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Sommario

Il controllo attivo di un sistema aeroelastico è estremamente importante
in quanto permette di manipolare instabilità dinamiche, come il flutter, ed
estendere per un ampio range di velocità condizioni di volo stabili.

In questo report il controllo è stato applicato a due modelli aeroelasti-
ci con lo scopo di aumentare la velocità di flutter del sistema. Per ottenere
questo risultato è stato utilizzato un metodo di posizionamento di poli basato
completamente sulle funzioni di trasferimento misurate sperimentalmente
chiamato receptance method. Questo approccio presenta numerosi vantaggi
rispetto ad altre forme di controllo che come il receptance method richiedono
una formulazione agli stati del problema. Questo metodo, basandosi infatti
su funzioni di trasferimento ottenute sperimentalmente attraverso attuatori
e sensori, non richiede la stima delle matrici strutturali del sistema (massa,
rigidezza e smorzamento) e non richiede un’approssimazione della matrice
dei coefficienti aerodinamici. Inoltre permette di applicare il controllo sen-
za l’obbligo di conoscere tutti gli stati del sistema e quindi non necessita
l’implementazione di un osservatore per la loro ricostruzione.

Nello studio effettuato il lavoro è stato concentrato nell’utilizzo di una
legge di controllo proporzionale alla velocità e allo spostamento degli stati
disponibili applicando un controllo di retroazione agli stati, in questo modo le
equazioni per calcolare i guadagni del controllore si riducono alla risoluzione
di un sistema lineare.

L’obbiettivo di questo lavoro è quello di ottenere un sistema in anello chiu-
so con prestazioni migliori applicando questo metodo di controllo, e indagare
come l’assegnazione dei poli a un sistema aeroelstico influisca sul suo compor-
tamento al variare della velocità di volo. Per ottenere questo risultato sono
stati utilizzati due modelli d’ala, uno rigido e uno elastico, e sono state effet-
tuate varie prove assegnando poli a bassa frequenza, comparando i risultati
e controllando il valore dei guadagni ricavati.

Parole chiave: Controllo attivo, flutter, receptance method, posiziona-
mento dei poli, sistema aeroelastico.
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Abstract

The aim of this thesis is to apply the receptance method on a aeroelastic
system and investigate how this pole placement control method affects the
behavior of the system in relation to the flutter speed. Two different models
have been adopted, one rigid and one flexible, and the poles have been placed
changing the real or the imaginary part. The control methodology has been
applied to different air speeds to find the best strategy to increment the
flutter speed of the controlled system.

Key words: Active control, flutter, receptance method, poles placement,
aeroelastic system.

XI



XII



Chapter 1

Introduction

The phenomenon of flutter is the more characteristic problem of the aero-
elastic analysis, it is a dynamic instability due to the interaction between
elastic, inertial and aerodynamic forces: the airplane starts to absorb energy
from the surrounding aerodynamic flow and that leads to unstable oscillations
and to a catastrophic failure of the aircraft structure [1], [2], [3] .

Flutter analysis consists in studying the stability of the aeroelastic sys-
tem, the eigenvalues behavior is examined changing the aerodynamic flow
conditions. The aerodynamic forces, that are proportional to the airflow
velocity and to the degrees of freedom of the system, affect the aeroelastic
system modifying the eigenvalues. The eigenvalues, that define the damping
ratios and natural frequencies can become unstable, with positive real part,
resulting in diverging oscillations.

To avoid the onset of the instability within the flight envelope many con-
trol techniques have been developed and the flutter suppression has been
achieved with both passive and active means [4], [5]. Passive control me-
thodologies consist in mass balancing, structural modifications in order to
increase the structural stiffness, restriction of the speed range,. . . . Even
though this techniques are considered very robust in their performance, they
introduce additional weight and constraints that may lead to an aircraft per-
formance reduction. Instead active control uses the motion of the structure
and the deflection of one or more control surfaces, driven through an appro-
priate control law [6], in order to introduce additional aerodynamic forces
that counteract the occurrence of the instability so that the flutter enve-
lope can be extended during the in-flight operations without damaging the
aircraft performance.

The possibility to apply an active control system to suppress flutter using
the deflection of a control surface has already been established in previous
studies [7], [8], [9], [10]; in general the associated control problem deals in

1



CHAPTER 1. Introduction

adjusting the natural frequencies and the damping ratios of the aeroelastic
system for achieving the desired closed-loop behavior.

Different control methodologies could be used to obtain the required fea-
tures of the controlled system: control law based upon optimal control or
based directly on pole placement [11], [12]have been developed. In this the-
sis to achieve the flutter suppression a pole placement control law has been
used, based upon a new control methodology known as Receptance Method
as shown in [13].

1.1 Receptance Method

The receptance method is well known in passive structural modification and it
may be traced back to the work of Duncan [14] who determined the dynamic
behavior, natural frequencies and anti-resonances, of a modified system from
the receptances of the initial system and the known modification. Bishop and
Johnson [15] and Ram [16] also addressed the direct structural modifications
in their work, using the transfer functions of the initial system to obtain the
eigenvalues of the modified one.

Still in passive structural modifications, the theory was further devel-
oped for the inverse problem of eigenvalue assignment, that consists in deter-
mining the modification that grant the desired dynamic behavior, and used
for vibration suppression. The employment of transfer functions in assign-
ing eigenvalues can be traced back to Weissenburger [17] who proposed a
method based on receptance modeling for the assignment of a single natu-
ral frequency by a unit rank modification. Receptance modeling was first
applied for the assignment of anti-resonances for vibration suppression by
Vincent [18] who developed the Vincent circle theory, afterward extended
by Ghandchi Tehrani [19] and then by Mottershead [20], [21] who used
measured receptances for the assignment of anti-resonances.

Even if the advantage of passive modification is that the modified system
is guaranteed to be stable, the form of the modification that can be real-
ized in practice is restrictive and the number of eigenvalues to be assigned
must be matched by the rank of the modification. For these reasons active
control has received considerable interest and receptance method was de-
veloped and introduced for the first time in active vibration suppression by
Ram and Mottershead [22]. The main issue in active control is the stability
of the closed-loop system. The theory behind the receptance method has
been developed further and can be applied to state-feedback control [22],
output-feedback control [23] and include also the assignment of eigenvalues
sensitivities respect the control gains [24] determined from the matrix of

2



1.1. Receptance Method

measured receptances.

1.1.1 Theory of the method

This method is entirely based on measured frequency response function
H(iω), that can be determined in theory by inverting the dynamic stiffness
matrix, and has numerous advantages over the conventional matrix methods
such as state-space control based on finite elements. In particular there is no
need to evaluate the matrices of structural stiffness K and structural mass
M which are usually well determined by a variational approach but suffer
from modeling errors and need to be brought into agreement with test data
by model updating, are usually very large and in practice model reduction
methods have to be applied, that can result in degraded control performance.
There is no need to evaluate the damping matrix C: damping evaluation is al-
ways difficult, there are different forms of damping such as viscous or friction
damping, in a FE approach is often neglected or assumed to be proportional
but in active control the damping model is vitally important to complex
eigenvalue analysis.

Another problem prevented using measured transfer functions is the mod-
eling of the aerodynamic loads for an aeroelastic system so there is no need
to model unsteady aerodynamic forces avoiding further approximations.

Since the method uses receptances rather than dynamic stiffness, the
system equations are complete by measuring the states at sensor locations.
This means that there is no need for model reduction or the estimation of
the unmeasured states by an observer. The transfer functions are usually
quite modest in size determined by the numbers of sensors and actuators.

In the following sections the equations for active control state-feedback
and output-feedback laws are presented.

1.1.2 Output-feedback control

Given a dynamic system defined by the equation

Mẍ(t) + Cẋ(t) + Kx(t) = bu(t) + f(t) (1.1)

transformed in the Laplace frequency domain

(Ms2 + Cs+ K)x(s) = bu(s) + f(s) (1.2)

Where M, C and K ∈ ℜn×n are the system matrices of mass, damping
and stiffness, x and f ∈ ℜn×1 are respectively the vectors of the degrees
of freedom and the external forces, u ∈ ℜm×1 represents the vector of the

3



CHAPTER 1. Introduction

control forces and b ∈ ℜn×m is the control force distribution matrix. The
outputs directly in the Laplace domain can be defined as

y(s) = Dx(s) (1.3)

Where D ∈ ℜ l×n is the sensor distribution matrix while the output vector y

∈ ℜ l×1. For the output-feedback the control law can be determined as

u(s) = −Ĝy(s) (1.4)

Where Ĝ is the gains matrix and depends on the control law used:

• Ĝ = G for a displacement feedback.

• Ĝ = sF for a velocity feedback.

• Ĝ = s2N for an acceleration feedback.

• any combination of the previous laws.

In the following equations a displacement plus velocity feedback is used to
explain the method

u(s) = −(G + sF)y(s) (1.5)

Replacing equations (1.3) and (1.5) in equation (1.2)

(Ms2 + Cs+ K)x(s) = −b(G + sF)y(s) + f(s) (1.6a)

(Ms2 + Cs+ K + b(G + Fs)D)x(s) = f(s) (1.6b)

And defining the receptance matrix of the open-loop system as the inverse
of the dynamic stiffness matrix

H(s) = Z−1 = (Ms2 + Cs+ K)−1 (1.7)

Premultiplying both side of equation (1.6b) by H(s) than gives

(I + H(s)∆Z(s))x(s) = H(s)f(s) (1.8)

where
∆Z(s) = b(G + Fs)D (1.9)

and finally the receptance of the closed-loop system can be defined in terms
of the open-loop receptance as

x(s) = H̃(s) = (I+ H(s)b(G + Fs)D)−1H(s)f(s) (1.10a)

4



1.1. Receptance Method

x(s) =
adj(I+ H(s)b(G + Fs)D)

det(I+ H(s)b(G + Fs)D)
H(s)f(s) (1.10b)

The closed-loop system poles are the roots of the denominator of H̃(s) and
can be placed by selecting the terms of the gains matrices to satisfy the
characteristic equation

det(I + H(λj)b(G + Fλj)D) = 0, j = 1, 2, . . . , r r ≤ 2n (1.11)

Instead the zeros of ppth term of the closed-loop receptance are the roots of
the numerator of H̃(s) and can be determined finding the gains that

[adj(I + H(µk)b(G + Fµk)D)]pp = 0 (1.12)

If the poles and the zeros are placed in complex conjugate pairs the terms
in the gains matrix are strictly real [25]. The method for pole-zero place-
ment using receptances leads to the resolution of a non-linear system in the
control gains so there may be multiple real solutions or the system can be
uncontrollable [26], [23].

