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Sommario

Analizzando le recenti minacce informatiche perpetrate via web si nota un

maggiore impiego di tecniche di attacchi che sfruttano le variabili (in par-

ticolare le stringhe) JavaScript come vettore del codice macchina malevolo.

Quando il browser della vittima interpreta il codice JavaScript della pagina

malevola, il codice macchina viene eseguito ed ha luogo l’attacco. In letter-

atura sono stati proposti diversi approcci per rilevare questo tipo di attacchi,

ma nessuno di questi si è rivelato abbastanza veloce da poter essere integrato

all’interno di un browser commerciale, a causa del tempo necessario a val-

utare i parametri usati per riconoscere il comportamento malevolo. Aspetto

cruciale dei metodi più efficaci sinora proposti è la corretta scelta delle fea-

ture per discriminare codice malevolo da codice non malevolo. Per questo

motivo, in questo lavoro ci siamo focalizzati sulla raccolta ed analisi delle

variabili allocate durante l’esecuzione del browser sulla macchina dell’utente

che visita la pagina web. Per raccogliere queste variabili abbiamo instrumen-

tato Firefox, il browser di Mozilla, e con queste variabili valutiamo alcuni

parametri cercando di scoprire quelli che possono aiutarci a distinguere il

comportamento di una pagina normale da quello di una pagina malevola,

a prescindere dal tipo di attacco che la pagina malevola lancia quando un

browser la visita.
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Abstract

In the last years web based threats that exploit memory vulnerabilities use

JavaScript variables (in particular strings) as vectors of malicious machine

code. When the victim’s browser interprets JavaScript code of the malicious

page, machine code is executed and the attack happens. In literature some

approaches have been proposed to detect heap spraying attacks, but none of

them is enough lightweight to be integrated inside a commercial browser due

to the time necessary to evaluate the features used to recognize malicious

behavior. A very important aspect of the more effective methods proposed

is the correct choice of the features to use to distinguish malicious code from

non malicious code. For this, in this thesis work we focus on collecting and

analyzing the variables that are generated at runtime by the browser when it

visits a web page. To collect the variables we instrumented Mozilla Firefox

and with this data we evaluated some features to understand if it is possible

to distinguish malicious web pages from good web pages, aside from the kind

of attacks they launch.
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Chapter 1

Introduction

Modern web pages are quite sophisticated and very often incorporate a large

amount of client-side code (JavaScript being the most popular language)

that provide rich functionalities (e.g., opening new windows, validating in-

put values of a web form, or changing images as the mouse cursor moves over

them). Unfortunately, JavaScript is abused by attackers to spread malicious

code and gain control of the victim machines. Client-side attacks usually

exploit vulnerabilities of the browser or of one of its plugins, and attempt

to download and execute shellcode, or steal sensitive information. Today’s

attacks have migrated from memory-based vulnerabilities (e.g., stack buffer

overflows) to heap spraying attacks, because while for memory-based attacks

exist compiler techniques to mitigate their effects (e.g., StackGuard [4]), for

heap spraying attacks many exist solutions, that will be explained later in

this thesis work, but none of them is lightweight enough to be integrated into

commercial browsers [5]. There are two approaches to determine the mali-

ciousness of a piece of code: dynamic analysis and static analysis. Dynamic

analysis is performed at runtime, during the execution of the scripts found

in web pages, whereas static analysis is performed without running the code

of the scripts. The main advantage of static analysis over dynamic analysis

is that, given enough memory and time, all possible execution paths can be

taken into account. However obfuscation and encryption techniques are easy

ways to prevent efficient static analysis [6]. On the other hand, with dynamic

1
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analysis, the problem is, as we said before, that it is not possible to deter-

mine if all execution paths have been examinated. Despite this, dynamic

analysis permits the examination of obfuscated code, a common technique

in modern web pages. For this reason, this work focuses on techniques of

dynamic analysis.

More precisely, this work aims at determining whether it is possible to

cast a decision on the maliciousness of a web page by analyzing the variables

(from hereinafter referred to as “JavaScript strings” or simply “JS strings”)

that are allocated dynamically by the JavaScript interpreter of the browser.

Specifically, we concentrate on the following features:

• Distribution of string length, to determine if strings containing mali-

cious code are longer than normal JS strings;

• Presence of obfuscation or code generating functions, to determine if

some specific functions have an higher presence inside malicious strings;

• Count of reserved words, to determine if a malicious string is recogniz-

able by counting the number of reserved JS words it contains;

• Ratio of the number of collected variables to the number of different

referrers.

It is important to collect a big number of strings so that we can conduct

robust experiments to (dis)confirm our intuition. To achieve our goal we have

modified Spidermonkey [1], the Mozilla Firefox browser’s JavaScript engine,

to save all the JS strings allocated by a web page at runtime. We choose

Firefox because it is open source and so we could put our hands on the source

code. In particular, we used the Spidermonkey modified as discussed in [7],

and we further change the code in order to collect the JS strings on an output

file. We proceed as follows:

1. run Firefox on an big number of URLs and collect a huge quantity of

JS strings;

2. save the collected strings on a DB;
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3. analize the strings with queries to evaluate useful features.

In summary, we obtained the following results:

• Malicious JS code tends to allocate more strings with length greater

than 20 with respect to normal sites;

• Words used inside obfuscating or code generating functions are found

in malicious strings with an higher percentage;

• Variables allocated by malicious JS code have a high occurrence of some

JS reserved words;

• Good JS code allocates more variable with respect to malicious JS code.

This work is organized as follows:

• In Chapter 2 there is an overview about JS attacks and security. Some

related work will be explained, with particular attention on the limits

they have and the features they use;

• Chapter 3 shows the implementation details, with code snippets, partial

input and output and technical issues;

• In Chapter 4 are shown and explained our experimental results;

• In Chapter 5 we draw the conclusions and we propose some possible

improvements of our work.



