
Politecnico di Milano

Facoltà di Ingegneria Industriale

Corso di Laurea in Ingegneria Meccanica

An automated method for the FE
analysis of 3D cracks under

mixed mode loading

Supervisor:
Prof. Mario Guagliano

Student:
Dimitar Danov
Matr.: 722574

Academic Year 2010 – 2011

I would like to dedicate this work to my
parents,

Neda and Atanas

for their boundless patience and incredible
support!

Acknowledgements

I would like to thank my supervisor Prof. Guaglinao, for his trust and for
giving me both freedom and opportunity to explore fields, which I am interested
in.

Contents

1 Introduction 1
1.1 Previous development and foundation of the present work 1

1.1.1 Background . 1
1.1.2 Present work . 1

1.2 Programming side . 2
1.2.1 Abaqus structure and script execution 2
1.2.2 Python and Abaqus . 2
1.2.3 On programming style . 3

1.3 Motivation . 3
1.3.1 Automation . 3
1.3.2 Post-processing . 3
1.3.3 Visualization . 4

1.4 Significance of the work . 4
1.4.1 Modeling . 4
1.4.2 Automation . 4
1.4.3 Post-processing . 4
1.4.4 Scalability . 5
1.4.5 Knowledge base . 5

2 Theoretical overview 6
2.1 Introduction . 6
2.2 Fracture mechanics overview . 6

2.2.1 LEFM scope . 6
2.2.2 Stress intensity factors K 6
2.2.3 Energy approach to Fracture Mechanics 12
2.2.4 Elliptic cracks . 15

2.3 LEFM analysis with FEM . 18
2.3.1 Special crack tip elements 18
2.3.2 Calculation of the stress intensity factors 18

2.4 XFEM . 20
2.4.1 Introduction . 20
2.4.2 XFEM concepts . 21
2.4.3 Partition of unity based methods 23
2.4.4 XFEM formulation . 24
2.4.5 XFEM crack definition in Abaqus 25
2.4.6 Crack analysis with XFEM 25

2.5 Fracture mechanics software . 26
2.5.1 Zencrack . 26

i

2.5.2 FRANC2D and FRANC3D 26
2.5.3 NASGRO . 27
2.5.4 AFGROW . 27
2.5.5 ADAPCRACK3D . 27

3 Methodology 28
3.1 Introduction . 28
3.2 Description of the model types 28

3.2.1 FEM – crackNormal model type 28
3.2.2 Model types for XFEM analysis 34
3.2.3 XFEM simple model type 34
3.2.4 XFEM crackPartition model type 35
3.2.5 XFEM multiplePartitions model type 37

3.3 Visualization Odb . 39
3.3.1 Node data . 39
3.3.2 Element data . 40
3.3.3 Field output data . 40

3.4 GUI and Abaqus integration . 40
3.4.1 First dialog box . 40
3.4.2 Second dialog box . 41

3.5 Organization of the application 42
3.5.1 Structure by function . 43
3.5.2 Directory structure and modules 44

3.6 Description of classes . 45
3.6.1 Classes interaction . 45
3.6.2 DataStr classes . 46
3.6.3 Model database classes . 53
3.6.4 ReadOdb() class . 66
3.6.5 PersistentData() class . 67
3.6.6 DbDataStr() class . 68
3.6.7 AnalyticalData classes . 69
3.6.8 XYPlotDataFromDbEntry() class 72
3.6.9 VisualizationOdbFromDbEntry() class 72
3.6.10 GUI classes . 75
3.6.11 CreateID function family 79
3.6.12 Execute gui commands functions 79
3.6.13 Main loop . 80

4 Results 82
4.1 Introduction . 82
4.2 Procedure . 82
4.3 Delimitations . 83
4.4 Element type comparison . 83
4.5 Analysis of the influence of the cylinder dimensions 87
4.6 Mesh convergence analysis . 90

4.6.1 Mesh convergence analysis with quadratic reduced inte-
gration elements . 90

4.6.2 Mesh convergence analysis with linear reduced integration
elements . 93

4.7 Comparison between mesh transformations 95

ii

4.7.1 Comparison between elliptic and simpleScale mesh trans-
formations . 95

4.7.2 advancedScale mesh transformation 102
4.8 XFEM results . 103

4.8.1 Mesh and singularity radius convergence study 103
4.8.2 Comparison of the values and errors of the calculated

stress intensity factors by XFEM 111
4.8.3 Comparison between FEM and XFEM results 114

4.9 Visualization of the stress intensity factors 119

5 Conclusion 123
5.1 Introduction . 123
5.2 Summary of results . 123
5.3 Implications for practice and recommendations 124
5.4 Implications for further development 124

5.4.1 Modeling automation . 124
5.4.2 Results processing and optimization 124
5.4.3 Other functionality . 124

5.5 Conclusion . 125

iii

List of Figures

1.1 Execution of script commands . 2

2.1 Polar coordinate system at the crack tip 7
2.2 The three load type modes of a crack 8
2.3 Crack with blunted tip . 11
2.4 Crack in biaxially loaded plate 11
2.5 Stress distribution in the vicinity of the crack tip 13
2.6 Visualization of the yield stress boundaries of the crack tip plastic

zone . 13
2.7 Total energy of a plate as a function of the crack length a 14
2.8 Potential energy release rate for EPFM and LEFM for different

loads . 15
2.9 Elliptic crack types . 16
2.10 Elliptic crack plane . 16
2.11 Orientation of an elliptic crack 17
2.12 Special crack tip elements . 19
2.13 Zones of elements around a crack tip 21
2.14 Standard, enriched and blending elements in a domain 23
2.15 Level set functions for a flat crack 24
2.16 Crack flanks and crack tip . 25
2.17 Crack domain and crack geometry 26

3.1 Cross section of the crackNormal model 29
3.2 crackNormal model . 32
3.3 WEDGE elements of the inner cylinder of the crackNormal model 34
3.4 crack domain of the crackPartition model 36
3.5 crack domain of the multiplePartitions model 38
3.6 Visualization output database . 39
3.7 First dialog box of the program user interface 41
3.8 Second dialog box of the program user interface 43
3.9 Classes interaction . 46

4.1 Comparison of values for KI obtained for crackNormal model
type with different element types and elliptic transformation . . 84

4.2 Comparison of values for KII obtained for crackNormal model
type with different element types and elliptic transformation . . 84

4.3 Comparison of values for KI obtained for crackNormal model
type with different element types and elliptic transformation . . 85

iv

4.4 Comparison of errors for KI obtained for crackNormal model
type with different element types and elliptic transformation . . 85

4.5 Comparison of errors for KII obtained for crackNormal model
type with different element types and elliptic transformation . . 86

4.6 Comparison of errors for KIII obtained for crackNormal model
type with different element types and elliptic transformation . . 86

4.7 Convergence study for cylinder dimensions against the maximum
errors for KI . 87

4.8 Convergence study for cylinder dimensions against the maximum
errors for KII . 88

4.9 Convergence study for cylinder dimensions against the maximum
errors for KIII . 88

4.10 Comparison of errors for KI along the crack front for different
cylinder dimensions . 89

4.11 Comparison of errors for KII along the crack front for different
cylinder dimensions . 89

4.12 Comparison of errors for KIII along the crack front for different
cylinder dimensions . 90

4.13 Comparison of errors for KI along the crack front for different
mesh densities of quadratic reduced integration elements 91

4.14 Comparison of errors for KII along the crack front for different
mesh densities of quadratic reduced integration elements 92

4.15 Comparison of errors for KIII along the crack front for different
mesh densities of quadratic reduced integration elements 92

4.16 Comparison of errors for KI along the crack front for different
mesh densities of linear reduced integration elements 94

4.17 Comparison of errors for KII along the crack front for different
mesh densities of linear reduced integration elements 94

4.18 Comparison of errors for KIII along the crack front for different
mesh densities of linear reduced integration elements 95

4.19 Comparison of errors for KI for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio
of 3 . 96

4.20 Comparison of errors for KII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio
of 3 . 96

4.21 Comparison of errors for KIII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio
of 3 . 97

4.22 Comparison of errors for KI for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio
of 5 . 97

4.23 Comparison of errors for KII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio
of 5 . 98

4.24 Comparison of errors for KIII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio
of 5 . 98

v

4.25 Comparison of errors for KI for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio
of 10 . 99

4.26 Comparison of errors for KII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio
of 10 . 99

4.27 Comparison of errors for KIII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio
of 10 . 100

4.28 Comparison of the maximum errors for KI for elliptic and sim-
pleScale mesh transformations for crack with aspect ratios of 3,
5 and 10 . 101

4.29 Comparison of the maximum errors for KII for elliptic and sim-
pleScale mesh transformations for crack with aspect ratios of 3,
5 and 10 . 101

4.30 Comparison of the maximum errors for KIII for elliptic and sim-
pleScale mesh transformations for crack with aspect ratios of 3,
5 and 10 . 102

4.31 Convergence study for crackPartition XFEM model for KI stress
intensity factor . 103

4.32 Convergence study for crackPartition XFEMmodel forKII stress
intensity factor . 104

4.33 Convergence study for crackPartition XFEM model for KIII

stress intensity factor . 104
4.34 Convergence study for multiplePartitions XFEM model for KI

stress intensity factor . 107
4.35 Convergence study for multiplePartitions XFEM model for KII

stress intensity factor . 107
4.36 Convergence study for multiplePartitions XFEM model for KIII

stress intensity factor . 108
4.37 Mesh and singularity radius convergence for KI 109
4.38 Mesh and singularity radius convergence for KII 110
4.39 Mesh and singularity radius convergence for KIII 110
4.40 Comparison of the calculated values for KI along the crack front

for the different XFEM model types 111
4.41 Comparison of the calculated values for KII along the crack front

for the different XFEM model types 112
4.42 Comparison of the calculated values for KIII along the crack

front for the different XFEM model types 112
4.43 Errors of the calculated values for KI along the crack front for

the different XFEM model types 113
4.44 Errors of the calculated values for KII along the crack front for

the different XFEM model types 113
4.45 Errors of the calculated values for KIII along the crack front for

the different XFEM model types 114
4.46 Comparison between the calculated values for KI by FEM and

XFEM along the crack front for crack with aspect ratio of 3 . . . 115
4.47 Comparison between the calculated values for KIII by FEM and

XFEM along the crack front for crack with aspect ratio of 3 . . . 115

vi

4.48 Comparison between the calculated errors for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 3 . . . 116

4.49 Comparison between the calculated values for KI by FEM and
XFEM along the crack front for crack with aspect ratio of 5 . . . 116

4.50 Comparison between the calculated values for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 3 . . . 117

4.51 Comparison between the calculated errors for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 5 . . . 117

4.52 Comparison between the calculated values for KI by FEM and
XFEM along the crack front for crack with aspect ratio of 10 . . 118

4.53 Comparison between the calculated values for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 10 . . 118

4.54 Comparison between the calculated errors for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 10 . . 119

4.55 Visualization of the 1309848923dot31 FEM model with crack
aspect ratio 3 . 120

4.56 Visualization of the 1309869569dot74 XFEM model with crack
aspect ratio 3 . 120

4.57 Visualization of the 1310240764dot87 XFEM model with crack
aspect ratio 5 . 121

4.58 Visualization of the 1310240980dot74 XFEM model with crack
aspect ratio 10 . 121

4.59 Visualization of the 1309907898dot52 XFEM model with crack
aspect ratio 3 . 122

vii

List of Tables

3.1 GUI tree abbreviation key . 42

4.1 Models included in the element type study 84
4.2 Models in figures 4.10, 4.11 and 4.12 89
4.3 Models with quadratic reduced integration elements included in

the mesh convergence study . 91
4.4 Models with linear reduced integration elements included in the

mesh convergence study . 93
4.5 Models included in the comparison of mesh transformations . . . 100
4.6 Models of type crackPartition included in the convergence study 105
4.7 Models of type multiplePartitions included in the convergence

study . 106
4.8 Models of type simple included in the convergence study 109
4.9 Models included in the comparison of the accuracy of the different

XFEM model types . 112
4.10 FEM models included in the comparison of the accuracy with

XFEM models . 115
4.11 XFEM models included in the comparison of the accuracy with

FEM models . 116
4.12 Visualization of models . 119

viii

Abstract

Analysis of elliptic cracks under mixed mode loading is a challenging aspect
of the design and life assessment of mechanical components. Nevertheless, per-
petually increasing requirements in terms of safety and performance, demand
an efficient procedure for accurate crack analysis.

A computer program is developed in the scope of the current project, aiming
to address both efficiency and accuracy of analysis. The program is a plug-
in to Abaqus finite element analysis program and automates significantly the
modeling and analysis of stress intensity factors of elliptic cracks.

Elliptic cracks are analyzed with FEM and XFEM, and several mesh config-
urations are compared. A visualization technique is proposed for representation
of stress intensity factors and results from the analyses are stored in custom
database, providing a foundation for accumulating a large knowledge base in-
cluding all analyzed crack configurations.

Results from the performed analyses prove that depending on the analysis
type and mesh design, evaluated stress intensity factors may vary significantly.

Chapter 1

Introduction

1.1 Previous development and foundation of the
present work

1.1.1 Background

Background of the current project is ref [7], which is focused on evaluation of
stress intensity factors of elliptic cracks by FEM. For the purpose a model with
the shape of a cylinder is introduced, which accommodates the analyzed crack.
Cracks with axes aspect ratio between 0.01 and 100 are analyzed and the results
are compared with analytical solutions. The geometry of the analyzed cracks
is obtained from a circular shape by means of either elliptic or linear scale
transformation. Comparison is performed between the two transformations and
both linear and quadratic finite elements are used. Results prove that the elliptic
transformation is superior to the linear scale one. In addition to stress intensity
factors, the work also derives the strain energy factor for the analyzed cracks
from which the crack propagation direction is obtained.

In addition, the methodology presented in ref [7], has been utilized in ref [13]
for analysis of sub-surface cracks in hypoid gears and in ref [12] for analysis of
sub-surface cracks in railway wheels.

1.1.2 Present work

The present work recreates and builds upon the developments in ref [7]. The
model introduced by Guagliano et al corresponds to the crackNormal model,
in terms of geometric features, also the transformations elliptic and simpleScale
correspond to the transformations used in ref [7]. In addition, strain energy
density is not considered in this project.

The present project, however, extends ref [7] with the following key devel-
opments:

� analysis of elliptic cracks with XFEM ;

� automated history output extraction from the Abaqus output database;

� storing stress intensity factors data in a custom shelve database;

1

� automated report generation;

� visualization of the stress intensity factors;

� integrated into Abaqus browser with tree representation of the custom
shelve database;

� functionality for analysis of surface and edge elliptic cracks.

1.2 Programming side

1.2.1 Abaqus structure and script execution

Abaqus has a modular structure, with components addressing various fields and
providing complementary functionality. Abaqus/CAE provides the scripting
extensions and graphical user interface for Abaqus/Standard, Abaqus/Explicit,
Abaqus/CFD or Abaqus/Design. It is therefore an optional component. All of
the analyses in the current project are performed with Abaqus/Standard.

The structure and workflow of execution of script commands by Abaqus is il-
lustrated in figure 1.1. First, the script commands are executed by Abaqus/CAE,
which generates the model database. When the model database is submitted for
analysis Abaqus/CAE generates an input file which is passed to Abaqus/Standard,
which executes the analysis and generates an output database with the results.

It follows that there are two way to approach an Abaqus analysis, one with
Abaqus/CAE, and other without, by manually generating the input file. This
applies to scripting as well, one way is to use the Abaqus scripting API and the
other is to generate an input file by string manipulation. For the project scripts
are designed to work with the Abaqus scripting API. This has the considerable
advantage that, commands, in their majority, are of higher level of abstraction.
The drawback is that commands are translated multiple times until the input
file is generated and this makes them implicit. Interacting with the input file
directly, eliminates that drawback. However, interaction is at a very low level
and is mostly reduced to counting node and element labels.

script
Python

Interpreter
Abaqus/CAE

kernel

input �leAbaqus/Standard

Abaqus/CAE

Figure 1.1: Execution of script commands

1.2.2 Python and Abaqus

Python ref [20] and ref [30] is the scripting language used in Abaqus. It is
used both for kernel commands and GUI. In addition to the standard features
of Python, the implementation in Abaqus incorporates the API, which are the

2

particular to Abaqus commands. The graphical user interface of Abaqus/CAE is
a custom implementation of the FOXtoolkit in Python. The graphical interface
of Abaqus/CAE is can be customized in a variety of ways from building dialog
boxes to modifying the default user interface or creating a custom from scratch.

1.2.3 On programming style

At a certain point during the development of the program for the project, it
the issue of maintainability of the code has surfaced. According to ref [21]
time spent reading code exceeds the time writing code nine fold. Therefore,
maintaining a certain coding style is crucial component of programming and
has been consciously reinforced. It took several trials, each iteration including
a complete redesign to develop the program at its present version. The main
features from a programming point of view include:

� scalability,

� object oriented,

� multiple inheritance,

� encapsulation,

Little of the functionality of the current version, would have been achieved
unless a particular effort has been made during its development to adhere to
the programming practices stated in ref [21].

1.3 Motivation

Abaqus native tools for fracture analysis, as of time of writing, require significant
effort. Therefore, an automated framework for modeling, analysis and post-
processing of the results is welcome. Nevertheless, fracture mechanics problems
are becoming increasingly important and to make matters worse, a fracture
mechanics analysis involves numerous parameters, which means that numerous
analysis iterations must be performed.

1.3.1 Automation

The developed program in the project addresses these issues by automating
the modeling a cylindric model with embedded elliptic crack. The model, can
be utilized either as a submodel for a larger analysis, or it can be used in a
convergence study to determine the optimal parameters and expected accuracy
for a larger model including a crack definition.

1.3.2 Post-processing

Post-processing of stress intensity factors may also prove challenging, as at
present it requires a significant interaction between the analyst and Abaqus.
This issue is also addressed by automated extraction of the stress intensity fac-
tors from the Abaqus output database and creating plot data for convenience.

3

The post-processing is taken even a step further by storing crack analysis re-
sults in a custom database to create a knowledge base of all of the performed
analyses.

1.3.3 Visualization

Visualization is introduced to improve the understanding of the analyzed crack.
It represents stress intensity factors in a three dimensional space mapped to
the crack geometry. The technique can also be utilized as a diagnostic tool for
XFEM to improve understanding and thus quality of the analysis.

1.4 Significance of the work

The project and framework significance can be evaluated in the following as-
pects:

� modeling,

� automation,

� post-processing,

� scalability,

� knowledge base.

1.4.1 Modeling

The modeling aspect contribution is mostly in regard of time-saving and con-
sistency. The framework is capable of generating several model databases by
given parameters. In addition, FEM models, including mesh transformations
cannot be created without scripting.

1.4.2 Automation

The automation aspect contribution extends beyond time-saving. It is also
enabling to evaluate multiple scenarios, a challenging and error prone task if
performed manually. For instance, creating a plot for the stress intensity factors
may require selecting manually up to or over 300 points in succession for some
XFEM analyses performed in chapter 4. The framework does this automatically,
without user input.

1.4.3 Post-processing

The chief contribution in the post-processing aspect is the visualization tech-
nique, utilized for representation of the stress intensity factors and as a diag-
nostic tool.

4

1.4.4 Scalability

This scalability aspect is a measure of the framework ability to be extended,
either by new model types or further post-processing techniques. At present the
framework can create models for quarter and semi-elliptic cracks for all model
types, though the project scope is limited only to embedded.

1.4.5 Knowledge base

The knowledge base is one of the most significant features of the framework.
It provides access through a browser to the custom database with all the cal-
culated cracks. At the moment of writing the shelve database has 484 entries,
or in other words, the knowledge base contains input parameters and results
for stress intensity factors for 484 different cracks, which can be easily accessed.
The number can increase in the future and the framework can be extended by
optimization algorithms.

5

Chapter 2

Theoretical overview

2.1 Introduction

The theoretical yield strength of materials is of one to three orders of magni-
tude higher than the one observed in practice. The discrepancy is attributed to
imperfections of the structure of the material, resulting in stress concentrations,
which drastically reduce the material properties. Furthermore, such defects –
cracks may occur when a component is in service. Cracks may either stay dor-
mant and not influence the function of the component, or may grow reaching a
critical size and resulting in fast and often catastrophic fracture of the compo-
nent. A list of some of the most prominent disasters, due to fracture are listed
in ref [2].

Therefore, to prevent future catastrophic failures, it is crucial to evaluate
the strength of a critical component and estimate its remaining service life and
design future components to be damage tolerant.

2.2 Fracture mechanics overview

2.2.1 LEFM scope

Whether LEFM is applicable to a specific problem depends on the extent of the
applied stress and the local stress field in the vicinity of the crack. For instance,
if a sharp crack is considered, the linear stress at the crack tip is singular and
therefore, the material will yield. The size of this plastic zone determines the
applicability of LEFM i.e. conditions must be essentially linear. It is applicable
mostly to high strength materials. In case stresses are high and the yielding in
the vicinity of the crack zone cannot be neglected, or the material is relatively
more ductile, the problem should be addressed with EPFM.

2.2.2 Stress intensity factors K

The stress intensity factors define the stress field in the vicinity of the crack tip.
The stress intensity factors are valid only for LEFM. The stress field is defined
in a polar coordinate system with coordinates r and θ at the crack tip, as shown

6

in figure 2.1. The stress is defined by:

σij =
K√
2πr

.fij(θ) + . . . ,

where K is the stress intensity factor, which defines the magnitude of the
stress. K is defined by: K = σ

√
πa.f(a/W), where:

� a is the half length of the crack,

� f(a/W) is a dimensionless coefficient, depending on the crack geometry,

� σ is the remotely applied stress.

The so defined σij becomes infinite when r → 0, thus there is singularity in
the stress field when plasticity is not considered. The σij also tends to 0, when
r → ∞. Therefore, the equation is valid only for r << a.

θ
r

σijy

x

Figure 2.1: Polar coordinate system at the crack tip

Modes of loading

Stresses in the vicinity of the crack can be decomposed into a combination of
modes of crack surface displacements, shown in figure 2.2:

Mode I opening mode

Mode II sliding mode

Mode III tearing mode

A stress intensity factor corresponds to each mode of crack surface displacement,
KI , KII and KIII . This decomposition allows to estimate an arbitrary load
conditions around a crack with only three parameters.

Airy stress functions

A function describing the elastic stress field must fulfill both the equilibrium
and compatibility of strain requirements. Let such a function be Φ(x, y), an
Airy stress function for a two dimensional problem.

The equilibrium equations are satisfied if:

7

Mode I Mode II Mode III

Figure 2.2: The three load type modes of a crack

σx =
∂2Φ

∂y2
(2.1)

σy =
∂2Φ

∂x2
(2.2)

τxy = − ∂2Φ

∂x∂y
(2.3)

The compatibility of strain is satisfied if:

∂4Φ

∂x4
+

2∂4Φ

∂x2∂y2
+
∂4Φ

∂y4
= 0

Westergaard stress equations

A Westergaard stress function relates the geometry, stress intensity factors,
stress and displacement. It is a specific type of an Airy stress function Φ, defined
by a complex stress function ϕ(z). For ϕ(z) is assumed that its derivative and

first ϕ̄(z) and second ¯̄ϕ(z) order integrals exist. Therefore:

Φ = Re(ϕ̄(z)) + y.Im(¯̄ϕ(z))

where z = x+ i.y. Thus defined the function Φ, leads to the Cauchy-Riemann
conditions:

∂Re(Φ)

∂x
=
∂Im(Φ)

∂y
=
Re(∂Φ)

∂z
(2.4)

∂Im(Φ)

∂x
= −∂Re(Φ)

∂y
=
Im(∂Φ)

∂z
(2.5)

Using equations 2.3 for the stresses, we obtain:

σx = Re(ϕ(z))− Im(ϕ′(z)) (2.6)

σy = Re(ϕ(z)) + y.Im(ϕ′(z)) (2.7)

τxy = −y.Re(ϕ′(z)) (2.8)

8

The ϕ(z) function is a generalization and for each particular case it should
be defined to correspond to the boundary conditions. The Westergaard complex
stress function limits the problems to σx = σy and τxy = 0.

