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Abstract

This dissertation deals with the Newton and Euler dynamics equations of ESMO,
where a mathematical formulation has been developed. The purpose is to de-
sign the internal (non-environmental) disturbances of the spacecraft, by focusing
attention on the mass expulsion disturbance torques and the propellant sloshing
effect. Moreover the dynamics of the reaction wheels has been taken into account.
A review of the propellant sloshing models has been investigated and has been
described in brief throughout the dissertation. Particular attention has been given
to the propellant sloshing model that has been embraced and to the sate of the
art of the mass expulsion torques. Additionally, the propellant consumption that
affects some terms of the equation of motions has been considered. This disser-
tation intends to be an interface between the orbit dynamics and the attitude
dynamics disciplines. The two dynamics equations are uncoupled because the
environmental torques, that are the coupling terms, are not considered. The out-
come of the thesis is the developing of the software that implements the spacecraft
attitude dynamics of ESMO and the internal dynamics of the satellite. Therefore
this software is going to be used by the ESMO Mission Analysis (MIAS) Team of
the University of Strathclyde, Glasgow to give information on the thrust vector
orientation (attitude of ESMO) and for passing the control law for contingency
analysis (a.g. delay in the actuation ). Moreover this software can be used by
the ESMO Attitude and Orbit Control (AOCS1) System Team of Politecnico di
Milano to integrate the internal dynamics of ESMO with the simulator that the
AOCS1 Team has developed.



Sommario

L’oggetto di studio di questa tesi é la formulazione matematica delle equazioni
della dinamica di ESMO, nella forma di Eulero-Newton. Lo scopo e il motivo
di questo lavoro sono di implementare un modello dei disturbi interni al satel-
lite. É stata rivolta particolare attenzione nei confronti dei disturbi associati
all’espulsione di massa e alla dinamica di sloshing dei serbatoi. Inoltre per ragioni
di completezza, la dinamica delle ruote di reazione é stata inclusa alle equazioni
del moto. In questa tesi sará presentato lo stato dell’arte dei modelli di sloshing e
delle coppie di disturbo causate dall’espulsione di massa. Il modello delle equazioni
é completato con il modello di consumo del carburante che influenza alcuni ter-
mini nell’equazioni del moto. Questa tesi ha l’intento di costituire un’interfaccia
fra due importanti discipline: la meccanica orbitale e la dinamica d’assetto. Le
equazioni della dinamica d’assetto e della meccanica orbitale rimangono comunque
disaccoppiate, poiché le coppie di disturbo esterne o d’ambiente, (che sono quelle
che garantiscono l’accoppiamento) non sono state incluse alle equazione del moto.
L’intento di questa tesi si configura nello sviluppo di un software che implementi
la dinamica d’assetto di ESMO e le dinamiche di disturbo interne al satellite. Tale
software attualmente é stato utilizzato, e continuerá ad esserlo, dal team di anal-
isi di missione della University of Strathclyde, Glasgow per ottenere informazioni
sull’orientazione del vettore di spinta e per le eventuali analisi di imprevisti mal-
funzionamenti degli attuatori. Infine questo software potrá essere utilizzato e
integrato, dal team di controllo d’assetto del Politecnico di Milano, per inserire
all’interno del simulatore giá sviluppato dal AOCS1 team, il modello delle di-
namiche interne di ESMO.
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Chapter 1

Introduction

1.1 The European Student Moon Orbiter (ESMO)

Figure 1.1: ESMO view.

The European Student Moon Orbiter Fig. (1.1) is the first European Student
Mission to the Moon and the fourth mission within ESA 1 Education Satellite
Programme after SSETI Express, YES2 and ESEO 2. ESMO has currently com-
pleted a Phase A Feasibility Study and is proceeding with preliminary design
activities in Phase B. The purpose of the mission is to place the spacecraft on
a polar orbit around the Moon, return new data by acquiring surface images of
the Moon South Pole and test new technology. The Moon South Pole Fig. (1.2)
is of special interest to scientists because of the assumption of the occurrence

1European Space Agency.
2The European Student Earth Orbiter planned to be launched in LEO in 2013.
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4 Chapter 1. Introduction

of ice in permanently shadowed areas. Thinking about the future human space
missions, the Moon is still an interesting target not only for scientific reasons but
also for testing technology and methodology for the support of the human life in
a hostile environment such as the lunar surface. We could consider the future
human mission to the Moon as training for future interplanetary missions. Mars
is definitely a planet of major scientific interest and ESA hopes to one day plan
a future human mission to Mars 3. In addition, ESMO has a powerful education
outreach aspect by giving the opportunity to students across the ESA Member
States to work on a real project and contribute to the scientific knowledge.

Figure 1.2: Lunar South Pole Map.

1.2 Spacecraft Attitude dynamics

The subject of this dissertation is the study of ESMO Spacecraft Attitude Dy-
namics with a particular interest in modeling internal disturbance effects. Space-

craft Attitude Dynamics is the discipline that predicts how spacecraft orientation
evolves. As the reader could easily imagine, Attitude Dynamics interacts with
other disciplines that we will mention in brief in this section:

Orbital dynamics. Attitude and orbital dynamics are in general mutually
coupled. They respectively study the rotational and translational dynamics. A
“classical” dynamical problem is to consider the gravity force field effect. The
translational and rotational motion are coupled by their gravitational interaction.
As an example in which the orbit affects the attitude, the disturbance torques
acting on a spacecraft often depend on altitude (e.g. air drag and solar radiation

3AURORA Programme.
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1.3. State of the Art 5

torques.) On the contrary the attitude affects the orbit in the case of interplane-
tary solar sailing. The purpose is to use the solar radiation pressure by adjusting
the attitude to produce the desired trajectory. Usually these two disciplines are
treated separately. Indeed, the coupling effect occurs only when there are envi-
ronmental torques that depend on orbital variables that it is possible to treat as
external disturbances.

Structures Interaction. It is common in the field of astrodynamics to model
the spacecraft as a rigid-body. However real spacecraft are not rigid bodies. The
advantage is in the simplicity of the rigid-body attitude model but unfortunately
it is a geometrical abstraction. Rigid-body assumptions entirely ignore the Second
Law of Thermodynamics. On the other hand, accurate structural analysis implies
an enormous increase in math model complexity.

Fluids Interaction. The dynamics of fluids affect the attitude dynamics. The
propellant sloshing effect is not easily incorporated into attitude dynamics mod-
eling. Writing the spacecraft attitude dynamics of ESMO with the propellant
sloshing dynamics is one of the major purpose of this thesis. We will diffusely
treat this subject within the dissertation.

1.3 State of the Art

Different sources of disturbances affect the spacecraft attitude dynamics by ap-
pearing as applied torques. Usually they are categorized as External and In-
ternal Torques. External torques are caused by environmental sources and In-
ternal torques are self-generated inside the spacecraft and considered as non-
environmental torques. As it is well known the absence of external or environ-
mental torques imply the conservation of angular momentum about the mass
center. However, the internal torques can redistribute the angular momentum in
a body reference frame and can alter the system’s kinetic energy. The internal, or
non-environmental torques, operating on a satellite, are the outcome of internal
moving parts. These internal dynamics, that no longer allow us to assume the
spacecraft as rigid, are caused by: reaction wheels dynamics, ejected mass , flexi-
ble antenna, solar array, liquid inside partially filled tanks, the motion of internal
hardware and crew motion 4. In general there are two different ways to treat the
non-environmental torques, depending on the nature of the disturbances. If the
non-environmental torques are of a passive nature, we prefer to regard them as
dynamical terms in the attitude dynamic equations. On the other hand when we
write the non-environmental torques in the “right hand” of the motion equation,
these terms can appear as external torques. This point of view is appropriate

4The crew motion is not predictable, except statistically. They are best treated stochastically.
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6 Chapter 1. Introduction

when these terms are the outcome of active control. In this dissertation two in-
ternal disturbances, which alter the ESMO attitude dynamics, are investigated:
Mass Expulsion Torques and Propellant Sloshing Effect. In this section, we will
finally show in brief a classical fuel problem: the Fuel Rigid-Slug Model. This
model was numerically implemented as a reference test case.

1.3.1 Mass Expulsion Torques

Mass Expulsion Torques are the torques that may result when mass is expelled
from a spacecraft. Determination of these torques requires knowledge of the mass
flow nature. Indeed, the mass can be ejected from the spacecraft in solid, liquid or
gaseous state. These kind of torques are treated and categorized in NASA [1] and
they can occur in several different ways due to anomalous design or operational
conditions. In the NASA [1] report only the effects during space flight are investi-
gated, therefore launch and de-orbiting effects are excluded. NASA has classified
the different nature of the mass expulsion torques by learning those experienced
in previous missions. The previous missions outlined how these disturbances can
affect the prediction of a spacecraft’s attitude. The first category is representa-
tive of all “sources intended to produce a force or torque that is necessary for the
proper operation of spacecraft”, (NASA [1]). Most of the mass expulsion torques
that have been identified belong to this category. NASA examples include:

- Leakage of fuel or pressurizing agent;

- Thrust vector misalignment;

- Reaction forces resulting from plume impingement on the vehicle;

- Anomalous firing time.

The second category contains all the “sources intended to expel mass but that
place on the spacecraft forces or torques which must be controlled or minimized”,
(NASA [1]). These disturbances occur infrequently, perhaps only once during the
flight. When these disturbances occur, they manifest general problems. NASA
examples include:

- Dumping of residual propellants;

- Venting of compartments, subsystems, and spacecraft;

- Subliming mechanisms;

- Payload separation and ejection;

- Equipment jettison.

6



1.3. State of the Art 7

The third category includes all the “unintentional sources where neither the force
nor the expulsion of mass are permitted in spacecraft design”, (NASA [1]). This
category includes outgassing, sublimation, and leakage from spacecraft equipment.

However analytical methods and test facilities that study the magnitude of these
torques, and design techniques that minimize these disturbance effects, are widely
diffused. As explained in Chapter 3, we investigated the most significant distur-
bances within the mass expulsion torques: Thrust Vector Misalignment.

1.3.2 Propellant Sloshing Model

“Our everyday experience in carrying a cup of coffee or a bowl of soup may be
frustrating unless we are very careful as to how we move, but may still deceive us
into believing that the “sloshing” of the liquid is simple”. (H. Norman Abramson

[2])

Liquid sloshing in storage tanks has long been of interest to researchers and
engineers. The dynamic loads from the fuel have both inertial and dissipative
components, and both can affect the attitude stability of a spacecraft and the
integrity of the tank structure. Sloshing describes the free-surface oscillations
of a fluid in a partially filled tank. These oscillations result from lateral and
longitudinal displacements or angular motions. Several methods have been em-
ployed to reduce the sloshing effect, such as adding baffles inside the tank. This
technique is helpful but does not always succeed in canceling the sloshing load.
The liquid sloshing problem can be faced with two different approaches: Fluid

Mechanics Approach and Equivalent Mechanical Model. Fluid mechanics is the
discipline that studies fluids motion. The basic equations governing the motion
are the well known Navier-Stokes equations. These equations are nonlinear par-
tial differential equations with boundary conditions at the free surfaces and at the
tank “walls”. Fluid mechanics can be mathematically complex. A closed-form
solution is available only for very simple problems, and usually it is necessary
to adopt a numerical approach in order to obtain a solution. A modern disci-
pline, called computational fluid dynamics (CFD [3]) Fig. (1.3), is devoted to
this approach to solving fluid mechanics problems. Alternatively one can adopt
the equivalent mechanical model in which the sloshing effect is represented by
an equivalent mechanical object. As one could easily understand the mechanical
model is an approximation of the problem, therefore it is less precise than the
exact solution (of the Navier-Stokes equations). The mechanical approach is a
very helpful model as it allows the dynamical model of the propellant sloshing to
be integrated into the equations of motion of the satellite. Furthermore the sim-
plicity of a mechanical model means that less numerical power in the solution of
the problem in comparison with the fluid mechanics approach. For these reasons,
the equivalent mechanical sloshing model has been embraced and coupled with

7



8 Chapter 1. Introduction

the equations of motion of ESMO. Two different mechanical models have been
investigated: Mass-Spring-Damper Model and 3D Spherical Pendulum

5.

