explained in the previous section, a baseline video is 

created by averaging the acquisitions associated with the eight pristine 

regions of the sample to reduce the effect of thermal noise. For each scanning 

point the mean temperature, variance, skewness, and kurtosis of the frames are 

computed. Figure 4.3 shows these features as a function of the frame number for an 

acquisition associated with a pristine zone.  
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Figure 4.3. (a) Average temperature, (b) variance, (c) skewness, (d) kurtosis of the ROI of the 

video sequence associated with one of the pristine areas of the test specimen. 
 

When compared to the average temperature, which is a parameter widely used in 

active and passive thermographic methods, the three statistical parameters denote a 

much sharper increase immediately after the laser pulse.  

They are used to identify the frame of the sequence taken immediately after the 

release of the laser beam. 
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In particular, the skewness measures the asymmetry of a data set around the data 

mean and it is compute as: 

 

푦 = ∑ ( ̅)
                                                (4.4) 

 

where N is the number of elements of the distribution 푥̅ is the mean and σ the 

estimated standard deviation [26]. 

Negative values represent data that are skewed leftward with respect to the mean. 

Positive values represent data that are skewed rightward, as it happen in all the laser 

spot thermography tests for the local increase of temperature. The skewness 

coefficient of the normal distribution (or any perfectly symmetric distribution) is 

zero. Thus, positive skewness values are expected. 

The kurtosis is a measure of how outlier-prone a distribution is and it is defined as:  

 

푘 = ∑ ( ̅) − 3                                              (4.5) 

 

The kurtosis of the normal distribution is equal to three. Distributions that are less 

outlier-prone have kurtosis lower than three. Conversely, distributions that are more 

outlier-prone than the normal distribution have kurtosis greater than three, as the 

present situation has. 

For each scanning point, the frame with the largest skewness and kurtosis is picked 

and processed by using the two-stage algorithm proposed. Figure 4.4 presents 

images from four ROIs of 90 x 90 pixels, covering an area of 625 mm2.  
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Figure 4.4. Thermal images of four scanned points. (a, b) Undamaged areas. (c, d) Damaged 

areas. All images had the highest kurtosis and skewness of their respective sequence. 
 

Figure 4.4a and Figure 4.4b are recorded from sound regions, whereas Figure 4.4c 

and Figure 4.4d. are associated with two damage cases. The overall temperature 

of the damage cases is higher. The temperature difference is largely due to 

the presence of the defect that entraps heat and partially due to time gap 

between the laser shot and the infrared snapshot.  

Figure 4.5a shows the correlation coefficient associated with the 16 

scanning points.  
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Figure 4.5. (a) Correlation coefficient and (b) eccentricity associated with the 16 scanned 

points for the test object of the first experiment. 
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All 16 frames are compared to the baseline frame. The first eight points 

refer to damaged areas. A clear step between damaged and undamaged 

cases is visible and it is possible to set a threshold level for instance at 

0,980. Correlation coefficients that fall below the threshold, warn about the 

possible presence of a defect. Figure 4.5b shows the eccentricity as a 

function of the scanning point. The discrimination between the two 

structural states is not as evident as in Figure 4.5a. Moreover, the 

eccentricity of the sound regions is expected to be close to zero. The reason 

for such a discrepancy is two-fold. First, the laser spot is not perfectly 

circular probably due to the optics of the laser. Second, the directionality of 

the fibers implies that the thermal conductivity of the specimen is not 

homogeneous. Such the thermal flow has a directional pattern. Nonetheless, 

the proposed algorithm should not be impaired as it relies on the 

comparison between testing and baseline images.   

Figure 4.6 displays the absolute first and second derivatives of the 

temperature relative to the four structural conditions in Figure 4.4. 
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Figure 4.6. Absolute first derivative along x (leftmost column) and along y (second column). 

Absolute second derivative along x (third column) and along y (rightmost column). (a) 

Scanning point 10 (no damage). (b) Scanning point 11 (no damage). (c) Scanning point 2 

(damage). (d) Scanning point 3 (damage). 
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While the first derivative produces false positives around the circular edge 

of the spot, the second derivative clearly highlights the presence of the 

vertical cracks. 

Figure 4.7 shows the results of the Laplacian and Roberts filters applied to 

the frames presented in Figure 4.4. 
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Figure 4.7. Thermal image after the application of the Laplacian filter (left column) and 

Roberts filter (right column). (a) Scanning point 10 (no damage). (b) Scanning point 11 (no 

damage). (c) Scanning point 2 (damage). (d) Scanning point 3 (damage). 
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Both identify properly the location of the crack. Overall, the application of 

the Laplacian filter outperforms the Roberts filter, although the latter seems 

to better isolate the contour of the defect. 

 

 
4.2.3 Second study: unidirectional CFRP plate, detection of impact damage  

In the present section, the same carbon fiber composite plate is inspected, but the 

region scanned (an area of approximately 110 x 80 mm) is different. Impact-related 

damage of almost 25 J was induced by means of a falling weight. The plate results 

visibly compromised for an area of about 1 cm2.  

Thirty-seven acquisitions are recorded: nineteen for the first row and eighteen for 

the second. The spatial increment between each scanning point is 0.5 mm with a 

little overlap of the spots not to lose information. A sketch showing the scanning 

process is provided in Figure 4.8. 