Biaxially loaded plate

The case of a crack in a biaxially loaded infinite plate is shown in figure 2.4.
Load σ is applied in the plate both directions along X axis and Y axis. The
complex function for this case is:

ϕ(z) =
σ√

1− a2/z2

Results for the stresses are obtained by substituting ϕ(z) in equations 2.8 and
considering the following cases:

� y = 0 and |x| < a, which corresponds to the stresses on the crack flanks,

ϕ(z) = ϕ(x) =
−iσ√

a2/x2 − 1

and therefore, ϕ(z) is purely imaginary, resulting in σy = 0.

� x→ ∞ and/or y → ∞ results in ϕ(z) = σ.

� x = ±a and y = 0, which corresponds to the crack tips, ϕ(z) → ∞.

For the derivation of the stress intensity factor KI it is convenient to move
the origin of the coordinate system to coincide with the crack tip. The ϕ(z)
then becomes:

ϕ(η) =
σ√

1−
(

a
a+η

)2 =
σ(a+ η)√

(a+ η)2 − a2

where η = z − a. Then ϕ(η) can be approximated as:

ϕ(η) ≈ σa√
2aη

= σ

√
a

2
η−

1
2

In polar coordinates η = reiθ, and therefore:

ϕ(η) =
σ
√
πa√

2πr
e−

1
2 iθ

Finally, the results for the stress components are:

σx =
σ
√
πa√

2πr
cos

θ

2
·
(
1− sin

θ

2
sin

3θ

2

)
(2.9)

σy =
σ
√
πa√

2πr
cos

θ

2
·
(
1 + sin

θ

2
sin

3θ

2

)
(2.10)

τxy =
σ
√
πa√

2πr
sin

θ

2
cos

θ

2
cos

3θ

2
(2.11)

For a biaxially loaded infinite plate the factor f(a/W) = 1 and therefore,
KI = σ

√
πa, depends only on the applied stress and crack length. The deriva-

tions apply for infinitely sharp tips, for cracks with blunted tips, the blunting
radius ρ should be accounted for in the stress equations.

9

Superposition principle

The principle of superposition can be applied in linear elastic fracture mechanics
to calculate stress components and stress intensity factors as follows:

(σij)total = (σij)1 + (σij)2 + · · ·+ (σij)n (2.12)

and from equation 2.2.2 follows:

(σij)total = (KI)1 .fij (r, θ) + (KI)2 .fij (r, θ) + · · ·+ (KI)n .fij (r, θ)

Finally, the following result is obtained:

(σij)total = (KI)total .fij (r, θ)

where
(KI)total = (KI)1 + (KI)2 + · · ·+ (KI)n

where (KI)n corresponds to a the load σn, applied to the specimen.
Although the principle of superposition is illustrated for mode I of crack

surface displacement, it is applicable to mode II and mode III as well.

Crack tip blunting

For cracks with blunted tips, shown in figure 2.3, stress field is not singular as
it is the case with sharp crack tip. The near crack tip stress field is defined by:

σx =
KI√
2πr

cos
θ

2
·
(
1− sin

θ

2
sin

3θ

2

)
− KI√

2πr

ρ

2r
cos

3θ

2
(2.13)

σy =
KI√
2πr

cos
θ

2
·
(
1 + sin

θ

2
sin

3θ

2

)
+

KI√
2πr

ρ

2r
cos

3θ

2
(2.14)

τxy =
KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
− KI√

2πr

ρ

2r
sin

3θ

2
(2.15)

Stress intensity and stress concentration factors

Stress intensity factors K define the stress field near the crack tip and have
dimension [MPa

√
m]. Stress concentration factor, on the other hand, define

the ratio between the remotely applied stress and the local stress increase due
to a geometric feature and it is dimensionless value. Considering a blunted crack
tip the following results are obtained for a stress concentration factor:

σy =
2KI√
πρ

=
2σ

√
πa

√
πρ

and therefore, for the stress concentration factor :

σy
σ

= 2

√
a

ρ

10

θ
r

σij

x

ρ

ρ/2

Figure 2.3: Crack with blunted tip

θ
r

y

x

2a

σ σ

σ

σ

τxy

σx

σy

Figure 2.4: Crack in biaxially loaded plate

11

Finite specimen size

Prior derivations of the stress intensity factors are valid strictly for an infinite
plate. If the size of the plate is finite, it must be taken into account using
correction coefficients C and f(a/W). The general form a stress intensity factor
is:

KI = Cσ
√
πa.f(a/W),

where C and f(a/W) are to be determined most often by stress analysis or
analytically.

Crack tip plasticity

The linear stress field at the vicinity of the crack tip tends to infinity at the crack
tip for a sharp crack. If, however, a real material is considered, there would be
a zone, where the calculated linear stress field would be higher than the yield
strength σy of the material. Therefore, the material would plastically deform in
that zone. Exact representation of the plastic zone at the crack tip has proved
to be extremely challenging. Therefore, representations are either for the size
of the crack tip plastic zone with assumed arbitrary shape, or approximation
of the shape. For instance if the crack tip plastic zone is assumed to be of a
circular shape with diameter ry, then by substituting the yield strength σy for
the stress the following result is obtained:

σy =
σ
√
πa√

2πr
=

KI√
2πr

and therefore for the plastic zone diameter:

ry =
1

2
π

(
KI

σy

)2

The equation 2.2.2 is a rough approximation, due to the selection of the
shape of the plastic zone is arbitrary and the stress field is limited to the σy and
the higher calculated linear stress field in that region is not accounted for. The
approximation is shown in figure 2.5.

More accurate representations of the crack tip plastic zone are derived by
Irwin and Dugdale.

Representations of the shape of the crack tip plastic zone of first order are
obtained by utilizing the yield criteria by von Mises or Tresca. In that way only
the boundaries, where the material starts to yield are obtained. Furthermore,
it is not accounted for the area, where the linear elastic stress exceeds the yield
stress. A visualization based on the von Mises yield criteria for plane stress and
plane strain is shown in figure 2.6.

2.2.3 Energy approach to Fracture Mechanics

Total energy

Consider an infinite plate with a through thickness crack with length 2a, sub-
jected stress σ. Therefore, for unit thickness of the plate the following quantities

12

σy

σ

x

ry

linear elastic stress

!eld distribution

Figure 2.5: Stress distribution in the vicinity of the crack tip

x

y plane strain

plane stress

Figure 2.6: Visualization of the yield stress boundaries of the crack tip plastic
zone

13

are defined: U0 total energy of the plate and its loading system before introduc-
ing the crack, Ua change in the elastic energy of the plate, caused by introducing
a crack, Uγ change in the plate surface energy due to the crack, F work per-
formed by the loading system during the introduction of the crack. Therefore,
the total energy of the plate is:

U = U0 + Ua + Uγ − F

Potential energy

The part of equation 2.2.3 that can perform work is defined as potential energy :

Up = U0 + Ua − F (2.16)

Energy balance

For the considered case, the total energy changes with the crack length a as
shown in figure 2.7. The total energy has a maximum at point O, where crack
growth becomes unstable. The condition for instability is given by:

∂U

∂a
< 0

substituting equation 2.16:

∂(U0 + Ua − F)

∂a
< 0

and therefore:

−∂Up

∂a
>
∂Uγ

∂a

U

U0

dU/da

a

O

Figure 2.7: Total energy of a plate as a function of the crack length a

14

Potential energy release rate

The potential energy release rate G is the energy per unit thickness available
per crack extension increment:

G = −∂Up

∂2a

LEFM and EPFM

An approximate graph comparing the potential energy release rate calculated
with EPFM and LEFM methods against load magnitude σ and yield strength
σy is shown in figure 2.8. The discrepancy A − A′ at small stresses is small,
however, when the loads increase, the crack tip plastic zone increases and the
values start to diverge B −B′.

G

σ

EPFM

LEFM

σy

B’

A’

B

A

Figure 2.8: Potential energy release rate for EPFM and LEFM for different
loads

2.2.4 Elliptic cracks

Cracks considered up to this point are through thickness cracks. However, in
practice for bulk components, elliptic cracks are observed. Elliptic cracks are of
three types, depending on the relative position of the crack with respect to the
component:

embedded or full elliptic crack is located inside the component.

surface or semi- elliptic crack is an elliptic notch on the surface of the com-
ponent.

edge or quarter elliptic crack is an elliptic notch on two intersecting sur-
faces.

Cross sections of the crack plane of the elliptic crack types are shown in
figure 2.9.

Analytical solutions for embedded elliptic cracks

The first analytical solution for embedded elliptic crack is derived by Irwin and
is for KI crack mode:

15

embedded surface edge

Figure 2.9: Elliptic crack types

KI = σ

√
πb

E(k)

(
sin2 ϕ+

b2

a2
cos2 ϕ

)1/4

where E(k) is an elliptic integral of the second kind and ϕ is the angle of the
point on the crack front. A cross section of the elliptic crack plane is shown in
figure 2.10

β

x

y

2a

2
b

φ

Figure 2.10: Elliptic crack plane

Orientation of an embedded elliptic crack

The orientation of an embedded elliptic crack in an infinite cylinder subjected
to tensile stress σt in visualized in figure 2.11. The orientation of the crack is
completely defined by two angles γ and ω. Rotation of the crack around the axis
of the cylinder is determined by the ω angle. Whereas, γ is the angle between
the axis of the cylinder and the normal to the crack plane.

Therefore, the stresses for the analytical solutions of the stress intensity
factors are:

16

σ = σt cos
2 γ

and

τ = σt cos γ sin γ

γ z

x

σt

σt

x

x’

yy’

ω

Figure 2.11: Orientation of an elliptic crack

Analytical solutions for mixed mode loading of elliptic cracks

Analytical solutions for KI , KII and KIII for embedded elliptic crack are ob-
tained in ref [18] and are as follows:

KI(β) = σ

√
π(b/a)

E(k)

(
a2 sin2 β + b2 cos2 β

)1/4
(2.17a)

KII(β) = −τ
(
πb

a

)1/2
bR(K, v) cosβ cosω + aQ(k, v) sinβ sinω(

a2 sin2 β + b2 cos2 β
)1/4 (2.17b)

KIII(β) = τ(1− v)

(
πb

a

)1/2
aR(k, v) sinβ cosω − bQ(k, v) cosβ sinω(

a2 sin2 β + b2 cos2 β
)1/4 (2.17c)

where β and ω are the angles defining a point on the crack front and the angle
determining the orientation of the crack in the crack plane, as illustrated in
figure 2.10, a and b are the major and minor ellipse axes, v is the Poisson’s
ratio, K(k) and E(k) are the complete elliptic integrals of first and second kind,
k =

√
1− b/a, k21 = 1− k2 and

17

R(k, v) =
k2

[(k2 − v)E(k) + vk21K(k)]

Q(k, v) =
k2

[(k2 + vk21)E(k)− vk21K(k)]

In ref [10] an error in equations 2.17 is discovered that has gone unnoticed,
namely that instead of β, angle ϕ should be used figure 2.10. Observations in
ref [10] are later confirmed in ref [24] and the following equations are proposed
and used in the project as reference analytical solutions:

KI(β) = σ

√
πb/a

E(k)

(a4 sin2 β + b4 cos2 β)(
a2 sin2 β + b2 cos2 β

)1/4 (2.18a)

KII(β) = −τ
(
πb

a

)1/2
b2R(k, v) cosβ cosω + a2Q(k, v) sinβ sinω(

a2 sin2 β + b2 cos2 β
)1/4 (

a4 sin2 β + b4 cos2 β
)1/4

(2.18b)

KIII(β) = τ(1− v)

(
πb

a

)1/2
a2R(k, v) sinβ cosω − b2Q(k, v) cosβ sinω(

a2 sin2 β + b2 cos2 β
)1/4 (

a4 sin2 β + b4 cos2 β
)1/4

(2.18c)

2.3 LEFM analysis with FEM

2.3.1 Special crack tip elements

The stress field in the vicinity of the crack requires special attention, due to its
singularity. Higher mesh density is necessary to approximate properly the stress
field. In addition to this requirement, the stress singularity may be accounted
for in two ways, either approximating it with very dense mesh or using special
crack tip elements.

For instance the required quadratic displacement function of a triangular
element is:

u(ξ, η) = a1 +
a2ξ + a3η√

η + ξ
+
a4ξη

ξ + η
+ a5ξ + a6η

which corresponds to the standard quadratic polynomial displacement function:

u(ξ, η) = a1 + a2ξ + a3η + a4ξη + a5ξ
2 + a6η

2

The effect is achieved by translation the mid-side nodes for quadratic ele-
ments to the crack tip, figure 2.12.

The
√
r singularity is achieved by coalescence of the nodes, as shown in

figure 2.12.

2.3.2 Calculation of the stress intensity factors

Methods of calculating stress intensity factors fall into two main categories sub-
stitution and energy methods.

18

Figure 2.12: Special crack tip elements

Substitution methods

Substitution methods are post-processing procedures and uses the calculated
values for stress and displacement by the FEM analysis. They are of two types
displacement and stress. Stress intensity factors are obtained by substituting
the values for either stress or displacement in the Westergaard’s equations. For
the substitution, also the (r, θ) coordinates of either Gauss points or nodes for
stress and displacement respectively are required and can be easily calculated.

Energy methods

Numerous energy methods have been developed, they calculate directly only G.
Subsequently the stress intensity factors are obtained from G. Some of the most
common energy methods are ref [14]:

� energy difference technique

� virtual crack extension methods

� J - integral

� crack closure/opening work

� weight functions

From the above methods, only the energy difference technique and virtual
crack extension methods are reviewed.

Energy difference technique

The energy difference technique for two dimensional analysis is composed of
three steps:

� Perform analysis and calculate the potential energy P1 of the crack with
given length a.

� Move the position of the crack tip with δa, where δa is much smaller than
the size of the crack tip elements, and perform analysis to calculate the
potential energy P2.

� Finally, calculate G by:

G =
dP

dla
= −P2 − P1

δa

19

The accuracy of G is dependent on the value of δa, in a way that G values
may be inaccurate if δa is either too small or too large. The technique can be
extended to three dimensional analyses by performing the procedure for each
node of the crack. This, however, leads to multiple runs, of the analysis.

Virtual crack extension methods

Virtual crack extension methods are equivalent to the energy difference method,
however, they eliminate the need for multiple simulations. Virtual crack exten-
sion methods are of two types discrete and continuum.

Discrete virtual crack extension methods

This section is a review of some of the first virtual crack extension methods.
The stiffness derivative method was introduced in ref [25] The method uses

the strain energy expression:

U = −1

2
{u}T [K]{u} (2.19)

where [K] is the stiffness matrices over the crack tip region. The method takes
the derivative of the equation 2.19 with respect to the crack length a. The
matrix δ[K] is calculated as difference of the stiffness matrices for crack lengths
a and a+δa. Then vector products of δ[K] and the crack tip local displacements
give the energy change.

A method developed in ref [15] calculates δ[K] only for elements affected by
the crack extension.

Continuum virtual crack extension methods

In continuum virtual crack extension methods δa is defined algebraically, rather
than explicitly. In ref [8] is shown that the potential energy release rate can be
derived as:

G =

∫
V

{(
σij

∂ui
∂Xi

−Wδjk

)
∂∆Xk

∂Xj
− fi

∂ui
∂Xk

∆Xk

}
dV (2.20)

whereW is the strain energy density, σij and ui are the stress and displacement
tensors,

δjk =

{
0, if j ̸= k

1, if j = k

is the Kronecker delta, and Xk are the Cartesian geometric values. The gradient
∆Xk varies linearly with δa in the region B, figure 2.13, is equal to δa in region
C and is zero in the region A.

2.4 XFEM

2.4.1 Introduction

XFEM or eXtended Finite Element Method is a technique to analyze disconti-
nuities, independently of the of the mesh of the part. This is contrary to FEM,

20

C

B

A

Figure 2.13: Zones of elements around a crack tip

which requires the mesh to conform to the crack geometry. A major feature
of XFEM is that it builds upon the classic FEM and is an extension of the
method, rather than a completely different methodology. For further details on
XFEM can be found in ref [23], [5] and [1].

2.4.2 XFEM concepts

The basic concept of XFEM is to incorporate modeling of discontinuities into
the element definition, and therefore, the mesh does not need to conform to the
geomtry of the crack. This is implemented by local enrichment of the elements
surrounding the crack.

Partition of unity

Partition of unity is defined as a set of m functions fk(x) in a domain Ω, such
that:

m∑
k=1

fk(x) = 1

and therefore it is true that:

m∑
k=1

fk(x).ψ(x) = ψ(x)

The shape functions Nj of isoparametric elements also satisfy the condition:

n∑
k=1

Nj(x) = 1

where n is the number of nodes in an element.

21

Enrichment

One way to consider enrichment is by incorporating analytical solutions for
crack tip stress field for fracture analysis and thus increasing the accuracy of the
solution. A starting point, when considering enrichment is the approximation
function of a field variable:

u =
n∑

j=1

Nj .uj

The same expression can be rewritten in terms of the m basis functions pk:

u =

m∑
k=1

pk.ak (2.21)

where ak can be determined from approximation at nodal points.
Enrichment is of two types:

intrinsic enrichment is achieved by modification of the basis function

extrinsic enrichment is achieved by adding new basis functions to the approx-
imation.

Intrinsic enrichment

Intrinsic enrichment in achieved by modification of the basis function pk, so
that it includes additional terms, which meet a requirement. For instance in
equation 2.21, pk = {1, x, y} for a linear two dimensional case. However, for the
enriched basis for representation of the near crack tip strain field is:

pT (x) =

[
1, x, y,

√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2

]
where θ and r are the polar coordinates of the system at the crack tip, shown
in figure 2.1. And finally the strain field is:

u(x) = pT (x)a(x)

where a(x) is a vector of coefficients.

Extrinsic enrichment

Extrinsic enrichment uses external basis functions pk, so that the equation for
the strain field becomes:

u(x) =
n∑

j=1

Nj(x)uj +
m∑

k=1

pk(x)ak

22

2.4.3 Partition of unity based methods

Partition of unity finite element method – PUFEM

The PUFEM is one of the key developments, which eventually lead to the
XFEM. Its main features ref [22] are the capability to incorporate knowledge
about a certain behavior in the finite element definition. The PUFEM is a
generalization of the h, p and hp versions of FEM ref [4].

The displacement interpolation function for PUFEM is:

u(x) =

n∑
j=1

Nj(x)

(
uj +

n∑
k=1

(pk(x)− pk(xj)) aj

)

Generalized finite element method – GFEM

The GFEM utilizes different shape functions for the FEM and the enriched
interpolation. Therefore, the generalized form of the displacement field is:

u(x) =
n∑

j=1

Nj(x)uj +
n∑

j=1

N̄j(x)

(
m∑

k=1

pk(x)ajk

)

eXtended finite element method – XFEM

The XFEM uses local enrichment, opposed to global as is the case with PUFEM
and GFEM. Local enrichment may, however, lead to incompatible solution be-
tween the local enriched region and the rest of the analyzed domain. Therefore,
a transition zone, composed of blending elements is introduced on the boundary
between the two regions of the domain, figure 2.14.

enriched node

standard node

crack

blending element

standard element

Figure 2.14: Standard, enriched and blending elements in a domain

The displacement field of the transition zone is described by:

u(x) = (1−R(x))u(x) +R(x)uenr(x)

where R(x) is a ramp function so that it is 1 at the enriched boundary and 0 at
the standard element boundary.

23

2.4.4 XFEM formulation

Approximation I

The general approximation function for displacement u(x) has the form:

u(x) =
n∑

j=1

Nj(x)uj(x) +
n∑

j=1

Nj(x)ψ(x)ak

where uj is the vector of the nodal degrees of freedom, ak is the added set
of degrees of freedom added to the standard finite element model, ψ(x) is the
enrichment function for the discontinuity.

Level set method for tracking boundary

Level set functions are utilized to define the location of the crack in the domain.
A case for a flat crack is illustrated in figure 2.15.

Φ>0

Φ=0

Φ<0
A

A A-A

Ψ>0

Ψ<0

Ψ=0

Figure 2.15: Level set functions for a flat crack

The functions Ψ and Φ completely define the crack location in the domain.
For instance the boundary of the crack corresponds to Ψ = 0 and Φ = 0. In
addition, Φ > 0 inside the crack contour and Φ < 0 outside. The Ψ function
defines the top and bottom of the crack, and Ψ = 0 at the crack plane.

Heaviside function

Consider a crack and a point x′ on the crack flank in figure 2.16. The Heaviside
function H(x) is defined as:

H(x) =

{
1, if (x− x′)n > 0

−1, otherwise

24

n

n

x’

x’

x

x

s s

crack tip

Figure 2.16: Crack flanks and crack tip

Approximation II

Finally the approximation for the displacement field has the form:

u(x) =

n∑
j=1

Nj(x)

(
uj +H(x)aj +

m∑
k=1

Fk(x)b
k
j

)
where

m∑
k=1

Fk(x)b
k
j is the crack tip enrichment term,

H(x)aj is the Heaviside enrichment term,

uj are the nodal degrees of freedom and

m is the number of the enriched nodes of the element and

Fk =

[√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2

]

2.4.5 XFEM crack definition in Abaqus

With XFEM both stationary crack and crack growth may be defined ref [29].
For stationary crack the initial geometry and location of the crack is defined by
faces one, two or three dimensional – figure 2.17. In addition, the crack can
also intersect the elements of the crack domain arbitrarily.

Conversely, in the case of a non-stationary crack, its location and geometry
may not be specified explicitly, in which case is calculated on the basis of damage
initiation and evolution law.

2.4.6 Crack analysis with XFEM

Analysis of stress intensity factors with XFEM and tetrahedral elements is pre-
sented in ref [3]. XFEM solutions have noise and therefore, techniques are de-
veloped to reduce the noise in the solution. A technique proposed in ref [26] is
based on using selective data from the solution. A ”moving average” technique,
employed in ref [3].

The capability of XFEM to include priori knowledge about a discontinu-
ity facilitates multiscale analysis. In this case multiscale refers to combining
FEM to model the whole component and a modeling technique to simulate

25

crack geometry

crack domain

Figure 2.17: Crack domain and crack geometry

the microstruscture locally. Further information is avalilable in ref [16], [9], [6]
and [27].

2.5 Fracture mechanics software

General purpose FEM software like Abaqus and Ansys are not specifically de-
signed to meet the needs of fracture mechanics. Therefore, fracture mechanics
oriented software has been developed. This section is a brief review of some
of the most widely used fracture mechanics software. In particular, the review
is limited to Zencrack, FRANC2D and FRANC3D, NASGO, AFGROW and
ADAPCRACK3D.

2.5.1 Zencrack

Zencrack is a FEM 3D fracture mechanics software. It uses automated mesh
generation according to the crack geometry. Zencrack runs along side a general
finite element program and requires either Abaqus, Ansys or MSC Marc. Zen-
crack also is available in two versions Standard and Professional. The Standard
version is able to calculate fracture parameters for stationary cracks, while the
Professional version includes capabilities for crack growth analysis. Zencrack
works by defining a standard element block, which contains the crack geome-
try. The standard element block is then included in the analysis, by replacing
corresponding elements of the mesh ref [19].

2.5.2 FRANC2D and FRANC3D

FRANC3D is a 3D fracture mechanics software developed by Cornell university,
ref [17]. It is a FEM and BEM based. FRANC2D is a two dimensional version
of FRANC3D.

26

2.5.3 NASGRO

NASGRO is a software developed by NASA for fracture analysis. It is NASA’s
standard software package used by all NASA Centers ref [11]. It is utilized for
fracture control and damage tolerance assessment.

2.5.4 AFGROW

AFGROW is a fracture mechanics software for analysis of crack initiation and
crack growth.

2.5.5 ADAPCRACK3D

ADAPCRACK3D is a fracture mechanics software for fatigue crack growth of
3D cracks under arbitrary loading. A main purpose of the program is to deter-
mine crack path and surfaces and remaining life of a component ref [28].

27

Chapter 3

Methodology

3.1 Introduction

The procedures of building the models in Abaqus are implemented by Abaqus
kernel commands. These commands are organized onto custom classes and
functions, comprising the program. This organization enables scalability, further
automation, reduces code duplication and facilitates further development and
maintainability.

3.2 Description of the model types

The program is able to analyze 4 model types for each crack type. In addition to
that, the FEM analysis type model, has 3 mesh transformation types. This re-
sults in total of 18 different model databases. For FEM analysis type, the model
type is one – crackNormal, however, the model is capable of 3 mesh transforma-
tions, which can be considered as a model sub-types. For XFEM analysis type
the model types are 3 – simple, crackPartition and multiplePartitions.