Chapter 2

State of the Art

In this chapter we present how JS strings can be abused as attack vectors and

we analyze some solutions proposed to mitigate the effects of those attacks.

2.1 JavaScript Malware

In this section we present the main vulnerabilities and techniques that can

be exploited to produce web attacks.

2.1.1 Buffer overflows

Buffer overflows are classic security vulnerabilities that have been around

since the beginning of programming, and are still occurring everywhere to-

day1. A buffer overflow is where memory has been overwritten on the stack,

that is the memory area where the original value is replaced by the values of

other variables such as arrays or strings. Typically this can occur by sending

a very large amount of data to the application and then injecting malicious

code at the end of this large data. JavaScript strings are a good vector for

malicious users to inject code into the application. When this code has been

placed on the stack, sometime later this information will be pulled off of the

stack and executed. In this way, a malicious user can exploit buffer overflows

to execute arbitrary code on the victim’s machine.

1http://www.testingsecurity.com/how-to-test/buffer-overflows

4
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Buffer Overflows Mitigation

A number of solutions have been developed to inhibit malicious stack buffer

overflow exploitation. One method consists in detecting that a stack buffer

overflow has occurred and thus prevent redirection of the instruction pointer

to malicious code.

Such method leverages stack canaries. Stack canaries [4] work by placing

a small integer, called canary, the value of which is randomly chosen at

program start, in memory just before the stack return pointer. Most buffer

overflows overwrite memory from lower to higher memory addresses, so in

order to overwrite the return pointer (and thus take control of the process)

the canary value must also be overwritten. This value is checked to make

sure it has not changed before a routine uses the return pointer on the stack.

If the canary value has changed, than the compiler raises a signal. Figure

2.1 shows where the canary is placed in the stack memory.

An approach to prevent malicious user to launch program is to enforce

Figure 2.1: The canary word is placed before the return address of the function
to prevent the overwrite of the return address value. If the buffer
grows and overwrites the canary word, the compiler raises a signal.

memory policy on stack memory region to disallow execution from the stack.

This means that in order to execute shellcode from the stack an attacker must

either find a way to disable the execution protection from memory, or find a

way to put his shellcode payload in a non-protected region of memory. This

method is becoming more popular now that hardware support for the no-



2.1. JavaScript Malware 6

execute flag is available in most desktop processors. To avoid this protection,

the attackers started to store shellcode in unprotected memory regions like

the heap.

2.1.2 Drive-by Download and Heap Spraying Attack

A drive-by download (from hereinafter referred to as “DbD”) is any down-

load of software that happens without the knowledge and consent of a user.

Such attacks usually follow this scenario. First, the attacker loads a sequence

of executable instruction (i.e., shellcode) into the address space of the web

browser. This is often done using JavaScript strings, because is very impor-

tant that the instructions are stored at sequential addresses in memory. The

second step exploits vulnerabilities in the browser or a plugin that allows

the attacker to divert the control flow of the application to the shellcode.

Injecting and exploiting code in the heap is more difficult for an attacker

than placing code on the stack because the addressers of heap objects are

less predictable than those of stack objects. Therefore, to make their exploits

more reliable, attackers resort to a technique called heap spraying.

Heap spraying creates multiple instances of the shellcode, combined with

NOP sledge. More precisely, a heap-spraying attack populates the heap with

a large number of objects containing the shellcode, assigning the exploit to

jump to an arbitrary address in the heap, and relying on luck that the jump

will land inside one of the objects containing the shellcode. NOP sledges

are used to increase the likelihood that the attack will succeed. An heap

spraying code snippet is shown in Listing 2.1, in which we can see how the

variables used to fill the heap memory are created:

Drive-by Download Mitigation

In the last few years several new approaches have been proposed to protect

users from DbD attacks. It is possible to split these approaches into two

groups: dynamic approaches and static approaches.

Dynamic approaches use honeypots (i.e., systems that imitate the activ-

ities of the real systems that host a varieties of services) to visit web pages.
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1 if (version < 8)

2 {

3 var addkk = unescape("%uA164%u0018 ....");

4 var mem_array = new Array();

5 var cc = 0x0c0c0c0c;

6 var addr = 0x400000;

7 var sc_len = addkk.length * 2;

8 var len = addr - (sc_len +0x38);

9 var yarsp = unescape("%u9090%u9090");

10 yarsp = fix_it(yarsp , len);

11 var count2 = (cc - 0x400000)/addr;

12 for (var count =0; count < count 2; count ++)

13 {

14 mem_array[count] = yarsp + addkk;

15 }

16 var overflow = unescape("%u0c0c%u0c0c");

17 while(overflow.length < 44952) overflow += overflow;

18 this.collabStore=Collab.collectEmailInfo ({subj:"", msg:

overflow });

19 }

Listing 2.1: Code snippet used for heap spraying.

In high-interaction honeypots the analysis use traditional browsers and de-

tect signs of a successful DbD attack (e.g., change in file system, registry or

running processes), whereas low-interaction analysis emulate browsers and

detect the manifestation of an attack (e.g., the invocation of a vulnerable

method in a plugin). These approaches usually yield good detection rates

with low false positive ([3] and [7]), but, on the other hand, this analysis can

be slow, because of the time required by the browser to retrieve and execute

all the contents of the web page.

Static approaches rely on the analysis of the static aspects of a web page

(e.g., textual context, features of its HTML and JS code). String signature

are used by traditional antivirus tools to identify malicious pages. Unfortu-

nately signature can be evaded using obfuscation (Listings 2.2).

