
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

PARALLEL SCALABLE PARSING WITH FLOYD GRAMMAR

Relatore: Prof. Stefano CRESPI REGHIZZI

Correlatore: Ing. Alessandro BARENGHI

Tesi di Laurea di:

Valerio PONTE, Matricola n. 755331

Ermes VIVIANI, Matricola n. 754853

Anno Accademico 2010–2011

Για την Παραλλαιόλου και την Παρσεφόνη.

Σας ευχαριστούμε παιδιά.

Acknowledgments

This thesis is the result of the work of about a year. It would not have

been possible without the support and guidance of various persons. In partic-

ular, we would like to express our thanks to professor Crespi Reghizzi Stefano

for his advice and willingness to help us whenever we needed; Ph.D. Barenghi

Alessandro for his technical knowledge and revisions of our code and this the-

sis; professor Mandrioli Dino and Pradella Matteo for their contributions and

interest given during several meetings and brainstorming sessions.

Finally we would like to thank our families for their support during all

these years of study.

iii

Abstract

Recent development in the hardware sector has made parallelized archi-

tectures almost pervasive. While parallel solutions have been found for many

common problems, this is not the case for parsing, where traditional tech-

niques are inherently sequential, except for specific ad-hoc solutions. From

recent studies in the field of formal languages, and in particular Floyd gram-

mars, the possibility for a parallel scalable language-independent algorithm

has surfaced. In this thesis the study of the problem is dealt with and a

possible solution is presented. As a proof of concept the development of the

algorithm and experimental results comparing it with traditional sequential

solutions accompany this work. This thesis is part of a Research Project that

won a Google Research Award.

iv

Contents

1 Introduction 1

2 Main parsing methods 5

2.1 General parsing techniques . 8

2.1.1 Deterministic descent parsing 8

2.1.2 Deterministic ascent parsing 10

2.1.3 Earley algorithm . 18

2.2 Parallel parsing techniques . 20

2.2.1 Preparsing approach 22

2.2.2 Speculative parsing approach 23

3 Floyd grammars 24

3.1 Definition and properties . 24

3.1.1 Properties . 26

3.2 Relationship with other grammar families 28

3.3 Practical considerations . 29

4 Parallel parsing algorithm 31

4.1 Naive operator precedence parser 32

4.1.1 Reduction tree . 36

4.1.2 Usage of reduction sets 37

4.2 Substring operator precedence parser 38

v

CONTENTS vi

4.3 Partially parsed substrings . 40

4.4 Parallel operator precedence parser 42

4.4.1 Data management between iterations 44

5 Implementation and optimizations 47

5.1 Python prototype . 47

5.2 C implementation . 49

5.3 Possible future optimizations 53

5.3.1 Optimized cutoff points 53

5.3.2 Optimized logarithmic cascade of parallel recombinations 54

5.3.3 Optimized handle identification and reduction 56

6 Experimental evaluation and comparison 58

6.1 Python prototype . 60

6.2 C implementation . 66

6.2.1 Results using no Hoard allocator but Judy arrays . . . 69

6.2.2 Results using no Hoard allocator and no Judy arrays . 74

6.2.3 Results using Hoard allocator but no Judy arrays . . . 77

6.3 Comparison with traditional parsers 78

6.3.1 Python prototype compared with PLY 80

6.3.2 C implementation compared with Flex and Bison . . . 82

7 Conclusion 83

A Infix grammar excursus 85

A.1 Prefix grammar . 86

A.2 Suffix grammar . 87

A.3 Infix grammar . 88

B Support algorithms 90

B.1 Reduction tree generation . 90

CONTENTS vii

B.2 Reduction sets computation 92

Glossary 95

List of Figures

2.1 Syntactic parse tree . 8

2.2 Arithmetic expressions grammar in FSM form with LA on forks. 11

2.3 Left recursive arithmetic expressions grammar in FSM form. . 14

2.4 Left recursive arithmetic expressions grammar LR(0) pilot au-

tomaton. 15

2.5 Left recursive arithmetic expressions grammar LR(1) pilot au-

tomaton. 17

2.6 Earley vector built analyzing string a+ a× a. 20

3.1 Relations between formal language families. 28

4.1 Example of OPP applied to a string. 34

4.2 Reduction tree used for the arithmetic expressions grammar. . 37

4.3 Sequential recombination parsing scheme. 43

4.4 Logarithmic cascade of parallel recombinations parsing scheme. 44

5.1 Scheme of a generic prototype parsing phase. 49

5.2 Scheme of the first parsing phase of the C implementation. . . 51

6.1 Python: Speedup with respect to the number of cores. 60

6.2 Python: Speedup with respect to the length of the string with

logarithmic cascade of recombinations. 61

viii

LIST OF FIGURES ix

6.3 Python: Speedup with respect to the length of the string with

sequential recombination. 62

6.4 Python: Execution time with respect to the length of the

string with logarithmic cascade of recombinations. 63

6.5 Python: Execution time with respect to the length of the

string with sequential recombination. 63

6.6 Python: Comparison of speedup with respect to the number

of cores between grammars with long and short rhs with log-

arithmic cascade of recombinations. 64

6.7 Python: Comparison of speedup with respect to the number

of cores between grammars with long and short rhs with se-

quential recombination. 65

6.8 C: Speedup with respect to the number of cores without Hoard

allocator and with Judy arrays. 69

6.9 C: Speedup with respect to the length of the string with log-

arithmic cascade of recombinations without Hoard allocator

and with Judy arrays. 71

6.10 C: Speedup with respect to the length of the string with

sequential recombination without Hoard allocator and with

Judy arrays. 71

6.11 C: Execution time with respect to the length of the string with

logarithmic cascade of recombinations without Hoard alloca-

tor and with Judy arrays. 72

6.12 C: Execution time with respect to the length of the string

with sequential recombination without Hoard allocator and

with Judy arrays. 73

6.13 C: Speedup with respect to the number of cores without Hoard

allocator and without Judy arrays. 73

LIST OF FIGURES x

6.14 C: Speedup with respect to the length of the string with log-

arithmic cascade of recombinations without Hoard allocator

and without Judy arrays. 76

6.15 C: Speedup with respect to the length of the string with se-

quential recombination without Hoard allocator and without

Judy arrays. 76

6.16 C: Speedup with respect to the number of cores with Hoard

allocator and without Judy arrays. 77

6.17 C: Speedup with respect to the length of the string with log-

arithmic cascade of recombinations with Hoard allocator and

without Judy arrays. 78

6.18 C: Speedup with respect to the length of the string with

sequential recombination with Hoard allocator and without

Judy arrays. 79

6.19 Python: Speedup compared to the PLY execution time with

respect to the number of cores employed. 80

6.20 Python: Execution time of the various thread configurations

compared to the PLY generated parser. 81

6.21 C: Execution time of the various thread configurations com-

pared to the Flex and Bison generated parser. 81

List of Tables

3.1 Precedence matrix for the parenthesized arithmetic expres-

sions grammar. 26

xi

Sommario

Recenti sviluppi nel settore dell’hardware hanno portato ad una diffu-

sione sempre più capillare di architetture dotate di unità di calcolo multiple.

Processori multi-core si trovano ormai dai centri di ricerca ai dispositivi mo-

bili, passando per i calcolatori general purpose. Questi sviluppi nel settore

dell’hardware hanno portato ad una spinta anche nel campo del software

perché esso si adatti a questi cambiamenti; in particolare questo ha por-

tato a ricerche crescenti nel campo del calcolo parallelo. Mentre per molti

problemi comuni sono già state trovate e vengono comunemente utilizzate

delle soluzioni alternative a quelle tradizionali che sfruttino il parallelismo,

questo non è vero nel campo della parsificazione. Infatti, poiché gli algoritmi

tradizionalmente impiegati in questo campo sono inerentemente sequenziali,

adattarne il loro utilizzo ad un contesto parallelo non sembra una scelta

praticabile.

In questo lavoro di tesi è stato studiato un approccio differente al prob-

lema della parsificazione che sfrutta le proprietà teoriche delle grammatiche

ad operatori (grammatiche di Floyd). Originariamente formalizzate da Robert

W. Floyd (da cui il nome), per le quali aveva anche introdotto un algoritmo

di analisi sintattica, queste grammatiche furono successivamente abbando-

nate in favore delle più espressive grammatiche libere dal contesto e dai loro

parsificatori. A causa di lavori recenti relativi alle loro proprietà, sono state

riprese in considerazione per un adattamento ad un contesto parallelo.

Il lavoro di questa tesi si è occupato di studiare queste proprietà per

xii

SOMMARIO xiii

poterle sfruttare per lo sviluppo di un algoritmo di parsificazione parallela

effettivamente impiegabile in contesti applicativi reali. In particolare, questa

tesi ha visto come risultati la progettazione di un algoritmo di parsificazione

parallela, la sua prototipazione avvenuta per mezzo di un programma real-

izzato in Python atto a dimostrare la correttezza dell’algoritmo e a fornire i

primi risultati sperimentali, ed infine un’implementazione a più basso livello

in C volta ad essere un punto di inizio per una possibile realizzazione che

possa competere ed eventualmente superare gli algoritmi che al momento

costituiscono lo stato dell’arte degli analizzatori sintattici. Conclude la tesi

un capitolo contenente i risultati sperimentali ottenuti utilizzando gli stru-

menti software realizzati e delle considerazioni finali relative al lavoro svolto.

Questa tesi si inserisce all’interno di un Progetto di Ricerca vincitore di un

Google Research Award.

Chapter 1

Introduction

This work belongs to the research area of formal languages and compil-

ers; in particular, it focuses on the study of parsing techniques. The purpose

of this thesis is to design and implement a new parsing method, which can

obtain substantial advantages over traditional parsers on parallel architec-

tures. This has been done exploiting the formal properties of the so called

Floyd grammars [1], also known as operator precedence grammars.

Recent development in the hardware sector has made parallelized ar-

chitectures almost pervasive. Nearly every general purpose CPU produced

nowadays is multi-core, GPUs are more and more used for heavily parallel

computations and ARM is producing various multi-core embeddable proces-

sor models [2, 3]. In general, parallel hardware stands for hardware capable of

parallel computing, i.e. a form of computation in which many different calcu-

lations are performed simultaneously. Parallel computation has the obvious

advantage of improving performances, since executing the same computa-

tions sequentially is slower that executing them simultaneously on different

processors. As it has been stated by Amdahl [4] the maximum achievable

speedup on a parallel architecture can be defined as

1

(1− P) + P
N

1

CHAPTER 1. INTRODUCTION 2

where P is the portion of the program that may be parallelized and N is the

number of processors employed to perform the computation. Theoretically,

if P is 1, i.e. the entire problem is parallelized, the maximum speedup is N
P .

Unfortunately, in practice the speedup drops rapidly as N is increased, since

in general P < 1 and thus the maximum speedup has a fixed saturation

level.

The drawbacks of parallelization is that not every problem can be solved

in parallel (intrinsically sequential problems) and that, in general, finding an

adequate parallel formulation of a problem is more difficult than finding the

corresponding sequential one. This is particularly true in the field of parsing,

where the most general and diffused algorithms are intrinsically sequential.

For instance, as we will see in chapter 2, an LR(1) parser has the concept

of state [5], which represents the rules that could possibly be reduced while

reading a token; the state depends on the entire prefix of the string analyzed

up to that moment. A parallel parser could possibly analyze a substring

which may not be a valid prefix of the language and therefore the initial

state (the state in which the parser is found when starting the analysis of

the substring) is generally unknown. Therefore it is evident that a parallel

parser could not easily use such a paradigm in order to work.

However, for some particular languages, it seems possible for the state

not to depend on the entire prefix but only on a limited amount of preceding

tokens; therefore, the analysis of a string belonging to such a language could

possibly be parallelized using another method. Let us take for instance a

generic Dyck language [5]; in order to correctly recognize a certain paren-

theses structure it is sufficient to know its starting and ending points. It is

obvious that, splitting a string into different substrings, it is always possible

to reduce the balanced parentheses structures, i.e. structures in the form

‘(s)’ where ‘(’ is the opening bracket, ‘s’ is a generic substring and ‘)’ is

the closing bracket. Therefore a parallel parser may try to recognize all the

CHAPTER 1. INTRODUCTION 3

balanced parentheses structures in a given substring and then try to reunite

them with the whole string.

Such an approach (adequately extended and modified) may be applied

to a wider range of languages. In fact, Dyck languages have little to no use

in a real world context and therefore a more general method, applicable to

more powerful languages, is needed. For instance, real world languages such

as XML or JSON have an evident parenthesized structure, and thus could

benefit a lot from a parallel analysis. In particular, in our thesis we focused

on designing and developing a parallel parsing algorithm for the languages

generated by Floyd grammars (from now on indicated as FGs), which can

include languages such as the ones cited above. Even if operator precedence

parsing, i.e. the parsing method used for FGs, is one of the oldest methods

[6], it has not been researched or employed much since its introduction. In

fact, in order to be used, it requires the target grammar to be expressed in a

restrictive way. However, its reintroduction is justified by recent research [1]

which have shown more opportunities for them to be employed in a parallel

computation environment than traditional parsers, such as LR or LL, which

have been thought to accept less restrictive grammars and optimized for

sequential computations.

The reason behind the attempt to parallelize parsing, despite that current

state of the art sequential parsers are very efficient, comes from the fact that

there exist application fields in which parsing is done extensively. These may

be identified, for instance, in semi-structured data analysis, web spiders,

compilation and anti-virus applications. It is evident that, if parsing is one

of the main activities of a particular application there is interest in doing it

as efficiently as possible.

The developed method produced interesting results in terms of speedup,

making it and its possible future developments a feasible and reasonable

choice for a parser, both in a limited parallel environment, e.g. desktop or

CHAPTER 1. INTRODUCTION 4

mobile devices with few cores used to browse the web, and in highly parallel

environments, e.g. server machines that analyze large quantities of semi-

structured data. For this reason, the Research Project of which this thesis

constitutes the proof of concept, has won a Google Research Award [7].

Our work is presented in the following chapters; in chapter 2 we introduce

current state of the art parsing methods; in particular we focus on general

sequential techniques and ad-hoc parallel parsers, i.e. developed only for

specific languages. In chapter 3 we discuss FGs and their theoretical prop-

erties which serve in order to explain why the languages generated by such

grammars can be easily parsed in a parallel way. In chapter 4 we describe in

detail the parallel parsing algorithm we developed. In chapter 5 we describe

the optimizations we did or planned to do both on the algorithm and on its

implementation. In chapter 6 we present a suite of experimental activities

we performed and we discuss the results obtained. In chapter 7 we give a

final evaluation of the implemented algorithm and its future developments.

Chapter 2

Main parsing methods

In this chapter we give an introduction to the lexical analysis and parsing

processes, followed by a section in which we describe what are the current

state of the art parsing techniques and we address issues that prevent their

parallelization; in the last section we present some of the already existent

parallel parsers that have been developed for a specific language.

Since, as we will see, the parsing process works with tokens, i.e. a string

of characters categorized as a symbol, these have to be generated. This is

done by what is called a lexer. Tokens are defined according to a lexical

grammar, i.e. a set of rules which bind sequences of characters to a symbol.

A typical lexer is composed of a scanner and an evaluator. The scanner is

used to identify the different symbols inside the string, while the evaluator

is used to give each of them their semantic value, i.e. the meaning that a

certain token holds with respect to the grammar that will be used during

the parsing phase.

