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Capitolo 1 
 
Introduzione 
 
Il capitolo introduttivo spiega in poche pagine i motivi per cui è necessaria una corretta 
lubrificazione degli organi rotanti, i danni che possono derivare da un’errata 
alimentazione del cuscinetto stesso, e i costi che questa comporta. 
 
La trattazione spazia poi sui vari tipi di lubrificanti utilizzati nelle normali applicazioni, 
evidenziandone le varie caratteristiche e i limiti di utilizzo. Il sottocapitolo conclusivo 
illustra 3 diversi tipi di cuscinetti a lubrificazione a film d’olio, soffermandosi sulle 
caratteristiche costruttive di ognuno. 

 
In particolar modo, vengono descritte le caratteristiche dei cuscinetti a lubrificazione 
idrodinamica, dove l’elemento rotante galleggia su un sottile film d’olio di una definita 
viscosità e ad una specifica temperatura. La lubrificazione idrodinamica, sul piano 
puramente tecnologico, implica una maggiore complessità d’impianto: la presenza di olio 
in pressione, infatti, implica l’installazione di pompe, filtri e sistemi di raffreddamento 
necessari al corretto funzionamento del cuscinetto stesso. Inoltre, ci sono dei temi di 
natura ambientale legati allo smaltimento dell’olio esausto. 
 
Per assicurare alte performance del cuscinetto, oltre all’aspetto ingegneristico, è 
necessario conoscere a fondo il comportamento dinamico del film d’olio stesso. 
All’interno del film, la rotazione dell’albero genera un campo di forze in grado di 
sostentare l’albero stesso: questo campo di forza presenta caratteristiche di rigidezza e 
smorzamento, e va quindi ad influire sul comportamento dinamico del rotore. 
Chiaramente, nel caso in cui l’albero non giri ad una velocità sufficiente, il campo di 
forze non è in grado di supportare l’albero stesso e si genera attrito molto dannoso per i 
componenti meccanici. La creazione di questo campo di forze è descritta analiticamente 
dall’equazione di Reynolds, la cui integrazione sarà oggetto di studio nei capitoli 
successivi. 

  
 
 
 
 
 
 



 3

Capitolo 2 
 
Idrodinamica: teoria di Reynolds 
 
L’oggetto del secondo capitolo della tesi è la teoria classica di Reynolds 
dell’idrodinamica. Introdotte le ipotesi necessarie allo studio idrodinamico (forze di 
volume trascurabili, fluido Newtoniano, flusso laminare, inerzia del fluido trascurabile, 
densità del fluido costante, viscosità costante attraverso il film d’olio), il comportamento 
del film d’olio viene studiato a partire dalle equazioni di equilibrio di un elemento 
infinitesimo di fluido stesso. Sostituendo nell’equazione di equilibrio le equazioni 
corrispondenti alle ipotesi prima citate, si arriva alle espressioni analitiche delle velocità 
della particella di fluido nelle due direzioni x e y. 
 
La seconda equazione necessaria ad ottenere l’equazione di Reynolds si ricava 
dall’equazione di continuità di flusso in una colonna. Anche in questo caso, si 
sostituiscono nell’equazione di continuità le ipotesi iniziali al fine di ricavare 
l’espressione completa e definitiva dell’equazione di Reynolds: 
 

 
 
A causa della complessità dell’equazione, per scopi ingegneristici si tende a semplificare 
l’espressione stessa imponendo che la velocità sia unidirezionale. 
In questo modo si ottiene l’espressione semplificata dell’equazione di Reynolds: 
 

 
 
utile allo studio delle applicazioni trattate. 
 
Un ulteriore adeguamento al sistema oggetto dello studio è la trasformazione 
dell’equazione di Reynolds in coordinate polari: 
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Capitolo 3 
 
Variational Approach 
 
A partire dall’equazione di Reynolds in coordinate polari, viene studiata una soluzione 
alternativa al classico metodo ad elementi finiti, in grado di ridurre di almeno una decina 
di volte i tempi computazionali. 
 
Il metodo proposto è il Variational Approach: siccome lo scopo dello studio non è 
ottenere un’accurata distribuzione di pressione all’interno del cuscinetto ma l’effetto 
generale del film d’olio con una sufficiente precisione, il metodo variazionale è una 
soluzione efficace a questo tipo di problemi. Nel caso in cui si abbia rottura del film 
d’oliò, però, il metodo variazionale non è più adeguato allo studio del sistema dinamico. 
 
Il metodo variazionale qui proposto inoltre, può essere esteso anche ad applicazioni con 
cuscinetti di geometria ellittica. I pad di tipo ellittico, infatti, sono trattati come pad 
circolari ma con un centro equivalente situato in una posizione differente rispetto al 
centro reale del cuscinetto. Per ottenere la soluzione, vengono geometricamente calcolati 
i parametri equivalenti del cuscinetto (posizione del centro, attitude angle, etc..) e si 
applica il procedimento risolutivo descritto per i cuscinetti circolari. 
 
Il metodo è valido anche in caso di sistema non stabile, e quindi con componenti di 
velocità non rotazionale differenti da zero. In questa situazione, il tempo totale 
computazionale risulterà chiaramente più elevato, ma comunque notevolmente ridotto 
rispetto ad un tradizionale metodo ad elementi finiti. 
 
L’algoritmo risolutivo parte dall’imposizione delle condizioni al contorno (ovvero che la 
pressione sia nulla ai bordi del pad) e dall’imposizione della condizione di positività del 
vettore pressione in ogni punto della mesh. 
 
Applicando rigorosamente il metodo variazionale, si arriva ad una equazione matriciale 
del tipo 
 

Kp=f 
 
Dove p è il vettore delle pressioni ed è l’incognita. L’equazione può velocemente essere 
risolta con una fattorizzazione simile ad una fattorizzazione di tipo LU. La peculiarità 
dell’algoritmo risolutivo risiede nel “chasing process” utilizzato per ricavare il vettore 
delle pressioni, simile al tradizionale processo risolutivo di un sistema di tipo LU ma con 
la differenza che l’algoritmo impone alla soluzione di essere sempre positiva in tutti i 
punti della mesh. In questo modo si ottiene una distribuzione di pressione lievemente più 
elevata della pressione reale, ma che poi nel calcolo delle forze non va ad inficiare 
l’errore percentuale sul risultato finale. 
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Una volta risolto il sistema LU ed ottenuto il vettore delle pressioni, si passa al calcolo 
delle forze con delle semplici moltiplicazioni del vettore delle pressioni. Il punto di forza 
dell’algoritmo risiede proprio in questo passaggio: mentre un metodo agli elementi finiti 
procede con l’integrazione punto per punto del campo delle pressioni, il metodo 
variazionale semplicemente moltiplica fra di loro dei vettori precedentemente calcolati, 
velocizzando enormemente il processo. 
 
 

Capitolo 4 
 
Risoluzione al calcolatore dell’equazione di 
Reynolds 
 
Il quarto capitolo dell’elaborato riporta il codice implementato in MatLab per la 
risoluzione dell’equazione di Reynolds attraverso il metodo variazionale. Sono illustrate 
tutte le subfunction utilizzate, col ciclo iterativo utilizzato per convergere al risultato, e le 
parti di codice utilizzate per le interfacce con l’utente. La subfunction più importante, che 
include i passaggi dell’algoritmo, contiene al suo interno altre subfunction necessarie al 
calcolo di alcuni parametri fondamentali per ottenere la soluzione. Al termine 
dell’integrazione, una volta ricavata la distribuzione di pressione, la subfunction forces.m 
calcola rapidamente le forze scaricate dal cuscinetto sull’albero. 
 
Il programma è strutturato in modo da presentare un’interfaccia iniziale, che permette 
all’utente di scegliere il tipo di cuscinetto e le condizioni che si andranno a studiare. 
 
Una volta scelto il cuscinetto e le condizioni di moto, stabili o instabili, l’utente setta i 
parametri geometrici del cuscinetto (estensione assiale, estensione radiale del pad, 
attitude angle…) e i parametri matematici necessari per l’integrazione dell’equazione di 
Reynolds (numero di nodi, relaxation factor, parametro m iniziale…) 
 
Il programma fornisce in output i grafici delle distribuzioni delle pressioni sia sul pad 
inferiore che sul superiore (nonostante uno dei due, in regime stabile, sia scarico) e le 
forze lungo le due direzioni x e y. La forza totale è naturalmente la somma vettoriale 
delle due componenti. 
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Capitolo 5 
 
Risultati 
 
Nell’ultimo capitolo si espongono i risultati del nuovo metodo, comparati coi risultati 
ottenuti con un metodo ad elementi finiti. 
 
Come si può vedere nei grafici allegati, i risultati in termini di forze adimensionali sono 
pressoché identici a quelli ottenuti col metodo tradizionale, con un risparmio 
computazionale molto elevato anche per mesh non eccessivamente fitte. 
 
L’errore che si ottiene fra il metodo variazionale e il metodo ad elementi finiti tende a 0 
per eccentricità molto elevate, con risultati ottenuti in un tempo circa 10 volte minore. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7

Contents 
 
1 Introduction  ..............................................................................................1 
 1.1 Lubrication.........................................................................................1 
 1.2 Wear  ..............................................................................................2 
  Wear Damages ..................................................................................2 
  Wear Costs .........................................................................................3 
 1.3 Lubricants and Their Composition ..................................................4 
  Mineral Oils .......................................................................................5 
  Synthetic Oils ....................................................................................6 
  Emulsions and Aqueous Lubricants .................................................6 
  Greases  ..............................................................................................7 
  Lubricant Additives...........................................................................7 
 1.4 Literature Survey ...............................................................................8 
  Journal Bearings ................................................................................8 
  Fluid films Bearings ..........................................................................9 
  Hydrostatic Bearings ...................................................................... 10 
 
2 Hydrodynamics: the Reynolds Theory of Lubrication ...................... 12 
 2.1 Reynolds Equation ......................................................................... 14 
  Simplifying Assumptions .............................................................. 14 
  Equilibrium of an Element ............................................................ 15 
  Continuity of a Flow in a Column ................................................ 17 
  Simplifications to the Reynolds Equation .................................... 19 
 
3 Variational Approach .............................................................................. 20 
 3.1 Dimensionless Reynolds Equation................................................ 20 
 3.2 Theoretical Foundation of Variational Approach ........................ 23 
 3.3 Complement of One-Dimensional 
  Variational Inequality and the Finite Elements Method .............. 30 
 3.4 Complementary Finite Elements Method ..................................... 34 
 3.5 Complementary Problem Solving ................................................. 39 
 3.6 Oil Film Forces and Jacobian Matrix of the Joint Solution......... 42 
  
4 Computational Solving of the Reynolds Equation .............................. 45 
 Main Window  ........................................................................................... 46 
 Sub function “pressurefielsteady.m” ......................................................... 48 
 Sub function “pressurefieldunsteady.m” .................................................. 50 
 Sub function “mapofprogram.m” .............................................................. 52 
 Sub-function “pressurefieldsteadycircular.m” ......................................... 54 
 Sub-function “pressurefieldsteadyelliptical.m” ........................................ 65 
 Sub-function “pressurefieldunsteadycircular.m” ..................................... 77 
 Sub-function “pressurefieldunsteadyelliptical.m” ................................... 90 
 Sub-function “pressure.m” ...................................................................... 104 
 Sub-function “iteration.m” ...................................................................... 105 
 Sub-function “plot2D3D.m” .................................................................... 107 



 8

 Sub-function “forces.m” .......................................................................... 108 
  
5 Results  ......................................................................................... 109 
 Conclusion  ......................................................................................... 115 
 
References  ........................................................................................................... 116 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 9

Figures and Charts 
 
 
 
 
2.1 Principle of hydrodynamic pressure generation 
 between non-parallel surfaces ....................................................................13 
2.2 Equilibrium of an element ..........................................................................15 
2.3 Continuity of a flow in a column................................................................17 
 
5.1 Pressure Distribution 3D ......................................................................... 110 
5.2 Pressure Distribution 2D – middle line ................................................... 111 
5.3 Forces Vs Eccentricity ............................................................................. 113 
5.4 Error Vs Eccentricity ............................................................................... 114 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Forces on Bearings: Variational Approach.  1 

Chapter 1 
 
Introduction 
 
1.1   Lubrication. 

The following thesis aims to a fast way to evaluate forces on bearings during the transient 
of a rotor. This topic needs a short introduction about what we usually refer to using the 
term “lubrication”. In everyday applications which involve two surfaces in relative 
motion, thin low shear strength layers of gas, liquid and solid are usually interposed 
between these two surfaces in order to improve the smoothness of motion and reduce the 
risks of damage of the surfaces. These layers are generally very thin and difficult to 
observe. Thickness of these films may vary in a range of 1-100 µm, although thinner and 
thicker films can be found in some applications. Knowledge related to diagnosing these 
layers (in order to prevent serious damages of the surfaces) and improving the 
performances of these films is commonly known as “lubrication”.  
Although there are no restrictions on the type of materials used, different kind of 
materials used to form the lubrication film between the surfaces may extremely change 
the results of the study and influence the limits of the theory application. The branch of 
lubrication object of this study is “hydrodynamic lubrication”, which pertains to the 
detailed analysis of gaseous or liquid films. Lubrication by solid interfaces between the 
surfaces is generally termed “solid lubrication”. An alternative kind of lubrication, which 
does not count on the presence of any films, is based on putting an external force field 
between the opposing surfaces who maintains the right distance between the two bodies. 
The force field may be, for example, a magnetic force field type which applies magnetic 
forces in order to ensure the correct functioning of the machine. However, magnetic 
levitation is still at the experimental stage. This work will study that particular kind of 
lubrication termed “hydrodynamic lubrication”.  
From a technological point of view, liquid lubrication requires more devices than other 
types of lubrication. Appearance of liquid film implies pumps, cooling systems, filters in 
order to maintain the performances of the film over a period of time. Plus, there are 
environmental issues associated to the disposal of used lubricants. Lubrication based on 
an oil film has got limits, principally associated to the loss of load carrying capacity at 
high temperature and degradation during the service. Performances of oil strictly depend 
on its chemical composition, and its physical and mechanical characteristics. So, to 
ensure high performances of the bearings, beneath the practical engineering aspects, it is 
extremely important to predict film characteristics and properties. Prediction methods 
involve, at a basic level, hydrodynamic, hydrostatic and elastohydrodynamic lubrication. 
More advanced level of study involves computational methods, since there is still no 
analytical method for the resolution of the equations associated. 
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1.2   Wear 

Wear damages. 
 
Prediction methods are pretty important for a correct functioning of the lubrication film, 
in order to avoid film rupture and consequent wear damages of the moving surfaces. Film 
failure leads to severe damages and, obviously, bad working of the machine plus 
extremely high costs of reparation. In these circumstances, wear is caused by adhesion of 
contacting bodies. This phenomenon is termed “adhesive wear”. If milder forms of wear 
occur by repetitive stresses and consequent fatigue processes, these milder forms of wear 
are termed “fatigue wear”. Two associated forms of wear are “erosive wear” (due to 
impacting particles versus the walls of the bearing) and “cavitation wear”, caused by fast 
flowing liquids. But wear can also occur due to chemical reasons: sometimes, film 
material may be formed by chemical attack of either contacting body. So, if this provides 
the effective lubrication, it involves also a massive wear damage of the bearing. This kind 
of damage is termed as “corrosive wear”. When the corroding agent is oxygen, the 
correct term is “oxidative wear”. Last of the most important types of wear is “fretting 
wear”. It occurs if the available space between the two moving surfaces is restricted in a 
few micrometers. In this particular condition, oil film keeps trapped between the surfaces 
and may become destructive. Wear involved in solid lubrications will not be examined, as 
the main topic of the work is hydrodynamic lubrication. 
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Wear costs. 
 
The main problem in wear damage phenomenon is obviously the economic side of the 
argument. Wear damage is equal to large amount of energy and material losses, so this 
implies massive costs of maintenance and repairing devices. In order to avoid these 
losses, tribology is getting more and more importance such as the best and the only way 
to reduce costs and improve the performances of every machine. Basically, the following 
simple equation summarizes and estimates the costs involved in existing tribological 
practice: 
 

 
 

Actually, if only we could evaluate the number of nowadays operating machines, this 
equation should give us an idea of savings which a good lubrication could imply. 
However, such as in every engineering application, every single case requires a detailed 
investment plan in order to evaluate costs of tribology versus possible savings. Anyway, 
economics of tribology assume huge proportions, as we can see from the following data: 
in 1966, Peter Jost evaluated that by application of the basic principles of tribology, 
economy of U.K. could save approximately 515 £ per year (at 1965 values) [1]. A similar 
report published in Germany, in 1976, shows that economic losses by friction and wear 
cost about 10 million DM per year (at 1975 values) [2]. An U.S.A. report estimated than 
about 11% of whole annual energy can be saved in the four major areas of transportation, 
turbo machinery, power generation and industrial processes by practical use of 
tribological improvements [3]. Problems of tribology economics thus become such 
important to an engineer. Concerning for example pneumatic transportation of material 
through pipes, the erosive wear at bends can be up to 50 times more than wear in straight 
sections [4]. 
As soon as tribology comes so important and expensive, engineers and researchers aim to 
new ways to get more efficient machines, especially studying new materials and 
lubricants. Research nowadays brought some radical improvements, such radical to 
wholly change the technology and the economics of some products. A classic example of 
tribology improvements is the adiabatic engine. Development behind adiabatic engine 
aims to use a dry, high temperature self lubricant instead of traditional oils and lubricants 
as so to have a chance to turn heat (formerly absorbed by obsolete radiator) in mechanical 
work. This kind of technique should improve the performances of traditional engines, 
reducing maintenance and operating costs and increasing enginès fuel efficiency. 
Generally, and above all easier, wear damages can be controlled by a correct choice of 
components and materials properties, depending on conditions of use of the machine. 
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1.3   Lubricants and their composition. 

