
POLITECNICO DI MILANO

Corso di Laurea Specialistica in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

DEVELOPMENT OF A FRAMEWORK

FOR EVALUATING PERFORMANCE

OF EXPLORATION STRATEGIES OF

AUTONOMOUS ROBOTS

AI & R Lab

Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Advisor: Prof. Francesco Amigoni

Co-Advisor: Prof. Marina Indri

Tutor: Dott. Nicola Basilico

M.Sc. Dissertation of:

Alberto Quattrini Li, Student ID 749858

Academic Year 2010-2011

Ai miei nonni Lilia ed Enzo ...

Ringraziamenti

Desidero innanzitutto ringraziare il professor Francesco Amigoni, che con la

sua costante supervisione ha saputo accompagnarmi nella realizzazione di

questa tesi, ma che ha saputo anche darmi sostegno morale e umano. Spero

di poter imparare ancora molto da lui.

Un caloroso ringraziamento va anche al dottor Nicola Basilico, che ha saputo

darmi preziosi consigli quando ho incontrato difficoltà durante questo lavoro.

Un sentito ringraziamento va anche al professor Piero Fraternali, perchè

ha saputo sostenermi nel progetto dell’Alta Scuola Politecnica ed ha con-

tribuito a rendere migliore la mia preparazione grazie a una profonda mul-

tidisciplinarietà.

Ringrazio anche l’ingegner Roberto Tedesco, perchè lavorare al suo fianco

mi ha permesso di crescere sia professionalmente che umanamente.

Ringrazio a tutta la mia famiglia che ha continuato a supportarmi in

tutti i modi possibili durante questi anni di studio lontano da casa.

Rivolgo un grazie particolare a a Claudia che ha saputo sia aiutarmi

nella revisione finale di questa tesi, sia incoraggiarmi e sostenermi durante i

momenti difficili di questo intenso percorso.

Ringrazio i miei compagni di corso e amici, in particolare Andrea e

Iacopo, per tutti i momenti passati insieme su progetti e non.

Un sentito ringraziamento va anche ai miei ex compagni di corso dell’u-

niversità di Pisa, Andrea, Alessandro e Francesco con i quali ho continuato

ad avere una forte amicizia nonostante la lontananza.

Infine, ringrazio tutti i miei più cari amici, per essermi stati vicino in

questi due anni.

I

Abstract

Despite the fact that engineering fields usually have assessed standards for

evaluating system performance, in the exploration problem, i.e., in the prob-

lem of mapping an initially unknown environment with autonomous mobile

robots, there is not yet any standard evaluation methodology for compar-

ing different exploration strategies. The lack of such a standard evaluation

framework is probably due to the youth of the approaches to this problem.

One of the elements of a standard evaluation framework should be the

comparison of the performance of an exploration strategy with the optimal

performance attainable in a given environment. However, the problem of

calculating the optimal exploration path in a given environment has not

yet been adequately addressed in literature. Although several fields (e.g.,

robotics, graph theory, computational intelligence) dealt with this issue,

results allow to calculate the upper or lower bound of the performance (e.g.,

number of perceptions, distance traveled) of a given strategy, for generic

classes of environments. These results do not answer to the question of

what is the best performance in a given, specific, environment. The answer

to this question has relevance in practically applying exploration strategies.

In this thesis, we contribute to build up a framework that allows to com-

pare strategies performance with the optimal exploration path in a given

environment. The innovative aspect of this work is that, given an environ-

ment, the comparison of different exploration strategies can be performed

with respect to the optimal behavior (which is computed by our framework),

instead of considering lower or upper bounds. The approach to compute the

optimal exploration is based on the use of off-line seach algorithms, such as

A* or branch and bound. The quality of the optimal solution greatly de-

pends on initial parameters and assumptions we make (e.g., objective test,

representation of the map, perception and locomotion models of the robot).

Experimental results obtained in simulation in some realistic environments

have shown the validity of our approach to solve the problem of determining

the optimal solution for the exploration problem in a specific environment.

III

From the scientific point of view, the contribution of our work is twofold:

on the one hand, it contributes to the definition of a standard evaluation

framework for exploration strategies, allowing to compare exploration strate-

gies not only between each other in a relative way (which is the current ap-

proach), but also against the optimal exploration in an absolute way. On the

other hand, our framework could be useful for developing better exploration

strategies.

IV

Sommario

Nonostante nell’ingegneria ci siano solitamente standard condivisi per va-

lutare le performance di un sistema, per il problema dell’esplorazione, cioè

per il problema di mappare un ambiente inizialmente sconosciuto con robot

mobili autonomi, non è ancora stata definita una metodologia standard di

valutazione per confrontare diverse strategie di esplorazione. La mancanza

di una metodologia generale di valutazione è dovuta, molto probabilmente,

al fatto che gli approcci per risolvere questo problema sono recenti.

Uno degli elementi di un framework di valutazione standard dovrebbe

essere il confronto delle performance di una strategia di esplorazione rispet-

to alla performance ottima ottenibile in un dato ambiente. In letteratura,

il problema del calcolo del percorso ottimo per esplorare un dato ambiente

non è stato ancora studiato in modo approfondito. Anche se molte disci-

pline scientifiche, come la robotica, la teoria dei grafi, l’intelligenza com-

putazionale, hanno trattato questo problema, i risultati ottenuti consentono

di calcolare il limite superiore o inferiore delle performance ottenibili con

una data strategia di esplorazione, per classi di ambienti generici. Questi

risultati non permettono però di capire quale sia la migliore performance

in un dato ambiente. Questa informazione è, d’altra parte, rilevante per le

applicazioni pratiche.

In questa tesi, contribuiamo a sviluppare un framework che permetta di

confrontare le performance delle strategie di esplorazione rispetto al percor-

so ottimo in un dato ambiente. L’aspetto originale di questa ricerca è che

le varie strategie esplorative possono essere confrontate rispetto all’ottimo

calcolato dal nostro framework, e non più, quindi, considerando solo il limite

superiore o inferiore. L’approccio per determinare l’esplorazione ottima si

basa sull’uso di algoritmi di ricerca off-line, come A* e branch and bound.

La qualità della soluzione ottima dipende fortemente dai parametri iniziali

e dalle ipotesi fatte (ad esempio, il test obiettivo, la rappresentazione della

mappa, i modelli di percezione e movimento del robot).

I risultati ottenuti in esperimenti simulati condotti su ambienti realisti-

V

ci dimostrano che la validità dell’approccio che sta alla base del nostro

framework.

Dal punto di vista scientifico, il contributo di questo lavoro è duplice: da

un lato, contribuisce alla definizione di un framework standard per la valuta-

zione delle strategie di esplorazione, permettendo di confrontare strategie di

esplorazione rispetto all’ottimo e non più soltanto in modo relativo; dall’altro

questo lavoro è interessante per studiare l’uso del framework sviluppato in

questo lavoro per definire migliori strategie di esplorazione.

VI

Contents

Ringraziamenti I

Abstract III

Sommario V

1 Introduction 1

2 State of the art 5

2.1 Exploration strategies . 6

2.2 System performance evaluation 7

2.3 State of the art in exploration problem 9

3 Optimal exploration as a search problem 17

3.1 Preliminary definitions: search problems 17

3.2 Preliminary hypotheses . 22

3.3 Problem formulation in exploration case 23

3.3.1 General formulation 23

3.3.2 Parameters and constraints of the search problem . . . 25

3.4 Examples . 32

3.4.1 Formulation . 32

3.4.2 Heuristics . 33

4 Implementation 35

4.1 Description of the framework 35

4.2 Core code . 36

4.3 Relaxation of the problem . 41

4.3.1 Initial parameters . 42

4.3.2 Constraints . 45

VII

5 Experimental results 49

5.1 Tests methodology and experimental setting 49

5.2 Analyses and comparisons . 53

5.3 Solution quality vs computational time 56

5.3.1 Initial parameters . 57

5.3.2 Constraints . 66

5.3.3 Further experiments 74

5.4 Other experiments . 80

5.4.1 Openspace environment 80

5.4.2 Obstacles environment 84

6 Conclusions 89

Bibliography 91

VIII

Chapter 1

Introduction

Autonomous mobile robotics has seen a widespread development in recent

years, due to applications (surveillance, rescue, etc.) where robots are re-

quired to operate without any human supervision, especially in the cases

where human beings cannot access environment because of their asperity.

There are several challenges that a designer faces during the development of

an autonomous robot, from low level issues, i.e., sensors, actuators, etc., to

high level issues, i.e., control [22].

One of the most important aspects, that affects autonomous mobile robots

performance, is the navigation strategy, which is the set of techniques that

allow an autonomous mobile robot to decide the next location to reach, by

using its current knowledge.

An important task, which is involved in navigation strategies, is the

exploration problem. Exploration problem has been studied in connection

to autonomous mobile robots able to explore unknown environment and

build a map of it. There are several applications that benefit from this task,

e.g., planetary exploration [18] and search and rescue [17].

During last years, there have been several proposals about exploration

strategies [4, 8, 3]. Exploration strategies determine the path followed by the

robot to explore an unknown environment, possibly optimizing it, according

to some metrics. However, no standard evaluation framework is available yet

for comparing different exploration strategies [2], probably because this field

started to be studied only recently. In such a situation, there is no guarantee

that an exploration strategy is the optimal one. Exploration strategies are

usually tested in given environments and their performance is compared to

each other. Hence, their evaluation is relative.

The aim of the work is to contribute to build up a framework for the

absolute evaluation of exploration strategies with respect to optimal explo-

1

2 Chapter 1. Introduction

ration paths.

We deal with the problem of calculating the optimal exploration path

given an environment. With the assumption of the a priori knowledge of

an environment, our results originally sets a bound on the performance of

exploration methods. In this way, we can compare exploration strategies

with the optimal behavior. Nowadays, we just have the upper or lower

bounds on the performance (number of perceptions, distance traveled, etc.)

of a given strategy in a generic class of environments. All comparisons

among different exploration strategies are performed in a relative way, given

a specific map [2].

The innovative aspect of this work is that, given an environment, the

comparison of different strategies is performed with respect to the optimal

behavior (which is computed by our framework). The optimal exploration

is calculated by applying search algorithms, such as A* and branch and

bound. The quality of the optimal solution greatly depends on assumptions

and constraints we impose (e.g., perception and locomotion models of the

robot, representation of the map).

Our approach to find out an optimal exploration path is novel, because we

change the usual representation of the state in exploration problems studied

in computational geometry and we use off-line search algorithms to compute

the path to optimally explore the environment.

From the scientific point of view, our work is significant because it

contributes to the scientific endeavor aiming at the definition of a general

methodology for evaluating and comparing exploration strategies in a stan-

dard way. Our framework, moreover, could be a starting point for develop-

ing improved exploration strategies, because it can provide some hints for

defining better heuristics or methods for choosing the next point to reach.

We performed experimental activities for testing the framework both in

terms of computational time and in terms of quality of the solution (consid-

ering number of perceptions and traveled distance), in some classes of real

environments, and compared those results with results obtained with some

real exploration strategies, available in [2]. Furthermore, we showed how

the quality of the solution and the computational time change, according to

initial conditions and parameters provided to the framework.

This thesis is structured as follows. In Chapter 2, we introduce the cur-

rent state of the art about exploration strategies and particularly about their

evaluation, besides a fundamental background about exploration problem,

necessary to develop the framework of this thesis. In Chapter 3, we formally

3

define the problem as an off-line search problem, reporting some preliminary

hypotheses, in order to simplify the problem. In Chapter 4, we describe the

implementation of the framework reporting relevant pseudo-code. In Chap-

ter 5, we report our experimental results, by comparing on-line exploration

strategies and performances in terms of quality of solutions and computa-

tional time. In Chapter 6, we sum up our work and suggest further directions

of work.

Chapter 2

State of the art

Exploration is a task that plays a fundamental role in many applicative con-

texts, which span different domains, from planetary exploration, to search

and rescue missions. In this thesis, we considered the case in which a mobile

robot has to build the map of a surrounding environment, the so called explo-

ration problem, in an initially unknown environment, by moving around ac-

cording to some exploration strategies and perceiving surroundings through

suitable sensors. In literature, this task is accomplished even by employing

several robots (e.g., [7]) that should cooperate in order to build the entire

map. Here, we considered just a single robot.

Studies on exploration are relatively recent and not stable yet. This

fact is confirmed by experimental activities, that can be found in literature

and are carried out for evaluating exploration strategies: now just relative

comparisons are performed. In such a situation, designers of exploration

strategies are not aware of the performance of an exploration strategy with

respect to the optimum, and hence they do not know margins of possi-

ble improvements. Furthermore, they have to test all possible exploration

strategies, in order to define which one performs better.

The desideratum is to have a general evaluation methodology for compar-

ing different exploration strategies with respect to an optimum, and thus an

absolute comparison can be made. Therefore, a framework to solve the prob-

lem of determining the optimal exploration path in a specific environment

is necessary.

In this chapter, we report the current state of the art in this field, for

understanding the current limitations in evaluating exploration strategies

and how this work contributed to cover this gap. In addition, some theory

necessary for developing the framework is recalled.

Specifically, in Section 2.1, we briefly introduce what is an exploration strat-

5

6 Chapter 2. State of the art

egy and why we need a new approach to face the problem of evaluating a

strategy. In Section 2.2, we present current work in terms of evaluation

of exploration strategies and why they are not sufficient for a general eval-

uation methodology. In Section 2.3, we describe current state of the art

about robot details in exploration problems, because this is the background

necessary for the development of this framework.

2.1 Exploration strategies

Apart from telecontrolled robots, most of the research focused on developing

exploration strategies, that are deployed on robots and make them able to

autonomously move around an initially unknown environment, in order to

optimally discover it. Several exploration strategies have been developed

during these years, from the simplest ones – i.e., those with a predefined

trajectory [16] – to the most complex ones – i.e., those which have to choose

the next point on the basis of some criteria [30, 28]. On autonomous mobile

robots, on-line algorithms are usually deployed, i.e., the solution is computed

while the robot is operating in the physical world. Solutions are found

by searching a state space, that is the set of all possible states that can

be reached by the robot. In exploration problem, states are unknown to

the agent, specifically successor states are not known until the action is

performed by the robot [20].

The most common approach is to give a destination point, and the robot

can choose how to reach that point, without knowing what there is between

its current position and the destination point. In [13], it is presented Learn-

ing Real-Time A* (LRTA*1), applied to the problem of getting to a given

destination in an initially unknown environment. The state is represented

by the point where the robot finds itself. Indeed, as shown in Figure 2.1,

states are represented as vertices visited or not.

1LRTA* is a popular control method that interleaves planning and plan execution and

usually used to solve search problems in known environments efficiently.

2.2. System performance evaluation 7

Figure 2.1: An undirected graph used by LRTA* for computation [13].

This approach, in which a state represents the point where the robot

finds itself, is not significant in our context, since we are focusing on the ex-

ploration problem, which has the goal of building the map of an environment

and which does not have a natural destination point. In exploration, states

correspond on how much percentage of the map is discovered, and a desti-

nation point is not known a priori. The state should represent the partial

knowledge of the map, because we are dealing with the problem of mapping

an environment. So, we need a new approach to deal with the problem of

determining the optimal exploration path in a specific environment.

