
POLITECNICO DI MILANO

Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Master of Science in

Computer Engineering

Model-Driven Retrieval of

Model Repositories

Supervisor: Prof. Marco Brambilla

Assistant Supervisor: Prof. Alessandro Bozzon

Master Graduation Thesis by:

Stefano Celentano, Student Id. number 755287

Lorenzo Furrer, Student Id. number 750213

Academic Year 2010-2011





POLITECNICO DI MILANO

Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Corso di Laurea Specialistica in

Ingegneria Informatica

Model-Driven Retrieval of

Model Repositories

Relatore: Prof. Marco Brambilla

Correlatore: Prof. Alessandro Bozzon

Tesi di Laurea di:

Stefano Celentano, matricola 755287

Lorenzo Furrer, matricola 750213

Anno Accademico 2010-2011





Acknowledgements

Stefano

Non ho mai amato troppo leggere i ringraziamenti a conclusione di un lungo

lavoro. Si rischia di essere troppo solenni, convenzionali e ripetitivi in ciò

che si scrive e quella che dovrebbe essere una pagina piena di parole sentite

diventa poi solo un’inutile formalità. Personalmente ritengo queste righe

una occasione in cui può essere utile fermarsi un momento a riflettere su

ciò che è stato e che dovrà essere di se’ stessi e della vita futura. Perciò le

scriverò con interesse, provando a uscire un po’ fuori dagli schemi.

Pensare agli ultimi cinque anni mi fa scorrere brividi fortissimi lungo

tutto il corpo, e qualche “lacrimuccia” incomincia a formarsi. E’ un ricordo

pieno di esperienze uniche, nuove e (purtroppo) irripetibili, che ho affrontato

sempre con il massimo dell’impegno.

Gli ultimi cinque anni di vita sono stati per me una esperienza che va

di gran lunga oltre la sola avventura universitaria. Sono cresciuto in tutto:

dal modo in cui mi comporto nella vita di tutti i giorni allo studio. I motivi

per cui ho lasciato la città, la mia città, quella in cui sono nato e che adoro,

la mia famiglia e i miei amici per venire a studiare qui non mi sono ancora

del tutto chiari. Ma come spesso accade le cose migliori si fanno anche con

una (quasi) totale mancanza di consapevolezza, una specie di salto nel buio.

La scelta di cui parlo è stata però certamente indovinata. Ho vissuto in

un ambiente nuovo, diverso, stimolante. Ho conosciuto persone interessanti,

buone e a volte splendide. Ho imparato un numero incredibile di cose nuove

e ho apprezzato studiare e approfondire ciò che rappresenterà il mio lavoro in

futuro. E’ come se in cinque anni ne fossero concentrati dieci, forse quindici.

Ora, guardandomi indietro continuo solo a provare fortissimi brividi, e quasi

non riesco a voltarmi. Non sono molto capace di godere dei risultati rag-

giunti. So anche però che è importante soffermarsi un attimo, pensare a ciò

che si è fatto e magari esserne un po’ fieri.

So di poter sembrare cinico quando dico che la cosa che ho imparato

I



a fare meglio nel periodo universitario è stata riuscire a “cavarmela” da

solo. Lo dico con il pessimismo che credo abbia sempre fatto parte di me:

aver imparato che contare solo sulle proprie forze è fondamentale, è questo

l’insegnamento migliore che l’università e la vita mi hanno offerto. In re-

altà, non sto raccontando tutta la verità (e qui incomincia il pezzo in cui si

sorride). Al mio fianco ci sono state molte persone che, in qualche modo,

forse inconsapevolmente, mi hanno accompagnato lungo il percorso. Sono

le persone che io ingenuamente definisco “buone” e sono quelle che desidero

ringraziare immensamente.

Ringrazio il relatore di questa tesi, il prof. Marco Brambilla, e il corre-

latore, il prof. Alessandro Bozzon, che si sono sempre dimostrati disponibili

nel fornirci consigli e osservazioni utili. Ringrazio gli amici che negli ultimi

anni mi sono stati più vicini sia nella vita universitaria che in quella quotid-

iana: Ilio, Eleonora e Lorenzo, amico e collega di tesi con cui ho affrontato

quest’ultimo lavoro, e anche Antonio ed Antonella. Ringrazio tutti i miei

amici, sia quelli di Como che quelli di Salerno. Tra quelli di Como penso

con un profondo sorriso a tutti gli amici dello studentato dia via Pannilani;

tra quelli di Salerno penso specialmente agli amici delle scuole superiori con

cui ancora adesso adoro passare del tempo quando torno a Casa. Troverei

spiacevole fare un lungo elenco di nomi perché è sicuro che dimenticherei

qualcuno. Tra di loro ci sono persone molto importanti che ringrazierò con

un abbraccio.

Ringrazio (e bacio) la mia ragazza Annalisa (conosciuta anche come Isa,

Isetta, Lisa o Annina) che è stata spessissimo fonte dei miei sorrisi.

Più di tutti (e sono sicuro che nessuno me ne vorrà) ringrazio la mia

famiglia: mio padre Andrea, mia madre Paola e mio fratello Sergio al quale

devo la spinta finale nella scelta di intraprendere gli studi qui a Como.

Le parole non possono e non potranno mai dimostrate tutto l’affetto, la

devozione, l’ammirazione e la riconoscenza che provo nel mio cuore per loro.

Se sono ciò che sono adesso, lo devo a soprattutto a loro, al modo in cui mi

hanno cresciuto e a ciò che mi hanno insegnato. Sempre mi hanno lasciato

libero di decidere, mai mi hanno fatto mancare consigli preziosi. Se c’è una

cosa che mi rende triste in questo momento, è che in futuro, probabilmente,

non avrò l’occasione di vederli spesso come vorrei. Quello che è certo è che

rimarranno per sempre nel mio cuore come le persone più speciali e preziose

della mia vita.



Lorenzo

Siamo alla tanta agognata fine del percorso di studi. Se dovessi fare un

paragone navale direi che la nave sta per attraccare al porto. Non si vede

mai l’ora di questo momento, ma poi quando accade un pò si vorrebbe

tornare indietro. Sarà per l’esperienza, sarà per l’ambiente, sarà per le

persone. Ma non c’è niente da fare e soprattutto bisogna fare i conti con

le esigenze della vita. Non è nel mio stile dilungarmi troppo, con piacere

quindi passo ai ringraziamenti alle varie persone che mi hanno aiutato a non

andare alla deriva. Ringrazio i miei genitori, che mi sostengono sempre e che

sono insostituibili, si meritano molto di più. Ringrazio Stefano, co-autore di

questa tesi, perchè navigare in due è più divertente. Ringrazio il prof. Marco

Brambilla e il prof. Alessandro Bozzon per la loro disponibilità a seguirci

durante questo progetto. Un particolare grazie va anche a Eleonora, Ilio,

Antonio e Antonella: i compagni che mi hanno accompagnato da vicino in

questi anni di studio e sacrifici. Le ore in università sono state di sicuro

molto più liete. Ringrazio anche Mattia e gli altri compari del milanese,

nonostante impegni e distanze non permettano di vederci molto. E infine,

un grazie a tutte le altre persone che mi hanno saputo incoraggiare.

Spero di fare in modo che il vostro supporto non sia stato vano.





Abstract

Model-Driven Development (MDD) is a software development methodology

that focuses on the creation and maintenance of domain models as the pri-

mary form of expression in the development cycle. One of the fundamental

characteristics of such approach is the reuse of software artifacts through

their model representation. However, software reuse is impaired by the

fact that current systems lack an efficient way to search through the model

repositories as many of the current solutions don’t tackle the relationships

between model artifacts. These relationships are instead important to better

satisfy the user information need in a model-driven development scenario.

This thesis aims to define a model-driven methodology for creating model

search engines. As opposed to many related works, this methodology is

metamodel-independent and exploits the metamodel of the searched project

models in order to obtain more precise results. A prototype has been im-

plemented to support such methodology. We address two case studies that

deal with the indexing and the retrieving of models from two different collec-

tions of UML and WebML projects respectively. Each case study involves

several experiments adopting different indexing strategies. Finally, after

having manually built the ground truth for each repository, we performed

various tests using established Information Retrieval measures like DCG,

MRR, MAP, Precision and Recall in order to evaluate the results.





Sommario

Il Model-Driven Development (MDD) è una metodologia per lo sviluppo

del software che si concentra sulla creazione e sul mantenimento di modelli

come forma di espressione primaria nel ciclo di sviluppo. Una delle caratter-

istiche fondamentali di questo approccio sta nel riuso degli artefatti software

attraverso la loro rappresentazione nel modello. Tuttavia, il riuso del soft-

ware è ostacolato dal fatto che i sistemi attuali soffrono la mancanza di un

modo efficiente di cercare attraverso depositi di modelli, siccome molte delle

soluzioni attuali non tengono in considerazione le relazioni presenti tra gli

artefatti del modello. Queste relazioni sono invece importanti per soddisfare

al meglio i bisogni di informazione degli utenti in uno scenario di sviluppo

model-driven.

Lo scopo di questa tesi è di definire una metodologia model-driven per

creare motori di ricerca di modelli. Al contrario di molti lavori correlati,

questa metodologia è indipendente dal metamodello dei modelli considerati

e sfrutta questo metamodello per ottenere risultati più precisi. Un pro-

totipo è stato implementato per supportare questa metodologia. Abbiamo

investigato due casi di studio che trattano dell’indicizzazione e del recupero

di modelli da due collezioni differenti, rispettivamente di progetti UML e

WebML. Ogni caso di studio coinvolge diversi esperimenti i quali adottano

differenti strategie di indicizzazione. Infine, dopo aver costruito manual-

mente la ground truth per ciascuno di questi due depositi, abbiamo eseguito

vari test usando tecniche di Information Retrieval affermate come DCG,

MRR, MAP, Precision e Recall per poter valutare i risultati ritornati dal

sistema.





Contents

1 Introduction 1

1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Works 5

2.1 Text-Based Approaches . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Source code search . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Other text-based approaches . . . . . . . . . . . . . . 8

2.2 Content-Based Approaches . . . . . . . . . . . . . . . . . . . 10

3 Background 13

3.1 General IR Architecture . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Content Registration . . . . . . . . . . . . . . . . . . . 15

3.1.2 Content Analysis . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Content Indexation . . . . . . . . . . . . . . . . . . . . 17

3.1.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.5 Display . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Modeling and Model Driven Development . . . . . . . . . . . 20

3.3 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 WebML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Approach 27

4.1 Abstract Solution . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Design Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Indexing Strategies . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Implementation 37

5.1 SMILA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Solr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

IX



5.2.1 Design and Index Definition . . . . . . . . . . . . . . . 44

5.2.2 Text Analysis . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.3 Documents Search . . . . . . . . . . . . . . . . . . . . 45

5.3 Prototype Architecture . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Indexing part . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.2 Query part . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Configurator and user interface . . . . . . . . . . . . . . . . . 50

6 Case Studies 57

6.1 UML Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 UML Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 WebML Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 WebML Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Tests and Evaluation 81

7.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Ground truth . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 UML Tests and Results . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Test Queries . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.2 Test Configurations and Results . . . . . . . . . . . . 90

7.4 WebML Tests and Results . . . . . . . . . . . . . . . . . . . . 105

7.5 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conclusions and Future Work 117

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 120

X



List of Figures

3.1 Architecture of a general-purpose Information Retrieval system. 14

3.2 Operations involved in Content Analysis. . . . . . . . . . . . 15

3.3 Conformance relationship: a model represents a system and

conforms to a metamodel. . . . . . . . . . . . . . . . . . . . . 21

3.4 Traditional OMG’s metamodeling infrastructure with four

layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 WebML diagram example and metamodel. . . . . . . . . . . . 24

4.1 The approach of our abstract solution for a general search

engine model repository system. In the upper part there is

the Content Processing Flow and in the lower part there is

the Query Processing Flow. . . . . . . . . . . . . . . . . . . . 28

5.1 SMILA general architecture . . . . . . . . . . . . . . . . . . . 38

5.2 SMILA data model . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Diagram summing up all the possible inputs and outputs and

the composition of a Solr index. . . . . . . . . . . . . . . . . . 43

5.4 Hierarchical organization of Solr analyzers. . . . . . . . . . . 46

5.5 The diagram of the architecture of the prototype showing the

chain of operations of the indexing phase. . . . . . . . . . . . 52

5.6 Chain of operations of the search phase in the WebML case. . 53

5.7 The pipeline of the Experiment C for WebML displayed by

the Eclipse BPEL Designer. . . . . . . . . . . . . . . . . . . . 54

5.8 Screenshot depicting the SMILA tab of the configurator. . . . 55

5.9 Screenshot of the help text of the processor.properties Info

button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 An example of UML project model from AtlanMod zoos dataset. 59

6.2 Histogram that shows the distribution of the number of classes

into the UML projects dataset. . . . . . . . . . . . . . . . . . 62

6.3 The frequency distribution of terms of the UML dataset. . . . 63

XI



6.4 The pipeline of the UML case Experiment C. . . . . . . . . . 66

6.5 An example of UML project model diagram from the dataset

to explain Experiment D purposes. A query string like “en-

try location” (AND query) without the importation algorithm

would produce no results. The algorithm of Experiment D al-

lows to retrieve both classes “/LocatedElement/” and “Entry”. 69

6.6 The pipeline of the UML case Experiment D. . . . . . . . . . 70

6.7 Example of an area of a project from the WebML dataset. . . 73

6.8 The frequency distribution of terms of the WebML dataset. . 75

6.9 WebML operations chain. The diagram shows the operations

involved in both content-based approach and text-based ap-

proaches. The Content Processing phase is showed in the

top right, while the Query Processing phase is showed in the

bottom left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1 Example of UML project model from the dataset of UML

class diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Plot of the DCG and iDCG curves of Experiment A (Project

Granularity, Flat Index), Test Configuration 1 (MQ2). . . . . 95

7.3 Plot of the 11-points Interpolated Average Precision of the

Experiment A (Project Granularity, Flat Index), Test Con-

figuration 1 (MQ2). . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4 Plot of the Precision at k of the Experiment A (Project Gran-

ularity, Flat Index), Test Configuration 1 (MQ2). . . . . . . . 97

7.5 Comparison between Test Configuration 1 and 2: DCG and

iDCG curves of the Expertiments B (Concept Granularity,

Multi-Field Index), C (Concept Granularity, Multi-Field Weighted

Index) and D (Concept Granularity, Multi-Field Weighted In-

dex, Graph Based) for both the test configurations. . . . . . . 99

7.6 Plot of the Precision at k of Experiments B (Concept Gran-

ularity, Multi-Field Index ), C (Concept Granularity, Multi-

Field Weighted Index) and D (Concept Granularity, Multi-

Field Weighted Index, Graph Based), Test Configuration 2

(MQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.7 DCG curves of Experiments C (Concept Granularity, Multi-

Field Weighted Index) and D (Concept Granularity, Multi-

Field Weighted Index, Graph Based), Test Configuration 3

(MQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

XII



7.8 DCG curve of Experiment D (Concept Granularity, Multi-

Field Weighted Index, Graph Based), Test Configuration 4

(MQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.9 DCG curve of Experiment D (Concept Granularity, Multi-

Field Weighted Index, Graph Based), Test Configuration 5

(MQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.10 An example of document-based query used to test the WebML

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.11 An example of WebML area adopted to explain test configu-

ration 4 and 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.12 DCG and iDCG curves of the first three WebML test config-

urations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.13 Plot of 11-point Interpolated Average Precision of WebML

Experiments B (Concept Granularity, Multi-Field Index) and

C (Concept Granularity, Multi-Field Weighted Index), Test

Configuration 1. . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.14 Plot of the Precision at k curve of WebML Experiments B

(Concept Granularity, Multi-Field Index) and C (Concept

Granularity, Multi-Field Weighted Index), Test Configuration

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.15 DCG and iDCG curves of the test configuration 1, 4 and 5. . 113

7.16 DCG and iDCG curves of the first three WebML test config-

urations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

XIII



XIV



List of Tables

7.1 The meta-queries designed for testing the UML experiments.

The ”Target“ column indicates which type of document the

query searches (e.g. a project, or a class); the second column

is the identifier of the meta-query; the third column briefly

describes the meta-query, namely it describes the information

need that can be satisfied by the queries that are instances of

the meta-query; the last column shows an example of query. . 88

7.2 The list of the ten instances of the meta-query 2 of the UML

case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 The list of the ten instances of the meta-query 5 of the UML

case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 The first configuration of payload values. This configuration

is determined according to simple reasonings on the UML

metamodel concepts. . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 The second configuration of payload values. This configura-

tion is determined by slightly changing the values of the first

one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.6 The first configuration of penalty values. This configuration

is determined according to simple reasonings on the UML

relationship types. . . . . . . . . . . . . . . . . . . . . . . . . 93

7.7 The second configuration of penalty values. This configu-

ration is determined starting from the first one by slightly

changing penalty values. . . . . . . . . . . . . . . . . . . . . . 93

7.8 The third configuration of penalty values. This configuration

is determined by multiplying the values of the first one by a

factor of 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

XV



7.9 MAP results of the test configurations of the UML model-

based search engine. MQ2 addresses only Experiment A

(Project Granularity, Flat Index); MQ5 addresses Experi-

ments B (Concept Granularity, Multi-Field Index), C (Con-

cept Granularity, Multi-Field Weighted Index) and D (Con-

cept Granularity, Multi-Field Weighted Index, Graph Based). 104

7.10 MRR results of the test configurations of the UML model-

based search engine. MQ2 addresses only Experiment A

(Project Granularity, Flat Index); MQ5 addresses Experi-

ments B (Concept Granularity, Multi-Field Index), C (Con-

cept Granularity, Multi-Field Weighted Index) and D (Con-

cept Granularity, Multi-Field Weighted Index, Graph Based). 105

7.11 The complete list of the ten text-based queries used to eval-

uate the WebML case study application. The keywords are

extracted from the content-based version of the queries. . . . 106

7.12 MAP results of the test configurations of the WebML model-

based search engine. . . . . . . . . . . . . . . . . . . . . . . . 112

7.13 MRR results of the test configurations of the WebML model-

based search engine. . . . . . . . . . . . . . . . . . . . . . . . 114



Chapter 1

Introduction

Models are becoming more and more important in the software development

process. As Model-Driven Development (MDD) practices gain adoption, an

increasingly large number of models is being produced and used by soft-

ware organizations. Some development methodologies strongly rely on the

reuse of such models and software artifacts in order to take advantage of

previously developed assets. In such an environment, model repositories

play an important role, and the ability to automatically search for mod-

els inside large repositories may be more critical than searching for code.

Searching for software artifacts that are highly relevant to high level con-

cept tasks is difficult because the descriptions of these tasks don’t usually

match their low-level implementation details. This problem is known as the

concept assignment problem [1]. General-purpose search engines, such as

Google code search, are not designed to search for models. Usually, most of

current source code search engines return short code snippets as results to

user queries. But, when taken out of context, these brief snippets don’t give

enough background to help developers determine the correct way to reuse

the code, constricting them to spend a significant amount of time and effort

to understand how to use these code snippets in larger scopes for their own

purposes. Model search also has an important educational value for students

and teachers, allowing learners to find good examples that can be used to

improve the knowledge acquisition and provide hints at solutions [2]. As a

result, the need for efficient model-searching mechanisms arises. Moreover,

in many related works, the internal structure of the model (the metamodel)

is not taken into account. Thus, it is not possible to search for a specific

class of objects or exploit the implicit relations between them.



2 Chapter 1. Introduction

1.1 Contribution

This thesis aims to define a model-driven methodology for creating model

search engines. In the following, we call our system Model-Driven Infor-

mation Retrieval System. The methodology exploits the metamodel of the

searched project models in order to obtain more precise results. The method-

ology is also metamodel-independent, as changing the metamodel given in

input to the system doesn’t affect the methodology itself. All the performed

operations, as well as their arrangement, are configurable through config-

uration files. This allows to easily insert new operations or modify the

parameters of the existing ones. The system is also suitable to process other

artifacts along with models, such as project specifications and user gener-

ated annotations. This extra information can help to describe the indexed

documents, thus achieving better precision and recall.

A prototype has been implemented to support such methodology. We

implemented two case study applications that deal with two collections of

two distinct metamodels over which we provide the ground truth. These

two metamodels are: UML class diagram, which is the most common dia-

gram found in software engineering representations due to its flexibility and

its representation power; WebML, which is a modeling language specifically

designed for web applications. In the UML case, we investigated the be-

havior of the system with various experiments using four different indexing

and searching strategies. Namely, we varied the granularity of the returned

results according to the concepts of the involved metamodel. Then, we in-

vestigated the behavior of the system with and without weights assigned to

those concepts. Finally, we propose a new method that uses the graph rep-

resentation of the analyzed model in order to retain the underlying structure

even in a purely text-based search. As in the UML case, the WebML case

involves various experiments with different indexing approaches. Then, we

compared the results given by different configurations obtained by changing

the amount of harvested information, in order to identify the one giving the

best results.

In order to assess the quality of the results returned by the system, we

used established Information Retrieval measures like DCG, MAP, MRR,

Precision and Recall.

1.2 Thesis Organization

The thesis is organized as follows:



1.2. Thesis Organization 3

• Chapter 2 presents a rundown of the most recent and relevant works

related to this thesis.

• Chapter 3 gives some background information on the concepts of the

area of work of this thesis, like information retrieval and metamodeling.

It also explains some of the basic characteristics of the metamodels

addressed in the case studies.

• Chapter 4 describes the approach we adopted to develop our solution.

It explains the design dimensions of the methodology and the indexing

strategies we used in the experiments.

• Chapter 5 first gives an overview of the framework and of the search

platform we adopted, then it illustrates the implementation details of

the developed prototype.

• Chapter 6 explains the two case studies we assessed in our experiments,

as well as the details of how such experiments were performed.

• Chapter 7 shows the commented results of the performed tests.

• Chapter 8 comes to the conclusions and lists some possible directions

which can be taken by future works.





Chapter 2

Related Works

Software reuse is important because it allows for a better and faster develop-

ment, increasing the quality of the final product and cutting the costs. The

number of software repositories grows everyday more and more, however

the information stored in them is rarely found in a format already suitable

for a human to be searched and understood effectively. There are many

reasons why developers would want to search through a software repository.

These reasons include: finding reusable components, obtaining code exam-

ples and performing impact analysis [3]. As such, many tools and platforms

have been and are currently being developed to answer those needs. Most

of these tools fall into the category of searching tools, as the amount of

information stored in the repositories is huge and there’s the need to filter

out the non-relevant artifacts. There are many ways to classify those search

engines, for example by query type, by indexing type, by the algorithms used

for matching and by the way result presentation is performed [4]. Another

kind of classification is based on the content type addressed. These content

types could be source code, models, business processes and web services.