Figure 1.3: Computational fluid dynamics solution in a spherical tank.

Mass-Spring-Damper Model. The basic assumptions in modeling the propel-
lant sloshing, by assuming the previous outline approach, have been formulated
in the models of sloshing presented in Abramson (1961), [4]. These assumptions
include:

- Small displacements, velocities, and slope of the liquid-free surfaces;

- A rigid tank;

- Nonviscous liquid;

- Incompressible and homogeneous fluid.

Figure 1.4: Mass-Spring-Damper Model reproduced from Abramson (1966).

5A very good reference is [2]
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1.3. State of the Art 9

After these assumptions, one can write the sloshing dynamics model using an in-
finite number of small masses. The results obtained with such a model must be
checked with experimental measurements, (see [4]). In Fig. (1.4), m0 is the mass
of the nonsloshing part of the fuel inside the tank and m1, m2 are two assumed
masses contributing to the sloshing load 6. These three masses are distanced b0,
b1 and b2 from the center of the tank. The terms k1, k2 and c1, c2 are the spring
coefficients and damping parameters. In Fig. (1.4.b), “cmd” is the center of dry

mass; M0 is the nonsloshing mass of the satellite, and J0 is the moment of inertia
of the satellite without the contribution of the sloshing masses. This mechanical
model under Abramson’s assumptions is analogous to a pendulum model, (see
Fig. (1.5)). The difficult part in modeling the sloshing effect is to define (analyti-
cally or experimentally) the equivalent arm length lj (j = 0, ..., n), the equivalent
masses mj (j = 0, ..., n), the equivalent spring constants kj (j = 0, ..., n) and the
damping constants cj (j = 0, ..., n). These parameters depend on the geometrical
parameters of the container, the characteristics of the fluid and the fill ratio of
the container. The force produces a linear acceleration that one can calculate as:

a =
|�T |

M0 +
�n

j=0 mj
(1.3.1)

The spring constants Eq. (1.3.2) and the angular velocity Eq. (1.3.3) are defined
as follows:

kj =
mj a

lj
(1.3.2)

ωj =

�
kj

mj
(1.3.3)

The mass-spring-damper model has the advantage of being a very simple model
to implement. We have numerically implemented this model by adding the equa-
tions of motion of ESMO. In developing the first version of the software with
the mass-spring-damper model we encountered a series of problem. First of all
the equivalent masses and spring constants are dependent on the shape of the
tank (only for the cylinder and rectangular tanks does there exist the empirical
expressions to obtain these parameters), the fuel property and the surface level.
Secondly, this model makes sense only under the hypothesis of one-dimensional
linear motion, which is a limitation for our model. It has also been encountered
problems of boundary condition, in which the sloshing masses have crossed the
“wall” of the tank and this does not make sense physically speaking. We desired
to have a non linear model that respects the boundary conditions. This lead to

6The distinction of nonsloshing and sloshing fuel masses is usually adopted in missile appli-
cations where the great acceleration constrains part of the fuel to stay fixed on the bottom of
the tank. For a spacecraft this distinction is not necessary yet.
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10 Chapter 1. Introduction

Figure 1.5: Pendulum analogy reproduced from Abramson (1966).

the consideration of another mechanical model in the 3D Spherical pendulum.

3D Spherical Pendulum. The 3D spherical pendulum model Fig. (1.6) is
a pendulum with three degrees of freedom. The length of the pendulum is the
distance that connect the center of mass of the fuel and the center of the spher-
ical tank. The fuel is supposed to be rigid and covered by a viscous layer. For a
spherical tank this model is very useful because it naturally respects the boundary
conditions. This model can treat not only nonlinearity but also a 3D sloshing load.
We developed a second version of the software in which we solved all the problems
that we had in the first version by implementing the 3D spherical pendulum model
instead of the mass-spring-damper model.

Figure 1.6: 3D Spherical Pendulum.

In Fig. (1.6), θ, φ and ρ are the degrees of freedom of the pendulum.

10



1.4. The Purpose of the Dissertation 11

1.3.3 Fuel Rigid-Slug Model

In the literature it is possible to find an interesting “classical” dynamical problem:
the fuel rigid-slug model. It is also known as flat-spin maneuvers. This model
is based on a tank centered in the mass center of the spacecraft. The tank is
supposed to be full of propellant, therefore the propellant is assumed to be a rigid
sphere covered by a viscous layer. As it is well known, for free-rigid body dy-
namics without dissipation the rotation is stable about the axes of maximum and
minimum moments of inertia. In this case both the angular momentum and the
kinetic energy are conserved. In case of dissipation for free-rigid body dynamics
only the angular momentum is still conserved and the kinetic energy decreases.
In this configuration the rotation is now unstable about the axes of minimum mo-
ment of inertia. The reader can find the equations of motion and two numerical
examples of this dynamical model in the appendix, (see Appendix (A.1)). The
fuel rigid-slug model is a particular case of the 3D spherical pendulum in which
the pendulum length collapses to zero and the fuel inside the tank is represented
by a complete sphere instead of the hemisphere. Therefore we use that model as
a test case.

1.4 The Purpose of the Dissertation

The purpose of this dissertation was to develop a software that implements the
ESMO attitude dynamic equations, with special interest paid to modeling the
internal disturbances such as the thrust vector misalignment and the propellant
sloshing model. The equations are formulated in such a way as to allow the orbit
and attitude dynamics to work together. Nevertheless the equations are still un-
coupled due to the fact that we don’t take into account the environmental torques
that, as we said before, are responsible for coupling the orbit with the attitude
equations. I was a visiting student at the University of Strathclyde in Glasgow
7 and I had the opportunity to work with the Mission Analysis (MIAS) Team of
ESMO. This software is used by the MIAS team to give information about the
attitude of the ESMO spacecraft and verify if the internal disturbances will create
problems for orbit determination and navigation. On the other hand Politecnico
di Milano is in charge of the development of Attitude and Orbital Control System
(AOCS1 Team), therefore this work can be used by the AOCS1 Team to have an
internal description of the ESMO spacecraft (as the propellant sloshing dynam-
ics.). The software is written in a MATLAB environment without the support of
the SIMULINK tool of MATLAB. The development of this software allows, for the
first time, an interface with the MIAS and AOCS1 Team in which the orbital me-
chanic and attitude dynamic equations are solved at the same moment. This was

7Scotland.
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12 Chapter 1. Introduction

possible because the MIAS team provided a MATLAB function that implements
the orbit determination model. As a result of a confidentiality agreement with
the MIAS Team, the orbital determination model function is not visible by users
working with the software developed in this work. However a brief knowledge of
the orbit determination and navigation strategy is necessary. The Earth-Moon
transfer strategy is based on the weak stability boundary (WSB) transfer approach
in the restricted four-body 8 problem. This transfer is used in order to obtain the
in-plane lunar transfer and have a low cost inclination change.

1.5 Arrangement of the work

The dissertation is organized in three chapters:

Chapter 2. This chapter is mainly based on the theory behind the ESMO equa-
tions of motion and the sloshing model equations. An introduction to the reference
frames and rotational kinematic is required to understand how the equations are
written. Finally a description is included of how the consumption of the masses
has been taken into account.
Chapter 3. An entire chapter is dedicated to have a deep understanding of all the
torques acting on ESMO. Particular attention is given to the non-environmental
torques. Finally it is shown how it is possible to pass a control law to the software.
Chapter 4. This chapter is dedicated to showing the results that one can obtain
using the software and the validation of the software to ensure the system equa-
tions were correctly implemented.

Throughout the dissertation, we will use the following mathematical conventions:

� vector
Bold letter matrix

Capital letter vector defined
in the Fi frame

× cross product
· dot product

Table 1.1: List of Symbols.

8Four-Body: Earth, Moon, Sun and Spacecraft.
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Chapter 2

Attitude Dynamics of ESMO:

Multi-Rigid-Body System

2.1 Rotational Kinematics

Before developing the equation of motion that describe the orientation of the
ESMO spacecraft, it is important to focus our attention on certain basic concepts.
The orientation of a vector can be defined only with respect to other reference
vectors. The minimum noncoplanar reference vectors are three. The orientation of
a generic vector �v is uniquely determinate by the direction cosines between �v and
these reference vectors. The reference vectors form a Reference Frame. Under the
important assumption of rigid-body, the orientation of a spacecraft can be given
by knowing the orientation of a body-fixed reference frame with respect to other.
Therefore in case of a multi-body dynamic system, it is necessary to declare the
single body-fixed frames for all the objects inside the satellite that one desires to
describe, (see Fig. (2.1)). This is the procedure adopted to construct the attitude
dynamic equations of ESMO. In Fig. (2.1) is sketched a concept of the ESMO
spacecraft and all the reference frames that we have been taken into account to
develop the system of equations. We refer to the multi-rigid-body dynamics of
ESMO meaning that we consider an internal degrees of freedom due to moving
objects inside the satellite. It is not really suitable to talk about multi-rigid-body
system when there are internal degrees of freedom. Therefore, it is definitely
more correct to use the term quasi -rigid instead of simply rigid body. The objects
inside ESMO, treating within this dissertation, are: the four reaction wheels1 and
the oxidizer and fuel tanks2. In Fig. (2.1) we called with Fi, Fo, Fb, Fw and
Fs respectively: the inertial frame, the orbital frame, the body-fixed frame, the
wheel-fixed frame and the sloshing-fixed frame.