2.2 System performance evaluation

The evaluation of the performance of a system is an important and required

step in engineering fields. For the exploration problem, the definition of

a standard evaluation framework has not been addressed yet in literature.

Indeed, there is not any standard evaluation methodology for comparing

different exploration strategies [2] and different evaluation metrics are con-

sidered. For example, in [15], the quality of the map obtained by a strategy

and the computational time to produce the map are taken into account to

compare different exploration strategies. Other researches have focused on

comparing each algorithm with respect to others, in terms of traveled dis-

tance or number of perception actions required to map the environment [1].

This relative comparisons could affect the development of exploration strate-

gies, because researchers do not know when the exploration algorithm per-

forms well or not and how much effort they have to spend on improving such

strategies. Furthermore, it is not possible to check whether an exploration

strategy is the best one, unless all methods are tested and then compared,

8 Chapter 2. State of the art

because there is not an absolute result to compare to.

In addition, although several fields (e.g., robotics, graph theory [5, 6],

computational intelligence) dealt with optimality in exploration strategies,

results allow to calculate the upper or lower bound of the performance (e.g.,

number of perceptions, distance traveled) of a given strategy, for generic

classes of environments. These results do not answer to the question of

what is the best performance in a given, specific, environment, because

they are too generic and so the optimum in a specific environment can

be very different from a computed bound. For example, [29] presents an

improvement on greedy mapping, which is a simple mapping method for

mobile robots, in terms of upper and lower bound on its worst-case traveled

distance. The environments they used for testing this strategy are very

unrealistic, since one is created randomly and another is a maze, as shown

in Figure 2.2.

Figure 2.2: Environments adopted for testing greedy mapping [29].

The result found by [29] is the new upper bound in the worst case:

|V |+ 2 |V | ln |V | (2.1)

where |V | is the number of vertices of a graph G = (V,E).

Another work [9] describes two on-line algorithms for covering planar

areas, i.e., the mobile robot has to move along a path such that every point

of the area is covered. This paper demonstrates that any on-line coverage

algorithm has a fixed lower bound in any bounded planar environment.

2.3. State of the art in exploration problem 9

Actually, this result is obtained in very simple environments, as depicted in

Figure 2.3.

(a) A Double-ring environment (b) A Corridor environment

Figure 2.3: Environments considered in [9].

Even here, we have an upper bound of a covering path in the worst case:

(2− ε)lopt (2.2)

where lopt is the length of the shortest off-line covering path and ε is an

arbitrarily small positive parameter.

Both works find and demonstrate that these on-line algorithms have a

lower or an upper bound. This means that an algorithm cannot perform

better or worse than the bounds found. With these results, it is not possible

to compare different exploration strategies in a specific environment in an

absolute way, since these findings are general and applicable to classes of

environments.

So, as emerged from the analysis of the state of the art of the exploration

strategies evaluation, an absolute comparison lacks. Specifically, there is no

answer to what the best realization of an exploration in a given environment

is.

The objective of this thesis is to contribute to the scientific endeavor of

defining a standard evaluation framework, by building up a system that

allows to compare different exploration strategies performance with respect

to the optimal solution for exploring a specific environment, so that the

limitations of current evaluation methodologies are overcome.

2.3 State of the art in exploration problem

Exploration problem is usually solved by performing steps represented in

Figure 2.4.

10 Chapter 2. State of the art

perceiving mapping planning executing

Figure 2.4: Exploration steps.

During the first phase, a robot perceives the surrounding thanks to its

on-board perception system. There are several perception systems available,

each of one with different features and characteristics.

Mobile robots can have several sensors [27]:

� contact sensors, that are able to detect impact with obstacles (e.g.,

bumpers);

� internal sensors, that measure some parameters of the robot, as accel-

eration, inclination, etc. (e.g., accelerometers, gyroscopes, compasses,

inclinometers);

� proximity sensors, that detect obstacles when they are in the range of

a sensor (e.g., sonar, radar, laser range-finders, infrared);

� visual sensors, which visualize objects when they are in the focal area

(e.g., cameras);

� satellite-based sensors, that can position a robot in the space with

respect to an absolute reference system (e.g., GPS).

The choice of a perception system at design time will affect exploration,

because they have different ranges, different errors, etc., and thus a different

capability of perceiving surroundings.

In simulation, there are three approaches to model perception systems [14].

The first one is a deterministic model, which simulates a perfect perception,

i.e., there are no errors due to noise or sensor errors.

The second one is nondeterministic, in which noise and errors are taken into

account, so the perception is random and could be not exact.

The last one is probabilistic, which finds a probability density function to

model the perception. These approaches have different level of complex-

ity, from the simplest one (i.e., deterministic) to the most difficult one (i.e.,

probabilistic). It is important to remark that a higher level of complexity

corresponds a modelization closer to the real world. However, there is a

trade-off between computational complexity and realism.

At the second step, the robot represents the environment perceived at

the step before, by merging previous map with new information deriving

from previous step. There are three different types of maps [11], that carries

different types of information:

2.3. State of the art in exploration problem 11

� free space map: only free space is represented;

� object oriented map: even obstacles are represented;

� composite map: a mix of previous two type of maps.

As we can see from Figure 2.5, different ways of representing maps mentioned

above exist [26]:

� feature-based map (see Figure 2.5a): objects are represented on the

basis of their geometrical features with respect to an absolute refer-

ence;

� grid-based map (see Figure 2.5b): the environment is divided into cells,

whose size can be chosen;

� topological map (see Figure 2.5c): just relevant points in the environ-

ment are represented.

(a) Feature-based map (b) Grid-based map

(c) Topological map

Figure 2.5: Three types of map [19].

As we can see from Figure 2.6, each of these maps has different proper-

ties, which determine how to perform computations and operations on maps.

Furthermore, they have different complexity and so different details of the

world.

12 Chapter 2. State of the art

Feature-based Grid-based Topological

Construction Kalman filter Occupancy grids Navigation control

laws

Complexity Landmark covari-

ance (N3)

Grid size and resolu-

tion

Minimal complexity

Obstacles Only structured ob-

stacles

Discretized obstacles Defined by the safest

path

Localization Arbitrary Discretized Nodes

Exploration No inherent explo-

ration

Frontier-based ex-

ploration

Graph exploration

Figure 2.6: Properties of each map type [19].

Focusing on grid maps, they could be implemented in different ways.

A way is to discretize environments with fixed size cells, each of which can

have value of 0 (free space), or 1 (obstacle).

Another way is to have different grain levels, as we can see in Figure 2.7,

where the grid map have cells with different size.

Figure 2.7: A map where quadtree is used [24].

The method to apply the quadtree is the following: at first the envi-

ronment is discretized with a pre-defined cell size, then, depending on the

value of each cell (that can be a real number between 0 and 1), the cell

could be expanded, by using a quadtree. In this way, it is possible to have

a fine-grained details level, where it is needed, and to have an improvement

of efficiency in memory and computational resources [24].

It is also important to decide how cells are connected, in order to model

the robot movement. There are three types of connection, as shown in

Figure 2.8:

2.3. State of the art in exploration problem 13

� 8-adjacency;

� orthogonal 4-adjacency;

� oblique 4-adjacency.

This decision affects exploration, because it limits possibility of robot move-

ment, and therefore the performance and the solution of an exploration

strategy.

Figure 2.8: Different connections of cells in a grid map.

Another taxonomy of maps exists [27]. A map could be world-centric,

i.e., coordinates of the map are represented in a global coordinate space and

entities do not have any information about sensor measurements. Or a map

could be robot-centric, i.e., a collection of sensor measurements at different

locations, since everything is relative to the robot.

The choice of how to represent an environment determines algorithms and

approaches that can be used to handle these maps.

At the third step, on the basis of the previous and new information

acquired during perception phase, the robot localize itself in the new map,

and computes and decides, according to an exploration strategy, the next

action. About this step, for the sake of the thesis, it is not relevant to report

algorithms used for integration and localization, such as scan matching [21],

odometry techniques or Kalman filters [10], since, as we will see in Chapter 3,

in the problem of searching an optimal exploration path, we suppose that

the robot is able to integrate the map and localize itself in a deterministic

way. Instead, it is important the decisional part, which is the core of an

exploration strategy.

In a certain state, an exploration strategy has a set of successors, that are

possible points reachable from the current state of the robot. This set is

14 Chapter 2. State of the art

called frontier. For example, an exploration strategy can consider as points

in the frontier, those close to unknown part of the environment [19]. The

definition of successors set distinguishes an exploration strategy and it is

defined at design time. It is clear that the more successors a robot have, the

more time it has to spend to compute the one to choose. In order to reduce

the size of the frontier, a designer can define some constraints to discard

some cells that could be inserted in the frontier. For instance, a strategy

can discard points too close to obstacles for safety purpose. However, if

too many constraints are imposed, it could happen that the robot does not

find a solution, because frontier is an empty set. Hence, it exists a trade-off

between constraints and computational time.

After having found a set of successors, an exploration strategy picks one

successor according to some criteria and perform the action to reach the

corresponding point. Below, we describes three simple exploration strategies

examples, highlighting the criteria for choosing next successors.

One simple example is proposed by [25], in which the robot chooses

points that are on a geometrical pattern, so that the robot can explore all

points of interest in a map. This kind of approach defines a pre-computed

trajectory, that a robot should follow. However, this could be not applicable

in most of the cases, because the environment is unknown, and thus a de-

signer cannot know what path to design. Furthermore, a robot could block

itself, if it follows a pre-computed trajectory, due to unexpected obstacles.

Indeed, they are usually used for representing landmarks for localization

(i.e., visual maps) and not the environment geometry [23].

Another approach randomly picks cells from the frontier, without any

particular logic (e.g., [8], which developed a randomized strategy for cooper-

ative robot exploration). This method makes explorations non deterministic,

since choice of next point is random.

Finally, there are the so called Next Best View strategies, which are the

most complex ones, and make a mobile robot more autonomous.

This type of strategies defines an evaluation function, which is used for

choosing one successor in the current frontier. For example, exploration

strategy B-L [12] defines the following evaluation function:

h(q) = A(q) exp(−λL(q)) (2.3)

where q is the successor point, λ is a positive constant, L(q) is the length

of the path from current robot position to q and A(q) is an estimation of

how much part of the map can be perceived from q. The intuition is to

foster successor points where the robot can perceive more, but this value is

weighted according to the length of the path.

2.3. State of the art in exploration problem 15

Another example is the one proposed by [3], which uses different utility

functions, that are different evaluation functions, and combine them with

Multi-Criteria Decision Making (MCDM). In this case, different evaluation

functions can be defined, e.g., the travelling cost from the current robot’s

position to a successor, the area-based information gain estimate, as the

area of unknown space potentially visible by the robot if it goes to the suc-

cessor and the segments-based information gain as the length of the frontier

between mapped and unknown space the robot can perceive at a successor.

Then, a weight is assigned to each criterium and these criteria are combined

by using MCDM (e.g., weighted average can be computed).

It is clear that the best the evaluation function is, the best choice the robot

can make.

Finally, the robot performs the action planned during the step before.

Even during the action, there could be errors, due to asynchronicity of

wheels, motors, etc., that could bring the robot in another point with re-

spect to what it has planned. In addition, as depicted in Figure 2.9, the

error tends to accumulate along the path and could become very distant

from the actual plan, because every error is correlated to the previous ones.

Figure 2.9: Errors accumulated along the path [27].

In simulation, it is possible to model the movement without errors or

according to a classification as perception model, i.e., deterministic, non

deterministic and probabilistic.

One element that can add complexity to a model is the dinamicity of

the world. In that case, the knowledge of the robot could be different to the

current state of the world, because it could change. Instead, the staticity of

16 Chapter 2. State of the art

the world means that it preserves same conditions over time.

All the elements described above should be taken into account when we

design the behavior of a robot and its representation of the state. In the next

chapter, we formulate the problem of determining an optimal exploration

path in a specific environment and design its model, considering all the

elements reported in this chapter.

Chapter 3

Optimal exploration as a

search problem

As reported in Chapter 2, there is no standard methodology for evaluating

and comparing different exploration strategies, apart from the lower and

upper bounds provided for different on-line exploration algorithms.

The objective of this research is to develop an evaluation framework

for comparing exploration strategies with respect to an optimum, given a

specific environment. In this way, we contribute to the scientific endeavor of

defining a standard evaluation framework, as available in other engineering

fields.

In the next sections, we describe our approach and how we modeled the

problem of determining an optimal exploration path in a specific environ-

ment. Specifically, in Section 3.1 we report the basics of a general search

theory from artificial intelligence, that is useful for designing our model.

In Section 3.2, we introduce assumptions we made in order to model the

problem. In Section 3.3 we describe our general search problem formulation

and discuss about relations between time complexity and parameters and

constraints. Finally, in Section 3.4 some simple examples are reported in

order to understand and verify the formulated search problem.

3.1 Preliminary definitions: search problems

Our approach to the problem of determining an optimal exploration path

is to suppose that the environment is known and to formulate this problem

as a search problem. It is worth to introduce some definitions and notations

about search problems from artificial intelligence theory.

As [20] states, a search problem is defined by 6 elements:

17

18 Chapter 3. Optimal exploration as a search problem

� states s in which an agent could find itself;

� initial state s0, from where an agent starts;

� actions that an agent can perform, when in a state s;

� transition function, which is a function that, given a state and an

action, returns a new state:

T (s, a) = s′ (3.1)

� objective test, that determines whether a state s is the goal and can

be explicit, i.e., an explicit list with states that are goal, or implicit,

which is defined by a condition:

o(s) = {true, false} (3.2)

� path cost, which assignes a cost to each path from s0 to any other

state.

After the formulation of the search problem, we have to find a solution,

by exploring the state space, composed of all possible states that could

be reached by an agent. The tool used by search algorithms for finding a

solution is the search tree, which is an explicit tree, generated starting from

the initial state and the transition function, that define the state space.

The basic element of a search tree is a search node. A search node can be

represented in several ways. A possible data structure for a search node is

composed by five elements:

� state, which is the state in the state space represented by the node;

� parent node, which is the node in the search tree that generated this

node;

� action, which is the action necessary to arrive from the parent node

to this node;

� path cost g(n), which is the path cost from the initial node to this

node;

� depth, which is the number of steps from the initial node.

3.1. Preliminary definitions: search problems 19

All nodes generated but not expanded yet (also called leaf nodes, because

they still don’t have any successor) are inserted in a set, called search fron-

tier. It is important to remark that states are not equivalent to nodes, be-

cause there could be more than one node corresponding to the same state,

for example when there are multiple paths from s0 to that state.

From now on, we consider nodes instead of states, because they are the

basic element used by search strategies.

There exist two classes of search strategies that could be applied to search

problems in order to find the solution, by using a search tree:

� uninformed search strategies (e.g., breadth-first, uniform-cost, depth-

first), which do not exploit any additional information about the prob-

lem;

� informed search strategies (e.g., A*, branch and bound), which, con-

versely, exploit specific information about the problem and, therefore,

are able to find a solution more efficiently.