Source code search operates at the lowest possible level in the software

abstraction chain as it leverages the grammar of the programming languages.

These methods are limited by the expressiveness of the programming lan-

guages themselves and by the fact that the appropriate solution could be

very different from the submitted query, so it might be difficult to match the

results to the query according to their semantic meaning. Developers usually

search the internal repository for different reasons than when they search

the web [5]. So, it is necessary to develop systems specifically designed to

exploit the internal repository knowledge base.

Model-based search systems operate at a higher level of abstraction, i.e.,

the model of the system to be searched. Thus, these methods exploit the



6 Chapter 2. Related Works

structure and the relationships between artifacts to better capture the se-

mantic meaning of the concepts and achieve a greater level of expressiveness

and accuracy. Model-based methods can be applied to many kinds of struc-

tured data, like business processes and web services which are targeted by

specific search engines due to their popularity. Business Process search is

focused on searching business processes. A business process is often rep-

resented as a sequence of activities, this implies that searching business

processes puts a great emphasis on the pattern in which these activities are

arranged. Web services are more and more central in the development of

distributed applications over the Web as well as being fundamental compo-

nents of what is called the semantic web. As such, there are specific search

engines and methods designed to address the problem of searching through

the offers of the considerable amount of public web services and their relative

APIs.

For the purpose of this work, we use the query/indexing type as main

classification, distinguishing between text-based and content-based approaches.

Works falling into these two categories are found in sections 2.1 and 2.2 re-

spectively.

2.1 Text-Based Approaches

In the text-based approach an artifact is represented as an unstructured text

document. The index contains bags of words extracted from the models in

the repository. These terms can possibly be weighted based on their concept

of belonging, boosting them according to its relative relevance in the used

metamodel. The matching is ultimately performed on these textual terms

which can also include annotations and comments produced by developers

to better describe their meaning, facilitating the retrieval process. Facets

are also common since they allow further filtering in case too many results

are retrieved. In the following subsections we distinguish between systems

specifically designed to search through the source code of applications and

systems that target other software representations.

2.1.1 Source code search

Selene [6] is an Eclipse plug-in built around a text-based search engine

over a source code repository. It is a code recommendation tool that uses

the entire editing code as a query. It searches and displays similar program

fragments from a repository of examples programs. The searches are started

automatically while the developer is editing the code. Selene is expected to



2.1. Text-Based Approaches 7

assist developers in finding usages and idioms of API libraries and frame-

works suitable to their operation context, without extensive manual search

through tutorials or general search engines.

The work in [7] presents another code recommendation tool that uses

the knowledge embodied in the identifiers of variables and functions as its

basis for the suggestion. The assumption made is that code fragments using

similar terms within the identifiers also reuse similar methods. The system

constructs a matrix which associates a method call with the identifiers pre-

ceding it. Each row of the matrix is a binary vector stating which terms

correspond to a call. These vectors are then matched with a set of terms ex-

tracted from the context of the current cursor position as to retrieve possible

relevant method calls.

The system in [8] is designed to perform a search for algorithms. Users

can enter a free text query which will be used to perform a search through

a collection of academic documents, since they generally follow an easier

structure for a machine to parse in order to identify the relevant sections

containing pseudo-code for the algorithms. This tool is being developed as

part of the SeerSuite toolkit, a collection of open source tools for creating

academic search engines and digital libraries such as CiteSeerX.

Sourcerer [9] is an infrastructure for large scale indexing and analysis of

open-source code, upon which code search engines and services can be built.

Sourcerer crawls the Internet looking for Java source code from public web

sites, version control systems and open source repositories. In Sourcerer,

the code is parsed, analyzed and stored in three forms: Managed Reposi-

tory contains a versioned copy of the original project content; Code Database

stores models of parsed projects; Code Index stores keywords extracted from

the code. The metamodel used by Sourcerer to store the structural infor-

mation is an adapted version of the C++ entity-relationship metamodel.

Each library file is uniquely identified across all the projects to maintain

cross-project dependencies.

Exemplar (EXEcutable exaMPLes ARchive) [10] combines information

retrieval and program analysis techniques to link high-level concepts to the

source code of the applications via standard API calls that these applications

use. The novelty of this approach is to augment the standard code search

to include into indexes also the API documentation of the most widely used

libraries (e.g. Java Development Kit). Description and titles of Java appli-

cations are indexed independently from the Java API call documentation.

Keywords entered by the user are matched separately in these two indexes.

As a result two ranked lists are retrieved, the one of the applications and the

one of the API calls. Then the system locates the retrieved API calls in the



8 Chapter 2. Related Works

retrieved applications and the combined score is computed. As final step,

the list of applications is sorted using the computed ranks and returned to

the user.

Maracatu [11] is a keyword-based search engine for retrieving source

code components from development repositories. This search engine com-

bines both text mining and facet-based search, achieving better results with

respect to situations where these two techniques were used alone. Before

searching, a filtering is performed to exclude components which do not sat-

isfy the constraints. A visualization of the retrieved component is allowed

before its download.

2.1.2 Other text-based approaches

CodeBroker [12] is a system that allows to autonomously locate components

in a repository by taking into account the background knowledge of the

developer (information delivery). This method was inspired by the fact that

software reuse is often unsuccessful because of the lack of knowledge and

inability of the users to create a well-defined query. CodeBroker utilizes

user models in order to represent their knowledge about the repository.

SPARS-J [13] is a Java class retrieval system that uses a graph-represenation

model of software libraries called component rank model. This model is

based on analyzing actual usage relations of the components and on propa-

gating their significance through usage relations. The resulting rank allows

for highly ranked components to be quickly found by uses. Results show that

a class frequently invoked by other classes has a high rank, with respect to

nonstandard classes.

WISE (Workflow Information Search Engine) [14] is specifically designed

to query workflow hierarchies. A workflow hierarchy provides different views

of the same workflow. Each view represents the workflow at different depth

levels and includes as more tasks as the level is deeper. The user issues key-

word queries and the system finds the workflow hierarchies in the repository

that contain matches to those keywords. The system then returns search

results as the minimal views of the most specific workflow hierarchies that

contain tasks matching keywords. Query results defined in this way are then

proved to be informative and concise.

After receiving in input an informal description of a semantic domain

(represented as a set of terms) and a set of ontologies in an ontology reposi-

tory, CORE [15] (Collaborative Ontology Reuse and Evaluation) automati-

cally determines which ontologies describe most accurately the given domain

by using similarity measures. The user selects a subset of available compar-



2.1. Text-Based Approaches 9

ison techniques and obtains in output a ranked list of ontologies for each of

them. Then a global aggregated measure that uses rank fusion techniques

is used to define a unique ranking.

Service-oriented systems (SOS) are search-driven because they are based

on using software components usually provided by third parties over the web.

Since BPEL documents often contain the invocation and definition of such

services, the paper in [16] proposes a way to search for them via BPEL frag-

ments. Retrieved fragments are shown along web services corresponding to

the activities within the fragment, as well as the BPEL documents contain-

ing such fragment in order to give context on how the retrieved services

were used. Fragments are ranked according to their number of occurrences

in the documents and on their relevance to the query. The matching is not

performed on the documents one by one. Instead, this approach considers

all documents at once by merging them in a big graph where the nodes are

the basic activities and the edges are the control flow. This way the amount

of unnecessary matching is limited since each activity appears only one time

in the graph.

Woogle [17] is a search engine that is designed to find web services that

offer similar operations. An algorithm clusters the parameter names of the

operations into semantically meaningful concepts, which are then exploited

to determine input similarity. The similarity is determined by considering

textual descriptions of operations and web services as well as the parameter

names. The clustering policy is based on the assumption that parameters

express the same concept if they occur often together. Woogle allows for

both template and composition search. Template search allows the user to

specify the functionality, input and output of the web service operation, and

returns a list of operations that fulfill the requirements. Composition search

on the other hand, returns operations composition that achieve the desired

functionality specified in the search.

The work of this thesis is based on the system presented in [18]. The pa-

per describes a model-driven information retrieval system to search through

projects expressed in the WebML language. The realized prototype applies

metamodel-aware extraction rules to analyze models. It has a visual inter-

face to submit keyword-based queries, performed on whole projects, sub-

projects, or concepts. Then it inspects the results, presented as a paginated

list of matching items with a possibility of snippet visualization. Details of

this work will be better described in Section 4.2.

One of the objectives of this thesis is to evaluate the performances of

text-based system against content-based ones. So, in the next section we

report an overview of most of the current content-based search systems.



10 Chapter 2. Related Works

2.2 Content-Based Approaches

In a content-based approach the role of the DSL metamodel of the projects

in the repository is more prominent, since it takes into account the rela-

tionships between the various artifacts. The index structure usually reflects

this new amount of information considered. Queries are usually expressed

by providing a model fragment, following a Query-By-Example approach.

Usually a kind of structural similarity matching algorithm is performed, like

graph matching. The query syntax must conform to the same metamodel of

the language of the projects in the repository. The DSL metamodel can be

used during matching to provide some domain-specific information to tune

the quality of the ranked result list.

SECOLD (Source code ECOsystem Linked Data) [19] is a framework

that provides source code and facts usable by both humans and machines

for browsing and querying. Currently this framework provides line-level

and statement-level granularity for the presentation and syntax layer re-

spectively. It adheres to the Linked Data publication standard so that the

repository is available online in both HTML and RDF/XML formats. This

framework provides a way to uniquely identify resources while they are be-

ing analyzed across different tools by agreeing on a common naming format.

This way a resource can be identified anytime, independently on the specific

naming convention or ID format of each analysis tool. It also provides a set

of public services for URL generation and data conversion from source code

and version control systems.

Moogle [20] is a model search engine that uses UML or some DSL (Do-

main Specific Language) meta-model in order to create indexes for evalua-

tion of complex queries. Its key features include searching through different

kind of models, as long as their metamodel is provided. The index is built

automatically and the system tries to present only the relevant part of the

results, for example trying to remove the XML tags or other unreadable

characters to improve readability. The model elements type, attributes and

hierarchy between model elements can be used as a search criteria. Models

are searched by using keywords, by specifying the types of model elements

to be returned and by using filters organized into facets. Moogle uses the

Apache Solr ranking policy of the results. The most important information

of the results are highlighted to make them more clear to the user.

The work described in [21] uses a graph representation able to harness the

power of models with the flexibility of adapting to the syntax and semantics

of various modeling languages. First the method translates the given models

in the repository into directed graphs. Then, a query conforming to the



2.2. Content-Based Approaches 11

considered DSL metamodel is submitted to the system. This query is also

transformed in a graph in order to reduce the matching problem into a

graph matching one. Matches are calculated by finding a mapping between

the query graph and the project graphs or sub-graphs, depending on the

granularity. The results are ranked using the graph edit distance metric by

means of the A-Star algorithm. The prototype considers the case of the

domain-specific WebML language.

The paper in [22] presents an inexact matching approach for workflow

process reuse. The matching degree between two workflow processes is

determined by the matching degrees of their corresponding sub-processes

or activities. The matching degree of two activities is determined by the

activity-distance between them in an activity-ontology repository. Users are

provided with SQL-like commands to specify inexact query conditions to

retrieve the required processes from the workflow-ontology repository.

Nowick et al. [23] introduce a model search engine that tries to help users

to improve their queries. It uses logs coming from several search engines be-

longing to three different environments to model users’ session characteristics

by cluster analysis. An example of session is that of hit and run users who

briefly browse results about popular topics. This characteristics are used to

improve the search process: in case of a failed search or when the search

engine returns more than 100 or less than 1 result, the system suggests the

user to try the advanced smart search to narrow down or improve the results

adding other terms from the same cluster of the original term. In the case

of narrow search, the terms from other clusters are also suggested.

The paper in [24] introduces an approach for finding similarity between

business process models. This method assumes an ideal case in which pro-

cess models are enriched with annotations describing their meaning. This

approach uses the BPMN-Q query language expansion which allows users

to make structure related model queries. The BPMN-Q expansion applies

the enhanced Topic-based Vector Space Model, a vector space model that

is able to exploit semantic document similarities via WordNet. The sys-

tem constructs an ontology from the repository and expands the BPMN-Q

query by constructing other queries. Those other queries are based on the

substitution of the seed query activities with similar ones.

BP-QL is a visual query language for querying business processes [25].

It allows users to specify a query in the same way they specify the model,

hiding the XML details. It permits to query over various granularity levels.

Business processes are represented as directed labeled graphs.

The paper in [26] proposes the use of domain-independent and domain-

specific ontologies for retrieving a web service from a repository by en-



12 Chapter 2. Related Works

riching web service descriptions with semantic associations. The domain-

independent relationships are derived using an English thesaurus after to-

kenization and POS (Part Of Speech) tagging. The domain-specific onto-

logical similarity is determined by associating semantic relationships with

web service descriptions. Domain-independent terms allow for a wide cov-

erage, while domain-specific ontological information allow for more in-depth

finding exploiting industry and application specific terms. Matches due to

the two ontologies are combined to determine an overall semantic similarity

score.

The work in [27] provides a centralized knowledge base that can be used

through case-based reasoning, a paradigm that reuses past knowledge stored

in the form of cases. In this context, a case is a UML diagram enriched with

some identifiers. It uses WordNet as a common sense ontology to provide

classification of software projects described in UML.

ReDSeeDS (Requirements-Driven Software Development System) [28] is

a web search engine designed to support reuse of software artifacts based on

their requirements. The syntax of the artifacts is described by an Essential

MOF (EMOF) while the requirements are specified by the Requirements

Specification Language (RSL). The components of the RSL are requirement

statements and use cases. The requirements statements are specified by

natural language sentences, and the use cases are described by scenarios

containing statements in structured English. The similarity of requirements

is determined by combining information retrieval methods and similarity

measures considering the semantic and word order similarity, as well as the

structural similarity.



Chapter 3

Background

This chapter introduces concepts and terms that relate to the field of model-

driven information retrieval and are used in the rest of the thesis. In Sec-

tion 3.1 we briefly explain some of the most important ideas taken from the

field of Information Retrieval. In Section 3.2 we give an insight of metamod-

eling concepts, while in Section 3.3 and in Section 3.4 we discuss about the

two metamodels we addressed in our experiments.

3.1 General IR Architecture

An Information Retrieval System (IR) is a system that fetches raw data

from some source of information, transforms it into searchable format and

provides an interface to allow a user to search and retrieve that information

by submitting queries to the system. Starting from this definition, four

major processing subsystems can be isolated from the general flow [29]:

• Content Registration: this subsystem finds and retrieve from a given

data source the items that are analyzed and searched in the following

steps. This operation could be done in several ways, for example via

crawling networks (on the Internet) as well as receiving new items that

are “pushed” to the system (e.g. file system crawling).

• Content Analysis: this subsystem is concerned with the analysis and

the consequent transformation of the raw data registered by the pre-

vious phase. The registered items undergo several elaborations such

as tokenization, normalization, format standardization, stemming and

other kinds of processing to get a canonical format from the original

raw data. This phase can include other content analysis techniques to

define and add some metadata to the items that could facilitate the



14 Chapter 3. Background

mapping between the vocabulary of the user and the vocabulary of the

author of the original data during the search process.

• Content Indexation: this subsystem is concerned with taking the to-

kens of the normalized items and other normalized metadata to create

the searchable index. There are many different approaches to create

the index such as Boolean or Weighted. Within the Weighted approach

there are the Statistical, Concept and Natural Language indexing ap-

proaches.

• Search: this subsystem is concerned with mapping the user informa-

tion need to a processable form and determining which items are to

be returned to the user. Within this process lies the calculation of

the score of the retrieved documents that is used to order the list of

displayed results.

• Display : this subsystem is concerned with how the user can locate the

items of interest among all the possible results returned. It deals with

display options such as highlighting and faceted navigation.

The quality of all these subsystems determines the capabilities in retrieving

a higher number of relevant documents needed by the user and in displaying

them in a suitable way. Each of these processing phases is addressed in the

following sections.

In Figure 3.1 you can see a diagram depicting the general architecture

of an Information Retrieval system.

Figure 3.1: Architecture of a general-purpose Information Retrieval system.



3.1. General IR Architecture 15

3.1.1 Content Registration

Content Registration is the initial process of an information retrieval sys-

tem. It is the process that receives the items to be stored and indexed and

performs their initial processing. The crawling policy can be either a “pull”

or “push” process. In the pull process the system inspects other locations

to retrieve the items (e.g., web crawling). In the push process the items are

delivered to the IR system. This typically means that one system, different

from the IR system itself, writes files to a directory that is monitored and can

detect new items. The Content Registration module usually checks whether

an item has already been processed by the system. This is accomplished

by creating a unique signature key that represents the content of such item.

The most common methodology is to create a hash for the complete file.

3.1.2 Content Analysis

The Content Analysis (Figure 3.2) process takes as input the items gathered

by the Content Registration.

Figure 3.2: Operations involved in Content Analysis.

This subsystem is responsible for the extraction and transformation of

information that will actually be part of the index. The Content Analyses

produces several metadata that enrich the description of the registered items.

Any item information that should be treated as metadata, like for example

the date and time of creation, needs to be placed in the appropriate metadata



16 Chapter 3. Background

field. In case of items formatted in structured languages (e.g. HTML/XML),

all the markups must be thrown away so that only continuous text is present.

The next step could be the standardization of text format: this can be

done first by inferring the language of the text and then putting it into

UNICODE. Once the characters have been standardized to a single format,

normalization is performed. This activity includes operations such as lower-

casing, diacritic removal, and ligature expansion.

Once an item has been selected and normalized, the next step is to

“split” the documents and then identify processing tokens for indexing. The

splitting phase consists of parsing the item and subdividing it into logical

sub-parts that have meaning to the user. This process is used to increase

the precision of a search and to optimize the display of results. For example,

if we want to index books (so in this case items are books), then splitting

can be done by dividing the book item into Title, Author and Main Text.

These parts will then be inserted in the appropriate index fields. The split-

ting of the items allows searches to be restricted to a specific part of the

item. Another use of splitting and fields is when a user wants to display the

results of a search. A major limitation is the size of the display screen which

constraints the number of items visible for review. To overcome this prob-

lem, the user can decide to display only some splitted part of the original

documents in order to browse an higher number of results.

Once the standardization and the splitting have been completed, the

information used to create the index needs to be identified. Here, the effort

is to analyze and transform the original words contained in the items. The

elements that are found are called tokens. The tokens are the data that are

finally indexed at the end of Content Analysis. Tokens are used instead of

words because words are not the most efficient unit on which to base search

structures. The first step of token identification consists in distinguishing

the words of the items that are suitable for indexing. Generally, systems

divide words into three classes: valid word symbols (alphabetic character

and numbers), inter-word symbols (blanks, periods and semicolons) and

special processing symbols (for example, hyphens). A word is defined as a

contiguous set of word symbols bounded by inter-word symbols. In most

systems inter-word symbols are non-searchable. Special symbols such as

hyphens must be processed in special ways.

Token identification could be followed by word characterization, which

includes morphological analysis. Thus, a word such as “plane” is interpreted

as an adjective or as a noun according to morphological analysis or even

context analysis.

Now that the potential list of processing tokens has been identified, some



3.1. General IR Architecture 17

can be removed by a Stop List or a Stop Algorithm. The objective of the

Stop function is to delete from the set of searchable processing tokens those

that have little relevance to the user. Stop lists are commonly found in

most systems and consist of words (processing tokens) whose frequency and

semantics use make them of no value. For example, parts of speech such as

articles (e.g. “the”) have no search value and should be thrown away. The

Stop algorithm operates according to the Ziph’s law, which postulates that,

looking at the frequency of occurrence of the unique words across a corpus of

items, the majority of unique words are found to occur a few times, so that

the product of the frequency and the ranking of a word into the frequency

histogram equals a constant.

One of the last transformations often applied to data before placing it

in the searchable data structure is stemming. Stemming reduces the diver-

sity of representations of a word to a canonical morphological representation

called stem. The risk with stemming is that the discrimination of concept

information may be lost in the process, causing a decrease of retrieving pre-

cision and affecting the ability of ranking. The positive aspect of stemming

is that it improves recall. A very related operation is called lemmatiza-

tion. Lemmatization is typically accomplished via dictionary look-up which

is also one of the possible solution to implement stemming. Lemmatization,

besides modifying word endings or dropping them as in stemming (“cats”

and possibly “catlike”, “catty”, etc. are mapped to the root stem “cat”),

maps word to another one (for example, it could map “eat” to “ate” and

“better” to “good”).

3.1.3 Content Indexation

This phase takes as input the processed tokens identified from the registered

items. Its goal is to transform the received tokens into the searchable data

structure. The index is what really defines an item more than its original

content. This is because the primary mechanism to retrieve an item is based

upon search of the index. If there are concepts in the items that are not

reflected in the index, then a user will not find that item when searching for

those concepts. In addition to the mapping of concepts to the searchable

data structure, the indexing process may attempt to assign a weight on how

much that item discusses a particular concept. This is used in the search

phase in order to rank the retrieved documents. The attempt is to get the

items more likely to be relevant higher in the list of retrieved documents.

In a weighted index system, each index term receives a weight (a positive

scalar) that indicates the degree to which that term represents the related



18 Chapter 3. Background

concept in the original item. The most direct and obvious method to be

used in weighting a term is the frequency of occurrence of that term in the

item. The query process uses the weights assigned to terms that are present

in the query to determine a scalar value for each item in the collection.

This value is called score and it is used to predict the likelihood that a

retrieved item satisfies the user query. There are several approaches to

generate the searchable index. Here we discuss the statistical approach,

which is then used in the rest of this work and it is the most prevalent in

commercial systems. The basics of this approach is the use of the frequency

of occurrence of tokens. The possible statistics that are applied to the tokens

are probabilistic, Bayesian and vector space. We now illustrate the vector

space, which is then adopted in the rest of this work.

The Vector Space Model approach is based on a vector model. The

semantics of every item are represented as a vector. Each component of the

vector represents a term in the vocabulary. A vector has the same dimension

of the terms vocabulary. There are two possible domains of values for the

vector’s components: binary and weighted. Under the binary approach,

the domain contains the value of one or zero, so the term is present or not

present in the item. In the weighted approach, the domain is typically the

set of all real positive numbers. The value for each term represents the

relative importance of that term in representing the semantics of the item.

A weighted vector acts the same as a binary vector but provides a range of

values that accommodates a variance in the value of the relative importance

of a term in representing the semantics of the item. Moreover, the use of

weights also provides a basis for determining the rank of an item. Weights

are determined using the classical Tf-idf weighting, which will be discussed

in Section 5.2.3.