Several approaches have focused on statically analyzing JS code to iden-

tify malicious web pages. The most common features extracted from scripts

are the presence of redirects, the presence of functions used for obfusca-
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1 #include "stdio.h"

2 #define e 3

3 #define g (e/e)

4 #define h ((g+e)/2)

5 #define f (e-g-h)

6 #define j (e*e-g)

7 #define k (j-h)

8 #define l(x) tab2[x]/h

9 #define m(n,a) ((n&(a))==(a))

10
11 long tab1 []={ 989L,5L,26L,0L ,88319L,123L,0L ,9367L };

12 int tab2 []={ 4,6,10,14,22,26,34,38,46,58,62,74,82,86 };

13
14 main(m1,s) char *s; {

15 int a,b,c,d,o[k],n=(int)s;

16 if(m1==1){ char b[2*j+f-g]; main(l(h+e)+h+e,b);

17 printf(b); }

18 else switch(m1 -=h){

19 case f:

20 a=(b=(c=(d=g)<<g)<<g)<<g;

21 return(m(n,a|c)|m(n,b)|m(n,a|d)|m(n,c|d));

22 case h:

23 for(a=f;a<j;++a)

24 if(tab1[a]&&!( tab1[a]%(( long)l(n))))return(a);

25 case g:

26 if(n<h)return(g);

27 if(n<j){n-=g;c=’D’;o[f]=h;o[g]=f;}

28 else{c=’\r’-’\b’;n-=j-g;o[f]=o[g]=g;}

29 if((b=n)>=e)

30 for(b=g<<g;b<n;++b)o[b]=o[b-h]+o[b-g]+c;

31 return(o[b-g]%n+k-h);

32 default:

33 if(m1 -=e) main(m1 -g+e+h,s+g); else *(s+g)=f;

34 for(*s=a=f;a<e;) *s=(*s<<e)|main(h+a++,(char

*)m1);

35 }

36 }

Listing 2.2: Example of obfuscated code.

tion/deobfuscation, calls to eval() function and the presence of shellcode-like

strings. In this work we focused on the analysis of the variables (strings)
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allocated by JS code, and not on JS code itself, because we are interested

to characterize malicious behavior of a web page aside from the kind of at-

tacks it launchs. In addition, we have evaluated the features on large scale

to make robust the evaluation of the features, trying to mitigate the effects

of the outliers. Static analysis is difficult because, in addition to code obfus-

cation and runtime code generation (that are very common in both benign

and malicious code), the attacker (who knows the list of features being used

by each approach) can evade [8].

2.2 Related Work

This section summarize the three most recent tools that have been developed

to mitigate DbD attacks, with attention on the features used and limitation

they have.

2.2.1 JSAND

JSAND [3] (JavaScript Anomaly-based aNalysis and Detection) is a tool

to detect DbD attacks by using machine learning and anomaly detection.

Anomaly detection is based on the hypothesis that malicious activity mani-

fests itself through anomalous system events. To select the features to use,

the authors have determined the steps that are often followed in carrying

out an attack: redirection and cloaking, deobfuscation, environment prepa-

ration, and exploitation. Some of the features used by JSAND are: number

and target of redirections, number of dynamic code executions (e.g., eval

and setTimeout), length of dynamically-evaluated code, number of likely

shellcode strings and number of instantiated components (e.g., plugins).

To evaluate these features JSAND creates some models to assign a prob-

ability score to each feature. A model can operate in training mode, to de-

termine the threshold to distinguish between normal and anomalous feature,

and in detection mode, where the established models are used to determine

an anomaly score for each observed feature value. The tools caused no false

positive (i.e., no good page was flagged as malicious) and 0.2% percent of
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false negative (i.e., undetected malicious pages).

To avoid detection an attacker could bypass the features used by the tool

[8], but in general, the tool is capable of detecting previously-unseen attacks.

Another evasion technique is to check differences between JSAND’s emulated

environment and a real browser’s environment, but it is possible to set up

JSAND’s environment so that it behaves very similar to a real browser.

2.2.2 Prophiler

Prophiler [2] is a fast filter for large-scale detection of malicious web pages.

It analyzes static features of HTML pages embedded JS code, and associated

URLs using a number of models that are derived using supervised, machine-

learning techniques. Pages that are likely malicious are further analyzed

with dynamic detection tools (e.g., [3]). Static analysis is fast, as the web

page being analyzed is not rendered and no scripts are executed. The tool

extracts features from: HTML and JS code, and the page’s URL. For the

features include: number of elements with small area, number of suspicious

objects, number of included URLs, number of long strings, shellcode presence

probability, number of suspicious URL patterns and presence of IP address

in URL.

Some of these features could be evaded by malicious scripts, for example by

generating DOM elements dynamically. This is however a limitation of any

static analysis approach.

2.2.3 Zozzle

Zozzle [5] is a mostly-static detector that examines JS code and decides

whether it contains heap spray exploits. It is mostly static because its analy-

sis is entirely static, plus a lightweight runtime component to “unroll” obfus-

cated or dynamically generated JS. Zozzle is integrated with the browser’s

JS engine, which collects and processes JS that is created at runtime. This

is useful to mitigate techniques used against static analysis, as explained in

Section 2.2.2. To make the prediction on the behavior of web pages, Zozzle

uses Bayesian classification of hierarchical features of the JS abstract syntax
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tree (AST), which is a tree representation of the abstract syntactic structure

of JS code. Specifically, a feature consists of two parts: the context in which

the feature appears (e.g., a loop, conditional, function) and the text (e.g.,

unescape, addbehavior) of the AST node. To keep only a limited number of

features, for performance reasons Zozzle only extracts features from expres-

sions (e.g., “var spray = 54884 - shellcode.length * 2”) and variable

declaration. In addition, as most of the variable declarations are not infor-

mative (e.g., they are correlated with neither benign nor malicious training

sets), features used for classification are chosen with a Chi Square statistic.