As we can see from Figure 3.1, the basic version of these search strategies

is that they take a node from the frontier, according to some criteria specific

to each strategy, they perform the objective test to the state corresponding

to the node and, if the objective test returns false, they expand this node,

by generating successor nodes of this node, and insert generated nodes in

the frontier. These steps are performed in a loop until a solution is found.

Take a node from frontier

Objective test

Expand and Insert

Goal reached

Goal not reached yet

Figure 3.1: Basic algorithm of a search strategy.

One of the most challenging issues is the states repetition, namely the

chance to expand multiple nodes with the same state. This issue might make

20 Chapter 3. Optimal exploration as a search problem

a search problem unsolvable, because the search algorithm cannot terminate

due to the huge amount of nodes to expand. Hence, search strategies can be

modified so that they are able to avoid to expand nodes that corresponds to

states that have been already expanded, by adding a closed list, a structure

that keeps in memory all expanded states. When a node in the frontier is

chosen, before its expansion, the search algorithm checks whether a node

with the same state has been already expanded. If this is the case, the

search algorithm discovered two different paths that lead to the same state

and so it can discard one of them. In this way, time complexity is reduced.

However, in some cases, it could happen that an optimal path is discarded.

In this work, we used informed search strategies, which use heuristic as

additional information for finding a solution. In this way, the time and mem-

ory complexity ought to be reduced, since it is not necessary to explore all

possible paths to obtain the optimal one [20]. This class of search strategies

looks at the sum of the current cost to reach a node n and the heuristic in

that node:

f(n) = g(n) + h(n) (3.3)

where g(n) is the path cost from the initial node to the node n and h(n) is

the estimate of the cost to reach the goal from the node n.

The difference between A* and branch and bound is that the former

expands nodes with the minimum f(n) until it finds a solution, whereas the

latter firstly finds a solution (e.g., using a depth-first search, which goes in

depth of the tree, til it finds a solution), and then compares the solution

found and prune other paths that are expected to cost more than the found

solution.

It is significant to remark that heuristic is defined as a function h(n) and

represents an estimation of cost from a node n to the closest goal. It should

have two properties, so that search strategies can find an optimal solution:

� admissibility, namely heuristic h(n) never overestimates the cost to

reach the goal:

h(n) ≤ C∗(n) (3.4)

where C∗(n) is the actual cost to reach the goal node from node n;

� consistency, namely heuristic h(n) is never greater than the cost to

reach node n′ (successor of n) summed to the heuristic from the new

node h(n′):

h(n) ≤ c(n, a, n′) + h(n′) (3.5)

3.1. Preliminary definitions: search problems 21

It has been proved that consistency implies admissibility, but the converse

is not true. So, it is sufficient to design an heuristic that is consistent.

Still, most admissible heuristics that are useful in practice happen to also

be consistent.

Each search strategy can be evaluated according to the following four

evaluation criteria:

� completeness, namely a strategy is complete when it is able to always

return a solution;

� time complexity, namely time spent to find the solution;

� space complexity, namely amount of memory used to keep the search

tree;

� optimality, namely a strategy is optimal when it always returns an

optimal solution.

Figure 3.2 reports properties of A* and branch and bound search algo-

rithms.

A* Branch&Bound

Complete Yes (unless there are infinitely

many nodes with f ≤ f(G))

Yes (as A*)

Time O(bm) Exponential in [rela-

tive error in h × length of so-

lution

O(mb)

Space O(bm) (Keeps all nodes in

memory)

O(bm)

Optimal? Yes (if heuristic is consistent) Yes

Figure 3.2: Evaluation of search strategies (b is branching factor, m maximum depth of paths in

space state, h is heuristic).

Both algorithms fit with our requirements. Indeed, they return an op-

timal solution, obviously if the heuristic is correctly designed. In terms of

space, they are equivalent, even if branch and bound can prune some paths

and thus remove them from memory, whereas A* should keep all nodes in

memory til the end. In terms of time, A* greatly depends on the definition

of the heuristic. If heuristic is very close to the actual cost, A* search algo-

rithm perform very well, while if it is not, the search algorithm have to check

all possible paths,degenerating to breadth-first search algorithms. Branch

22 Chapter 3. Optimal exploration as a search problem

and bound, besides the definition of the heuristic, depends on the first so-

lution found, because the first solution affects the pruning steps performed

by branch and bound.

3.2 Preliminary hypotheses

To formulate the problem of determining an optimal exploration path in a

specific environment, we have to make some assumptions.

First of all, we assume that the environment is known, so that only

computational operations are performed. In this way, as said before, off-line

search algorithms are applicable.

Furthermore, the world is deterministic, observable and static, so that it is

not necessary to model changes that could happen in the world.

Secondly, we consider a single robot, that is represented as a point, and

thus it has not a dimension.

Then, we assume that the perception model and the movement model

are perfect, that is there is not any error during perception or localization,

due to sensors or movement errors.

The movement model follows 8-adjacency connection of cells, so the robot

is able to move in every direction.

Moreover, its movement within the map is independent of the ground,

namely the effort of a movement action is not considered.

Finally, the map of the world is modeled as a 2D map (see Figure 3.3),

with a world-centric reference, so that it is not important the 3D shape of

obstacles, but just their projection to the ground.

Figure 3.3: An example of map, where each pixel represents a cell of a predefined size.

These hypotheses are fixed and are justified since we are searching an

optimal exploration path in a specific environment. Other parameters, that

define the initial conditions of the search problem and constraints can be

tuned, so that we can relax the search problem (they are presented in Sec-

tion 3.3.2).

3.3. Problem formulation in exploration case 23

3.3 Problem formulation in exploration case

In this section, firstly, we introduce the general formulation of optimal ex-

ploration as a search problem. This general formulation allows to find the

optimal exploration path in a specific environment. Then, since this search

problem has exponential complexity, we analyze parameters and constraints

that can reduce its complexity, by highlighting relations between time com-

plexity and optimality.

3.3.1 General formulation

As already asserted in Section 2.1, classical formulation for on-line algo-

rithms is not applicable to the problem of determining the optimal explo-

ration path in a specific environment, because of state representation, i.e., a

point where a robot could find itself. Moreover, these formulations require

to specify a destination point, but, in most cases, the destination point of an

exploration is not known a priori and it is relevant to observe that a robot

cannot know successors of a state, unless it tries all possible actions.

From the point of view of determining the optimality of an exploration

in a specific environment, off-line search algorithms should be applied, so

that the process of determining the optimal path is just computational. It

is possible to apply them, because we assumed that the map of an environ-

ment is already known, and the world is deterministic and static. In this

way, it is possible to know successors of a state, that is the results of an

action performed in a specific state. Furthermore, state can and should be

represented as the partial knowledge of the map, instead of the destination

point.

Following theory about search problems recalled in Section 3.1, the ex-

ploration problem can be formulated as follows:

� state s: it includes the map discovered until a generic time t, which

can be represented in several ways (e.g., as a grid), and the pose of

the robot in the map, which considers coordinates of the position of

the robot in the map and the orientation of the robot, thus identified

by a pair:

s = <discovered map, robot pose> (3.6)

� initial state s0: it is an element of the space of states, i.e., where the

robot is deployed in the environment at the beginning and the initial

knowledge of the map (e.g., null);

24 Chapter 3. Optimal exploration as a search problem

� actions: from a given pose, the robot can perceive the surroundings

and move to another pose, which is taken from the boundary (i.e.,

successor points in the physical space frontier, called with another

name just not to confuse with the frontier used by search algorithms)

in some way:

Ac(pose) = {perceive(pose), moveTo(pose)} (3.7)

� transition function: it is a function that returns the state resulting

from an action:

T (s, a) = s′ (3.8)

where s = <discovered map, robot pose>

and where, if perception action is performed, the new state s′ has the

same robot pose and an updated map,

a = perceive

s′ = <updated map, robot pose>

and where, if movement action is performed, the state resulting from

moving to another point is the change of the robot pose but the same

discovered map,

a = moveTo

s′ = <discovered map, robot pose′>

� objective test: is the percentage of the map discovered til now greater

or equal than the objective?

o(n) ≥ G (3.9)

where o(n) is a function that returns the current percentage of discov-

ered map in node n and G is the objective threshold;

� path cost: a function g(n) that computes the cost of the path to arrive

to n; we consider two cases to find the best path, one minimizing

number of perceptions and the other one minimizing the distance, i.e.,

we just considered the case in which perception cost is 1 and cost of

traveled distance is 0, and viceversa, otherwise more complex functions

should define a combination of movement and perceptions costs.

An important aspect that has to be designed carefully is the definition

of an appropriate heuristic, in order to use informed search strategies. Ob-

viously, heuristic is related to what we are optimizing and it ought to be

different, when we consider either the number of perceptions or the traveled

distance as path cost. As already said, it is relevant to ensure the property

3.3. Problem formulation in exploration case 25

of consistency in order to always find the optimum. So the heuristics defined

for the two cases are:

� expected number of perceptions to fully map the environment, that

is the number of free unknown cells in the map of the state s of the

node n divided by maximum number of perceivable cells, depending

on sensor range of the robot:

h1(n) =
free unknown cells(n)

perceivable cells
(3.10)

� expected traveled distance to fully map the environment: the furthest

point in unknown part of the map from the point in the boundary

(note that perception capability should be considered for determining

the furthest point):

h2(n) = furthest point(n)− sensor range (3.11)

They are admissible and consistent, because, for the first, we need at least

the number of perceptions returned h1, so it is less than the actual cost to

reach the goal; for the second, we just consider one part of unknown map,

but there could be other unknown parts of the map (this is just an intuition;

a formal proof is not provided here).

3.3.2 Parameters and constraints of the search problem

The formulation reported in Section 3.3.1 is a general formulation, that

is able to find the optimal exploration realization. However, since solving

the search problem has exponential complexity, we ought to define some

simplifications, which lead to a reduction in time complexity, but could

worsen the optimal exploration path that can be found.

First of all, we have to define how the boundary set is generated. The

method to generate next possible robot poses, from a state s, is the boundary-

based one, namely those cells near, according to 8-adjancency, to unknown

cells are cells in the boundary. The idea is that, when the robot is close to

boundary cells, it is able to perceive more. Figure 3.4 shows this method.

In particular, lighter gray cells are all boundary cells, since they are near to

unknown black cells.

26 Chapter 3. Optimal exploration as a search problem

Figure 3.4: Boundary cells in a simple environment. Legend: Black=unknown, lighter

grey=boundary cells, darker grey=robot, white=discovered free cells.

The boundary-based method does not affect optimal solution. Suppose

that we take a cell c adjacent to a boundary cell c′, which is found with the

method above. If a perception action is performed in c, then the mapped

area is always included in the mapped area of a perception performed in c′

as Figure 3.5 shows.

Figure 3.5: Mapped area in a boundary cell and in an adjacent one (red cell is the boundary cell,

blue cell is the adjacent cell).

In the initial state, we can suppose that the robot has already perceived

the surroundings (if perception cost is the cost function, then in the initial

3.3. Problem formulation in exploration case 27

node the cost is initialized to 1), and actions of perception and movement

could be merged together, in order to reduce branching factor and depth of

the tree. In such a case, the new set of actions becomes:

Ac(pose) = move&perceive(pose) (3.12)

and the new state s′ returned by the transition function T (s, a) is:

s′ = <updated map, robot pose′> (3.13)

This assumption is not restrictive and does not eliminate possible optimal

solutions, because the robot needs to perform both actions to explore and

map the entire environment. Consider the case where the robot is in a cer-

tain state, that is not the goal, and can choose a boundary cell: if the robot

performs just the movement action to a boundary cell, still it does not find

itself in the goal, because the mapped percentage of the environment is still

the same. The robot needs to perform the action of perception, to possibly

reach the goal.

This simplification really cuts the complexity. Indeed, if the actions are sep-

arated, there would be a huge amount of repetition of states, since we should

consider, apart from the perception action in a node, even the movement

action to all others boundary cells that have been found in the parent node.

The repetition of states due to movement action, in case the cost function

is the number of perceptions, could cause the search algorithm to end up in

a loop, resulting from the movement between two points, because the cost

of a movement is 0.

Furthermore, about the heuristic h1 (see Equation 3.10) - i.e., if we consider

again as cost function the number of perceptions - we can observe that in

case the two actions are separated, when a child node n′ is a result of a

movement action, the heuristic of n′ (actually all child nodes of n) is equal

to the heuristic of the parent node n, i.e., h1(n) = h1(n
′). Consider again

the environment depicted in Figure 3.3; the number of free cells is 30 and

the number of occupied cells is 30. Figure 3.6a shows the initial discovered

map, the robot pose, indicated by 0, and boundary cells, indicated by 1

and 2. Suppose that the robot sensor range is 1, i.e., it can discover 8 cells

around itself. Figure 3.6b illustrates the search tree in this situation, with

function f related to each node (current path cost summed to heuristic h1

of each node) .

28 Chapter 3. Optimal exploration as a search problem

(a) Considered state.

0
19/8=0+19/8

1

m

19/8=0+19/8

2

m

19/8=0+19/8

(b) Heuristic

in node 1.

Figure 3.6: Example that shows that movement action alone does not change heuristic h1.

As we can see, f(0) = f(1) = f(2), because movement action costs 0

and there is not any change in the discovered map (indeed, the heuristic h1

is the same in all nodes).

Since we assumed that the environment is a priori known, the heuristic

can be computed as if the perception action is performed in the boundary

cell. Even in this case, we have the problem that other two heuristics are

equal, namely, the child node n′ and the other child node n′′ deriving from

a perception action in n′ (h1(n
′) = h1(n

′′)). Figure 3.6b illustrates this

situation. We can see that before expanding the nodes at depth level 2, the

search algorithm expands all the nodes at depht level 1, because heuristics

are the same, but the nodes generated from a movement action do not

have any cost in terms of number of perceptions. As a matter of fact,

f(1) = f(2) < f(1′) = f(2′). So the search algorithm expands firstly nodes

1 and 2 and then 1′ and 2′.

3.3. Problem formulation in exploration case 29

(a) New state if perception is per-

formed in pose 1.

(b) New state if perception is per-

formed in pose 2.

0
19/8=0+19/8

1

m

18/8=0+18/8

1′

p

26/8=1+18/8

2

m

18/8=0+18/8

2′

p

26/8=1+18/8

(c) Heuristic

in node 1.

Figure 3.7: Example that shows that even adding prospecting level of 1 does not change heuristic

h1.

This could lead to a degeneration of A* algorithm in a breadth-first al-

gorithm.

Therefore, we can consider both actions performed together, without elimi-

nating any optimal solution.

Figure 3.8 illustrates that depth and branching factor of a tree are reduced

and so time complexity for search algorithms is lower.

30 Chapter 3. Optimal exploration as a search problem

O

O

p

O

m

O

p

O

m

O

m

O

p

(a) Not merged actions

O

O

p

O

p

(b) Merged actions

Figure 3.8: Search trees considering both actions merged and not.

It is important to note that nothing changes for function that calculate

the path cost. For example, if we consider number of perceptions as cost

function, then, when the robot performs an action, just the perception action

is considered for computing the path cost. Instead, if we consider traveled

distance as cost function, then only the movement action is considered for

computing the path cost.

Besides these simplifications that do not affect solution optimality, there

are a series of initial conditions (parameters of the exploration problem for-

mulation) that can affect the search.