3.1.4 Search

The information retrieval processes continues after Content Registration,

Content Analysis and Content Indexation with the search against the in-

dex. The selection and ranking of the items are accomplished via similarity

measures that calculate the similarity between the user’s search statement

(user query) and the weighted stored representation of the semantics of each

item in the index. Relevance feedback can also help a user to enhance the

search by selecting items from previous ranked lists. This technique uses

information from items judged as relevant or not to determine an expanded

ranked list.

The search statements use Boolean Logic and/or Natural Language to



3.1. General IR Architecture 19

express user needs. The typical search statement consists of few words that

the user selects to represent his information need. The user may have the

ability to assign different levels of importance to different concepts in the

statements (query terms boosting).

Then, the search statement is parsed by the system and used to search

against the index. This process is similar to the indexing of an item described

before.

The next step is to calculate the similarity between a user’s search state-

ment and the indexed items. Thinking about the Vector Space Model, both

the user query and the indexed weighted documents can be treated as vec-

tors where each element represents a different term. A variety of different

measures can be used to calculate the similarity between the item and the

search statement. A common characteristic of all similarity measures is that

the result of the formula increases as the items become more similar. An ex-

ample of similarity measure is the cosine distance, that calculates the cosine

of the angle between the query vectors and the indexed documents vectors.

As the cosine approaches “1”, the two vectors approach the same direction,

so the item and the query represent the same concept.

3.1.5 Display

Once a search has been completed, the system has identified an ordered list

of items relevant with respect to the given user query. The next step is to

present this information to the user. This step has a significant impact on

the user’s ability to find what he’s really looking for. There are two stages

of information displaying: the first one defines how the list of retrieved

documents is presented to the user so he can easily find what it’s important

for him; the second one is how individual items are presented once the

user has selected a specific one. A situation where the user can satisfy his

information need without accessing a specific item in the retrieved list is

considered exceptional.

What is obvious is that the “hit list” returned by the system contains the

most relevant documents according to the system. What is less obvious is

how long this list should be. Most systems display the hit list as a sequential

list of retrieved documents organized in pages of 10 results per page but the

user at most reviews two pages (20-30 results). The list can include the

title of the retrieved items, a “snippet” of text coming from the item and a

graphic overview of the item. Another interesting feature that can be offered

by the system is the highlighting into the search results of the terms that

are present in the user query.



20 Chapter 3. Background

3.2 Modeling and Model Driven Development

Our work addresses an issue typical of the Model-Driven Engineering prac-

tices, which is the use of models as the most important artifact to design and

specify solutions. From this arises the problem of searching models stored

in repositories, that is also the main topic of this thesis.

One of the currently most active branch of Model Driven Engineering is

Model-Driven Development (MDD). This approach allows developers to use

models to specify what system functionalities are required and what archi-

tecture is to be used instead of requiring them to use a programming lan-

guage to specify how a system is implemented [30]. Code can be generated

from the models, ranging from systems skeletons to complete, deployable

products. MDD focuses the efforts of software development on the design

phase with a greater attention to system architecture.

Model-Driven Architecture (MDA) is a set of standards proposed by

Object Management Group (OMG) that support the architecture-focused

approach of MDD. The standards include a language to write metamodels

called the Meta Object Facility (MOF).

Metamodeling, a natural consequence of MDD, is the construction of a

collection of “concepts” useful for modeling a predefined class of problems.

This section introduces the fundamental aspects of metamodeling.

A model is a simplified representation of a certain reality, according to

the rules of a certain modeling language. As the map represents a territory

and conforms to its legend, the conformance relationship says that a model

represents a system and conforms to a metamodel [31]. In Figure 3.3 you

can see a picture showing this concept.

According to OMG standards, a metamodel is a special kind of model

that specifies the abstract syntax of a modeling language. The abstract

syntax of a language describes the vocabulary of concepts provided by the

language and how they may be combined to create models. It consists of

a definition of the concepts, the relationships that exists between concepts

and how the concepts may be legally combined.

Figure 3.4 illustrates the traditional four layer infrastructure. This in-

frastructure consists of a hierarchy of model levels, each (except the top

model) being characterized as “an instance” of the level above. Starting

from the bottom of the hierarchy, the M0 layer is the real system. A model

represents this system at level M1. This model conforms to its metamodel

defined at level M2. The metamodel itself conforms to the meta-metamodel

at level M3. The meta-metamodel conforms to itself. An example of a level

M2 is the WebML metamodel, the model that describes WebML itself. M2-



3.2. Modeling and Model Driven Development 21

Figure 3.3: Conformance relationship: a model represents a system and conforms to a

metamodel.

models describe elements of the M1-layer, and thus M1-models. These would

be, for example, models written in WebML. The last layer includes real data

and real world objects. UML is a special case because it can be used for

describing itself, so it can be used both as a model and as a metamodel.

In language specifications the abstract syntax of the language is specified

as a MOF-compliant metamodel. MOF provides the standard modeling and

interchange constructs used in MDA. These constructs are a subset of UML

modeling constructs, essentially the Class Diagram subset of UML: object

attributes, relationships between objects, operations available on objects

and simple constraints (e.g., multiplicity). The Eclipse Modeling Framework

Project (EMF) includes Ecore, a MOF-like core metamodel.

EMF provides a pluggable framework to store model information, the

default uses XMI (XML Metadata Interchange) to persists the model defi-

nition. XMI defines an XML-based exchange format for models of M3, M2

and M1 layer and is also the supporting standard of MOF. The typical usage

scenario of the metamodeling practices within a system design project and

development would be: metamodel specification, model instance generation

from the previously created metamodel, generation of Java code for a model,

refinement.

As mentioned, the increasing use of metamodeling and MDD brings up

the problem of searching an already designed solution. In the following



22 Chapter 3. Background

Figure 3.4: Traditional OMG’s metamodeling infrastructure with four layers.

chapter we propose an abstract solution for our Model Driven Information

Retrieval System and we discuss our implementation experience in which we

used two different datasets. The first one is a dataset of models expressed in

a general-purpose modeling language, UML, and the second one is expressed

in a domain-specific modeling language, WebML.

3.3 UML

Our first implementation case is based on a dataset of UML models. In

section 6.1 we describe the UML dataset with further details, while here we

briefly describe general characteristics about UML.

UML (Unified Modeling Language) is a semi-formal visual modeling lan-

guage. It is based on the object-oriented paradigm. UML is a standard used

for the specification of software projects. A UML project is composed by a

set of diagrams that can be divided in two categories:

• structural : they empathize the static structure of a system using ob-

jects, attributes, operations and associations. Some examples of struc-

tural diagrams are the class diagram and the component diagram,

• behavioral : they describe the dynamic functioning of the components

showing the interaction between objects, their internal state and the

information flow. Examples of such diagrams are activity diagrams

and use case diagrams.



3.4. WebML 23

Our dataset of project models conforming to the UML metamodel con-

sists of a set of class diagrams describing in turn several modeling languages

(e.g. HTML, XML, etc.). The details about the metamodel and the dataset

are given in Section 6.1.

3.4 WebML

Web Modeling Language (WebML) is a high-level modeling language for

designing complex data-intensive Web applications [32]. In essence, WebML

consists of simple visual concepts for expressing an hypertext as a set of

pages made up of linked content and operation units. It also expresses the

binding of such content units and operations to the the data they refer to.

Pages are then grouped into wider concepts, such as areas and site views.

The specification of a Web application through WebML requires four

orthogonal perspectives:

• data model, defines the data content of the application in terms of

entities and relationships. This model takes deep inspiration from the

Entity-Relationship database model,

• hypertext model, defines one or more hypertexts that can be published.

The goal of hypertext modeling is to specify the organization of the

front-end interfaces of the Web application. The key ingredients of

WebML are pages, units and links, organized into modularized con-

structs called areas and site views. Units are the atomic pieces of

publishable content. Pages are the actual interface elements deliv-

ered to the users and are built by assembling together units of various

kinds. Pages and units are linked to form a hypertext structure. Links

express both the possibility to navigate from one point to another in

the hypertext (non-contextual links) and the passage of parameters

from one unit to another (contextual-links), which is required for the

page computation,

• presentation model, defines the layout and graphic appearance of pages,

in a way not depending on the output device,

• personalization model, defines the user categories and user groups.

In Figure 3.5 [18] you can see a very small example of WebML specification

diagram (Figure 3.5(a)) and an excerpt of the WebML metamodel (Fig-

ure 3.5(b)). Figure 3.5(a) depicts two pages. The page “Catalogue Home

Page” includes an index unit named “List Products” and a data unit named



24 Chapter 3. Background

“Product Details”. The two units are connected through a contextual link

named “View Details” that transports the identifier of the object selected

from the index to the data unit displaying the object details. The two

pages are connected through an inter-page link, that is a link crossing the

boundaries of pages. Figure 3.5(b) shows a piece of the WebML metamodel

describing the site view construct. A site view consists of areas, which in

turn may contain pages. Pages include content units for publishing content.

Areas may contain operation units whereby users can invoke operations on

the site. Units are connected through links that carry parameters (e.g., ids)

and trigger the navigation from one page to another.

(a) A small example of WebML specification di-

agram.

(b) An excerpt of the WebML metamodel.

Figure 3.5: WebML diagram example and metamodel.



3.4. WebML 25

All WebML concepts are associated to a graphic representation so that the

projects specifications are diagrams. The specification of an application

through a diagram hides the full XML representation which encodes the

project.

In the code below you can see a small snippet extracted from the XML

representation of a WebML Web application:

<SiteView name=”Product Catalogue ”>

<Page id=”pag1” name=”Catalogue Home Page”>

<IndexUnit id=” inu1 ” name=” L i s t Products ”>

<Com>L i s t o f products in the ca ta louge</Com>

<Link name=”View De ta i l s ” des t=”dau1” />

</ IndexUnit>

<DataUnit id=”dau1” name=”Product De t a i l s ”>

<Com>Deta i l s o f a s e l e c t e d product</Com>

</DataUnit>

<Link name=”Contacts ” des t=”pag2” />

</Page>

<Page id=”pag2” name=”ContactPage”>

. . . .

</Page>

</SiteView>





Chapter 4

Approach

This chapter describes our approach for retrieving software artifacts from

repositories. In Section 4.1 we describe an abstract solution, that is an ideal

Model-Driven Information Retrieval System where, for a given dataset, only

a metamodel is needed as input by the indexing and searching process. In

Section 4.2 we define the relevant design dimensions for this kind of system.

In Section 4.3 we show the indexing strategies we decided to adopt for our

experiments.

4.1 Abstract Solution

Our abstract solution for retrieving software artifacts adopts an approach

that includes two main information flows as seen in Figure 4.1. In particular,

the upper part of the figure depicts the Content Processing Flow and the

lower part the Query Flow.

The information flows are processed by two pipelines: for the content

part there is the Content Processing Pipeline, which is triggered by the

crawler subsystem, while for the query part there is the Query Processing

Pipeline, which is triggered by the user query input. The content process-

ing flow gathers, processes and transforms significant information from the

projects in order to make them ready for indexing and searching. The query

flow is intended to accept, process and transform the user query in the same

way as the content information. Then it performs the searching operations

and returns the results to the user interface.

The Content Processing Pipeline involves as data source a collection

of models that conform to a metamodel. The metamodel can be of any

type. The very first phase is the translation of the original models into the

XMI format. This translation is not performed by the system but must



28 Chapter 4. Approach

Figure 4.1: The approach of our abstract solution for a general search engine model

repository system. In the upper part there is the Content Processing Flow and in the

lower part there is the Query Processing Flow.

be provided by the user. XMI (XML Metadata Interchange) is an Object

Management Group (OMG) standard for exchanging metadata information

via XML. This format can be used for any metadata whose metamodel can

be expressed in Meta-Object Facility (MOF). As XMI is a standard way

to represent the project model, their translation eases the automatic data

extraction in the following phases.

First, the crawler ingests the structure of the entire project. This is

important to propagate as much information about the project structure as

possible, so that it can be reused in the following operations. This means

that the entire XMI code expressing the structure of the whole project is

carried forward through the operations chain. This also keeps the indexing

and searching approach model-driven.

Next, the Content Processing Pipeline begins. The pipeline contains

the following operations: Project Analysis, Segmentation, Segment Analy-

sis and Indexing. Our abstract solution requires that the system has a set

of standard routines for each of these operations. The routines are then

instantiated according to the metamodel. In general, these routines mine

useful elements from the XMI project representation. These elements are

tagged by the user in the metamodel with proper tags in order to automat-

ically generate the routines. The routines also save the extracted elements



4.1. Abstract Solution 29

into suitable data structures, such as records of the SMILA framework. The

data structures are passed as input to each successive phase in the pipeline.

The Project Analysis extracts generic metadata referring to the entire

project, for example the authors and the creation date. The user has already

tagged these metadata into the metamodel. The metadata tagged in this

way are extracted from the models and saved in the data structures.

Segmentation splits the initial projects into smaller units which are more

manageable for the successive operations. As in the previous phase, the user

has tagged the metamodel element representing the segmentation unit. A

proper routine extracts from the XMI project representation the codes frag-

ment referring to the considered units and saves them in the data structures

of the segments.

The Segment Analysis mines the elements that will be indexed later from

the previously obtained segment. These elements have also been tagged by

the user with suitable tags in the metamodel. The Segment Analysis per-

forms text processing on the just extracted elements. The user can configure

the analysis type to be performed (e.g. tokenization, normalization, stem-

ming, etc.) for each type of element. The analysis generally consists of

a sequence of analyzers through which the project model words are trans-

formed.

The last phase is the Indexing that stores the data structures obtained up

to this point. The storage schema is previously defined taking into account

the extracted information.

The Query Processing Flow deals with the query ingestion from the user

interface, the query processing and analysis, the index searching and the

results presentation back to the user interface. The query can be submitted

in keyword-based form (textual queries) or content-based form (the query is

a model fragment). Here we expect that the query is submitted in content-

based form with the same XMI format of project models. This can also be

done in a graphical way. If necessary, also the original representation of the

query undergoes the same translation performed on the project models.

The Query Processing Flow mines the keywords that will be part of the

query string from the content-based query expressed in XMI. It basically

strips all the markup code and keeps only the names of the project elements

given in that particular query instance. The metamodel is needed to extract

the keywords from the user query.

The Analysis applies the same processing techniques used for the content

information. Here, the metamodel is needed to match a given model element

to its sequence of analysis.

The Searching takes the query string and performs the actual search



30 Chapter 4. Approach

against the index in order to find relevant documents with respect to the

query. The documents are the indexed representation of the projects con-

taining the same information extracted during the content processing flow.

The matching between the query string and the indexed documents is per-

formed adopting a specific similarity measure that computes the distance

between the query and the documents. The results are returned as a ranked

list of relevant documents, which is then presented to the user.

4.2 Design Dimensions

Differently from a generic information retrieval system, a system that ex-

ploits information from the documents’ domain specific language (DSL)

metamodel has some peculiar dimensions to specify in its design [18]:

• Segmentation granularity : this is the atomic unit that the IR system

retrieves. The granularity can be at different model levels: entire

project, subproject or metamodel concept.

• Elements to extract from the models: only the most significant ele-

ments are extracted from the segments. These elements are the ones

that will be processed by the Content Processing Pipeline and search-

able through the index where they are stored.

• Index structure: the index contains the information extracted from

segments in the form of documents. Typically each segment extracted

from the project models is a different document into the index. The

index type can be flat, weighted, multi-field or structured.

• Query type and result visualization issues: these parts involve many

kinds of design choices, including the query type (keyword-based, document-

based, search by example, faceted search) and visualization (snippet

visualization, highlighting).

In the following, we explain each design dimension with further details and

we specify to which phase of the abstract solution presented in Section 4.1

the design dimension refers.

Segmentation granularity This is a very important dimension which

defines the atomic unit that the IR system can process, index and search.

The granularity is the level at which the entire project is sliced. This means

that the granularity segment corresponds to the size of the documents that

user searches through a query and that is present in the ranked list returned



4.2. Design Dimensions 31

by the IR system. The dimension of segmentation granularity affects the

whole Content Processing pipeline (Section 4.1) and, in particular, the Seg-

mentation phase, where the actual splitting is performed. An indexable

document can correspond to:

• Entire project : in this case, no actual segmentation is performed, an

indexable document is equivalent to a project into the repository and

the query result is a ranked list of projects.

• Subproject : an indexable document corresponds to a smaller piece of

the original entire project model. The entire project models have to

be split in smaller parts according to some criteria.

• Metamodel concept : it’s the segment granularity at the lowest level

of slicing; in this case an indexable document corresponds to a meta-

model concept. A metamodel concept is an element of the metamodel

of the language used to express the project models. For example, a

metamodel concept for WebML is “area”, while for UML is “class”.

Every indexable document corresponds to a concept in the metamodel.

Every concept contains a reference to its container element and possi-

bly references to other related concepts. The query result is a ranked

list of model concepts, possibly of different types. The user can browse

their related concepts.

Elements to extract from the models The segments from the project

models can hold different information, thus some of them could be not useful

for the purposes of the IR system. Therefore, the designer studies the meta-

model elements, their semantics and significance. After that, he chooses

the most suitable elements that will be indexed. The actual extraction of

the elements that are suitable for indexation is performed in the Segment

Analysis phase (Section 4.1).

For example, if we’re developing a text-based search engine that searches

and retrieves models conforming to a UML class diagram metamodel, the

models may include many information, such as the visibility of the class

members. In this phase, the designer may notice that this information is

not useful for searching purposes and so he may decide to not include it into

the index.

Index structure The index structure defines the way the segments and

their related information are represented as documents into the index. De-

signing the index structure resembles the design of a database schema. An



32 Chapter 4. Approach

index structure consists of one or more fields. The division of the index into

fields allows the user to match different parts of the query string to specific

fields of the index. These types of queries are called multi-field query. The

design dimensions that refer to the index structure affect the Indexing phase

of the approach presented in Section 4.1.

The following list shows the options that can be used to design the index:

• Flat : this is the baseline for a model-driven IR system. The index

structure is single-fielded and stores bags of words in an undifferenti-

ated way. All the elements extracted from the models are put in the

only present field without taking into account the metamodel concept

of that element, the relationships with other elements or its structure.

• Weighted : the index is still single-fielded but this time the terms are

weighted according to their concept. The ranking algorithm will give

an higher significance to terms occurring in more important concepts.

Here we use the words “weight” and “payload” as synonyms. This

kind of solution is the same one adopted in some of the experiments

we have implemented that are discussed in Section 6.2 and Section 6.4.

• Multi-field : the index has several fields which contain terms belong-

ing to different concepts. The index is said to be multi-field and each

field is searchable separately (multi-field query). One can also decide

to assign a specific weight to a field during the Searching process.

The ranking algorithm gives different importance to matches based on

the field where they occur according to the specific similarity measure

adopted by the system. Notice that this kind of weighting is signifi-

cantly different from the terms’ payload discussed in section 6.2 and

6.4. This solution can also be combined with the weighted approach

producing a multi-field weighted index.

• Structured : the structured approach represents the model in a way re-

flecting the hierarchies, associations and relationships among concepts.

The index model can be semi-structured (XML-based) or structured

(e.g. the catalog of a relational database). In this case the query pro-

cessing can use a structured query language (e.g., SQL) coupled with

functions for string matching.

Query type and result visualization issues In the context of model

searching, an IR system can offer different methods for query submission

and result visualization options. Regarding the query submission modal-

ities, in the most basic case, the user can submit a keyword-based query,



4.3. Indexing Strategies 33

providing a set of keywords that the system matches to the indexed doc-

uments. The system then returns a ranked list of documents according to

their relevance with respect to the query. In the document-based search, the

user provides a document (the representation of a project) as query. The

system analyzes the document, extracts the relevant keywords and submits

them as the actual query. In the search by example approach, the user can

provide a model as a query. The model is first analyzed in the same way as

the project in the data source repository by the Processing Pipeline. This

analysis produces a document to be used as a query. Here for document we

mean any representation of the model used for matching, which can be a

bag of words, a feature vector in the Vector Space Model or a graph in a

graph-based searching approach. In the faceted search the user explores the

repository using facets, that typically correspond to the possible values of

an indexed field. Another possibility is to submit an initial query first, and

then filter the results using faceted navigation. The application of facets

refines the results obtained by the query.

Regarding the presentation of query results, there are several ways to

improve the user experience when browsing such list. For example, each

item in the result set can be associated with an informative visualization of

the result (snippet visualization). This informative visualization can be a

transcription of indexed documents in a flattened textual form or a graphi-

cal representation (e.g., for a UML model, one can decide to plot the UML

diagram snippet of the returned result). Another way of improving the user

experience is by highlighting the matched terms into the textual transcrip-

tion of the returned documents.

4.3 Indexing Strategies

When designing a model search engine, there are several combinations of

the design dimensions discussed in Section 4.2 that can be adopted. In

this section we present the configurations of the above dimensions that we

decided to adopt for our experiments.

We tested the following scenarios:

• Experiment A: in this experiment the segmentation granularity is “en-

tire project”; the index structure is almost totally flat (in addition to

the field that contains all the elements of the project, there is only a

field with the project name for visualization purposes). In the following

of this work, the Experiment A will be labeled as Project Granularity,

Flat Index.



34 Chapter 4. Approach

• Experiment B : this experiment involves a smaller segmentation gran-

ularity that corresponds to a metamodel concept; the index structure

is multi-field and the terms are stored without any kind of weighting.

This experiment provides a baseline against which possible strategy

improvements (like the introduction of weights) will be evaluated. In

the following of this work, the Experiment B will be labeled as Concept

Granularity, Multi-Field Index.

• Experiment C : this experiment adopts the same segmentation granu-

larity as of the previous experiment; the index structure is multi-field

and, differently from the previous experiment, the index terms are

weighted according to the metamodel concept which they belong to.

The idea is to assign a different degree of relevance to the different

metamodel concepts depending on their importance. In this way, the

system would rank at higher positions documents in which the matched

terms belong to more relevant concepts. In the following of this work,

the Experiment C will be labeled as Concept Granularity, Multi-Field

Weighted Index.

• Experiment D : in this experiment the segmentation granularity is the

same as in the previous two experiments; the index structure is still

multi-field and the terms are still weighted according to their meta-

model concept; the novelty of this experiment lies in the algorithm

included before the indexing phase. This algorithm first creates a

graph representation of the considered model, using as nodes the ele-

ments corresponding to the selected segmentation granularity and as

edges their respective relationships. Then, each element is enriched

with some information harvested from its neighbours. The idea is to

let the system be able to retrieve not only the elements that match

a search, but also their neighbours. This could allow some usually

overlooked elements to gain importance in the ranking list, thus dis-

covering new solutions. In the following of this work, the Experiment

D will be labeled as Concept Granularity, Multi-Field Weighted Index,

Graph Based.