Automatic features selection typically yields many more features as well

as some features that are biased toward benign JS code, unlike hand-picked

features, which are all characteristic of malicious JS code. Some exam-

ples of hand-picked features are: try:unescape, function:addbehavior,

loop:spray; sample of automatically selected features are: loop:scode,

function:anonymous, loop:shellcode. The limitation of Zozzle is that,

as other classifier-based tools, can be evaded by exploiting the inner work-

ings of the tool and the list of features being used. Another problem is that

Zozzle produces false positives, although these are less then 1%, their cost is

considerably higher than cost of false negatives.

2.2.4 Mitigating Heap-Spraying Attacks

Egele et al. in [7] proposed a technique that relies on x86 emulation to

identify JS string buffers that contain shellcode. Their tool is integrated into

the browser and it performs the detection before control is transferred to

the shellcode. The basic idea is to check string variables allocated by the

browser while executing JS scripts and look for those that contain shellcode.

Shellcode detection is performed with libemu2, a small library that offers

basic x86 emulation: the key intuition is that, if the string contains shellcode,

libemu would be able to execute it. The tool produces no false positives for

a known-good dataset, although false positive may occur in four cases: when

the DbD attacks make no use of memory exploits; when exploits client-side

2http://libemu.carnivore.it/
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code other than JS;when malicious code is spread into several scripts that

reside in different files; when a threat was injected into the known-malicious

dataset.



Chapter 3

Features of JavaScript String

Variables

The goal of our work is to perform an evaluation of JS string features. The

difference with previous work is that (1) we use features that are generic with

respect to the attacks, and (2) we perform a large scale evaluation.

As mentioned in Section 2.1.2, attackers use client-side scripting code to

load the shellcode into memory and execute the exploit against vulnerable

component. In general, the shellcode is stored inside a JS variable (string).

We are interested in strings because it is important that the bytes constitut-

ing the shellcode are stored at successive addresses in memory. Otherwise,

these bytes would not be interpreted as valid x86 instruction. In JS, the

only way to guarantee that bytes are stored in adjacent cells is by using a

string variable [7]. Of course it is possible to split the shellcode into smaller

segments and than to concat these pieces, but at least the segments must be

stored into strings, and so they are collected equally to a normal JS string.

3.1 Features

We concentrate on the following features.

13
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3.1.1 Feature 1: Distribution of Strings Length

This feature is evaluated to check if good sites and malicious sites allocate

variables with different length. We first analyze the shape of the cumulative

distribution function of the length of the strings grouped by their origin (i.e.,

local, global, property or concatenated) and type (i.e., good or malicious),

and after that we compare the results to search for differences. We chose

to evaluate this feature because the machine code stored inside the strings

must be quite long to have the desired effect. So we expect that strings that

contains machine code are longer than normal string or they are splitted into

smaller strings. In the second case, we expect that malicious sites allocate a

bigger number of concatenated strings with an higher length.

For example, on a variable such as PROP (origin) http://www.avg.com/

homepage (referrer) http://www.avg.com/script/jquery.js (script name)

document.write(script=1); (string content) 2011/03/12 19:01:41 (date-

time of capture) the value of this feature is 25.

3.1.2 Feature 2: Presence of Obfuscation or Code Gen-

erating Functions

This feature is evaluated to verify the presence inside the allocated strings of

functions used to obfuscate or to dynamically generate malicious code (e.g.,

eval, document.write, unescape, concat). For this purpose we choose

some specific words and we count the number of occurrences of each word.

We used our intuition and past experience to choose the functions that are

most used for obfuscation and dynamic generation of code in order to reduce

the set of words to check.

For example, on a variable such as PROP (origin) http://www.avg.com/

homepage (referrer) http://www.avg.com/script/jquery.js (script name)

document.write(script=1); (string content) 2011/03/12 19:01:41 (date-

time of capture) the value of this feature is count(document.write)+=1.
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3.1.3 Feature 3: Count of Reserved Words

This feature is evaluated by counting the number of JS reserved words in-

side the allocated strings. During the collection of the strings we noticed

that many of them were composed only by JS code and so we count the

occurrences of specific JS word to verify if some words appears more in mali-

cious variables with respect to good variables. To reduce the set of reserved

words we chose the ones that have an higher probability to be correlated

with a malicious behavior instead of a normal behavior, such as words used

for obfuscation, dynamic code generation or buffer overflows.

For example, on a variable such as PROP (origin) http://www.avg.com/

homepage (referrer) http://www.avg.com/script/jquery.js (script name)

unescape("%u9090%u9090"); (string content) 2011/03/12 19:01:41 (date-

time of capture) the value of this feature is count(unescape)+=1.

3.1.4 Feature 4: Ratio of the number of collected vari-

ables to the number of different referrers

This feature is evaluated by calculating the ratio of the collected variables to

the number of different referrers (i.e., the URL of the page from which have

been originated the collected variables). The number of different referrers

is very significative because many sites present in our benign and malicious

sets are not active, so the analysis of those sites doesn’t produce anything.

So the number of different referrers can be used instead of the number of

active sites, even if this number is not completely equal to the number of

active sites because two different variables can have the same referrer, and

so we can verify if good JS code allocate more or less string with respect to

malicious JS code.

For example, on a variable such as PROP (origin) http://www.avg.com/

homepage (referrer) http://www.avg.com/script/jquery.js (script name)

unescape("%u9090%u9090"); (string content) 2011/03/12 19:01:41 (date-

time of capture) the value of this feature is count(distinctreferrers)+=1,

if http://www.avg.com/it-en/homepage was not counted before.
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3.2 Implementation Details

In this chapter we explain how our tool works, showing the partial input and

output of each part and commenting every code snippet.