A lubricant (sometimes referred to as "lube") is a substance (often a liquid) introduced 
between two moving surfaces to reduce the friction between them, improving efficiency 
and reducing wear. They may also have the function of dissolving or transporting foreign 
particles and of distributing heat. The following sub-chapter aims to explain how 
different chemical composition of the lubricant may vary the performance of the 
machine, in order to choose the best kind of lubricant for every single application. 
Physical properties of the lubricant are strictly connected to his chemical composition. 
Thus, lubricants are used to be classified essentially by their origin: first grade of the stair 
is distinction between biological and non-biological oils. Non-biological oils class 
provides a huge array of hydrocarbon compounds: these substances are usually present as 
complex mixtures and so they can be used for many more purposes, like control of wear 
and friction. Nowadays, technological processes require a high grade of performances 
from the lubricants. That is the reason why selection of correct oil for the purposes of 
lubrication become such an important step during the projecting phase of the operating 
machine. For example, most of the common used natural oils contain substances which 
can compromise lubrication properties, but they also contain substances essential to 
satisfy application requirements. The balance between purity and impurities is critical 
concerning oxidation stability of the oil and it may vary depending on the application of 
the lubricant. Problem of oxidation stability is solved by deliberately adding to the natural 
formula of the oil plenty of substances called “additives”, able to radically change the 
behaviour of the lubricant. Additives percentage also influences specific characteristics of 
the lubricant, such as corrosion tendency, foaming, clotting, oxidation, wear, friction and 
other properties. 
Lubricant performances are rated essentially by two different aspects: achieving of 
required level of friction and wear rates, and maintaining these standards in spite of 
continuous degradation of the lubricant. Additives present in the oil also deteriorate 
during operation due to the contact with metallic parts of the machine and the 
environment. Degradation is inevitable, so needs to be postponed to the predicted lifetime 
of the machine. 
Plain mineral oil is defined as base stock. A typical lubricating oil is composed of 95% 
base stock and 5% additives. Usually, base stock is chemically inert, as so to avoid 
unrequested chemical reactions between the lubricant and the outside environment. 
Actually, base stocks are rated by their source: therefore, we usually divide base stocks in 
biological, mineral and synthetic. The choice of the correct kind of base stock obviously 
depends on application considered: biological oils are used to be applied in application 
where  risk of contamination must be reduced to a minimum (like food or pharmaceutical 
industry). Mineral oils are commonly used in almost all industry spheres that require 
moderate operating temperatures (gears, bearings, engines...). Finally, synthetic oils are 
developed to substitute mineral oils in those particular applications in which mineral oils 
can’t guarantee high performances due to the inevitable deterioration. Synthetic oils 
provide a big array of possible applications, both at low and high operating temperatures. 
Further lubricants do exist, such as greases. Greases are not essentially different from 
oils: they consist of mineral or synthetic oil, but the oil is trapped in minute pockets 
formed by soap fibres which constitute the internal structure of the grease. Greases have 
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been developed principally in order to provide semi-permanent lubrication, since the oil 
trapped in the fibrous structure is unable to flow away from the containing surfaces. 
 
Mineral oils. 
 
Mineral oils are the most commonly used lubricants. That’s due to the low cost of mining 
the crude oil which is the base from which mineral oils are manufactured. Actually, 
minerals oils are supposed to derive from decomposition of animal and plant matter in 
salt water. That’s usually named as “fossil theory” [5]. According to this theory, mineral 
oils directly come from a transformation process driven by high temperatures and 
pressures, leading the organic matter to the complex hydrocarbon molecules which are 
the basic constituents of crude oil. By following the theory path, since 60 % of world oil 
resources are in the Middle East concentrated in 25 giant fields, it could seem that the 
Persian Gulf was a large sink for plant and animal life for few million of years. This 
involves that this environment did not change by the time stream, remaining the same 
undisturbed environment despite of earthquakes, storms, faulting, etc for millions of 
years. This leads to some doubts about the validity of fossil theory as the only source for 
mineral oils. Plus, it is hard to believe that in ancient times most of the plant and animal 
life on Earth was concentrated in the Persian Gulf region. 
Further hypothesis about mineral oils source lie beneath the suggestions of Gold [6]. It’s 
commonly known that many hydrocarbons are present on meteorites and they cannot 
possibly originate from decomposition process of any plant or animal life. Moreover, 
some planets in our solar system got a huge presence of hydrocarbons in their 
atmospheres. Thus, theory suggests that hydrocarbons on Earth generated from non-
biological sources in the same way as on the other planets. New theory supposes that 
large reservoirs of gas and oil are still buried in the deep of our planet, waiting to be 
discovered. We will need an efficient deep drilling technology in order to discover these 
reservoirs and use them. 
The structure of common mineral oils is quite complex. It is not possible to predict the 
exact composition of a mineral oil, due to the large array of elements composing it. 
Actually, mineral oils are also impure: this implies that their structure is made more and 
more complex and difficult to study by the presence of exterior elements. Therefore, 
easiest way to classify mineral oils is divide them into categories depending on the source 
of crude oil and refining process. Fundamental differences between mineral oils are 
chemical forms, sulphur content and viscosity. Chemical forms are divided themselves 
into paraffinic forms, naphthenic forms and aromatic forms. Sulphur content depends on 
the source of the crude oil and his refining process. If good lubrication and oxidation 
properties are required, small amount of sulphur in the oil is desirable. Basically, high 
amounts of sulphur often lead to an early decay of machine performances. Last 
classifying property is viscosity, which strictly depends on the degree of refining. 
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Synthetic oils. 
 
Synthetic oil development initially originates by those countries lacking a reliable supply 
of mineral oils. These lubricants were expensive, so they took a bit of time to be applied 
by a large scale of users. Synthetic oils basically supply oxidation problems and viscosity 
loss at high temperatures of mineral oils, and combustion or explosion in the presence of 
strong oxidative agents. Essentially, synthetic lubricants and mineral oils cover the same 
plant needing, with differences located in costs and properties at extreme conditions of 
usage. Synthetic lubricants can usually be divided into 2 groups: fluids aiming to provide 
superior lubrication at ambient or elevated temperatures, and fluids for extremes 
temperature or chemical attack. Some particular kinds of synthetic lubricants provide 
very high performances of the machine, reflected in the cost of these oils. In 1987, the 
price of a halogen based synthetic lubricant was $ 450/kg, almost as silver’s price. 
 
Emulsions and aqueous lubricants. 
 
Water too is a good base stock for lubricants: cheap, with good heat transfer properties 
and non flammability. Obviously, water by itself is a very poor lubricant but if mixed 
with oils (as so to form emulsions) it represents a good way to solve some lubrication 
problems. These lubricants can be used such as coolants too, thanks to good heat transfer 
properties of water. The strictest limitation of these lubricants lies in the temperature 
range in which they can be successfully used. Temperature obviously cannot cross the 
melting point of ice and boiling point of water, so these problem excludes aqueous 
lubricants from such a big part of applications (for example as engine oils). 
Basically, emulsions are usually classified into W/O emulsion, which are water droplets 
suspended in an oil base, and the opposite O/W emulsions, which obviously are oil 
droplets suspended in water. Biggest emulsions deal concerns viscosity of the lubricant. It 
has been discovered that viscosity declines with increasing shear stress. Most interesting 
characteristic of emulsions lies in their behaviour in concentrated contacts operating in 
elastohydrodynamic lubrication regime (often named as EHL). The size of an EHL 
contact is comparable to the droplet size, so this suggests that the elastohydrodynamic 
films generated would be unstable. This, however, has not yet been confirmed 
experimentally: in fact, emulsions with a low grade of stability keep on giving the best 
lubrication 
Emulsions and aqueous solutions are used especially in manufacturing sphere, used as 
cutting fluids in the metal working industry. 
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Greases. 
 
The term “grease” usually refers to a number of solid lubricants possessing a higher 
viscosity than oil. A true grease is made by a liquid lubricant mixed with another 
lubricant, usually termed as a “soap” (in the chemical sense, so referring to a fatty acid or 
a metallic salt), as so to form a solid lubricant. Such as in case of emulsions, greases 
viscosity declines with increasing of shear stress. As soon as shear reaches a critical 
value, viscosity drastically drops by: this kind of behaviour makes greases considered as 
plastic fluids. Since the oil is unable to flow away from the lubricant chemical structure, 
greases usually provide semi-lubrication. This reason leads to certain strict limitations on 
use of greases as lubricants. Usually, most massive use of greases is in those applications 
in which machines can only be lubricated unfrequently and in which oil would not stay in 
position. In these situations, grease also covers the function of protecting the machine 
from water and dust. Greases are great lubricants in case of required semi-permanent 
lubrication, because they can be packed into the bearing and left there operating for 
months, before they start decaying their performances. Essentially, greases lubricating 
behaviour is not too different from mineral oils: the main difference is that greases 
structure needs to remain as a solid mass in spite of high service temperatures. If grease 
gets liquid form it can flow away leading to a failure. 
Greases are also applied in plants rotating at unusually high (10.000 rpm) or low (5-10 
rpm) speeds. In these cases, lubricants may contain additives [7]. Additives used in 
greases are basically the same used in mineral oils. In some cases, additive may change 
the basic structure of the soap in order to increase and improve the performances of the 
lubricant. Commonly, additives are also used to prevent oxidation. 
 
 
Lubricant additives. 
 
Lubricant additives are organic or organometallic substances mixed in a few percent with 
a base lubricant in order to improve the performance of the lubricant itself. Recently, 
additives development satisfied lot of purposes, apart from pure wear improvement: 
nowadays, additives are commonly applied as so to improve oxidation resistance, control 
of corrosion, control of contamination by reaction products, reducing excessive decrease 
of lubricant viscosity at high temperatures, inhibiting the generation of foam. Additives 
structures are subject of massive research by companies involved in this industry, because 
good use of additives may improve of a few percent the performances of the lubricant. 
For this reason, companies keep secrecy on the details of additives composition. This 
secrecy means that additives studies are more such an art generated by experience than an 
exact scientific study referred to the chemical composition of these substances. 
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1.4   Literature Survey. 

To complete the goals of this thesis, an extensive literature search was carried out to 
examine what  have  been  done  on  hydrodynamics  bearing  characteristics  particularly  
plain  bearings, elliptical and off-set  journal bearings. The basic concept of topic lies 
beneath the theory of lubrication and related to solving the Reynolds equation. 
 
Journal bearings. 
 
A journal bearing is the most common used kind of bearing. With this term, we refer to a 
bearing made by a shaft (also known as “journal”) moving relatively to the bearing, 
separated by a thin film of oil or grease. Both the shaft and the main bearing body are 
usually simple cylinders with lubricant filling the gap within the two bodies. Lubricant 
film is thick enough to ensure that shaft and bearing never get in contact with each other. 
Oil is generally fed into the bearing through a hole in the cylinder body under pressure. 
The casing containing the whole bearing is usually termed as journal box. Liquid journal 
bearings can be hydrodynamically lubricated or hydrostatically lubricated. The difference 
between hydrostatic and hydrodynamic forces is in the way the pressure that supports the 
bearing is initially and subsequently maintained. Main characteristic of this kind of 
bearing is that the oil film, once in movement, is able to carry by itself the load applied 
on the bearing, by generating a gradient of pressure and a consequent force system. This 
is permitted by fluid-dynamics laws, especially Reynolds equations, which will be object 
of study in the following chapters. 
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Fluid film bearings. 
 
Fluid film also known as hydrodynamic bearing has the rotating element floating on a 
thin film of lubrication.  It  is  lubricated  and  cooled  by  a  continuous  supply  of  a  
filtered  liquid, typically  oil,  of  a  specified  viscosity  and  at  a  specified  temperature.  
The rotation of the bearing generates a hydrodynamic film with a high pressure gradient 
that creates a net force which supports the load.  It possesses stiffness and damping 
properties which have an effect on the dynamic behaviour of the rotor bearing system.  
Fluid film bearings have been widely used in rotating machinery. The characteristics of 
the bearings are very much influenced by the stiffness and damping coefficient of the 
bearings, which in turn are dependent on the fluid film forces at the bearings.   
Hydrodynamic  bearings  are much more  prone  to  initial wear  because  lubrication  
does  not occur  until  there  is  rotation  of  the  shaft. At low rotational speeds the 
lubrication may not attain complete separation between shaft and bush. They require 
much greater care in design and operation than hydrostatic bearings. 
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Hydrostatic Bearings. 
 
In  a  hydrostatic  bearing,  the  pressure  is  always  present  at  a  value  that  is  desirable  
and  is achieved by an external pump which forces lubricant into the system, as you can 
see from the diagram. The pump provides a magnitude of pressure that aims to 
supplement the pressure which is created by the bearings rotation. 

 
 
Detailed  theory and application of hydrodynamic  journal bearing  is explained by Fuller 
[8], where focuses more on practical designs and problem solving including friction, 
power losses and material of the bearing, analysis from origin of hydrodynamic theory 
and its uses. 
Pinkus [9] explained the concept of lubrication and cavitations; he also covers great detail 
of fundamental  concept  of  Reynolds  equation  in  general  and  introduction  to  
hydrodynamic journal bearing.  
N.S Feng and E.J Hahn [10] developed software of computing  the characteristics of 
elliptical and tilting pad bearing which is written such that the output is able to used as 
input data for various analysis programs. Furthermore, the computer codes were 
developed in such a way that the calculated bearing characteristics are readily able to be 
edited into tabulated data files for input to other vibration analysis programs.  
L.P. Wang [11] did a PhD thesis on dynamic modelling and behaviour of tilting-pad 
bearings, the  thesis  gave  5  propositions  based  on  the  variational  inequality  theory  
of  hydrodynamic lubrication. The  thesis also present a weighted  finite element 
algorithm  to calculate  the oil-film forces of journal bearings and using two-dimensional 
solution that could be interpolated by  one-dimensional  elements  with  high  accuracy.  
The solution also proposed amendatory direct-method to solve the equation whose 
coefficient matrices is in diagonal form. Based on the  interior characteristics,  the  
solution of oil-forces  is united with  the  solution of  Jacobian matrices  and  in  this  
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process;  the  operations  are  solved within  the  positive  pressure  region. Therefore 
many redundant computations involves are avoided.  
 
H.L.  Xi  [12]  did  a  thesis  based  on  the  non-linear  dynamical  behaviour  of  a  finite  
journal bearing-rotor system. In the thesis, the analytical formula of the unsteady oil-film 
force of the finite journal bearing is cited. Furthermore, the methods for the motion 
characteristics of the system are introduced.  The  dynamical model  of  the  finite  journal  
bearing  rotor  system  is established  and  the motion  differential  equation  of  the  
system  is  solved  using Runge-kutta method. Motion characteristics of the finite journal 
bearing-rotor are investigated under the consideration of oil-film force.  Poincare maps, 
spectrum analysis about dimensionless rotating speed, dimensionless mass eccentricity 
and synthetically parameter are obtained.   
Various paper articles in the book “Journal Bearings for Reciprocating & Turbo 
Machinery” [13] gave a clear concept on the hydro-dynamic theory of dynamically 
loaded bearings. It also explains  and  investigates  into  the  performance  of  
dynamically  loaded  journal  bearings. Furthermore, it includes the hydrodynamic theory 
of finite journal bearings using bipolar co-ordinate system. 
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Chapter 2 
 
Hydrodynamics: the Reynolds’ theory of 
lubrication. 
 
This chapter will give an idea of the behaviour of the film oil from an analytical view 
point, discussing the basic principles of hydrodynamic lubrication.  The first who 
provided an analytical proof that a viscous liquid can separate two sliding surfaces by 
creating a field of pressure, resulting in low friction and theoretically zero wear, was 
Osborne Reynolds in 1886 in his ‘Proceedings of the Royal Society by Reynolds’ [14]. 
This theory was successfully applied to bearings in 20th century, and the results are 
bearings able to carry load of several tons at sliding speed of 10-50 m/s (in common 
applications such as hydroelectric power stations). In this plants, operating surfaces are 
totally separated by a lubricating film in order to maintain the friction coefficient at a 
very low level. Hydrodynamic (Full Film) Lubrication is obtained when two mating 
surfaces are completely separated by a cohesive film of lubricant. Usually, every kind of 
hydrodynamic lubrication can be explained by one mathematical equation, originally 
discovered by Reynolds and simply called “Reynolds equation”. Although there are many 
ways to derive this equation, as it’s a direct simplification of Navier-Stokes momentum 
and continuity equation, it can be derived from this basis. The necessary conditions to use 
the Reynolds theory are that the surfaces must move relatively to each other with 
sufficient velocity for a load-carrying lubricating film to be generated and that surfaces 
must be inclined at some angle to each other. In case of surfaces are parallel the pressure 
field will not form the lubrication film able to carry the required load (even if there are 
cases in which the second condition is not so necessary). The way the lubricant generate 
itself a pressure field able to carry the required load is pretty simple, as it is described in 
Figure 2.1: assuming that the bottom surface is running and the top one is staying quiet 
(and assuming they’re inclined at a certain angle relatively to each other), the moving 
surface drag the lubricant with his movement. The pressure gradient generated simply 
avoids that the entrant lubricant exceeds the exiting. The pressure gradient also does so 
that the velocity profile bends inwards at the entrance of the wedge and bends outwards at 
the exit. This difference create a pressure able to carry a certain load, which is the real 
purpose of the hydrodynamic lubrication. In case of a bearing, the wedge is curved (or 
wrapped around a shaft) as so to create a journal bearing, object of this work. In case of 
wedge remains planar, then a pad bearing is the result. This whole process of lubrication 
and load-carrying by an oil film can be totally described by mathematical rules and 
equations which require a large amount of computational work to solve. Modern 
engineering processes aim to a fast way to solve this equations, with a good accuracy of 
the results. 
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FIGURE 2.1.  Principle of hydrodynamic pressure generation between non-parallel surfaces. 
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2.1 Reynolds Equation. 
 
Simplifying assumptions. 
 
As in every engineering applications, some simplifying assumptions have to be made in 
order to get a less complicated and easier solving problem. Real processes involved in 
hydrodynamic lubrications are too complicated to be studied considering every detail, 
implying an unacceptable load of operations in order to solve the equations. The factors 
involved in a real process sometimes make the exact description of the phenomenon such 
difficult, if not impossible. These simplifying assumptions are introduced with the 
purpose to get the mathematical description of the process, even though a good grade of 
accuracy is obviously pretty required. 
First assumption is that the body forces are neglected. This is always a valid assumption, 
and it means that there are no exterior fields of forces acting on the bodies subject of the 
study. So, the only force acting in our study is hydrodynamic force, doing an exception in 
some cases referring to magnetohydrodynamic fluids and their applications (which won’t 
be object of this study). Second assumption, always valid as well, pressure is constant 
through the film. This is because usually hydrodynamic films thickness is in the range of 
several micrometers, so we can totally neglect the pressure gradient in the oil film. Third 
assumption, always valid, no slip at the boundaries. The velocity of oil layer adjacent to 
the boundary is always as that of the boundaries. The remaining assumptions now 
concern the physic behaviour of the fluid used as a lubricant: first one is that the fluid has 
to be a Newtonian fluid. Exceptions can be made in case of polymeric oils, but these 
cases won’t be discussed in this work. Flow has also to be laminar, except for large 
bearings. Plus, fluid inertia has to be neglected. This is valid if bearing is rotating at a low 
speed or carrying a massive load. If an elevate grade of accuracy is required, this 
assumption has to be considered false. Last two assumptions concern density of the fluid 
and his viscosity: they both have to be considered as constants, but with a difference. 
Fluid viscosity is constant only throughout the generated film, while density is considered 
constant all over, apart from the generated film. Obviously, density only can be 
considered constant in case of fluids not subject to great thermal expansion: this 
assumption is totally wrong in case of gases. Regarding the viscosity, this is generally a 
wrong assumption but necessary to simplify the load of calculations. In real processes, 
viscosity is definitely not constant. 
As so to summarize, these are the simplifying assumptions made to get the mathematical 
description of the process of hydrodynamic lubrication: 

- Body forces are neglected. 
- Pressure constant through the film. 
- No slip at the boundaries. 
- Lubricant is a Newtonian fluid. 
- Flow is laminar. 
- Fluid inertia is neglected. 
- Fluid density is constant. 
- Viscosity is constant throughout the generated fluid film. 
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Equilibrium of an element. 
 