First of all, it is possible to define different objective tests, according to how

much percentage G of the map should be discovered, so that search algo-

rithm terminates as soon as percentage G of the map has been discovered.

Even in this case, optimality of the solution is not affected in terms of explo-

ration path, but simply changes according to the objective to accomplish.

Moreover, it is possible to set various initial states, namely the initial robot

poses. Some robot poses could lead to an increase of time complexity, be-

cause they could have more choices to analyze.

Other parameters related to specific model and implementation of the

robot and the environment can be taken into consideration for reducing the

time complexity. Specifically, we have:

� the perception model of the robot, because each perception model

3.3. Problem formulation in exploration case 31

returns a different part of environment perceived;

� resolution of the map (if grid maps are used), i.e., the bigger the size

of a cell, the less amount of memory is used and the less boundary

cells the robot finds.

However, there is a trade-off between realism and time complexity.

In the case of perception model, if the robot use a naive one (e.g., footprint

sensor), we reduce time complexity because the sensor is able to see even

through obstacles, but the sensor is not realistic. Instead, if the perception

model is very complex (e.g., laser sensor), it is very realistic, but the time

complexity increases. By changing the perception model, the solution opti-

mality is preserved, because the boundary set is not restricted, even if the

exploration problem could be less realistic and almost impossible to reach

in real settings.

In the case of the resolution of the map, with lower map resolution, the

boundary set is smaller, because there are less cells to consider, but details

of environment are lost, whereas with higher map resolution, the boundary

set is bigger, and details of environment are kept. So, there is a trade-off be-

tween the environment details and the number of boundary cells. Figure 3.9

shows the same map with two different cell size.

(a) Cell size=0.5 (b) Cell size=0.25

Figure 3.9: Map with different resolution.

In this case, the optimality of a solution is affected, in the sense that,

with same initial conditions, if we have less details (i.e., lower resolution),

the exploration solution can be better than the exploration solution, if we

have more details (i.e., higher resolution), because some actions cannot be

performed in a more realistic environment.

Finally, a series of constraints in the selection of boundary cells can be

imposed, in order to reduce the size of the boundary set and therefore to

simplify the search problem, namely the search algorithm does not consider

all boundary cells, but just a subset of them. Section 4.3 shows how these

constraints have been designed.

32 Chapter 3. Optimal exploration as a search problem

3.4 Examples

In the following sections, we provide some simple examples that test our

general formulation of the search problem for determining the optimal ex-

ploration solution in a specific environment, and the heuristics.

3.4.1 Formulation

This example verifies the formulation of the problem provided in the Sec-

tion 3.3. In particular, we consider a simple environment, which can be

represented as a grid (see Figure 3.10). The starting point of the robot is

marked in the top left cell in the grid.

O

Figure 3.10: Map of the environment

We assume that the robot can perceive cells distant 1 from the robot pose

in all directions (i.e., horizontally, vertically and diagonally). In general, we

assume that the robot can move from its pose to a boundary (i.e., more than

1 step). Here, we run breadth-first search algorithm to test the formulation,

and we can see the tree (see Figure 3.11) that results from the run of the

search algorithm. The creation of nodes is as follows: new nodes are placed

from left to right. We suppose that if there are nodes on equal level, the

robot chooses the left-most node. As we can see, after two expansions of

nodes, the algorithm finds the optimal solution that is the one circled by

a green line; the cost is just 1, if we consider both traveled distance and

number of perceptions.

3.4. Examples 33

O

O O
O

Figure 3.11: Tree constructed by breadth-first search. Legend: red circle=expanded but not goal

node, green circle=expanded goal node.

3.4.2 Heuristics

These examples verify whether the heuristics previously defined in Sec-

tion 3.3 do actually make sense or not. We consider the environment de-

picted in Figure 3.12, where white cells are known cells, grey cells are ob-

stacle cells and black cells are unknown cells.

Figure 3.12: Environment considered for testing heuristics. Legend: grey=obstacle cells,

white=free known cells, black=unknown cells.

The cell with a 0 is the robot pose, while cell with 1 and 2 are two

boundary cells (for simplicity, we do not consider any other boundary cells),

that are considered by the search algorithm for generating successors.

About the heuristic h1 (see Equation 3.10), we can see that our heuristic

definition does make sense, as it is shown in Figure 3.13, which illustrates

the execution of A*, reporting the tree with expanded nodes (red nodes),

goal node (green node) and not expanded nodes (black nodes).

34 Chapter 3. Optimal exploration as a search problem

0

5/8=0+5/8

1

11/8=1+3/8

2

2=2+0

2

10/8=1+2/8

1
2=2+0

Figure 3.13: Execution of A* to minimize perceptions. Legend: red circle=expanded but not goal

node, green circle=expanded goal node.

On each node is reported its f(n) value, namely the path cost summed

to the heuristic in the considered node. As we can see, heuristic h1 defined

is admissible and consistent.

About the heuristic h2 (see Equation 3.11) - i.e., the one that minimizes

the traveled distance - it worked as expected. We measured the furthest

point with Euclidean distance.

0

7=0+7

1

7.5=4+3.5

2

8=8+0

2
11.9=7.4+4.5

Figure 3.14: Execution of A* to minimize traveled distance. Legend: red circle=expanded but

not goal node, green circle=expanded goal node.

As we can see in Figure 3.14, which shows the execution of A*, reporting

the search tree, heuristic h2 is admissible and consistent.

The solution returned by A* algorithm, by applying these two heuristics, is

the actual optimal path.

Chapter 4

Implementation

In this chapter, we present the implementation of the algorithms for solving

the search problem formulated in Section 3.3. We also discuss what param-

eters and constraints can be added/modified in order to relax the search

problem. All constraints that reduce the size of the boundary set influence

also the optimal exploration realization, since some possible optimal paths

could be discarded.

In Section 4.1, we describe the framework in terms of main modules and

of the main functionalities they provide. In Section 4.2, we show the basic

code. In Section 4.3, we report how it is possible to relax the problem,

introducing further assumptions to increase efficiency.

4.1 Description of the framework

The framework is designed and developed to be very modular.

Search Engine

Node

State

Map

Figure 4.1: Architecture of the framework.

As shown in Figure 4.1, the core class is the Search Engine, which starts

the search over the search tree, by starting from the initial state. It is

possible to use different algorithms to search over the search tree. Here, we

35

36 Chapter 4. Implementation

implemented two search algorithms, that is A* and Branch and Bound. The

other three classes are:

� Map: which keeps in memory the map of the environment;

� Node: which obviously represents a node in the search tree, with the

same data structure as presented in Section 3.1;

� State: which represents a state of a node.

When in a state, the robot can perform an action that, as already intro-

duced in Section 3.3.2, combines perception and movement.

The perception is performed according to the perception model imple-

mented. In this implementation, we provided two perception models, even if

it is possible to implement others (more details are provided in Section 4.3):

� laser sensor, which can sense surroundings within a pre-defined range

and realistically cannot see beyond an obstacle;

� footprint sensor, which is a dummy sensor that is capable of perceive

everything within the range (even through obstacles).

4.2 Core code

The framework core activities are shown in Figure 4.2.

4.2. Core code 37

Load map and
initial state

Select Search algorithm

Take a node from frontier

Objective test

Expand Node

Goal reached

Goal not reached yet

Figure 4.2: An overview of framework activities flow of search engine.

Steps are those usually employed in search algorithms. Specifically, at

first, the Search Engine loads the initial state, that is the initial robot pose,

and the map, and the root node of the search tree is created. Then, the

search algorithm selected by the user is started. The search algorithm takes

a node from the frontier and tests whether the objective function is fulfilled

or not, namely it checks whether the whole free space of the environment

is mapped or not. If this is the case, then a solution is found, otherwise it

expands the node, generating its successors, and picks another node from

the frontier, until the solution is found.

When a node is expanded, transition function, as defined in Section 3.3.1,

finds successor nodes, and each generated node n is inserted in an ordered

frontier by the function f(n) (see Equation 3.3), i.e., the estimated cost of a

solution that passes from the expanded node n. Figure 4.3) illustrates steps

performed when a node is expanded.

38 Chapter 4. Implementation

Transition function

Insert in an ordered frontier

Figure 4.3: Expansion of a node.

Successor nodes are basically those states, where the robot is in a bound-

ary cell, defined in the map corresponding to the parent node, and has per-

ceived the environment from that cell. In transition function, as shown in

Figure 4.4, the framework ought to find boundary cells, defined as those

adjacent to unknown cells, according to 8-adjacency. Then, robot performs

actions, i.e., it moves to boundary cells and perceives surroundings from

there, and so nodes are created with those new states. It is relevant to re-

mark that perception action is performed only when the robot reaches the

destination, and not continuously, while it moves around. The cost of the

path is updated on the basis of the weights passed as input to each action.

Find boundary cells

Move and perceive in each boundary cell

Create Node with each state

Figure 4.4: Transition function activity diagram.

In the general implementation of this framework, all boundary cells are

generated and considered as possible destinations for the robot, according

to the boundary-based method, introduced in Section 3.3.2. In this way, the

framework is modular and it is possible to add constraints that can restrict

the boundary, as presented in Section 4.3.

4.2. Core code 39

In the following listings, the core of A* algorithm is presented, with all

functions that are needed to the A* algorithm to perform the search, i.e.,

expansion of a node, node insertion in the frontier, and transition function.

1 function Astar−search (problem , s t r a t e gy) return r e a l i z a t i o n o f

steps , or f a i l u r e

2 f r o n t i e r ← I n s e r t (Create−Node (I n i t i a l−S t a t e [problem]) ,

f r o n t i e r)

3 loop do

4 i f Empty?(f r o n t i e r) then return f a i l u r e

5 node ← Pop−First (f r o n t i e r)

6 i f Goal−Test [problem] (State [node])

7 then return So lu t i on (node)

8 f r o n t i e r ← Inse r t−Al l (Expand(node , problem) , f r o n t i e r)

Listing 4.1: A* pseudo-code.

1 function Expand(node , problem) return s e t o f nodes

2 s u c c e s s o r s ← empty s e t

3 for each <act ion , r e s u l t> in Transit ion−Function [problem] (

State [node]) do

4 s ← new Node

5 Parent−Node [s] ← node

6 Action [s] ← ac t i on

7 path cos t [s] ← path cos t [node] + s t e p c o s t (node , act ion , s)

8 depth [s] ← depth [node] + 1

9 add s to s u c c e s s o r s

10 return s u c c e s s o r s

Listing 4.2: Node Expansion.

1 function Inse r t−Al l (su c c e s s o r s , f r o n t i e r)

2 for each new node in s u c c e s s o r s do

3 for i=1 to s i z e [f r o n t i e r] do

4 node ← i [f r o n t i e r]

5 i f (pa th cos t [node] + h e u r i s t i c [node] <= path cos t [

new node] + h e u r i s t i c [new node])

6 then I n s e r t new node be f o r e node and break

Listing 4.3: Implementation of insertion of generated nodes in the frontier.

1 function Transit ion−Function (s t a t e) return s e t o f s t a t e s

2 s u c c e s s o r s ← empty s e t

3 for each c e l l in Find−Frontier−Cells (s t a t e)

4 new state ← CreateNewState (c e l l)

5 Perce ive (new state)

6 add new state to s u c c e s s o r s

7 return s u c c e s s o r s

Listing 4.4: Transition Function.

40 Chapter 4. Implementation

In the Listing 4.5, it is presented the branch and bound pseudocode and

in the Listing 4.6 is presented the insertion of nodes in the frontier (other

functions used by branch and bound are the same presented above).

1 function BranchAndBound−search (problem , s t r a t e gy) return

r e a l i z a t i o n o f steps , or f a i l u r e

2 f r o n t i e r ← I n s e r t (Create−Node (I n i t i a l−S t a t e [problem]) ,

f r o n t i e r)

3 so l node ← NULL

4 while (not Empty?(f r o n t i e r))

5 node ← Pop−Last (f r o n t i e r)

6 i f (s o l node == NULL | | Path−Cost (node)+Heu r i s t i c (node) <

Path−Cost (so l node))

7 then

8 i f Goal−Test [problem] (State [node]) then s o l node =

node

9 else f r o n t i e r ← Insert−BB−All (Expand(node , problem) ,

f r o n t i e r , e lements)

10 i f s o l node not NULL then return So lu t i on (node)

11 else return f a i l u r e

Listing 4.5: Branch and bound pseudo-code.

The elements parameter is the displacement, where the insertion of new

nodes starts. It is necessary, since branch and bound performs a depth-first

search algorithm in order to find a solution.

1 function Insert−BB−All (su c c e s s o r s , f r o n t i e r , e lements)

2 for each new node in s u c c e s s o r s do

3 for i=elements to s i z e [f r o n t i e r] do

4 node ← i [f r o n t i e r]

5 i f (pa th cos t [node] + h e u r i s t i c [node] >= path cos t [

new node] + h e u r i s t i c [new node])

6 then I n s e r t new node be f o r e node and break

Listing 4.6: Implementation of insertion of generated nodes in the frontier for branch and bound.

In the Listing 4.7, we show how the heuristics h1 and h2 are computed.

1 function computePercept ionHeur i s t i c (s t a t e)

2 for each f r e e c e l l in a map do

3 count number o f c e l l s Perce ived in that s t a t e

4 take maximum perceivable

5 return f r e e c e l l s t i l l n o t v i s i b l e / maximum perceivable

6

7 function ComputeDistanceHeurist ic (s t a t e)

8 f c ← find the f u r t h e s t c e l l in a not v i s i b l e area

9 return d i s t anc e (robot pose , f c)

Listing 4.7: Heuristics.

4.3. Relaxation of the problem 41

About h1 (i.e., perception heuristic), its computation can be updated at each

state, because in each state, the maximum number of perceivable cells can

be calculated, so that we have a heuristic near to the actual solution cost.

However, if the maximum number of cells perceivable is equivalent to the

whole area that could be mapped with the sensor, then we can consider a

part of it, since it is impossible that the robot find itself in a totally unknown

part. Specifically, the maximum number of cells perceivable is given by the

following formula:

maximum perceivable =
((r ∗ 2 + 1)2 − 1)

2
+ r2 (4.1)

This is the case when the robot is in a vertex of a square, as we can see in

Figure 4.5. Indeed, if we assume a reference system where the robot is the

origin, the robot is able to see three quadrants of unexplored area.

Figure 4.5: Perceivable area (red square) in point P (center of the square).

4.3 Relaxation of the problem

As already discussed in Section 3.3.2 and as we can see from the code, we can

intervene at different steps, to relax the search problem and find its solution

more efficiently. Specifically, if we want to modify the search algorithm we

can modify various components:

� objective test, that is changing the percentage of required mapped

area;

� nodes expansion, that is choosing not all boundary cells, but some of

them;

42 Chapter 4. Implementation

� frontier ordering, by changing the function that determines the order.

In the following, we see some initial parameters that can be tuned and some

constraints on boundary cells that can be activated.

4.3.1 Initial parameters

Objective test

Regarding the objective test (see Equation 3.9), it is possible to tune the

constant G, namely the percentage that the robot should map of the envi-

ronment. By diminishing G, the robot should perform less actions in order

to explore the environment, and so the tree depth is reduced. Therefore,

the time complexity is reduced.