3.2.1 FEM – crackNormal model type

The crackNormal model type is the most complex of all model types. The
complete analysis of a crack with this model type is performed at two stages.
First, building a model with a circular crack and associative to the geometry
mesh. Second, importing the input file from the first to create an orphan mesh,
applying a transformation to the mesh to obtain the desired crack shape and
creating boundary conditions.

Geometry of the model

Geometry of the model is a cylinder and at its center is located the crack.
Initially the crack is modeled as circular. The geometric parameters are shown
in fig 3.1. The model is composed of multiple parts, which define the majority
of the internal edges of the model. For instance, edges of the crack zone and
crack tip are the intersection between a cylinder and two washer-shaped solid
parts with square cross section. In similar fashion, slanted edges connecting the

28

vertices of the crack zone edges and the cylinder are created by the intersection
of the cylinder with 4 shell parts. Additional edges and partitions are created
by subsequent partitioning of the cylinder by datum planes. The cross section
of the model is shown in figure 3.1. Thus created edges, faces and cells are
organized into sets and utilized in the definition of the features of the model.

container radius

co
n

ta
in

e
r

h
e

ig
h

t

ccrack zone side

c
cr

a
ck

 t
ip

 s
id

e

crack radius

Figure 3.1: Cross section of the crackNormal model

Geometric parameters

The geometry of the model is completely defined by the following parameters,
as shown in figure 3.1:

crackRadius is the radius of the crack as modeled. The radius is either equal
the elliptic crack minor axis, for elliptic and simpleScale transformations
or

√
ab for the advancedScale transformation, where a and b are the ellip-

tic crack axes. The value of the crackRadius is calculated by the FEM-
dataStr.calculateCrackRadiusBeforeTransformation() method.

crackZoneSide defines the crack zone area of the model, has a square cross
section and is an are of higher mesh density to accommodate the stress
field around the crack front. The crackZoneSide, though independent
parameter, is set to be equal the crackRadius.

crackTipSide defines the zone directly surrounding the crack front. It has a
square cross section and is meshed with WEDGE elements. The value of

29

the parameter can be set either explicitly or as a fraction of the crack-
ZoneSide by the FEMdataStr.calculateCrackTipSide() method.

containerHeight parameter defines the height of the cylinder containing the
crack.

containerRadius parameter defines the radius of the cylinder containing the
crack. Both containerHeight and containerRadius should be sufficiently
large to accommodate the crack. They should also define a cylinder, large
enough volume to ensure that the stress field is homogeneous and thus not
affect the stress intensity factors.

In total the geomtry of the model is defined by four parameters container-
Height, containerRadius, crackZoneSide and crackTipSide.

Crack parameters

The crack parameters define the geometry of the crack a and b and the type of
the crack. The crack geometry parameters a and b are the ellipse axes, corre-
sponding to the X and Z coordinate axes. The crackType parameter defines the
what crack would be analyzed. Possible values are embedded, surface and edge.
The crackType determines the geometry of the model. For embedded crack the
container is a full cylinder and for surface and edge, it is a cylinder section of
180 and 90 degrees respectively.

Geometric sets

Thus partitioned, the geometry of the model is organized into sets, which are
subsequently utilized in the definition of the features of the model. Cell sets are
defined to facilitate assignment of mesh controls. Face set is defined to facilitate
contact definition between the crack flanks. Edge sets are created to facilitate
seeding of the model and definition of the crack front.

The following edge sets are defined:

allArcEdges set, includes all concentric internal and external circumferential
edges. The edge seeds of the set define the angular density of the mesh
and the number of elements along the crack front.

containerRefinementEdges set, includes edges connecting the vertices of the
crack zone and the cylinder. The seeds of these edges define the density of
the mesh surrounding the crack zone. This area is of secondary interest,
as the stress field is mostly constant.

crackFrontEdges set, includes the edges of the crack front. It is utilized to
define the crack.

crackTipRefinementEdges set, includes the edges, having one of their ends
on the crack front. These edges are utilized to constrain the number of
seeds, so that the crackTipCells are meshed with WEDGE elements only.

crackZoneHorizontalEdges set, includes edges of the crack zone and edges
from the cylinder top and bottom surface. The edges have equal number
of seeds and define the number of elements around the crack front and thus

30

are one of main parameters influencing the accuracy of the evaluation of
the contour integral.

crackZoneRefinementEdges set, includes edges going radially from the crack
tip zone. Seed number is related to the seeds of the crackZoneHorizon-
talEdges and also influences accuracy.

crackZoneVerticalEdges set includes edges of the crack zone, are partitioned
by the XY plane, edges of the cylinder wall and inner cylinder. The seeds
of the edges are calculated as half of the seeds assigned to the crackZone-
HorizontalEdges.

innerCylinderHorizontalEdges set includes the radial edges of the inner
cylinder.

Cell sets are utilized to facilitate the assignment of the mesh controls. The
following cell sets are defined:

crackTipCells set is utilized to assign SWEEP meshing technique andWEDGE
element shape to the cells surrounding the crack front.

innerCylinderCells set is utilized to assign SWEEP meshing technique and
Medial axis algorithm to the cells. This meshing technique guarantees,
that the cells contain WEDGE elements along the Z axis. These WEDGE
elements may become severely distorted during mesh transformation and
may fail if the crack aspect ratio becomes large. Therefore, the FEMor-
phanMesh() class provides method to delete these elements and close
the resulting hole, by moving and merging the nodes of the adjacent Hex
elements.

Seeds

Seeds of the model are defined as by number, corresponding to edges of the
model. The model seeds are completely defined by 4 parameters as follows:

crackZoneMainSeeds define the number of seeds and respectively the mesh
density around the crack front. The crackZoneMainSeeds are assigned to
the crackZoneHorizontalEdges edge set. Half of the crackZoneMainSeeds
are assigned to the crackZoneVerticalEdges edge set.

crackZoneRefinementSeeds defines the mesh density in radial direction of
the crack front. The seeds are assigned to the crackZoneRefinementEdges.

arcSeeds define the number of elements along the crack front. Seeds are as-
signed to the allArcEdges edge set.

containerRefinementSeeds define the mesh density of the container. The
seeds are assigned to the containerRefinementEdges edge set.

31

Legend

external contour edges

crack zone arc edges

small crack zone edges

crackFrontEdges

crackZoneHorizontalEdges

containerRe�nementEdges

crackTipCells

innerCylinderCells

crackTipRe�nementEdges

crackZoneRe�nementEdges

crackZoneVerticalEdges

innerCylinderHorizontalEdges

allArcEdges

crack seam and crack tip

crackFlanks

crack zone

Figure 3.2: crackNormal model

Mesh parameters

The model can be meshed with linear and quadratic, both full and reduced
integration elements. Mesh transformation is utilized to obtain a crack shape
corresponding to the a and b parameters from the initial circular crack. Mesh
transformation is applied to the orphan mesh model and is of three types:

simpleScale transformation multiplies either X or Y coordinate of each node,
depending on the ratio a/b, by a factor equal to themajorAxis/minorAxis
of the crack. Then the node is moved to the new coordinate.

advancedScale transformation multiplies both X and Y coordinates of each
node, by expansion and contraction factor, depending on the crack ellipse
axes. The both factors are as follows:

expansion =
majorAxis

crackRadius
and

contraction =
minorAxis

crackRadius

elliptic transformation multiplies either the X or Y axis, depending on the

32

crack parameters by:

x = x

√
1 +

a2 − b2

x2 + y2

or

y = y

√
1 +

a2 − b2

x2 + y2

depending on the crack ratio.

Analysis parameters

Analysis parameters define the boundary conditions for the model. Analysis
parameters for embedded crack are as follows:

σ is the applied tension to the an infinite cylinder.

γ angle, defines the rotation of the crack with respect to the applied tension.

ω angle, defines the rotation of the crack in the XY plane.

Material

Material is linear isotropic with Poisson ration v = 0.3 and Young‘s modulus
E = 200 GPa.

Interaction properties

Interaction properties include the contour integral definition and contact be-
tween the crack flanks.

Contact is defines as frictionless as Tangential behavior and HARD as Nor-
mal behavior. Firstly the contact is defined as SurfaceToSurface and in the
orphan mesh is redefined as General, using all surfaces of the model.

Crack interaction is defined using the crackFrontEdges edge set a dummy
direction of the qVectors, Midside node parameter as set by the FEMdataStr.-
setMidNodePosition() and singularity – collapsed element side, single node.
The crack interaction is subsequently redefined in the orphan mesh model, with
crackNormal as extension direction.

Inner cylinder operation

The WEDGE elements in the inner cylinder, become severely distorted during
mesh transformation and may corrupt the mesh and analysis. Therefore, in case
of a crack with large or small ratio of the ellipse axes, these elements are deleted
and the resulting hole closed. The difference, in the model is illustrated by
figure 3.3. The WEDGE elements of the model on the left have been removed
and the resulting hole closed by moving the nodes of the hole wall to the axis
of transformation and then merging the nodes. On the right side of the figure,
however, the WEDGE elements have been left, and show severe skewness.

33

Figure 3.3: WEDGE elements of the inner cylinder of the crackNormal model

3.2.2 Model types for XFEM analysis

For XFEM analysis of cracks, mesh is not required to comply with the crack
geometry and this leads to a considerable simplification of the model geometry.
However, finer mesh is required for more accurate results. Further, the XFEM
implementation in Abaqus is available for linear elements only. For the XFEM
analysis type, three model types are designed: crackPartition, multiplePartitions
and simple. The XFEM model types share the analysis, crack and material
parameters with the crackNormal model type. Crack definition for XFEM is
defined by a crack geometry part and crack domain. The crack geometry part
is a shell part of an elliptic shape with major and minor axes corresponding to
the crack parameters. The crack domain represents the part, which contains
the crack. Both crack geometry part and crack domain are independent from
each other. Therefore, identical crack geometry part, with the corresponding
minor and major axes can be utilized, regardless of the crack type and model
type. Crack domain, however, changes from full cylinder for embedded crack
to 180 and 90 degree sector for surface and edge cracks. The model types for
the XFEM analysis differ only in their respective crack domains. This allows
experimentation with different meshing techniques and elements.

3.2.3 XFEM simple model type

The simple modelType uses a cylinder as a crack domain without any partitions.
Therefore, the mesh size is even in the volume.

Geometric parameters

The crack domain is completely defined by the containerHeight and contain-
erRadius.

Geometric sets

The model has one edge set allEdges, containing the edges of the crack domain.

Mesh parameters

The crack domain can be meshed with Tetrahedral or Hexahedral elements. The
seed size is assigned to the edges of the allEdges edge set.

34

Interaction properties

Contact between the crack flanks is defined in the XFEM definition, by spec-
ifying contact interaction properties, which are identical to those of the crac-
kNormal.

3.2.4 XFEM crackPartition model type

The crackPartition model type is shown in figure 3.4. The model has a partition
in the shape of the crack at its location in the crack domain. This permits
defining a finer mesh in the vicinity of the crack, and therefore, more accurate
estimation of the stress field. A limitation of the this model type is that the
crack domain can be meshed with linear tetrahedral elements only.

Crack partition part

The partitioning of the crack domain performed by a part with elliptic shape
and minor and major axes equal to the axes of the crack. The part geometry
depends also on the crackType. For embedded crack the part is a full ellipse,
while for surface and edge crack type, the part is a sector of an ellipse of 180
and 90 angle.

Geometric parameters

The parameters defining the crack domain and the partition part are shown in
figure 3.4 are as follows:

a the ellipse axis of the crack corresponding to the X coordinate axis.

b the ellipse axis of the crack corresponding to the Y coordinate axis.

containerRadius radius of the crack domain.

containerHeight height of the crack domain.

Geometric sets

Two geometric sets are defined in the model. The first, allEdges includes all the
edges of the crack domain. The second, crackEdges includes the edges created
by the partitioning, and which coincide with the edges of the crack geometry
part.

Seeds

Seeds are assigned first to the edges of the allEdges set, this operation seeds all
edges. However, to obtain finer mesh in the vicinity of the crack, edges from the
crackEdges are seed after the allEdges, which ensures that the seed size assigned
by the first operation is overwritten.

Mesh parameters

The crack domain for this model type can be meshed only with Tetrahedral
elements.

35

a

b
co

n
ta

in
e

r
h

e
ig

h
t

container radius

Figure 3.4: crack domain of the crackPartition model

36

3.2.5 XFEM multiplePartitions model type

The multiplePartitions model type is shown in figure 3.5. The crack domain is
partitioned by an elliptic cylinder around the crack. This creates cells, which
can be finely meshed to increase the accuracy of the solution. The model can
be meshed with both Tetrahedral and Hexahedral elements. However, successful
meshing mostly with tetrahedral elements may prove unpredictable. Therefore,
the model is meshed with Hexahedral elements only.

Geometric parameters

The model is defined by the following parameters:

a is the ellipse axis of the crack corresponding to the X coordinate axis.

b is the ellipse axis of the crack corresponding to the Y coordinate axis.

offset parameter, defines the cross section of the elliptic cylinder, which is
equidistant to the crack ellipse.

smallContainerHeight defines the height of the elliptic cylinder.

containerRadius radius of the crack domain.

containerHeight height of the crack domain.

Partition part and lofts

The crack domain is partitioned first by an elliptic cylinder, then loft surfaces
are created between the elliptic cylinder partition edges and the crack domain
circumferential edges and finally by datum planes.

The elliptic cylinder is defined by the offset parameter and the crack axes.
Its geometry, also depends on the crack type. For embedded crack it is a full
cylinder and for surface and edge it is a sector of an elliptic cylinder.

Loft surfaces partition additionally the crack domain, to enable and improve
meshing of the model.

Finally, the crack domain is partitioned by XZ and YZ planes in case of an
embedded crack, by YZ plane in case of surface crack.

Geometric sets

Two geometric sets are defined in the model: allEdges and crackContEdges.
The first contains all the edges of the crack domain and the second only edges
defined by the partitioning with the elliptic cylinder.

Seeds

Two seed sizes are assigned to the edges of the crack domain. First, larger seed
size is assigned to the edges of the allEdges edge set. Then smaller seed size is
assigned to the edges of the crackContEdges, overwriting the previous seed size.

Mesh parameters

The crack domain is meshed with linear Hexahedral elements.

37

a + o�set

b
 +

 o
�

se
t

sm
a

ll
C

o
n

ta
in

e
rH

e
ig

h
t

co
n

ta
in

e
r

h
e

ig
h

t

container radius

Figure 3.5: crack domain of the multiplePartitions model

38

3.3 Visualization Odb

The visualization output database is generated to represent the stress intensity
factors. A visualization output database is shown in figure 3.6. The objective of
the visualization is to provide a clear representation of the stress intensity factors
and how they relate with the crack geometry. The visualization is created, by
generating nodal, element and field output data, based on the results of the
analysis. Stress intensity factor values are written as scalar nodal quantities.
The crack front is represented by truss elements connecting the nodes of the
crack. On the figure 3.6, they are the thin elliptic line and represent the K3
values. K1 values are represented by the elements of the two elliptic cylinders
located above and below the crack plane. K2 values are represented by the
elements in the crack plane.

SIF

−2.090e+02
−1.601e+02
−1.112e+02
−6.228e+01
−1.337e+01
+3.555e+01
+8.446e+01
+1.334e+02
+1.823e+02
+2.312e+02
+2.801e+02
+3.290e+02
+3.779e+02

X Y

Z

Figure 3.6: Visualization output database

3.3.1 Node data

Nodes are created on the basis of the crack geometry and mesh refinement of the
corresponding model database. Nodes can be divided into three groups, on the
basis of the elements, which they define and the values the elements represent.

K3 – nodes . These nodes are used to define the truss elements and have
identical coordinates with the nodes of the modeled crack in the model
database.

K1 – nodes . The K1 – nodes are used to define the shell elements of elliptic
cylinder. They are created by offsetting the Z coordinate of each of the K3
– nodes. These nodes lie on four planes, offset from the crack plane. Two
of them are above the crack plane and the other two are below it. Each of
the two pairs of nodes are used to create the shell elements representing
the K1 values.

39

K2 – nodes . The K2 – nodes are used to define the shell elements, in the
crack plane. They are created as equidistant from the K3 – nodes. The
offset is measured on the normal to the ellipse at each K3 – node. The
created nodes form two pair of nodes, one inside the crack, and one outside.
Each pair of nodes is used to create shell elements, which represent the
K2 values.

3.3.2 Element data

Elements of the visualization output database are used to interpolate the field
output, which is the stress intensity factors. According to the stress intensity
factor, they represent, elements can be divided into three groups:

K3 – elements are the truss elements representing the crack front.

K1 – elements are the shell elements on the elliptic cylinders located above
and below the crack plane.

K2 – elements are the shell elements in the crack plane, located inside and
outside the crack contour.

3.3.3 Field output data

Field output data represents the stress intensity factors for the analyzed crack.
The values are averaged over specified contours from the user. The field data
is NODAL and of type SCALAR. The stress intensity factors field output is
the only available field output for the output database. The data is written for
each node, respecting the node label, which identifies the which stress intensity
factor value is written.

Regarding K1 and K2, nodes are four times the number of the crack nodes
(two pairs of nodes for each), therefore, the data is repeated to comply with the
number of nodes. The result for K1 is that nodes with the same x and y coor-
dinates are assigned identical values. For K2, the nodes with identical values,
lie on the normal to the crack contour. As for the K3 nodes number corre-
sponds to the number of the crack nodes and, therefore, no further processing
is required.

3.4 GUI and Abaqus integration

The program features a graphical user interface to browse the shelve databases,
which contain results, input parameters and statistics about every analysis run
with the program. The graphical user interface of the program is accessed
through the menu Plug ins → cracks → DB ACCESS.

3.4.1 First dialog box

The interface consists of two dialog boxes. The first dialog box, shown in fig-
ure 3.7 asks user to select the crack type to analyze. The program uses this
information to determine the shelve database, read its contents and use it to
prepare the second dialog box.

40

Figure 3.7: First dialog box of the program user interface

3.4.2 Second dialog box

The second dialog box is shown in figure 3.8 for embedded crack type, though
the dialog box is identical for the surface and edge crack types. The dialog box
is separated into four sections:

� Database records

� Results selection

� Contours

� Items to create

Database records

The Database records is the browser section of the dialog box, it contains
all the entries of the corresponding shelve database. The database records are
organized in a tree representation based on the input parameters of each entry,
narrowing down the selection to the modelName of the analysis, which corre-
sponds to the shelve key of the entry. Only the modelNames of the successful
analyses are selectable and selection of multiple entries is possible.

To preserve space logical groups of parameters are abbreviated and concate-
nated with their respective value. For instance h200r120 denotes a cylinder
with height = 200 and radius = 120. The complete list of abbreviations is
given in table 3.1.

Results selection

The Results selection section contains Two subsections Analytical solu-
tions and Analysis results. Both are composed of check boxes to specify
which of the stress intensity factors should be included in the analysis.

Contours

The Contours section is composed of two subsections Contours to aver-
age and Include contour data. The Contours to average contains a list of

41

abbreviation explanation
example

h200r120
h height
r radius

czm5czr5ar5cr5
czm crack zone main seeds
czr crack zone refinement seeds
ar arch seeds
cr container refinement

czs10cts3mn0.27
czs crack zone side
cts crack tip side
mn mid node position

ae5
ae all edges

ae5ce1
ae all edges
ce crack / container edges

Table 3.1: GUI tree abbreviation key

five contours, from which the specified stress intensity factors are averaged. The
Separate contours includes the check box Include contour data. The check
box is applicable for the creation of XYPlotData only. It specifies that XYPlot-
Data to be created for the each contour of the analysis, otherwise, XYPlotData
is created for the averaged data only.

Items to create

The Items to create section contains the following check boxes, specifying
what actions to perform with the selected data:

XYPlotData creates XYPlotData with the selected options.

Print data structure prints the data contained in the shelve database includ-
ing the averaged contours, for the selected entries in the tree.

Visualization Odb creates a visualization output databases for the selected
entries in the tree and the results from the averaging og the contours.

3.5 Organization of the application

The afore described functionality and model, output and shelve databases are
created by a number of scripts, organized in modules and packages, which com-
pose the complete program, which closes the cycle of analysis, providing the
following functionality:

42

Figure 3.8: Second dialog box of the program user interface

� creation of model databases for the different crack and analysis types.

� submitting the model databases.

� post processing and results extraction.

� storing the extracted results to a shelve database.

� creation of visualization.

� providing a graphical user interface to browse the data in the shelve
database and selecting the desired operations and data combination.

3.5.1 Structure by function

The program can provisionally be divided into two independent components:

� Running analyses

1. building of Abaqus model databases,

2. executing the subsequent analysis,

3. extraction of the required values from the Abaqus output database

4. saving the results into a custom shelve database;

� Post processing and visualization

1. graphical user interface to read the custom database entries

43

2. creation of plots from the analysis results, and analytical solutions,

3. building of visualization Abaqus output database for stress intensity
factors

3.5.2 Directory structure and modules

Both functional components share the same directory structure for convenience
and portability. Program classes and functions are organized in files, called
modules. Modules are organized in directories, called packages. The directory
structure of the program is as follows:

dir simpleGui

module createEntryID.py

module dbAccessDialogs.py

module dbAccessDialogs plugin.py

module executeDbAccessCommands.py

dir db

dir scripts

dir analyticalSolutions

module analyticalData.py

module baseAE.py

module edgeAE.py

module embeddedAE.py

module surfaceAE.py

module miscFunctions.py

dir dataStr

module baseDataStr.py

module femDataStr.py

module xfemBaseDataStr.py

module xfemDataStrMP.py

module xfemSimpleDataStr.py

module xfemTETdataStr.py

dir modelDb

module baseCrack.py

dir fem

module femCrack.py

module orphanMesh.py

dir xfem

module xfemBaseCrack.py

module xfemCrackMP.py

module xfemSimpleCrack.py

module xfemTETcrack.py

dir persistence

44

module dbDataStr.py

module persistence.py

dir processOdb

module readOdb.py

module xyPlotDataFromDbEntry.py

dir visualizationOdb

module visualizationOdb.py

The program directory should be located in a directory named abaqus plugins,
which should be located in either:

� user home directory,

� abaqus directory,

� current directory,

� or plugin dir, specified in the abaqus environment file.

Installing the program in one of these directories, enables Abaqus to identify
the program and make it available in the Plug ins menu, as a DB ACCESS entry
item.

3.6 Description of classes

3.6.1 Classes interaction

Each class has a strictly defined role and interaction among classes is provided
by interfaces (accessor methods) implementing the important concept of encap-
sulation. Encapsulation is to isolate the internal operations of an object from
the other interacting objects and code one operation only once.

In addition, by encapsulation internal logic and operations of classes are
decoupled from each other, which makes them separate units. Moreover, any
modifications to the class methods and algorithms of the class do not affect the
rest of the program.

A simplified representation of the program structure is shown in figure 3.9.
Blocks are given generic names, referring to families of classes or functions,
serving equivalent purposes. Therefore, the particular name of the class and
implementation depends on the model and analysis type.

Data structure class is used to store input parameters, process the input
parameters into a format more suitable for the other interacting classes
and store output data form the interacting classes and the Abaqus output
database.

Model database class defines the necessary Abaqus kernel commands to build
the model database and submit the analysis.

ReadOdb class is utilized to open the Abaqus output database, extract the
stress intensity factor values and coordinates of the corresponding nodes,
process the coordinates and corresponding values, and write the obtained
results to the Data structure classes.

45

Persistence class is utilized to determine the shelve databese to which to save,
filter the data to be saved, save the data, identify duplicate in the database
and read from the database.

Analytical solutions class is utilized to calculate the analytical solution, cor-
responding to the designated analysis.

Visualization output database class is utilized to create an Abaqus output
database for visualization of the stress intensity factors of a designated
analysis.

XYPlotData class is utilized to create XYPlotData for a designated analysis.

Db data structure class is utilized to temporarily store data read from the
shelve database and process requests from the user.