For instance, if we consider the string 35 + 4 and the following lexical

5

CHAPTER 2. MAIN PARSING METHODS 6

grammar:

{1− 9}{0− 9}∗ → NUMBER

{+} → TPLUS

{×} → TTIMES

{(} → LPAR

{)} → RPAR

the result of the scanning process will beNUMBER0, TPLUS0,NUMBER1

and the evaluation phase will associate to NUMBER0 the value 35 and to

NUMBER1 the value 4. We can observe that not every tokens has a se-

mantic value, as in this example TPLUS0 does not have one.

In general, for parsing we mean the analysis of a sequence of tokens s,

one at a time, with respect to a given formal grammar G, determining the

syntactical structure of the string, in order to define whether it belongs to

the language L(G) generated by G. Although the given definition is correct,

nowadays most parsers, when recognizing a string, build a syntactic parse

tree, i.e. a data structure representing the syntactic structure of the string,

that holds the semantic values of the tokens in the string.

Let us consider a formal grammar G defined as

G =< VN ,Σ, P, S >

where VN is the set of symbols called nonterminal symbols, i.e. the non-

terminal alphabet, Σ is the set of symbols called terminal symbols which

correspond to the possible tokens generated by the lexer, i.e. the terminal

alphabet, P is the set of syntactic production rules and S ∈ VN is a partic-

ular nonterminal symbol called axiom. For instance, if G is used to express

CHAPTER 2. MAIN PARSING METHODS 7

parenthesized arithmetic expressions, it can be defined as

VN = {S, E, T, F}

Σ = {a, +, ×, (,)}

P = {

S → E

E → E + T | T

T → T × F | F

F → (E) | a

}

Consider the string s = a + a × (a × a), its parsing will build the syntactic

parse tree shown in figure 2.1. Suppose each token a represents a number,

we define its semantic value as the value of the number. Therefore for each

production we can define a semantic function that will associate the semantic

values of its right hand side symbols to the semantic value of its left hand

side.

For instance, if we consider the substring a18 ×19 a21 with semantic

values v(a18) = 5 and v(a21) = 2, the resulting semantic value for T15 will be

10 if the semantic function associated with production T0 → T1×F2 (where

the subscripts are used to distinguish the individual symbols in the rule) is

v(T0) = v(T1)× v(F2).

In order to obtain the shown results, i.e. the syntactic parse tree dec-

orated with the semantic values, different parsing methods have been re-

searched and developed. In section 2.1 we give an overview of the most used

ones, their performances and their limitations; in section 2.2 we describe

some recent attempts at parallelizing parsing for particular languages.

CHAPTER 2. MAIN PARSING METHODS 8

S0

E1

E2

T3

F4

a5 +6

T7

T8

F9

a10 ×11

F12

(13

E14

T15

T16

F17

a18 ×19

F20

a21)22

Figure 2.1: Syntactic parse tree

2.1 General parsing techniques

The presentation given in this section is part of [5]. In this section we give

an overview of the most used parsing methods. The reason why we present

these methods is to show how they give almost no chance to employ them in

a parallel analysis of a generic string. By showing how they work this can be

easily realized. First we present deterministic descent algorithms (subsection

2.1.1); after that we show deterministic ascent algorithms (subsection 2.1.2).

Then we describe Earley parser algorithm that can treat any Context-free

Grammar, even ambiguous and non deterministic ones (subsection 2.1.3). In

order to give a short presentation here, many of the needed formal definitions

are omitted and can be found in [5].

2.1.1 Deterministic descent parsing

A descent parser builds the leftmost derivation proceeding from the ax-

iom towards the terminal symbols, where with leftmost derivation we mean

the expansion of the leftmost nonterminal symbol. A descent analyzer ex-

pands the left hand sides of the production rules in their corresponding right

CHAPTER 2. MAIN PARSING METHODS 9

hand side. It terminates either when an error is found or all the nonterminal

symbols have been transformed in terminal symbols corresponding to the

given string.

We present now the LL family used to build deterministic descent parsers.

The first algorithm we see is called LL(1). The LL(1) algorithm is based on

the concept of lookahead. Since for these algorithms the grammar is expressed

as a net of finite state machines, the lookahead serves to identify which edge

to follow when performing a move. For each edge, its lookahead represents

the first terminal symbol that could be read next. If the lookahead sets are

disjoint for every outgoing distinct edge the move is unique: this is defined

as the LL(1) condition. If the LL(1) condition holds for each state of each

machine of a grammar, the grammar can be recognized by an LL(1) parser.

The automaton describing the LL(1) algorithm is defined as follows:

• x is the source string and cc is the current terminal symbol;

• the symbols of the stack are the disjoint union Q = QA ∪QB ∪ . . . of

the states of the machines;

• initially the stack contains only qS,0;

• let s ∈ QA be the symbol on top of the stack; the transitions are defined

as follows:

scan if the transition s
cc−→ s′ is defined in machine MA, then the

current symbol is consumed and s′ is pushed on the stack in place

of s;

call if the transition s B−→ s′ is defined for a nonterminal symbol B and

cc ∈ LA(s
B−→ s′) qB,0 is pushed on the stack and MB becomes

the active machine;

return if s is a final state of the machine MB and cc ∈ LA(s
)−→ s is

popped from the stack and the new state r on top of the stack is

CHAPTER 2. MAIN PARSING METHODS 10

replaced by s′ if r B−→ s′ is defined;

recognize if s is a final state of MS (the machine of the axiom) and

cc is the terminator symbol #, the string is accepted and the

automaton terminates;

default in any other case there is an error, the string is refused and

the automaton terminates.

An example of LL(1) grammar, expressed as a net of FSMs, is the sim-

plified arithmetic expression grammar shown in figure 2.2. Notice that the

grammar had to be modified since it cannot be left recursive. In fact, an

LL(k) parser cannot handle ambiguous or left recursive grammars.

If the grammar does not respect the LL(1) condition it is possible to

either try to modify the grammar and obtain an equivalent LL(1) grammar or

increase the length of the lookahead, i.e. generate an LL(k) parser with k > 1.

If the lookahead now result to be disjoint, the grammar is said to be respect

the LL(k) condition. Any LL(k) parser, with k ≥ 1, has linear complexity

with regards to the length of the input string, since the automaton either

reads and consumes a token or expands a nonterminal. Despite the fact that

a nonterminal can be recursively expanded, this is limited by the number

of nonterminal symbols present in the grammar, since there cannot be left

recursive productions.

However, independently from the length k of the lookahead, not every

grammar can be recognized by an LL(k) parser. Therefore in the next section

we present LR(1), a more powerful technique that can be used on a wider

range of grammars.

2.1.2 Deterministic ascent parsing

As seen in section 2.1.1, the LL(1) method cannot be used if in a state

of a machine there are conflicting lookahead sets. In general LL(k) tries

CHAPTER 2. MAIN PARSING METHODS 11

Figure 2.2: Arithmetic expressions grammar in FSM form with LA on forks.

T'0

T'1x {x}

 {+, #}

T'2

T2 T3

E'0

E'1+ {+}

 {#}

E'2

E2

S1

F1

S0
E

E0 E1
T E'

E

T0 T1
F T'

T

F0
a

CHAPTER 2. MAIN PARSING METHODS 12

to lengthen the lookahead needed to recognize which immediate move to

choose; a different approach would try to delay the choice, and thus keep

into consideration all possibilities, until it can be safely done. This is the

idea on which the deterministic ascent parsing methods, or LR methods, are

based. LR algorithms owe their name to the fact that they try to build the

rightmost derivation of the input string, and they try to do so starting from

the leaves of the tree and proceeding up to the root, i.e. when a complete

right hand side is recognized, it is reduced into its corresponding left hand

side.

In general, algorithms belonging to the LR family do not need a lookahead

set, but require what is called a pilot automaton; intuitively, a state of the

pilot automaton tracks all the possible reductions which were delayed. A

state may be:

reduction if it represents only completely recognized production rules;

move if it represents only partially recognized production rules;

mixed if it represents both completely and partially recognized production

rules.

If none of the states of the pilot automaton is mixed and if every reduction

state represents only one rule, then the LR(0) condition is said to be satisfied

and the language can be recognized by an LR(0) parser, i.e. an LR parser

without lookahead.

Given the pilot automaton for a grammar, the pushdown automaton

representing the corresponding LR(0) parser is directly obtained, and can be

defined as follows:

• the symbol of the stacks are R ∪ Σ ∪ VN where R = P(Q), i.e. the

powerset of Q;

• initially the stack contains only the pilot automaton initial state I0;

CHAPTER 2. MAIN PARSING METHODS 13

• let I be the pilot automaton state on top of the stack and a the current

token; the transitions are defined as follows:

move if the transition I a−→ I ′ is defined, the current token is consumed

and the string aI ′ is pushed on the stack;

reduction if the current pilot automaton state In contains the reduc-

tion state q, with red(q) = {B → X1X2 . . . Xn}, where n ≥ 0

is the length of the right hand side the following action is pre-

formed: the string β′ = X1I1X2I2 . . . XnIn, which is on top of

the stack, will be deleted and replaced by BI ′′, where I ′′ is the

pilot automaton state reached reading the nonterminal symbol B,

i.e. the result of the transition I ′ B−→ I ′′.

• if the only symbol remaining on the stack is I0 and the only remaining

token is the terminator #, the string is recognized and the automaton

terminates;

• if there is no possible move, the string contains an error, it is refused

and the automaton terminates.

An example of LR(0) pilot automaton is shown in figure 2.4 and its

grammar in the form of FSMs net is given in figure 2.3. They represent

the usual arithmetic expressions grammar; the states with outgoing labelless

arrows in the pilot automaton represent that a reduction is possible; it is easy

to notice that there are several mixed states (e.g. I1, I2, I9) and therefore

the grammar is not LR(0). In fact, if a language is LR(0) then it must not

have prefixes, i.e. if a string belongs to the language then none of its prefixes

can.

In order to cope with this problem, in a similar fashion to what has

been done in LL, it is possible to introduce the idea of lookahead for LR as

well. This results in the LR(k) methods, where k ≥ 1, which combine the

lookahead of LL(k) methods with the delay of the choices of LR(0). This

CHAPTER 2. MAIN PARSING METHODS 14

F1

T3

E3

S1S0
E

E0

T

E1

E

E2
+ T

T0

F

T1

T

T2
x

F

F0
a

Figure 2.3: Left recursive arithmetic expressions grammar in FSM form.

CHAPTER 2. MAIN PARSING METHODS 15

I0 = {S0, E0, T0, F0}

I1 = {S1, E1}

E

I2 = {E3, T1}

T

I3 = {T3}

F

I4 = {F1}

a

I5 = {E2, T0, F0}

+

I6 = {T2, F0}

x

I10 = {F1}

a

I9 = {E3, T1}

T

I11 = {T3}

F

I7 = {T3}

F

I8 = {F1}

a

I12 = {T2, F0}

x

I13 = {F1}

a

I14 = {T3}

F

Figure 2.4: Left recursive arithmetic expressions grammar LR(0) pilot automaton.

CHAPTER 2. MAIN PARSING METHODS 16

introduction modifies only the construction of the pilot automaton of the

grammar.

Similarly to the LR(0) condition, an LR(1) condition can be defined for

a state in the pilot automaton as follows:

• no reduction-move conflicts, i.e. if a state is mixed then the lookahead

sets of its reduction candidates and the sets of the labels of the outgoing

edges of its move candidates must be disjoint;

• no reduction-reduction conflicts, i.e. if a state is a reduction state and

there are multiple reduction candidates, their lookahead sets must be

disjoint.

The LR(1) condition holds for a grammar if it holds for each state of its pilot

automaton.

For instance, the pilot automaton for the grammar defined in figure 2.3

is shown in figure 2.5: it can be noted that there exist no reduction-move

conflicts nor reduction-reduction conflicts, and thus the grammar respects

the LR(1) condition and its language can be recognized by an LR(1) parser.

An intermediate approach, that was introduced when low memory capac-

ities prohibited the use of the LR methods due to their large pilot automata,

is the LALR method. This method is worth mentioning since it is still fairly

used in modern parser generators such as Bison [8]. The LALR(1) method

tries to simplify the LR(1) automaton by joining together different states

which are indistinguishable in the LR(0) pilot automaton, i.e. those that

differ only in the lookahead. When joining two states, the lookahead sets are

joined as well for the candidates that correspond to the same state in the

FSMs net. The LALR(1) conditions are the same as the LR(1) conditions.

As for LL(k), it is possible to lengthen the lookahead and generate an

LR(k) parser, with k ≥ 1. However, the family of languages generated by a

grammar LR(k), with k > 1, is the same as the family of languages generated

CHAPTER 2. MAIN PARSING METHODS 17

I0

S->*E

E->*E+T

E->*T

T->*TxF

T->*F

F->*a

#

#,+

#

#,x

#

#

I1 F->a* #

a

I2 T->F* #

F

I3
T->T*xF

E->T*

#,x

#

T

I1
S->E*

E->E*+T

#

#,+

E

I4
T->Tx*F

F->*a

#,x

#,x

x

I5 F->a* #,x

a

I6 T->TxF* #,x

F

I8

E->E+*T

T->*TxF

T->*F

F->*a

#,+

#,+,x

#,+

#,+

+

I9
E->E+T*

T->T*xF

#,+

#,+,x

T

I13 F->a* #,+

a

I14 T->F* #,+

F

I10
T->Tx*F

F->*a

#,+,x

#,+,x

x

I11 F->a* #,+,x

a

I12 T->TxF* #,+,x

F

Figure 2.5: Left recursive arithmetic expressions grammar LR(1) pilot automaton.

CHAPTER 2. MAIN PARSING METHODS 18

by a grammar LR(1), which in turn coincides with the family DCF, i.e. the

family of deterministic context-free languages. It is fairly obvious that not

every grammar which generates a deterministic language is LR(1); but an

equivalent LR(1) grammar can be generated.

As for LL(k), an LR(1) parser has linear complexity with regard to the

length of the input string. The explanation is analogous to the one given

for the LL(k) parser: at every iteration, the automaton either consumes one

input token or performs a reduction. In the latter case, the number of reduc-

tions that can be performed is limited by the number of nonterminal symbols

in the grammar, which is constant.

However, not every language can be analyzed with an LR parser; thus, we

introduce in the next section the Earley method to parse every Context-free

Grammar, even non deterministic ones.

2.1.3 Earley algorithm

The Earley algorithm owes its idea to LR, but, instead of the determin-

istic stack model, it uses a vector of sets, which represents efficiently many

stacks with shared parts. In this way it simulates a non deterministic push-

down automaton without having its exponential complexity. In particular,

instead of using a pilot automaton, the Earley algorithm uses a vector E as

long as the input string, where it stores every state in which the recursive

FSMs net may be found. Every element of E is defined as a set of pairs

< s, p >

where s is the state in the FSM and p is the position inside the string x

where the recognition of the current production rule began.

The algorithm is divided into two parts. There is an initialization phase:

• the first position of the vector E[0] is initialized with the pair <

qS,0, 0 >, where qS,0 is the starting state of the FSM of the axiom;

CHAPTER 2. MAIN PARSING METHODS 19

• every other position of the vector is initialized as the empty set.

Then the algorithm iterates over each input token and performs the following

actions:

prediction for each pair in E[i] in the form < q ≡ A→ α •Bγ, j >, where

the transition q
B−→ s is defined, the pair < r, i > is added to E[i],

where r is the initial state of the FSM MB;

completion for each pair in E[i] in the form < q ≡ A → α•, j >, for each

pair in E[j] in the form < r ≡ B → β•Aγ, k > such that the transition

r
A−→ s is defined, the pair < s ≡ B → βA • γ, k > is added to E[i];

scan for each pair in E[i] in the form < q ≡ A → α • aγ, j >, if a = xi+1

then the pair < r ≡ A → αa • γ, j > is added to E[i + 1], where the

transition q a−→ r is defined.

