
Politecnico di Milano
V Facoltà di Ingegneria

Master of Science in Computer Engineering
Dipartimento di Elettronica e Informazione

Java Interactive Virtual Environment System
(JIVES)

a Java-based Multi-user Modular Networked Virtual Environment framework

Relatore: Prof. Thimoty BARBIERI

Tesi di Laurea di:
Adriano DALPANE Matr. 736581
Simone SEGALINI Matr. 739362

Anno Accademico 2010-2011

The computer programmer is a creator of universes
for which he alone is responsible.

Universes of virtually unlimited complexity can be created
in the form of computer programs.

Joseph Weizenbaum

Contents

List of Figures . V

List of Code Snippets . IX

List of Tables . XI

Abstract XIII

Estratto XV

1 Introduction 1

1.1 Development of a Virtual Environment system 3

2 Technological background 7

2.1 VRML . 7

2.2 X3D . 7

2.3 Java3D . 8

2.4 JOGL . 8

2.5 LWJGL . 8

2.6 OpenGL . 9

2.7 Direct3D . 9

2.8 jMonkeyEngine . 9

2.9 Nifty GUI . 10

2.10 Client/Server . 10

2.11 Peer-To-Peer . 11

2.12 JXTA . 11

II CONTENTS

2.13 DB4O . 12

2.14 Ozone . 12

2.15 C++ . 13

2.16 Java . 13

2.17 Lombok . 14

3 Related work 15

4 Motivations and targets 23

5 Design and Implementation 27

5.1 Design . 27

5.1.1 Inventory Data Structure 30

5.1.2 Event Driven Architecture 31

5.1.3 TradeItemsAction Protocol 32

5.1.4 Networking Layer Architecture 35

5.1.5 JiveScript grammars . 40

5.1.6 Critical conditions and their resolution 48

5.2 Implementation . 53

5.2.1 Universal Platform . 53

5.2.2 Networking Layer . 61

5.2.3 Middleware Layer . 67

5.2.4 Application Layer . 72

6 Development and Usage 75

6.1 Developer’s Manual . 75

6.1.1 Development using JIVES 75

6.1.2 Building the JIVES project 80

6.2 User’s Manual . 86

6.2.1 Shell User’s Manual . 87

CONTENTS III

6.2.2 jME User’s Manual . 102

6.2.3 Java Applet User’s Manual 120

6.3 Sample JiveScripts . 122

7 Performance Metrics and Evaluation 129

7.1 Performance Metrics . 129

7.2 Evaluation . 142

8 Conclusions and Future Work 149

8.1 Conclusions . 149

8.2 Future Work . 150

Appendices 155

A JIVES Class Diagram 155

B JiveScript Shell Demo 159

C JiveScript jME Demo 167

D Server-side Rendezvous directory active page 177

Bibliography 183

List of Figures

1.1 Reality-Virtuality Continuum . 1

5.1 Virtual Environment System Layered Object Model 27

5.2 Bag Graph Example . 31

5.3 TradeItemsAction Commit . 34

5.4 JIVES Networking Layer Architecture: JXSEImplementor 36

5.5 TradeItemsAction rollback . 48

5.6 Rotation step of the combination helper algorithm 51

5.7 Translation step of the combination helper algorithm 52

5.8 JIVES Component Diagram . 53

6.1 JIVES Project Folder using Eclipse 76

6.2 Adding JIVES Dependencies in Eclipse 77

6.3 JIVES Project Folder using jME SDK 78

6.4 Adding JIVES Dependencies in jME SDK 78

6.5 Installing JavaScript Rhino Content Assist 79

6.6 Creating a new JiveScript . 80

6.7 JiveScript Editor Netbeans plugin 81

6.8 Configuring the CVS connection in Eclipse 81

6.9 Executing the JivesApplet . 85

6.10 JIVES Folder Disposal . 87

6.11 Starting JIVES from Mac OS X Terminal 88

6.12 Shell Implementor Starting Screen 89

VI LIST OF FIGURES

6.13 Starting JIVES from Windows Command Prompt 90

6.14 List of Shell Implementor and JiveScript Commands 94

6.15 JiveScript Shell Demo Starting Scene 96

6.16 A New Entry in the Scene . 96

6.17 Moving around the Scene and Interacting with a NPC 98

6.18 Managing the Item Inventory . 99

6.19 Combining Two Items through HotSpots 100

6.20 Free Chat between two Playing Characters 100

6.21 Trade between two Playing Characters 101

6.22 Network Settings Graphical User Interface 103

6.23 JIVES JiveScript Console . 105

6.24 JiveScript jME Demo Starting Scene 106

6.25 JIVES Peer jME Network Configuration Settings 108

6.26 A second user joins the Scene . 108

6.27 Interacting with a NPC . 109

6.28 Dialogue with a NPC . 110

6.29 Chatting with a PC . 110

6.30 Inviting a PC . 111

6.31 Activating the Artifact . 111

6.32 JIVES Item Inventory Graphical User Interface 112

6.33 Selecting the Items from the Inventory 113

6.34 JIVES Combination Screen . 114

6.35 A successful combination . 115

6.36 A Trade Request . 115

6.37 The Notification that Trade Request has been accepted 116

6.38 Trading the selected Item . 117

6.39 Confirming the Trade . 117

6.40 Trade is complete . 118

LIST OF FIGURES VII

6.41 The user has received the new Item 118

6.42 Trading with a NPC . 119

6.43 The Certificate Request . 121

7.1 Start-up experiment . 131

7.2 Network Load Performance Measurement 136

7.3 Total number of message transmissions for number of nodes . . . 137

7.4 Web browser usage . 147

A.1 JIVES Class Diagram . 157

List of Code Snippets

5.1 Proxy connection . 37

5.2 JIVES Pipe Advertisement . 40

5.3 Inline Instantiation . 41

5.4 Bag definition . 44

5.5 Dialogue definition . 46

5.6 Rendezvous/Relay run method 63

5.7 NetworkMessage constructor . 66

5.8 Nifty GUI Multithreading . 71

6.1 TestJMEApplet . 83

6.2 Applet builder Bash Script . 84

6.3 JIVES Network Configuration Default Settings 91

6.4 JIVES Peer Network Configuration Settings 97

6.5 The Policy File . 121

6.6 uses and name directives . 122

6.7 Event listener . 123

6.8 Shell Items combinations . 124

6.9 jME Items combinations . 125

6.10 Scene Model Definition . 126

6.11 A predefined Dialogue . 127

6.12 Trade with a NPC . 128

7.1 The Network Test Receiver Script 134

7.2 The Network Test Starter of Sender Scripts 135

X LIST OF CODE SNIPPETS

7.3 The Network Test Sender Script 135

B.1 JiveScript Shell Demo . 159

C.1 JiveScript jME Demo . 167

D.1 Rendezvous directory active page 177

List of Tables

7.1 Start up experiment results . 130

7.2 Performance comparison . 138

7.3 Qualitative performances assessment 148

Abstract

This paper presents the design and implementation of Java Interactive Vir-

tual Environment System (JIVES), a Java-based Multi-user Modular Networked

Virtual Environment framework for web and desktop applications. The whole

architecture is subdivided into three main layers, ordered as follows: the Core

implements the abstract features that are commonly required in the creation of

Virtual Environments; the Implementors layer consists in modules that can be

contributed as building blocks in order to realize such features; the application

layer that defines its own scripting language that allows the programmer to es-

trange from lower levels implementation details. The current state of development

offers a Peer-To-Peer network and a 3D visualization module; along with these

we present a demonstrative application script. An innovative HotSpot-based Item

Inventory Management System integrates a meaningful way to combine Inventory

items and allows JIVES to differentiate from its predecessors. Finally we propose

a reflective evaluation of the entire project and we discuss possible future develop-

ment directions. JIVES aims at being a trade-off solution to a complex problem:

completely Open Source, having an experimental design, being extensible, flexible

and reusable, it can be considered a good research result in the world of Virtual

Environment frameworks.

Estratto

Questa tesi presenta il design e l’implementazione del Java Interactive Vir-

tual Environment System (JIVES) framework, un sistema multi-utente modulare

basato su Java che offre funzionalità di rete, attraverso il quale si possono realiz-

zare applicazioni per web e desktop. L’intera architettura è suddivisa in tre livelli

principali, ordinati come segue: il Core implementa le caratteristiche astratte co-

munemente ritenute essenziali nella creazione di ambienti virtuali; il livello degli

Implementors consiste in moduli che contribuiscono alla realizzazione di tali carat-

teristiche; il livello applicativo definisce il proprio linguaggio di script in maniera

tale che il programmatore rimanga completamente estraneo ai dettagli implemen-

tativi dei livelli inferiori. Allo stato attuale, JIVES offre un modulo di rete basato

su architettura Peer-To-Peer ed un motore di visualizzazione 3D; assieme ad essi

viene fornito lo script di un’applicazione dimostrativa. Un sistema innovativo

di gestione dell’inventario basato su HotSpots integra una modalità significativa

per combinare oggetti dell’inventario e permette a JIVES di differenziarsi dai sis-

temi finora sviluppati. Infine proponiamo una valutazione dell’intero progetto e

discutiamo le possibili direzioni di sviluppo futuro. JIVES punta ad essere una

soluzione di trade-off ad un problema complesso: completamente Open Source,

estensibile, flessibile, riutilizzabile e caratterizzato da un design sperimentale, può

essere considerato un buon risultato di ricerca nel panorama dei Virtual Environ-

ment frameworks.

Chapter 1

Introduction

An exact definition of a Virtual Environment (VE) is difficult to find. A common

definition denotes a Virtual Environment as a computer-based simulated environ-

ment intended for its users to inhabit and interact via avatars. This habitation

usually is represented in the form of two or three-dimensional graphical repre-

sentations of humanoids (or other graphical or text-based avatars). Blaskovich

[5] defines a Virtual Environment as synthetic sensory information that leads to

perceptions of environments and their contents as if they were not synthetic.

Figure 1.1: Reality-Virtuality Continuum

According to the definition of the Reality-Virtuality continuum, shown in Fig-

ure 1.1, in which the range scales between the completely virtual, a Virtuality,

and the completely real, a Reality, Virtual Environments lie on the right side

of the continuum. Between the two extremes of the continuum, the pure Real

Environment and the pure Virtual Environment, there exist numerous variations,

both theoretical and applicative, which mix to various degrees the elements of

both the Real and Virtual Environments: the spectrum in which this takes place

2 Introduction

is commonly referred to as Mixed Reality. Mixed Reality applications can be

based on real elements, with the addition of a number of synthetic ones generated

by the computer, in which case the talk is of Augmented Reality. Alternatively

the application can be almost entirely based on a synthetic environment, with a

number of real elements supporting it, in which case it is referred to as Augmented

Virtuality.

Virtual Environments applications can be extremely different from each other

leading to a categorization into four main classes:

• Collaborative Virtual Environments (CVEs) describe Virtual Envi-

ronments that involve more than one user, with avatars interacting with

each other. With high bandwidth and Internet access, Virtual Environ-

ments that allow for greater multi-user interactivity have become widely

available in recent years.

• Immersive Virtual Environments (IVEs) increase the user’s sense of

presence actually being within it. IVEs typically require special equipment

such as a head mounted display or a project equipment situated in a room.

IVEs track a user’s head and body position, facial expressions and gestures,

and other information, thereby providing a much information about the zone

or the item of the Environment in which the user is focusing the attention.

• Massively Multiplayer Online Role-Playing Games (MMORPGs)

describe multi-player games which are capable of supporting thousands of

players simultaneously. They are often based on fantasy themes [6, 41, 62].

• Multi-user domains (MUDs) are primarily text-based environments that

were the predecessors of modern graphical Virtual Environments.

In particular, Collaborative Virtual Environments include a category of sys-

tems in which individuals cooperate in a network according to the paradigms of

released reality, placing these applications into a category referred to as desktop

Introduction 3

virtuality (or semi-immersive virtuality), in which the only two items that are

necessary are a good graphics card and a good personal computer. The advent of

standards such as VRML for 3D representation on the Web have allowed to also

develop other types of applications that are entirely Web-based. This category is

often termed Net-VE (Networked Virtual Environments), and also includes a sub-

group called Web-VE (Web-Based Virtual Environments), which consists solely of

Environments that use Web technologies instead of own technologies. The salient

characteristic of these systems is that they are network-based and therefore are

essentially concerned with establishing strong collaboration between agents that

share an Environment. According to the MRIC model [66] modern Net-VEs

display little if any integration with the real environment, while their degree of

Released Reality and Immersivity differs according to the type of application.

1.1 Development of a Virtual Environment sys-

tem

A Virtual Environment presents a challenging problem with regard to the devel-

opment of an underlying system. The problem domain presents itself being vast,

requiring diverse areas of expertise, which may range from networks to psychol-

ogy. This complexity makes the development of a Virtual Environment system a

difficult task to achieve with a high cost in resources. Oliveira [46] asserts that

the wide applicability of a Virtual Environment, such as scientific visualization,

socializing, training, gaming, produce a set of requirements that make it very dif-

ficult to build a single system to fit all needs. Traditionally, the result has been

the creation of monolithic systems that are highly optimized to a particular ap-

plication, without possibility of re-usability with a different purpose. In the last

decade, the main trend in the Virtual Environment community has been for a

new Virtual Environment system to be developed every time it was necessary to

use one. The trend in the games development industry is even worse, where the

4 Introduction

production cycles of each application traditionally involve game design, technol-

ogy development and content creation. In some cases the particular requirements

of each game usually involves significant changes in the code, leading to total re-

development of the game engine. The main problems mentioned by Oliveira [46]

which have affected the development of Virtual Environment systems during the

last decade are here reported:

• Non-Extensibility. The design of most Virtual Environment systems is

tightly coupled with the initial requirements, thus resulting in monolithic

architectures where any changes or modifications are infeasible. The ar-

chitectures of more recent versions of some systems do present a modular

design, but continue to make it difficult to extend the core functionality if

it was not foreseen in the original design. Thus, any changes require signif-

icant, if not total, re-engineering of the underlying system. In most cases,

the most cost/effective solution is the creation of a new system.

• Steep Learning Curve. The complexity of a Virtual Environment sys-

tem, with its tightly coupled nature, makes it difficult for a developer to

haul any benefits without becoming an expert. Unfortunately, the learning

curve associated to a system is traditionally exponential. This results in a

selected few being sufficiently proficient with a particular system, normally

the creators and maintainers. Recently, the adoption of different scripting

languages has improved Virtual Environment development making it more

efficient and accessible.

• One Stop Shop. The complexity of VE involves the operation of several

different sub-systems, such as rendering, networking, database. Although

modularity may influence the design of each subsystem, their operation re-

mains tightly coupled to each other. Consequently, the result is a monolithic

architecture, albeit modular.

Introduction 5

• ”Not Invented Here” and ”Reinventing The Wheel”. These syn-

dromes imply the expenditure of resources on the re-emergence of existing

technology in building a Virtual Environment system. Consequently, ex-

ploring new approaches becomes quite limited.

• Poor Scalability. Most Virtual Environment systems aimed at collabo-

ration claim to support in theory thousands of users, when in reality all

documented experiments in Collaborative Virtual Environments (CVEs) do

not go beyond a few dozens. With the online game community, the number

of user base is reported to be larger at the expense of significant large bud-

gets to increase the network and computational resources. This approach

is less than ideal since notoriously the Client/Server architectures do not

scale.

Only recently the development of Virtual Environment systems is considering

these issues, adopting different solutions such as modularity, peer-to-peer archi-

tecture, scripting languages, code re-usability. Chapter 2 illustrates the main

technologies adopted in the development of a Virtual Environment system, while

Chapter 3 presents a brief analysis of the previous work in the literature, along

with the introduction of our new Virtual Environment system, JIVES. Chap-

ter 4 includes the motivations and the targets behind the choice of creating the

JIVES middleware, while Chapter 5 is subdivided into two main sections, the

first dedicated to the design of JIVES, while the latter to the implementation of

the framework. The implementation section is in turn divided into nine parts,

each of them involving a specific piece of JIVES: the Core, the Persistence Layer,

the Actions and Events Management System, the Dialogues Manager, the Bag

Graph, the Networking Layer, related to the JXSE [54] technology, the Middle-

ware Layer, which includes the description of the Shell Implementor and the jME

[31] Implementor, and finally the Application Layer, which describes the JIVES

scripting language, JiveScript. Chapter 6 regards Development and Usage: the

6 Introduction

Development section offers a Developer’s Manual; while the Usage section includes

a User’s Manual and the accurate description of how the JiveScript Demos have

been developed and structured. Chapter 7 illustrates the Performance Metrics,

both qualitative and quantitative, and the Evaluation based on the key points of

the Design phase and the Performance Metrics. Chapter 8 draws the conclusions

and possible future works. The UML class diagram, the JiveScript Demos written

to test the proper functioning of the JIVES Virtual Environment system and the

Rendezvous directory server page are fully reported in the Appendices.

Chapter 2

Technological background

There are several technologies that allow the construction of distributed virtual

reality systems. In the next subsections will be considered only some of these

technologies, with particular attention to those most used in the last years. It is

important to remark that all the technologies presented in this chapter were taken

into account for the JIVES project, but only some of them were actually used.

2.1 VRML

The Virtual Reality Modelling Language (VRML) [70] established a standard

for the description of Virtual 3D Environments that can be viewed locally or

transferred through the Internet and provides powerful resources for modelling

complex 3D scenes. It is responsible for showing the virtual scene to the user.

VRML is often used in combination with the Java [51] development language

and the bridge used to communicate this language with VRML is the External

Authoring Interface [69]. In the last ten years many 3D middlewares, frameworks

and virtual worlds were created by using the VRML technology [34, 2, 36, 3].

2.2 X3D

The Extensible 3D (X3D) [71] is the successor to the VRML. It improves upon the

latter with new features, advanced APIs, additional data encoding formats and a

8 Technological background

component-based architecture. X3D has been chosen as the description language

of the component geometry due to its flexible XML-encoding, modularization and

backward compatibility with VRML [70] data [14, 35]. Furthermore, X3D includes

a rich set of primitives for modelling 3D geometry, behaviours and interactions

[3].

2.3 Java3D

Java3D [48] is a scene graph-based 3D application programming interface (API)

for the Java [51] platform. It runs atop either OpenGL or Direct3D. Java 3D is not

only a wrapper around these graphics APIs, but an interface that encapsulates

the graphics programming using a true object-oriented approach. A scene is

constructed using a tree-structured scene graph that is a representation of the

objects that have to be shown. Several projects employed Java 3D [2, 36, 3, 65].

2.4 JOGL

Java OpenGL (JOGL) [53] is a wrapper library that allows OpenGL to be used

in the Java [51] programming language. JOGL allows access to most features

available to programs developed using C, with the notable exception of window-

system related calls in OpenGL Utility Toolkit (GLUT), since Java [51] has its

own windowing systems, Abstract Window Toolkit (AWT) and Swing. Over the

last years, different graphical engines have been implemented on top of JOGL

[33].

2.5 LWJGL

The Lightweight Java Game Library (LWJGL) [55] is an Open Source Java [51]

software library for game developers. LWJGL exposes high-performance cross-

platform libraries commonly used in developing software applications, such as

Technological background 9

OpenGL, OpenAL, OpenCL. The main goal of the LWJGL [55] project is to

provide a technology which allows Java [51] programmers to get access to resources

that are otherwise unavailable or poorly implemented on the current Java [51]

platform. The jMonkeyEngine [31] uses LWJGL as its rendering system.

2.6 OpenGL

The Open Graphics Library (OpenGL) [32] is a standard specification defining a

cross-language, cross-platform API for writing applications that produce 2D and

3D computer graphics. The interface consists of over 250 different function calls

which can be used to draw complex 3D scenes from simple primitives. OpenGL is

a low-level, procedural API, requiring the programmer to specify the exact steps

required to render a scene. This contrasts with descriptive APIs, such as Java3D

[48], where a programmer only needs to describe a scene and can let the library

manage the details of rendering it.

2.7 Direct3D

Direct3D [38] is part of Microsoft’s DirectX application programming interface

(API). Direct3D is available for only Microsoft Windows operating systems (Win-

dows 95 and above) and Open Source software Wine [11]. It is used to render

3D graphics in performance-based applications, such as games. Direct3D uses

hardware acceleration if available on the graphics card, allowing for hardware

acceleration of the whole rendering pipeline.

2.8 jMonkeyEngine

jMonkeyEngine (jME) [31] is a high performance Java-based 3D graphics library

made especially for modern 3D development, since it uses shader technology ex-

tensively. jMonkeyEngine [31] is written purely in Java [51] and uses LWJGL [55]

10 Technological background

as its default renderer for OpenGL [32] access. OpenGL 2 through OpenGL 4 is

fully supported. It provides a 3D scene-graph based API with the latest state-

of-the-art features. jME [31] is completely Open Source under the BSD license.

The last graphics engines of the Massively Multiplayer Game Research Frame-

work (Mammoth) [33] and the Open Wonderland framework [47] are based on the

jMonkeyEngine [31].

2.9 Nifty GUI

Nifty GUI [43] is a Java [51] Library that supports the building of interactive user

interfaces for games or similar applications. It utilizes LWJGL [55] for OpenGL

[32] rendering. The base GUI layout is defined in XML, and controlled dynam-

ically from the Java [51] code. Nifty GUI helps the developer to layout stuff,

display it in a cool way and interact with it. Nifty GUI [43] (the de.lessvoid.nifty

package) is well integrated with jME3 [31] through the com.jme3.niftygui package.

2.10 Client/Server

The Client/Server Network architecture involves multiple clients connecting to

a single, central Server. Usually the file server on a Client/Server network is a

high capacity, high speed computer with a large hard disk capacity. This kind of

technology is implemented in most of the professional 3D games, in particular the

Massively Multi-player Online Games (MMOG) [7], in which the huge number

of Clients connected requires a high-computational powered server architecture

responsible to manage all the game state computations. The drawback of this

model is its non-scalability: as the number of participants in a Virtual Environ-

ment increases, the server works as a bottleneck. Even if additional Servers are

used, the delay due to additional communication overhead in servers is inevitable

[35].

Technological background 11

2.11 Peer-To-Peer

Peer-To-Peer networks involve two or more computers sharing individual resources.

These resources are available to every computer in the network. Each computer

acts as both the Client and the Server, meaning that all the computers on the

network are equal, not requiring any additional coordination entity (such a cen-

tral Server) and not delaying transfers by routing via Server entities. Recently,

Virtual Environment middlewares such as ATLAS [35], Mediator [20] and Hydra

[10] implemented a Peer-To-Peer architecture in order to face the scalability issues

related to the Client/Server architecture.

2.12 JXTA

Juxtapose (JXTA) [54] is an Open Source Peer-To-Peer protocol specification

working through a set of XML messages which allow any device connected to ex-

change messages and collaborate independently of the underlying network topol-

ogy. Implementations of JXTA [54] are available for Java SE, C/C++, C# and

Java ME. The peculiarity of JXTA [54] is the possibility to create a virtual overlay

network which allows a Peer to interact with other Peers even when some of them

are behind NATs and firewalls or use different network transports.

As explained in [68], the JXTA [54] Architecture is made of three logical layers:

• Platform Layer: it is the base of JXTA [54] and contains the implementa-

tion of the minimal and essential functionalities required to perform Peer-

To-Peer networking. This layer is also know as the core layer.

• Services Layer: it contains additional services that are not absolutely

necessary for a Peer-To-Peer system to operate, but which might be use-

ful: searching and indexing, storage systems, file sharing, distributed file

systems, resource aggregation and renting, protocol translation, authentica-

tion, PKI (Public Key Infrastructure).

12 Technological background

• Applications Layer: it includes implementation of integrated applications:

Peer-To-Peer instant messaging, document and resource sharing, content

management and delivery, Peer-To-Peer email systems, distributed auction

systems.

In order to know the advantages and the disadvantages of the JXTA [54]

technology, it is interesting to read the performance study written by Halepovic

and Deters [27].

2.13 DB4O

DB4O (DataBase FOR Objects) [67] is an embeddable Open Source object database

for Java [51] and .NET developers. It is developed, commercially licensed and

supported by Versant. DB4O [67] is written in Java and .NET and provides the

respective APIs. It can run on any OS that supports Java [51] or .NET. It is of-

fered under multiple licenses, including the GNU General Public License (GPL),

the DB4O Opensource Compatibility License (dOCL), and a commercial license

for use in proprietary software.

DB4O [67] represents an object-oriented database model. One of its main

goals is to provide an easy and native interface to persistence for object-oriented

programming languages. Development with DB4O [67] database does not require

a separate data model creation, the application’s class model defines the structure

of the data in DB4O [67] database. DB4O [67] aims to avoid the object/relational

impedance mismatch by eliminating the relational layer from a software project.

A very interesting project [13] uses DB4O [67] for universal storage, primarily

for SceneNode persistence and Linq queries.

2.14 Ozone

Ozone [19] is a fully featured, object-oriented database management system imple-

mented in Java [51] and distributed under the LGPL Open Source license. The

Technological background 13

Ozone [19] project aims to evolve a database system that allows developers to

build pure object-oriented systems. Ozone [19] does not depend on any back-end

database to actually save objects. It contains its own clustered storage and cache

system to handle persistent Java [51] objects. Ozone [19] includes a fully W3C

compliant DOM implementation that allows to store XML data. It is possible to

use any XML tool to provide and access these data. Support classes for Apache

Xerces-J and Xalan-J are included.

2.15 C++

C++ [12] is a statically typed, free-form, multi-paradigm, compiled, general pur-

pose programming language. Today, because it is object-oriented and compiles

to binary, the most popular game development language is C++ [12]. Because of

this, the majority of commercial computer and video games are written primarily

in C++ [12].

2.16 Java

Java [51] is a platform-independent, object oriented language that aims to the

development of applications to run in network environments and the Internet.

Nowadays Java [51] can be executed by most of the existing browsers [34, 47]

through the Java Web Start technology. Most of the Virtual Environment (VE)

middlewares [47, 45, 36, 33] make use of Java [51] as the primary language. Nev-

ertheless Java [51] has always been considered slower than other development

languages such as C++, nowadays the performance offered by Java [51] when

a 3D accelerated graphics card is used is fully comparable to C++. Ingles [30]

investigated Java’s performance for game programming, showing that by the in-

troduction of the full-screen exclusive mode in J2SE version 1.4 programs using

Java [51] are able to access graphics hardware more directly. The addition of

full-screen exclusive mode alone has increased Java’s graphics performance speed

14 Technological background

by about three times.

2.17 Lombok

Project Lombok [75] is a small Java [51] library that can be used to reduce the

amount of Java [51] boilerplate code that is commonly written for Java [51] classes.