(a) G = 0.85 (b) G = 0.95

Figure 4.6: Mapped area with different constant G.

Figure 4.6 shows two maps of the same area with different constant G.

The tests with different G are run with same initial conditions, i.e., same

initial robot pose, same perception model and range, same constraints and

same cost function. In the case of Figure 4.6a, the optimal exploration

path, by considering number of perceptions as cost function, costs 26, and

the search algorithm needs 2.55 seconds for finding the solution. In the

case of Figure 4.6b, the optimal exploration path costs 29 and the search

algorithm needs 34.71 seconds for solving the search problem. The time

complexity is reduced, because in the first case the search algorithm visits

nodes at maximum depth level of 26, while in the second case the maximum

depth level is 29.

Due to the parametric objective test, even the heuristics h1 and h2 ought

to be defined accordingly, to ensure consistency. In such a case, the new

definitions of the heuristics are the following:

h′1(n) =
missing free unknown cells

perceivable cells
(4.2)

4.3. Relaxation of the problem 43

where missing free unknown cells are the number of cells that still has to be

explored, depending on the value of percentage of the map G, that has to

be mapped;

h′2(n) = (furthest point(n)− sensor range) ∗ (G− current percentage(n))

(4.3)

whereG is the percentage of the map to be discovered and current percentage

is a function that returns is the current percentage of the map already ex-

plored in n.

Perception Model

The perception model adopted are the footprint sensor and the laser sensor,

and they can be chosen by the user. Here, we simplify perception models

by assuming that the robot can sense at 360 degrees, so that orientation

can be neglected. As seen in Figure 4.7, footprint sensor is able to discover

more cell than laser sensor. The former perception model is dummy, in the

sense that it perceives a footprint of the environment within the range of

the sensor, even though there is any obstacle. The latter is more realistic,

since it cannot see through an obstacle. Indeed, the robot with the laser

sensor requires more perception actions to map the same percentage of the

environment as with the footprint sensor, hence, footprint sensor has lower

time complexity. In Figure 4.7, results of a perception of the two sensors

are shown.

(a) Footprint Sensors (b) Laser Sensor

Figure 4.7: Results of a perception of the implemented sensors.

We can observe that there are several cells that laser sensor is not able

to discover, while fooprint sensor is. In the initial settings of Figure 4.7 and

in the environment of Figure 3.3, considering as cost function the number

of perceptions, in the case of footprint sensor, the optimal exploration path

costs 15, while, in the case of laser sensor, the exploration solution costs 22.

In the Listing 4.8, we present the code of the laser sensor model. It is very

sophisticated and very close to reality, indeed it uses shadow cones deriving

from obstacles to determine whether a cell is visible or not, namely, each

44 Chapter 4. Implementation

obstacle cell create a shadow cone, and if a cell falls in that shadow cone,

then it is not visible.

1 function Perce ive (s t a t e)

2 for i=1 to range do

3 for each c e l l in rad iu s (range) do

4 i f no tV i s i b l e (c e l l) then

5 i f c e l l c en t e r not in a shadow cone then

6 makeVis ib le (c e l l)

7 i f ob s t a c l e then

8 update shadow cones

9 else

10 i f ob s t a c l e then

11 update shadow cones

Listing 4.8: Laser perception model.

Due to the modularity of this framework, even other perception models

could be developed and added to this framework.

Closed list

About the constraints for reducing the size of the search frontier, we can

recall the concept of closed list, already introduced in Section 3.1, namely,

search algorithm can avoid repeated states.

1 function Astar−search (problem , s t r a t e gy) return r e a l i z a t i o n o f

steps , or f a i l u r e

2 f r o n t i e r ← I n s e r t (Create−Node (I n i t i a l−S t a t e [problem]) ,

f r o n t i e r)

3 c l o s e d l i s t ← empty

4 loop do

5 i f Empty?(f r o n t i e r) then return f a i l u r e

6 node ← Pop−First (f r o n t i e r)

7 for each expanded node in c l o s e d l i s t do

8 i f (node >= expanded node) goto end

9 i f Goal−Test [problem] (State [node])

10 then return So lu t i on (node)

11 f r o n t i e r ← Inse r t−Al l (Expand(node , problem) , f r o n t i e r)

12 end :

Listing 4.9: A* with closed list pseudo-code.

In Listing 4.9, modified A* pseudo-code is reported. Before testing the node

with the objective test, it is checked whether the considered node is greater

or equal than nodes in closed list. A node n1 is greater or equal than a

node n2 when g(n1) ≥ g(n2) and n1.state == n2.state. The equivalence

of states is verified when the perceived maps in both states are perfectly

4.3. Relaxation of the problem 45

the same, when number of steps is considered. Additionally, the robot pose

equivalence must hold in the case of traveled distance, because two nodes can

be very different in terms of solution, if robot poses are different. With this

definition of equivalence, the optimality is preserved in both cases, because,

on the forme case, if n1, whose path cost is greater than the path cost of

the other node, is discarded, we can reach the same solution from node n2,

though, because boundary cells are the same in both nodes states, because

they are equivalent in terms of mapped area; in the latter, it is deleted paths

that lead to the same state, considering even the robot pose equivalence in

the states. This modification can be activated through a Boolean variable,

that can be passed to the Search Engine.

4.3.2 Constraints

In addition, we can make assumptions on the boundary set, so that some

boundary cells are discarded and, thus, the frontier is smaller.

Centroid

The first idea is to group boundary cells in clusters, that are sets of homoge-

neous elements. In this case, we consider as cells in a cluster the boundary

cells that are adjacent. Then, k-means clustering can be applied (by activat-

ing this constraint with a Boolean variable) for choosing a cell in each cluster.

Specifically, the algorithm calculates the centroid of a cluster, which is de-

termined in the following way: Given a finite set of points x0, . . . , xk ∈ R
2

that belong to the cluster,

C =

∑k
i=0 xi

k
(4.4)

Then, the nearest cell to the centroid is chosen, whose distance is calculated

using Euclidean distance. Figure 4.8 illustrates which cells are in the same

cluster and the related centroids.

46 Chapter 4. Implementation

(a) Two identified clusters (b) Two computed centroids

Figure 4.8: Results of applying clustering function.

Listing 4.10 shows the pseudocode for clustering function.

1 function Se l e c tCent ro id (bounda ry l i s t)

2 c l u s t e r s ← empty

3 for each c e l l in bounda ry l i s t do

4 c l u s t e r s ← I n s e r t I nCo r r e c tC lu s t e r (c e l l)

5 for each c l u s t e r in c l u s t e r s do

6 c en t r o id ← ComputeCentroid (c l u s t e r)

7 s e l e c t nea r e s t c e l l to c en t r o id o f c l u s t e r

8 e l im ina t e other c e l l s o f c l u s t e r

9 return bounda ry l i s t

Listing 4.10: Select centroids of found clusters.

Cluster size

In addition, it is possible to reduce the number of clusters, by discarding all

clusters that are too small, i.e., a cluster should contain a minimum number

of cells k:

∀c ∈ clusters | size(c) ≥ k (4.5)

where c is a cluster, size is a function that returns the number of cells in

cluster c and k is a positive integer, that can be set as desired. If the value of

k is 0, then this constraint is not considered. The idea behind this constraint

is that from cells belonging to small clusters negligible information about

unknown areas is perceivable. It is relevant to remark that, depending on

k value, this constraint could become too restrictive. For example, in the

case of an indoor environment, where there are several rooms and the robot

4.3. Relaxation of the problem 47

find itself in the hallway, if k is equal to the number of cells representing the

door space, the search algorithm cannot find a solution. In Figure 4.9, it is

shown an example of environment, where this constraint does not allow the

search algorithm to find a solution.

Figure 4.9: Indoor environment where the constraint on clusters size is a problem.

Safeness

The second idea is to define constraints on single boundary cells.

We can introduce the concept of safeness, that is boundary cells too close

to obstacles are discarded. In this way, there is a guarantee that the robot

does not hit any obstacle. Hence, the constraint imposed is, ∀c ∈ boundary,

∀o ∈ obstacles:

distance(c, o) ≥ l (4.6)

Distance constant l from obstacles is a positive integer and is a parameter

that can be tuned.

Nearness

Furthermore, we can impose a nearness constraint, i.e., boundary size can

be reduced by discarding boundary cells too far from the robot current

position:

distance(robot pose, bc) ≥ m (4.7)

where bc is a boundary cell and m is the distance. In this way, in the

case of cost function as number of perceptions, a possible duplicated path is

48 Chapter 4. Implementation

eliminated (e.g., first to go to the furthest point and then the nearest, and

viceversa). The idea is to avoid that the robot goes too far and then going

back, as shown in Figure 4.10.

Figure 4.10: Nearness constraints.

If the constraint is activated, then the boundary cell 2 is discarded, while

the boundary cell 1 is kept. In this way the robot, firstly, goes to 1 and after

that it goes to 2. Nearness distance is a positive integer and can be tuned.

These are some of constraints implemented. However, because of the

modularity of this framework, it is possible to add other constraints, in

order to reduce complexity of this problem.

Chapter 5

Experimental results

In this chapter, we show experimental results from different perspectives.

First of all, we analyze results obtained with our framework and compare

them with results of on-line exploration strategies available in [2]. Then, we

verify, changing parameters and making additional assumptions:

� how the quality of the exploration solution, as number of perceptions

or as traveled distance, changes;

� how the computational time for finding a solution changes.

This chapter is organized as follows. In Section 5.1, we show initial

conditions and assumptions used in experiments and we present how we

performed tests. In Section 5.2, we analyze and compare optimal solutions

obtained with our framework with results obtained in [2]. In Section 5.3, we

observe how quality of solution and computational time change, by tuning

different parameters.

5.1 Tests methodology and experimental setting

The framework used for testing has been implemented in C++, during the

work on this thesis (the architecture and the relevant core code were pre-

sented in Chapter 4). The software allows to define different initial condi-

tions and parameters:

� the environment to be explored;

� the initial pose of the robot;

� the size of the cell;

49

50 Chapter 5. Experimental results

� sensor model and sensor range;

� the percentage of the map that has to be discovered;

� activation of different constraints on boundary cells.

The solution cost can be measured by either the number of perceptions

or the traveled distance. Furthermore, about the search algorithms, it is

possible to choose between A* and branch and bound, and if closed list is

enabled or not.

The framework for determining an optimal exploration path has been

initially applied in an indoor environment (see Figure 5.1), called office en-

vironment. This environment has been used in [2] for evaluating different

exploration strategies.

Figure 5.1: Indoor environment.

The reason why we chose this environment is that we want to compare

real exploration strategies solutions with the optimal exploration solution

calculated by our framework. In addition, we want to prove that this frame-

work is applicable to realistic environments, where a robot can be deployed

in.

We performed different trials, by changing initial conditions and pa-

rameters defined before, to have results that can be compared with results

obtained in [2]:

� initial state (i.e., ten different initial robot poses, as shown in Fig-

ure 5.1), so that we can generalize the behavior of this framework, by

computing the average and the standard deviation of the solution cost;

5.1. Tests methodology and experimental setting 51

� cell size, in order to verify how computational time and solution quality

change (we consider 1 m, 2 m and 4 m);

� sensor range (i.e., a range of r = 20 m, as in [2], and r = 25 m or

r = 30 m, since r = 10 m and r = 15 m that appear in [2] require

too much time to compute a solution), in order to compare optimal

solution with on-line algorithms solutions;

� percentage of mapped environment (i.e., G = 85%, G = 90% or G =

95%, as in [2]), again to compare results of this framework with on-line

exploration strategies;

� frontier pruning criteria: picking cluster centroid, because otherwise

experiments would require too much time.

We used A* search algorithm and closed list enabled and the sensor model

is the footprint sensor.

About single analyses on a subset of experiments, we changed frontier

pruning criteria, i.e., minimum size of a cluster, safeness and nearness. Fur-

thermore, we tested laser sensor and branch and bound search algorithm and

we ran a set of trials in which the framework determined the exploration

paths for complete explorations, namely goal percentage G = 1.

Metrics used to evaluate our framework are the quality of the solution,

as number of perceptions (also called steps, according to [2]) or traveled

distance, and computational time1 to find a solution.

The expiration time, i.e., the interval in which the search algorithm is

allowed to find the solution, is set to 18000 seconds (5 hours).

Other environments should be tested, such as an open space (see Figure

5.2), and a scattered one, i.e., with many obstacles located in the environ-

ment (see Figure 5.3).

1Actually, computational time could depend on computer hardware used for testing.

Computer hardware specifications used for testing are: 1.60 GHz Intel Core i7-720QM

Processor, RAM 8GB DDR3 (laptop HP dv3-4010sl).

52 Chapter 5. Experimental results

Figure 5.2: Openspace environment.

Figure 5.3: Obstacles environment.

Experiments on these two environments have not extensively been done

in this work, as for indoor environment, since these environments are very

large spaces and require several hours per trial.

5.2. Analyses and comparisons 53

5.2 Analyses and comparisons with on-line explo-

ration strategies

Firstly, we analyze results we obtained in an aggregated way. For the office

environment, the average solutions quality (over 10 trials) of the framework

are reported in Table 5.1. In parentheses, we report the standard deviation.

The second column refers to different cell sizes. As we can see in Table 5.1,

in the case of number of steps as cost function, the standard deviation is

very low (around 3%). So, different solutions cost approximately the same.

Indeed, intuitively we can imagine that an environment requires a fixed

number of steps to be explored, given a fixed sensor range. In the other

case, i.e., traveled distance as cost function, the standard deviation is a

little bit larger (around 10%). This is due to the fact that some initial poses

require more distance to be traveled in order to explore the environment,

e.g., if the robot is in the middle of the environment, it has to visit the left

and the right corridors, by covering at least twice one of the two hallways.

OF STEPS DISTANCE

SENSOR RANGE 20 25 30 20 25 30

G = 85%

1 26.3 (0.5) 18.8 (0.6) 14.4 (0.5) 674.8 (56.0) 575.4 (49.6) 503.1 (49.4)

2 25.8 (0.4) 19.9 (0.6) 14.4 (0.5) 670.3 (50.4) 586.3 (44.6) 494.7 (43.6)

4 25.3 (0.9) 19.6 (0.7) 15.7 (0.7) 657.9 (55.9) 571.3 (38.2) 522.8 (47.2)

G = 90%

1 28.25 (0.5) 20.0 (0.5) 15.8 (0.6) 762.8 (45.2) 636.5 (53.4) 570.5 (57.2)

2 27.8 (0.4) 21.4 (0.5) 15.4 (0.7) 751.2 (51.1) 666.0 (51.4) 560.4 (50.4)

4 27.3 (0.9) 21.1 (0.7) 16.8 (0.6) 744.1 (48.8) 638.7 (44.0) 585.9 (46.1)

G = 95%

1 30.0 (0.0) 21.7 (0.5) 17.1 (0.3) 831.4 (56.3) 715.3 (54.8) 648.5 (57.4)

2 29.7 (0.8) 23.1 (0.6) 16.9 (0.3) 820.9 (47.7) 746.3 (65.1) 633.8 (59.3)

4 29.5 (0.7) 23.0 (0.5) 18.5 (0.5) 861.7 (76.7) 729.6 (52.8) 663.1 (46.3)

Table 5.1: Results obtained in office environment, with footprint sensor, and as contraint the

selection of centroid, looking at different cell sizes.