The whole mathematical description (and the path to derive Reynolds equation) starts 
from the equilibrium of an element of fluid. 
 

 
 

FIGURE 2.2 Equilibrium of an element 
 
Considering a small element of fluid, from a hydrodynamic film (as shown in Figure 2.2), 
assuming for simplicity that forces initially act only in the  direction, forces acting to 
the left must be balance forces acting to the right. So, 
 

            (2.1) 
 
Which, with simplifying, becomes 
 

          (2.2) 

                                         (2.3) 
 
Equation (2.3) strictly derives from the assumption that  (non zero volume) 
as so to divide both member of equation (2.2) by this value. Same exercise can be made 
in the  direction, obtaining basically the same equation written in other variables: 
 

                    (2.4) 
 
Studying  directions, since according to the Assumption number 2 pressure gradient is 
zero through the oil film, we obtain 
 

                      (2.5) 
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By substituting formula of dynamic viscosity in the equation of the shear stress , we get 
an equation for shear stress depending on dynamic viscosity and shear rates 
 

                (2.6) 
 
Where  is the shear stress acting in the  direction, measured in [Pa].  is the velocity 
along the  axis. This substitution is possible even along  direction, obtaining the 
similar formula 
 

              (2.7) 
 
Where  is the velocity along  axis. 
These equation lead us to equilibrium conditions for the forces acting in the  and  
directions, simply by substituting equations (2.6) and (2.7) in original equation (2.4): 

 

                (2.8) 

                (2.9) 
 
Integrating the above equations, using the Assumption number 8 in order to get an easier 
solution, is now possible for example by separation of variables. Assumption number 8 
assures that viscosity is constant, so it is not a function of , so integration is simple: 
 

 
 

 
 

 
 

                        (2.10) 
 
Using Assumption number 3, as there is no slip or velocity discontinuity between solid 
and liquid at the boundaries of the wedge, boundary conditions are set as 
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We can evaluate the integration constants  and  simply by substituting the boundary 
conditions in equation (2.10) 
 

 
 

 
 
Finally, substituting these constants and dividing and simplifying we get the expression 
for velocity along  axis: 
 

 
 

               (2.11) 
 
Velocity along  direction is obtained in a similar way: 
 

                 (2.12) 
 

Continuity of a flow in a column. 
 
We now write the second necessary equation, in order to get the final Reynolds equation: 
the continuity of a flow in a column. 
 

 
 

FIGURE 2.3. Continuity of a flow in a column 
 
As shown in Figure 2.3, lubricant flows into the column horizontally at rates  and  

and out of the column at rates of  and  per unit length and 
width. Concerning the vertical direction, lubricant flows at the rate of  and 

 respectively into the column and out of the column.  is the velocity of the 
bottom of the column, while  is the velocity at which the top of the column moves up. 
Remembering Assumption number 7, and so using a constant density of the lubricant, we 
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can simply write the equation of continuity by satisfying the principle of continuity itself: 
influx must be equal to efflux from a control volume under steady conditions. 
 

        (2.13) 
 
Which can be simplified in: 
 

                      (2.14) 
 
And, as , we get 
 

                     (2.15) 
 
Last equation obtained (2.15) is the equation of continuity of a flow in a column. 
The two variables  and , which are the flow rates per unit of length, can be 
evaluated simply by integrating the lubricant profile velocity over the film thickness, so 
 

    (2.16) 

    (2.17) 
 
Substituting the two profiles  and  previously obtained, we get 
 

 
 

                            (2.18) 
 
Similarly, the flow rate in  direction is obtained by substituting  in equation (2.17) 
from equation (2.12): 
 

                             (2.19) 
 
Substituting equations (2.18) and (2.19) into the continuity of the flow equation 
 

          (2.20) 
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Defining  and and assuming that there are no local variation in 
surface velocity in the  and  directions, we get 
 

                                         (2.21) 
 
 
Simplifications to the Reynolds equation. 
 
Since Reynolds equation we just get is too complex for practical and engineering 
applications, it need to be simplified before it can be easily used. Since the subject of this 
work will be a journal bearing, the most important regarding this study is the 
Unidirectional Velocity Approximation. 
As it’s always possible to choose axes as so that one of the velocities is equal to zero, we 
can assume . This is exactly the case of a journal bearing, in which the bearing 
itself slides along a rotating shaft. 
Assuming , equation (2.21) can be rewritten as follows: 
 

                   (2.22) 
 
This equation, rewritten in dimensionless parameters and in a polar set of coordinates, 
will be the object of the whole following study. 
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Chapter 3 

Variational Approach. 
The generalized partial differential equation form of Reynolds equation for journal 
bearings is usually written as: 

 

 

 

3.1  Dimensionless Reynolds Equation 

Basic equation of Reynolds equation for journal bearing film thickness can be written as: 

 

 

 

Where film thickness is 

 

 

 

Assumptions made to establish the Reynolds equation are: 

i. Film thickness over its length is very small: therefore, the direction of film 
pressure along the film thickness can be considered the same. 

ii. Oil flow is laminar flow, Reynolds number is small, and vortex and turbulence do 
not appear in the film. 

iii. Oil is isotropic; viscosity in the direction of film is constant. 
iv. No slip between oil and journal bearing surface. 
v. Lubricants follow Newton’s law of viscosity, namely, shear stress and shear rate 

are proportional. 
vi. Excluding oil inertia. 
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Considering dimensionless parameters: 

 

 

 

 

 

 

With Reynolds boundary conditions, we get dimensionless Reynolds equation: 

 Within  

 On , where n is the normal direction of            (3.3) 

   In  and on  

Where 
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Reynolds equation (3.3) is a binary variable second-order non-homogeneous partial 
differential equation. Usually, finite difference or finite element method together with 
setting zero algorithm are used to directly get the solution. This way of solving leads to 
relatively accurate results, not justified by the massive computational need of the 
machine. Besides, in terms of non-linear rotor-bearing system, analysis has major 
limitations. For a non-linear system, solving the dynamic response of the system needs to 
repeat each step of the calculation of non-linear oil film force. If we use large scale 
numerical algorithm, the system dynamic response calculation is almost the amount of 
calculation occupied by oil-film force. Even if computer’s speed has been greatly 
improved, the demand of this calculation is difficult to tolerate. Essentially, these are the 
reasons why variational approach is preferable to a normal approach (FEM). 
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3.2 Theoretical foundation of variational approach. 
 
Non-linear dynamic analysis of rotating machinery required integration of oil film 
pressure for the distribution of bearing oil film force. When we are not demanding the 
accuracy of the pressure distribution point by point, but the overall effect of oil-film force 
with sufficient accuracy, variational method is exactly an effective way to solve this 
problem. However, if the oil film rupture occurs, the traditional variational principle is 
not suitable so need to be amended. Rohde [15]  as early as 1975, gave the traditional 
variation principle to amend the formula to accommodate the Reynolds boundary 
conditions at the film rupture [16], but the proof of equivalence given was only for one-
dimensional Reynolds equation. Kinderlehrer had given a full film pressure to satisfy the 
variational inequality equation, Zheng and Hasebe [17] directly applied this variational 
inequality equation to the actual bearings without proves, and used complementary finite 
element method to solve the elliptical bearing non linear oil film force. Subsequently, 
Zheng Tie-Sheng [18] to make a systematic classification and certification used free 
boundary value theory that non-steady state Reynolds equation in Reynolds boundary 
conditions are equivalent to the variational principle in order to provide a theoretical basis 
for non-steady approximate analytic solution of oil film forces. 

From the quoted literature, solution of Reynolds equation under the Reynolds boundary 
conditions (3.3) is equivalent to solving the following propositions: 

 

Proposition 1. [4] 

Find, boundary at , fully smooth pressure function , to fulfil 

 

                       (3.7) 

 

Proposition 2. [4] 

Seeking convex external problem on the functional 

 

                        (3.8)       
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Proposition 3. [4] 

Variation inequality 

 

                  (3.9) 

 

Proposition 4. [4] 

Variation inequality 

 

                                 (3.10) 

 

Proposition 5. [4] 

Variation equality 

 

                                                (3.11) 

 

Where, 

                                       (3.12) 

 

              (3.13) 

 

                                          (3.14) 

 

                               (3.15) 
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  -  On fluid film  of Sobolev space, satisfying the zero boundary condition and 
continuous first derivative 

K       -  In  as non-negative function, clearly  is a convex set of , and it’s 
close to the origin 

q       -  In , pressure distribution of a test function 

Obviously, from equation (3.13) and (3.14), we can see  is symmetric, bilinear and 
positive definite;  is linear. 

 

 

Looking into finite element method based on variation inequalities, the propositions 
below are the proof of the equivalence. 

 

1°: Reynolds equation (3.3) and proposition 1 equivalent. 

Equivalence between the two equations is obvious. Because from the second formula of 
equation (3.7), the valve problem from the free boundary conditions stated that: when 

 (within ), , in the first formula in equation (3.3); instead, equation 
(3.3) also implied formula 2 from equation (3.7). Also,  is non-empty, by the smooth 
pressure function , it only can be within  that come within the smooth transition zero 

value within the , therefore there must be  and  on the border between 
the two . 
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2°: Proposition 2-5 equivalents. 

Wèll follow the path from proposition 2 to 3 to 4 to 5 to 3 to 2. 

Assume  is the solution based on proposition 2,  take an arbitrary , for any 
, because  is a convex set, of course there are . Also by 

minimum of , and taking note of  symmetry, bilinear and linearity of , we 
have 

 

 

 

 

Finally we got 

 

 

Using  in proposition 3. 

 

And because  is the vertex at the origin of the closed convex cone, 
, replacing with  in proposition 3 gives us proposition 4. 

 

In order to prove proposition 5, we only have to make  in proposition 3, we get             
, that is 

 

                                 (3.16) 
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Again in proposition 4, make , we get 

 

                                 (3.17) 

 

This two equations implied (3.11), which is proposition 5. Instead, when propositions 4, 5 
set, then (3.10) minus (3.11), we get (3.9), namely proposition 3. 

Lastly, if proposition 3 is valid, we note that 

 

 

 

 

The above formula used the positive definite of . Putting (3.9) into the above 
formula, we have 

 

 

Namely 

 

 

 

 

Therefore,  is a functional solution to equation (3.8), namely proposition 2. 
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3°: Proposition 4,5 with proposition 1. 

 

Set , according to Green theorem, we get 

 

 

 

 

Note that at , the last term is equal to zero. By the definition of  in (3.13), 
the above formula become 

 

                                          (3.18) 

 

Minus  (3.14) from the last equation, we have 

 

                     (3.19) 

 

In particular, when replacing , we get 

 

                                         (3.20) 
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Thus if  is the solution of the variational inequality (3.10) then equation (3.19) will 
gives 

 

                                          (3.21) 

 

Also because in the above equation  is arbitrary, thus 

 

                                                                                            (3.22) 

 

Equations (3.11) and (3.20) give us 

 

                                                                 (3.23) 

 

Then  is solution of variational inequality (3.10), , thus we have 

 

                                                                                     (3.24) 

 

Namely the free boundary value problem (3.7) in terms of complementary. 

However, if  is the solution of free boundary problem (3.7), then the right hand side of 
equation (3.20) is zero, so there is 

 

 is the variational equation solution of proposition 5. 

End of the proof. 
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3.3 Complement of one-dimensional variational inequality and the 
Finite Elements Method. 

 
The variational inequality approach of this subchapter is from the proposition 4 of the 
previous section which is re-described below: 

solving the Reynolds equation (3.3) under Reynolds boundary conditions is equivalent to 
solving the following two-dimensional variational inequality: 

 

                           (3.25) 

 

In which 

 

                                                      (3.26) 

 

                                      (3.27) 

 

                                                                (3.28) 

 

 is in Sobolev space ,  is the  function in a non-negative set of closed 
convex lubrication domain . Oil film thickness  and the 
variables expression  can be written as 

 

                        (3.29) 

                                     (3.30) 
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In which,   

The variational inequality is equivalent to the free boundary problem: 

 

                                                               (3.31) 

 

That  only in the  sub-domain  (corresponding to  region) fulfills Reynolds 
equation, in the sub-domain  cavitations occurred, at this point . Free 
boundary  is at the  and  boundary, that is the edge cavitations, not known in 
advance, solved from the variational inequality (3.25) with  at the same time. This is 
the non-linear geometric characteristic problem. 

The finite element method calculation of the bearing oil film domain  for the finite 
function and pressure test function is written as: 

 

              (3.32) 

 

In which,  is the overall interpolation function,  for the node pressure,  for the 
pressure test function,  is the total number of nodes. Variational inequality (3.25) 
discrete into: 

 

                                            (3.33) 

 

In which, , that  is the n-dimensional set of non-
negative quantum, therefore  is abbreviated as ; matrices  and the load 
quantity  element were 
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Functional  are defined from the variational inequality (3.25). 

 

In order to solve the inequality (3.33), we need to convert it into a linear complementary 
problem: seek  to fulfill 

 

                                            (3.34) 

                                                  (3.35) 

 

Try to prove as follows: 

Because , from the discrete equation (3.33), there is 

 

                                           (3.36) 

 

By proposition 3 of section 3.2, that equation (3.9) can get another form of discrete 
inequality: 

 

                  (3.37) 

 

Putting  into the above equation, we have 

 

                                                        (3.38) 
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Combining equations (3.36) and (3.38), the two equations can become equation (3.34) 
and (3.35). In order to prove the  in the complementary problem, we only have to 
take note of the matrix  where each column vector , thus by substituting into 
equation (3.35), we get: 

 

                                                          (3.39) 

That , in which . Incidentally, from  and  
we can see that, with  and  cannot exist simultaneously, that 
is 

1. If then  
2. If  then                                                       

(3.40) 
End of the proof. 

Literature [19] proposed, from the constraints in equation (3.35), can be partitioned to 

 

                                                              (3.41) 

 

In which  and , iteratively adjusting this sub-block forms can lead to the 
solution of the complementary problem. This solution is accurate when the iteration 
converge. 
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3.4 Complementary Finite Elements Method. 
 
From the two-dimensional finite method, lubricating oil film is approximately a 
rectangular field Ω. Although one of the film rupture boundary curves is slightly bent, but 
its derivative on the pressure are zero. It straight error is caused by the   

 

                       (3.42) 

 

Where  is weight function, whenever 

 

                                      (3.43) 

                        (3.44) 

 

Weighting function to take the axial pressure distribution for the hyperbolic cosine 
function (parameter  is given back), because the smaller the film thickness, the higher 
the pressure, weighting function has to take the pressure distribution and film thickness is 
inversely proportional to the m-power, this has accelerated the interpolation. The 
examples later will be devoted to the results of . 

 is the overall interpolation function vector, from the 
 direction of sub-one-dimensional linear interpolation function of the composition 

of  and  for the undetermined coefficient 
vector. 
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The following are given as straight line edge cavitations axial pressure distributions for 
the hyperbolic cosine function that making the edge cavitations straight, therefore the 
distribution of film pressure test functions can be separated from variables  

 

                                      (3.45) 

 

The distribution will be on a trial-type function of  in the previous section substituted 
into the functional extreme problem in proposition 2 of equation (3.12). 

We get 

 

                  (3.46) 

 

Which 

 

                                      (3.47) 

 

                            (3.48) 
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The function  is the function  in equation (3.30). 

As we can see from the above equation, if we assume that function  is known, and 
 is only decided by , therefore they can be considered as known parameters. 

At this point, solving the equation (3.8) become solving the Euler-Lagrange equation 

 

                                  (3.49) 

 

Its solution is 

 

                              (3.50) 

 

In the iteration parameter 

 

                                                                     (3.51) 

 

From the assumption for the film of straight line at the side shown, to take the hyperbolic 
cosine function for the axial pressure is accurate. 

Because of the weighting function , when using the linear interpolation 
, so when , (3.50) distribution function of pressure  and test functions 

 are non-negative. Substituting equation (3.42) into the variational inequality (3.25), 
that was after the one-dimensional discrete variational inequality. 

 

                  (3.52) 
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And the complimentary problem 

 

               (3.53) 

 

Now the coefficient matrix  and the vector  are a weighted one-dimensional finite 
element results. 

 

                           (3.54) 

 

                        (3.55) 

 

                 (3.56) 

 

                                                                     (3.57) 

 

               (3.58) 
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In which  is the iteration parameter 

 

                                      (3.59) 

Now,  

 

 

                                         

 

We can see that, given the initial iteration ,calculated , and then substitute into 
the equation (3.54) and (3.55) can range from one-dimensional variational inequality 
(3.52) to get the solution , then by using equation (3.59) to get a new value for . 
Repeat the iteration until satisfactory accuracy is achieved, and thus the pressure 
distribution function  is obtained. Then, from the following equations, the oil film force 
components of the pad under the local coordinate system are calculated. 

 

                          (3.60) 
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3.5 Complementary problem solving. 
 
Now we will solve the previous section ranging from one-dimensional variational 
equation (3.52) and the complementary problem (3.53). We will solve the following sub-
block. 

 

                              (3.61) 

 

Based on the  as symmetric, definite, the characteristics of the tridiagonal matrix, 
adopted by the amendatory law to solve the equation, concrete processional operations as 
it follows: 

First of all, remember vector , tridiagonal symmetric matrix  of the 
main diagonal elements , sub-diagonal elements . 
Matrix decomposition of  for the next two pairs of diagonal matrices  and , namely 

 

 

Which 

 

                (3.63) 

 

 The relationship between  and  is 

 

     

                                           (3.64) 
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Then, the introduction of intermediate variable . Amendatory 
Act concept steps are as follows 

Step 1: for  the following amendment to the “chase” process 

  

(1) (if subscript is 0, calculation 
is not needed); 

(2) When , , otherwise  complete the “chase” process, 
followed by step 2. 