Project Lombok [75] does this code reduction via annotations that can be added

to the Java [51] class replacing desired common methods. It is possible to an-

notate any field with @Getter and/or @Setter, to let Lombok [75] generate the

default accessors automatically, or with @Delegate in order to generate delegate

methods that forward the call to the given field; any class definition may be an-

notated with @ToString to let Lombok [75] generate an implementation of the

toString() method, or with @EqualsAndHashCode in order to obtain the Lombok

[75] implementations of the equals(Object other) and hashCode() methods, or with

@NoArgsConstructor to generate a constructor with no parameters.

Chapter 3

Related work

Over the last decade, research efforts in the Virtual Environment middleware

industry were targeted at improvement of scalability, persistence and responsive-

ness capabilities, while much less attempts [44] have been aimed at addressing the

flexibility, maintainability and extensibility requirements in contemporary Virtual

Environment platforms.

ATLAS [35] is a Distributed Virtual Environment (DVE) system that allows

users on a network to interact with each other by sharing a common view of their

states. This system is designed with the scalability requirement in mind. Several

techniques are adopted, such as the subdivision of the virtual world into several

logical regions in order to reduce message exchange, or a prediction-based concur-

rency control, implemented in order to allow real-time interaction for users. Inter-

est management and scalability requirement are faced also in the Message Oriented

Middleware [39], through which the traditional interest management techniques

such as the region-based technique and the aura-based technique are improved by a

new predictive interest management scheme. Move [23] and the Joint Hierarchical

Nodes based User Management (JoHNUM) are another efforts in creating a mid-

dleware that is completely scalable, consistent and high-performance-based, with

particular attention given respectively to data extraction and region-based interest

management. Reducing bandwidth use and latency optimization are other design

problems in the construction of a Virtual Environment: Fabre [18] faced this kind

16 Related work

of issues by creating a new Virtual Environment middleware based on VRML,

X3D and Java [51] languages. The new important feature introduced by this

framework is the possibility to embody in the Virtual Environment autonomous

creatures, called mobile agents, whose behaviour is easily defined through the mid-

dleware. Also Quax [58] addressed the use of autonomous avatars inside a Virtual

Environment. Through the Architecture for Large Scale Virtual Interactive Com-

munities (ALVIC) framework, Quax used the autonomous avatars to simulate a

large-scale multi-user networked environment, providing a method for scalability

testing, eliminating the need for large numbers of human users and obtaining ac-

curate results by only using a limited number of computers. Other researches [17]

focus instead on the performance requirement, providing enhancement techniques

related to the synchronous communication, needed in a Virtual Environment in

order to obtain a good quality of the experience.

The majority of the Virtual Environment systems described above tried to

solve some of the distributed problems inherent the design of Virtual environ-

ments, but they were based on monolithic architectures, making difficult mainte-

nance and software reuse. Projects are often developed from scratch and involve

a great deal of programming without reusing building blocks. OpenPING [44],

a reflective middleware for the construction of adaptive networked game applica-

tions, is one of the first Virtual Environments middlewares which aims to reach

the flexibility, maintainability and extensibility requirements by providing an ar-

chitecture implementation entirely based on modules, such as the Concurrency

module, the Replication module, the Interest Management module, the Persis-

tence module, the Consistency module and the Event Channelling module. The

separation of the functionalities of the framework provides the powerful possibil-

ity to extend the framework itself, by adding new functionalities or by replacing

the existing one with new implementations. The developer benefits of this sub-

division because he does not have to ”reinvent the wheel” each time he wants

Related work 17

to create a new Virtual World, but he is free to reuse the modules offered by

OpenPING and other modular Virtual Environments middlewares, in order to

implement a specific functionality in his project. Contigra (Component OrieNted

Three dimensional Interactive GRaphical Applications) [14] is another effort to

build a component-based architecture on the basis of X3D and XML, designed

for the construction of web-based, desktop Virtual Reality applications and 3D

Virtual Environments. The Contigra project pays great attention to the concepts

of reuse, by providing a methodological approach largely independent of imple-

mentation issues. Also Java Adaptive Dynamic Environment (JADE) [46] and

Mammoth [33] supply a full modularity function, adding a proper Module Man-

ager in order to easily administrate the modules implemented in the framework.

Recently, the Open Wonderland project [47] has attracted attention in the Virtual

Environment middleware industry. Open Wonderland is a 100% Java [51] Open

Source toolkit for creating collaborative 3D worlds. One of the best features that

led Open Wonderland to success is just the possibility to extend any part of the

system and add functionality by creating modules, the Wonderland version of

plugins. Oliveira [45] presented the Virtual Environment System Layered Object

Model (VESLOM), providing a complete approach to design fully modular Vir-

tual Environment frameworks. The aim underlying VESLOM [45] is to reduce the

complexity related to the design of a Virtual Environment middleware by divid-

ing it into different layers. Starting from the core functionality, provided by the

so-called Universal Platform, the developer selects the appropriate components

for his application, such as the Networking layer, the Middleware layer and the

Application layer. The VESLOM [45] was successfully used in the creation of

the Java Adaptive Dynamic Environment (JADE) [45], a fully modular Virtual

Environment system.

Other Virtual Environments middlewares focus on the collaborative aspect:

these middlewares are called Collaborative Virtual Environments (CVE) frame-

18 Related work

works. According to the definition specified in [34], a CVE is a multi-user, Collab-

orative Virtual Environment that runs on the Internet. Several projects involve

the creation of specific tools through which it is possible to create Virtual Worlds.

CVE-VM [34] is a Collaborative Virtual Environment tool, created aiming to sup-

port the teaching/learning in Brazilian schools. The CVE-VM implementation

uses VRML 2.0 and Java [51] languages, integrated by the EAI (External Author-

ing Interface). The CVE-VM system is developed according to the Client/Server

model, in which the Server is responsible for managing the communication among

the users and maintaining the consistency of the database, allowing the clients to

use a browser to navigate and manipulate objects in the Virtual World. Specific

efforts [57] have been made in order to define several collaborative manipulation

techniques, through which multiple users simultaneously can manipulate an ob-

ject in a Virtual Environment. CVEs have been created also for Data Knowledge

Extraction: this is the case of the LiveNet system [4], developed at the University

of Technology, Sidney. Virtual collaboration systems do not provide any support

for data collection aimed at knowledge discovery while the LiveNet [4] framework

embeds knowledge discovery by applying data mining algorithms through which

it is possible to discover useful patterns in the data.

An other important aspect of the Virtual Environment middlewares is the

choice of the network architecture. Most of the professional Virtual Environment

tools adopt the Client/Server architecture, while recently Peer-To-Peer architec-

ture was taken in consideration by more and more projects [35, 20, 10], or even

hybrid architectures [35]. In Peer-To-Peer based Networked Virtual Environments,

system and data management is distributed among all the participating users. By

sharing users’ resources, Peer-To-Peer architectures achieve high scalability in a

cost-effective manner. In order to reduce the amount of message traffic, several

techniques have been proposed, such as the subdivision of the virtual world into

portions commonly known as Area of Interest (AOI), allowing the user to interact

Related work 19

only with entities within his AOI, or the Delaunay Triangulation [8], a technique

for dramatically decreasing maintenance overhead by reducing the number of con-

nection changes due to users’ insertion and movement.

Recently, Virtual Environment systems were affected by the growing interest

in the use of scripting languages. Powerful scripting languages improve applica-

tion performance while making the development more efficient [72, 60]. These

languages allow developers to easily specify how an object or character is sup-

posed to behave, without worrying about how to integrate this behaviour into the

application itself. User created content is another reason for Virtual Environment

applications to support scripting. Virtual Worlds such as Second Life [61] have

made player scripting a common topic of conversation. Besides, scripting allow

players to modify application behaviour without having access to the code base.

They provide a sandbox that - unlike a traditional programming language - limits

the types of behaviour the player can introduce.

Our aim is to provide a new Java-based Multi-user Modular Networked Vir-

tual Environment framework, the Java Interactive Virtual Environment System

(JIVES). JIVES is completely Open Source and released under the GNU General

Public License 3.0 (GPLv3) [22]. All the technologies employed in the creation of

the JIVES framework are Open Source based. JIVES has been designed following

the VESLOM [45] approach in order to make it modular and extensible.

JIVES is composed by a Universal Platform, which provides the core function-

alities of the framework, a Networking layer and a Presentation layer. According

to the VESLOM [45] approach, the Universal Platform represents the kernel of the

middleware. JIVES is provided by default with a Presentation Layer and a Net-

working Layer, the first implemented by using the jMonkeyEngine [31], the latter

by using the JXTA technology [54], facing in that way the scalability problem

related to Client/Server architectures. The modularity offered by JIVES allows

the developer to implement any other kind of Presentation Module and Network-

20 Related work

ing Module, using different technologies than the ones implemented by default.

The extensibility offered by JIVES lets the developer fully personalize some of the

features of the framework: in addition to the actions and events implemented in

the framework, new customized actions and events can be defined and used in the

development of a new Virtual Environment. Because of the choice of a Peer-To-

Peer architecture, the JIVES framework is not properly suitable for the creation

of Massively Multi-player Online Games, although this could still be done.

The Virtual World model adopted by JIVES follows the one proposed by Men-

chaca [36]. The Virtual Worlds that can be created by using our framework are

composed by three main elements: Individuals, Artefacts and Decorations. Men-

chaca [36] defines the Individuals as users’ avatars that interact within the Virtual

World. JIVES allows the developer to define the actions that users are able to

perform within the Virtual Environment. Artefacts are elements, Individuals can

interact with, while Decorations are static objects (or animated with determin-

istic time or event based behaviour) that are visible within the Virtual World

but do not have collaboration interfaces, as Menchaca [36] explains in his study.

Unlike projects mentioned before which face specific Virtual Environment design

issues, JIVES wants to be as simple and general as possible, allowing the devel-

oper to build a new Virtual World in a fast and simple way. In order to meet

this requirement, JIVES provides its own scripting language, called JiveScript.

JiveScript is a structured scripted Java [51] language, based on the scripting API

javax.script [52], package available in the Java SE 6 platform. Through JiveScript

the developer can create efficiently a new 3D Virtual Environment, specifying the

whole logic of the application, the virtual objects and their behaviours. Being

JiveScript a structured language, the developer can even make use of a specific

application to write the code, instead of writing it directly. In order to facilitate

the developer, we published a NetBeans plugin [15] so that it is possible to take

advantage of the instant code auto completion feature. As mentioned by White

Related work 21

in [72], the choice of adopting a scripting language provides an additional layer of

security: JiveScript can be executed in a sandbox in which the developer is free

to test his application changing several features and properties of the entities by

means of scripting. When the script is complete and not modifiable anymore, the

developer can block the sandbox mode in order to avoid that other users change

the script, even minimally.

Chapter 4

Motivations and targets

Building a Virtual Environment is an extremely challenging and resource consum-

ing task. Indeed many of the discussed related work are thesis per se, involving

on the whole years of research and teams composed by several people that co-

operate in order to create a commercially exploitable software. Our approach to

the problem cannot be seen as an universal solution, fully working and efficiently

performing; this would require much higher costs in terms of time and human and

hardware resources than we could afford in the immediate.

The main objective of this thesis can be found in achieving a general, simple

and versatile solution. We perceived this objective as a design challenge and put

all our effort in writing a smart and working implementation, while investigat-

ing many of the aspects that commonly concern this kind of development. We

were not interested in creating a 3D Virtual Environment in itself, but to create

something more: an experimental system that would help others create their own

3D applications. The JIVES framework aims to be a starting point in the direc-

tion of creating a Virtual Environment framework that includes all the features

needed in the development of such applications. By analysing the literature of

the last decade, we realized that a lot of problems have plagued the development

of Virtual Environment systems. Starting from the ashes of an old project of

2008 [16], we decided to completely redesign the JIVES framework in order to

obtain a new system that keeps pace with the times and takes into account the

24 Motivations and targets

problems that have afflicted the development of Virtual Environment systems in

recent years, such as scalability, extensibility and ease of use. Because of this,

the JIVES framework has been designed modular regarding the Presentation and

Networking layers in order to face the extensibility issue and the currently pro-

vided network module is based on a Peer-To-Peer architecture in order to take into

account scalability issues related to a client-server architecture. The modularity

of the JIVES framework would let the developer implement a different network

module, maybe Client/Server based or a Hybrid architecture, in order to meet all

the requirements of the application in development. In addition, one of the most

important reasons that led us to the realization of this new version of the JIVES

framework is the fact that, by analysing the existing products on the market,

we realized most of them are aimed at very expert users. It is precisely for this

reason that we decided to introduce in the realization of JIVES the possibility of

using a scripting language, the JiveScript, through which also those who are not

expert in programming have the possibility to create their own 3D application

using our framework. JIVES lets the developer choose to code an application

directly in the Java [51] language, or by using our scripting language. The best

choice is obviously somewhere in between: by coding in the Java [51] language,

the developer can create new Jives modules, called Implementors, in which there

is the actual implementation of some features needed by his application, such

as a Presentation implementor and a Networking implementor; while the whole

logic of the application can be coded directly in JiveScript. In that way, JIVES

benefits from a large re-usability: the next time that it is necessary to develop an

application that should handle similar virtual worlds, for example any art gallery,

the developer will need to write only the application logic using JiveScript, since

the art gallery visualization code has been already developed in the Presentation

Implementor.

Because of the over-abundance of projects related to Virtual Environments

Motivations and targets 25

design issues, such as the scalability, consistency and persistency requirements,

JIVES is not meant to be specialized in the optimization of any particular require-

ment (although this kind of optimizations could be added in the future), but differs

for other reasons. Unlike the existing Virtual Environments frameworks, JIVES

offers a fully integrated Item Inventory Management System, through which the

developer can manage all the items of the virtual scene, specifying their imple-

mentation and behaviour. Through JIVES, it is possible to create a Virtual

World in which users have their own inventory, exchange items with each others

or with Non-Playing characters and use items to interact with the scene. This fea-

ture allows JIVES to be particularly suitable for the creation of Inventory-based

games, such adventure games or simulations, but nothing prevents the developer

from creating any other kind of Virtual Environment or 3D application, by us-

ing our framework. The additional feature offered by JIVES is the possibility to

combine different items together in a smooth and interactive way: through the

JiveScript language, the developer can define the relations between the Inven-

tory items allowing the creation of new items from existing ones. The novelty

introduced by JIVES is the possibility to define for each virtual item a list of its

possible ”hotspots”, or attachment points, through which the item can be com-

bined with another one. In that way the developer is able to define more complex

and meaningful combinations than those usually possible in the current Virtual

Environments middlewares.

We want to offer a product extensible and renewable by the addition of new

modules and customizations that allows the creation of new 3D Virtual Environ-

ments. The freedom that we offer to the JIVES user is such that he can develop

any type of 3D application using our framework. JIVES does not limit in any way

the creativity of the developer and it can be even used to create multi-access inter-

active web virtual applications. The range of applications that can be developed

using JIVES is very large: from Inventory-based games to training simulations,

26 Motivations and targets

such as simulations aimed to train the user in critical situations, like a fire drill

evacuation, or simulations used to prepare for a hostile environment, the same

way a survival course does, to collaborative E-Learning Virtual Environments,

such as interactive 3D class rooms, or professional working environments that can

support collaborative projects, or virtual cities, museums, art galleries and labs.

By using JIVES the developer can create something that offers more than some

of the applications already existing on the market: for example, it is even possible

to improve applications like Google Business View [25], a tool that allows you

to view the inside of stores through a 360-degree imagery based on the Google

Street View Technology [26], by adding an additional layer of Immersivity: the

Interactivity. By using JIVES, the developer can create a specific application to

let the user to not just visit the online store but also interact directly with it by

exploring the shop and examining the products.

The Virtual Worlds created by using our framework must have the element

that we believe the most important one in a Virtual Environment application: an

enjoyable participatory experience. So that, the implementation of the Virtual

Environment must have enough performance to allow for a smooth virtual expe-

rience, and the application states perceived by the participants must be similar

enough to not give an unfair advantage to any of the users. The choice of a Peer-

To-Peer architecture, used to implement the Networking layer, aims to have at

most a hundred users simultaneously connected in the same Virtual Environment:

that number of participants is more than enough to achieve a fully enjoyable online

experience. There are a lot of studies that prove the excellent scalability of this

kind of network architecture: in particular, Hu and Chen [29] have successfully

tested a Peer-To-Peer network consisting of more than 2000 nodes.

Chapter 5

Design and Implementation

5.1 Design

The design phase of the JIVES framework is completely based on the Virtual

Environment System Layered Object Model (VESLOM) approach [45], depicted

in Figure 5.1.

Universal

Platform

Networking

Middleware

Application

Figure 5.1: Virtual Environment System Layered Object Model

28 Design and Implementation

The choice to follow the VESLOM approach is due to the will to avoid the mono-

lithic design used by the Virtual Environment systems of the last decade, in which

each time a new set of requirements are specified, a new Virtual Environment sys-

tem is designed and implemented. At the contrary, the VESLOM approach offers

a novel methodology to develop Virtual Environment systems, based on a strong

layered component design. The approach underlying VESLOM is to reduce the

complexity in creating a new Virtual Environment system by dividing this com-

plexity into different layers: each of them provides a specific functionality of the

overall system.

As described in the VESLOM approach [45], the core functionality of JIVES

lies in the so-called Universal Platform module. There is no need to adopt an

entire system but only the Universal Platform and select the appropriate compo-

nents, or build new ones, to have a fully working Virtual Environment middleware.

In particular, JIVES Universal Platform has been designed with specific function-

alities in mind: in addition to the JIVES Core, which represents the kernel of our

framework, the Universal Platform includes the Persistence Layer, the Actions and

Events Management System, the Dialogues Manager and finally the Bag Graph

(BG). The Universal Platform has been designed in this way to let the developer

immediately start writing his own product, since the JIVES Universal Platform

includes all the main features of a Virtual Environment.

According to the VESLOM approach [45], the modules we provide in addition

to the Universal Platform are the Networking Layer, which has the responsibility

to manage all the networking functionality, and all the components encompassed

in the Middleware Layer. The Networking Layer implemented by default in the

JIVES framework is based on a Peer-To-Peer technology, the JXTA[54] technology,

and in particular its Java [51] version, JXSE. The decision to choose a Peer-

To-Peer technology is dictated by the will to offer to the JIVES developer the

possibility to create its own Virtual Environment, that can be used also online at

Design and Implementation 29

no cost.

The Middleware layer includes all the remaining components necessary to build

a Virtual Environment. In particular, the Middleware Layer includes the Presen-

tation module and all the possible extensions introduced by the JIVES developer.

The Presentation layer, also called Engine Implementor, offered by default in the

JIVES framework, is based on the jMonkeyEngine [31] technology, and provides

the possibility to create a completely 3D Virtual Environment Application. The

choice of jMonkeyEngine [31] as the Presentation technology of the JIVES frame-

work is dictated by the fact that the jMonkeyEngine [31] is a completely free and

Open-Source Java-based game engine: this means that it offers a lot of features

that can be useful to JIVES, such as collisions, particle systems, shaders, terrain

system and renderer abstractions. An additional implementation of the Presen-

tation module has been done in order to have all the functionalities of the JIVES

framework running also in a textual mode: through the Shell Implementor the

user can create a fully working textual Virtual Environment. In addition to the

Presentation module, the Middleware layer includes also all the possible exten-

sions introduced by the JIVES developers, such as new events and actions. In

that way, JIVES can be expanded offering new customizations that also other

developers can use in writing their Virtual Environment applications.

The VESLOM approach [45] defines the Application layer as a representation

of the final Virtual Environment system that the user interacts with: it contains

all the components that are tightly coupled with the specific functionality and

instantiation of the Virtual Environment. For this reason, the Application layer

of the JIVES framework has been designed having in mind the idea to offer a new

smooth and interactive way to write 3D Virtual Environment applications: this is

possible through the use of the JiveScript scripting language. JiveScript has been

introduced in the JIVES framework to let the developer define efficiently his own

3D Virtual Environment, specifying the whole logic of the application, the virtual

30 Design and Implementation

objects, their relations and behaviors.

The Class Diagram of the JIVES project is fully reported in Appendix A.

It is important to stress that the JIVES framework has been designed to

be independent of the reference implementation due to the use of the Java [51]

programming language: Java [51] programs are platform independent and can be

executed in every operating system through the use of a Java Virtual Machine. In

order to speed up the writing of the boilerplate code and ease its maintainability,

JIVES has been developed using the Lombok [75] technology, particularly for the

accessor and delegate methods generation.

5.1.1 Inventory Data Structure

A fundamental aspect of the proposed design consists in the fact that every char-

acter has his own (eventually more than one) inventory, also referred to as ”bag”,

for brevity. The character is able to switch between any of his bags, extract items

to use in the environment or to exchange with others, and he can perform other

actions on those items like examining them or combining them. Combination

plays a major role in this interaction. We introduce a new paradigm where the

end user must decide not only which items to combine, but (eventually) in which

way to combine them. In order to do so, the underlying data structure of a bag,

known as the Bag Graph, not only must carry the information about combina-

tions, but must also define if a combination is accepted; thus, we introduce the

concept of HotSpot. HotSpots are physical locations or descriptive attributes (or

eventually other entities) that are attached to bag items and the combination of

two items is defined by mean of matching an hotspot from the first item with an

HotSpot from the second one.

Figure 5.2 shows a simple Bag Graph that defines three bag items (a nylon

wire, a wooden stick and a hook) and the necessary combinations to obtain a

fishing rod. Please note that while bag items are nodes of the graph, HotSpots

are the arcs. A node can have many outgoing arcs, but either zero or two incoming

Design and Implementation 31

Figure 5.2: Bag Graph Example

arcs; in the case it has incoming arcs, those identify the two parent nodes and

the previously mentioned node is the result of their combination. Also, some arcs

are dangling; they are useless in terms of combination definition, but yet they

are present so that the puzzle solver has to include them in his/her reasoning.

Each arc in Figure 5.2 is labelled with a textual attribute describing which part

of the object is physically interested in the combination (for example, the wire

edge with the stick tip derive a stick with an attached wire), and also nodes are

represented by a textual description. But this is only a possible model of this

bag graph, because in a visual environment, for instance, the nodes would be 3D

models while HotSpots would be predefined volumes located in the models space.

5.1.2 Event Driven Architecture

The struggle for generality implies that the system must provide a certain degree

of flexibility toward application-specific behaviours, as long as it is not possible nor

convenient to foresee each and every possible scenario directly in the framework

design. This is the main reason why we introduce the events, the most basic

feature of a work-flow management system [74]. Actions are not simple tasks or

routines that get executed unconditionally and immediately after an activation

32 Design and Implementation

has been issued, but events triggered by the activation of any activable entity

instead.

The advantage that this design bring is immediately comprehensible: events

can be intercepted, delayed, conditionally evaluated and consumed, concatenated,

inhibited perhaps, while the correspondent action is executed, or trashed, accord-

ingly. The top level application can exploit the event based approach to implement

its own logic upon every activation, both issued by the end user or by the sys-

tem itself, without breaking the encapsulation of the lower levels and remaining

completely agnostic about the internal handling mechanisms. The event driven

architecture [37] is described further on in section 5.2.1.

5.1.3 TradeItemsAction Protocol

This paragraph explains in detail one of the possible actions designed to be per-

formed in the environment. Specifically, the trade action allows to exchange items

between inventories and has transactional behaviour: the whole operation has to

be either committed on both sides, or rolled back on both sides, eventually com-

pensating the temporary changes that has been introduced on the inventories.

Even though ”trading” is not the only possible transaction to be defined in the

JIVES Environment, it’s provided by default among with some other basic actions,

thus its practical study is presented here as a sequence diagram in Figure 5.3.

The steps before transaction goes into INIT AND DEST CONFIRMED are

handshaking steps and allow both users to select which items to give from their

bag and to see which item will be received from the counterpart. Note that each

time a transaction is dispatched by the NetworkDispatcher class, the local copy of

the same transaction is merged with the remote one, so that its internal state can

be synchronized. When the transaction goes in INIT AND DEST CONFIRMED

state on the two peers, symmetrically, the commit is performed and a roll-back

thread starts. The roll-back thread has a time-out of ten seconds, at the end of

which the transaction is aborted and the previous commit is compensated. During

Design and Implementation 33

34 Design and Implementation

Figure 5.3: TradeItemsAction Commit

this period of time, both peers must reach the INIT AND DEST COMMITTED

state, which is reachable if:

• The initiator committed and received the confirmation of the destination

commit.

• The destination committed and received the confirmation of the initiator

commit.

If a peer commits and doesn’t receive the confirmation from the counterpart

within the roll-back thread time-out, it sends an abort message and it compensate

its commit. At that point, when the counterpart receives the abort message, it

compensate its commit too, even if it had already gone into INIT AND DEST

COMMITTED state. The protocol works using TCP/IP so that the messages are

always delivered, and the only issue is the time that can intercur from packet send

to packet receive, which depends mainly on network load. In case that, due to the

Design and Implementation 35

high network load, the confirmation message is not received before the expiration

of the roll-back countdown, the transaction is simply aborted.

5.1.4 Networking Layer Architecture

The Network Architecture is essentially the one offered by the JXTA [54] technol-

ogy. The JXSEImplementor represents the JIVES Network Layer and implements

all the network functionalities of the framework. While designing the Implemen-

tor, only the Core Layer of the three Layers that make up the JXTA [54] architec-

ture has been taken in consideration. There is no need to adopt also the Services

Layer and the Application Layer, because JIVES requires only the minimal and

essential primitives that are common to Peer-To-Peer Networking. This includes

the key mechanisms for a Peer-To-Peer application such as Peers discovery, com-

munication transports, creation of Peers and Peer Groups; all services belonging

to the JXTA [54] Core Layer.

The JXTA [54] Architecture, as specified in [68], provides a subdivision of the

Peers into three main categories:

• Minimal-Edge Peers: Peers that implement only the required core JXTA

[54] services.

• Full-Edge Peers: Peers that implement all the core and standard JXTA

[54] services and can participate in all of the JXTA [54] protocols.

• Super-Peers: Peers that implement and provision resources to support

the deployment and operation of a JXTA [54] network. There are three

Super-Peer functions:

Relay: used to store and forward messages between Peers that do not

have the direct connectivity because of firewall or NAT.

Rendezvous: maintains global advertisement indexes and assist Peers

with advertisement searches. Also handles message broadcasting.

36 Design and Implementation

Proxy: used by Minimal-Edge Peers to get access to all the JXTA [54]

network functionalities.

JXSEImplementor takes possession of this Peers subdivision with some modifi-

cations: in the JXSEImplementor there are only two kinds of Peers, the Full-Edge

Peers and the Rendezvous/Relay Peers. The JIVES Full-Edge Peers can send and

receive messages and cache advertisements. They reply to discovery requests with

information found in their cached advertisements, but do not forward any dis-

covery request. The JIVES Rendezvous/Relay Peers are Super-Peers that have

been designed to have both the functionalities of the Rendezvous Peer and the

Relay Peer, in such a way that a NATed Peer has to connect to only one Super-

Peer (the JIVES Rendezvous/Relay Peer) instead of two different Super-Peers (a

Rendezvous and a Relay Peer) in order to have a fully working Internet connec-

tion. Each JIVES Peer, that is either a simple Peer or a Rendezvous/Relay Peer,

exposes a public address and a private address. This distinction is needed only

when using an IPv4 connection, and it is not necessary when using an IPv6 con-

nection. The public address represents the IPv4 address provided by the router

used to manage the connection, while the private address is the LAN address of

the network managed by the router.