1The reaction wheels are in a tetrahedral configuration.
2To describe the sloshing loads.
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14 Chapter 2. Attitude Dynamics of ESMO: Multi-Rigid-Body System

Figure 2.1: Reference Frames.
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2.1. Rotational Kinematics 15

2.1.1 Reference Frames and Rotations

The origin of the body-fixed frame Fb is not coincident with the center of ESMO
dry mass. The strategy is to choose a geometrical reference frame embedded within
ESMO that give the orientation of the satellite with respect to other reference
frames. We anticipate that it would be more convenient to choose a principal
axis frame where the center of mass is coincident with the origin of the reference
system. Therefore the motion equations would be simplified. The reason in which
we do not follow this strategy is because we would like to consider the propellant
mass consumption. It is evident that a reference frame fixed with the mass center
will change during the time simulation. On the other hand the geometrical frame
is always fixed with the satellite and does not depend on the masses configuration.
In the case of the reaction wheel, we choose a reference frame in which the origin
is centered with the four wheels mass center. The axises of the wheel-fixed frame
Fw are parallel to those of the Fb frame, (see Fig. (2.2)). This mean that the
direction cosine matrix, describing the orientation of the Fw frame with respect
to the Fb frame, is an identity. Regarding the propellant-fixed frame Fp only one
axis is embedded within the length of the pendulum3 (see Fig. (2.2)). This is the
strategy adopted for both the fuel and the oxidizer tanks. Finally the origin of the
inertial frame Fi has been centered in the center of the celestial-body of interest
(see Fig. (2.2)). In Figure (2.2) the �ω, �ωw and �ωp are the absolute angular velocity
of the satellite, the reaction wheels and the 3D spherical pendulum with respect
to Fi frame4. CMd, CMp and CMw are the center of mass: dry, of the propellant
and of the four reaction wheels.

Direction Cosine Matrix. As we said before, the direction cosine matrix
describes the orientation of a reference frame with respect to another. On the
viewpoint of the spacecraft, the internal dynamics are in relative motion with the
satellite. Therefore for writing the translational and angular equilibrium equations
with respect to the Fb frame, we need to know the relative rotation (rotational
matrix) between one frame to another. This rotational matrix is the direction
cosine matrix. We define the direction cosine matrixes as follow:

�vb � Cbi(t) �vi (2.1.1)

�vf � Cfb(t) �vb (2.1.2)

�vo � Cob(t) �vb (2.1.3)

3The length of the pendulum is assumed to be rigid.
4The components of vectors: �ω are in the Fb frame, �ωw are in the Fw frame and �ωp are in

the Fp frame.
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16 Chapter 2. Attitude Dynamics of ESMO: Multi-Rigid-Body System

Where �vi, �vb, �vf and �vo are generic vectors in which their components are respec-
tively defined in Fi, Fb, Fpf

and Fpo
5. Cbi(t) is the rotation between Fb and Fi

frames. Cfb(t) or Cob(t) are the rotation between Fpf
or Fpo and Fb frames. By

using the rule of sequence rotations, we can write:

Cfi(t) � Cfb(t) Cbi(t) (2.1.4)

Coi(t) � Cob(t) Cbi(t) (2.1.5)

The rotation matrixes are time depending, therefore the direction cosine deriva-
tives are:

Ċbi(t) = −�ω ×Cbi(t) (2.1.6)

Ċfb(t) = − �Ωf ×Cfb(t) (2.1.7)

Ċob(t) = − �Ωo ×Cob(t) (2.1.8)

Where �Ωf and �Ωo are the relative angular velocity of the fuel and the oxidizer
pendulum with respect to Fb frame.

Angular Velocity. The decomposition of the angular velocity shows the relation
between the absolute and the relative angular velocity, therefore:

�ωf = Cfb �ω + �Ωf (2.1.9)

�ωo = Cob �ω + �Ωo (2.1.10)

Since every term in the vectorial equation must be expressed in the same frame,
the Eq. (2.1.9 and 2.1.10) are depending on the cosine direction matrixes: Cfb

and Cob. The orientation of a spacecraft can be expressed with the Euler axis
�a and angle φ (Euler’s Theorem). It is possible to compute the direction cosine
matrix form �a and φ and vice versa. Starting from �a and φ, another kinematic
formulation can be given such as: Euler angles, quaternions, direction cosine and
Gibbs vector.

5 Fpf and Fpo are the fuel and the oxidizer pendulum fixed frame.
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2.1. Rotational Kinematics 17

Figure 2.2: ESMO Reference Frames.

2.1.2 Kinematic Formulation

It has been anticipated that several kinematic formulations exist. This section is
focused only on the kinematic formulations used for computing the equation of
motions. Only two formulations have been used: the quatenions and the Euler
angles kinematics. As is well known, it is possible to switch from one formulation
to another.

Quaternions. The quaternions are a function of the Euler axis and angle:

q =

�
�q

q4

�
(2.1.11)

Where �q ≡ �ε � �a sin φ
2 and q4 ≡ η � cos φ

2 are a function of the Euler’s parameter
�ε and η. The quaternions kinematic is very useful and it has been used during
the integration of the motion equations. Indeed this formulation does not show
singularity problems. One can write the differential equation for q which is time
depending:

q̇ =
1

2
Q(�ω) q (2.1.12)

Q(�ω) =

�
�ω× �ω

−�ω
T 0

�
(2.1.13)
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18 Chapter 2. Attitude Dynamics of ESMO: Multi-Rigid-Body System

The Eq. (2.1.12 ) describes the kinematic of the satellite with respect to the Fi

frame. Therefore the direction cosine matrix Cbi(q, t) can be found starting from
the quaternions kinematic and vice versa. We also need to define the relative
orientation of the fuel and the oxidizer pendulum with respect to the Fb frame.
This means that other two quaternions kinematic formulations need to be defined.
Fuel-pendulum quaternions kinematic:

q̇f =
1

2
P(�Ωf ) qf (2.1.14)

P(�Ωf ) =

�
�Ωf×

�Ωf

−�ΩT
f 0

�
(2.1.15)

Oxidizer-pendulum quaternions kinematic:

q̇o =
1

2
W(�Ωo) qo (2.1.16)

W(�Ωo) =

�
�Ωo×

�Ωo

−�ΩT
o 0

�
(2.1.17)

The Eq. (2.1.14 and 2.1.16) describes the kinematics of the fuel and the oxidizer
pendulum with respect to the Fb frame. Therefore the direction cosine matrixes
Cfb(qf , t) and Cob(qo, t) can be found starting from the quaternions kinematic
and vice versa.

Euler angles. The Euler angles formulation consists of a sequence of three
rotations. This kinematic formulation definitely has singularity problems, there-
fore it is not useful to use Euler angles for integrating the kinematic. On the
other hand, working with the angles is more intuitive. It is convenient to express
the orientation of the spacecraft with respect to Fi frame by using the classical
azimuth and elevation angles. Throughout the MATLAB code this formulation
has been used as an interface with: the user that needs to define the initial ESMO
orientation and the orbit navigation function that requires the angles as an input.
The Euler angles formulation is closely depending on the sequence of rotations
and on the order of the three rotations. If we call with θ1, θ2 and θ3 the rotating
angles arounds respectively the first, the second and the third axis, the sequence,
that it has been used, is:

C(�θ) � C1(θ1) C2(θ2) C3(θ3) (2.1.18)

18
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C(�θ) =




c2c3 c2s3 −s2

s1s2c3 − c1s3 s1s2s3 + c1c3 s1c2

c1s2c3 + s1s3 c1s2s3 − s1c3 c1c2



 (2.1.19)

In the Equation (2.1.19) c1, c2 and c3 are a brief expression of cos θ1, cos θ2 and
cos θ3 and same goes for s1, s2 and s3 that are a brief expression of sin θ1, sin θ2

and sin θ3.

2.2 Newton and Euler’s Approach

Figure 2.3: Reference Frames.

The formulation adopted to describe the motion equations is vectorial and the
basic equations are:

�̇P = �F (2.2.20)

�̇H = �M (2.2.21)

These motion equations are associated with Newton Eq. (2.2.20) and Euler Eq.
(2.2.21), so the approach is called “Newton and Euler”. In this formulation,
one can consider separately the dynamical and kinematical differential equations.
We will deeply explain how to write the Equations (2.2.20 and 2.2.21) in the
following sections. The Newton and Euler’s approach consists in writing the

19



20 Chapter 2. Attitude Dynamics of ESMO: Multi-Rigid-Body System

translational and rotational equilibrium equations of the entire system. In case
of additional internal degrees of freedom, inside the spacecraft, it is necessary to
add the dynamic equations that describe the movement of the single objects . As
we said during the introduction, we have been used the MIAS team function that
integrate the translational dynamics. Nevertheless, we treat both the translational
and rotational dynamics only to have a complete theoretical formulation. In Fig.
(2.3) that it is representative of the reference system, the variable “k” is depending
on the number of the tanks.

2.2.1 Linear Momentum

For writing the translational equation of equilibrium, it is necessary to define the
linear momentum of the spacecraft and of all the rigid body inside the satellite.
The linear momentum of the ESMO satellite B is:

�p �
�

B

�v dm (2.2.22)

In the Eq.(2.2.22), �v is the absolute velocity of a generic point P with infinitesimal
mass dm within the body B. The absolute velocity must be measured with respect
to Oi. If �ρ is the distance from P to O and �v � �vO+ �̇ρ+�ω× �ρ. For a rigid body, �̇ρ

is equal to zero and we can rewrite the angular momentum in the following way:

�p = md �vO + �ω × �c (2.2.23)

The linear momentum of the reaction wheel system W is:

�pw �
�

W

�vw dmw (2.2.24)

In the Eq.(2.2.24), �vw is the absolute velocity of a generic point P with infinitesimal
mass dmw within the reaction wheels system W . �ρw is the distance from P to Ow

and �vw � �vO + �ω × �dw + �ωw × �ρw. The reaction wheel system is considered as a
rigid body so �̇ρw, is equal to zero and we can rewrite the angular momentum as
follow:

�pw = mw �vO + mw �ω × �dw + �ωw × �cw (2.2.25)

We have been considered the case in which the reaction wheels mass center is coin-
cident with O. Under this hypothesis, �cw is equal to zero. The linear momentum
of the fuel Pf and oxidizer Po 3D spherical pendulum are:
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2.2. Newton and Euler’s Approach 21

�pf �
�

Pf

�vf dmf (2.2.26)

�po �
�

Po

�vo dmo (2.2.27)

In the Equations (2.2.26 and 2.2.27), �vf and �vo are the absolute velocity of a
generic point P with infinitesimal mass dmf and dmo within the 3D spherical
pendulum Pf and Po. �ρf and �ρo are the distance from P to respectively Of and

Oo (see Fig. 2.3). The absolute velocities are: �vf � �vO + �ω × �df + �ωf × �ρf and

�vo � �vO + �ω × �do + �ωo × �ρo. Under the hypothesis of rigid pendulum �̇ρf and �̇ρf

must be zero. One can rewrite:

�pf = mf �vO + mf �ω × �df + �ωf × �cf (2.2.28)

�po = mo �vO + mo �ω × �do + �ωo × �co (2.2.29)

In the Equations (2.2.22, 2.2.24, 2.2.26 and 2.2.27), md, mw, mf and mo are
respectively the dry mass of B, the reaction wheels mass, the fuel mass and the
oxidizer mass. Other new terms comparing in those equations are the static
momentum of: the satellite �c, the reaction wheels �cw, the fuel and the oxidizer
pendulum �cf and �co. The generic definition of the Static Momentum is:

�c �
�

B

dm (2.2.30)

We anticipate that in case of propellant consumption, �c becomes time depending.
Therefore we have to compute the differential equation for �c.