 

Step 2: , putting  to “chase” the process: . 

Which, the former  equation is solved using the “chasing” process 

 

                   (3.65) 

 

Amendatory Act to ensure that 

 

                                (3.66) 

 

Also, because of the continuous airway pressure zone unity, there must be 

 

                                (3.67) 

 

After the  equation become  

 

           (3.68) 
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Fixing the chasing process ensure that from equation (3.40), we 
can see a necessary condition for film rupture zone is , then 

 

                                (3.69) 

 

In summary, the amendatory law does satisfy the complementary problems in the solution 
of equation (3.53). 

The essence of the Fixed Amendatory Act is, in the process of the “chase”, once we get 
 the “chase” process stops.  

Starting from the process . This eliminates  the need  for  iterative and 
automatically determines  the  boundary  conditions  of  the  Reynolds  (which  is  
equivalent  to  the complementarily problem), and  just have  to “chase”  the pressure 
zone, all matrix operation are carried out only in positive-pressure zone. Therefore, the 
more the cavitations at front side, the lesser the computation, this is where the advantage 
of this algorithm lies. 
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3.6 Oil film forces and Jacobian matrix of the joint solution. 
 
As we can see from the above process, amendatory law is essential for equation (3.63) 
where sub-blocks  forms  the  upper  portion  of  the  operation,  in  solving  the  
following  algebraic equation 

                           (3.70) 

Film rupture point m only needs  to be dynamically determine  the solution process,  to 
fulfil the Reynolds boundary conditions. 

To facilitate the writing, we omit the subscript; the above equation will be abbreviated as 

 

                                   (3.71) 

 

After the vector  is obtained from the “chasing” process, taking the iteration parameter 
from the equation (3.59) 

 

               (3.72) 

 

Substitute using equation  (2.57) and  the  third  formula  in equation  (2.58)  into  (2.60), 
noting that we  only  calculate  the  oil-film  force  in  the  positive  zone,  local  
coordinate  system was under the transient oil-film force 

 

                           (3.73) 

 

From the above equation, under the oil-film local coordinate system of the Jacobian 
matrix of  can be expressed as 
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          (3.74) 

 

Of equation (3.71), taking the partial derivative of  and  respectively, taking into 
account the definition of vector  in equation (3.55), there is 

 

                                           (3.75) 

 

From the equation (3.54) and (3.56) earlier, we know that  is related to , therefore 

 from the above equation are referred as regular matrix, similarly having the 
tridiagonal form.  

In  this  case,  the  two  equations  in  the  above  formula,  the  left  side  of  the second 
equation can be  shifted  to  the  right  into  the  right hand  side vector, with  the  latter 2 
equations can be used using  the  same “chasing” process method. So, we discovered  that  
in the equation  (3.75),  the vector  on the and  of the partial derivative is also 
on the matrix  by solving the linear equation, the equation (3.71) is exactly the same 
coefficient matrix. Therefore the equation (3.75) with equation (3.71) is the joint solution 
in the following equation 
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                                (3.76) 

As stated earlier on,  is the positive symmetric definite tridiagonal matrix, the first 
formula in equations (3.76) is using amended “chasing” method to solve for vector , 
followed by the remaining 4 types of right hand side vectors are known, its coefficient 
matrix is tridiagonal matrix , therefore, “chasing” method can be used simultaneously 
to solve the unknown quantity (vector  of the partial derivative). Important to note that 
for equation (3.76), the four formulas need to be solved using the general “chasing” 
method. Because vector  on and  of the partial derivative had nothing but 
derivative limit. 

 

Obviously, oil-film forces and Jacobian matrix of solving got two advantages, which are: 

One, operation in the correlation matrix and vector operation are in the film positive 
pressure zone, and no iterative solution, can save a lot of invalid operation; secondly, the 
equation has the same coefficient matrix, combine the solution for , the treatment on 
the matrix is only once, and it does not have to repeat the operation and thus saves a lot of 
computing. In this case, obtain the vector  and the partial derivative form of  and 

, oil-film forces and Jacobi matrix can be obtained from the equations (3.73) and 
(3.74). Dimensional pressure can be obtained by dividing Jacobi matrix (3.74),  by 

 and  by . 

Finally, the local coordinate system of the oil film force (2.73) and the Jacobi matrix 
(2.74) is the conversion to the general coordinate system, accumulate the entire bush, 
eventually need to get our bearing in general and the Jacobian matrix of oil film force. 
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Chapter 4 

Computational solving of Reynolds equation. 
The following chapter is the transposition of the studies conducted in the former chapters 
in a numerical way to solve it. In the following pages the whole solving code will be 
shown, as it has been written in MatLab (Version 7). The code presents a main script, in 
which the user is requested to put input data (such as axial thickness of the bearing, 
eccentricity of the centre of the bearing, velocity of the centre of the bearing, phase shift 
of the centre, number of nodes and tolerance or maximum number of iterations). There 
are some restrictions about some input variables, such as for example the number of 
nodes (due to some “computational” reasons) which must be and odd number. After the 
input phase, the code provides to do the first step of iterations, by evaluating the pressure 
vector using a pre-set value of the iteration parameter . “Pressure” sub-function gives 
matrices necessary to evaluate the vector by a simple loop. Then, “iteration” sub-function 
provides to start the loop of iterations in order to get an accurate result for the vector . 
The grade of accuracy has been formerly set by the user, so the user has the faculty to get 
a quicker or a slower result, depending on his necessities. Once the iteration loop has 
finished, the code interpolate every single component of the vector of pressure, creating a 
double dimension mesh involving also the axial coordinate. Supposing that the pressure 
distribution along axial direction is an hyperbolic cosine function, sub-function 
“Plot2D3D” just builds a 3D graph of the pressure distribution along the whole bearing 
and a 2D graph for pressure distribution only along radial direction. Last simple sub-
function, named “Forces”, just provides to the user the value of the components of the 
force along the  axis and along the  axis. 
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mainwindow.m 

%  ------------------------------------------------------------------------ 
%            Forces on Bearings during the transient of a rotor 
%                         User Interface 
%                         Main window Recall 
%                  
%  
%  ------------------------------------------------------------------------ 
 
% Set up program window 
top     = 0.35; 
left    = 0.05; 
right   = 0.75; 
bottom  = 0.05; 
labelHt = 0.05; 
spacing = 0.003; 
% ------------------------------------------------------------------------- 
% Information for all buttons 
labelColor = [0.2 0.2 0.2]; 
top        = 0.95; 
left       = 0.78; 
btnWid     = 0.18; 
btnHt      = 0.06; 
spacing    = 0.01; 
% ------------------------------------------------------------------------- 
% The STEADY button 
btnNumber   = 1; 
yPos        = top-(btnNumber-1)*(btnHt+spacing); 
labelStr    = 'STEADY CONDITIONS'; 
callbackStr = 'tribology("tribobutton")'; 
btnPos      = [left yPos-btnHt btnWid btnHt]; 
tbv         = uicontrol('Stylè,'pushbutton', ... 
                        'Units','normalized', ... 
                        'Position',btnPos, ... 
                        'BackgroundColor',[0.5 0.5 0.5], ... 
                        'ForegroundColor',[1 1 1], ... 
                        'FontWeight','bold', ... 
                        'String',labelStr, ... 
                        'Callback', str2mat('pressurefieldsteady')); 
 % ------------------------------------------------------------------------ 
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 % The UNSTEADY button 
 btnNumber   = 2; 
 yPos        = top-(btnNumber-1)*(btnHt+spacing); 
 labelStr    = 'UNSTEADY CONDITIONS'; 
 callbackStr = 'tribology("tribobutton")'; 
 btnPos      = [left yPos-btnHt btnWid btnHt]; 
 tbv         = uicontrol('Stylè,'pushbutton', ... 
                         'Units','normalized', ... 
                         'Position',btnPos, ... 
                         'BackgroundColor',[0.5 0.5 0.5], ... 
                         'ForegroundColor',[1 1 1], ... 
                         'FontWeight','bold', ... 
                         'String',labelStr, ... 
                         'Callback', str2mat('pressurefieldunsteady')); 
 % ------------------------------------------------------------------------ 
 % The INFO button 
 tbinfo = uicontrol('Stylè,'pushbutton', ... 
                    'Units','normalized', ... 
                    'Position',... 
                    [left bottom+1.5*btnHt+spacing btnWid 1.5*btnHt],... 
                    'BackgroundColor',[0.2 0.2 0.2], ... 
                    'ForegroundColor',[1 1 1], ... 
                    'FontWeight','bold', ... 
                    'String','Map of the Program', ... 
                    'Callback',str2mat('mapofprogram')); 
 % ------------------------------------------------------------------------ 
 % The CLOSE button 
 tbclose = uicontrol('Stylè,'pushbutton', ... 
                     'Units','normalized', ... 
                     'Position',[left bottom btnWid 1.5*btnHt], ... 
                     'BackgroundColor',[0.2 0.2 0.2], ... 
                     'ForegroundColor',[1 1 1], ... 
                     'FontWeight','bold', ... 
                     'String','Closè, ... 
                     'Callback','close(gcf)'); 
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pressurefieldsteady.m 

%  ------------------------------------------------------------------------ 
%            Forces on Bearings during the transient of a rotor 
%                         User Interface - Menu Pressure 
%                         Steady conditions 
%                         Circular or Elliptical 
%  
%  ------------------------------------------------------------------------ 
 
% Set up program window 
top     = 0.35; 
left    = 0.05; 
right   = 0.75; 
bottom  = 0.05; 
labelHt = 0.05; 
spacing = 0.005; 
% ------------------------------------------------------------------------- 
% Information for all buttons 
labelColor = [0.2 0.2 0.2]; 
top        = 0.95; 
left       = 0.78; 
btnWid     = 0.18; 
btnHt      = 0.06; 
spacing    = 0.01; 
% ------------------------------------------------------------------------- 
% The PRESSURE FIELD STEADY CIRCULAR button 
btnNumber   = 1; 
yPos        = top-(btnNumber-1)*(btnHt+spacing); 
labelStr    = 'CIRCULAR BEARING'; 
callbackStr = 'tribology("tribobutton")'; 
btnPos      = [left yPos-btnHt btnWid btnHt]; 
tbv         = uicontrol('Stylè,'pushbutton', ... 
                        'Units','normalized', ... 
                        'Position',btnPos, ... 
                        'BackgroundColor',[0.5 0.5 0.5], ... 
                        'ForegroundColor',[1 1 1], ... 
                        'FontWeight','bold', ... 
                        'String',labelStr, ... 
                        'Callback', str2mat('pressurefieldsteadycircular')); 
% ------------------------------------------------------------------------- 
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% The PRESSURE FIELD STEADY ELLIPTICAL button 
btnNumber   = 2; 
yPos        = top-(btnNumber-1)*(btnHt+spacing); 
labelStr    = 'ELLIPTICAL BEARING'; 
callbackStr = 'tribology("tribobutton")'; 
btnPos      = [left yPos-btnHt btnWid btnHt]; 
tbv         = uicontrol('Stylè,'pushbutton', ... 
                        'Units','normalized', ... 
                        'Position',btnPos, ... 
                        'BackgroundColor',[0.5 0.5 0.5], ... 
                        'ForegroundColor',[1 1 1], ... 
                        'FontWeight','bold', ... 
                        'String',labelStr, ... 
                        'Callback', str2mat('pressurefieldsteadyelliptical')); 
% --------------------------------------------------------------------- 
% The MAIN button 
tbinfo = uicontrol('Stylè,'pushbutton', ... 
                       'Units','normalized', ... 
                       'Position',... 
                       [left bottom+1.5*btnHt+spacing btnWid 1.5*btnHt],... 
                       'BackgroundColor',[0.2 0.2 0.2], ... 
                       'ForegroundColor',[1 1 1], ... 
                       'FontWeight','bold', ... 
                       'String','Main Window', ... 
                       'Callback',str2mat('mainwindow')); 
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pressurefieldunsteady.m 

%  ------------------------------------------------------------------------ 
%            Forces on Bearings during the transient of a rotor 
%                         User Interface - Menu Pressure 
%                         Unsteady conditions 
%                         Circular or Elliptical 
%  
%  ------------------------------------------------------------------------ 
 
% Set up program window 
top     = 0.35; 
left    = 0.05; 
right   = 0.75; 
bottom  = 0.05; 
labelHt = 0.05; 
spacing = 0.005; 
% ------------------------------------------------------------------------- 
% Information for all buttons 
labelColor = [0.2 0.2 0.2]; 
top        = 0.95; 
left       = 0.78; 
btnWid     = 0.18; 
btnHt      = 0.06; 
spacing    = 0.01; 
% ------------------------------------------------------------------------- 
% The PRESSURE FIELD UNSTEADY CIRCULAR button 
btnNumber   = 1; 
yPos        = top-(btnNumber-1)*(btnHt+spacing); 
labelStr    = 'CIRCULAR BEARING'; 
callbackStr = 'tribology("tribobutton")'; 
btnPos      = [left yPos-btnHt btnWid btnHt]; 
tbv         = uicontrol('Stylè,'pushbutton', ... 
                        'Units','normalized', ... 
                        'Position',btnPos, ... 
                        'BackgroundColor',[0.5 0.5 0.5], ... 
                        'ForegroundColor',[1 1 1], ... 
                        'FontWeight','bold', ... 
                        'String',labelStr, ... 
                        'Callback', str2mat('pressurefieldunsteadycircular')); 
% ------------------------------------------------------------------------- 
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% The PRESSURE FIELD UNSTEADY ELLIPTICAL button 
btnNumber   = 2; 
yPos        = top-(btnNumber-1)*(btnHt+spacing); 
labelStr    = 'ELLIPTICAL BEARING'; 
callbackStr = 'tribology("tribobutton")'; 
btnPos      = [left yPos-btnHt btnWid btnHt]; 
tbv         = uicontrol('Stylè,'pushbutton', ... 
                        'Units','normalized', ... 
                        'Position',btnPos, ... 
                        'BackgroundColor',[0.5 0.5 0.5], ... 
                        'ForegroundColor',[1 1 1], ... 
                        'FontWeight','bold', ... 
                        'String',labelStr, ... 
                        'Callback', str2mat('pressurefieldunsteadyelliptical')); 
% --------------------------------------------------------------------- 
% The INFO button 
tbinfo = uicontrol('Stylè,'pushbutton', ... 
                       'Units','normalized', ... 
                       'Position',... 
                       [left bottom+1.5*btnHt+spacing btnWid 1.5*btnHt],... 
                       'BackgroundColor',[0.2 0.2 0.2], ... 
                       'ForegroundColor',[1 1 1], ... 
                       'FontWeight','bold', ... 
                       'String','Main Window', ... 
                       'Callback',str2mat('mainwindow')); 
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mapofprogram.m 

figure 
 
% Information for all buttons --------------------------------------------- 
 
bottom  = 0.003; 
left    = 0.78; 
btnWid  = 0.15; 
btnHt   = 0.04; 
 
% The CLOSE button -------------------------------------------------------- 
 
tbclose = uicontrol('Stylè,'pushbutton', ... 
                    'Units','normalized', ... 
                    'Position',[left bottom btnWid 1.5*btnHt], ... 
                    'BackgroundColor',[0.2 0.2 0.2], ... 
                    'ForegroundColor',[1 1 1], ... 
                    'FontWeight','bold', ... 
                    'String','Close Map', ... 
                    'Callback','close(gcf)'); 
 
rectangle('Position',[0 0.25 3 1.5],'curvaturè,[0.2 0.2]) 
text(0.5,1.3,'Main') 
text(0.5,1,'Window') 
text(7.3,3.3,'Steady') 
text(7.3,3,'Conditions') 
text(7.3,-0.7,'Unsteady') 
text(7.3,-1,'Conditions') 
text(14.3,4.3,'Circular') 
text(14.3,4,'Bearing') 
text(14.3,2.3,'Elliptical') 
text(14.3,2,'Bearing') 
text(14.3,0.3,'Circular') 
text(14.3,0,'Bearing') 
text(14.3,-1.7,'Elliptical') 
text(14.3,-2,'Bearing') 
line([3 5],[1 1],'color',[0 0 0]) 
line([5 5],[-1 3],'color',[0 0 0]) 
line([5 7],[3 3],'color',[0 0 0]) 
line([5 7],[-1 -1],'color',[0 0 0]) 
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rectangle('Position',[7 2.25 3 1.5],'curvaturè,[0.2 0.2]) 
rectangle('Position',[7 -1.75 3 1.5],'curvaturè,[0.2 0.2]) 
line([10 12],[3 3],'color',[0 0 0]) 
line([10 12],[-1 -1],'color',[0 0 0]) 
line([12 12],[2 4],'color',[0 0 0]) 
line([12 12],[-2 0],'color',[0 0 0]) 
line([12 14],[4 4],'color',[0 0 0]) 
line([12 14],[2 2],'color',[0 0 0]) 
line([12 14],[0 0],'color',[0 0 0]) 
line([12 14],[-2 -2],'color',[0 0 0]) 
rectangle('Position',[14 3.25 3 1.5],'curvaturè,[0.2 0.2]) 
rectangle('Position',[14 1.25 3 1.5],'curvaturè,[0.2 0.2]) 
rectangle('Position',[14 -0.75 3 1.5],'curvaturè,[0.2 0.2]) 
rectangle('Position',[14 -2.75 3 1.5],'curvaturè,[0.2 0.2]) 
axis([-1 18 -3 5]) 
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pressurefieldsteadycircular.m 

%  ------------------------------------------------------------------------ 
%            Forces on Bearings during the transient of a rotor 
%                program: Pressure Field Steady Conditions 
%                CIRCULAR BEARING ~ COMPLETE BEARING  
%                      BOTTOM PAD + TOP PAD 
%  
%  ------------------------------------------------------------------------ 
 
clear all; 
disp('------ Pressure Field Steady Conditions ~ Circular bearing ------'); 
cla reset; echo off; 
global tbv tbs tbp tbt tbd tbg tba tbinfo tbclose; 
set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'off'); 
 