Edge Edge

Rendezvous/Relay

Firewall

Figure 5.4: JIVES Networking Layer Architecture: JXSEImplementor

When JIVES runs a Virtual Environment application in the LAN mode, only

the private address is needed to connect Peers belonging the same LAN, while

Design and Implementation 37

in the Internet mode both addresses are needed: the public address is used to

reach the router, the private address is used to reach the Peer behind the router.

If a user has a direct connection to Internet (without passing through a router)

or when an IPv6 address is used, there is no need of the distinction between the

public address and the private address: they coincide. The basic functioning of

the JXSEImplementor is shown in Figure 5.4. The JXSEImplementor does not

take into consideration the JXTA [54] Proxy Peers, because it has been designed

to support Proxy connections in a different way: in Java [51], there is the need to

set only some system properties, as shown in Code Snippet 5.1.

Code Snippet 5.1: Proxy connection� �
// Reading networkConfiguration

XMLConfigParser.readProxyConfiguration ();

// Enabling the properties used for Proxy support

System.getProperties (). put("proxySet", "true");

System.getProperties (). put(" proxyHost", XMLConfigParser.proxyHost);

System.getProperties (). put(" proxyPort", XMLConfigParser.proxyPort);

// Removing inactive Rendezvous

queryInactive ();

// Querying the Rendezvous file

queryFile(scriptName , scriptMD5);

URL url = new URL(remote_url);

URLConnection urlConn = url.openConnection ();

// Entering the Proxy username and password

String password = XMLConfigParser.proxyUsername + ":"

+ XMLConfigParser.proxyPassword;

// base64 encoding of the password

String encoded = Base64.encodeBase64String(password.getBytes ());

// Setting up the connection

urlConn.setRequestProperty("Proxy - Authorization ", encoded);� �
JXTA [54] provides a Core set of services:

• EndPoint Service: used to send and receive messages between Peers.

• Resolver Service: used to send generic query requests to other Peers.

In addition to the Core services JXTA [54] defines additional standard services:

38 Design and Implementation

• Discovery Service: used by Peers to search for Peers resources.

• Membership Service: used by Peers to securely establish identities and

trust within a Peer Group.

• Access Service: used to validate requests made by one Peer to another.

• Pipe Service: used to create and manage pipe connections between the

Peers.

• Monitoring Service: used to allow one Peer to monitor other members of

the same Peer Group.

JXSEImplementor takes possession of all the Core set of services, while with

respect to the Standard set of services only the Discovery Service and the Pipe

Service are used in the JIVES Networking Layer Architecture.

With regard to the exchange of messages between Peers, JXTA provides this

communication through communication channels called pipes. In particular, JXTA

[54] defines three types of pipes:

• Point-To-Point Pipes: connect exactly two endpoints together, an input

pipe on one Peer receives messages sent from the output pipe of another

Peer.

• Propagate Pipes: connect one output pipe to multiple input pipes; mes-

sages flow from the output pipe, the propagation source, into the input

pipes.

• Secure Unicast Pipes: is a Point-To-Point Pipe that provides a secure

and reliable communication channel.

JXSEImplementor has been designed to use a single pipe communication chan-

nel for each JIVES Virtual Environment application: the choice to support a fully

Design and Implementation 39

broadcast communication has led to choose the Propagate Pipe as the JIVES

communication channel in order to propagate a message sent by a Peer running

a given application to all the Peers running the same application.

In JXTA [54], all the network resources, such as Peers, Peer Groups, Pipes and

Services, are represented as advertisements. Advertisements are language-neutral

meta-data structures represented as XML documents. The JXTA [54] protocols

define eight different types of advertisements :

• Peer Advertisement: describes the Peer’s resources, such as the name

and the ID.

• Peer Group Advertisement: describes Peer Group specific resources.

• Pipe Advertisement: describes a pipe communication channel and it is

used by the Pipe Service to create the associated input and output pipe

endpoints.

• Module Class Advertisement: describes a module class, a low-level

JXTA [54] abstraction.

• ModuleSpecAdvertisement: defines a module specification.

• ModuleImplAdvertisement: defines an implementation of a given mod-

ule.

• Rendezvous Advertisement: describes a Peer that acts as a Rendezvous

Peer.

• Peer Info Advertisement: describes the Peer Info resource. The primary

use of this advertisement is to hold specific information about the current

state of the Peer, such as uptime, inbound and outbound message count.

40 Design and Implementation

JXSEImplementor has been designed to take into consideration only three of

the JXTA [54] advertisements : the Peer Advertisement, the Rendezvous Adver-

tisement and the Pipe Advertisement. The first two are used by JIVES to define

Peer resources inside the network of a JIVES Virtual Environment application,

while the last one is needed to properly define the pipe communication channel

used by the running application. An example of the Pipe Advertisement used by

the JIVES applications is shown in Code Snippet 5.2.

Code Snippet 5.2: JIVES Pipe Advertisement� �
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xml:space="default" xmlns:jxta="http://jxta.org">

<Id>

urn:jxta:uuid-59616261646162614E504720503250334A69766573424173A96384656D6F04

</Id>

<Type>

JxtaPropagate

</Type>

<Name>

JXTA: Jives Advertisement

</Name>

<Desc>

Pipe Advertisement of JivesBasicDemo network

</Desc>

</jxta:PipeAdvertisement>� �
The management of the network connection in the JIVES framework is totally

transparent to the user: the JXTA [54] network starts automatically when the

JIVES Virtual Environment application has been executed and stops when the

JIVES Virtual Environment application exits. JIVES provides also the useful

command reset(), used to restart the JXTA [54] network without exiting the

application.

5.1.5 JiveScript grammars

SIMs and inline instantiation

One of the design objectives was making JIVES entities interoperable both by the

system (fixed ways) and by the application (arbitrarily), and it appeared clear

Design and Implementation 41

that this issue had to be resolved using JiveScript. It is necessary to allow the

application to define specific behaviours and ”mount” those into the management

of the entities the system does; this need arises as soon as there is an application

specific request that the system has to cope with, from rendering to producing

the effects of an activation, from building application logic to defining those same

entities. The idea behind the solution is achieved by inline instantiation of Java

[51] interfaces using JavaScript, as Code Snippet 5.3 shows.

Code Snippet 5.3: Inline Instantiation� �
activable.bindAction(

new org.jives.actions.ActivateNodeWithItemAction(" useItemOnActivable ",

inventory , activable ,

new org.jives.sim.JivesActionModelIntf ({

execute: function (jivesEvent) {

// Do something ...

},

getDescription: function () {

return "Use item on activable";

},

render: function (jivesRenderableIntf) {

// Render the action ...

}

})

)

);� �

Regardless of the actual code meaning, in the above code it’s possible to see

that the application assign a new action to an activable entity. This action is par-

tially implemented by default in the system, because activating an entity using an

item is something you would expect to find in a Virtual Environment definition

language. But then, there is something that the system doesn’t know, the con-

tent of the execute() function that actually performs the activation job; which is

very clear, instead, to the writer of the application logic. Functions like this one

are methods of inline instanced interfaces called Structured Interactivity Models

(SIMs).

42 Design and Implementation

Commands

As mentioned before, JiveScript is scripted Java [51]. Which in turn means that

it has the complete grammar and semantic of JavaScript, extended to instantiate

and access Java [51] classes. As an addition, it defines a few, simple commands

to help the development of JiveScript application; anyone could extend this set of

commands simply by inheriting the JiveScriptEngine class and creating new static

methods in its subclass marking them with the @JiveScriptCommand annotation.

Those methods will be parsed when the engine context is created and will be put

available in JiveScript global scope as commands. The following list presents the

commands introduced until JiveScript v 0.2:

• name(): display the current script name, set by the name() directive.

• load(): load a JiveScript application, start the network and register this

peer in the rendezvous directory.

1. Parameter path: the path to the local resource.

• me(): returns a reference to the representation of self as a JivesActiveNode.

• reset(): reverts the system to the initial state, cleaning up memory.

• echo(): prints the textual representation of any object.

1. Parameter object: the object to print.

2. Parameter keepLine: (Optional) true to avoid line break. Defaults to

false.

• eval(): evaluates a JiveScript. The result of the evaluation are put in the

current scope, so writing ”a = 2”, for instance, equals writing ”eval(’a =

2’)”.

1. Parameter script: the script to evaluate.

Design and Implementation 43

• memstats(): prints the current state of memory usage and availability.

• entities(): outputs the list of the contents of the JIVES registry.

• version(): displays JiveScript version.

• implode(): returns a JavaScript array of the Java objects passed as pa-

rameters. This is useful because there is no direct cast from a Java array to

a JavaScript array.

1. Parameter params: (Vararg) the Java objects to implode in an array.

• saveState(): persists the current state of the JIVES registry. The file

will be saved as [name of the script]-[state name], where state name is the

command parameter.

1. Parameter name: the state name.

• loadState(): loads a saved state of the JIVES registry. The file loaded will

be the one named after the same convention of saveState() command.

1. Parameter name: the state name.

• makeBag(): given a Bag definition, returns a new JivesBag object.

1. Parameter definition: the definition of the Bag, goes as follows: it is

a JavaScript Object Notation (JSON) with one property, the bag ID.

This property value must be an array, the collection of the Bag items.

44 Design and Implementation

Code Snippet 5.4: Bag definition� �
{

bagId : [

{

id : "",

categories : [

...

]

combines: [

// Some combination examples

[new BagGraphHotspotIntf (),

null],

[null , " bagItemId"],

[new BagGraphHotspotIntf (),

"bagItemId"]

],

model: new BagItemModelIntf ()

commonActionsRenderer: ...

},

{

...

}

]

}� �
Each Bag item is defined in JSON, too. It defines the following prop-

erties:

(a) id: (Optional) The ID of the Bag item, useful to refer to it, will

be generated if omitted.

(b) categories: an array of strings that defines the categories this

item is into. The item will be in any case categorized under CAT-

EGORY DEFAULT, even if this is empty.

(c) combines: an array of combination definitions. Each combination

is an array with two fields; the first is a BagGraphHotspotIntf, the

second is an ID of another Bag item. In the bag graph will be

bound a combination between two nodes (the object being defined

and the one whose ID is specified in the combination), using the

given HotSpot as an arc. Either of the combination fields can

be null, as seen in Code Snippet 5.4. If the ID field is null the

arc is dangling, while if the HotSpot field is null, the combination

Design and Implementation 45

happens without need to specify any HotSpot (simply selecting the

right parent items).

(d) model: a BagItemModelIntf that will be used as model when this

item is activated or represented.

(e) commonActionsRenderer: if this property is set, a set of com-

mon actions will be automatically bound to this item. The avail-

able actions will be:

i. Select/Deselect: allows to extract a certain quantity of this

item from the Bag.

ii. Examine: allows to display a description for this item.

Note that the value of this property must be a JivesRendererIntf.

2. Parameter model: a BagModelIntf that will be used as model when

this inventory is activated or represented.

3. Parameter combiner: a BagItemCombinerModelIntf that will be used

as model when the end user tries to combine items from this inventory.

• makeDialogue(): given a dialogue definition, return a new JivesDialogue

object.

1. Parameter definition: the definition of the dialogue, in JSON, is again

a single property with value, where the property is the ID of the dia-

logue and its value a collection of dialogue requests.

46 Design and Implementation

Code Snippet 5.5: Dialogue definition� �
{

dialogueId : [

{

id : "",

className : "",

question : "",

answer : "",

actions : [

// Actions examples

myActionObject ,

new org.jives.actions

.JivesActionIntf(...)

]

},

{

...

}

]

}� �
Each dialogue request is defined in JSON, too. Advantage of this design

is the possibility of reusing objects in the definitions or even instancing

entities inline, as it can be seen in the actions definition of Code Snippet

5.5. The properties defined in each dialogue request are:

(a) id: (Optional) The ID of the dialogue request, useful to refer to it,

will be generated if omitted.

(b) className: (Optional) class name of the request instance, one of

DialogueRequestIntf. Defaults to org.jives.dialogues.DialogueRequest.

(c) question: a string for the dialogue initiator to present as question.

(d) answer: a string to receive as corresponding answer.

(e) actions: performed when the request being defined is issued. If

the dialogue should go on, it must explicitly define a StartDialogue-

Action here.

2. Parameter model: a DialogueModelIntf that will be used as model

when this dialogue is activated.

3. Parameter renderer: a JivesRendererIntf that will be used for the

dialogue request representation.

Design and Implementation 47

Directives

Beside of commands, there are three important directives that compose the Jive-

Script syntax in version 0.2; they must be used to instruct the interpreter about

the environmental conditions into which the script runs.

• name(): sets a name for the current script. There can be no unnamed

scripts in fact when the interpreter starts or it is reset, a new name for the

current script is automatically generated, but this directive is suitable to

assign an human readable name. Setting a name is important because it

will be used to register in the Rendezvous directory both the Peer and the

application that it is running.

1. Parameter name: the script name.

• uses(): declares a dependency upon a certain Implementor, or action,

or generally a Java [51] class or package. There can be multiple calls to

this directive, one for each dependency that a script expects to find when

it is run. When a script is loaded, the interpreter first checks that all the

dependencies are satisfied and then proceeds to its execution.

1. Parameter dependency: the fully qualified name of a dependency.

• scripting(): sets the flag to allow/disallow scripting from the moment it

is parsed, on. Once is set to false, only reset() will enable scripting again.

As ”scripting” we considered any of the following operations:

Instance or make() any JIVES objects.

Execute multi-line commands.

Execute variable assignments.

1. Parameter scripting: a boolean flag telling to enable or disable script-

ing.

48 Design and Implementation

5.1.6 Critical conditions and their resolution

This section briefly describes many situations that put the design under stress and

how those issued were managed or resolved, confirming the validity of the work

done so far.

TradeItemsAction : Peer disconnection

When a Peer disconnects during a trade action, it can return to a persistent state

right before the transaction happened on its reconnection, if the application wishes

this to happen. So, there’s no problem of data loss on the disconnecting part, but

the counterpart should revert the transaction locally. Figure 5.5 is a sequence

diagram that describes this automatic procedure.

Figure 5.5: TradeItemsAction rollback

Design and Implementation 49

Initiator part might or might not have received destination commit acknowl-

edgement (DEST COMMIT) before destination disconnected; what matters is

that destination will not send back the INIT COMMIT acknowledgement and

this means that Initiator cannot go into INIT AND DEST COMMITTED state

before rollback countdown reaches zero, so the transaction is aborted.

Persistence of complex classes

All JIVES core classes are heavily dependent on the other parts of the framework;

even more important, not all their fields are serializable, thus it’s simply not

possible to store them as data, being that an XML representation, a serialization

or a database entry.

To overcome this limitations, JivesObjectIntf exposes a freeze() method to save

the entity and an unfreeze() method to restore it. What happens in this methods

is that an apposite storage (implementing PersistenceIntf) is used to store (on

freeze, then restore on unfreeze) the state-critical fields of the entity instead of

storing the whole entity. This approach allows to use the setProperties() method

of JivesRenderableIntf to produce right results in even more specific cases. For

example, let’s consider the case that ”self” active node is restored; that one is

actually a RemoteActiveNode, that has a network address. The persisted network

address, though, is no longer consistent and only a fine-grained filter allows the

old state to be appropriately merged with the new state.

Concurrency and thread safety issues

A JIVES application cannot be restricted to a single thread design. It’s indeed

convenient that Implementors rely on their type-specific threads (like the render

thread in a Presentation Implementor, or the network messages dispatcher in a

Network Implementor) but also JIVES events might be fired forking the program

execution: all the JIVES entities involved in this concurrent situation must be kept

consistent from one thread to another. In the Java [51] language, each thread is

50 Design and Implementation

awarded his own stack, but all the thread share the same heap. In other words,

changes applied during runtime to the values of statical allocations will not be

reflected from one thread to another, while in the case of dynamic allocations

they will. The Java [51] keyword synchronized is used to avoid race conditions on

a block of code, meaning that only one thread will be executing that code from

the beginning to the end, even if the operating system put the currently running

thread to sleep and activate another thread that is queued for that same code

execution.

Many methods of the Jives class are synchronized: generateId() so that there

will always be a locally unique ID. loadState() and saveState() to avoid concurrent

changes in the entities when they are persisted or restored. The doLoop() internal

behaviour, which consists of network updates and processing of events; the latter

case is especially important because event actions can actually concurrently exe-

cute other events. It happens that those actions are executed in separate threads

but want to manage entities reflecting changes of an action to another; in this case

the only way to achieve the right result is checking out a copy of those entities from

the JIVES registry and then check back in when the appropriate changes have

been performed. This is why often code does not refer to this when accessing even

the protected fields of a class, but uses the registry instead, or an instance of the

same class passed in as a parameter, like it happens in TransactionIntf.nextState()

method.

jME HotSpot Combinations helper

A combination that involves HotSpots can be very straightforward to think, be-

cause the user can visually identify the possible candidates. However, it can be

extremely difficult to realize: a 2D representation of a 3D space doesn’t give the

perception of depth and this is a major issue when it comes to aligning precisely

two points in space. To help the user in this situation, the Implementor pro-

vides an automation that takes care of the orientation and position of the chosen

Design and Implementation 51

HotSpots so that once they have been selected by a mouse click they become

immediately aligned and at that point it’s sufficient to get the two items close

enough to perform the combination (by means of the middle mouse button or

the space bar). The algorithm cannot perform the alignment in terms of a pure

rotation, because there are too many degrees of freedom to affirm if the rotation

involves one, two or perhaps all of the three axes. Consequently, the best approach

involves one rotation and one translation.

Figure 5.6: Rotation step of the combination helper algorithm

The rotation, represented in Figure 5.6, reaches the objective of putting the

HotSpots on the −→x−→z plane (jME [31] reference system is right handed) by having

the chosen HotSpots face each other toward the origin, which is set to be the

median point of the two objects pivot on the −→x axis. In order to accomplish this,

it infers the angle of rotation from the y-coordinate of the HotSpot in its local

(object) space, because this value is the arctangent of the unknown angle; in the

case that the coordinate is negative it takes the opposite of the result. There is

uncertainty whenever the rotation brings the HotSpot to face outward from the

centre: to resolve to the right placement, the rotation is performed two times

taking in account the resulting z-coordinate of the HotSpot: the second time a

rotation angle of π is applied to the −→y axis. The right rotation is the one that

52 Design and Implementation

minimizes the distance from the centre on the−→z axis: in Figure 5.6,
−→
d2 is preferred

to
−→
d1 . At this point, the situation is that one depicted in Figure 5.7, where there

might be an offset on either or both the −→y and the −→z axis. A compensating

translation ([0, −→oy , −→oz]) is applied, so that the two HotSpots lie exactly on −→x .

Figure 5.7: Translation step of the combination helper algorithm

Overcoming JXSE v2.6 single-Peer limitation

By design, prior to v2.7, there was no possibility of restarting the network without

restarting the virtual machine. JXSEImplementor uses JXSE 2.6 [54], the stable

version at the time of its writing, so it had a huge problem in dealing with JIVES

reset and restart dynamics because only a single instance of a World Peer Group

could be instantiated at a single time in the same JVM. The solution was hiding

each peer behind its own multi-instance endpoint class-loader so that in the same

virtual machine they all had the opportunity to make a fresh start. Of course,

”dead” Peers must be subject to de-initialization and garbage collection appro-

priately, while running Peers cannot have their method invoked directly because

they reside in different class-loaders, but the multi-instance endpoint deals with

the issue using Java Reflection API to communicate. The class-loader implements

a static cache so all the classes are loaded once, the first time a peer is initialized;

Design and Implementation 53

then every time a new peer starts they are all immediately available from memory.

5.2 Implementation

The implementation of the JIVES framework is accurately described in the fol-

lowing sections, by following the order dictated by the VESLOM Design. Firstly,

the Universal Platform and all its components, secondly the Networking layer,

thirdly the Middleware layer and finally the Application layer are explained and

analysed in their implementation.

Figure 5.8: JIVES Component Diagram

The Component Diagram shown in Figure 5.8 depicts at a high level the struc-

ture of the framework.

5.2.1 Universal Platform

The JIVES Universal Platform includes the core classes and all the basic func-

tionalities of the framework. In particular, the Universal Platform is composed

by the JIVES Core, which represents the kernel of the framework; the Structured

54 Design and Implementation

Interactivity Models (SIMs), needed to define specific behaviours for a Virtual En-

vironment; the Persistence Layer, responsible to load and save the game state of

the application; the Actions and Events Management System, in charge to manage

all the actions and events that can occur in the Virtual Environment application;

the Dialogues Manager, which lets the developer instantiate dialogues between

Playing Characters (PC) and between Playing Characters and Non-Playing Char-

acters (NPC); the Bag Graph, related to the management of the objects available

in the Virtual Environment and their relations.

JIVES core

The Core classes represent those identified to be basic entities of the environment,

namely Actions, Active Nodes, Bags (inventories), Bag Items, Dialogues, Scenes,

Events and Event Listeners. All of those implement the JivesObjectIntf interface

that exposes an unique identifier string. A working copy of a JIVES object can be

checked in or out from the JIVES registry using its identifier. The purpose of using

the registry is that of creating logical references instead of pointers to memory

(which would incur in cyclic references) and the ability to retrieve an object that is

needed at any time anywhere in the code without having to propagate widespread

and intricate references.

Furthermore, being JIVES by nature a distributed system, it arises the need

to store user data from the volatile memory into a persistent secure location for

each and every peer. This way, it is possible to restore a consistent state later

on. Accordingly, the objects in the JIVES registry represent the state of the

application. The security is a crucial aspect to bare in mind due to the fact

that external modifications of the persistent location would lead to an incoherent

situation or perhaps would advantage one part at the expenses of the others. Of

course, a server side double check of the user data integrity can be introduced on

top of the minimal but efficient mechanism that the universal platform guarantees,

which consist in an encrypted, local, object database.

Design and Implementation 55

All of the JIVES object share a common pattern: an internal management

that the system deals with to put the rails on the object behaviour and the exter-

nal implementation, which resolves to the methods the implementor defines or the

programmer code injected by scripting. This dual nature allows JIVES to take

care of the expected features (for instance, action execution, inventory manage-

ment, traversing scenes and so on) while it allows to freely define specific features

that typically the application must cope with (for example the effect of an action

being executed, the shapes and quantities of the items in the inventory, the way

an end user traverse from one scene to another). This duality is achieved in Java

[51] without the usage of multiple inheritance but with delegation instead. This is

why the above described model resolves to a list of interfaces, the Structured In-

teractivity Models (SIMs), whose implementation, changing from one application

to another, gives shape exactly to the needed virtual environment.

A last issue comes with the representation of the JIVES objects. Being this a

tipical implementor issue, it differs depending on its capabilities, meaning that a

command line interface would have a textual representation of the objects while

for instance a graphic engine would render 3D geometry to represent them. To

decouple system rendering calls from their real implementation, a set of renderable

entities is defined and to each of them a respective renderer from the implementor

is associated, in order to maintain a very high degree of interoperability.

Structured Interactivity Models

The interfaces contained in package org.jives.sim are used to create JIVES ob-

jects in JiveScript or in Java [51] and are called, in short, models. Implementing

those interfaces, the programmer defines the appropriate behaviour for his virtual

environment. Both Java [51] and the scripting API javax.script [52] JavaScript

support inline instantiation of interfaces and using this approach it becomes possi-

ble to inject programmer’s code into the system architecture. For example, models

of any Activable present the getActivationEvent() virtual method, where it’s pos-

56 Design and Implementation

sible to specify which kind of event will by fired by the activation, being this a

crucial step for the application logic.

One could write the whole models in JiveScript but this gets rapidly infeasible

as the complexity of the application raises. The typical approach is to encapsulate

the most of the application features into the implementors and rely on the methods

they expose when writing the application logic in JiveScript. By doing so, the

same, good-written, general enough implementors can be use to create a huge

amount of different application scripts.

Persistence Layer

JIVES allows to save and load state snapshots of its register. Under the hood, ev-

ery registered object extracts its field data into a proxy object (one of the package

org.jives.core.persistence); not the whole object is extracted, due to serialization

and redundancy issues, but a subset of the fields that characterize its state. Then

the proxy object is saved in an object database. The way back, during state re-

store the proxy object is read from the database and the respective registry entry

is updated.

The advantage of this approach is the decentralization of the distributed ap-

plication state. Of course, the main issue is that of avoiding local and extraneous

modifications to the database so that the integrity of this distributed state is kept.

The most obvious solution is that of encrypting the database and to reach this

objective the system must obtain a secret key that cannot be generated locally

and that the peer must not be aware of. To achieve this, the Network Implemen-

tor must contact a remote location, identify the peer with his credentials (account

and password) and return a secret key to be used for encryption. As security

measure this connection must happen in HTTPS, so that it is possible to avoid

man-in-the-middle attacks.

Design and Implementation 57

Actions and Events Management System

JIVES performs event processing and other network related operations every time

the doLoop() method is called in the application main loop. Actions and events

are tightly coupled, because every time an activable entity is activated by mean of

an action, an activation event is fired. But events can also by fired independently

from entity activation, at any time, to tell to the program logic that something has

happened and consequently the action bound to the fired event must be executed.

Event listeners can be registered in order to intercept any event and decide which

reaction to undertake, even inhibiting the execution of the action bound to the

intercepted event is an option. It’s important to notice that firing an event is not

always the same thing as saying that the event happened, because every fired event

can be kept in a pool while they wait to be processed, but only when the logic of

an event isHappened() method is satisfied the action bound to it is executed.

There are different types of events, namely:

• Generic events: the default ones, those introduced by the program logic

to perform its own tasks.

• Activation events: occur every time an activable entity is activated by

mean of an action.

• Remote receive events: used by the system to synchronize the distributed

state, occurs when the local peer receives an update from the network.

Any event can be repeated many times because it will stay in the pool of

fired events as long as it’s needed, depending on its retention policy. The possible

values of this policy are:

• Discard always: The event is discarded as soon as it is retrieved from the

pool, independently of the fact that it has actually happened or it is likely

to happen in the future. This is useful when it’s necessary to pre-emptively

58 Design and Implementation

fire an event and it is only possible to tell in a second moment if the action

bound to that event must be executed.

• Discard when happened: The event stays in the event pool as long as

it’s not happened, then its action gets executed and the event is discarded.

• Keep always: The event will be processed and possibly its action will be

executed as long as its execution policy doesn’t change.