Now, we analyze the data in the table by showing trends of the quality

average of the solutions, according to different initial conditions and pa-

rameters. As expected, we can see that cost of the solutions diminishes by

increasing the sensor range r, keeping fixed the cell size and the goal per-

centage G to be discovered, because in one step the robot can perceive more

area of the environment. Figure 5.4 and Figure 5.5 show this trend.

54 Chapter 5. Experimental results

20 25 30
14

16

18

20

22

24

26

28

Sensor range

of

 s
te

ps

cell_size=1
cell_size=2
cell_size=4

Figure 5.4: Graph that shows the relation between the path cost and the sensor range, looking at

different cell size, with # of steps as metric and G = 0.85.

20 25 30
450

500

550

600

650

700

Sensor range

T
ra

ve
le

d
di

st
an

ce

cell_size=1
cell_size=2
cell_size=4

Figure 5.5: Graph that shows the relation between the path cost and the sensor range, looking at

different cell size, with traveled distance as metric and G = 0.85.

Analyzing how the cost of the solutions scale with the percentage of

the environment to be explored, we can see that by increasing the goal

percentageG the path cost increases. This result can be intuitively explained

by the fact that the robot needs to perform a numer of steps greater or

equal to the number of steps performed to map a smaller percentage G of

the environment.

5.2. Analyses and comparisons 55

0.85 0.9 0.95
14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

Goal percentage

of

 s
te

ps

cell_size=1
cell_size=2
cell_size=4

Figure 5.6: Graph that shows a column of the Table 5.1, with # of steps as metric and r = 30 m.

0.85 0.9 0.95
480

500

520

540

560

580

600

620

640

660

680

Goal percentage

T
ra

ve
le

d
di

st
an

ce

cell_size=1
cell_size=2
cell_size=4

Figure 5.7: Graph that shows a column of the Table 5.1, with traveled distance as metric and

r = 30 m.

Figure 5.6 and Figure 5.7 show that the number of steps and the traveled

distance grow linearly with the percentage of the environment to be explored.

This is very interesting, because there is not an explosion of the solution cost

if the goal percentage G to be explored is increased.

It is also interesting to analyze how the solution cost changes with respect

to cell size: it appears that there is no pattern, even though one may expect

that by decreasing the size of a cell (and so increasing the resolution of

a map) the cost of the solution grows, because the environment has more

details that the robot should take into account when exploring it. This is due

56 Chapter 5. Experimental results

to the fact that computed centroids could be different considering different

size of a cell and this could change the boundary cells that the robot can

choose and thus the path the robot follows.

Finally, we compare the results in Table 5.1 with results in [2]. In Ta-

ble 5.2, the average performances (over 10 trials) of the strategies tested

in [2] are reported, considering a goal percentage G = 95%. As said before,

we did not perform experiments with r = 10 and r = 15, because they

require too much computational time (more than 5 hours per trial).

OF STEPS DISTANCE

SENSOR RANGE 10 15 20 10 15 20

random 120.6 57.8 33.7 66626.7(2265.8) 3473.0(1158.2) 1990.4(349.3)

greedy 116.0 58.5 37.3 1915.0 (236.6) 2390.0 (874.5) 2359.0 (509.9)

GB-L 127.8 64.8 40.5 1655.4 (203.3) 1121.0 (122.0) 866.9 (74.6)

A-C-G 119.7 54.6 35.2 1673.2 (214.9) 1132.4 (147.3) 909.8 (110.0)

Table 5.2: Results obtained in office environment by different exploration strategies [2].

As we can observe, the framework for determining an optimal explo-

ration path in a specific environment finds (as expected) better solutions

compared to those found by real exploration strategies (with r = 20 m),

considering both number of perceptions and traveled distance as metrics to

measure the path cost, proving that our framework actually finds the opti-

mal exploration path. There is very much difference between the solutions,

if we consider the number of perceptions. This can be explained by the

fact that real exploration strategies usually optimize the traveled distance

instead of the number of perceptions. In the case of traveled distance, it is

interesting to note that GB-L strategy solution performance is quite close to

the performance of the optimal exploration path; instead other exploration

strategies performances are very far from the optimal exploration path cost.

5.3 Solution quality vs computational time

It is clear that problem of determining an optimal exploration path has an

exponential complexity. So, we analyze how to reduce the computational

time, but preserving an acceptable solution quality, i.e., not too different

from the optimal one.

As already said in Section 5.1, all experiments have been carried out with

the centroid constraint activated, since it required too much time to find a

solution without that constraint. This fact can be explained by the huge

amount of boundary cells that would create a bunch of nodes that should

be checked by the search algorithm. The search algorithm degenerates in a

5.3. Solution quality vs computational time 57

breadth-first algorithm, because every cell in the same cluster has barely the

same heuristic considering both cost functions. So, our reference as optimal

solution is the solution obtained with the selection of the centroid activated.

In the following, for the sake of simplicity, we present just a subset of

experiments, namely a set of 10 trials (i.e., 10 different initial poses) on

the same environment and same initial conditions and parameters, and we

show the trend in terms of quality of solutions and computational time for

determining an exploration solution. However, we performed several other

experiments with different initial conditions and parameters and noticed

that the behavior is quite the same, considering the analyzed parameters

and constraints.

5.3.1 Initial parameters

Initial poses

Deepening the results obtained in previous trials, it is interesting to note

that some initial poses require more computational effort to find a solution.

We also took into account the goal percentage G set to 1, namely all the free

space of the environment has to be explored, to verify whether it is possible

to map all the environment.

Considering each initial pose, in the case of number of steps as cost func-

tion, as expected, we can see a regular trend both of computational time

and cost of the solutions, that is by increasing the percentage G of the map

to be discovered even the computational time and the cost of the solution

grow (see Figure 5.8 and Figure 5.9). On x-axis there are initial poses de-

picted in Figure 5.1, on y-axis computational time to find a solution and

number of steps, and each bar represents the percentage of the environment

to be explored. If computational time is negative, it means that the search

algorithm has terminated, without finding any solution, because of the ex-

piration of the timer, which was set to 18000 seconds; all initial parameters

are reported in the caption of the figures.

58 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Initial Pose

T
im

e
(s

ec
on

ds
)

G=0.85
G=0.9
G=0.95
G=1

Figure 5.8: Graph bar that shows that some initial poses require more computational time

to find the optimal exploration path (if time is negative, it means that no solution has been

found within the interval time set). Initial parameters: cost function=# of steps, cell size=4,

laser sensor=false, sensor range=25, pick centroid=true, interval timer=18000.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Initial Pose

of

 s
te

ps

G=0.85
G=0.9
G=0.95
G=1

Figure 5.9: Graph bar that shows that number of steps at different goal percentage G. Ini-

tial parameters: cost function=# of steps, cell size=4, laser sensor=false, sensor range=20,

pick centroid=true.

5.3. Solution quality vs computational time 59

If we compare computational time in different initial poses, we note a

huge difference, for example for initial poses 1 and 9. The reason is that in

initial pose 1 the search algorithm basically performs a depth-first search,

at least at a certain depth level of the search tree, because the robot is

constrained to follow a certain path; whereas, in 9, the robot starts in the

middle of the environment and can go to the left-most hallway and then

to the right-most hallway or viceversa. This fact makes the search tree

to exponentially grow, because there are several branches that the search

algorithm ought to check.

Figure 5.10 and Figure 5.11 show the computational time and the solu-

tions quality, when traveled distance is considered.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

Initial Pose

T
im

e
(s

ec
on

ds
)

G=0.85
G=0.9
G=0.95
G=1

Figure 5.10: Graph bar that shows that some initial poses require more computational time to

find the optimal exploration path (if time is negative, it means that no solution has been found

within the interval time set). Initial parameters: cost function=traveled distance, cell size=4,

laser sensor=false, sensor range=25, pick centroid=true, interval timer=18000.

60 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Initial Pose

T
ra

ve
le

d
di

st
an

ce

G=0.85
G=0.9
G=0.95
G=1

Figure 5.11: Graph bar that shows that number of steps at different goal percentage G. Ini-

tial parameters: cost function=traveled distance, cell size=4, laser sensor=false, sensor range=20,

pick centroid=true.

In the case of traveled distance as cost function, we can observe in the

first three goal percentages, i.e., G = 0.85, G = 0.9 and G = 0.95, the com-

putational time trend is the same. However, in some trials it happens that

the computational time in case of G = 1 is less than the computational time

in case of G = 0.95 (e.g., initial pose 8). This happens because of the two

different heuristics h2 (used if G = 1), which is more precise, and h′2 (used

if G < 1), which is more conservative. However, the cost of solutions always

increases by augmenting the goal percentage G.

It is relevant to note that, in initial poses 9 and 10, the computational time

when number of steps is considered as path cost is less than the computa-

tional time when traveled distance is considered as path cost. The reason is

that, because of the closed list, in the former case, the search algorithm can

discard more nodes thanks to a less tight equivalence among states, whereas

in the latter, the search algorithm cannot. It also happens the converse,

even if it is less accentuated. For example in initial pose 8, there is a slight

difference between computational times when number of steps and traveled

distance are considered. The reason is that there is not very much difference

among nodes in frontier in terms of evaluation function f (i.e., the sum of

current path cost and the cost estimate to the goal), in case of number of

steps, whereas in traveled distance, there is: any selected boundary cell is

a good view-point over the unexplored area; instead, choosing diverse cells

5.3. Solution quality vs computational time 61

could be very different in terms of distance.

Figure 5.12 and Figure 5.13 illustrate the number of nodes handled by the

search algorithm in the same initial conditions and parameters of Figure 5.8

and Figure 5.10. The amount of nodes processed by the search algorithm is

a more objective metric to calculate the computational time, since the latter

depends on the hardware on which experiments were run. The trend is the

same as the computational time measured in seconds, though.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Initial Pose

of

 n
od

es

Expanded nodes
Duplicated nodes not expanded
Nodes in frontier

Figure 5.12: Graph bar that shows amount of expanded nodes, discarded duplicated nodes not

expanded because equivalent to nodes in closed list and nodes in frontier at the end of the search

algorithm, for each initial pose, where each set of 4 bars represent different ascending goal per-

centage G, i.e., G = 0.85, G = 0.9, G = 0.95 and G = 1. Initial parameters: cost function=# of

steps, cell size=4, laser sensor=false, sensor range=25, pick centroid=true.

62 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14
x 10

4

Initial Pose

of

 n
od

es

Expanded nodes
Duplicated nodes not expanded
Nodes in frontier

Figure 5.13: Graph bar that shows amount of expanded nodes, discarded duplicated nodes not

expanded because equivalent to nodes in closed list and nodes in frontier at the end of the search

algorithm, for each initial pose, where each set of 4 bars represent different ascending goal percent-

age G, i.e., G = 0.85, G = 0.9, G = 0.95 and G = 1. Initial parameters: cost function=traveled

distance, cell size=4, laser sensor=false, sensor range=25, pick centroid=true.

Cell size

By augmenting the resolution of the map, that is by reducing the size of a

cell, we have observed that the computational time increases exponentially.

This can be explained as the framework has more information to process

and more boundary cells to check. Figure 5.14 shows how much time the

search algorithm spends for determining the optimal exploration solution,

considering different cell sizes. As we can see, computational time in initial

poses 5, 6, 8 and 9 is really abated by augmenting the size of a cell.

5.3. Solution quality vs computational time 63

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

Initial Pose

T
im

e
(s

ec
on

ds
)

cell_size=1
cell_size=2
cell_size=4

Figure 5.14: Graph bar that shows computational time according to different cell sizes (if time is

negative, it means that no solution has been found within the interval time set). Initial parameters:

cost function=# of steps, G = 0.85, laser sensor=false, sensor range=25, pick centroid=true,

interval timer=18000 sec.

However, as already assessed before, the quality of the solutions does

not change much (see Figure 5.15), because of the discretization of the en-

vironment and the computation of centroids, that generate slightly different

paths.

64 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Initial Pose

of

 s
te

ps

cell_size=1
cell_size=2
cell_size=4

Figure 5.15: Graph bar that shows quality of the solutions according to different cell sizes.

Initial parameters: cost function=# of steps, G = 0.85, laser sensor=false, sensor range=25,

pick centroid=true, interval timer=18000 sec.

Figure 5.16 and Figure 5.17 show the computational time and the quality

of the solutions, when traveled distance is considered, and the same behavior

can be observed.

5.3. Solution quality vs computational time 65

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Initial Pose

T
im

e
(s

ec
on

ds
)

cell_size=1
cell_size=2
cell_size=4

Figure 5.16: Graph bar that shows computational time according to different cell sizes (if time

is negative, it means that no solution has been found within the interval time set). Initial

parameters: cost function=traveled distance, G = 0.85, laser sensor=false, sensor range=25,

pick centroid=true, interval timer=18000 sec.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

Initial Pose

T
ra

ve
le

d
di

st
an

ce

cell_size=1
cell_size=2
cell_size=4

Figure 5.17: Graph bar that shows quality of the solutions according to different cell sizes. Ini-

tial parameters: cost function=traveled distance, G = 0.85, laser sensor=false, sensor range=25,

pick centroid=true, interval timer=18000 sec.

66 Chapter 5. Experimental results

5.3.2 Constraints

About constraints, it is intuitive that solution quality remains the same or

worsens if constraints are activated, because, by applying them, we take a

subset of original boundary set, and so computational time ought to de-

crease. This is a trade-off between solution quality and computational time.

Here, we discuss about how solution quality and computational time change,

on the basis of constraints defined in this framework.

Cluster size

First of all, we discuss about how performances change if we limit the selec-

tion of boundary cells, by applying the constraint on the minimum size of a

cluster. Figure 5.18 shows time spent to compute the exploration solution

and Figure 5.19 illustrates the related cost of the exploration path, as num-

ber of steps, at different initial poses, in the case the constraint is activated

or not.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

Initial Pose

T
im

e
(s

ec
on

ds
)

min_cluster_size=0
min_cluster_size=30

Figure 5.18: Graph bar that shows how computational time changes when minimum cluster of

size constraint is activated. Initial parameters: cost function=# of steps, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true.

5.3. Solution quality vs computational time 67

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Initial Pose

of

 s
te

ps

min_cluster_size=0
min_cluster_size=30

Figure 5.19: Graph bar that shows how quality of solutions changes when minimum cluster of

size constraint is activated. Initial parameters: cost function=# of steps, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true.

As we can see, the number of steps remains the same or worsens a little

bit, compared to our optimal solution reference, but the computational time

drastically decreases. This is due to the fact that some small areas are not

considered anymore, leading to a cut of the branch factor of the search tree.

Figure 5.18 and Figure 5.19 show how the constraint on the size of clus-

ters influences time spent to compute the exploration solution and the re-

lated cost of the exploration path, considering traveled distance.

