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Abstract

In this thesis, a technique for nearly automated detection of Doppler flow
velocity profile is developed. From this, it is possible to estimate the period
of the velocity waveform throughout an innovative iterative method, based
on Fourier smoothing and non linear least squares.
The estimate of the period enables the reconstruction of a function represent-
ing the velocity of the red blood cells, along the common carotid artery and at
different distances from the bifurcation. Considering these functional data,
it is possible to reduce the dimension of the problem performing a functional
principal component analysis. The aim is that of exploring the blood flow
along the common carotid artery, before the plaque is reached, and searching
for features of the curve that indicate the presence of the plaque downstream
through a linear discriminant analysis. This permits to compare the blood
velocity field in healthy people with the blood flow of stenotic patients, who
will undergo TEA surgery.



Sommario

In questa tesi viene sviluppata una tecnica per la rilevazione quasi automa-
tica del profilo di velocità del flusso sanguigno fornito dall’esame ecodoppler.
Una volta estratto il segnale, viene implementato un algoritmo innovativo
per la stima del periodo del dato, che sfrutta l’iterazione di smoothing di
Fourier e della stima ai minimi quadrati non lineare.
La stima del periodo consente la ricostruzione di una funzione che rappresen-
ta la velocità dei globuli rossi, lungo la carotide comune e a diverse distanze
dalla biforcazione. Si ha quindi a disposizione un insieme di dati funzionali,
sui quali si applica un’analisi delle componenti principali con il fine di ridur-
re la dimensione del problema. L’obiettivo è quello di esplorare il flusso di
sangue lungo la carotide comune, prima che la placca stenotica sia raggiun-
ta. Quindi, attraverso un’analisi discriminante quadratica, si ricercano quelle
caratteristiche della curva che indicano la presenza a valle della placca. Que-
sto permette di confrontare il campo di velocità del sangue di persone sane
con quello di pazienti malati. Infatti, individuare quali sono gli aspetti che
maggiormente differenziano le due classi potrebbe sia avere fini diagnostici,
sia contribuire a migliorare le simulazioni fluidodinamiche.
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Introduction

The human carotid arteries, located on each side of the neck, have the
key role of carrying blood to the head. They divide into an external branch
supplying the neck, face and other external parts and an internal branch, sup-
plying the brain, eye and other internal part. The carotid bifurcations and
the internal carotid arteries are a preferred site of development of atheroscle-
rotic plaques. The growth of a plaque could lead to the hardening of the
wall of the vessels, but also to a stenosis, which can cause a lack of blood
supply to the brain. Monitoring the carotid system is important in order to
prevent stroke, one of the most serious cerebrovascular disease. In fact, over
60-70% of all ischemic cerebral infarctions are caused by arterial embolism
[3], typically arising from a carotid artery affected by atherosclerosis. Thus,
patients with atherosclerosis of the carotid system are at high risk of stroke.
To reduce the risk, it is possible to resort to a highly effective surgical mea-
sure called TEA (Carotid Thromboendarterectomy), which is beneficial in
individuals with symptomatic high-grade stenosis and, in certain cases, with
60-70% symptomatic stenosis.

To identify those patients who will benefit from TEA, suitable diagnos-
tic procedures are necessary. Among these, the most preferred is the Color
Doppler Ultrasound, because it is a totally non-invasive method. The ul-
trasound system runs in duplex mode: Doppler emissions are interleaved
with B-mode emissions. The first provide information on the blood flow
along the carotid artery, producing the so-called spectrogram, which shows
the distribution of the velocities of the blood in the sample volume chosen
within the probed area. B-mode emissions simultaneously form an image
of the subcutaneous tissues, providing information on the location of the
plaque, its morphology and its grade. Thus, through ultrasounds techniques,
it is possible to get the information needed for surgery or for medical man-
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agement of stenosis, without the need of additional invasive medical analysis.

This thesis is part of the MACAREN@MOX project (MAthematics for
CARotids ENdarterectomy@MOX), a multidisciplinary research project which
investigates the the formation of the plaque in carotid arteries by focusing
on morphological and hemodynamic factors. The medical equipe of the re-
search team is acquiring different analyses, both in patients who will undergo
to the TEA surgical intervention and not. An important part of these anal-
yses consists in Color Doppler ultrasounds images. One of the goals of the
MACAREN@MOX project is to analyse this amount of data from a statisti-
cal point of view, with the important support of numerical modeling in order
to deeply understand the evolution of the plaque.

This thesis addresses a portion of the statistical side of the project and it is
aimed to study the Color Doppler Ultrasound signals from a statistical point
of view. Doctors conventionally obtain information on blood flow by manual
tracings of Doppler profiles. First of all, we develop a technique for nearly
automated detection of the Doppler data. From this, we estimate the period
of the cardiac cycle throughout an innovative iterative method, based on
Fourier smoothing and non linear least squares. Once having an estimate of
the period of the data, we are able to reconstruct a function representing the
velocity of the red blood cells in time, along the common carotid artery and at
different distances from the bifurcation. We will then carry out a functional
data analysis, in order to compare the blood velocity field in healthy people
and in people with a stenosis who will and will not undergo TEA. In fact,
from Doppler Ultrasound obtained holding the transducer at the level of the
stenosis, the presence of the plaque is obvious and the medical doctor has to
consider its percentage and many other factors before deciding for surgery.
Our aim, instead, is to explore the blood flow before the stenosis is reached
and to search for features of the curve that indicate the presence of the plaque
downstream. This research could be useful both for diagnostic purposes and
for increasing the accuracy of numerical simulations, by giving more precise
patient specific boundary conditions.
The work is organized according to the following pattern.

• Chapter 1 is a general introduction to all the themes treated in the
thesis. First of all, we illustrate the MACAREN@MOX project, pre-
senting the research team, the subjects of the research and its goals.
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Then, a synthetic presentation of the carotid arteries and of the fea-
tures of blood flow in these vessels is presented. In particular, we focus
the attention on how a doctor can find the indicators of a stenosis and
of the morphological features of the plaque, by observing the Doppler
image. The chapter proceeds with the explanation of the data collec-
tion protocol, which refers not only to this thesis, but also to the whole
MACAREN@MOX project. Instead, the illustration of the population
refers only to this work, since it is only a part of the available data. The
second part of the chapter is more technical. First, it is explained how
to read a Doppler image and what the Doppler spectrum represents.
Finally, the last part is a brief introduction to ultrasounds techniques
used to estimate blood flow velocities.

• Chapter 2 focuses the attention on the spectrum frame. It is explained
how to extract the region of interest, the filter applied in order to
remove noise and the rescaling of the axes. The aim of this chapter is
to estimate a function representing the velocity of red blood cell in time.
This is done by extracting the 95th sample quantile of the histogram
of the velocity distribution, available at each time of the cardiac cycle.
Since the signal is periodic, it is possible to estimate its period. In
order to do this, a new algorithm is settled, which iteratively estimates
the period through non linear least squares. Given the the estimate
of the period value for each Doppler waveform, Fourier smoothing of
the sample quantile is performed for each patients at various distances
from the carotid bifurcation. Eventually, all the functions estimated
are aligned using landmark registration.

• In Chapter 3, the functional data are explored. After having checked
and cleaned the data-set from outliers, we will reduce the dimension-
ality of the problem by functional principal components analysis. This
also allows to detect the most important variability features of the
velocity curves. Once the dimensionality is decreased, a linear dis-
criminant analysis is carried out. In fact, detecting the common and
different features within our sample of patients, permits to determine
a classification tool to distinguish patients coming from three popula-
tions: TEA candidates, non-TEA candidates with a low-grade plaque
and non-TEA candidates without any plaque.

All the statistical analyses of the thesis have been performed out using
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the statistical software environment R [25], version 2.12.2.
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Chapter 1

Carotid Stenosis and Doppler
Images

This first chapter is an introduction to all the themes treated in this the-
sis. First of all, we present the aim of our work and we briefly introduce
the MACAREN@MOX project, of which this thesis is part. Since we try to
estimate a curve representing blood velocity along the carotid artery, giving
a synthetic presentation of the carotid arteries and of the features of blood
flow within this vessels is compulsory. In particular, the carotid bifurcation
is a site where the danger of the creation of a stenotic plaque is high and it
has to be monitored in ordered to predict, and acting in time, before serious
consequences such as stroke or embolism happen. Thus, we illustrate how a
doctor can find the indicators of a stenosis, its extent and its morphological
nature in the output of the Doppler ultrasound, an example of which can be
seen in Figure 2.1. Later on, we will see how these features can be found also
in the results of our statistical analysis. With this theoretical basis, we can
then proceed in describing how the data have been acquired, the experimen-
tal protocol and the population at our disposal.
Furthermore, in order to clarify some choices made during this work (de-
scribed in the second chapter, when we show how data are extracted from
the Doppler image), we list in detail what the Doppler spectrum represents
and how to read properly the image created by an ultrasound scanner (such
as the one in Figure 2.1). Finally, we dedicate the last part of the chapter to
a brief introduction to ultrasound techniques used to estimate blood velocity
(continuous and pulsed wave systems, how they work out and the theoretical
signal used to model the data). This last part has been added for sake of

12



Figure 1.1: Duplex scan showing both B-mode image and spectrogram of the
carotid artery.

completeness and it is quite technical; its content is not strictly necessary for
the understanding of the methods explained later on in this thesis.

1.1 The MACAREN@MOX project
This thesis is part of a broader project called MACAREN@MOX (MAth-

ematics for CARotids ENdarterectomy@MOX). The research group is com-
posed by a medical equipe and by a team of mathematicians, involving ex-
perts in numerical modeling and in statistics. In particular, the clinicians
are directed by professor Maurizio Domanin, specialised in vascular surgery
at the Fondazione I.R.C.C.S. Cà Granda Ospedale Maggiore Policlinico di
Milano, the numerical modeling team is coordinated by professor Christian
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Vergara of Università degli Studi of Bergamo and by professor Fabio No-
bile at the Laboratory for Modeling and Scientific Computing MOX in the
Department of Mathematics "F. Brioschi" at Politecnico di Milano and the
statistics team is coordinated by professor Piercesare Secchi, director of the
Department of Mathematics at Politecnico di Milano. Finally, doctor Luca
Antiga of the group ORBIX deals with the image processing part.
The project focuses on morphological and hemodynamic factors of the carotid
bifurcation, which is a preferred site of development and growth of atheroscle-
rotic plaque. It is a wide and multidisciplinary project, involving both clinical
and mathematical skills. In particular, for the clinical side, professor Maur-
izio Domanin and his staff will conduct different analyses in all patients who
will undergo to the Tromboendoarteriectomia (TEA, a surgical intervention
consisting in the removal of the carotid plaque). These analyses consist in
a preoperative static magnetic resonance angiography (CE-MRI), in the ac-
quisition of sequences of phase contrast (PC-MRI) and in Color Doppler
Ultrasound acquisitions. After surgery, within the postoperative follow-up of
the patients, another magnetic resonance angiography (CE-MRI) is acquired,
this time both static and time-resolved. Moreover, a proton magnetic res-
onance spectroscopy allows to obtain information also on the biochemical
characterization of the plaque. Instead, for patients considered healthy or
not surgically resectable, just the non-invasive Color Doppler Ultrasounds
will be acquired. This will allow to obtain information about the carotid ge-
ometry, the velocity of blood flow and the movements of the wall at various
instants of the cardiac cycle. Once collected this amount of information, the
numerical and statistical part of the team will intervene by reconstructing
the three-dimensional geometry of the carotid arteries, processing data from
MRI and Color Doppler Ultrasound and performing numerical simulations
of blood flow within the reconstructed vessels, taking into account the inter-
action between blood and the arterial wall.
A dataset will be constructed containing geometric information of the carotid
arteries, their fluid dynamics and the biochemical characterization of the
plaque (obtained by spectroscopic analysis). This will be done for each pa-
tient, that will be about 50 within the end of the project. At the time of this
thesis, 22 patients have been analysed.
The aim of the project is to analyse in an integrated way this amount of data
from a statistical point of view, in order to find correlations between geo-
metric, hemodynamic and biochemical data. Both statistical and numerical
methods will be used, with the purpose to develop new techniques, allowing
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the inclusion of the data coming from MRI and Color Doppler Ultrasound
in the numerical simulations and resulting in an improvement of their ac-
curacy. In particular, inflow velocities will be estimated through smoothing
techniques from Doppler frames and they will then be included in the nu-
merical simulations. This will also allow to obtain from simulations some
interesting parameters difficult to measure through non-invasive techniques.
Moreover, the parameters measured will be useful in order to being able to
choose, among the techniques for removing the plaque, the one ensuring the
best results.
Concerning the statistical methods, the project aims to develop new tech-
niques to allow to align and compare functional data, such as complex geome-
tries. Furthermore, the variability of the blood flow profile among patients
will be analysed, allowing to make a classification of the population and to
identify correlations with the type of plaque.

1.2 Carotid arteries, blood flow and exami-
nation techniques

Throughout all the thesis we will treat the blood flow in the common
carotid arteries, thus we present in this section a very brief description of
these arteries, in order to well understand the data available for our studies.
Just the essential information is described, obtained both from literature
([3, 5, 6, 7, 8]) and from team meeting with professor Maurizio Domanin.

1.2.1 Carotid arteries and features of the blood flow
The Carotid arteries are located on the sides of the neck and they have a

key role, because through them the blood coming from the heart reaches the
brain. There are 2 carotid arteries, the right and left common carotid , which
together provide the principal blood supply to the head and neck. Each of
the two common carotid arteries (CCA) divides to form internal (ICA) and
external (ECA) carotid arteries, which are more superficial. A schematic
representation of the arteries supplying the brain can be found in Figure 1.2.
The anatomy of the left and the right common carotid artery can be highly
variable between different individuals: the major points of variability are the
point where the left common carotid artery arises from the aortic arch and
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Figure 1.2: Schematic representation of the arteries supplying the brain.

the position of the carotid bifurcation, which is usually situated at the level
of the fourth or fifth cervical vertebra.
Monitoring the carotid system is important to prevent stroke, the most se-
rious cerebrovascular disease. In fact, over 60-70% of all ischemic cerebral
infarctions are caused by arterial embolism [3], typically arising from a carotid
artery affected by atherosclerosis. Thus, patients with atherosclerosis of the
carotid system are at high risk of stroke. To reduce the risk, it is possible
to resort to a highly effective surgical measure called TEA (Carotid Throm-
boendarterectomy), which is beneficial in individuals with symptomatic high-
grade stenosis (meaning a stenosis >70%) and, in certain cases, with 60-70%
symptomatic stenosis. To identify those patients who will benefit from TEA,
that is to say identifying subjects with carotid stenosis, suitable diagnos-
tic procedures are necessary. Among these, the most preferred is the Color
Doppler Ultrasound, because it is a totally non-invasive method, which could
be repeated at any time. Ultrasounds run in Duplex mode, not only provide
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information on the blood flow along the carotid artery, but also on the lo-
cation of the plaque, its morphology and its grade. So, through ultrasounds
techniques, it is possible to get information needed for surgery or for medi-
cal management of stenosis, without the need of additional invasive medical
analysis.

We will now briefly describe the blood flow in the carotid arteries, un-
derling some features that can be found later, when we will analyse Doppler
images.
Along the common carotid artery (its lumen has a diameter of about 7 mm),
the flow is pulsatile and it has a large diastolic component (for sake of com-
pleteness, diastole is the relaxing phase when the pressure drops from the
peak reached during systolic contraction). In [3], one can read that peak
systolic flow velocity ranges from 60 to 100 cm/s under normal conditions,
but the velocity is decreased when the lumen is wider. The internal carotid
artery has a low-resistance flow and presents a Doppler waveform character-
ized by a steep systolic upslope, followed by monophasic flow with a fairly
large diastolic component, features that characterize a less pulsatile flow,
necessary since the ICA has to guarantee a continuous flow of blood to the
brain. Instead, flow in the external carotid artery is more pulsatile and it
has a smaller diastolic component. Since the common carotid artery has to
supply both of them, it presents a mixed waveform. It has to be noticed that
pulsatility increases with ages, because it depends on the vessel elasticity.

1.2.2 Examination techniques
The carotid system is quite superficial, thus it can be examined with a

high-frequency transducer (7.5 MHz or even 10 MHz), yielding B-mode im-
ages with a high spatial resolution, which are useful to the doctor to identify
the course of the vessels and their walls. The patient must be in the supine
position, while the examiner must move the transducer around to depict the
carotid bifurcation as a fork, this would enable a precise localization of the
stenotic plaque.
We now underline another kind of variability, since this kind of measurement
is highly dependent on the ultrasound equipment and on the examiner. The
blood flow is assessed with Doppler ultrasounds following the vessel wall and
possible plaques. Usually, a color duplex scanning is performed at the be-
ginning, for initial orientation. At this stage of the medical examination, a
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stenosis is suggested by the occurrence of aliasing (color change from red to
blue or vice versa), indicating blood recirculation, while occlusion is indi-
cated by the absence of color filling in the lumen of the vessel. After this,
Doppler spectra with qualitative determination of flow velocities in longitu-
dinal orientation must be obtained from the common, internal and external
carotid arteries. The external one does not raise interest, since it would not
be surgically operated even in the presence of plaque; it is however scanned at
its origin, to be distinguished by the internal carotid and to identify possible
stenosis. Instead, a continuous spectrum is obtained and analysed through-
out the common and internal carotid arteries, by sampling at short intervals
and using a large sample volume (this fact strongly influence the statistical
analysis carried out, as we will clarify later). While scanning the carotid
arteries, the examiner probes the interested area placing the transducer on
the neck of the patient and, in order to avoid errors in flow velocity mea-
surement, he should try to achieve an insonation angle of less than 60°, by
selecting the right transducer.
Under normal conditions, the internal and external carotid arteries are easy
to be differentiated. One of the features that allows the examiner to differ-
entiate them is that the external carotid exhibits a more pulsatile flow, with
a smaller diastolic component in the Doppler spectrum. Anyway, in case of
high grade stenosis at the bifurcation, the external carotid can show a larger
diastolic component and its flow profile can become less pulsatile, resembling
to that of the internal carotid and making differentiation more difficult. In
such cases, the external carotid can be identified by tapping on the temporal
artery, because the pulsation will be transmitted to the Doppler waveform,
along the diastole, of the external carotid.