The event processing usually happens immediately when the event is fired

but, as mentioned above, this is not always the case because this behaviour can

be influenced. Moreover, it’s not always desirable to wait for the event process to

complete before the main thread execution continues. Those cases are regulated

by the following flags:

• Execute As Soon As Possible (ASAP): The fired event will stay in the

events pool until JIVES loop starts, and it will be processed in that loop.

• Fork and execute: The fired event will execute its action in another thread,

so that the main thread will not be kept waiting. This comes handy while

waiting the user input - which is a blocking operation - in some calls to the

SIMs.

When it comes to actions, JIVES offers a minimum set of common actions and

a hierarchy of Activable. Objects like Active Nodes, Bags, Bag Items, extends

this class that allows actions to be performed on them and that keeps trace of

their kinship, like the case of activable items in an activable inventory. One could

possibly extends himself this hierarchy to define other types of activable entities

that have not been covered so far.

Common actions are those expected features like activation of an Active Node

using a BagItem, adding and removing items from the inventory, traversing por-

tals, starting dialogues and trading items. The TradeItemsAction is not the same

Design and Implementation 59

as the other actions because exchanging objects between different peers on the

network implies the concept of transaction, which is supported at a very low

level because of the high abstraction (every transaction simply implements the

TransactionIntf interface, which is just a guideline), however:

• Atomicity can be guaranteed by a timed out roll-back if commit is not

confirmed by both parties.

• Consistency is assured for every transaction: the distributed state of the

application remains consistent as long that each and every Bag Item traded

from one peer to another is respectively given from the former and received

by the latter.

• Isolation is enforced by mean of an EventListener to prevent other JIVES

Actions to occur on the requested activable while the transaction is going

on.

• Durability is guaranteed in the moment that the registry is persisted, which

is a good idea after an important transaction occurred.

Dialogues Manager

JIVES dialogues can be divided in two categories. Playing Characters (PC) dia-

logues, which are chat-like interactions between the avatars of human users, and

Non-Playing Characters (NPC) dialogues, that allows an human user to acquire

informations from the environment in a multiple choice, interactive, question/an-

swer paradigm.

In both cases the entrance into dialogue mode consists in the activation of an

Active Node using a StartDialogueAction. While PC dialogues are simple chat

and don’t offer any other feature than textual communication between two or

more peers in a chat room, NPC dialogues are much more versatile. In the latter,

there can be multiple paths of interrogation that lead to different results, but that

60 Design and Implementation

in general do nothing more than triggering actions - any kind of action. So, for

instance, its possible to acquire inventory items by talking to NPCs, or playing

cinematics and whatever else.

Dialogues are defined in JiveScript with a very rigid JSON (JavaScript Object

Notation) that define each Dialogue Request in a list; every request specifies a

question and its answer, plus the actions triggered by choosing that Dialogue

Request. To create a dialogue, the JSON object is passed as parameter of the

makeDialogue() JiveScript command. The dialogue can be attached to any Active

Node by binding a new StartDialogueAction on it.

Bag Graph

Underneath a JIVES Bag object, the delegation resolves to the Bag Graph and to

a SIM. This graph defines which items can be contained in this inventory, which

are their possible combinations in order to produce more Bag Items and how this

combinations must be performed interactively by the end user; on the other side,

the model exposes methods that need to be implemented so that it’s possible to

activate the Bag and the items contained in it.

The graph is first built by defining each node of the combinations tree, then

it gets queried when trying to combine two items, represented by two respective

nodes in the graph. The final shape of the Bag Graph is a forest of directed

graphs in which each node (that represent a combination of two parent items) has

either zero or two incoming arcs (the parent items). If the node has no parents,

it is defined to be a root, while every child which is not parent for any other

combination is said to be a leaf. A BagGraphHotspotIntf is associated to each

arc of the graph; this information is useful during interactive combination to give

a more realistic scenario in which not only two coherent items must be selected

to be combined, but they can present many hotspots that match a combination

result.

Moreover, the nodes of the graph are tagged with one or more labels that

Design and Implementation 61

subdivides Bag Items in different categories, to improve searching and indexing

operations. At any time new nodes can be added to the graph, as well as bound

nodes can be removed in cascade, to fully support the dynamic changes in the

inventory structure.

Just like dialogues, Bag Graph is defined in JiveScript using JSON. For every

Bag, one defines a list of Bag Items specifying their id, the categories they belong

to, every possible hotspot and the id of the respective child and the model of the

item. Then, using the makeBag() JiveScript command, the inventory is created

empty, with the appropriate underlying Bag Graph.

5.2.2 Networking Layer

The Networking Layer has the responsibility to retrieve resources across the net-

work, and to manage all the functionalities pertaining networking operations. The

Networking Layer implementation provided by default in the JIVES framework is

completely based on the JXTA [54] Peer-To-Peer technology.

JXSE

The JIVES Networking Layer is implemented using the Open Source Peer-To-

Peer JXTA [54] technology, in particular its Java [51] version, JXSE. Being JXTA

a Peer-To-Peer technology, its functioning is based on the distinction between

Rendezvous, Relay and Peer. A Rendezvous is a super peer with the responsi-

bility to assist normal peers and handle message broadcasting; a Relay is a peer

used to store and forward messages between peers that do not have direct con-

nectivity because of firewalls or NAT; a Peer participates in the Peer-To-Peer

network implementing only the basic JXTA functionalities. The JIVES imple-

mentation provides a breakdown of Peers into two main categories: normal Peers

and Rendezvous Peers with Relay capabilities. In that way, in order to have a

fully working network, it is sufficient that there are at least two peers, one of

which is a Rendezvous/Relay peer. The JXSE Implementor has been designed

62 Design and Implementation

to fully working both in a LAN network and a Internet network. The JIVES

user has the possibility to choose this modality by correctly set up the JIVES

Network Settings. Both in the LAN modality and the INTERNET modality, the

network has to be started by a Rendezvous/Relay. In the LAN modality, Peers

who want to connect to the network have to know the external IP of the Ren-

dezvous/Relay, and insert it into the JIVES network settings. Differently, in the

Internet modality, Peers do not have the possibility to know in advance the ex-

ternal IP of the Rendezvous/Relay connected at the time. In order to overcome

this issue, JIVES provides a mechanism whereby any Rendezvous/relay running a

JIVES application is registered in a Rendezvous directory hosted by a dedicated

server. A Rendezvous directory sample is fully reported in Appendix D. The

default server adopted by JIVES is provided by sourceforge.net [24], but the

developer is encouraged to use any other hosting server, just specifying the URL

in the JIVES network settings. Associated to each Rendezvous/Relay registered

on the server there is a Token, composed by the Peer ID of the Rendezvous/Relay

and the name of the JIVES application currently running. Through the use of

the Token JIVES ensures that only the legitimate Rendezvous/Relay is able to

perform writing operations on the Rendezvous directory, such as updating the in-

formation status or unsubscribing from the list. Obviously the writing operations

on the Rendezvous directory possible by a Rendezvous/Relay are related only to

the Rendezvous/Relay itself, because it is not possible to modify the informations

of an other Rendezvous without knowing its own Token. In order to manage a

sudden disconnection of a Rendezvous/Relay, the JIVES implementation provides

that the server monitors continuously the existence of the Rendezvous registered

on the Rendezvous directory. In particular, each Rendezvous/Relay sends to the

server once per minute an update message: if the server does not receive any

communication from a given Rendezvous/Relay for more than a minute and a

half, the server considers disconnected the Rendezvous and unsubscribes it from

sourceforge.net

Design and Implementation 63

the Rendezvous directory.

Any Rendezvous/Relay, while registering on the Rendezvous directory, trans-

mits also the MD5 of the whole JIVES script currently running. This is an

additional layer of security which permits to be sure that only the peers running

the same JIVES application (with the same MD5) are interconnected in the net-

work related to the application itself. When a user starts a JIVES application the

Internet modality, JIVES checks if the there are already Rendezvous running the

same application: if so the user is connected to the network as a normal peer, if

not JIVES automatically makes the user a Rendezvous/Relay and registers it on

the Rendezvous directory.

Code Snippet 5.6: Rendezvous/Relay run method� �
while (running) {

// Adding the Rendezvous /Relay as a Discovery listener

discovery.addDiscoveryListener(this);

Tools.sleep (1000);

// Publishing the peer advertisement

JXSETools.publishPeerAdvertisement(netPeerGroup , discovery);

Tools.sleep (1000);

// Retrieving remote Advertisements (looking for peers)

JXSETools.retrieveRemoteAdvertisements(discovery , this , null);

Tools.sleep (1000);

if (! XMLConfigParser.getLanChoice ()

&& XMLConfigParser.getInternetChoice ()) {

// Updating time only when we have a Internet connection

FileManager.getInstance (). updateTime(IPv4 , IPv6 , tcpPort ,

RendezvousRelayManager.getRendezvousID (),

RendezvousRelayManager.getScriptName (),

RendezvousRelayManager.getScriptMD5 ());

}

// Clear the interrupted status

Thread.interrupted ();

Thread.sleep (27000);

}� �
The JXTA [54] technology is a Peer-To-Peer technology based on the pub-

lishing of Advertisements. Advertisements are language-neutral meta structures

represented as XML documents and are used to describe and publish the existence

of a Peer’s resources. JIVES implements three types of Advertisements: the Peer

64 Design and Implementation

Advertisement, the Rendezvous Advertisement and the Pipe Advertisement. The

Peer Advertisement is used to hold specific information about a normal Peer, the

Rendezvous Advertisement describes a Peer that acts as a Rendezvous/Relay and

the Pipe Advertisement describes the pipe communication channel used by the

JIVES Peers to exchange messages. Each Peer, both a normal Peer and a Ren-

dezvous/Relay, cycle constantly publishing its own Advertisement and looking for

Advertisements of other peers, as shown in Code Snippet 5.6.

Messages are sent through a pipe communication channel. This channel brings

messages without any kind of filtering operation: when a Peer sends a message,

all the Peers listening the given communication channel receive that message.

Obviously, the developer can choose to use this kind of configuration, or implement

a specific Interest Management. Interest Management is the term commonly used

to describe restricted message dissemination between objects or avatars using

Virtual Environment division. According to Morgan [39], Interest Management is

classified into two main categories:

• Region-based Approach : the Virtual Environment is divided into well

defined regions that are static in nature. The recipient of a message is lim-

ited to only interested participants within the same or neighbouring region

as the sender. When an object traverses a region boundary region member-

ship must be updated. JIVES is particularly predisposed to implement this

kind of approach: when developing a JIVES Inventory-based Virtual En-

vironment application, the developer, by creating a new Networking Layer

Implementor, has the possibility to implement a division of the whole logic

of application according to a specific number of scenes or rooms, which can

represent the regions of the Region-based approach. In that kind of config-

uration, only peers participating the same room can message each other.

A variant of the Region-based approach came to the attention within the

last years with the growth of satellite technologies: the management of the

Design and Implementation 65

Peers of a Virtual Environment may be implemented through a geolocation

mechanism, in order to allow a specific Peer to interact with others Peers

only if they are geographically close to him, improving in that way the

quality of the online experience, or to allow a user to perform a certain

action in the Virtual Environment only if he is physically at a given place on

earth. To achieve this result, it would be possible to exploit the Rendezvous

directory for the logical separation of Peers when they connect.

• Area-Of-Interest Approach : each object or avatar is associated with an

Area-Of-Interest or Aura that defines an area of the Virtual Environment

over which an object or avatar may exert influence. An Area-Of-Interest or

Aura may be simply modelled as a sphere that shares its centre with the

positional vector of the object or avatar it is associated with. Nevertheless

this kind of approach is more difficult to implement with respect to the

Region-based approach, the developer may add this functionality to the

JIVES framework by developing a new Networking Layer Implementor that

encloses this feature.

A third approach may be implemented in the JIVES framework: according

to the JXTA [54] Network Architecture, the Peers participating a Virtual Envi-

ronment can be divided into several Peer-Groups, each of them with a specific

Peer-Group ID. In that way, the developer, after implementing a new Networking

Layer Implementor with this particular feature, can manage the dissemination of

messages according to the subdivision into Peer-Groups: a message may be re-

ceived only by some Peer-Groups and not by another ones. This kind of approach

may be called Group-based Approach. JIVES has been designed to implement a

subdivision of Peers according to the Virtual Environment application they are

running: only Peers executing the same JIVES application can communicate each

other. Within the application JIVES does not implement any kind of Interest

Management: each message is sent fully broadcast to every Peer participating the

66 Design and Implementation

same JIVES application. The possibility to implement an Interest Management

scheme is left to the developer.

JIVES Peers communicate using JXTA [54] messages: each message is sent

through the Transmission Control Protocol (TCP) in order to have a reliable

transmission. In the JIVES implementation each message consists of a serialized

object, called NetworkMessage, in which there are the basic informations needed

for a given action or transaction.

Code Snippet 5.7: NetworkMessage constructor� �
/**

* The constructor

*

* @param senderAddress

* the NetworkAddress of the sender

*

* @param type

* the type of the message: it can be

* TYPE_REMOTE_DIALOGUE ;

* TYPE_REMOTE_ACTIVE_NODE_UPDATE ;

* TYPE_REMOTE_ACTION

*

* @param sceneId

* the ID of the current scene

*

* @param payload

* the content (payload) of the message

*/

public NetworkMessage(NetworkAddress senderAddress , int type ,

String sceneId , String payload) {

this.senderAddress = senderAddress;

this.type = type;

this.sceneId = sceneId;

this.payload = payload;

this.forcedLocalDispatch = false;

}� �
As shown in Code Snippet 5.7, the NetworkMessage object includes informa-

tions about the sender of the message, the type of the request and the scene

currently visited by the sender. JIVES provides different types of requests: the

TYPE REMOTE DIALOGUE message allows a user to start a dialogue with

an other Peer; the TYPE REMOTE ACTIVE NODE UPDATE message speci-

fies that the given message is an update message sent by a Peer to all the Peers

Design and Implementation 67

connected to the same network, in order to communicate some changes in the

properties of the sender Peer, such as the position, the colour, the ID of the cur-

rently visited scene; the TYPE REMOTE ACTION message is used to perform

actions between the Peers connected to the same network. In particular, when

using a TYPE REMOTE ACTION message, the payload of the serialized object

NetworkMessage includes the given Remote Action that has to be executed in the

JIVES Virtual Environment, specifying the source and the target of the operation.

JIVES provides also an additional layer of management of the Peers connected

to a JIVES application. It is possible to associate to each Peer an account with a

given password, thereby obtaining a database of all the users who have logged at

least once a given JIVES application. For each account the server is responsible to

release a Secret Key, through which it is possible to encrypt the user data, giving

in that way the possibility to the JIVES application user to restart the Virtual

Environment later without losing the application state related to his avatar.

5.2.3 Middleware Layer

Apart from the network access, commonly a JIVES application will need at least

to display JIVES entities and make end user interact with them; on top of those,

a more complex application would develop any more sophisticated features it

requires. This kind of concepts are extremely abstract and heavily rely on the

container JIVES is inserted into. For the interoperability of JIVES to be as

much generic as possible, there is no practical way to define a structure in the

middleware for every implementors to follow in order to work.

As a matter of fact the Middleware Layer is left open to any type of imple-

mentation, to cope with radically different needs. It is easily understandable that

this can bring to a wide variety of applications, that can only work with their

respective implementor; this means the same script should be ported to differ-

ent implementors, because it simply won’t work with all possible implementors

out of the box. However, to demonstrate the validity of the generic and versatile

68 Design and Implementation

design over the rigid, full portable, statical presentation structure, two very differ-

ent implementors are proposed and discussed further on, and the same JiveScript

application was ported to both of them.

Shell Implementor

This implementation is a MUD Object Oriented (MOOs) that resembles those of

early eighties adventure computer games in which the player would read descrip-

tions of the situation his avatar was into and would react by typing commands in a

shell to move around, interact, operate the virtual environment and the inventory

and so on.

A list of instructions can be stored as a program and then executed. The

command line interface is equipped with code completion and suggestions to ease

the rapid writing. Although a complete list of commands is available entering the

help() command, three main commands allow the end user to interact with the

virtual environment; this is a huge simplification of all the underlying complexity.

Those commands are:

• lookAround() returns the list of surrounding entities.

• activate() perform activation of the activable whose id is passed as param-

eter.

• move() allows the avatar to move around in the virtual environment.

Of course one is allowed to write as many SIMs (Structured Interactivity Mod-

els) as needed directly in the script, however, for ease of use and reuse, the fol-

lowing built-in SIMs are made available to the JiveScript by this implementor:

• ActiveNodeRenderer : instanced when generating individuals and arte-

facts.

• BagItemRenderer : model of the bag items.

Design and Implementation 69

• BagRenderState : model of the inventory.

• GUIState : used to output notifications and to acquire user input.

• HotSpotRenderer : model of the Bag Graph HotSpots.

• SceneRenderState : model of the scene that allows to quickly setup re-

mote dialogues and trade transactions for the avatars in the scene.

• ShopCatalog : used to setup trade transactions with NPCs.

The Shell Implementor extends the JiveScript internal engine based on the

scripting API javax.script [52] and introduces its own commands, but it is ac-

tually not much more than a textual user interface that delegates the work to

its superclass. Once this implementor is introduced, every sort of command line,

MUD, MOOs, adventure computer games or textual simulations are ready to

be produced simply by writing the appropriate JiveScript, but its real purpose

remains mostly that of development and debugging of new features for JIVES.

jME Implementor

Being the objectives of this thesis focused on 3D Virtual Environments, there was

the need to code an Implementor that would allow the graphical representation

of JIVES entities. The jMonkeyEngine [31] turned out to be a good product to

easily integrate JIVES with.

There are two main issues to deal with when introducing this kind of imple-

mentation of the Presentation Layer. The first is the actual rendering of geometry,

the second the need to display and operate a Graphical User Interface (GUI); jME

[31] can resolve both issues within itself, offering a scene-graph approach to ren-

der geometry and an internal integration with Nifty GUI [43]. The work that

needed to be done was translating the Shell Implementor models into their jME

[31] equivalent, thus many of the available SIMs share at least the name. The

complete list is the following:

70 Design and Implementation

• BagCombinerState : state enabled when the user has to combine different

items interactively if they define a combination that requires HotSpots. The

items can be rotated using the left mouse button, translated with the right

mouse button and an attempt to combine them is realized pressing the

middle mouse button or the space bar. The combination item is obtained

if the right HotSpots get close enough. For demonstration, HotSpots are

represented by blue, transparent spheres but of course can be implicit.

• BagItemRenderer : model of the bag items.

• BagRenderState : model of the inventory.

• GUIState : used to encapsulate Nifty [43] interface and common GUI re-

lated operations, like notifications, updates and so on.

• HotspotRenderer : model of the Bag Graph hotspots.

• NPCRenderer : used to introduce Artefacts in the scene.

• PlayingCharacterRenderer : used to represent the avatar of ”self” (the

local player) and those of the other people running the same application.

• PortalRenderer : used to represent doors that allow access to different

scenes defined in the application script.

• SceneRenderState : model of the scene that allows to quickly setup re-

mote dialogues and trade transactions for the avatars in the scene.

• ShopCatalog : used to setup trade transactions with NPCs.

This isn’t by any mean the unique (or the most aesthetically attractive, or

cleanly coded) version of the jME [31] Implementor, it is just a very simple way

to demonstrate that, once an Implementor is written, many different but similar

application scripts will be runnable by it and they all will presenting the features

Design and Implementation 71

this Implementor offers, like 3D environment, inventory representation and man-

agement, interactive combinations and so on, without the need to reinvent the

wheel.

The GUI interaction is handled in pure Nifty [43] style, introducing screen

controllers, one for each screen. The most difficult part of the job was handling

the multi-threading correctly, as Nifty [43] is not thread safe and GUI can only be

updated (like scene-graph, though) at precise moments during execution; more-

over, multi-threaded event actions were needed because requests to the SIMs are

locking when they need to receive user input, while on the other side the graphic

engine process must not be locked otherwise there is no way the user can interact

with the GUI. This problem was solved defining all NiftyUpdatableIntf implemen-

tor classes to be registered at any time and then, at the right time, called to

process the updates to the GUI. The best approach to achieve this results is a

Runnable instanced inline, as proposed in Code Snippet 5.8:

Code Snippet 5.8: Nifty GUI Multithreading� �
public abstract class GUIBuilder implements Runnable , NiftyUpdatableIntf {

@Override

public void onUpdate(float tpf) {

run ();

implementor.unregisterNiftyUpdatable(this);

}

}

...

GUIBuilder builder = new GUIBuilder () {

public void run() {

// Do stuff ...

}

};

implementor.registerNiftyUpdatable(builder);� �

Unfortunately, this pattern was not followed strictly along the code, but this

would be the best solution when writing a real jME [31] Implementor for JIVES.

72 Design and Implementation

5.2.4 Application Layer

The Application layer of the JIVES framework has been designed with the idea

to offer a new smooth and interactive way to write 3D Virtual Environment ap-

plications: this is possible through the use of the JiveScript scripting language.

JiveScript has been introduced in the JIVES framework to let the developer de-

fine efficiently its own 3D Virtual Environment, specifying the whole logic of the

application, the virtual objects, their relations and behaviours.

JiveScript

Being Java [51] based, there is no problem in writing a Java [51] application that

relies on JIVES, compile it, and execute it. The proposed alternative, in any

case, is to stick to VESLOM in coding all the necessary implementors, then write

the final applications directly in JiveScript. The advantage of this approach is

the internal management of scripted applications, because it’s guaranteed that

every participant of a session is executing the same application, and the intrinsic

exploitation of the reusability of the middleware, so that a lot of different working

application scripts can rely on a small set of good-written implementors. This

vision derives from the fact that learning a strict syntax interpreted language like

JiveScript is much more easy than entering the low level details of the system in

order to hook in the application code.

JiveScript is based on Sun’s javax.script package [52] from the JDK. This

choice was preferred over Mozilla Rhino [40] not to introduce another dependency

in the project and because of their built-in management of security when it comes

to accessing private or protected scopes - while in Rhino [40] it’s not impossible,

it’s harder to achieve. A trade-off in this solution is that Sun’s javax.script package

[52] does not give the full access to native JavaScript object and, where needed,

this access is obtained through the Java Reflection API.

The JiveScript, indeed, can act in a sandbox mode where there is no restriction

Design and Implementation 73

on input commands and it’s possible to exploit all the power of the scripting lan-

guage to create and modify JIVES objects and interact with them. This behaviour

can be inhibited by the scripting() directive.

A comfortable way to write JiveScript code is by mean of the NetBeans Jive-

Script plugin [15]. It features the same rapid writing features of the JiveScript

Shell but it’s fully integrated with the NetBeans [56] IDE; it provides a textual

editor for *.jives files, assuming that the project classpath is appropriately con-

figured with the JIVES library and all the necessary Implementors.

Chapter 6

Development and Usage

6.1 Developer’s Manual

JIVES is Open Source software. Anyone could branch it or contribute to the

baseline, as long as all the changes made are subject to the GNU General Public

License 3.0 (GPLv3) [22]. The JIVES development server is sourceforge.net.

There is no need to be registered users to download or browse the code and the

binaries, while if you wish to contribute to the baseline, you are encouraged to

contact the JIVES project developers on sourceforge.net.

6.1.1 Development using JIVES

Every release made publicly available for download is situated at http://sourceforge.

net/projects/jives/files/. From this location it will be possible to download

the binaries of the JIVES library and of the test Implementors. The Javadoc of the

project is accessible from http://jives.sourceforge.net/javadoc/jives/.

The guide will propose a step by step procedure to follow in order to develop

with JIVES both using Eclipse [64] and jMonkeyEngine [31] SDK, which is built

upon the Netbeans [56] Platform .

There are different areas of development, here briefly explained:

• Applications: the most common developer will need to setup the project

with the JIVES library, the right Implementors, then just focus on writing

sourceforge.net
sourceforge.net
http://sourceforge.net/projects/jives/files/
http://sourceforge.net/projects/jives/files/
http://jives.sourceforge.net/javadoc/jives/

76 Development and Usage

the application using JiveScript.

• Implementors and extensions: a developer can also configure the project

only using the JIVES library and write by himself the Implementors needed

and maybe even customized actions that are not available by default. This

code might also be exported with a built target and made available to other

projects.

• Contributing to the Core: new features and bug fixes can be contributed

to the Core by either committing directly to the JIVES CVS or submitting

a patch. For this kind of development, read further in 6.1.2.

Next, this guide will show how to setup the development application using

JIVES library. If you wish to use one of the test Implementors beside the library,

repeat exactly the same steps shown below using the Implementor binaries instead.

Setup guide for Eclipse Indigo

1. From the File menu, select New, then Java project... and follow the on-

screen instruction to create it.

2. Download the JIVES project library and extract it in the project folder.

The final result should be similar to Figure 6.1.

Figure 6.1: JIVES Project Folder using Eclipse

Development and Usage 77

3. From the Package Explorer in the Java Perspective, refresh the project then

select all the newly added dependencies, as shown in Figure 6.2.

Figure 6.2: Adding JIVES Dependencies in Eclipse

4. The project is now configured to use JIVES library.

Setup guide for jMonkeyEngine SDK (Netbeans)

1. From the File menu, select New Project then follow the on-screen instruc-

tion to create a jME3 BasicGame project if you wish to write a jME [31]

application, a simple Java Project otherwise.

2. Download the JIVES project library and extract it in the project folder.

Figure 6.3 shows how the project folder should look like.

3. Right click on the ”Library” entry on the project tree visible in the Projects

tab, then select ”Add JAR/Folder” and add the newly extracted dependen-

cies to the project, as shown in Figure 6.4.

4. The project is now configured to use the JIVES Library.

Writing a JiveScript application

Even if any text processor can be used to write a JiveScript, the below procedure

can be followed in order to install the JiveScript plugin [15]; the plugin will enable

78 Development and Usage

Figure 6.3: JIVES Project Folder using jME SDK

Figure 6.4: Adding JIVES Dependencies in jME SDK

Development and Usage 79

content assist when editing JiveScript files and is available only for Netbeans [56]

and jMonkeyEngine [31] SDK.

1. Download Rhino [40] content assist Netbeans plugin from http://plugins.

netbeans.org/plugin/39133/.

2. From the IDE Tools menu, select Plugins. On the Downloaded tab, click

the Add Plugins... button.

3. Select the downloaded file. It will be added to the list of downloaded plugins,

as reported in Figure 6.5. When ready, press the Install button, follow the

installation instructions and restart the IDE.

Figure 6.5: Installing JavaScript Rhino Content Assist

4. Download the JiveScript editor Netbeans plugin [15].

5. Install the JiveScript editor Netbeans plugin [15] following the same pro-

cedure shown at steps 1,2,3 for the Rhino content assist Netbeans plugin

installation.

6. From the Projects tab, right click on the previously configured project name

http://plugins.netbeans.org/plugin/39133/
http://plugins.netbeans.org/plugin/39133/

80 Development and Usage

(myJivesProject in this example) then select New, Other. The window

depicted in Figure 6.6 will appear.