% BEGIN OF INPUT DATA ----------------------------------------------------- 
% ------------------------------------------------------------------------- 
 
prompt = {'L/D ratio:', 
          'Angular Extension of the bottom pad:', 
          'Eccentricity ratio:', 
          'Attitude angle (in degrees):'}; 
figTitle  = 'GEOMETRY OF THE BEARING - Bottom Pad'; 
lineno    = 1; 
def       = {'1','170','0.8','122'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[lambda,gammalow,epsilon,beta] = deal(answer{:}); 
lambda   = str2num(lambda);  
gammalow = str2num(gammalow); 
epsilon  = str2num(epsilon); 
beta     = str2num(beta); 
beta     = beta*pi/180; 
gamma1   = (180-gammalow)/2; 
gamma2   = gamma1+gammalow; 
gammalow = gammalow*pi/180; 
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gamma1   = gamma1*pi/180; 
gamma2   = gamma2*pi/180; 
 
prompt = {'Number of nodes along radial coordinate:', 
          'Number of nodes along axial coordinate (odd number):',  
          'Initial value of iteration parameter k:', 
          'm parameter:', 
          'Terminating value of residual for iter. to find pressure:', 
          'Maximum number of cycles during iter. to find pressure:'}; 
figTitle  = 'CALCULATIONS PARAMETERS - Bottom Pad'; 
lineno    = 1; 
def       = {'31','11','3','2','0.00000001','100'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[inode,jnode,k,m,tolerance,number_of_iterationslim] = deal(answer{:});  
inode                   = str2num(inode); inode2 = inode; %command rows for 
jnode                   = str2num(jnode); jnode2 = jnode; %Comparation.m 
m                       = str2num(m); 
tolerance               = str2num(tolerance); 
k                       = str2num(k);  
number_of_iterationslim = str2num(number_of_iterationslim); 
 
starthour = fix(clock); 
disp ('Starting date/hour:'); disp(fix(clock)); 
 
subplot(1,1,1); 
text('units','normalized','position',[0.27 0.55],'FontWeight','bold',... 
     'color',[0 0.3 0.6],'string','CALCULATIONS IN PROGRESS'); 
 
% BEGIN OF CALCULATIONS FOR THE BOTTOM PAD -------------------------------- 
% ------------------------------------------------------------------------- 
  
% CALCULATIONS FOR K1,K2 MATRICES AND fc,fs VECTORS ----------------------
- 
 
teta = sym('tetà,'real','d'); 
h    = 1-epsilon*cos(teta-beta); 
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bs   = -epsilon*cos(beta); 
bc   = epsilon*sin(beta); 
k1   = zeros(inode);   k2 = zeros(inode); 
fc   = zeros(inode,1); fs = zeros(inode,1); 
 
for i=1:inode-1 
    tetai         = (pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*(i-1);  
    tetai1        = (pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*i; 
    dteta         = (tetai1-tetai)/(501-1); 
    L1(1,1)       = 1-(teta-tetai)/(tetai1-tetai); 
    L1(2,1)       = 1-L1(1,1); 
    TETA(1:501,1) = tetai:(tetai1-tetai)/(501-1):tetai1; 
     
    Z   = h^(3-2*m)*[diff(L1)-(m*(diff(h))/h)*(L1)]*... 
         [diff(L1)-(m*(diff(h))/h)*(L1)]';  
    k1a = zeros(2); 
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1,  
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k1a(counter1,counter2) = k1a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k1(i,i)     = k1(i,i)+k1a(1,1); 
    k1(i+1,i)   = k1(i+1,i)+k1a(2,1); 
    k1(i,i+1)   = k1(i,i+1)+k1a(1,2); 
    k1(i+1,i+1) = k1(i+1,i+1)+k1a(2,2); 
     
    Z   = h^(3-2*m)*L1*L1'; 
    k2a = zeros(2); 
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1, 
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k2a(counter1,counter2) = k2a(counter1,counter2)+c; 
            end; 
        end; 
    end; 



Forces on Bearings: Variational Approach.  57 

    k2(i,i)     = k2(i,i)+k2a(1,1); 
    k2(i+1,i)   = k2(i+1,i)+k2a(2,1); 
    k2(i,i+1)   = k2(i,i+1)+k2a(1,2); 
    k2(i+1,i+1) = k2(i+1,i+1)+k2a(2,2); 
     
    Z   = h^(-m)*L1*cos(teta);  
    fca = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fca(counter1) = fca(counter1)+c; 
        end; 
    end; 
    fc(i,1)   = fc(i,1)+fca(1,1); 
    fc(i+1,1) = fc(i+1,1)+fca(2,1); 
     
    Z   = h^(-m)*L1*sin(teta); 
    fsa = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fsa(counter1) = fsa(counter1)+c; 
        end; 
    end; 
    fs(i,1)   = fs(i,1)+fsa(1,1); 
    fs(i+1,1) = fs(i+1,1)+fsa(2,1); 
end 
 
% CALCULATIONS FOR K MATRIX, f VECTOR AND L,U MATRICES ---------------
----- 
 
[K,f,L,U,c3] = pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode); 
 
% CALCULATIONS FOR p VECTOR ----------------------------------------------- 
 
Y  = zeros(inode,1); 
E  = zeros(inode,1); 
pl = zeros(inode,1); 
l  = inode; 
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E(1) = -f(1); 
for i=2:inode, 
    E(i) = L(i,i-1)*Y(i-1)-f(i); 
    if E(i)<0 
        Y(i) = -E(i)/L(i,i); 
    else 
        l = i-1; 
        break 
    end 
end 
pl(l) = Y(l); 
for j=l-1:-1:1 
    pl(j) = Y(j)-U(j,j+1)*pl(j+1); 
end 
w              = h^(-m)*(cosh(k*lambda)-1); 
THETA(1:inode) = gamma1:(gamma2-gamma1)/(inode-1):gamma2; 
W              = subs(w,teta,THETA); 
pl             = pl.*W'; 
 
% ITERATION PROCESS ------------------------------------------------------- 
 
if sum(pl)~=0 
    [pl,number_of_iterations,k,K,L,U,l,fxMolt,fyMolt] = iteration(k2,... 
                                             k1,pl,lambda,... 
                                             h,m,gamma1,gamma2,k,bc,fc,... 
                                             bs,fs,inode,tolerance,c3,... 
                                             number_of_iterationslim); 
    [PL,ax,ang]                            = buildP(pl,lambda,inode,... 
                                             jnode,gamma1,gamma2,k); 
 
    % OIL FILM FORCES ----------------------------------------------------- 
     
    [fx,fy] = forces(PL,fc,fs,c3,l,inode,jnode,gamma1,gamma2,lambda,pl); 
 
    % 3D-2D PLOTS --------------------------------------------------------- 
     
    close figure 1 
    plot2D3D(PL,ax,ang,pl); 
    figure(1), 
    title('PRESSURE FIELD 3D BOTTOM PAD','units','normalized',... 
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          'FontWeight','bold','color',[0 0.3 0.6]); 
    figure(2), 
    title('PRESSURE FIELD 2D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
elseif sum(pl)==0 
    close figure 1 
    ang(1,1:inode) = gamma1*180/pi:(gamma2-gamma1)/(inode-1)*180/pi:... 
                     gamma2*180/pi; 
    plot(ang,pl,'b.:') 
    title('PRESSURE FIELD 2D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    text(15,0.3,'The bottom pad is unloaded'); 
    xlabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
    ylabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
    grid on; 
end; 
disp('INPUT DATA:'); 
fprintf('Eccentricity = %g\n',epsilon); 
fprintf('L/D ratio = %g\n',lambda); 
fprintf('Attitude angle = %g\n',beta*180/pi); 
fprintf('Bottom pad angular extension = %g\n',gammalow*180/pi); 
 
% BEGIN OF CALCULATIONS FOR THE TOP PAD ----------------------------------- 
% ------------------------------------------------------------------------- 
 
pausehour = fix(clock); 
 
prompt    = {'Angular Extension of the top pad:'}; 
figTitle  = 'GEOMETRY OF THE BEARING - Top Pad'; 
lineno    = 1; 
def       = {'170'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[gammaup] = deal(answer{:}); 
gammaup   = str2num(gammaup); 
gamma1    = 180+(180-gammaup)/2; 
gamma2    = gamma1+gammaup; 



Forces on Bearings: Variational Approach.  60 

gammaup   = gammaup*pi/180; 
gamma1    = gamma1*pi/180; 
gamma2    = gamma2*pi/180; 
 
prompt = {'Number of nodes along radial coordinate:', 
          'Number of nodes along axial coordinate (odd number):',  
          'Initial value of iteration parameter k:', 
          'm parameter:', 
          'Terminating value of residual for iter. to find pressure:', 
          'Maximum number of cycles during iter. to find pressure:'}; 
figTitle  = 'CALCULATIONS PARAMETERS - Top Pad'; 
lineno    = 1; 
def       = {'31','11','3','2','0.00000001','100'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[inode,jnode,k,m,tolerance,number_of_iterationslim] = deal(answer{:});  
inode                   = str2num(inode);  
jnode                   = str2num(jnode);  
m                       = str2num(m); 
tolerance               = str2num(tolerance); 
k                       = str2num(k);  
number_of_iterationslim = str2num(number_of_iterationslim); 
 
restarthour = fix(clock); 
 
k1   = zeros(inode);   k2 = zeros(inode); 
fc   = zeros(inode,1); fs = zeros(inode,1); 
 
for i=1:inode-1 
    tetai         = pi+(pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*(i-1);  
    tetai1        = pi+(pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*i; 
    dteta         = (tetai1-tetai)/(501-1); 
    L1(1,1)       = 1-(teta-tetai)/(tetai1-tetai); 
    L1(2,1)       = 1-L1(1,1); 
    TETA(1:501,1) = tetai:(tetai1-tetai)/(501-1):tetai1; 
     
    Z   = h^(3-2*m)*[diff(L1)-(m*(diff(h))/h)*(L1)]*... 
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         [diff(L1)-(m*(diff(h))/h)*(L1)]';  
    k1a = zeros(2);    
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1,  
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k1a(counter1,counter2) = k1a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k1(i,i)     = k1(i,i)+k1a(1,1); 
    k1(i+1,i)   = k1(i+1,i)+k1a(2,1); 
    k1(i,i+1)   = k1(i,i+1)+k1a(1,2); 
    k1(i+1,i+1) = k1(i+1,i+1)+k1a(2,2); 
     
    Z   = h^(3-2*m)*L1*L1'; 
    k2a = zeros(2); 
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1, 
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k2a(counter1,counter2) = k2a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k2(i,i)     = k2(i,i)+k2a(1,1); 
    k2(i+1,i)   = k2(i+1,i)+k2a(2,1); 
    k2(i,i+1)   = k2(i,i+1)+k2a(1,2); 
    k2(i+1,i+1) = k2(i+1,i+1)+k2a(2,2); 
     
    Z   = h^(-m)*L1*cos(teta);  
    fca = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fca(counter1) = fca(counter1)+c; 
        end; 
    end; 
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    fc(i,1)   = fc(i,1)+fca(1,1); 
    fc(i+1,1) = fc(i+1,1)+fca(2,1); 
     
    Z   = h^(-m)*L1*sin(teta); 
    fsa = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fsa(counter1) = fsa(counter1)+c; 
        end; 
    end; 
    fs(i,1)   = fs(i,1)+fsa(1,1); 
    fs(i+1,1) = fs(i+1,1)+fsa(2,1); 
end 
 
% CALCULATIONS FOR K MATRIX, f VECTOR AND L,U MATRICES ---------------
----- 
 
[K,f,L,U,c3] = pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode); 
 
% CALCULATIONS FOR p VECTOR ----------------------------------------------- 
 
Y  = zeros(inode,1); 
E  = zeros(inode,1); 
pu = zeros(inode,1); 
l  = inode; 
 
E(1) = -f(1); 
for i=2:inode, 
    E(i) = L(i,i-1)*Y(i-1)-f(i); 
    if E(i)<0 
        Y(i) = -E(i)/L(i,i); 
    else 
        l = i-1; 
        break 
    end 
end 
pu(l) = Y(l); 
for j=l-1:-1:1 
    pu(j) = Y(j)-U(j,j+1)*pu(j+1); 
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end 
w              = h^(-m)*(cosh(k*lambda)-1); 
THETA          = zeros(1,inode); 
THETA(1:inode) = gamma1:(gamma2-gamma1)/(inode-1):gamma2; 
W              = subs(w,teta,THETA); 
pu             = pu.*W'; 
 
% ITERATION PROCESS ------------------------------------------------------- 
 
if sum(pu)~=0 
    [pu,number_of_iterations,k,K,L,U,l,fxMolt,fyMolt] = iteration(k2,... 
                                             k1,pl,lambda,... 
                                             h,m,gamma1,gamma2,k,bc,fc,... 
                                             bs,fs,inode,tolerance,c3,... 
                                             number_of_iterationslim); 
    [PU,ax,ang]                         = buildP(pu,lambda,inode,... 
                                             jnode,gamma1,gamma2,k); 
 
    % OIL FILM FORCES ----------------------------------------------------- 
     
    [fx,fy] = forces(PU,fc,fs,c3,l,inode,jnode,gamma1,gamma2,lambda,pu); 
 
    % 3D-2D PLOTS --------------------------------------------------------- 
 
    plot2D3D(PU,ax,ang,pu); 
    figure(gcf-1), 
    title('PRESSURE FIELD 3D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    figure(gcf+1), 
    title('PRESSURE FIELD 2D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
elseif sum(pu)==0 
    figure 
    ang            = zeros(1,inode);  
    ang(1,1:inode) = gamma1*180/pi:(gamma2-gamma1)/(inode-1)*180/pi:... 
                     gamma2*180/pi; 
    plot(ang,pu,'b.:') 
    title('PRESSURE FIELD 2D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    text(205,0.3,'The top pad is unloaded'); 
    xlabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
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    ylabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
    grid on; 
end; 
 
finishhour    = fix(clock); 
totalcomptime = pausehour-starthour+(finishhour-restarthour); 
 
fprintf('Top pad angular extension = %g\n\n',gammaup*180/pi); 
 
disp('OUTPUT DATA:'); 
fprintf('fx = %g\n\n',fx) 
fprintf('fy = %g\n\n',fy) 
disp ('Finishing date/hour:');     disp(fix(clock)); 
disp('Total computational time:'), disp(totalcomptime); 
 
% The RESTART button ------------------------------------------------------ 
 
tbinfo = uicontrol('Stylè,'pushbutton', ... 
                       'Units','normalized', ... 
                       'Position',... 
                       [0.001 0.001 0.1 1.5*0.06],... 
                       'BackgroundColor',[0.2 0.2 0.2], ... 
                       'ForegroundColor',[1 1 1], ... 
                       'FontWeight','bold', ... 
                       'String','RESTART', ... 
                       'Callback',str2mat('tribology_userinterfacè)); 
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pressurefieldsteadyelliptical.m 

%  ------------------------------------------------------------------------ 
%            Forces on Bearings during the transient of a rotor 
%            program: Pressure Field Steady Conditions 
%              ELLIPTICAL BEARING ~ COMPLETE BEARING  
%                       BOTTOM PAD + TOP PAD  
%  
%  ------------------------------------------------------------------------ 
 
clear all; 
disp('------ Pressure Field Steady Conditions ~ Elliptical bearing ------') 
cla reset; echo off; 
global tbv tbs tbp tbt tbd tbg tba tbinfo tbclose; 
set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'off'); 
 
% BEGIN OF INPUT DATA ----------------------------------------------------- 
% ------------------------------------------------------------------------- 
 
prompt = {'L/D ratio:', 
          'Angular Extension of the bottom pad:', 
          'Eccentricity ratio:', 
          'Ellipticity:', 
          'First guess of the attitude angle (in degrees):', 
          'Load inclination angle (in degrees):'}; 
figTitle  = 'GEOMETRY OF THE BEARING - Bottom Pad'; 
lineno    = 1; 
def       = {'0.5','160','0.4','0.5','5','0'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[lambda,gammalow,epsilon,delta,beta,fi] = deal(answer{:}); 
lambda   = str2num(lambda);  
gammalow = str2num(gammalow); 
epsilon  = str2num(epsilon); 
delta    = str2num(delta); 
beta     = str2num(beta); 
fi       = str2num(fi); 
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beta     = (beta+fi)*pi/180; 
gamma1   = (180-gammalow)/2; 
gamma2   = gamma1+gammalow; 
gammalow = gammalow*pi/180; 
gamma1   = gamma1*pi/180; 
gamma2   = gamma2*pi/180; 
 
prompt = {'Number of nodes along radial coordinate:', 
          'Number of nodes along axial coordinate (odd number):',  
          'Initial value of iteration parameter k:', 
          'm parameter:', 
          'Relaxation Factor to find the attitude angle:', 
          'Terminating value of residual for iter. to find pressure:', 
          'Maximum number of cycles during iter. to find pressure:'}; 
figTitle  = 'CALCULATIONS PARAMETERS - Bottom Pad'; 
lineno    = 1; 
def       = {'31','11','3','2','0.0001','0.00000001','100'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[inode,jnode,k,m,relax,tolerance,number_of_iterationslim] = deal(answer{:});  
inode                   = str2num(inode);  
jnode                   = str2num(jnode);  
m                       = str2num(m); 
tolerance               = str2num(tolerance); 
relax                   = str2num(relax); 
k                       = str2num(k);  
number_of_iterationslim = str2num(number_of_iterationslim); 
 
starthour = fix(clock); 
disp ('Starting date/hour:'); disp(fix(clock)); 
 
subplot(1,1,1); 
text('units','normalized','position',[0.27 0.55],'FontWeight','bold',... 
     'color',[0 0.3 0.6],'string','CALCULATIONS IN PROGRESS'); 
 
gBeta = 1;  
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% BEGIN OF CALCULATIONS FOR THE BOTTOM PAD -------------------------------- 
% ------------------------------------------------------------------------- 
  
% CALCULATIONS FOR K1,K2 MATRICES AND fc,fs VECTORS ----------------------
- 
 
teta     = sym('tetà,'real','d'); 
epsilonb = sqrt(epsilon^2+delta^2+2*epsilon*delta*cos(beta)); 
sinbetab = epsilon/epsilonb*sin(beta); 
cosbetab = (delta^2+epsilonb^2-epsilon^2)/(2*delta*epsilonb); 
betab    = atan2(sinbetab,cosbetab); 
betab    = betab+pi/2; 
h        = 1-epsilonb*cos(teta-betab); 
bs       = -epsilonb*cos(betab); 
bc       = epsilonb*sin(betab); 
k1       = zeros(inode);   k2 = zeros(inode); 
fc       = zeros(inode,1); fs = zeros(inode,1); 
 
for i=1:inode-1 
    tetai         = (pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*(i-1);  
    tetai1        = (pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*i; 
    dteta         = (tetai1-tetai)/(501-1); 
    L1(1,1)       = 1-(teta-tetai)/(tetai1-tetai); 
    L1(2,1)       = 1-L1(1,1); 
    TETA(1:501,1) = tetai:(tetai1-tetai)/(501-1):tetai1; 
     