1.2.3 Features of a stenosis: degree and morphological
aspects

Diagnostic ultrasound of the carotid arteries is prognosis-oriented, mean-
ing that it aims at identifying patients at risk for stroke. TEA surgery is a
suitable method for treating high-grade internal carotid artery stenosis, but
its main weakness is precisely that TEA could cause what should prevent,
i.e. stroke. This is the reason why not all the carotid stenoses are treated
surgically: the two risks have to be weighted and evaluated properly before
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Figure 1.3: Methods of grading a stenosis: local and distal.

proceeding. In [3], it is reported an analysis that shows that TEA signif-
icantly reduces the risk of stroke after 5 years in symptomatic individuals
affected by a stenosis of degree between 70 and 99%. In individual with 50-
69% stenosis, the risk reduction drastically decreases, while it has not any
advantage in individuals with a stenosis grade lower than 50%. Finally, TEA
is even harmful for patients with a stenosis <30%. In [5] and [6] is stated
that randomised studies have shown that surgical removal of the plaque by
endarterectomy is superior to antiaggregating medication in the prevention
of stroke in case of a stenosis greater than 60% in patients with neurologi-
cal symptoms, and greater than 70-80% in asymptomatic patients. We will
take into account these values at the time of the classification of the carotid
arteries of different patients.
But how is defined the degree of stenosis? There exist basically two methods
to grade an internal carotid stenosis. The first one identifies the local degree
of stenosis, which is defined as the ratio of the patient residual lumen to the
local vessel lumen without the plaque. This method enables to estimate the
plaque thickness and it is more common in the United States. In Europe,
instead, the distal degree of stenosis is computed from the diameter of the
residual lumen in the stenotic area and the diameter of the distal internal
carotid artery [3]. Figure 1.3 shows the two methods of stenosis grading.
However, the degree of the stenotic plaque is not the unique determinant of
the risk of stroke: the other major factor is the plaque morphology. In [7],
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a thickness of more than 2 mm of the intima (the inner wall of an artery) is
defined as plaque. There are different stages in the development of a plaque:
initially the wall of the artery presents an abnormal thickening, then the size
of the plaque increases through lipid and cholesterol inclusion. This disturbs
the nutrition of the intima and it can cause a central necrosis of the plaque.
Then, different developments can occur and the pulsatile blood flow can even
lead to the rupture of the plaque, i.e. embolism. In the carotid system dif-
ferent type of plaques can be distinguished on the basis of their macroscopic
appearance:

• flat or fibrous,

• atheromatous or soft,

• calcified or hard,

• ulcerative,

• hemorrhagic.

It has to be underlined that the plaque has an inhomogeneous composition
which is reflected in the ultrasound appearance, but it is difficult to suc-
ceed in identifying the components on the basis of their different echo levels.
Moreover, there are different medical opinions on the connection between
sonographic plaque features and the risk of embolism. We thus refer to [3]
for an overview of the interpretations of plaque sonographic structures from
different authors and for a detailed description of the morphology of a plaque.
Again in [3], other important features of a stenotic plaque, besides the com-
position, are listed:

• Localization:
- anterior or posterior wall,
- proximal/distal;

• Extension:
- circular/ semicircular,
- diameter of the plaque;

• Surface:
- clearly delineated/moderately delineated/not delineated,
- smooth/irregular/ulcer;
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• Internal structure:
- homogeneous/inhomogeneous;

• Echogenicity:
- hyperechoic (with or without acoustic shadowing)/hypoechoic/ not
visualized.

The team treating the numerical part of the MACAREN@MOX project,
together with the clinicians, is also developing a procedure to tracing and
precisely localize the position of the plaque from the images. Once available,
this information should definitely be included in the statistical study carried
out in this thesis, with the purpose of understanding at which distance from
the plaque the blood flow, and consequently Doppler ultrasound acquisitions,
begins to be influenced by the presence of the plaque. To conclude, plaques
mainly occur at the level of the carotid bifurcation and along the first 2-3
cm of the internal carotid artery.

1.2.4 How medical doctors quantify a stenosis
In order to try to identify patients with a stenosis looking at the spectrum

acquired through Doppler ultrasounds, we should start underlying those fea-
tures of the Doppler spectrum that allow the doctor to identify a plaque. At
the end of our statistical analysis, we will thus be able to compare the char-
acteristics of the reconstructed signal that most discriminate the differences
between blood flow of patients with and without a stenosis with the features
to which a doctor pays attention.
The flow velocity at the level of the plaque increases in proportion to the
degree of stenosis and it reaches its highest values when there is a subtotal
occlusion. At the same time, friction occurring at high velocities acts as
a decelerating force, decreasing the velocities of the most reflecting blood
components. Figure 1.4 (from [8]) shows the relationship between degree of
stenosis and intrastenotic peak systolic flow velocity for ICA stenosis: one
can recognize the presence of a principal trend, since the velocity increases
with the degree of stenosis, but there are also cases of high grade and low
velocity, because the heteroskedasticity of the distribution of the velocities
increases with the degree of stenosis. Once the plaque has been overtaken,
the systolic flow velocity decreases with the stenosis grade.
Stenoses of the common carotid artery are rare respect to those in internal
carotid artery. Preferred sites are its origin from the aortic arch and its distal
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Figure 1.4: ICA stenosis: relationship between the degree of stenosis and
instrastenotic peak systolic flow velocity.

segment just in front of the bifurcation. Instead, in case the stenosis occurs in
the external branch (again, it rarely happens), the plaque is usually located
at its origin, just after the bifurcation. In most cases a stenosis takes shape
along the internal carotid artery. Since this is the case that mainly occurs,
there are clear parameters of the flow velocities to look at in the diagnostic
evaluation. According to [3], there are in particular three important features
that allow to quantify a stenosis: the peak systolic flow velocity, the mini-
mum end-diastolic flow velocity and the ratio of the internal carotid artery
to common carotid artery velocity (ICA/CCA velocity). A hemodynami-
cally significant stenosis (meaning greater than 50%) is assumed when peak
systolic flow velocities reaches values greater than 120 cm/s, while an inter-
mediate or high grade stenosis (>70-80%) is assumed at 180-240 cm/s. Fur-
thermore, usually there are also other factors influencing the velocity, such as
contralateral carotid occlusion or other diseases involving other vessels, which
leads to higher flow velocities in the carotid system. Therefore, in order to
avoid an overestimation of carotid stenosis and false-positive findings, the
cut-off velocity for discriminating between low-grade and hemodynamically
significant stenosis must be increased to 140-150 cm/s [3]. Also the minimum
end-diastolic flow velocity increases with the stenosis grade and velocities of
around 40 cm/s suggest a stenosis >50%, while velocities of 80-100 cm/s in-
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Figure 1.5: Schematic Doppler waveforms of the carotid system in a normal
case (a) and a high-grade stenosis case (b).

dicate a high-grade stenosis. Finally, the ratio ICA/CCA can be considered
as a kind of normalization with respect to other factors which could influ-
ence absolute velocities (hypertension, sclerosis, contralateral occlusion,. . . )
and in [11] this value has been used to distinguish normal arteries (ratio
<0.8) from high-grade stenoses (ratio >1.5) carotid arteries. In Figure 1.5, a
schematic graphic summary of the Doppler waveforms that one can expects
in the carotid system is presented. On the left (part a) there are waveforms
expected in a normal patient; along ICA the blood flow is fairly steady, as a
result of low peripheral resistance and this is reflected by the fact that the
spectrum has a moderate systolic component (little pulsatility) followed by
a steady flow that persists throughout diastole. As we explained in previous
sections, along ECA the flow is more pulsatile, while in CCA one can find
a sort of mixed pulsatility. On the right part of the figure, instead, it can
be seen how the Doppler signal changes in presence of a high-grade stenosis
at the origin of the internal carotid: along ICA the flow become even less
pulsatile, meaning that one can clearly see a larger diastolic component and
a reduced peak systolic velocity. In ECA the changes of the flow are not
significantly perceptible, while the flow in the CCA resembles the flow in the
ECA, because it becomes more pulsatile. Figure 1.6 also helps to visualize
the impact of a plaque in the blood flow.
Apart from information about the plaque, from the Doppler spectrum one
can obtain other important parameters for evaluating blood flow, such as:

• the peak systolic velocity;

• the peak end-diastolic velocity;
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Figure 1.6: Impact on the Doppler waveform of the flow around a stenosis,
in ICA. 5 phases can be recognize where pulsatility of the flow changes.

• the average flow velocity;

• the variance, that is to say, the spectral broadening due to disturbed
flow.

1.3 Experimental protocol
After having introduced the main features of Doppler spectrum and how

they can show the presence of a stenosis, we can now proceed in describing
the experimental protocol we have followed to obtain the images that will be
used later on in this thesis and within the MACAREN@MOX project.
For each patient, several duplex images of the carotid system have been ac-
quired: all the images and videos have been produced by a scanner combining
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Figure 1.7: Positions where the signal has been acquired for TEA candidates.
ICA: Doppler spectrum sampled in the center of the vessel at level 0, 0.5 and
1; ECA: Doppler spectrum sampled in the center of the vessel at level 0
and 0.5. CCA: 7 sample volumes placed at levels −1 and −2 along the
longitudinal cross section of the vessel.

B-mode imaging with a 6Mhz pulsed Doppler (Philips Medical Systems, iU
22). Carotid examination is performed by placing the scanner on the neck of
the patient, lying in the supine position, along the axis of the carotid vessels.
While doing this, a real time B-mode arterial image is generated on a tele-
vision screen, helping the examiner in the placement of the pulsed Doppler
sample volume within the arterial lumen. The sample volume can be placed
in different locations in the cross section of the lumen of the vessel and so it
is possible to acquire the Doppler ultrasound images in different tansversal
points. We remind that Doppler ultrasounds are a non-invasive diagnostic
tool and they can be repeated all the times needed. Nevertheless, this kind
of exam takes some time and it has organizational costs, so we dispose of
a different number of measurements depending whether the patient should
undergo TEA or not. For TEA candidates the protocol we settled down
requires 19 recordings of the spectrum of blood velocity, while for healthy
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Figure 1.8: Positions where the Doppler signal has been recorded for non-
TEA candidates. ICA: spectrum sampled in the center of the vessel at level
0, 0.5 and 1; ECA: spectrum sampled in the center of the vessel at level 0
and 0.5. CCA: sample in the center of the vessel at levels −1 and −2.

patients or patients with a non-high-grade stenosis 7 records are available.
Figure 1.7 illustrates the exact positions where the signal has been recorded
for TEA candidates: along the ICA one Doppler spectrum sampled from the
center of the vessel is acquired after 0.5 cm from the bifurcation (level "0.5")
and after 1 cm (level "1"). Since the external carotid is not an usual site for
stenosis, only one Doppler image after 0.5 cm from the bifurcation ("0.5") is
registered. Regarding the CCA, more images are available, at various levels
(meaning distances from the bifurcation) and in various cross sectional points
of the vessel. At a distance of 0.5 cm (level "-0.5") before the bifurcation,
only one Doppler image is acquired. Instead, at a distance of 1 cm (level
"-1") and of 2 cm (level "-2") before the bifurcation, 7 sample volumes have
been considered along the longitudinal cross section of the vessel (Figure 1.7
helps understanding what is meant for ’level’ and for ’cross section’). Fig-
ure 1.8 presents the protocol for non-TEA patients (further in this project,
healthy patients or patients with a low or medium-grade stenosis, not enough
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extended to be treated with TEA, will be denominated as ’non-TEA’), for
whom one Doppler image from the center of the vessel at each level has been
acquired. The procedure is repeated first for the right and then for the left
carotid arteries, so that for each patient two different classes of Doppler ul-
trasound acquisitions are available. Finally, only for TEA patients, Doppler
images and the values of the peak systolic velocity have been acquired also
for the following vessels in the body: vertebral, subclavian, humeral, radial,
aorta, common iliac, external iliac, common femoral, popliteal and posterior
tibial.

The protocol described regards the whole acquisition of Doppler ultra-
sounds for the MACAREN@MOX project. Within this thesis only the mea-
surements sampled in the center of the vessel at levels -2, -1 and -0.5 are
used. It has to be noticed that there are various factors complicating the
valuation, such as body size, an irregular heartbeat or a complicated carotid
geometry, so Doppler images from different patients or at different levels do
not have the same quality and sometimes they are even not available or not
usable for our study. This is the reason why in next section, in the descrip-
tion of the population, sometimes the reader will not find all the 19 images
that theoretically the protocol includes.

1.3.1 Population
The patients included in the study treated in this thesis are 22, corre-

sponding to the data collected for this purpose in Policlinico Hospital of
Milano from November 2010 and May 2011. Probably, the final project
MACAREN@MOX will include a larger number of patients, being a more
extended work with a longer duration.
The 22 patients we refer to have a middle age of 67.3 years, the youngest
being 42 years old while the oldest 82. There are 14 males and 8 females.
Since the number of data is extremely low for a statistical approach, we will
consider the right carotid as independent from the left carotid artery. This
approach was considered appropriate by a consult with medical staff, because
the presence of a plaque in one of the carotid arteries does not modify the
blood flow in the other carotid artery. Anyway, there are factors inducing
the development of plaques (such as fat, smoking, hypertension, diabetes and
so on) which are related to the patient and, thus, they influence both left
and right carotid arteries. In this way, it is as if we had at our disposal data
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coming from 44 patients. Unfortunately, this happens only for acquisitions
of images at distance −2 from the carotid bifurcation. In fact, as one can
see in Table 1.1, at level −1 a Doppler acquisition for a patient is missing,
reducing the total number to 43, while at level −0.5 the number of Doppler
images is 38, because in this site is more difficult to acquire a clear Doppler
ultrasound signal.
All the patients have been submitted to ultrasounds at the carotid system
and the images of the spectral waveform of blood velocities are available in
the points illustrated in the previous section. In Table 1.1, the following
details are listed: age, sex, whether the patients is symptomatic (Type S)
or asymptomatic (Type A), which Doppler images are available in the three
different level of the CCA (−2, −1 and −0.5), the percentage of the stenotic
plaque (if there is any) and its nature and, finally, a label stating to which
group the patient belongs. In fact, three different groups can be detected,
depending on the subjective evaluation of the doctor whether the patient will
undergo TEA or not. Label "3" indicates those patients who does not present
any plaque in the carotid system (we will refer to them as healthy later on),
label "2" is linked to patients presenting a stenosis of low or medium grade and
who will not undergo the surgery (as already mentioned, we will refer to this
people as non-TEA) and, finally, patients who will undergo TEA (called TEA
later on) are indicated with label "1". The main features of the left and right
common carotid arteries are reported separately and when patients present
a stenosis, it is located along the internal carotid, but at this stage of the
project, we do not know exactly at which height of the vessel. Moreover, it
should be noticed that a doctor, when deciding if the patient should undergo
TEA or not, takes into account more other characteristics, for example if the
patient smokes or is affected by other diseases, previous exams to evaluate if
the plaque is stable or it is increasing and so on. Trying to consider the whole
information available would lead to a less automatic procedure of classifica-
tion, having to analyse any single case as the doctor does. On the contrary,
we would like to develop a method that automatically classify the patients
in 2 different groups (TEA, non-TEA), considering uniquely the information
derivable from Doppler ultrasounds acquisitions along the common carotid
arteries. This could lead to a faster time of analysis of patients by doctors,
at least in the early stages, when, before deciding whether a patient should
undergo surgical operation or not, the patient is monitored for a period of
time that could last months or years, implying therefore high organizational
costs for the hospital.
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Before starting to practically treat our images, we should explain what
actually one can read from a Doppler waveform. This is how we conclude this
first chapter, since introducing which information is contained in the Doppler
spectrum and treating briefly the fundamental principles of ultrasounds will
help in understanding the extraction of data from the images, explained in
the 2nd chapter.

1.4 The Doppler spectrum
In this section, we are going to explain which information is contained

in the Doppler spectrum, that is to say how the image printed out during
an ultrasound scanning should be read. In fact, in a blood vessel, blood
components move at different velocities and these velocities are represented
in the Doppler spectrum by the scale of greys (or colours): different levels
of grey represents the different amplitudes of a range of frequencies, that
reflect the distribution of flow velocities in the vessel through the relation
v = c

2f0 cosα , where c is the speed of propagation of ultrasound in blood, f0
is the emitted frequency and α is the angle between ultrasound beam and
direction of blood flow. For the individual velocity values, the corresponding
amplitudes are computed and displayed with different shades of grey.
The Doppler spectrum displayed contains the following information on blood
flow:

• the vertical axis represents different values of flow velocities;

• the horizontal axis represents the time course of the cardiac cycle;

• on vertical axis, the color or grey intensity, is a density of points (time is
fixed along this axis), representing the number of red blood cells moving
at that specific velocity in the analysed volume of blood. This kind of
information could be represented also as an histogram that varies over
time: Figure 1.9 shows the histograms of the density points, once fixed
one specific time of the cardiac cycle.