Figure 6.6: Creating a new JiveScript

7. Select Empty JiveScript file from the Other category. Proceed until the

creation is finished. When done, the new file will be enabled to be edited

using the JiveScript Editor as in Figure 6.7; restart and check that the plugin

is active if this doesn’t happen immediately.

6.1.2 Building the JIVES project

Build guide for Eclipse Indigo

1. From the File menu, select New, then Other...

2. In the CVS category, select Projects from CVS, then click next. Configure

the connection as reported in Figure 6.8 and proceed.

3. In the Select Module, chose the Use specified module name option and fill

it with ”jives”.

4. Press finish to import the CVS project into the workspace.

Development and Usage 81

Figure 6.7: JiveScript Editor Netbeans plugin

Figure 6.8: Configuring the CVS connection in Eclipse

82 Development and Usage

Build guide for jMonkeyEngine SDK (Netbeans)

1. From the Team Menu, select CVS then Checkout...

2. Specify the following connection string:

:pserver:anonymous@jives.cvs.sourceforge.net/cvsroot/jives.

3. In the Module to Checkout section, write ”jives”, then click Finish to import

the project into the workspace.

Build targets

Once the project is setup in your favourite IDE, you can use the predefined build

targets to generate the different parts of the JIVES project. Those are:

• clean: cleans the output directory.

• jives (default): builds the JIVES library.

• implementor-engine-shell: builds the ShellImplementor.

• implementor-engine-jme: builds the JMEImplementor.

• implementor-network-jxse: builds the JXSEImplementor.

• testNetworkApp: builds a test application to run a JXSE Peer in SWING.

• testShell: builds a test application that uses the ShellImplementor and the

JXSEImplementor.

• testJME: builds a test application that uses the JMEImplementor and the

JXSEImplementor.

Moreover there is the possibility to export the JMEImplementor directly as

an applet using jMonkeyEngine [31] SDK, so that it can run in the web browser.

You just need to be sure that the project is configured to be built as an applet.

Development and Usage 83

This can be done in the project properties window, Application section, Applet

subsection: Create Applet has to be checked. The appropriate class to run as an

applet can be found in the org.jives.test package and it’s called TestJMEApplet.

The peculiarity of this class is that it extends JMEImplementor, in order to run

as an applet, as can be seen in Code Snippet 6.1.

Code Snippet 6.1: TestJMEApplet� �
public class TestJMEApplet extends JMEImplementor {

public TestJMEApplet () {

super ();

}

@Override

public void simpleInitApp () {

Log.setLogLevel(Log.LOG_ERROR);

instance = this;

Jives.setEngine(instance);

Jives.setNetwork(JXSEImplementor.getInstance ());

super.simpleInitApp ();

// Run Jives loop in another thread

new Thread () {

@Override

public void run() {

Jives.getEngine (). loop ();

Jives.getNetwork (). stopNetwork ();

System.exit (0);

}

}.start ();

}

}� �

At the moment of writing the procedure that automatically builds the applet

is not completely working, thus it must be integrated with the following BASH

script (Code Snippet 6.2) (works on Mac OS X, too).

84 Development and Usage

Code Snippet 6.2: Applet builder Bash Script� �
#!/bin/bash

dir=’/usr/src/jmp/JivesApplet’

cd $dir/dist/Applet

mkdir code

mv code.jar code

cd code

jar -xf code.jar

rm ’./META-INF/BCKEY.SF’ ’./META-INF/BCKEY.DSA’ ’code.jar’

cp -R $dir/assets/* .

jar cf ../code.jar *

cd ~

jarsigner -keystore .jivesks $dir/dist/Applet/code.jar adriano

rm -R $dir/dist/Applet/code� �

The steps performed by the script are the following:

1. Sets the project directory. It must point to the location where the applet

under development is present.

2. Removes duplicates from the jar file beside removing an invalid signature

and copying the ”assets” directory.

3. Repackages the jar.

4. Signs the jar, assuming that exists a ˜/.jivesks file that represent a keystore

to use for the sign and the user (”adriano” in the above script) is able to

sign it.

5. Removes the temporary extraction directory.

After a clean build and the execution of the script the JME test is working as

an applet, as shown in Figure 6.9.

Development and Usage 85

Figure 6.9: Executing the JivesApplet

86 Development and Usage

6.2 User’s Manual

The JIVES framework, at the moment, lets the developer create both textual and

3D Virtual Environment applications. Two different User’s Manuals are proposed:

the first one related to applications built using the Shell Implementor, the second

one related to applications built using the jME [31] Implementor. Obviously,

according to the different Implementors that a developer can create for the JIVES

framework, totally different User’s Manuals must be created. The Shell User’s

Manual and the jME [31] User’s Manual proposed in this section teach the user

how to start and use applications built with the Implementors provided by default

in the JIVES framework. A third User’s Manual is related to how start a JIVES

application in a Web Environment.

In order to run a JIVES Virtual Environment application, the user needs a

Java Virtual Machine installed. If the user does not have a Java Virtual Machine

installed, he just needs to visit the Java SE Downloads official page [50] and

download the Java Runtime Environment (JRE) or the Java Development Kit

(JDK) setup packages for his operating system and then install the downloaded

file. The sample JIVES applications have been successfully tested by using the

Java SE 6 Update 29 Development Kit. See the Java [51] SE Documentation [49]

for further informations about installing the JVM.

When JIVES has been executed, it creates automatically a hidden folder

called ”.jives” in the home directory of the user’s OS. In a MAC OS X or Linux

Environment the folder is located in $userHome; while in a Windows system

the folder is named ”Roaming\jives” and is created in C:\Documents and Set-

tings\$user\Application Data\Roaming\jives or C:\Users\$user\AppData\

Roaming\jives depending on the Windows version; the folder ”.jives” (”Roam-

ing\jives”) contains two sub-folders: one is called ”config”, the another one ”states”.

The ”config” directory contains a subfolder called ”jxse” in which are placed the

default JIVES network configuration file networkConfiguration.default.xml and

Development and Usage 87

the customizable networkConfiguration.xml network configuration file. The lat-

ter file includes all the custom network settings of the user who is running the

JIVES application. The ”states” directory will contain all the user save files. The

”states” folder is created only when there is at least one save file. The folder

disposal is shown in Figure 6.10.

Figure 6.10: JIVES Folder Disposal

Although JIVES creates the ”.jives” (”Roaming\jives”) folder and its sub-

folders automatically, it is still acceptable that the user creates them manually

and inserts in the right location the network settings configuration files. Differ-

ently from Windows, in which the Roaming\jives folder is visible; the ”.jives”

directory created in MAC OS X and Linux systems is a hidden folder. In order to

access the hidden files and directories in a MAC OS X Environment, the user has

to open a terminal and launch the command defaults write com.apple.finder Ap-

pleShowAllFiles -bool true, then restarting the Finder by executing the command

killall finder ; while in a Linux system it depends on the specific distribution.

6.2.1 Shell User’s Manual

A pre-compiled JIVES application is composed by a single jar file, the archive file

format typically used to aggregate many Java class files and associated metadata

and resources into one file to distribute application software or libraries on the

Java [51] platform. Each JIVES application built by using the Shell Implementor

runs over a terminal, a shell or a console. Under a MAC OS X operating system,

88 Development and Usage

the terminal is accessible in the directory /Applications/Utilities/Terminal. Once

the Terminal has been started, the user has to start the JIVES application by

reaching the right directory where the application is located. In order to explore

the directories in the Terminal, the user has to use the command cd followed

by the name of the folder in which he desires to move. For example, if the pre-

compiled jar file is located in a folder called ”Jives” on the Desktop, the user

has to type in the Terminal the command cd Desktop/Jives/. Once the Terminal

points to the desired folder, the user has only to start JIVES by launching the

command java -jar testShell.jar, where ”testShell” is the name of the jar file, as

shown in Figure 6.11. The procedure is successfully tested using a MAC OS X

Lion operating system.

Figure 6.11: Starting JIVES from Mac OS X Terminal

Once JIVES has been started, the Terminal appears as shown in Figure 6.12.

Under a Linux operating system, the procedure is quite similar to the one

proposed for MAC OS X. Because the number of Linux distributions is quite

huge, there is no reason to explain here how to start a shell or terminal for each

Development and Usage 89

Figure 6.12: Shell Implementor Starting Screen

Linux distribution. Once a terminal has been started, the commands the user has

to type are the same ones used in MAC OS X: the cd command must be used to

reach the JIVES directory and the command java -jar jives.jar to launch JIVES.

The procedure has been successfully tested using a Linux Fedora 15 distribution,

virtualized by Parallels Desktop in a MAC OS X Lion Environment.

Under a Windows operating system, the procedure is almost the same. The

user has just to click the Start button, then digit the cmd command under the run

option. This command executes the Command Prompt, a terminal for Windows

operating systems. Once the Prompt has been started the user has to move to the

right directory in which JIVES is located using the cd command and then execute

JIVES typing the command java -jar testShell.jar, where ”testShell” is the name

of JIVES application file. The whole procedure is reported in Figure 6.13. This

procedure has been successfully tested using a Windows Seven Professional 64 bit

operating system.

When running a JIVES Shell Virtual Environment application, in order to

90 Development and Usage

Figure 6.13: Starting JIVES from Windows Command Prompt

set the network configuration, the user has to set it manually. This means that

the user has to open with any text editor the networkConfiguration.xml file lo-

cated in the sub-folder ”jxse” of the folder ”config”. The first time that the user

runs the application, it happens that there is not the ”.jives” (”Roaming\jives”

in Windows) folder and consequently there are not also the networkConfigura-

tion.default.xml and the networkConfiguration.xml files. If the user has no interest

to change the network configuration, he has only to start the JIVES application:

JIVES itself will create the networkConfiguration.xml file for the user. If the user

wants to modify some properties with respect to the default configuration, he has

to start JIVES at least once, even without loading any script: in that way the

Networking Layer Implementor will create the ”.jives” (”Roaming\jives”) folder

and the necessary network configuration files in the predefined location. The user

has only to modify the content of networkConfiguration.xml with a text editor.

The networkConfiguration.xml file can be even modified at runtime (but before

loading a script): once set the network parameters, it is sufficient to stop the net-

work (if a script has been previously loaded) by launching the reset() command

and load a new JiveScript with the load() command: when a new JiveScript is

loaded the new settings are read and stored and the network restarted. In Code

Snippet 6.3 is shown the default network configuration provided by JIVES.

Development and Usage 91

Code Snippet 6.3: JIVES Network Configuration Default Settings� �
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<network>

<jives>

<jivesUsername>JivesUser</jivesUsername>

</jives>

<user>

<proxyHost/>

<proxyPort/>

<proxyUsername/>

<proxyPassword/>

</user>

<server>

<urlHost>http://jives.sourceforge.net/rendezvous/</urlHost>

<urlSecretKey>http://jives.sourceforge.net/access/getSecretKey.php</urlSecretKey>

<httpsUsername></httpsUsername>

<httpsPassword></httpsPassword>

</server>

<lan>

<rendezvous_ipv4/>

<rendezvous_ipv4_port/>

<rendezvous_ipv6/>

<rendezvous_ipv6_port/>

</lan>

<interface>

<netInterface>lo</netInterface>

</interface>

<internet_lan>

<choice>lan</choice>

<proxy>false</proxy>

<ipv6>false</ipv6>

</internet_lan>

</network>� �
The user has the possibility to modify the name of his avatar in the Vir-

tual Environment by modifying the jivesUsername field, or setup the kind of

connection by typing in the choice field ”lan” if the user wants to execute the

application in a LAN network, or ”internet” if the user wants to use the Internet

connection. In the first case, the LAN connection, the user has the possibility

to choose if he wants to start the JIVES application assuming a Rendezvous role

or not. If the user wants to start as a Rendezvous he does not have to add any-

thing else; at the contrary if he wants to start as a simple Peer and connect to

a Rendezvous obviously located in the same LAN network, he has to specify the

rendezvous ipv4 and rendezvous ipv4 port fields filling them with the IPv4 and

the port of the Rendezvous to which he wants to connect. For example, is the

Rendezvous has the IPv4 192.168.0.8 and the Port 9701 the right way to config-

92 Development and Usage

ure the network settings configuration file is to change the rendezvous ipv4 field in

<rendezvous ipv4>192.168.0.8</rendezvous ipv4> and the rendezvous ipv4 port

field in<rendezvous ipv4 port>9701</rendezvous ipv4 port>. In the case he wants

to use an IPv6 connection, the user has to enable it by setting to ”true” the ipv6

field, and if he roles as a simple Peer in a LAN network the fields to be correctly

set in this case are the rendezvous ipv6 and rendezvous ipv6 port ones. The IPv6

connection feature provided by JIVES is still an experimental feature, and may

have some issues in its proper functioning, due to the lack of IPv6 connections

managed by Italian providers and IPv6-enabled routers.

A very important field the user has to set is the netInterface field. If this field

remains unchanged, the user can execute the JIVES application only using the

loopback interface, so the connection works only locally (on the same hardware

machine without having the possibility to run JIVES in a LAN or in the Internet):

any traffic that a JIVES application sends to the loopback interface is immediately

received on the same interface. The user has to change the netInterface field by

specifying the name of the interface through which it is possible to use a work-

ing connection. For example, if the enabled working inteface is called ”en1” the

netinterface field has to be set in that way: <netInterface>en1</netInterface>.

In order to discover which is the working interface running on the user’s com-

puter, it is sufficient to run the command ifconfig in a terminal under a Linux or

MAC OS X Environment, or the command ipconfig if the OS is Windows-based.

These commands will show to the user all the network interfaces available on his

computer: the right one is the interface which is correctly connected to a LAN

network or Internet and to which the router has assigned a valid IPv4 or IPv6.

All the fields belonging to the server tag are related to the server in which

is hosted the directory of Rendezvous. These fields are useful only if the user

wants to execute the JIVES application using an Internet connection. In order

to show the proper functioning of the Demo using an Internet connection, a Ren-

Development and Usage 93

dezvous directory is hosted on the Sourceforge [24] JIVES web space. Obviously

the developer has to provide the correct url to the user or set it as the default con-

figuration setting. The urlSecretKey field is related to the account identification:

each account is associated to a secret key known only to the system; it is used on

the account behalf to perform important operations like storing the application

state. This field has been set by default to a web page hosted by Sourceforge [24]

in order to show the proper functioning of this feature when running the Demo.

Also in this case the JIVES developer has to provide to the user the correct url or

set it by default in the networkConfiguration.default.xml file. The last two fields

of the server tag are related to the account login on the server using an HTTPS

connection to the urlSecretKey mentioned before.

Another feature that can be set modifying the networkConfiguration.xml file

is the possibility to connect to the Internet also when the connection works under

a Proxy. In this case the user has to set to ”true” the proxy field and define all the

fields under the user tag: the url of the Proxy server, the port to which the user

has to connect, the username and the password to establish a working connection

to the Proxy server.

Sample Shell JiveScript

In order to show the proper functioning of a JIVES Virtual Environment appli-

cation built using the Shell Implementor, a Shell Demo has been developed. The

whole logic of the Demo has been written directly by using the JiveScript lan-

guage: the user has just to start JIVES and load the right JiveScript. In order

to correctly load the script, the file must have the ”jives” extension. Once the

user has started JIVES in a console environment, some commands are available

to perform specific operations. These commands can be shown by typing in the

console the command help().

As shown in Figure 6.14 the command help() let the user see two kinds of

commands: the first ones are specifically related to the Shell Implementor and

94 Development and Usage

Figure 6.14: List of Shell Implementor and JiveScript Commands

Development and Usage 95

they may change according to the Implementor the JIVES application is running;

the second ones are related to the JiveScript language. The first operation the

user has to perform once JIVES has been started is obviously load the JiveScript

Shell Demo. This is possible by typing the command load(”file:/path of the Jive-

Script Shell Demo”). Note that the user has to specify the absolute path of the

JiveScript Demo. The first part of the argument of the load command (file:/)

represents the protocol used by JIVES to load the file; the second part is the

path of the location in which is located the script. For example, in a MAC OS

X environment, if the JiveScript Demo has been located on the Desktop, the

user has to type load(”file:/Users/$user/Desktop/basic-demo-shell.jives”) where

$user is the name of the operating system user. When loading a script, Win-

dows users has to specify the path using the double backslash expression: with

respect to the previous example, in a Windows environment the load command

becomes load(”file:/C:\\Users\\$user\\Desktop\\basic-demo-shell.jives”). Once

the script has been loaded the terminal shows a screen as in Figure 6.15.

The user is located in the starting scene. Using the lookAround() command it

is possible to see the elements presents in the scene: the Non-Playing Characters

(NPCs), the Playing Characters (PCs) and the Artifacts, such as Portals that

permit to move from a scene to the next one or vice versa. In Figure 6.15 there is

only the player called ”JivesUser” in the scene, but if an other user runs the same

JIVES application it is possible to see the new entry by retyping the lookAround()

command, as shown in Figure 6.16.

From the point of view of the second user, in order to connect to the same

JIVES Virtual Environment application that the first user is running, it is neces-

sary to perform the usual operations needed to launch a JIVES application. In

particular, the script has to be exactly the same that the first user is running,

while the network configuration is different. If the JIVES Virtual Environment

application works on a LAN connection, the second user has to specify in the

96 Development and Usage

Figure 6.15: JiveScript Shell Demo Starting Scene

Figure 6.16: A New Entry in the Scene

Development and Usage 97

networkConfiguration.xml file the IPv4 and the port used by the first user that

acts as a Rendezvous, as shown in Code Snippet 6.4.

Code Snippet 6.4: JIVES Peer Network Configuration Settings� �
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<network>

<jives>

<jivesUsername>JivesUser2</jivesUsername>

</jives>

<user>

<proxyHost/>

<proxyPort/>

<proxyUsername/>

<proxyPassword/>

</user>

<server>

<urlHost>http://jives.sourceforge.net/rendezvous/</urlHost>

<urlSecretKey>http://jives.sourceforge.net/access/getSecretKey.php</urlSecretKey>

<httpsUsername></httpsUsername>

<httpsPassword></httpsPassword>

</server>

<lan>

<rendezvous_ipv4>192.168.0.5</rendezvous_ipv4>

<rendezvous_ipv4_port>9701</rendezvous_ipv4_port>

<rendezvous_ipv6/>

<rendezvous_ipv6_port/>

</lan>

<interface>

<netInterface>en1</netInterface>

</interface>

<internet_lan>

<choice>lan</choice>

<proxy>false</proxy>

<ipv6>false</ipv6>

</internet_lan>

</network>� �
By default, the port used by JXSE [54] is the 9701 port, but it can happen

that a Rendezvous start on one of the subsequent ports, such as 9702 or 9703,

and so on. In this case the user who acts as Rendezvous has the responsibility to

communicate the right port to the user who acts as a simple Peer. If the JIVES

Virtual Environment application is running by using a Internet connection, the

second user does not have to specify the IPv4 and the port of the Rendezvous

because he is not able to know them in advance: JIVES automatically queries

the Rendezvous directory on the server and provides the right informations in

order to connect to a Rendezvous running the same JIVES Virtual Environment

98 Development and Usage

application around the world.

As shown in Figure 6.16, now in the scene there are two PCs, one NPC and

the Portal that lets switch from the current scene to the next one. The user can

move around the scene by using the move() command, as shown in Figure 6.17,

and choose the destination of his movement.

Figure 6.17: Moving around the Scene and Interacting with a NPC

The user can interact with the elements of the scene by using the activate()

command, passing as argument the ID string or the local variable representing the

entity he wants interact with; names that the user can retrieve by launching the

lookAround() command. In Figure 6.17 the user interacts with a NPC element

and executes one of the actions provided by the developer of the application. The

JIVES Shell Demo is an Inventory-based Virtual Environment and let the user

collect and combine items. The user has the possibility to perform all the opera-

tions related to the Inventory by using the activate(bag0) command, as shown in

Figure 6.18.

Once the user has in his Inventory Bag some items, he can combine them by

using the ”combine” action: for each selected item the user must choose the right

Development and Usage 99

Figure 6.18: Managing the Item Inventory

HotSpot through which it is possible to bind the item to another one. If the

combination is the one provided by the JIVES developer, the user will receive a

new item obtained from the combination of the two original items. The whole

procedure is shown in Figure 6.19.

It is possible also to freely chat with one or more other users by activating

them and selecting the ”Talk” action. Note that in order to activate a PC, differ-

ently from the elements that are predefined in the scene, the user has to use the

activate() command by defining the name of the PC enclosed in double quotes,

because there is no local variable that refers to them. Figure 6.20 represents a

chat between two PCs.

The JIVES Shell Demo let the user also trade items with NPCs and PCs: this

is possible by activating the other user or the NPC with the activate() command

and selecting the ”trade” action. In the case of trading with a NPC the user has

to select before requesting the trade the items that he wants to exchange and then

100 Development and Usage

Figure 6.19: Combining Two Items through HotSpots

Figure 6.20: Free Chat between two Playing Characters

Development and Usage 101

proceed with the exchange. In case of trading with a PC, the user specifies which

items wants to trade and in which quantity, and sends a request to the other user;

the latter has the possibility to accept or reject the trade and select one or more

items to trade, or even no one. Once both the traders agreed on the exchange,

the trade is performed. A trade between two PCs is shown in Figure 6.21: at the

beginning both the traders have two coins ; at the end of the trade the second user

has received the two coins of the first one coming to have four coins, while the

latter no longer has any item.

Figure 6.21: Trade between two Playing Characters

By using the saveState() and the loadState() commands, the user has the

possibility to save a snapshot of the current JIVES application and then reload

it in a second moment. The argument to be passed to the commands is a string

included in double quotes which represents the name of the snapshot to save or

load. The snapshot will be saved in the sub-folder ”states” of the folder called

”Roaming\jives” in the ”AppData” directory if the running OS is a Windows

system; in the folder $userHome/.jives/states if the application is executed in

MAC OS X Environment or under a Linux OS. In order to correctly load a save

102 Development and Usage

file, the user has first to load the script and then run the loadState() command

by passing the name of the save enclosed in double quotes.

6.2.2 jME User’s Manual

In order to show the possibility to develop and run full 3D Virtual Environments,

a jME [31] implementor has been developed. The jME [31] Implementor is exactly

a 3D restatement of the Shell Implementor. In order to launch a JIVES Virtual

Environment application, the procedure is the same as in the case of a JIVES

application built using the Shell Implementor: JIVES essentially consists of a

runnable jar file, executable by launching the java -jar testJME.jar command in a

terminal or a shell. When launching JIVES a directory ”.jives” (”Roaming\jives”

in Windows) is created and includes a folder called ”config” which in turn has

a sub-folder ”jxse” in which is located the networkConfiguration.xml file. In the

case of a jME [31] based JIVES application, there is no need to modify manually

the network configuration file, because JIVES provides an easy to use Graphical

User Interface to manage the network configuration settings. Once JIVES has

been started, the jME [31] Display Settings windows will appear. The user can

set the resolution, the colour depth, the Anti-aliasing parameter, and the Full-

screen option. Once set and confirmed the Display Settings parameters, a totally

black screen appears: by typing the ”Esc” key a short menu is shown or hidden,

through which the user may decide to configure the network settings or quit the

application. By choosing the ”Network settings” button, the Network Settings

Graphical User Interface is visualized, as shown in Figure 6.22.

The network settings are exactly the same already seen in the Shell User’s

Manual. The user can choose the name of its avatar by filling the Username field;

start the JIVES application using a LAN connection or a Internet connection by

selecting the proper checkbox. In the case of a LAN connection, the user may start

the JIVES application acting as a Rendezvous by checking the Host the session

box, or connecting to a Rendezvous running the same JIVES application in the

Development and Usage 103

Figure 6.22: Network Settings Graphical User Interface

104 Development and Usage

same LAN network by deselecting the Host the session box and specifying the IP

Address and Port fields with the IPv4 and the port of the Rendezvous to which he

wants to connect. It is also possible to check the Use IPv6 box in order to use an

IPv6 connection. Note that JIVES offers the IPv6 connection as an experimental

feature. In the case the Use IPv6 box is selected, obviously the user has to fill the

IP Address field with the IPv6 address of the Rendezvous to which he wants to

connect. In the case the user chooses the Internet connection to run the JIVES

application, all the parameters included in the ”Rendezvous connection” tab are

not modifiable any more, because it is JIVES itself to check the Rendezvous

directory on the server and decide to start the user as a Rendezvous or a simple

Peer.

The user has to specify the working network interface by selecting it in the

Net interface list: all the network interfaces of the machine on which JIVES is

running are listed; the user has only to select the right one. Advanced features

are represented by the Rendezvous Directory URL and the Account confirmation

URL fields: the first one is related to the URL in which is stored the Rendezvous

directory, the second one is related to the web page in which is executed the algo-

rithm to obtain the secret key needed by a Rendezvous to correctly encrypt and

decrypt save states. Both the URLS are by default set to web spaces hosted by

SourceForge [24], but the developer of a JIVES application may host the Ren-

dezvous directory and the ”secret key” algorithm using a server of his choice. In

this case the developer has to include the correct URLs inside the networkConfig-

uration.default.xml file, or communicate them to all the users.

The JIVES Network Configuration Settings Graphical User Interface lets the

user manage also a connection that works under a Proxy. In this case the user has

to select the Use proxy box and then specify the URL of the Proxy server in the

ProxyHost field, the Proxy port in the Port field, the credentials in the Username

and Password fields. All the fields related to the Proxy connection are the ones

Development and Usage 105

included in the ”Advanced network settings” tab.

JIVES offers also an experimental feature: the possibility to create an account

for each user through which it is possible to save and load the application state

related to the user’s avatar. The Network Settings Graphical User Interface gives

the possibility to specify the credentials of the account by filling the Account and

Password fields located just below the Username field.

Once the user has modified in the right way all the network parameters that

interested him, the new network configuration can be saved by clicking the ”Save”

button; while by clicking the ”Back” button JIVES returns to the previous black

screen without modifying any network parameter.

In order to load a JiveScript Virtual Environment script, the jME [31] Imple-

mentor provides a full functional console called JiveScript Console through which

it is possible to launch all the commands previously seen for the Shell Demo, un-

less some commands specific for the Shell Implementor. In order to visualize the

JiveScript Console, the user has to type the ”F1” key of the keyboard. On a MAC

keyboard the JiveScript Console appears by using the ”Fn+F1” key combination.

The JiveScript Console is shown in Figure 6.23.

Figure 6.23: JIVES JiveScript Console

106 Development and Usage

The list of commands can be displayed by typing the help() command in the

JiveScript Console.