Case Studies We have implemented two case studies in order to test the

above experiments. The first case study deals with a UML class diagram

repository. In the second one, the repository consists of WebML projects.

We implemented experiments B and C both for the UML and theWebML

case. Experiment A was not developed for the WebML case because it has

already been studied here [18]. We tested the Experiment D only on the



4.3. Indexing Strategies 35

UML repository because the chosen segmentation granularity of the WebML

case along with the structure of the WebML projects make this experiment

unsuitable for that scenario. The details of the implementation of the two

case studies are reported in Chapter 6.





Chapter 5

Implementation

In Section 5.1 we present SMILA, the framework we adopted to develop our

prototype and in Section 5.2 we provide a brief introduction to Solr, that

we adopted as search platform. Section 5.3 describes some implementation

details of the architecture of the text-based prototype we developed, while

Section 5.5 shows the configurator and its user interface.

5.1 SMILA

SMILA is an extensible framework which allows to build search applications

able to access different data sources containing non-structured information.

SMILA provides an essential infrastructure comprised of fundamental com-

ponents and services, which are extendable and exploitable in your own

application. We proceed now to illustrate a brief overview of the behavior

of these components.

5.1.1 Architecture

Figure 5.1 shows the general SMILA architecture. It is possible to divide

this infrastructure in two parts, each corresponding to a different phase of

the data processing. The first phase is called pre-processing (left section

of the diagram) and the second phase is called information retrieval (right

section). In the case of a search application these two phases are commonly

referenced as indexing and search respectively.

Indexing: The indexing phase includes the raw information gathering

from the data source. The gathered information generally includes the

metadata and the content of the documents as well as possibly other se-

curity related information, like access rights.



38 Chapter 5. Implementation

Figure 5.1: SMILA general architecture

This is a summary of the purpose and of the behavior of the main com-

ponents.

• Agent/Crawler : information gathering might be done in two ways,

namely push or pull. The agents work in the push way. An agent is

always active and constantly monitors the data source. It sends an

object of the data source to be elaborated immediately after having

found some differences with respect to the same one present in the

SMILA storage. This is useful in case of dynamic data sources in

which information changes rapidly and/or constantly over time.

Crawlers gather information in the pull manner. A crawler is started

manually and navigates through the data source, sending gathered

info to the system to be processed. Once finished, the crawler stops

and must be restarted manually if needed. This is good for one-time

indexing, when we know that our data will not be subject to changes.

• Storage: this is where the information is stored. SMILA provides

two kinds of storage: the Record Storage which stores metadata and



5.1. SMILA 39

access rights of the documents and the Binary Storage which stores

the binary content of a document. This division is useful because the

binary content is rarely used since indexing operations often use only

metadata. Also, copying binary content of the record in the pipeline is

usually expensive since it is much bigger than the text content. Thus,

this system allows to push in the pipeline only the id and the metadata

necessary to identify the record with the possibility to retrieve the

binary content only if it is really needed.

• Delta Indexing : this module stores information related to the last mod-

ification of every document and is able to determine which documents

have changed since the last time indexing was performed. This im-

proves the performances during the crawling phase because only the

documents that actually need processing are forwarded to the next

parts of the workflow chain.

• Ontology Store: it’s a storage dedicated to the management of ontolo-

gies.

• Blackboard : the Blackboard is an interface between the system services

and the storages. It is an abstraction layer that has the purpose to hide

the persistency technology of the records to the services, so that they

need not to know what persisting technology is used by the system

in order to manipulate the data of the records. Complete record data

is stored only on the blackboard which is not pushed through the

workflow engine itself. Only the ids of the records are pushed through

the workflow. They can then be used to access the record’s data via

the blackboard API.

• Router : After a record has been stored, a message is created. The

router sends this message to a queue.

• Queue: the queue processes the messages sent by the router and acts

as a bridge between the information gathering section and the informa-

tion processing section. The queue is a fundamental component that

increases the scalability of the system. The messages are processed re-

motely and is easy to spread their elaboration on more clusters. The

queue introduces asynchronous execution of the business logic. The

technology used is JMS (Java Message Service). SMILA includes Ac-

tiveMQ as default provider of JMS services.

• Listener : this module draws messages from the queue and starts the

right BPEL workflow depending on the configuration rules. Both the



40 Chapter 5. Implementation

Listener and the Router are configurable using a set of rules which

specify the correct way of dispatching of the messages.

• BPEL Engine: here the user can define whatever workflow he wants

using the BPEL (Business Process Execution Language) format. This

workflow will contain the business logic of the application and will

perform processing operations on the records. According to SMILA

terminology, a workflow is called pipeline and the modules of which it

is composed are called pipelets. A pipelet is a reusable and configurable

component and can be orchestrated like any other BPEL service. This

means that an instance of a pipelet is not shared across more pipelines.

Also, calls to the same pipelet in the same pipeline don’t share the

same instance. An instance can be accessed by multiple threads, so

pipelets need to be developed according to thread-safeness concepts.

Search: The search phase provides access to the previously indexed infor-

mation. This process is synchronous, so it’s necessary to provide an external

component in order to allow load balancing to achieve horizontal scalability.

It is possible to define a workflow executing business logic managed by a

BPEL engine during this phase too.

5.1.2 Data Model

Data in SMILA are represented by a record composed by metadata and at-

tachments. A record can correspond to a document or to whatever resource

destined to be indexed and searched.

Metadata contain Value types organized in Maps (key-value associations)

and Sequences (lists of anything). The Values can be primitive Java types

or Date types. Maps and sequences can be nested arbitrarily. Attachments

can contain binary data (byte arrays).

The elements contained in metadata can be interpreted in various ways:

• Attributes: this is the most common situation in which the record

represents an object of the data source that has to be processed or

retrieved by a search. For example, some typical attributes of a web

page are its URL, its title, and its textual content. So, the attributes

are defined by the specific application domain.

• Parameters: there are some record types for which attributes are not

adequate. For example, in the searching phase, a record doesn’t repre-

sent an object of the data source to process but it represents a search



5.1. SMILA 41

Figure 5.2: SMILA data model

request object. In this case, the record doesn’t contain data of the ob-

ject of the application domain, but it contains the search parameters

needed to configure the request.

• Annotations: it is possible to enrich the information contained in a

record during the processing phase by adding other attributes other

than the ones retrieved during the crawling phase. These new at-

tributes are called annotations.

• System attributes: these are attributes needed by SMILA to coordi-

nate the processing of a record. The name of these attributes begins

with an underscore to discriminate them from the application specific

attributes. System attributes include the record ID, unique for every

processed record. There isn’t a predefined format, so the ID can be

built by any string. All the records must contain also another ID that

represents the data source from which they have been generated (for

example the crawler definition).



42 Chapter 5. Implementation

5.2 Solr

Solr is an open source enterprise search server developed by the Apache

Software Foundation. In addition to the standard ability to return a list

of search results for some query, it has numerous other features such as

result highlighting, faceted navigation, query spell correction and auto-spell

queries. The core technology behind Solr is Apache Lucene, an open source,

high-performance full-text search engine library. Differently from Lucene

that is just a code library, Solr is a search server platform that is easily

configurable with XML configuration files. In order to use Lucene directly,

one should write code to store and query the index.

The major features of Lucene are the following [33]:

• a text-based inverted index persistent storage for efficient retrieval of

documents by indexed terms,

• a rich set of text analyzers to transform a string of text into a series

of tokens, which are the fundamental units indexed and searched,

• a query syntax with a parser and a variety of query types, from a

simple term lookup to exotic fuzzy matches,

• a good scoring algorithm based on Information Retrieval principles to

retrieve the more likely candidate first.

Solr can be described as the “server-ization of Lucene”, that is, Solr makes

easier the use of Lucene search services by its clients. Solr is executed

within a servlet container, such as Apache Tomcat. Clients communicate

with Solr by means of HTTP requests. Solr follows the Representational

State Transfer (REST) paradigm. The server and schema properties are

configured by XML files. Here is the major feature-set in Solr:

• HTTP request processing for indexing and querying documents,

• configuration files for the schema and the server itself through XML,

• Lucene’s text analysis library is configurable through XML,

• notion of field type.

The Solr HTTP interface has two main access points: the update URL

for index management and the select URL for query submission. An in-

dex is structured in fields, each entry in the index is a document. Adding

new documents to the index is done through a HTTP request using the



5.2. Solr 43

POST method. The request body includes the XML representation of the

document as index fields. Each document has a unique identifier which is

specified in the XML representation using a special field. Documents can

potentially be of any type like XML, CSV or “rich documents” such as Word

files. It is also possible to define special routines in order to import data

with complex structures from relational databases. Moreover, any client

able to submit HTTP requests can communicate with the Solr server. As

soon as the indexing is completed, it is possible to issue a new HTTP request

pointing to the select URL to submit a query to the index.

In Figure 5.3 you can see a diagram summing up all the possible inputs

and outputs managed by Solr and its general index composition.

Figure 5.3: Diagram summing up all the possible inputs and outputs and the compo-

sition of a Solr index.

The stages to develop a search engine with Solr are essentially three:

• schema design: maps the original schema of the considered data into a

Solr index, which is necessarily flat (one could face the task of mapping

a relational database into a Solr index),

• schema definition: configures the schema.xml configuration file where

the index elements are defined; this file includes the definitions of the

fields and of the field types,

• text analysis configuration: configures the way the text is analyzed

and processed (for example, tokenization and normalization) before

indexing; this configuration influences the document retrieval.



44 Chapter 5. Implementation

The following sections explain in more detail some fundamental features

of Solr usage: Section 5.2.1 introduces the concept of field and field type

in index design, Section 5.2.2 is about the most important text analysis

operations; then Section 5.2.3 provides more details concerning the possible

queries for searching the index, the Solr response to queries and factors

influencing the score of retrieved documents.

5.2.1 Design and Index Definition

A database and a search index have several conceptual differences. An index

is like a very big relational table from a database, but has no support for

relational queries (joins). Other differences are:

• in an index the search is done by term and not only by substring

matching; this means that it is possible to find different forms of the

same words,

• Solr, and more generally every search engine, can retrieve a list of

ordered results according to a certain measure of relevance with respect

to a given generic query instead of an unordered set of documents

obtained by a very specific structured request.

Another important factor to keep in mind when designing a schema index

is that every possible data needed to retrieve a certain document must be

present in the document representation itself, as it is not possible to use

relational queries.

When the index design is done, the next task is defining the actual

schema. The first thing to do is defining field types. A field type is a data

type that can be used in the index. A field type declares its type (boolean,

number, date, etc.), has a unique name and it is implemented by a Java class.

Next, the fields are defined. A field is the atomic cell where data coming

from documents is saved. Each field has a unique name, a type chosen

among the field types, plus other optional configurations. Field values may

be “stored” or “indexed”. A stored field can be retrieved during search and

then visualized but it is not searchable; an indexed field is searchable and its

content is not retrievable for displaying. There is the opportunity to have

a field that is indexed but not stored or vice versa, or a field that is both

indexed and stored.



5.2. Solr 45

5.2.2 Text Analysis

Text analysis covers the most important techniques for text processing used

on raw data in input: tokenization, case normalization, stemming, syn-

onyms, etc. The goal of this stage is to analyze the text and transform it in

a sequence of terms. A term is the core atomic unit saved into a field of a

Solr index. Terms are what Solr searches at query time.

Thanks to Solr and its configurable infrastructure, the text analysis con-

figuration is straightforward. Each field type has two analysis chains at-

tached, each of them defines an ordered sequence of analysis steps that

convert the original text in a sequence of terms. There is a sequence of

analysis steps for the indexing phase and another one only for queries. Each

step has an associated analyzer. There are several types of analyzer that

perform a lot of different processing tasks: they tokenize the text, filter to-

kens, add terms and modify terms. The first analyzer of an analysis chain

is always a tokenizer ; its job is to divide the original text in tokens using a

simple algorithm (for example, it generates a new token every white space).

A token is the smallest unit which is matched to a query during search.

After the tokenizer, the remaining analyzers are defined as filters, and their

job is to further transform the tokens. the actual transformation performed

depend on the application and are at the designer’s discretion. In general,

an analyzer is a TokenStream factory, which iterates over tokens. The input

is always a character stream.

In Figure 5.4 you can see a diagram depicting some of the analyzers

offered by Solr and their hierarchical organization.

5.2.3 Documents Search

After the indexing phase, it is possible to submit queries to the index. Solr

has a very useful and easy to use web-based interface. There are several

parameters to better define the queries; here we list only some of them:

• q : the query string provided in input by the user,

• q.op: specifies whether all or just one term in the query should be

present in the document so that it can be retrieved,

• df : specifies the default search field.

It is possible to use the classical boolean operators AND, OR and NOT,

specify sub-expressions, search in a specific field, perform a phrase query

(a set of terms to be found all together into documents) or using the score



46 Chapter 5. Implementation

Figure 5.4: Hierarchical organization of Solr analyzers.

boosting that modifies the degree to which a term contributes to the final

score of a document. After submitting the query, Solr returns as output a

XML document containing the list of retrieved documents and their score. It

is also possible to highlight the searched terms among the returned results.

The query processing and parsing in Solr is done through request han-

dlers. A request handler performs the search and allows to configure the

search parameters and to register some additional components, such as high-

lighting.

Another important aspect concerns how Lucene and Solr compute the

score of a document with respect to a query. Lucene combines the Boolean

model (BM) with the Vector Space Model (VSM): the documents “ap-

proved” by the BM are scored by the VSM. In the VSM, documents and

queries are represented as weighted vectors in a multi-dimensional space,

where each term of the whole vocabulary is a dimension (an axis), and

weights are Tf-idf values. The VSM score of a document d for a query q is

obtained through the Cosine Similarity of the weighted query vectors V(q)

and V(d):

CosineSimilarity(q, d) = V (q)·V (d)
|V (q)||V (d)|

Where V (q)·V (d) is the dot product of the weighted vectors, and |V (q)| and |V (d)|

are their Euclidean norms. Lucene refines this formula in a simplified way



5.3. Prototype Architecture 47

as terms and documents are fielded. The practical scoring function used by

Lucene is the following one:

score(q, d) = coord(q, d)× queryNorm(q)×
∑

t∈q

(tf(t ∈ d)× idf(t)2×norm(t, d))

where,

• coord(q, d), is a score factor based on how many terms of the query q

are found in the given document d. A document that contains more

query terms will receive a higher score than a document containing

fewer query terms,

• queryNorm(q), is a normalizing factor used to make scores between

queries comparable. This factor does not affect document ranking,

since all ranked documents are multiplied by the same factor, but

rather just attempts to make scores from different queries comparable,

• tf(t ∈ d) is the term’s frequency, defined as the number of times t ap-

pears in the currently scored document d. This means that documents

that have more occurrences of a given term receive a higher score. The

default computation for tf(t ∈ d) is frequency
2 ,

• idf(t) stands for Inverse Document Frequency. This value represents

the inverse of docFreq (the number of documents in which the term t

appears). This means that rarer terms give higher contribution to the

total score. The default computation is: 1 + log( numDocs
docFreq+1)

• norm(t, d), the shorter the matching field is (measured in number of

indexed terms), the greater the matching document’s score will be.

5.3 Prototype Architecture

The architecture of our prototype follows closely the one of the SMILA

framework with only a couple of differences. The first difference is that we

use Apache Solr as an external service to index and search documents while

SMILA uses by default a Lucene distribution already included inside it. In

this way, we can exploit the services offered by the more advanced interface

of Solr which Lucene lacks. For example, Solr exposes many services and

analyzers which are already implemented and easily configurable, while using

Lucene would require to implement the routines manually. Calls to Solr are

performed via HTTP requests. The other difference is actually a new feature



48 Chapter 5. Implementation

we added in order to make the configuration of the various components of the

operation chain more straightforward to new users. Each component has its

own configuration file, but these files are scattered among many directories

and locating the one you need is quite disorienting at first. So, we provide a

graphical configurator where all the important files are comfortably grouped

and accessible by pressing a button. We describe this interface in more detail

in Section 5.5.

5.3.1 Indexing part

In Figure 5.5 you can see the chain of operations of the indexing phase in-

cluding every step followed by the data from crawling to indexing. Every

component, with the exception of the crawler and of the pipelets that de-

termine the business logic of the process, is already provided by the SMILA

framework. Each of these components is configurable by an XML file or, in

the case of the pipeline, by a BPEL file. The BPEL file determines the order

in which the various pipelets are called, as well as the configuration of every

single one of them. We will explain the details of the internal workings of

the content processing pipelines in Chapter 6, as they are different for each

experiment.

5.3.2 Query part

The query part of the prototype starts with a servlet. For the UML case,

the queries and their relative parameters can be inserted directly by the

user through a form which sends them directly to Solr. The Solr response is

then parsed and redirected to a JSP presentation page. This page shows the

first ten results along with their score for each one of the four experiments.

Comparison is aided by a system that highlights the same element among

different experiments. For example, if I move the mouse over a class in the

Experiment B result list and that same class is present at any location of

Experiment C and D lists, all of those classes are highlighted. Clicking on

one returned result triggers the visualization of its detailed content as well

as its detailed scoring information. That same click also triggers the display

of a small graphical snippet of a graph developed in HTML5. The graph

portrays the selected element surrounded by its neighbours as they are in

the original UML model. This helps to give context to the returned result

since a user can see not only which elements are connected to the one of

interest, but also which is their relationship.

The WebML case starts with a servlet and a form too, but instead of

entering the keywords directly, the user specifies the path of a model to



5.4. Configuration Files 49

be used as query. This model has been previously created by the user and

must conform to the WebML metamodel. The model then enters a BPEL

pipeline where it is subjected to the same WebML-to-XMI translation of the

indexing phase. Then, the “name” attributes of the elements of this model

are extracted to be sent to Solr as a textual query. The output is redirected

to a JSP presentation page with the same behaviour of the one of the UML

case except for the graph snippet. The architecture of the search phase with

respect to the WebML case can be seen in Figure 5.6. As stated before, in

the UML search case the structure is simpler. The keywords are entered

directly by the user and there is no need to perform further analysis besides

the ones already specified in Solr.

5.4 Configuration Files

BPEL The BPEL file specifies the chain of operations of the various con-

figurations and experiments. We report below a fragment of such file ex-

tracted from the pipeline of WebML Experiment C (Area granularity, Multi-

Field Weighted Index), specifying an activity to be performed:

<ex t en s i onAc t i v i t y>

<p ro c : i nvok eP ip e l e t name=” invokeAna lyz e rSubs t i tu t i onP ipe l e t ”>

<p r o c : p i p e l e t c l a s s=” i t . po l imi . mdir . webml . p i p e l e t .

Ana ly z e rSubs t i tu t i onP ipe l e t ” />

<p r o c : v a r i a b l e s input=” reques t ” />

<p r o c : c o n f i g u r a t i o n>

<r e c :Va l key=”coreName”>webml C</ r e c :Va l>

<r e c :Va l key=” f i e ldType ”>c on t en t ana l y s i s</ r e c :Va l>

</ p r o c : c o n f i g u r a t i o n>

</ p r o c : i nvok eP ip e l e t>

</ ex t en s i onAc t i v i t y>

This is an example of an invoke activity. The proc:invokePipelet tag spec-

ifies the name of this activity, while the proc:pipelet tag specifies the pipelet

to be called. proc:variables indicates the name of the workflow variable

where the SMILA records are located. After that, inside the proc:configuration

tag it is possible to specify the name and the value of some configuration

variables specific to this activity. These variables will take the form of a

SMILA record and are read using its conventions.

You can see the graphical representation of the whole pipeline from which

this activity was extracted in Figure 5.7 as it is displayed by the Eclipse

BPEL Designer, a tool that can be used to graphically design pipelines.



50 Chapter 5. Implementation

Case-specific configuration files These files configure variables and set-

tings specific to one of the two case studies. It takes the form of a simple

Java properties file. The example below depicts the one for the WebML case

study. Each entry is explained by the commented lines that begin with “#”.

#Path where to f i nd the WebML p r o j e c t s ( parent f o l d e r )

WEBMLPATH=C:/WebML models 012/

#Path where to put the . xmi f i l e s in output .

OUTPUTPATH=../ i t . po l imi . mdir . webml/output /

#Path where the WebML que r i e s are l o ca t ed ( parent f o l d e r )

WEBMLQUERYPATH=../ webmlQueries /

#−−−−−−−−−−−−−−−−−−−−−#

#Weights c on f i g u r a t i o n#

#−−−−−−−−−−−−−−−−−−−−−#

#weightmap

s i t e v i ew =1.3

area=1.2

page=1.1

un i t =1.0

l i n k =0.8

5.5 Configurator and user interface

The user interface is built to be the central access point for all the major

configuration files of both prototypes. As showed in Figure 5.8, the main

window is divided in four tabs, each one representing a configurable section

of the prototype. Each tab contains some buttons that allow to open the

configuration files in a text editor. The sections and the configuration files

that can be opened, for each tab, are listed as follows:

• SMILA: contains the main files to configure the SMILA framework.

These files include the Listener/Router configuration and the processor

properties.

• UML: includes files to configure the UML crawler, the UML experi-

ments properties (like which weights to assign to the various concepts)

and the UML pipeline.

• WebML: contains files needed to configure the WebML experiments

and the WebML pipelines.



5.5. Configurator and user interface 51

• Solr: contains links to the schema.xml files for each of the experiments

as well as a link to the solr.xml file.

The user can access a brief help text by clicking the “Info” button found

next to the listed files. A message will popup explaining the purpose of the

file (see Figure 5.9). This is just meant as a reminder of the functionalities

of such file and doesn’t substitute the complete documentation.

Finally, by clicking the “Open file” button, the corresponding file will be

opened using the text editor of choice. Windows Notepad is used by default,

but it can be changed by specifying the path to the executable of another

text editor in the user interface’s “configuration.properties” file.



52 Chapter 5. Implementation

Figure 5.5: The diagram of the architecture of the prototype showing the chain of

operations of the indexing phase.



5.5. Configurator and user interface 53

Figure 5.6: Chain of operations of the search phase in the WebML case.



54 Chapter 5. Implementation

Figure 5.7: The pipeline of the Experiment C for WebML displayed by the Eclipse BPEL

Designer.



5.5. Configurator and user interface 55

Figure 5.8: Screenshot depicting the SMILA tab of the configurator.

Figure 5.9: Screenshot of the help text of the processor.properties Info button.





Chapter 6

Case Studies

This chapter discusses the case studies of the Model-Driven Information

Retrieval System prototype. The case studies we developed consist of two

model-based search engines: the first one searches models or model frag-

ments that belong to a repository of UML class diagrams; the second one

searches model fragments that belong to a repository of WebML projects.