The zero flow line gives another information: flow toward and away from the
transducer, represented respectively above and below the baseline.
One of the main features that we will use later on in this thesis, is the fact
that the different levels of brightness represent the density of a given velocity
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Patient Left Carotid Artery Right Carotid Artery
N. Type Sex Age CCA % Nature Group CCA % Nature Group

-2 -1 -0.5 -2 -1 -0.5

1 A M 75 a. n.a. a. 80% n.a. 1 a. a. a. n.a. n.a. 1
2 A M 79 a. a. n.a. 70% lipid 1 a. a. n.a. 20% 2
3 A F 65 a. a. a. 20% n.a. 2 a. a. a. 20% n.a. 2
4 A M 50 a. a. a. n.a. n.a. 2 a. a. a. n.a. n.a. 2
5 A F 63 a. a. a. vs - 3 a. a. a. vs - 3
6 A F 73 a. a. a. 70% lipid 1 a. a. a. 30% lipid 2
7 A M 53 a. a. a. 20% n.a. 2 a. a. a. 20% n.a. 2
8 A M 75 a. a. a. 30% n.a. 2 a. a. a. vs - 3
9 A M n.a. a. a. a. ntd - 3 a. a. a. ntd - 3
10 A M 42 a. a. a. vs - 3 a. a. a. vs - 3
11 A M 44 a. a. a. ntd - 3 a. a. a. 30% fib 2
12 A M 76 a. a. a. ntd - 3 a. a. a. ntd - 3
13 S M 49 a. a. a. vs - 3 a. a. a. vs - 3
14 S F 49 a. a. a. ntd - 3 a. a. a. ntd - 3
15 S M 58 a. a. a. vs - 3 a. a. a. vs - 3
16 S M 79 a. a. a. 80% n.a. 1 a. a. a. n.a. n.a. 1
17 S M 79 a. a. a. 75% mixed 1 a. a. a. 50% fibcal 2
18 S M 76 a. a. n.a. 75% n.a. 1 a. a. a. n.a. n.a. 1
19 S F 65 a. a. n.a. 80% n.a. 1 a. a. a. 70% n.a. 1
20 S F 74 a. a. n.a. 40% n.a. 2 a. a. a. 75% n.a. 1
21 S F 82 a. a. a. n.a. fib 1 a. a. n.a. 80% fibcal 1
22 S F 72 a. a. a. 30% n.a. 2 a. a. a. 80% fibcal 1

Table 1.1: Description of the Data Set. Under the symbol %, the percentage
of the plaque (when it is present) is reported. The type of patient can be
symptomatic (S) or asymptomatic (A). When the percentage of the plaque
is not reported, 3 cases can arise: there is a plaque but its dimension is not
available (n.a.), there is nothing to detect (ntd) or there is not a stenosis but
the presence of a vascular sclerosis (a tissue hardening) without particular
lesions (vs). Finally, the nature of the plaque is reported, which could be
lipid, fibrotic, mixed or fibrocalcific.
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Figure 1.9: Histogram representing the number of red blood cells moving at
the velocities specified along horizontal axis, at one specific time along the
cardiac cycle.

(or frequency) in the frequency band. Figure 1.10 can help understanding
the information contained in the spectrum: it is a three-dimensional Doppler
frequency spectrum, showing the distribution of individual frequency shifts
(amplitudes), flow direction (above and below the zero-flow line, which is
the time axis) and flow velocities (proportional to the Doppler frequency
shifts). The height of the boxes correspond to the amplitudes of the respective
Doppler frequencies and in 2D images they are represented by different levels
of brightness. The black boxes show the averaged flow velocity at a specific
point in time.

1.5 Fundamental principles of ultrasounds
In order to estimate the blood velocity, data should be created by using

an ultrasound transducer. Figure 1.12 shows some example of the ultrasound
transducers used in modern hospitals. The method consists of emitting a si-
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Figure 1.10: 3D Doppler frequency spectrum, showing the distribution of
individual frequency shifts (Amplitudes), flow direction (above and below
the zero-flow line, which is the time axis) and flow velocities (proportional
to the Doppler frequency shifts).

nusoidal pulse and then to subsequently receive the echo signal. The received
signal is then sampled at a time corresponding to a selected depth, yielding
in this way one temporal sample per each emission. The process is then re-
peated many times at the pulse repetition frequency (fprf ). The velocity of
the flow can be derived from the spectrum of the signal sampled at the pulse
repetition frequency, as it is explained in the following section. For a deeper
understanding of the subject we refer to [1] and [2].

1.5.1 Ultrasound waves
Ultrasound is a mechanical vibration of matter with a frequency above

the audible range, which is 20 kHz [1]. No mass is transported during the
propagation of the longitudinal wave: the particles of the medium crossed by
the ultrasounds just oscillate around their mean positions, instead of being
at rest and equally spaced as before the disturbance. The propagation speed
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Figure 1.11: Particle displacement for a propagating ultrasound wave.

of the disturbance depends on the medium.
The propagation of the wave could be of different kinds, depending again on
the medium used, but in medical ultrasound we can generally assume linear-
ity, at least when tissue with significant attenuation is penetrated, that is to
say that the pressure generated by the disturbance is small if compared with
the equilibrium pressure.

Given a wave, it is possible to define its acoustic intensity as the average
flow of energy through a unit area, normal to the propagation direction,
in unit time. The intensity is the average of the rate of work done per
unit area by one element of fluid on an adjacent element. However, the
measure of intensity is defined in different ways depending on whether the
wave is continuous or not. The ultrasound fields used in medical practise are
generally pulsed and strongly varying with regard to spatial position, so it
is necessary to specify how the intensity is calculated. In table 1.2 (taken
from [1]), the highest allowed acoustic field emissions for commercial scanners
are listed. These measurements are stated by the United States FDA (Food
and Drug Administration) and are based on studies of tissue damage due to
ultrasound exposure. In the table, Isptp denotes the spatial peak temporal
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averaged intensity, Isppa the spatial peak pulse average intensity and, finally,
Im denotes the maximum intensity.

Ispta Isppa Im
(mW/cm2) (W/cm2) (W/cm2)

Use In Situ Water In Situ Water In Situ Water

Cardiac 430 730 65 240 160 600

Peripheral vessel 720 1500 65 240 160 600

Ophthalmic 17 68 28 110 50 200

Fetal imaging 46 170 65 240 160 600

Table 1.2: Highest know acoustic field emissions for commercial scanners.

1.5.2 Scattering
A wave which propagates through a medium continues straight on the

same direction until it encounters different acoustic properties, that is to say,
until the wave crosses a new medium. When this happens, part of the wave
is transmitted through the new medium, probably changing direction, while
part of it is reflected back. This is what should happen when an ultrasound
wave sounds out the human body: part of it should be reflected back when
encountering a new tissue, so that it would be possible to record it as soon
as it reaches the transducer, and finally visualize it as an image on a screen.
Thus, in order to visualize the image of a boundary, it is necessary that the
reflected wave reaches the transducer, which is quite difficult when talking
about human body, because the transducers must have limited dimensions to
be able to move around, and the wave, when reflected, changes its direction.
Moreover, boundaries are rarely found.
So, what is it that makes possible to recognize different tissues, when watch-
ing the images recorded by the transducer? The solution is a phenomenon
called scattering, which consists in the fact that the ultrasound wave is
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forced to deviate from its straight trajectory, every time it encounters non-
uniformities in the medium through which it propagates. In short, a scat-
tered wave is created whenever, in the propagating medium, small changes in
density, compressibility or absorption are encountered. Then, the scattered
wave radiates in all directions, making possible for the transducer to receive
a back scattered field. From this field it is possible to extract the information
needed, such as the blood velocities.
This backscattered signal is, of course, weaker than the signal reflected by
the boundaries, but such boundaries are encountered just in few cases, such
as diaphragm, blood vessels walls and organ boundaries. Instead, the scat-
tered wave is emanated from a lot of different contributors, so that it can
be characterized in statistical terms, with an amplitude distribution which
typically follows a zero-mean Gaussian distribution.
This does not mean that new measurements of the backscattered signal gen-
erate new values: if the structure probed by the transducer is stationary, the
same signal will always result and, what it is more important is that slight
shifts in position will lead to high correlated signals. Here lies the idea to
detect blood velocities: by analysing the correlation between successive mea-
surements of moving blood cells, it is possible to trace the shifts in position.

The strength of the returned signal is described in terms of the power of
the scattered signal, which could depend on the position between the ultra-
sound emitter and receiver. This is the case of muscle tissue for example.
Instead, in the case of blood, only one transducer is used for transmission
and reception, and only the backscattered signal is considered. The signal
power generated by a single scatterer is Ps = Iiσsc, where the power Ps is
generated when a beam of intensity Ii intersect the scattering cross section
σsc,which is dependent on the material and indicates how strongly scattering
the material is.

Finally, another phenomenon has to be mentioned: the ultrasound wave
propagating in tissue will be attenuated. In tissue, attenuation is due both
to scattering, which will spread energy in all directions, and to absorption,
which means conversion into thermal energy and the dependence between at-
tenuation, distance traveled and frequency can often be considered as linear.
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Figure 1.12: Different ultrasound transducers for acquiring B-mode images.

1.5.3 Continuous wave systems
The simplest, non-invasive, way to detect blood velocity consists in the

continuous wave (CW) system. The idea behind the continuous wave system
is to insonate part of the body by emitting a continuous sinusoidal wave and
then compare the received signal with the emitted one, in order to detect
the change in frequency. Thus, continuous wave Doppler ultrasound uses
two transducers, with one continually transmitting and the other continually
recording the ultrasonic wave. The received signal rs(t) is multiplied by a
quadrature signal of frequency f0 (which is the frequency of the emitted
signal), in order to find the Doppler shift. Applying the Fourier transform
we get

rs(t)exp{j2πf0t} ↔ Rs(f − f0).
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As suggested in [1], the emitted signal can be described as

e(t) = cos(2πf0t)

while the received signal is

rs(t) = a cos(2πf0α(t− t0))

with a frequency αf0 proportional to the center frequency f0 of the emitted
signal. To give an idea of how, by measuring the frequencies of the received
signal, one could estimate the blood velocity in the direction of the ultrasound
beam, it is enough to look at how α and αt0 are approximated [1]:

α ≈ 1− 2vz
c

αt0 ≈
2d0

c

denoting with vz the velocity along the direction z (the direction of the
ultrasound beam) and d0 the initial position of the scatterer. The received
signal is then multiplied by a quadrature signal. Afterwards, a band pass
filter is used, in order to remove both the higher frequency signal (at twice
the emitted frequency) and the component coming from the stationary tissue,
which would cover the contribution from the blood. The latter is often done
by subtracting out the mean of the signal prior to the filtering. The remaining
signal is thus:

mf (t) ≈
a

2exp
(
j2πf0

2vz
c
t
)
exp(−j2πf0αt0)

where the second exponential term represents the delay caused by the round
trip time between emission and reception. There is another delay that should
be considered, which sum up the depth in tissue and the speed of sound due
to the ultrasound propagation velocity, but this delay is usually negligible.

Detectors

Detectors are the way the acquired information is then presented. There
are different techniques, such as

Audio output , which is useful to give a sensation of flow direction.
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Zero Crossing Detectors means detecting the most dominant signal in
the flow by counting the number of times the signal crosses its mean
value.

Spectral Display. Since the frequency content of the signal received by
the transducer corresponds to the velocity distribution of the blood,
a display of the distribution of velocities can be made by taking the
Fourier transform of the received signal and showing the results (a so-
called sonogram). In order to do this, the received signal is divided
into segments and the power density spectrum is calculated for each of
these segments. Then, the spectra are displayed side by side, so that
the evolution of the velocity distribution can be observed. The inten-
sity at a point on the screen indicates the amplitude of the spectrum,
proportional to the number of blood scatterers moving at a particu-
lar velocity. Eventually, we state the result that with this method the
velocity direction is preserved (see [1] for more details).

In the following sections we are going to introduce pulsed wave systems and
explain why they are preferred to CW systems. In fact, the limitation of
CW Doppler is that the signals from all moving reflectors along the path
of the ultrasound beam are detected, with their respective frequency shift.
Consequently, CW systems cannot differentiate flow signals from two closed
vessels, when one lies behind the other along the beam path. However, alias-
ing errors are more easily controlled for a CW system, so continuous wave
measurements are still used in modern scanners, as a supplement to the
pulsed techniques, expecially for the detection of high flow velocities.

Stationary echoes

Stationary echoes are the signals coming from vessel boundaries and tis-
sues around them. As one could perceive by intuition, these factors are larger
than the signal coming from the blood and it is necessary to remove them,
to avoid a disturbance in the measurements of blood velocities. A solution
to reduce these disturbances is by inserting a low pass filter after the multi-
pliers, even if this procedure is not without consequences: depending on the
inserted filter, the lowest velocity that can be estimated by the system and
how quickly new measurements can be taken would be modified. In any case,
it is necessary to remove the stationary echoes, especially for small vessels,
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where the blood signal could be totally hidden by them.
The order of the filter that should be applied can be computed by the ratio
between the amplitude of the stationary echoes to the amplitude of the blood
signal.

Finally, we mention another source of distortion for the estimate of the
power spectral density of the blood signal, which consists in the partial in-
sonation of the vessel and the attenuation phenomenon. In fact, the whole
vessel is not equally insonated (especially large vessels) and part of the vessel
receives more ultrasound energy than other, leading to disturbances in the
PSD of the blood.

1.5.4 Pulsed wave systems
In the previous section, we have listed some of the drawbacks of inves-

tigating the blood flow by a CW Doppler system. A reason why a pulsed
wave system should be preferred to a continuous wave system could be, for
example, that two vessels can be inadvertently interrogated at the same time,
resulting in a distortion of the spectrum. Moreover, no unique mapping from
Doppler spectrum to velocity profile exists, consequently it would be difficult
to differentiate a normal flow pattern from a pathological pattern.
By using a pulsed wave systems, instead, these problems are avoided, but the
classic Doppler effect can not be used anymore, because of the problem of
attenuation. As explained in [1], in fact, ultrasound pulses emitted into the
body, experience attenuation during propagation through the tissue, which
increases with frequency. By using a Doppler system then, the higher fre-
quency part of the pulse spectrum would get progressively more attenuated
than the lower part, hiding some essential information.

In this section, we are going to explain briefly the steps of a pulsed wave
system, but first we would like to underline the fact that scatterers move
from time to time, shifting their position, therefore consecutively received
signals are shifted in time compared with the proceeding and preceding RF
(Radio Frequency) line.
An ultrasound pulse, emitted from a transmitter, propagates into the tissue
and blood and, interacting with them, it causes the emission of a backscat-
tered signal, which is then received by the same transducer, amplified and
multiplied by the center frequency of the emitted pulse. Finally, the received
signal is low-pass filtered, to reduce the echoes signals. A sampling and
analog-to-digital conversion is then performed, and for each pulse emitted

39



only one sample is acquired. Figure 1.13 might help to understand the way
in which sampling is done: here the depth in tissue is fixed and the signals
shown in the left side of the picture result from a sequence of pulses. Each
line corresponds to a single pulse, and the different pulses are emitted at
a pulse repetition frequency, fprf . On the right side, instead, there is the
resulting sampled signal, produced by taking into account the amplitude of
each pulse after a fixed time (indicated by the dashed line in the left graph).
If the sampling is done Ts seconds after the pulse emission, the depth in
tissue is determined by

d0 = Tsc

2 .

In the case that the probed tissue was stationary, a constant sampled value
would result. As blood is not stationary, we obtain changing values.
Often a B-mode image is presented along with the sonogram in a duplex
system, in order to show on the image the area of investigation or range
gate. Acquiring the B-mode image requires gaps in the sampled data used
to estimate the spectrum, and there exist algorithms developed in order to
optimize this procedure. This is an important aspect, because removing a
part of the data (used to create the B-mode image) it means to increase the
pulse delay, and the longer the pulse delay is, the lower will be the peak flow
velocity that can be detected.
The combination of two-dimensional real-time imaging with pulsed Doppler
is known as duplex ultrasound and it provides flow information from a sample
volume at a defined depth. Duplex scanning enables calculation of blood flow
velocity from the Doppler frequency shift, because the angle of incidence
between the ultrasound beam and the vessel axis can be measured in the
B-mode image.

1.5.5 Data Model
In this section, we expose the data model, mantaining the same notation

as in [4]. The sinusoid which is emitted from the ultrasound system has the
center frequency fc and can be expressed as

p(t) = sin(2πfct).

This signal will reflect on the blood scatterer, positioned at the depth d.
The reflected, received and filtered signal is described in [1]. Here, we can
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Figure 1.13: Sampling for a pulsed wave system: the left graph shows the
different received signals and a single pulse correspond to each line. The
right graph instead shows the resulting sampled signal.

summarize the results: denoting with c the speed of sound, fs the sampling
frequency of the system, k the index proportional to the depth in the probed
vessel and with av the amplitude of the beamformed echo of the blood scat-
terer, the received signal is:

r(k) = avsin

(
2πfc

(
k

1
fs
− 2d

c

))
(1.1)

Typically, samples are acquired over several consecutive transmissions;
in the meanwhile, the blood scatterer moves in the depth direction from its
initial position d0. Its position at the transmission time index l (slow time)
can be expressed as

d(l) = 2d0 + l
v

fprf
(1.2)

where v is the axial velocity of the blood scatterer. The index l represents
the so called slow time, the time at which the pulses are emitted, represented
along the vertical axis in Figure 1.13. With fast time, instead, we will denote
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the time along the horizontal axis in Figure 1.13, that is to say the time it
takes to each emitted wave to reach a certain depth and to go back to the
receiver. Later on, the fast time will be indicated by index k.
Inserting (1.2) into (1.1), we obtain the 2-D function

r(k, l) = avsin

(
2πfc

(
k

1
fs
− 2d0

c
− l 2v

fprfc

))
. (1.3)

In order to detect the direction of the moving blood, an analytic signal
over fast-time should be generated, by taking the discrete Hilbert transform,
Hk{r(k, l)}, of the received signal in the fast-time direction:

z(k, l) = r(k, l) + jHk{r(k, l)} (1.4)

Then, we can write

z(k, l) = av exp
{
j2πfc

(
k

1
fs
− 2d0

c
− l 2v

fprfc

)}

= av exp
{
−j 4πfcd0

c

}
exp

{
j2πfc

(
k

1
fs
− l 2v

fprfc

)} (1.5)

denoting all the fixed terms with Av:

Av = av exp
{
−j 4πfcd0

c

}
.