68 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

Initial Pose

T
im

e
(s

ec
on

ds
)

min_cluster_size=0
min_cluster_size=30

Figure 5.20: Graph bar that shows how computational time changes when minimum cluster of size

constraint is activated. Initial parameters: cost function=traveled distance, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

Initial Pose

T
ra

ve
le

d
di

st
an

ce

min_cluster_size=0
min_cluster_size=30

Figure 5.21: Graph bar that shows how quality of solutions changes when minimum cluster of size

constraint is activated. Initial parameters: cost function=traveled distance, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true.

Also in this case, we can observe that the time drastically decreases and

5.3. Solution quality vs computational time 69

the solution remains almost the same. The fact that the solution is barely

equal to the optimal solution reference is due to the nature of this constraint,

namely with high probability, the constraint discards boundary cells from

where the robot can perceive less, because those cells are near to a small

edge of the unexplored area. The issue is how to tune this parameter, which

is heavily subject to the environment and the sensor range of the robot. If it

is set too high, then there are high chances that the search algorithm cannot

find any solution, whereas if it is set too low, the gain from this constraint

is lessened.

Safeness

Now, we analyze how performance and computational time change, if con-

straints on selection of single boundary cells are applied.

About safeness, i.e., selected boundary cells ought to have a distance l from

obstacles, we have the same trend as the constraint on the size of clusters,

as Figure 5.22, Figure 5.23, Figure 5.24, and Figure 5.25 show.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

Initial Pose

T
im

e
(s

ec
on

ds
)

pick_safe_cells=0
pick_safe_cells=1

Figure 5.22: Graph bar that shows how computational time changes when safeness constraint is

activated. Initial parameters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false,

sensor range=20, pick centroid=true, l = 16.

70 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Initial Pose

of

 s
te

ps

pick_safe_cells=0
pick_safe_cells=1

Figure 5.23: Graph bar that shows how quality of solutions changes when safeness constraint is

activated. Initial parameters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false,

sensor range=20, pick centroid=true.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Initial Pose

T
im

e
(s

ec
on

ds
)

pick_safe_cells=0
pick_safe_cells=1

Figure 5.24: Graph bar that shows how computational time changes when safeness con-

straint is activated. Initial parameters: cost function=traveled distance, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true, l = 16.

5.3. Solution quality vs computational time 71

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

Initial Pose

T
ra

ve
le

d
di

st
an

ce

pick_safe_cells=0
pick_safe_cells=1

Figure 5.25: Graph bar that shows how quality of solutions changes when safeness con-

straint is activated. Initial parameters: cost function=traveled distance, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true.

The solution is more or less equal to the optimal solution reference,

because of the selection of the centroid activated, which usually calculates

a middle point in a cluster that is adjacent to an unexplored area. So,

boundary cells are most likely distant from obstacles.

Nearness

About nearness, i.e., select boundary cells not too far from the current robot

pose, Figure 5.26 and Figure 5.27 show computational time for determin-

ing the solution and number of steps of the solution path, when nearness

constraint is activated.

72 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

Initial Pose

T
im

e
(s

ec
on

ds
)

pick_near_cells=0
pick_near_cells=1

Figure 5.26: Graph bar that shows how computational time changes when nearness constraint is

activated. Initial parameters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false,

sensor range=20, pick centroid=true, m = 16.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Initial Pose

of

 s
te

ps

pick_near_cells=0
pick_near_cells=1

Figure 5.27: Graph bar that shows how quality of solutions changes when nearness constraint is

activated. Initial parameters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false,

sensor range=20, pick centroid=true, m = 16.

We can see that computational time remarkably diminishes. However,

5.3. Solution quality vs computational time 73

with this constraint the solution worsens a little bit more compared to other

constraints analyzed above. This is due to the fact that, considering number

of steps and this specific environment, it is sometimes better to go further

and then to go back to cover some small unexplored area. Instead, this

constraint forces the robot to go to boundary cells close to its pose, fostering,

perhaps, some small unexplored areas. But, this could be not necessary,

because the goal G is set to 85%.

Figure 5.28 and Figure 5.29 show computational time for finding the

solution and the traveled distance of the solution path.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

Initial Pose

T
im

e
(s

ec
on

ds
)

pick_near_cells=0
pick_near_cells=1

Figure 5.28: Graph bar that shows how computational time changes when nearness con-

straint is activated. Initial parameters: cost function=traveled distance, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true, m = 16.

74 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

Initial Pose

T
ra

ve
le

d
di

st
an

ce

pick_near_cells=0
pick_near_cells=1

Figure 5.29: Graph bar that shows how quality of solutions changes when nearness con-

straint is activated. Initial parameters: cost function=traveled distance, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true, m = 16.

In this case, we can see that in position 9 the time for finding a solution

increases if the constraint is activated. The reason is that the search algo-

rithm, since some paths are pruned by the constraint, has to explore other

paths, where there are several branches with similar heuristic values, and

so the search algorithm must expand more nodes. As expected, the quality

of the solution either remains the same or worsens. We can observe that

the difference of the solutions in the case of path cost as number of steps is

less accentuated with respect to the case of path cost as distance traveled,

because, in the former case, a change in the path does not influence very

much the cost, since only number of steps is important, but not the actual

path followed, whereas, in the latter, a change in the path really affects the

cost of the solution.

5.3.3 Further experiments

Additionally, we performed some further experiments, to test some other

initial conditions and parameters and further verify the behavior of the

proposed framework.

5.3. Solution quality vs computational time 75

Search algorithms

We compared the two search algorithms implemented, namely A* and branch

and bound search algorithms. Unfortunately, we do not have results of

branch and bound algorithm applied to the case of cost function as number

of steps, since it required too much memory and time. This is due to the fact

that the first initial solution found by branch and bound algorithm and the

heuristic h1 is not good enough to cut the branches of the tree. So, branch

and bound search algorithm degenerates to a breadth-first search algorithm.

Instead, for the case of cost function as traveled distance, we can see that it

performs very well (see Figure 5.30).

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

Initial Pose

T
im

e
(s

ec
on

ds
)

algorithm=A*
algorithm=B&B

Figure 5.30: Graph bar that shows computational time spent by A* and branch and bound

search algorithm. Initial parameters: cost function=traveled distance, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true, l = 16.

In most cases, branch and bound algorithm performs slightly worse than

A* algorithm, but there is not very much difference. Nevertheless, there

are 2 cases where branch and bound performs really better than A* (i.e., in

initial poses 8 and 9). This is due to the fact that branch and bound man-

ages to find a solution close to the actual optimal solution at the beginning

and, thus, it can prune the search tree, whereas A* has to check more paths

because of heuristic h2, which is conservative.

Figure 5.31 shows that in all trials branch and bound algorithm processes

more nodes than A* algorithm. Still, it could happen that the computa-

tional time required by branch and bound to find a solution might be lower,

76 Chapter 5. Experimental results

because the complexity of different operations on node, that is expanding

nodes, checking if a node is duplicated or ordering nodes in the frontier, is

different. As predictable, Figure 5.32 illustrates that solutions found by the

two algorithms cost the same in terms of traveled distance.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
x 10

6

Initial Pose

of

 n
od

es

Expanded nodes
Duplicated nodes not expanded
Nodes in frontier

Figure 5.31: Graph bar that shows number of nodes processed by A* and branch and bound

search algorithm. Initial parameters: cost function=traveled distance, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true, l = 16.

5.3. Solution quality vs computational time 77

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

Initial Pose

T
ra

ve
le

d
di

st
an

ce

algorithm=A*
algorithm=B&B

Figure 5.32: Graph bar that compares solutions between A* and branch and bound. Initial param-

eters: cost function=traveled distance, cell size=4, G = 0.85, laser sensor=false, sensor range=20,

pick centroid=true.

Perception models

About the perception model, we performed some experiments with realistic

laser sensor model and compared them with results obtained by using foot-

print sensor model. Figure 5.33 displays that computational time is very

large, in the case of laser sensor and number of steps as cost function, in

initial pose 3, compared to the case of footprint sensor. As a matter of fact,

the search algorithm usually takes more time to find a solution in the case

of laser sensor as perception model, because it has to process more nodes

due to small unexplored areasderiving from shadows cones of obstacles, that

generates several boundary cells. Also the steps to achieve a perception

action is more complicated. The converse happens in initial poses 8 and 9,

where computational time in the case of laser sensor is slightly lower than

the other case. The reason is that, in these initial poses, in the case of

footprint sensor, nodes are more or less equivalent in terms of f , while in

the other case, there are several nodes with a very high f , because these

nodes refer to states where the robot cannot perceive very much about the

environment (small unexplored areas, near the wall). On the basis of the

quality in terms of heuristics of these nodes generated by those boundary

cells, the search algorithm can be faster or slower.

78 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Initial Pose

T
im

e
(s

ec
on

ds
)

footprint sensor
laser sensor

Figure 5.33: Graph bar that shows how computational time changes if footprint or laser sensor

is used. Initial parameters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false,

sensor range=20, pick centroid=true, l = 16.

Furthermore, we can see in Figure 5.34 that also the trend of the solution

over different initial poses has not a pre-defined pattern.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Initial Pose

of

 s
te

ps

footprint sensor
laser sensor

Figure 5.34: Graph bar that compares solutions found used footprint sensor and laser sensor.

Initial parameters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false, sen-

sor range=20, pick centroid=true.

5.3. Solution quality vs computational time 79

This non-regular trend is determined by the computation of the centroid

and the number of boundary cells generated. In fact, if laser sensor is

employed, there could be more boundary cells, because laser sensor can

leave some holes in the perceived area, due to its realism, while footprint

sensor does not. So the search algorithm has a superset of the boundary to

consider.

Instead, in the case of distance as cost function, we can observe that, when

laser sensor is the perception model, computational time is always greater

than computational time in the case of footprint sensor model (see Figure

5.35).

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

Initial Pose

T
im

e
(s

ec
on

ds
)

footprint sensor
laser sensor

Figure 5.35: Graph bar that shows how computational time changes if footprint or laser

sensor is used. Initial parameters: cost function=traveled distance, cell size=4, G = 0.85,

laser sensor=false, sensor range=20, pick centroid=true, l = 16.

The reason is that perception with laser sensor generates several bound-

ary cells that are very close, but not adjacent, to each other. So, when

traveled distance is considered, the search algorithm has to check several

nodes, even if there is not any gain in terms of perceived area, because the

function f that evaluates a node just considers the traveled distance. In

the former case, it is very relevant whether the robot has perceived more,

because of its definition of heuristic.

The quality of solutions has not a regular trend (see Figure 5.36), though,

because of the same reasonings made when number of steps was considered.

80 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

Initial Pose

T
ra

ve
le

d
di

st
an

ce

footprint sensor
laser sensor

Figure 5.36: Graph bar that compares solutions found used footprint sensor and laser sensor.

Initial parameters: cost function=traveled distance, cell size=4, G = 0.85, laser sensor=false,

sensor range=20, pick centroid=true.

5.4 Other experiments

Here, we show some preliminary results obtained by performing experiments

on the other two environments, namely the openspace and the obstacles

environments.

If the cost of the solution is 0, then it means that the search algorithm

did not have any successor node to expand, and so the search algorithm

terminated, because the frontier was empty.

5.4.1 Openspace environment

In case of openspace environment, the experiments were carried out with the

constraint on the clusters size activated, beside the selection of centroids,

because, otherwise, the search algorithm could not find any solution with

the interval time. This environment is more complex compared to the in-

door environment, because there is more area to explore and there is no hint

provided by obstacles for the selection of centroids as in the case of indoor

environment. However, intuitively, the constraint on cluster size does not

affect optimality in such an environment, because the faster way to explore

the environment is to go to the largest unexplored area.

5.4. Other experiments 81

Figure 5.37 and Figure 5.38 show computational time and quality of solu-

tions, when number of steps is considered as cost function.

1 2 3 4 5 6 7 8 9 10
−100

0

100

200

300

400

500

600

700

800

Initial Pose

T
im

e
(s

ec
on

ds
)

Figure 5.37: Graph bar that shows how computational time in openspace environment (if time

is negative, it means that no solution has been found within the interval time set). Initial pa-

rameters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false, sensor range=30,

pick centroid=true, min cluster size=100.

82 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

Initial Pose

of

 s
te

ps

Figure 5.38: Graph bar that shows the quality of solutions in openspace environment (if

value is negative, it means that no solution has been found within the interval time set; if

it is 0, then no solution has been found because all nodes are not the goal). Initial param-

eters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false, sensor range=30,

pick centroid=true, min cluster size=100.

As we can see, the search algorithm was able to find a solution in initial

poses where there are some obstacles that could guide the robot (i.e., 1, 2, 3,

4, 9, 10), while it was terminated when the initial poses were in the middle

of the environment (i.e., 3, 6, 7, 8). The solutions are quite close to each

other, with the average of solutions found of 43.4 and standard deviation of

2.51.

Figure 5.39 and Figure 5.40 show computational time and quality of

solutions, when traveled distance is considered as cost function.

5.4. Other experiments 83

1 2 3 4 5 6 7 8 9 10
−500

0

500

1000

1500

2000

2500

3000

3500

4000

Initial Pose

T
im

e
(s

ec
on

ds
)

Figure 5.39: Graph bar that shows how computational time in openspace environment (if time is

negative, it means that no solution has been found within the interval time set). Initial parame-

ters: cost function=traveled distance, cell size=4, G = 0.85, laser sensor=false, sensor range=30,

pick centroid=true, min cluster size=100.

1 2 3 4 5 6 7 8 9 10
−500

0

500

1000

1500

2000

2500

Initial Pose

T
ra

ve
le

d
di

st
an

ce

Figure 5.40: Graph bar that shows the quality of solutions in openspace environment (if value

is negative, it means that no solution has been found within the interval time set; if it is

0, then no solution has been found because all nodes are not the goal). Initial parameters:

cost function=traveled distance, cell size=4, G = 0.85, laser sensor=false, sensor range=30,

pick centroid=true, min cluster size=100.

84 Chapter 5. Experimental results

In this case, just in initial poses 7 and 8 the search algorithm was not

able to find any solution. So, the search algorithm was able to determine

optimal exploration paths in more trials with respect to the former case.

Moreover, the search algorithm in initial pose 10 was not able to find a

solution because there was not any successor nodes left in the frontier. The

constraint on the cluster size discarded all possible successors. This is due

to the fact that in the former case boundary cells in a given state do not

differ very much from each other in terms of function f , while in the latter

does. Also here, the cost of the solutions is close to each other, with an

average of solutions found 2063.9 and a standard deviation of 43.4.

In Table 5.3, the average performances (over 10 trials) of exploration

strategies in openspace environment are reported. Although these results are

not comparable with the results obtained by our framework, we can assert

that the solutions found are reasonable in terms of cost. As a matter of fact,

there is very much difference between the average costs of our solutions and

the average costs of solutions of real exploration strategies.