3.2.1 Large Scale Collection

To evaluate useful features with a good accuracy we chose to collect a large

amount of JS strings. We also save the name of the script that generated

each strings, the referrer, the set to which the analyzed web page belongs

(i.e., good or malicious), the date of capture and the origin of the strings

(i.e., local, global, property or concatenation). These other fields are useful

because we can study the evolution of a web page by checking the strings

allocated in different period of time, or we can control if the similar variables

allocated by the JS code of a web page are created by very different scripts.

To decrease the influence of outliers in our analysis, we collected a large

number of strings. For this purpose, we have launched our modified browser

on several sites. We used Alexa1 most popular 10,000 sites to collect known-

good strings, whereas for malicious sites we used the blacklists from Malware

Domain List2 (about 3131 URLs), Malware Patrol3 (about 1556 URLs), Mal-

ware Domain Blocklist4 (about 8299 URLs) and Url Blacklist5 (about 21,888

URLs). We checked more than 35,000 malicious sites and we were able to

collect only 10,051,176 strings because sites were often closed right after they

were spotted.

3.2.2 Modified JavaScript Interpreter

To collect the strings we chose to modify Spidermonkey [1], Mozilla Firefox’s

JS engine, but our approach apply to other browsers. We selected Firefox

because it is open source and so we could modify its code. We modified

1http://www.alexa.com/
2http://www.malwaredomainlist.com/
3http://www.malware.com.br/
4http://www.malwaredomains.com/
5http://www.http://urlblacklist.com/
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jsinterp.cpp, which is a class of Spidermonkey [1]. We added our code in

the interpreter in four points where strings variables are created:

• strings declared as local inside a JS function;

• string declared as global by the JS code;

• strings that are properties of objects;

• strings that are the result of a concatenation of strings.

We distinguish the concatenated strings because they are useful for some

features. Listing 3.1 shows the code inserted in each point. Line 6-9 cre-

ate the variable date with the time of capture of the string in the format

Year:Month:Day Hour:Minutes:Seconds, useful for save the date in the

format SQL DATETIME. Line 12 saves into the variable str3 the first four

character of the filename of the script that generates the string, because it

is important to check if the filename starts with “http” (line 14). This is

done to filter out all the variables that aren’t allocated by the visited web

page (e.g., the variables created by browser such as the version of the plugins

installed), that are recognizable because they have filename that starts with

“chrome://”, so we compare the variable str3 with the string “http”(line

13) to collect only the strings that are allocated by the web page. Line 14

also filters out the strings with length 0, because they aren’t interesting for

our work. A proof that we only collect strings originated by the web page,

comes from lines 15-20. This code creates the variable jsstring that con-

tains the location of the referrer of the string. In fact the strings we collect

have referrer of type ”http://...” whereas for strings that have other source

the location is ”undefined”. Lines 23-25 replace from the collected string

the characters “\n”, “\r” and “\t” with “ ” because they create troubles

when we save the strings on the DB. Finally line 26 writes on the output file

(defined at line 4, in our case “fireout.txt”) the collected string, starting

with CONCAT (LOCAL, GLOBAL, PROP respectively), followed by the referrer, the

script’s filename, the actual string and the date of capture. An example of

output is shown in Figure 3.1:
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1 FILE * myfile;

2 unsigned int length1;

3 length1 = JS_GetStringLength(str);

4 myfile = fopen ("/home/manuel/fireout.txt","a");

5 if(myfile !=NULL){

6 char date [20];

7 time_t t = time (NULL);

8 strftime (date , sizeof (date), "%Y/%m/%d %H:%M:%S",

localtime (&t));

9 JSString *str3 , *str4;

10 str3=JS_NewStringCopyN(cx ,cx ->fp ->script ->filename ,4);

11 str4=JS_NewStringCopyN(cx ,"http" ,4);

12 if(length1 !=0 && JS_CompareStrings(str3 ,str4)==0){

13 jsval val;

14 JSObject *glob;

15 glob = JS_GetGlobalObject(cx);

16 JS_GetProperty(cx, glob , "location", &val);

17 JSString *jsstring;

18 jsstring = JS_ValueToString(cx, val);

19 char *mystr;

20 mystr=JS_EncodeString(cx,str);

21 for(j=0;j<length1;j++){

22 if(mystr[j]==’\n’ || mystr[j]==’\r’||

mystr[j]==’\t’) mystr[j]=’_’;

23 }

24 fprintf(myfile , "CONCAT\t%s\t%s\t%s\t%s\n",

JS_EncodeString(cx,jsstring),

25 cx->fp->script ->filename , mystr , date);

26 } fclose (myfile);}

Listing 3.1: C code inserted into jsinterp.cpp used to collect JS strings
allocated on client-side by the browser

3.2.3 JavaScript Strings Collection

To run the browser on each URL we used the script in Listing 3.2: we

open the input file (line 25) with the list of URLs to analyze, then with

the function fork() (line 29) we create a child process. This child process

opens our modified browser with the function execl() (line 31), giving as

inputs the directory of the executable of the browser (in our case /home/

mozilla-1.9.1/objdir-ff-release/dist/bin/firefox) and the variable
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Figure 3.1: For each string is collected the origin, referrer, script name, content
and datetime of capture.

line that contains the URL to analyze. The parent process waits for 12

seconds and then kills the child process with the command “killall -15

firefox-bin”. It is possible that the parent process kills the child process

when it is writing the string on the output file (e.g., the loading of the web

page analyzed starts a few seconds before the kill command). In this case

the string on the file could be chopped and it is important to remove this

string because it will crash the script in Listing 3.3, which stores the strings

into a DB. However, in our case this happened less than 10 times on more

than 53 millions of strings collected.
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1 void wait ( int seconds )

2 {

3 clock_t endwait;