Sample jME JiveScript

A jME [31] Demo has been developed in order to show the proper functioning

of a JIVES 3D Virtual Environment application built by using the jME [31] Im-

plementor. Once JIVES has been started, the user has to open the JiveScript

Console by typing the ”F1” key on the keyboard and launch the load() command

passing the protocol (file:/) and the absolute path in which the JiveScript is lo-

cated. The right JiveScript to be loaded is the basic-demo-jme.jives file. When

the application has been loaded, the user’s avatar will be in the opening scene, as

shown in Figure 6.24. The statistic nodes that appear in the left bottom corner of

the application window can be hidden by typing the ”F11” key of the keyboard.

Figure 6.24: JiveScript jME Demo Starting Scene

The jME [31] Implementor provides all the operations available in the Shell

Implementor. The user can move his avatar by using the ”WASD” keys of the

Development and Usage 107

keyboard, as typically in First Person Games, and interact with the elements in

the scene by using the right mouse button. The camera can be rotated around

the avatar by left-clicking the mouse and dragging it in the desired direction, or

by using the arrow keys of the keyboard. The user can also zoom in or out by

using the middle mouse button. If an other user joins the same JIVES Virtual

Environment application, his avatar will appear in the initial scene.

The procedure to join a running JIVES application is similar to the one al-

ready seen for the Shell Implementor, but in this case the user has a comfortable

Graphical User Interface to set up correctly the network settings. From the point

of view of the joiner user, once JIVES has been started, the JIVES Network Con-

figuration Settings have to be accessed by typing the ”Esc” key of the keyboard

and selecting the ”Network settings” button. If the JIVES Virtual Environment

application that the second user wants to join is running on a LAN connection,

the Local (LAN) connection button must be selected while the Host the session

check-box deselected, and the IP Address and Port fields must be correctly filled

with the IP address and the port of the Rendezvous user.

If the JIVES Virtual Environment application is running using a Internet con-

nection, it is only necessary to select the Internet connection button: JIVES itself

automatically retrieves from the Rendezvous directory the informations related

to the user who acts as a Rendezvous in order to let the second user to join the

application. In Figure 6.25 are shown the settings of a user who joins a JIVES

application which works using a LAN connection.

Once the second user has joined the application, immediately its avatar ap-

pears in the initial scene, as shown in Figure 6.26.

The user can interact both with Non-Playing Characters and Playing Charac-

ters and with the Artefacts of the scene: by simply clicking the right mouse button

on the element with which the user wants to interact, a list of available actions is

shown. Figure 6.27 represents an interaction with a Non-Playing Character.

108 Development and Usage

Figure 6.25: JIVES Peer jME Network Configuration Settings

Figure 6.26: A second user joins the Scene

Development and Usage 109

Figure 6.27: Interacting with a NPC

By selecting the ”Talk” action when interacting with a NPC it is possible to

access to the predefined dialogue related to the given NPC. A dialogue with a

NPC is proposed in Figure 6.28.

It is also possible to chat with Playing Characters by activating the PC with the

right mouse button and selecting the ”Chat” action from the actions list proposed

to the user. A chat between two Playing Characters is shown in Figure 6.29.

The user can also chat with an other Playing Character by following a different

procedure: he has to activate his avatar by right-clicking on it and selecting the

”Chat” action. In the chat window an ”Invite” button permits to the user to

invite one or more Playing Characters currently present in the same scene. The

invite menu is proposed in Figure 6.30.

The user can interact also with the so-called Artefacts, the fixed elements

of the scene. In the JiveScript jME [31] Demo the starting scene has only one

Artefact, a portal that lets the user move from the current scene to the next one.

The portal has to be activated by right-clicking the mouse and then select the

”Enter” action. Immediately the user’s avatar will be ”teleported” in the next

scene. Figure 6.31 shows the activation of an Artefact of the scene.

110 Development and Usage

Figure 6.28: Dialogue with a NPC

Figure 6.29: Chatting with a PC

Development and Usage 111

Figure 6.30: Inviting a PC

Figure 6.31: Activating the Artifact

112 Development and Usage

Being JIVES an Inventory Based Virtual Environment system, the user has the

possibility to collect items from the scenes and manage them inside his inventory.

In order to open the inventory, the user’s avatar must be activated by clicking the

character with the right mouse button and selecting the ”Open inventory” action.

The Item Inventory Management Graphical User Interface will appear, as shown

in Figure 6.32. The user has the possibility to scroll through the various items,

examining or selecting them.

Figure 6.32: JIVES Item Inventory Graphical User Interface

If two items are selected, JIVES offers the possibility to combine them in an

original and significant way: each item has been previously defined by the devel-

oper of the JIVES application as an item characterized by the presence of one or

more HotSpots, key points through which the item is available to be combined.

The possible combinations of the jME [31] Demo have been defined in the Jive-

Script jME [31] Demo. In order to access the Combination Screen, the user has to

select two items by right-clicking them and choosing the ”Select” action. JIVES

Development and Usage 113

will ask the user in which quantity he wants to select the item by showing a slider

menu. The selected items are shown in the left bottom corner of the window, as

depicted in Figure 6.33.

Figure 6.33: Selecting the Items from the Inventory

Once the user has selected the items he wants to combine, the combination

can be started by clicking the ”Combine” button at the top of the window. The

Combination Screen will appear: the user can rotate and translate each item and

try to combine the items by joining their HotSpots. When two HotSpots are

correctly aligned, the user can accost them by using the ”space-bar” button of

the keyboard or the middle button of the mouse. In order to make the Combina-

tion System more user friendly, a HotSpot Combination Helper is provided. The

user can directly select the desired HotSpots by clicking them and they will be

automatically aligned, ready to be combined. The user has only to conclude the

combination by using the space bar or the middle mouse button. The combination

will succeed only when the right HotSpots have been merged. In Figure 6.34 is

114 Development and Usage

represented the Combination Screen; while in Figure 6.35 the result of a successful

combination.

Figure 6.34: JIVES Combination Screen

Trading is possible both with Non-Playing Characters and Playing Characters.

Trading with Non-Playing Characters is predefined by the JIVES developer; while

trading between Playing Characters is totally at discretion of the users: it can

consist in an exchange of items, or even in a ”gift” by a user to another one.

In both cases trading is activable by right-clicking the character of interest and

selecting the ”Trade” action. When the two traders are Playing Characters, once

a user has requested a trade to another user, the trade request will appear to the

latter one, as shown in Figure 6.36.

If the user who received the request accepts the trade, a notification will appear

to the first trader. Figure 6.37 represents the moment in which the notification is

received.

After the trade has been accepted, it is the turn to select the items to exchange:

in order to do that each user has to open his inventory and select one or more

items, or even no one. When the items have been selected the user has to confirm

Development and Usage 115

Figure 6.35: A successful combination

Figure 6.36: A Trade Request

116 Development and Usage

Figure 6.37: The Notification that Trade Request has been accepted

the offer by clicking the ”Confirm” button, as depicted in Figure 6.38.

When both the users have confirmed the trade, the items to be exchanged are

visualized in the application screen: the items that the user sends appear in the

left bottom corner of the window, while the ones that the user receives in the left

top corner of the window. If the users are still willing to conclude the trade, it is

sufficient that both click the ”Trade” button located in the right bottom corner

of the application window, as represented in Figure 6.39.

Finally, trade is complete and a notification will appear to both users. Fig-

ure 6.40 shows the notification of trade complete.

In the example shown in the screen-shots, it is clearly visible that the trade

has been successfully accomplished: the first user offers to the second one a fishing

rod, while the second user wants to exchange two hooks. At the end of the trade,

as shown in Figure 6.41, the second user has the fishing rod in his inventory and

has no more hooks, while the first one has received the two hooks and no longer

has the fishing rod.

Trading with Non-Playing Characters can be performed through a different

Development and Usage 117

Figure 6.38: Trading the selected Item

Figure 6.39: Confirming the Trade

118 Development and Usage

Figure 6.40: Trade is complete

Figure 6.41: The user has received the new Item

Development and Usage 119

procedure with respect to the case in which the traders are two Playing Charac-

ters. The NPC has to be activated by selecting the ”Trade” Action. The screen

proposed in Figure 6.42 will be shown to the user.

Figure 6.42: Trading with a NPC

At the top left of the window there is the so-called ”Shop window” which

informs the user the item(s) will receive and the item(s) he has to give in order

to accomplish successfully the trade. The needed items are to be selected in

the Inventory Screen, by right-clicking the user’s avatar and selecting the ”Open

inventory” action. Once the items have been selected, they will appear in the

bottom left corner of the window. In the ”Shop window” the desired trade must

be selected using the ”Select” button: if the needed items correspond to the ones

selected by the user, the trade can be performed by clicking the ”Trade” button.

A box informing the user that the trade has been successfully completed will

appear. At the contrary, if something is not set in the way that the trade requires

a box will appear communicating that the trade has been aborted.

120 Development and Usage

The jME [31] Implementor offers in the same way as the Shell Implementor

the possibility to save or load a snapshot of current state of the running JIVES

application. The user has to open the JiveScript Console by typing the ”F1”

key of the keyboard and then launch the saveState() command in order to save

the snapshot or the loadState() command in order to load a snapshot previously

saved. The argument to be passed to the commands is the name of the snapshot

and it must be included into double quotes. The locations where the snapshot is

saved are exactly the same ones already described in the Shell User’s Manual: a

folder called ”Roaming\jives\states” in the ”AppData” directory if the running

OS is a Windows system; $userHome/.jives/states if the application is executed

in MAC OS X Environment or under a Linux OS. All the save files are stored in

the sub-folder ”states”.

6.2.3 Java Applet User’s Manual

A JIVES Virtual Environment application can be deployed also as a Java [51]

Applet that runs inside a web browser. In order to test this feature, the jME

[31] Demo has been published at the following URL: http://simonesegalini.

altervista.org/jives/test/test.html. An essential prerequisite to correctly

run the JIVES Applet is to grant the right permissions to the application in

order to access the user’s computer. This is possible by providing a trusted

certificate with which the applet is signed. For testing purposes, however it’s

sufficient to place the .java.policy file in the right location: in a Windows OS

this file has to be located in C:\Documents and Settings\$user\.java.policy or

C:\Users\$user\.java.policy depending on the specific Windows version; in a

MAC OS X Environment in /Users/$user/.java.policy ; under a Linux system

in the ”home” directory /home/$user/.java.policy. The .java.policy file is not

provided to the user: he has to create it manually, open it with any text editor

and insert the content shown in Code Snippet 6.5.

http://simonesegalini.altervista.org/jives/test/test.html
http://simonesegalini.altervista.org/jives/test/test.html

Development and Usage 121

Code Snippet 6.5: The Policy File� �
// Do what you will. Totally permissive policy file.

grant {

permission java.security.AllPermission;

};� �
When accessing the Launcher Page for the JIVES Applet, a message box, as

shown in Figure 6.43, displays the request that the JIVES Applet wants to access

to the user’s computer. This happens because the applet is signed with a digital

certificate. This certificate claims that the applet comes from the party named

within and contains the digital signature of a certificate authority. In order to

correctly run the applet the user must accept the certificate request.

Figure 6.43: The Certificate Request

Because the JMEImplementor is quite memory consuming to run as a Java

Applet, the user might have to increase the Java [51] Heap of its Java [51] Virtual

Machine, at least augmenting it to 300 Mb. This is possible by defining in the JVM

Settings of the user’s OS the parameter -Xmx300m. See http://java.sun.com/

performance/reference/whitepapers/tuning.html#section4.1.2 for further

informations about increasing the Java Heap size. The first time that the user

runs the JivesApplet, it takes a long time to start because the Java [51] Web Start

has to download all the necessary packets from the server. These packets are then

stored in the Java [51] Web Start cache: this permits to load the JivesApplet in

http://java.sun.com/performance/reference/whitepapers/tuning.html#section4.1.2
http://java.sun.com/performance/reference/whitepapers/tuning.html#section4.1.2

122 Development and Usage

a much shorter time.

6.3 Sample JiveScripts

Both the JiveScript Shell Demo and the JiveScript jME [31] Demo at the beginning

of the scripts make use of two important directives: the directive uses and

the directive name. As shown in Code Snippet 6.6, the uses directives will

be checked by the system to ensure that all the Implementors needed by the

JiveScript application are available. In the JiveScript Shell Demo as argument

of the directive is passed the Shell Implementor, while in the JiveScript jME [31]

Demo is passed the jME [31] Implementor. The name directive is used to define

the name of the JIVES application.

Code Snippet 6.6: uses and name directives� �
// JIVESCRIPT_VERSION = 0.2

reset ();

__uses(org.jives.implementors.engine.shell);

__name("Jives Basic Demo");

echo("");

echo("");

echo(" --");

echo(" Welcome to Jives Basic Demo");

echo(" --");

echo("This is a textual adventure engine that uses "

+ "Jives Shell implementor and JiveScript .");

echo("Say \" help ()\" for a list of available commands.");

...

// Prevent further scripting

__scripting(false);� �
At the end of the script, the scripting directive is defined. Usually, when the

script is in its final version, this directive is set to false, as in the JiveScript Demo.

In this case the script can be only loaded and not modified any more. Setting the

directive scripting to true allows the JIVES developer to enable a ”sandbox”

modality through which he has the possibility to freely experience some changes

in the JIVES application he’s developing.

Development and Usage 123

The Setup section of the JiveScripts define the listeners and the item combi-

nations provided by the application. The JIVES framework manages the events

through an event-based system: each event generated inside the application has

a condition and an action. If the condition is verified, the action is executed.

Through the use of listeners, or better called event listeners, there is the possibil-

ity to notify and manage the event, executing or inhibiting the associated action.

As shown in Code Snippet 6.7, in the JiveScript Demos the user’s avatar can

receive from the NPC of the first scene at most two coins ; in the case the user

asks for a third coin the listener inhibits the action associated to the given event.

Code Snippet 6.7: Event listener� �
// Define a listener

inventoryListener = new org.jives.events.JivesEventListenerIntf ({

handleEvent: function (jivesEvent) {

action = jivesEvent.getAction ();

...

if (action instanceof org.jives.actions.BagItemAction) {

if(bag0.getQuantity("coin") < 2) {

gui.notification("[Listener] Received "

+ action.getItem (). getId() + ".");

return false;

} else {

gui.notification("[Listener] You already have enough "

+ "coins.");

return true;

}

}

...

return false;

},

getId: function () { return " inventoryListener "; }

});

Jives.registerEventListener(inventoryListener);� �
The items combinations in the JiveScript Shell Demo are defined as shown in

Code Snippet 6.8: each item is characterized by an ID, the category to which it

belongs, its HotSpots and its model. For each HotSpot, if a combination is defined,

the item that will be created as a result of a correct combination is reported. In

the model definition is specified the description of the given item; description that

124 Development and Usage

appears to the user when he selects the ”Examine” action from the Item Inventory

Screen.

Code Snippet 6.8: Shell Items combinations� �
// Define bag0

bag0 = makeBag ({

bag0 : [

...

{

id: " woodenStick ",

categories: ["found"],

combines: [

[new org.jives.implementors.engine.shell

.HotspotRenderer("bottom"), null],

[new org.jives.implementors.engine.shell

.HotspotRenderer("tip"), " stickWithWire "]

],

model: new org.jives.implementors.engine.shell.BagItemRenderer(

"A strong and flexible wooden stick"

),

commonActionsRenderer: gui

},

{

id: " nylonWire",

categories: ["found"],

combines: [

[new org.jives.implementors.engine.shell

.HotspotRenderer("edge"), " stickWithWire "],

[new org.jives.implementors.engine.shell

.HotspotRenderer("middle"), null]

],

model: new org.jives.implementors.engine.shell.BagItemRenderer(

"A piece of nylon wire"

),

commonActionsRenderer: gui

},

...

]

}, bagModel , bagModel);� �

In the JiveScript jME [31] Demo the only differences are that for each HotSpot

are defined in space using 3D coordinates for positioning and a radius for sensi-

bility, and the item model refers to the mesh through which the item is visualized

in a 3D Virtual Environment. Code Snippet 6.9 shows how the items are defined

in the jME [31] Demo script.

Development and Usage 125

Code Snippet 6.9: jME Items combinations� �
// Define bag0

bag0 = makeBag ({

bag0 : [

...

{

id: " woodenStick ",

categories: ["found"],

combines: [

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (-3.42, -3.08, 0.19), 1

), null

],

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (9.5, 7.8, -0.03), 1

), " stickWithWire "

]

],

model: new org.jives.implementors.engine.jme.BagItemRenderer(

"Models/ woodenStick / woodenStick .mesh.xml", 0.05,

"A strong and flexible wooden stick"

),

commonActionsRenderer: gui

},

{

id: "nylonWire",

categories: ["found"],

combines: [

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (-10.29, 1, -0.91), 1

), " stickWithWire "

],

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (2.54 , 1.25, 6.24), 2

), null

]

],

model: new org.jives.implementors.engine.jme.BagItemRenderer(

"Models/nylonWire /nylonWire .mesh.xml", 0.016 ,

"A piece of nylon wire"

),

commonActionsRenderer: gui

},

...

]

}, bagModel , bagCombiner);� �
Code Snippet 6.10 presents how the scene models and the elements inside the

scene are defined. For each element in the scene are bound predefined actions,

126 Development and Usage

that are the ones shown to the user when he activates it. In Code Snippet 6.10,

Scene 2 is set with the scene2PortalTo1 Artefact. To that element is bound the

PortalAction action, that lets the user to move from Scene 2 to the previous one.

Code Snippet 6.10: Scene Model Definition� �
// Define scene models

scene2Model = new org.jives.implementors.engine.shell.SceneRenderState(

new org.jives.sim.SceneModelIntf ({

destroy: function () { },

activate: function () {

echo("\n\nSCENE 2:\n This room has a quiet pond with crystal waters.");

},

onActiveNodeAdd: function (jivesActiveNode) {

if (jivesActiveNode.getModelType ()

.equals(org.jives.network.RemoteActiveNode)) {

org.jives.implementors.engine.shell.SceneRenderState

.setupTradeAction(jivesActiveNode , bag0);

org.jives.implementors.engine.shell.SceneRenderState

.setupRemoteDialogue(jivesActiveNode);

}

},

onActiveNodeRemove: function (jivesActiveNode) { }

})

);

scene2 = new org.jives.core.JivesScene("Scene 2", scene2Model);

...

// ------------------------------- Scene 2 ---------------------------------- //

// Door to scene 1 ---

scene2PortalTo1 = new org.jives.core.JivesActiveNode(" scene2PortalTo1 ",

new org.jives.implementors.engine.shell.ActiveNodeRenderer(

org.jives.implementors.engine.shell.ActiveNodeRenderer.TYPE_PORTAL ,

"Portal to Scene 1"

)

);

scene2.addActiveNode(scene2PortalTo1);

scene2PortalTo1.bindAction(

new org.jives.actions.PortalAction(

" scene2PortalTo1Action ",

scene2 , scene1

)

);� �
In the initial scene of the JiveScript Demo, there is also a Non-Playing Char-

acter defined with a preset dialogue. The whole dialogue is reported before the

definition of the NPC and then bound to it by using the StartDialogueAction ac-

tion. The dialogue requests are structured into three main parts: the question,

the answer and the actions related to that answer. In Code Snippet 6.11 a part

of the dialogue related to the NPC of the first scene is presented.

Development and Usage 127

Code Snippet 6.11: A predefined Dialogue� �
// NPC --

// Dialogue 0

scene0NPC0Dialogue0Root = makeDialogue ({

scene0NPC0Dialogue0Root : [

{

question: "Hello",

answer: "Nice to meet you",

actions: [

new org.jives.actions.StartDialogueAction(

" scene0NPC0Dialogue0RootReq0Action ", " scene0NPC0Dialogue0Intro "

)

]

}

]

}, dialogueModel , gui);

makeDialogue ({

scene0NPC0Dialogue0Intro : [

{

question: "Where am I?",

answer: "You are in Jives basic demo",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "Who are you?",

answer: "I’m a non -playing character. I’m here to demonstrate the "

+ "dialogue system. Ask your questions .",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "Have a nice day",

answer: "Goodbye"

}

]

}, dialogueModel , gui);

makeDialogue ({

scene0NPC0Dialogue0Dialogues : [

...

{

question: "Can I trigger any action during a dialogue?",

answer: "Of course; Here , an action is triggered and then

the dialogue continues",

actions: [

new org.jives.core.JivesAction(" inDialogueAction ",

new org.jives.sim.JivesActionModelIntf ({

execute: function (jivesEvent) {

gui.notification("Light blinks and walls tremble

for a moment ...");

},

getDescription: function () { return "In -dialogue action"; },

render: function (jivesRenderableIntf) { gui.notification(

128 Development and Usage

this.getDescription ()); }

})),

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

...

]

}, dialogueModel , gui);

// Bind dialogues to NPC

scene0NPC0 = new org.jives.core.JivesActiveNode(" scene0NPC0 ",

new org.jives.implementors.engine.shell.ActiveNodeRenderer(

org.jives.implementors.engine.shell.ActiveNodeRenderer.TYPE_NPC ,

"Guy in the southwest corner"

)

);

scene0.addActiveNode(scene0NPC0);

scene0NPC0.bindAction(

new org.jives.actions.StartDialogueAction(

" scene0NPC0Dialogue0RootAction ",

scene0NPC0Dialogue0Root.getId()

)

);� �

The JiveScript Demo proposes also a trade between a Playing Character and

the Non-Playing Character of the initial scene. The trade is defined in the Jive-

Script as shown in Code Snippet 6.12, specifying which items the NPC has to

receive in order to accomplish the trade, and which items the NPC gives to the

user. In the proposed example, the NPC will receive two coins in order to give a

apple to the user.

Code Snippet 6.12: Trade with a NPC� �
// Bind trade to NPC

tradeItem = Jives.get("apple", org.jives.core.JivesBagItem);

catalog = new org.jives.implementors.engine.shell.ShopCatalog ();

catalog.addEntry(tradeItem , -1, dialogueItem , 2);

org.jives.implementors.engine.shell.SceneRenderState

.setupTradeAction(scene0NPC0 , bag0 , catalog);� �
The whole JiveScript Shell Demo and JiveScript jME [31] Demo are reported

in Appendices B and C.

Chapter 7

Performance Metrics and
Evaluation

7.1 Performance Metrics

The performance metrics discussed in this section are both quantitative and qual-

itative. In order to evaluate the quantitative performance metrics an experiment

based on the execution of the jME [31] Test Demo has been set up using different

hardware machines. The hardwares involved are a MacBookPro 2.3 GHz Intel

quadCore i7 with 8 GB 1333 MHz DDR3 and Graphics Card AMD Radeon HD

6750M 1024 MB, an iMac 2.66 GHz Intel dualCore 2 Duo with 4 GB 800 MHz

DDR2 SDRAM and Graphics Card ATI Radeon HD 2600 Pro 256 MB, a Mac-

Book 2.26 GHz Intel dualCore 2 Duo with 2 GB 1067 MHz DDR3 and Graphics

Card Nvidia Geforce 9400M 256 MB and a Sony Vaio 2.10 GHz Intel dualCore

2 Duo with 4 GB 800 MHz DDR2 SDRAM and Graphics Card Nvidia Geforce

9300M 256 MB. For each hardware the experiment is done on idle processor and

averages taken over ten independent runs. In order to test the performance of the

network, all the experiments have been reproduced by using a Wireless Local Area

Network (WLAN) 802.11n (450 Mb/s) and an Internet ADSL connection with a

8128 kbps downstream connection speed and a 480 kbps upstream connection

speed. At start-up, a measure is done on the period of time it takes to initialize

JIVES and start the jME [31] Test Demo, in window-mode with a 800x600 pixels

130 Performance Metrics and Evaluation

resolution, 24 bpp colour depth and anti-aliasing filter disabled.

Table 7.1: Start up experiment results

Number of
run

Mac-
BookPro

1

Mac-
BookPro

2
iMac 1 iMac 2 MacBook 1 MacBook 2 Sony Vaio 1 Sony Vaio 2

1 19.30 12.60 21.60 21.40 28.00 28.40 23.10 18.52

2 17.8 11.90 20.90 14.70 27.50 17.10 23.00 17.96

3 17.2 11.10 21.00 16.60 25.80 15.90 22.90 20.88

4 17.0 10.90 20.70 17.10 23.90 15.80 22.50 16.49

5 17.4 11.80 20.70 17.20 24.00 15.80 22.10 17.20

6 16.8 11.20 20.30 14.30 24.5 16.00 22.20 17.38

7 16.4 10.70 20.80 14.70 25.30 15.80 22.80 16.79

8 16.5 11.00 20.40 14.30 24.90 16.20 22.60 18.14

9 16.4 10.90 20.50 14.20 25.70 16.00 22.70 15.05

10 16.6 10.20 20.90 14.00 25.80 16.40 22.30 19.80

Average 17.14 11.23 20.78 15.85 25.54 17.34 22.62 17.82

In Table 7.1 are shown the results obtained from the start-up experiment. Us-

ing the MacBookPro, the start-up takes an average of 17.14 seconds to load JIVES

and start the Demo, ranging from a minimum of 16.4 seconds and a maximum

of 19.3 seconds; the iMac obtains an average of 20.78 seconds with a minimum of

20.3 seconds and a maximum of 21.6 seconds; the MacBook performs the start-up

in an average of 25.54 seconds, obtained from a range between 23.9 and 28.0 sec-

onds; on the Sony Vaio the experiment reveals a minimum of 22.1 seconds and a

maximum of 23.1 seconds, reaching an average of 22.62 seconds. As a result of this

experiment, it has been decided to try to improve the start-up performances by

reducing the number of classes that the MultiInstanceEndpoint JXSE [54] class-

loader has to load while starting the network. The start-up experiment has been

repeated after the implementation of that optimization, leading to have different

performance results. The MacBookPro start-up average time is 11.23 seconds,

with a worst time of 12.6 seconds and the best one of 10.2 seconds; the iMac per-

forms the start-up in a range from 14.0 and 21.4 seconds, with an average of 15.85;

the MacBook achieves an average of 17.34 seconds, with a minimum of 15.8 and

a maximum of 28.4 seconds; the Sony Vaio starts JIVES in a best time of 15.05

and a worst time of 20.88 seconds, obtaining an average value of 17.82 seconds.

Performance Metrics and Evaluation 131

The start-up experiment has been done varying the connection type, from LAN

connection to Internet connection, but the application is not affected in terms of

boot speed: the average times are similar in both cases. The comparative graph

depicted in Figure 7.1 visualizes the performances computed from the first exper-

iment with a dashed line and the performances from the second experiment with

a solid line.

Figure 7.1: Start-up experiment

The optimization introduced by reducing the number of classes loaded by the

MultiInstanceEndpoint JXSE [54] class-loader has permitted to reduce substan-

tially also the amount of memory consumed by JIVES: starting from an amount

of about 600 MB, now the jME [31] Test Demo uses approximately 300 MB,

achieving an improvement of 50 % in terms of memory usage.

Due to the fact that JIVES is executable as a Java Applet, experiments have

been done in order to test the capacities of the most popular browsers to load

and execute the jME [31] Test Demo implemented with the JIVES framework.