D
a

ta
 s

tr
u

c
tu

re
 c

la
ss

e
s

Model

database

classes

Abaqus Odb

Read Odb

class

Persistence

class

shelves

Main loop

Abaqus Mdb

Visualization database

C
re

a
te

ID
G

U
I

V
is

u
a

li
za

ti
o

n
O

d
b

cl
a

ss

A
n

a
ly

ti
ca

l

so
lu

ti
o

n
s

cl
a

ss

X
Y

P
lo

tD
a

ta
 c

la
ss

db data structure

class

Persistence

class

X
Y

P
lo

tD
a

ta

e
xe

cu
te

 g
u

i c
o

m
m

a
n

d
s

Figure 3.9: Classes interaction

3.6.2 DataStr classes

DataStr classes family is the backbone of the program. It collected input pa-
rameters, stores them in a tree structure and provides methods for manipulation
of the stored parameters. Furthermore, each of the rest of the classes interacts
with a DataStr() class by the provided interfaces.

46

BaseDataStr() class

The BaseDataStr() is the superclass of the DataStr classes family and
the other members are subclasses of the BaseDataStr() class. The Base-
DataStr() class defines the methods common with the rest of the dataStr
classes. Superclasses are designated in the subclass definition and the super-
sclasses’ methods become available to the subclass. When a class method is
called, first the method name is searched in the name space of the subclass, and
if not found the search propagates to the superclasses until a method with the
corresponding name is found. In case a method is not found, an exception is
raised. The search algorithm enables the option for overriding or customization
of superclass methods within the subclass by defining a new method with the
same name. This programming technique is called inheritance. It is a funda-
mental technique in object-oriented programming (OOP) and of great utility
for reduction of code duplication and increasing code reuse.

The purpose of the BaseDataStr() class is to provide storage and access
interface that is inherited by the subclasses. This guarantees, that the interface
and the storage structure remain consistent, throughout the program and only
the required customizations are implemented in the corresponding subclass.

The BaseDataStr() class, provides methods for:

� initializing and storing input and analysis parameters,

� generating a unique model name for each simulation,

� defining the revolutionAngle parameter, depending on the crack type,

� determination of the analysis success,

� equal sign operator overloading.

A unique model name is created for each analysis by the createModel-
Name() method. The algorithm is based on the number of seconds since the
Epoch, which is obtained by the python command time(). The raw format of the
name is 1307559473.99, which roughly corresponds to June 6, 2011, 21:57:37. In
that raw format, however, the model name is not a valid Abaqus model name,
therefore, it is modified to become 1307559473dot99, which is.

Most of the parts of the Abaqus model are defined as revolved parts and
their revolutionAngle is different for each crack type (embedded, edge, or sur-
face). The calculateRevolutionAngle() method specifies the revolutionAngle
parameter.

The mesh of the FEM model type is fairly complex and is defined by a multi-
tude of parameters, it is also being deformed during transformation. Therefore,
it may happen for some parameter configuration, that the mesh may not pass
the analysis checks at job submission and the analysis would fail. Therefore,
mesh quality checks are performed twice, once right after the meshing of the
model, before writing the input for the orphan mesh and second after the mesh
transformation of the orphan mesh model. Results of the both reports are
stored to the data structure, (under the results:mesh:priorTransformation and
results:mesh:postTransformation keys) by the methods setPriorMeshTrans-
formationReport() and setPostMeshTransformationReport(). The suc-
cess of the analysis is set to True should the failedElements is zero for the second
(post-transformation) report.

47

Important option to have is the ability to check whether an identical model
with the same configuration of input parameters has been subject to past anal-
ysis. To facilitate the implementation, the BaseDataStr() class has an imple-
mentation of the equal sign overloading. The method is eq () and is executed
automatically when an instance of the BaseDataStr() or any of its subclasses
is compared for equality. The method verifies, whether the data structure of
the class under the input key is equal to the compared object.

FEMdataStr() class

FEMdataStr() class is a subclass of BaseDataStr() class and inherits all of
the BaseDataStr() methods and also defines new ones. The FEMdataStr()
class is utilized for the FEM analysis type.

The essential methods of the class and their application are described below:

init () method is augmented BaseDataStr. init () method, which sets
the parameter input:analysisType to FEM for identification purposes in
subsequent analyses of the data.

setMidNodePosition() method sets the relative position of the middle node
of the singularity at the crack tip. It is designed to assist the mesh of the
model to pass the analysis checks. The midNode position is not relevant
for stress intensity factors and linear elements.

createDatumsData() method creates datum parameters, for datum planes,
required for partitioning the model.

calculateCrackRadiusBeforeTransformation() method identifies the ra-
dius of the crack prior mesh transformation. Initially elliptic crack is
modelled as a penny-shaped crack, which after the mesh transformation
becomes of elliptic shape. Considering the different transformation types
and crack geometry parameters, this method ensures consistent input to
the mesh transformation operation.

claculateCrackZoneSide() method sets the crackZoneSide parameter, shown
in figure 3.1. It is similar to the calculateCrackRadiusBeforeTrans-
formation() method, however, it determines the size of the partition for
refined mesh around the crack tip.

calculateCrackTipSide() method sets the size of the cracktipSide parameter,
shown in figure 3.1. Its value is relative to the crackZoneSide. The method
is designed to increase the flexibility of meshing in case meshes do not pass
the analysis checks.

calculateMdbGeometricParameters() method processes the geometric pa-
rameters from the input branch into a more suitable format for subsequent
operations. Thus calculated parameters are written to the mdb branch of
the data structure.

createPartsData() method creates the required parameters for generation of
all the constituent parts of the model. Parameters are located under
the mdb:parts branch. Under the mdb:parts:sketchPoints are the sketch
parameters for shell and solid parts. These parts are composed of one

48

revolve feature. Parameters for each part correspond to a dictionary key,
which serves as a name of the part. In addition, the method creates two
more entries for the names of the merged part and orphan mesh part.

createPartitionData() method creates the required parameters for partition-
ing the model, depending on the crack type. Under the branch mdb:-
partitionData:innerCylinderPartitions are located parameters for parti-
tioning the inner cylinder cells by datum plane with a designated iden-
tification number. Under the mdb:partitionData:piePartitionsDatum are
located a number, designating which datums should be used to partition
the model according to the crack type.

createPolarCoordinatesOfAPointOnEntityForASet() method created pre-
liminary point coordinates on the XZ plane, for selection of edges, faces
and cells, which would be organized in sets. Coordinates of the points
are subsequently processed, with respect to the entity and crack type to
ensure, that they are on the edges and cells or inside of the cells. Coordi-
nates are created under the mdb:sets:pointsProjectedOnZeroDegreePlane.
Depending on the feature, they are representing, are located under the
faces for faces and cells for cells. Coordinates for edges are divided into
crossSectionEdges for edges in XZ or YZ planes, and into arcEdges for
edges on XY or parallel plane.

createAnglesForAPointOnZeroDegreePlane() method defines angles, in
accordance with the crack type, which are used to calculate the final coor-
dinates of the points for selection of the geometric features of the model.

createCompleteSetsData() method calculates the final values of the param-
eters required for selection of geometric features (edges, faces, cells, ele-
ments and nodes) and their organization in sets. First, it calls create-
SetData() method for the two types of edges, faces and cells. Then it
calls the createElementSetData() and createNodeSetData() meth-
ods, which create element and nodal set data.

createElementSetData() method creates the required parameters for selec-
tion of elements comprising the innerCylinder of the orphan mesh model.
Data is stored under the mdb:sets:elementsSetData branch of the data
structure.

createNodeSetData() method writes the names of node sets for nodes con-
tained in the innerCylinder of the orphan mesh model. Data is stored
under the mdb:sets:nodeSetsData of the data structure.

createSetData() method creates the required data for geometric features of
the model, utilized to create set data for edges, faces and cells. The method
takes two arguments to identify the geometric features and read the nec-
essary input parameters from the data structure. For each point of each
geometric feature set, the method calls calculateXYZCoordinates()
with two parameters: angle and the preliminary coordinates created by
the createAnglesForAPointOnZeroDegreePlane() method.

calculateXYZCoordinates() method calculates and returns the final coor-
dinates of a point on an edge or face or inside a cell. The point is utilized
for selection of a geometric feature and organizing it in a set.

49

createSeedsData() method creates the required parameters to completely de-
fine seeding of the model. A complete set of seed parameters is generated
for each edge set. Data is stored under the mdb:seeds branch of the data
structure.

createElementTypeData() method creates element type data, for the model,
according to the elementType input. The possible values for the input are:
lenearRI, linearFI, quadraticRI and quadraticFI. Corresponding element
codes are as follows, for linearRI – C3D8R, C3D6, C3D4; linearFI –
C3D8, C3D6, C3D4; quadraticRI – C3D20R, C3D15, C3D10M;
quadraticFI – C3D20, C3D15, C3D10M. Data is stored under the
mdb:meshParameters:elementCodes branch of the data structure.

setInnerCylinderHoleRadius() method is utilized to store the radius of the
modes on the wall of the innerCylinder hole of the orphan mesh model,
created by deleting of the wedge elements. Parameter is stored under the
mdb:sets:nodeSetsData:radius branch of the data structure. The parame-
ter is accessed by the getInnerCylinderHoleRadius() method.

processTransformationInputData() method determines the axis of trans-
formation of the mesh in accordance with the crack geometry. The axis
of transformation coincides with the crack elliptic shape’s major axis. The
method also copies the transformationType parameter form input:meshParameters
to mdb:meshParameters. The axis of transformation parameter is stored
under the branch mdb:meshParameters:transformationAxis.

XFEMbaseDataStr() class

XFEMbaseDataStr() class is a subclass of BaseDataStr(). It serves as a
superclass for XFEMsimpleDataStr(), XFEMtetDataStr() and XFEM-
dataStrMP(), which are utilized for the corresponding model types of the
XFEM analysis types. It is, however, independent of the FEMdataStr() class.
The purpose of XFEMbaseDataStr() as a superclass is to provide methods
that are common to its subclasses by customization and augmentation of the
BaseDataStr() class. Its utility is aligned with the purpose of the DataStr
classes family.

The essential methods of the class and their application are described below:

init () method is an augmentation of the BaseDataStr. init () method,
therefore, has the same functionality with the addition of setting the pa-
rameter input:analysisType to XFEM to identify the analysis type in sub-
sequent data analyses.

createDatumsData() method, creates parameters defining datum planes. Data
is stored to the mdb:datumsData branch of the data structure.

calculateMdbGeometricParameters() method processes the input geomet-
ric parameters from the input branch of the data structure into a more
suitable format to facilitate subsequent operations. Data is stored to the
mdb:geometricParameters branch.

50

createPartsData() method creates the required parameters for generation of
the crackDomain and crackGeometry parts. It also writes the name of
the mergedPart as a dictionary key. Data is stored under the mdb:parts
branch.

createCrackPartitionPartData() method creates the required parameters
to create a shell part, that is used to partition the crackDomain part at the
crack location to create internal edges in the crackDomain part, to which a
smaller seed size is assigned. The part geometry is dependent on the crack
type. Geometrically, its shape is represented by the intersection between
the crack geometry and the crackDomain. For embedded crack its shape
is identical to the crack geometry. For edge and surface crack types it is
sector of an ellipse. Data is stored under the mdb:parts:crackPartitionPart
branch.

createSeedsData() method creates the complete data for seeding the model.
Data is stored under the mdb:seeds branch.

createElementTypeData() method creates element type data for the model,
according to the elementType input parameter. Possible values and the
corresponding element codes are:

LinearTET — C3D4

LinearHexRI — C3D8R

LinearHexFI — C3D8

Data is stored to the mdb:meshParameters:elementCodes branch.

createCompleteSetsData() method creates the required parameters for edges
of the crackDomain part and faces of the crackGeometry part. Data is
stored to the mdb:sets:setData branch of the data structure.

setSingularityCalcRadius() method is utilized to store the singularityCalc-
Radius to input:intractionProperties:crack:singularityCalcRadius.

For complete specification of the accessor methods of the XFEMbase-
DataStr class refer to Appendix

XFEMsimpleDataStr() class

XFEMsimpleDataStr() class is a subclass of the XFEMbaseDataStr(),
which is a subclass of the BaseDataStr() class. Therefore, the XFEMsim-
pleDataStr() class inherits all the methods of both of its superclasses, with
the customizations of the XFEMbaseDataStr() class. The class is utilized
for the simple model type of the XFEM analysis type.

It has one only one method:

init () method is an augmentation of the XFEMbaseDataStr. init ()
method. In addition to the functionality of the base method it sets the
parameter input:modelType to simple to serve as an identification of model
type in subsequent analyses.

51

XFEMtetDataStr() class

XFEMtetDataStr() class is subclass of the XFEMbaseDataStr() class.
It is similar to the XFEMsimpleDataStr() class with the difference that
XFEMtetDataStr() class is utilized for crackPartition model type of the
XFEM analysis type. It is also a single method class with the only method:

init () method is an augmentation of the XFEMbaseDataStr. init ()
method. In addition to the functionality of the base method it also sets the
parameter input:modelType to crackPartition to serve as an identification
in subsequent analyses.

XFEMdataStrMP() class

XFEMdataStrMP() class is a subclass of the XFEMbaseDataStr() class
and is utilized for the multiplePartitions model type of the XFEM analysis type.

The essential methods of the class are:

init () method is an augmentation of the XFEMbaseDataStr. init ().
In addition to the functionality of the base method it sets the input:model-
Type to multiplePartitions for identification in subsequent analyses.

calculateMdbGeometricParameters() method processes the input geomet-
ric parameters from the input branch into a more suitable form for sub-
sequent operations. Thus calculated parameters are stored to the mdb:-
geometricParameters branch of the data structure.

createPartsData() method is an augmentation of theXFEMbaseDataStr.-
createPartsData() method. In addition to the functionality of the base
method it creates data for the smallContainer part, in accordance to the
crack type.

createParametersForLoft() method calculates coordinates of points on the
circumferential edges of the crackDomain and smallContainer, used to
select the edges as profiles for loft operation. The method calls the
calcCoordsOfCrackContainerEllipseEdges() to find a point on the
circumferential edge of the smallContainer. Data is stored under the
mdb:parts:sketchPoints:smallContainer branch.

calcCoordsOfCrackContainerEllipseEdges() method calculates and returns
the coordinates of a point on the circumferential edge of the smallCon-
tainer part. It takes two arguments: an angle of a line through the origin
and the point, and the X axis, and hieghtUnitVector, which determines
the sign of the Z coordinate.

createDatumsData() method creates the required parameters for creation of
datum planes. Data is stored to the mdb:datumsData branch.

createAdditionalSetsData() method creates parameters for a set of the edges
of the smallContainer. Data is stored under themdb:sets:setsData:selectBy-
BoundingBoxEdges:ellipseContainerEdges branch.

52

createSeedsData() method creates the required seed parameters for the model.
It redefines the XFEMbaseDataStr.createSeedsData(), which cre-
ates has identical purpose, but defines different parameters. Data is stored
to the mdb:seeds branch.

3.6.3 Model database classes

Model database classes is a family of classes, which provide methods with
Abaqus kernel commands, utilized to create an Abaqus model. To each model
type for FEM and XFEM analysis type corresponds a member of the model
database classes. All classes take one argument a DataStr class, correspond-
ing to the model type. The required input parameters and supporting analysis
parameters are read and stored to the DataStr class. In addition, the model
database classes use an internal data structure, named self.mdb, which is of
dictionary type and is used to store and point to components of the Abaqus
model. The organization of the model database classes family is as follows:

BaseCrackMdb() is a superclass of all other classes in the family;

FEMcrackMdb() and FEMcrackOrphanMesh() used to create the anal-
ysis of FEM type;

BaseXFEMcrackMdb() superclass for classes used to create XFEM anslysis
type, regardless of the model type;

XFEMcrackMdbMP() used to create XFEM analysis type and multiplePar-
titions model type;

SimpleXFEMcrackMdb() used to create XFEM analysis type and simple
model type;

XFEMtetCrackMdb() used to create XFEM analysis type and crackParti-
tion model type.

BaseCrackMdb() class

BaseCrackMdb() class serves as a superclass of all model database classes
and provides methods used by most of the subclasses.

The BaseCrackMdb() class methods are as follows:

init () method initializes the class, creates the [self.mdb] variable and takes
a DataStr class.

initializeAbaqusModel() method creates a new Abaqus model, gives it a
name, generated by the DataStr class and deletes the generic Model-1
form the Abaqus database.

initializeViewport() method creates a viewport named after the modelName
to display the created model and sets XY plane as compass privileged
plane. It also sets self.mdb[viewport] as a pointer to the viewport.

setVieportViewingPoint() method changes the parameters of the isometric
view of the viewport, so that the Z axis points upwards and sets a view
in the viewport self.mdb[viewport].

53

setDisplayedObject() method takes one argument, and sets it as a displayedOb-
ject of the viewport.

createSolidParts() method calls the createASolidRevolvedPart() for each
solid revolved part, specified in the DataStr class.

createShellParts() method calls the createAShellRevolvedPart() for each
shell revolved part, specified in the DataStr class.

createASolidRevolvedPart() method creates a sketch and revolves it to cre-
ate a 3D DEFORMABLE BODY. The revolution angle is the angle deter-
mined by the DataStr class in accordance with the crack type. The cre-
ated part is pointed to by the self.mdb[parts][name of the part]. After
the part is created the method calls createPartOrientation() method.

createPartOrientation method takes a part as an input argument, creates a
datum coordinate system of the part and calls the createMaterialOri-
entation() method, to which it passes the part.

createMaterialOrientation() method sets the material orientation of a part
that takes as an input argument.

createAShellRevolvedPart() method creates a sketch and revolves it to cre-
ate a 3D DEFORMABLE BODY. The revolution angle is the angle deter-
mined by the DataStr class in accordance with the crack type. The cre-
ated part is pointed to by the self.mdb[parts][name of the part]. After
the part is created the method calls createPartOrientation() method.

createMergedPart() method creates a part by merging all the instances in
the model assembly and gives it the name specified in the DataStr()
class, corresponding to the mergedPart.

createDatums() method creates datum planes in the rootAssembly of the
model. Datums are created according to the defined parameters in the
DataStr class.

deleteAllInstances() method deletes all part instances from the model as-
sembly. The method is used to clear the model of the instances, after the
mergedPart is created.

createInstancesFromAllParts() method creates instances of all parts in the
model. The method finds all the part names in the model and calls the
createInstance() with the part name as an argument. It is used to create
instances of all parts, from which the mergedPart is created.

createMergedPartInstance() method creates instance of the mergedPart by
calling the createInstance() method and passing the mergedPart name.
The method also sets the variable self.mdb[mergedInstance] to point
to the created instance.

createInstance() method, takes a part name as an argument, creates instance
of the part with the same name and returns the instance.

createMaterial method creates a material with elastic properties and name
as specified in the DataStr() class.

54

createSection method creates a homogeneous solid section with the material
name, specified in the DataStr class.

assignSectionToAllParts() method finds the names of all parts in the model
and for each one calls the assignSectionToPart() with the part name
as an argument.

assignSectionToMergedPart() method calls the assignSectionToPart()
with the mergedPart name as an argument.

assignSectionToPart() method takes a part name as an input argument and
assigns the section with name designated in the DataStr class.

regenerateAssembly() method calls the regenerate() method of the Abaqus
model rootAssembly. The method is utilized to force Abaqus to rebuild
and recalculate the model following some operations. This guarantees that
subsequent operations are applied to a model that is up to date and all
prior operations have been completed. In case of applying commands to
a not up to date model, unexpected results may be obtained.

createStep() method creates a static step with a name specified in theDataStr
class.

deleteHistoryOutputs() method identifies and deletes all history output re-
quests. The method is utilized to delete the default history output request
and to clear the orphan mesh model, after importing the input file.

createHistoryOutput() method creates a history output request for the crack,
designating K FACTORS as an output quantity and parameters defined
in the DataStr class.

createContactInteractionProperty() method creates a contact property with
name specified in the DataStr class and normal behavior as HARD with
allowed separation of contact surfaces and FRICTIONLESS tangential
behavior.

createGeneralContact() method creates a standard contact with contact
property name designated in the DataStr class. This type of contact is
utilized for the orphan mesh model to avoid designating contact surfaces,
which is required by other contact types.

assignElementType() method assigns the defined in the DataStr elements
to the model assembly.

generateMesh() method generates mesh on the mergedInstance.

seedEdges() method assigns a specified number of seeds to every edge of all
specified edge sets. Seed number data is obtained from the DataStr class
and edge sets are read from the self.mdb[sets][edges].

verifyMesh() method performs a mesh quality verification with the ANALY-
SIS CHECKS option, which is the mesh quality verification, that is per-
formed automatically by Abaqus on job submission. The meshQualityRe-
port command returns a dictionary with the following keys: warningEle-

55

ments, failedElements, naElements with selection mask of the correspond-
ing elements as dictionary value, and numElements with a number desig-
nating the number of the elements. The mesh report is then processed so
that only the number of elements corresponding to each key is returned.
The importance of the report is that the analysis success can be predicted
by the number of the failedElements. If the number of failedElements is
not 0, the analysis will fail.

createBC() method calls the appropriate method to create the boundary con-
ditions of the model depending on the crack type. For embedded crack
type, the method calls createInfiniteCylinderBC() method. For edge
surface crack types methods are not available at the time of
writing.

createInfiniteCylinderBC() method creates a displacement constraint for
each node of the external faces of the mergedInstace, depending on the
coordinates of the node and angles γ and ω, which define the crack orien-
tation in space and σ, which is tension magnitude. Boundary conditions
are called displacementBC-n, where n is the consequent number of the
BC. Nodal displacements are obtained by the method calculateInfinite-
CylinderDisplacementForNode() and passing a node for an argument.

makeRegionForBCFromNode() method returns a region created by a node.
The method is utilized to get a region, required by the DisplacementBC()
command.

calculateInfiniteCylinderDisplacementForNode() method is utilized to
calculate the displacement assigned as a boundary condition of the node.
The method employs the following procedure. First, node coordinates
(x, y, z) are multiplied by a rotation-transformation matrix (3.1) to ob-
tain coordinates (x′, y′, z′) corresponding to crack orientation defined by
γ and ω. cos γ cosω cos γ sinω − sin γ

− sinω cosω 0
sin γ cosω sin γ sinω cos γ

 (3.1)

Next displacements are calculated by the following formulas:

∆z =
σ

E
z′

∆y = −v σ
E
y′

∆x = −v σ
E
x′

Finally (∆x, ∆y, ∆z) are multiplied by the inverse of the rotation-
transformation matrix 3.2 to obtain the displacements at the designated
nodes. cos γ cosω − sinω sin γ cosω

cos γ sinω cosω sin γ sinω
− sin γ 0 cos γ

 (3.2)

createJob() method creates an analysis job for the model and setting job
parameters to use multiple core CPU and memory limit for optimal per-
formance.

56

submitJob() method submits the model analysis job and waits for the job
completion.

closeMdb() method closes the Abaqus model database.

saveMdb() method saves the Abaqus model database.

FEMcrackMdb() class

FEMcrackMdb() class is a subclass of theBaseCrackMdb() class and there-
fore, inherits all of its methods. The objective of the FEMcrackMdb() class
is to create an Abaqus model database for FEM analysis type of a an elliptic
crack, which can be of embedded, edge or surface type. Methods defined within
the FEMcrackMdb() along with those inherited from the superclass provide
functionality to initialize the model, create the necessary geometry, seed and
mesh the model, and write an input file. The FEMcrackMdb() is designed to
work with FEMcrackOrphanMesh() class, which is utilized to import and
further process the generated input file.

Methods of the FEMcrackMdb() class are as follows:

createAllParts() methods calls the createSolidParts() and createShell-
Parts, which create all of the necessary parts of the model.

partitionMergedPartInstance() method is utilized for further partitioning
the mergedPart. The method calls partitionInnerCylinderCells() and
partitionContainerAsPie().

partitionInnerCylinderCells() method is utilized to partition the inner-
Cylinder cells with datum planes parallel to the emphXY plane. Datum
plane numbers are stored in the DataStr and correspond to the order of
their creation in the model. The partitioning is required to obtain cells,
which can be meshed with sweep technique.

partitionContainerAsPie() method is utilized to partition the mergedIn-
stance into sectors by YZ and XZ datum planes to enable structured
and sweep meshing. Datum plane numbers depend on the crack type and
are read from the DataStr class.

createSets() method is utilized to create geometry sets for edges, faces and
cells. The method calls the corresponding methods createSetsForEdges(),
createSetsForFaces() and createSetsForCells().

createSetsForEdges() method is utilized to create all edge sets. Set names
and coordinates of a point on each edge are read from the DataStr()
class. The method iterates through the names of the sets and for each set
iterates through the corresponding edge points, selecting the edges and
assigning them to the corresponding set.

createSetsForCells() method is utilized to create all cell sets. Its operation is
analogous to the createSetsForEdge() method, but instead of selecting
edges, the method selects cells.

createSetsForFaces() method is utilized to create all face sets. Its operation
is analogous to createSetsForEdges() and createSetsForCells().