The algorithm terminates when the construction of the set E[n], where n is

the length of x, is finished; it reports an error if it could not find a pair to

add to E[i + 1] with i < n. If the final set contains at least one pair in the

form < q ≡ S → α•, 0 >, where q is the final state of the FSM MS , the

string is accepted.

The Earley algorithm can be used to recognized non deterministic lan-

guages, and therefore is the most general parsing algorithm. Its complexity

with regards to a string of length n is at worst O(n3), however, in practice

it is much faster: O(n2) for each unambiguous grammar and even less for

deterministic grammars.

An example of the Earley algorithm is shown in figure 2.6. The analyzed

string is a + a × a, generated from the usual left recursive arithmetic ex-

pressions grammar. The Earley algorithm correctly builds the vector and

recognizes the string, since the pair < S → E•, 0 > is present in E[5] after

having consumed the entire input string.

CHAPTER 2. MAIN PARSING METHODS 20

E[0]

S->*E

E->*E+T

E->*T

T->*TxF

T->*F

F->*a

0

0

0

0

0

0

E[1]

F->a*

T->F*

T->T*xF

E->T*

E->E*+T

S->E*

0

0

0

0

0

0

E[2]

E->E+*T

T->*TxF

T->*F

F->*a

0

2

2

2

E[3]

F->a*

T->F*

T->T*xF

E->E+T*

E->E*+T

S->E*

2

2

2

0

0

0

E[4]
T->Tx*F

F->*a

2

4
E[5]

F->a*

T->TxF*

E->E+T*

T->T*xF

S->E*

E->E*+T

4

2

0

2

0

0

Figure 2.6: Earley vector built analyzing string a+ a× a.

As we have seen, all of the presented methods have the same basic prob-

lem for a parallelized approach, i.e. in order to recognize a substring they

need to analyze all the previous tokens and therefore a simple way to use

them in a parallel algorithm has not been found. This limitation falls using

a parser which employs FGs since, as we will see in chapter 3, the recogni-

tion of an entire substring depends only on its previous and following token,

i.e. the context.

2.2 Parallel parsing techniques

In this section we present some approaches that have been proposed to

exploit parallel computing inside of the parsing process. A first real approach

has been proposed in [9], where a parallel extension of the LR algorithm, the

so called piecewise LR, is presented. What this algorithm does is divide the

input at arbitrary points and assign a PLR parser to each of the obtained

substrings. These proceed as normal LR parsers until they find a conflict;

at this point the parser asks the previous parser to synchronize their stacks:

the blocked one will give its stack to the previous one, that may have enough

context to proceed, void its stack and continues with the rest of its input.

This process is repeated until only the leftmost parser has input, point where

it will finish parsing the input as a normal (sequential) LR parser. In the

article there is no experimental evaluation of the algorithm’s performances

and there has been no further development or evaluation of this algorithm.

After this attempt, the attention of research has shifted to the analysis of

CHAPTER 2. MAIN PARSING METHODS 21

the theoretical advantages of parallel parsing. A first attempt to determine

the maximum possible speedup attainable with parallel parsing is proposed

in [10]. In this paper a mathematical model is proposed for parallel parsing

and, through analytical considerations, an upper bound for speedup is ob-

tained. Following works [11] [12] are more practical; in these papers different

possible models of parallel parsing are presented and evaluated. In [11] a

simulator of such a model is proposed and through experiments the perfor-

mances of the model are evaluated. In [12] the same model and a variant

are estimated through mathematical analysis. In both of these papers good

results in term of speedups are shown; however, in none of the cited papers

there is any real implementation and therefore the performance evaluation

does not have to deal with the limitations coming from real multi processor

and multi core platforms; moreover, rather strong and unrealistic assump-

tions with respect to these architectures are made, making, in our opinion,

the results far less meaningful when contextualized in relation to modern

machines.

After these papers there have been no other attempts at developing gen-

eral parallel parsing algorithms. Some ad-hoc parsers have, however, been

developed. They are all targeted at parsing XML; the reason behind this is

that XML is a widely accepted standard with very wide and different ap-

plication fields. Moreover XML parsing is known to become a bottleneck

in applications that use it extensively, due to its verbosity and text-based

nature, and the fact that it includes metadata. This has led to several ap-

proaches to improve its parsing performance, including parallel approaches.

In our research all the methods at first split the input string (or docu-

ment) into several substrings, one for each available core. The approaches

they take in order to perform parsing on each of the substrings are two: the

first one performs a preparsing phase in order to discover the general struc-

ture of the underlying tree, while the second one skips the preparsing phase,

CHAPTER 2. MAIN PARSING METHODS 22

builds several incomplete subtrees and tries to link them together during a

post processing phase.

2.2.1 Preparsing approach

The first approach is described in [13]. It fist makes an initial pass to

determine the logical tree structure of the XML document. This preparsing

phase is used to provide enough context so that each substring can be parsed

starting from an unambiguous state. The preparsing phase is fast since it is

not a complete parsing of the string: in fact, leaf nodes, such as attribute

information items, comment information items and character information

items, can be ignored; moreover element tag names are ignored since they

do not affect the topology of the tree. It is to be noted that, despite the fact

that it is fast, the preparsing phase is still the bottleneck of this approach,

since it is sequential and it has to be done on the whole document. The

preparsing phase produces what is called the skeleton tree.

Once the skeleton tree has been completed, it has to be partitioned and

each element of the partition must be assigned to a thread. This is done ei-

ther statically, i.e. the tree is split in subtrees that are analyzed by different

threads, or dynamically, i.e. the tree is traversed starting from the root and

different branches are analyzed by different threads. The difference between

the two approaches lies in the fact that the dynamic partitioning needs syn-

chronization among threads while the static one does not, but needs to be

executed sequentially before the parsing. The authors of this approach fur-

ther developed techniques to partition the skeleton tree. In particular, they

developed methods to balance the load each threads has to process. This

work can be found in [14].

CHAPTER 2. MAIN PARSING METHODS 23

2.2.2 Speculative parsing approach

The second approach is described in [15]. This parser is based on the

divide et impera principle, which is to split the string at (almost) random

points and analyze each resulting substring independently using what they

they call a speculative parser. The output of the speculative parsers is a forest

of incomplete trees, which are then linked together during a post processing

phase.

In [15], each substring starts with an open bracket: this guarantees that

each chunk can be treated as a new XML document, even though it may not

be well-formed. Then the speculative parser behaves as a traditional XML

parser, but has to handle the fact that it may find errors in its substring

which are not actually errors, but are just the result of the division. When

the speculative parsers are done, the trees must be linked together: this is

done in the post processing phase. During this phase all the errors found

during the speculative parsing phase are evaluated and, if possible, treated

in such a way that all the subtrees can be joined in the tree that corresponds

to the original document.

In [16] a similar approach is proposed. The only difference is that, during

the parsing phase, a preorder numbering is done, which consists of assigning

to each node a unique identifier. These identifiers are then used during the

subsequent phase and permit a faster linking of the subtrees.

As we will see in chapter 4, the method we developed is similar to the

second approach, in which it consists of no preparsing phase, splitting the

string at random positions, parsing each one separately, and then treating

the subtrees in successive phases. We will see that even if our approach is

more general, i.e. it was not thought to be applied only on a particular

language, requires the grammar to be expressed in a particular way: we will

see how this can be done in chapter 3. This is, in our opinion, acceptable,

since there is only more effort required by the designer of the parser.

Chapter 3

Floyd grammars

In this chapter we present the theoretical roots that led to the devel-

opment of a parallel parser. In particular, we introduce and describe Floyd

Grammars (FG), which is the fundamental formalism upon which the entire

work is based, explaining both its formal properties and how these properties

can be used in order to develop a parallel parsing algorithm. The rest of the

chapter is structured as follows: in section 3.1 we provide the formal defini-

tions needed to explain what a FG is; in section 3.2 we describe how FGs

relate to other well known and used formal grammar families, and therefore

why they really are a viable option in order to express commonly used for-

mal languages; finally in section 3.3 we discuss some practical considerations

and aspects needed to be taken into account when expressing FGs for the

developed parser. This chapter, its definitions and theorems are based on [1]

and [6].

3.1 Definition and properties

To define FGs we start from a generic Context-Free grammar G = <

VN ,Σ, P, S > where the symbols have the usual meaning already seen in

chapter 2. A production is said to be in operator form if its right hand side

24

CHAPTER 3. FLOYD GRAMMARS 25

has no adjacent nonterminals. Consequently, a grammar consisting only of

productions in operator form is said to be an operator grammar (OG). If G

is an operator grammar, we can define the concepts of left and right terminal

sets for a nonterminal A as:

LG(A) = {a ∈ Σ | A ∗⇒ Baα}

RG(A) = {a ∈ Σ | A ∗⇒ αaB}

where B ∈ VN ∪ {ε} and α ∈ (VN ∪ Σ)∗.

The notions of left and right terminal sets allow us to define the concept

of operator precedence (OP) between two terminal symbols. Given an OG G,

a, b ∈ Σ, α, β ∈ (VN ∪ Σ)∗ and A ∈ VN we can define three relations:

equal precedence: a .
= b⇐⇒ ∃A→ αaBbβ, B ∈ VN ∪ {ε}

takes precedence: am b⇐⇒ ∃A→ αDbβ and a ∈ RG(D), D ∈ VN

yields precedence: al b⇐⇒ ∃A→ αaDβ and b ∈ LG(D), D ∈ VN

Following these definitions, it is possible for an OG G to define the prece-

dence relations between each terminal pair. The operator precedence matrix

(OPM) is therefore the function that associates every possible ordered ter-

minal symbol pair with the precedence relations holding among them.

Given this, the definition of a Floyd Grammar is straightforward: G is

a Floyd Grammar if and only if M = OPM(G) is a conflict-free matrix,

i.e. ∀a, b, |Mab| ≤ 1. Two OPMs are said to be compatible if their union is

conflict-free. Similarly, two FGs are said to be precedence-compatible if their

OPMs are compatible.

An example of FG has already been given in chapter 2, i.e. the grammar

used to express parenthesized arithmetic expressions. In fact it is immediate

to verify that all the productions are in operator form and that the left and

CHAPTER 3. FLOYD GRAMMARS 26

a () + × #

a m m m m

(l l .
= l l m

) m m m m

+ l l m m l m

× l l m m m m

l l l l l .
=

Table 3.1: Precedence matrix for the parenthesized arithmetic expressions grammar.

right terminal sets are as follows:

LG(S) = {+,×, a, (} RG(S) = {+,×, a,)}

LG(E) = {+,×, a, (} RG(E) = {+,×, a,)}

LG(T) = {×, (, a} RG(T) = {×, a,)}

LG(F) = {a, (} RG(F) = {a,)}

from which we can obtain the OPM shown in 3.1. As it can be evinced

from the table, each pair of terminals has at most one operator precedence

relation and therefore the matrix is conflict-free; thus the grammar is a Floyd

Grammar.

3.1.1 Properties

We will now show some formal properties which FLs (Floyd Languages)

enjoy; these properties are shown here because they represent the basis upon

which the entire work has roots. In fact, without many of them parallel pars-

ing would not be possible. Moreover, some of these properties have been used

in a first attempt to create a parallel parser (which has now been abandoned

with respect to the objectives of this thesis), which is explained in appendix

A.

CHAPTER 3. FLOYD GRAMMARS 27

In [1], it is shown how FLs enjoy closure properties with respect to com-

mon formal languages operations. The properties that are relevant for this

thesis are the closure under prefix, suffix, concatenation and Kleene star. In

short, this means that the prefix, suffix and applying the Kleene star operator

to a FL produce a possibly different language which can still be generated

by a precedence-compatible FG. As for concatenation, it means that two

FLs concatenated produce a third FL. As a corollary, FLs are closed under

Boolean and reversal operations as well, but these properties are of little

interest with respect to our work.

The properties said to be relevant are used in the approach presented in

appendix A. In fact, the basic idea of the approach is to define the grammars

of the prefixes, suffixes and infixes of a given grammar, and use them to parse

the different parts of an input string, resulting in several parse trees, which

need to be linked together to reconstruct the parse tree of the original string.

Another interesting property of FLs, especially for the purpose of this

thesis, is the locality principle, which means that given a string of a FL,

different portions of it can be correctly parsed independently from other

parts, considering only their previous and following contexts. In particular, a

substring can be correctly parsed if the precedence relations with its previous

and following tokens are known, and this is always possible given that the

string belongs to the language generated by the grammar, since for FGs

the precedence relation among two tokens is always univocally determined.

This property stands as the backbone of the entire work; intuitively, since

the recognition of a rule depends only on the previous and following tokens

and not on the entire prefix, multiple parsers can work on different parts

of the same input and reduce several subtrees at the same time. A subtree

is defined as the partial result of a parsing process on a substring; in fact,

since no parser can reach the axiom given that they do not work on the

entire string, they just analyze a part of it, creating an incomplete parse

CHAPTER 3. FLOYD GRAMMARS 28

DCF

FL
V PL

BALAN

REG

Figure 3.1: Relations between formal language families.

tree. However, thanks to the formal properties of FGs, these subtrees are

valid parts of the tree associated with the entire string, and thus only need

to be joined together in subsequent phases. At this point it can be guessed

how a parallel parser can be built using this approach: as we will see in

chapter 4, it consists of multiple phases which analyze the input string and

the subtrees already produced in previous phases.

3.2 Relationship with other grammar families

In this section we give an overview of how FLs relate with other formal

languages generated by known families. The purpose of this section is to

show that FGs are a viable option in order to express commonly used formal

languages, in the sense that they retain interesting properties that less pow-

erful families have, while still being able to express a wider set of practical

languages.

A depiction of the relations among the presented language families is

shown in figure 3.1. The first relation to note is that regular languages are

a special case of FLs. In fact every regular language can be generated by

a right-linear grammar, i.e. a grammar whose rules are in the form A →

aB, a ∈ Σ, b ∈ VN , therefore the right hand side length is bounded by 2

CHAPTER 3. FLOYD GRAMMARS 29

and the only precedence relations are l.

Since regular languages cannot be used to express more common prac-

tical languages, we show how FLs include other more powerful families. In

particular, in [1] it is shown how FLs include the two families of Visibly Push-

down languages (VPL) and balanced languages (BALAN). For the purpose

of this thesis the second result is especially relevant since BALAN includes

languages such as XML and HTML, which are heavily employed in real world

applications, and, as we have mentioned in section 2.2, these languages could

gain great benefits from a parallel analysis.

The last thing to notice is that FLs are strictly included in the family

of Deterministic Context-Free languages (DCF). A simple counterexample

showing a DCF language which is not a FL is

L = {anban|n ≥ 0}

This language, no matter how its grammar is expressed, will produce a con-

flict in the precedence relation in the pair (a, a).

The DCF family comprehends all the commonly used computer lan-

guages, since as we have seen in section 2.1.2 LR(1) parsers recognize DCF

languages and those are very common parsers. This implies that FGs and

therefore FL parsers cannot be used to express and analyze every language

that DCF grammars and LR parsers do. Nonetheless FGs are powerful

enough to express real world languages. In fact, as we will show in chapter

6, the realized parallel parser has been successfully used to analyze JSON

strings, which is a well known and widely used subset of the JavaScript

language.

3.3 Practical considerations

In this section we will discuss some of the more practical aspects involving

the use of FGs in a parsing process, in particular we will see how to express

CHAPTER 3. FLOYD GRAMMARS 30

a grammar in order to be used with our parser and how these limitations

have influenced its development. These limitations are not theoretical in a

sense that they do not restrict the family of FGs which can be effectively

employed, but have only been introduced in order to simplify the develop-

ment of the parser and therefore every FG can be rewritten in the required

form. However, these transformations often enlarge the number of rules and

nonterminal symbols in the grammar and can make it less intuitive to read.