2.2.2 Angular Momentum

For writing the rotational equation of equilibrium, it is necessary to define the an-
gular momentum of the spacecraft and of all the rigid bodies inside the satellite.
The angular momentum of the ESMO satellite B is:

�h �
�

B

ρ× �v dm (2.2.31)

As for the linear momentum of B the velocity �v is �vO+�ω× �ρ and the Eq. (2.2.31)
becomes:

�h = �c× �vO + Id �ω (2.2.32)

21



22 Chapter 2. Attitude Dynamics of ESMO: Multi-Rigid-Body System

The angular momentum of the reaction wheel system W is:

�hw �
�

W

�ρw × �vw dmw (2.2.33)

In the Eq.(2.2.33), the absolute velocity �vw is �vO + �ω × �dw + �ωw × �ρw. Therefore
rewriting the Eq. (2.2.33) we have:

�hw = Iw �ωw (2.2.34)

We have four reaction wheels in a tetrahedral configuration, therefore the Eq.
(2.2.34) has not been written properly. It is better to express the angular momen-
tum in the following way:

�hw = Aw Iw �ωw (2.2.35)

In the equation (2.2.35), Aw is a (3 X 4) matrix dimension. The columns of this
matrix represent the direction cosine of the rotational axis of each wheel:

Aw =




−a a a −a

−a −a a a

a a a a



 (2.2.36)

The project parameter “a”, in the equation (2.2.36), is equal to 1
√

3
6. The angular

momentum of the fuel Pf and oxidizer Po 3D spherical pendulum are:

�hf �
�

Pf

ρf × �vf dmf (2.2.37)

�ho �
�

Po

ρo × �vo dmo (2.2.38)

The absolute angular velocity �vf and �vo of the equations (2.2.37 and 2.2.38) are

respectively �vf � �vO + �ω × �df + �ωf × �ρf and �vo � �vO + �ω × �do + �ωo × �ρo. The
equations (2.2.37 and 2.2.38) become:

�hf = �cf × �vO + Jfb �ω + If �ωf (2.2.39)

�ho = �co × �vO + Jfo �ω + Io �ωo (2.2.40)

6Tetrahedral configuration.
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2.2. Newton and Euler’s Approach 23

In the Equations (2.2.32, 2.2.34, 2.2.39 and 2.2.40), Id, Iw, If and Io are respec-
tively the moment of inertia of: the satellite B, the reaction wheels, the fuel and
the oxidizer pendulum. The satellite moment of inertia in the dry mass case is:

Id
7 �

�

B

(|�ρ|2 − �ρ�ρ
T )dm (2.2.41)

The moment of inertia of the reaction wheels system is:

Iw �
�

W

(|�ρw|
2
1− �ρw�ρ

T
w)dmw (2.2.42)

For the fuel and oxidizer 3D spherical pendulum the moments of inertia are:

If �
�

Pf

(|�ρf |
2
1− �ρf�ρ

T
f )dmf (2.2.43)

Io �
�

Po

(|�ρo|
2
1− �ρo�ρ

T
o )dmo (2.2.44)

In the equations (2.2.39 and 2.2.40), there are other two moments of inertia terms:
Jfb and Jfb. They are mixed moment of inertia between the spacecraft and the
fuel or oxidizer pendulum. These moments of inertia are defined as follow:

Jfb � �c
T
f
�df − �cf

�d
T
f (2.2.45)

Job � �c
T
o
�do − �co

�d
T
o (2.2.46)

We anticipate that in case of propellant consumption the moments of inertia
become time depending. Therefore we have to compute the differential equation
for the static momentum and the moments of inertia that are a function of the
propellant mass.

7Dyadic of inertia.
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24 Chapter 2. Attitude Dynamics of ESMO: Multi-Rigid-Body System

2.2.3 The Equation of Motion: propellant sloshing dynamics

The translational equilibrium or Newton equation of the multi-quasi -rigid body
system is:

�̇P = �F
ext + CT

fb
�Ff + CT

ob
�Fo (2.2.47)

Where �̇P is the derivative of the total linear momentum with respect to the inertial
frame Fi, see the following equation:

�̇P = �̇p + �ω × �p (2.2.48)

In the Eq. (2.2.48), �p is the total linear momentum of the multi-quasi -rigid body
system and one can write:

�p = �pb + �pw + CT
fb �pf + CT

ob �po (2.2.49)

If we substitute the Eq. (2.2.49) in the Eq. (2.2.48), therefore the Eq. (2.2.48)
changes into:

�̇pb + �̇pw + Ċ
T

fb �pf + CT
fb �̇pf + Ċ

T

ob �po + CT
ob �̇po +

�ω × (�pb + �pw + CT
fb �pf + CT

ob �po) = �F
ext + CT

fb
�Ff + CT

ob
�Fo

(2.2.50)

The rotational equilibrium or the Euler equation of the entire system is:

�̇H = �M
ext + CT

fb
�Mf + CT

ob
�Mo (2.2.51)

�̇H is the derivative of the total angular momentum with respect to the inertial
frame Fi, therefore one can write:

�̇H = �̇h + �ω × �h + �vO × �p (2.2.52)

In the Eq. (2.2.52), �h is the total angular momentum of the system, see the
following equation:

�h = �hb + �hw + CT
fb

�hf + CT
ob

�ho (2.2.53)

If we substitute the Eq.(2.2.53) in the Eq. (2.2.52), therefore the Eq. (2.2.52)
changes into:
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2.2. Newton and Euler’s Approach 25

�̇hb + �̇hw + Ċ
T

fb
�hf + CT

fb
�̇hf + Ċ

T

ob
�ho + CT

ob
�̇ho + �ω × (�hb+

�hw + CT
fb

�hf + CT
ob

�ho) + �vO × �p = �M
ext + CT

fb
�Mf + CT

ob
�Mo

(2.2.54)

The dynamics of the reaction wheels is described by the following equation:

�̇hw = (A)wIw�̇ωw = �Mw (2.2.55)

One can substitute the Eq. (2.2.55) into the Eq. (2.2.54) and write:

�̇hb + Ċ
T

fb
�hf + CT

fb
�̇hf + Ċ

T

ob
�ho + CT

ob
�̇ho + �ω × (�hb+

�hw + CT
fb

�hf + CT
ob

�ho) + �vO × �p = �M
ext + CT

fb
�Mf + CT

ob
�Mo −

�Mw

(2.2.56)

In the Eq. (2.2.56) the dynamics of the reaction wheel is viewed such as an
external torques but its nature is non-environmental. Therefore �Mw is the control
torques of the reaction wheels. Looking at the right side of the equations (2.2.50
and 2.2.54), �F

ext and �M
ext8 are the external forces and torques acting on the

satellite. �Ff ,�Fo, �Mf and �Mo are the forces and the torques acting on the fuel
and oxidizer pendulum masses center. These forces and torques are depending
on the linear acceleration induced by the engine thrust. The equations (2.2.50,
2.2.54 and 2.2.55) are not sufficient to close the problem. Other two rotational
equations of equilibrium are needed, therefore we wrote the fuel and the oxidizer
3D spherical pendulum equations:

�̇Hf = �̇hf + �ωf ×
�hf + Df

�Ωf + �vO × �pf = �Mf (2.2.57)

�̇Ho = �̇ho + �ωo ×
�ho + Do

�Ωo + �vO × �po = �Mo (2.2.58)

Df and Do are the damping coefficients matrixes. �Ωf and �Ωo are the relative
angular velocities with respect to the Fb frame. These relative angular velocity
have been written as:

�Ωf = �ωf −Cfb �ω (2.2.59)

�Ωo = �ωo −Cob �ω (2.2.60)

8 �Mext is calculated respect the origin O.
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26 Chapter 2. Attitude Dynamics of ESMO: Multi-Rigid-Body System

Finally we can organize the equations above in the following system:






�̇P = �F
ext + CT

fb
�Ff + CT

ob
�Fo

�̇H = �M
ext + CT

fb
�Mf + CT

ob
�Mo

�̇Hf = �Mf

�̇Ho = �Mo

�̇hw = �Mw

(2.2.61)

The Eq. (2.2.61) is the so called Newton and Euler equations. In that system of
equations the �Mf and �Mo are the torques due to the induced acceleration by the
engines and they are respectively defined in the Fpf

and Fpo frame. The direction

of the length of the fuel and oxidizer pendulum, �df and �do are constant in the
Fpf

and Fpo frame. The direction of the induced acceleration vectors �af and �ao

are constant in the Fb frame 9. The length of the fuel and the oxidizer pendulum
define in the Fpf

and Fpo frame are:

�lf =






lf

0
0




 (2.2.62)

�lo =






lo

0
0




 (2.2.63)

The induced acceleration vectors define in the Fb frame are:

�af =






0
0
−af




 (2.2.64)

�ao =






0
0
−ao




 (2.2.65)

The torques due to these accelerations, that are defined in the Ff and Fo frame,

can be written as �Mf = mf
�lf ×CT

fb �af and �Mo = mo
�lo ×CT

ob �ao.

9They depend on the ESMO configuration.
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2.3. Kinetic and Potential Energy 27

2.3 Kinetic and Potential Energy

The other dynamical quantity of interest is the kinetic energy. We studied the
free-body dynamics to demonstrate that without external torques, the angular
momentum is conserved, with respect to the Fi, only along the direction of the
induced acceleration. The energy is conserved if there are not dissipative sinks.
The kinetic energy of the entire system is:

T =
1

2

�

B

(�vO + �ω × �ρb) · (�vO + �ω × �ρb)dmb +

1

2

�

W

(�vO + �ω × �dw) · (�vO + �ω × �dw)dmw +

1

2

�

Pf

(�vO + �ω × �df + �ωf × �ρf ) · (�vO + �ω × �df + �ωf × �ρf )dmf +

1

2

�

Po

(�vO + �ω × �do + �ωo × �ρo) · (�vO + �ω × �do + �ωo × �ρo)dmo (2.3.66)

The potential energy is U = mf
�lf · CT

fb �af + mo
�lo · CT

ob �ao and the total energy
is E = T − U . In order to test the equation above, one can simplify the system
by setting the �vO equal to zero.

2.4 Propellant Consumption

Figure 2.4: Tank view.