 
 
 
 
  
  
 
 
 
 
 
 
 
 
 

Figure 4.8. Schematization of the scanning points for the second experiment and zoom of the 

damaged area. 
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Acquisitions marked as suspected are expected to be found between the third and 

the fifth scanning point and between the 22nd and the 25th point. 

The object parameters are the same as the first experiment (see Table 4.2). The 

acquisition parameters, instead, are: 

 
Table 4.3. Acquisition parameters for the second experiment 

 

Acquisition parameters 

Acquisition time [s] 3 
Frame rate [Hz] 120 

Window size [pixel x pixel] 640x60 
 

While using a reduced window size (640 x 60 rather than 640 x 480 pixels), it is 

possible to exploit a higher frame rate. The aim is to verify whether a higher 

sampling frequency yields more accurate temperature measurements as soon as the 

laser beam is released. Unfortunately, the laser shot and the sampling frame rate are 

not synchronized and this introduces problems while seeking for the first shot 

frame. The peaks in the average temperature, standard deviation, skewness and 

kurtosis graphs do not occur always in correspondence of same frame. Thus, there 

is not a unique estimation of the instant of the laser fire. Due to the bad 

synchronization between the laser pulse and the camera sampling time, some 

thermograms present a smaller or distorted hot spot; some other a well expanded 

hot circle. Figure 4.9 shows the phenomenon. 
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Figure 4.9. The problem of synchronization. Two consecutive frames of acquisition number 6 

regarding a pristine area: (a) Frame 297 identified as first shot frame by skewness and 

kurtosis parameters; (b) Frame 298 identified as first shot frame by average temperature and 

variance parameters. 
 

For the same video sequence, the average temperature graph and the variance graph 

present peaks in correspondence of the frame 297, skewness and the kurtosis graph 

in correspondence of the frame 298. Since the last two parameters can measure the 

outlier values in a distribution, it seems more reasonable to select the frame pointed 

out by these two statistical values as the instant of the excitation start (frame 298 in 

this case). 

Once the first shot frame is picked, the thermal image is process. The region of 

interest in this case is 60 x 60 pixels.  Figure 4.10 shows the first shot frame for the 

recreated baseline data sequence (see step 4 of the algorithm previously discussed). 

 

(a) (b) 



Chapter 4. Experimental study 
 

56 
 

 
Figure 4.10. First shot frame for the recreated baseline video. 

 

Each acquisition is compared to the frame above (Figure 4.10). Figure 4.11 presents 

the correlation coefficients for each scanning point. 
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Figure 4.11. (a) Correlation coefficient and (b) eccentricity associated with the 37 scanned 

points for the test object of the second experiment. 
 

Acquisitions corresponding to the scanning point 5 and scanning point 23 can be 

considered suspicious since they present high eccentricity value and low correlation 

(especially acquisition number 5). However, these parameters do not stand out 

clearly from the ones regarding the sound areas. No threshold values can be 

defined. This fact compromises the reliability of the algorithm. For example, 

inspection point 29 can be considered as a false positive acquisition. It presents an 

eccentricity higher and a correlation coefficient lower than point 23 (damage case), 

but it is known to concern to a pristine area around 2 cm far from the damage. The 

image enhancement, though, can help in certain situation in visualize the defect. 

Figure 4.12 shows four different scanning points: two undamaged situations on the 

left and two damage situations on the right.  
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Figure 4.12. Thermal images of four scanned points. (a, b) Undamaged areas. (c, d) Damaged 

areas. All images had the highest kurtosis and skewness of their respective sequence. 
 

The heat is entrapped and a local increase of temperature is remarked by the 

thermal image corresponding to point 5 (see Figure 4.12c). For scanning point 23 

this is not so appreciable. The same situation occurs while computing the first and 

second derivatives: the temperature gradient presents outstanding values in 

correspondence of the edges of the defect for acquisition 5 but not for acquisition 

23. Figure 4.13 illustrates the above. (Image processing for pristine areas are here 

omitted since it yields results similar to the one proposed in the previous study, see 

Figure 4.6a,b and Figure 4.7a,b). 
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Figure 4.13. Absolute first derivative along x (leftmost column) and along y (second column). 

Absolute second derivative along x (third column) and along y (rightmost column). (a) 

Scanning point 5 (damage). (b) Scanning point 23 (damage). 

 

The impact of the falling mass creates a crushing of fiber in the composite plate, 

and in extremely cases, it can generate tears along the fiber direction. Between the 

tear faces, the heat can be entrapped due to the low conductivity of the air. Video 

sequence 5 represents this situation. The red vertical lines correspond to the heat 

accumulation between the fibers.  When the impact causes just a compression of the 

layers of the composite material, the heat is able to flow into the specimen without 

abrupt discontinuities. Video sequence 23 represents this scenario. The laser beam 

hits the compromised area but in correspondence of the notch and not of the crack, 

so that, the damage is not easily recognized. No false positives occur in this image 

processing in the second derivative images. 

Laplacian filter reacts same way as the thermal gradients, revealing the edges for 

scanning point 5 but not for scanning point 23. Roberts seems to be the most helpful 
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procedure since it shows a clearly distorted circular spot. The vertical lines lie right 

in correspondence of the tears present in the specimen. 

 

 

 

Figure 4.14. Thermal image after the application of the Laplacian filter (left column) and 

Roberts filter (right column). (a) Scanning point 5(damage). (b) Scanning point 23 (damage). 