57

createCrackInteraction() method is utilized to define the crack in the model.
First, the method defines a crack seam with crackFlanks faces set. Sec-
ond, the method defines the contourintegral with dummy qVectors op-
tion. Crack parameters are read from the DataStr() class. Thus defined
crack would probably give an error during analysis, due to the qVectors
direction, which is chosen arbitrarily. However, the contourIntegral is re-
defined with the proper parameters by the FEMcrackOrphanMesh()
class. The purpose of this contourIntegral definition is to force Abaqus to
retain some of the crack properties and geometric features during the ex-
port and import of the orphan mesh, which otherwise would be challenging
to define.

createContactInteraction() method defines a contact interaction between
the crack faces. The method defines a standard surface to surface contact
interaction.

meshInstance() method is utilized to automate meshing of the model. It calls
seedEdges(), assignMeshControls(), assignElementType() and gen-
erateMesh() methods.

assignMeshControls() method is utilized to assign different meshing tech-
niques and element shapes to the cells of the model. Cells immediately
surrounding the crack tip are assigned SWEEP meshing technique, with
the default algorithm and WEDGE elements. Cells comprising the inner-
Cylinder are assigned SWEEP meshing technique with MEDIAL AXIS
algorithm and HEX DOMINATED elements. For the rest of the model,
the default meshing technique is STRUCTURED is set by default by
Abaqus and is not explicitly defined.

writeInputFile() method is utilized to write an input file from the constructed
model, which is imported and processed by the FEMcrackOrphan-
Mesh(). The method should be called after the model has been fully
defined.

FEMcrackOrphanMesh() class

FEMcrackOrphanMesh() class is utilized to import a model from an input
file and perform additional operations to complete and submit the model for
analysis. It is a subclass of the BaseCrackMdb() class.

The FEMcrackOrphanMesh() class methods are as follows:

init () method is an augmentation of theBaseCrackMdb. init ()method.
It takes the DataStr() class as an input and in addition to the method
from the superclass defines the self.mdb[sets] variable.

initializeAbaqusModel() method is utilized to create an Abaqus model, im-
port an input file with named according to themodelName in theDataStr()
class, assign it to the self.mdb[”model”] variable and delete the generic
Model-1. The method is a redefinition of the method with the same name
from the superclass.

58

clearImportedModel() method is utilized to remove features that were em-
ployed in the FEMcrackMdb() class, but are no longer deemed neces-
sary, rename necessary features, whose names were changed during the
import and assign pointer variables to model features. The method calls
deleteSets(), renameInteractions(), renamePart(), assignVariable-
ToPart(), renameInstance() and assignVariableToInstance()meth-
ods.

deleteSets() method is utilized to delete the sets of the model. It reads the
names of the sets from the DataStr(), changes the name strings to up-
percase to match the modifications during the import and deletes them.
By reading the set names from the DataStr() and not from the model
sets repository, ensures that sets created by Abaqus for internal use are
not deleted.

renameInteractions() method is utilized to correct the names of the crack,
contact property, update history output requests and delete contact in-
teraction. The method calls renameCrack(), renameContactProp-
erty(), renameHistoryOutput(), updateHistoryoutput() and delete-
ContactInteraction() methods. The purpose of the renaming opera-
tions is to be able to refer to the features with the names that have been
defined in theDataStr() class and to eliminate any confusion with feature
names.

renameCrack() method is utilized to rectify the name of the crack, modified
during the import, to correspond to the name defined in the DataStr()
class. The method first identifies the crack feature of the model, reads
the correct name from the DataStr() and sets the name of the feature to
correspond with the one in the DataStr() class.

renameContactProperty() method is utilized to rectify the name of the con-
tact interaction property. It functions in a similar fashion to the rename-
Crack() method.

renameHistoryOutput() method is utilized to rectify the name of the his-
tory output request. The method functions in a similar fashion to the
renameCrack() and renameContactProperty() methods.

updateHistoryOutput() method is utilized to update the name of the con-
tour integral in the history output request definition.

deleteContactInteraction() method is utilized to delete the standard con-
tact interaction from the model.

renamePart() method is utilized to rectify the the name of the part, which
has been modified during the import. The method functions in a similar
fashion to the renameCrack() and renameContactProperty() and
renameHistoryOutput() methods.

assignVariableToPart() method is utilized to assign the variable self.mdb[-
orphanMeshPart] to the part of the model, which can be employed to
point to the part at later stages. The method identifies the part of the
model and assigns it to the specified variable.

59

renameInstance() method is utilized to rectify the name of the orphan mesh
instance in the assembly of the model. The method functions in an analo-
gous fashion as the renameCrack(), renameContactProperty(), re-
namePart() and renameHistoryOutput() methods.

assignVariableToInstance() method is utilized to assign self.mdb[orphan-
MeshInstance] to the instance of the orphan mesh part for future refer-
ence. The method is analogous to the assignVariableToPart() method.

createElementSets() method is utilized to create element sets, defined in
the DataStr() class. The method reads the element set data from the
DataStr() and calls the createInnerCylinderElementSet() with ar-
guments a set name and the corresponding parameters to filter the re-
quired elements.

createInnerCylinderElementSet() method is utilized to select elements from
the model by a bounding cylinder and organize them in a set. Set name and
the parameters defining the bounding cylinder are passed to the method
as input arguments.

deleteCentralWedgeElements() method is utilized to delete the WEDGE
shape elements in the innerCylinder cells. During mesh transformation,
when the ratio of the ellipse of the crack is either large or small, the
WEDGE shape elements along the Z axis may become severely distorted
and corrupt the mesh quality, which may lead the analysis to fail. There-
fore, it is necessary these elements to be removed and the obtained hole
closed. The method calls the selectCentralWedgeElements() to get
the labels of the elements. Next the method calls the deleteElements-
WithLabels() method, to which passes the element labels as an input
argument.

selectCentralWedgeElements() method is utilized to select the WEDGE
elements in the innerCylinder cells and return their labels. The method
iterates through the element sets and and for each element calls the
isWedgeElement method, passing the element and if isWedgeEle-
ment() returns True, stores the element label.

isWedgeElement() method is utilized to verify whether an element has a
WEDGE shape and returns either True or False. The method compares
the element.type attribute of the element to the element codes C3D15 and
C3D6, which correspond to quadratic and linear WEDGE shape elements.

deleteElementsWithLabels() method is utilized to delete elements corre-
sponding to the passed labels argument. The method first creates a se-
quence from the labels argument and then deletes the elements from the
orphan mesh part.

createSetForExternalNodes() method is utilized to create a node set from
nodes on the top, bottom and cylinder surface of the model, to which are
assigned boundary conditions. The method iterates through all nodes of
the model and assigns them to the node set if they meet the criteria. If
(x, y, z) are nodal coordinates then the node to be assigned to the set,

60

either |z| = 1/2h, where h is the containerHeight or x2 + y2 = r2, where
r is the containerRadius.

createSetFromInnerCylinderNodes() method is utilized to create a two
node sets containing the nodes on the innerCylinderHole wall. Each node
set contains nodes on the same side of the crack plane, so that crack
would not be affected by merging the nodes of each set. First the method
calls the method findInnerCylinderElementSetWedgeElementsRa-
dius(), which identifies the radius of the innerCylinderHole. Then the
method calls the createInnerCylinderNodeSetFromElementSet() for
each element set, which creates the two node sets.

findInnerCylinderElementSetWedgeElementsRadius() method is utilized
to find and store to the DataStr() class the radius of the innerCylinder-
Hole. If (x, y, z) are coordinates of a node, the method iterates through

the nodes of the element sets and finds the smallest value of
√
x2 + y2,

adds to it the selectionTolerance value and stores it to the DataStr() as
the innerCylinderHole radius.

createInnerCylinderNodeSetFromElementSet() method is utilized to as-
sign nodes from and element set, that are no further from the Z axis than
the innerCylinderHole radius to a node set. The method iterates through
each node of the element set and compares the

√
x2 + y2 to the inner-

CylinderRadius, where (x, y, z) are the node coordinates. If
√
x2 + y2

is smaller than the innerCylinderHole radius, the node label is stored.
Eventually a node set is created from the stored node labels.

applyMeshTransformation() method is utilized to transform the orphan
mesh according to the specified transformation type and parameters. The
method iterates through all nodes of the model and according to the trans-
formation type calls calculateEllipticCoordinates(), calculateSim-
pleScaleCoordinates() or calculateAdvancedScaleCoordinates(),
passing a node as an argument. Then the calculated coordinates are passed
to moveNode() method, which moves the node accordingly.

calculateEllipticCoordinates() method is utilized to perform the elliptic
transformation of the node coordinates from (x, y, z) to (xe, ye, ze). The
method reads the crack parameters (a and b) and the transformationAxis
from the DataStr(). Next it calculates a new set of coordinates by:

xe = x

√
1 +

a2 − b2

x2 + y2

ye = y

ze = z

if the transformationAxis is set to X. If the transformationAxis is set to

61

Y, the new set of coordinates are:

xe = x

ye = y

√
1 +

a2 − b2

x2 + y2

ze = z

Finally the method returns the new set of coordinates.

calculateSimpleScaleCoordinates() method is utilized to perform the sim-
pleScale transformation of the node coordinates from (x, y, z) to (xs, ys, zs).
The method reads the crack parameters (a and b) and the transformation-
Axis from the DataStr(). Next it calculates a new set of coordinates by
xs = (a/b)x, ys and zs = z, if the transformationAxis is set to X. If the
transformationAxis is set to Y by xs = x, ys = (a/b)y and zs = z. Finally
the method returns the new set of coordinates.

calculateAdvancedScaleCoordinates() method is utilized to perform the
simpleScale transformation of the node coordinates from (x, y, z) to (xa, ya, za).
The method reads the crack parameters (a and b), transformationAxis and
crackInitialRadius from the DataStr(). Next it calculates two scale fac-
tors expansionFactor = a/crackInitialRadius and contractionFactor =
b/crackInitialRadius. According to the transformationAxis the new set
of coordinates is xa = x · expansionFactor, ya = y · contractionFactor
and za = z if transformationAxis is X, or ya = y · expansionFactor,
xa = x · contractionFactor and za = z if transformationAxis is Y,

moveNode() method is utilized to edit the current coordinates of a node to
a new set of coordinates, which effectively changes the nodes position
in space. The method takes two input arguments a node and the new
coordinates.

closeInnerCylinderHole() method is utilized to close the innerCylinderHole
by translating and merging the nodes of the innerCylinderWall. The
method merges the nodes from the two node sets one at a time, to ensure
that the nodes from one crack flank are not merged with the nodes from
the other. The procedure is implemented in a loop that calls moveIn-
nerCylinderHoleNodesToPlane() method with the nodes from the set
as argument and then calls mergeNodes(), passing the nodes of the set
again. Finally the method calls regenerateAssembly() to update the
model.

moveInnerCylinderHoleNodesToPlane() method is utilized to translate
nodes, passed as an input argument. The method reads the transforma-
tionAxis and depending on whether the it is X or Y translates the nodes
to the XZ or YZ plane.

mergeNodes() method is utilized to merge nodes, passed as input argument,
within a distance from each other, defined as mergingTolerance in the
DataStr() class.

62

redefineCrackInteraction() method is utilized to delete the old crack defi-
nition and create a new one. The crack extension direction is defined by
the CRACK NORMAL option.

getExternalNodes() method returns nodes, which would be assigned bound-
ary conditions.

getCrackContainerInstance() method returns the instance of the orphan
mesh model.

BaseXFEMcrackMdb() class

BaseXFEMcrackMdb() class is a subclass of the BaseCrackMdb() and
is a superclass for XFEMcrackMdbMP(), SimpleXFEMcrackMdb() and
XFEMtetCrackMdb() classes.

The BaseXFEMcrackMdb() methods are as follows:

createCrackPart() method is utilized to create the crack geometry part. The
part has one feature BaseShell part, opposed to BaseShellRevolve.

createCrackAndCrackDomainInstances() method is utilized to create in-
stances from the crack geometry and crack domain parts. The method
calls createInstance() method to which passes the name of the crack ge-
ometry part. Next, the method calls the createMergedPartInstance()
method.

createCrackPartitionPart() method is utilized to create a shell part, used
to partition the crackDomain part at the crack location to create internal
edges in the crackDomain part. The part geometry is dependent on the
crack type. Geometrically, its shape is represented by the intersection
between the crack geometry and the crackDomain. For embedded crack
its shape is identical to the crack geometry. For edge and surface crack
types it is an ellipse sector.

createSets() method is utilized to create a faces and edges sets and a datum
coordinate system, used as a reference for the boundary conditions. The
method calls createSetsForEdges() and createSetsForFaces() meth-
ods.

createSetsForEdges() method is utilized to create edge sets, which will be
assigned seeds. Set names and parameters of the BoundingCylinder, which
is used to select the edges are read from the DataStr() class.

createSetsForFaces() method is utilized to create face sets. The method is
analogous to the createSetsForEdges() method.

createXFEMcrack() method is utilized to define XFEM crack.

createFieldOutputRequest() method is utilized to define a request for the
PHILSM field output variable. The PHILSM variable is used for visu-
alization of the crack during the post processing of the Abaqus output
database.

63

deleteFieldOutputs() method is utilized to delete all field output requests in
the model.

assignMeshControls() method is utilized to assign meshing technique to the
model according to the element type. If the assigned elements are tetra-
hedral, the meshing technique is set to FREE and if the assigned elements
are hexahedral, the default meshing technique is used.

seedEdges() method is used to assign seeds to the edges. Edges in all edge
sets are seeded by size. Seed parameters are read from the DataStr()
class.

createSetForExternalNodes() method is utilized to create a node set includ-
ing nodes, to which are assigned boundary conditions. The method is anal-
ogous to the FEMcrackOrphanMesh.createSetForExternalNodes()
method.

getExternalNodes() method returns the nodes in the set defined by create-
SetForExternalNodes().

getCrackContainerInstance() method returns the instance of the crackCon-
tainer.

XFEMcrackMdbMP() class

XFEMcrackMdbMP() class is a subclass of BaseXFEMcrackMdb(), which
is a subclass of BaseCrackMdb() and, therefore, inherits the methods of the
both classes. The inherited methods including those defined in the XFEM-
crackMdbMP() class provide functionality to create an Abaqus model database
for XFEM analysis type of an elliptic crack of either embedded, edge or surface
type. The model type created by the class is multiplePartitions

XFEMcrackMdbMP() defines the following methods:

createAllParts() method is utilized to create all the necessary parts for the
model. The method calls createCrackPart(), createSolidParts(), which
creates the crackContainer part in this case and createSmallContainer()
methods.

createSmallContainer() method is used to create the smallContainer part.
The smallContainer part is a solid part, used for partitioning of the crack-
Container. It defines a full or a sector of an elliptic cylinder, around the
crack, so that the volume of interest can be meshed with smaller elements,
than the rest of the model. The part is dependent both on the crack geo-
metric parameters and type. The axes of cross section of the smallCylinder
are offset from the crack ellipse axes. Both offset and height of the cylinder
are defined in the DataStr() class.

createInstancesForPartitioning() method is utilized to create instances,
which are merged to create mergedPart. The method calls createIn-
stance() twice, passing the crackContainer part name the first time and
smallContainer part name the second time.

64

createLoftsOnCrackDomain() method is utilized to create loft features in
the mergedPart, which partitions it into cells to enable meshing of the
geometry. Lofts are created between the cross section edges of the small-
Container and the circumferential edges of the mergedPart.

createPiePartitions() method has analogous functionality to the FEMcrack-
Mdb.partitionContainerAsPie().

createSets() method is utilized to create face and edge sets. Edge sets are
used for seeding the containing edges and face set is used in the XFEM
crack definition. The method creates a datum coordinate system, which
is used as a reference for the boundary conditions. The method calls
createSetsForExteriorEdges(), createSetsByBoundingBox() and
createSetsForFaces().

createSetsForExteriorEdges() method calls the BaseXFEMcrackMdb.-
createSetsForEdges() method.

createSetsByBoundingBox() method is utilized to create edge set for the
edges, created by partitioning with the smallContainer. Parameters for
the selection of the edges are read from the DataStr() class.

assignMeshControls() method redefines theBaseXFEMcrackMdb.assign-
MeshControls() and has analogous purpose. If the assigned elements are
tetrahedral the meshing technique is set to FREE and allowMapped setting
is set to False and if the assigned elements are hexahedral, the meshing
technique is set to STRUCTURED.

XFEMtetCrackMdb() class

XFEMtetCrackMdb() class is a subclass of BaseXFEMcrackMdb(), which
is a subclass of BaseCrackMdb(). The XFEMtetCrackMdb() class is uti-
lized to create an Abaqus model database for XFEM analysis type of an elliptic
crack of either embedded, edge or surface type. The model created by the class
is of crackPartition type.

XFEMtetCrackMdb() class defines the following methods:

createAllParts() method is utilized to create the parts of the model. It calls
the methods createSolidParts() and createCrackPart. If the crack
type is not embedded, the method also calls createCrackPartition().

createInstancesForPartitioning() method is utilized to create instances from
a selection of parts, which will comprise the mergedPart. If the crack type
is embedded the method calls createInstancesFromAllParts(), which
instances all available parts in the model. If the crack type is not em-
bedded, however, the method creates instances of the crackPartition and
crackDomain parts, by calling the createInstance() method twice and
passing the crackPartition and crackDomain part names as arguments.

XFEMsimpleCrackMdb() class

The XFEMsimpleCrackMdb() class is a subclass of the BaseXFEMcrack-
Mdb() class. The XFEMsimpleCrackMdb() class is utilized to create an

65

Abaqus model database for XFEM analysis type of an elliptic crack of either
embedded, edge or surface type. The model created by the class is of simple
type.

XFEMsimpleCrackMdb() class defines the following methods:

createAllParts() method is utilized to create the parts of the model. The
method calls createSolidParts() and createCrackPart().

assignSectionToCrackDomain() method is utilized to create assign section
to the crackDomain part.

3.6.4 ReadOdb() class

ReadOdb() class is utilized to read and extract the history output data from
an Abaqus output database of any combination of the model, analysis and
crack types. The class takes one argument a DataStr() class, which defines
the corresponding output database and to which the extracted and processed
results are stored for further analysis.

The ReadOdb() class defines the following methods:

init () method initializes the class, assigns the DataStr input argument to
a variable and initializes two internal variables: temporary storage and a
pointer variable to the output database.

openOdb() method is utilized to open an output database, defined in the
modelName variable of the DataStr() class. The opened output database
is assigned a variable for future reference.

createOdbViewport() method is utilized to create a viewport to display the
output database.

readHistoryOutputs() method is utilized to assign the repository with the
history output data to a temporary storage variable.

extractValuesFromHistoryOutput() method is utilized to read and store
value for point of each contour of the stress intensity factors and coordi-
nates of the data point to the temporary storage. First, the method reads
the number of contours that have been requested in the model definition,
from the DataStr() class and initializes the temporary storage to match
the number of contours and the stress intensity factors. Then for each
dataKey in the history output repository calls the methods assignSIF-
value() and assignCoordinates() methods. A dataKey corresponds to
a value in the repository and contains information identifying the value.
To identify what type is the value the dataKey is checked against certain
string patterns and the value is assigned to the appropriate place in the
temporary storage.

assignCoordinates() method is utilized to assign (store) the value corre-
sponding to the passed dataKey, if the dataKey corresponds to a coor-
dinate value.

assignSIFvalues() method is utilized to assign (store) the value corresponding
to the passed dataKey, if the dataKey corresponds to a stress intensity
factor and contour number.

66

calculateBetas() method is used to calculate the angle β of a point on the
crack and the X axis. The method iterates through the stored coordinates
and calls calculateCrackPointAngle for each set of coordinates and
then stores the angle to the temporary storage.

calculateCrackPointAngle() method is utilized to calculate the β angle and
return it.

sortData() method is utilized to remove duplicate data and sort the extracted
stress intensity factors and data point coordinates according to the β angle
of the point.

add360DegreeDataPoint() method is utilized to create one additional point
at the end of each of the sorted sequences for stress intensity factors,
angles, and coordinates for embedded crack type. The value of the point
is equal to the value of the first point for all sequences except for the β
angles, where it is equal to the first β angle in the sequence + 360 degrees.
The method internally checks the crack type and if it is not embedded
skips the procedure.

averageSortedSIFs() method is utilized to create a new sequence for each
stress intensity factor, where every value is an average of the same data
point over a specified range of the contours. The range of averaging is
read from the DataStr() class.

writeResultsToDataStr() method stores the sorted and processed values of
the quantities to the DataStr() class.

getOdb() method returns the pointer to the open output database.

closeOdb() method closes the output database.

3.6.5 PersistentData() class

The PersistentData() class provides access to the shelve database for read,
write and processing of the input data. The class takes two arguments, script-
Path – a string specifying the parent directory of the db directory, in which
the shelve databases are stored, and DataStr() class. The class creates three
shelve databases for each crack type and the active shelve depends on the crack
type defined in the DataStr() class.

PersistentData() defines the following methods:

init () method is utilized to initialize internal variables for the class. It also
calls the setShelvePath()

setShelvePath() method is utilized to set path to the shelve databases. It
takes input argument of the scriptPath format.

determineActiveShelve() method is utilized to designate the full path to the
active shelve, depending on the crack type.

setActiveShelve() method is utilized explicitly set active shelve. The method
takes one argument, which is the crack type.

67

readAll() method opens the active shelve reads the data from the shelve, closes
the shelve and returns the data.

writeToDb() method is utilized to store data to the active shelve. First,
the method calls prepareDataForShelving() to extract only the neces-
sary data from the DataStr(). Next it reads the model name from the
DataStr() and sets it as a key under which the data will be stored to
the shelve. Finally it writes the data to the active shelve and closes the
shelve.

prepareDataForShelving() method is utilized to organize the data, which
will be stored. The method creates a dictionary with keys:

input – for input parameters from the DataStr()

reports – for reports data from the DataStr()

odb – for results data from the DataStr()

checkForDuplicates() method is utilized to verify, whether the active shelve
has an entry with the same input parameters as the DataStr() argument
designated at the class creation. The method opens the active shelve and
iterates through its entries. If a duplicate is found, closes the shelve and
returns True. Otherwise the method closes the shelve and returns False.

getDuplicates() method is utilized to return the keys of any identical to the
DataStr() class. The method opens the active shelve, iterates through
its entries and stores a sequence of keys of the duplicate entries. Then the
method closes the shelve and returns the sequence.

readKey() method is utilized to read from the active shelve the data, associ-
ated with a key, which is passed as an input argument.

3.6.6 DbDataStr() class

The DbDataStr() class is designed as DataStr() class counterpart, which
serves to store and operate on the data, when postprocessing the results. An
instance of the DbDataStr() class is created as soon as data is read from the
shelve database. The class is an abstraction layer of the BaseDataStr() and
internally creates an instance of the BaseDataStr() class and most of its meth-
ods return a call to the identically called methods of the BaseDataStr(). Thus
created the class hides unnecessary functionality, changes to BaseDataStr()
will not break the DbDataStr() and it is straightforward to define new meth-
ods. The class takes one input argument, which is the data directly read from
the shelve.

The following methods of the DbDataStr() class call the identically named
methods of the BaseDataStr() and if the method takes an argument, it is
passed with the method call: getAnalyticalResults(), getVisualization-
Results(), getAnalysisType(), getSortedBetaAngles(), getSortedCon-
tourSIFs(), writeErrorResults(), getErrorResults(), writeAnalytical-
Results(), writeVisualizationResults(), getCrackType(), getMaterial-
Properties(), getCrackParameters(), getAnalysisParameters(), getMod-
elName(), getDataStr().

68

In addition to the afore mentioned, the DbDataStr() class defines the fol-
lowing methods:

init () method creates an instance of the BaseDataStr() and calls the
setDataStr() and passes the input argument

writeResultRequests() method is utilized to write the requests from the
graphical user interface to the data structure.

getResultRequests() method returns the requests from the GUI.

setModelName() method is utilized to overwrite the modelName value of the
data structure.

calculateAveragedSIFs() method is used to create a new sequence for each
stress intensity factor and calculate the value at each data point as an
average from a specified from the gui contour range.

getSortedAveragedSIFs() method returns the sequences of the averaged
stress intensity factors.

getSortedCrackCoordinates() method returns a sequence of the sorted crack
coordinates.