For a single input system u ∈ ℜ 1×1 and G, F ∈ ℜ 1×l where l is the
number of sensors used and that limits the number of pairs of poles and
zeros that can be placed. Instead for a multi-input system gains matrices
can be diagonal or fully populated. Diagonal gains matrices are the simplest
form of gains while fully populated symmetric matrices allow more poles and
zeros to be assigned than the number of sensors and actuators or a greater
number of solutions to the nonlinear equations (1.11) (1.12) may become
available. With more set of gains available a solution that leads to the least
control cost or that make the poles and zeros placed least sensitive to changes
in the gains term can be choosen.

The receptance matrix obtained in this equations as the inverse of the
dynamic stiffness matrix in practice is obtained for experimental tests, that
give H(iω) and, in to apply the theory rational fraction polynomials are fitted
to the measured terms in H(iω) and the coefficients of the numerator and
denominator are found solving a least-squares problem [27].

1.1.3 State-feedback control

For a multi-input system the state-feedback control leads to the solution of
nonlinear equations as in the output-feedback control but for a single-input
system where u(s) is a number and b ∈ ℜn×1 the gains to place poles and
zeros and even to assign their sensibility respect the gains value are obtained
solving a linear system.
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CHAPTER 1. Introduction

Using the same system defined by the equation (1.1) with the same matri-
ces but with b ∈ ℜn×1 and u(s) = u(s) ∈ ℜ 1×1 and a state-feedback control
law defined as

u(t) = −f T ẋ(t)− gTx(t) (1.13)

where f and g ∈ ℜn×1, it should be noted that each nonzero term in f and g

implies the use of a sensor. Transforming equation (1.13) in the Laplace fre-
quency domain and combining it with equation (1.2) the closed-loop dynamic
equation is obtained

[Ms2 + Cs+ K+ b(g + fs)T ]x(s) = f(s) (1.14)

The closed-loop dynamic stiffness matrix differs from the open-loop one by
a rank-1 modification b(g + fs)T which is a consequence of state-feedback
using a single input u(t). The closed-loop receptance matrix can be obtained
from the open-loop one using the Sherman-Morrison formula [28] that gives
the inverse of a matrix with a rank-1 modification in terms of the inverse of
the original matrix

H̃(s) = H(s)−
H(s)b(g + fs)TH(s)

1 + (g + fs)TH(s)b
(1.15)

The poles of the closed-loop system are the roots of 1+(g+fs)TH(s)b which is
a scalar equation and to assign a complex set of eigenvalues {λ1, λ2, . . . , λ2n}
the terms of gains matrices have to be found such that

(g + λkf)
TH(λk)b = −1 k = 1, 2, . . . , 2n (1.16)

Equation (1.16) can be rewritten as

rTk g + λkr
T
k f = −1 k = 1, 2, . . . , 2n (1.17)

with rk = H(λk)b. In order to obtain the gains term a linear system of 2n
equations in 2n unknowns need to be solved
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}
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(1.18)

If G is invertible the system is controllable [22] and if the poles are placed
in complex conjugate pairs the gains are strictly real [25].

The characteristic polynomial of the zeros of receptance H̃ij is given from
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1.1. Receptance Method

ijth numerator term of the equation (1.15)

eT
i

(

H(µk)−
H(µk)b(g + µkf)

TH(µk)

1 + (g + fµk)TH(µk)b

)

ej = 0 k = 1, 2, . . . , r (1.19)

Where ek is the kth column of the identity matrix I ∈ ℜn×n, and {µ1, µ2, . . . , µr}
is the set of complex zeros wanted, which are the roots of the numerator of
equation (1.19). In order to achieve the zero placement the gains have to
satisfy

eT
i {[1 + (g + µkf)

TH(µk)b]H(µk)−H(µk)b(g + µkf)
TH(µk)}ej = 0

[(g + µkf)
TH(µk)b]e

T
i H(µk)ej − eT

i [H(µk)b(g + µkf)
TH(µk)]ej = −eT

i H(µk)ej

Hij(µk)(g+µkf)
TH(µk)b−eT

i H(µk)b(g+µkf)
TH(µk)ej = −Hij(µk) (1.20)

Where Hij is the ijth numerator of the open-loop receptance. Noting that
eT
i H(µk)b is a scalar as Hij , tk is defined as

tk = Hij(µk)H(µk)b− [eT
i H(µk)b]H(µk)ej

The set of equations represented by equation (1.20) can be rewritten in a
matrix form
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(1.21)

It is possible to place poles and zeros simultaneously, given two complex sets
{λ1, λ2, . . . , λp} and {µ1, µ2, . . . , µr} with p + r ≤ 2n, the gains g and f are
obtained solving the linear system (1.22)
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(1.22)

Once again if the poles and the zeros are placed in complex conjugate pairs
the terms of the gains matrices are strictly real and as the output-feedback
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CHAPTER 1. Introduction

control the control law used can be based on displacement, velocity or accel-
eration feedback or any combination of the previous ones.

As said before for each nonzero term in g and f there should be a sensor,
and the the relative state needs to be evaluated, usually only few states
are used in the state-feedback control and only the corresponding terms in
the gains matrices are different from zero. In order to calculate the correct
elements of the gains the rows of rk and/or tk, that coincide to the available
states, are selected. If there are p nonzero terms in each gain matrix, placing
m = p pairs of poles or zeros leads to a unique solution if the dynamic system
is controllable, if m < p the system has infinite solutions and the one with
minimum norm is used and if m > p the system is solved in a least-squares
sense.
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Chapter 2

Rigid wing

In this chapter the receptance method is applied to the model of a rigid wing
with two degrees of freedom, the eigenvalues of the aeroelastic system are
placed using the theory described in the first chapter and their placement is
investigated in order to increase the flutter speed.

A model for the experimental tests has been designed and than a nume-
rical one has been implemented with the same property in order to predict
its behavior.

The rigid wing has two degrees of freedom, pitch ϑ and heave h, and can
be represented by a two dimensions airfoil as figure 2.1 shows.

Figure 2.1: Geometry of the wing section with pitch and plunge springs
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CHAPTER 2. Rigid wing

2.1 Experimental model

The experimental model has been designed for wind tunnel tests, given the
test section of the wind tunnel used at Liverpool University the support
system and the springs has been conceived.

The airfoil used in the test section is a NACA0018, the active control force
is given by a flap which length is one fourth of the wing span and its chord
is one fifth of the airfoil chord. The control surface is driven by a V-stack
piezoelectric actuator allowing a deflection of about ±7 degrees, the design
of the actuator’s geometry and layout is the same adopted by Ardelean et
al in [29]; this kind of actuator has already been used and it proved to be
successful in the active flutter suppression for an aeroelastic system, as shown
in [10], and will be adopted for this study.

Figure 2.2: V-stack actuator

Figure 2.2 is taken directly from [10] and shows how the actuator is
integrated in the wing, the numbers in the figure refer respectively:

1. indicate the wing rib

2. is the actuator support

3. show the actuator

4. is the slider

5. represents the hinge line

6. is the ball-bearing support

7. indicate the flap rib.
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2.1. Experimental model

The wing is fitted inside the test section of the wind tunnel in order to
simulate a two dimensions airfoil and to avoid the effects of the finite wing
theory; the model used has been made of balsa wood and has been reinforced
with aluminum plates where there is the connection of the piezoelectric actu-
ator, the skin of the airfoil has been made with a film of polymeric material.

The model has been designed so that the parameters are constant over
the span length as much as possible, and so that is possible to add additional
masses in order to increase the global mass or in order to shift the center of
gravity of the airfoil.

In table 2.1 are shown the main features of the wing obtained without
additional masses:

Table 2.1: Wing parameters

Parameter Symbol Value

Span length [m] sw 1.2

Chord length [m] cw 0.35

Mass [kg] mw 3.6

Moment of inertia [kgm] IC 0.0253

Position of the center of gravity [m] xC 0.1472

Position of the reference point [m] xP 0.1167

Position of the aerodynamic center [m] xQ 0.0875

Flap span length [m] sβ 0.3

Flap chord length [m] cβ 0.07

The distances xC , xP and xQ are measured from the leading edge and refer
to the points in figure 2.1; P is the point where the plunge displacement is
measured and it is placed at one third of the chord length while Q is placed
at one quarter of the chord.

The wing moves jointly with a passing aluminum shaft which gives the
structural stiffness to the model; the shaft connects the wing to the springs
that let it rotate and move upward. The aluminum pole defines the center
of rotation P .
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CHAPTER 2. Rigid wing

In figure 2.3 is shown an overview of the wind tunnel, the wing supports
and the springs designed for this experiment.

Figure 2.3: Outline of the full test section

In figure 2.3 for clarity only half of the supports are displayed, the same
braces configuration is used on the other side of the wind tunnel. The number
in the figure refer respectively to:

1. represents the airfoil in the wind tunnel

2. shows the torsional bar

3. indicate the vertical stiffness adjustable spring

4. is the torsional stiffness adjustable spring

The torsional bar is a steel cylindric bar with a high torsional stiffness
that provides the same vertical displacements on the two sides of the airfoil.
The torsional bar rotate jointly with two horizontal arms that, for small
displacements, move upward and downward two vertical arms connected with
bearings to the wing’s shaft.

The springs, both vertical and torsional, are designed with elastic beam.
The vertical springs on one side is fixed to the ground’s supports while on the

12



2.1. Experimental model

other other side bear the wing; the airfoil and springs are attached through
bearings that allow the shaft to rotate. In figure 2.4 is shown one vertical
spring, as said before there is one symmetric spring on the back side of the
test section.

Figure 2.4: Adjustable vertical spring
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CHAPTER 2. Rigid wing

As said before the experimental model has been designed such that the
parameters may be changed easily; in fact by varying the clamp location in
the direction shown in the figure, it is possible to vary the stiffness of the
vertical spring.