Aside from the usual limitations deriving from the definition of a Context-

Free grammar and in particular a FG (i.e. all production rules in operator

form), there are two situations which can cause problems when building a

parser. The first one is the presence of repeated right hand sides, i.e. the

existence of at least two rules in the form A → α and B → α. This causes

difficulties during the recognition of the correct reduction to apply to a sub-

string representing the right hand side: in fact, as we will see in section 4.1.1,

we developed a reduction tree that serves to correctly identify a reduction

while exploiting the locality principle, i.e. employing only the right hand

side. In presence of repeated right hand sides, the reduction tree cannot

decide which reduction is the correct one. This problem could be solved by

developing a speculative reduction tree, which could keep trace of the multiple

reductions to be performed and delay the final decision.

A second problem is the presence of immediate rewrite rules, i.e. rules in

the form A → B, B ∈ VN . The presence of such rules creates the necessity

for the parser to be able to discern whether to perform another immediate

reduction after a normal reduction or not. Since by exploiting the locality

principle, this cannot be done just by looking at the right hand side, as we

will see in section 4.1.2, we decided to employ reduction sets, that enable

the parser to delay the decision while allowing it to perform the normal

reduction. This solves the problem and allows the use of immediate rewrite

rules while expressing the grammar.

Chapter 4

Parallel parsing algorithm

As seen in section 2.1, in the current state of the art general parsing

techniques are inherently sequential. Using these parsing methods makes

parallelization very difficult, due to the following reasons:

• traditional parsers require knowledge of the whole parsing history,

i.e. to parse an infix of a string, the state reached by the parser after

having analyzed the entire prefix is needed. The string cannot therefore

be split into different substrings which are then parsed independently

from each other;

• in general, the properties required to parallelize parsing do not hold

for languages that are recognized by traditional parsers.

Since traditional parsing schemes are not a valid option in order to achieve

parallelization a new algorithm was developed exploiting the properties of

FGs.

In this chapter we present the parallel parsing algorithm we developed,

i.e. a multi-phase parser operating on different parts of the input strings.

In particular we will show a basic operator precedence parser (section 4.1,

which performs parsing of strings of a language expressed by a FG; then we

move towards a real parallel parser by modifying the presented algorithm in

31

CHAPTER 4. PARALLEL PARSING ALGORITHM 32

order to work on substrings of an input string (section 4.2; finally we adapt

the algorithm to work in a multiple subsequent phases environment (section

4.3) and we describe the final parallel operator precedence parser (section

4.4).

4.1 Naive operator precedence parser

A first approach to a parallelizable parser is shown in algorithm 1. It is

based on [6, 17] and employs the concept of handle, i.e. a series of tokens

with precedence relations in a form such as

l .
= · · · .= m

which identify a right hand side of a grammar production and may be reduced

independently from the rest of the string. This is a consequence of the locality

principle of FG described in chapter 3. The algorithm analyzes the string one

token at a time, by calling the lexer which is implemented by a third-party

library, and sets its precedence relation with the previous token; based on

the precedence relation it then either goes on to the next token (precedence

relation is l or .=) or tries to perform a reduction (precedence relation is m).

The reduction will fail if there is an error in the string. This proceeds until

either an error is found or the string is completely recognized.

The algorithm, during the parsing process, builds a stack, which holds

information about the analyzed tokens and is needed to correctly identify

the elements of a handle. A stack element is a tuple defined as

< T, p, v >

where T ⊂ VN ∪ Σ is the token list, which is composed of either multiple

nonterminal symbols or one terminal symbol, p ∈ {l, .=,m} is the precedence

relation to the next token, and v is the subtree associated with the parsing of

the token. When analyzing a new token, in order to set the precedence, the

CHAPTER 4. PARALLEL PARSING ALGORITHM 33

algorithm goes back to the first terminal symbol from the top of the stack,

finds its precedence relation with the new token and then sets it.

When a l or .= precedence relation is found, the algorithm simply pushes

the new terminal symbol on the stack and proceeds to analyze the next token.

When a m precedence relation is found, the algorithm proceeds (algo-

rithm 2) as follows:

• it iterates on the stack starting from the top until an error or a l

relation is found;

• for each stack element it verifies if there exists a rhs which agrees with

the current element and the part of handle that has been analyzed up

to now. This is done by navigating a tree called reduction tree, which

is described in section 4.1.1;

• if the current precedence relation is l and only one possible rhs which

agrees with the handle remains, the reduction is found: all the elements

of the handle are removed from the stack and replaced by a new stack

element which represents the reduced nonterminal symbol;

• else an error has been found and the algorithm terminates.

An example of parsing using the operator precedence parser is shown

in figure 4.1. The string a + (a × a) is expressed with the parenthesized

arithmetic expressions grammar with precedence matrix shown in table 3.1

on page 26.

In order to complete the overview of the naive algorithm the tree used

to perform reductions and the mechanism used to create the reduced tokens

need to be presented. This is done respectively in sections 4.1.1 and 4.1.2.

Since this algorithm is not suitable to be used in a parallel context we will

later see (sections 4.2 and 4.3) how it has to be modified.

CHAPTER 4. PARALLEL PARSING ALGORITHM 34

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Stack Rest of input

a+(a×a)#

l a m + (a×a)#

l
E + l (l a m ×)#

l
E + l (lT × l a m) #

l
E + l (l

T ×
m
F) #

l
E + l (

.
=
T) m #

l
E + m

T #

#
.
=
S #

Figure 4.1: Example of OPP applied to a string.

CHAPTER 4. PARALLEL PARSING ALGORITHM 35

Algorithm 1 Naive Operator Precedence Parser
token := first_token

init_stack

while there are tokens do

prec := get_precedence_relation(token, stack)

5: if prec = ‘l’ ∨ prec = ‘ .=’ then

push(stack, token)

else if prec = ‘m’ then

handle := identify_handle

if ∃ handle then

10: if reduction is possible then

perform_reduction(handle)

if axiom is reached then

return 0

end if

15: else

string does not belong to language

return 1

end if

else

20: string does not belong to language

return 1

end if

end if

get_next_token

25: end while

return 1

CHAPTER 4. PARALLEL PARSING ALGORITHM 36

Algorithm 2 Handle identification
cur_item := last(stack)

handle := ∅

while cur_item.p 6= l ∧ cur_item ∈ stack ∧ ¬ error do

if (rhs which agree with cur_item and handle) 6= ∅ then

5: handle := handle ∪ cur_item

else

error := true

end if

cur_item := prev(stack)

10: end while

4.1.1 Reduction tree

We saw that when a m precedence relation is found, the algorithm tries

to perform a reduction. This is done with the help of a reduction tree, which

can be defined as an usual tree (directed acyclic graph). The basic idea of

the reduction tree is similar to the suffix trees often employed in dictionaries

or compression algorithms. A complete path on the tree, from the root to a

leaf, stands for a rhs of a production read in inverse order, where the nodes

of the tree represent the position inside the rhs, and the edges express the

reading of a token from right to left. For a given grammar G, its reduction

tree represents all and only its production rules right hand sides read in

reverse order.

An example of the reduction tree used for the arithmetic expressions

grammar is shown in figure 4.2. Take, for instance, the production

E → E + T

we can see that, starting from the root node, one can follow the series of edges

(T,+, E) until the leaf node, which represents that the rule is completely

recognized and therefore a reduction can be correctly performed.

CHAPTER 4. PARALLEL PARSING ALGORITHM 37

root

S -> *E

E

E -> E + *T | *T

T

T -> T x *F | *F

F

F -> (E *)

)

F -> *a

a

S E -> E *+ T

+

E

T -> T *x F

x

T

F -> (*E)

E

F

E -> *E + T

E

T -> *T x F

T

F -> *(E)

(

Figure 4.2: Reduction tree used for the arithmetic expressions grammar.

One last thing to notice is that the building of the reduction tree is done

offline, i.e. before the parsing phase and therefore is not a burden on the

parsing process. A detailed description of the algorithm employed to build

a reduction tree starting from the definition of the grammar is given in

appendix B.1.

4.1.2 Usage of reduction sets

When a reduction, i.e. a right hand side, has been correctly identified

using the reduction tree, it has to be performed. This corresponds to trans-

lating the right hand side into the respective nonterminal symbol. Due to

the fact that, as mentioned in section 3.3, there may be immediate rewrite

rules in the grammar, these have to be handled correctly. This is done using

reduction sets; intuitively, these represent for any nonterminal symbol A all

the nonterminal symbols that can be immediately rewritten into A.

Therefore, the reduction sets are used to create the new element which

replaces the handle on the stack following a reduction. In fact, the new ele-

CHAPTER 4. PARALLEL PARSING ALGORITHM 38

ment, which follows the same structure of a stack element defined in section

4.1, is composed as follows:

T is a list of nonterminal symbols. If L is the lhs of the recognized production

and its reduction set is R(L), then T = {L} ∪R(L);

p corresponds, as usual, to the precedence relation, but, since the result of

a reduction is a nonterminal symbol, the precedence relationship is

undefined;

v is the usual parse subtree, computed by linking together the different sub-

trees associated with the tokens of the handle during the reduction

process using the semantic function corresponding to the production.

In the following example we show both why reduction sets are necessary

in presence of immediate rewrite rules and how a reduction set is formed.

Consider the rules

E → E + T | T

T → a

If we do not include both T and E in the list of possible nonterminal symbols

when we reduce a later on we may incur in an error. This can happen, for

example, when the string is a + a, we reduced the first a to only T , and

cannot find a rule to reduce T +T . However, reducing the first a as described

above we obtain {E, T}, which guarantees a correct parse in the following

reduction.

An in-depth description of the algorithm that computes the reduction

sets is given in appendix B.2.

4.2 Substring operator precedence parser

The algorithm, as described in the previous section and considering a

possible parallel context, has to work with relaxed assumptions, i.e. it needs

CHAPTER 4. PARALLEL PARSING ALGORITHM 39

to analyze a substring of the language, which may be either a prefix, infix or

suffix of the global string. This leads to the following consequences:

• the context may differ from the terminator symbol couple;

• parsing of the substring may finish without recognizing the axiom yet

without error;

• the substring may begin or end with incomplete handles, that cannot

be reduced;

For instance, if we consider the usual arithmetic expressions grammar and

the string

a+ a× (a×(a+ a) + a× a+ (a×︸ ︷︷ ︸
sub

a)) + a× a

if the parser analyzes substring sub the context is (a, a) and it is obvious

that sub will not be reduced to the axiom. Yet the parser should not report

an error code: in fact the string considered in its entirety does belong to

the language, even if sub does not. Moreover the first ‘×’ in sub will not be

reduced since its handle is incomplete. The algorithm should skip it and try

to reduce the rest of the substring.

It is therefore evident that algorithm 1 on page 35 has to be modified

to cope with these new assumptions. A scheme of the modified algorithm is

shown in algorithm 3. The modifications done can be summarized as follows:

row 2 The initialization of the stack needs to push at the bottom the pre-

vious context of the substring; this is done in order to guarantee a

correct identification of the precedence relation of the incoming termi-

nal tokens;

row 20 This is to cope with the presence of incomplete handles at the begin-

ning of the substring; in the case of an incomplete handle, the algorithm

does not report an error but moves on with the parsing;

CHAPTER 4. PARALLEL PARSING ALGORITHM 40

row 23 When considering the next token, if the end of the substring is

reached, the algorithm needs to consider the following context;

row 25 If the algorithm did not reach the axiom without encountering any

error it should return only the forest of recognized subtrees;

With these modifications the algorithm is suitable to be used on a generic

substring of the input string.

4.3 Partially parsed substrings

What we have described up to now is a parser that can analyze a generic

substring of a language and build all its complete parse subtrees, even with-

out reaching the axiom. This was the first step towards a parallel parsing

algorithm. One further modification is needed in order for the parser to work

in a parallel context, i.e. a parser that can work on partially recognized sub-

strings. This is because the parser works on multiple subsequent phases with

decreasing degree of parallelism and phases following the first need to be

able to manage nonterminals produced by the previous phases.

In order to do so, we have to modify algorithm 3 on page 41 as follows: it

is necessary to handle incoming nonterminal symbols. When one is found, the

algorithm will create a new stack element that will be pushed on top. The list

of tokens is composed of the reduction set of the given nonterminal symbol;

the precedence relation is undefined because there is no precedence relation

between a nonterminal symbol and any other token; the parse subtree is the

result of a previous phase;

This is the only modification needed and the rest of the algorithm does

not have to be modified.

CHAPTER 4. PARALLEL PARSING ALGORITHM 41

Algorithm 3 Substring Operator Precedence Parser
token := first_token

init_stack

while there are tokens do

prec := get_precedence_relation(token, stack)

5: if prec = ‘l’ ∨ prec = ‘ .=’ then

push(stack, token)

else if prec = ‘m’ then

handle := identify_handle

if ∃ handle then

10: if reduction is possible then

perform_reduction(handle)

if axiom is reached then

return 0

end if

15: else

string does not belong to language

return 2

end if

else

20: push(stack, token)

end if

end if

get_next_token

end while

25: return 1

CHAPTER 4. PARALLEL PARSING ALGORITHM 42

4.4 Parallel operator precedence parser

Up to now we have described how a sequential operator precedence parser

works. Then we saw how to adapt such a parser in order to analyze substrings

and already partially parsed substrings. In this section we present how we

decided to manage parsing of a string by dividing it into several substrings

which are analyzed by different operator precedence parsers.

As shown in algorithm 4, there is an initialization phase, during which

common data structures (i.e. the reduction tree, the precedence matrix and

the copy rules) and the lexer are generated; the string is read and divided

into n substrings that will be mapped on a different thread each. In section

2.2 we saw that some parsers execute a preparsing phase before the actual

parsing in order to find suitable cutoff points; this approach though has very

limited benefits when using FGs since their locality principle makes so that

recognizing one handle only requires the knowledge of the precedence relation

with the previous token. Therefore analyzing the entire string in order to find

a suitable cutoff point is not justifiable. Thus, when designing the algorithm,

our choice was to cut the string into n balanced substrings, i.e. each string

has the same length. This has been done in order to try to balance the job

that each thread has to do; since without preparsing phase there is no idea of

how the parse tree of the input string is formed, it is not possible to actually

balance the job of each parser, and therefore balancing the length of the

input of each thread is the only possible way. A different and possibly more

efficient approach involves analyzing a limited neighborhood of the already

chosen cutoff points and using some heuristics on the precedence relation to

find better points; this will be explained more in depth in chapter 5.

After having divided the string, the algorithm iterates until either it is

completely parsed or an error is found. During each iteration, the algorithm

determines the context in which every substring is to be analyzed. The con-

text corresponds to a couple of terminal symbols: one is the first terminal

CHAPTER 4. PARALLEL PARSING ALGORITHM 43

Input string

a+ax(a)xa+(axa+a)+a

Chunk

a+a

Chunk

x(a)x

Chunk

a+(ax

Chunk

a+a)+a

OPP

OPP

OPP

OPP

Chunk

E+TxFxF+(TxF+T)+T
OPP Axiom reached

Figure 4.3: Sequential recombination parsing scheme.

preceding the beginning of the substring and the other is the first terminal

following its end. If the substring does not have a prefix (e.g. the first sub-

string) its preceding context is the terminator symbol #, and this applies

dually if the substring has no suffix. The context is needed to determine the

precedence relations of the first and the last tokens of each substring.