Each case study involves several experiments including different indexing

strategies, as explained in Section 4.3.

The outline of this chapter is organized as follows. In Section 6.1 we

describe the dataset of UML projects, while in Section 6.2 we discuss the

case study of our Model-Driven Information Retrieval System for that spe-

cific repository of projects. In Section 6.3 we describe the WebML projects

dataset and in Section 6.4 we discuss the case study that involves the search

of such projects. Each case study adopts different experiments that in turn

include different indexing strategies. The UML Case has four experiments:

A, B, C, D. The WebML Case has two experiments: B and C. The WebML

experiments B and C have the same labels as the experiments B and C of

UML because these experiments are very similar.

As discussed in Section 4.3, each experiments involves various indexing

strategies. In the Experiment A, the segmentation granularity is “entire

project” and the index structure is almost totally flat. The Experiment

B involves a smaller segmentation granularity that corresponds to a meta-

model concept, the index structure is multi-field and the terms are stored

without any kind of weighting. The Experiment C adopts the same seg-

mentation granularity as of the previous experiment, the index structure is

multi-field and, differently from the previous experiment, the index terms

are weighted according to the metamodel concept which they belong to. In

the Experiment D the segmentation granularity is the same as in the pre-



58 Chapter 6. Case Studies

vious two experiments, the index structure is still multi-field and the terms

are still weighted according to their metamodel concept. The novelty of this

experiment lies in the algorithm included before the indexing phase. This al-

gorithm first creates a graph representation of the considered model, using as

nodes the elements corresponding to the selected segmentation granularity

and as edges their respective relationships. Then, each element is enriched

with some information harvested from its neighbours.

The WebML case chain of operations consists of two parts. The first one

performs a set of operations which is common between text-based search

and content-based search. After that, the chain splits splits in two different

flows of operation according to the type of search. This work only discusses

the text-based search chain. A previous work [21] has already faced the

problem of content-based search with the WebML dataset using graph-based

techniques and can be an example of operations chain for the content-based

part.

6.1 UML Dataset

The UML dataset consists of class diagrams, the most important type of di-

agrams when designing a new application. These diagrams are very diffused

because they can describe both conceptual characteristics of an application

and specific modeling details which can be directly translated into program-

ming code.

The dataset is saved in XMI format (XML Metadata Interchange). This

format is a standard from Object Management Group (OMG) used for the

exchange of metadata through XML. It can be potentially used for every

kind of artifact whose metamodel can be fit into Meta-Object Facility (MOF)

structure. However, the most usual use case is the exchange of UML models.

The dataset consists of metamodels coming from the AtlanMod zoos, a

research team in common between INRIA (Institut National de Recherche

en Informatique et en Automatique) and LINA (Laboratoire d’Informatique

de Nantes Atlantique). It is composed by a total of 301 models expressed

in UML 2.1 conforming to the Ecore metamodel from Eclipse Modeling

Framework (EMF). These models are actually metamodels (for example the

metamodel of HTML 1.0), but since a metamodel is still a model all the

hypotheses made in this document are still valid.

In Figure 6.1 you can see an example of UML project model from the

dataset discussed above. The example in Figure 6.1 shows a project model

named “MSProject” with two packages. The only significant package is the



6.1. UML Dataset 59

Figure 6.1: An example of UML project model from AtlanMod zoos dataset.

one with the same name of the project. This package contains three classes

connected by two relations.

The code below shows the XML representation of the model in Fig-

ure 6.1.

< . . .

<packagedElement xmi:type=”uml:Package” xmi : id=”

e6BjkeiaEd6gMtZRCjS81g” name=”MSProject”>

<packagedElement xmi:type=” uml :Assoc i a t i on ” xmi : id=”

e6BjmeiaEd6gMtZRCjS81g” name=”A MSProject Task”

memberEnd=” e6BjmOiaEd6gMtZRCjS81g

e6BjmuiaEd6gMtZRCjS81g”>

<ownedEnd xmi : id=” e6BjmuiaEd6gMtZRCjS81g” name=”” type=”

e6Bjk−iaEd6gMtZRCjS81g” isUnique=” f a l s e ” a s s o c i a t i o n=”

e6BjmeiaEd6gMtZRCjS81g”>

<upperValue xmi:type=” uml :L i t e ra lUn l imi t edNatura l ”

xmi : id=” e6CKpeiaEd6gMtZRCjS81g” value=”1”/>

<lowerValue xmi:type=” um l :L i t e r a l I n t e g e r ” xmi : id=”

e6CKpuiaEd6gMtZRCjS81g” value=”1”/>



60 Chapter 6. Case Studies

</ownedEnd>

</packagedElement>

<packagedElement xmi:type=” uml :Assoc i a t i on ” xmi : id=”

e6BjnOiaEd6gMtZRCjS81g” name=”A Task Task” memberEnd=”

e6Bjm−iaEd6gMtZRCjS81g e6CKoOiaEd6gMtZRCjS81g”>

<ownedEnd xmi : id=” e6CKoOiaEd6gMtZRCjS81g” name=”” type=”

e6BjleiaEd6gMtZRCjS81g” isUnique=” f a l s e ” a s s o c i a t i o n=”

e6BjnOiaEd6gMtZRCjS81g”>

<upperValue xmi:type=” uml :L i t e ra lUn l imi t edNatura l ”

xmi : id=” e6CKqeiaEd6gMtZRCjS81g” value=”1”/>

<lowerValue xmi:type=” um l :L i t e r a l I n t e g e r ” xmi : id=”

e6CKquiaEd6gMtZRCjS81g” value=”1”/>

</ownedEnd>

</packagedElement>

<packagedElement xmi:type=”uml :Class ” xmi : id=” e6Bjk−

iaEd6gMtZRCjS81g” name=”MSProject”>

<ownedAttribute xmi : id=” e6BjmOiaEd6gMtZRCjS81g” name=”

ta sk s ” type=” e6BjleiaEd6gMtZRCjS81g” isUnique=” f a l s e ”

aggregat i on=” composite ” a s s o c i a t i o n=”

e6BjmeiaEd6gMtZRCjS81g”>

<upperValue xmi:type=” uml :L i t e ra lUn l imi t edNatura l ”

xmi : id=” e6CKo−iaEd6gMtZRCjS81g” value=”∗”/>

<lowerValue xmi:type=” um l :L i t e r a l I n t e g e r ” xmi : id=”

e6CKpOiaEd6gMtZRCjS81g” value=”1”/>

</ownedAttribute>

</packagedElement>

<packagedElement xmi:type=”uml :Class ” xmi : id=”

e6BjlOiaEd6gMtZRCjS81g” name=”NamedElement” i sAbs t r a c t=”

true ”>

<ownedAttribute xmi : id=” e6BjluiaEd6gMtZRCjS81g” name=”

name” type=” e6CKoeiaEd6gMtZRCjS81g” isUnique=” f a l s e ”/>

</packagedElement>

<packagedElement xmi:type=”uml :Class ” xmi : id=”

e6BjleiaEd6gMtZRCjS81g” name=”Task”>

<g e n e r a l i z a t i o n xmi : id=” e6CKouiaEd6gMtZRCjS81g” gene ra l=”

e6BjlOiaEd6gMtZRCjS81g”/>

<ownedAttribute xmi : id=” e6Bj l−iaEd6gMtZRCjS81g” name=”UID

” type=” e6CKoeiaEd6gMtZRCjS81g” isUnique=” f a l s e ”/>

<ownedAttribute xmi : id=” e6Bjm−iaEd6gMtZRCjS81g” name=”

pr ede c e s s o r s ” type=” e6BjleiaEd6gMtZRCjS81g” isUnique=”

f a l s e ” a s s o c i a t i o n=” e6BjnOiaEd6gMtZRCjS81g”>

<upperValue xmi:type=” uml :L i t e ra lUn l imi t edNatura l ”

xmi : id=” e6CKp−iaEd6gMtZRCjS81g” value=”∗”/>

<lowerValue xmi:type=” um l :L i t e r a l I n t e g e r ” xmi : id=”

e6CKqOiaEd6gMtZRCjS81g”/>

</ownedAttribute>

</packagedElement>

</packagedElement>

<packagedElement xmi:type=”uml:Package” xmi : id=”



6.1. UML Dataset 61

e6BjkuiaEd6gMtZRCjS81g” name=”Primit iveTypes ”>

<packagedElement xmi:type=”uml:Primit iveType ” xmi : id=”

e6CKoeiaEd6gMtZRCjS81g” name=” St r ing ”/>

</packagedElement>

</uml:Model>

As you can see in the code above, each class is represented by a pack-

agedElement element with type attribute uml:Class. The packagedElement

elements that represent classes are saved inside other packagedElement whose

type attribute is set to uml:Package. Class attributes are put in ownedAt-

tribute elements saved as children of the class they belong to. This dataset

contains three kinds of UML relationships: association, composition and

generalization. These three relationships are treated as simple attributes

and they are saved as children of the class they belong to: generalizations

are saved within a specific element generalization, associations and composi-

tions are inside ownedAttribute elements (compositions has the aggregation

attribute set to composite). The information about the referenced class is

saved in the type attribute inside the ownedAttribute element. The cardinal-

ities of the relationships that have the direction specified into the model are

saved directly as children of the ownedAttribute representing the relation-

ship, while the cardinalities in the opposite direction are saved as children

of a different packagedElement with type attribute set to uml:Association.

For example the classes MSProject and Task are connected through the

association tasks (starting from the class MSProject to class Task). The

association is saved in the class MSProject (the starting class). The upper

cardinality is “*” (many) and lower cardinality is “1” (a project can have

from one to many tasks to be performed). The cardinalities in the opposite

direction are saved at the beginning of the XML code within a different

packagedElement. The relationship in the opposite direction references the

association attribute saved into the packagedElement that represents the

class owning the relationship through the xmi:id attribute. In the example

above, the opposite cardinalities (upper value and lower value) are both “1”

(a task can belong to only one project).

In Figure 6.2 you can see an histogram showing the distribution of the

number of classes into the UML projects dataset.

The histogram points out the following information:

• 272 diagrams have less then 100 classes,

• 22 have a number of classes between 100 and 400,

• 7 diagrams have more than 400 classes (the maximum number of

classes for a diagram is 700).



62 Chapter 6. Case Studies

Figure 6.2: Histogram that shows the distribution of the number of classes into the

UML projects dataset.

The dataset has an important limitation: the average dimension of the

projects is quite small, while only a small number of projects is huge. An-

other drawback is that, as it often happens in UML modeling, classes are

organized in packages, but most of the diagrams from this dataset have only

2 packages, with just 46 diagrams having more than that. Moreover, among

the diagrams with 2 packages, most of them contain one package which is

not significant as it contains only data types classes.

Figure 6.3 depicts the frequency distribution of terms of the UML dataset

(301 models). We show the distribution up to the first two hundred terms.

As the figure suggests, the distribution of terms approximates a power-

law function and, therefore, it follows the Zipf’s law.

For the purpose of the tests of the UML case study, we used 84 models

out of the total of 301 models available in the dataset.

6.2 UML Case

The first implementation experience deals with the indexing and searching

of UML projects. As explained before (Section 3.3) the dataset of the UML

case consists of UML class diagrams that describe several metamodels. We

have designed and implemented four experiments with different types of

operations each. The initial crawled item is always a UML project. The list

of experiments is presented as follows:



6.2. UML Case 63

Figure 6.3: The frequency distribution of terms of the UML dataset.



64 Chapter 6. Case Studies

• Experiment A: this experiment is the simplest one. The granularity

is “project”, which means that the returned documents are projects.

The Solr index we obtain after the SMILA pipeline for this experiment

is very basic: the project id, the project name and one single “content”

field that contains every project element (class names and attributes).

• Experiment B : this experiment uses granularity “class”. This means

that the retrieved documents are classes belonging to a certain project.

The Solr index fields we obtain are the following ones: the id and the

name of the project to which the class belongs, the class id, the class

name and the attribute names.

• Experiment C : this experiment uses the same granularity and the same

index structure of Experiment B. The difference in this experiment is

that we add payloads to each indexed term so that the searched classes

receive different relevance according to the UML concept they refer to

(simple attribute, composition, association, class and project).

• Experiment D : the granularity of this experiment is still “class”. The

experiment involves an algorithm that for each class imports elements

of its neighboring classes. This is accomplished by transforming the

initial UML class diagram project into a graph where nodes represent

classes and edges represent relation between classes (e.g. generaliza-

tion between a parent class and a child class). The payloads of the

imported elements are penalized during the import according to the

type of the followed edge (relation) and to the distance in number of

hops with respect to the currently processed class.

After the crawling phase performed by our custom implementation of

a SMILA crawler, one SMILA record still represents an entire project and

contains the following metadata elements that, if not differently specified,

are extracted directly from the XML representation of the UML project:

• Project name: the file name of the XML representation of the crawled

project minus the file extension.

• Project id : the id of the project.

• Class names: a list of the class names of the current project.

• Class ids: a list of the class ids of the current project. These class ids

are in pairs with the Class names explained above.



6.2. UML Case 65

• Attribute names: a list of all attribute names of the current project.

The attributes are stored in a way that keeps some information about

the attributes: in the same string of the attribute are saved the class

id to which the attribute belongs and the relation type expressed by

that attribute. The relation type can be simple attribute, association

and composition. In case of association and composition we also save

the information about the cardinalities of the relationships.

Next, the SMILA record enters the Add Pipeline which is the BPEL pipeline

that processes records. There is a different Add Pipeline for each experiment,

but every Add Pipeline ends with an indexing pipelet which analyzes and

indexes new documents to Solr. Since the types of analysis and the indexing

pipelet are the same for the four experiments, we discuss them separately

at the end of this section, while in the other paragraphs we describe with

further details the specific operations of each experiment, providing some

examples.

Experiment A This experiment involves two pipelets. The first one sim-

ply gets the crawled projects in the form of records from the SMILA crawler

and scraps the non-relevant information for this experiment. This means

that the information regarding the relation type and the cardinalities is not

preserved. After this first pipelet a record just contains three metadata el-

ements: the project id, the project name and the content, which contains

class names and attributes in an undifferentiated manner.

The second pipelet is the Solr Indexer Pipelet that is described in the

last paragraph. In this experiment the index is the most simple one. It is

very close to a single-fielded index: each document in the index represents

a UML project model and has three fields: project id, project name and

content. The last field contains all the attribute names and class names of

that project. The project name field is copied into the content field, since

we want a single searchable field. In this way, one could also search for a

project name. Users have also the possibility to submit a multi-field query

specifying different query terms for the project name field and the content

field.

Experiment B This experiment involves two pipelets, too. Since this

experiment uses “class” granularity, the main task is to segment the initial

record representing an entire project into several records representing the

classes belonging to that project. Basically this is done by creating a new

record for each class of a given project. The id of this record is the id of



66 Chapter 6. Case Studies

the class extracted from the XML representation of the project model. The

record also has other fields such as the class name, the attribute names of

that class, the project name and the project id to which the class belongs

to. This experiment doesn’t use the information about the types of relation

and the cardinalities, so they are discarded.

The second pipelet, that is also the last one, as usual, is the Solr Indexer

Pipelet that is described at the end of this section in the last paragraph.

The index for this experiment is more complex than the previous one. Each

indexed document represents a class with the following fields: the project

id to which the class belongs to, the project name, the class id, the class

name, the attribute names. There is also an additional field, the content

field, that contains a copy of all the other searchable fields (except the ids,

which are not copied there). Also in this case, it is possible to let the user

submit a multi-field query, so that he can specify project name, class name

or attribute names separately.

Experiment C The pipeline of this experiment, which you can see in

Figure 6.4, involves four pipelets.

Figure 6.4: The pipeline of the UML case Experiment C.

In this experiment, the first pipelet, Split Pipelet, is very similar to the first

pipelet of the previous Experiment B. The difference is that the information

about relations types and cardinalities is preserved.

The second pipelet, Payload Adder Pipelet, uses the information about

relation types and cardinalities to assign different payloads to terms accord-

ing to those information. For example, we can give a higher payload to a

term referring to a class name and a lower one to a term referring to a simple

attribute. This operation is performed to obtain the following behavior: if

there are two classes, let’s say class A and class B, where class A contains



6.2. UML Case 67

the term “java” as class name and class B contains it as a simple attribute,

then, in case of a query string containing the term “java”, we want the class

A ranked in a higher position than class B. This behavior is achieved by

assigning payloads as described above. There are no specific or standard

rules to assign payloads to the UML elements and some tuning to adjust

the payloads according to the obtained rankings is needed. The payloads we

used are determined following simple reasonings: we give a higher payloads

to those UML elements that in a sense are more important than others. For

example, it makes sense to give an higher payload to a term representing a

class name than to a term representing an attribute because the class name

is supposed to better describe the general concept of that class while an

attribute is too specific. To let Solr understand that a term has a certain

payload, one has to add the payload information directly in the token string

before analysis and indexing. For example, one can include payload infor-

mation by marking up the tokens with a special character followed by the

payload value: “java|2.0” means that the token “java” has a payload value

of “2.0”. Then, a special Solr analyzer, the DelimitedPayloadTokenFilter,

interprets in the right way the sequence of characters composed by the to-

ken string itself and the payload information. In Solr, payloads are byte

arrays optionally stored with every term on a field. However, Solr has a

particular issue in payloads “propagation”. The payloads are applied only

to the original word that is indexed and the WordDelimiterFilter (the ana-

lyzer that splits words into subwords according to some user defined rules,

like splitting on case transitions) doesn’t apply the payloads to the tokens

it generates. For example, let’s say that the string containing the attribute

names of a class is the following one: “javaAttribute|1.0”. The Delimited-

PayloadTokenFilter applies the payload to the word “javaAttribute”. When

the WordDelimiterFilter is called, it doesn’t propagate the payloads to the

generated subwords “java” and “attribute”. It is evident that the payload

information gets lost for the generated subwords. This problem is solved by

the following pipelets.

The third pipelet, Analyzer and Payload Substitution Pipelet, does the

following operations:

1. Takes from the record the SMILA metadata elements that should be

analyzed. These metadata elements, for example the string of at-

tribute names of a class, contain words that already have the payload

attached, such as “firstName|1.0 NewEmployee|2.0” and they are not

yet analyzed.

2. Extracts and saves temporarily the payload for each word contained



68 Chapter 6. Case Studies

in the metadata element.

3. Calls the Solr analyzers for each metadata elements and performs the

analysis (the original words are preserved).

4. Parses the Solr analyzers output (that is expressed in XML) extracting

the single subwords derived from the analysis. Then it “propagates”

the previously saved payloads by attaching them to the subwords and

saves them back to their original SMILA metadata field.

The string at the end of this pipelet looks like this: “first|1.0 name|1.0

new|2.0 employee|2.0”.

The fourth pipelet is the last one and it is the same Solr Indexer Pipelet

as in the previous two experiments, the difference lies in the type of analysis

performed. Since most of the analysis have been already done in the previous

pipelet, here the words are processed only by the WhiteSpaceTokenizer to

split the words on white space and by the DelimitedPayloadTokenFilter to

take into account payloads. This pipelet ends the Experiment C by indexing

to Solr the tokens eventually obtained. The index for this experiment is

exactly the same of Experiment B index. The difference is that the terms

are weighted through payloads.

Experiment D The Experiment D is deeply different from the previous

three experiments. The idea is to import, for each class, the elements of

the neighboring classes. This kind of processing can lead to a better recall

when trying to search for a class. In Figure 6.5 you can see an example of

UML project model named BQL from the dataset of UML class diagrams.

A user looking for the class “Entry” could also be interested in retrieving

the father class “/LocatedElement/” using the query string “entry location”

(AND query). An Experiment without elements importation, would have

no results. In this experiment, the class “Entry” imports the elements of

the neighboring classes, among which there is also the class “/LocatedEle-

ment/”. The class “/LocatedElement/” imports the class name of the class

“Entry” too. This means that, at the end of the algorithm, the document

representation of the class “Entry” contains, besides their own elements, also

the attribute names of the class “/LocatedElement/” and the class “/Lo-

catedElement/” contains also the class name of “Entry”. Therefore, both

the classes are part of the ranked list as result of the previously mentioned

query.

As already explained before, in this Experiment, we import the elements

of the neighboring classes for each class. The payload of the imported ele-



6.2. UML Case 69

Figure 6.5: An example of UML project model diagram from the dataset to explain

Experiment D purposes. A query string like “entry location” (AND query) without the

importation algorithm would produce no results. The algorithm of Experiment D allows

to retrieve both classes “/LocatedElement/” and “Entry”.

ments is properly penalized according to the relation type. For neighboring

classes of a class X, we mean all the classes connected to X through a re-

lation (association, generalization, composition). In Figure 6.6 you can see

a diagram showing the pipeline for this experiment. The crawling phase is

the same as in the previous experiments B and C, the source consists of the

UML project models in XMI format. After this step a SMILA record still

represents an entire UML project. Next, the SMILA Processing Pipeline for

Experiment D starts.

The Translate XMI to GraphML pipelet translates the original UML

project model represented as an XMI document into GraphML representa-

tion. GraphML is a format to describe graphs. It consists of a language core

to describe the structural properties of a graph. Here we use a format to

describe graphs to ease the navigation algorithm. The pipelet performs the

translation and saves the GraphML files to disk. Our translation from XMI



70 Chapter 6. Case Studies

Figure 6.6: The pipeline of the UML case Experiment D.

to GraphML is straightforward. Each class is represented by a node in the

graph, and the relation among classes are represented by typed edges. Since

the XMI representation only stores the relationships in one way, we added

to the GraphML representation the edges in the opposite way. This rep-

resentation also stores the relation type as an edge attribute and, possibly,

relation cardinalities.

The Create Graph Pipelet creates an instance of a graph in memory.

Given a record representing a project, this pipelet creates its graph with

JUNG starting from the GraphML specification. JUNG (the Java Universal

Network/Graph Framework) is a software library that provides a common



6.2. UML Case 71

and extendible language for the modeling, analysis and visualization of data

that can be represented as a graph or network. The JUNG graph instance

created in this way is serialized to memory.

Since the granularity of the segmentation of this experiment is “class”,

the Segmentation pipelet splits the original record representing an entire

project into several records representing classes, deserializes the JUNG graph

instance and starts the navigation and import algorithm. For each class,

there is a different run of this algorithm.