Due to the propellant consumption, there are some terms in the Eq. (2.3.66) that
become time depending, such as the static and angular momentum of the fuel an
oxidizer pendulum. Before deriving these two quantities, we need to follow the
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28 Chapter 2. Attitude Dynamics of ESMO: Multi-Rigid-Body System

method that we are going to show in this section. As it is well known, the mass
consumption is compute as follow:

dmw

dt
= −

|�T |

Ispg0
(2.4.67)

In Eq. (2.4.67), mw, �T , Isp and g0 are respectively the mass wet of the satellite, the
thrust vector, the specific impulse and the gravity acceleration. Starting from the
wet mass and knowing the fuel-oxidizer ratio, one can find mf and mo. Therefore
we can compute the volume inside the fuel and oxidizer tank: Vf and Vo

10. In the
following equations we consider a generic tank, therefore all the expressions are
valid for both the fuel and oxidizer tanks. The volume V of the tank is defined
with its integral expression:

V (mw) =

� h

−r

Asdx =

� h

−r

πs
2
dx (2.4.68)

In the Eq. (2.4.68), h is the unknown and it is the level distance from the center
of the tank.The position of the centre of mass with respect to the center of the
tank is:

xcm = ycm = 0; zcm(mw) =

� h

−r π(r2 − x
2)xdm

V (mw)
(2.4.69)

The linear and the angular momentum are computed with respect to the origin
of the tank in the following way:

�c(mw) = mtk
�lp (2.4.70)

I(mw) =

� h

−r

� √
r2−x2

−
√

r2−x2

� √r2−x2−y2

−

√
r2−x2−y2

ρ(x, y, x) I(x, y, z)dzdydx (2.4.71)

In the Eq. (2.4.71), I(x, y, z) is defined as:

I(x, y, z) =




y

2 + x
2 −xy −xz

−xy z
2 + x

2 −yz

−xz −yz x
2 + y

2



 (2.4.72)

Now we can calculate the differential for �c(mw) and I(mw):

10The fuel and oxidizer densities are consider as a constants: ρf and ρo.
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d�c

dt
=

d�c

dmtk

dmtk

dt
(2.4.73)

dI

dt
=

dI

dmtk

dmtk

dt
(2.4.74)

The term mtk is the expression of the mass inside the tank.
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Chapter 3

Spacecraft Torques

3.1 Environmental Torques

In Chapter 2 we dealed with the mathematical formulation but we do not alight
on the “right hand” terms of the equation of motions, that is the aim of Chap-
ter 3. As said in the Introduction, the spacecraft torques can be classified into
two categories: external or internal torques. The external torques stem from the
interaction between the spacecraft and the environment. Calculation of external
torques requires knowledge of the satellite characteristics and of the space envi-
ronment. The principal external torques are: the gravitational, the aerodynamic,
the radiation and the magnetic torques. In this dissertation we deal only with the
internal torques, therefore the AOCS1 Team is in charge of developing the space
environment model. For this reason, we limit ourself to considering the nature of
the external torques instead of showing their analytical formulations.

3.2 Non-Environmental Torques

As we have just mentioned, the internal torques are self generated. For a deeply
“state of the art” review of the internal torques, we refer to the Introduction. In
this section, only the thrust vector misalignment torques are treated because they
are more significant than the others in this case.

3.2.1 Thrust Vector Misalignment

“A standard procedure is to assume a fixed misalignment of from one to several
degrees and evaluate the torque or angular impulse”, NASA [1]. Additionally, one
can estimate the location and the variation in the center of gravity from mass
properties data. The major cause of disturbance torques from thrust-generation
systems are: the misalignment of the thrust vector, the impingement of the ex-
ternal plume and the deviation between the geometric axis of the thruster and
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32 Chapter 3. Spacecraft Torques

the actual line of the thrust. For reaction control system, misalignment and im-
pingement cause the disturbances torques. In this dissertation we only study the
disturbance effects due to the misalignment. Thrust misalignment problems tend
to increase as nozzle size decreases. For larger nozzles, it is possible to have thrust
misalignment as small as 0.1° or 0.2°, otherwise small nozzles often have as mach
as 1° or 2°. We can mechanically aline a nozzle to about 15 arcmin, but this align-
ment will be degraded by subsequent handling and environmental stresses. On
new designs, it appears that the misalignment is about 1° or 2° due to the ther-
mal distortions coupled with mechanical discontinuities; this misalignment can
be reduced to about 0.2° to 0.3° by refinement of the design. Usually if engines
has the thrust vector control, the misalignment disturbances became negligible.
In the case of ESMO we fixed the thrust misalignment angle to 1°. In a three
dimensional space the thrust vector belongs to a cone in which the cone angle is
the misalignment angle (see Fig. 3.1). Obviously there exists an uncertainty in
how the thrust vector is oriented with respect to this cone. The idea is to use the
random function of MATLAB with a Gaussian distribution, where 3σ is half of
the interval rotational degree of freedom around the axis of the cone. Therefore,
if 3σ is equal to half of a complete rotation π, σ is equal to π

3 . ESMO has four
main engines so for each engine the thrust had an uncertainty in the orientation.
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3.2. Non-Environmental Torques 33

Figure 3.1: Thrust Vector Misalignment with the Uncertainly in the center of
Mass2.
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3.3 Control Torques

Usually, the control torques act on the satellite throughout the actuators and their
purpose is to counteract the disturbances torques. ESMO is equipped with four
reaction wheels and four cold thrusters that are orientated in the same direction as
the main engines. When the control torques are output from the control system,
they are passed to the actuators system. In the development of the software,
we did not write a control law as the AOCS2 team is in charge of designing it.
Nevertheless this software is arranged in such a way that the user can easily pass
the control law like an input. For our study, it was unnecessary to develop an
actuator model. Therefore the control torques are directly acting on the “right
hand” of the equations.
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Chapter 4

Analysis and Results

4.1 Propellant Sloshing Disturbances

During the development of the software, intermediate analysis and tests have been
done to validate the MATLAB code. First of all to validate the simple Euler equa-
tion, the conservation of the angular momentum and of the kinetic energy 1 have
been investigated. Secondly to verify that the numerical solution 2, in terms of
angular velocity and quaternions, are correct; a simple analytical solution have
been compared with the numerical one. As it is well known, under simplify hy-
pothesis it is possible to find an analytical close-form solution. A very interesting
approximate close-form solution (Wertz [5]) has been used to verify the quater-
nions numerical one without restricted hypothesis on the angular velocity3. We
are not going to show the analytical solutions because they are largely treated into
the literature, but we find very interesting the approximate close-form solution
for the quaternions that one can find into the Appendix (B.1).

3D Rigid Spherical Pendulum. The purpose of this dissertation is to
model the propellant sloshing effect from an engineering viewpoint: the 3D rigid
spherical pendulum model4 has been embraced. In the early study we wrote the
dynamics of the pendulum by using the Euler approach. As it is well known,
without external torques (free-torques dynamics), the angular momentum with
respect to the inertial frame Fi is conserved. In the case of the pendulum, we have
a self generated disturbances due to the engines thrust. This disturbance has the
form of an induced acceleration that on the viewpoint of the pendulum, is treated
like an “external” disturbance. Obviously the nature of this disturbance is non-
environment. This mean that for the conservation of the angular momentum, we

1Under the hypothesis of free-torques dynamics without sink source.
2ODE MATLAB function.
3The quaternions numerical solution in analytical close-form can be verify only under the

hypothesis of constants angular velocity.
4The 3D rigid spherical pendulum is a generalization of the fuel slug model.
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36 Chapter 4. Analysis and Results

will expect that only the component direct as the acceleration vector is conserved,
(see Fig. (4.1)).

Figure 4.1: 3D Pendulum: Angular Momentum.

The other quantity of interest is the kinetic energy that, without dissipative sink,
is conserved. In the following figures (4.2, 4.3,4.4 and 4.5 ), one can appreciate
the effect of the damping element. In table (4.1), the initial conditions, used for
obtaining the follows solutions, have been summarized.
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Figure 4.2: 3D Pendulum: Energy.

Figure 4.3: 3D Pendulum: Trajectory.
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Figure 4.4: 3D Pendulum: Energy.

Figure 4.5: 3D Pendulum: Trajectory with damper effect.
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4.1. Propellant Sloshing Disturbances 39

Case �Ω0[rad/s] cf [Nms] af [ms
−1] ao[ms

−1]

1 [0,0,0.5] 0 0.1011 0.1011
2 [0,0,0.5] 0.4 0.1011 0.1011

Table 4.1: 3D Pendulum: initial condition.

Two-Rigid-Body Model. After the verification of the 3D pendulum solu-
tion, it has been developed an improved model: the two-rigid-body dynamics.
This model is quite similar to the fuel rigid-slug model where the tank is centered
at the origin of the Fb frame. The two rigid bodies are the satellite B and the
3D fuel pendulum Pf . The two dynamics equations are coupled only throughout
the damper coefficient, (see Appendix (B.2)), and then it has been verified that,
without the damper effect, the pendulum dynamics do not affect the satellite mo-
tion.

ESMO Multi-Rigid-Body Model. Finally we have implemented the sys-
tem of the equations applied to ESMO, (see the mathematical approach in Chap-
ter 2). The multi-rigid-body model deals with the Newton and Euler equations
in which the dynamics of the fuel and oxidizer sloshing and of the four reaction
wheels, has been investigated. A brief overview of the ESMO configuration and
data, has been given in section (4.3). In section (4.1.1), different solutions de-
pending on the initial conditions, has been investigated. In this software, two
different dynamics, has been implemented and studied, (see section (4.1.2)): one
describes the two-rigid-body model, (see Appendix (B.2)) and the other one is
the multi-rigid-body model, (see Chapter 2). Each of these dynamics have two
different variants:

- In one case the equations have been solved without the orbit dynamics
model;

- In the other case the attitude dynamics and the orbit dynamics equations
have been interfaced.

The solutions are sensitive on the damper coefficient parameter 5, (see section
(4.1.3)). For each dynamics equations that one can choose in this software, there is
the possibility to consider or not the propellant consumption, (see section (4.1.4)).
The effect of the mass expulsion torques, in the solutions, has been given in
section (4.2). All the solutions and results that one can encounter throughout
this dissertation, has been influenced by the initial condition of ESMO in its
trajectory transfer, (see section (4.4)).

5This parameter depend on: the size of the tank, the characteristic of the fluid and the fill
ratio of the container. They are depending on experimental data.
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4.1.1 Initial Condition

The solution of the motion equations is sensitive to the initial conditions. In the
Tab. (4.2 and 4.3), the initial conditions of the two cases analyzed has been given.

Case ωb[rad/s] Ωf [rad/s] Ωo[rad/s] cf [Nms] co[Nms]

1 [0,0,0] [0,1.5, 0] [0,1.5, 0] 0 0
2 [0,0,0] [0,0,0.9] [0,0,0.9] 0 0

Table 4.2: Initial Condition.

Case �α0[deg] �αf0 [deg] �αo0 [deg]

1 [0,0,0] [0,90, 0] [0,90, 0]
2 [0,0,0] [0,-10,0] [0,-10,0]

Table 4.3: Kinematic Initial Condition.

The vectors �α, �αf and �αo are the Euler angles and they describe respectively
the orientation: of the satellite with respect to Fi frame and of the fuel and the
oxidizer pendulum with respect to Fb frame.
Case 1

Figure 4.6: Case 1: Angular Velocity of ESMO.
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Figure 4.7: Case 1: Angular Velocity of the Fuel and Oxidizer Pendulum.

Figure 4.8: Case 1: Total Energy of the System 6.
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Figure 4.9: Case 1: Total Angular Momentum of the System.

Figure 4.10: Case 1: ESMO configuration.
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Case 2

Figure 4.11: Case 2: Angular Velocity of ESMO.

Figure 4.12: Case 2: Angular Velocity of the Fuel and Oxidizer Pendulum.
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Figure 4.13: Case 2: Total Energy of the System.

Figure 4.14: Case 2: Total Angular Momentum of the System.
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Figure 4.15: Case 2: ESMO configuration.

As one can notice in both cases the energy and the angular momentum along the
z-axes are conserved, see Fig. (4.8,4.9, 4.13 and 4.14 ). Without the damper effect
the sloshing load does not affect the satellite dynamics, (see Fig. (4.6 and 4.11)).
Two differentness relative velocities of the fuel and oxidizer pendulum, have been
given Fig. (4.7 and 4.12), this means that the final solutions are different, see Fig.
(4.10 and 4.15).