 

It is possible to conclude that for the impact damage the algorithm is not reliable at 

all. The mathematical and statistical parameters can help in the evaluation of the 

damaged area but some false positive values can occur. The image enhancement 

based on the estimation of the first and second derivative and on the Laplacian filter 

can fail in detecting the defect boundary when it concerns only a crushing of fibers. 

Better results can be obtained by the application of the Roberts filter. 
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4.2.4 Third study: bidirectional GFRP plate, detection of different damages 

Glass fiber reinforced composite materials are widely used in the production of 

aerospace structures. Several quality controls are required. In this section, a surface 

breaking crack and three impact related damages are realized. The crack is 

performed by means of a little milling cutter and it presents a gap and a depth of 1 

mm, a length of 10 mm approximately. The other three damages are performed by 

mean of a falling weight that impacts perpendicular onto the surface of the 

composite plate. The impact energy is approximately 10 J for the first impact 

(Impact 1, see Figure 4.15) and 25 J for the second and the third (Impact 2 and 

Impact 3).Each impact yields a damaged zone of about 1 cm2. 

 

 

In total, there are 23 data sequences, in particular: 13 inspections in proximity of 

defects and 10 baseline inspections. 

The object and the acquisition parameters are the same as the previous experiment 

(see Table 4.2 and Table 4.3. Acquisition parameters for the second experiment). Due 

to the high frame rate, synchronization problems come out as explained in the 

second study. The first shot frame to be compared to the baseline-recreated video 

Figure 4.15. Schematization of the defects and the scanning point 

positions for the third experiment. 

Crack  

Impact 1 
Impact 2 

Impact 3 
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and to be processed according to the algorithm thus far discussed, is flagged by the 

maximum value of the kurtosis coefficient.  

Figure 4.16 presents the results for the computation of the correlation coefficient 

and the eccentricity values.  
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Figure 4.16. (a) Correlation coefficient and (b) eccentricity associated with the 23 scanned 

points of the test object of the third experiment. 
 

Video sequence 1 and 2 regard two laser pulses respectively addressed to the left 

and to the right side of the crack. The cut is clearly pointed out thanks to correlation 

values that fall below 0,900 (respectively 0,878 and 0,883) and to an eccentricity 

higher than 0,415. Acquisition 3, 4 and 5 regard the scanning points around the first 

impact damage. Correlation coefficients are still under a threshold level settable at 

0.988. Eccentricity is higher than the value for the crack situation. The same 

situation occurs for the second impact (acquisitions 6, 7, 8 and 9) even if the 

correlation coefficients lie closer to the threshold. The best scenario regards the 

third impact damage (points 10 to 13), which presents on average the lowest 

correlation coefficients (0,863 for video sequence 12) and the highest eccentricity 

values (0,4646 for acquisition 13).   

Thus far, the results for the present experiment are very promising since allow the 

operator to identify damaged areas automatically without observing each frame 

acquired. And this is one of the main goals of the present work.  
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In contrast with the studies reported in the last sections, for this type of material the 

image enhancement procedure turns out not to be helpful in visualizing the defect 

neither for the crack nor for the impact related damages. Figure 4.17 presents a 

thermogram for a pristine zone and a thermogram for the damaged area. Figure 4.18 

the thermal gradients computed in both directions vertical and horizontal. 

 

 
Figure 4.17. Thermal images of two scanned points. (a) Undamaged area (video sequence 21). 

(b) Damaged area (video sequence 8). All images had the highest kurtosis and skewness of their 

respective sequence. 
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Figure 4.18. Absolute first derivative along x (leftmost column) and along y (second column). 

Absolute second derivative along x (third column) and along y (rightmost column). (a) 

Scanning point 21(no damage). (b) Scanning point 8 (damage). 

 

The heat generated by the laser flows rapidly into the specimen along the fibers 

revealing the reticular structure of the plate. Horizontal stripes are evident in the 

thermal images suggesting the direction of the fiber in the upper layer. Vertical 

stripes are a little less visible. This preferential pattern for the heat propagation 

probably hides the distortion expected for the presence of the defect. Figure 4.19 

provides the results of the application of the Laplacian and the Roberts filter. 
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Figure 4.19. Thermal image after the application of the Laplacian filter (left column) and 

Roberts filter (right column). (a) Scanning point 21 (no damage). (b) Scanning point 8 

(damage). 

 

The 90° fiber layers stand out in the circular area heated by the laser beam. Roberts 

filter keep only the horizontal lines designing the direction of the fiber on the 

sample surface.  
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4.3 Tensile test experiments 
 

The tensile fracture behavior of a dual phase high performance steel is investigated 

here with the aid of the infrared thermography.  

The infrared camera is employed for in-situ monitoring of progressive damages of 

the samples during monotonic loadings. In particular, the exploited NDE technique 

is used to facilitate a better understanding of damage evolution in tensile testing. 

 

 

4.3.1 System setup 

The testing material used for this investigation is a dual phase high performance 

steel. Dual phase steel (DPS) features a (soft) ferrite microstructure, with a matrix 

containing islands of martensite (increasing the tensile strength) in the secondary 

phase (with proportional volume fraction increase in analogue to tensile strength). 

Figure 4.20 presents a schematic view of the production process and the resulting 

material microstructure. 

 

  
Figure 4.20. Production process (left) and microstructure scheme (right) for a DPS 
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Dual-phase steel presents a low yield to tensile strength ratio, high tensile strength, 

work hardening rate and strain rate sensitivity (the faster it is crushed the more 

energy it absorbs), and good fatigue resistance. Due to these properties, DPS is 

often used for automotive industry, especially for body panels, wheels, and 

bumpers. 