At this point, n threads are created and a different substring is assigned to

each one of them. Each thread runs a modified version of the naive operator

precedence parsing algorithm (which we will describe in section 4.2); the

threads return one of the following:

• an error code if they are sure that an error was present in their sub-

string;

• a success code and the parse tree associated with the whole string;

• a work in progress code if they finished analyzing the string but could

not reach the axiom. If this is the case, all the reductions performed by

the thread are kept in a suitable data structure in order to be reused

in successive iterations of the algorithm. This behavior is described in

section 4.4.1.

When all threads finish, the algorithm checks all return codes: if it finds

neither error nor success codes it prepares the strings for the next iteration.

We have studied two alternative ways to do this:

CHAPTER 4. PARALLEL PARSING ALGORITHM 44

Input string

a+ax(a)xa+(axa+a)+a

Chunk

a+a

Chunk

x(a)x

Chunk

a+(ax

Chunk

a+a)+a

OPP

OPP

OPP

OPP

Chunk

E+TxFx

Chunk

F+(TxF+T)+T

OPP

OPP

Chunk

E+TxF+T+T
OPP Axiom reached

Figure 4.4: Logarithmic cascade of parallel recombinations parsing scheme.

sequential recombination After the first parallel phase all the substrings

are joined and the next iteration proceeds with only one thread (figure

4.3).

logarithmic cascade of parallel recombinations The algorithm joins sub-

strings two by two, thus reducing the number of threads in the next

iteration by a factor of 2 (figure 4.4).

It is rather obvious that, independently from which mode is chosen, the last

iteration is inherently sequential. How much work is done by the first phase

or left for the following ones may also depend on the form of the grammar.

This aspects is left for future investigations. The hope, however, is that most

of the parsing process is done by the first iterations, and that the last one will

only have few reductions left. This is backed up by the results we obtained

with the experimentation that we did, which are presented in chapter 6.

4.4.1 Data management between iterations

As said in section 4.4 the information about the reductions performed

by each thread needs to be stored in a suitable data structure in order to

be used during the next iterations. This structure links an interval of tokens

in the string to a nonterminal symbol and the parse subtree associated with

their reduction, i.e. it is a list of elements defined as

< s, e,N, v >

CHAPTER 4. PARALLEL PARSING ALGORITHM 45

Algorithm 4 Parallel Operator Precedence Parser
init data structures

divide string in n substrings

while ¬ finished ∧ ¬ error do

determine context

5: create and launch n threads

wait for threads

if n = 1 ∧ string is recognized then

finished = true

else if ¬ error then

10: if mode = log then

n := n/2

stick two subsequent strings together

else

n := 1

15: stick every substring together

end if

end if

end while

CHAPTER 4. PARALLEL PARSING ALGORITHM 46

where s is the starting position in the string, e is the final position, N is the

nonterminal symbol and v is the usual parse tree produced by a parser as

described in chapter 2.

This data structure is modified by each thread when reducing a handle.

Moreover this structure is used whenever the parser tries to identify a new

token from the string: the algorithm has to check whether there is a saved

nonterminal token in the current position or not; if it finds one, it returns

it with the associated parse subtree and skips ahead in the string up to its

final position; otherwise it simply reads the next terminal token.

Using this kind of structure it is possible to save all the reductions per-

formed by a thread so that, in the following iterations, they will not have to

be computed again. In general, a nonterminal saved in this structure will be

used in the next iterations to identify wider handles and thus lead to further

reductions, up to the axiom or an error.

Chapter 5

Implementation and

optimizations

Up to now we have presented how the parallel parsing algorithm works. In

this chapter we will present two things: how it has been prototyped (section

5.1) and implemented (section 5.2), and possible future optimizations that

have been identified and left as a foreseeable development of this work.

5.1 Python prototype

In this section we will outline the approach we took in order to create a

first working prototype of the parallel algorithm. Due to the fact that the

idea of the algorithm grew while the prototype was being developed, it does

not present a particularly optimized structure and some parts of it have

indeed been changed in the final implementation.

The language chosen to code the prototype is Python, due to its ease

of use and flexibility, which enabled us to continually make rather radi-

cal changes. The only shortcoming of Python is the Global Interpreter Lock

(GIL) [18], i.e. the mutual exclusion lock held by the interpreter thread that

makes it impossible to execute more than one thread at the same time, inde-

47

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 48

pendently from the number of processors and cores available. Therefore, in

order to achieve parallelism we decide to use Jython, i.e. an implementation

of Python written in Java that actually supports executing multiple threads

at the same time, because it compiles Python code to Java bytecode and

therefore maps Python threads to Java threads.

As it has been said in previous chapters, the first step that needs to be

done in order to parse a string is the lexing phase. In the prototype this is

done concurrently with the parsing. This means that, whenever the parser

needs a new token it has to invoke the lexer which will read characters

from the input string until it recognizes one token and then returns it to

the parser. This also implies that the lexer is used during the entire parallel

parsing process. This practically translates to lexing done multiple times over

the input, the first phase on the string and subsequent phases on pieces of

string not yet recognized and on already parsed subtrees. It can be evinced

that the lexer needs to be able to manage such nonterminals, expanding

them into the adequate token with its associated parse subtree if necessary.

However, the lexing may proceed in such a manner only if each token is

composed of at most one character of the input string, since having tokens

longer than one character implies that a token may have been cut in half

during the division of the string and the algorithm would have to be able

to handle this occurrence. This limitation was introduced mainly to simplify

development of the prototype. In order to handle lexing, we used an external

library called Python Lex-Yacc (PLY) [19], i.e. an implementation of lex and

yacc in python.

In order to manage data between iterations (parse subtrees) as we have

seen in section 4.4.1, we need a data structure that contains the subtrees and

information regarding their position inside the input string. In our prototype

this is done by means of the marker structure, i.e. a structure defined exclu-

sively for this purpose. This data structure needs to be known by the lexer

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 49

Thread 1 Thread 2

Lexer

Parser

Marker structure

Lexer

Parser

Input string

Figure 5.1: Scheme of a generic prototype parsing phase.

which will consult it. In fact, whenever the lexer is invoked by the parser, it

has to verify the presence of a nonterminal symbol and, in case it finds one, it

has to return it to the parser and skip the input string for the nonterminal’s

length. Moreover, when the parser recognizes a handle, it needs to interact

with the marker structure in order to save the reduced nonterminal and its

parse subtree for future iterations.

A scheme of how a generic parsing phase works in the prototype can be

seen in figure 5.1. It is an example of two threads parsing an input string

and it can be seen how the components interact with each other; the lexer

reads from the input string and the marker structure to produce a token for

the parser, which asks the input from the lexer and writes its output on the

marker structure. We can see how the lexer and parsers are unique for each

thread while the marker structure is global for the entire program.

5.2 C implementation

In this section we will see how the shortcomings of the prototype are

solved in the actual implementation of the algorithm and some obvious opti-

mizations have been implemented. The choice of the programming language

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 50

to be used for the implementation fell on C; this was because being a less ab-

stract language than Python it gives a finer lower level access to the machine

and therefore allows a better control over memory and processor use and

finer optimizations. Moreover, it has native support for threads (pthreads)

and since it is compiled, it is generally faster than Python (see chapter 6 for

benchmark results on both C and Python implementations).

As usual the first step is lexing; since the one character token limitation

had to be removed in order to work in a real context and with real world

languages, the lexing process had to be modified accordingly. In particular,

lexing is no longer done concurrently with the parsing, but it is performed

only once before the parsing phase on the entire string. The lexing process

done in this way produces from the input string a token list that will be

split among the threads. It can be seen how having lexing done in such a

manner allows us to maintain unaltered the process of job balancement of

the parsing phase, since the token list can be split in multiple parts exactly

how the input string was in the prototype. Moreover the lexer now does not

need to know anything about the nonterminal symbols, since it only has

to deal with the input string which is entirely composed of only terminal

symbols. Lastly it makes more sense to decouple two components that have

to do jobs that are different and bound by a direct data dependence, in such

a way that performing them concurrently is not possible. Similarly to what

has been done on the prototype, we did not write the lexer, but we employed

a scanner generated via the Flex [20], the mainstream free lexer generator.

As for what concerns data management between iterations, we decided

to remove the dedicated marker structure and use already existent structures

instead. Since the structure built by the lexer makes no distinction between

terminal and nonterminal symbols because both are composed of a token

and the corresponding parse subtree, it seemed natural to use the token list

to store information for subsequent iterations. In fact, when a handle has

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 51

Thread 1 Thread 2

Input string

Lexer

Token list

Parser Parser

Figure 5.2: Scheme of the first parsing phase of the C implementation.

been reduced its corresponding nonterminal is created, the symbols forming

the handle that were on the list are removed and the new nonterminal is

inserted instead. This simplifies both the reading and writing phases of the

parser, which are done directly by the parser that interacts with the token

list without the use of external support structure or functions.

A scheme of how the first parsing phase works in the C implementation

can be seen in figure 5.2. It can be seen how the lexer interacts with the

input string and builds the token list, which is in turn directly accessed

and modified by the different threads of the parser. What cannot be seen

in the figure is that after the first phase the components above the token

list disappear and only the parsers remain which interact with the token list

modified by the parsers of the previous phase.

Another aspect to be discussed regarding the C implementation are data

structures. Unlike Python, C does not implement data structures like trees

and lists in its standard library. Therefore, in order to use these structures, we

both implemented some of them and employed an external library for others.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 52

In particular, we implemented basic double linked lists and trees, and we

employed Judy arrays [21], i.e. data structures with high performance, low

memory usage which implement dynamic associative arrays. In particular,

Judy arrays are similar to 256-ary tries which guarantee for every level 256

possible keys and therefore, even when the number of indexed elements grows

a lot, the number of levels of the tree remains limited; this means that very

few operations are required to access a generic element of the trie, achieving

a speed comparable to a direct access array.

The last point that needs to be discussed is the basic optimization of the

reduction phase we introduced in the C implementation. In particular, this

optimization concerns the beginning of the substrings and the research of

handles when the precedence relation chain is in the form

.
= · · · .= m

In fact, it is evident that with such precedence relations a complete handle

will never be found, but the handle identification algorithm as seen in algo-

rithm 2 on page 36 always tries to perform a reduction when a m precedence

relation is found. This is a problem because, whenever the parser analyzes a

string with such a relation chain it wastes time with useless operations. In

order to avoid this, a reduction counter mechanism has been implemented;

basically, this counter starts at 0 when the parser begins the analysis of a

substring, it is incremented every time a l precedence relation is found and

decremented when a handle is successfully reduced. The meaning of this is

that a reduction is possible only if the counter has a value greater than

0, and therefore the algorithm will search for a handle only if this condi-

tion is verified. An example of a pathological substring expressed with the

usual parenthesized arithmetic expressions grammar that forces the parser

to continually waste time in searching for impossible handles could be the

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 53

following:

+a) +a) +a) +a) +a)

In fact, the only possible reductions here are to reduce all the ‘a’ to {S,E, T, F}.

Without the optimization we just described, every time the parser finds a ‘)’

after having reduced the preceding ‘a’, since + m), it would try to perform

a reduction without success and analyze all the tokens which are below the

corresponding bracket shown above; with the optimization in place this be-

havior is avoided because there are no l precedence relations matching the

m ones.

5.3 Possible future optimizations

In this section we will present the optimizations that during the devel-

opment of the thesis and the algorithm have been identified as possible but

have not yet been implemented both because of time constraints and be-

cause we wanted to have a basic working implementation of the algorithm

first and only then think about optimizing it. Therefore in this section we

will see what is being worked on at the time of writing this thesis and other

optimizations that have been more or less defined. It has to be specified that

since these optimizations are only proposed and not yet implemented, there

still exist no experimental data in favor or against their introduction.

5.3.1 Optimized cutoff points

We have seen in section 4.4 that before the parsing phase, the input

is divided into n parts and each part is associated with a thread that will

parse it. We have seen that this subdivision is done by just balancing the

substrings from the length point of view. A possible and rather immediate

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 54

way of improving the subdivision of the input is to look for suitable cutoff

points, i.e. patterns in the form

· · · m l · · ·

If all the cutoff points are chosen in this way, the input will be split as follows:

l · · · m |l · · · m |l · · · m

The advantage of such a pattern is that it guarantees for both the preceding

and subsequent substrings of a cutoff point at least one reduction. While one

could argue that this is not a big improvement, it is also true that it can

be easily done by searching locally for such a pattern from the cutoff points

obtained by dividing the input into equally long parts.

The cost of such a local research is the one of scanning the list of tokens

into one or another direction, i.e. reading a token and a precedence relation

for each step, since the other precedence relation is kept from the previous

iteration of such a research. From our point of view this research is probably

justified since it opens up for one thread possibly many reductions, and hav-

ing one thread that does nothing is nevertheless expensive since it consumes

resources in order to be instantiated and to build support data structures

such as the stack.

5.3.2 Optimized logarithmic cascade of parallel recombina-

tions

We have seen in section 4.4 that one of the two ways we designed to pre-

pare iterations that follow the first one is the logarithmic cascade of parallel

recombinations. As it is implemented now this is done simply by taking two

subsequent parts of the token list starting from the first two and linking them

together to obtain a new one. This does not introduce any form of rebalanc-

ing of the workload between iterations: in the precedent iteration one thread

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 55

might have reduced all its part into very few tokens while the others might

have reduced almost nothing; therefore, in the next iteration, the thread that

will work on the part of the token list that contains the part analyzed by the

first thread will have to perform much less work than the other threads. An

example of this problem expressed with the usual parenthesized arithmetic

expressions grammar is the following:

a+ a+ (| a+ a+ a) | × (((a+ a |)× a)× a) (5.1)

E + (| E) | × (((E |)× F)× F) (5.2)

In (5.1) we can see the input string and how it has been divided among

threads. It can be observed that all the threads obtain inputs of about the

same length. In (5.2) the result of the first iteration is displayed; it can be

noticed that the first two threads reduced their parts respectively into 3 and

2 tokens, while the third and fourth threads have left their parts almost

untouched. In the next iteration the first thread will analyze a part 5 tokens

long while the second will analyze a part 12 tokens long; moreover the first

thread will have to perform less reductions than the second one since its part

is less nested than the other one.

This problem could be solved with an accurate choice of subsequent cutoff

points. Instead of just joining two parts together, there is a rebalancing of

the jobs on each iteration performed by dividing the resulting token list into

parts with equal length. In addition to this, after having obtained the new

cutoff points, a local research on the precedence relations can be performed in

the same way that we saw in section 5.3.1. Continuing the previous example,

we can see how using this policy produces the following:

E + (E)× (((| E)× F)× F) (5.3)

E + (E)× | (((E)× F)× F) (5.4)

In (5.3) the token list has been rebalanced only according to its length;

despite this, the resulting cutoff points are suboptimal, since the second

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 56

thread will not perform any reduction. Using also the local research on the

precedence relations the cutoff point shown in (5.4) is obtained; in this case

the first thread performs the same reductions that it would have done in

the first case, but the second is able to completely reduce the parenthesized

structures. The results of the two choices are shown respectively in (5.5) and

(5.6).

T × (((| E)× F)× F) (5.5)

T× | F (5.6)

The performance overhead brought in by rebalancing the jobs for each

iteration is expected not to be a particular burden. This is because it only

requires to know the length of the token list, which can be computed by the

different threads while they perform their analysis by reducing the length

of their part each time they perform a reduction by its length. As for what

concerns the local research, the same considerations expressed in section 5.3.1

hold.