4.1.2 Dynamical Model

Case ωb[rad/s] Ωf = [rad/s] [rad/s] cf [Nms] co[Nms]

1 [0,0,0] [0,0, 0] [0,0, 0] 0 0
2 [0,0,0] [0,0,0] [0,0,0] 0 0

Table 4.4: Initial Condition.

In this section it has been showed how, starting form the same initial condition,
the solution change by taking into account (Case 1) or not (Case 2) the orbit
dynamics effect. In Tab. (4.4 and 4.5), the initial condition are summarized, as
one can notice we suppose that the internal and the satellite dynamics are in a
state of quiet. Obviously, these initial conditions are not really significant for the
Case 1, in which the initial solution is not perturbed, (see Fig. (4.16, 4.17, 4.18,
4.19 and 4.16)). On the other hand, as one can notice for the Case 2, the orbital
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motion affect the attitude; therefore the movement of the fuel and oxidizer masses
Fig. (4.20, 4.21, 4.22, 4.23 and 4.20).

Case �α0[deg] �αf0 [deg] �αo0 [deg] af [ms
−2] ao[ms

−2]

1 [0,0,0] [0,90, 0] [0,90, 0] 0.1011 0.1011
2 [0,0,0] [0,90,0] [0,90,0] 0.1011 0.1011

Table 4.5: Kinematic and Induced Acceleration.

Case 1

Figure 4.16: Case 1: Angular Velocity of ESMO.
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Figure 4.17: Case 1: Angular Velocity of the Fuel and Oxidizer Pendulum.

Figure 4.18: Case 1: ESMO configuration respect with the Fb frame.
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Figure 4.19: Case 1: ESMO configuration respect with the Fi frame.
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Case 2

Figure 4.20: Case 2: Angular Velocity of ESMO.

Figure 4.21: Case 2: Angular Velocity of the Fuel and Oxidizer Pendulum.
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Figure 4.22: Case 2: ESMO configuration respect with the Fb frame.

Figure 4.23: Case 2: ESMO configuration respect with the Fi frame.
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For both cases, the fuel and oxidizer mass center trajectories have been studied
from the viewpoint of the body-fixed Fb frame and the inertial Fi frame.

4.1.3 Damper Effect

Case ωb[rad/s] Ωf = [rad/s] [rad/s] cf [Nms] co[Nms]

1 [0,0,0] [0,0, 0] [0,0, 0] 0.1 0.1
2 [0,0,0] [0,0,0] [0,0,0] 3 3

Table 4.6: Initial Condition.

Case �α0[deg] �αf0 [deg] �αo0 [deg] af [ms
−2] ao[ms

−2]

1 [0,0,0] [0,-10, 0] [0,-10, 0] 0.1011 0.1011
2 [0,0,0] [0,-10,0] [0,-10,0] 0.1011 0.1011

Table 4.7: Kinematic and Induced Acceleration.

In this section, the damper coefficient effect on the system of equations (under
the same initial condition), has been investigated. Since the damper coefficient
depend on the experimental data, it seems interesting to make a trade-off with
this parameter. In both cases, as we have just previously mentioned, the damper
coefficient is a coupling term in which, at the end of the simulation, the sloshing
effect caused a residual spinning velocity to the satellite. What it is very interest-
ing is that with a damper coefficient of 0.1 Nms, the energy of the entire system
is growing down, this mean that the sloshing load has a dissipative effect such as
the flat-spin maneuvers model, (see Fig. (4.24, 4.25, 4.26, 4.27 and 4.28)). On
the contrary, a damper coefficient of 3 Nms shows that the energy of the satellite
is growing up, (see Fig. (4.29, 4.30, 4.31, 4.32 and 4.33)). In the Appendix (B.4),
another solution has been given with a higher damper coefficient. It is very easy
to understand that the damper coefficient is a parameter that influenced a lot the
dynamics equation.
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Case 1

Figure 4.24: Case 1: Angular Velocity of ESMO (cf = co = 0.1[Nms]).
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Figure 4.25: Case 1: Angular Velocity of the Fuel and Oxidizer Pendulum (cf =
co = 0.1[Nms]).

Figure 4.26: Case 1: Total Energy of the System (cf = co = 0.1[Nms]).
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Figure 4.27: Case 1: Total Angular Momentum of the System (cf = co =
0.1[Nms]).

Figure 4.28: Case 1: ESMO configuration (cf = co = 0.1[Nms]).
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Case 2

Figure 4.29: Case 1: Angular Velocity of ESMO (cf = co = 3[Nms]).
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Figure 4.30: Case 1: Angular Velocity of the Fuel and Oxidizer Pendulum (cf =
co = 3[Nms]).

Figure 4.31: Case 1: Total Energy of the System (cf = co = 3[Nms]).
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Figure 4.32: Case 1: Total Angular Momentum of the System (cf = co = 3[Nms]).

Figure 4.33: Case 1: ESMO configuration (cf = co = 3[Nms]).
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4.1.4 Propellant Consumption

In this section a solution with the consumption model Fig. (4.34), has been given.
We are not considering the damper effect but anyway the energy is obviously not
conserved due to the mass consumption, (see Fig. (4.35)). In Tab. (4.9) we show
the thrust value �T of the four main engines instead of the induced acceleration
because know is time depending. In Fig. (4.37) one can notice by taking a look at
the trajectory followed by the fuel and oxidizer mass center, that the length of the
pendulum (the position of the mass center) is growing up due to the consumption.
Finally the total angular momentum is still conserved along the z-axes Fig. (4.36)
because without the damping effect the dynamics of the satellite and the fuel and
oxidizer pendulums are uncoupled.

Case ωb[rad/s] Ωf = [rad/s] [rad/s] cf [Nms] co[Nms]

1 [0,0,0] [0,0,0] [0,0,0] 0 0

Table 4.8: Initial Condition.

Case �α0[deg] �αf0 [deg] �αo0 [deg] �T [N ]

1 [0,0,0] [0,-10,0] [0,-10,0] [22,22,22,22]

Table 4.9: Kinematic and Induced Acceleration.
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Figure 4.34: Propellant Mass Consumption.

Figure 4.35: Total Energy of the System.
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Figure 4.36: Total Angular Momentum of the System.

Figure 4.37: ESMO configuration.
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4.2 Mass Expulsion Torque

As we said throughout the dissertation, the thrust vector misalignment is the only
disturbance within the mass expulsion torques that we have treated. In this sec-
tion it has been investigated the effect of the thrust vector misalignment torques.
The following results show that without the damper effect and the consumption,
even if the the oxidizer and the fuel pendulum are in their stable equilibrium
point, the thrust vector misalignment affect the attitude of the satellite (see Fig.
(4.38)) and start the sloshing dynamics, (see Fig. (4.40 and 4.41)).

Case ωb[rad/s] Ωf = [rad/s] [rad/s] cf [Nms] co[Nms]

1 [0,0,0] [0,0,0] [0,0,0] 0 0

Table 4.10: Initial Condition

Case �α0[deg] �αf0 [deg] �αo0 [deg] af [ms
−2] ao[ms

−2]

1 [0,0,0] [0,90,0] [0,90,0] 0.1011 0.1011

Table 4.11: Kinematic and Induced Acceleration

Figure 4.38: Angular Velocity of ESMO.
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Figure 4.39: Relative Angular Velocity of the Fuel and Oxidizer.

Figure 4.40: Trajectory of the Fuel and Oxidizer Center of Mass with respect to
Fb frame.
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Figure 4.41: Trajectory of the Fuel and Oxidizer Center of Mass with respect to
Fi frame.
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4.3 ESMO configuration and data

The ESMO Configuration (CONF) team has declared the mechanical properties
of the satellite for both the dry and wet configuration, (see Eq. (4.3.1 and 4.3.2)
and Tab. (4.13)):

Id =




17.53 0.14 0.61
0.14 16.05 −1.04
0.61 −1.04 10.73



 , kgm
2 (4.3.1)

Iw =




27.98 0.11 0.48
0.11 25.97 −0.24
0.48 −0.24 10.74



 , kgm
2 (4.3.2)

Case [kg] �dCM [mm]

Dry 122.35 [0.01,-0.04,0.31]
Wet 217.55 [5.48,-16.72,410.28]

Table 4.12: Mechanical Property.

The size and the configuration of both the fuel and oxidizer tanks are summarized
in Tab. (4.13).

Case Diameter [mm] Position [mm]

Fuel Tank 484 [0,0, 917.37]
Oxidizer Tank 484 [0,0,322.54]

Table 4.13: Tanks Configuration

The fuel and oxidizer properties are, see Tab. (4.14):

ρMON [g/cc] ρMMH [g/cc] MON/MMH ratio

1.37 0.88 2.37

Table 4.14: Fuel and Oxidizer Properties.

In Tab. (4.14), MON is the oxidizer 7 and MMH is the fuel 8. For more details
in the ESMO configuration, (see Appendix (B.3)).

7MON: Mixed oxidize of nitrogen and nitric oxidize. It has been chosen by the Propulsion
(PROP) team.

8MMH: Monomethydrazine. It has been chosen by the Propulsion (PROP) team.
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4.4 ESMO trajectory overview

In this section we are going to show in brief an example of the trajectory transfer
(MIAS team solution) that ESMO will follow in the early phases of the mission.
This trajectory shows a multi-burned strategy by escaping the Earth, (see Fig
(4.42)). In Fig. (4.43) there is sketched the same trajectory of Fig. (4.42) but
on the sun viewpoint. All the solutions, that one can find throughout all the
dissertation, have been computed in this trajectory transfer phase.

Figure 4.42: Multi-Burned Trajectory.
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Figure 4.43: Sun Viewpoint Trajectory.
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Conclusions

The main purpose of this thesis was to develop the mathematical formulation of
the Newton and Euler equations by adding the dynamics of the non-environmental
disturbances of the spacecraft. The internal disturbances, that have been investi-
gated, are the mass expulsion torques and the propellant sloshing model. These
problems have been studied from an engineering viewpoint: the mass expulsion
torques have been treated with a standard procedure (fixed angle of misalign-
ment) and the propellant sloshing dynamics have been implemented by using the
equivalent mechanical model (3D spherical pendulum). Moreover the equations of
motion have been evaluated in terms of propellant consumption and depending on
the trajectory transfer during the time. In the first part of the thesis, the Newton
and Euler equations of motions have been analyzed. Special interests has been
given to the propellant sloshing model. The second part of the thesis deal with
the analysis of the results. The solution of the dynamics equation is influenced
by the initial conditions, the damping coefficients, the propellant consumption
and the orientation in the thrust vectors. As we expect, the sloshing dynamics
affect the attitude dynamics (in terms of angular velocity), this mean that the
control low need to be able to supply for these disturbances. Finally we expect
that resonance problems could occur, therefore the fuel and the oxidizer tanks are
not equally filled so quite often the oscillations of the two pendulums are one in
the opposite direction of the other.
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Appendix A

Appendix

A.1 Fuel Rigid-Slug Dynamical Model and Results

Equations of Motion:

�h �
�

B

�r × �v dm (A.1.1)

This is the definition of the angular momentum for a rigid body Eq. (A.1.1). For
the main body B 1 and the fuel slug S the angular momentum are:

�hsat =

�

B

�ρsat × �vsat dm (A.1.2)