3.6.7 AnalyticalData classes

AnalyticalData classes are a family of classes, utilized to calculate and write
to the DbDataStr() class analytical solutions for the stress intensity factors
of the crack analysis in the DbDataStr() class. The AnalyticalData class
family is composed of the following classes and functions:

AnalyticalData() class

BaseAnalyticalExpressions() class

EdgeCrackAnalyticalSolutions() class

EmbeddedCrackAnalyticalSolutions() class

SurfaceCrackAnalyticalSolutions() class

miscFunctions module, containing the following functions:

� Rfun() — calculates R value

� Qfun() — calculates Q value

� compEllipIntK() — calculates complete Elliptic integral for a and
b of a crack

� compEllipIntE() — calculates complete Elliptic integral for a and
b of a crack

69

AnalyticalData() class

AnalyticalData() class is utlized to read the crack parameters and user re-
quests from the DbDataStr, call appropriate methods and functions to calcu-
late the data and write the results back to the DbDataStr(). the class takes
one input argument the DbDataStr() class.

The AnalyticalData() class defines the following methods:

init () method is utilized to initialize the required parameters and classes,
which are called by the other methods of the class to calculate the an-
alytical solutions. Depending on the crack type, the method initializes
the EmbeddedCrackAnalyticalSolutions() class for embedded, Sur-
faceCrackAnalyticalSolutions() class for surface or EdgeCrackAn-
alyticalSolutions() class for edge crack type and assigns it to the self.-
expressions variable. Finally the method calls the initializeParame-
ters() method of the initialized class.

calculateAnalyticalResults() method is utilized to calculate and store an
analytical value for the requested stress intensity factors. The method
iterates through the β angles of the crack and for each β calls the self.-
expressions.calculateExpressionForAngle() with β as an input ar-
gument, which returns the calculated values.

writeAnalyticalResultsToDataStr() method is utilized to store the results
obtained by calculateAnalyticalResults() to the DbDataStr.

calculateVisualizationResults() method is utilized to calculate analytical
solutions with higher resolution (larger number data points) than the cal-
culateAnalyticalResults(), which calculates analytical solutions for the
beta angles of the analysis. The method calls the self.expressions.get-
SolutionsForVisualization(), which returns the results.

writeVisualizationResultsToDataStr() method is utilized to write the re-
sults obtained by calculateVisualizationResults() to the DbDataStr.

calculateErrors() method is utilized to compare the analysis results with the
analytical results and calculate a quantitative estimate of the accuracy of
the solution. The method calculates three types of estimates:

errors – analytical and analysis results are compared for each point of
the crack and for each requested stress intensity factor. Each value is
calculated as the absolute value of the difference between the analysis
and the analytical solution divided by the maximum absolute value
of all analytical and analysis values.

maxErrors – the maximum value of the errors for each stress intensity
factor.

maxAbsoluteError – the maximum value of the maxErrors.

writeErrorsToDataStr() method is utilized to write the results obtained by
calculateErrors() to the DbDataStr.

70

BaseAnalyticalExpressions() class

The BaseAnalyticalExpressions() class is a superclass for the Embedded-
CrackAnalyticalSolutions(), SurfaceCrackAnalyticalSolutions() andEdge-
CrackAnalyticalSolutions() classes. The purpose of the class is to facilitate
the subclasses, which provide methods only to evaluate the analytical solution
at a point. The class takes two input arguments, DbDataStr() class and
SIFkeys, which contain the names of the requested analytical values.

The BaseAnalyticalExpressions() defines the following methods:

init () method is utilized to initialize the required variables for the class.

calculateSolutionForAngle() method is utilized to calculate and return a
dictionary containing the values for each of the requested stress intensity
factors for a beta angle, which is passed as an input argument.

getSolutionsForVisualization() method is utilized to return the values for
the requested stress intensity factors, calculated at high resolution. The
method calls calculateSolutionsForVisualization() method and re-
turns the calculated values.

calculateSolutionsForVisualization() method is utilized to calculate ana-
lytical solutions for the requested stress intensity factors at resolution of
1 degree and store the calculated values.

EmbeddedCrackAnalyticalSolutions() class

TheEmbeddedCrackAnalyticalSolutions() class is a subclass of theBaseAn-
alyticalExpressions() class. It is designed to calculate analytical values of the
stress intensity factors for embedded crack type.

The EmbeddedCrackAnalyticalSolutions() class defines the following
methods:

initializeParameters() method is utilized to read crack and analysis param-
eters from the DbDataStr() class. The method also calls the Rfun(),
Qfun(), compEllipIntE() and compEllipIntK() functions and stores
the values.

k1() method is utilized to calculate the value of K1 for a beta angle, passed as
input argument.

k2() method is utilized to calculate the value of K2 for a beta angle, passed as
input argument.

k3() method is utilized to calculate the value of K3 for a beta angle, passed as
input argument.

SurfaceCrackAnalyticalSolutions() class

The SurfaceCrackAnalyticalSolutions() class is a subclass of the BaseAn-
alyticalExpressions() class. It is designed to calculate analytical values of the
stress intensity factors for surface crack type. At the time of writing an empty
class.

71

EdgeCrackAnalyticalSolutions() class

The SurfaceCrackAnalyticalSolutions() class is a subclass of the BaseAn-
alyticalExpressions() class. It is designed to calculate analytical values of
the stress intensity factors for edge crack type. At the time of writing an empty
class.

3.6.8 XYPlotDataFromDbEntry() class

XYPlotDataFromDbEntry() class provides methods to create XYPlotData
in Abaqus for specified parameters. The method takes an instance of the Db-
DataStr() class as input argument and reads the required data for the XY-
PlotData from it.

The XYPlotDataFromDbEntry() defines the following methods:

init () method initialized the internal variables for the class.

createAnalyticalXYPlotData() method is utilized to create XYPlotData
for the analytical solutions. The method creates XYPlotData only for
the specified stress intensity factors.

createAveragedXYPlotData() method is utilized to create XYPlotData for
the averaged analysis output data. The method creates XYPlotData only
for the specified stress intensity factors.

createContourXYPlotData() method is utilized to create XYPlotData for
the analysis output data. The method creates XYPlotData only for the
specified stress intensity factors and contours.

createErrorXYPlotData() method is utilized to create XYPlotData for the
errors between the analytical and averaged over a specified range analysis
data.

createVisualizationXYPlotData() method is utilized to create XYPlotData
for the analytical solutions for visualization, which may appear smother.
The method creates XYPlotData only for the specified stress intensity
factors.

3.6.9 VisualizationOdbFromDbEntry() class

VisualizationOdbFromDbEntry() class is utilized to create an Abaqus out-
put database for visual representation of the stress intensity factors. Crack pa-
rameters and the analysis results are read from the DbDataStr() class, which
is an in input argument for the class. The geometric features of the visualization
are rebuilt from the analysis output to create an accurate representation of the
results.

The VisualizationOdbFromDbEntry() defines the following methods:

init () method initialized the internal variables of the class, self.data, self.odb
and self.dataStr. self.odb is utilized as a pointer for the newly created
output database. self.data is utilized to store vector values, which define
offsets of the rings of shell elements from the crack contour and node set
names.

72

initializeAbaqusOdb() method is utilized to create a name for the visualiza-
tion, create the output database and assign pointers to important compo-
nents of the database.

initializeViewport() method is utilized to create a viewport for the output
database and privileged plane for the compass

setViewportViewingPoint() method is utilized to orient the view so that
the view is isometric and overwrite the Iso view.

setDisplayedObject() method is utilized to set the viewport to display the
output database for a specific step and frame.

createMaterial() method is utilized to create an Elastic material with param-
eters read from the DbDataStr().

createSections() method is utilized to create a TrussSection for the truss
elements and HomogeneousShellSection for the shell elements.

createpart() method is utilized to create a part named crackVisualization.

createNodes() method is utilized to create the required nodes of the part.
The method initializes a nodeData variable to store a tuple containing
the node label and coordinates, for each node. The variable is passed to
and returned by each method, called by createNodes(). This ensures
that methods have a starting point, and thus node numbering is consis-
tent. Furthermore, the variable contains the necessary information, and
is utilized to create all nodes. The method calls the following methods:

createCrackFrontNodes() to create nodes for the truss elements, rep-
resenting the crack front geometry and K3 values;

createK1Nodes() to create nodes for the shell elements, representing
K1 values;

createK2Nodes() to create nodes for the shell elements, representing
K2 values.

Finally the method creates the nodes from the information stored in node-
Data.

createK1Nodes() method is utilized to create node data for vertically offset
from the crack front nodes. The created nodal data corresponds to nodes
of equal number to the crack nodes with constant offset. The method takes
two input arguments, nodeSetName and nodeData. The nodeData
is updated with a tuple containing node number and coordinates for each
node. Finally, each node number, created by the method, is associated
with the nodeSetName, which is passed as an input argument, in the
self.odb variable.

createK2Nodes() method is analogous to createK1Nodes(), however, it is
utilized to create node data for nodes in the crack plane, which lie on
the normal to the crack ellipse. The method calls calculateCoordi-
natesK2EllipseNormal() to calculate the coordinates of a node.

73

calculateCoordinatesK2EllipseNormal() method is utilized to calculate
coordinates for a node used to create shell elements. Node coordinates
are calculated as to lie on the intersection between the normal to the
crack ellipse at reference crack node and an ellipse with axes equal to the
corresponding axes of the crack ellipse with added offset. The offset is
proportional to the minor axis of the ellipse of the crack. The mehod
takes two input arguments: coordinates and vector. The coordinates
argument specifies the coordinates of the reference crack node. The vec-
tor is a multiple in the calculation of the offset value. Larger |vector|
results in a larger offset. The sign of the vector specifies, whether the
node coordinate is inside, if vector is negative, or outside, if vector is
positive, of the crack ellipse.

calculateBeta() method is utilized to calculate and return the β angle of a
line through a specified point and the X axis. The method takes the (x, y)
coordinates of the point.

createCrackFrontNodes() method is utilized to create node data for nodes,
used to create the truss elements, representing the crack edge and K3
value. The method is analogous to createK2Nodes() and createK3-
Nodes(), however, the node coordinates of the nodeData in this case,
are identical to the crack node coordinates.

createElements() method is utilized to create the elements of the model. The
method uses the elementData variable, which passes to methods, which
calls to obtain the required data to create elements and elementCounter
to keep consistent element numbers. Elements are created in three steps.
Firstly the method calls createCrackFrontElements, to which passes
elementCounter and gets elementData and elementCounter. Then
the method uses the elementData to create the T3D2 truss elements
and assigns them to an element set K3-Elements. Second, the method
sets the elementData variable to an empty tuple and calls the methods
createOuterK2() and createInnerK2(), to which passes the variables
elementData and elementCounter. With the data from element-
Data, the method creates CPS4R shell elements and assigns them to an
element set K2-Elements. Finally, the method sets the elementData
variable to an empty tuple and proceeds as in the second step, however,
the methods it calls are createUpperK1() and createLowerK1() and
the set, to which the elements are assigned is K1-Elements.

createOuterK2() method is utilized to create the elements comprising the
ring of shell elements in the crack plane and located on the outer side
of the crack ellipse contour. The method reads the node labels for the
required nodes from the self.odb and iterates through the number of
elements, each time creating a new element data and counting the number
of elements.

createInnerK2() method is analogous to createOuterK2() method, how-
ever, it creates element data for elements located inside the crack contour.

createUpperK1() method is analogous to the methods createOuterK2()
and createInnerK2, however, it creates elements located on the cylinder
with cross section the crack front and on the positive side of the Z axis.

74

createLowerK2() method is analogous to the createUpperK1() method,
however, it creates elements on the negative side of the Z axis.

createCrackFrontElements() method is utilized to create element data for
the truss elements of the crack front. The method iterates through the
node numbers stored in the self.odb each time updating the element-
Data variable with the new element data and elementCounter with the
number of the current element in the elementData. Finally the method
returns the variables elementCounter and elementData.

createStepFrame() method is utilized to create a step and frame in the
Abaqus output database, to which field data is associated.

createInstance() method creates an instance of the part in the output database.

createFieldOutput() method is utilized to prepare and associate the analysis
results from the DbDataStr() for stress intensity factors of the crack to
the corresponding nodes of the output database as field output. The field
output created as SCALAR field and named SIF. It is created in the step
and frame created by the createStepFrame() method.

setDefaultField() method is utilized to set the SIF field output as default.

saveOdb() method is utilized to save and close the output database. The
database is saved in the Abaqus active directory.

reopenOdb() method is utilized to open the created output database for
Abaqus to display it.

3.6.10 GUI classes

GUI classes is a name of a family of classes, designed to draw dialog boxes
in Abaqus, read entries from the shelve database and process user input. GUI
class family is comprised by: SelectDb(), AccessDb() and dbAccessDi-
alogs plugin() classes. The classes are registered to Abaqus by the command
getAFXApp().getAFXMainWindow().getPluginToolset().registerGuiMenuButton()
at the bottom of the dbAccessDialogs plugin.py.

dbAccessDialogs plugin() class

The dbAccessDialogs plugin() class is a subclass of the AFXForm() ab-
stract superclass. The AFXForm() class is provided by the Abaqus FOX-
toolkit extension and provides the infrastructure to process form modes. The
AFXForm() class defines generic methods, used by its subclasses, however,
it might be necessary some of these methods to be customized in the subclass
definition.

The dbAccessDialogs plugin() class defines the following methods:

init () method is utilized to initialized the class, it takes one argument
owner, which is of type AFXGuiObjectManager and is passed automat-
ically to the class. The method also defines the name of the selected
by default shelve database, AFXGuiCommand, FXMAPFUNCs and
calls the createKeywords() method. The name of the shelve database

75

is updated, depending on which radio button in the first dialog box is se-
lected. The AFXGuiCommand invokes the readFromDb() function
from the executeDbAccessCommands.py module with a dictionary of
keywords, which convey the user input commands. A FXMAPFUNC
is defined to invoke a corresponding method, when it catches a message,
identified by its ID and generated by interaction with the dialog boxes.
The call to the createKeywords() method is to create the keywords,
which convey requests from the user. Four FXMAPFUNCs are defined,
three for the radio buttons of the first dialog box for selecting the crack
type and one for catching the messages from the tree in the second dialog
box.

onTreeSelect() method is called whenever a the corresponding FXMAP-
FUNC() catches a message, generated on user interaction with the tree
of the second dialog box. The method sets the value of the self.data-
Keywords[dbKeys] to a concatenated string of the selected items in
the tree of the second dialog box. For the purpose the method iterates
members of the variable self.selectableTreeItemIDs and checks if the
item is selected. If the item is selected the corresponding database key is
concatenated to the string value of the AFXStringKeyword.

getModelName() method is utilized to split the value of the dbKeys keyword
and return the last member of the resulting tuple.

onEmbeddedButton() method is called whenever the corresponding FXMAP-
FUNC() catches a message, generated on user selecting the Embedded
crack radio button. The method modifies the values of the db and ac-
tiveDb to reflect the changes in the user interface. To create the value of
the db value the method calls getDbPath().

onSurfaceButton() method is analogous to the onEmbeddedButton, how-
ever, it is called when the user selects Surface crack radio button.

onEdgeButton() method is analogous to the onEmbeddedButton and on-
SurfaceButton, however, it is called when the user selects Edge crack
radio button.

createKeywords() method is utilized to create a dictionary of keywords –
self.dataKeywords, which is structured in the following way:

dbKeys entry contains an AFXStringKeyword with value equal to a
concatenated string of the selected shelve database keys from the tree
of the second dialog box.

activeDb entry contains an AFXStringKeyword with value equal to
shelve database name, which is named identically to the crack type.

db entry contains an AFXStringKeyword with value equal to the full
path including the shelve name.

thisDir entry contains an AFXStringKeyword with value equal to the
value of the thisDir variable, a string with the directory containing
the module of the class.

76

analytical entry contains a dictionary with keys K1, K2 and K3 as-
sociated with an AFXBoolKeyword. The value of the AFX-
BoolKeyword is altered in accordance to the state of the corre-
sponding check box is marked in the Analytical data section of the
second dialog box.

analysis entry is similar to the analytical, however, the analysis corre-
sponds to the check boxes in the Analysis data section.

contoursToAverage entry contains anAFXStringKeyword with value
equal to a concatenated string of the selected entries in the Contours
to average section.

includeContours entry contains anAFXBoolKeyword associated with
the Include contour data check box.

XYPlotData entry contains an AFXBoolKeyword associated with
the XYPlotData check box.

VisualizationOdb entry contains an AFXBoolKeyword associated
with the VisualizationOdb check box.

printData entry contains an AFXBoolKeyword associated with the
printData check box.

getDbPath() method is utilized to create and return the directory path in-
cluding the name of the active shelve database.

getFirstDialog() method is used internally to generate the first dialog box, by
creating an instance of the class for the dialog box. The method returns
the first dialog box instance

getNextDialog() method is used internally to generate the following dialog
box. The method takes one argument, an instance of the previous dialog
box. For the purposes of the program, the method generates the second
dialog box, creating an instance of the class for the second dialog box.

doCustomChecks() method is utilized to verify the validity of the selected
options in the second dialog box. The method verifies that at least one
shelve database key and entry of the Select contours to average is selected.
Otherwise an error message is displayed.

okToCancel() method is used internally to close the dialog box.

SelectDb() class

The SelectDb() class is a subclass of the AFXDataDialog() class, which
is a superclass for all dialog boxes, which collect data form the user. The
SelectDb() defines the first dialog box, in which the user selects the crack type
and respectively database, which will be the object of analysis for the second
dialog box.

The class has only one method init (), which takes one argument an
instance of the dbAccessDialogs plugin() class.

77

AccessDb() class

The AccessDb() class is a subclass of the AFXDataDialog() class. The
AccessDb() defines the second dialog box, in which the user selects the one or
more database entries from the tree to analyze and designates the options for
post processing. The tree in the dialog box is generated when an instance of the
class is created and, therefore, reflects the current shelve database entries. The
class takes two input arguments dbAccessDialogs plugin() and the path to
the active shelve database.

The AccessDb() class defines the following methods:

init () method is utilized to initialize the dialog box. The method calls the
createWidgets(), which creates the widgets of the dialog box.

createWidgets() method is utilized to create the layout of the dialog box and
call methods to create the rest of the widgets. The method calls create-
TreeWidget(), createDataOptionsWidgets(), createContoursOp-
tionsWidgets() and createOutputOptionsWidgets().

createOutputOptionsWidgets() method is utilized to create the check box
widgets:

� XYPlotData

� Print Data structure

� Visualization Odb

createContoursOptionsWidgets() method is utilized to create the Separate
contours group box widget and the Include contour data check box widget.

createDataOptionsWidgets() method is utilized to create check box wid-
gets associated with the dictionary keys and corresponding AFXBoolKey-
word of the dataKeywords[analytical] and dataKeywords[analysis]
variables from the dbAccessDialogs plugin() class. The number of the
check box widgets and their names is controlled by the contents of the two
variables.

createTreeWidget() method is utilized to build the tree widget and creates
its structure from the shelve database entries. The tree branches represent
model parameter, progressively narrowing down the selection of possible
models, down to the model name. The tree root entries are the analysis
types FEM and XFEM, which are propagated with the available entries
in the corresponding shelve database. All of the tree items are disabled
and thus not selectable, with the exception of model names of the simu-
lations that have been completed successfully. A record of the selectable
tree entries is kept and utilized in the dbAccessDialogs plugin() class
to update the respective dataKeywords[dbEntries]. The method cre-
ates the FEM and XFEM tree entries, opens and iterates through the
active shelve database calling the createEntryID.createID() function
to create a unique ID for the entry and passes it to createTreeItems()
method. Finally the method closes the shelve database.

78

createTreeItems() method is utilized to create the structure of the tree wid-
get. The tree entries are organized in hierarchial pairs of parameter name
entry, which groups its corresponding value entries available in the shelve
database. Value entries are further propagated with hierarchical pairs
until the model name is reached. To ensure, the consistency of the tree
structure, each tree entry is assigned a unique key, which determines the
parent/child relationship of the entries. The method iterates the sorted
keys of the unique entry ID and calls createTreeEntry() once to cre-
ate the parent parameter name entry and second time to create the value
entry.

createTreeEntry() method is utilized to identify the parent of a new entry
and create the entry under the parent. The entry is made selectable only if
it is a modelName and its analysisSuccess variable is True. The method
also keeps the record of selectable entries, which is utilized by the dbAc-
cessDialogs plugin() to keep track of the selected tree entries.

3.6.11 CreateID function family

TheCreateID is a family of three functions in the createEntryID.py module,
utilized to create a unique ID for a shelve database entry. The family is com-
posed of three functions: createID(), createIDfem() and createIDxfem().

createID() function

The createID() function is called by the AccessDb.createTreeWidget() to
create a unique ID for an entry from a shelve database. The function calls
either createIDfem() or createIDxfem(), according to the analysis type of
the model. Finally the function returns the unique ID.

createIDfem() function

The createIDfem() function generates a unique ID for a shelve database entry,
based on the input parameters of the model. The function is designed to operate
on input data for FEM analysis type. The ID is a dictionary with keys of
format 01 parameter name for consistent sorting. The corresponding value
is a combination of the parameters and their values. The dictionary key is
utilized in the generation of the parent entries of the hirarchy and the values of
the corresponding child entry.

createIDxfem() function

The createIDxfem() function is similar to the createIDfem(), however, it
operates on input data for XFEM analysis type.

3.6.12 Execute gui commands functions

The execute gui commands is a family of functions, designed to call the
required classes and methods, according to user requests. The functions are
defined in the executeDbAccessCommands.py. The following functions
are defined in the module: readFromDb(), prepareDbDataStr(), append-
Path(), createXYPlots(), printData() and createVisualizationOdb().

79

readFromDb() function

The readFromDb() function is utilized to process the dataKeywords, which
are passed as an input argument by the dbAccessDialogs plugin(), when
the Create button of the second dialog box is pressed. First, the method calls
the function appendPath() to make the required modules available in the
system path. Second, the method extracts the shelve keys from the dataKey-
words[dbKeys] string in a tuple. Next, the method iterates through the keys,
reads the corresponding entry from the shelve database and calls the pre-
pareDbDataStr() functions, which returns an instance of the DbDataStr()
class. Then the instance is passed to createXYPlots(), printData() and
creeateVisualizationOdb() if the corresponding dataKeywords are True.

prepareDbDataStr() function

The prepareDbDataStr() function is utilized to create an instance of the
DbDataStr() class. The function takes three arguments as input data, which
is the data read from the shelve database, requests, dictionary with the re-
quests from the user and dbKey, which is the model name. Firstly the method
creates an instance of the DbDataStr() class and then, calls the appropriate
DbDataStr() class methods to write the requests and the dbKey value as a
model name to the class.

appendPath() function

The appendPath() function is utilized to append the directory containing the
required modules to the sys.path, which is a record of directories, where Abaqus
searches during import.

createXYPlots() function

The createXYPlots() function is utilized to call the XYPlotDataFromD-
bEntry() and its methods to create XYPlotData for the passed instance of the
DbDataStr() class.

printData() function

The printData() function is utilized to print the contents of the passed instance
of the DbDataStr() class.

createVisualizationOdb() function

The createVisualizationOdb() function is utilized to create an Abaqus out-
put database for visualization of the stress intensity factors from the passed
DbDataStr() class instance. The method creates an instance of the Visual-
izationOdbFromDbEntry() class and calls the required methods to create
the output database.

3.6.13 Main loop

The main loop name corresponds to modules defining functions to create and
analyze a model database, extract the results from the output database and

80

write to the corresponding shelve database. Parameters for the model database
are defined as range of values, which define a combination of input parameters.
A function iterates through each configuration of input parameters and pro-
ceeds with the creation, analysis and results processing of the model. To avoid
duplication of analyses and to be able to resume in case of an interruption, the
shelve database entries are compared with the current input parameters before
the creation of the model database. If a duplicate is detected the loop jumps
to the next parameter configuration, until the configuration is unique for the
shelve database. The main loop is comprised of four modules corresponding
to each model type:

femCrackLoop.py is utilized to create a FEM analysis type.

xfemCrackLoop.py is utilized to create a XFEM analysis type and crack-
Partition model type.

xfemCrackMPLoop.py is utilized to create a XFEM analysis type and mul-
tiplePartitions model type.

xfemSimpleCrackLoop.py is utilized to create a XFEM analysis type and
simple model type.