The Demo has been proved to be successfully executed using Mozilla Firefox,

132 Performance Metrics and Evaluation

Apple Safari, Google Chrome, the Open Source browser Chromium and Internet

Explorer. The only browser that failed to run the Demo, without even starting it,

is Opera. The execution of the Demo as a Java Applet, when using a Windows or

Linux Environment system, did not reveal any substantial differences in terms of

performance metrics while running, except for a slightly bigger network lag when

compared to the desktop version, but it’s way slower while loading especially if the

applet sign has to be verified for every loaded class. This performance decay should

not be present when using a trusted certificate. At the contrary, when running

the applet using a MAC OS X operating system, were noticed some problems

related to the improper handling of input devices, especially the mouse input. In

particular, due to the fact that the mouse pointer cannot be captured, there is no

longer the possibility to correctly manage the camera by using the mouse. The

user however has the possibility to manage the rotation by means of the arrow

keys of the keyboard so as to overcome this issue. In the Combination Screen

the items can be correctly manipulated by holding the left mouse button on the

desired object and rotating it using the arrow keys. Same applies to translation

when the right mouse button is pressed.

In order to test the network strength, an experiment has been done by using

both a LAN connection and an Internet connection. In the first case, a Rendezvous

has started the jME [31] Test Demo; incrementally at one minute interval a new

peer (executed on a physical machine) has been set up to connect to the Ren-

dezvous up to obtain a scene shared between a Rendezvous and nine peers. Up

to a Rendezvous and five peers, the network has performed well, maintaining a

low lag level; while increasing even more the number of connected users results

in a degradation of the network that can also lead to have a network lag of more

than a second. In particular, the minimum lag observed was 0.6 seconds, while

the maximum one 2.1 seconds. In the second case, the execution of the experi-

ment using an Internet connection, the network behaviour is very similar, except

Performance Metrics and Evaluation 133

of course an increased network lag, depending on the Internet connection speed.

Using an ADSL with a 8128 kbps downstream connection speed and a 480 kbps

upstream connection speed, the lag increased to a maximum of 3 seconds. In this

specific case the distance that the signal had to run through was about 30 km.

In order to test the JXSE network on higher traffic loads, it has been neces-

sary to simulate it, due to the impossibility to provide an adequate number of

hardware machines. This kind of testing has been achieved through the Shel-

lImplementor. A BASH [21] script has been used to automatically interact with a

running instance actually performing like a bot. Through this setup, we were able

to perform the network performance analysis. The objective of the experiment

was the examination of the worst possible case: as many Peers as possible, con-

nected to a single Rendezvous, simultaneously talking to a single receiver Peer,

connected to the same Rendezvous. The experiment took place as follows: all

senders sent a message containing the current timestamp once every ten seconds;

when the receiver received the message, it measured the time occurred in between

delivery.

The whole procedure involves many scripts, listed below; they must be lo-

cated in the same directory of the testShell build; along with them, several

output files are created, one for each Peer plus one that contains the logged

experiment results. Once the Rendezvous has been started by launching the

testShell Demo, the network can be instantiated directly, issuing the command

Jives.getNetwork().startNetwork(”test”, org.jives.implementors.network.jxse.utils.

Tools.md5Converter(”test”)). Then, the receiver has to be started, simply running

the script reported in Code Snippet 7.1.

134 Performance Metrics and Evaluation

Code Snippet 7.1: The Network Test Receiver Script� �
#!/bin/bash

file="./0-output.txt"

log="./0-log.txt"

path="/usr/src/eclipse/jives/out/" # Path of the testShell build

function bot {

echo "Jives.getNetwork().startNetwork(\"test\",

org.jives.implementors.network.jxse.utils.Tools.md5Converter(\"test\"))"

while true; do

echo "lookAround()"

sleep 1

cat $file | while read line; do

found=$(echo $line | grep ">> peer0")

if [-n "$found"]; then

recv_time=$(echo $(($(date +%s%N)/1000000)))

sender=$(echo "$line" | cut -d" " -f4)

send_time=$(echo "$line" | cut -d" " -f5)

let DIFF=$recv_time-$send_time

echo "$sender, " $DIFF >> $log

fi

done

echo "" > $file;

Ponder next move

sleep 0.5

done

}

cd $path

touch $file

echo "" > $file;

touch $log

echo "" > $log;

bot | java -jar testShell.jar | tee $file� �

At last, the file 0-log.txt will contain the delivery time of all the messages

received and the respective provenance. 0-output.txt instead is used as storage

to parse the output buffer iteratively. The output files are prefixed with a serial

ID so that different Peers won’t overwrite each others files. Also senders are

executed programmatically, once every while, and instructed to send messages to

the receiver, named peer0. Code Snippet 7.2 shows how they are started, one after

the other, calling the testnet-send.sh script which actually executes the sender job,

as can be seen in Code Snippet 7.3.

Performance Metrics and Evaluation 135

Code Snippet 7.2: The Network Test Starter of Sender Scripts� �
path="/usr/src/eclipse/jives/out/" # Path of the testShell build

cd $path

for i in {1..100}

do

echo "Starting peer nÂ°$i..."
sh ./testnet-send.sh $i &

sleep 30

done� �

Code Snippet 7.3: The Network Test Sender Script� �
#!/bin/bash

if ["$1" == ""]; then

echo "Specify index param"

exit

fi

arg=$1

file="./$arg-output.txt"

path="/usr/src/eclipse/jives/out/"

function bot {

echo "Jives.getNetwork().startNetwork(\"test\",

org.jives.implementors.network.jxse.utils.Tools.md5Converter(\"test\"))"

while true; do

Search dest peer

echo "" > $file;

echo "lookAround()"

sleep 1

found=$(echo $(cat $file) | grep -c "peer0")

if [$found == 1]; then

Dest peer found, talk

echo "activate(\"peer0\")"

echo "0"

time=$(($(date +%s%N)/1000000))

echo "$arg $time"

fi

Ponder next move

sleep 9

done

}

cd $path

touch $file

echo "" > $file

bot | java -jar testShell.jar | tee $file� �
Testing on localhost, however, does not give meaningful results because the

network propagation is immediate. However, from Linux Kernel 2.6 the netem

136 Performance Metrics and Evaluation

network emulation [28] was introduced as kernel module. Thanks to netem [28],

it is possible to simulate a network delay of 100ms +/- 10ms having a random

distribution issuing the command tc qdisc add dev lo root handle 1:0 netem delay

100ms 10ms. To revert emulation just run tc qdisc del dev lo root.

As a side note, it must be said that the same procedure can run on a Mac OS

X, if opportunely adapted. In this environment, the graphic user interface to the

network module is called Network Link Conditioner.

The results obtained by the network load experiment are shown in Figure 7.2.

Figure 7.2: Network Load Performance Measurement

In order to decrease the number of messages per second sent by each peer, a

linear interpolation related to avatar movements has been coded in the Implemen-

tor. Figure 7.3 shows the total number of message transmissions as the number

of joining nodes grow, comparing the results obtained before and after the opti-

Performance Metrics and Evaluation 137

mization. It is important to remark that the statistics shown in Figure 7.3 do not

include the number of transmissions produced by the propagation mechanism of

the underlying network layer.

Figure 7.3: Total number of message transmissions for number of nodes

In terms of FPS (frames per second), the execution of the jME [31] Test

Demo in a Fullscreen exclusive display mode reveals to be quite variable about

performance: the MacBookPro runs the Demo ranging from 23 FPS to 71 FPS; on

the iMac and the MacBook the FPS vary from 1 to 20 and from 3 to 9 respectively;

the Sony Vaio executes the jME [31] Test Demo up to 11 FPS. When more than

4/5 users are connected to the same scene, the performance degradation in the

execution of the Demo is clearly visible: only using the MacBookPro the difference

was not so noticeable. In Table 7.2 are specified the performances in terms of

FPS obtained varying the display resolution. The experiment has been performed

running the jME [31] Test Demo in a shared LAN session with three participants.

During the execution of the tests, it has happened that the application crashed

in a couple of occasions: in the first one, the event has occurred thirty minutes after

the application has been started: the jME [31] Test Demo quit unexpectedly; in

the second case, there was not a real crash, but a freeze related to the visualization

138 Performance Metrics and Evaluation

Table 7.2: Performance comparison

Hardware & OS Display Mode Min FPS Max FPS

MacBookPro
MAC OS X

Lion

Fullscreen
1680x1050

32bpp
23 71

Windowed
1024x768 24bpp

29 99

Windowed
640x480 24bpp

38 142

iMac
MAC OS X

Lion

Fullscreen
1680x1050

32bpp
1 20

Windowed
1024x768 24bpp

3 31

Windowed
640x480 24bpp

8 71

MacBook
MAC OS X

Lion

Fullscreen
1280x800

32bpp
3 9

Windowed
1024x768 24bpp

4 11

Windowed
640x480 24bpp

8 22

Sony Vaio
Linux

Fedora 15

Fullscreen
1280x800

24bpp
2 11

Windowed
1024x768 24bpp

5 16

Windowed
640x480 24bpp

6 24

Performance Metrics and Evaluation 139

of the 3D Environment through the jMonkey Engine: it has not been possible to

restore the proper functioning of the application.

Alongside the quantitative performances, also qualitative performances were

deduced by involving two third party users. The first user can be considered a

”medium/expert” user: 27 years old, he is not new to use a shell to run com-

mands, is familiar with Windows and some Linux distributions, knows how to

juggle between the different settings of an OS, has basic knowledge about Java

programming. The second user can be targeted as a ”newbie”: 26 years old, he

only knows the Windows Operating System, is unfamiliar with the command line,

knows absolutely nothing in terms of programming. The two users were subjected

to the same experiment: the testShell.jar and the testJME.jar, the JiveScript Shell

Demo and the JiveScript jME [31] Demo, the User’s Manual (6.2) and the Devel-

oper’s Manual (6.1) have been provided them; they had to read carefully both the

Manuals and try to perform the same operations described in the documents. In

particular, they had to set up correctly all the necessary settings to run the De-

mos, start the JIVES applications by loading the scripts and execute some actions

inside the Virtual Environment, such as moving around, managing the Inventory,

combining items, chatting and trading with a NPC and a PC, saving and loading

the application state.

The first experiment has been done by asking to execute JIVES and load the

Shell Test Demo. Both users have no problem to start JIVES by launching the

java -jar testShell.jar command in a terminal, although of course the time taken

is definitely different: the ”newbie” user took a few minutes to understand how

to launch the terminal (the Command Prompt in his case), move into the right

directory and start JIVES. Before loading the JiveScript Shell Demo, they were

asked to configure the network settings to run the application as a simple Peer who

wants to connect to a Rendezvous already running the same application. Both

users have encountered difficulties in properly configuring the networkConfigura-

140 Performance Metrics and Evaluation

tion.xml, especially in understanding the meaning and usefulness of the various

field of the XML file. The ”newbie” user has also committed some mistakes in

modifying the document according to the XML rules, since he has no knowledge

about the syntax of the language.

Both users have loaded the script without any particular problem. Once loaded

the script, they were asked to perform some operations inside the Virtual Envi-

ronment. The actions that were performed correctly are: moving around the

Virtual Environment, chatting with a NPC and a PC, obtaining items from the

NPC, managing the Inventory, trading with a NPC, saving and loading the state

application. When it came to combine two items, both users were in difficulty

to understand the combination mechanism, but both have completed successfully

the combination. Also trading with a PC was found to be unintuitive and difficult

to properly execute. The ”newbie” user in this case failed in executing correctly

the trade.

Another factor that results from the experiment is the fact that the users

had some difficulties in remembering the different commands needed to use the

application.

The second experiment consisted in executing JIVES and load the jME [31]

Test Demo. Thanks to the experience gained during the first experiment, both

users have proven immediately to be much more responsive. Once started JIVES,

they were asked to configure the network settings in order to start the Demo

as a simple Peer. Both the ”medium/expert” and the ”newbie” users were able

to configure the network settings by means the Nifty Graphical User Interface

without any particular problem. When executing the jME [31] Demo, both users

performed in the right way all the operations already tested in the first exper-

iment. Unlike the Shell Demo, in this case the trading between PC has been

considered much easier and intuitive; moreover they encountered no problem at

all in performing the HotSpots combination thanks to the usability of the auto-

Performance Metrics and Evaluation 141

matic alignment. Obviously if, due to Implementor design, the HotSpots were

implicit, the time taken and the reasoning effort would have been higher. Both

users were also asked to perform the combination without the combination helper:

due to the lack of a reference system, they encountered some problems in manag-

ing the rotation and translation of the items in the Combination Screen. The time

taken by the ”newbie” user to obtain a successful combination was a bit longer

with respect to the other user. In both cases, however, the combination has been

performed.

A third experiment has been performed, in which the users were asked to run

the jME [31] Test Demo as a Java Applet. In this case, the experiment showed

that the execution of JIVES using a browser is definitely the faster and easier one,

especially from the point of view of the ”newbie” user. The only difficulty that

has been encountered by the latter user was creating properly the .java.policy file

in the right directory, in order to let the applet access the user’s machine. Note

that users had free choice about which browser use: both executed the JIVES

Applet by using Firefox.

The forth and last experiment was about the development of a JIVES ap-

plication. Due to the short time available, the users were asked to write a new

JiveScript, without the need of developing new Implementors, but by using the

default ones provided by JIVES. The application had to be something very similar

to the JiveScript jME [31] Demo, a Virtual Environment with few Non-Playing

Characters and Artefacts. One day of time has been given to accomplish the

request. Both users successfully installed the Netbeans [56] IDE and the plugin

needed in order to benefit of the auto-completion feature provided by the Jive-

Script editor Netbeans plugin[15]. The ”medium/expert” user was able to develop

a new JIVES application by writing a new JiveScript, using the default Implemen-

tors provided by the framework and the same meshes adopted in the development

of the jME [31] Test Demo. The outcome is a 3D Virtual Environment which

142 Performance Metrics and Evaluation

offers two different scenes, in which are located two Non-Playing Characters with

a pre-defined dialogue and two Artefacts. The user has also defined a short plot,

which consists in collecting some items, combining them together and trading

them with the Non-Playing Characters in order to perform a specific action, pos-

sible only if the avatar owns particular items. At the contrary, the ”newbie” user,

nevertheless he installed correctly all the necessary tools in order to build a new

JIVES application, due to the lack of any knowledge in programming, failed to

create a new JIVES application.

Both users, once they became familiar with the JIVES framework, were satis-

fied with the experience.

7.2 Evaluation

This section critiques the software solution that has been developed during the

course of this project, evaluating the JIVES framework from a performance and

functionality perspective. This will aim to determine whether the developed solu-

tion matches the requirements which were outlined in the Design section 5.1, and

whether JIVES is performant enough to become a viable solution for the Deploy-

ment of Networked Java-based applications. A reflective analysis on the entire

project as a whole will also be taken, discussing the validity of the approaches

adopted, the reasoning behind these approaches and an appraisal of the fulfilment

of the aims and objectives which were outlined in chapter 4.

Adopting the VESLOM [45] approach, it has been possible to build a frame-

work that avoids a monolithic architecture. JIVES has been developed according

to the VESLOM [45] Layers, obtaining in that way a good extensibility. Neverthe-

less JIVES is not totally extensible and modular, it allows the developer to define

new Presentation and Network Implementors, while maintaining unchanged the

Core. If the developer community will show interest in JIVES, the framework

will greatly improve by means of the addition of new Implementors and custom

Performance Metrics and Evaluation 143

actions in the Middleware Layer.

One of the key points specified in the design phase was the will to create a

scripting language that would allow to develop easier JIVES applications. As

seen in the test experiments and in our personal experience, we can assert that

this goal was largely achieved: if the developer is not interested in creating new

Implementors, he can develop a JIVES application making use of the JiveScript

only. Once he becomes familiar with the scripting language, he will be able to

write the application in an easier and faster way. Another feature of which JIVES

can be proud is the possibility to define the whole logic of an application in the

script, without having the need to write a single line of Java code.

Since the design phase, we set out to build a framework that could be dis-

tinguished from the others. This was possible thanks to the implementation of

a fully integrated Item Inventory Management System, which permits to manage

and combine the Inventory items in a way never seen before. Through the defi-

nition of several HotSpots for each item, JIVES offers the possibility to combine

items in a more complete and meaningful way compared to other Virtual Envi-

ronment systems. The test experiments have shown that combining the items

together in a 3D Environment thanks to the HotSpot combination helper requires

no practice at all in order to be performed with ease, the user has only to se-

lect by clicking them the proper HotSpots and complete the combination. The

combination system has been implemented with a HotSpot combination helper

in order to make it more user friendly: the goal has been largely achieved. Even

when the users were forced to perform the combination without assistance of the

combination helper, although with some difficulties the task has been completed.

It is important to remark that the choice to use a combination helper is strictly

related to the design of the Presentation Implementor.

The decision of a Peer-To-Peer architecture as the basis of the JIVES Network-

ing Layer can be considered an innovative choice, due to the fact that the most

144 Performance Metrics and Evaluation

of the existing Virtual Environment frameworks implement the network function-

alities using a Client/Server technology. Thanks to the Peer-To-Peer technology

integrated in the JIVES framework, a developer can create new Virtual Environ-

ment applications running on Internet at no server costs. Despite some difficulties

in implementing the Network Implementor using the JXTA [54] Peer-To-Peer ar-

chitecture, we can be satisfied due to the proper functioning of the JIVES network

both when using a LAN connection and an Internet connection.

The choice of adopting the Java [51] language has proved to be the right one:

the Java [51] compiler generates Java Virtual Machine code instead of machine

code specific to the computer system the user is executing. The Java [51] compiled

code is executable on any processor and system: it is sufficient to have the Java

[51] Virtual Machine installed. Because of this JIVES reaches a great portability:

it has been successfully executed on Windows, MAC OS X and Linux. Actually,

it can also be considered a Web-VE when running as an applet.

From a technical point of view, the matter is a bit less enthusiastic. Prior to

reducing the number of classes loaded by the MultiInstanceEndpoint JXSE [54]

class-loader, unless the start-up time (the mean value of the measured times was

21.52) could be considered very good, the 3D visualization engine required big

amounts of memory to run a 3D Virtual Environment application developed by

using the JIVES framework. The optimization improved both the start-up time

(the average time now is 15.56) and the memory consumption, reducing the latter

by 50 %. Nevertheless, an high number of concurrent Peers can lead to system

degradation. Such heaviness in the execution is not to be ascribed to JIVES but to

the jME [31] visualization engine. Using a medium/high performance hardware,

JIVES runs optimally along with jME [31]. In particular, minimum requirements

are 1 GB RAM and a 512 MB graphics card; while recommended requirements

are 2 GB RAM and a 1 GB graphics card.

Another problem regards the network scalability: when an high number of

Performance Metrics and Evaluation 145

Peers execute the same application a huge number of messages are sent through the

network. In particular the main network performance problem resides in avatar

movements and state updates that produce an high number of message exchanges.

Even when an avatar doesn’t move, for simplicity it sends an update message to the

other users connected in the same scene. Nevertheless, experimental simulations

showed up that the system scales up smoothly with ten users in a shared session.

This result does not fit well within expectations: the goal was to be able to

support at least 100 peers simultaneously. This is not to be regarded as a failure:

by adopting the right network traffic reduction algorithms, such as dead reckoning

[9], the network scalability can significantly improve. At the moment, due to the

lag observed in the performed experiments, JIVES can not be considered capable

of supporting the so-called ”real-time” applications, such as First Person Shooters,

with a lag that has to be below 150 ms. By adopting network optimizations

techniques, it will be possible to reduce the network lag in order to extend the

support also to this kind of applications. But this is the only limitation: from

Inventory-based games to training simulations, such as simulations aimed to train

the user in critical situations, to collaborative E-Learning Virtual Environments,

such as interactive 3D class rooms, or professional working environments that can

support collaborative projects, or virtual cities, museums, art galleries and labs,

JIVES supports the creation of a large range of applications.

To perform a better estimation of the performance of the Peer-To-Peer so-

lution, however, a small number of Peers is not sufficient. A cheap solution is

performing the emulation of a wider network to understand the asymptotic be-

haviour of the network load. The trade-off consist in the fact that emulating a

large number of applications on a single physical machine has the effect of a rapid

degradation of the system responsiveness; this fact is going to drastically alter the

trustiness of the evaluation as soon as the number of running Peers grows: it can

be easily seen observing the increasing variance of the data plotted in Figure 7.2.

146 Performance Metrics and Evaluation

In any case, a linear trend clearly emerges from the regression line; this is an

encouraging result if viewed in the perspective of the traditional Client/Server

approach, where network load is exponential on the number of the connected

Peers. An important observation to be done is that this is the worse case, in

which n-1 Peers concur to contacting the n-th one: this tells us that JXSEImple-

mentor is able to deliver the messages of 10 peers under 5 seconds on a network

with the following characteristics: DSL, Downlink bandwidth 7 Mbps, Download

Delay 100 ms, Uplink Bandwidth 2 Mbps, Uplink Delay 100 ms.

In terms of successful message delivery, JIVES has proved to be very efficient.

Due to the choice of the JXTA [54] Architecture as basis for the Networking

Layer, all the messages are sent adopting the TCP protocol, which guarantees

delivery of messages without duplication or data loss. When it comes to jME

[31] Test Demo, network traffic gained a great benefit from the introduction of

an optimization such as the linear interpolation: the number of messages sent per

second decreased by a 90 %.

From the point of view of executing JIVES as a Java Applet, the framework has

pleasantly satisfied: there are no substantial differences between the performance

as a Java Applet and the local counterpart. Moreover, the possibility to deploy

a JIVES application as a Java Applet gives a fast and easy way to ensure that

even less experienced users are able to run the application. Another important

aspect is the fact that the applet works on most of the existing browsers, so that

everyone can access it. In particular, as shown in Figure 7.4, the fact that the

JIVES Applet can be used with Internet Explorer, Firefox, Chrome and Safari

allows the framework to be properly executed by 92.8 % of web browser users.

The graph shows data updated to September 2011, extracted as median values

from different sources, such as Net Applications [42], Statcounter [63], W3Counter

[1], Wikimedia [73], Clicky [59].

The qualitative performances, obtained by means of the performed experi-

Performance Metrics and Evaluation 147

Figure 7.4: Web browser usage

ments, have shown a certain difficulty in using the Shell Test Demo, but this

was expected and can be easily explained, since a textual Virtual Environment

application is far less intuitive than the graphical counterpart. This has been

demonstrated with the experiment that gave the possibility to the users to use

the jME [31] Test Demo, of which they were fully satisfied. With respect to de-

veloping with JIVES, the experiments have proven that the framework is aimed

at a ”medium/expert” user, that has good knowledge in terms of Operating Sys-

tems and owns at least the basics of Java programming. This can be considered a

success, due to the fact that the user does not need to be a real developer to cre-

ate a JIVES application. However, JIVES may still be seen as attractive also by

expert users, since they have the possibility to face new challenges when creating

additional Implementors and custom actions that will extend the JIVES features.

In order to efficiently test the qualitative performances, the users who took part

in usability experiments were asked to answer a short questionnaire, expressing

their degree of satisfaction according to some qualitative indicators. The degree of

satisfaction has been measured in a range from ”unsatisfactory” to ”very satisfac-

tory”. Each ”X” represents a user’s opinion. As shown in Table 7.3, the obtained

results show that the framework allows to create applications, in particular 3D

148 Performance Metrics and Evaluation

Virtual Environments, that can be easily used by non-expert users. Moreover,

the development of a new Virtual Environment application through JiveScript is

feasible even for users who are not real developers.

Table 7.3: Qualitative performances assessment

Qualitative indicators Deployment Unsatisfactory Satisfactory
Very

satisfactory

Shell Demo X X

Uptaking the User Manual
jME Demo XX

Applet XX

Shell Demo X X

Uptaking the Developer Manual
jME Demo X X

Applet X X

Shell Demo X X

Ease in starting the application
jME Demo X X

Applet XX

Shell Demo X X

Ease in configuring the network
jME Demo XX

Applet XX

Shell Demo X X

User interaction during the execution

of the application
jME Demo XX

Applet XX

Shell Demo X X

Ease in developing a new application
jME Demo X X

Applet X X

Chapter 8

Conclusions and Future Work

This chapter provides a broad overview of the work which was undertaken through-

out the project, and discusses the limitations which were encountered during the

project process. The final section suggests the direction of future research and

development which could be taken on the basis of this work.

8.1 Conclusions

The JIVES framework achieves almost all the goals set during the design phase:

extensibility, ease of use and re-usability. Scalability can be considered achieved

only partially, but in a satisfactory manner, due to the fact that there is a sub-

stantial room for improvement. From a technical point of view, JIVES can be

significantly enhanced by integrating different optimization techniques. However,

this aspect had been widely expected since JIVES was never meant to be spe-

cialized in the optimization of any particular requirement. Our aim was not

to compare JIVES with other existing frameworks at a technical level, but was

to provide something new in the Virtual Environment systems panorama: this

aspect was largely achieved by creating a totally Open Source product, which of-

fers a network architecture based on a Peer-To-Peer technology, its own scripting

language and provides an important HotSpot-based Item Inventory Management

System. JIVES can thus be considered without a doubt a success, and a signifi-

150 Conclusions and Future Work

cant starting point in the direction of creating a Virtual Environment framework

that includes all the features and the optimizations needed in the development of

such applications and that may be of interest to the developer community.

8.2 Future Work

Even if the project already looks promising and it is overall stable, there are

many feature implementations and improvement possibilities; many of those would

probably require a partial recoding, but the very basic structure of the software

is not likely to change. The following list propose some key point that can make

the project better, ordered from the one that is considered the most urgent, to

the least.

• Encryption of the local database: as soon as an XTEA encryption

adapter for DB4O [67] will be released, the mechanism of account authenti-

cation, secret key retrieval and snapshot encoding can be completed. This

is the first step to allow the exploitation of JIVES in commercial applica-

tion because, until now, the unencrypted save state is open to fraudulent

modifications that will corrupt the distributed application state.

• Cheat engine protection: although not easy to exploit, the software is

(as any resident application) exposed to direct and fraudulent RAM access

in order to try to modify in-game variables values. Even if a correct syn-

chronization with the persistence layer would greatly reduce this flaw, it

might be reasonable to think about a possible server side checkpoint system

to memorize and confront the client coherence states.

• Network traffic reduction: this is actually an Implementor issue, due to

the fact that JXSEImplementor largely resorts to the use of broadcasting

and due to the frequent update messages that the JMEImplementor needs

in order to synchronize state and position of the peers. Actually the test

Conclusions and Future Work 151

implementors were not studied deeply for performance optimization as this is

absolutely in scope of a commercial application, but not a must have for our

framework test. A linear interpolation of the Playing Character’s movements

has already been implemented, allowing to reach a significant reduction in

terms of network traffic rate: the number of messages per second sent by

each Peer has decreased from 10 to 1. Even better results can be obtained

by integrating in the JIVES framework some important message exchange

reduction optimizations such as an Aura-based Interest Management [39] or

a Predictive Interest Management [39] or a revisited version of the Delaunay

triangulation [8].