Figure 2.5: Vertical stiffness range

In figure 2.5 is displayed the range of the vertical stiffness versus the
beams length, the chart shows the stiffness of the global system and that can
vary from 200Nm−1 to about 23000Nm−1.
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2.1. Experimental model

The torsional spring is displayed in figure 2.6; the beam that gives the
stiffness to the spring is fixed and moves jointly with the vertical springs
beams and it is connected with a sting to the aluminum shaft; when the
shaft rotates bends the beam.

Figure 2.6: Adjustable torsional spring

The torsional spring is adjustable as the vertical one using the same
method, by varying the length of the beam. In figure 2.7 is displayed
the range of the torsional stiffness versus the beams length that goes from
10Nmrad−1 to 320Nmrad−1.
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CHAPTER 2. Rigid wing

Figure 2.7: Torsional stiffness range

Using these ranges of stiffness, it is possible to vary the flutter speed of
the aeroelastic system approximately between 10ms−1 to 70ms−1. For the
tests the value stiffness adopted are 5000Nm−1 for the vertical spring and
100Nmrad−1 for the torsional one.

Once designed the supports it is possible to calculate the external mass
acting on the system; summing the masses of all the bolts, blocks arms and
the inertia of the rotating components as horizontal arms and torsional bar
the resulting external mass is equal to about 6.5 kg acting on the vertical
spring and working for the plunge h degree of freedom.

2.2 Numerical model

A numerical model has been implemented, using Matlab, in order to simulate
the wind tunnel experiment and foresee the behavior of the airfoil.

The structural matrices of the equations of motions have been obtained
with Lagrange equations considering the wing as rigid, adding a external
lumped mass me equals to the supports mass that acts on the vertical spring
but not including in the model the additional masses that change the center
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2.2. Numerical model

of gravity of the airfoil and neglecting the structural damping.
The potential energy Ep is given by:

Ep =
1

2
khh

2 +
1

2
kϑϑ

2 (2.1)

where kh and kϑ are respectively the pitch and plunge stiffness, h is the
displacement of P and ϑ is the rotation as in Figure 2.1.

The kinetic energy Ek is

Ek =
1

2
mwv2

C +
1

2
mev

2

P +
1

2
IC ϑ̇

2 (2.2)

where mw is the mass of the wing, IC is the moment of inertia about C,
vC and vP are the velocities of C and P which can be expressed as

vC = vP + ϑ̇b̂3 × (xC − xP )(−b̂1) (2.3)

vP = −ḣ̂i2 (2.4)

so vC becomes

vC = −ḣ̂i2 − (xC − xP )ϑ̇b̂2 (2.5)

The unit vector b̂2 can be written as

b̂2 = − sin ϑ̂i1 + cos ϑ̂i2 (2.6)

if ϑ is small

b̂2 = −ϑ̂i1 + î2 (2.7)

Substituting equation (2.7) in equation (2.5)

vC = (xC − xP )ϑϑ̇̂i1 − (ḣ+ (xC − xP )ϑ̇)̂i2 (2.8)

substituting equations (2.4) and (2.8) in equation (2.2) and assuming that
ϑ is small, the higher order term containing ϑ2ϑ̇2 can be neglected, so the
kinetic energy becomes

Ek =
1

2
mw(ḣ

2 + (xC − xP )
2ϑ̇2 + 2(xC − xP )ḣϑ̇) +

1

2
meḣ

2 +
1

2
IC ϑ̇

2 (2.9)

The moment of inertia about P can be calculated as

IP = IC +mw(xC − xP )
2 (2.10)
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so

Ek =
1

2
mw(ḣ

2 + 2(xC − xP )ḣϑ̇) +
1

2
meḣ

2 +
1

2
IP ϑ̇

2 (2.11)

Applying Lagrange’s equations

d

dt

∂Ek

∂q̇i
+

∂Ep

∂qi
= Qi (i = 1, 2) (2.12)

Where q1 = h, q2 = ϑ, Q1 = −L (lift force) and Q2 = M (pitching
moment), the equations of motion, in a matrix form, result

[

mw +me mw(xC − xP )
mw(xC − xP ) IP

]{

ḧ

ϑ̈

}

+

[

kh
kϑ

]{

h
ϑ

}

=

{

−L
M

}

(2.13)

To obtain the aerodynamic forces, lift and pitching moment, a quasi-
steady aerodynamic model has been used with forces that depends on the
displacements of the degree of freedom and on the relative velocity between
the wing and the airflow which leads to a modification of the angle of attack;
to include the unsteady behavior of the aerodynamic a term is added: Mϑ̇ is
the unsteady aerodynamic pitching term

The forces acting on all the wing are computed applying the string theory
integrating along the wing span the features of each airfoil assuming constant
parameters along the wing span.

The expression of the lift and the pitching moment are

L =
1

2
ρV 2cwswCL,αϑ+

1

2
ρV cwswCL,αḣ (2.14)

M =
1

2
ρV 2cwswCL,α(ϑ+

ḣ

V
)(xP − xQ) +

1

8
ρV swc

3

wMϑ̇ϑ̇ (2.15)

Where V is the air speed, ρ is the air density, CL,α is the two-dimensional
wing lift curve slope, cw and sw are respectively the wing chord length and
the wing span length.

As said before the aerodynamic terms depend on the degrees of freedom
and on their derivative and that affects the stiffness and the damping of the
system with a term proportional to the velocity of the airflow. The equation
of motion of the uncontrolled system can be rewritten as

Mq̈ + (ρVCa +C)q̇+ (ρV 2Ka +K)q = 0 (2.16)

where M, C and K are respectively the structural mass, the structural damp-
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ing (equals to zero in this model) and the structural stiffness, with q the
degrees of freedom vector while Ca is the aerodynamic damping and Ka is
the aerodynamic stiffness defined as

Ca =

[

1

2
cwswCL,α 0

−1

2
cwswCL,α(xP − xQ) −1

8
swc

3
wMϑ̇

]

(2.17)

Ka =

[

0 1

2
cwswCL,α

0 −1

2
cwswCL,α(xP − xQ)

]

(2.18)

Now it is possible to check the stability of the uncontrolled system versus the
airflow velocity V by computing the eigenvalues of the system; the aerody-
namic matrices depend on the air speed hence when V is equal to zero the
system is undamped and the eigenvalues are purely imaginary.

To obtain the eigenvalues the system is transformed in the state space
form

ẋ =

{

q̇

q̈

}

=

[

0 I
−M−1(ρV 2Ka +K) −M−1(ρVCa +C)

]{

q

q̇

}

= Ax (2.19)

Where A is the state matrix. There are four eigenvalues in complex conjugate
pairs in the form

λj,j+1 = ωjζj ± ωj

√

1− ζj j = 1, 2

plotting the real part versus the imaginary part of each pole changing the
air speed the root locus for the uncontrolled system is obtained as shown in
figure 2.8.

While the plots of eigenvalues damping, frequency, real part and imagi-
nary part versus the velocity of airflow are displayed in figure 2.9.
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Figure 2.8: Root locus of the uncontrolled system
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Figure 2.9: Open loop V-plots

For the uncontrolled system the flutter occurs at 29.4ms−1.

2.3 Control by the receptance method

The aeroelastic model is controlled trough the deflection of the control sur-
face, it is assumed that the flap can move to any prescribed position, within
a range of acceptable values, without considering its dynamic so that the de-
flection β is the input of the system and not a degree of freedom. The control
surface acts on the system trough the aerodynamic forces, proportional to
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its deflection, that are obtained applying the string theory.

Lcontrol =
1

2
ρV 2cwsβCL,ββ (2.20)

Mcontrol =
1

2
ρV 2sβ(cwCL,β(xP − xQ) + c2wCM,β)β (2.21)

Using the data from tables 2.1 and where

CL,β =
CL,α

π
(arccos(1− 2E) + 2

√

E(1−E))

CM,β = −
CL,α

π
(1−E)

√

E(1−E)

and E is the chord fraction cβ/cw.

The control force acting on the aeroelastic system is

F = fββ =

{

−Lβ

Mβ

}

β (2.22)

The control law used, based on the state feedback control with the recep-
tance method described in the first chapter, is proportional to the displace-
ments and the velocity of the degrees of freedom

β = −gTq− fT q̇ (2.23)

The equation of motion of the controlled system become

Mq̈ + (ρVCa +C+ fβf
T )q̇+ (ρV 2Ka +K+ fβg

T )q = 0 (2.24)

while the state matrix is

Ã =

[

0 I
−M−1(ρV 2Ka +K+ fβg

T ) −M−1(ρVCa +C+ fβf
T )

]

(2.25)

In a two dimensions model it can be placed up to four poles, two complex
conjugate pairs in order to have real gains, assuming to know the four states
obtainable with two sensors. The gains have the same dimensions of the
generalized coordinates hence when there are four poles placed there is a
unique solution to the system, when less poles are placed the linear system
is underdetermined and there are infinite solutions, in this case the solutions
with minimum norm is chosen.

In the tests the poles have been placed at two control air speed, VC equals
to 10ms−1 and 20ms−1 and different strategies have been adopted:
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• changing the real or imaginary part of the first pair of poles and leave
the other pair unconstrained and vice versa

• changing the real or imaginary part of the first pair of poles and assign
to the second pair the same value of the open loop and vice versa

To investigate the effects of the position of the poles the real and the imagi-
nary part have been changed separately; increasing or decreasing the real part
of the eigenvalue is equivalent to increase or decrease its damping while acting
on the imaginary part affects its frequency because the damping ζj ≪ 1.

Both real and imaginary part have been changed from −30% to +30% of
the respective open loop value, than comparisons have been made between
the results.