Figure 4.21 presents the standardized geometry of the testing samples and their 

range of chemical composition in weight percentage. 

 

 

Figure 4.21. The tensile coupon of high performance steel. The drawing of sample dimensions 

and the chemical composition. 

 
During the test, the specimen is grabbed by the two grips of the tensile testing 

machine. The IR camera is addressed to the sample and used to monitor surface 

temperature changes. It is connected through a firewire cable to a PC in order to 

record and save the image sequences. The high frame rate guarantees instant image 

capture during tensile testing. Figure 4.22 illustrates the principal components of the 

system setup. 

C 0.1-0.15 
Mn 1-1.5 
Si 1-1.5 
Al 0.02-1 
Cr 0.2-0.5 
Mo 0.1-0.3 
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Figure 4.22. Picture and schematization of the experimental setup: tensile testing machine, 

infrared camera, and connected control units. 

 

A secondary computer is connected to the tensile testing machine. The experiments 

are conducted under displacement control at a crosshead speed of 4 mm per minute 

at room temperature until fracture. The specimens fail around the second minute of 

stimulation. Data about the stress and the elongation of the sample are recorded and 

compared to the camera data outputs. The results of the analysis and the image 

processing for this study are reported in the next section. 

 

 

4.3.2 Tensile testing results 

Thanks to the data collected through the tensile machine control, it is possible to 

draw the characteristic curve of the material. Figure 4.23 presents the tensile stress 

trend as a function of the strain and of the time of the DPS specimen. 
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Figure 4.23. Stress-strain curve (blue line) and stress trend as a function of time (red line). 

 
The tensile failure behavior shows an initial elastic region for the first couple of 

seconds, a yielding stress at around 450 MPa, a continual stress increase before 

reaching ultimate tensile stress (UTS) equal to 900 MPa after around 90 seconds of 

loading and finally a gradual stress decrease until final failure.  The failure occurs 

after 110 seconds. The mechanical behavior, described by the curves of Figure 4.23, 

is coupled to the thermal trend reconstructed through the infrared data acquired. 

For the recording of the thermograms, the object and the acquisition parameters are 

set on the IR camera as Table 4.4 shows. 
 

Table 4.4. Object and acquisition parameters for the second experiment 

 

Object parameters 

Reflected temperature [°C] 23 
 Emissivity 0.65 
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Humidity 50% 
Distance [m] 1 

Atmosphere temperature [°C] 23  
 

Acquisition parameters 

Acquisition time [min] 3 
Frame rate [Hz] 120 

Window size [pixel x pixel] 640x60 
 

For this kind of test, the image processing algorithm has been slightly modified. 

The eccentricity value is no more computed since no circular hot spots are 

expected. The statistical parameters are calculated now in order to flag the instant of 

the sample failure. Figure 4.24 presents average temperature, skewness and kurtosis 

trend for the considered DPS sample.  
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Figure 4.24. (a) Average temperature, (b) variance, (c) skewness, (d) kurtosis of the ROI from 

the video sequence regarding a DPS sample . 
 

In the graphs above, outlier values create spikes exactly in correspondence of the 

breaking instant of the tested sample (second 110.3) according to the stress-strain 

curve (see Figure 4.23). As explained in the first chapter, the work done to the 

system by plastic deformation is identified as the major contribution to heat effect.  

Passing the time the sample section interested by the plastic deformation increases 

and thus, the energy dissipation let the specimen temperature augments (see Figure 

4.24a). The highest value is recorded for the last frame before failure. Once the 

sample fails, the tensile machine stops working and no more displacement is 

applied to the sample. The failure extremities rapidly cool down and the 

temperature trend presents a negative slope. The instants right before the breaking 

correspond to moments of high concentration of stress. The material microstructure 

is changing and the friction between the crystalline planes causes part of the 

dissipated energy. The largest values for the variance, skewness and kurtosis are 

related to these moments. 

The correlation coefficient is computed, as usual, comparing each frame of the 

video sequence to a reconstructed reference frame evaluated by averaging more 
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than 200 frames acquired before the displacement application. Figure 4.25 shows 

the correlation coefficient trend overlapped to the stress trend, both as function of 

the time. 

 

 
Figure 4.25. Engineering stress trend (blue line) and correlation coefficient trend (red line) as a 

function of the time.  
 
The results from this diagram are quite promising. Since the temperature in the 

sample increases, the correlation to the reference frame assumes values smaller and 

smaller. In correspondence of the failure a little spike appears. Then, the 

displacement is stopped and the sample regains the initial elastic elongation. The 

cooling down starts; the sample reaches the thermal equilibrium with the room 

temperature as the initial condition. The correlation coefficient presents a positive 

slope.  

In detail, it is possible to divide the area of the diagram in Figure 4.25 into four 
regions (neglecting the data after the fracture) and to approximate the correlation-
time curves with linear segments connected each other at the subdivision 
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boundaries. Every change in the slope of a segment corresponds to the transition 
from a particular state to another.  

Figure 4.26 illustrates the above. 

 

 
 

Figure 4.26. Four subdivisions for the correlation  coefficient trend compared to four changes 

in the sample response to the displacement.  
 