4 endwait = clock () + seconds*CLOCKS_PER_SEC;

5 while (clock () < endwait) {}

6 }

7
8 int main(int argc , char**argv)

9 {

10 int i=0;

11 char * line = NULL;

12 size_t len = 0;

13 int seconds =12;

14 char cmd2[] = "killall -15 firefox -bin";

15 ssize_t read;

16 FILE * infile;

17 FILE * outfile;

18 infile = fopen (argv[1],"r");

19 if (infile !=NULL && outfile !=NULL)

20 {

21 while ((read = getline (&line , &len , infile)) != -1){

22 int pid = fork();

23 if (pid ==0){

24 execl("/home/mozilla -1.9.1/ firefox",

25 "/home/mozilla -1.9.1/ firefox",

26 line , NULL);

27 }

28 else{

29 wait(seconds);

30 system(cmd2);

31 wait (1);

32 }

33 }

34 fclose (infile);

35 printf("Done!\n");

36 }

37 return 0;

38
39 }

Listing 3.2: Code for collecting string
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3.2.4 Storage

We store collected strings on a DB if we want to analize them with interesting

queries. More precisely, we used the following table:

create table jsstrings (

id BIGINT NOT NULL AUTO_INCREMENT ,

place VARCHAR (10) NOT NULL ,

referrer LONGTEXT NOT NULL ,

script LONGTEXT NOT NULL ,

string LONGTEXT NOT NULL ,

date DATETIME NOT NULL ,

type VARCHAR (30) NOT NULL ,

PRIMARY KEY (id));

The field “place” is used to store the origin of the string (i.e., CONCAT,

LOCAL, GLOBAL or PROP), the field “type” is used to distinguish good

strings from malicious strings (it can assume three values: GOOD, MALI-

CIOUS, UNDEFINED), and the other fields are self-explanatory. Then we

have implemented the program in Listing 3.3 to save the strings on the DB.

This script uses as input a list as the example in Figure 3.1, and splits

every line on the input file by the character “\t”. Lines 10, 13-15 and 24

connect to the DB via JDBC. In line 33 we prepare the query to insert the

string into the DB and lines 35-40 set the parameters of the query. The

PreparedStatement class on line 34 is important to escape the characters

that cause troubles to MySQL, and to preserve the shellcode if we want to

analyze it afterwards.

3.2.5 Creation of baseline dataset with Google Safe

Browsing

The lists used to create the malicious sets do not guarantee that all the sites

were still active or malicious during the analysis of our tool. So, in order to

make a more accurate analysis we chose to create a subset of malicious sites
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1 String referrer ,script ,mystring ,date ,place ,type;

2 if(args [1]. equals("good")) type= args [1];

3 else if(args [1]. equals("malicious")) type= args [1];

4 else type= "undefined";

5 BufferedReader bufferedReader = null;

6 bufferedReader = new BufferedReader(new

FileReader(args [0]));

7 String line = null;

8 Connection c =

DriverManager.getConnection(CONNECTION ,p);

9 Pattern pat = Pattern.compile("\t");

10 while ((line = bufferedReader.readLine ()) != null) {

11 String [] items =pat.split(line);

12 place=items [0];

13 referrer=items [1];

14 script=items [2];

15 mystring=items [3];

16 date=items [4];

17 String qry = "INSERT INTO jsstrings 

(place ,referrer ,script ,string ,date ,type) 

VALUES (?,?,?,?,?,?);";

18 PreparedStatement pstmt=

c.prepareStatement(qry);

19 pstmt.setString (1, place);

20 pstmt.setString (2, referrer);

21 pstmt.setString (3, script);

22 pstmt.setString (4, mystring);

23 pstmt.setString (5, date);

24 pstmt.setString (6, type);

25 pstmt.executeUpdate ();

26 pstmt.close ();

27 }

28 c.close ();

Listing 3.3: Code for saving strings on MySQL database

that are flagged as malicious by Google Safe Browsing6(from now on referred

as GSB). To do this we created a Perl script that uses Google Safe Browsing

API to filter the input sets of malicious sites creating a malicious subset of

malicious sites.

6http://www.google.com/safebrowsing/diagnostic?site=google.com
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1 use Net:: Google :: SafeBrowsing2;

2
3 open(FILE , "< malwarelist.txt");

4 open (MYFILE , "> data.txt");

5
6 my $gsb = Net:: Google :: SafeBrowsing2 ->new(

7 key => "google apps key",

8 );

9
10 while ($riga = <FILE >)

11 {

12 $gsb ->update ();

13 my $match = $gsb ->lookup(url => ’http ://’.$riga);

14
15 if ($match eq MALWARE) {

16 print MYFILE $riga;

17 }

18 }

19
20 close (FILE);

21 close (MYFILE);

Listing 3.4: Code for filter the malicious set with GSB

The subset created by the program contains 4559 URLs, not a big number

but sufficient to evaluate the features and to compare the results with the

analysis of the other two sets. We chose to use both malicious set and GSB

set because we are not certain that all the dangerous sites of the malicious

set are flagged as malicious by GSB, but the sites that are present both on

malicious set and GSB set have a very high probability to be malicious.



Chapter 4

Experimental Results

In this chapter we show the results of the evaluation of four features, with

graphs and tables.

4.1 Feature 1: Distribution of Strings Length

Figure 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 show the results obtained.

24
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Figure 4.1: Cumulative distribution functions of the length of the local and
global string allocated by good sites. Most of the strings have a
length lesser than 20 and the number of strings decrease with the
growth of the length.
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Figure 4.2: Cumulative distribution functions of the length of the property and
concatenated string allocated by good sites. Most of the strings have
a length lesser than 20 and the number of strings decrease up to 2000.
After 2000 the number of string grows.