5.3.3 Optimized handle identification and reduction

What we introduce in this section is a rather radical change on the parsing

algorithm. As it is now, the soundness of this optimization has not been

practically evaluated yet. The basic idea is to replace the mechanism used

to recognize the production rules; as we have seen in chapter 4 this is done

with a handle identification phase: once am is found, the handle identification

algorithm tries to recognize its corresponding production rule. This obviously

wastes time as, for each reduction, first we read it from left to right and

then from right to left. Our idea involves changing the handle identification

phase and starting the recognition of production rules while the handles

are being read. Intuitively this can be done by replacing the reduction tree

with another analogous data structure that has the same purpose but can

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATIONS 57

work on productions read from left to right. With such a structure it would

be possible to perform the recognition of productions while identifying the

corresponding handle.

While the complexity of the current algorithm is concentrated in the

handle identification phase, i.e.most of the work is performed in the iteration

during which a m relation is recognized, the complexity in the new idea is

spread over all iterations: part of the reduction job is performed starting

from the first l, throughout all the .
= up to the m. Intuitively, whenever a

l is found, a new reduction recognition context is opened; whenever a .
= is

found, the algorithm proceeds with the recognition within the same context

and when a m is found, the algorithm closes the context and proceeds with

the reduction.

What is expected to be obtained by introducing this optimization is

mainly a gain in execution time; in fact, by analyzing each handle only once

instead of twice we expect the execution time of each parsing phase to be

significantly lower. However we also expect increased memory usage due

to the fact that the algorithm needs to manage the reduction recognition

context of each handle.

Chapter 6

Experimental evaluation and

comparison

The work of this thesis is accompanied by a proof of concept, which we

already presented in chapter 5, that demonstrates how the parsing process

using FGs is actually parallelizable, and scales reasonably well raising the

number of computing units. In this chapter we will discuss the results ob-

tained by running benchmarks on both the Python prototype (section 5.1)

and the C implementation (section 5.2). In particular, in section 6.1 we will

present the experiments done with the Python prototype and we will see the

obtained results, both in terms of absolute execution times and speedup over

the sequential operator precedence parser; in section 6.2 we will present in a

similar way the results obtained with the C implementation over a different

set of experiments and we will briefly discuss the difference in performance

between the two implementations; finally, in section 6.3, we will present

a comparison between our parser and common state of the art traditional

parsers.

For all the experiments we used the same platform, which is a multi-

processor machine that allowed us to perform tests on a number of differ-

ent thread configurations. In particular, the platform is equipped with four

58

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON59

Quad-Core AMD Opteron 8378 clocked at 2.4 GHz, 32 GB of RAM and run-

ning GNU/Linux (Ubuntu 10.04 LTS), targeted for a 64bit x86 architecture.

Since the machine is equipped with four quad-core processors and there-

fore enabled us to perform benchmarks with a variable number of threads

up to 16. The GNU/Linux operating system which the machine is running

gave us access to the native implementation of POSIX compliant threads:,

the NPTL and to the standard implementation of the glibc malloc function.

The main result of the experimentation was the measurement of the

execution times of the parsing process applied to different inputs, from which

followed the computation of speedup data, which is expressed as

Speedupn =
T1
Tn

where n is the number of employed threads and Ti is the execution time of

the algorithm using i threads.

By execution time of the parsing process we mean not only the time

that the different threads spend in order to parse their substrings, but also

the input preparation (i.e. time used to divide the string into substrings),

thread preparation (i.e. time used to create, launch and synchronize the

different threads) and, in the case of the Python prototype, even the lexing

time. As for the prototype, the instrument used to measure times was a call

to the Python time function, while for the C implementation we employed

the clock_gettime function, which uses the system-wide real-time clock and

therefore gives a high resolution. Given the nature of this functions and the

operating system we decided that only times in the range of seconds or more

are a reliable measure of the algorithm speed.

Finally, in order to reduce the effect of other system programs running

on the machine during the benchmarks each test has been performed at

least 10 times and the obtained values have been averaged. By doing this,

differences between values of various test samples are averaged out, giving a

more reliable result.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON60

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

S
pe

ed
up

core

Amdahl's law with P=0.9
log cascade recombination data

sequential recombination data

Figure 6.1: Python: Speedup with respect to the number of cores.

6.1 Python prototype

Since the Python prototype was developed with the purpose of proving

the proper operation of the parallel operator precedence parsing algorithm,

we deemed sufficient to test the implementation with a synthetic language as

a benchmark. Therefore we opted to execute a series of tests with the usual

parenthesized arithmetic expressions grammar described in chapter 2. The

input text for the tests were all generated by an algorithm we developed that

builds random strings belonging to the language defined by a given gram-

mar. We used this algorithm to build valid strings of different lengths that

we used for the Python prototype. The strings that we generated with the

string generation algorithm and that we used in order to test the prototype

have lengths respectively of 100, 500, 1000, 3000, 5000, 10000, 20000, 50000,

100000 and 250000 characters. Since, as we said, for the parenthesized arith-

metic expressions grammar the token are all of length one, the string length

in character corresponds to the input size measured in tokens.

The first result is shown in figure 6.1 on page 60. In the figure we see

how the two recombination techniques presented in section 4.4 perform with

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON61

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 50000 100000 150000 200000 250000

S
pe

ed
up

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.2: Python: Speedup with respect to the length of the string with logarithmic

cascade of recombinations.

respect to number of threads employed. The speedups are calculated on

the longest string, i.e. the one with 250000 tokens. We can observe that

both the versions scale well up to 4 cores, where the sequential one has a

value of ∼ 3.10 whereas the logarithmic cascade one has a value of ∼ 2.65.

We can see that beyond that number of cores the speedup values tend to

saturate, with a maximum of ∼ 4.62 obtained by the sequential version with

16 cores. In this figure we see what is a general trend in the algorithm,

i.e. that the sequential recombination technique performs generally better

than the logarithmic cascade. This might sound strange, since the latter uses

more parallelism throughout its execution. However, we noticed during the

execution of the tests that the iterations following the first one perform little

to no reduction and therefore the cost of launching more threads impacts

negatively on the execution time. We expect this behavior to change with the

implementation of the optimization described in section 5.3.2 and hopefully

see the logarithmic cascade outperform the sequential one.

The next two figures show how the two recombination techniques perform

with respect to the length of the input. In particular, figure 6.2 on page 61

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON62

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50000 100000 150000 200000 250000

S
pe

ed
up

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.3: Python: Speedup with respect to the length of the string with sequential

recombination.

shows the behavior of the logarithmic cascade version while figure 6.3 on

page 62 exhibits the conduct of the sequential one. We can notice that the

speedups change depending on the input. This effect can be explained by

the two following causes:

• the speedup on the shorter strings (length < 50000) is generally lower

since the times are rather small and therefore the creation and man-

agement of threads impacts a lot;

• the speedup observed on the last string is higher. We have already seen

in chapter 5 that depending on the cutoff point the parsing process

is more or less parallelizable; in general we can say that the input

structure impacts the degree of parallelism that the algorithm is able

to exploit. Therefore, strings with a particular structure tend to give

better performance and this is the case of the last string.

Another question that we wanted to answer was whether the execution

time of the implementation of the algorithm was as theoretically expected,

i.e. asymptotically linear with respect to the input length. The answer is

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON63

 0

 50

 100

 150

 200

 250

 300

 0 50000 100000 150000 200000 250000 300000

Ti
m

e
(s

)

String length

1 core
2 core
4 core
8 core

16 core

Figure 6.4: Python: Execution time with respect to the length of the string with logarithmic

cascade of recombinations.

 0

 50

 100

 150

 200

 250

 300

 0 50000 100000 150000 200000 250000 300000

Ti
m

e
(s

)

String length

1 core
2 core
4 core
8 core

16 core

Figure 6.5: Python: Execution time with respect to the length of the string with sequential

recombination.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON64

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

core

Long rhs grammar
Short rhs grammar

Figure 6.6: Python: Comparison of speedup with respect to the number of cores between

grammars with long and short rhs with logarithmic cascade of recombinations.

shown in figures 6.4 on page 63 and 6.5 on page 63, where the absolute

parsing time of different thread configurations with respect to the length of

the input can be seen. What can be noticed in the two figures is that the

parsing time for the 1 core configuration seems superlinear and also for the

other configurations it can be noticed that the points do not follow a straight

line. This would lead to the conclusion that the algorithm complexity is not

linear but, as we will see in section 6.2, this is not the case; in fact, non

linearities displayed by the prototype can be explained by the fact that it

is implemented in a very high level language which is in turn compiled into

another high level language and therefore the multiple levels of abstraction

justify such a behavior.

The last thing we wanted to investigate was the behavior and perfor-

mance of the algorithm with respect to different grammars. In particular, we

wanted to inspect whether or not the length of the rhs of production rules

influenced the performance of the parallel parser. In order to do so we de-

fined two grammars, Glong and Gshort such that the rhs of the rules in Glong

were composed of more symbols that the rhs of the rules in Gshort and that

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON65

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

core

Long rhs grammar
Short rhs grammar

Figure 6.7: Python: Comparison of speedup with respect to the number of cores between

grammars with long and short rhs with sequential recombination.

L(Glong) ⊂ L(Gshort). We then generated a string that belonged to L(Glong)

and parsed it with both grammars.

The reason why we did this benchmark was that we feared the longer

production rules to hinder the performance of the parallel parser: having

longer rules implies that cutoff points could more easily be placed in a way

that would prevent the recognition of entire rules and thus long parts of

the substrings would be left unparsed. As it can be seen in the figures,

however, not only this is not the case, but the grammar with longer rhs

performs generally better. This happens because the number of cutoff points

is generally low with respect to the length of the string and even if the cutoff

points are misplaced and they cause a problem that will propagate for several

tokens, it is improbable that this will spread throughout thousands of tokens.

This was everything that we wanted to investigate on the Python pro-

totype and we can conclude this section by saying that the first prototype

of the parallel operator precedence parser is definitely a proof of concept

of the theoretical parser described in chapter 4: despite the fact that it is

implemented in a very high level language and the algorithm itself was de-

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON66

veloped while writing the prototype, this shows what we believe to be a good

level of scalability and gain in performance with its parallelization. In sec-

tion 6.3 we will also see how it performs compared to a traditional LR parser

implemented in Python.

6.2 C implementation

In this section we will present the results obtained from the benchmarks

by employing the C implementation of the parallel parsing algorithm. Since

the C implementation is a first step towards a state of art parser, it seemed

logical to test it with real world languages. In particular, as mentioned in

section 3.2, we chose JSON as benchmark language; this has been done for

the following reasons:

• it is widely used (inspired from data structure representation in JavaScript

but it is also used as a format to interchange data in a human-readable

way) and different computer languages have parsers, parsing libraries

and export libraries that support it;

• it is a first step towards the definition in FG form of JavaScript and

XHTML/HTML5, which we intend to obtain in order to further test

our parser with the standards of the web languages;

• it is defined by a simple grammar which was easy to put in FG form;

since usage is limited to representing data, it has very few rules and

they have short rhs.

Since our parser works with FGs, we had to transform the JSON grammar

taken from [22] into a suitable form. In particular, the obtained grammar is

defined as JSONFG = {VN ,Σ, P, S} where the nonterminal alphabet is

VN = {S, OBJECT, MEMBERS, PAIR, STRING,

V ALUE, ARRAY, CHARS, ELEMENTS}

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON67

the terminal alphabet is

Σ = {{, }, ,, :, number, bool, ′′, char, [,]}

and the production rules are the following:

S → OBJECT

OBJECT → { } | {MEMBERS }

MEMBERS → PAIR | PAIR ,MEMBERS

PAIR → STRING : V ALUE

V ALUE → STRING | number | OBJECT | ARRAY | bool

STRING → ′′ ′′ | ′′ CHARS ′′

CHARS → char | char CHARS (6.1)

ARRAY → [] | [ELEMENTS]

ELEMENTS → V ALUE | V ALUE , ELEMENTS

The only difference in the production rules from the original grammar is in

rule (6.1), which originally were the two rules

CHARS → CHAR | CHAR CHARS

CHAR → char

that obviously make the grammar not in operator form, since there are two

nonterminals close to each other. The only other difference is the terminal

alphabet which in our version has symbols like number and bool that are

generated by the lexer, whereas in the original version of the grammar they

were rules that transformed a series of digits into a number and bool was

the alternative of either true, false or null.

Despite the fact that we had an automated string generator and that

therefore we could have generated random input, we wanted to stay true to

the purpose of the benchmarks which were to test the algorithm in a real

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON68

world environment. Therefore, the input that we used is the following series

of strings, listed in order of length:

2.7K response of a Google search in JSON;

30K e-business service catalog data;

80K configuration file of a Chrome plugin;

150K Gospel of John;

1.6M Italian statistic data-bank ISTAT on food consumption (originally a

csv file);

10M Google file on monograms on Google books (originally a csv file);

The last thing that needs to be specified before presenting the results is

that the tests have been performed on three different versions of the imple-

mentation of the algorithm, which give different results. The version depends

on the usage or not of two external libraries:

• Judy arrays have already been presented in section 5.2; in one version

of the implementation (subsection 6.2.1) we used them to implement

the token list, since they provide low cost (in terms of time, compared

to scanning the entire list) insertions in arbitrary points of the list; in

the other versions of the implementation (subsections 6.2.2 and 6.2.3)

the usage of the token list has been reimplemented in a way similar to

a stack, i.e. we keep a pointer to the last used element of the list so

that, since we only have to perform local changes (i.e. to the substring

in a near of the last read token), we do not have to execute a research

for a particular position in the global list;

• the Hoard allocator [23] is a dynamic library that can be preloaded

and acts as a wrapper for the malloc and free functions that we use

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON69

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 4 6 8 10 12 14 16

S
pe

ed
up

core

Amdahl's law with P=0.8
log cascade recombination data

sequential recombination data

Figure 6.8: C: Speedup with respect to the number of cores without Hoard allocator and

with Judy arrays.

extensively in our code optimized for multiple thread programs; its

impact on performance is discussed in subsection 6.2.3.

We do not present the combination using both Hoard allocator and Judy

arrays because it gave bad performance results both in terms of absolute

times, speedup and scalability; the reasons why this happens are due to

memory problems which are the same as the ones explained in sections 6.2.2

and 6.2.3.

6.2.1 Results using no Hoard allocator but Judy arrays

The first result of the C implementation can be seen in figure 6.8 on page

69, which shows the speedups with respect to the number of cores employed

obtained with the two different recombination techniques. The string which

gives these results is the longest one, i.e. the one with ten million characters.

In accordance with the results obtained with the Python prototype, we still

see that sequential recombination performs better than the logarithmic cas-

cade. Moreover, we can observe that the speedup saturate at lower values,

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON70

with a maximum of ∼ 3 obtained by the sequential recombination technique

using 16 cores. This is a rather low value, but it can be noticed that with 2

cores the speedup is ∼ 1.68 and with 4 cores it is ∼ 2.47 which are, from our

point of view, acceptable values, since the maximum theoretical speedups,

considering a level of parallelization of 100%, are 2 and 4, and the actual level

of parallelization is lower since the last iteration is inherently sequential. An

estimation of the speedup with Amdahl’s law is shown in figure 6.8: consid-

ering the portion of parallelized code to be 80% of the total, we obtain that

the maximum speedups for the different thread configurations are ∼ 1.66,

2.5, 3.33 and 4. However, it has to be remembered that Amdahl’s law gives

an overestimation that does not take into account the practical limitations

that an actual implementation implies and from which our implementation

surely suffers.