The first zone regards the elastic deformation: the segments approximating the 

stress-time and the correlation trends present a negative high slope. The slope 

decreases in the second region regarding the yielding and the hardening phase, 

remaining negative. Then, a plateau suggests a stationary condition of the sample: 

no increase in stress, no temperature increase and consequently no correlation 

decrease. The last subdivision corresponds to the necking of the sample when the 

engineering stress tends to fall down and the correlation coefficient cross the zero 

level to reach larger and larger negative values until failure. The results are quite 
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promising since the correlation coefficient seems to describe well the stress trend in 

the specimen. This has been proven also for other four tests on similar DPS 

samples. The fracture in these experiments is easily visible at naked eye. The 

evaluation of the thermal gradients and the application of the spatial filtering do not 

intent to detect the defect but can be exploited to visualize the temperature 

evolution passing the time. Figure 4.27 reports thermograms grabbed at three 

different consequential instants (named afterwards hot spot, heat column and 

fracture). The region of interest regards only the gauge section. 

 

 

Figure 4.27. Temperature distribution on the sample surface at three different consequential 

instants (respectively top to bottom). The color bar indicates the temperature range [°C]. 
 
A hot spot appears right in the mid section of the sample (pixel coordinates (4,67)) 

after several seconds of elongation (around the 90th second). Then, the stress in the 

specimen increases realizing a heat column running along the width of the sample 

and getting more and more visible until few seconds before the failure. Once the 

sample fails, the fracture faces depart from each other and start to cool down.  
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An increase of temperature occurs also at the bottom left side of the sample. This is 

believed to be due to the misalignment of the sample. Alignment of the test 

specimen in the testing machine is critical, because if the specimen is misaligned, 

either at an angle or offset to one side, the machine exerts a bending force on the 

specimen. The flexional stress component is pointed out by the infrared camera. 

The qualitative image processing, regarding the second stage of the discussed 

algorithm, helps in visualize the evolution of the heat passing the time. 

Figure 4.28, Figure 4.29 and Figure 4.30 present the absolute derivatives in both 

directions x and y and the results of the application of the Laplacian and Roberts 

filter for the three thermograms. 

 

 

 

Figure 4.28. Hot spot. (Top to bottom). Absolute second derivative in x direction and in y 

direction. Laplacian and Roberts filter. 
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Figure 4.29. Heat column. (Top to bottom). Absolute second derivative in x direction and in y 

direction. Laplacian and Roberts filter. 
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Figure 4.30. Crack. (Top to bottom). Absolute second derivative in x direction and in y 

direction. Laplacian and Roberts filter. 

 

Computing the second derivatives, only the highest values of temperature changes 

are highlighted. Only the heat related to the failure evolution is pointed out; no 

features are showed in the bottom left part of the ROI. However, the results from 

the spatial filters could be clearer with the application of a smoothing filter. It could 

be helpful, in this study, to level the boundary of the warm region for a better 

visualization of the warm area.  

Looking at more consequential frames, it is possible to appreciate the evolution of 

the heated region along the width of the gauge section and then to carry out 

conclusions about the state of damage of the area especially interested by the plastic 

deformation passing the time. As reported in literature [1], material dissipativity can 

be considered and used as a highly sensitive and accurate manifestation of damage. 

The physical process of degradation can be monitored by the infrared camera and 
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evaluated through the dimension of the heated area. Moreover, it is demonstrated 

above, that the correlation coefficient trend, computed in the first stage of the 

present algorithm, can add more information about the state of damage of the 

sample as it is related to the stress trend. 

 The lower is the coefficient, the higher is the damage. 



 
 

 

Chapter 5                                             

Conclusions and future works 

We present in this chapter a discussion about the results obtained from the 

experiments thus far proposed and an initial study for a possible future development 

regarding an image processing algorithm suitable for other nondestructive testing 

techniques.  

 

 

5.1 Discussion of the results 
 

In the present work, we proposed an image processing  algorithm for thermograms 

acquired during laser spot thermography and tensile test.  The principal purpose of 

this study was the evaluation of the state of damage of the testing object in an 

automatic way. Infrared cameras are able to display the damaged areas but the 

observation of every single frame recorded requires a long time and an expert 

operator. We developed a two-stage algorithm able to flag automatically the 

presence of the defect through a quantitative analysis of the thermal data. 

Mathematics and statistical parameters departing from reference values regarding 

sound areas identified damage situations. In most of the experiments, it was 

possible to set a threshold for the correlation coefficient to separate baseline from 

damage scenarios.  We obtained better results while inspecting the composite plates 

in correspondence of superficial induced cracks. The algorithm was not reliable at 

all in the case of impact related damage where several false positive identifications 
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occurred. In the second stage, only the frames marked as suspicious were analyzed 

with the aim of highlighting the defect signature. The computation of the spatial 

second derivative gave results more successful than the computation of the first 

derivative in concordance with the experiment reported in literature. However, for 

the bidirectional composite plate this qualitative analysis failed in the definition of 

the damage boundary. This was probably due to the preferential pattern for the heat 

propagation along the fiber directions that hides the distortion in the temperature 

distribution expected for the presence of the defect. Overall, the application of 

the Laplacian filter often outperformed the Roberts filter, although the latter 

seemed to better isolate the contour of the damaged area. 

In conclusion, we can state that depending on the type of the defect and on 

the material tested, the algorithm gave more or less promising results. In 

general, the correlation coefficient was as a good indicator of the state of 

damage of the tested object and surprising results were obtained also in 

tensile testing where a relationship between the correlation trend and the 

stress trend as a function of the time was worked out. 