2.3.1 First pairs of poles placed

Real part modification

Decreasing the real part of the first pair of poles the damping of the first
mode is actually reduced, the poles that go unstable are the second pair and
the change affects slightly the path that they follow before the instability,
as shown in figure 2.10, hence the flutter speed of the closed loop system is
very close to the open loop one even if it is lower as shown in figure 2.11
and in figure 2.12.
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Figure 2.10: Root locus decreasing the real part of the first pair of poles, VC =
10ms−1, leaving the second pair free

22



2.3. Control by the receptance method

0 5 10 15 20 25 30 35 40 45 50
−100

−50

0

50

100

V [ms−1]

ζ

 

 

Open loop FS

-10% FS

-20% FS

-30% FS

Open loop

-10%

-20%

-30%

Figure 2.11: Damping plot decreasing the real part of the first pair of poles, VC =
10ms−1, leaving the second pair free
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Figure 2.12: Frequency plot decreasing the real part of the first pair of poles,

VC = 10ms−1, leaving the second pair free

As shown in the figures above the change influences the behavior of the
second pair of poles after that the instability occurs. In the frequencies plot
after the splitting of the first pair of poles, where the imaginary part become
zero and there are two real poles instead of two complex conjugate poles, the
frequency has been set to zero because the mode described by that pair of
poles is no longer oscillatory.
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Fixing the second pair poles, forcing them in the same position of the
open loop system, and decreasing the real part of the first one the behavior
is similar to the previous case as shown in figure 2.13.
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Figure 2.13: Root locus decreasing the real part of the first pair of poles, VC =
10ms−1, placing the second pair

Comparing the two strategies it can be seen that fixing the second pole
forces it to follow the path of the open loop system up to higher air speeds
than the other case and this leads to lower flutter speed due to an anticipated
trespassing of the stability threshold. In figure 2.14 is shown the root locus
of the second poles using the two strategies for a −30% variation of the first
pairs of poles real part.
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Figure 2.14: Root locus of the second mode, −30% first pole real part variation,

VC = 10ms−1, two strategies compared

24



2.3. Control by the receptance method

0 5 10 15 20 25 30 35 40 45 50
−100

−80

−60

−40

−20

0

20

40

60

80

100

V [ms−1]

ζ

 

 

Open loop FS

2 poles placed FS

4 poles placed FS

Open loop

2 poles placed

4 poles placed

Figure 2.15: Damping plot, −30% first pole real part variation, VC = 10ms−1, two

strategies compared

In figure 2.15 is shown the difference in the flutter speeds using the V −ζ
plot. Leaving the second pair of poles free gives a flutter speed that is 1.36%
lower than the open loop instability speed instead fixing the second pair gives
a −5.44% difference.

Test have been made increasing the control speed VC , for both strategies
the raise of the velocity where the control is applied leads to a reduction of the
effects of the control; the closed loop flutter speed is greater for higher control
velocity but the global behavior of the poles is the same for both velocities
and the closed loop system still become unstable before the uncontrolled one.
In figure 2.16 is shown an example of the VC modification effect on the flutter
speed.

25



CHAPTER 2. Rigid wing

0 5 10 15 20 25 30 35 40 45 50
−100

−50

0

50

100

V [ms−1]

ζ

 

 

Open loop FS

V = 10 ms−1 FS

V = 20 ms−1 FS

Open loop

V = 10 ms−1

V = 20 ms−1

Figure 2.16: Damping plot, −30% first pole real part variation, fixing the second

pair of poles, different VC compared

In figure 2.17 is shown the root locus for the open loop system and the
closed loop increasing the real part of the first pair of poles up to the 30% of
the open loop value at VC ; as for the previous example these changes affect
the poles path significantly only at higher air speed so the flutter occurs
almost at the same speed of the uncontrolled system as shown also in figure
2.18.
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Figure 2.17: Root locus increasing the real part of the first pair of poles, VC =
10ms−1, leaving the second pair free
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Figure 2.18: Damping plot increasing the real part of the first pair of poles, VC =
10ms−1, leaving the second pair free

However increasing the real part shifts the trajectories of the second
pair of poles towards the real axis and changes the mode that become non-
oscillatory as can be seen in the frequencies plot against the air speed in
figure 2.19.
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Figure 2.19: Frequency plot increasing the real part of the first pair of poles,

VC = 10ms−1, leaving the second pair free
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Instead fixing the second pair of poles and increasing the damping of the
first mode increases the flutter speed of the controlled system; both the path
of the first and the second pole shifts raising the percentage change up to
30% of the open loop value at VC : the second pole crosses the imaginary
axis at higher air speeds as shown in the root locus in figure 2.20 and in the
damping plot versus the air speed in figure 2.21.
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Figure 2.20: Root locus increasing the real part of the first pair of poles, VC =
10ms−1, placing the second pair
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Figure 2.21: Damping plot increasing the real part of the first pair of poles, VC =
10ms−1, placing the second pair

As shown in figure 2.21 greater is the variation grater is the effect on the
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2.3. Control by the receptance method

flutter speed.
Comparing the two techniques applied, leaving the second pair of poles

free o fixing it, what happens is that even if the frequencies progress with
air speed is similar the damping of the second mode is higher and this leads
to a positive increment in the flutter speed as shown in figure 2.22 and in
figure 2.23.
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Figure 2.22: Damping plot, 30% first pole real part variation, VC = 10ms−1, two

strategies compared
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Figure 2.23: Frequency plot, 30% first pole real part variation, VC = 10ms−1, two

strategies compared
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Imaginary part modification

From the tests made changing the imaginary part of the first pole can infer
that the closed loop system is more sensitive to frequency’s modifications;
the results change significantly depending on the strategy applied and the
value of the modification.

Decreasing the imaginary part from −5% to −10% without fixing the
second mode, the flutter speed shifts from 43.1ms−1 to 2.2ms−1.
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Figure 2.24: Root locus decreasing the imaginary part of the first pair of poles,

VC = 10ms−1, leaving the second pair free
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Figure 2.25: Damping plot decreasing the imaginary part of the first pair of poles,

VC = 10ms−1, leaving the second pair free
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As shown in figure 2.24 the trajectory of the poles changes completely
from the open loop system. Increasing the absolute value of the modification
the stability limit gets lower; this is due to the trajectory of the first pole,
while decreasing its imaginary part changes its path and goes backward to-
wards the imaginary axis as shown in figure 2.26, where is represented the
root locus of the first pole for the initial air speeds.
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Figure 2.26: Root locus of the first pole decreasing the imaginary part of the first

pair of poles, VC = 10ms−1, leaving the second pair free

Unlike the tests made modifying the real part, fixing the second pair of
poles and decreasing the imaginary part gives a completely different behavior
of the poles: the trajectories in the roots plot are similar to the open loop
system. For lower variation (in absolute value) the pole that goes unstable is
the one with higher frequency instead for greater modifications the first pole
is obliged to go too close to the real axis, the assigned frequency is too low,
and it splits into two real eigenvalues one of which become unstable.
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In figure 2.27 is represented the roots locus for this test.
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Figure 2.27: Root locus decreasing the imaginary part of the first pair of poles,

VC = 10ms−1, placing the second pair

Using this strategy the flutter speed is always lower than the closed loop
system and bigger is the modification lower is the flutter speed.

Increasing the imaginary part of the first pair of poles without fixing the
second one the closed loop system goes unstable almost immediately; as for
the previous test where the imaginary part has been reduced, using the same
strategy, the first pole’s trajectory bends toward the imaginary axis before
reaching the assigned pole value creating a ring that cross the imaginary
axis before returning stable; but unlike the other tests is the first pole that
gives the stability margin because goes unstable at low air speed as shown
in figures 2.28 and 2.29.
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Figure 2.28: Damping plot increasing the imaginary part of the first pair of poles,

VC = 10ms−1, leaving the second pair free

−30 −25 −20 −15 −10 −5 0 5 10 15 20
0

10

20

30

40

50

60

ℜ

ℑ

 

 

Open loop

5%

15%

30%

Figure 2.29: Root locus increasing the imaginary part of the first pair of poles,

VC = 10ms−1, leaving the second pair free

Placing the second pair of poles to the same position of the open loop
system and applying the same variation of the previous test to the first
pole the results are completely different: the flutter speed of the closed loop
system is higher than the uncontrolled one. Unlike the open loop system the
pole that cause the instability is the first one that reaches the real axis, the
poles no longer describes a oscillatory mode and the complex conjugate pair
becomes a pair of real poles one of which becomes unstable.
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Figure 2.30: Root locus increasing the imaginary part of the first pair of poles,

VC = 10ms−1, placing the second pair
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Figure 2.31: Frequency plot increasing the imaginary part of the first pair of poles,

VC = 10ms−1, placing the second pair

As shown in figure 2.30 and in figure 2.31 the second pole bends up-
ward, and its frequency increases, when the first pole reaches the maximum
frequency, after that it does not cross the imaginary axis. From the tests
results that for higher variation the flutter speed decreases because the first
pair of poles become unstable earlier.
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2.3. Control by the receptance method

For the tests where the imaginary part has been modified, for both the
strategies applied, the increment of the control velocity VC does not modify
the behavior of the poles but shifts the flutter speed to an higher value than
the corresponding instability at VC = 10ms−1. In figure 2.32 and in figure
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Figure 2.32: Damping plot, −30% first pole imaginary part variation, leaving the

second pair free, different VC compared
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Figure 2.33: Frequency plot, +15% first pole imaginary part variation, placing the

second one, different VC compared
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2.3.2 Second pair of poles placed

Real part modification

Lowering the real part of the second pair of poles corresponds to diminish the
damping of the second mode, which is the mode the leads to the instability,
as expected decreasing it gives for the closed loop system lower flutter speed
and bigger is the modification lower instability speed the aeroelastic system
has.

Acting on the real part of this pole does not affect the behavior of the
first pair of poles so even without fixing them they are already close to the
open loop system and their path differs little from the uncontrolled system;
hence for both the strategies applied, fixing the first pole or leaving it free,
the results are very similar.
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Figure 2.34: Root locus decreasing the real part of the second pair of poles, VC =
10ms−1, leaving the first pair free
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Figure 2.35: Damping plot decreasing the real part of the second pair of poles,

VC = 10ms−1, leaving the first pair free
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Figure 2.36: Frequency plot decreasing the real part of the second pair of poles,

VC = 10ms−1, leaving the first pair free

In figure 2.34, figure 2.35 and figure 2.36 there is an example of decreas-
ing the real part while leaving the other pole free, the second pole crosses
the imaginary axis at lower speed for higher variation while the frequency is
not affected by the modification. In these figures can be also seen how the
first pair of poles does not change its behavior.
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One example of the closeness of the results between the two strategies
applied is shown in figure 2.37; here can be seen that the second pole behave
in the same way in both cases.
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Figure 2.37: Root locus, −30% second pole real part variation, VC = 10ms−1, two

strategies compared

Increasing the control velocity, as in the previous cases, what happens
is that there is the same poles behavior but translated to higher air speeds;
changing the poles at VC = 20ms−1 delays the speed at which the instability
occurs. However if a reduction of the damping at VC = 10ms−1 leads to
a flutter speed lower than the open loop system a decrease of the real part
at VC = 20ms−1 still brings to the instability at lower velocity then the
uncontrolled one. An example is shown in figure 2.38 and in figure 2.39.