Where �vsat and �ρsat are the absolute velocity and the distance from a generic point
P of the rigid body B 2.
The velocity is defined as:

�vsat = �vO + �̇ρsat + �ω × �ρsat (A.1.3)

In Eq.(A.1.3), �ω is the absolute angular velocity of the body B. For a rigid body,
�̇ρsat is equal to zero and we can rewrite the angular momentum in the following
way:

�hsat =

�

B

�ρsat × �vO dm +

�

B

�ρsat × �ω × �ρsat dm (A.1.4)

Eq. (A.1.4) can be rewritten in the form below:

�hsat = �csat × �vO + Isat �ω (A.1.5)

Where �csat is the Static Momentum and Isat
3 is the Angular Momentum. If the

1The main body is the satellite without the fuel mass contribution.
2�ρsat is defined in the Fb frame.
3All the matrices are signed with a bold letter.
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center of mass is coincident with the origin O in the body-fixed frame Fb, the
Static Momentum should be zero. Focusing our attention on the body S we can
compute the angular momentum of the slug as:

�hslug =

�

S

�ρslug × �vslug dmslug (A.1.6)

Where �vslug and �ρslug are the absolute velocity and the distance from a generic
point P of the rigid body S 4. The velocity is defined as:

�vslug = �vO + �̇ρslug + �ωslug × �ρslug (A.1.7)

In Eq.(A.1.7), �ωslug is the absolute angular velocity of the body S 5. We will
assume the slug as rigid so the inner velocity �̇ρslug

6 must be zero and we have:

�hslug =

�

S

�ρslug × �vO dmslug +

�

S

�ρslug × �ωslug × �ρslug dmslug (A.1.8)

As before one can write the previous equation in the following way:

�hslug = �cslug × �vO + Islug �ωslug (A.1.9)

Where �cslug and Islug are respectively the Static Momentum and the Angular
Momentum of the rigid slug. After the definition of the angular momentum of
both the two rigid bodies, the satellite B and the rigid slug S, we can write the
Euler’s equation for the entire system. We start to derive the equations by defining
the total Angular Momentum in the Fb frame.

�h = Isat �ω + Islug �ωslug (A.1.10)

The �ωslug is an absolute velocity and for the decomposition of the angular velocity
one can write �ωslug = �ω + �Ω 7. Where �Ω is the relative angular velocity of the
rigid slug. The Euler’s system of equation is:

�
�̇H = �M

ext

�̇Hslug = �M
ext + �M

int
(A.1.11)

4�ρslug is defined in the Fb frame.
5 �ωslug is defined in the Fb frame.
6 �̇ρslug = �0
7The decomposition of the angular velocity is written in a vectorial form. Usually we have to

be careful about this expression because if we work with the components of the vector (vectrices
as suggested in Hughes [44]) we have to keep in mind that the sum of two different vectors
is allowed only if they are defined in the same reference frame. In this particular case, we can
define all the vectors in the same frame in particular the Fb frame and this is reasonable because
of the slug symmetry.

74



A.1. Fuel Rigid-Slug Dynamical Model and Results 75

�̇H is the derivative of the angular momentum in the Fi frame and �̇h is the deriva-
tive of the angular momentum in the Fb frame where:

�̇H = �̇h + �ω × �h (A.1.12)

and

�̇Hslug = �̇hslug + �ω × �hslug (A.1.13)

The system above Eq. (A.1.11) can be rewritten as follow:

�
�̇h + �ω × �h = �M

ext

�̇hslug + �ω × �hslug = �M
ext + �M

int
(A.1.14)

In particular the previous system becomes:

�
Isat �̇ω + Islug �̇ωslug + �ω × (Isat �ω + Islug �ωslug) = �M

ext

Islug �̇ωslug + �ω × Islug �ωslug = �M
ext + �M

int (A.1.15)

Finally we will write the system above in terms of �Ω. By defining I � Islug + Isat

we can write:

�
I �̇ω + Islug

�̇Ω + �ω × (I �ω + Islug
�Ω) = �M

ext

Islug �̇ω + Islug
�̇Ω + �ω × (Islug �ω + Islug

�Ω) = �M
ext + �M

int
(A.1.16)

Concerning the right part of the system, we define the external and internal
torques. In this particular case �M

int 8 is the damping effect due to the viscous
layer that covers the rigid slug. We studied the free-body dynamics to demon-
strate that without external torques the angular momentum is conserved in the
Fi and without the damping effects the energy is conserved. In the results below a
comparison is made between the dynamics written for the two and one rigid body
models. We analyze the free-dynamics in a principal axes Fb

9 by solving the
eigenvalue problem. As we said before, the other dynamical quantity of interest
is the kinetic energy:

T =
1

2

�

B

(�vO + �ω × �ρsat) · (�vO + �ω × �ρsat)dm +

+
1

2

�

S

(�vO + �ωslug × �ρslug) · (�vO + �ωslug × �ρslug)dmslug (A.1.17)

8Cslug
�Ω

9Where Ixx < Iyy < Izz
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T =
1

2
m �vO · �vO − �vO · �csat × �ω − �vO · �cslug × �ωslug +

+
1

2
�ω · Isat �ω +

1

2
�ωslug · Islug �ωslug (A.1.18)

In the following figures the initial angular velocity of the satellite has a prin-
cipal component in the direction of the axes of minimum inertia and a small
perturbation in the other two directions. As we said before, the damping effect
shows that in case of dissipation the axes of minimum inertia is no longer a stable
equilibrium point. In all the simulations the relative angular velocity of the rigid
slug is settled to zero. As we can notice, the angular velocity of the satellite Fig.
(A.1), the angular momentum in the Fi Fig. (A.3) and its module Fig. (A.4) and
the kinetic energy Fig. (A.5) are all conserved quantities. A comparison with the
dynamics of the satellite without the slug (one rigid-body dynamics) was made
and it was verified that without the damper effect the two dynamics are the same.
In this case the axes of minimum inertia is a stable equilibrium point as it is shown
in Fig. (A.6) and Fig. (A.7).
The inertia dry matrix of ESMO is:

Isat =




17.53 0.14 0.61
0.14 16.05 −1.04
0.61 −1.04 10.74



 (A.1.19)

The inertia matrix in the principal axes is:

Isat =




10.488 0 0

0 16.246 0
0 0 17.586



 (A.1.20)

Inertia of the slug is:

Islug =




Jp 0 0
0 Jp 0
0 0 Jp



 (A.1.21)

Where for a sphere the inertia is Jp = 1
2 mslug r

2
slug. The diameter of the tank is

484 [mm] and the diameter of the slug is supposed to be 400 [mm].
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Case 1: slug dynamics without damper

Figure A.1: Satellite Angular velocity: �ω0 = [1.7, 0.01, 0.01][rad/s] and cslug =
0[Nms].
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Figure A.2: Slug Relative Angular velocity: �ω0 = [1.7, 0.01, 0.01][rad/s] and
cslug = 0[Nms].

Figure A.3: Total Angular Momentum in the Fi frame: �ω0 =
[1.7, 0.01, 0.01][rad/s] and cslug = 0[Nms].

78



A.1. Fuel Rigid-Slug Dynamical Model and Results 79

Figure A.4: Absolute Angular Momentum: �ω0 = [1.7, 0.01, 0.01][rad/s] and
cslug = 0[Nms].

Figure A.5: Kinetic Energy: �ω0 = [1.7, 0.01, 0.01][rad/s] and cslug = 0[Nms].
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Figure A.6: Angular Momentum Ellipsoid, 3D View: �ω0 = [1.7, 0.01, 0.01][rad/s]
and cslug = 0[Nms] .

Figure A.7: Angular Momentum Ellipsoid: �ω0 = [1.7, 0.01, 0.01][rad/s] and
cslug = 0[Nms] .
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Case 2: slug dynamics with damper

With the same initial condition as the test before and a damping coefficient
of 0.7 [N m s] we obtain the following results. In this case the kinetic energy
Fig. (A.12) is not conserved but the angular momentum Fig. (A.10) and its
module Fig. (A.11 ) is conserved. The axes of minimum inertia is now an unsta-
ble equilibrium point and with this particular initial condition the final angular
velocity is along the axes of maximum inertia ( see Fig. (A.13) , Fig. (A.14) and
Fig. (A.8) ). The damper reduces the angular velocity of the rigid slug to zero
Fig. (A.9). As one can notice in Fig. (A.8) at the end of simulation the angular
velocity is directed along the negative z-axes. The orientation of the spacecraft
is unpredictable, it can end up with either a positive or negative spin about the
major axis.

Figure A.8: Satellite Angular velocity: �ω0 = [1.7, 0.01, 0.01][rad/s] and cslug =
0.7[Nms] .
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Figure A.9: Slug Relative Angular velocity: �ω0 = [1.7, 0.01, 0.01][rad/s] and
cslug = 0.7[Nms] .

Figure A.10: Total Angular Momentum in the Fi frame: �ω0 =
[1.7, 0.01, 0.01][rad/s] and cslug = 0.7[Nms] .
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Figure A.11: Absolute Angular Momentum: �ω0 = [1.7, 0.01, 0.01][rad/s] and
cslug = 0.7[Nms] .

Figure A.12: Kinetic Energy: �ω0 = [1.7, 0.01, 0.01][rad/s] and cslug = 0.7[Nms] .
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Figure A.13: Angular Momentum Ellipsoid, 3D View: �ω0 = [1.7, 0.01, 0.01][rad/s]
and cslug = 0.7[Nms] .

Figure A.14: Angular Momentum Ellipsoid: �ω0 = [1.7, 0.01, 0.01][rad/s] and
cslug = 0.7[Nms].
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In the following table we summarized the prevues cases analyzed:

Case �ω0[rad/s] �ωend[rad/s] cfl[Nms]

1 [1.7,0.01,0.01] [1.7,0.01,0.01] 0
2 [1.7,0.01,0.01] [0,0,-1.031] 0.7

Table A.1: Slug Model: initial spin condition.
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Appendix

B.1 Approximate Closed-Form Solution for the Kine-

matic Quaternions

The closed-form solution to the kinematic quaternion Eq. (B.1.1) is:

q(tn+1) = e
1
2QnT q(tn) (B.1.1)

Where T is the sampling interval (tn+1 − tn), Qn is evaluated at time tn, q(tn)
is the attitude quaternions at time tn and q(tn+1) is the propagated attitude
quaternions at time tn+1. The Eq. (B.1.1) can be rewritten in a more convenient
form for numerical computation as:

q(tn+1) =
�
cos

�
|�ω|T

2

�
1 +

1

|�ω|
sin

�
|�ω|T

2

�
Qn

�
q(tn) (B.1.2)

In figure (B.1 and B.2), one can see that with a generic angular velocity, the
numerical solution in term of quaternions follow the approximate one.
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Figure B.1: Angular Velocity.