81

Chapter 4

Results

4.1 Introduction

The program developed in the current project is capable of handling automated
analysis of elliptic cracks. The only limitation is imposed by the available com-
putational resources. The chapter covers the following points:

� element type comparison for FEM analysis type

� investigation of the optimal size of the cylinder

� mesh convergence analysis for FEM analysis type

� comparison of the mesh transformations for the FEM analysis type

� mesh and singularity radius convergence study for XFEM analysis type

� comparison of the accuracy of the models of XFEM analysis type

� comparison between FEM and XFEM results

� visualization of stress intensity factors

4.2 Procedure

The analysis of the results is performed in several steps. In each step of the
analysis the optimum value of the analyzed parameter is selected and fixed for
the consecutive step of the analysis, thus reducing the amount of parameters
and narrowing the possible configurations to the optimal. As a starting point for
the analysis the model of type crackNormal with elliptic mesh transformation
is selected, for which is known to give the most accurate results.

1. Evaluation of the accuracy for each element type for FEM analysis type.
Results of the stress intensity factors obtained for linear full integration,
linear reduced integration, quadratic reduced integration and quadratic full
integration elements are analyzed. Further, simulations are performed
with the element type, which gives the smallest error.

82

2. Investigation of the optimal size of the cylinder containing the crack. Di-
mensions of the cylinder significantly influence the results for the stress
intensity factors. In addition, the analytical solutions are for elliptic cracks
in infinite medium. Therefore, it is crucial to estimate and limit the influ-
ence of the size of the cylinder on the final results.

3. Mesh convergence analysis for the FEM analysis, performed only for the
selected element types.

4. Comparison of the mesh transformation types for otherwise identical meshes
of the FEM analysis type.

5. Mesh and singularity radius convergence study for the different models of
the XFEM analysis type. Only the optimal model dimensions, obtained
are considered.

6. Comparison of the accuracy of the XFEM model types.

7. Comparison is made between FEM and XFEM results.

8. Review of the stress intensity factors visualization technique developed in
the project.

9. Discussion of the results

4.3 Delimitations

Results in this chapter are generated for γ = 30◦ and ω = 60◦, applied remote
stress σ = 100. All the calculations for the FEM and XFEM analyses are
performed for 5 contours.

Values obtained by averaging over contours 2, 3 and 4 are presented in this
chapter. This simplification streamlines the generation of the results, however,
it may degrade the accuracy, although, this effect should be limited and manifest
itself mostly as additional noise to the solution.

Apart form the averaging, no additional processing operations have been per-
formed on the results, which have been read from the Abaqus output database.

4.4 Element type comparison

As a starting point for the analysis of the element accuracy are the four simula-
tions in table 4.1. Direct comparisons of the stress intensity factors are shown
in figure 4.1 for KI , figure 4.2 for KII and figure 4.3 for KIII . Errors between
the simulation and analytical values for the stress intensity factors are shown in
figure 4.4 for KI , figure 4.5 for KII and figure 4.6 for KIII .

Comparing the results from table 4.1, the maximum error is less than 14%
and quadratic reduced integration element appears to give the most accurate
results. Graphs, however, reveal that the quadratic elements introduce more
noise in the solution. Nevertheless, the quadratic reduced integration elements
are selected for the next step in the analysis.

83

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

200.

250.

300.

350.

400.

K1 − analytical solution
1307328639dot16 − K1 − FEM − averaged over 3 contours
1307329103dot72 − K1 − FEM − averaged over 3 contours
1307331098dot91 − K1 − FEM − averaged over 3 contours
1307363961dot35 − K1 − FEM − averaged over 3 contours

Figure 4.1: Comparison of values for KI obtained for crackNormal model type
with different element types and elliptic transformation

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20
[x1.E3]

K2 − analytical solution
1307328639dot16 − K2 − FEM − averaged over 3 contours
1307329103dot72 − K2 − FEM − averaged over 3 contours
1307331098dot91 − K2 − FEM − averaged over 3 contours
1307363961dot35 − K2 − FEM − averaged over 3 contours

Figure 4.2: Comparison of values for KII obtained for crackNormal model type
with different element types and elliptic transformation

ID mesh element crack max error [%]
transform type ratio KI KII KIII

1307331098dot91 elliptic quadraticFI 3 6.79 6.55 12.62
1307363961dot35 elliptic quadraticRI 3 6.36 5.92 12.45

1307329103dot72 elliptic linearRI 3 5.39 13.41 11.76
1307328639dot16 elliptic linearFI 3 8.77 8.89 13.65

Table 4.1: Models included in the element type study

84

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

−100.

−50.

0.

50.

100.

K3 − analytical solution
1307328639dot16 − K3 − FEM − averaged over 3 contours
1307329103dot72 − K3 − FEM − averaged over 3 contours
1307331098dot91 − K3 − FEM − averaged over 3 contours
1307363961dot35 − K3 − FEM − averaged over 3 contours

Figure 4.3: Comparison of values for KI obtained for crackNormal model type
with different element types and elliptic transformation

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.0

2.0

4.0

6.0

8.0

1307328639dot16 − FEM − K1 − errors
1307329103dot72 − FEM − K1 − errors
1307331098dot91 − FEM − K1 − errors
1307363961dot35 − FEM − K1 − errors

Figure 4.4: Comparison of errors for KI obtained for crackNormal model type
with different element types and elliptic transformation

85

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

4.

8.

12.

1307328639dot16 − FEM − K2 − errors
1307329103dot72 − FEM − K2 − errors
1307331098dot91 − FEM − K2 − errors
1307363961dot35 − FEM − K2 − errors

Figure 4.5: Comparison of errors for KII obtained for crackNormal model type
with different element types and elliptic transformation

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

4.

8.

12.

1307328639dot16 − FEM − K3 − errors
1307329103dot72 − FEM − K3 − errors
1307331098dot91 − FEM − K3 − errors
1307363961dot35 − FEM − K3 − errors

Figure 4.6: Comparison of errors for KIII obtained for crackNormal model type
with different element types and elliptic transformation

86

4.5 Analysis of the influence of the cylinder di-
mensions

The analysis of the influence of the cylinder dimensions is performed by com-
parison of the maximum error for each of the stress intensity factor for different
cylinder dimensions. The total number of simulations includes all the configu-
rations with cylinder height and radius of: 40, 80, 120, 200, 300, including the
configuration of a cylinder with height and radius of 100. The results are shown
in figure 4.7 for KI , figure 4.8 for KII and figure 4.9 for KIII .

In addition, figure 4.10 illustrates the errors along the crack for the KI stress
intensity factor, figure 4.11 for KII and figure 4.12 for KIII . Details about these
simulations are presented in table 4.2.

Results prove the expected tendency of increased accuracy with increased
dimensions of the cylinder. However, the dependence is not linear and is most
pronounced for the height. Regarding the stress intensity factors, the trend is
most pronounced for KI , however, errors for KII and KIII slightly increase
after a certain point.

Finally, the optimal dimensions for a cylinder with a crack with a = 30 and
b = 10 are:

height = 200

and

radius = 120

Figure 4.7: Convergence study for cylinder dimensions against the maximum
errors for KI

87

Figure 4.8: Convergence study for cylinder dimensions against the maximum
errors for KII

Figure 4.9: Convergence study for cylinder dimensions against the maximum
errors for KIII

88

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

5.

10.

15.

20.

1307363961dot35 − FEM − K1 − errors
1309770498dot61 − FEM − K1 − errors
1309792093dot37 − FEM − K1 − errors
1309805073dot26 − FEM − K1 − errors

Figure 4.10: Comparison of errors for KI along the crack front for different
cylinder dimensions

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1307363961dot35 − FEM − K2 − errors
1309770498dot61 − FEM − K2 − errors
1309792093dot37 − FEM − K2 − errors
1309805073dot26 − FEM − K2 − errors

Figure 4.11: Comparison of errors for KII along the crack front for different
cylinder dimensions

ID cylinder max error [%]
height radius KI KII KIII

1309805073dot26 300 300 3.78 5.82 11.87
1309792093dot37 200 200 4.27 5.84 11.98
1307363961dot35 100 100 6.36 5.92 12.45
1309770498dot61 40 40 22.41 7.23 16.359

Table 4.2: Models in figures 4.10, 4.11 and 4.12

89

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

5.

10.

15.

1307363961dot35 − FEM − K3 − errors
1309770498dot61 − FEM − K3 − errors
1309792093dot37 − FEM − K3 − errors
1309805073dot26 − FEM − K3 − errors

Figure 4.12: Comparison of errors for KIII along the crack front for different
cylinder dimensions

4.6 Mesh convergence analysis

In this section the influence of the mesh refinement is analyzed by comparing
different mesh densities for linear reduced integration and quadratic reduced in-
tegration elements. Analysis is performed for model with dimensions defined in
section 4.5 and elliptic mesh transformation.

4.6.1 Mesh convergence analysis with quadratic reduced
integration elements

Models included in the study are presented in table 4.3. According to table 4.3
the maximum errors of the stress intensity factors are almost independent of
the mesh density.

For more complete representation, graphs of the errors for the stress intensity
factors for some extreme cases, along the crack front are shown in figure 4.13
for KI , figure 4.14 for KII and figure 4.15 for KIII .

Although, maximum errors of the evaluated stress intensity factors is rela-
tively constant, higher mesh density corresponds to a solution with less noise.

90

ID seeds max error [%]
czm czr ar cr KI KII KIII

1309848413dot98 5 5 3 5 failed analysis checks
1309840073dot36 3 5 12 5 4.93 5.91 11.91
1309850324dot89 5 5 12 5 4.33 5.74 12.04
1309842434dot45 5 3 3 5 failed analysis checks
1309837868dot7 3 3 12 5 4.82 5.91 11.93
1309837554dot03 3 3 5 5 5.05 5.94 11.85
1309843793dot24 5 3 12 5 4.38 5.8 12.07
1309837418dot02 3 3 3 5 failed analysis checks
1309842855dot88 5 3 5 5 4.54 6.09 11.98
1309789759dot25 5 5 9 5 4.41 5.72 12.01
1309839557dot28 3 5 5 5 5.17 6.01 11.84
1309848923dot31 5 5 5 5 4.54 6.0 11.98
1309839345dot21 3 5 3 5 failed analysis checks

Table 4.3: Models with quadratic reduced integration elements included in the
mesh convergence study

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1309837554dot03 − FEM − K1 − errors

1309837868dot7 − FEM − K1 − errors

1309848923dot31 − FEM − K1 − errors

1309850324dot89 − FEM − K1 − errors

Figure 4.13: Comparison of errors for KI along the crack front for different
mesh densities of quadratic reduced integration elements

91

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1309837554dot03 − FEM − K2 − errors

1309837868dot7 − FEM − K2 − errors

1309848923dot31 − FEM − K2 − errors

1309850324dot89 − FEM − K2 − errors

Figure 4.14: Comparison of errors for KII along the crack front for different
mesh densities of quadratic reduced integration elements

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

4.

8.

12.

1309837554dot03 − FEM − K3 − errors

1309837868dot7 − FEM − K3 − errors

1309848923dot31 − FEM − K3 − errors

1309850324dot89 − FEM − K3 − errors

Figure 4.15: Comparison of errors for KIII along the crack front for different
mesh densities of quadratic reduced integration elements

92

ID seeds max error [%]
czm czr ar cr KI KII KIII

1309835867dot25 5 5 5 5 3.85 12.75 11.6
1309835491dot63 5 3 15 5 3.48 13.68 11.26
1309835163dot74 5 3 3 5 5.56 14.23 12.9
1309834706dot86 3 3 12 5 9.16 32.28 16.3
1309836322dot15 5 5 15 5 3.31 13.89 11.12
1309835814dot17 5 5 3 5 5.53 14.17 12.74
1309835202dot98 5 3 5 5 4.02 12.74 11.75
1309835270dot46 5 3 12 5 3.52 13.49 11.28
1309834845dot13 3 5 3 5 4.47 25.13 12.22
1309834682dot92 3 3 5 5 7.05 26.93 13.14
1309834763dot64 3 3 15 5 9.26 31.98 16.27
1309835011dot44 3 5 15 5 11.01 34.24 17.4
1309834661dot92 3 3 3 5 3.34 24.22 12.43
1309834907dot25 3 5 12 5 10.88 34.14 17.43
1309834869dot43 3 5 5 5 8.49 29.03 14.0
1309835969dot28 5 5 12 5 3.35 13.72 11.15

Table 4.4: Models with linear reduced integration elements included in the mesh
convergence study

4.6.2 Mesh convergence analysis with linear reduced inte-
gration elements

Models included in the study are presented in table 4.4. Contrary to the results
in section 4.6.1, maximum errors of the stress intensity factors exhibit strong
mesh density dependence, especially for the KII factor.

For more complete representation, graphs of the errors for the stress intensity
factors for some extreme cases, along the crack front are shown in figure 4.16
for KI , figure 4.17 for KII and figure 4.18 for KIII .

In conclusion, the simulation with ID 1309835867dot25, table 4.4 provides
the optimal balance between accuracy and mesh size, from the performed sim-
ulations.

93

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.0

2.0

4.0

6.0

8.0

10.0

1309834682dot92 − FEM − K1 − errors

1309834706dot86 − FEM − K1 − errors

1309835011dot44 − FEM − K1 − errors

1309835867dot25 − FEM − K1 − errors

Figure 4.16: Comparison of errors for KI along the crack front for different
mesh densities of linear reduced integration elements

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

5.

10.

15.

20.

25.

30.

35.

1309834682dot92 − FEM − K2 − errors

1309834706dot86 − FEM − K2 − errors

1309835011dot44 − FEM − K2 − errors

1309835867dot25 − FEM − K2 − errors

Figure 4.17: Comparison of errors for KII along the crack front for different
mesh densities of linear reduced integration elements

94

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

5.

10.

15.

1309834682dot92 − FEM − K3 − errors

1309834706dot86 − FEM − K3 − errors

1309835011dot44 − FEM − K3 − errors

1309835867dot25 − FEM − K3 − errors

Figure 4.18: Comparison of errors for KIII along the crack front for different
mesh densities of linear reduced integration elements

4.7 Comparison between mesh transformations

4.7.1 Comparison between elliptic and simpleScale mesh
transformations

The accuracy of evaluation of stress intensity factors obtained from models with
elliptic and simpleScale mesh transformations is compared. The comparison is
made with both linear reduced integration and quadratic reduced integration
elements. For the comparison, cylinder dimensions and mesh configurations
obtained in sections 4.5 and 4.6 are used. Models included in the comparison
are presented in table 4.5. Graphs for the maximum errors are illustrated in
figure 4.28 for KI , figure 4.29 for KII and figure 4.30 for KIII .

Results from the comparison of a crack with aspect ratio 3 are shown in
figure 4.19 for KI , figure 4.20 for KII and figure 4.21 for KIII . For cracks with
ratios 5 and 10, results from the comparison are shown in fiqures 4.22, 4.23,
4.24, 4.25, 4.26, 4.27.

95

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

2.0

4.0

6.0

8.0

10.0

1309835867dot25 − FEM − K1 − errors
1309848923dot31 − FEM − K1 − errors
1309929194dot81 − FEM − K1 − errors
1309932913dot67 − FEM − K1 − errors

Figure 4.19: Comparison of errors for KI for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio of 3

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

4.

8.

12.

1309835867dot25 − FEM − K2 − errors
1309848923dot31 − FEM − K2 − errors
1309929194dot81 − FEM − K2 − errors
1309932913dot67 − FEM − K2 − errors

Figure 4.20: Comparison of errors for KII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio of 3

96

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

5.

10.

15.

20.

1309835867dot25 − FEM − K3 − errors
1309848923dot31 − FEM − K3 − errors
1309929194dot81 − FEM − K3 − errors
1309932913dot67 − FEM − K3 − errors

Figure 4.21: Comparison of errors for KIII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio of 3

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

2.

4.

6.

8.

10.

12.

1309930186dot92 − FEM − K1 − errors
1309930410dot0 − FEM − K1 − errors
1309930698dot59 − FEM − K1 − errors
1309930764dot13 − FEM − K1 − errors

Figure 4.22: Comparison of errors for KI for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio of 5

97

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

4.

8.

12.

1309930186dot92 − FEM − K2 − errors
1309930410dot0 − FEM − K2 − errors
1309930698dot59 − FEM − K2 − errors
1309930764dot13 − FEM − K2 − errors

Figure 4.23: Comparison of errors for KII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio of 5

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

5.

10.

15.

20.

25.

30.

35.

40.

1309930186dot92 − FEM − K3 − errors
1309930410dot0 − FEM − K3 − errors
1309930698dot59 − FEM − K3 − errors
1309930764dot13 − FEM − K3 − errors

Figure 4.24: Comparison of errors for KIII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio of 5

98

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

5.

10.

15.

20.

25.

1309930836dot52 − FEM − K1 − errors
1309931338dot52 − FEM − K1 − errors
1309931867dot58 − FEM − K1 − errors
1309931955dot25 − FEM − K1 − errors

Figure 4.25: Comparison of errors for KI for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio of 10

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

4.

8.

12.

1309835867dot25 − FEM − K2 − errors
1309848923dot31 − FEM − K2 − errors
1309929194dot81 − FEM − K2 − errors
1309932913dot67 − FEM − K2 − errors

Figure 4.26: Comparison of errors for KII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio of 10

99

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

5.

10.

15.

20.

1309835867dot25 − FEM − K3 − errors
1309848923dot31 − FEM − K3 − errors
1309929194dot81 − FEM − K3 − errors
1309932913dot67 − FEM − K3 − errors

Figure 4.27: Comparison of errors for KIII for elliptic and simpleScale mesh
transformation along the crack front for crack with aspect ratio of 10

ID mesh element crack max error [%]
transform type ratio KI KII KIII

1309929194dot81 simpleScale quadRI 3 4.99 6.45 19.97
1309932913dot67 simpleScale linearRI 3 5.71 7.1 13.78
1309835867dot25 elliptic linearRI 3 3.85 12.75 11.6
1309848923dot31 elliptic quadRI 3 4.5 6.0 11.98

1309930698dot59 elliptic linearRI 5 1.88 13.84 6.14
1309930186dot92 elliptic quadRI 5 3.9 2.86 8.77
1309930764dot13 simpleScale linearRI 5 11.76 3.46 17.62
1309930410dot0 simpleScale quadRI 5 5.97 3.61 40.51

1309931867dot58 elliptic linearRI 10 3.65 13.85 2.41
1309930836dot52 elliptic quadRI 10 4.51 4.32 27.5
1309931955dot25 simpleScale linearRI 10 28.07 4.7 32.01
1309931338dot52 simpleScale quadRI 10 10.75 8.31 45.54

Table 4.5: Models included in the comparison of mesh transformations

100

Figure 4.28: Comparison of the maximum errors for KI for elliptic and sim-
pleScale mesh transformations for crack with aspect ratios of 3, 5 and 10

Figure 4.29: Comparison of the maximum errors for KII for elliptic and sim-
pleScale mesh transformations for crack with aspect ratios of 3, 5 and 10

101

Figure 4.30: Comparison of the maximum errors for KIII for elliptic and sim-
pleScale mesh transformations for crack with aspect ratios of 3, 5 and 10

4.7.2 advancedScale mesh transformation

The advancedScale mesh transformation in its present implementation proved
to give unreliable results. The problem can be tracked to the merging on nodes
of the innerCylinder. The procedure works reliably for elliptic and simpleScale
mesh transformations, however, is not reliable for advsncedScale. Therefore,
results for this particular transformation are not considered and is not advisable
to be used until the algorithm is fixed.

102

4.8 XFEM results

4.8.1 Mesh and singularity radius convergence study

The accuracy of the XFEM solution, in addition to mesh density, depends on
the singularity calculation radius. It determines which elements, located radially
in the vicinity of the crack front would be included in the calculation of the
singularity. Judging from the results, it may have a significant impact on the
accuracy of the results.

The convergence study is carried out on models with dimensions, determined
in section 4.5 and crack aspect ratio of 3.

Results for the KII stress intensity factor have consistently been calculated
with the opposite to the analytical solution sign and errors are in the vicinity
of 200%.

Convergence study for the crackPartition model

The crackPartition model type is meshed with linear tetrahedral elements, which
are generally perceived as inferior to hexahedral elements and require dense
meshes to converge.

Models in the convergence study are presented in table 4.6. Results for KI

stress intensity factors are shown in figure 4.31, KII in figure 4.32, KIII in
figure 4.33.

Figure 4.31: Convergence study for crackPartition XFEM model for KI stress
intensity factor

103

Figure 4.32: Convergence study for crackPartition XFEM model for KII stress
intensity factor

Figure 4.33: Convergence study for crackPartition XFEM model for KIII stress
intensity factor

104

ID singularity seed size max error [%]
radius general crack KI KII KIII

1309881638dot61 0.5 5 0.5 7.9 204.57 22.75
1309867375dot36 0.5 5 1 3.48 200.22 17.89
1309861189dot43 0.5 5 2 5.89 198.75 37.41
1309888005dot75 0.5 10 0.5 5.68 203.0 31.3
1309869569dot74 0.5 10 1 4.53 200.51 17.77
1309862320dot31 0.5 10 2 5.31 201.45 26.11
1309890615dot21 0.5 15 0.5 9.12 205.0 20.7
1309870282dot26 0.5 15 1 3.53 199.86 18.56
1309862604dot44 0.5 15 2 7.32 205.19 31.94
1309877851dot66 1 5 0.5 7.05 214.25 21.36
1309866047dot71 1 5 1 6.94 199.0 18.84
1309860508dot44 1 5 2 2.25 198.5 25.59
1309887212dot44 1 10 0.5 5.68 203.0 31.3
1309869302dot8 1 10 1 7.3 199.86 20.91
1309862186dot35 1 10 2 3.53 202.21 24.83
1309890029dot56 1 15 0.5 8.33 212.85 22.79
1309870142dot52 1 15 1 7.8 199.23 20.36
1309862530dot48 1 15 2 4.49 206.65 30.46
1309874034dot54 2 5 0.5 18.55 210.53 94.47
1309864682dot98 2 5 1 7.45 203.82 19.76
1309859802dot52 2 5 2 5.39 197.16 26.31
1309886494dot28 2 10 0.5 5.68 203.0 31.3
1309869048dot44 2 10 1 8.8 209.58 22.39
1309862054dot23 2 10 2 5.84 199.68 25.65
1309889469dot37 2 15 0.5 20.78 208.35 94.26
1309869997dot09 2 15 1 8.96 207.7 21.95
1309862457dot59 2 15 2 7.62 104.18 30.81
1309870420dot11 5 5 0.5 18.55 210.53 94.47
1309862678dot81 5 5 1 7.45 203.82 19.76
1309859167dot16 5 5 2 5.39 197.16 26.31
1309885742dot85 5 10 0.5 5.68 203.0 31.3
1309868759dot33 5 10 1 8.8 209.58 22.39
1309861904dot84 5 10 2 5.84 199.69 25.65
1309888886dot84 5 15 0.5 20.78 208.35 94.27
1309869835dot18 5 15 1 8.98 207.7 21.95
1309858154dot86 5 15 2 7.62 204.18 30.81

Table 4.6: Models of type crackPartition included in the convergence study

105

ID singularity seed size max error [%]
radius general container KI KII KIII

1309986788dot06 0.5 10 1 37.37 221.32 23.25
1309984483dot97 0.5 10 2 37.37 221.32 23.25
1309987175dot79 0.5 20 1 56.44 327.06 33.83
1309985293dot77 0.5 20 2 56.44 327.27 33.83
1309986877dot41 1 10 1 31.39 208.08 28.56
1309984680dot36 1 10 2 31.39 208.08 28.56
1309987100dot02 1 15 1 55.84 221.56 31.71
1309985152dot52 1 15 2 55.84 221.56 31.71
1309987202dot14 1 20 1 39.2 264.25 25.7
1309985340dot47 1 20 2 39.2 264.25 25.7
1309986968dot52 2 10 1 16.35 199.61 28.96
1309984881dot75 2 10 2 16.35 199.61 28.96
1309987134dot36 2 15 1 27.22 216.11 30.81
1309985220dot46 2 15 2 27.22 216.11 30.81
1309987226dot5 2 20 1 14.42 195.64 19.08
1309985392dot83 2 20 2 14.42 195.64 19.09

Table 4.7: Models of type multiplePartitions included in the convergence study

Convergence study for the multiplePartitions model

The multiplePartitions model is meshed wirt linear hexahedral reduced integra-
tion elements. The models in the convergence study are presented in table 4.7.