OF STEPS DISTANCE

SENSOR RANGE 15 20 15 20

G = 85%

random 164.0 95.4 9241.0 (1824.9) 6503.0 (1733.2)

greedy 163.5 91.7 3884.9 (576.0) 2900.8 (357.0)

GB-L 185.3 110.1 4150.4 (436.9) 3061.9 (427.5)

A-C-G 164.9 96.3 3410.3 (324.9) 2441.9 (180.3)

G = 90%

random 173.9 101.1 10700.1 (2299.4) 6672.5 (834.2)

greedy 177.9 103.9 4315.9 (599.1) 3404.2 (522.6)

GB-L 197.3 115.7 4332.0 (417.2) 3119.4 (208.5)

A-C-G 182.5 104.5 3840.7 (344.2) 2164.7 (282.2)

G = 95%

random 191.3 107.8 11749.7 (1462.7) 7255.3 (1052.7)

greedy 194.7 111.9 4841.8 (559.4) 3737.3 (418.4)

GB-L 208.8 122.7 4767.8 (474.2) 3490.9 (327.6)

A-C-G 197.3 111.2 4312.5 (284.4) 3044.1 (341.1)

Table 5.3: Results obtained in openspace environment by different exploration strategies [2].

5.4.2 Obstacles environment

The obstacles environment is more and more complex compared to the other

two environments. The reason is that there are several obstacles that deter-

mine several boundary cells and thus several paths, even if the selection of

centroids is activated. So, the search tree has plenty of branches, that the

search algorithm ought to take into account. As a matter of fact, we had

to impose other constraints, namely the constraint on the cluster size, and

nearness, in order to have solutions in a reasonable time.

Figure 5.41 and Figure 5.42 show computational time and quality of

solutions when number of steps is considered. Also here, we have some

5.4. Other experiments 85

initial poses where the search algorithm spent more effort to find a solution.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Initial Pose

T
im

e
(s

ec
on

ds
)

Figure 5.41: Graph bar that shows how computational time in obstacles environment (if time

is negative, it means that no solution has been found within the interval time set). Initial pa-

rameters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false, sensor range=30,

pick centroid=true, min cluster size=16, pick near cells=1, m=60.

86 Chapter 5. Experimental results

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Initial Pose

of

 s
te

ps

Figure 5.42: Graph bar that shows the quality of solutions in obstacles environment (if value

is negative, it means that no solution has been found within the interval time set; if it is

0, then no solution has been found because all nodes were not the goal). Initial param-

eters: cost function=# of steps, cell size=4, G = 0.85, laser sensor=false, sensor range=30,

pick centroid=true, min cluster size=16, pick near cells=1, m=60.

The cost of the solutions is more or less the same in all poses, as expected.

The average of solutions, when number of steps is considered, is 12.3 steps

with a standard deviation of 0.5.

Figure 5.43 and Figure 5.44 show computational time and quality of the

solutions when traveled distance is considered. In this case, we can observe

the same behavior as before.

5.4. Other experiments 87

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Initial Pose

T
im

e
(s

ec
on

ds
)

Figure 5.43: Graph bar that shows how computational time in obstacles environment (if time is

negative, it means that no solution has been found within the interval time set). Initial parame-

ters: cost function=traveled distance, cell size=2, G = 0.85, laser sensor=false, sensor range=30,

pick centroid=true, min cluster size=16, pick near cells=1, m=60.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

Initial Pose

T
ra

ve
le

d
di

st
an

ce

Figure 5.44: Graph bar that shows the quality of solutions in obstacles environment (if value

is negative, it means that no solution has been found within the interval time set; if it is

0, then no solution has been found because all nodes were not the goal). Initial parame-

ters: cost function=traveled distance, cell size=2, G = 0.85, laser sensor=false, sensor range=30,

pick centroid=true, min cluster size=16, pick near cells=1, m=60.

88 Chapter 5. Experimental results

The average of solutions, when traveled distance is considered, is 451.1

m with a standard deviation of 9.5 m.

In Table 5.4, the average performances (over 10 trials) of exploration

strategies in obstacles environment are reported. These results cannot be

compared with the results obtained by our framework, but we can see that,

as expected, the average costs of our framework is less than the average

performances of real exploration strategies, since we used a sensor range

greater than the ones used in [2].

OF STEPS DISTANCE

SENSOR RANGE 15 20 15 20

G = 85%

random 50.2 27.6 2671.9 (1222.0) 1403.9 (674.9)

greedy 44.6 27.2 816.7 (175.4) 820.4 (450.4)

GB-L 46.9 26.4 688.6 (86.1) 509.2 (64.6)

A-C-G 45.9 27.0 708.1 (81.1) 568.7 (111.0)

G = 90%

random 53.1 29.8 2854.6 (831.7) 1688.1 (603.1)

greedy 49.2 29.3 941.9 (279.0) 934.9 (513.6)

GB-L 49.4 28.5 730.3 (84.7) 549.4 (85.6)

A-C-G 47.5 28.6 737.7 (102.4) 615.9 (149.0)

G = 95%

random 56.5 31.0 2880.0 (930.5) 1735.6 (791.6)

greedy 52.8 30.8 1027.4 (408.4) 985.2 (495.5)

GB-L 52.3 29.7 767.4 (83.0) 576.6 (72.2)

A-C-G 51.0 30.9 777.7 (81.7) 692.3 (194.5)

Table 5.4: Results obtained in obstacle environment by different exploration strategies [2].

Chapter 6

Conclusions

Exploration strategies are a fundamental component for autonomous mobile

robots whose task is to build map of an initially unknown environment.

A gap in the current research is that there is no standard evaluation

method for comparing exploration strategies. They are usually relatively

compared with each other but never with an absolute optimal baseline.

In this thesis, we presented the development of a framework that re-

turns the optimal exploration path for a specific environment. The problem

of determining an optimal exploration path has been faced with a novel ap-

proach, which formulates the exploration problem as a search problem and

assumes that the environment is initially known. In this way, we can apply

usual off-line search algorithms, like A* and branch and bound. The pro-

posed framework contributes to the definition of a standard methodology

for comparing exloration strategies in an absolute way.

Several issues emerged during this work. The most remarkable one is

that, since the search problem has exponential complexity, due to the num-

ber of nodes generated, it ought to be relaxed by changing initial conditions

and imposing constraints on boundary cells, so that the framework can be

applicable to real environments and return a solution in a reasonable time.

We pointed out where it is possible to intervene, in order to relax the prob-

lem and so to have less computational complexity, and we provided some

examples of constraints.

Experimental results validate the formulation we provided for the prob-

lem of determining the optimal solution for the exploration in a specific

environment. All expected trends about computational time and quality of

solutions are satisfied. Specifically, we observed that by applying different

constraints on boundary cells the quality (optimality) of the solution does

not vary much, but the computational time is abated.

89

90 Chapter 6. Conclusions

Several issues are worth for further investigation. First of all, we need a

deeper theoretically analysis of the problem. For example, we can observe

that several paths are duplicated. So it is necessary to understand what

relations there are among different states (i.e., inclusion, equality, etc.).

Secondly, we could define better heuristics, so that search algorithms do

not degenerate to breadth-first search.

In addition, more experiments need to be carried out, by testing other

environments, in order to assess stronger conclusions.

Moreover, this framework could be extended to the case of multirobot

setting, where multiple robots explore the map in a coordinated way. A

method could be to apply coordination approaches, where robots are seen

as cooperative agents.

The last but not the least issue concerns an optimization of the current

implementation of the framework. For example, the ordering algorithm

of the frontier can be improved by implementing a binary insertion sort

algorithm.

In a broader view, it would be interesting to investigate how this frame-

work, that determines the optimal exploration path in a specific environ-

ment, could be useful to improve real on-line exploration strategies, by ex-

ploiting hints deriving from optimal solutions found by the framework.

Bibliography

[1] Amigoni, F. Experimental evaluation of some exploration strategies

for mobile robots. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA2008), Pasadena, California, USA,

May 19-23 2008 (2008), IEEE, pp. 2818–2823.

[2] Amigoni, F., and Basilico, N. On evaluating performance of ex-

ploration strategies for an autonomous mobile robot. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS2008), September 22-26, 2008, Acropolis Convention Cen-

ter, Nice, France (2008), IEEE.

[3] Amigoni, F., and Basilico, N. Exploration strategies based on

multi-criteria decision making for search and rescue autonomous robots.

In Proceedings of the International Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, May 2-6 2011

(2011), IEEE, pp. 99–106.

[4] Amigoni, F., and Gallo, A. A multi-objective exploration strategy

for mobile robots. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA2005), Barcelona, Spain, April 18-

22 2005 (2005), IEEE, pp. 3850–3855.

[5] Deng, X., and Papadimitriou, C. H. Exploring an unknown graph.

In Proceedings of the 31st Annual Symposium on Foundations of Com-

puter Science (FOCS1990), St. Louis, Missouri, USA, October 22-24

1990 (1990), vol. I, IEEE, pp. 355–361.

[6] Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. Robotic

exploration as graph construction. IEEE Transactions on Robotics and

Automation 7, 6 (December 1991), 859–865.

[7] Franchi, A., Freda, L., Oriolo, G., and Vendittelli, M. A de-

centralized strategy for cooperative robot exploration. In Proceedings

91

92 BIBLIOGRAPHY

of the 1st International Conference on Robot Communication and Co-

ordination (ROBOCOMM2007), Athens, Greece, October 15-17 2007

(2007), A. F. T. Winfield and J. Redi, Eds., vol. 318 of ACM Interna-

tional Conference Proceeding Series, IEEE, pp. 7:1–7:8.

[8] Franchi, A., Freda, L., Oriolo, G., and Vendittelli, M. A

randomized strategy for cooperative robot exploration. In Proceed-

ings of the IEEE International Conference on Robotics and Automation

(ICRA2007), Roma, Italy, April 10-14 2007 (2007), IEEE, pp. 768–774.

[9] Gabriely, Y., and Rimon, E. Competitive on-line coverage of grid

environments by a mobile robot. Computational Geometry: Theory and

Applications 24, 3 (2003), 197–224.

[10] Georgiev, A., and Allen, P. K. Localization methods for a mobile

robot in urban environments. IEEE Transactions on Robotics 20, 5

(October 2004), 851–864.

[11] Gini, G., and Caglioti, V. Robotica. Zanichelli, 2003.

[12] González-Baños, H. H., and Latombe, J.-C. Navigation strategies

for exploring indoor environments. International Journal of Robotics

Research 21, 10-11 (October 2002), 829–848.

[13] Koenig, S. Exploring unknown environments with real-time search or

reinforcement learning. In Proceedings of the Conference on Advances in

Neural Information Processing Systems 11 (NIPS1998), Denver, Col-

orado, USA, November 30 - December 5, 1998 (1998), M. J. Kearns,

S. A. Solla, and D. A. Cohn, Eds., The MIT Press, pp. 1003–1009.

[14] LaValle, S. M. Planning algorithms. Cambridge University Press,

2006.

[15] Lee, D., and Recce, M. Quantitative evaluation of the exploration

strategies of a mobile robot. International Journal of Robotics Research

16, 4 (August 1997), 413–447.

[16] Leonard, J. J., and Feder, H. J. S. A computationally ef-

ficient method for large-scale concurrent mapping and localization.

In Proceedings of the Robotics Research: Ninth International Sympo-

sium (ISRR1999), Snowbird, Utah, USA, October 9-12 1999 (1999),

J. Hollerbach and D. Koditschek, Eds., vol. 6 of Springer Tracts in

Advanced Robotics, Springer-Verlag, pp. 169–176.

BIBLIOGRAPHY 93

[17] Nagatani, K., Okada, Y., Tokunaga, N., Kiribayashi, S.,

Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S., Akiyama,

H., Noda, I., Yoshida, T., and Koyanagi, E. Multirobot explo-

ration for search and rescue missions: A report on map building in

RoboCupRescue 2009. Journal Field Robotics 28, 3 (May-June 2011),

373–387.

[18] Peniak, M., Marocco, D., and Cangelosi, A. Autonomous robot

exploration of unknown terrain: a preliminary model of mars rover

robot. In Proceedings of the 10th ESA Workshop on Advanced Space

Technologies for Robotics and Automation (ASTRA2008), Noordwijk,

The Netherlands, November 11-13 2008 (2008).

[19] Rekleits, I. Exploration tutorial. In Proceedings of the Seventh Cana-

dian Conference on Computer and Robot Vision (CRV2010) SLAM

camp, Ottawa, Ontario, May 29 2010 (2010).

[20] Russell, S. J., and Norvig, P. Artificial Intelligence - A Modern

Approach (3. internat. ed.). Pearson Education, 2010.

[21] Se, S., Lowe, D. G., and Little, J. J. Mobile robot localization

and mapping with uncertainty using scale-invariant visual landmarks.

International Journal of Robotics Research 21, 8 (August 2002), 735–

760.

[22] Siegwart, R. Y., and Nourbakhsh, I. R. Introduction to au-

tonomous mobile robots. MIT Press, 2004.

[23] Sim, R., and Dudek, G. Effective exploration strategies for the con-

struction of visual maps. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS2003), Las Vegas,

California USA, October 27-31 2003 (2003), vol. 4, pp. 3224–3231 vol.3.

[24] Singh, S., Simmons, R. G., Smith, T., Stentz, A., Verma, V.,

Yahja, A., and Schwehr, K. Recent progress in local and global

traversability for planetary rovers. In Proceedings of the 2000 IEEE In-

ternational Conference on Robotics and Automation (ICRA2000), San

Francisco, California, USA, April 24-28 2000 (2000), IEEE, pp. 1194–

1200.

[25] Taylor, C. J., and Kriegman, D. J. Exploration strategies for mo-

bile robots. In Proceedings of the 1993 IEEE International Conference

on Robotics and Automation (ICRA1993), Atlanta, Georgia, USA, May

1993 (1993), IEEE, pp. 248–253.

[26] Thrun, S. Robotic mapping: A survey. In Exploring artificial intelli-

gence in the new millennium, G. Lakemeyer and B. Nebel, Eds. Mor-

gan Kaufmann Publishers Inc., San Francisco, California, USA, 2003,

pp. 197–224.

[27] Thrun, S., Burgard, W., and Fox, D. Probabilistic Robotics. The

MIT Press, 2005.

[28] Tovar, B., Muñoz-Gómez, L., Murrieta-Cid, R., Alencastre-

Miranda, M., Monroy, R., and Hutchinson, S. Planning explo-

ration strategies for simultaneous localization and mapping. Robotics

and Autonomous Systems 54, 4 (2006), 314–331.

[29] Tovey, C. A., and Koenig, S. Improved analysis of greedy mapping.

In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS2003), Las Vegas, California USA, October

27-31 2003 (2003), pp. 3251–3257.

[30] Yamauchi, B. A frontier-based approach for autonomous exploration.

In Proceedings of the 1997 IEEE International Symposium on Computa-

tional Intelligence in Robotics and Automation (CIRA1997), Monterey,

California, USA, July 1997 (1997), IEEE, pp. 146–151.

	Ringraziamenti
	Abstract
	Sommario
	Introduction
	State of the art
	Exploration strategies
	System performance evaluation
	State of the art in exploration problem

	Optimal exploration as a search problem
	Preliminary definitions: search problems
	Preliminary hypotheses
	Problem formulation in exploration case
	General formulation
	Parameters and constraints of the search problem

	Examples
	Formulation
	Heuristics

	Implementation
	Description of the framework
	Core code
	Relaxation of the problem
	Initial parameters
	Constraints

	Experimental results
	Tests methodology and experimental setting
	Analyses and comparisons
	Solution quality vs computational time
	Initial parameters
	Constraints
	Further experiments

	Other experiments
	Openspace environment
	Obstacles environment

	Conclusions
	Bibliography