Figure B.2: Kinematic Quaternions.
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B.2 Two-Rigid Body Dynamics: Generalization of

the Fuel-Slug Model

In the Appendix (B.2) we analyze the two-rigid body or the quasi -rigid body
dynamics. The main body corresponds to ESMO and the second body describes
the 3D fuel-rigid spherical pendulum. We verify the equation in special case,
where the solution is well known. As it is well known every term in the vectorial
equation must be expressed in the same frame. For analyses that employ many
reference frames we need to became very careful, understanding of which vector
has been expressed in which frame.The equations have been derived by describ-
ing the dynamics of body B and P with respect to the inertial frame Fi. The
vector �RO is the distance from the origin O, belonging to both body-fixed B and
pendulum-fixed Pf frames, to the origin Oi of the Fi frame. We are not going
to redefine every terms of the equations that we will encounter in this Appendix,
(see Chapter 2). The linear momentum of body B and body Pf are therefore:

�pb =

�

B

�vO + �ω × �ρ dmb = mb�vO + �ω × �cb (B.2.3)

�pf =

�

Pf

�vO + �ωf × �ρf dmf = mf�vO + �ωf × �cf (B.2.4)

The total linear momentum of the system is as follow:

�p = �pb + CT
fb �pf (B.2.5)

Where the �pf components are defined in the Fpf
frame and so we need to express

it in the Fb frame. The absolute angular momentum about O are calculated in
the following way:

�hb =

�

B

�ρ× (�vO + �ω × �ρ) dmb = �cb × �vO + Id �ω (B.2.6)

�hf =

�

Pf

�ρf × (�vO + �ωf × �ρf ) dmf = �cf × �vO + If �ωf (B.2.7)
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The total angular momentum of the system is:

�h = �hb + CT
fb

�hf (B.2.8)

Notice that �cb, Id, �cf , and If are the first momentum and the inertia matrix of
both the body B and the body Pf . They are defined in the Fb frame and in the
Fpf

, this means that they are constants in their frame. Where, as before, we

expressed the �hf in the Fb frame. The Euler’s equations of the entire system are:

�̇H = �̇h + �ω × �h (B.2.9)

Using the Eq. (B.2.8) in the Eq. (B.2.9), we can also write:

�̇H = �̇hb + �ω × �hb + CT
fb

�̇hf + Ċ
T

fb
�hf + �ω ×CT

fb
�hf (B.2.10)

and the pendulum dynamics is described by the following equation:

�̇Hf = �̇hf + �ωf ×
�hf + Df

�Ωf (B.2.11)

Where �Ωf is the relative angular velocity from the body B to the body Pf and
it is defined in the Fb frame. The absolute angular velocity of the pendulum
�ωf is equal to Cfb �ω + �Ωf . In the Eq. (B.2.10) and Eq. (B.2.11) �hb is equal

to Id �ω and �hf is equal to If �ωf . As in the case of the dynamic of a 3D Spher-
ical Pendulum, the If

1 is computed in the Fpf
frame.The system of equations are:

�
�̇hb + �ω × �hb + CT

fb
�̇hf + Ċ

T

fb
�hf + �ω ×CT

fb
�hf = �M

ext + CT
fb

�Mf

�̇hf + �ωf ×
�hf + Df

�Ω = �Mf

(B.2.12)

In the Eq. (B.2.12) the �Mf is the torque due to the induced acceleration and

it is defined in the Fpf
frame. The direction of the length of the pendulum �lf

is constant in the Fpf
frame and the direction of the induced acceleration �af is

constant in the Fb frame. The length of the pendulum defined in the Fpf
frame is:

�lf =






lf

0
0




 (B.2.13)

1It is a diagonal matrix where Izz = Iyy = Jf and Ixx = Jf + mf l2f where Jf = 2/5 mf l2f .
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The gravity vector defined in the Fb frame is:

�af =






0
0
−af




 (B.2.14)

The torque due to the induced acceleration is defined in the Fpf
frame, therefore

it can be written as �Mf = mf
�lf × CT

fb �af . The kinetic energy of the system is
written as follow:

T =
1

2

�

B

(�vO + �ω × �ρb) · (�vO + �ω × �ρb)dmb +

+
1

2

�

Pf

(�vO + �ωf × �ρf ) · (�vO + �ωf × �ρf )dmf (B.2.15)

T =
1

2
m �vO · �vO − �vO · �cb × �ω − �vO · �cf × �ωf +

+
1

2
�ω · Id �ω +

1

2
�ωf · If �ωf (B.2.16)

In the Eq. (B.2.16) m is the sum of the dry mass of the satellite mb and the fuel
mass mf . The potential energy is U = mf

�lf · CT
fb �af and the total energy is

E = T − U . In order to test the equation before, we can simplify the system by
setting the �vO equal to zero. In that way we studied only the rotational motion
of the two-bodies dynamics. In Tab (B.1), is summarized the test case that we
have investigated.
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Case �α0[deg] �ω0[rad/s] �αf0 [deg] �Ω0[rad/s] cf [Nms] af [ms
−2]

1 [0,0,0] [0,0,0] [0,-10,0] [0,0,0] 0 0.1011
2 [0,0,0] [0,0,0] [0,-10,0] [0,0,0] 0.1 0.1011

Table B.1: Initial Condition: two-bodies dynamics.

In this table �α0 is the vector of the Euler’s angles from the Fi to the Fb frame:

�α0 =






α

β

ρ




 (B.2.17)

Where α is the azimuth and β is the declination of the ESMO’s thrust vector
direction. The vector αf0 is the vector of the Euler’s angles from the Fb to the
Fpf

frame:

�αf0 =






θ

φ

δ




 (B.2.18)
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Case 1: pendulum dynamics without damper

The equations of the two bodies are coupled by the damper effect so as one
can notice in this case the dynamics of the pendulum does not influence the initial
condition of the satellite dynamics Fig. (B.3) and the relative and the absolute
angular momentum of the pendulum have the same value (see Fig. (B.4) and
Fig. (B.5)). The angular momentum is conserved along the induced acceleration
direction Fig. (B.7) and the norm vector of the total angular momentum is not
a constant Fig. (B.6). Usually the angular momentum is constant when the free-
body dynamics is investigated. In this particular case the induced acceleration is
direct along the z-axes, so the angular momentum can not be conservative along
the other two axes direction as one can see in the following results. The total
energy of the system is influenced by only the pendulum dynamics Fig. (B.10)
and it is a constant during the motion as in the 3D Pendulum Dynamics.

Figure B.3: Absolute Angular Velocity of the Satellite in the Fb frame: �ω0 =
[0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0 [N m s].
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Figure B.4: Absolute Angular Velocity of the Pendulum in the Fpf
frame: �ω0 =

[0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0 [N m s].

Figure B.5: Relative Angular Velocity of the Pendulum in the Fpf
frame: �ω0 =

[0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cF l = 0 [N m s].
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Figure B.6: Absolute Total Angular Momentum: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0]
rad/s and cf = 0 [N m s].

Figure B.7: Total Angular Momentum in the Fi: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0]
rad/s and cf = 0 [N m s].
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Figure B.8: Kinetic Energy: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0 [N
m s].

Figure B.9: Potential Energy: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0
[N m s].
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Figure B.10: Total Energy: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0 [N
m s].

Figure B.11: Tank, 3D view: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0 [N
m s].

In Fig. (B.11) one can see the trajectory followed by the fuel center of mass.
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Case 2: pendulum dynamics with damper

By introducing the damping effect, we can notice that the total energy Fig. (B.19)
is not still conserved like in the case of the 3D Pendulum Dynamics and at the end
the relative angular velocity of the pendulum Fig. (B.14) end up to a zero value.
In this simulation one can notice that the interaction of the pendulum mass with
the tank changes the initial angular velocity of the satellite. Indeed the satellite
end up with a positive angular velocity of 0.0109 rad/s and the spin velocity is
along the y-axes. Fig. (B.12).

Figure B.12: Absolute Angular Velocity of the Satellite in the Fb frame: �ω0 =
[0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0.1 [N m s].
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Figure B.13: Absolute Angular Velocity of the Pendulum in the Fpf
frame:

�ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0.1 [N m s].

Figure B.14: Relative Angular Velocity of the Pendulum in the Fpf
frame: �ω0 =

[0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0.1 [N m s].
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Figure B.15: Absolute Total Angular Momentum: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0]
rad/s and cf = 0.1 [N m s].

Figure B.16: Total Angular Momentum in the Fi: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0]
rad/s and cf = 0.1 [N m s].
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Figure B.17: Kinetic Energy: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0.1
[N m s].

Figure B.18: Potential Energy: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0.1
[N m s].
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Figure B.19: Total Energy: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0.1 [N
m s].

Figure B.20: Tank, 3D view: �ω0 = [0, 0, 0] and �Ω0 = [0, 0, 0] rad/s and cf = 0.1
[N m s].

102



B.3. ESMO drawing 103

As for the case 1, in Fig. (B.20) one can see the trajectory followed by the
fuel center of mass.

B.3 ESMO drawing

Figure B.21: ESMO Drawing 1: CONF team concession.

Figure B.22: ESMO Drawing 2: CONF team concession.
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B.3.1 Damper Coefficient Effect

Case ωb[rad/s] Ωf = [rad/s] [rad/s] cf [Nms] co[Nms]

1 [0,0,0] [0,0, 0] [0,0, 0] 30 30

Table B.2: Initial Condition.

Case �α0[deg] �αf0 [deg] �αo0 [deg] af [ms
−2]

1 [0,0,0] [0,-10, 0] [0,-10, 0] 0.1011 [ms−1]

Table B.3: Kinematic and Induced Acceleration.

In this section, the third case of the Chapter 4 (4.1.3) has been showed. In the
Case 3, the damping coefficient is ten times higher then the Case 2 and the two
solutions seams quite similar but in the third case the final energy of the satellite
is higher. This mean that if the damping coefficient growing up, also the energy
of the satellite and its final spin velocity will grow up, see Fig. (B.23, B.24, B.25,
B.26 and B.27).
Case 3

Figure B.23: Case 1: Angular Velocity of ESMO (cf = co = 30[Nms]).
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Figure B.24: Case 1: Angular Velocity of the Fuel and Oxidizer Pendulum (cf =
co = 30[Nms]).

Figure B.25: Case 1: Total Energy of the System (cf = co = 30[Nms]).
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Figure B.26: Case 1: Total Angular Momentum of the System (cf = co =
30[Nms]).
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Figure B.27: Case 1: ESMO configuration (cf = co = 30[Nms]).
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Appendix

C.1 ESMO: Data and Characteristics

Size[cm] 120 x 110 x 100
Weight [kg] 265 (inc. 93 kg propellant)

Power System 2 body-mounted gallium
arsenide solar panels (70 W)

Telemetry, tracking and 2 star trackers, 4 sun sensors
Control 2 star trackers, 4 sun sensors

Attitude Determination and 3-axis stabilized: 2 inertial
Control measurements units, 4 reaction

wheels, 4 cold gas thrusters
Communications S-band (both uplink and

downlink), Low gain antennas
for omni-directional coverage

Propusion 4 x 22 N bipropellant thrusters,
Isp = 285 s, Total∆ V = 1150 m/s

Structure Aluminum honeycomb central
thrust tube with load bearing

struts for launch adapter mating
Thermal Control Passive: MLI and surface coatings;

active: local heaters for eclipse
(e.g. propellant tanks)

Ground Segment Malindi (10 m dish), Weilheim
(15/30 m) and ESAC (15 m),
Perth and Kourou (early GTO
phase) for additional coverage

Table C.1: ESMO Overview.
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