38



2.3. Control by the receptance method

−30 −25 −20 −15 −10 −5 0 5 10 15 20
0

10

20

30

40

50

60

ℜ

ℑ

 

 

Open loop

V = 10 ms−1

V = 20 ms−1

Figure 2.38: Root locus, −20% second pole real part variation, leaving the first

pair free, different VC compared
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Figure 2.39: Damping plot, −20% second pole real part variation, leaving the first

pair free, different VC compared

The two strategies gives the same results also at VC = 20ms−1.
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On the contrary increasing the real part raise the damping of the second
mode and that increases the flutter speed of the closed loop system; as the
previous tests the first pair of poles are slightly affected by this variation
and their path is similar to the uncontrolled system so once more the two
strategies gives very close results. With higher damping increments there are
higher flutter speeds as can be seen in figures 2.40 and 2.41.
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Figure 2.40: Root locus increasing the real part of the second pair of poles, VC =
10ms−1, leaving the first pair free
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Figure 2.41: Damping plot increasing the real part of the second pair of poles,

VC = 10ms−1, leaving the first pair free
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Like the cases with the real part reduction these tests show that increasing
VC up to 20ms−1 the effects of the control are lowered and the controlled
system behavior gets closer to the open loop system. In figure 2.42 and in
figure 2.43 there is an example of this comparison with an increment of the
30% of the open loop value but the same thing happens for all the other
variation and for both strategies.
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Figure 2.42: Root locus, 30% second pole real part variation, placing the first pair,

different VC compared
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Figure 2.43: Damping plot, 30% second pole real part variation, placing the first

pair, different VC compared

In all the cases where the real part of the second pair of poles has been
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modified the frequency trend with the air speed for all the poles remain the
same in the closed and open loop system.

Imaginary part variation

Changing the imaginary part of the second pair of poles shows how the
aeroelastic system is more sensitive to frequency variation than damping
modifications, as has happened for the first mode.

Decreasing the imaginary part the two poles come closer at lower air speed
and this brings to a lower flutter speed than the open loop system; while the
second pole travels towards the real axis the first pole interact, reverse its
trajectory and goes unstable. This phenomenon happens both leaving the
first pole free and placing it, even if placing the first pole force it to go to the
prescribed location before it can go unstable and this delay the instability,
that is still lower the uncontrolled system.
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Figure 2.44: Root locus decreasing the imaginary part of the second pair of poles,

VC = 10ms−1, leaving the first pair free

In figures 2.44, 2.45, 2.46 and 2.47 are shown the roots plots and the
frequencies plots applying both strategies; in figure 2.47 can be seen how
the first pair of poles follow the open loop system until higher speeds and
delays the flutter speed.
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Figure 2.45: Frequency plot decreasing the imaginary part of the second pair of

poles, VC = 10ms−1, leaving the first pair free
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Figure 2.46: Root locus decreasing the imaginary part of the second pair of poles,

VC = 10ms−1, placing the first pair
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Figure 2.47: Frequency plot decreasing the imaginary part of the second pair of

poles, VC = 10ms−1, placing the first pair

On the contrary increasing the imaginary part, the poles move away from
each other and that prevent them from interacting; the flutter speed increases
significantly for each of the cases taken into exam.

For these tests the velocity at which the control is applied change con-
siderably the behavior of the closed loop system. As seen in all the figures
above the imaginary part of the second pole decreases from a starting value
given considering the only the mechanical properties (the air speed is equal
to zero hence there are not aerodynamic forces acting on the system and
without structural damping the poles are four complex conjugate without
real part) that represents the frequency of the second structural mode; ap-
plying the receptance method at VC = 10ms−1 what happens is that the
assigned frequency of the second mode is higher than the starting value so
this pole increases its imaginary part moving away from the first pole without
stopping.

For both the strategies applied the first pole does not go unstable, in the
velocity range taken into exam, but placing the first pair of poles the second
one after an initial increment the damping start to decrease and the pole
becomes unstable as shown in figures 2.48 and 2.49, instead leaving the
first one free the damping of the second mode continue to increase as shown
in figures 2.50 and 2.51; in figure 2.51 can be seen that there is no flutter
for the closed loop system in the velocity range investigated.
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Figure 2.48: Root locus increasing the imaginary part of the second pair of poles,

VC = 10ms−1, placing the first pair
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Figure 2.49: Damping plot increasing the imaginary part of the second pair of

poles, VC = 10ms−1, placing the first pair
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Figure 2.50: Root locus increasing the imaginary part of the second pair of poles,

VC = 10ms−1, leaving the first pair free

0 5 10 15 20 25 30 35 40 45 50
−100

−50

0

50

100

V [ms−1]

ζ

 

 

Open loop FS

5% FS

15% FS

30% FS

Open loop

5%

15%

30%

Figure 2.51: Damping plot increasing the imaginary part of the second pair of

poles, VC = 10ms−1, leaving the first pair free

46



2.3. Control by the receptance method

Instead applying the control at VC = 20ms−1, and leaving the first pole
free, the results depend on the entity of the variation applied: if the pole
is placed to an higher frequency of the starting value (as for a variation of
+30% the behavior is the same of the tests made at VC = 10ms−1, for lower
variation changes the kind of interaction between the poles and changes the
pole that leads to the instability as shown in figure 2.52.
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Figure 2.52: Root locus increasing the imaginary part of the second pair of poles,

VC = 20ms−1, leaving the first pair free
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Figure 2.53: Root locus increasing the imaginary part of the second pair of poles,

VC = 20ms−1, placing the first pair

For all the tests made increasing the imaginary part of the second mode
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the flutter speed of the closed loop system is higher than the uncontrolled
one and bigger is the increment higher is the flutter speed.

2.4 Gains

The deflection that the control surface has to assume to apply the control
in reality has fixed structural limitation. According to the control law, β is
a function of time and depends on the response of the system, in terms of
displacements and velocity of the degrees of freedom, to an external pertur-
bation, multiplied by the gains of the controller; hence if the gains are too
big the prescribed deflection needed could exceed the structural limitations
and the control would not be applicable.

The comparisons between the gains have been made considering the eu-
clidean norm of the vectors.

In each of the tests considered, the norm of gains vector solution of equa-

tion (1.18)

{

g

f

}

is greater for tests made changing one pair of poles and

fixing the other one in the same position of the open loop system, than the
other strategy. Placing only one pair while leaving the other free gives g and
f that are the solution at minimum norm, whereas placing the other mode is
a particular case of the previous strategy and that leads to a greater norm.
An example is shown in figure 2.54.
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Figure 2.54: Norm of the vector of the gains changing the real part of the first

mode

Also for all the tests increasing the absolute value of the real/imaginary
part modification gives higher gains, but the gains obtained for a positive
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variation might not be equal to the gains obtained with a negative modifica-
tion with equal in absolute value.

From the trials it appears that changing the real part of the first pair of
poles gives similar results as modifying the real part of the second one. In
both cases, increasing VC , the norms of g and f decrease placing only one
pair while increase placing two modes. Applying the control at the same VC

fixing all the poles gives a vector g with a norm of magnitude 10−1 instead
leaving one pair free leads to a norm of magnitude 10−2 while f maintains a
norm of magnitude 10−2.

Examples are shown in figures 2.55 and 2.56
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Figure 2.55: Norm of g changing the real part of the first mode
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Figure 2.56: Norm of f changing the real part of the second mode
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Also changing the imaginary part of the poles give the same results for
both pair of poles. Placing one or both modes gives very different gains
behavior: placing one pair of poles the norm’s magnitude of f is equal to 101

while placing all the poles it decreases to 10−1. For both strategies g can
become very big with a norm of magnitude 102.

Also for both strategies increasing the VC lowers the value of both gains.
In figures 2.57 and 2.58 is shown the trend of the gains changing the
imaginary part of the poles.
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Figure 2.57: Norm of g changing the imaginary part of the second mode
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Figure 2.58: Norm of f changing the imaginary part of the first mode

What can be seen from the tests is that in almost all the poles placement,
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the higher term in the gains vector is the one related to the heave displace-
ment h and velocity ḣ while the other term is always at least two orders of
magnitude lower.

It is also evident that changing the imaginary part of the poles requires
more energy than affecting the real part and that the results can differ a lot
for the percentage variation adopted.
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Chapter 3

Cantilever elastic wing

In this chapter the receptance method is applied to a rectangular cantilever
wing in order to see what happens applying this control methodology to a
multi degrees of freedom system.

The wing has been modeled as an elastic beam, vertical displacements
and torsional rotations have been considered in the tests; the model has
been implemented using a finite element method used to solve the dynamic
equilibrium equation.

The structural and aerodynamic matrices have been obtained using fifteen
elements, n, for the length of the wing span and the degrees of freedom
used are the vertical displacement w, it’s derivative along the wing span w′

and the torsional rotation ϑ in each element’s node. On each element the
matrices have been obtained by integration of the shape functions adopted
and considering all the parameters constant along the wing span.

The aerodynamic stiffness, damping and control forces for each element
have been calculated using the equations (2.14), (2.15), (2.20) and (2.21)
described in the second chapter. The global matrices have been obtained
expanding the elements matrices and fixing the degrees of freedom of the
node relative to the constrain, the system matrices M, C, K, Ca and Ka

∈ ℜ 3n×3n while fβ, g and f ∈ ℜ 3n×1.
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CHAPTER 3. Cantilever elastic wing

3.1 Open loop system

The parameters used in the numerical model are listed in the table 3.1

Table 3.1: Elastic wing structural parameters

Parameter Symbol Value

Span length [m] sw 7.5

Chord length [m] cw 2

Mass per unit area [kgm−2] mw 100

Position of the center of gravity [m] xC 1

Position of the flexural axis [m] xP 0.96

Position of the aerodynamic center [m] xQ 0.5

Flap span length [m] sβ 7.5

Flap chord length [m] cβ 0.2

Flexural rigidity [Nm2] kh 27.758× 106

Torsional rigidity [Nm2] kϑ 19.834× 105

−6 −4 −2 0 2 4 6
0

10

20

30

40

50

60

ℜ

ℑ

Figure 3.1: Root locus of the open loop system

The system has 3n complex conjugate pairs of poles, the eigenvalues of
the open loop system are obtained solving the system defined in equation
(2.19) using the matrices obtained from the finite element method, in figure
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3.2. Controlled System

3.1 and in figure 3.2 are shown the root locus and the V plots for the
uncontrolled system.
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Figure 3.2: V plots of the open loop system

The uncontrolled system has a flutter speed equal to 47.5ms−1 and the
mode that causes the instability is the second one.