The Graph Navigation starts the navigation of the current class. Classes

navigation and elements import are decoupled so that they can be man-

aged separately. The importation of the elements from neighboring classes

is considered as the business logic of the classes navigation. The naviga-

tion algorithm visits recursively the nodes and its neighbors. The algorithm

takes as input the number of hops that have be to performed. Looking at the

previous example in figure 6.5, this means that if the number of hops is two

and the current visited class is “Entry”, the list of its imported elements

will also include the attributes coming from the “Expression” class. The

algorithm looks at the outgoing edges, so that if a node is connected with

more than one outgoing edge to other neighboring classes, we process that

node more times. The business logic, which is the elements importation, is

executed after visiting the last neighbor in a depth-first manner. Since it

is very common that the relationships that connect classes form cycles, we

needed to implement a solution to avoid importing the same elements more

than one time. The solution is to “tag” the edges that have been already

followed during the algorithm and visit the nodes connected through edges

that have not been processed yet. As said, the importation also involves a

penalization of the payloads of the imported attributes. This penalization

depends on the relation type, and, possibly, also on the cardinalities of the

relationships. Notice that the penalization takes into account the number of

hops that the imported elements have done to reach the visited class. With

reference to the example in figure 6.5, given the class “Entry” as the current

visited node, the attribute “value” coming from the class “Expression” (two

hops) is more penalized than the attribute “location” from “/LocatedEle-

ment/” (one hop).

The last two pipelets, Text Analysis and Payload Substitution and Solr

Indexing, involve the same operations of the last two pipelets of the previous

Experiment C. Also the index of this experiment has the same structure of

the Experiment C index.



72 Chapter 6. Case Studies

Analysis and Solr Indexer Pipelet These two pipelets are quite similar

in all the four experiments, so we describe them separately in this section.

In Experiment A and Experiment B the analysis and indexing tasks are

actually done in the same pipelet, called SolrIndexerPipelet. This pipelet is

configured through the BPEL configuration file where we specify a mapping

between the SMILA metadata elements and the Solr fields. The Solr config-

uration file named “schema.xml” contains the declaration of each field that

in turn specifies the type of that field. The sequence of analyzers that per-

form the text processing is specified for each field type in the “schema.xml”

file. The SolrIndexerPipelet prepares a new document by adding the speci-

fied fields to the XML document that has to be posted to Solr through the

update URL. This kind of request performs both analysis and indexing. The

fields added to the XML document contain the information extracted from

the project models.

As explained in the above sections, Experiments C and D perform analy-

sis and indexing in two different pipelets. This is done to avoid the problem

of “payloads propagation” that we previously explained and also to better

separate the two types of operation. The drawback is that the analysis task

is more time consuming since there is a different HTTP request to the Solr

server for each SMILA metadata element.

6.3 WebML Dataset

The WebML dataset consists of twelve WebML projects coming from real

world WebML applications. In Figure 6.7 you can see an example a fragment

of a WebML project showing an area called Shops containing three pages

and some units. The code below shows the XML representation of the area:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<Area id=” sv3g#area5g ” name=”Shops” de fau l tPage=” sv3g#area5g#

page20g” landmark=” true ”>

<Operat ionUnits>

<CreateUnit id=” sv3g#area5g#cru11g” name=”Save DC” en t i t y=”

ent2 ”>

<OKLink id=” sv3g#area5g#cru11g#oln48g ” name=”Link OK 44”

to=” sv3g#area5g#page20g” automaticCoupl ing=” true ”/>

</CreateUnit>

<NoOpOperationUnit id=” sv3g#area5g#opu13g”name=”nop”>

<OKLink id=” sv3g#area5g#opu13g#oln49g ” name=”Link OK 45”

to=” sv3g#area5g#page20g” automaticCoupl ing=” true ”/>

</NoOpOperationUnit>

. . .



6.3. WebML Dataset 73

Figure 6.7: Example of an area of a project from the WebML dataset.

</Operat ionUnits>

<Page id=” sv3g#area5g#page22g” name=”Modify Shop”>

<ContentUnits>

<DataUnit id=” sv3g#area5g#page22g#dau7g” name=”Modify Shop

” en t i t y=” ent2 ”>

<Link id=” sv3g#area5g#page22g#dau7g#ln107g ” name=”Link

99” to=” sv3g#area5g#page22g#enu22g” type=” t ranspo r t ”

automaticCoupl ing=” f a l s e ” va l i d a t e=” true ”>

</Link>

<Link id=” sv3g#area5g#page22g#dau7g#ln31g ” name=”Link 31

” to=” sv3g#area5g#mfu4g” type=” t ranspo r t ”

automaticCoupl ing=” true ” va l i d a t e=” true ”/>

</DataUnit>

<EntryUnit id=” sv3g#area5g#page22g#enu22g” l inkOrder=” sv3g

#area5g#page22g#enu22g#ln108g sv3g#area5g#page22g#

enu22g#ln109g ” name=”Modify Store ”>

<Fie ld id=” sv3g#area5g#page22g#enu22g#f ld45g ” name=”



74 Chapter 6. Case Studies

Name” type=” s t r i n g ” mod i f i ab l e=” true ” pre loaded=”

true ”>

</ F i e ld>

. . .

</EntryUnit>

</ContentUnits>

<l ayout :Gr id>

. . .

</ layout :Gr id>

</Page>

<l ayout :Gr id>

. . .

</ layout :Gr id>

</Area>



6.3. WebML Dataset 75

The quantity of concepts expressed by the WebML models is higher

(whole projects, siteviews, areas, pages, content units, operation units, links)

with respect to UML models (whole projects, packages, classes and at-

tributes). This results in a more complex XML representation for WebML

projects, though the information remains well structured. On average the

projects are very big: they contain big areas with hundreds of pages and

units. Only few projects are small. Because of the size and because of con-

current working issues while editing this models in a real industrial environ-

ment, the XML files representing a whole project are splitted up according

to the metamodel element (i.e. there are separate XML files for site views,

areas, pages, etc.).

Figure 6.8 depicts the frequency distribution of terms of the WebML

dataset (10 projects). We show the distribution up to the first two hundred

terms.

Figure 6.8: The frequency distribution of terms of the WebML dataset.

As shown for the UML dataset (Section 6.1), also the distribution of

terms of the WebML dataset approximates a power-law function and, there-

fore, it follows the Zipf’s law. However, in this case, the shape of the curve

is less pronounced. This fact is due to the amount of projects, and therefore

terms, that are present in the two dataset: the UML dataset contains much

more models than the WebML dataset.



76 Chapter 6. Case Studies

6.4 WebML Case

The second case study deals with the indexing and searching of WebML

projects. With respect to the previous case explained in Section 6.2, here

we adopt a more structured solution, even closer to the abstract solution of

Section 4.1. In Figure 6.9 you can see a diagram showing the WebML chain

of operations. As usual for a search engine, the whole chain includes two

Figure 6.9: WebML operations chain. The diagram shows the operations involved

in both content-based approach and text-based approaches. The Content Processing

phase is showed in the top right, while the Query Processing phase is showed in the

bottom left.

main phases:

• a Content Processing phase that is showed in the top right of Fig-

ure 6.9, starting from the WebML Projects Dataset translation,

• a Query Processing phase that is showed in the bottom left of Fig-

ure 6.9, starting from the User Query input.

In both these phases, the solution includes a set of operations which is in

common between the content-based and text-based approach. The content-

based approach involves a comparison between projects and queries that

are translated into a graph representation to perform graph matching tech-

niques. In this work we discuss only about the text-based approach, you

can find more information about the content-based approach in [21].

In the next paragraphs we explain with further details both the Content

Processing phase and the Query Processing phase of the WebML chain,

providing information for each operation. Notice that each operation cor-

responds to a SMILA pipelet and an entire chain is a SMILA pipeline.



6.4. WebML Case 77

Regarding the Content Processing phase, after the common operations are

performed, the other operations specific for each experiment start. For the

WebML case there are two experiments: B and C. Experiments B and C

have similarities with experiments B and C of the UML case so they have

the same name. These experiments are explained with more information in

the next paragraphs. At the end of this section we also present the Query

Processing phase.

WebML Chain - Content Processing The WebML chain starts, as

usual, with the crawling phase. The crawler ingests a project representation

which is different from the original XML project representation in WebML

syntax shown in Section 6.3. This is done because the XML original format

doesn’t conform to any particular standard model representation language.

Therefore, before the actual crawling phase there is an off-line translation

from the original format to a target format. The target format is expressed

in UML 2.1 conforming to Ecore and it is very similar to the representation

format of the projects from the UML dataset.

The code snippet below shows an example of translation from the original

WebML representation format discussed in Section 6.3.

<packagedElement name=”Shops” xmi : id=” sv3g#area5g ” xmi:type=”

webml:Area”>

<packagedElement en t i t y=” ent2 ” name=”Save DC” xmi : id=” sv3g#

area5g#cru11g ” xmi:type=”webml:CreateUnit ”>

<packagedElement name=”Link OK 44” to=” sv3g#area5g#page20g”

xmi : id=” sv3g#area5g#cru11g#oln48g ” xmi:type=”webml:OKLink

”/>

</packagedElement>

<packagedElement name=”nop” xmi : id=” sv3g#area5g#opu13g”

xmi:type=”webml:NoOpOperationUnit”>

<packagedElement name=”Link OK 45” to=” sv3g#area5g#page20g”

xmi : id=” sv3g#area5g#opu13g#oln49g ” xmi:type=”webml:OKLink

”/>

</packagedElement>

. . .

. . .

<packagedElement name=”Modify Shop” xmi : id=” sv3g#area5g#

page22g” xmi:type=”webml:Page”>

<packagedElement en t i t y=” ent2 ” name=”Modify Shop” xmi : id=”

sv3g#area5g#page22g#dau7g” xmi:type=”webml:DataUnit”>

<packagedElement name=”Link 99” to=” sv3g#area5g#page22g#

enu22g” xmi : id=” sv3g#area5g#page22g#dau7g#ln107g ”

xmi:type=”webml:Link”/>

<packagedElement name=”Link 31” to=” sv3g#area5g#mfu4g”

xmi : id=” sv3g#area5g#page22g#dau7g#ln31g ” xmi:type=”



78 Chapter 6. Case Studies

webml:Link”/>

</packagedElement>

<packagedElement name=”Modify Store ” xmi : id=” sv3g#area5g#

page22g#enu22g” xmi:type=”webml:EntryUnit”>

. . .

</packagedElement>

</packagedElement>

</packagedElement>

The translation from WebML representation to the target format is not one

to one, only the relevant information suitable to be part of the index is kept,

therefore some of the elements from the original representation are discarded.

For example all the tags referring to the graphical layout specifications are

not present into the target representation. Unlike the original files organi-

zation, the target representation has all the XML code of a project in one

single file.

After the translation the Crawling phase starts. The crawler ingests all

the projects creating a new record into the SMILA framework for each of

them. The record contains the following attributes: the project id and all

the structured representation (the XML code conforming to Ecore) of that

project model. The project structured representation is carried on to the

following stages of the process as much as possible. This is done to keep

all the necessary information about the project structure (e.g. an area X is

contained into a siteview Y).

The Dereferencing is an optional step performed only by some test con-

figurations of the WebML case which are discussed in Chapter 7.

Up to this point of the chain, a SMILA record still represents a whole

WebML project (the granularity is still entire project). The Splitting (or

Segmentation) takes the SMILA record containing information on a whole

WebML project and splits it creating several new records that has granular-

ity “area”. We chose this level of granularity because WebML areas have a

size that is a good compromise between the size of the site views, which is

too big, and the one of the pages, which is too small. The XML representa-

tion of an area record X contains the following information: the areas and

siteviews that are ancestors of X stripped of their content, the area X with

all its sub-elements (units and pages) and all the sub-areas of X stripped of

their content. For example, let X be an area with father area Y which in

turn is children of siteview Z and let A be a sub-area of X. Obviously each

of these elements have their content consisting of operation units, pages,

content units, etc. The SMILA record representing the area X looks like

this:



6.4. WebML Case 79

<packagedElement name=” s i t ev i ewZ ” xmi : id=”svZ” xmi:type=”

webml:Siteview”>

<packagedElement name=”areaY” xmi : id=”svZ#areaY” xmi:type=”

webml:Area”>

<packagedElement name=”areaX” xmi : id=”svZ#areaY#areaX”

xmi:type=”webml:Area”>

. . .

CONTENT OF AREA X ( Operation Units , Content Units , Pages

, e t c . )

. . .

</packagedElement>

</packagedElement>

</packagedElement>

The Analysis extracts from the records in input (that now represent ar-

eas) the content of the “name” attributes of each area element. Then, the

words mined in this way are processed through the Solr analyzers and the

original content of the “name” attributes is replaced with the analyzed ver-

sion. The original content of the “name” attributes is kept inside the field

for visualization purposes by separating it from the analyzed content via an

escape character like “$”. For example, the “name” attribute with content

“lazyEmployees” after the analysis becomes “lazyEmployees$lazyemploye

lazi employe”. The transformations that have to be performed on the text

are configurable by modifying the Solr configuration files. This pipelet de-

couples the Analysis from the Indexing, which is performed at the end of each

experiment. The separation between the Analysis and the Indexing allows

to share the same analysis operations between the chain of the content-based

approach and the chain of the text-based approach. This way, it will be eas-

ier in future works to compare the two different indexing approaches since

they start from the same word analysis.

After the Analysis there is a branch between the two types of approach.

The text-based approach continues with three different experiments which

all ends with the indexing step.

Experiment B This experiment doesn’t perform any particular oper-

ation except for the indexing. The indexing pipelet has still to send HTTP

requests to Solr in order to call the WhiteSpaceTokenizer and split the words

contained as a single string in the “name” attribute.

Experiment C This experiment calls the Payloads Adder pipelet that

adds the payloads to the content of the area that has been previously an-

alyzed. After this, the indexing pipelet includes also the DelimitedPay-



80 Chapter 6. Case Studies

loadTokenFilterFactory among the called Solr analyzers for processing the

payloads added in the previous pipelet. The payloads are easily configurable

through a configuration file. Concepts to which is possible to add them are

Siteview, Area, Page, Unit and Link.

WebML Chain - Query Processing The Query Processing deals with

all the operations that have to be performed when the user inputs a query

to the system. The Query Processing phase is depicted on the bottom left

of Figure 6.9. The user can input the query as a WebML model. The query

model has its own XML representation in WebML format which is translated

in UML 2.1 conform to Ecore format, as in the Content Processing phase.

Next, the model is analyzed through the same methods as the projects in

the repository. At this point, the Text-based chain for the Query Processing

part starts. The issue is to transform a search-by-example query into a

keyword-based one. The Keyword Extraction extracts the query keywords

from the XML document. Only the content of the “name” attributes are

extracted and put into the query string. The query is then submitted to

the Solr index as an AND query. The user can also submit a keyword-based

query without the Keyword Extraction operation.



Chapter 7

Tests and Evaluation

This chapter discusses the results of the tests we conducted on the Model-

Driven Information Retrieval System. As explained in Chapter 6 the two

case studies of the system retrieve project models that belong to two different

datasets. The first dataset consists of a set of UML class diagrams, while

the second one consists of a set of WebML real-world applications.

The tests for the UML case study involve different types of keyword-

based query. Each type, that in the following is called “meta-query”, has

different characteristics in terms of the document that is searched by the

query (e.g., project, class) and in terms of the information need that is

expressed through the query (e.g., the user may want to search a specific

project or all the projects related to a topic). We first outlined a set of five

meta-queries, then we chose two of them. For each of these, we built a set

of ten instances that we used to test the UML case.

The tests for the WebML case involve a set of ten queries. Each query

searches WebML models (or fragments of WebML models) that apply the

most common patterns, such as the “search pattern” [32]. The queries can

be submitted to the system as document-based queries in form of a WebML

model. As explained in Section 6.4, the Query Processing phase deals with

the translation of the document-based query into the corresponding text-

based query that is then sent to the search platform.

For both the UML and the WebML experiments we tested various con-

figurations involving different indexing options. For example, a test config-

uration of the WebML case involves the dereferentiation of some references

of the project models.

To test the effectiveness of the system as a search engine system, in each

test configuration we return only the first ten relevant documents. Therefore,

the evaluation metrics assess the quality of the system only up to the tenth



82 Chapter 7. Tests and Evaluation

rank position.

We conducted a manual assessment in order to build a ground truth for

the query-to-project relevance. Each query was manually evaluated against

the projects in the repository in order to assign a value of relevance to the

project elements with respect to a given query.

This chapter is organized as follows. Section 7.1 presents the theoretical

background of the metrics we used to evaluate the experiments. Section 7.2

provides details on the methodology adopted to build the ground truth with

which the tests are compared. Section 7.3 shows the types of query we used

for testing the UML experiments, then the test configurations and finally it

discusses the results. Section 7.4 focuses on the WebML test configurations

and their results. Section 7.5 sums up the main findings that emerged from

the results of the evaluation.

7.1 Evaluation Metrics

Discounted Cumulative Gain - DCG Discounted Cumulative Gain is

a popular measure for evaluating web search engines and related systems.

When using DCG there are two assumptions [34]: highly relevant documents

are more valuable than marginally relevant documents, and the greater the

ranked position of a relevant document, the less valuable it is for the user,

because the less likely it is that the user will ever examine the document.

DCG is defined as the sum of the “gain” of presenting a particular docu-

ment times a “discount” of presenting it at a particular rank i, up to some

maximum rank l.

DCGl =
l∑

i=1

gaini × discounti

For web search, “gain” is typically a relevance score determined by human

judgment , and “discount” is the reciprocal of the logarithm of the rank.

Therefore, putting a document with a high relevance score at a low rank

results in a much lower value of DCG than putting the same document at a

higher rank.

DCGl = rel1 +
l∑

i=2

reli ×
1

log2i

reli are the relevance scores. These typically are scalar values somehow

related to the human relevance judgment with respect to a test query. Given

the test query, a human provides his judgment about the relevance of each



7.1. Evaluation Metrics 83

document in the collection with respect to that test query. An example of

relevance score is: reli ∈ {0, 1, 3}. These values can be interpreted as 0 “not

relevant”, 1 “relevant”, 3 “very relevant”.

Obviously, the values obtained by the previous formula can be plotted in

a chart with DCG values on vertical axis and rank positions i on horizontal

axis. The DCG curve is then compared to the IDCG curve, that is the Ideal

Discounted Cumulative Gain curve. The IDCG curve is obtained comput-

ing the DCG on the perfect ranking (the ranking where the most relevant

documents come first).

Differently from the other measures such as Precision and Recall, DCG

also takes into account the positions of the relevant documents among the

top l.

The DCG curves can also be averaged over a set of test queries to obtain

a more precise assessment.

Precision at k - P@k Precision and Recall are the most popular mea-

sures in the Information Retrieval field. They require that a human judge (or

another trustworthy system) performs a binary evaluation of each retrieved

document as “relevant” or “not relevant“. Moreover, they need to know the

complete set of relevant documents within the collection being searched:

Recall =
number of relevant documents retrieved

number of relevant documents

Precision =
number of relevant documents retrieved

number of retrieved documents

One way of plotting precision is looking at the precision at a fixed critical

position of retrieving, that is ”Precision at k“, or P@k. For ranked lists

assessment, k can be the number of results we expect users to look at.

P@k computes the precision at a certain ranking position after a relevant

document is retrieved. If a non-relevant document is retrieved, P@k equals

zero.

P@k can be averaged over a set of test queries to obtain a unique curve

for the assessment of the system.

11-point Interpolated Average Precision - 11pIAP The 11-point

Interpolated Average Precision is the evolution of the Interpolated Precision

pinterp. The precision-recall curves have a distinctive saw-tooth shape: if the

(k + 1)th document retrieved is a non-relevant one, then recall is the same

as for the previous k documents, but precision drops down. If the (k + 1)th

document is a relevant one, then both precision and recall increase, and the



84 Chapter 7. Tests and Evaluation

curve increases to the top right direction of the precision-recall chart. This

implies some jiggles into the curve that it is often useful to remove in order

to ease the comparison of different precision-recall curves. This is done by

computing the interpolated precision curve. pinterp at a certain recall level

r is defined as the highest precision found for any recall level r′ ≥ r:

pinterp (r) = max
r′≥r

p(r′)

The Interpolated Precision curve is for one ranked list only (i.e. one query).

To evaluate the quality of a search engine there is often the need to obtain

a single curve from several curves of different test queries. The traditional

way of doing this is the 11-point Interpolated Average Precision. For each

information need (i.e. each test query), the interpolated precision is mea-

sured at 11 recall levels of 0.0, 0.1, 0.2, ..., 1.0 (recall = 0.0:0.1:1.0). Then,

for each recall level, the arithmetic mean of the interpolated precision at

that recall level for each query is calculated.

Mean Average Precision - MAP Mean Average Precision derives from

Average Precision (AP). AP provides a single number instead of a curve.

It measures the quality of the system at all recall levels by averaging the

precision for a single query:

AP =
1

RDN
×

RDN∑

k=1

(Precision at rank of kth relevant document)

where RDN is the number of relevant documents in the collection.

Mean Average Precision (MAP) is the mean of Average Precision over

all queries. Most frequently, arithmetic mean is used over the query set.

Mean Reciprocal Rank - MRR Mean Reciprocal Rank (MRR) is the

reciprocal of the rank of the first relevant result averaged over the number

of test queries:

MRR =
1

Q
×

Q∑

q=1

1

rank(1st relevant result of query q)

where Q is the number of test queries.



7.2. Ground truth 85

7.2 Ground truth

Besides the document collection and the test suite of information needs ex-

pressed as queries, to evaluate the effectiveness of an Information Retrieval

system, we need a set of relevance judgments, i.e. an assessment of the

relevance degree for each query-document pair [35]. With respect to a user

information need, a classification of the level of relevance is given to each

document in the test collection. This decision is referred to as ground truth

judgment of relevance. We performed this assessment manually for both the

UML and the WebML model search case studies. We adopted a different

type of ground truth depending on the type of evaluation metric. Preci-

sion at k, 11-point Interpolated Average Precision, Mean Average Precision,

Mean Reciprocal Rank require a binary classification: relevance ∈ {0, 1},

which means that a document can be relevant (1) or not relevant (0) with

respect to a given query. For Discounted Cumulative Gain we used a ternary

decision of relevance: relevance ∈ {0, 1, 3}, which means that a document

can be not relevant (0), relevant (1), very relevant (3). A ternary relevance is

a good compromise between a more nuanced classification and a too sparse

set of judgment values, like a binary assessment.

To construct the ground truth, we manually judged all the documents

in the test collection with respect to each information need. We considered

a document as “relevant”, with respect to a given query, according to two

main criteria. The first one addresses the similarities between the document

and the query in terms of the topical characteristics. The document is

relevant if it deals with the same topic of the query (e.g. the document

and the query include same or similar terms). The second criteria addresses

the similarities in terms of the structural information and the document is

considered relevant if it includes a structure similar to the query. In the case

of a WebML application, the structure is represented by the types of units

that are used and the way they are connected in order to adopt a particular

pattern. With respect to the above graded scale of relevance, we assigned

a relevance of 3, if the document is similar to the query both in terms of

topical and structural characteristics, while we assigned a relevance of 1, if

the document is similar to the query just in terms of one criteria.