More studies must be conducted in order to estimate the effective reliability 

of the presented image processing. Interest can be addressed to different 

materials, different types of damages and different nondestructive 

evaluation approaches. 
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5.2 Future developments 
 

It could be interesting to develop algorithms for thermal image processing also in 

support of other nondestructive technique. Here is presented a primitive study for an 

algorithm suitable for infrared images from vibrothermography or thermosonics 

testing.  

Vibrothermogrphy and thermosonics NDT techniques entail the mapping of a 

structure’s surface temperature while the structure is subjected to forced mechanical 

oscillations. Regions of imperfection convert energy to heat through viscoelastic 

dissipation, collision of internal free surfaces in cracks or other mechanisms. 

Discontinuities may appear hot when the surface temperature is mapped [1]. 

Considering this phenomenon, we decide to exploit the wavelet transformation, 

with the aim of extracting signal details representing the damaged areas. First, we 

describe briefly the modified algorithm based on the discrete wavelet 

transformation (DWT). The main purpose remains the automatic detection of 

defects, but some substantial changes with respect to the algorithm discussed 

previously are necessary. Then we provide an application of this algorithm to an 

infrared image characterized by some hot spots.  

 

 

5.2.1 Overview about the discrete wavelet transformation 

 

The discrete wavelet transformation (DWT) is a multi-resolution analysis technique 

that can be used to obtain the joint time-frequency information of a signal. When 

compared to traditional Fourier transforms that lose the time resolution of non-

stationary signals, wavelet transforms retain both the time and the frequency 
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resolution. The wavelet transforms decompose the original signal by computing its 

correlation with a short-duration wave called the mother wavelet that is flexible in 

time and in frequency.  Figure 5.1 presents the most common mother wavelet 

families.  

 

 
Figure 5.1. Wavelet families. (a) Haar. (b) Daubechies4. (c) Coiflet1. (d) Symlet2. (e) Meyer. (f) 

Morlet. (g) Mexican hat.  
 

The DWT may be intuitively considered as a decomposition of a function (signal) 

following hierarchical steps (levels) of different resolutions (Figure 5.2a). 
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Figure 5.2. (a) Wavelet decomposition by filter bank tree; (b) signal reconstruction from 

wavelet coefficients; (c) reconstruction of original signal. 
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At the first step the function is decomposed into wavelet coefficients; low-

frequency components (low-pass filtering) and high-frequency components (high-

pass filtering) of the function are retained. The signal is therefore decomposed into 

separate frequency bands (scales). The filtering outputs are then downsampled. The 

number of wavelet coefficients for each branch is thus reduced by a factor of 2 such 

that the total number of points at a given level is that of the original signal. From 

the decomposed signal is possible to extract only the feature desired. For example, 

de-nosing and compression of the original signal can be achieved if only a few 

wavelet coefficients representative of the signal are retained and the remaining 

coefficients, related to noise, are discarded. The next step regards the process of 

reconstructing the time signal from the set of wavelet coefficients considered. Figure 

5.2. (a) Wavelet decomposition by filter bank tree; (b) signal reconstruction from wavelet 

coefficients; (c) reconstruction of original signal.Figure 5.2b illustrates it. The 

coefficients are upsampled to regain their original number of points and then passed 

through a reconstruction lowpass filter, DWLF’, and reconstruction highpass filter, 

DWHF’.  Reconstruction by using the decomposition level α (scale 2α), for 

example, is achieved by setting the wavelet coefficients from other scales equal to 

zero. Finally, the linear combination of the reconstructions from various 

decomposition levels results in the reconstruction of the original time signal [27].  

 

 

5.2.2 Simulations for vibrothermography or thermosonics technique 

 

The simulation proposed in this section regards the cutting out thermograph in 

Figure 5.3. Since the external stimulus starts to excite the tested object, the 



Chapter 5. Conclusions and future works 
 

86 
 

discontinuities appears as hot spots and can be detect by computing the statistical 

parameters exploited in the previously presented experiment.  

 

 
Figure 5.3. Third simulation. Hot spots in correspondence of the fingertips of a hand leaned 

behind a metal thin plate. The heat from the hand propagate for conduction into the plate and 

the hottest points are visualized by the infrared camera. 

 

As soon as the external stimulus starts to excite the tested object, the discontinuities 

appears as hot signs and can be detect by computing the statistical parameters 

exploited in the experiments presented in the previous chapter. Eccentricity and 

correlation are not computed since warm tears rather than circles are expected. 

Because of the major familiarity with the wavelet applications for one-dimensional 

signals and for the easier understanding of this process, the analysis is conducted 

considering only one dimension. All the columns of the matrix (306 x 296) 

representing the thermograph above are stocked creating a vector of length 90576 

elements. Figure 5.4 shows the linearization process and Figure 5.5 shows the 

application to the thermograph considered. 
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Figure 5.4. Linearization matrix to vector. 

 

 
Figure 5.5. Third simulation. Linearization of the thermograph. 

 

The oscillations in the signal are due to the linearization process as we verify 

noticing that the period corresponds to the length of the column of the original 

matrix. The five spikes that refer to the five hot spots  are perfectly visible in Figure 

5.3. The unidirectional signal is decomposed until the sixth level using the DWT 

based on a sym8 mother wavelet since it presents similarities to the spike shape. 
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Figure 5.6. Sym8 mother wavelet. 