As with the prototype, there is a saturation effect that comes into play af-

ter 4 cores that strongly limits the growth of the speedup. As of now, we think

that this is the consequence of memory management problems, in particular

coming from the extensive usage of memory allocation and deallocation. As

we will see in the following subsections, the architecture we employed to per-

form the tests is made in a way that when more than one thread is running on

a processor (i.e. 8 and 16 threads configurations), the bandwidth available

to access the RAM memory and L3 cache is shared between threads run-

ning on the same processor; this obviously causes a bottleneck when making

extensive usage of memory.

The next result is shown in figures 6.9 on page 71 and 6.10 on page 71.

There are two interesting things to notice: the first one is that the shorter

strings (2700 and 300000 characters long) do not display any particular

speedup. This is because the execution times are very small and therefore

the initialization time of the threads burdens a lot on the whole parsing

time, thus nullifying the speedup. After those strings (starting from the 80K

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON71

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.9: C: Speedup with respect to the length of the string with logarithmic cascade

of recombinations without Hoard allocator and with Judy arrays.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.10: C: Speedup with respect to the length of the string with sequential recombi-

nation without Hoard allocator and with Judy arrays.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON72

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1000 10000 100000 1e+06 1e+07 1e+08

Ti
m

e
(n

s)

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.11: C: Execution time with respect to the length of the string with logarithmic

cascade of recombinations without Hoard allocator and with Judy arrays.

characters long string) the speedups remain more or less constant, showing

that the algorithm scales well with respect to the input length.

The last result is shown in figures 6.11 on page 72 and 6.12 on page 73.

There are two things to notice here: the first is the comparison in terms

of absolute times with the Python prototype. While the execution times of

the prototype were in the order of seconds, here the timings on inputs of

roughly the same length are several orders of magnitude smaller. Comparing

the run-times of the two implementations on the same grammar (parenthe-

sized arithmetic expressions) a factor of 60 was obtained. The second thing

to notice is that, in contrast with what we have seen with the prototype, the

results show an almost perfectly linear behavior. This validates our thesis

stated in section 6.1, i.e. the algorithm complexity is linear and non linear-

ities shown in the prototype come from the abstraction layers and not the

algorithm itself.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON73

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1000 10000 100000 1e+06 1e+07 1e+08

Ti
m

e
(n

s)

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.12: C: Execution time with respect to the length of the string with sequential

recombination without Hoard allocator and with Judy arrays.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

core

log cascade recombination data
sequential recombination data

Figure 6.13: C: Speedup with respect to the number of cores without Hoard allocator and

without Judy arrays.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON74

6.2.2 Results using no Hoard allocator and no Judy arrays

A first result of this configuration is shown in figure 6.13 on 73, where

the speedups with respect to the number of cores employed of the different

recombination techniques are presented. It can be noticed that speedups of

this version are generally lower than what we have seen with the previous

one with a maximum of ∼ 1.71 at 16 cores. A more in-depth representation

of the results is shown in figures 6.14 on page 76 and 6.15 on page 76.

There, the speedups are not consistent with respect to the length of the

analyzed string. For the shortest strings (up to 80K characters) the usual

behavior can be noticed, the speedup tends to grow because the time of the

initialization operations becomes smaller compared with the entire execution

time. However, after these strings, the speedups tend to shrink.

This behavior can be explained making some considerations on the archi-

tecture of the employed machine. Each processor has 6MB L3 cache shared

between its cores (each one having an additional 512KB L2 cache, consid-

ering that AMD caches are exclusive). This makes a total of 8MB of L2 +

L3 cache available per processor and a grand total of 32MB considering all

four CPUs. The major part of the data that is being used during the parsing

process is due to the token list and the parsing stack. In fact, each element

of the token list is composed of 16 bytes, while each element of the stack is

composed of 24 bytes. Since the token list is long roughly as the input string,

we can estimate the amount of memory it occupies depending on the input:

at 150K it will take ∼ 2.3MB, at 1.6M it will take ∼ 25MB and at 10M it

will take ∼ 156MB.

Moreover the number of concurrently growing stacks is the same as the

number of threads employed (obviously each parsing thread has its own

stack) and therefore, as the number of threads grows, the stacks will require

more and more memory and more and more memory accesses. A last con-

sideration is the one on the grammar used to express JSON: as shown at the

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON75

beginning of this section, some of the most frequently used rules are right

recursive. For our algorithm, this implies that each of these rules may gen-

erate a long sequence of recursions which require the stack to grow until the

last element of the sequence is reduced, at which point all the sequence can

be reduced. This obviously implies a great usage of memory both in terms

of allocated quantity and of frequency of accesses.

Taking all these consideration into account, we can explain the behavior

with respect to the longest strings (from 150K characters upward) shown in

the figures as follows:

• in general, the 2 cores line is lower than the other configurations: this

is intuitive and what is expected to happen;

• for the 150K and 1.6M characters long strings the 4 cores configuration

is the fastest: this can be explained considering that each thread is

mapped on a different processor and therefore has access to its full

cache with full bandwidth; this does not happen with the 8 and 16 cores

configurations, which have increasing competition to access memory;

• for the last string (10M characters) the amount of required memory is

such that it cannot be completely stored in cache and will surely have

to be located inside RAM: this means that the effect of the exclusive

access to the cache of which the 4 cores configuration enjoys is nullified

by the fact that it has to access the slower memory; in fact we can see

that the order of the configurations is restored to what it is intuitively

expected;

Even if the speedup results are worse than the first version of the imple-

mentation presented, the reason why we implemented and are now presented

this version is that it improves performances in terms of absolute execution

times. As an example, the time required to parse the 10M characters string

with one core using the previous version is ∼ 24.8s, while with this version

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON76

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.14: C: Speedup with respect to the length of the string with logarithmic cascade

of recombinations without Hoard allocator and without Judy arrays.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.15: C: Speedup with respect to the length of the string with sequential recombi-

nation without Hoard allocator and without Judy arrays.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON77

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

core

log cascade recombination data
sequential recombination data

Figure 6.16: C: Speedup with respect to the number of cores with Hoard allocator and

without Judy arrays.

it is ∼ 11.2s. We indeed believe that this is the direction along which future

development efforts will move since there is no further need for a structure

as complex as Judy arrays to manage the token list in our parser, and its

usage definitely brings in an unnecessary overhead. The problem of which

this version suffers are due to the fact that it still is being under development

and these are the first results that we obtained.

6.2.3 Results using Hoard allocator but no Judy arrays

In order to ease the effect of the bottleneck introduced by the inten-

sive use of memory, we tried to introduce the Hoard allocator. Hoard makes

memory allocations and deallocations faster in a multithreaded context by

preallocating a pool of memory that can be then used when necessary. This

helps because it reduces the number of allocations that need to be performed;

since those, as we said, tend to be serialized, Hoard generally improves per-

formance of memory intensive multithreaded applications.

The results of the tests run with the Hoard allocator are shown in figure

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON78

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.17: C: Speedup with respect to the length of the string with logarithmic cascade

of recombinations with Hoard allocator and without Judy arrays.

6.16 on page 69 and in more details in figures 6.17 on page 78 and 6.18 on

page 79. In general the same considerations expressed in subsection 6.2.2 hold

and therefore the implementation still presents problems with respect with

the speedup. However the effect of Hoard is indeed noticeable, especially in

the 2 and 4 cores configurations, where the speedup is consistent with respect

to the length of the string and in general the growth in speedup is acceptable

for the considerations made in subsection 6.2.1. After that point, it looks like

that Hoard is no longer able to hide the problems with memory management

and therefore the speedup falls, especially on the longer strings.

6.3 Comparison with traditional parsers

In this section we present a comparison between the parallel operator

precedence parser implementations and traditional parsing algorithm. For

the C implementation, the choice of the traditional parser was rather obvi-

ously a parser generated with Bison, which is the state of the art of parser

generator libraries which generates LALR(1) parsers. As we have seen, the

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON79

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1000 10000 100000 1e+06 1e+07 1e+08

S
pe

ed
up

String length

2 cores data
4 cores data
8 cores data

16 cores data

Figure 6.18: C: Speedup with respect to the length of the string with sequential recombi-

nation with Hoard allocator and without Judy arrays.

C implementation is much faster than the Python prototype and therefore

in our opinion it was not meaningful to compare the prototype with Bison.

Since we already used PLY to perform lexing in our prototype and as we

have mentioned it is an implementation of both Lex and Yacc in Python, it

seems rather natural to pick it as benchmark for Python LR parser.

The meaning of this test is that we wanted to investigate how our imple-

mentations performed compared to the state of the art implementation of

sequential parsers. From a theoretical point of view the operator precedence

parser is in the same complexity class as the other parsers and therefore the

development of a parallel version is trivially justified. However, in practice,

state of the art parsers have been developed for various years and are rather

optimized. This, in addition to the fact that their complexity is linear with

respect to the length of the input, makes the implementation of a compet-

itive parallel parser all but trivial and the results will be discussed in the

following subsections.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON80

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 w
.r

.t
 P

LY

core

log cascade recombination data
sequential recombination data

Figure 6.19: Python: Speedup compared to the PLY execution time with respect to the

number of cores employed.

6.3.1 Python prototype compared with PLY

As with the other tests on the prototype, the used grammar is the usual

parenthesized arithmetic expressions grammar and the employed test string

is the longest one (250k characters long).

As it can be seen in figures 6.19 on page 80 and 6.20 on page 81, the

prototype compared with the PLY generated parser shows rather good re-

sults. Despite the fact that on single core it is slower than PLY (250s vs

176s, speedup of ∼ 0.7), already with two cores it performs better. It can

be seen that the maximum speedup is obtained with 16 cores, point where

our parser is ∼ 3.09 times faster than the PLY generated one. As expected,

our implementation with one core is slower than the PLY generated one.

This, as previously said, is not a fault of the algorithm itself, but rather a

poor implementation that has the only purpose of testing the algorithm and

therefore does not comprehend any optimization at all.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON81

 0

 50

 100

 150

 200

 250

 300

PLY 1 core 2 cores log4 log8 log16 one4 one8 one16

Ti
m

e
(s

)

Figure 6.20: Python: Execution time of the various thread configurations compared to the

PLY generated parser.

 0

 2

 4

 6

 8

 10

 12

Flex+Bison NHNJ 1 core HNJ 2 cores HNJ 4 cores NHNJ 8 cores NHNJ 16 cores

Ti
m

e
(s

)

Figure 6.21: C: Execution time of the various thread configurations compared to the Flex

and Bison generated parser.

CHAPTER 6. EXPERIMENTAL EVALUATION AND COMPARISON82

6.3.2 C implementation compared with Flex and Bison

As it can be seen in figure 6.21 on page 81, the C implementation com-

pared with the Flex and Bison generated parsers shows generally worse re-

sults. The Bison generated parser is a single threaded program that, as we

said, implements an optimized LALR(1) parser. In the figure all the execu-

tion times are taken parsing the 10M characters long string; Bison on average

took ∼ 2.6s to completely analyze the input. In comparison, the best perfor-

mances for each threads configurations of our implementation are shown as

the green and blue bars, where the green ones come from the version that

does not use neither Judy nor Hoard, while the blue ones come from the

version which employs only the Hoard allocator. On single thread, as it is

now, our parser is ∼ 4.3 times slower than the Bison generated one, while

our best performing configuration (i.e. using Hoard with 4 threads) we are

∼ 1.9 times slower. As it can be noticed, none of the configurations come

from the version of the implementation which uses Judy arrays. This is an-

other proof of the fact that our parser does not enjoy advantages from the

usage of Judy arrays and justifies their removal. It is expected that with fur-

ther development of the version of the implementation without Judy better

results in terms of scalability and overall performance will be reached, since,

as we mentioned, there is no theoretical reason for an operator precedence

parser to perform worse than an LR one.

Chapter 7

Conclusion

In this thesis we studied a rather old paradigm of parsing, the operator

precedence parser, and the theoretical properties of the grammars it could

recognize, i.e. Floyd grammars. From this study the idea of a parallel parser

was born and from it the main work of this thesis. We studied and developed

a parallel parsing approach employing FGs, which first took the form of a

Python prototype. After having verified the correctness of such an approach

by mean of a suite of tests and after having obtained first encouraging re-

sults, we then developed a faster, more performing C implementation. This

implementation displayed the same general behavior of the Python proto-

type, showing some degree of parallelism and scalability. Despite the fact

that test results confirm that it is not yet at the level of current state of

the art traditional parsers and, more importantly, its scaling capability is

rather low, we think that it can greatly improve with further research and

development.

Such a research could and should be focused on two main areas: optimiza-

tions on the implementation and optimizations on the algorithm itself. As

for the former, we did not talk deeply in this thesis of how the algorithm has

been implemented and therefore it would make no sense to introduce where

we think the implementation should be optimized now, but, generally speak-

83

CHAPTER 7. CONCLUSION 84

ing, we think that bottlenecks now come from the memory management and

this will be a major concern in the months to come. As for the latter, we

already mentioned the optimizations of the algorithm that we identified as

possible as of now in section 5.3.

Lastly, future work related to work of this thesis, which are not necessarily

optimizations, can be located in the following areas:

• a PArallel PArser GENerator for Operator grammars (PAPAGENO),

i.e. an algorithm that, given a grammar and its semantics rules, auto-

matically generates an optimized parallel parser;

• parallel lexing; as of now we use an external library to perform lexing

which obviously is sequential; a possible future work is the develop-

ment of a library that performs parallel lexing speculatively; to our

understanding as of now, this could be done with heuristics in order to

balance the job of lexing over different threads and on their termina-

tion, verify whether the results around the cutoff points are consistent

or not;

• incremental parsing, i.e. given a parse tree and a modification on the

input string, an incremental parser modifies the parse tree accordingly

without rebuilding it from scratch. Thanks to the locality principle of

FGs, we think possible for a parallel operator precedence parser to be

employed in order to be able to manage concurrent modifications to

the same tree.

Appendix A

Infix grammar excursus

In this appendix we present the original idea to approach the problem of

parallel parsing using FGs. Its basic idea is to define the grammars of the

prefixes, suffixes and infixes of a given grammar, and use them to parse the

different parts of an input string, resulting in several parse trees, which need

to be linked together to reconstruct the parse tree of the original string. The

definitions of the different grammars are given in the following sections and

are taken or followed from [1]. As we said, after having performed a pass of

parsing using these grammars, the original approach involved the recombi-

nation of the parse subtrees into a complete one. Since this approach has

been abandoned during development, this last phase has not been properly

defined, and therefore will not be presented. All three definitions use the

Fischer normal form in order to express FGs, therefore we will introduce its

definition:

A FG is in Fischer normal form if it is invertible, the axiom S does not

occur in any right hand side of any rule, no empty rule exists except possibly

S → ε, the other rules having S as left hand side are renaming, and no other

renaming rules exist.