    Z   = h^(3-2*m)*[diff(L1)-(m*(diff(h))/h)*(L1)]*... 
         [diff(L1)-(m*(diff(h))/h)*(L1)]';  
    k1a = zeros(2);    
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1,  
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k1a(counter1,counter2) = k1a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k1(i,i)     = k1(i,i)+k1a(1,1); 
    k1(i+1,i)   = k1(i+1,i)+k1a(2,1); 
    k1(i,i+1)   = k1(i,i+1)+k1a(1,2); 
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    k1(i+1,i+1) = k1(i+1,i+1)+k1a(2,2); 
     
    Z   = h^(3-2*m)*L1*L1'; 
    k2a = zeros(2); 
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1, 
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k2a(counter1,counter2) = k2a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k2(i,i)     = k2(i,i)+k2a(1,1); 
    k2(i+1,i)   = k2(i+1,i)+k2a(2,1); 
    k2(i,i+1)   = k2(i,i+1)+k2a(1,2); 
    k2(i+1,i+1) = k2(i+1,i+1)+k2a(2,2); 
     
    Z   = h^(-m)*L1*cos(teta);  
    fca = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fca(counter1) = fca(counter1)+c; 
        end; 
    end; 
    fc(i,1)   = fc(i,1)+fca(1,1); 
    fc(i+1,1) = fc(i+1,1)+fca(2,1); 
     
    Z   = h^(-m)*L1*sin(teta); 
    fsa = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fsa(counter1) = fsa(counter1)+c; 
        end; 
    end; 
    fs(i,1)   = fs(i,1)+fsa(1,1); 
    fs(i+1,1) = fs(i+1,1)+fsa(2,1); 
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end 
 
% CALCULATIONS FOR K MATRIX, f VECTOR AND L,U MATRICES ---------------
----- 
 
[K,f,L,U,c3] = pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode); 
 
% CALCULATIONS FOR p VECTOR ----------------------------------------------- 
 
Y  = zeros(inode,1); 
E  = zeros(inode,1); 
pl = zeros(inode,1); 
l  = inode; 
 
E(1) = -f(1); 
for i=2:inode, 
    E(i) = L(i,i-1)*Y(i-1)-f(i); 
    if E(i)<0 
        Y(i) = -E(i)/L(i,i); 
    else 
        l = i-1; 
        break 
    end 
end 
pl(l) = Y(l); 
for j=l-1:-1:1 
    pl(j) = Y(j)-U(j,j+1)*pl(j+1); 
end 
w              = h^(-m)*(cosh(k*lambda)-1); 
THETA(1:inode) = gamma1:(gamma2-gamma1)/(inode-1):gamma2; 
W              = subs(w,teta,THETA); 
pl             = pl.*W'; 
 
% ITERATION PROCESS ------------------------------------------------------- 
 
if sum(pl)~=0 
    [pl,number_of_iterations,k,K,L,U,l,fxMoltB,fyMoltB] = iteration(k2,... 
                                             k1,pl,lambda,... 
                                             h,m,gamma1,gamma2,k,bc,fc,... 
                                             bs,fs,inode,tolerance,c3,... 
                                             number_of_iterationslim); 
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    [PL,ax,ang]                            = buildP(pl,lambda,inode,... 
                                             jnode,gamma1,gamma2,k); 
 
    % OIL FILM FORCES ----------------------------------------------------- 
     
    [fxB,fyB] = forces(PL,fc,fs,c3,l,inode,jnode,gamma1,gamma2,lambda,pl); 
 
    % 3D-2D PLOTS --------------------------------------------------------- 
     
    close figure 1 
    plot2D3D(PL,ax,ang,pl); 
    figure(1), 
    title('PRESSURE FIELD 3D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    figure(2), 
    title('PRESSURE FIELD 2D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
elseif sum(pl)==0 
    close figure 1 
    fxMoltB        = 0; fxB = 0; 
    fyMoltB        = 0; fyB = 0; 
    ang(1,1:inode) = gamma1*180/pi:(gamma2-gamma1)/(inode-1)*180/pi:... 
                     gamma2*180/pi; 
    plot(ang,pl,'b.:') 
    title('PRESSURE FIELD 2D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    text(15,0.3,'The bottom pad is unloaded'); 
    xlabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
    ylabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
    grid on; 
end; 
disp('INPUT DATA:'); 
fprintf('Eccentricity = %g\n',epsilon); 
fprintf('L/D ratio = %g\n',lambda); 
fprintf('Ellipticity = %g\n',delta); 
fprintf('Attitude angle = %g\n',beta*180/pi); 
fprintf('Attitude angle for the bottom pad = %g\n',(betab-pi/2)*180/pi); 
fprintf('Bottom pad angular extension = %g\n',gammalow*180/pi); 
 
% BEGIN OF CALCULATIONS FOR THE TOP PAD ----------------------------------- 
% ------------------------------------------------------------------------- 
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pausehour = fix(clock); 
 
prompt    = {'Angular Extension of the top pad:'}; 
figTitle  = 'GEOMETRY OF THE BEARING - Top Pad'; 
lineno    = 1; 
def       = {'160'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[gammaup] = deal(answer{:}); 
gammaup   = str2num(gammaup); 
gamma1    = 180+(180-gammaup)/2; 
gamma2    = gamma1+gammaup; 
gammaup   = gammaup*pi/180; 
gamma1    = gamma1*pi/180; 
gamma2    = gamma2*pi/180; 
 
prompt = {'Number of nodes along radial coordinate:', 
          'Number of nodes along axial coordinate (odd number):',  
          'Initial value of iteration parameter k:', 
          'm parameter:', 
          'Terminating value of residual for iter. to find pressure:', 
          'Maximum number of cycles during iter. to find pressure:'}; 
figTitle  = 'CALCULATIONS PARAMETERS - Top Pad'; 
lineno    = 1; 
def       = {'31','11','3','2','0.00001','100'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[inode,jnode,k,m,tolerance,number_of_iterationslim] = deal(answer{:});  
inode                   = str2num(inode);  
jnode                   = str2num(jnode);  
m                       = str2num(m); 
tolerance               = str2num(tolerance); 
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k                       = str2num(k);  
number_of_iterationslim = str2num(number_of_iterationslim); 
 
restarthour = fix(clock); 
 
epsilont = sqrt(epsilon^2+delta^2-2*epsilon*delta*cos(beta)); 
sinbetat = epsilon/epsilont*sin(beta); 
cosbetat = (-delta^2-epsilont^2+epsilon^2)/(2*delta*epsilont); 
betat    = atan2(sinbetat,cosbetat); 
betat    = betat+pi/2; 
h        = 1-epsilont*cos(teta-betat); 
bs       = -epsilont*cos(betat); 
bc       = epsilont*sin(betat); 
k1       = zeros(inode);   k2 = zeros(inode); 
fc       = zeros(inode,1); fs = zeros(inode,1); 
 
for i=1:inode-1 
    tetai         = pi+(pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*(i-1);  
    tetai1        = pi+(pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*i; 
    dteta         = (tetai1-tetai)/(501-1); 
    L1(1,1)       = 1-(teta-tetai)/(tetai1-tetai); 
    L1(2,1)       = 1-L1(1,1); 
    TETA(1:501,1) = tetai:(tetai1-tetai)/(501-1):tetai1; 
     
    Z   = h^(3-2*m)*[diff(L1)-(m*(diff(h))/h)*(L1)]*... 
         [diff(L1)-(m*(diff(h))/h)*(L1)]';  
    k1a = zeros(2);    
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1,  
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k1a(counter1,counter2) = k1a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k1(i,i)     = k1(i,i)+k1a(1,1); 
    k1(i+1,i)   = k1(i+1,i)+k1a(2,1); 
    k1(i,i+1)   = k1(i,i+1)+k1a(1,2); 
    k1(i+1,i+1) = k1(i+1,i+1)+k1a(2,2); 
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    Z   = h^(3-2*m)*L1*L1'; 
    k2a = zeros(2); 
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1, 
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k2a(counter1,counter2) = k2a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k2(i,i)     = k2(i,i)+k2a(1,1); 
    k2(i+1,i)   = k2(i+1,i)+k2a(2,1); 
    k2(i,i+1)   = k2(i,i+1)+k2a(1,2); 
    k2(i+1,i+1) = k2(i+1,i+1)+k2a(2,2); 
     
    Z   = h^(-m)*L1*cos(teta);  
    fca = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fca(counter1) = fca(counter1)+c; 
        end; 
    end; 
    fc(i,1)   = fc(i,1)+fca(1,1); 
    fc(i+1,1) = fc(i+1,1)+fca(2,1); 
     
    Z   = h^(-m)*L1*sin(teta); 
    fsa = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fsa(counter1) = fsa(counter1)+c; 
        end; 
    end; 
    fs(i,1)   = fs(i,1)+fsa(1,1); 
    fs(i+1,1) = fs(i+1,1)+fsa(2,1); 
end 
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% CALCULATIONS FOR K MATRIX, f VECTOR AND L,U MATRICES ---------------
----- 
 
[K,f,L,U,c3] = pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode); 
 
% CALCULATIONS FOR p VECTOR ----------------------------------------------- 
 
Y  = zeros(inode,1); 
E  = zeros(inode,1); 
pu = zeros(inode,1); 
l  = inode; 
 
E(1) = -f(1); 
for i=2:inode, 
    E(i) = L(i,i-1)*Y(i-1)-f(i); 
    if E(i)<0 
        Y(i) = -E(i)/L(i,i); 
    else 
        l = i-1; 
        break 
    end 
end 
pu(l) = Y(l); 
for j=l-1:-1:1 
    pu(j) = Y(j)-U(j,j+1)*pu(j+1); 
end 
w              = h^(-m)*(cosh(k*lambda)-1); 
THETA          = zeros(1,inode); 
THETA(1:inode) = gamma1:(gamma2-gamma1)/(inode-1):gamma2; 
W              = subs(w,teta,THETA); 
pu             = pu.*W'; 
 
% ITERATION PROCESS ------------------------------------------------------- 
 
if sum(pu)~=0 
    [pu,number_of_iterations,k,K,L,U,l,fxMoltT,fyMoltT] = iteration(k2,... 
                                             k1,pu,lambda,... 
                                             h,m,gamma1,gamma2,k,bc,fc,... 
                                             bs,fs,inode,tolerance,c3,... 
                                             number_of_iterationslim); 
    [PU,ax,ang]                         = buildP(pu,lambda,inode,... 
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                                             jnode,gamma1,gamma2,k); 
 
    % OIL FILM FORCES ----------------------------------------------------- 
     
    [fxT,fyT] = forces(PU,fc,fs,c3,l,inode,jnode,gamma1,gamma2,lambda,pu); 
 
    % 3D-2D PLOTS --------------------------------------------------------- 
 
    plot2D3D(PU,ax,ang,pu); 
    figure(gcf-1), 
    title('PRESSURE FIELD 3D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    figure(gcf+1), 
    title('PRESSURE FIELD 2D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
elseif sum(pu)==0 
    fxMoltT        = 0; fxT = 0; 
    fyMoltT        = 0; fyT = 0; 
    figure 
    ang            = zeros(1,inode); 
    ang(1,1:inode) = gamma1*180/pi:(gamma2-gamma1)/(inode-1)*180/pi:... 
                     gamma2*180/pi; 
    plot(ang,pu,'b.:') 
    title('PRESSURE FIELD 2D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    text(205,0.3,'The top pad is unloaded'); 
    xlabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
    ylabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
    grid on; 
end; 
 
fx = fxMoltT+fxMoltB; 
fy = (fyMoltT+fyMoltB)*10; 
 
finishhour    = fix(clock); 
totalcomptime = pausehour-starthour+(finishhour-restarthour); 
 
fprintf('Attitude angle for the top pad = %g\n',(betat-pi/2)*180/pi); 
fprintf('Top pad angular extension = %g\n\n',gammaup*180/pi); 
 
disp('OUTPUT DATA:'); 
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fprintf('fxMolt = %g\n',fx) 
fprintf('fyMolt = %g\n',fy) 
fprintf('fxInt = %g\n',fxT+fxB) 
fprintf('fyInt = %g\n\n',fyT+fyB) 
 
disp ('Finishing date/hour:');     disp(fix(clock)); 
disp('Total computational time:'), disp(totalcomptime); 
 
% The RESTART button ------------------------------------------------------ 
 
tbinfo = uicontrol('Stylè,'pushbutton', ... 
                       'Units','normalized', ... 
                       'Position',... 
                       [0.001 0.001 0.1 1.5*0.06],... 
                       'BackgroundColor',[0.2 0.2 0.2], ... 
                       'ForegroundColor',[1 1 1], ... 
                       'FontWeight','bold', ... 
                       'String','RESTART', ... 
                       'Callback',str2mat('tribology_userinterfacè)); 
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pressurefieldunsteadycircular.m 

%  ------------------------------------------------------------------------ 
%            Forces on Bearings during the transient of a rotor 
%                program: Pressure Field Unsteady Conditions 
%                CIRCULAR BEARING ~ COMPLETE BEARING  
%                       BOTTOM PAD + TOP PAD                  
%  
%  ------------------------------------------------------------------------ 
 
clear all; 
disp('------ Pressure Field Unsteady Conditions ~ Circular bearing ------') 
cla reset; echo off; 
global tbv tbs tbp tbt tbd tbg tba tbinfo tbclose; 
set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'off'); 
 
% BEGIN OF INPUT DATA ----------------------------------------------------- 
% ------------------------------------------------------------------------- 
 
prompt = {'L/D ratio:', 
          'Angular Extension of the bottom pad:', 
          'Eccentricity ratio:', 
          'Attitude angle (in degrees):', 
          'Radial Velocity:', 
          'Tangential Velocity:'}; 
figTitle  = 'GEOMETRY OF THE BEARING - Bottom Pad'; 
lineno    = 1; 
def       = {'1','170','0.8','30','1','1'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[lambda,gammalow,epsilon,beta,edot,epsidot] = deal(answer{:}); 
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lambda   = str2num(lambda); 
gammalow = str2num(gammalow); 
epsilon  = str2num(epsilon);  
beta     = str2num(beta); 
edot     = str2num(edot); 
epsidot  = str2num(epsidot); 
beta     = beta*pi/180; 
gamma1   = (180-gammalow)/2; 
gamma2   = gamma1+gammalow; 
gammalow = gammalow*pi/180; 
gamma1   = gamma1*pi/180; 
gamma2   = gamma2*pi/180; 
 
prompt = {'Number of nodes along radial coordinate:', 
          'Number of nodes along axial coordinate (odd number):',  
          'm parameter:', 
          'Initial value of iteration parameter k:', 
          'Terminating value of residual for iter. to find pressure:', 
          'Maximum number of cycles during iter. to find pressure:'}; 
figTitle  = 'CALCULATIONS PARAMETERS - Bottom Pad'; 
lineno    = 1; 
def       = {'31','11','2','3','0.00001','1000'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[inode,jnode,m,k,tolerance,number_of_iterationslim] = deal(answer{:}); 
inode                   = str2num(inode); 
jnode                   = str2num(jnode);  
tolerance               = str2num(tolerance); 
m                       = str2num(m); 
k                       = str2num(k); 
number_of_iterationslim = str2num(number_of_iterationslim); 
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starthour = fix(clock); 
disp ('Starting date/hour:'); disp(fix(clock)); 
 
subplot(1,1,1); 
text('units','normalized','position',[0.27 0.55],'FontWeight','bold',... 
     'color',[0 0.3 0.6],'string','CALCULATIONS IN PROGRESS'); 
 
% BEGIN OF CALCULATIONS FOR THE BOTTOM PAD -------------------------------- 
% ------------------------------------------------------------------------- 
  
% CALCULATIONS FOR K1,K2 MATRICES AND fc,fs VECTORS ----------------------
- 
 
teta = sym('tetà,'real','d'); 
h    = 1-epsilon*cos(teta-beta); 
x    = epsilon*cos(beta); 
y    = epsilon*sin(beta); 
xdot = edot*cos(beta)-epsidot*sin(beta); 
ydot = edot*sin(beta)+epsidot*cos(beta); 
bc   = 2*xdot+y; 
bs   = 2*ydot-x; 
k1   = zeros(inode);   k2 = zeros(inode); 
fc   = zeros(inode,1); fs = zeros(inode,1); 
 
for i=1:inode-1 
    tetai         = (pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*(i-1);  
    tetai1        = (pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*i; 
    dteta         = (tetai1-tetai)/(501-1); 
    L1(1,1)       = 1-(teta-tetai)/(tetai1-tetai); 
    L1(2,1)       = 1-L1(1,1); 
    TETA(1:501,1) = tetai:(tetai1-tetai)/(501-1):tetai1; 
     
    Z   = h^(3-2*m)*[diff(L1)-(m*(diff(h))/h)*(L1)]*... 
         [diff(L1)-(m*(diff(h))/h)*(L1)]';  
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    k1a = zeros(2);    
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1,  
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k1a(counter1,counter2) = k1a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k1(i,i)     = k1(i,i)+k1a(1,1); 
    k1(i+1,i)   = k1(i+1,i)+k1a(2,1); 
    k1(i,i+1)   = k1(i,i+1)+k1a(1,2); 
    k1(i+1,i+1) = k1(i+1,i+1)+k1a(2,2); 
     
    Z   = h^(3-2*m)*L1*L1'; 
    k2a = zeros(2); 
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1, 
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k2a(counter1,counter2) = k2a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k2(i,i)     = k2(i,i)+k2a(1,1); 
    k2(i+1,i)   = k2(i+1,i)+k2a(2,1); 
    k2(i,i+1)   = k2(i,i+1)+k2a(1,2); 
    k2(i+1,i+1) = k2(i+1,i+1)+k2a(2,2); 
     
    Z   = h^(-m)*L1*cos(teta);  
    fca = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
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        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fca(counter1) = fca(counter1)+c; 
        end; 
    end; 
    fc(i,1)   = fc(i,1)+fca(1,1); 
    fc(i+1,1) = fc(i+1,1)+fca(2,1); 
     
    Z   = h^(-m)*L1*sin(teta); 
    fsa = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fsa(counter1) = fsa(counter1)+c; 
        end; 
    end; 
    fs(i,1)   = fs(i,1)+fsa(1,1); 
    fs(i+1,1) = fs(i+1,1)+fsa(2,1); 
end 
 
% CALCULATIONS FOR K MATRIX, f VECTOR AND L,U MATRICES ---------------
----- 
 
[K,f,L,U,c3] = pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode); 
 