If there is a distribution of scatterers within the resolution cell of the ultra-
sound system, the total complex signal can be written

y(k, l) =
∫
Av exp

{
j2πfc

(
k

1
fs
− l 2v

fprfc

)}
dv + n(k, l) (1.6)

where n(k, l) is a noise process, assumed to be a white, complex, circular
symmetric stochastic process independent of the blood signal, with zero mean
and variance σ2

n.
We introduce two new variables, just to simplify the notation:

φ ,
fc
fs

ψ ,
2vfc
fprfc

.
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Allowing the measured signal to be written as

y(k, l) =
∫
Av exp {j2π (φk − ψl)} dψ + n(k, l) (1.7)

with the corresponding slow-time Power Spectral Density (PSD) of the signal
y(k, l) formed as

Py(ψ) = |Aψ|2 + σ2
n (1.8)

This shows that estimating the power density spectrum would give an indi-
rect estimate of the velocity distribution in the interrogated blood volume.
Following this model, one is only able to measure the velocity component
along the ultrasound beam direction. This is a significant limitation, since
most of the vessels are parallel to the skin surface and, also, the flow is usu-
ally not parallel to the vessel surface. Thus, an angle correction has to be
added to the model:

fd = f0 − fr = 2f0 v cosα
c

(1.9)

where fd is the Doppler frequency shift, f0 and fr the emitted and the received
frequency, v is the mean flow velocity of the reflecting red blood cells and
α the angle between ultrasound beam and direction of blood flow (Figure
1.14). For angles of about 90°, the cosine function yields values around zero,
at which there is no Doppler frequency shift. The blood flow velocity is then
computed as

v = c

2f0 cosα (1.10)

The accuracy of velocity measurements increases with the acuity of the angle.
Usually, an angle around 60°is used, while larger angles result in high errors
in the velocity estimate.

1.5.6 The minimum and maximum detectable velocity
The signal received from a single moving blood scatterer depends on its

velocity and on the pulse repetition frequency. It will have the same shape
as the emitted pulse, but its perceived time scaled and, thus, frequency will
be different from the RF pulse. The time shift between the individual lines
is

ts = 2vz
c
Tprf
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Figure 1.14: Effect of the angle of incidence on the Doppler measurement. T
trasmitter, R receiver, F0 emitted frequency, Fr reflected frequency.

and it increases linearly with the line number i. Then, a single sinusoidal
component is received, as explained in the previous chapters. It is worth
noting that Tprf corresponds to the time which is the inverse of the central
frequency f0. The frequency of the received signal is 2vz

c
f0, that is to say a

scaled version of f0. Thus, the center frequency of the pulse is transformed
to fp = 2vz

c
f0 and the spectrum of the received signal has the spectral shape

of the pulse, with a scaled frequency axis. This is under the assumption that
a sufficient number of lines are acquired to sample a whole pulse duration.

At least one period of the waveform needs to be observed for detecting the
velocity and for distinguishing the signal from that of a stationary structure.
The lowest possible velocity is thus found from

NTprf = c

2vminf0
(1.11)

making the minimum detectable velocity equal to

vmin = cfprf
2Nf0

(1.12)

and the minimum frequency fmin = fprf

N
. If fewer lines are acquired, only

part of the pulse is seen and this corresponds to weighting the pulse with
a rectangular window, of which the spectrum should be convolved with the
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Figure 1.15: Coordinate system for blood particle moving through an ultra-
sound beam.

pulse spectrum. The pulse spectrum is narrow for very slow velocities and
the resulting spectrum is nearly solely determined by the windows spectrum.
However, the window has no effect if the whole pulse is sampled.

The maximum velocity is determined by the pulse repetition frequency
because aliasing occurs for frequencies above fpfr

2 . The relation is

fprf
2 ≤ 2vmax

c
f0

so that
vmax = c

2
fprf
2f0

. (1.13)

More precisely vmax is a bit lower since aliasing of the components above f0
in the pulse spectrum takes place.
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Chapter 2

Data Extraction, Period
Estimation and Fourier
Smoothing

Up to now, it has been described the amount of data at our disposal, but
we need to extract the information we want to use from the images acquired
through Doppler ultrasound. In this chapter, thus, we present the extraction
of the region of interest from the whole image, from which we cut just the
box containing the Doppler waveform. Once having the spectrum in a grey
scale, some changes have to be taken before proceeding, like a threshold filter
(section 2.1.2) in order to remove the noise and a rescaling of the axes, to
express measures in cm/s and in seconds instead of number of pixels. After
this little changes, it is possible to concentrate on the spectrum. In section
2.2, we analyse the spectrum of blood velocities for a fixed time, with the
purpose of estimate the probability density it represents. This attempt was
a first exploration of the data and a possible way to reduce the noise without
the use of the initial filter.
In section 2.1.3 we return to look at the spectrum moving in time, trying to
estimate a function representing the velocity of the red blood cells in time.
We will focus on the reason why, later on, we will keep on treating only
the 95th quantile of the histogram of the data available at each fixed time.
Nevertheless, we will save also other statistical sample indexes such as the
mode, the median, the mean and the interquartile interval (IQR), since they
can still give some information about the flow. The following step is the
smoothing of the points extracted, so that we can handle functional data.
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Figure 2.1: Duplex scan showing both B-mode image and spectrogram of
the left common carotid artery of patient number 10 of our study, at -2 cm
before the bifurcation.

Since the signal is periodic (the blood flow depends on the heartbeat), we
first settle a new procedure to iteratively estimate the period of the signal
and, once obtained, we can use Fourier smoothing on the data. Finally, the
alignment of the functions coming from each patients is performed.

2.1 Extraction of the data

2.1.1 Extraction of the Region of Interest
We present in this section the procedure we followed for processing each

duplex image of the study. In fact, of the whole Doppler image (for example
the one in Figure 2.1, that refers to patient number 10 of our study, left CCA,
level -2), we are interested just in the spectrum waveform at the bottom of
the picture. Thus, when importing the figure, we cut it in order to maintain
only the frame containing the information needed. The cutting procedure
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is simple and constant for all the images, but one has to pay attention to
quantities reported along the axes: the box containing the spectrum has
always the same dimensions, but whilst the time axis (the horizontal axis) is
constant for all the pictures (about 4 seconds are showed), along the vertical
axis, which represents velocity values, things may change from patient to
patient. This is why in Figure 2.2, the original axes with their ticks are still
maintained: we need them to properly scale the measurements which will
be computed, otherwise expressed in pixels. We have manually detected the
horizontal ticks and inserted the scale values, but this procedure could be
automated by the use of a Sobel filter1, as explained in [9]. Once having
saved these landmarks, only the spectrum is kept, cut at the level of the zero
flow line (ZFL, section 1.4 of Chapter 1), as Figure 2.3 shows. In fact, under
this line, usually there is the backflow of blood after systolic peak. This
backward flow is absent in the common carotid artery, because it is a low-
resistance flow that has to reach the brain continuously [3], thus the flow is
steady throughout diastole and we do not loose any substantial information
by cutting the black zone under the ZFL.

2.1.2 Threshold filter
The spectrum showed in Figure 2.2 is clear and well defined. Unfortu-

nately, not all the Doppler images have the same quality, because factors like
fat tissue or arrhythmias can interfere in the acquisition process, resulting in
a very noisy spectrum, like the one shown at the top of Figure 2.4. Thus,
filtering the image before proceeding is necessary. In [9] and [10] a threshold
filter is proposed, which automatically computes the threshold as the pixel
intensity value such that the 25% of pixels in the image results over that
level. After this first filter, in order to remove outliers, a median filter is
applied, which consists in running through each column of the image (thus
along a fixed time of the cardiac cycle) pixel by pixel, replacing each value
with the median of the first few preceding and following entries [12]. This is
a completely automated procedure which works well with most of the noisy
images and that we would recommend in case of treating a large amount of
images. Anyway, we did not apply this kind of threshold filter, because of
the limited number of frames at our disposal. In fact, among the Doppler

1Sobel filtering is often used in image processing, particularly within edge detection al-
gorithms. It consists in a discrete differentiation operator that computes an approximation
of the gradient of the image intensity function.
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Figure 2.2: Clipping of the frame containing the spectrogram from the
Doppler Image.

images of the patients in our study few extremely noisy pictures occur, on
which the filter described in [9, 10] is not strong enough, but we can not
afford to further reduce the number of patients wasting these cases. Figure
2.4 shows the filters just described applied to one of these cases: on top
there is the original frame, in the center the same frame filtered and at the
bottom the final result, after the median filter. It is clear that the noise is
still too much. Moreover, the final median filter applied slightly modifies the
histograms of the velocity intensities (the few black pixels under the velocity
flow are completely removed).
The filter we have chosen and applied, instead, is more immediate: for each
frame we identify the pixel with the largest intensity, which is for sure on
the Doppler velocity profile. From this, we compute the threshold value just
as a percentage of the highest intensity and we filter out the whole image
by setting to zero all the values under the threshold. Usually it is enough to
choose a percentage of 20%, but for images really noisy as the one in Figure
2.4, the threshold could also reaches values of 90% of the highest pixel in-
tensity. Figure 2.5 shows the result of this procedure. The frame obtained
has been shown to doctors for visual evaluation, and it was confirmed that
we are not loosing any information by filtering the Doppler spectra.
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Figure 2.3: Sequence showing the steps of the clipping of the frame with the
spectrum waveform. In (a) the axes are still maintained in order to detect
the zero-flow line (red line in (b)) and the landmarks for the rescaling of
the units from number of pixels to cm/s or seconds (yellow dashed lines).
Finally, the frame showing the Doppler spectrum of the velocities cut (c).
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Figure 2.4: Example of a noisy image (patient 17, Right CCA -2) treated with
an automated threshold filtered (as illustrated in [10]): on top (a) there is the
original frame, while (b) shows the same frame filtered out by automatically
computing the threshold as the pixel intensity value such that the 25% of
pixels in the image results over that level. At the bottom (c) there is the final
result, after the median filter, applied in order to remove possible outliers.
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Figure 2.5: Example of a noisy image (patient 17, Right CCA -2) treated
with the filter we developed, which simply computes the threshold value as a
percentage of the highest intensity among the pixels and sets to zero all the
pixel values under the threshold. On top there is the original frame, whilst at
the bottom the image filtered out, with a threshold value of 90% the highest
pixel intensity.

2.1.3 Detection of the Doppler flow velocity
The analysis of the clinician of the Doppler flow velocity is based on man-

ual identification of some important points, such as the systolic and diastolic
peaks. The doctor considers only the highest points of the spectrum of veloc-
ities and can read the values of the peaks by manually positioning the cursor
on the point of interest on the screen. In order to automatize this procedure,
in [10] an edge detection method is explained, consisting of scanning the im-
age, for each time-column, from the top to the bottom, searching for the first
pixel with an intensity greater than a predefined threshold, assumed as the
contour of the velocity profile. Instead, to automatically detect the Doppler
velocity profile from the Doppler tracings, for each image separately, we cal-
culate the frequency histogram at a fixed time for each time step and, from
this, we extract some statistical indexes: 95th sample quantile, mode, mean,
median, variance and the interquartile range q95−q25. Once having extracted
these sample indexes, it is possible to continue analysing all of them, but the
95th quantile has actually more importance, and it is the one on which we
will present the results. In fact, the reason why medical doctors look at the
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highest point of the flow profile lies in how the Doppler signal is sampled:
the sample volume is fixed and it has a diameter between 2.0 and 3.8 mm
[9]. When the lumen of the vessel is narrow (maybe because the presence
of a plaque), the sample volume catches effectively the whole velocity profile
and looking to a high level quantile means looking to the highest velocities
reached by the blood flow. Figure 2.6 can help to visualize why one should
look to a high quantile: other indexes such as the mean or the median de-
pend on the dimension of the vessel respect to the sample volume and they
do not represent the maximum speed reached by the blood flow in the sec-
tion of interest. In a parabolic flow profile, as it should be theoretically when
the CCA is approximated with a cylinder, considering the quantile has the
strong physical sense of looking to the highest speed, that is to say where
the signal is higher. Finally, the 95th sample quantile, and not the maximum
sampled velocity value or any higher order quantile, is chosen, in order to
avoid outliers generated by noise.

In Figure 2.7 the 95th sample quantile, the sample mean and the sample
mode extracted from the images are presented superimposed to the original
velocity spectrum. This figure has been subjected to medical advice, that
agrees with the choice of considering the 95th sample quantile as represen-
tative of the blood flow profile. Figure 2.8 shows the sample IQR and the
sample mean ±1.5 ∗

√
variance. From the latter it is possible to see how the

variance represents the spectral broadening due to disturbed flow, and this
is the reason why it has been computed for each frame.

2.2 Density estimation at fixed time
The Doppler spectrum of velocities can also be read as an histogram that

varies over time. As a matter of fact, once fixed one specific time of the
cardiac cycle, the grey intensities represent the number of red blood cells
moving at that specific velocity in the sample volume and, thus, a density of
points. From this, the idea of estimating the probability density function at
fixed time arises and one could ask if the extraction of the statistical indexes
(95th quantile, mean, mode and so on) by the estimated probability density
function instead of directly using the sample indexes could be a method to
reduce noise. In order to answer this question, we performed a local polyno-
mial fitting with kernel weights, which allows to estimate the density at each
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Figure 2.6: Different kind of velocity profiles and their spectra. When blood
enters a narrow lumen, parabolic flow changes into plug flow and then return
the original parabolic profile.
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Figure 2.7: 95th sample quantile, sample mean and sample mode extracted
from the histograms are presented superimposed to the original velocity spec-
trum.
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Figure 2.8: 25th and 75th sample quantiles, in the top panel, and sample
mean ±1.5 ∗

√
variance, in the bottom panel, extracted from the histograms

are presented superimposed to the original velocity spectrum.

time and we noticed that there are not substantial differences in the sample
statistical indexes extracted directly from the histograms rather than from
the estimated density function. Thus, we will not recur to the density estima-
tion further in this thesis, since it does not add value to the analysis we will
carry on, but we now present anyway the local polynomial smoothing applied.

Local polynomial smoothing is a localized least squares fitting method.
The idea behind these kind of methods is substantially that the value of the
function estimate at a point t should be influenced mostly by the observations
near t. These techniques are widely explained in [?, 20], while a brief but clear
enough explanation can be found in [13], from which we take our notation.
Local polynomial smoothing estimates the values of the function y at the
argument t by minimizing the weighted sum of the squared errors, with
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respect to the coefficients cl of the polynomial. The objective function to be
minimized is thus:

n∑
j=1

wh(tj, t)
[
yj −

L∑
l=0

cl(t− tj)l
]2

, (2.1)

where the weights wh(tj, t) are chosen such to consider relatively closed
points, in order to include only those values tj fairly close to the target
value t. The parameter h is called bandwidth parameter and it indicates how
far from t the values tj are still considered. The localizing weights wh(tj, t)
are constructed through a kernel function, built such that it has the most
of its mass concentrated at zero and it decays quickly. In particular, we will
use a Gaussian kernel function:

kern(u) = 1√
2π

exp(−u2/2),

defining the weights values as

wh(tj, t) = kern(tj − t
h

).

The bandwidth parameter h controls the balance between bias and variance:
a small value of h generates an estimate ŷ(t) close to the true value y(t), but
with a high variability since few observations are used. On the contrary, large
values of h decrease the variance of the estimate but increase the bias, be-
cause the values used cover a wider region. Different data-driven techniques
for choosing h have been developed and they can be found in [22] and [21].
We will use a rule-of-thumb developed by Silverman [20], that chooses the
value of the bandwidth for a Gaussian kernel density estimator proportional
to the standard deviation.

To perform a local polynomial smoothing on the spectra of velocities,
first of all each column of the spectrum has to be extracted and smoothed
down independently from the other columns. So, for each time, we have a
vector of velocity observations, each one with an intensity value representing
the number of red blood cells in the sample volume moving at that specific
velocity. In equation 2.1, we set L = 0, recovering in this way the Nadaraya-
Watson estimator of y(t):

ŷ(t) =
n∑
j

Sj(t)yj,
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Figure 2.9: Choice of 2 times of the cardiac cycle in order to perform a
kernel density estimation. The first time (red line) is t = 0.369 seconds and
it corresponds to a systolic peak, while the second one (blue line), t = 0.9s,
corresponds to a generic time during diastole.

with the weights values normalized to have a unit sum

Sj(t) = kern[(tj − t)/h]∑
r kern[(tr − t)/h] .

Figure 2.9 shows an example of two fixed times, chosen such that the first (red
line) corresponds to a systolic peak and the second one (blue line) to a random
time during diastole. Kernel density smoothing can be performed using the
function locpoly, contained in the R package KernSmooth, by setting the
degree to zero and choosing the gaussian kernel. The bandwidth has been
set to h = 3.0 (meaning that each value is obtained weighting the intensities
of the neighbour velocities not farer than 3 cm/s), estimated through the
function density, which allows to choose the method for the estimation of
the bandwidth (in our case, Silverman’s method). Figure 2.10 shows the
probability densities estimated for the two time points fixed. Increasing the
value of the bandwidth h would lead to a smoother estimation, but also to
a considerable decrease of the maximum intensity reached (indicated with a
vertical dashed line in the figure), meaning that the density we are estimating
reduces the number of particles moving at the central velocities. We do not
desire this effect, which can be clearly seen in Figure 2.11, because we do not
want to modify the distribution of the velocities of the red blood cells, thus
we should keep on using a bandwidth value around 3. Finally, in Figures
2.10 and 2.11, the 95th quantile and the mode extracted from the estimated
density function are shown with vertical dashed lines.
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Figure 2.10: Probability density functions estimated for the two times indi-
cated in Figure 2.9, superimposed to the intensity histograms. In this case,
the bandwidth value has been set to 3.