 

Wavelet coefficients for the approximation and the six details are obtained through 

the Matlab function wavedec. Different threshold levels for each detail signals are 

set using the command wdencmp as follow: 

 

풕풉풓 = [0.5	1	1	1	1	0] 

 

For each detail level only the wavelet coefficients higher than a value equal to the 

maximum coefficient multiplied for the threshold value are considered. In this 

particular case, the coefficients from the second to the forth level are neglected, all 

the coefficients of the fifth level are considered, and just the highest coefficients of 

the first detail level are kept (see vector thr). Figure 5.7 shows the reconstructed 

approximation and detail signals from these wavelet coefficients. 

 



Chapter 5. Conclusions and future works 
 

89 
 

  
Figure 5.7. Third simulation. (a) Approximation signal. (b)  Detail level 1. (c) Detail level 2. (d) 

Detail level 6. 
 

The entire signal is reconstructed. Its mean and standard deviation are computed. 

Figure 5.8  marks all the values higher than three times the standard deviation of the 

recomposed signal. 
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Figure 5.8. Third simulation. Reconstructed signal from the threshold levels. The red lines 

refer to the mean of the signal and the triple of standard deviation above and below it. The red 

spots mark the outlier values. 

 

At this point plotting only the marked values the signal is reconvert into two 

dimensions. Figure 5.9 shows the result of the recomposition of the unididrectional 

processed signal. 
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Figure 5.9. Third simulation. Map of the discontinuities. 

 

It must be noticed that the hot spots of Figure 5.3 are well detected and mapped in 

Figure 5.9. Spatial filters and contrast adjustment can be helpful in highlighting the 

warmer features. 

The results are promising since they show perfectly how this algorithm is able to 

detect the discontinuities into an image and then it can be hypothetically applied for 

damage detection in structural testing. Unfortunately, because of the lack of 

appropriate instrumentation for vibrothermography or thermosonics testing prevent 

us the chance to test this image processing algorithm onto real thermal images. This 

study can be a good starting point for a future development in the image processing 

in support of nondestructive evaluation techniques. 
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Figures caption 
 
Figure 1.1. Schematization of the data acquisition setup for different stimulation 

techniques. 
Figure 2.1. Classification of the electromagnetic radiations according to their wavelength 

and frequency. 
Figure 2.2. Linear spatial filtering application. 
Figure 2.3. Original image (a) and correspondent histogram (c). Enhanced image (b) and 

correspondent histogram (d). 
Figure 2.4. Intensity functions in correspondence of two different types of edges and 

corresponding first derivatives. 
Figure 2.5. Intensity function in correspondence of an edge and its first and second 

derivative. 
Figure 3.1 First simulation. Six frames of the video sequence associated with no damage 

case. 
Figure 3.2. First simulation. Last frames of the four video sequences that simulate the 

presence of damage. (a) Small 45º defect. (b) Large 45º defect. (c) Horizontal defect. 
(d) Vertical defect. 

Figure 3.3. First simulation. (a) Correlation coefficient and (b) eccentricity associated with 
the frames of the five video sequences. 

Figure 3.4. First simulation. Spatial derivative of the fifth frame of the sequence that 
simulate the presence of the large oblique crack. (a) First derivative along horizontal 
and vertical direction. (b) Second derivative along horizontal and vertical direction. (c) 
Absolute values of plots in (a). Absolute values f plots in (b). 

Figure 3.5. First simulation. Results of the (a) Laplacian and (b) Roberts filter applied to 
the 13th frame of the sequence associated with the large oblique defect. 

Figure 3.6. Second simulation. (a) Gaussian temperature distribution over a flat pristine 
surface. (b) Gaussian temperature distribution over the same surface having a vertical 
defect. (c) Simulated thermal image of (a). (d) Simulated thermal image of (b). 

Figure 3.7. Second simulation. (a) First and second derivative along the horizontal axis for 
undamaged case. (b) First and second derivative along the vertical axis for undamaged 
case. (c) First and second derivative along the horizontal axis for the case with 
damage. (d) First and second derivative along the vertical axis for the case with 
damage. 
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Figure 3.8. Second simulation. Results of the (a) Laplacian and (b) Roberts filter applied to 
the “damaged” surface. 

Figure 4.1. Experimental setup: marked horizontal guide, composite plate, laser source, 
infrared camera, cardboard box. 

Figure 4.2. Schematization of the defects (blue color) and the scanning points (transparent 
circles) for the first experiment. 

Figure 4.3. (a) Average temperature, (b) variance, (c) skewness, (d) kurtosis of the ROI of 
the video sequence associated with one of the pristine areas of the test specimen. 

Figure 4.4. Thermal images of four scanned points. (a, b) Undamaged areas. (c, d) 
Damaged areas. All images had the highest kurtosis and skewness of their respective 
sequence. 

Figure 4.5. (a) Correlation coefficient and (b) eccentricity associated with the 16 scanned 
points for the test object of the first experiment. 

Figure 4.6. Absolute first derivative along x (leftmost column) and along y (second 
column). Absolute second derivative along x (third column) and along y (rightmost 
column). (a) Scanning point 10 (no damage). (b) Scanning point 11 (no damage). (c) 
Scanning point 2 (damage). (d) Scanning point 3 (damage). 

Figure 4.7. Thermal image after the application of the Laplacian filter (left column) and 
Roberts filter (right column). (a) Scanning point 10 (no damage). (b) Scanning point 
11 (no damage). (c) Scanning point 2 (damage). (d) Scanning point 3 (damage). 