% CALCULATIONS FOR p VECTOR ----------------------------------------------- 
 
Y  = zeros(inode,1); 
E  = zeros(inode,1); 
pl = zeros(inode,1); 
l  = inode; 
 
E(1) = -f(1); 
for i=2:inode, 
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    E(i) = L(i,i-1)*Y(i-1)-f(i); 
    if E(i)<0 
        Y(i) = -E(i)/L(i,i); 
    else 
        l = i-1; 
        break 
    end 
end 
pl(l) = Y(l); 
for j=l-1:-1:1 
    pl(j) = Y(j)-U(j,j+1)*pl(j+1); 
end 
w              = h^(-m)*(cosh(k*lambda)-1); 
THETA(1:inode) = gamma1:(gamma2-gamma1)/(inode-1):gamma2; 
W              = subs(w,teta,THETA); 
pl             = pl.*W'; 
 
% ITERATION PROCESS ------------------------------------------------------- 
 
if sum(pl)~=0 
    [pl,number_of_iterations,k,K,L,U,l,fxMolt,fyMolt] = iteration(k2,... 
                                             k1,pl,lambda,... 
                                             h,m,gamma1,gamma2,k,bc,fc,... 
                                             bs,fs,inode,tolerance,c3,... 
                                             number_of_iterationslim); 
    [PL,ax,ang]                            = buildP(pl,lambda,inode,... 
                                             jnode,gamma1,gamma2,k); 
 
    % OIL FILM FORCES ----------------------------------------------------- 
     
%     [fx,fy] = forces(PL,fc,fs,c3,l,inode,jnode,gamma1,gamma2,lambda,pl); 
 
    % 3D-2D PLOTS --------------------------------------------------------- 
     
    close figure 1 
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    plot2D3D(PL,ax,ang,pl); 
    figure(1), 
    title('PRESSURE FIELD 3D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    figure(2), 
    title('PRESSURE FIELD 2D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
elseif sum(pl)==0 
    close figure 1 
    ang(1,1:inode) = gamma1*180/pi:(gamma2-gamma1)/(inode-
1)*180/pi:gamma2*180/pi; 
    plot(ang,pl,'b.:') 
    title('PRESSURE FIELD 2D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    text(15,0.3,'The bottom pad is unloaded'); 
    xlabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
    ylabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
    grid on; 
end; 
disp('INPUT DATA:'); 
fprintf('Eccentricity = %g\n',epsilon); 
fprintf('L/D ratio = %g\n',lambda); 
fprintf('Attitude angle = %g\n',beta*180/pi); 
fprintf('Bottom pad angular extension = %g\n',gammalow*180/pi); 
 
% BEGIN OF CALCULATIONS FOR THE TOP PAD ----------------------------------- 
% ------------------------------------------------------------------------- 
 
pausehour = fix(clock); 
 
prompt    = {'Angular Extension of the top pad:'}; 
figTitle  = 'GEOMETRY OF THE BEARING - Top Pad'; 
lineno    = 1; 
def       = {'170'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
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if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[gammaup] = deal(answer{:}); 
gammaup   = str2num(gammaup); 
gamma1    = 180+(180-gammaup)/2; 
gamma2    = gamma1+gammaup; 
gammaup   = gammaup*pi/180; 
gamma1    = gamma1*pi/180; 
gamma2    = gamma2*pi/180; 
 
prompt = {'Number of nodes along radial coordinate:', 
          'Number of nodes along axial coordinate (odd number):',  
          'Initial value of iteration parameter k:', 
          'm parameter:', 
          'Terminating value of residual for iter. to find pressure:', 
          'Maximum number of cycles during iter. to find pressure:'}; 
figTitle  = 'CALCULATIONS PARAMETERS - Top Pad'; 
lineno    = 1; 
def       = {'31','11','3','2','0.00000001','100'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[inode,jnode,k,m,tolerance,number_of_iterationslim] = deal(answer{:});  
inode                   = str2num(inode);  
jnode                   = str2num(jnode);  
m                       = str2num(m); 
tolerance               = str2num(tolerance); 
k                       = str2num(k);  
number_of_iterationslim = str2num(number_of_iterationslim); 
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restarthour = fix(clock); 
 
k1   = zeros(inode);   k2 = zeros(inode); 
fc   = zeros(inode,1); fs = zeros(inode,1); 
 
for i=1:inode-1 
    tetai         = pi+(pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*(i-1);  
    tetai1        = pi+(pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*i; 
    dteta         = (tetai1-tetai)/(501-1); 
    L1(1,1)       = 1-(teta-tetai)/(tetai1-tetai); 
    L1(2,1)       = 1-L1(1,1); 
    TETA(1:501,1) = tetai:(tetai1-tetai)/(501-1):tetai1; 
     
    Z   = h^(3-2*m)*[diff(L1)-(m*(diff(h))/h)*(L1)]*... 
         [diff(L1)-(m*(diff(h))/h)*(L1)]';  
    k1a = zeros(2);    
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1,  
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k1a(counter1,counter2) = k1a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k1(i,i)     = k1(i,i)+k1a(1,1); 
    k1(i+1,i)   = k1(i+1,i)+k1a(2,1); 
    k1(i,i+1)   = k1(i,i+1)+k1a(1,2); 
    k1(i+1,i+1) = k1(i+1,i+1)+k1a(2,2); 
     
    Z   = h^(3-2*m)*L1*L1'; 
    k2a = zeros(2); 
    for counter1=1:2, 
        for counter2=1:2, 
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            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1, 
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k2a(counter1,counter2) = k2a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k2(i,i)     = k2(i,i)+k2a(1,1); 
    k2(i+1,i)   = k2(i+1,i)+k2a(2,1); 
    k2(i,i+1)   = k2(i,i+1)+k2a(1,2); 
    k2(i+1,i+1) = k2(i+1,i+1)+k2a(2,2); 
     
    Z   = h^(-m)*L1*cos(teta);  
    fca = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fca(counter1) = fca(counter1)+c; 
        end; 
    end; 
    fc(i,1)   = fc(i,1)+fca(1,1); 
    fc(i+1,1) = fc(i+1,1)+fca(2,1); 
     
    Z   = h^(-m)*L1*sin(teta); 
    fsa = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fsa(counter1) = fsa(counter1)+c; 
        end; 
    end; 
    fs(i,1)   = fs(i,1)+fsa(1,1); 
    fs(i+1,1) = fs(i+1,1)+fsa(2,1); 
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end 
 
% CALCULATIONS FOR K MATRIX, f VECTOR AND L,U MATRICES ---------------
----- 
 
[K,f,L,U,c3] = pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode); 
 
% CALCULATIONS FOR p VECTOR ----------------------------------------------- 
 
Y  = zeros(inode,1); 
E  = zeros(inode,1); 
pu = zeros(inode,1); 
l  = inode; 
 
E(1) = -f(1); 
for i=2:inode, 
    E(i) = L(i,i-1)*Y(i-1)-f(i); 
    if E(i)<0 
        Y(i) = -E(i)/L(i,i); 
    else 
        l = i-1; 
        break 
    end 
end 
pu(l) = Y(l); 
for j=l-1:-1:1 
    pu(j) = Y(j)-U(j,j+1)*pu(j+1); 
end 
w              = h^(-m)*(cosh(k*lambda)-1); 
THETA          = zeros(1,inode); 
THETA(1:inode) = gamma1:(gamma2-gamma1)/(inode-1):gamma2; 
W              = subs(w,teta,THETA); 
pu             = pu.*W'; 
 
% ITERATION PROCESS ------------------------------------------------------- 
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if sum(pu)~=0 
    [pu,number_of_iterations,k,K,L,U,l,fxMolt,fyMolt] = iteration(k2,... 
                                             k1,pl,lambda,... 
                                             h,m,gamma1,gamma2,k,bc,fc,... 
                                             bs,fs,inode,tolerance,c3,... 
                                             number_of_iterationslim); 
    [PU,ax,ang]                         = buildP(pu,lambda,inode,... 
                                             jnode,gamma1,gamma2,k); 
 
    % OIL FILM FORCES ----------------------------------------------------- 
     
%     [fx,fy] = forces(PU,fc,fs,c3,l,inode,jnode,gamma1,gamma2,lambda,pu); 
 
    % 3D-2D PLOTS --------------------------------------------------------- 
 
    plot2D3D(PU,ax,ang,pu); 
    figure(gcf-1), 
    title('PRESSURE FIELD 3D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    figure(gcf+1), 
    title('PRESSURE FIELD 2D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
elseif sum(pu)==0 
    figure 
    ang            = zeros(1,inode); 
    ang(1,1:inode) = gamma1*180/pi:(gamma2-gamma1)/(inode-1)*180/pi:... 
                     gamma2*180/pi; 
    plot(ang,pu,'b.:') 
    title('PRESSURE FIELD 2D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    text(205,0.3,'The top pad is unloaded'); 
    xlabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
    ylabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
    grid on; 
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end; 
 
finishhour    = fix(clock); 
totalcomptime = pausehour-starthour+(finishhour-restarthour); 
 
fprintf('Top pad angular extension = %g\n',gammaup*180/pi); 
fprintf('Radial velocity = %g\n',edot); 
fprintf('Tangential velocity = %g\n\n',epsidot); 
 
disp('OUTPUT DATA:'); 
fprintf('fx = %g\n\n',fxMolt) 
fprintf('fy = %g\n\n',fyMolt) 
 
disp ('Finishing date/hour:'); disp(fix(clock)); 
disp('Total computational time:'), disp(totalcomptime); 
 
% The RESTART button ------------------------------------------------------ 
 
tbinfo = uicontrol('Stylè,'pushbutton', ... 
                       'Units','normalized', ... 
                       'Position',... 
                       [0.001 0.001 0.1 1.5*0.06],... 
                       'BackgroundColor',[0.2 0.2 0.2], ... 
                       'ForegroundColor',[1 1 1], ... 
                       'FontWeight','bold', ... 
                       'String','RESTART', ... 
                       'Callback',str2mat('tribology_userinterfacè)); 
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pressurefieldunsteadyelliptical.m 

%  ------------------------------------------------------------------------ 
%            Forces on Bearings during the transient of a rotor 
%            program: Pressure Field Unsteady Conditions 
%              ELLIPTICAL BEARING ~ COMPLETE BEARING  
%                       BOTTOM PAD + TOP PAD  
%  
%  ------------------------------------------------------------------------ 
 
clear all; 
disp... 
  ('------ Pressure Field Unsteady Conditions ~ Elliptical bearing ------') 
cla reset; echo off; 
global tbv tbs tbp tbt tbd tbg tba tbinfo tbclose; 
set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'off'); 
 
% BEGIN OF INPUT DATA ----------------------------------------------------- 
% ------------------------------------------------------------------------- 
 
prompt = {'L/D ratio:', 
          'Angular Extension of the bottom pad:', 
          'Eccentricity ratio:', 
          'Ellipticity:', 
          'Attitude angle (in degrees):', 
          'Load inclination angle (in degrees):' 
          'Radial Velocity:', 
          'Tangential Velocity:'}; 
figTitle  = 'GEOMETRY OF THE BEARING - Bottom Pad'; 
lineno    = 1; 
def       = {'1','170','0.8','0.5','30','0','5','5'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
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    break;  
end; 
[lambda,gammalow,epsilon,delta,beta,fi,edot,epsidot] = deal(answer{:}); 
lambda   = str2num(lambda);  
gammalow = str2num(gammalow); 
epsilon  = str2num(epsilon); 
delta    = str2num(delta); 
beta     = str2num(beta); 
fi       = str2num(fi); 
edot     = str2num(edot); 
epsidot  = str2num(epsidot); 
beta     = (beta+fi)*pi/180; 
gamma1   = (180-gammalow)/2; 
gamma2   = gamma1+gammalow; 
gammalow = gammalow*pi/180; 
gamma1   = gamma1*pi/180; 
gamma2   = gamma2*pi/180; 
 
prompt = {'Number of nodes along radial coordinate:', 
          'Number of nodes along axial coordinate (odd number):',  
          'Initial value of iteration parameter k:', 
          'm parameter:', 
          'Terminating value of residual for iter. to find pressure:', 
          'Maximum number of cycles during iter. to find pressure:'}; 
figTitle  = 'CALCULATIONS PARAMETERS - Bottom Pad'; 
lineno    = 1; 
def       = {'31','11','3','2','0.00000001','100'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[inode,jnode,k,m,tolerance,number_of_iterationslim] = deal(answer{:});  
inode                   = str2num(inode);  



Forces on Bearings: Variational Approach.  92 

jnode                   = str2num(jnode);  
m                       = str2num(m); 
tolerance               = str2num(tolerance); 
k                       = str2num(k);  
number_of_iterationslim = str2num(number_of_iterationslim); 
 
starthour = fix(clock); 
disp ('Starting date/hour:'); disp(fix(clock)); 
 
subplot(1,1,1); 
text('units','normalized','position',[0.27 0.55],'FontWeight','bold',... 
     'color',[0 0.3 0.6],'string','CALCULATIONS IN PROGRESS'); 
 
% BEGIN OF CALCULATIONS FOR THE BOTTOM PAD -------------------------------- 
% ------------------------------------------------------------------------- 
  
% CALCULATIONS FOR K1,K2 MATRICES AND fc,fs VECTORS ----------------------
- 
 
teta     = sym('tetà,'real','d'); 
epsilonb = sqrt(epsilon^2+delta^2+2*epsilon*delta*cos(beta-pi/2)); 
betab    = asin((epsilon/epsilonb)*sin(beta-pi/2))+pi/2; 
h        = 1-epsilonb*cos(teta-betab); 
x        = epsilonb*cos(betab); 
y        = epsilonb*sin(betab); 
xdot     = edot*cos(betab)-epsidot*sin(betab); 
ydot     = edot*sin(betab)+epsidot*cos(betab); 
bc       = 2*xdot+y; 
bs       = 2*ydot-x; 
k1       = zeros(inode);   k2 = zeros(inode); 
fc       = zeros(inode,1); fs = zeros(inode,1); 
 
for i=1:inode-1 
    tetai         = (pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*(i-1);  
    tetai1        = (pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*i; 
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    dteta         = (tetai1-tetai)/(501-1); 
    L1(1,1)       = 1-(teta-tetai)/(tetai1-tetai); 
    L1(2,1)       = 1-L1(1,1); 
    TETA(1:501,1) = tetai:(tetai1-tetai)/(501-1):tetai1; 
     
    Z   = h^(3-2*m)*[diff(L1)-(m*(diff(h))/h)*(L1)]*... 
         [diff(L1)-(m*(diff(h))/h)*(L1)]';  
    k1a = zeros(2);    
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1,  
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k1a(counter1,counter2) = k1a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k1(i,i)     = k1(i,i)+k1a(1,1); 
    k1(i+1,i)   = k1(i+1,i)+k1a(2,1); 
    k1(i,i+1)   = k1(i,i+1)+k1a(1,2); 
    k1(i+1,i+1) = k1(i+1,i+1)+k1a(2,2); 
     
    Z   = h^(3-2*m)*L1*L1'; 
    k2a = zeros(2); 
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1, 
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k2a(counter1,counter2) = k2a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k2(i,i)     = k2(i,i)+k2a(1,1); 
    k2(i+1,i)   = k2(i+1,i)+k2a(2,1); 
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    k2(i,i+1)   = k2(i,i+1)+k2a(1,2); 
    k2(i+1,i+1) = k2(i+1,i+1)+k2a(2,2); 
     
    Z   = h^(-m)*L1*cos(teta);  
    fca = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fca(counter1) = fca(counter1)+c; 
        end; 
    end; 
    fc(i,1)   = fc(i,1)+fca(1,1); 
    fc(i+1,1) = fc(i+1,1)+fca(2,1); 
     
    Z   = h^(-m)*L1*sin(teta); 
    fsa = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fsa(counter1) = fsa(counter1)+c; 
        end; 
    end; 
    fs(i,1)   = fs(i,1)+fsa(1,1); 
    fs(i+1,1) = fs(i+1,1)+fsa(2,1); 
end 
 
% CALCULATIONS FOR K MATRIX, f VECTOR AND L,U MATRICES ---------------
----- 
 
[K,f,L,U,c3] = pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode); 
 
% CALCULATIONS FOR p VECTOR ----------------------------------------------- 
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Y  = zeros(inode,1); 
E  = zeros(inode,1); 
pl = zeros(inode,1); 
l  = inode; 
 
E(1) = -f(1); 
for i=2:inode, 
    E(i) = L(i,i-1)*Y(i-1)-f(i); 
    if E(i)<0 
        Y(i) = -E(i)/L(i,i); 
    else 
        l = i-1; 
        break 
    end 
end 
pl(l) = Y(l); 
for j=l-1:-1:1 
    pl(j) = Y(j)-U(j,j+1)*pl(j+1); 
end 
w              = h^(-m)*(cosh(k*lambda)-1); 
THETA(1:inode) = gamma1:(gamma2-gamma1)/(inode-1):gamma2; 
W              = subs(w,teta,THETA); 
pl             = pl.*W'; 
 
% ITERATION PROCESS ------------------------------------------------------- 
 
if sum(pl)~=0 
    [pl,number_of_iterations,k,K,L,U,l,fxMoltB,fyMoltB] = iteration(k2,... 
                                             k1,pl,lambda,... 
                                             h,m,gamma1,gamma2,k,bc,fc,... 
                                             bs,fs,inode,tolerance,c3,... 
                                             number_of_iterationslim); 
    [PL,ax,ang]                            = buildP(pl,lambda,inode,... 
                                             jnode,gamma1,gamma2,k); 
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    % OIL FILM FORCES ----------------------------------------------------- 
     
%     [fx,fy] = forces(PL,fc,fs,c3,l,inode,jnode,gamma1,gamma2,lambda,pl); 
 
    % 3D-2D PLOTS --------------------------------------------------------- 
     
    close figure 1 
    plot2D3D(PL,ax,ang,pl); 
    figure(1), 
    title('PRESSURE FIELD 3D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    figure(2), 
    title('PRESSURE FIELD 2D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
elseif sum(pl)==0 
    close figure 1 
    ang(1,1:inode) = gamma1*180/pi:(gamma2-gamma1)/(inode-1)*180/pi:... 
                     gamma2*180/pi; 
    plot(ang,pl,'b.:') 
    title('PRESSURE FIELD 2D BOTTOM PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    text(15,0.3,'The bottom pad is unloaded'); 
    xlabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
    ylabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
    grid on; 
end; 
disp('INPUT DATA:'); 
fprintf('Eccentricity = %g\n',epsilon); 
fprintf('L/D ratio = %g\n',lambda); 
fprintf('Ellipticity = %g\n',delta); 
fprintf('Attitude angle = %g\n',beta*180/pi); 
fprintf('Attitude angle for the bottom pad = %g\n',betab*180/pi); 
fprintf('Bottom pad angular extension = %g\n',gammalow*180/pi); 
 