2.3 Fourier Smoothing of Doppler Velocity
In this section we are going to explain the procedure developed to estimate

the period of the data and how to pass from the data extracted from the
Doppler waveform to a smooth function. First, we briefly introduce the
Fourier smoothing and the non linear least squares estimate. Using these
methods, we will be able to represent our data through smooth periodic
functions and, thus, to register them and to compare the curves of the blood
velocities from various patients.

The Fourier basis system

For each Doppler image, we will treat the data extracted, and in particular
the 95th sample quantile, as functional data, meaning that we consider them
as a discrete acquisition of n pairs (tj, yj), where yj is generated by a function
x = x(tj), of which we suppose the existence, plus a term of noise εj [13]:

yj = x(tj) + εj.
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Figure 2.11: Probability density functions estimated for the two times indi-
cated in Figure 2.9, superimposed to the intensity histograms. In this case
a bandwidth h = 10 was chosen: a considerable decrease of the maximum
intensity reached can be seen, with respect to the density estimations shown
in Figure 2.10.

We desire the function x to be smooth, that is to say continuous and that
one or more derivatives of x exist and are continuous. In our specific case,
the grid {tj} over which data are collected is not the same for all the records:
the number n of pairs (tj, yj) varies from frame to frame, while the distance
between two consecutive time points ∆t is always the same and it corresponds
to one pixel.
The function x can be represented as a weighted sum of K basis functions
Φk, orthogonal to each other and belonging to the same space as x (i.e. C ′
for previous definition). Following [13], we can thus estimate x as:

x̂(t) =
K∑
k=1

ĉkΦk(t) (2.2)

or, in matrix notation:
x̂ = ĉ′Φ = Φ′ĉ, (2.3)

where ĉ is the vector of the K coefficients ĉk and Φ is the vector whose ele-
ments are the basis functions. The number K of basis functions determines
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the degree of smoothness of the function x: when K is large, more computa-
tion is required and x almost interpolates the data (we have interpolation if
K = n). Instead, a low value of K leads to a more smoothed function. Later
on, we will also make use of the first derivative of x, which can be estimated
as:

Dx̂(t) =
K∑
k=1

ĉkDΦk(t) = ĉ′DΦ(t). (2.4)

Our data, i.e. the statistical indexes extracted from the Doppler spectrum,
are periodic, since blood flow follows the periodicity of the cardiac cycle.
Moreover, for each patient, the curvature of the extracted data tends to be
of the same order. These features suggest the use of probably the best known
basis functions: the Fourier basis. Consequently, we can write equation (2.2)
as a linear combination of sines and cosines:

x̂ = c0 + c1 sinωt+ c2 cosωt+ c3 sin 2ωt+ c4 cos 2ωt+ . . . , (2.5)

having defined the basis through

Φ0(t) = 1,
Φ1(t) = sinωt,
Φ2(t) = cosωt,

...
Φ2r−1(t) = sin rωt,

Φ2r(t) = cos rωt.

The period of the basis is T = 2π/ω, determined by the parameter ω, which
we will estimate from the data.
After having estimated the period, the coefficients ck will be estimated using
least squares, that is to say fitting the model to the data by minimizing the
sum of the squared errors. For this purpose, we used the package fda [26]
implemented in R and described in [14]. We refer to [13] for more details about
smoothing functional data by least squares, but we spend some further word
about the choice of the number of basis K. As usual, a trade-off between
bias and variance arises, since if K is large there is a good fit of the data,
but at the same time the variance could be high and there is the risk of
fitting the noise that one would desire to ignore by recurring to smoothing
methods. On the other hand, if K is too small the variance is low, but the
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risk is to loose some important feature of the function to estimate, leading to
high bias. To control both variance and bias at the same time, a possibility
is to check the mean-squared error MSE[x̂(t)] = E[(x̂− x(t))2], which links
together bias and variance. We decided to use a scaled version of this index,
the generalised cross-validation measure (GCV [17]), which can be expressed
as:

GCV (K) = ( n

n−K
)(MSE

n−K
).

In particular, in order to choose a suitable value for K, it is possible to
compute the values of the GCV sequentially (in our case, it has been done
through smooth.basis, included in the package fda), applying consecutively
a Fourier smoothing to the data by letting K increasing. Then, a widely
used criterion is to search for an elbow in the plot of the GCV against the
increasing number of functions K (Figure 2.12). Repeating this procedure
independently for each frame, we had that the optimal number of basis func-
tions suggested from this method would be an odd number between 11 and
15 (in the presented figure, for example, the optimal value would be K = 13).
We thus choose to use K = 15 for all the patients and all the levels.

Non linear least squares estimates

In order to represent the velocity profile through Fourier smoothing, it is
necessary to estimate the period of the data, which, just in case of the CCA,
corresponds also to the period of the cardiac cycle. Instead, for ICA and
ECA the frequency of the pulses of the blood flow diverges from the heart-
beat and having a procedure to estimate the period could provide a useful
information. For this purpose, we will apply nonlinear least-squares esti-
mates of the parameters of a nonlinear model, consisting in a cosine function
(in next section, it will be clear the reason of the choice of this model). Non
linear regression allows us to adapt data to a curvilinear function, containing
the period as a parameter, which we want to estimate. The estimation of the
model parameters is done by the Gauss-Newton iterative method, illustrated
in [15] and implemented in function nls of R. It is necessary to provide ini-
tial values of the parameter, that will be corrected at each iteration of the
algorithm until convergence is reached. Since the procedure developed to
estimate the period, described in next section, is fast and it works well, we
will use non linear least squares estimates for estimating the periods of all
the frames, regardless of if the data come from the CCA or from the internal
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Figure 2.12: Plot of GCV values obtained by letting K increasing. The
points correspond only to odd values for K and the dashed line indicates the
elbow that corresponds, in this case, to the value K = 13.

Carotid arteries.

2.3.1 Estimating the blood flow period
In this section, we illustrate the new procedure we developed to estimate

the period of the velocity blood flow. This step is necessary, because using
directly the heartbeat period, which is recorded directly by the doctor, could
lead to mistakes because it is not granted that the period of the data extracted
from the Doppler images is exactly the same of the heartbeat period. We
will thus estimate the period from each Doppler frame of our project. Since
for each patient three images at three different levels of the CCA (-2,-1 and
-0.5) are available, afterwards it will be possible to carry out a control of
the estimated periods. Anyway, the images at the three levels of the CCA
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have been registered at different moments of the same medical examination
and meanwhile the conditions of the patient could have slightly changed.
So, we do not expect to estimate exactly the same period of the blood flow
along the CCA, but we do expect something similar, at least. What should be
almost identical, instead, are the periods estimated from the position indexes
(such as the 95th sample quantile, the mode and the sample mean) and from
the dispersion indexes (sample variance and IQR) extracted from the same
Doppler frame.
This method differs from the procedures usually applied to estimate the
period of sinusoidal data. In fact, it is typically estimated using the FFT or
by observation of the zero-crossing times [27]. Instead, our method is based
on a first Fourier smoothing, maintained very close to the original data since
the period used is the whole range of time values. Then, we use non-linear
least squares to estimate the period of the function obtained.
The algorithm implemented in order to estimate the period, applied to each
statistical sample index, is the following:

Step 1 Initialization. A Fourier basis is generated, to specify which one
needs to define two informations: the number of basis functions and
the period T . In this first step of the algorithm, we choose a number
of basis K = 25 (maintained constant for all the indexes and all the
images), which is high enough to catch all the features of the data.
Regarding the period, the default value of the range of time values t
spanned by the data is given. Defined the basis functions, the data
are then smoothed down computing the coefficients ĉk in (2.2) through
least squares estimates.

Step 2 Detection of the first peak. The data now are represented by a
smooth function x, of which we need to detect the position of the first
peak. This is done by detecting the first time at which the second
derivative of x is negative and the first derivative is zero. A further
check is added, verifying that the value of x at the obtained point
is over a certain threshold (such as max(data)/2). It is possible to
estimate the derivatives of the r basis function by using

D sin rωt = rω cos rωt,
D cos rωt = −rω sin rωt (2.6)

The coefficients for the Fourier expansion of Dx are already available,
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since they are (0, c1,−ωc2, 2ωc3,−2ωc4, . . .), whilst for D2x the coeffi-
cients are (0,−ω2c1,−ω2c2,−4ω2c3,−4ω2c4, . . .).

Step 3 Estimation of the period and registration. Translating the function
x so that the first peak corresponds to the origin on the time axis, it is
possible to adapt it to a simple periodic non-linear model, which also
have the first peak in zero:

x ∼ a+ b cos(ωt). (2.7)

The parameters of this model are estimated through non-linear least
squares, using a Gauss-Newton iterative method. The parameters a
and b have been added to the model for a scale reason. The method
converges for a wide variety of initial values a0 and b0. On the contrary,
one needs to pay attention to the initial value of the parameter ω, which
is the most important, being connected to the estimation of the period
through the relation T = 2π

ω
. Its starting point ω0 has been chosen,

for each frame, as the range of time values available (i.e. the number
of data) divided by the number of peaks in the frame.

Figure 2.13 shows the three steps of the algorithm, for the 95th sample quan-
tile index only: at the top both the data and the first smoothing are plotted,
in the center a visual check that the right peak has been detected and at the
bottom there are the smooth function x, translated so that its first peak is in
zero, and the cosine model fitted out. With the estimate of the period, it is
then possible to perform a final smoothing of the data, in order to obtain a
function (of the 95th quantile moving in time for instance) instead of discrete
points. This will be done using the estimate of the period to create a Fourier
basis, so that, when fitting the data, all the measurements obtained from
consecutive cardiac cycles will be averaged among them. In fact, the origi-
nal Doppler waveform contains variability among consecutive cardiac cycles,
due to the acquisition procedure, and averaging them by a periodic Fourier
smoothing is a good way to resume in just one cycle the original information.

2.3.2 Results
Since the period of blood flow in the CCA should be similar to the heart-

beat, we have a way to test the validity of our method. The typical resting
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Figure 2.13: The 3 steps of the algorithm which allows the estimation of
the period, for the 95th sample quantile of patient 10, left CCA, level -2. In
the top panel both the data, as extracted from the Doppler frame, and the
first smoothing are plotted, in the central panel a visual check that the right
peak has been detected and at the bottom there are the smooth function x,
translated so that its first peak is in zero, and the cosine model fitted out.

heart rate in adults is 60-80 beats per minute2, but it depends on the phys-
ical condition of the person. For example, in a trained individual, it could
reaches lower frequencies of 50-60 bpm. Thus, when estimating periods of
the blood flow in carotid arteries, we should expect values around 0.75 and
1.2 seconds.

After having extracted different statistical indexes from each frame, we
should compare the estimates of the period of these data. So, using the 95th
quantile, the mean and the mode, we estimate the function’s period for each
index separately. This results in having, for each image, three different values
for the period of the blood velocity. Comparing them, the differences are of
the order of the hundredth of second and this suggests that the method is
robust. Figure 2.14 shows the periods estimated from the 95th quantile and
the mode curves at -2: when it is possible to see only the red point (period of

2Resting Heart Rate, American Heart Association.
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Figure 2.14: Estimation of the period of the blood velocity at -2 from the 95th
quantile (black dots) and from the mode (red dots). The distances between
the two periods are shown with a black dashed line.

the mean) it is because the two periods are exactly the same; the difference
between the 2 estimates for patient 36 is the largest one and it is equal to
T̂q95−T̂Mode = 0.09s. This procedure is repeated for all the images, at various
distances from the carotid bifurcation and the results are shown in Table 2.1.

It is also possible to check how the period of the blood flow profile evolves
along the common carotid artery: sometimes the value of the period at -2
is different from the one at -1 and -0.5, as Figure (2.15) clearly shows. We
can justify this by the fact that the acquisition at -2, -1 and -0.5 have not
been taken at the same moment, and some condition in the patient (such
as breathing) could have been changed, influencing the heartbeat and thus
the period of the signal. Moreover, the period estimates at -2 and -1 are
more similar to each other (black and red line in the figure) than to values
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Figure 2.15: Estimation of the period of the blood velocity profile at a dis-
tance of -2 (black) from the carotid bifurcation, -1 (red) and -0.5 (green).
The dashed line connects the periods at -0.5 with the periods at level -2.

at -0.5 (green line), which are more deviated: a probable explanation is the
closeness of the carotid bifurcation, after which blood splits in two flows
(ICA and ECA) with two different pulsatilities; furthermore, in this zone,
the acquisition of the image is more difficult (as medical staff showed us) and
sometimes the examiner has to try different times, moving the transducer
to find the right location. Consequently, the estimates of the periods along
the CCA of the same patient may differ from each other because the original
Doppler images are different. To justify this we show the Doppler acquisitions
for the right CCA of patient number 9 (the one for which the periods are
more different, as the dashed vertical line in Figure 2.15 underlines), looking
at which one can see at one glance that the periods are not the same at the
three positions (Figure 2.16).
Finally, it has to be noticed that the estimation of the periods along the left
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Figure 2.16: Doppler acquisitions at the three levels of CCA for patient 9,
right carotid artery: the periods of the heartbeat are clearly not the same.
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CCA are very similar to the estimations along the right CCA (looking at each
level separately), and there are only few cases when the difference is greater
than 0.1 s. Again, for these cases it is possible to notice a difference between
the waveforms of the left and right carotid arteries already from the original
frame. To strengthen the fact that the periods estimated along the left CCA
are very similar to the periods of the right CCA, a paired Mann-Whitney
U test [16] has been performed. It is a paired two samples case, where the
null hypothesis is that the distribution of the periods of the left CCA minus
the periods of the right CCA (ω̂Left− ω̂Right) is symmetric around zero. The
p-values obtained from the test are p = 46.28% at -2, p = 94.67% at -1 and
p = 35.91% at -0.5.

2.3.3 Final Smoothing
We now present the final smoothing, which creates the function that

should properly represent the data. This is done by creating a Fourier basis
with a period equal to the one estimated for each frame and a number of
bases K = 15. The smooth function that we obtain has the property of
being periodic and it is generated by fitting the data through least squares,
using the package fda in R. It has to be noticed that the basis functions are
periodic and they repeat themselves with exactly the same shape at every
period. Thus, when fitting the data, all the measurements obtained from
consecutive cardiac cycles are automatically averaged and this permits to
reduce variability coming from the acquisition of the Doppler images and to
take into account possible respiratory variations. The final smooth functions,
obtained for each statistical index listed before in this chapter, presented as
in Figure 2.17 and 2.18, have been shown to a clinician and he agreed that the
smoothing of the 95th quantile represents properly the information contained
in the Doppler spectrogram. Thus, hereafter, we will carry on the analysis
just on this index.

2.4 Curve registration
Now that the 95th sample quantiles evolving in time for each patient are

in functional form, we would like to proceed in the analysis of the data,
comparing the curves coming from different patients. But before doing that,
a registration of the data is necessary and, in particular, a transformation of
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Patient Left Carotid Artery Right Carotid Artery
-2 -1 -0.5 -2 -1 -0.5

N. T T T T T T
1 1.103 n.a. 0.973 1.085 1.082 1.162
2 0.965 1.051 n.a. 1.039 1.042 n.a.
3 0.779 0.809 0.805 0.822 0.896 0.871
4 0.984 1.011 0.955 0.893 0.930 1.010
5 0.983 0.978 0.894 1.006 0.974 1.130
6 0.864 0.940 0.874 1.029 0.893 0.881
7 0.957 0.879 0.991 1.126 0.947 0.860
8 0.697 0.786 0.762 0.763 0.756 0.755
9 0.778 0.809 0.805 0.844 1.080 1.383
10 0.910 0.858 1.035 0.865 0.908 0.860
11 0.976 0.956 1.030 0.922 1.022 0.889
12 1.059 1.106 1.032 1.034 1.002 1.008
13 0.783 0.798 0.805 0.779 0.788 0.780
14 1.065 1.059 0.981 1.083 0.940 1.032
15 0.783 0.787 0.758 0.764 0.804 0.749
16 1.211 1.052 0.721 1.166 1.153 1.006
17 1.140 1.172 1.160 1.113 1.117 1.135
18 1.270 1.247 n.a. 1.297 1.356 1.309
19 1.159 1.173 n.a. 1.186 1.138 1.136
20 0.889 1.082 n.a. 1.023 1.016 0.978
21 1.118 1.065 0.999 1.059 1.199 n.a.
22 0.892 0.821 0.841 0.795 0.855 0.879

Table 2.1: Estimates of the velocity period, for all the patients and at various
distances from the carotid bifurcation.
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Figure 2.17: Final results of the smoothing of the 95th quantile, the mean
and the mode, obtained after having estimated the period of these indexes.
Results for patient 10, left CCA, level -2.
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Figure 2.18: Final results of the smoothing of the 75th and 25th quantiles (top
panel) and, at the bottom, of mean±1.5∗

√
variance, obtained after having

estimated the period of these indexes. Results for patient 10, left CCA, level
-2.
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Figure 2.19: Functions representing the 95th sample quantile for each patient
at level -2, plotted before being registered.

the argument time. In fact, observing the whole functional observations on
the same plot, as in Figure 2.19, it is possible to see basically two kind of
variation: in phase and in amplitude. We will not modify the variation in
amplitude, since it is the first feature exhibiting the presence of a stenosis.
Instead, we will correct the phase variability, that is to say, the variations in
the timings of the systolic peaks, because this kind of variability depends on
the acquisition of the Doppler image by the examiner, who, obviously, does
not begin recording the velocity signal at the same time of the cardiac cycle
for each patient. We will also correct the fact that each curve has a different
length (a different time interval).
Thus, in order to compare the functions coming from all the patients, the
time scale has to be transformed, so that all the peaks of curves happen at
exactly the same time, for all the patients and for all the levels. This is
achievable by applying a landmark registration [13]. First of all, the number
of observations and the number of cardiac cycles vary from image to image.
Performing a Fourier smoothing implies averaging the information coming
from different cardiac cycles and thus, it will be enough to represent only
one cardiac cycle for each patient. The interval T over which the functions
are to be registered is [0, ω̄], where ω̄ has been chosen as the mean value
of the estimated periods of the 95th sample quantiles. In this way, all the
functions will be represented with a uniform time axis t ∈ (0, ω̄), where t
is the argument value of x(t). The transformation performed in order to
pass from each patient time grid to the uniform one is simple: the Fourier
basis is evaluated in order to have the first systolic peak pi (of which the
position has already be detected during the estimation of the period) in the
center of the range T , that is to say from pi − ωi/2 to pi + ωi/2, where ωi
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Figure 2.20: Functions representing the 95th quantile registered functions at
level -2. For each patient only one period of the cardiac cycle is represented.

is the period estimated for the patient i, with a time transformation of ωi
ω̄
t.