These are some consideration on the results:

• the majority of the strings in every histogram has a length that belong
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Figure 4.3: Cumulative distribution functions of the length of the local and
global string allocated by malicious sites. Most of the local strings
are concentrated in the interval 0-100, with few strings with a length
greater than 100. Global strings histogram has a shape similar to the
global histogram of good strings, with the exception of the interval
200-500 that shows a local maximum.
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Figure 4.4: Cumulative distribution functions of the length of the property and
concatenated string allocated by malicious sites. Most of the strings
have a length lesser than 20. The histogram of the property strings
shows that the number of string is regular for length greater than
100, whereas the concatenated histogram show 4 groups: strings with
length smaller than 20, length between 20 and 100, length between
100 and 1000 and strings with length greater than 1000.
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Figure 4.5: Cumulative distribution functions of the length of the local and
global string allocated by GSB sites. Most of the strings have a
length lesser than 20 and it is very interesting the local maximum of
the global strings in the interval 200-500.



4.1. Feature 1: Distribution of Strings Length 30

Figure 4.6: Cumulative distribution functions of the length of the property and
concatenated string allocated by GSB sites. Most of the strings have
a length lesser than 20 and the concat strings have a local maximum
in the interval 500-1000.



4.1. Feature 1: Distribution of Strings Length 31

to the interval 1-20. This means that usually JS variables have a short

length or they are pieces of longer strings;

• all the distribution decrease with the growth of the length, with the

exception of the strings that are property of an object (PROP) or con-

catenated in the good and malicious sets, and the global GSB variables.

In particular, very long strings are results of a concatenation because

it is easier for an attacker to avoid detection splitting the malicious

machine code into smaller variables;

• the distribution of the global malicious variables and global GSB vari-

ables show a slightly different shape from the histogram of global good

variables in the interval 200-500, with a local maximum in that interval;

• the distribution of the local malicious variables shows a shape similar

to the one described in the previous point with respect to the histogram

of local good variables in the interval 50-100.

Figures 4.7 and 4.8 compare the above results. We can see that malicious

sites allocate more strings with a length of 50 to 100 characters as a result

of a concatenation. We notice the same behavior also for local and property

string. Also, concatenated strings allocated by good sites with a percentage

higher than 2.5% have length lesser than 200, whereas the strings allocated

by malicious sites with a percentage higher than 2.5% have length up to

1000. This is even more visible with the strings collected from the GSB set.

We can conclude that attackers use more concatenated strings as a vector to

launch an attack.

It is also very interesting that malicious sites allocate more long string

that good sites. This confirm the fact the machine code used to launch

attacks needs to be stored inside long strings, otherwise the attacks have no

effects on the victim machines.

In summary:

• malicious sites allocate more local strings with length of 20-100 and

global string with length of 100-1000. This is because usually the
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Figure 4.7: Comparation of local histograms and global histograms. Malicious
sites allocate more local strings with length in the interval 20-100 and
global string with length in the interval 100-1000. Other intervals
show no big differences.



4.1. Feature 1: Distribution of Strings Length 33

Figure 4.8: Comparation of property histograms and concatenated hystrograms.
Malicious sites allocate more strings that are result of a concatena-
tion with length in the interval 50-2000. In the property histogram
there are differences only in the interval 50-100.
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strings that contains malicious code are splitted into smaller pieces

to evade detection.

• malicious sites allocate more strings that are result of a concatenation

with length of 50-2000. In fact concatenation is used more by malicious

users to reconstruct the original string that contains machine code.

This is done because machine code must be allocated in a single string

to be executed.
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4.2 Feature 2: Presence of Obfuscation or

Code Generating Functions

We hereby concentrate on the presence of functions used for obfuscation of

code or for dynamic generation of code. The results are shown in Figure 4.9.

The most interesting words are unescape(, concat( and document.write(.

In fact these words are more frequent in malicious strings than in good strings

because unescape( is used inside functions for obfuscation, whereas concat(

and document.write( are used inside functions for dynamic generation. In

particular concat function is used to built dangerous strings made by smaller

and harmless strings. Other interesting words are eval(, setTimeout( and

document.createElement( because their presence is very high inside good

strings even if they could be used very easily for malicious purpose. The

evaluation of this feature on the GSB set confirm our intuition on the func-

tions unescape(, document.write( and also on document.createElement( and

substring. In fact these two functions are used for splitting the strings and

for dynamic generating code to avoid security tools, and in this particular

subset is evident that are useful to distinguish the behavior of a malicious

page.
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Figure 4.9: Analysis of substrings to count the number of occurrences of func-
tions used for obfuscation or dynamic generation of code. The
words more used by malicious sites are unescape (obfuscation), doc-
ument.write (dynamic generation) and substring.
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4.3 Feature 3: Count of Reserved Words

In Section 4.2 we focused on the presence of some words that represent func-

tions. In this section we focus on the presence of reserved words of the JS

language1. The results are summarized in Figure 4.10, 4.11 and 4.12, show-

ing only the most frequent words. The histograms show the percentage of

variables that contain reserved words with respect to the total of variables

collected. We can see that words like unescape are also inside these figures,

but concat and document.write are not present because they are not reserved

JS words. The function unescape and the word Hidden are very frequent in

malicious strings because are used for (de)obfuscation. Another interesting

word is Form. Even if it is very frequent inside good pages, there are more

occurrences inside malicious variables because many often the attackers put

malicious code inside hidden forms that are not visible to the victims. The

evaluation of this feature on the GSB set confirm all previous results, with

the exception of the word Hidden, that have a lesser occurrence with respect

to good variable. However, we recall that GSB set is smaller than the other

set, and so in this particular case the word Hidden has a lesser frequence

(about 5.5%).