3.2 Controlled System

In the tests shown in this chapter only the first two have been placed using a
control law proportional to the displacement and the velocity of the degrees
of freedom, such as the one described in the second chapter in equation
(2.23), applying the same strategies: changing the real or the imaginary part
of one pair of poles and leaving the other free or placing one pair of poles
and fixing the second one to the same position of the open loop system. As
in the second chapter the velocity where the control is applied VC has been
changed, the values selected vary from VC = 20ms−1 to VC = 40ms−1.

In these trials, it has assumed the possibility to measure, with some
sensors, the vertical displacement and the torsional rotation of the wing
tip, that correspond to the degrees of freedom of the last node. In this
way the receptance method has been applied selecting the rows of the term
rk = H(λk)b of equations (1.16) and (1.17) corresponding to the states
available.

The gains value obtained solving the linear system (1.18) are the terms
of g and f vectors corresponding to the selected displacements and velocities
while the other terms in the gains matrices are placed equal to zero.
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CHAPTER 3. Cantilever elastic wing

3.2.1 First pairs of poles placed

Real part modification

Decreasing the real part of the first pair of poles, even if its damping has been
lowered the flutter speed of the closed loop system increases because changes
the path of the second mode: the turn that makes toward the imaginary axis
is wider and the second pair of poles becomes instable at higher speed. On
the other hand the behavior of the first pair of poles is almost the same while
the control does not affect the other modes at higher frequencies, applying
the control changes the damping of the system whereas the frequency is the
same of the open loop system. Greater is the variation in absolute value
grater is the increment in the flutter speed as shown in figures 3.3, 3.4 and
3.5
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Figure 3.3: Root locus decreasing the real part of the first pair of poles, VC =
20ms−1, leaving the second pair free
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Figure 3.4: Damping plot decreasing the real part of the first pair of poles, VC =
20ms−1, leaving the second pair free
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Figure 3.5: Frequency plot decreasing the real part of the first pair of poles, VC =
20ms−1, leaving the second pair free
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CHAPTER 3. Cantilever elastic wing

Placing the second pair of poles in the same position of the open loop
system does not affect the behavior of the poles, the plots of the two strategies
compared are overlapping as shown in figure 3.6.
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Figure 3.6: Root locus, −30% first pole real part variation, VC = 20ms−1, two

strategies compared

Applying the control at grater VC decreases the effects of the control,
the flutter speed of the closed loop become lower but still greater than the
uncontrolled system. As shown in figures 3.7 and 3.8 the behavior of closed
loop system becomes closer to the uncontrolled system increasing VC .
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Figure 3.7: Damping plot, −30% first pole real part variation, leaving the second

pair of poles free, different VC compared
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Figure 3.8: Root locus of the second mode, −30% first pole real part variation,

leaving the second pair of poles free, different VC compared

Instead increasing the real part of the first pair of poles the results are
the opposite of the previous case: the mode that causes the instability is
still the second one, which bends towards the imaginary axis before the open
loop system. Higher is the variation grater is the effect. As the former test
placing the second pair of poles gives the same results and increasing the VC

reduces the effects of the control law and the system get closer to the open
loop system. The real part increment effects are shown in figures 3.9, 3.10,
3.11 and 3.12.
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Figure 3.9: Root locus increasing the real part of the first pair of poles, VC =
20ms−1, leaving the second pair free
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Figure 3.10: Frequency plot increasing the real part of the first pair of poles,

VC = 20ms−1, leaving the second pair free
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Figure 3.11: Damping plot increasing the real part of the first pair of poles, VC =
20ms−1, leaving the second pair free
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Figure 3.12: Damping plot, 30% first pole real part variation, leaving the second

pair of poles free, different VC compared

Imaginary part modification

Decreasing the imaginary part of the first pair of poles there is a drastic fall
of the flutter speed of the controlled system, bigger is the variation greater is
the loss in the flutter speed value. Lowering the frequency of the first mode
it splits into two real eigenvalues one of which become positive at low air
speed. Changing the imaginary part of the eigenvalue starts to affect also
the modes at higher frequency.
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Figure 3.13: Root locus decreasing the imaginary part of the first pair of poles,

VC = 20ms−1, leaving the second pair free
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Figure 3.14: Frequency plot decreasing the imaginary part of the first pair of poles,

VC = 20ms−1, leaving the second pair free

In figures 3.13 and 3.14 is shown the behavior of the closed loop poles
acting on the imaginary part, once more changing the strategy does not affect
the system properties and increasing VC decreases the effects of the control
as shown in figures 3.15 and 3.16.
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Figure 3.15: Root locus, −30% first pole imaginary part variation, VC = 20ms−1,

two strategies compared
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Figure 3.16: Damping plot, −30% first pole imaginary part variation, leaving the

second pair of poles free, different VC compared

Increasing the imaginary part while leaving the second pair of poles free
does not change the stability of the aeroelastic system, the control does not af-
fect the poles behavior before the system become unstable. However pushing
the poles together they starts to interact and the second mode bend upwards
influencing itself the third mode, the global behavior changes significantly
even if the flutter speed remains the same of the open loop system.
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Figure 3.17: Root locus increasing the imaginary part of the first pair of poles,

VC = 20ms−1, leaving the second pair free
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Figure 3.18: Frequency plot increasing the imaginary part of the first pair of poles,

VC = 20ms−1, leaving the second pair free

Instead placing also the second mode the flutter speed decreases because
the second mode is force to follow the path of the open loop system and in-
teracting with the first one accelerate (for each step of velocity the increment
of the real part is greater) and become unstable.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

12

13

14

15

16

17

18

ℜ

ℑ

 

 

Open loop

2 poles placed

4 poles placed

Figure 3.19: Root locus of the second mode, 30% first pole imaginary part variation,

VC = 20ms−1, two strategies compared
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Figure 3.20: Damping plot, 30% first pole imaginary part variation, VC = 20ms−1,

two strategies compared

Increasing VC diminish the effect of the control as in all the cases taken
into exam.

3.2.2 Second pairs of poles placed

Real part modification

Decreasing the real part of the second pole leaving the first one free the
flutter speed gets lower. For variation up to −10% of the corresponding
open loop value the flutter speed decreases because the second pole has a
lower damping than the open loop system and crosses the imaginary axis
at a lower speed, while for higher variation in absolute value the effects is
more drastic: the first pole bends backwords and it becomes unstable almost
immediatly before splitting into two real poles as shown in the figures below.
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Figure 3.21: Root locus,−5% and −10% first pole real part variation, VC =
20ms−1, leaving the second pair free
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Figure 3.22: Root locus,−20% and −30% first pole real part variation, VC =
20ms−1, leaving the second pair free
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3.2. Controlled System

Placing the first mode the behavior of the closed loop system is similar to
the uncontrolled one even though decreasing the damping of the mode that
causes the instability lower the flutter speed.
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Figure 3.23: Root locus decreasing the real part of the second pair of poles, VC =
20ms−1, placing the first pair
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Figure 3.24: Damping plot decreasing the real part of the second pair of poles,

VC = 20ms−1, placing the first pair
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Figure 3.25: Frequency plot decreasing the real part of the second pair of poles,

VC = 20ms−1, placing the first pair

Increasing VC the effects of the controller are lower, for each level of real
part variation and for each strategy applied, placing only the second mode
and for high variation the poles still interact as shown in figure 3.22.

Increasing the real part gives the same poles behavior for the closed loop
system: placing only the second mode and incrementing its damping up to
+10% of the open loop value the first poles does not interact and the flutter
speed become greater while for higher variation the two poles interact and
the flutter occurs at low air speed as shown in figures 3.26 and 3.27.
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Figure 3.26: Root locus increasing the real part of the second pair of poles, VC =
20ms−1, leaving the first pair free
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Figure 3.27: Damping plot increasing the real part of the second pair of poles,

VC = 20ms−1, leaving the first pair free

Instead applying the other strategy the increment of the real part brings
a higher flutter speed for each variation, and bigger is the variation bigger is
the flutter speed as shown in figures 3.28 and 3.29.
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Figure 3.28: Root locus increasing the real part of the second pair of poles, VC =
20ms−1, placing the first pair
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Figure 3.29: Damping plot increasing the real part of the second pair of poles,

VC = 20ms−1, placing the first pair

Once more increasing VC decreases the effects of the control.

Imaginary part variation

Acting on the imaginary part of the second pair of poles, applying both strate-
gies and increasing or decreasing it, the modes at lower frequency interact
and brings the system to the instability almost immediately, in this case the
modes that causes the instability are the third and the fourth. The control
affects also the poles at higher frequencies, that had not been influenced by
the control in previous trials.

Increasing VC decreases the effects of the control but still the system
become unstable at low air speed.

In the figures below are reported some examples of the imaginary part
variation.
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Figure 3.30: Root locus decreasing the imaginary part of the second pair of poles,

VC = 20ms−1, leaving the second pair free
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Figure 3.31: Root locus increasing the imaginary part of the second pair of poles,

VC = 20ms−1, placing the first pair
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Figure 3.32: Root locus, 10% second pole imaginary part variation, placing the

first pair, different VC compared
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Figure 3.33: Frequency plot, 10% second pole imaginary part variation, placing

the first pair, different VC compared
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3.3. Gains

3.3 Gains

Also for the cantilever wing, as has been done for the tests on the rigid wing,
the gains have been inspected because define the deflection that the control
surface has to make to apply the control.