Figure 2.20 shows the registered functions over one period, while Figure 2.21
shows the registered functions over three periods in the top panel, while in
the bottom panel the registered functions are shown with 2 different colours:
the curves corresponding to TEA patients are red, while all the other are
shown in black.
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Figure 2.21: Functions representing the 95th quantile registered functions at
level -2. For each patient 3 periods of the cardiac cycle are represented. In
the bottom panel, functions corresponding to TEA candidate patients are
shown in red.
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Chapter 3

Dimension Reduction and
Classification of Functional
Doppler Spectra

At this point of our work, we are confident with the fact that the data
extracted from the Doppler spectra can be interpreted as realizations of ran-
dom functions. Furthermore, after the estimate of the period performed in
the previous chapter, the quantitative information concerning each patient
of the dataset is well described by smooth functions, meaning that we are
working with functional data. In this chapter, we will thus proceed with the
exploratory analysis on these functional data, through functional principal
components analysis (in section 3.1), with the aim of reducing the dimension-
ality of the problem, by visualizing the most important variability features
of the data. In order to do inference instead, we will perform linear discrimi-
nant analysis (LDA, in section 3.2), after having checked that the hypotheses
requested by these methods are fulfilled.
Detecting the common and different features within our sample of patients
will permit to determine a classification tool to distinguish patients com-
ing from the three populations: TEA candidates, non-TEA patients with a
low-grade plaque and healthy people.
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3.1 Functional principal components analysis
Functional principal components analysis (FPCA) is an important tech-

nique for exploring data and finding the features that characterize the func-
tions at our disposal. Moreover, it can give extremely clear results, including
an indication on the complexity of the data. As a matter of fact, FPCA
guarantees an informative analysis of the variability structure of the data,
more comprehensible than a direct examination of the variance-covariance
function. In this section, we will follow [13] in order to introduce the FPCA
approach, which will provide a deep exploration of the functions representing
blood flow in the carotid arteries.

3.1.1 Defining functional principal components
analysis

Let xi(s) be N realizations (i = 1, . . . , N) of a random functionX(s), cen-
tred with respect to the mean and measured on a continuous scale indexed by
s. Functional principal components are defined similarly to the multivariate
principal components [18], but instead of being vectors, in this contest they
are continuous functions β(s) (also called eigenfunctions), which allow to vi-
sualize the most important variability features of the analysed phenomenon.
In fact, the aim is to find a set of principal components β(s) that maximize
the variance along each component and are orthogonal to each other.
The principal component scores corresponding to the weight β can be ex-
pressed as:

fi = βxi =
∫
β(s)xi(s)ds.

The first principal component β1(s) is determined by maximizing the mean
square

1
N

N∑
i=1

f 2
i1 = 1

N

N∑
i=1

(∫
β1(s)xi(s)ds

)2
, (3.1)

subject to
∫
β1(s)2ds = ‖β1(s)‖2

L2 = 1. The maximization of 3.1 identifies the
main cause of variability of the functions, while the constraint is necessary to
make the problem well defined, since without it the inner product between
functions and eigenfunctions could be arbitrarily large.
The second and following eigenfunctions βm(s) are consequently determined
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as the functions that maximize

1
N

N∑
i=1

f 2
im = 1

N

N∑
i=1

(∫
βm(s)xi(s)ds

)2
,

this time subject to 2 constraints: that βm(s) has unit norm∫
βm(s)2(ds) = ‖βm(s)‖2

L2 = 1

and that βm is orthogonal to the principal components already determined:∫
βm(s)βk(s)ds = 0, k < m.

Finding next principal components means searching for variability indexes
that permit to add new information to that already available with the first
principal component.
Anyway, principal components have also another important meaning of di-
mensionality reduction. The aim is that of determining a set of K orthogonal
functions ξk(s) (k = 1, . . . , K) so that the expansion of each curve x(s) in
terms of these basis functions approximates the curve as closely as possible.
Since the basis functions are chosen orthonormal, the expansion will be:

xi(s) ≈ x̂i(s) =
K∑
k=1

ωikξk(s),

where ωik =
∫
ξk(s)xi(s)ds. It is possible to show [13] that the orthonormal

basis {ξ1, . . . , ξK} minimizing the integrated squared error

N∑
i=1
‖xi − x̂i‖2

L2 =
N∑
i=1

∫
[x(s)− x̂(s)]2ds,

is exactly the set of the first K functional principal components of the data-
set.

3.1.2 FPCA on carotid arteries velocities
Data cleaning

Before applying the FPCA to the data set of smooth functions represent-
ing the blood velocity along the CCA that we have constructed, we should
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Figure 3.1: Registered functions representing the 95th sample quantile at
level -0.5.

first check these curves, in order to detect and remove possible outliers. For
this purpose, we present in Figure 3.1 and 3.2 the registered functional data
at level -2, -1 and -0.5, where the black functions correspond to TEA pa-
tients, while the red one to all the other patients. One can immediately see
that among the TEA candidates there are two patients whose blood veloc-
ity at -0.5 reaches really high values of 200 and 250 cm/s. So high values
are not typical in the common carotid artery (we remind that within the
MACAREN@MOX project only patient with a stenosis along the internal
carotid artery -and not along the CCA- are included), whilst velocity values
at the height of the plaque are even higher (∼ 400 cm/s). What we conclude
is that, probably, this two patients have a plaque at the beginning of the ICA,
that is to say at the level of the bifurcation. This is the reason why velocities
at -0.5 are so high: the blood flow is already influenced by the presence of
the plaque. The two anomalous velocities are those registered for patient
19 (right carotid) and 21 (left carotid). Hereafter we will remove these two
cases from the dataset, because they could influence the scores of the FPCA,
at least at level -0.5. Consequently, the number of functional data available
becomes 36 at -0.5, 41 at -1 and 42 at a distance of -2 from the bifurcation,
having removed 2 TEA candidates.

We will now show in details the results of the FPCA, performed after
having removed the two outliers. In particular, we will analyse separately
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Figure 3.2: Registered functions representing the 95th sample quantile at
level -1 (top panel) and -2 (bottom panel).

data concerning different distances from the bifurcation, -2, -1 and -0.5. After
having visualized the eigenfunctions and selected, among them, those able to
describe with enough accuracy the variability of the problem, we will proceed
with a deep analysis of the scores, that is to say the values obtained from
the inner product in L2 between each eigenfunction and each functional data
xi(s). Interpreting the components is not always a straightforward matter, we
will thus follow some techniques illustrated in [13]. First of all, for each level
of the CCA, it is possible to see the percentage of variability explained by the
first principal components, shown in Figure 3.3. In Table 3.1 the proportion
of variance explained by the first six principal components is reported, which
for the first three is 90.67%, 92.31 % and 88.67% respectively for levels -
0.5, -1 and -2. Going on maintaining only the first 3 components would
thus be a good choice, in order to considerably reduce the dimensionality
of the data. Nevertheless, we keep on treating with the first 4 principal
components, even if the fourth one explains only a low percentage of the
total variability. This choice is motivated by the fact that, when we will
perform the discriminant analysis (later on in this chapter), we will see that
the fourth principal components can improve the discrimination criterion in
some cases.
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Figure 3.3: Percentage of variability explained by the first 10 principal com-
ponents, for each level of the CCA: in the left panel the results at distance
-0.5 cm before the carotid bifurcation, in the central panel at -1 cm and in
the right panel at a distance of -2 cm. In this case, the right carotid of patient
19 and the left carotid of patient 21 have already been removed.

Plotting components as perturbations of the mean

A method to display the eigenfunctions is to plot the sample mean func-
tion and the functions obtained by adding and subtracting a suitable multiple
of the principal component in question. Figures 3.4, 3.5 and 3.6 show the
principal component curves estimated for the three levels. For each figure,
the solid black line represents the overall mean function, while the dotted
and dashed lines (+ and −) show the effects of adding and subtracting each
principal component multiplied by its own eigenvalue (i.e. the standard de-
viation), as suggested in [19]. What is worth to notice is that, for the three
distances from the bifurcation, the principal components represent almost
the same type of variability.

We will now spend some word on how interpreting the estimated princi-
pal components. The effect of the first principal component of variation β̂1
is principally to add or subtract a constant to the blood velocity approxi-
mately throughout the whole cardiac cycle, apart from the acceleration zone
(the increasing slope just before the systolic peak). Thus, β̂1 describes the
variability due to a scale factor of the velocity for all three distances -0.5,
-1 and -2. By a fluid dynamic point of view, the first principal component
represents the diversity along the vertical axis between the curves of the
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Level Principal Component

1st 2nd 3rd 4th 5th 6th

-0.5 60.38% 25.24% 5.05% 3.02% 2.48% 0.99%

- 1 73.64% 14.25% 4.42% 2.29% 1.82% 0.81%

- 2 73.39% 8.70% 6.58% 3.97% 2.31% 1.19%

Table 3.1: Proportion of variance explained by the first six principal compo-
nents, 2 patients removed.

blood velocity of various patients, i.e. a vertical translation that is transmit-
ted nearly uniformly throughout the cardiac cycle (horizontal axis), apart
from the first systole phase. The second principal function β̂2 describes the
variability between the two slopes of the velocity curve. Here, high scores
represent velocity functions with a very steep left slope of the peak and a
more gentle downward phase. Instead, low scores correspond to curves with
a wider systolic time, where the peak is less sharp, and a steep descending
phase. Moreover, for levels -2 and -0.5, β̂2 represents also a variability along
the diastole. The third principal component β̂3 describes the variability of
the velocity along the cardiac cycle, underling a contrast between the systolic
and the diastolic time lags: low values of the scores indicate a higher value
of blood velocity at the systolic peak and a lower value along the diastolic
relaxing time. On the contrary, score with high values describe a less pul-
satile velocity, higher during diastole and lower during systole. It can thus
be interpreted as variability in the shape of the peak: higher and narrower
against lower and wider and, from a fluid dynamic point of view, this compo-
nent points out the pulsatility of the blood flow, differentiating flows in which
there is much difference between the systolic and diastolic peak from flows
where, instead, the jump is smaller. Eventually, β̂4 catches the variability at
the systolic peak and, at the same time, along the descending slope, but at
this level, a fluid dynamic interpretation becomes difficult.

83



Figure 3.4: First 4 estimated principal component curves at level -0.5. The
solid black line represents the overall mean function, while the dotted and
dashed lines show the effects of adding (+) and subtracting (−) each principal
component multiplied by the standard deviation of the corresponding score.

Figure 3.5: First 4 estimated principal component curves at level -1. The
solid black line represents the overall mean function, while the dotted and
dashed lines show the effects of adding (+) and subtracting (−) each principal
component multiplied by the standard deviation of the corresponding score.
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Figure 3.6: First 4 estimated principal component curves at level -2. The
solid black line represents the overall mean function, while the dotted and
dashed lines show the effects of adding (+) and subtracting (−) each principal
component multiplied by the standard deviation of the corresponding score.

FPCA on the whole data set

For seek of completeness, we spend a brief subsection describing how the
results of the FPCA would have been, if we had performed it on the whole
data set, that is to say without removing the two outliers we detected. Ba-
sically, the main difference is that, including all the patients, the principal
components at levels -2, -1 and -0.5 do not longer represent the same phe-
nomena of variability, but rather the components at level -0.5 differ from the
one at levels -1 and -2. This fact can be seen in Figures 3.7, 3.8 and 3.9,
which show the principal component curves estimated for the three levels as
perturbations of the mean. The first eigenfunction β̂1 describes the variabil-
ity due to a scale factor of the velocity along the whole cardiac cycle, but
the ascending slope. In particular, at -0.5 this scale factor is especially pro-
nounced over the systolic peak, because of the two functions reaching very
high velocity values. Keeping the attention at -0.5, the second principal com-
ponent β̂2 can be interpreted as variability in the shape of the peak: higher
and narrower against lower and wider. Thus, it shows the variability between
the systolic and the diastolic time lags. Finally, the third principal function
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Figure 3.7: First three estimated principal component curves at level -0.5.
The solid black line represents the overall mean function, while the dotted and
dashed lines show the effects of adding (+) and subtracting (−) each principal
component multiplied by the standard deviation of the corresponding score.

β̂3 underlines the contrast between the side slopes. Instead, concerning the
distances -1 and -2, it seems like β̂2 and β̂3 switch roles between them with
respect to the one just described: β̂2 points out the contrast between the side
slopes, while β̂3 highlights the variability between systole and diastole.

There is another difference with respect to the FPCA performed on the
cleaned data-set, again concerning only level -0.5, where the percentage of
variability explained by the first principal components, shown in Figure 3.10,
strongly changes. Table 3.2, which reports the proportion of variance ex-
plained by the first six principal components of the FPCA performed on the
whole data-set, quantifies and detects the reason of the difference. In fact,
one can see that the first principal component now explains about 90% of
the total variability, with respect to the 60% explained in the previous (and
exact) case. This change was predictable, since the first eigenfunction repro-
duce the vertical-translation variability of the velocity and, without removing
the outliers, the variance is obviously higher. Instead, results concerning level
-2 and -1 are very similar to the results obtained on the cleaned data-set,
since in these two levels there are not velocity curves reaching so high values.
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Figure 3.8: First three estimated principal component curves at level -1. The
solid black line represents the overall mean function, while the dotted and
dashed lines show the effects of adding (+) and subtracting (−) each principal
component multiplied by the standard deviation of the corresponding score.

Figure 3.9: First three estimated principal component curves at level -2. The
solid black line represents the overall mean function, while the dotted and
dashed lines show the effects of adding (+) and subtracting (−) each principal
component multiplied by the standard deviation of the corresponding score.
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Figure 3.10: Percentage of variability explained by the first 10 principal
components, for each level of the CCA: in the left panel the results at distance
-0.5 cm before the carotid bifurcation, in the central panel at -1 cm and in
the right panel at a distance of -2 cm.

To conclude this parenthesis, we would like to underline that, since we
are analysing data at each level independently, we do not expect the same
results for the three distances, but what seems anomalous in the results of the
FPCA performed on the non-cleaned data-set is that they are quite similar
at levels -2 and -1, while at -0.5 they differ. Thus, removing the two outliers
from the analysis is a wise choice.

Principal component scores

The analysis of the principal component scores can reveal differences
among groups of data. In fact, we know that the sample of patients we
are using can be divided into three groups: TEA candidate, non-TEA (that
have a low grade stenosis) and healthy patients. We will thus proceed with a
first descriptive analysis of the scores, trying in this way to detect differences
among the sets of data, in order to prepare the data classification, treated in
next section.
First, we should define what are the scores in FPCA: they represents the
new coordinates of the functions corresponding to the observations, in the
orthogonal basis obtained by the principal components. In other words, the
score corresponding to the ith observed curve xi and the kth estimated eigen-
function β̂k is defined as the component along β̂k of the ith observed function
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Level Principal Component

1st 2nd 3rd 4th 5th 6th

-0.5 91.02% 5.91% 2.11% 0.30% 0.27% 0.12%

- 1 72.46% 14.85% 4.88% 2.31% 1.81% 0.80%

- 2 71.92% 9.32% 6.48% 3.99% 2.82% 1.18%

Table 3.2: Proportion of variance explained by the first six principal compo-
nents.

xi, centred around the sample mean x̄ [19]:∫
(xi(s)− x̄(s))β̂k(s)ds.

Hereafter we will keep on maintaining two different classification at the same
time, the first, in two groups, defined in this way:

• TEA: all the patients with a high grade stenosis, candidates to undergo
TEA surgery;

• non-TEA: all other patients, that is to say both healthy patients and
those with a low-grade stenosis, who will not undergo surgery;

and one second discrimination in three groups:

• TEA: same as before, all the patients with a high grade stenosis, who
will undergo TEA (label 1 in Table 1.1);

• mild: patients with a low grade stenosis, who are periodically moni-
tored, but the plaque is not extended enough to be surgically removed
(label 2 in Table 1.1);

• healthy: patients with no plaque (label 3 in Table 1.1).