Figure 4.8. Schematization of the scanning points for the second experiment and zoom of 
the damaged area. 

Figure 4.9. The problem of synchronization. Two consecutive frames of acquisition 
number 6 regarding a pristine area: (a) Frame 297 identified as first shot frame by 
skewness and kurtosis parameters; (b) Frame 298 identified as first shot frame by 
average temperature and variance parameters. 

Figure 4.10. First shot frame for the recreated baseline video. 
Figure 4.11. (a) Correlation coefficient and (b) eccentricity associated with the 37 scanned 

points for the test object of the second experiment. 
Figure 4.12. Thermal images of four scanned points. (a, b) Undamaged areas. (c, d) 

Damaged areas. All images had the highest kurtosis and skewness of their respective 
sequence. 

Figure 4.13. Absolute first derivative along x (leftmost column) and along y (second 
column). Absolute second derivative along x (third column) and along y (rightmost 
column). (a) Scanning point 5 (damage). (b) Scanning point 23 (damage). 
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Figure 4.14. Thermal image after the application of the Laplacian filter (left column) and 
Roberts filter (right column). (a) Scanning point 5(damage). (b) Scanning point 23 
(damage). 

Figure 4.15. Schematization of the defects and the scanning point positions for the third 
experiment. 

Figure 4.16. (a) Correlation coefficient and (b) eccentricity associated with the 23 scanned 
points of the test object of the third experiment. 

Figure 4.17. Thermal images of two scanned points. (a) Undamaged area (video sequence 
21). (b) Damaged area (video sequence 8). All images had the highest kurtosis and 
skewness of their respective sequence. 

Figure 4.18. Absolute first derivative along x (leftmost column) and along y (second 
column). Absolute second derivative along x (third column) and along y (rightmost 
column). (a) Scanning point 21(no damage). (b) Scanning point 8 (damage). 

Figure 4.19. Thermal image after the application of the Laplacian filter (left column) and 
Roberts filter (right column). (a) Scanning point 21 (no damage). (b) Scanning point 8 
(damage). 

Figure 4.20. Production process (left) and microstructure scheme (right) for a DPS 
Figure 4.21. The tensile coupon of high performance steel. The drawing of sample 

dimensions and the chemical composition. 
Figure 4.22. Picture and schematization of the experimental setup: tensile testing machine, 

infrared camera, and connected control units. 

Figure 4.23. Stress-strain curve (blue line) and stress trend as a function of time (red line). 
Figure 4.24. (a) Average temperature, (b) variance, (c) skewness, (d) kurtosis of the ROI 

from the video sequence regarding a DPS sample . 
Figure 4.25. Engineering stress trend (blue line) and correlation coefficient trend (red line) 

as a function of the time. 
Figure 4.26. Four subdivisions for the correlation  coefficient trend compared to four 

changes in the sample response to the displacement. 
Figure 4.27. Temperature distribution on the sample surface at three different 

consequential instants. The colorbar indicates the temperature range [°C]. 
Figure 4.28. Hot spot. (Top to bottom). Absolute second derivative in x direction and in y 

direction. Laplacian and Roberts filter. 
Figure 4.29. Heat column. (Top to bottom). Absolute second derivative in x direction and 

in y direction. Laplacian and Roberts filter. 
Figure 4.30. Crack. (Top to bottom). Absolute second derivative in x direction and in y 

direction. Laplacian and Roberts filter. 
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Figure 5.1. Wavelet families. (a) Haar. (b) Daubechies4. (c) Coiflet1. (d) Symlet2. (e) 
Meyer. (f) Morlet. (g) Mexican hat. 

Figure 5.2. (a) Wavelet decomposition by filter bank tree; (b) signal reconstruction from 
wavelet coefficients; (c) reconstruction of original signal. 

Figure 5.3. Third simulation. Hot spots in correspondence of the fingertips of a hand 
leaned behind a metal thin plate. The heat from the hand propagate for conduction into 
the plate and the hottest points are visualized by the infrared camera. 

Figure 5.4. Linearization matrix to vector. 
Figure 5.5. Third simulation. Linearization of the thermograph. 
Figure 5.6. Sym8 mother wavelet. 
Figure 5.7. Third simulation. (a) Approximation signal. (b)  Detail level 1. (c) Detail level 

2. (d) Detail level 6. 
Figure 5.8. Third simulation. Reconstructed signal from the threshold levels. The red lines 

refer to the mean of the signal and the triple of standard deviation above and below it. 
The red spots mark the outlier values. 

Figure 5.9. Third simulation. Map of the discontinuities. 
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Tables caption 
 
Table 2.1. Masks for edge detection 
Table 4.1. Object parameters, setting instruction and unit of measurement 
Table 4.2. Object parameters and acquisition features set for the first experiment 
Table 4.3. Acquisition parameters for the second experiment 
Table 4.4. Object and acquisition parameters for the second experiment 
 
 
 

Acronyms 
 
NDE  Nondestructive evaluation 
NDT  Nondestructive testing 
IR  Infrared 
IRNDT  Infrared thermography for nondestructive testing 
PIT  Passive infrared thermography 
AIT  Active infrared thermography 
DWT  Discrete wavelet transformation 
ROI  Region of interest 
CSV  Comma separated value 
2D  Two dimensions  
PC  Personal computer  
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