% BEGIN OF CALCULATIONS FOR THE TOP PAD ----------------------------------- 
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% ------------------------------------------------------------------------- 
 
pausehour = fix(clock); 
 
prompt    = {'Angular Extension of the top pad:'}; 
figTitle  = 'GEOMETRY OF THE BEARING - Top Pad'; 
lineno    = 1; 
def       = {'170'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
    break;  
end; 
[gammaup] = deal(answer{:}); 
gammaup   = str2num(gammaup); 
gamma1    = 180+(180-gammaup)/2; 
gamma2    = gamma1+gammaup; 
gammaup   = gammaup*pi/180; 
gamma1    = gamma1*pi/180; 
gamma2    = gamma2*pi/180; 
 
prompt = {'Number of nodes along radial coordinate:', 
          'Number of nodes along axial coordinate (odd number):',  
          'Initial value of iteration parameter k:', 
          'm parameter:', 
          'Terminating value of residual for iter. to find pressure:', 
          'Maximum number of cycles during iter. to find pressure:'}; 
figTitle  = 'CALCULATIONS PARAMETERS - Top Pad'; 
lineno    = 1; 
def       = {'31','11','3','2','0.00000001','100'}; 
answer    = inputdlg(prompt,figTitle,lineno,def); 
if size(answer)==0, %program terminated 
    set(tbp,'Valuè,get(tbp,'Min'));  
    set([tbv tbs tbp tbt tbd tbg tba tbinfo tbclose],'Enablè,'On');  
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    break;  
end; 
[inode,jnode,k,m,tolerance,number_of_iterationslim] = deal(answer{:});  
inode                   = str2num(inode);  
jnode                   = str2num(jnode);  
m                       = str2num(m); 
tolerance               = str2num(tolerance); 
k                       = str2num(k);  
number_of_iterationslim = str2num(number_of_iterationslim); 
 
restarthour = fix(clock); 
 
epsilont = sqrt(epsilon^2+delta^2-2*epsilon*delta*cos(beta-pi/2)); 
betat    = acos((epsilon/epsilont)*sin(beta-pi/2))+pi; 
h        = 1-epsilont*cos(teta-betat); 
x        = epsilont*cos(betat); 
y        = epsilont*sin(betat); 
xdot     = edot*cos(betat)-epsidot*sin(betat); 
ydot     = edot*sin(betat)+epsidot*cos(betat); 
bc       = 2*xdot+y; 
bs       = 2*ydot-x; 
k1       = zeros(inode);   k2 = zeros(inode); 
fc       = zeros(inode,1); fs = zeros(inode,1); 
 
k1   = zeros(inode);   k2 = zeros(inode); 
fc   = zeros(inode,1); fs = zeros(inode,1); 
 
for i=1:inode-1 
    tetai         = pi+(pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*(i-1);  
    tetai1        = pi+(pi-gammalow)/2+(gamma2-gamma1)/(inode-1)*i; 
    dteta         = (tetai1-tetai)/(501-1); 
    L1(1,1)       = 1-(teta-tetai)/(tetai1-tetai); 
    L1(2,1)       = 1-L1(1,1); 
    TETA(1:501,1) = tetai:(tetai1-tetai)/(501-1):tetai1; 
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    Z   = h^(3-2*m)*[diff(L1)-(m*(diff(h))/h)*(L1)]*... 
         [diff(L1)-(m*(diff(h))/h)*(L1)]';  
    k1a = zeros(2);    
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1,  
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k1a(counter1,counter2) = k1a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k1(i,i)     = k1(i,i)+k1a(1,1); 
    k1(i+1,i)   = k1(i+1,i)+k1a(2,1); 
    k1(i,i+1)   = k1(i,i+1)+k1a(1,2); 
    k1(i+1,i+1) = k1(i+1,i+1)+k1a(2,2); 
     
    Z   = h^(3-2*m)*L1*L1'; 
    k2a = zeros(2); 
    for counter1=1:2, 
        for counter2=1:2, 
            W = subs(Z(counter1,counter2),teta,TETA); 
            for counter3=1:501-1, 
              c                      = (W(counter3)+W(counter3+1))*dteta/2; 
              k2a(counter1,counter2) = k2a(counter1,counter2)+c; 
            end; 
        end; 
    end; 
    k2(i,i)     = k2(i,i)+k2a(1,1); 
    k2(i+1,i)   = k2(i+1,i)+k2a(2,1); 
    k2(i,i+1)   = k2(i,i+1)+k2a(1,2); 
    k2(i+1,i+1) = k2(i+1,i+1)+k2a(2,2); 
     
    Z   = h^(-m)*L1*cos(teta);  
    fca = zeros(2,1); 
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    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fca(counter1) = fca(counter1)+c; 
        end; 
    end; 
    fc(i,1)   = fc(i,1)+fca(1,1); 
    fc(i+1,1) = fc(i+1,1)+fca(2,1); 
     
    Z   = h^(-m)*L1*sin(teta); 
    fsa = zeros(2,1); 
    for counter1=1:2,  
        W = subs(Z(counter1),teta,TETA); 
        for counter2=1:501-1, 
            c             = (W(counter2)+W(counter2+1))*dteta/2; 
            fsa(counter1) = fsa(counter1)+c; 
        end; 
    end; 
    fs(i,1)   = fs(i,1)+fsa(1,1); 
    fs(i+1,1) = fs(i+1,1)+fsa(2,1); 
end 
 
% CALCULATIONS FOR K MATRIX, f VECTOR AND L,U MATRICES ---------------
----- 
 
[K,f,L,U,c3] = pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode); 
 
% CALCULATIONS FOR p VECTOR ----------------------------------------------- 
 
Y  = zeros(inode,1); 
E  = zeros(inode,1); 
pu = zeros(inode,1); 
l  = inode; 
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E(1) = -f(1); 
for i=2:inode, 
    E(i) = L(i,i-1)*Y(i-1)-f(i); 
    if E(i)<0 
        Y(i) = -E(i)/L(i,i); 
    else 
        l = i-1; 
        break 
    end 
end 
pu(l) = Y(l); 
for j=l-1:-1:1 
    pu(j) = Y(j)-U(j,j+1)*pu(j+1); 
end 
w              = h^(-m)*(cosh(k*lambda)-1); 
THETA          = zeros(1,inode); 
THETA(1:inode) = gamma1:(gamma2-gamma1)/(inode-1):gamma2; 
W              = subs(w,teta,THETA); 
pu             = pu.*W'; 
 
% ITERATION PROCESS ------------------------------------------------------- 
 
if sum(pu)~=0 
    [pu,number_of_iterations,k,K,L,U,l,fxMoltT,fyMoltT] = iteration(k2,... 
                                             k1,pl,lambda,... 
                                             h,m,gamma1,gamma2,k,bc,fc,... 
                                             bs,fs,inode,tolerance,c3,... 
                                             number_of_iterationslim); 
    [PU,ax,ang]                         = buildP(pu,lambda,inode,... 
                                             jnode,gamma1,gamma2,k); 
 
    % OIL FILM FORCES ----------------------------------------------------- 
     
%     [fx,fy] = forces(PU,fc,fs,c3,l,inode,jnode,gamma1,gamma2,lambda,pu); 
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    % 3D-2D PLOTS --------------------------------------------------------- 
 
    plot2D3D(PU,ax,ang,pu); 
    figure(gcf-1), 
    title('PRESSURE FIELD 3D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    figure(gcf+1), 
    title('PRESSURE FIELD 2D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
elseif sum(pu)==0 
    figure 
    ang            = zeros(1,inode); 
    ang(1,1:inode) = gamma1*180/pi:(gamma2-gamma1)/(inode-1)*180/pi:... 
                     gamma2*180/pi; 
    plot(ang,pu,'b.:') 
    title('PRESSURE FIELD 2D TOP PAD','units','normalized',... 
          'FontWeight','bold','color',[0 0.3 0.6]); 
    text(205,0.3,'The top pad is unloaded'); 
    xlabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
    ylabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
    grid on; 
end; 
 
finishhour    = fix(clock); 
totalcomptime = pausehour-starthour+(finishhour-restarthour); 
 
fprintf('Attitude angle for the top pad = %g\n',betat*180/pi); 
fprintf('Top pad angular extension = %g\n',gammaup*180/pi); 
fprintf('Radial velocity = %g\n',edot); 
fprintf('Tangential velocity = %g\n\n',epsidot); 
 
disp('OUTPUT DATA:'); 
fprintf('fx = %g\n',fxMoltT+fxMoltB) 
fprintf('fy = %g\n\n',fyMoltT+fyMoltB) 
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disp ('Finishing date/hour:');     disp(fix(clock)); 
disp('Total computational time:'), disp(totalcomptime); 
 
% The RESTART button ------------------------------------------------------ 
 
tbinfo = uicontrol('Stylè,'pushbutton', ... 
                       'Units','normalized', ... 
                       'Position',... 
                       [0.001 0.001 0.1 1.5*0.06],... 
                       'BackgroundColor',[0.2 0.2 0.2], ... 
                       'ForegroundColor',[1 1 1], ... 
                       'FontWeight','bold', ... 
                       'String','RESTART', ... 
                       'Callback',str2mat('tribology_userinterfacè)); 
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pressure.m 

%  ------------------------------------------------------------------------ 
%            Forces on Bearings during the transient of a rotor 
%                program: Pressure 
%                Output: K,f,L,U,c3 
%                  
%  
%  ------------------------------------------------------------------------ 
 
function [K,f,L,U,c3]=pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode) 
 
c1 = 2*lambda+lambda*cosh(2*k*lambda)-3/(2*k)*sinh(2*k*lambda); 
c2 = (k/2)*[sinh(2*k*lambda)-2*k*lambda]; 
c3 = (2/k)*[k*lambda*cosh(k*lambda)-sinh(k*lambda)]; 
     
K = zeros(inode); 
f = zeros(inode,1); 
 
K = c1*k1+c2*k2; 
f = c3*(bc*fc+bs*fs); 
L = zeros(inode); 
U = zeros(inode); 
y = zeros(inode,1); 
 
L(1,1) = K(1,1); 
 
for i=2:inode 
    L(i,i-1) = K(i,i-1); 
end 
 
for i=1:inode 
    U(i,i) = 1; 
end 
 
for i=2:inode 
    U(i-1,i) = K(i-1,i)/L(i-1,i-1); 
    L(i,i)   = K(i,i)-U(i-1,i)*L(i,i-1); 
end 
 



Forces on Bearings: Variational Approach.  105 

iteration.m 

%  ------------------------------------------------------------------------ 
%            Forces on Bearings during the transient of a rotor 
%                program: Iteration 
%                Output: p vector, number of cycles done 
%                  
%  
%  ------------------------------------------------------------------------ 
 
function [p,number_of_iterations,k,K,L,U,l,fxMolt,fyMolt]=iteration(k2,k1,p,lambda,... 
          h,m,gamma1,gamma2,k,bc,fc,bs,fs,inode,tolerance,c3,... 
          number_of_iterationslim) 
 
residual             = 1; 
number_of_iterations = 0; 
teta                 = sym('tetà); 
while (residual>tolerance) & (number_of_iterations<=number_of_iterationslim) 
    d1 = p'*k1*p; 
    d2 = p'*k2*p; 
    k  = sqrt(d1/d2); 
 
    [K,f,L,U,c3] = pressure(lambda,k,k1,k2,bc,fc,bs,fs,inode); 
     
    Y  = zeros(inode,1); 
    E  = zeros(inode,1); 
    p2 = zeros(inode,1); 
    l  = inode; 
    E(1) = -f(1); 
    for i=2:inode, 
        E(i) = L(i,i-1)*Y(i-1)-f(i); 
        if E(i)<0 
            Y(i) = -E(i)/L(i,i); 
        else 
            l = i-1; 
            break 
        end 
    end 
    p2(l) = Y(l); 
    for j=l-1:-1:1 
        p2(j) = Y(j)-U(j,j+1)*p2(j+1); 
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    end   
    residual             = (sum(p-p2)/sum(p)); 
    p                    = p2; 
    number_of_iterations = number_of_iterations+1; 
end; 
fxMolt = (c3*fc'*p); 
fyMolt = (c3*fs'*p); 
 
w              = h^(-m)*(cosh(k*lambda)-1); 
THETA(1:inode) = gamma1:(gamma2-gamma1)/(inode-1):gamma2; 
W              = subs(w,teta,THETA); 
p              = p.*W'; 
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plot2D3D.m 

function plot2D3D(P,ax,ang,p) 
% subplot (2,1,1) 
figure() 
mesh(ax,ang,P); 
% title('PRESSURE FIELD 3D','units','normalized','FontWeight','bold','color',[0 0.3 0.6]); 
xlabel('Psi','units','normalized','color',[0 0.3 0.6]); 
ylabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
zlabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
figure() 
% subplot (2,1,2); 
plot(ang,p,'b.:'); 
% title('PRESSURE FIELD 2D','units','normalized','FontWeight','bold','color',[0 0.3 0.6]); 
xlabel('Theta (Degrees)','units','normalized','color',[0 0.3 0.6]); 
ylabel('Pressurè,'units','normalized','color',[0 0.3 0.6]); 
grid on 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Forces on Bearings: Variational Approach.  108 

forces.m 

function [fx,fy]=forces(P,fc,fs,c3,l,inode,jnode,gamma1,gamma2,lambda,p) 
 
gamma=gamma2-gamma1; 
deltateta = gamma/(inode-1); 
deltapsi  = 1/(jnode-1); 
for i=1:inode, 
        SUMY(i) = 0; 
        for j=2:jnode, 
            SUMY(i) = SUMY(i)+P(i,j)+P(i,j-1); 
        end; 
        SUMY(i) = SUMY(i)*0.5*deltapsi; 
end; 
fx = 0; 
fy = 0; 
    for i=2:inode 
        x  = (i-1)*deltateta+pi-0.5*gamma; 
        x2 = (i-2)*deltateta+pi-0.5*gamma; 
        fy = fy-cos(x)*SUMY(i)-cos(x2)*SUMY(i-1); 
        fx = fx+sin(x)*SUMY(i)+sin(x2)*SUMY(i-1); 
    end; 
fx = fx*deltateta*0.5; 
fy = fy*deltateta*0.5; 
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Chapter 5 
 
Results 
 
The following charts and table refer to a circular bearing, in steady conditions. 
 
It has been used a relatively thick mesh (341 x 101 nodes) in order to show the 
differences between a Finite Elements method and the variational approach, especially in 
terms of computational timing. Other minor parameters regarding the geometry of the 
bearing (such as angular extension, axial extension, etc) have not been modified in order 
to get easier comparation between the results. 
 
Graph 5.1 is a 3D representation of the pressure field along the radial coordinate and the 
axial coordinate. 
As formerly defined, axial distribution is a hyperbolic cosine interpolation. This 
approximation gaves good results (comparing it with a 3D representation obtained with a 
FEM algorithm) and does not affect the final results in terms of forces. 
 
Regarding the pressure distribution, shown in Graph 5.2, both the two curves nearly 
collapse in one, especially for extremely high values of eccentricity. The fact that the 
variational approach curve peak is slightly higher than the FEM curve peak is due to the 
chasing process described in Chapter 3.5, which increases a bit the results. Even in this 
case, this does not affect the final results in terms of forces. 
The fact that the two curves are almost as one naturally leads to a very reduced 
percentage error in terms of force. 
 
As clearly shown in Graph 5.3, the force distribution obtained with the new algorithm 
almost coincide with the one obtained with a traditional Finite Elements method. The two 
lines are slightly different for lower values of eccentricity. Infact, variational approach 
gets really accurate when eccentricity is very high – almost 1. 
 
Main difference lies in the computational time (last 3 columns of table 5.1), which is 
almost 10 times reduced. 
 
Table 5.1 also shows how the percentage error decreases by augmenting the eccentricity.  
Percentage error has been calculated doing the ratio between the value of F (square root 
of Fx square plus Fy square) evaluated with the variational approach and the value of F 
evaluated with Finite Elements method as written. As the eccentricity parameter goes 
down toward lower values, percentage error rises: this is clear in Graph 5.4, where the 
curve reachs a minimum in E = 0.985. 
For this value of the eccentricity parameter, the percentage error is almost 0 % (0.35%) 
and time reduction is 938%. 
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Graph 5.1 – Pressure Distribution 3D. E=0.995, L/D=1, γ=170°, β=96,6129° 
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Graph 5.2 – Pressure Distribution 2D – middle line. E=0.995, L/D=1, γ=170°, β=96,6129° 
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Table 5.1 – Forces and computational time. L/D=1, γ=170° 
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Graph 5.3 – Forces Vs Eccentricity. Circular bearing, L/D=1, γ=170° 
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Graph 5.4 – Error Vs Eccentricity 
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Conclusion 
 
 
The whole work of code implementation gave good results in terms of computational 
time gaining  and percentage error  between FEM forces and Variational Approach 
forces. 
 
As it has been shown in graphs and tables, computational time decreases quite a lot 
comparing it with a traditional FEM code. Infact, variational approach code is almost 10 
times quicker than a Finite Elements program. As the user defines a thicker mesh for the 
study of the pressure field inside the bearing, the difference in terms of time between the 
variational approach and the Finite Elements program get higher. When using a mesh 
with a low number of nodes, the time spread between the two methods is not as good as 
in case of high number of nodes. 
Naturally, is up to the user to define the thickness of the mesh (hence the computational 
time) depending on design needings. 
 
On the other hand, speaking in terms of accuracy of the numbers obtained, the new code 
is not such as exact as the old one. This basically means that this new method can easily 
be applied at the beginning of the bearing design process, in order to obtain a quick and 
fair enough solution of the Reynolds equation. 
Accuracy gets better and better as the eccentricity of the shaft rises. Infact, with high 
values of E (e.g. values included between 0.9 and 0.98), percentage error is near to 0 %. 
In these cases, variational approach is a lot better than the traditional method: the 
program combines high computational speed with high accuracy of the numerical results. 
 
A natural enhancement for this work could be the study of the dynamic behaviour of a 
bearing in unsteady conditions. Infact, the variational approach method can be easily used 
for a quick evaluation of the forces in different conditions of eccentricity and shaft center 
speed, in order to make a further linearization and study the dynamic of the shaft inside 
the bearing. 
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