Thus, non-TEA group includes bothmild and healthy groups; before choosing
this clustering, we tried to understand to which group the mild curves most
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Figure 3.11: Mean curves for the three groups: the red line represents the
mean function of TEA, the orange line the overall mean of mild patients and
the black one the mean taken over healthy patients.

resemble, for instance looking at the plot of the 3 groups mean curves, which
is reported in Figure 3.11: the red line represents the mean function of TEA,
the orange line the overall mean of mild curves and the black one the mean
taken over healthy patients. Unfortunately, it is not that clear to which
group mild stenosis data should belong, because at some time of the cardiac
cycle they match with the healthy data, but other times with high-grade
stenosis (and sometimes they lie exactly in the middle). This is the reason
why we maintained the classification in 3 groups, despite the low number of
data available. We report in Table 3.3 the sample mean and the standard
deviation of the scores of the first principal components, for the 2 groups
(TEA and non-TEA) at the top of each sub-table and, at the bottom, for the
3 groups (TEA, mild and healthy), at each level of the CCA. It is possible to
notice that the sample means for the group TEA have symmetric values with
respect to mean values for the group non-TEA: when the first has a positive
scores mean, the second is negative and the other way around. Anyway,
since the standard deviation is very high, we prefer to deduce nothing up
to now. In order to add more information to our scores analysis, instead,
we should have a look to the boxplots of the scores, that allow to see the
median and the interquartile range. In Figure 3.12 we show the boxplots
for the first 4 principal components, each of them split into two groups (red
for TEA and yellow for non-TEA). In the top panel the scores refer to level
-0.5: the 3rd and 4th components have a median clearly distinguished for the
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Level -0.5
Sample Mean Std

β̂1 β̂2 β̂3 β̂4 β̂1 β̂2 β̂3 β̂4
TEA -1.03 -3.53 -8.24 -13.00 102.89 88.37 24.57 13.11

non-TEA 0.34 1.17 2.74 4.33 95.78 52.79 28.67 22.16
TEA -1.03 -3.53 -8.24 -13.00 102.89 88.37 24.57 13.11
mild 9.50 9.50 -1.38 5.95 109.64 59.40 36.08 26.12

healthy -5.95 21.22 5.58 3.22 88.21 37.77 23.15 19.82

Level -1
Sample Mean Std

β̂1 β̂2 β̂3 β̂4 β̂1 β̂2 β̂3 β̂4
TEA 7.91 4.49 -24.27 -0.48 159.71 48.81 27.47 22.00

non-TEA -3.27 -1.85 10.04 0.20 105.98 56.32 24.97 21.71
TEA 7.91 4.49 -24.27 -0.48 159.71 48.81 27.47 22.00
mild 4.48 -17.08 -1.78 3.22 118.17 64.67 22.99 24.12

healthy -9.58 10.50 19.65 -2.25 98.49 47.03 22.83 19.99

Level -2
Sample Mean Std

β̂1 β̂2 β̂3 β̂4 β̂1 β̂2 β̂3 β̂4
TEA -16.71 -27.87 -18.71 -2.09 111.49 42.25 29.21 22.16

non-TEA 7.49 12.49 8.38 0.94 102.77 24.88 28.99 25.63
TEA -16.71 -27.87 -18.71 -2.09 111.49 42.25 29.21 22.16
mild -4.99 8.71 7.15 -5.57 105.49 25.83 36.68 30.18

healthy 17.64 15.56 9.39 6.23 102.81 24.48 22.13 20.75

Table 3.3: Sample means and the standard deviations of the scores of the
first three principal components. The three tables contain values of level -0.5,
-1 and -2, from the top to the bottom. Moreover, in each table the two first
rows are for the the 2 groups (TEA/non-TEA), while the last 3 rows for the
3 groups (TEA/mild/healthy).
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2 groups. The central panel refers to level -1, where, again, it is mostly the
3rd components that underlines a variation between the 2 groups. Instead, at
level -2 (bottom panel), the median line varies between the 2 groups for all
the first three principal components. Since we said that the third component
is fluid dynamically interpreted as pulsatility of the flow, the fact that this
component for all the levels permits to distinguish between the two classes
of patients means that particular attention should be kept on this feature.
Probably, the pulsatily, and thus the gap between the peaks of systolic and
diastolic phases, could be a good index to diagnose the presence of a plaque
in carotid arteries.
Figure 3.13 shows the boxplots for the first 4 principal components, this time
split into three groups (red for TEA, orange for mild and yellow for healthy).
The middle group sometimes seems to be linked to TEA curves and other
times to the healthy one. Boxplots add the information concerning median
and IQR, but to support the observations just listed down, we should add
statistical tests on the mean and the variance, which can confirm differences
between the groups and, moreover, they can be used to check the hypotheses
behind LDA.

Statistical Tests

First, we check that data have a normal distribution, especially because
the sample is composed of a low number of curves (36 at -0.5, 41 at -1 and 42
at -2). Afterwards we will perform a t-test and a Mann-Whitney U test, to
control if the means of the 2 or 3 groups are different and, finally, we will pay
attention to the dispersion of the scores of the groups, performing a Bartlett
test and a Box’s M test to test for homogeneity of variance-covariance ma-
trices.

Shapiro test The Shapiro-Wilk test verifies normality checking two differ-
ent estimators of the variance, the first not parametric based on the slope
of the QQ-plot and the second one parametric, that is the classic sample
variance. The p-values obtained for the univariate and multivariate version
of the test are here reported, for the two groups TEA and non-TEA:
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Figure 3.12: Boxplots of the scores of the first 6 principal components. Each
of them is split into two groups (red for TEA and yellow for non-TEA). In
the top panel the scores refer to level -0.5, in the central panel to level -1
and, in the bottom panel to level -2.
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Figure 3.13: Boxplots of the scores of the first 6 principal components. Each
of them is split into three groups (red for TEA, orange for mild. In the top
panel the scores refer to level -0.5, in the central panel to level -1 and, in the
bottom panel to level -2.
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Level -0.5
β̂1 β̂2 β̂3 β̂4 (β̂1, β̂2, β̂3, β̂4)

TEA 98.94% 21.41% 33.77% 14.30% 22.00%
non-TEA 2.07% 7.94% 7.04% 1.20% 1.0%

Level -1
β̂1 β̂2 β̂3 β̂4 (β̂1, β̂2, β̂3, β̂4)

TEA 24.72% 69.04% 27.40% 39.34% 80.68%
non-TEA 61.71% 3.19% 35.61% 18.09% 44.48%

Level -2
β̂1 β̂2 β̂3 β̂4 (β̂1, β̂2, β̂3, β̂4)

TEA 14.26% 3.60% 89.85% 32.07% 2.92%
non-TEA 7.74% 24.28% 9.60% 31.51% 27%

Regarding levels -2 and -1, even if there is some low percentage, the p-values
are all above the 3%, thus we cannot refuse the null hypothesis of normality
of the scores. On the contrary, for level -0.5, there are values that make us
doubt the normality of the data. Consequently, later on we will not take for
grant normality for this level.

T test and Mann-Whitney U test From the boxplots it was clear that,
for some components, the means of the two populations TEA and non-TEA
are not equal. Supposing normality of the scores we can check if the means of
the two groups are the same, which is the null hypothesis of the t-test, while
the alternative hypothesis is that the difference between the means of the two
groups is different from zero. We also provide p-values of the Mann-Whitney
U test, which does not require the normal distribution of the scores, but,
as one can see from the following tables, the two test always agree with the
order of the p-value percentage. In general, these tests confirm and refine
what one can see from the boxplots.
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Level -0.5
β̂1 β̂2 β̂3 β̂4

t-test 97.23% 88.27% 28.23% 0.91%
u-test 100% 80.16% 21.84% 0.68%

Level -1
β̂1 β̂2 β̂3 β̂4

t-test 82.63% 72.05% 0.14% 92.85%
u-test 96.57% 92.01% 0.09% 74.17%

Level -2
β̂1 β̂2 β̂3 β̂4

t-test 51.23% 0.55% 1.04% 69.88%
u-test 57.23% 0.05% 1.09% 74.72%

At the three levels of the CCA, the principal components displaying a differ-
ence in the mean of the two groups is only one and it varies at each level. At
-0.5 we can refuse the null hypothesis of equal means only for the scores of
the fourth principal component, at -1 for those of the third and at -2 for the
second and third principal components. Concerning the division into three
groups instead, we can apply t-test and u-test between 2 of the 3 sets at
one time. The results obtained when performing the test between TEA-mild
and between TEA-healthyconfirm previous observations. On the other hand,
when testing if the mean of healthy can be considered equal to the mean
of mild, one cannot refuse the null hypothesis at level -2, where the lowest
p-value is 15.6%. This support the choice of merging the patients with a
low-degree plaque together with the healthy patients. Instead, at levels -1
and -0.5, the lowest p-values are respectively 2.28% and 2.25%, thus one can
refuse the null hypothesis.

Bartlett test and Box’s M test Bartlett-test checks the homogeneity of
the variances of two groups and it gives a quantitative information of what
is usually seen in the heights of the box in a boxplot. From the p-values of
the univariate test, performed for the scores of each principal component,
and reported below, one can see that they are not so low to refuse the null
hypothesis, thus we can consider that the two groups have similar variances.
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Level -0.5
β̂1 β̂2 β̂3 β̂4

Bartlett-test 80.40% 5.73% 60.79% 10.44%
Level -1

β̂1 β̂2 β̂3 β̂4
Bartlett-test 9.24% 58.39% 70.49% 95.80%

Level -2
β̂1 β̂2 β̂3 β̂4

Bartlett-test 73.97% 2.46% 97.57% 56.47%

In order to test for homogeneity of covariance matrices between groups, it is
also possible to use the Box’s M statistic [23], the null hypothesis of which
is the equality of the covariance matrices. It is a test statistic based on a
likelihood-ratio test, which thus requires normality of data.

Level -0.5
2 groups 3 groups

Box’s M-test 78.0% 17.36%
Level -1
2 groups 3 groups

Box’s M-test 97.34% 17.36%
Level -2
2 groups 3 groups

Box’s M-test 98.56% 5.69%

From the p-values, we can conclude that covariance matrices are not signifi-
cantly different, both in the case of division in two groups and in the case of
three groups.

3.2 Discriminant Analysis
After having reduced the dimensionality of the problem through FPCA,

we would like to check if it is possible to distinguish patients with a stenosis
in the ICA from other patients, using data extracted from the CCA. Doctors
claim that, in most cases, it is difficult to detect the presence of a plaque
located in the ICA already from the blood flow in the CCA and this is the
reason why introducing a statistical analysis of the curves could result useful.
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Furthermore, the analysis of the scores of the FPCA just done suggests that
there are features of the blood flow functions influenced by the presence of a
plaque downstream. We will thus proceed with a discriminant analysis, not
really meant, at least at this stage of the project, to build a classification
criterion for new patients data, also because the number of data is still too
low in order to assign to the results a predictive importance. Moreover,
finding out which are the characteristics that differ between a high-grade or
low-grade stenosis, could help in providing useful informations for numerical
simulations, by adding the variability between the groups of patients.
Therefore, we will now apply a linear discriminant analysis LDA [18] on the
scores of the first four principal components at each of the three levels along
the CCA, even if at -0.5 the normality of data can be questioned.

3.2.1 Linear Discriminant Analysis
LDA is a method to find a linear combination of features which character-

ize two or more classes of objects. It considers a set of observations (training
set) with known class. The assumptions that have to be fulfilled in order to
apply LDA are that

• the conditional probability density functions of observations of each
class are normally distributed;

• the covariance matrices are homoschedastic, i.e. the class covariances
are identical and with full rank.

The classification problem is then to find a good predictor for the class of
any sample of the same distribution (not necessarily from the training set)
given only an observation. Further details about LDA can be found in [18]
and [24]. We will present the results through confusion matrices, that is
to say by listing, for each class (on rows), the number of scores classified
with the right and wrong label (columns). A way to determine the quality
of the classification is the rate of error AER, which can be approximated
by the APER (APparent Error Rate), consisting in the ratio between the
sum of the classification errors and the total number of data. However,
this is only an underestimate of the effective rate of error, in particular in
cases when the sample is small. In order to have a better estimate and
a better evaluation of the classification criterion, one should recur to the
Cross-Validation (CV) technique, which is an iterative method that classifies
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each of the n observations of the sample following the discriminant criterion
provided by other n − 1 observations. All the results presented afterwards
refers to a cross validated LDA.

Results

The assumption of homogeneity among the variance-covariance matrices
is fulfilled for the three levels and for both kind of division in two or three
groups. This is the reason why we go on with the LDA and we do not recur
to the quadratic discriminant analysis QDA. Instead, as already mentioned
when we wrote the Shapiro test p-values, normality for level -0.5 cannot be
taken for grant. For this level, we will anyway report the results of the LDA,
even if they cannot be fully trusted.
Starting from the classification in two groups (TEA/non-TEA), we should
decide the number K of principal components scores on which apply LDA.
This can be done exploring LDA classification errors computed for an in-
creasing number of principal component scores considered, as the following
table shows. Only levels -2 and -1 have been considered to take a decision,
since we can consider the scores as normal distributed.

Level -1
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

[TEA|non-TEA] 0% 0% 13.79% 10.34% 13.79% 13.79% 27.59% 27.59%
[non-TEA|TEA] 100% 100% 50% 50% 58.33% 58.33% 50% 58.33%

Level -2
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

[TEA|non-TEA] 0% 6.9% 13.79% 13.79% 13.79% 13.79% 13.79% 13.79%
[non-TEA|TEA] 100% 69.23% 53.85% 38.46% 38.46% 38.46% 38.46% 38.46%

In the table, the conditional percentage of error have be reported: the
first row refers to the error of assigning to group TEA patients who indeed
belong to group non-TEA , while in the second row there are the percentages
of patients belonging to group TEA, but assigned in group non-TEA. The
number of principal components minimizing both errors is K = 4, thus we
will perform LDA only on the first 4 principal components scores. Before
providing the results obtained by classifying each score following the criterion
obtained by the standard LDA, we could have a look to the scatterplot of
the scores, in order to see if there is any pair of scores clearly showing a neat
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Figure 3.14: Scatterplots of the first 4 principal component scores, for the
three levels -0.5, -1 and -2. The scores referring to TEA patients are black,
whilst the non-TEA red. At a first sight it seems like there is not a couple
of scores which clearly shows the division in 2 groups, except for level -2,
component 2 and 3.

distinction between the two groups. Figure 3.14 show the scatterplots of the
first 4 principal component scores, for the three levels -0.5, -1 and -2. The
scores referring to TEA patients are black, whilst the non-TEA are red. At
a first sight it seems like there is not a couple of scores which clearly shows
a neat division in 2 groups, even if at level -2 two distinguished zones can
be detected for the scores of the second and third components. In Tables
3.4, 3.5 and 3.6 the results for the three levels are reported in four forms.
The first row contains two tables, one reporting the absolute values obtained
and the other the relative percentages. In the second row of tables, one can
find the conditional percentages, which can be of two types, depending if one
wants to condition with respect to the true class ([Assigned | True]), to the
left, or with respect to the assigned class ([True | Assigned]), to the right.

It is possible to see that, in general, correctly classifying a TEA patients
is more difficult than correctly classifying a non-TEA patient, that is to say
that the test has a high specificity. In our case, specificity is the ability to
correctly identify the non-TEA patients and its values are uniform for the
three levels of the CCA, since they are 0.86, 0.90 and 0.89 respectively at -2,
-1 and -0.5. Instead, the sensitivity, which is the ability to correctly iden-
tify the TEA patients, changes among the levels: at -2 sensitivity is 0.62,
at -1 it decreases to 0.5 and it becomes null at -0.5. Focusing on the con-
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Absolut Relative
ASSIGNMENT ASSIGNMENT

TEA non-TEA TEA non-TEA
TEA TRUE 8 5 19.05% 11.90%

non-TEA TRUE 4 25 9.52% 59.52%

Conditional [Assigned|True] Conditional [True|Assigned]

ASSIGNMENT ASSIGNMENT

TEA non-TEA TEA non-TEA
TEA TRUE 61.54% 38.46% 66.67% 16.67%

non-TEA TRUE 13.79% 86.21% 33.33% 83.33%

Table 3.4: Level -2, results of classical LDA performed on the first 4 principal
component scores.

Absolut Relative
ASSIGNMENT ASSIGNMENT

TEA non-TEA TEA non-TEA
TEA TRUE 6 6 14.63% 14.63%

non-TEA TRUE 3 26 7.32% 63.41%

Conditional [Assigned|True] Conditional [True|Assigned]

ASSIGNMENT ASSIGNMENT

TEA non-TEA TEA non-TEA
TEA TRUE 50% 50% 66.67% 18.75%

non-TEA TRUE 10.34% 89.66% 33.33% 81.25%

Table 3.5: Level -1, results of classical LDA performed on the first 4 principal
component scores.