85

APPENDIX A. INFIX GRAMMAR EXCURSUS 86

A.1 Prefix grammar

LetG = (VN ,Σ, P, S) be a FG in Fischer normal form. Its prefix grammar

is G′ = (V ′N ,Σ, P
′, S′) where V ′N is the disjoint union of two sets denoted

V C and V S , defined as follows:

V C = {AC |A ∈ VN \ {S}}

V S = {AS |A ∈ VN \ {S}}

To build the rule set, we introduce two transformations αC and αS

αC , αS : (VN ∪ Σ)∗ → (V ′N ∪ Σ)∗

on strings α of the form

α = x0A1x1...Anxn, xi ∈ Σ∗

If xn 6= ε then
αC = x0A

C
1 x1...A

C
n xn

αS = undefined

If xn = ε then
αC = x0A

C
1 x1...A

C
n

αS = x0A
C
1 x1A

C
2 x2...A

S
n

We also define the transformation PREF (α) as

PREF (α) =
{
βSi |βi 6= ε is prefix of α

}
∪{

βCi |βi 6= ε is prefix of α ∧ βi ∈ V ∗Σ
}

Then, the new rule set P’ contains

S′ → AS for every rule S → A ∈ P

AC → αC for every rule A→ α ∈ P

AS → PREF (α) for every rule A→ α ∈ P

APPENDIX A. INFIX GRAMMAR EXCURSUS 87

A.2 Suffix grammar

The construction of the suffix grammar proposed here is symmetric to

the construction of the prefix grammar. Let G = (VN ,Σ, P, S) be a FG in

Fischer normal form. Its suffix grammar is G′ = (V ′N ,Σ, P
′, S′) where V ′N is

the disjoint union of two sets denoted V C and V P , defined as follows:

V C = {AC |A ∈ VN \ {S}}V P = {AP |A ∈ VN \ {S}}

To build the rule set, we introduce two transformations αC and αP

αC , αP : (VN ∪ Σ)∗ → (V ′N ∪ Σ)∗

on strings α of the form

α = x0A1x1...Anxn, xi ∈ Σ∗

If x0 6= ε then
αC = x0A

C
1 x1...A

C
n xn

αP = undefined

If x0 = ε then
αC = AC

1 x1...A
C
n xn

αP = AP
1 x1A

C
2 x2...A

C
n xn

We also define the transformation SUFF (α) as

SUFF (α) =
{
βPi |βi 6= ε is suffix of α

}
∪{

βCi |βi 6= ε is suffix of α ∧ βi ∈ ΣV ∗
}

Then, the new rule set P’ contains

S′ → AP for every rule S → A ∈ P

AC → αC for every rule A→ α ∈ P

AP → SUFF (α) for every rule A→ α ∈ P

APPENDIX A. INFIX GRAMMAR EXCURSUS 88

A.3 Infix grammar

The construction of the infix grammar is similar to the prefix and suffix

ones, and it uses the definitions of PREF (α) and SUFF (α) presented in

section A.1 and A.2. Let G = (VN ,Σ, P, S) be a FG in Fischer normal form.

Its infix grammar is G′ = (V ′N ,Σ, P
′, S′), where V ′N is the disjoint union of

four sets denoted V C , V I , V P and V S , defined as follows:

V C = {AC |A ∈ VN \ {S}}

V I = {AI |A ∈ VN \ {S}}

V P = {AP |A ∈ VN \ {S}}

V S = {AS |A ∈ VN \ {S}}

To build the rule set, we introduce four transformations αC , αI , αP and αS

αC , αI , αP , αS : (VN ∪ Σ)∗ → (V ′N ∪ Σ)∗

on strings α of the form

α = x0A1x1...Anxn, xi ∈ Σ∗

If x0 6= ε ∧ xn 6= ε then

αC = x0A
C
1 x1 . . . A

C
n xn

αP = undefined

αS = undefined

αI = undefined

If x0 6= ε ∧ xn = ε then

αC = x0A
C
1 x1 . . . A

C
n

αP = undefined

αS = x0A
C
1 x1 . . . A

S
n

αI = undefined

APPENDIX A. INFIX GRAMMAR EXCURSUS 89

If x0 = ε ∧ xn 6= ε then

αC = AC
1 x1 . . . A

C
n xn

αP = AP
1 x1 . . . A

C
n xn

αS = undefined

αI = undefined

If x0 = ε ∧ xn = ε then

αC = AC
1 x1 . . . A

C
n

αP = AP
1 x1 . . . A

C
n

αS = AC
1 x1 . . . A

S
n

αI = AP
1 x1 . . . A

S
n

We also defined the transformation INF (α) as

INF (α) =
{
βIi |βi 6= ε is infix of α

}
∪{

βCi |βi 6= ε is infix of α ∧ βi ∈ ΣV ∗Σ
}

Then, the new rule set P’ contains

S′ → AI for every rule S → A ∈ P

AC → αC for every rule A→ α ∈ P

AP → SUFF (α) for every rule A→ α ∈ P

AS → PREF (α) for every rule A→ α ∈ P

AI → INF (α) for every rule A→ α ∈ P

Appendix B

Support algorithms

In this appendix we will present two algorithms that are used to build the

support data structures used by the parsing process. In particular, we will

see the reduction tree generation algorithm (section B.1) and the reduction

set computation algorithm (section B.2).

B.1 Reduction tree generation

As we have seen in section 4.1.1, the reduction tree is a data structure that

is used by the parser in order to recognize which right hand side is the correct

one for a given handle. The data structure is initialized when the algorithm

is started and, since it only depends on the grammar, its construction can be

performed offline, i.e. before the analysis of an input string, and can be kept

not only between different iterations but theoretically even between different

strings, provided that the grammar remains unaltered. As it is implemented

now, there is still no possibility to store the reduction tree and to reload it,

therefore it is computed every time the parser starts.

The construction of the reduction tree can be seen in algorithm 5 on page

91. Since the rules recognition is done from right to left, the reduction tree

has to support the reading of the rules in inverse order. The construction

90

APPENDIX B. SUPPORT ALGORITHMS 91

is based on the analysis of each right hand side in inverse order: starting

from the root of the tree and the last token of the rhs, the algorithms tries

to build a node for each token until it reaches the end of the rule, when it

links the final node with the corresponding lhs and the semantic function

used for the correct reduction. Since it is possible for multiple rules to have

similar paths, nodes are reused for several rules and new nodes are created

only when necessary.

Algorithm 5 Reduction tree generation algorithm
root := new_tree

for all grammar rules do

node := root

for all token in inverted rhs do

5: temp := get_son_with_label(node, token)

if temp 6= NULL then

node := temp

else

node := create_son_with_label(node, token)

10: end if

end for

link_lhs_and_semantic_function(node)

end for

return root

We can observe that the complexity of the algorithm is O(nm), where

n is the number of production rules in the grammar, and m is the average

number of tokens per rhs. We do not exclude the existence of more efficient

versions of the algorithm, but, since the computation of the reduction tree is

not a burden on the parsing process, we do not believe this to be a particular

issue.

An example of reduction tree for the usual parenthesized arithmetic ex-

APPENDIX B. SUPPORT ALGORITHMS 92

pressions grammar can be seen in figure 4.2 on page 37.

B.2 Reduction sets computation

As we have said in section 4.1.2, reduction sets are used to manage im-

mediate rewrite rules after normal reductions. Let G = (VN ,Σ, P, S) be a

FG, we define the reduction set for each nonterminal A ∈ VN with respect

to grammar G, i.e. reductionG(A), as follows:

reductionG(A) = {B ∈ VN | B
∗⇒ A}

The algorithm to build the reduction sets (which is shown in algorithm 6 on

page 94) is composed of two different phases: a rewrite sets generator (lines

1-20) and the actual reduction sets generator (lines 21-28). The rewrite sets

generator is used to build, for each nonterminal of the grammar, the set of

nonterminals to which it can be rewritten to; in particular it builds these

sets by analyzing both direct and indirect rewrite rules. This is done by first

creating, for each A ∈ VN , its corresponding direct rewrite set rewriteG(A)

as

rewriteG(A) = {B ∈ VN | ∃A→ B ∈ P}

The direct rewrite sets are then iteratively used to create indirect rewrite

sets as follows:

rewritekG(A) = rewritek−1G (A) ∪

{B ∈ rewritek−1G (C) | ∀C ∈ rewritek−1G (A)}

Which intuitively means that on each iteration the rewrite set of nonterminal

A is enriched with the entire rewrite set of each nonterminal C in the rewrite

set of A. Thus, the resulting rewrite set of terminal A is:

rewriteG(A) = {B ∈ VN | A
∗⇒ B}

APPENDIX B. SUPPORT ALGORITHMS 93

After having computed all the rewrite sets, the algorithm actually creates

for each nonterminal symbol its corresponding reduction set, reductionG(A),

as:

reductionG(A) = {A} ∪ {B ∈ VN | A ∈ rewriteG(B)}

For instance, considering the usual parenthesized arithmetic expressions

grammar, the rewrite sets for the nonterminal symbols are

rewriteG(S) = {E, T, F}

rewriteG(E) = {T, F}

rewriteG(T) = {F}

rewriteG(F) = ∅

from which the following reduction sets can be computed as described above:

reductionG(S) = {S}

reductionG(E) = {S,E}

reductionG(T) = {S,E, T}

reductionG(F) = {S,E, T, F}

Therefore, whenever an F is recognized, the parser will stack the set {S,E, T, F}

because those are all the nonterminals that can immediately rewrite into F .

As for the reduction tree generator presented in section B.1, this algo-

rithm was not written with performance in mind, because it is another part

of the parser that can be executed offline and only once per grammar. As

the previous one, also this data structure currently cannot be stored and

reloaded but has to be computed on each run.

APPENDIX B. SUPPORT ALGORITHMS 94

Algorithm 6 Reduction sets computation algorithm
rewrite := new_dictionary

repeat

modified := false

for all lhs do

5: rules := get_direct_rewrite_rules(lhs)

for all rule ∈ rules do

if rule 6∈ rewrite[lhs] then

rewrite[lhs] := rewrite[lhs] ∪ rule

modified := true

10: else

for all temp ∈ rewrite[rule] do

if temp 6∈ rewrite[lhs] then

rewrite[lhs] := rewrite[lhs] ∪ temp

modified := true

15: end if

end for

end if

end for

end for

20: until modified is false

reduction := new_dictionary

for all nterm ∈ VN do

reduction[nterm] := reduction[nterm] ∪ nterm

for all token ∈ rewrite[nterm] do

25: reduction[token] := reduction[token] ∪ nterm

end for

end for

return reduction

Glossary

context The couple of terminal symbols preceding and immediately follow-

ing a substring.

formal grammar A tuple < VN ,Σ, P, S >, where VN is the nonterminal al-

phabet, Σ is the terminal alphabet, P is the set of syntactic production

rules and S ∈ VN is the axiom.

handle A series of tokens that identify a right hand side of a grammar

production, with precedence relations in the form l .
= · · · .= m.

immediate rewrite rule A grammar rule in the form N → M where

N,M ∈ VN .

infix An infix of a string T = t0, t1 . . . tn is a string I = tm, tm+1 . . . tk,

where k ≤ m ≤ n.

parallel computing A paradigm of computation in which many different

calculations are performed simultaneously.

parsing Analysis of a sequence of tokens s, one at a time, with respect to

a given formal grammar G, determining the syntactical structure of

the string, in order to define whether it belongs to the language L(G)

generated by G.

95

Glossary 96

prefix A prefix of a string T = t0, t1 . . . tn is a string P = t0, t1 . . . tm, where

m ≤ n.

regular language A formal language which can be expressed by a formal

regular expression.

speedup Sp = T1
Tp

where T1 is the execution time of the sequential algorithm

and Tp is the execution time of the parallel algorithm with p processors.

string A finite sequence of symbols that are chosen from a set or alphabet.

suffix A suffix of a string T = t0, t1 . . . tn is a string S = tn−m, tn−m+1 . . . tn,

where m ≤ n.

token Either a terminal or a nonterminal symbol, which is produced from

a string of characters during the lexing process.

Bibliography

[1] Stefano Crespi-Reghizzi and Dino Mandrioli. Operator precedence and

the visibly pushdown property. In Adrian Horia Dediu, Henning Fer-

nau, and Carlos Martín-Vide, editors, Language and Automata The-

ory and Applications, 4th International Conference, LATA 2010, Trier,

Germany, May 24-28, 2010. Proceedings, volume 6031 of Lecture Notes

in Computer Science, pages 214–226. Springer, 2010.

[2] http://www.arm.com/products/processors/cortex-a/cortex-a9.php.

[3] http://www.arm.com/products/processors/cortex-a/cortex-a15.php.

[4] Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the April 18-20,

1967, spring joint computer conference, AFIPS ’67 (Spring), pages 483–

485, New York, NY, USA, 1967. ACM.

[5] Stefano Crespi Reghizzi. Formal Languages and Compilation. Springer,

2009.

[6] Robert W. Floyd. Syntactic analysis and operator precedence. J. ACM,

10:316–333, July 1963.

[7] http://googleresearch.blogspot.com/2010/12/6-million-to-faculty-in-

q4-research.html.

[8] http://www.gnu.org/software/bison/manual/bison.html.

97

BIBLIOGRAPHY 98

[9] M. Dennis Mickunas and Richard M. Schell. Parallel compilation in a

multiprocessor environment (extended abstract). In Proceedings of the

1978 annual conference, ACM ’78, pages 241–246, New York, NY, USA,

1978. ACM.

[10] J. Cohen, T. Hickey, and J. Katcoff. Upper bounds for speedup in

parallel parsing. J. ACM, 29:408–428, 1982.

[11] J. Cohen and S. Kolodner. Estimating the speedup in parallel parsing.

IEEE Transactions on Software Engineering, 11:114–124, 1985.

[12] D. Sarkar and N. Deo. Estimating the speedup in parallel parsing. IEEE

Transactions on Software Engineering, 16:677–683, 1990.

[13] Lu Wei, Chiu Kenneth, and Pan Yinfei. A parallel approach to xml

parsing. In In The 7th IEEE/ACM International Conference on Grid

Computing, 2006.

[14] Pan Yinfei, Lu Wei, Zhang Ying, and Chiu Kenneth. A static load-

balancing scheme for parallel xml parsing on multicore cpus. In Seventh

IEEE International Symposium on Cluster Computing and the Grid,

CCGRID 2007.

[15] Yu Wu, Qi Zhang, Zhiqiang Yu, and Jianhui Li. A hybrid parallel pro-

cessing for xml parsing and schema validation. In Proceedings of Bal-

isage: The Markup Conference 2008, Balisage Series on Markup Tech-

nologies, 2008.

[16] Bhavik Shah, Praveen R. Rao, Bongki Moon, and Mohan Rajagopalan.

A data parallel algorithm for xml dom parsing. In Proceedings of the 6th

International XML Database Symposium on Database and XML Tech-

nologies, XSym ’09, pages 75–90, Berlin, Heidelberg, 2009. Springer-

Verlag.

BIBLIOGRAPHY 99

[17] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques: A Practical

Guide. Springer New York, 2008.

[18] http://wiki.python.org/moin/GlobalInterpreterLock.

[19] http://www.dabeaz.com/ply/.

[20] http://flex.sourceforge.net/.

[21] http://judy.sourceforge.net/.

[22] http://json.org/.

[23] http://www.hoard.org/.

	Introduction
	Main parsing methods
	General parsing techniques
	Deterministic descent parsing
	Deterministic ascent parsing
	Earley algorithm

	Parallel parsing techniques
	Preparsing approach
	Speculative parsing approach

	Floyd grammars
	Definition and properties
	Properties

	Relationship with other grammar families
	Practical considerations

	Parallel parsing algorithm
	Naive operator precedence parser
	Reduction tree
	Usage of reduction sets

	Substring operator precedence parser
	Partially parsed substrings
	Parallel operator precedence parser
	Data management between iterations

	Implementation and optimizations
	Python prototype
	C implementation
	Possible future optimizations
	Optimized cutoff points
	Optimized logarithmic cascade of parallel recombinations
	Optimized handle identification and reduction

	Experimental evaluation and comparison
	Python prototype
	C implementation
	Results using no Hoard allocator but Judy arrays
	Results using no Hoard allocator and no Judy arrays
	Results using Hoard allocator but no Judy arrays

	Comparison with traditional parsers
	Python prototype compared with PLY
	C implementation compared with Flex and Bison

	Conclusion
	Infix grammar excursus
	Prefix grammar
	Suffix grammar
	Infix grammar

	Support algorithms
	Reduction tree generation
	Reduction sets computation

	Glossary