1http://www.quackit.com/javascript/javascript\_reserved\_words.cfm/
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Figure 4.10: Analysis of substrings to count the number of occurrences of JS
reserved words. The most interesting word in this histogram is
Hidden (used inside obfuscating functions).
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Figure 4.11: Analysis of substrings to count the number of occurrences of JS
reserved words. These words are not associated with specific func-
tions but could be used to cast a decision on the maliciousness of a
web page.
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Figure 4.12: Analysis of substrings to count the number of occurrences of JS
reserved words. The word unescape, used inside functions for ob-
fuscation, is present more inside variables allocated by malicious
sites.
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4.4 Feature 4: Ratio of the number of col-

lected variables to the number of distinct

referrers

The results of the evaluation are shown in Figure 4.13. The histogram shows

that the ratio of collected variables to distinct referrers evaluated on good

set is bigger than the ratio on malicious and GSB sets. This means that

many good JS variable share the same referrer, reminding that we have col-

lected 45,958,061 variables from the good set, 10,051,176 variables from the

malicious set and 915,613 variables from the GSB set. Our opinion on this

result is that good sites allocates more variables with respect to malicious

sites because of the advanced functionalities they offers. In fact the majority

of malicious sites shows to the victim users only small messages or popups.

Figure 4.13: Number of collected variables divided by the number of distinct
referrers. The figure show that good strings have a lesser percentage
with respect to malicious sites. This means that every good referrer
allocates more strings than malicious referrers.
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4.5 Other Features

During the preparation of this thesis we have evaluated some features that

gave similar results on both good and malicious sites and so they were not

very useful. Some examples of these features are: we evaluated how the col-

lected good strings and the malicious strings are composed, by creating two

pie charts with the percentage of the place of capture (local, global, property

or concat) of the strings. Figure 4.14 shows the pie chart relative to the

good strings and the malicious strings. The tables display other parameters

extracted like average length of the strings and the string with max length

(probably outliers). The differences between the two charts are no evident,

and so we cannot use this feature alone to recognize a malicious site.

Tables 4.1, 4.2 and 4.3 show some parameter evaluated from the collected

strings. The strings with highest length are composed by JavaScript code,

and so it is better to analyze the words they contain instead of other pa-

rameters. Of course the average length of the strings is very high because of

the outliers with an enormous length (e.g. over 800000 characters for local,

property and concatenated good strings).

Another feature we have analyze that was not helpful for our purpose

was the number of variables that contains only alphanumerical characters.

Figure 4.15 shows that the percentage of the variables only composed by al-

phanumerical characters were very similar between malicious and good sites.

The variables collected from GSB set show some differences, but this is not

sufficient to be used for the goals of this thesis work.
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Figure 4.14: Comparison between the composition of good strings and malicious
strings grouped by their origin. The differences are not helpful to
cast a decision on the behavior of a web page.
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Place Good N Good Avg(length) Good Max(length)
Local 17161892 73,0796 800693
Global 223613 318,5576 344766
Prop 5115879 884,6173 800696
Concat 23456677 250,0295 800693

Table 4.1: This table shows the evaluations of some parameters such as average
and maximum length of the strings and the number of the good strings
collected.

Place Malicious N Malicious Avg(length) Malicious Max(length)
Local 4012776 116,9695 336693
Global 65354 250,7348 344766
Prop 1306378 564,2842 288651
Concat 4666668 310,6884 521914

Table 4.2: This table shows the evaluations of some parameters such as average
and maximum length of the strings and the number of the malicious
strings collected.

Place GSB N GSB Avg(length) GSB Max(length)
Local 277380 237,5896 115331
Global 9865 270,3812 521901
Prop 132653 431,695 38155
Concat 495715 329,5075 521902

Table 4.3: This table shows the evaluations of some parameters such as average
and maximum length of the strings and the number of the GSB strings
collected.
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Figure 4.15: Analysis of characters inside the allocated strings. The histograms
are very similar and we cannot use this feature for the goals of our
work.



Chapter 5

Conclusions

In this work we evaluated four features that characterize string variables allo-

cated by JavaScript code found in malicious web pages. We found that good

JS code allocates more variables with respect to malicious JS code and the

majority of those variables has length lesser than 20. In addition, an higher

percentage of malicious variables are originated by concatenation functions.

Plus, variables allocated by malicious JS code contains words and functions

used for (de)obfuscation and dynamic generation such as Hidden, concat,

unescape and document.write. We have also found features that do not

show differences between malicious and good sites, such as the composition

of the collected strings and the number of variables that contains only al-

phanumerical characters.

During the preparation of this work we made some choises that can be im-

proved in future updates.

For example it could be convenient to save the strings directly into the

DB from the code added into Spidermonkey, to save a lot of time. In this

way it is possible to open multiple pages on the browser, instead that one at

time, without creating writing overlaps on the output file.

Another possible upgrade is to modify the program the checks the list of

URLs with the modified browser. In our case we wait 12 seconds before

closing the browser’s window, and this value is too big for some sites (e.g.,

sites hosted near the client or lightweight sites), while is too small for other
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sites (e.g., sites hosted far from the client or heavyweight sites). So it could

be better to change the waiting function in such a way that the program

closes the browser’s window when the checked page is completely loaded.

Another improvement could be to open many tabs on the same window,

with a different URL on each tab. Finally, like we said in the previous

section, there are a lot possible evaluations that we can do on our data. We

can make other analysis on the characters of the strings, to verify if they are

part of executable shellcode, or if the strings contains other specific words,

used for new attacks. For a more precise results is could be possible to use

for malicious strings collection only the URLs flagged as malicious by Google

Safe Browsing 1. In this way those sites contain their malicious code and so

we are sure that they are not cleaned or closed.

1http://www.google.com/safebrowsing/diagnostic?site=www.example.it
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