The gains has been confronted looking at the euclidean norm of the vec-
tors and what can be seen looking at the results of the trials is that as
expected, and as what happened for the tests on the rigid wing, increasing
the absolute value of the variation of the imaginary or real part of the poles
the norm of the gains increases as shown in figure 3.34.
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Figure 3.34: Norm of the vector of the gains changing the real part of the first

mode

The norm of the gains is always greater if two pairs of poles have been
placed instead of placing one pair because the first strategy is a particular
case of the second one and placing one mode give the solution with the
minimum norm.
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Figure 3.35: Norm of f and g changing the real part of the second mode leaving

the first pair of poles free

One more aspect noted confronting the gains is that for every test (figure
3.35), excepting the real part variation of the first pole, increasing VC the
norms of the gains diminish. For test with the real part variation of the first
pole leaving the second pair free, increasing VC the terms in g increases as
shown in figure 3.36.
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Figure 3.36: Norm of f and g changing the real part of the first mode leaving the

second pair of poles free
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3.3. Gains

The magnitude of the norm of the gains changing the real part is equal to
10−2, for the tests on the first pair of poles, and acting on the second mode
gives gains with a magnitude of 10−1.
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Figure 3.37: Norm of g changing the real part of the second mode

Changing the imaginary part of the poles, as what happens for the rigid
wing, gives gains with bigger norms sign that the necessary energy to act on
the imaginary part is far greater than changing the real part.
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Figure 3.38: Norm of the vector of the gains changing the imaginary part of the

second mode
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Figure 3.39: Norm of f and g changing the imaginary part of the first mode leaving

the second pair of poles free
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Chapter 4

Conclusions and future work

4.1 Conclusions

In this thesis the receptance method application on an aeroelastic system
has been investigated, the effects of the poles placement have been studied
looking for a possible general rule in the behavior of the system stability
increasing the airflow speed. This methodology has been applied to different
aeroelastic models in order to study effect of the presence of a greater number
of modes uncontrolled.

What can be seen from the tests made is that the results depends on the
model used, in fact the two numerical models considered have been designed
with different parameters but a global common behavior can be seen.

Changing the real part of the poles gives for both models similar results,
the behavior of the poles is comparable and is close to the behavior of the
open loop system. In each case where the real part has been modified the
frequencies of the system do not vary from the uncontrolled one while changes
only the damping of the poles.

Changing the real part of the first mode does not affect the flutter speed
significantly, in both models the instability occurs near the uncontrolled sys-
tem, while increasing the damping of the second mode, which is the pole that
causes the instability, can increase the performances of the system. Obvi-
ously that depends on the characteristics of the model considered, as shown
in the tests on the cantilever elastic wing an excessive variation might cause
an interaction of the poles and bring the system to the flutter.

What can be also seen in the real variation of the poles is that the gains
value in both models remain low with a magnitude of 10−2 and that is a index
of the feasibility of the control, if the gains would be too big the perturbation
that the system could afford would be low in terms of angle of deflection beta.

It appears that systems are very sensible to a variation on the imaginary
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part of the poles and depending on the model used a variation on the imagi-
nary part might double the flutter speed or bring to the instability at low air
speeds. For the cantilever wing any variation of the frequency of the poles
gives as result a flutter speed lower than the uncontrolled system, that is
because the poles interact also with the modes at higher frequency that are
not modeled in the rigid wing tests.

In additions the gains required to change the frequency of the system are
a lot bigger than than the ones required to change the damping (they are
103 times bigger).

In the following tables are reported the results for the tests made on the
rigid wing and on the flexible rectangular wing. In these tables are listed
only the trials made with the maximum and the minimum variation of the
real or the imaginary part. The other results with different variation fall
inside the range defined by the +30% and −30% modifications of the open
loop values.

In tables 4.3 and 4.4 are reported the results for the rigid wing model
while in tables 4.5, 4.6, 4.7 and 4.7 are listed the tests made on the flexible
wing model. The frequencies, ω1,2 and ω3,4, and the damping, ζ1,2 and ζ3,4,
are the natural frequencies and the damping of the closed loop system at VC

of the two pairs of poles placed.
While in tables 4.1 and 4.2 are listed the properties of the uncontrolled

system for both each model used.

Table 4.1: Rigid wing, open loop properties

VC ω1,2 ω3,4 ζ1,2 ζ3,4 Vflutter

[ms−1] [Hz] [Hz] [ms−1]

10 3.56 9.299 3.719 3.1024
29.4

20 3.73 8.2 9.3195 6.0305

Table 4.2: Flexible wing, open loop properties

VC ω1,2 ω3,4 ζ1,2 ζ3,4 Vflutter

[ms−1] [Hz] [Hz] [ms−1]

20 5.9896 · 10−1 2.7851 1.0972 · 101 1.1168
4730 5.9882 · 10−1 2.6512 1.8128 · 101 1.4115

40 5.9804 · 10−1 2.4538 2.8219 · 101 1.0999
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Table 4.3: Results summary placing one pair of poles and leaving the second one free for the rigid wing model

Poles Variation VC ω1,2 ω3,4 ζ1,2 ζ3,4 Gains Vflutter

changed ℜ or ℑ % [ms−1] [Hz] [Hz] g11 g12 g11 f12 [ms−1]

1,2 ℜ −30 10 3.56 9.3 2.6 3.49 −4.2 · 10−2 3.1 · 10−2 −2.5 · 10−1 −2.3 · 10−2 29

1,2 ℜ 30 10 3.56 9.3 4.8 2.43 7 · 10−2 −4.9 · 10−2 2.6 · 10−1 4 · 10−2 28.6

1,2 ℜ −30 20 3.72 8.21 6.54 7.9 −1.5 · 10−2 2 · 10−2 −2.2 · 10−1 −2.8 · 10−2 29.5

1,2 ℜ 30 20 3.74 8.18 12.1 1.6 3.4 · 10−2 −3.4 · 10−2 2.5 · 10−1 6.5 · 10−2 24.3

1,2 ℑ −30 10 2.5 0 5.3 100 −3.1 · 101 4.4 · 101 −2.4 · 101 −1.8 · 101 0.6

1,2 ℑ 30 10 4.6 0 2.9 −100 3.01 1.6 −9.8 1.9 · 101 0.2

1,2 ℑ −30 20 2.6 0 13.3 100 −4.3 9.4 −7.3 −3.6 1.4

1,2 ℑ 30 20 4.84 0 7.18 −100 2.3 · 10−1 4.3 · 10−1 −3 1.9 1.1

3,4 ℜ −30 10 3.56 9.3 3.6 2.17 −6.3 · 10−4 −8.8 · 10−2 1.6 · 10−2 5.8 · 10−2 23.8

3,4 ℜ 30 10 3.56 9.3 3.93 4 3.4 · 10−4 4.7 · 10−2 5 · 10−3 −5.9 · 10−2 32.1

3,4 ℜ −30 20 3.74 8.19 9.33 4.23 1 · 10−3 −6.1 · 10−2 2.1 · 10−2 2.5 · 10−2 27.8

3,4 ℜ 30 20 3.72 8.2 9.7 7.8 −6 · 10−4 3.7 · 10−2 2.9 · 10−3 −2.5 · 10−2 30.7

3,4 ℑ −30 10 0 6.5 −100 4.43 1.9 · 101 9.7 · 101 −2 · 101 4.4 0.3

3,4 ℑ 30 10 3.91 12.1 4.4 2.39 5.1 −1.2 · 102 −6.2 · 10−1 −8.5 · 10−2 100

3,4 ℑ −30 20 0 5.75 −100 8.6 1.6 9.7 −1 · 101 1.9 0.7

3,4 ℑ 30 20 3.99 10.7 16.4 4.6 1.3 −2.4 · 101 5.6 · 10−1 6.6 · 10−3 100
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Table 4.4: Results summary placing both pair of poles for the rigid wing model

Poles Variation VC ω1,2 ω3,4 ζ1,2 ζ3,4 Gains Vflutter

changed ℜ or ℑ % [ms−1] [Hz] [Hz] g11 g12 g11 f12 [ms−1]

1,2 ℜ −30 10 3.6 9.3 2.6 3.1 −1.8 · 10−1 −5.5 · 10−3 −2.4 · 10−1 1.7 · 10−3 27.8

1,2 ℜ 30 10 3.56 9.3 4.8 3.1 2.34 · 10−1 5 · 10−3 2.4 · 10−1 −1.7 · 10−3 31.2

1,2 ℜ −30 20 3.7 8.2 6.5 6.03 −4.6 · 10−1 −3.6 · 10−2 −1.98 · 10−1 −3.2 · 10−3 28.3

1,2 ℜ 30 20 3.74 8.2 12.1 6.03 5.87 · 10−1 3.8 · 10−2 1.98 · 10−1 3.2cdot10−3 30.8

1,2 ℑ −30 10 2.5 9.3 5.31 3.1 −1.2 · 102 8.8 · 10−1 9.6 · 10−3 9.5 · 10−4 14.7

1,2 ℑ 30 10 4.63 9.3 2.86 3.1 1.62 · 102 −1.19 −1.3 · 10−2 −1.3 · 10− 32.2

1,2 ℑ −30 20 2.62 8.2 13.25 6.03 −4.2 · 101 −6.6 · 10−1 2.7 · 10−2 2.7 · 10−3 28.3

1,2 ℑ 30 20 4.84 8.2 7.18 6.03 5.7 · 101 8.9 · 10−1 −3.7 · 10−2 −3.7 · 10−3 33.1

3,4 ℜ −30 10 3.56 9.3 3.72 2.17 −2.8 · 10−1 −8.2 · 10−2 3.9 · 10−2 5.8 · 10−2 24

3,4 ℜ 30 10 3.56 9.3 3.72 4.03 2.6 · 10−1 5 · 10−2 −3.9 · 10−2 −5.8 · 10−2 31.9

3,4 ℜ −30 20 3.728 8.19 9.32 4.22 −3.5 · 10−1 −6.8 · 10−2 2 · 10−2 2.5 · 10−2 27.8

3,4 ℜ 30 20 3.73 8.21 9.32 7.83 3.3 · 10−1 4.4 · 10−2 −2 · 10−2 −2.5 · 10−2 30.6

3,4 ℑ −30 10 3.56 6.5 3.72 4.43 6.4 · 101 9.3 · 101 7.7 · 10−1 7.6 · 10−2 11.7

3,4 ℑ 30 10 3.56 12.1 3.72 2.39 −8.6 · 101 −1.26 · 102 −1 −1 · 10−1 41

3,4 ℑ −30 20 3.73 5.75 9.32 8.6 1.7 · 101 1.9 · 101 4.2 · 10−1 4.2 · 10−2 24.6

3,4 ℑ 30 20 3.73 10.65 9.32 4.64 −2.3 · 101 −2.5 · 101 −5.7 · 10−1 −5.6 · 10−2 31.5
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Table 4.5: Results summary placing one pair of poles and leaving the second one free for the flexible rectangular wing, real

part modifications

Poles Variation VC ω1,2 ω3,4 ζ1,2 ζ3,4 Gains Vflutter

changed ℜ or ℑ % [ms−1] [Hz] [Hz] g11 g12 g11 f12 [ms−1]