86 Chapter 7. Tests and Evaluation

7.3 UML Tests and Results

7.3.1 Test Queries

For testing the UML experiments we first designed a set of “meta-queries”.

A meta-query is a query type with specific characteristics in terms of the type

of document that is searched by the query and in terms of the information

need addressed by the query. In the following subsection we discuss about

each of these meta-queries.

Figure 7.1 shows an example of UML project model from the dataset of

UML class diagrams. We will use this example to present the meta-queries

for the rest of this section.

Figure 7.1: Example of UML project model from the dataset of UML class diagrams.



7.3. UML Tests and Results 87

In Table 7.1, we summarize the meta-queries and, for each of them, we

show a description and an example referring to the UML model in Figure

7.1. The “Target” column in Table 7.1 indicates the type of document the

query is intended to search (e.g. a project or a class); the second column

is the identifier of the meta-query; the third column briefly describes the

meta-query; the last column shows an example of query instance.

Among those meta-queries, we chose the meta-query 2 and 5 for testing

the UML experiments. In the following sections we refer to those meta-

queries with the labels “MQ2” (meta-query 2) and “MQ5” (meta-query 5).

Each experiment has been performed on ten query instances of the chosen

meta-queries, and their results have been averaged. The complete lists of the

ten query instances of both meta-queries 2 and 5 are presented respectively

in Table 7.2 and in Table 7.3.



88 Chapter 7. Tests and Evaluation

Target Id Description Example

Project
1 It searches all the

projects related to one

specific topic

Query: “BQL”

2 It searches all the

projects related to one

general topic

Query: “query language”

“Pattern” 3 It searches a “pattern”

by using as query

string the terms be-

longing to different

classes connected by

some relation

Searched “pattern”: Entry

[is-a] LocatedElement

Query: “name type loca-

tion commentsBefore”

Class
4 It searches a class by

using as query string

all (some) terms be-

longing to that class

Searched class: LocatedEle-

ment

Query with all terms:

“LocatedElement location

commentsbBefore com-

mentsAfter”

Query with only some

terms: “location com-

mentsBefore”

5 It searches a class by

using as query string

some terms belonging

to that class plus some

terms belonging to the

project

Searched class: LocatedEle-

ment

Query: “location com-

mentsBefore Predicate Ex-

pression”

Table 7.1: The meta-queries designed for testing the UML experiments. The ”Target“

column indicates which type of document the query searches (e.g. a project, or a class);

the second column is the identifier of the meta-query; the third column briefly describes

the meta-query, namely it describes the information need that can be satisfied by the

queries that are instances of the meta-query; the last column shows an example of

query.



7.3. UML Tests and Results 89

1 function source struct char int class member operator

variable parameter

2 element node attribute name children

3 table column database

4 business process

5 task activity

6 message operation

7 node attribute

8 formula

9 color print size

10 transition

Table 7.2: The list of the ten instances of the meta-query 2 of the UML case study.

1 jar manifest classpath build

2 node expression

3 tag name

4 event

5 link

6 shape

7 program type source

8 note

9 task

10 process activity status finishmode

Table 7.3: The list of the ten instances of the meta-query 5 of the UML case study.



90 Chapter 7. Tests and Evaluation

7.3.2 Test Configurations and Results

In this section we show the results of the tests of the UML experiments (A,

B, C, D). We tested different experiment configurations in order to find the

one giving the best results. The whole test set is grouped by meta-query.

MQ2 has one test configuration and it refers to UML Experiment A (Project

Granularity, Flat Index), since both the granularity of this experiment and

the target of the meta-query are “project”. MQ5 has five test configurations

and it refers to UML Experiments B, C and D, since their granularity and

the target of the experiments are “class”. It is important to notice that the

results of Experiment A and the results of Experiments B (Concept Gran-

ularity, Multi-Field Index), C (Concept Granularity, Multi-Field Weighted

Index) and D (Concept Granularity, Multi-Field Weighted Index, Graph

Based) are not comparable with each other because they retrieve different

types of documents (Experiment A retrieves projects, the others retrieve

classes).

The test configurations differ from each other according to some op-

tions: the value of the payloads assigned to the various UML metamodel

concepts (only in Experiments C and D), the value of the penalties (only in

Experiment D) and the FieldNorm which can be enabled or disabled.

FieldNorm is a factor influencing the score of a document retrieved

through a query submitted to Solr. The shorter the matching field is (mea-

sured in number of indexed terms), the greater the FieldNorm value will be.

Therefore, the score of the matching document will be greater. FieldNorm

can be omitted from some fields in the Solr schema configuration. In most

of the test configurations the FieldNorm in the Experiment D is disabled in

order to solve the following problem: when a relevant class (with respect to

a given query) imports many attributes from a neighboring class, the first

one gets wrongly penalized by FieldNorm.

We use two sets of payload values. The first set (Table 7.4) is determined

according to simple reasonings on the UML metamodel concepts. For ex-

ample, a term that represents the name of a class should have a greater

relevance than a term that represents a simple attribute. In another test,

we use a slightly different set of payload values with respect to the previous

one (Table 7.5). With this test we want to show that the results do not

change significantly if the values of the payloads are slighly changed, thus

verifying the stability of the system.

We use two sets of penalties, too. The first set (Table 7.6) results from

reasonings on the types of UML relationships. For example, let Mammal

and HumanBeing be two classes connected by a generalization relationship,



7.3. UML Tests and Results 91

where Mammal is the parent class and HumanBeing is the child class. Since

HumanBeing “is-a” Mammal, we want that the attributes that the child class

imports from the parent class are only slightly penalized during the import

algorithm, so, in this case, the penalty value is 0.9. As for the payloads, we

tested the UML case study application with another set of penalties which

shows that, by slightly varying them (Table 7.7), the results do not change

substantially. Finally, we conducted a further test in which the values of

the penalties are lowered by multiplying them by a factor 0.1 (Table 7.8).

This configuration prevents an imported attribute to obtain a payload value

greater than the payload value of an attribute originally contained in a class.

The different test configurations listed below show various combinations

of the configuration options discussed above:

• MQ2: Experiment A (Project Granularity, Flat Index)

Test Configuration 1 : basic test with FieldNorm enabled.

• MQ5: Experiments B (Concept Granularity, Multi-Field Index), C

(Concept Granularity, Multi-Field Weighted Index) and D (Concept

Granularity, Multi-Field Weighted Index, Graph Based)

Test Configuration 1 : FieldNorm disabled only in Experiment D;

payloads as in Table 7.4; penalties as in Table 7.6.

Test Configuration 2 : FieldNorm enabled in all experiments; pay-

loads as in Table 7.4; penalties as in Table 7.6.

Test Configuration 3 : FieldNorm disabled only in Experiment D;

payloads as in Table 7.5; penalties as in Table 7.6.

Test Configuration 4 : FieldNorm disabled only in Experiment D;

payloads as in Table 7.4; penalties as in Table 7.7.

Test Configuration 5 : FieldNorm disabled only in Experiment D;

payloads as in Table 7.4; penalties as in Table 7.8.



92 Chapter 7. Tests and Evaluation

PAYLOAD VALUES (FIRST CONFIGURATION)

Concept Payload Value

Attribute 1.0

Composition 1-1 1.5

Composition 1-N 1.3

Association 1-1 1.6

Association 1-N 1.3

Class 1.7

Project 1.0

Table 7.4: The first configuration of payload values. This configuration is determined

according to simple reasonings on the UML metamodel concepts.

PAYLOAD VALUES (SECOND CONFIGURATION)

Concept Payload Value

Attribute 0.9

Composition 1-1 1.4

Composition 1-N 1.2

Association 1-1 1.5

Association 1-N 1.2

Class 1.5

Project 0.9

Table 7.5: The second configuration of payload values. This configuration is determined

by slightly changing the values of the first one.



7.3. UML Tests and Results 93

PENALTY VALUES (FIRST CONFIGURATION)

Concept Penalty Value

Composition (from composite class to component

class) 1-1

0.6

Composition (from composite class to component

class) 1-N

0.5

Composition (from component class to composite

class) 1-1

0.6

Composition (from component class to composite

class) 1-N

0.5

Association 1-1 0.6

Association 1-N 0.5

Generalization (from parent class to child class) 0.75

Generalization (from child class to parent class) 0.9

Table 7.6: The first configuration of penalty values. This configuration is determined

according to simple reasonings on the UML relationship types.

PENALTY VALUES (SECOND CONFIGURATION)

Concept Penalty Value

Composition (from composite class to component

class) 1-1

0.5

Composition (from composite class to component

class) 1-N

0.4

Composition (from component class to composite

class) 1-1

0.5

Composition (from component class to composite

class) 1-N

0.4

Association 1-1 0.5

Association 1-N 0.4

Generalization (from parent class to child class) 0.5

Generalization (from child class to parent class) 0.7

Table 7.7: The second configuration of penalty values. This configuration is determined

starting from the first one by slightly changing penalty values.



94 Chapter 7. Tests and Evaluation

PENALTY VALUES (THIRD CONFIGURATION)

Concept Penalty Value

Composition (from composite class to component

class) 1-1

0.06

Composition (from composite class to component

class) 1-N

0.05

Composition (from component class to composite

class) 1-1

0.06

Composition (from component class to composite

class) 1-N

0.05

Association 1-1 0.06

Association 1-N 0.05

Generalization (from parent class to child class) 0.075

Generalization (from child class to parent class) 0.09

Table 7.8: The third configuration of penalty values. This configuration is determined

by multiplying the values of the first one by a factor of 0.1.

In the following paragraphs we comment the results of each test configura-

tion.

MQ2: Test Configuration 1 Figure 7.2 shows the plot of the DCG and

iDCG curves of Experiment A. It can be noticed that the DCG and the iDCG

curves are very close to each other, especially up to the first three positions.

In particular, the results show that the Experiment A (Project Granularity,

Flat Index) is always able to retrieve the most relevant document at the first

position.

Figure 7.3 depicts the 11-points Interpolated Average Precision of the

Experiment A (Project Granularity, Flat Index). The results show that the

precision, up to the recall level of 0.4, is always 1. After this recall level,

there is first a small decrease (r = 0.5) and then a more drastic decrease

of the curve (r = 0.82). This is an expected behavior: as all the relevant

documents are retrieved, among these, an increasing number of not relevant

documents are retrieved too. The results also show that the Experiment

A is able to retrieve all the relevant documents after the first ten retrieved

documents.

Figure 7.4 presents the plot of the Precision at k curve of the Experiment

A (Project Granularity, Flat Index).

The results suggest that, up to the third position, all the retrieved docu-



7.3. UML Tests and Results 95

Figure 7.2: Plot of the DCG and iDCG curves of Experiment A (Project Granularity,

Flat Index), Test Configuration 1 (MQ2).



96 Chapter 7. Tests and Evaluation

Figure 7.3: Plot of the 11-points Interpolated Average Precision of the Experiment A

(Project Granularity, Flat Index), Test Configuration 1 (MQ2).



7.3. UML Tests and Results 97

Figure 7.4: Plot of the Precision at k of the Experiment A (Project Granularity, Flat

Index), Test Configuration 1 (MQ2).



98 Chapter 7. Tests and Evaluation

ments are relevant. Between the third and the fifth position there is a small

fall in the curve, after which there is a slight improvement. This confirms

the results previously shown with the DCG and iDCG curves. However, the

results show that the precision level remains high (over 0.8) for all the k

levels.

The MAP results for this test configuration are given in Table 7.9, while

the MRR results are presented in Table 7.10. MRR suggests that Exper-

iment A is always able to retrieve the first relevant document at the first

ranking position.

MQ5: Comparison between Test Configuration 1 and Test Config-

uration 2 In Figure 7.5 you can see the comparison between the DCG and

iDCG curves of the Experiments B (Concept Granularity, Multi-Field In-

dex), C (Concept Granularity, Multi-Field Weighted Index) and D (Concept

Granularity, Multi-Field Weighted Index, Graph Based) when the experi-

ments use the first test configuration (Figure 7.5(a)) and the DCG and iDCG

curves of the Experiments B, C and D where the experiments use the second

test configuration (Figure 7.5(b)).

The results for the Experiments B and C are almost the same in Test

Configuration 1 and 2. Only the last part of the curves differ. This behavior

is due to the way Solr handles ties: in case of retrieved documents that

have the same score, a fixed ordering of documents is not respected (e.g.,

alphabetically). However, this issue occurs only in the lower parts of the

ranking. The Figure 7.5 shows that the Experiment C has, for each rank

position k, a slightly better value of DCG than Experiment B, showing that

the use of payloads improves the results even if not so significantly. Both

experiments B and C, up to the second rank position, are close to the ideal

curve.

These results presented in Figure 7.5 are intended to show the effects of

FieldNorm on the Experiment D. If FieldNorm is enabled (Test Configura-

tion 2), then a class that is relevant with respect to a query and that imports

many elements from a neighboring class is unfairly penalized. Therefore, the

FieldNorm should always be disabled and Test Configuration 1 should be

the best scenario to choose. But, as Figure 7.5 suggests, the results of Ex-

periment D in Test Configuration 2 are much better than Test Configuration

1. The reason is explained as follows. Besides retrieving the relevant classes

with respect to a query, Experiment D retrieves their neighboring classes

too, which are not necessarily relevant to that query. These neighboring

classes are present among the results because they have imported terms

that are part of the query string. Since their “content” field is larger due



7.3. UML Tests and Results 99

(a) Test Configuration 1.

(b) Test Configuration 2.

Figure 7.5: Comparison between Test Configuration 1 and 2: DCG and iDCG curves of

the Expertiments B (Concept Granularity, Multi-Field Index), C (Concept Granularity,

Multi-Field Weighted Index) and D (Concept Granularity, Multi-Field Weighted Index,

Graph Based) for both the test configurations.



100 Chapter 7. Tests and Evaluation

to the imported terms, those neighboring classes are penalized by the Field-

Norm and, at the same time, the truly relevant classes are ranked in a higher

position, therefore the results are better. To conclude, the FieldNorm helps

when it penalizes classes that are retrieved only because they are neighbor-

ing of relevant classes, but it provides misleading results when it penalizes

the relevant classes due to the larger size of their “content” field after the

import algorithm.

Figure 7.6 shows the plot of Precision at k of Test Configuration 2.

Figure 7.6: Plot of the Precision at k of Experiments B (Concept Granularity, Multi-

Field Index ), C (Concept Granularity, Multi-Field Weighted Index) and D (Concept

Granularity, Multi-Field Weighted Index, Graph Based), Test Configuration 2 (MQ5).

It can be noticed from the results that the curves of Experiments B

and C have almost the same shape, while Experiment D presents a peculiar

shape. At the first k ranking positions the precision is high and constant,

which means that the first part of retrieved classes is relevant. Then the

precision decreases for several rank positions due to the neighboring classes

of the previously retrieved classes. Approximately at k = 7, the precision

increases again because other relevant documents are retrieved, then it de-

creases again. This trend is typical of Experiment D and it would be visible



7.3. UML Tests and Results 101

more times into the curve if more than ten rank positions were showed.

MAP (Table 7.9) confirms that the best performing experiment is Ex-

periment C and that Experiment D performs better in Test Configuration

2. MRR (Table 7.10) suggests that Experiments B and C retrieve as first

document always a relevant one.

MQ5: Test Configuration 3 Figure 7.7 shows the DCG curves of Ex-

periments C and D for this test configuration.

Figure 7.7: DCG curves of Experiments C (Concept Granularity, Multi-Field Weighted

Index) and D (Concept Granularity, Multi-Field Weighted Index, Graph Based), Test

Configuration 3 (MQ5).

The curves of the Experiments C and D with the payload values con-

figuration slightly changed (Figure 7.7) can be compared with the curves of

the Experiments C and D using Test Configuration 1 (Figure 7.5(a)).

These results confirm the low sensitivity of Experiments C and D with

respect to a slightly change to the payload values. The slightly changed

configuration of the payloads causes only a light improvement to the curve

of Experiment D, but that is not the purpose of this test configuration.

We point out that we performed training neither with weights nor with



102 Chapter 7. Tests and Evaluation

payload.

MQ5: Test Configuration 4 Figure 7.8 depicts the DCG curve of Ex-

periment D for this test configuration.

Figure 7.8: DCG curve of Experiment D (Concept Granularity, Multi-Field Weighted

Index, Graph Based), Test Configuration 4 (MQ5).

The curve of the Experiment D with the payload values configuration

slightly changed (Figure 7.8) can be compared with the curve of the Exper-

iment D using Test Configuration 1 (Figure 7.5(a)).

The Experiment D shows very low variability in the results with respect

to a small change of the payload values.

MQ5: Test Configuration 5 As Figure 7.9 suggests, the Experiment D

improves its results when using payloads multiplied by a 0.1 factor which

decreases all the payload values, and, accordingly, all the payloads of the

imported attributes.

This test configuration stresses the point that it is fundamental to use

a configuration of both payloads and penalties that prevents the imported



7.3. UML Tests and Results 103

Figure 7.9: DCG curve of Experiment D (Concept Granularity, Multi-Field Weighted

Index, Graph Based), Test Configuration 5 (MQ5).



104 Chapter 7. Tests and Evaluation

Mean Average Precision (MAP)

Exp A Exp B Exp C Exp D

MQ2 - Test Configuration 1 0.98 - - -

MQ5 - Test Configuration 1 - 0.92 0.95 0.71

MQ5 - Test Configuration 2 - 0.92 0.95 0.84

MQ5 - Test Configuration 3 - 0.92 0.94 0.66

MQ5 - Test Configuration 4 - 0.92 0.95 0.69

MQ5 - Test Configuration 5 - 0.92 0.95 0.69

Table 7.9: MAP results of the test configurations of the UML model-based search

engine. MQ2 addresses only Experiment A (Project Granularity, Flat Index); MQ5

addresses Experiments B (Concept Granularity, Multi-Field Index), C (Concept Granu-

larity, Multi-Field Weighted Index) and D (Concept Granularity, Multi-Field Weighted

Index, Graph Based).

attributes of a class to have a greater payload value than the one of the

attributes already contained in that class.



7.4. WebML Tests and Results 105

Mean Reciprocal Rank (MRR)

Exp A Exp B Exp C Exp D

MQ2 - Test Configuration 1 1.00 - - -

MQ5 - Test Configuration 1 - 1.00 1.00 0.76

MQ5 - Test Configuration 2 - 1.00 1.00 0.95

MQ5 - Test Configuration 3 - 1.00 1.00 0.76

MQ5 - Test Configuration 4 - 1.00 1.00 0.81

MQ5 - Test Configuration 5 - 1.00 1.00 0.81

Table 7.10: MRR results of the test configurations of the UML model-based search

engine. MQ2 addresses only Experiment A (Project Granularity, Flat Index); MQ5

addresses Experiments B (Concept Granularity, Multi-Field Index), C (Concept Granu-

larity, Multi-Field Weighted Index) and D (Concept Granularity, Multi-Field Weighted

Index, Graph Based).

7.4 WebML Tests and Results

For the evaluation of the WebML experiments we manually built a set of ten

models with different sizes to be used as queries. The queries reflect the use

case in which a user want to search for frequently used WebML patterns.

Figure 7.10 depicts an example of query.

The pattern of operations expressed by the piece of project in Figure

7.10 is the following: the user, previously logged into the Web site, browses

the “New book request page” and adds a new Book to the collection of book

requests through the entry unit called “New book”; the submission of the

entry form triggers the creation of a new Book entity and the connection

between the newly created Book entity and the User entity; if the tasks

executed by the operation units end with success, the user is redirected to

the “Book request list” page. Since the WebML case involves content-based

queries, the query shown in Figure 7.10 is an entire WebML project that

includes all the concepts of the WebML metamodel (site view, area, page,

unit, etc.). As discussed in Section 6.4, the Query Processing phase of the

WebML case is responsible for transforming the content-based query into

a text-based query by extracting the terms contained into the query. In

this example the Keyword Extraction task provides the following keywords

for the given query: “Book requests Create book ConnectUserToBook New

book request New book User Book request list”. In Table 7.11 we show the

complete list of the ten queries we used to evaluate the WebML case study

application.

As explained in Section 6.3, our experiments were conducted on a project



106 Chapter 7. Tests and Evaluation

Figure 7.10: An example of document-based query used to test the WebML experi-

ments.

1 Manage Products Manage Products Products List Search Product

2 Publication create new pub Enter New Publication New publication Publi-

cation type

3 Modify Modify Modify user Modify user data default group subject List User

list

4 Client Details Create Modify Exist Project Details Project details Title

5 Manage clients Make calls Manage clients

6 Responsibles compose mail info Ask for information Mail

7 Manage appointments Manage appointments Appointments List

8 Book requests Create book ConnectUserToBook New book request New

book User Book request list

9 Manage documents ModifyUnit1 New Document Modify document Docu-

ment data Document details Document list Delete document

10 Contract type Delete Contracts Contract types

Table 7.11: The complete list of the ten text-based queries used to evaluate the WebML

case study application. The keywords are extracted from the content-based version of

the queries.



7.4. WebML Tests and Results 107

repository composed of twelve real-world industrial WebML projects from

different application domains (e.g., human resource management, Web por-

tals, etc.).

To assess the quality of the WebML experiments we tested them with

different configurations:

• Test Configuration 1 : this is the basic test configuration.

• Test Configuration 2 : this test configuration includes the dereferenti-

ation of the “to” attributes of Link elements.

• Test Configuration 3 : this test configuration includes the dereferenti-

ation of the “to” attributes of Link elements and of all the “displayAt-

tributes” and “entity” attributes of the OperationUnit and ContentU-

nit elements.

• Test Configuration 4 : this test configuration includes the indexation

of the names of the WebML metamodel concepts (e.g., site view, area,

page, data unit, etc.).

• Test Configuration 5 : this test configuration includes the indexation

of the names of the WebML metamodel concepts and assigns a payload

of 0.1 to those terms.

Test Configurations 2 and 3 enable the dereferentiation of the ids con-

tained in the “entity” and “displayAttributes” attributes of Operation Unit

and Content Unit elements, and the “to” attributes of Link elements. This

latter references are dereferenced by replacing them with the “name” at-

tribute of the object pointed by the link. The dereferentiation of the ids

contained in the “entity” and “displayAttributes” attributes of Operatio-

nUnit and ContentUnit elements is done by taking the name referenced

by that id from the Data Model of the WebML project in which the Unit

element is contained.

The following one is an example of the XML code of an area called

“Request Information” containing some ids that will get dereferenced:

<packagedElement name=”Request In format ion ” xmi : id=”sv1b#area6g ”

xmi:type=”webml:Area”>

. . .