101



Absolut Relative
ASSIGNMENT ASSIGNMENT

TEA non-TEA TEA non-TEA
TEA TRUE 0 9 0% 25%

non-TEA TRUE 3 24 8.33% 66.67%

Conditional [Assigned|True] Conditional [True|Assigned]

ASSIGNMENT ASSIGNMENT

TEA non-TEA TEA non-TEA
TEA TRUE 0% 100% 0% 27.27%

non-TEA TRUE 11.11% 88.89% 100% 72.73%

Table 3.6: Level -0.5, results of classical LDA performed on the first 4 prin-
cipal component scores.

ditional error [Assigned | True] (i.e. [Assigned non-TEA | TEA True]
and [Assigned TEA | non-TEA True]), one can see that at level -2, the
probability of misclassifying a TEA patient is 38.46%, while the probability
of misclassifying a non-TEA patient is 13.79%. At level -1 the probability
of misclassifying a TEA patient increases to 50%, while the probability of
misclassifying a non-TEA patient decreases to 10.34%. Finally, at level -0.5,
the classification tool is totally unable to catch TEA patients. We could list
different reasons justifying this bad behaviour of the LDA, for instance that
we cannot assume normal distributed scores. Also, it has to be considered
the fact that 5 mm before the carotid bifurcation, not only the acquisition
of Doppler signal is more complicated and noisy, but also the blood flow is
more turbulent than other levels of the CCA. Moreover, the sample we are
using is small and it becomes even smaller from level -2 (43 cases) to level
-0.5 (only 36 cases). Because of this fact, we should find another way to
judge the goodness of our classification (at least at -2 and -1). The estimates
of the AER of the CV-LDA at -2 and -1 are 21.43% and 24.39% (33.33%
at -0.5), but how much significant are these values? A way to answer this
question is to follow the idea of the gap statistics in [24]. Generating a large
enough number of random vectors of labels TEA and non-TEA (each vector
as long as the number of patients available at each level), applying these
labels randomly to the patients and finally estimating the error rate of the
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LDA classification, it is possible to plot the distribution of the classification
error. From this, we can compare where the error of the true vector of labels
is located with respect to the whole distribution.
In order to draw the distribution of the misclassification error, we thus have
generated 10000 random vectors of labels to be linked randomly to the pa-
tients of the study. For each of these 10000 combinations between the pa-
tients of the study and the simulated permutation of labels, we performed
CV-LDA to the first four components scores of the FPCA and we computed
and recorded the estimate of the error rate. Having at disposal 10000 values
of APER, we can thus estimate the probability density function of the error
rate distribution. Figure 3.15 shows the results: for each level two panels are
reported, the histogram of the 10000 simulated APER values and the density
estimation of the error distribution. The vertical red line indicates the APER
value obtained when using the true labels. Results concerning level -2, on the
left of the figure, are very good, since the number of cases when the APER of
the simulated labels has a value lesser or equal than the real APER are only
0.15% of the total. In the centre there are the histogram and the probability
density function of the error rate at level -1, where the number of simulated
APER lesser or equal the real one is 0.69% of the total. Finally, the last two
panels on the right part of the figure refers to level -0.5. Here the classifica-
tion tool does not work well, since it is unable to catch the TEA patients,
and the number of simulated APER better or equal the real APER value is of
9.95%, which is a quite high value with respect to the percentages obtained
for the other levels. This fact confirms that at level -0.5 the shapes of the
curves are mixed up and one should not trust the Doppler frame acquired at
this level, since the signal could be distorted due to the increasing turbulence
of the flow. Anyway, from the simulated error distribution, we can be quite
satisfied of the results of the LDA performed, since the error rate estimated
from the classification criterion lies in the extreme left side of the distribution.

In order to evaluate the classifier from a point of view of the forecasting
ability, on the other hand, it is interesting to look at the conditional prob-
abilities [True | Assigned]. What we can see is that the forecasting ability
of the classifier is higher for detecting non-TEA patients than for detecting
TEA. As it is possible to read in the confusion matrices 3.4, 3.5 and 3.6,
the probabilities of correctly forecasting a non-TEA curve ([non-TEA True |
non-TEA Assigned]) is 83.33% at level -2, 81.25% at level -1 and 72.75% at
-0.5. On the contrary, the probability of correctly forecasting a TEA patient
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Figure 3.15: Simulation of the classification (in 2 groups) error distribution.
On the left, the two panels contain the histogram of the 10000 computed
APER values and the density estimation of the error distribution, while the
vertical red line indicates the APER value obtained when using the true
labels. In the centre, histogram and probability density function of the error
rate at level -1 and, on the right, at level -0.5.

([TEA True | TEA Assigned]) is acceptable at levels -2 and -1, where it is
66.67%, but it is null at level -0.5. Again, so lousy results are due to the
low number of observations available at this stage of the project, but also to
the problems related to the acquisition of ultrasounds image at this position.
Usually, to evaluate this type of conditional probabilities, two kinds of errors
are defined: false positives and false negatives. The false positives are the
patients belonging to group non-TEA but assigned to group TEA. This error
is high for all the levels considered, since it is 33.33% at -2 and -1 and even
100% at level -0.5. The false negatives instead are the patients belonging to
group TEA but assigned to group non-TEA, with a value of 16.67% at -2,
18.75% at -1 and 27.27% at -0.5.
Finally, we also tried to perform LDA not only using the scores of the first
4 eigenfunctions together, but exploring the combinatorial tree, but we did
not obtained any improved result, as the scatterplot already suggests.

Results of LDA in 3 groups

We now report the results obtained by searching for 3 groups, maintain-
ing again only the first 4 principal component scores. First of all, Figure
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Figure 3.16: Scatterplots of the first 4 principal component scores, for the
three levels -0.5, -1 and -2 and coloured depending on which of the 3 group
they belong: black for TEA, green for mild and red for healthy. At a first
sight it seems like there is not a couple of scores which clearly shows the
division in 3 groups.

3.16 shows the scatter plot of the scores, coloured depending on which of
the 3 group they belong: black for TEA, green for mild and red for healthy.
Tables 3.7, 3.8 and 3.9 report the results for the three levels, again in four
forms: absolute values, relative percentages and the two kinds of conditional
percentages. Also in this case we do not trust the results regarding level -0.5,
for which the classification tool totally ignore the existence of group TEA. At
levels -2 and -1, the group of mild stenosis is the most difficult to be found,
because sometimes it is confused with group TEA and other times with the
group of healthy patients: the percentages of scores correctly classified are
the lowest among the groups (23.08% at -2 and 38.46% at -1). In the case of
three groups, talking about sensitivity and specificity is not totally correct,
because of the presence of the mild cluster. We can anyway compute the
specificity of the test as the number of correctly identified non-TEA patients
(that is to say the ratio between the number of classified healthy and the total
number of true healthy), which increases from a value of 0.63 at level -2, to
0.75 at -1 and 0.94 at level -0.5. Defining the sensitivity as the ratio between
the patients classified as TEA over the total number of TEA, we obtain on
the contrary that its value goes from a value of 0.77 at -2, 0.5 at -1 and it is
null at -0.5. What is worth to notice is that the mistakes of the discriminant
analysis are usually between two neighbouring classes: for instance, at level
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-2, among the true TEA patients, only 3 are wrongly classified and they are
assigned to the neighbour class mild, while no one is classified as healthy.
From a forecasting point of view, we should check the conditional probabili-
ties [True | Assigned], which can be found in the fourth table in 3.7, 3.8
and 3.9. In this case, the probability that a patient classified as TEA is really
a TEA candidate is 71.43% at level -2, at -1 it is 54.55% and at level -0.5
it is null. Instead, the probability that a patient classified as healthy does
not really present any plaque is 58.82% at -2, 66.67% and 55.56% at -0.5.
We should anyway consider cautiously these values, especially because the
sample size is very low and we are now trying to divide the data in three
groups. As in the case of two groups, a method to evaluate the quality of
the discriminant analysis could be a random permutation of the labels TEA,
mild and healthy with respect to the curves. In this way we are able to draw
the simulated distribution of the APER and to check where the real APER is
located with respect to the whole distribution, which can be found in Figure
3.17. We can be quite satisfied of how LDA performs, since the error rate
estimated from the classification criterion using the true labels lies in the
extreme left side of the distribution. In particular, the number of cases when
the APER of the simulated labels has a value lesser or equal than the real
APER are 2.62% of the total at level -2 and 1.77% at level -1. Concerning
level -0.5, the percentage of APER with a better value than the real one
is 37.85% and the same considerations as before are valid: at this level the
variability between the curves is so high that it is impossible to distinguish
the velocity flow in 2 or 3 groups.

3.2.2 Final Comments
To conclude this chapter, we should spend some word on the results of

the functional PCA and of the discriminant analysis, in order to clarify how
one should proceed when having at disposal a larger amount of data. First
of all, detecting and cleaning the data set from outliers is usually a good
practice. In our case, we found two outliers at level -0.5 and we decided to
remove the corresponding frames from all the levels, in order to avoid that a
possible plaque located at the bifurcation could influence the velocity profile,
clearly as at level -0.5, or more covertly at other levels, farer from the site
of the stenosis. When disposing of more curves, the number of the outliers
could increase and, in case they became a larger amount, the possibility of
including them in the analysis should be considered.
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Absolut Relative
ASSIGNMENT ASSIGNMENT

TEA mild healthy TEA mild healthy

TEA TRUE 10 3 0 23.81% 7.14% 0%
mild TRUE 3 3 7 7.14% 7.14% 16.67%

healthy TRUE 1 5 10 2.38% 11.90% 23.81%

Conditional [Assigned|True] Conditional [True|Assigned]

ASSIGNMENT ASSIGNMENT

TEA mild healthy TEA mild healthy

TEA TRUE 76.92% 23.08% 0% 71.43% 27.27% 0%
mild TRUE 23.08% 23.08% 53.85% 21.43% 27.27% 41.18%

healthy TRUE 6.25% 31.25% 62.50% 7.14% 45.45% 58.82%

Table 3.7: Level -2, results of classical LDA performed on the first 4 principal
component scores.

Absolut Relative
ASSIGNMENT ASSIGNMENT

TEA mild healthy TEA mild healthy

TEA TRUE 6 4 2 14.63% 9.76% 4.88%
mild TRUE 4 5 4 9.76% 12.20% 9.76%

healthy TRUE 1 3 12 2.44% 7.32% 29.27%

Conditional [Assigned|True] Conditional [True|Assigned]

ASSIGNMENT ASSIGNMENT

TEA mild healthy TEA mild healthy

TEA TRUE 50% 33.33% 16.67% 54.55% 33.33% 11.11%
mild TRUE 30.77% 38.46% 30.77% 36.36% 41.67% 22.22%

healthy TRUE 6.25% 18.75% 75% 9.09% 25% 66.67%

Table 3.8: Level -1, results of classical LDA performed on the first 4 principal
component scores.
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Absolut Relative
ASSIGNMENT ASSIGNMENT

TEA mild healthy TEA mild healthy

TEA TRUE 0 4 5 0% 11.11% 13.89%
mild TRUE 1 3 7 2.78% 8.33% 19.44%

healthy TRUE 0 1 15 0% 2.78% 41.67%

Conditional [Assigned|True] Conditional [True|Assigned]

ASSIGNMENT ASSIGNMENT

TEA mild healthy TEA mild healthy

TEA TRUE 0% 44.44% 55.56% 0% 50% 18.52%
mild TRUE 9.09% 27.27% 63.64% 100% 37.50% 25.93%

healthy TRUE 0% 6.25% 93.75% 0% 12.50% 55.56%

Table 3.9: Level -0.5, results of classical LDA performed on the first 4 prin-
cipal component scores.

Figure 3.17: Simulation of the classification error distribution, when trying
to detect three groups. On the left, the two panels contain the histogram
of the 10000 computed APER values and the density estimation of the error
distribution, while the vertical red line indicates the APER value obtained
when using the true labels. In the centre, histogram and probability density
function of the error rate at level -1 and, on the right, at level -0.5.
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About the discriminant analysis, the sample used in this thesis would suggest
that one should not include in the study the Doppler acquisitions at level -0.5,
for several reasons. First of all they are more difficult to be recorded, because
of the closeness to the bifurcation. In fact, at this point the blood flow is
turbulent and, in some cases, it is already divided into two flows, heading
towards ICA and ECA and the Doppler image acquisition strongly depends
on the orientation of the transducer. Moreover, the results of the LDA at -0.5
are quite poor and totally unable to recognize different groups of patients.
On the other hand, at level -2 and -1 the results of the LDA, when searching
for 2 groups, are better. Since the sample is small, we do not assign them a
predictive power, but we are confident that, by increasing the sample, things
could work out. Furthermore, results at level -2 and -1 are very similar up to
now, but one would expect that they improve from -2 to -1, since the plaque
(if there is) becomes closer and the blood flow should reflect this, underling a
difference between the TEA patients and the non-TEA. Finally, dividing the
patients in three groups could have more sense when the number increase.
Probably the classification algorithm would continue assigning the class of
patients with a low-grade to the other two class, and this could be read as a
support tool for doctors, when deciding whether the patient should undergo
surgery or not.
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Conclusions

In this work, the characteristics of the blood flow in the carotid artery
extracted by Color Doppler ultrasounds images were taken into considera-
tion, with the aim of detecting variability features capable of discriminate
between different types of flow within the carotid arteries. Thanks to close
cooperation between the Policlinico Hospital of Milan and the Laboratory
for Modeling and Scientific Computing MOX, not only a large number of
Doppler frames have been provided, but also ideas, knowledge and a strong
incentive for the execution of this thesis.

We paid particular attention in treating and filtering the Doppler data at
disposal, since it is a very difficult kind of data to deal with, because of the
high variability to which it is subject to. In fact, it has to be considered that
not only the morphology of the stenosis plaque, its type and its location are
a source of variability, but also the acquisition procedure is highly sensitive
and the Doppler images could result distorted or dirty. Keeping all these
factors in mind, we extracted the sample quantile of the velocity distribution
at each available time of the cardiac cycle.

The innovative algorithm developed in order to estimate the period of the
velocity flow is satisfying, because it is quick and robust to different initial
values. This is an important aspect, because the periodicity of the blood flow
inside the carotid arteries need not be equal to the frequency of the heart-
beat. Moreover, since more acquisitions along the CCA and the ICA are
available for each patient, estimating the blood velocity period at different
points of the vessel could be useful in fluid dynamic simulations.

Data dimensional reduction performed in the last chapter was necessary
to proceed with the discriminant analysis. Before performing LDA, the con-
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jecture was that, getting closer to the bifurcation, the discrimination between
patients with a high grade stenosis and patients with a low-grade stenosis
or even without a plaque would have become more evident. On the con-
trary, the results show that 2 cm before the bifurcation, it is easier to detect
the presence of a plaque downstream in the ICA than 5 mm before the bi-
furcation (called level -0.5 in the thesis). This fact would suggest that one
should be cautious in drawing conclusions by extracting information from
Doppler acquisitions at level -0.5, because of the closeness to the bifurcation.
It is true that at this point the plaque is closer, but blood flow is also more
turbulent and, in some cases, it is already divided into two flows, heading
towards ICA and ECA. The Doppler image can thus be very noisy and the
velocity waveform different from that of few mm before (at 1 cm before the
bifurcation for instance). On the other hand, by analysing data acquired 2
and 1 cm before the carotid bifurcation, it is possible to distinguish different
groups of patients. The analysis, however, is not yet exhaustive; indeed this
is not its ambition. The task of this work is rather to illustrate the possible
sites of investigation and to stimulate future research. Moreover, the sample
available for this thesis is small and not yet complete; we are confident that,
by increasing the number of patients of the study, the results of the discrim-
inant analysis could improve.

Finally, to corroborate the results of this work, it would be useful to repeat
the analysis on a larger sample for each class of patients. Moreover, with the
help of the medical team of the research group, it would be interesting to
give a fluid dynamic interpretation to the components that more discriminate
among the groups of velocity functions, in order to obtain different numerical
simulations for each class. Also, adding to the data-set the information about
the exact position of the plaque in the internal carotid artery could improve
the results of the analysis, since it would allow to merge the data taking into
account not only the distance from the bifurcation, but also the distance
from the stenotic plaque.
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Appendix

Below it is reported the code implemented in R [25] for the estimation of
the period of the blood flow velocity.

# Estimate of the period and position of the first peak

library(KernSmooth)
library(fda)
library(ReadImages)

rm(list=ls(all=TRUE))

#K <- 15 #number of basis functions
#gap <- 3 #number of peaks of the Doppler waveform

Periodo <- function(){

T <- length(data)

## STEP 1 : First Fourier smoothing
rangeval <- c(1,T)
basisfourier = create.fourier.basis(rangeval,K,T)
eval.base <- eval.basis(seq(1, T, 1), basisfourier, Lfdobj=0)

smoothing <- Data2fd(1:T, data, basisfourier)
pixelList = smooth.basis(1:T, data, basisfourier)
coeff <- smoothing$coefs[,1]
data.smooth <- colSums(coeff*t(eval.base))

par(mfrow=c(3,1))
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plot((1:T)/800*3.6,data.smooth,type=’l’,lwd=3,ylim=c(0,max(data)),
xlab=’Time (s)’, ylab=’Velocity (cm/s)’,
main=’95th Quantile Data and Smoothing Function x’)

points((1:T)/800*3.6,data,col=’red’)
legend("topleft",c("x","Data"),pch=18,col=1:2)

## STEP 2 : Detection of the first peak
Ddata.smooth <- colSums(coeff*t(eval.Dbase))
D2data.smooth <- colSums(coeff*t(eval.D2base))

threshold <- c()
threshold[1] <- max(data.smooth)/3*2
criterion1 <- data.smooth > threshold
criterion2 <- D2data.smooth < 0
idx <- which((criterion1+criterion2)== 2)
idx <- idx[idx < T/gap]
V <- which.min(abs(Ddata.smooth[idx]))
picco <- idx[V]

plot((1:T)/800*3.6,data.smooth,type=’l’,lwd=2,col=1,ylim=c(0,max(data)),
xlab=’Time(s)’, ylab=’Velocity, (cm/s)’,
main=’Detection of the First Peak’)

abline( v = picco/800*3.6,col=’blue’)

## STEP 3 : translation in t=0 of the first peak
start <- -picco[1]+1
end <- T-picco[1]
t <- seq(start,end,1)

# Preparation of the data frame necessary for nls:
Dati <- data.frame(Time = t,Velocity = data.smooth)

dimnames(Dati)[[1]]<- 1:T

## Estimate of the model
#initial points:
a <- a_0
b <- b_0
w <- w_0
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model <- nls(Velocity ~ a+b*cos(w*Time), Dati,
start= list(w = w,a = a,b = b),trace=TRUE)

summary(model)
plot(t/800*3.6,Dati$Velocity,type=’l’,lwd=2,xlab=’Time (s)’,

ylab=’Velocity (cm/s)’, main=’Non Linear LS Fit’)#(1:T)
lines(t/800*3.6, predict(model), col=2)
legend("topleft",c("a+b*cos","x"),pch=18,col=c("red","black"))

w <- coef(model)[1]
a <- coef(model)[2]
b <- coef(model)[3]

Hat_periodo <- 2*pi/w

W <- Hat_periodo
p <- picco
result=list(W=W,p=p,T=T,a=a,b=b)
result
}
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