1,2 ℜ −30 20 0.6 2.79 7.7 1.13 8.9 · 10−3 6.5 · 10−5 2.5 · 10−2 −3.6 · 10−4 49

1,2 ℜ 30 20 0.6 2.79 14.2 1.11 −1.2 · 10−2 −7.2 · 10−5 −2.5 · 10−2 5.7 · 10−4 46

1,2 ℜ −30 30 0.59 2.65 12.8 1.45 1.1 · 10−2 7.6 · 10−5 1.8 · 10−2 −7.2 · 10−4 48.5

1,2 ℜ 30 30 0.61 2.65 23.3 1.38 −1.5 · 10−2 −8.6 · 10−5 −1.8 · 10−2 1.16 · 10−3 46.5

1,2 ℜ −30 40 0.59 2.45 20.17 1.2 1.4 · 10−2 9.4 · 10−5 1.6 · 10−2 −1.5 · 10−3 48

1,2 ℜ 30 40 0.61 2.46 35.72 1.02 −1.96 · 10−2 −1.1 · 10−4 −1.6 · 10−2 2.5 · 10−3 46.5

3,4 ℜ −30 20 0.6 2.79 −8.74 0.782 −1.5 · 10−2 −1.3 · 10−1 1.5 · 10−1 −9 · 10−2 11

3,4 ℜ 30 20 0.59 2.79 −10.02 1.45 1 · 10−2 1.3 · 10−1 1.6 · 10−1 5.99 · 10−2 10.5

3,4 ℜ −30 30 0.61 2.65 −15.33 0.988 −2.5 · 10−2 −9.5 · 10−2 1.14 · 10−1 −6.6 · 10−2 14.5

3,4 ℜ 30 30 0.59 2.65 −19.76 1.83 2.08 · 10−2 1.04 · 10−1 1.3 · 10−1 1.1 · 10−2 13

3,4 ℜ −30 40 0.62 2.45 0.197 0.77 −2.95 · 10−2 −6.1 · 10−2 5.2 · 10−2 −3.7 · 10−2 41

3,4 ℜ 30 40 0.56 2.45 8.77 1.43 4.3 · 10−2 1.03 · 10−1 3.6 · 10−2 −2.9 · 10−3 50.5
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Table 4.6: Results summary placing one pair of poles and leaving the second one free for the flexible rectangular wing, imaginary

part modifications

Poles Variation VC ω1,2 ω3,4 ζ1,2 ζ3,4 Gains Vflutter

changed ℜ or ℑ % [ms−1] [Hz] [Hz] g11 g12 g11 f12 [ms−1]

1,2 ℑ −30 20 0.42 2.79 15.6 1.1 7.3 · 10−1 −2.7 · 10−3 −2.3 · 10−4 −1.4 · 10−2 28.5

1,2 ℑ 30 20 0.78 2.78 8.46 1.406 −9.7 · 10−1 −4.9 · 10−3 5.4 · 10−5 6.5 · 10−2 46.5

1,2 ℑ −30 30 0.43 2.65 25.5 1.3 3.1 · 10−1 −1.3 · 10−3 −3.7 · 10−4 −9.9 · 10−3 42.5

1,2 ℑ 30 30 0.77 2.64 14.04 1.86 −4.1 · 10−1 −2.2 · 10−3 4.5 · 10−4 4.5 · 10−2 48.5

1,2 ℑ −30 40 0.44 2.46 38.7 1.01 1.6 · 10−1 −7.4 · 10−4 −6.3 · 10−4 −8.4 · 10−3 47

1,2 ℑ 30 40 0.76 2.44 22.1 1.69 −2.1 · 10−1 −1.1 · 10−3 1 · 10−3 3.5 · 10−2 49

3,4 ℑ −30 20 1.95 2.26 1.6 45.7 −8.7 −9.9 · 10−1 −5.03 · 10−1 4.87 4

3,4 ℑ 30 20 1.41 2.73 2.1 8.76 −5.9 2.5 · 10−1 −5 · 10−3 1.16 15

3,4 ℑ −30 30 1.86 1.98 2.02 53.3 −2.78 −3.1 · 10−1 −2 · 10−1 2.23 8

3,4 ℑ 30 30 1.67 3.09 25.4 −13.9 −5.14 4.8 · 10−1 −1.3 · 10−1 −1.1 5.5

3,4 ℑ −30 40 1.72 1.73 1.57 52.1 −1.1 −1.1 · 10−1 −6.9 · 10−2 1.1 16.5

3,4 ℑ 30 40 1.07 3.19 64.9 0.85 −1.8 2.8 · 10−1 −3.4 · 10−1 −2.1 3
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Table 4.7: Results summary placing both pairs of poles for the flexible rectangular wing, real part modifications

Poles Variation VC ω1,2 ω3,4 ζ1,2 ζ3,4 Gains Vflutter

changed ℜ or ℑ % [ms−1] [Hz] [Hz] g11 g12 g11 f12 [ms−1]

1,2 ℜ −30 20 0.6 2.79 7.7 1.12 8.8 · 10−3 −4.2 · 10−4 2.5 · 10−2 −2.5 · 10−3 49

1,2 ℜ 30 20 0.6 2.79 14.2 1.12 −1.2 · 10−2 7.9 · 10−4 −2.5 · 10−2 2.5 · 10−3 46

1,2 ℜ −30 30 0.6 2.65 12.8 1.41 1 · 10−2 −7.5 · 10−4 1.8 · 10−2 −4.2 · 10−3 48

1,2 ℜ 30 30 0.6 2.65 23.3 1.41 −1.4 · 10−2 1.7 · 10−2 −1.8 · 10−2 4.2 · 10−3 46.5

1,2 ℜ −30 40 0.59 2.45 20.17 1.1 1.4 · 10−2 −2.2 · 10−4 1.6 · 10−2 −7.1 · 10−3 47.5

1,2 ℜ 30 40 0.61 2.45 35.72 1.1 −1.9 · 10−2 2.6 · 10−3 −1.6 · 10−2 7 · 10−3 47

3,4 ℜ −30 20 0.6 2.79 10.9 0.78 −2.8 · 10−3 −3.2 · 10−1 7 · 10−4 −7.3 · 10−2 37.5

3,4 ℜ 30 20 0.6 2.79 10.9 1.45 2.8 · 10−2 3.3 · 10−1 −7.2 · 10−4 7.3 · 10−2 54.5

3,4 ℜ −30 30 0.6 2.65 18.1 0.99 −2.4 · 10−3 −2.6 · 10−1 9.3 · 10−4 −3.6 · 10−2 42

3,4 ℜ 30 30 0.6 2.65 18.13 1.8 2.4 · 10−3 2.6 · 10−1 −9.4 · 10−4 3.6 · 10−2 52

3,4 ℜ −30 40 0.6 2.45 28.2 0.77 −1.3 · 10−3 −1.3 · 10−1 7.4 · 10−4 −1.3 · 10−2 45

3,4 ℜ 30 40 0.6 2.45 28.2 1.43 1.3 · 10−3 1.3 · 10−1 −7.4 · 10−4 1.3 · 10−2 49
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Table 4.8: Results summary placing both pairs of poles for the flexible rectangular wing, imaginary part modifications

Poles Variation VC ω1,2 ω3,4 ζ1,2 ζ3,4 Gains Vflutter

changed ℜ or ℑ % [ms−1] [Hz] [Hz] g11 g12 g11 f12 [ms−1]

1,2 ℑ −30 20 0.42 2.78 15.6 1.12 7.3 · 10−1 −7.2 · 10−2 3.5 · 10−5 −4.1 · 10−5 28.5

1,2 ℑ 30 20 0.78 2.78 8.46 1.12 −9.8 · 10−1 9.5 · 10−2 −4.6 · 10−5 5.8 · 10−5 43

1,2 ℑ −30 30 0.43 2.65 25.5 1.41 3.1 · 10−1 −7.3 · 10−2 4.1 · 10−5 −1.1 · 10−4 42.5

1,2 ℑ 30 30 0.77 2.65 14 1.41 −4.2 · 10−1 9.7 · 10−1 −5.4 · 10−5 1.5 · 10−4 45.5

1,2 ℑ −30 40 0.44 2.45 38.7 1.1 1.6 · 10−1 −7.4 · 102 2.8 · 10−5 −2.8 · 10−4 47.5

1,2 ℑ 30 40 0.76 2.45 22.1 1.1 −2.2 · 10−1 9.9 · 10−2 −3.67 · 10−5 3.8 · 10−4 46.5

3,4 ℑ −30 20 0.59 1.95 10.9 1.6 4 · 10−2 −9.8 · 101 2.7 · 10−1 1.16 10

3,4 ℑ 30 20 0.59 3.62 10.9 0.86 −3.3 · 10−1 1.8 · 102 −5 · 10−1 −8.8 1

3,4 ℑ −30 30 0.59 1.86 18.13 2.02 4.3 · 10−2 −3.7 · 101 1.7 · 10−1 7.7 · 10−1 16

3,4 ℑ 30 30 0.59 3.45 18.13 1.09 −1.6 · 10−1 5 · 101 −2.4 · 10−1 −2.6 2.5

3,4 ℑ −30 40 0.59 1.72 28.22 1.57 4.7 · 10−2 −1.5 · 101 1.1 · 10−1 5.5 · 10−1 33

3,4 ℑ 30 40 0.59 3.19 28.22 0.85 −1.1 · 10−1 1.9 · 101 −1.5 · 10−1 −1.2 5
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4.2 Future work

The studies that could be made on the receptance method applied to an
aeroelastic system are numerous:

• A different control law could be applied instead the one used propor-
tional to the states displacement and velocity.

• The receptance method could be applied using an output-feedback con-
trol even if the advantage of solving a linear system would be lost.

• The response to an external disturb, such as turbulence or gust, could
be computed.

• The tests made could be verified experimentally.

Also the model could be upgraded implementing a more realistic aerodynamic
modeling, including a quasi-steady or unsteady aerodynamic description in
the frequency domain or a model with augmented states in the time domain.
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