106

Figure 4.34: Convergence study for multiplePartitions XFEM model for KI

stress intensity factor

Figure 4.35: Convergence study for multiplePartitions XFEM model for KII

stress intensity factor

107

Figure 4.36: Convergence study for multiplePartitions XFEM model for KIII

stress intensity factor

Convergence study for the simple model

The simple model is meshed wirt linear hexahedral reduced integration elements.
The models in the convergence study are presented in table 4.8.

108

ID singularity seed max error [%]
radius size KI KII KIII

1310135264dot81 1 4 28.13 215.56 28.67
1309907173dot28 1 5 12.27 210.25 37.22
1309907898dot52 1 10 39.02 167.13 33.73
1310133138dot24 2.5 4 21.58 210.3 33.56
1309906614dot41 2.5 5 16.94 204.39 42.01
1309907836dot46 2.5 10 42.12 169.7 33.5
1310131219dot07 5 4 21.85 210.3 33.56
1309906107dot27 5 5 16.06 204.07 42.61
1309907767dot41 5 10 42.12 169.7 33.5

Table 4.8: Models of type simple included in the convergence study

Figure 4.37: Mesh and singularity radius convergence for KI

109

Figure 4.38: Mesh and singularity radius convergence for KII

Figure 4.39: Mesh and singularity radius convergence for KIII

110

4.8.2 Comparison of the values and errors of the calcu-
lated stress intensity factors by XFEM

Accuracy of the crackPartition, multiplePartitions and simple model types is
compared. Models included in the study are presented in table 4.9. The models
are selected on the basis of the best accuracy for a given model type. The
selection, however, does not guarantee, that the number of evaluations of the
stress intensity factors is equal. Furthermore, the contrary is true and the
number of points for evaluation of the stress intensity factors varies significantly
with the different model types. Nevertheless, the comparison would be useful
to give a general notion of what accuracy can be expected and what strategy
may be give optimal results in future studies.

Comparison of the stress intensity factors along the crack front are illustrated
in figure 4.40 for KI , figure 4.41 for KII and figure 4.42 for KIII . Errors of the
stress intensity factors are illustrated in figure 4.43 for the KI , figure 4.44 for
KII and figure 4.45 for KIII .

Stress intensity factors, calculated with XFEM show considerable noise and
the maximum error value is not a precise measure for the overall accuracy. This
is especially true for model 1309888886dot84, which has a very high peak, which
leads to high value of the maximum error.

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

200.

250.

300.

350.

400.

450.

K1 − analytical solution

1309867375dot36 − K1 − XFEM − averaged over 3 contours

1309888886dot84 − K1 − XFEM − averaged over 3 contours

1309907173dot28 − K1 − XFEM − averaged over 3 contours

1309985392dot83 − K1 − XFEM − averaged over 3 contours

Figure 4.40: Comparison of the calculated values for KI along the crack front
for the different XFEM model types

111

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

[x1.E3]

K2 − analytical solution

1309867375dot36 − K2 − XFEM − averaged over 3 contours

1309888886dot84 − K2 − XFEM − averaged over 3 contours

1309907173dot28 − K2 − XFEM − averaged over 3 contours

1309985392dot83 − K2 − XFEM − averaged over 3 contours

Figure 4.41: Comparison of the calculated values for KII along the crack front
for the different XFEM model types

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

[x1.E3]

K3 − analytical solution

1309867375dot36 − K3 − XFEM − averaged over 3 contours

1309888886dot84 − K3 − XFEM − averaged over 3 contours

1309907173dot28 − K3 − XFEM − averaged over 3 contours

1309985392dot83 − K3 − XFEM − averaged over 3 contours

Figure 4.42: Comparison of the calculated values for KIII along the crack front
for the different XFEM model types

ID sing. seed size max error [%]
radius general crack cont. KI KII KIII

1309985392dot83 2 20 — 2 14.42 195.64 19.08
1309867375dot36 0.5 5 1 — 3.48 200.22 17.89
1309888886dot84 5 15 0.5 — 20.78 208.35 94.27
1309907173dot28 1 5 — — 12.27 210.25 37.23

Table 4.9: Models included in the comparison of the accuracy of the different
XFEM model types

112

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

5.

10.

15.

20.

1309867375dot36 − XFEM − K1 − errors

1309888886dot84 − XFEM − K1 − errors

1309907173dot28 − XFEM − K1 − errors

1309985392dot83 − XFEM − K1 − errors

Figure 4.43: Errors of the calculated values for KI along the crack front for the
different XFEM model types

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

50.

100.

150.

200.

1309867375dot36 − XFEM − K2 − errors

1309888886dot84 − XFEM − K2 − errors

1309907173dot28 − XFEM − K2 − errors

1309985392dot83 − XFEM − K2 − errors

Figure 4.44: Errors of the calculated values for KII along the crack front for
the different XFEM model types

113

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

20.

40.

60.

80.

1309867375dot36 − XFEM − K3 − errors

1309888886dot84 − XFEM − K3 − errors

1309907173dot28 − XFEM − K3 − errors

1309985392dot83 − XFEM − K3 − errors

Figure 4.45: Errors of the calculated values for KIII along the crack front for
the different XFEM model types

4.8.3 Comparison between FEM and XFEM results

The obtained results for the stress intensity factors from FEM and XFEM
analyses are compared in this section. Comparison is performed for cracks with
aspect ratios of 3, 5 and 10. The included models are of types crackNormal with
elliptic mesh transformation and quadratic reduced integration elements and
crackPartition with linear tetrahedral elements. The comparison is performed
for models with cylinder dimensions determined in section 4.5, regardless of
the crack aspect ratio. Therefore, it could be expected that the comparison
performed for crack aspect ratio of 3 to be the most representative.

The comparison is limited to KI and KIII stress intensity factors, as the
results for KII from the XFEM analysis are calculated with opposite signs.

Comparison for crack aspect ratio of 3 KI is illustrated in figure 4.46, for
KIII in figure 4.47 and errors along the crack front in figure 4.48. For crack with
aspect ratio of 5, KI is illustrated in figure 4.49, KIII in figure 4.50 and errors
in figure 4.51. For crack with aspect ratio of 10, KI is illustrated in figure 4.52,
KIII in figure 4.53 and errors in figure 4.54. Finally, models included in the
comparison are listed in tables 4.10 and 4.11.

Results of the comparison prove that the XFEM and FEM models have
comparable accuracy for KI and KIII stress intensity factors. The decrease in
accuracy of the KI and KIII for the XFEM analysis for crack aspect ratios of
5 and 10 could be due to a requirement for a cylinder with larger dimensions to
better represent the infinite medium. The mesh transform, however, increases
the dimensions of the cylinder, which may have influence, which is not accounted
for. Regarding the KII values calculated with XFEM have the opposite sign.

114

SIF

−2.155e+02
−1.606e+02
−1.058e+02
−5.103e+01
+3.779e+00
+5.859e+01
+1.134e+02
+1.682e+02
+2.230e+02
+2.778e+02
+3.326e+02
+3.874e+02
+4.423e+02

Step: step−1

Primary Var: SIF
Deformed Var: not set Deformation Scale Factor: not set

SIF visualization
ODB: visualization1310240980dot74.odb Abaqus/Scripting Interface 6.10−1 Sat Jul 09 22:09:57 ora legale Europa occ. 2011

X Y

Z
beta

0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

250.

300.

350.

400.

K1 − analytical solution

1309848923dot31 − K1 − FEM − averaged over 3 contours

1309870282dot26 − K1 − XFEM − averaged over 3 contours

Figure 4.46: Comparison between the calculated values for KI by FEM and
XFEM along the crack front for crack with aspect ratio of 3

SIF

−2.155e+02
−1.606e+02
−1.058e+02
−5.103e+01
+3.779e+00
+5.859e+01
+1.134e+02
+1.682e+02
+2.230e+02
+2.778e+02
+3.326e+02
+3.874e+02
+4.423e+02

Step: step−1

Primary Var: SIF
Deformed Var: not set Deformation Scale Factor: not set

SIF visualization
ODB: visualization1310240980dot74.odb Abaqus/Scripting Interface 6.10−1 Sat Jul 09 22:09:57 ora legale Europa occ. 2011

X Y

Z
beta

0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

−100.

−50.

0.

50.

100.

K3 − analytical solution

1309848923dot31 − K3 − FEM − averaged over 3 contours

1309870282dot26 − K3 − XFEM − averaged over 3 contours

Figure 4.47: Comparison between the calculated values for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 3

ID crack seeds max error [%]
ratio czm czr ar cr KI KII KIII

1309848923dot31 3 5 5 5 5 4.54 6.0 11.99
1309930186dot92 5 5 5 5 5 3.9 2.86 8.77
1309930836dot52 10 5 5 5 5 4.51 4.32 27.5

Table 4.10: FEM models included in the comparison of the accuracy withXFEM
models

115

SIF

−2.155e+02
−1.606e+02
−1.058e+02
−5.103e+01
+3.779e+00
+5.859e+01
+1.134e+02
+1.682e+02
+2.230e+02
+2.778e+02
+3.326e+02
+3.874e+02
+4.423e+02

Step: step−1

Primary Var: SIF
Deformed Var: not set Deformation Scale Factor: not set

SIF visualization
ODB: visualization1310240980dot74.odb Abaqus/Scripting Interface 6.10−1 Sat Jul 09 22:09:57 ora legale Europa occ. 2011

X Y

Z

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

5.

10.

15.

1309848923dot31 − FEM − K1 − errors

1309848923dot31 − FEM − K3 − errors

1309870282dot26 − XFEM − K1 − errors

1309870282dot26 − XFEM − K3 − errors

Figure 4.48: Comparison between the calculated errors for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 3

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

200.

250.

300.

350.

400.

K1 − analytical solution
1309930186dot92 − K1 − FEM − averaged over 3 contours
1310240764dot87 − K1 − XFEM − averaged over 3 contours

Figure 4.49: Comparison between the calculated values for KI by FEM and
XFEM along the crack front for crack with aspect ratio of 5

ID crack seeds max error [%]
ratio general crack KI KII KIII

1309870282dot26 3 15 1 3.53 199.86 18.56
1310240764dot87 5 15 1 7.0 200.66 15.89
1310240980dot74 10 15 1 7.86 202.52 14.09

Table 4.11: XFEM models included in the comparison of the accuracy with
FEM models

116

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

−100.

−50.

0.

50.

100.

K3 − analytical solution
1309930186dot92 − K3 − FEM − averaged over 3 contours
1310240764dot87 − K3 − XFEM − averaged over 3 contours

Figure 4.50: Comparison between the calculated values for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 3

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

5.

10.

15.

1309930186dot92 − FEM − K1 − errors
1309930186dot92 − FEM − K3 − errors
1310240764dot87 − XFEM − K1 − errors
1310240764dot87 − XFEM − K3 − errors

Figure 4.51: Comparison between the calculated errors for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 5

117

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

100.

150.

200.

250.

300.

350.

400.

450.

K1 − analytical solution
1309930836dot52 − K1 − FEM − averaged over 3 contours
1310240980dot74 − K1 − XFEM − averaged over 3 contours

Figure 4.52: Comparison between the calculated values for KI by FEM and
XFEM along the crack front for crack with aspect ratio of 10

beta
0. 50. 100. 150. 200. 250. 300. 350.

S
tr

es
s

In
te

ns
ity

 F
ac

to
r

−100.

−50.

0.

50.

100.

K3 − analytical solution
1309930836dot52 − K3 − FEM − averaged over 3 contours
1310240980dot74 − K3 − XFEM − averaged over 3 contours

Figure 4.53: Comparison between the calculated values for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 10

118

beta
0. 50. 100. 150. 200. 250. 300. 350.

E
rr

or
 [%

]

0.

5.

10.

15.

20.

25.

1309930836dot52 − FEM − K1 − errors
1309930836dot52 − FEM − K3 − errors
1310240980dot74 − XFEM − K1 − errors
1310240980dot74 − XFEM − K3 − errors

Figure 4.54: Comparison between the calculated errors for KIII by FEM and
XFEM along the crack front for crack with aspect ratio of 10

ID crack ratio analysis type model type figure
1309848923dot31 3 FEM crackNormal 4.55
1309869569dot74 3 XFEM crackPartition 4.56
1310240764dot87 5 XFEM crackPartition 4.57
1310240980dot74 10 XFEM crackPartition 4.58

1309907898dot52 3 XFEM simple 4.59

Table 4.12: Visualization of models

4.9 Visualization of the stress intensity factors

In this section are presented visualizations of the stress intensity factors for
cracks with aspect ratios of 3, 5 and 10 and FEM and XFEM analyses. Models
are listed in table 4.12 and illustrated in figures 4.56, 4.58, 4.57, 4.55 and 4.59.

The visualization can also be utilized as a verification tool. For instance,
figure 4.59 is a visualization of a XFEM simple model type with seed size of 10.
The visualization, clearly illustrates the accuracy of the approximation.

119

SIF

−2.090e+02
−1.601e+02
−1.112e+02
−6.228e+01
−1.337e+01
+3.555e+01
+8.446e+01
+1.334e+02
+1.823e+02
+2.312e+02
+2.801e+02
+3.290e+02
+3.779e+02

X Y

Z

Figure 4.55: Visualization of the 1309848923dot31 FEM model with crack as-
pect ratio 3

SIF

−2.103e+02
−1.592e+02
−1.082e+02
−5.715e+01
−6.104e+00
+4.494e+01
+9.598e+01
+1.470e+02
+1.981e+02
+2.491e+02
+3.001e+02
+3.512e+02
+4.022e+02

X Y

Z

Figure 4.56: Visualization of the 1309869569dot74 XFEM model with crack
aspect ratio 3

120

SIF

−2.116e+02
−1.581e+02
−1.046e+02
−5.112e+01
+2.368e+00
+5.585e+01
+1.093e+02
+1.628e+02
+2.163e+02
+2.698e+02
+3.233e+02
+3.768e+02
+4.302e+02

X Y

Z

Figure 4.57: Visualization of the 1310240764dot87 XFEM model with crack
aspect ratio 5

SIF

−2.155e+02
−1.606e+02
−1.058e+02
−5.103e+01
+3.779e+00
+5.859e+01
+1.134e+02
+1.682e+02
+2.230e+02
+2.778e+02
+3.326e+02
+3.874e+02
+4.423e+02

X Y

Z

Figure 4.58: Visualization of the 1310240980dot74 XFEM model with crack
aspect ratio 10

121

SIF

−1.384e+02
−8.306e+01
−2.774e+01
+2.758e+01
+8.290e+01
+1.382e+02
+1.935e+02
+2.488e+02
+3.042e+02
+3.595e+02
+4.148e+02
+4.701e+02
+5.254e+02

X Y

Z

Figure 4.59: Visualization of the 1309907898dot52 XFEM model with crack
aspect ratio 3

122

Chapter 5

Conclusion

5.1 Introduction

The present project is an attempt to facilitate the analysis of elliptic cracks by
providing a framework, which is capable of generating, analyzing, extracting
the calculated values from the output database, writing the results to a custom
shelve database and visualizing the results.

The program automates the described process and the created shelve database,
which is a valuable knowledge base containing calculations for cracks with dif-
ferent parameters.

5.2 Summary of results

From the results in chapter 4 can be concluded that the crackNormal model
type with quadratic reduced integration elements and elliptic mesh transforma-
tion would give the most consistent results. Comparable accuracy can also be
achieved also with linear reduced integration elements, however, they should be
used with meshes with higher density. Noise in the FEM solution can be re-
duced by increasing the mesh density, a viable option is also using linear reduced
integration elements with a fine mesh.

XFEM can also be used successfully to analyze elliptic cracks, however, at
the moment of writing, Abaqus has only an XFEM implementation with linear
elements. Results prove that the accuracy of the XFEM solution is less con-
sistent than the accuracy of the conventional FEM performed with quadratic
reduced integration elements and has considerably more noise. Therefore, a
dense mesh is generally required for accurate evaluation of stress intensity fac-
tors. In addition, with the increase of the crack aspect ratio the number of
elements increase in the mesh, resulting in a more computationally expensive
solution.

The mesh independent formulation of XFEM is a considerable advantage,
however, to improve accuracy, use of dense mesh in the vicinity of the singularity
is strongly advisable.

The visualization technique proposed can also be especially convenient as a
diagnostic tool for verification of the XFEM approximation of the crack geom-
etry as shown in figure 4.59.

123

5.3 Implications for practice and recommenda-
tions

The developed program in the project significantly facilitates modeling and
analysis of embedded cracks. In addition, the developed visualization technique
considerably improves representation of stress intensity factors by mapping the
values to coordinates in three dimensional space.

Both FEM and XFEM model databases can be employed in a larger analysis
by means of submodeling.

In addition, the program can be of utility for convergence studies for optimal
mesh and analysis technique for a particular case. The convergence study can
be executed on the model databases created by the program and then the results
applied as a guidance in analysis of larger models.

Furthermore, the program can be utilized to facilitate the selection of op-
timal combination of seed size and singularity radius for an XFEM analysis,
by performing a convergence study, similar to the one discussed in section 4.8.1
and designing a mesh for the analysis with the obtained parameters.

Use of results of the present project and the developed program are a good
starting point for further analyses and fashion it is used would mostly depend
on the specific analysis. However, my personal recommendation is to automate
the analysis as feasible, the amount of parameters is vast and extensive analysis
without automation may prove particularly challenging and unfeasible if per-
formed manually. For instance, even creating a graph from the history output
of the stress intensity factors for an XFEM analysis, without automation may
prove quite challenging.

5.4 Implications for further development

The program for the project in its current state should provide a sound founda-
tion for further development. Furthermore, it has been designed with scalability
in mind and can be extended in a variety of ways.

5.4.1 Modeling automation

A major feature, would be an automated procedure to analyze cracks by sub-
modeling, which would facilitate significantly parametric studies and optimiza-
tion.

5.4.2 Results processing and optimization

One possibility for further functionality is the development of algorithms to
further analyze results and find parameter configurations, which meet a certain
criteria.

5.4.3 Other functionality

A more trivial development is to include results for J -integral and other fracture
mechanics parameters.

124

5.5 Conclusion

In conclusion, the project attempted to create a self-contained and automated
framework, built upon Abaqus software for modeling, analysis, results storage
and visualization of elliptic cracks. As a result, the framework allows to ana-
lyze stress intensity factors, calculated by FEM and XFEM and compare their
values with analytical solutions. The obtained results, comparisons between
analysis types and convergence studies are presented in chapter 4. Further-
more, results prove, that XFEM is a promising development for stress intensity
factors, although, the issue with opposite sign for KII has not been resolved.

The introduced visualization technique, would come as a useful represen-
tation and diagnostic tool in analyzing XFEM crack geometry approximation,
as well as to improve representation of stress intensity factors or other fracture
mechanics parameter.

125

Bibliography

[1] Y. Abdelaziz and A. Hamouine. A survey of the extended finite element.
Computers & Structures, 86(11-12):1141–1151, June 2008.

[2] W.E. Anderson. An engineer views brittle fracture history. Boeing report,
1960.

[3] A. O Ayhan. Three-Dimensional fracture analysis using tetrahedral en-
riched elements and fully unstructured mesh. International Journal of
Solids and Structures, 2010.

[4] Ivo Babuska and Manil Suri. The p- and h-p versions of the finite ele-
ment method, an overview. Computer Methods in Applied Mechanics and
Engineering, 80(1-3):5–26, June 1990.

[5] T. Belytschko, R. Gracie, and G. Ventura. A review of ex-
tended/generalized finite element methods for material modeling. Modelling
and Simulation in Materials Science and Engineering, 17:043001, 2009.

[6] James Chen, Xianqiao Wang, Huachuan Wang, and James D. Lee. Mul-
tiscale modeling of dynamic crack propagation. Engineering Fracture Me-
chanics, 77(4):736–743, March 2010.

[7] C. Colombo, M. Guagliano, and L. Vergani. A numerical analysis of flat
internal cracks under mixed mode loading. Theoretical and Applied Fracture
Mechanics, 50(1):66–73, August 2008.

[8] H. G. deLorenzi. On the energy release rate and the j-integral for 3-D crack
configurations. International Journal of Fracture, 19(3):183–193, July 1982.

[9] Hachmi Ben Dhia and Olivier Jamond. On the use of XFEM within the ar-
lequin framework for the simulation of crack propagation. Computer Meth-
ods in Applied Mechanics and Engineering, 199(21-22):1403–1414, April
2010.

[10] V. I. Fabrikant. The stress intensity factor for an external elliptical crack.
International Journal of Solids and Structures, 23(4):465–467, 1987.

[11] R. Forman and J. Beek. Fracture mechanics and fatigue crack growth
analysis software.

[12] M. Guagliano and M. Pau. An experimental-numerical approach for the
analysis of internally cracked railway wheels. Wear, 265(9-10):1387–1395,
October 2008.

126

[13] M. Guagliano, L. Vergani, and M. Vimercati. Determination of stress in-
tensity factors for three-dimensional subsurface cracks in hypoid gears. En-
gineering Fracture Mechanics, 73(14):1947–1958, September 2006.

[14] T. K. Hellen. How To Undertake Fracture Mechanics Analysis with Finite
Elements. NAFEMS Ltd, 2001 edition.

[15] T. K Hellen. On the method of virtual crack extensions. International Jour-
nal for Numerical Methods in Engineering, 9(1):187–207, January 1975.

[16] Thomas Hettich, Andrea Hund, and Ekkehard Ramm. Modeling of failure
in composites by X-FEM and level sets within a multiscale framework.
Computer Methods in Applied Mechanics and Engineering, 197(5):414–424,
January 2008.

[17] A. R. Ingraffea. Introduction to FRANC2D, FRANC2D/L and FRANC3D,
May 2004.

[18] M. K. Kassir and George C. Sih. Three-dimensional crack problems: a
new selection of crack solutions in three-dimensional elasticity. Noordhoof
International Pub., 1975.

[19] Zentech Ltd. State-of-the-art software for 3D fracture mechanics simula-
tion, 2008.

[20] Mark Lutz. Learning Python. O’Reilly Media, 4 edition, October 2009.

[21] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman-
ship. Prentice Hall, 1 edition, August 2008.

[22] J. M. Melenk and I. Babuska. The partition of unity finite element method:
Basic theory and applications. Computer Methods in Applied Mechanics
and Engineering, 139(1-4):289–314, December 1996.

[23] Prof Soheil Mohammadi. Extended Finite Element Method: for Fracture
Analysis of Structures. Wiley-Blackwell, 1 edition, April 2008.

[24] B. Nuller, M. Kachanov, and E. Karapetian. On the stress intensity factor
for the elliptical crack. International Journal of Fracture, 92:17–20, July
1998.

[25] D. M. Parks. A stiffness derivative finite element technique for determina-
tion of crack tip stress intensity factors. International Journal of Fracture,
10(4):487–502, December 1974.

[26] H. Rajaram, S. Socrate, and D. M. Parks. Application of domain integral
methods using tetrahedral elements to the determination of stress intensity
factors. Engineering Fracture Mechanics, 66(5):455–482, July 2000.

[27] Johann Rannou, Nathalie Limodin, Julien Rethore, Anthony Gravouil,
Wolfgang Ludwig, Marie-Christine Baietto-Dubourg, Jean-Yves Buffiere,
Alain Combescure, Francois Hild, and Stephane Roux. Three dimensional
experimental and numerical multiscale analysis of a fatigue crack. Com-
puter Methods in Applied Mechanics and Engineering, 199(21-22):1307–
1325, April 2010.

127

[28] M. Schollmann, M. Fulland, and H. A. Richard. Development of a new soft-
ware for adaptive crack growth simulations in 3D structures. Engineering
Fracture Mechanics, 70(2):249–268, January 2003.

[29] Abaqus Version. 6.10 documentation. Dassault Systemes Simulia Corpo-
ration, 2010.

[30] John Zelle. Python Programming: An Introduction to Computer Science.
Franklin, Beedle & Associates Inc, 2nd revised edition edition, September
2010.

128