<packagedElement name=”Request In f o ” xmi : id=”sv1b#area6g#

page3g” xmi:type=”webml:Page”>

<packagedElement d i s p l ayAt t r i bu t e s=” ent1#att1 ent1#att5b ”

en t i t y=” ent1 ” name=”Report” xmi : id=”sv1b#area6g#page3g#

dau2g” xmi:type=”webml:DataUnit”>



108 Chapter 7. Tests and Evaluation

<packagedElement name=”Link 59” to=”sv1b#area6g#opg5g#

seu9g ” xmi : id=”sv1b#area6g#page3g#dau2g#ln59g ” xmi:type

=”webml:Link”/>

</packagedElement>

<packagedElement name=” In fo ” xmi : id=”sv1b#area6g#page3g#

enu4g” xmi:type=”webml:EntryUnit”>

<packagedElement name=”Link 57” to=”sv1b#area6g#opg5g#

cru4g ” xmi : id=”sv1b#area6g#page3g#enu4g#ln57g ” xmi:type

=”webml:Link”/>

<packagedElement name=”Post” to=”sv1b#area6g#opg5g#seu9g ”

xmi : id=”sv1b#area6g#page3g#enu4g#ln58g ” xmi:type=”

webml:Link”/>

</packagedElement>

</packagedElement>

. . .

</packagedElement>

In the example above, the ids contained in the “displayAttributes” attribute

of the Data Unit called “Report” will be dereferenced with the corresponding

name of the entities contained in the Data Model. Also the attributes “to”

of the Link elements will be dereferenced with the name of the element they

point to.

In the Test Configuration 4 and 5 we add to the index the terms that

represent the name of the WebML metamodel concepts. Also the names of

the metamodel concepts of the query elements are added to the the query

string. Figure 7.11 depicts an example of WebML area and the text below

shows the field “content” in case of Test Configuration 4 and 5 (the original

words have already been analyzed; the field contains the terms generated by

the content analysis):

web webmodel model web webmodel model admin i s t r s i t e s i t e v i ew

view compet cen te r area save dc c r ea t c r e a t eun i t un i t nop op

oper noopoperat ionun i t un i t nop op oper noopoperat ionun i t

un i t save modi f i modi fyunit un i t compet cen te r page compet

cen te r power index powerindexunit un i t e n t r i un i t 1 e n t r i

en t ryun i t un i t new compet cen te r page new compet cen te r e n t r i

en t ryun i t un i t e d i t code page modi f i cc data datauni t un i t

e d i t compet cen te r e n t r i en t ryun i t un i t

For example, the entry unit “New competence center” is indexed with

the name of its metamodel concept (“entry unit”). The Test Configuration

4 and 5 are intended to increase the recall of the system.

The test configurations are assessed adopting the evaluation metrics dis-

cussed in Section 7.1. The results are commented and compared as follows.

Figure 7.12 shows the DCG and iDCG curves of the first three test

configurations.



7.4. WebML Tests and Results 109

Figure 7.11: An example of WebML area adopted to explain test configuration 4 and

5.

With Test Configuration 1 (7.12(a)), Experiments B (Concept Granular-

ity, Multi-Field Index) and C (Concept Granularity, Multi-Field Weighted

Index) perform with the same results up to the second ranking position.

Except for Test Configuration 2 (7.12(b)), the Experiment C performs al-

ways better than Experiment B: these two facts suggest that the use of

payloads slightly improves the quality of the results. The results of Test

Configuration 2 (7.12(b)) and of Test Configuration 3 (7.12(c)) compared to

the results of Test Configuration 1 (7.12(c)) show that the dereferentiation

doesn’t improve the quality of the system: in general, the names of the Link

elements are not meaningful and their dereferentiation causes the indexing

of terms that will never be relevant with respect to any query. At the same

time, the “content” field of the relevant documents becomes larger and this

penalizes them due to the FieldNorm factor.

Figure 7.13 depicts the plot of 11-point Interpolated Average Precision

of WebML Experiments B (Concept Granularity, Multi-Field Index) and C

(Concept Granularity, Multi-Field Weighted Index) with Test Configuration

1. These results show that both Experiment B and C are able to retrieve 40%

of the relevant documents after ten documents are retrieved. After the first

20% of relevant retrieved documents, the precision is decreased to quite low

values (approximately 0.2). This behavior is due to the way we established

the ground truth for the WebML dataset (see Section 7.2). We judged as

relevant not only those documents that have terminological or conceptual

similarities with respect to the query, but also those documents that employ



110 Chapter 7. Tests and Evaluation

(a) DCG and iDCG curves of Test Configuration 1.

(b) DCG and iDCG curves of Test Configuration 2.

(c) DCG and iDCG curves of Test Configuration 3.

Figure 7.12: DCG and iDCG curves of the first three WebML test configurations.



7.4. WebML Tests and Results 111

Figure 7.13: Plot of 11-point Interpolated Average Precision of WebML Experiments

B (Concept Granularity, Multi-Field Index) and C (Concept Granularity, Multi-Field

Weighted Index), Test Configuration 1.

the same kind of WebML pattern adopted in the query and, therefore, have

the same structure. Since our system is text-based (although it exploits

information of the metamodel), it is not able to retrieve those documents

that are relevant because of their structural similarity with respect to the

query. This is also a justification to investigate in future works the results

that can be obtained by adopting graph-based techniques that takes into

account the structural similarities between projects into the repositories and

queries.

Figure 7.14 shows the Precision at k curve of WebML Experiments

B (Concept Granularity, Multi-Field Index) and C (Concept Granularity,

Multi-Field Weighted Index) with Test Configuration 1. These results con-

firm that the Experiment C is slightly better than Experiment B also in

terms of precision. Both Experiments B and C have good results in terms

of precision up to the third position (the precision is greater or equal than

0.8).



112 Chapter 7. Tests and Evaluation

Figure 7.14: Plot of the Precision at k curve of WebML Experiments B (Concept Gran-

ularity, Multi-Field Index) and C (Concept Granularity, Multi-Field Weighted Index),

Test Configuration 1.

Mean Average Precision (MAP)

Exp B Exp C

Test Configuration 1 0.80 0.81

Test Configuration 2 0.77 0.78

Test Configuration 3 0.76 0.77

Table 7.12: MAP results of the test configurations of the WebML model-based search

engine.

Table 7.12 reports the MAP results of the first three test configurations,

while Table 7.13 reports the MRR results.

MAP confirms that Experiment C (Concept Granularity, Multi-Field

Weighted Index) is the best scenario in all the configurations and that Test

Configurations 2 and 3 don’t improve the results. MRR suggests that all

the experiments, especially with Test Configurations 2 and 3, are able to

retrieve the first relevant document at a very high ranking position.

Figure 7.15 shows a comparison between the DCG and iDCG curves of

the test configuration 1 (no dereferentiation), 4 (names of the metamodel

concepts added to the index and to the query string) and 5 (name of the

metamodel concepts added to the index with a payload of 0.1 and to the

query string).

In test configurations 4 and 5 every document becomes a match for a



7.4. WebML Tests and Results 113

(a) DCG and iDCG curves of Test Configuration 1.

(b) DCG and iDCG curves of Test Configuration 4.

(c) DCG and iDCG curves of Test Configuration 5.

Figure 7.15: DCG and iDCG curves of the test configuration 1, 4 and 5.



114 Chapter 7. Tests and Evaluation

Mean Reciprocal Rank (MRR)

Exp B Exp C

Test Configuration 1 0.93 0.93

Test Configuration 2 0.95 0.93

Test Configuration 3 0.90 0.90

Table 7.13: MRR results of the test configurations of the WebML model-based search

engine.

query and, as Figure 7.15 suggests, the results decrease with respect to test

configuration 1. This is due to the indexation of a lot of terms (i.e., the

names of the WebML metamodel concepts) that alter the contribution of

the Tf-idf when computing the score of the documents. The prove of this

fact is that the results of Test Configuration 5 are better because we decrease

the importance of the names of the concepts by assigning to them a payload

of 0.1 as opposed to 1.0.

Figure 7.16 shows a comparison between the 11-point Interpolated Av-

erage Precision curves of the test configuration 1 (no dereferentiation), 4

(names of the metamodel concepts added to the index and to the query

string) and 5 (name of the metamodel concepts added to the index with a

payload of 0.1 and to the query string).

Figure 7.16 shows that the recall in the configurations 4 and 5 increases

with respect to the Test Configuration 1, at the expense of the precision.

These results confirm the conclusions emerged with the DCG curves.

To conclude, the little recall improvements in the configurations 4 and 5

do not justify the clear drop in precision.

7.5 Main findings

In general, there are no significant differences between the results of the

UML and WebML case studies. This means that the behavior of our model

search engine is not strictly dependent to the metamodel in use. In all the

experiments and in all the test configurations the prototype has been able

to retrieve relevant documents in the top positions. Experiment C (Concept

Granularity, Multi-Field Weighted Index) takes into account information

from the metamodel by properly weighting the index terms according to

the concept that those terms represent. The results of this experiment are

slightly better than those of Experiment B (Concept Granularity, Multi-

Field Index). Experiment D of the UML case study involves a graph-based



7.5. Main findings 115

(a) DCG and iDCG curves of Test Configuration 1.

(b) DCG and iDCG curves of Test Configuration 4.

(c) DCG and iDCG curves of Test Configuration 5.

Figure 7.16: DCG and iDCG curves of the first three WebML test configurations.



116 Chapter 7. Tests and Evaluation

algorithm that creates a graph representation of each model into the reposi-

tory. The nodes of the graph are the elements corresponding to the selected

segmentation granularity and the edges are their respective relationships.

Then, each element is enriched with proper information imported from its

neighbours. This experiment is an attempt to exploit, the structural infor-

mation contained into the models even in a text-based approach. Although

introducing some structural information of the models into the index, the

results points out that the strategy adopted into Experiment D leads to an

important issue: in some cases, a class that is relevant with respect to a

query becomes non-relevant due to the large amount of imported attributes.

To conclude, the prototype has shown good results in retrieving documents

that are relevant in terms of conceptual and terminological similarity. Con-

versely, especially in the WebML case study, the quality of the results de-

creases when the established ground truth considers as relevant also those

documents that are structurally relevant with respect to the query because,

by construction, a text-based search engine is not able to capture that type

of similarity.



Chapter 8

Conclusions and Future

Work

In this thesis we defined a model-driven methodology to search through

model repositories. We described the general approach, analyzing the de-

sign parameters and some of the possible indexing strategies. The vari-

ous strategies include: variations in the granularity of the returned result,

weighting terms in order to better capture the different level of importance

of the concepts of a metamodel and a graph-based method that allows to

take into account the relationships between artifacts close to each other even

in a purely text-based search. We developed a text-based prototype based

on the SMILA framework in order to perform actual tests on the quality

of such methodology over two very diverse datasets. The first one consists

of models conforming to the UML class diagram metamodel, while the sec-

ond one consists of models conforming to the WebML metamodel. This

choice allowed us to test the system both over a general purpose modeling

language (UML) and a domain specific modeling language (WebML). The

UML dataset is composed by 84 metamodels, most of which are pretty small

in size. The fact that they represent metamodels instead of models could

lead to some difficulties in defining queries because of the abstract nature of

a metamodel. This also would probably not be the situation of a real-world

scenario. But metamodels are still models and we selected the meta-queries

with the intention to reduce the impact of this issue, thus we think that

our tests are still valid. The WebML dataset is instead composed by 12

real-world industrial projects, all of which vary in size from huge to small.

Finally, we performed the evaluation of the results returned by the system

with respect to the manually prepared ground truth. In the majority of

the tests, the results show that the system is able to retrieve the most rel-



118 Chapter 8. Conclusions and Future Work

evant documents at the higher rankings. However, there are still margins

of improvement especially for the weighted case. In fact, we selected the

weights based on our prior knowledge of the metamodel, but we didn’t per-

form any kind of numerical training. To conclude, the prototype has shown

good results in retrieving documents that are relevant in terms of conceptual

and terminological similarity while the structural similarity is difficult to be

considered in a text-based search.

The evaluation of the quality of a search system is totally dependent on

the ground truth against which it is assessed. The ground truth itself is

subjected to mistakes as it is built manually by humans. Moreover, user

information needs can be of many different natures. For example, there’s

the need to quickly find something specific to which the existence is already

known by the user. This particular answer will be the only one able to

satisfy the user. Then, there’s another kind of need where the user wants to

find something more abstract, to which the satisfactory answer can assume

multiple forms. It is difficult to reflect in the same ground truth and in

the same use cases those different needs. Providing multiple ground truths

presents itself with practical problems as well, because the task of creating

one is extremely long and prone to errors. So, we assessed just a couple

out of all the millions of possible combinations between user needs and

system configurations. Those situations are detailed in Chapter 7. It is higly

probable that more configurations and use cases need to be investigated to

completely assess the quality of a system, because it could perform well in

one case and worse in another.

8.1 Future Work

Here is a list of the things that is possible to expand or explore in the future:

• Integrating a model-based solution: since our prototype is text-based,

the natural evolution would be to implement a purely model-based

system on top of this framework. There is already a started project

that is moving in this direction.

• Metamodel integration: there is room for improvement in the way

the user, intended as developer or system integrator, can exploit the

knowledge of the metamodel. It is possible to implement a “tagging”

mechanism that would allow to mark the concepts of interest in the

metamodel. The system will then automatically take actions in or-

der to take into account those user-defined directives. The goal is to



8.1. Future Work 119

make the process of metamodel exploitation more and more automatic

resulting in less burden on the user.

• Testing more configurations: we did not investigate all the possible

indexing and searching strategies mostly because the number of com-

binations is huge. But it is surely possible to improve the proposed

strategies or propose new ones. This is aided by the fact that the

system is easily configurable and designed to easily integrate new op-

erations.

• Weigth training: it is possible to perform a training of the weights for

the experiments that make use of them. This way it will be possible

to discover the maximum theoretical performance gain between the

weighted experiments and the non-weighted ones. The training will

be different for each dataset. The objective would be to automatically

maximize one of the quality measures, like the DCG.





Bibliography

[1] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Pro-

gram understanding and the concept assignment problem. Commun.

ACM, 37:72–82, May 1994.

[2] Tomás Isakowitz and Robert J. Kauffman. Supporting search for

reusable software objects. IEEE Trans. Softw. Eng., 22:407–423, June

1996.

[3] Oleksandr Panchenko, Hasso Plattner, and Alexander Zeier. What do

developers search for in source code and why. In Proceeding of the

3rd international workshop on Search-driven development: users, in-

frastructure, tools, and evaluation, SUITE ’11, pages 33–36, New York,

NY, USA, 2011. ACM.

[4] Bojana Bislimovska, Alessandro Bozzon, Marco Brambilla, and Piero

Fraternali. Content-based search of model repositories with graph

matching techniques. In Proceeding of the 3rd international workshop

on Search-driven development: users, infrastructure, tools, and evalua-

tion, SUITE ’11, pages 5–8, New York, NY, USA, 2011. ACM.

[5] Rosalva E. Gallardo-Valencia and Susan Elliott Sim. What kinds of

development problems can be solved by searching the web?: a field

study. In Proceeding of the 3rd international workshop on Search-driven

development: users, infrastructure, tools, and evaluation, SUITE ’11,

pages 41–44, New York, NY, USA, 2011. ACM.

[6] Watanabe Takuya and Hidehiko Masuhara. A spontaneous code rec-

ommendation tool based on associative search. In Proceeding of the

3rd international workshop on Search-driven development: users, in-

frastructure, tools, and evaluation, SUITE ’11, pages 17–20, New York,

NY, USA, 2011. ACM.

[7] Lars Heinemann and Benjamin Hummel. Recommending api methods

based on identifier contexts. In Proceeding of the 3rd international

121



122 BIBLIOGRAPHY

workshop on Search-driven development: users, infrastructure, tools,

and evaluation, SUITE ’11, pages 1–4, New York, NY, USA, 2011.

ACM.

[8] Sumit Bhatia, Suppawong Tuarob, Prasenjit Mitra, and C. Lee Giles.

An algorithm search engine for software developers. In Proceeding of the

3rd international workshop on Search-driven development: users, in-

frastructure, tools, and evaluation, SUITE ’11, pages 13–16, New York,

NY, USA, 2011. ACM.

[9] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An

internet-scale software repository. In Proceedings of the 2009 ICSE

Workshop on Search-Driven Development-Users, Infrastructure, Tools

and Evaluation, SUITE ’09, pages 1–4, Washington, DC, USA, 2009.

IEEE Computer Society.

[10] Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys Poshy-

vanyk, and Chad M. Cumby. Exemplar: Executable examples archive.

In ICSE (2), pages 259–262, 2010.

[11] Vinicius Cardoso Garcia, Daniel LucrÃ c©dio, Frederico Araujo

DurÃ£o, Eduardo Cruz Reis Santos, Eduardo Santana de Almeida, Re-

nata Pontin de Mattos Fortes, and Silvio Romero de Lemos Meira. From

specification to experimentation: A software component search engine

architecture. In Ian Gorton, George T. Heineman, Ivica Crnkovic,

Heinz W. Schmidt, Judith A. Stafford, Clemens A. Szyperski, and

Kurt C. Wallnau, editors, CBSE, volume 4063 of Lecture Notes in Com-

puter Science, pages 82–97. Springer, 2006.

[12] Yunwen Ye and Gerhard Fischer. Supporting reuse by delivering task-

relevant and personalized information. In Proceedings of the 24th Inter-

national Conference on Software Engineering, ICSE ’02, pages 513–523,

New York, NY, USA, 2002. ACM.

[13] Katsuro Inoue, Reishi Yokomori, Tetsuo Yamamoto, Makoto Mat-

sushita, and Shinji Kusumoto. Ranking significance of software com-

ponents based on use relations. IEEE Trans. Softw. Eng., 31:213–225,

March 2005.

[14] Qihong Shao, Peng Sun, and Yi Chen. Wise: A workflow information

search engine. In Proceedings of the 2009 IEEE International Confer-

ence on Data Engineering, pages 1491–1494, Washington, DC, USA,

2009. IEEE Computer Society.



BIBLIOGRAPHY 123

[15] M Fernandez, I Cantador, and P Castells. CORE: A Tool for Collabo-

rative Ontology Reuse and Evaluation. 2006.

[16] Shingo Takada. Finding web services via bpel fragment search. In

Proceeding of the 3rd international workshop on Search-driven devel-

opment: users, infrastructure, tools, and evaluation, SUITE ’11, pages

9–12, New York, NY, USA, 2011. ACM.

[17] Xin Dong, Alon Halevy, Jayant Madhavan, Ema Nemes, and Jun

Zhang. Similarity search for web services. In Proceedings of the Thir-

tieth international conference on Very large data bases - Volume 30,

VLDB ’04, pages 372–383. VLDB Endowment, 2004.

[18] Alessandro Bozzon, Marco Brambilla, and Piero Fraternali. Searching

repositories of web application models. In Proceedings of the 10th inter-

national conference on Web engineering, ICWE’10, pages 1–15, Berlin,

Heidelberg, 2010. Springer-Verlag.

[19] Iman Keivanloo, Christopher Forbes, Juergen Rilling, and Philippe

Charland. Towards sharing source code facts using linked data. In

Proceeding of the 3rd international workshop on Search-driven devel-

opment: users, infrastructure, tools, and evaluation, SUITE ’11, pages

25–28, New York, NY, USA, 2011. ACM.

[20] Daniel Lucrédio, Renata P. M. Fortes, and Jon Whittle. Moogle: A

model search engine. In Proceedings of the 11th international conference

on Model Driven Engineering Languages and Systems, MoDELS ’08,

pages 296–310, Berlin, Heidelberg, 2008. Springer-Verlag.

[21] Bojana Bislimovska, Alessandro Bozzon, Marco Brambilla, and Piero

Fraternali. Graph-based search over web application model repositories.

In Soren Auer, Oscar DaÂaz, and George A. Papadopoulos, editors,

ICWE, volume 6757 of Lecture Notes in Computer Science, pages 90–

104. Springer, 2011.

[22] Hai Zhuge. A process matching approach for flexible workflow process

reuse. Information and Software Technology, 44(8):445 – 450, 2002.

[23] Elaine Nowick, Kent M. Eskridge, Daryl A. Travnicek, Xingchun Chen,

and Jun Li. A Model Search Engine Based on Cluster Analysis of Search

Terms. Library Philosophy and Practice, 7(2), 2005.



124 BIBLIOGRAPHY

[24] Ahmed Awad, Artem Polyvyanyy, and Mathias Weske. Semantic query-

ing of business process models. In Proceedings of the 2008 12th Inter-

national IEEE Enterprise Distributed Object Computing Conference,

pages 85–94, Washington, DC, USA, 2008. IEEE Computer Society.

[25] Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. Query-

ing business processes. In Proceedings of the 32nd international con-

ference on Very large data bases, VLDB ’06, pages 343–354. VLDB

Endowment, 2006.

[26] Tanveer Syeda-Mahmood, Gauri Shah, Rama Akkiraju, Anca-Andrea

Ivan, and Richard Goodwin. Searching service repositories by combin-

ing semantic and ontological matching. In Proceedings of the IEEE

International Conference on Web Services, ICWS ’05, pages 13–20,

Washington, DC, USA, 2005. IEEE Computer Society.

[27] Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo

Carreiro, José L. Ferreira, and Carlos Bento. Using wordnet for case-

based retrieval of uml models. AI Commun., 17:13–23, January 2004.

[28] Daniel Bildhauer, Tassilo Horn, and Jurgen Ebert. Similarity-driven

software reuse. In Proceedings of the 2009 ICSE Workshop on Com-

parison and Versioning of Software Models, CVSM ’09, pages 31–36,

Washington, DC, USA, 2009. IEEE Computer Society.

[29] Gerald. Kowalski. Information retrieval architecture and algorithms.

Springer, New York [u.a.], 2011.

[30] Colin Atkinson and Thomas Kühne. Model-driven development: A

metamodeling foundation. IEEE Softw., 20:36–41, September 2003.

[31] Jean Bezivin. On the unification power of models. Software and System

Modeling, pages 171–188, 2005.

[32] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara

Comai, and Maristella Matera. Designing Data-Intensive Web Appli-

cations. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2002.

[33] David Smiley and Eric Pugh. Solr 1.4 Enterprise Search Server. Packt

Publishing, 2009.

[34] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based eval-

uation of ir techniques. ACM Trans. Inf. Syst., 20:422–446, October

2002.



BIBLIOGRAPHY 125

[35] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze.

Introduction to Information Retrieval. Cambridge University Press,

New York, NY, USA, 2008.