• Scalability improvement: in order to extend the support of the JIVES

framework also for massively-multiplayer applications and improve its scala-

bility, some further optimizations can be explored, such as Dynamic Broad-

cast Tree technique [10].

• Middleware structure: at the moment the Implementors code is not sub-

ject to any guideline. There is simply the need of an engine and of a network

interface; actually, there can be more rigid approaches, that will allow a pol-

ished Middleware structure (that needs to be defined) at the expense of a

bit of the programmer’s freedom. This should bring some advantages, like

reducing the time of coding of new Implementors and keeping their code

as much clear and integrated with the system as possible; thing, this one,

that does not really apply to the test Implementors. With respect to this

point, there will be the need to introduce an Audio Implementor, in order

to have a text to speech feature for in-game dialogues and sounds in the 3D

Environment. jME [31] can be extended to this, but this work implies to

define a better Middleware structure.

• User friendliness: even if undoubtedly important, this feature was not

152 Conclusions and Future Work

a primary objective for the test Implementors. Although not impossible

to understand and use, a command line interface is not what is generally

considered friendly by a common user. A better, maybe graphical, interface

for loading script, saving and restoring states and performing other common

user operations would be preferable.

• Concurrent activation action: at present, there is no way in which two

Peers can concur to the activation of an Activable entity; this is useful in

the case that the distributed application state evolves differently according

to who was able to perform the activation first; for instance, he or she might

be the only user to receive a certain item from the entity. Usually the

application evolves according to the logic of the script, which is the same on

all the Peers but it’s not shared among all the Peers. Ideally, a solution would

be to include the information about the time of the entity activation in the

RemoteActiveNode properties and handle the concurrency locally among all

the playing character. This would require sharing a timestamp and keeping

every Peer synchronized.

• JiveScript generation tool: the Netbeans plugin [15] to ease JiveScript

editing is only a starting point. JiveScript entities definition, apart from

the SIMs implementation, is very rigid. A possible line of development

would consist in writing a Netbeans plugin that exposes a purely graphical

interface which would allow the developer to choose which JIVES object

to instantiate and parametrize, while the underlying code is procedurally

generated.

• Native resolution of JavaScript objects: using the javax.script API

allows to avoid taking care of security issues (like accessing protected Java

scopes in Javascript) but, given that it does not expose JavaScript objects,

this implies that native objects access has to be obtained using the Reflection

Conclusions and Future Work 153

API. In the remote hypothesis that the low level of the scripting API will

change, there is going to be some small recoding to be done.

• Android support: officially confirmed, the stable release of the jME3 [31]

will support Android development. At the moment, the beta version of

the SDK includes already the possibility to deploy an Android application.

This feature can be exploited to extend the support of the JIVES framework

also to Android, by creating a new Presentation Implementor that gives the

possibility to run a JIVES application on a mobile device.

Appendix A

JIVES Class Diagram

Figure A.1 is the UML diagram of the most important classes inheritance show-

ing public methods only. Core classes inherit the JivesObjectIntf interface, al-

lowing them to exploit the JIVES registry. Jives class is static and does not

need any instance. All actions extend JivesAction class, as RemoteJivesAction

class does. The hierarchy of activables is defined inheriting the Activable abstract

class, like JivesActiveNode, JivesBag and JivesBagItem classes do. Transactions

are very generic because they are defined by an interface, the TransactionIntf, as

also the Implementors are; respectively defined by EngineImplementorIntf and

NetworkImplementorIntf. Events and Event Listeners are JivesObjectIntf, too.

Implementing the EventListenerIntf, the handleEvent() method is served with

every JivesEvent processed. Network receive events are handled this way by

NetworkSenderReceiver class. Representations of remote entities implement this

class to send and receive messages, like RemoteActiveNode does. Messages are

specified by the NetworkMessage class. It has a sender address, realized by the

NetworkAddress class, and a payload which can be any serializable entity, like an

HashMap or maybe a dialogue containing one RemoteDialogueRequest. Other rel-

evant packages are: org.jives.jivescript which includes the JiveScript interpreter;

org.jives.bg that contains the Bag Graph; JIVES dialogue classes are restrained

in org.jives.dialogues, while SIMs are contained in org.jives.sim and implemented

by the respective JIVES Core class that delegates to them.

156 JIVES Class Diagram

JIVES Class Diagram 157

Figure A.1: JIVES Class Diagram

Appendix B

JiveScript Shell Demo

Code Snippet B.1: JiveScript Shell Demo� �
// JIVESCRIPT_VERSION = 0.2

reset ();

__uses(org.jives.implementors.engine.shell);

__name("Jives Basic Demo");

echo(" --");

echo(" Welcome to Jives Basic Demo");

echo(" --");

echo("This is a textual adventure engine that uses Jives Shell implementor "

+ "and JiveScript .");

echo("Say \" help ()\" for a list of available commands.");

// ---------------------------- Setup -------------------------------- //

gui = org.jives.implementors.engine.shell.GUIState.getInstance ();

dialogueModel = org.jives.implementors.engine.shell.SceneRenderState

.getDialogueModel ();

bagModel = new org.jives.implementors.engine.shell.BagRenderState("bag0");

// Define a listener

inventoryListener = new org.jives.events.JivesEventListenerIntf ({

handleEvent: function (jivesEvent) {

action = jivesEvent.getAction ();

if (action instanceof org.jives.actions.PortalAction) {

if (action.getCurrentSceneId (). equals("scene0") && action

.getNextSceneId (). equals("scene1")) {

org.jives.core.JivesScene.getMyself (). getProperties ()

.put("position", "Portal to Scene 0");

}

if (action.getCurrentSceneId (). equals("scene1") && action

.getNextSceneId (). equals("scene0") ||

action.getCurrentSceneId (). equals("scene1") && action

.getNextSceneId (). equals("scene2")) {

org.jives.core.JivesScene.getMyself (). getProperties ()

.put("position", "Portal to Scene 1");

}

if (action.getCurrentSceneId (). equals("scene2") && action

.getNextSceneId (). equals("scene1")) {

org.jives.core.JivesScene.getMyself (). getProperties ()

.put("position", "Portal to Scene 2");

}

}

160 JiveScript Shell Demo

if (action instanceof org.jives.actions.BagItemAction) {

if(bag0.getQuantity("coin") < 2) {

gui.notification("[Listener] Received " + action.getItem ()

.getId() + ".");

return false;

} else {

gui.notification("[Listener] You already have enough "

+ "coins.");

return true;

}

}

if (action.getId (). equals(" openCoffer ")) {

try {

cofferOpened = Jives.get(" cofferOpened ", java.lang.String);

} catch (e) {

cofferOpened = "false";

}

if (cofferOpened == "false") {

Jives.put(" cofferOpened ", "true");

return false;

} else {

gui.notification("[Listener] The coffer is empty.");

return true;

}

}

return false;

},

getId: function () { return " inventoryListener "; }

});

Jives.registerEventListener(inventoryListener);

// Define bag0

bag0 = makeBag ({

bag0 : [

{

id: "apple",

categories: ["received"],

combines: [],

model: new org.jives.implementors.engine.shell.BagItemRenderer(

"An apple received trading with that strange guy."

),

commonActionsRenderer: gui

},

{

id: "coin",

categories: ["received"],

combines: [

[new org.jives.implementors.engine.shell

.HotspotRenderer("Useless hotspot"), null]

],

model: new org.jives.implementors.engine.shell.BagItemRenderer(

"A coin received talking to that strange guy."

),

commonActionsRenderer: gui

},

{

id: " woodenStick ",

categories: ["found"],

combines: [

[new org.jives.implementors.engine.shell

.HotspotRenderer("bottom"), null],

[new org.jives.implementors.engine.shell

JiveScript Shell Demo 161

.HotspotRenderer("tip"), " stickWithWire "]

],

model: new org.jives.implementors.engine.shell.BagItemRenderer(

"A strong and flexible wooden stick"

),

commonActionsRenderer: gui

},

{

id: " nylonWire",

categories: ["found"],

combines: [

[new org.jives.implementors.engine.shell

.HotspotRenderer("edge"), " stickWithWire "],

[new org.jives.implementors.engine.shell

.HotspotRenderer("middle"), null]

],

model: new org.jives.implementors.engine.shell.BagItemRenderer(

"A piece of nylon wire"

),

commonActionsRenderer: gui

},

{

id: "hook",

categories: ["found"],

combines: [

[new org.jives.implementors.engine.shell

.HotspotRenderer("eye"), " fishingRod "],

[new org.jives.implementors.engine.shell

.HotspotRenderer("hook"), null]

],

model: new org.jives.implementors.engine.shell.BagItemRenderer(

"A metal hook"

),

commonActionsRenderer: gui

},

{

id: " stickWithWire ",

categories: ["found"],

combines: [

[new org.jives.implementors.engine.shell

.HotspotRenderer("wireEdge"), " fishingRod "]

],

model: new org.jives.implementors.engine.shell.BagItemRenderer(

"A nylon wire tied to a wooden stick"

),

commonActionsRenderer: gui

},

{

id: " fishingRod ",

categories: ["fishing"],

combines: [],

model: new org.jives.implementors.engine.shell.BagItemRenderer(

"A hand -crafted fishing rod"

),

commonActionsRenderer: gui

}

]

}, bagModel , bagModel);

// Define actions

bag0.bindCommonActions(gui);

dialogueItem = Jives.get("coin", org.jives.core.JivesBagItem);

// Define scene models

scene2Model = new org.jives.implementors.engine.shell.SceneRenderState(

162 JiveScript Shell Demo

new org.jives.sim.SceneModelIntf ({

destroy: function () { },

activate: function () {

echo("\n\nSCENE 2:\n This room has a quiet pond with crystal "

+ "waters.");

},

onActiveNodeAdd: function (jivesActiveNode) {

if (jivesActiveNode.getModelType (). equals(org.jives.network

.RemoteActiveNode)) {

org.jives.implementors.engine.shell.SceneRenderState

.setupTradeAction(jivesActiveNode , bag0);

org.jives.implementors.engine.shell.SceneRenderState

.setupRemoteDialogue(jivesActiveNode);

}

},

onActiveNodeRemove: function (jivesActiveNode) { }

})

);

scene2 = new org.jives.core.JivesScene("Scene 2", scene2Model);

scene1Model = new org.jives.implementors.engine.shell.SceneRenderState(

new org.jives.sim.SceneModelIntf ({

destroy: function () { },

activate: function () {

echo("\n\nSCENE 1:\n This room has a door and there ’s a coffer"

+ "in the middle.");

},

onActiveNodeAdd: function (jivesActiveNode) {

if (jivesActiveNode.getModelType (). equals(org.jives.network

.RemoteActiveNode)) {

org.jives.implementors.engine.shell.SceneRenderState

.setupTradeAction(jivesActiveNode , bag0);

org.jives.implementors.engine.shell.SceneRenderState

.setupRemoteDialogue(jivesActiveNode);

}

},

onActiveNodeRemove: function (jivesActiveNode) { }

})

);

scene1 = new org.jives.core.JivesScene("Scene 1", scene1Model);

scene0Model = new org.jives.implementors.engine.shell.SceneRenderState(

new org.jives.sim.SceneModelIntf ({

destroy: function () { },

activate: function () {

echo("\n\nSCENE 0:\n This room has a door and there ’s a guy "

+ "in the southwest corner. "

+ "Use lookAround () to have a further object description .");

},

onActiveNodeAdd: function (jivesActiveNode) {

if (jivesActiveNode.getModelType (). equals(org.jives.network

.RemoteActiveNode)) {

org.jives.implementors.engine.shell.SceneRenderState

.setupTradeAction(jivesActiveNode , bag0);

org.jives.implementors.engine.shell.SceneRenderState

.setupRemoteDialogue(jivesActiveNode);

}

},

onActiveNodeRemove: function (jivesActiveNode) { }

})

);

scene0 = new org.jives.core.JivesScene("Scene 0", scene0Model);

// ------------------------------- Scene 2 -------------------------//

JiveScript Shell Demo 163

// Door to scene 1 ---

scene2PortalTo1 = new org.jives.core.JivesActiveNode(" scene2PortalTo1 ",

new org.jives.implementors.engine.shell.ActiveNodeRenderer(

org.jives.implementors.engine.shell.ActiveNodeRenderer.TYPE_PORTAL ,

"Portal to Scene 1"

)

);

scene2.addActiveNode(scene2PortalTo1);

scene2PortalTo1.bindAction(

new org.jives.actions.PortalAction(

" scene2PortalTo1Action ",

scene2 , scene1

)

);

// Pond ---

scene2Pond = new org.jives.core.JivesActiveNode(" scene2Pond ",

new org.jives.implementors.engine.shell.ActiveNodeRenderer(

org.jives.implementors.engine.shell.ActiveNodeRenderer.TYPE_NPC ,

"A pond"

)

);

scene2.addActiveNode(scene2Pond);

scene2Pond.bindAction(

new org.jives.actions.ActivateNodeWithItemAction(" useFishingRodAction ",

bag0 , scene2Pond ,

new org.jives.sim.JivesActionModelIntf ({

execute: function (jivesEvent) {

action = jivesEvent.getAction ();

if (action.getBag (). getSelectedItems (). size() != 1) {

gui.notification("Select exactly one item from bag to "

+ "proceed.");

} else {

selectedItem = action.getBag (). getSelectedItems ().get (0)

.getId ();

if (selectedItem.equals(" fishingRod ")) {

gui.notification("Fishing!");

} else {

gui.notification(selectedItem + " doesn ’t work here.");

}

}

},

getDescription: function () { return "Fish"; },

render: function (jivesRenderableIntf) { gui.notification(

this.getDescription ()); }

})

)

);

// ------------------------------- Scene 1 ----------------------//

// Door to scene 0 --

scene1PortalTo0 = new org.jives.core.JivesActiveNode(" scene1PortalTo0 ",

new org.jives.implementors.engine.shell.ActiveNodeRenderer(

org.jives.implementors.engine.shell.ActiveNodeRenderer.TYPE_PORTAL ,

"Portal to Scene 0"

)

);

scene1.addActiveNode(scene1PortalTo0);

scene1PortalTo0.bindAction(

new org.jives.actions.PortalAction(

" scene1PortalTo0Action ",

scene1 , scene0

)

);

164 JiveScript Shell Demo

// Door to scene 2 ---

scene1PortalTo2 = new org.jives.core.JivesActiveNode(" scene1PortalTo2 ",

new org.jives.implementors.engine.shell.ActiveNodeRenderer(

org.jives.implementors.engine.shell.ActiveNodeRenderer.TYPE_PORTAL ,

"Portal to Scene 2"

)

);

scene1.addActiveNode(scene1PortalTo2);

scene1PortalTo2.bindAction(

new org.jives.actions.PortalAction(

" scene1PortalTo2Action ",

scene1 , scene2

)

);

// Coffer --

scene1Coffer = new org.jives.core.JivesActiveNode(" scene1Coffer ",

new org.jives.implementors.engine.shell.ActiveNodeRenderer(

org.jives.implementors.engine.shell.ActiveNodeRenderer.TYPE_NPC ,

"Coffer"

)

);

scene1.addActiveNode(scene1Coffer);

scene1Coffer.bindAction(

new org.jives.core.JivesAction(" openCoffer ",

new org.jives.sim.JivesActionModelIntf ({

execute: function (jivesEvent) {

bag0.addBagItem(Jives.get(" woodenStick ",

org.jives.core.JivesBagItem), 1);

bag0.addBagItem(Jives.get(" nylonWire",

org.jives.core.JivesBagItem), 1);

bag0.addBagItem(Jives.get("hook",

org.jives.core.JivesBagItem), 2);

gui.notification("Received a wooden stick , a nylon wire and "

+ "two hooks.");

},

getDescription: function () { return "Open coffer"; },

render: function (jivesRenderableIntf) { gui.notification(

this.getDescription ()); }

})

)

);

// ------------------------------- Scene 0 ------------------------//

// Door to scene 1 --

scene0PortalTo1 = new org.jives.core.JivesActiveNode(" scene0PortalTo1 ",

new org.jives.implementors.engine.shell.ActiveNodeRenderer(

org.jives.implementors.engine.shell.ActiveNodeRenderer.TYPE_PORTAL ,

"Portal to Scene 1"

)

);

scene0.addActiveNode(scene0PortalTo1);

scene0PortalTo1.bindAction(

new org.jives.actions.PortalAction(

" scene0PortalTo1Action ",

scene0 , scene1

)

);

// NPC --

// Dialogue 0

scene0NPC0Dialogue0Root = makeDialogue ({

JiveScript Shell Demo 165

scene0NPC0Dialogue0Root : [

{

question: "Hello",

answer: "Nice to meet you",

actions: [

new org.jives.actions.StartDialogueAction(

" scene0NPC0Dialogue0RootReq0Action ",

" scene0NPC0Dialogue0Intro "

)

]

}

]

}, dialogueModel , gui);

makeDialogue ({

scene0NPC0Dialogue0Intro : [

{

question: "Where am I?",

answer: "You are in Jives basic demo",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "Who are you?",

answer: "I’m a non -playing character. I’m here to demonstrate "

+ "the dialogue system. Ask your questions .",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "Have a nice day",

answer: "Goodbye"

}

]

}, dialogueModel , gui);

makeDialogue ({

scene0NPC0Dialogue0Dialogues : [

{

question: "Can you give me an item to put in inventory ?",

answer: "I can; but for demonstration , the limit has been set "

+ "to two items only.",

actions: [

new org.jives.actions.BagItemAction(

Jives.generateId (), dialogueItem , bag0

),

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "Can I trade items from my inventory ?",

answer: "Yes , we can trade. Activate me using the Trade action.",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

166 JiveScript Shell Demo

},

{

question: "Can I trigger any action during a dialogue?",

answer: "Of course; Here , an action is triggered and then "

+ "the dialogue continues ",

actions: [

new org.jives.core.JivesAction(" inDialogueAction ",

new org.jives.sim.JivesActionModelIntf ({

execute: function (jivesEvent) {

gui.notification("Light blinks and walls tremble "

+ "for a moment ...");

},

getDescription: function () { return "In -dialogue "

+ "action"; },

render: function (jivesRenderableIntf) {

gui.notification(this.getDescription ()); }

})),

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "I’ve understood , thank you!",

answer: "You ’re welcome!",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Intro "

)

]

}

]

}, dialogueModel , gui);

// Bind dialogues to NPC

scene0NPC0 = new org.jives.core.JivesActiveNode(" scene0NPC0 ",

new org.jives.implementors.engine.shell.ActiveNodeRenderer(

org.jives.implementors.engine.shell.ActiveNodeRenderer.TYPE_NPC ,

"Guy in the southwest corner"

)

);

scene0.addActiveNode(scene0NPC0);

scene0NPC0.bindAction(

new org.jives.actions.StartDialogueAction(

" scene0NPC0Dialogue0RootAction ",

scene0NPC0Dialogue0Root.getId()

)

);

// Bind trade to NPC

tradeItem = Jives.get("apple", org.jives.core.JivesBagItem);

catalog = new org.jives.implementors.engine.shell.ShopCatalog ();

catalog.addEntry(tradeItem , -1, dialogueItem , 2);

org.jives.implementors.engine.shell.SceneRenderState.setupTradeAction(

scene0NPC0 , bag0 , catalog);

// ------------------------------- Start ----------------------------- //

// Trigger entrance action on scene 0

entranceAction = new org.jives.actions.PortalAction(" entrancePortal ", null ,

scene0);

entranceAction.execute(null);

// Prevent further scripting

__scripting(false);� �

Appendix C

JiveScript jME Demo

Code Snippet C.1: JiveScript jME Demo� �
// JIVESCRIPT_VERSION = 0.2

reset ();

__uses(org.jives.implementors.engine.jme);

__name("Jives Basic Demo");

// ---------------------------- Setup -------------------------------- //

gui = org.jives.implementors.engine.jme.GUIState.getInstance ();

bagModel = new org.jives.implementors.engine.jme.BagRenderState("bag0");

bagCombiner = new org.jives.implementors.engine.jme.BagCombinerState ();

// Set the model to use for the playing characters

org.jives.implementors.engine.jme.PlayingCharacterRenderer

.setModelPath("Models/Oto/Oto.mesh.xml");

scene0Model = new org.jives.implementors.engine.jme.SceneRenderState(

new org.jives.sim.SceneModelIntf ({

destroy: function () {

},

activate: function () {

},

onActiveNodeAdd: function (jivesActiveNode) {

if (jivesActiveNode.getModelType (). equals(org.jives.network

.RemoteActiveNode)) {

org.jives.implementors.engine.jme.SceneRenderState

.setupRemoteDialogue(jivesActiveNode);

org.jives.implementors.engine.jme.SceneRenderState

.setupTradeAction(jivesActiveNode , bag0);

}

},

onActiveNodeRemove: function (jivesActiveNodeArray) { }

})

);

scene0 = new org.jives.core.JivesScene("Scene 0", scene0Model);

scene1Model = new org.jives.implementors.engine.jme.SceneRenderState(

new org.jives.sim.SceneModelIntf ({

destroy: function () {

},

activate: function () {

},

onActiveNodeAdd: function (jivesActiveNode) {

if (jivesActiveNode.getModelType (). equals(org.jives.network

168 JiveScript jME Demo

.RemoteActiveNode)) {

org.jives.implementors.engine.jme.SceneRenderState

.setupRemoteDialogue(jivesActiveNode);

org.jives.implementors.engine.jme.SceneRenderState

.setupTradeAction(jivesActiveNode , bag0);

}

},

onActiveNodeRemove: function (jivesActiveNodeArray) { }

})

);

scene1 = new org.jives.core.JivesScene("Scene 1", scene1Model);

scene2Model = new org.jives.implementors.engine.jme.SceneRenderState(

new org.jives.sim.SceneModelIntf ({

destroy: function () {

},

activate: function () {

},

onActiveNodeAdd: function (jivesActiveNode) {

if (jivesActiveNode.getModelType (). equals(org.jives.network

.RemoteActiveNode)) {

org.jives.implementors.engine.jme.SceneRenderState

.setupRemoteDialogue(jivesActiveNode);

org.jives.implementors.engine.jme.SceneRenderState

.setupTradeAction(jivesActiveNode , bag0);

}

},

onActiveNodeRemove: function (jivesActiveNodeArray) { }

})

);

scene2 = new org.jives.core.JivesScene("Scene 2", scene2Model);

// Define a listener

inventoryListener = new org.jives.events.JivesEventListenerIntf ({

handleEvent: function (jivesEvent) {

action = jivesEvent.getAction ();

if (action instanceof org.jives.actions.PortalAction) {

if (action.getCurrentSceneId (). equals("Scene 0")

&& action.getNextSceneId (). equals("Scene 1")) {

position = scene1PortalTo0.getProperties ().get("position");

}

if (action.getCurrentSceneId (). equals("Scene 1")

&& action.getNextSceneId (). equals("Scene 0")) {

position = scene0PortalTo1.getProperties ().get("position");

}

if (action.getCurrentSceneId (). equals("Scene 1")

&& action.getNextSceneId (). equals("Scene 2")) {

position = scene2PortalTo1.getProperties ().get("position");

}

if (action.getCurrentSceneId (). equals("Scene 2")

&& action.getNextSceneId (). equals("Scene 1")) {

position = scene1PortalTo2.getProperties ().get("position");

}

org.jives.core.JivesScene.getMyself (). getProperties ()

.put("position", position);

}

if (action instanceof org.jives.actions.BagItemAction) {

if(bag0.getQuantity("coin") < 2) {

gui.notification("[Listener] Received "

+ action.getItem (). getId() + ".");

return false;

} else {

gui.notification("[Listener] You already have enough "

+ "coins.");

return true;

JiveScript jME Demo 169

}

}

if (action.getId (). equals(" openCoffer ")) {

try {

cofferOpened = Jives.get(" cofferOpened ", java.lang.String);

} catch (e) {

cofferOpened = "false";

}

if (cofferOpened == "false") {

Jives.put(" cofferOpened ", "true")

return false;

} else {

gui.notification("[Listener] The coffer is empty.");

return true;

}

}

return false;

},

getId: function () { return " inventoryListener "; }

});

Jives.registerEventListener(inventoryListener);

// Define bag0

bag0 = makeBag ({

bag0 : [

{

id: "apple",

categories: ["received"],

combines: [],

model: new org.jives.implementors.engine.jme.BagItemRenderer(

"Models/apple/apple.mesh.xml", 0.1,

"An apple received trading with that strange guy."

),

commonActionsRenderer: gui

},

{

id: "coin",

categories: ["received"],

combines: [

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f(5, 5, 5), 2

), null

]

],

model: new org.jives.implementors.engine.jme.BagItemRenderer(

"Models/coin/coin.mesh.xml", 0.1,

"A coin received talking to that strange guy."

),

commonActionsRenderer: gui

},

{

id: " woodenStick ",

categories: ["found"],

combines: [

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (-3.42, -3.08, 0.19), 1

), null

],

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (9.5, 7.8, -0.03), 1

170 JiveScript jME Demo

), " stickWithWire "

]

],

model: new org.jives.implementors.engine.jme.BagItemRenderer(

"Models/ woodenStick / woodenStick .mesh.xml", 0.05,

"A strong and flexible wooden stick"

),

commonActionsRenderer: gui

},

{

id: "nylonWire",

categories: ["found"],

combines: [

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (-10.29, 1, -0.91), 1

), " stickWithWire "

],

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (2.54 , 1.25, 6.24), 2

), null

]

],

model: new org.jives.implementors.engine.jme.BagItemRenderer(

"Models/nylonWire /nylonWire .mesh.xml", 0.016 ,

"A piece of nylon wire"

),

commonActionsRenderer: gui

},

{

id: "hook",

categories: ["found"],

combines: [

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (-1.8, -0.5, 1.6), 1

), " fishingRod "

],

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (-0.5, -0.5, 0), 0.5

), null

]

],

model: new org.jives.implementors.engine.jme.BagItemRenderer(

"Models/hook/hook.mesh.xml", 0.05,

"A metal hook"

),

commonActionsRenderer: gui

},

{

id: " stickWithWire ",

categories: ["found"],

combines: [

[

new org.jives.implementors.engine.jme.HotspotRenderer(

com.jme3.math.Vector3f (-0.42, -5.38, -2.59), 1

), " fishingRod "

]

],

model: new org.jives.implementors.engine.jme.BagItemRenderer(

"Models/ stickWithWire / stickWithWire .mesh.xml", 0.05,

"A nylon wire tied to a wooden stick"

),

JiveScript jME Demo 171

commonActionsRenderer: gui

},

{

id: " fishingRod ",

categories: ["fishing"],

combines: [],

model: new org.jives.implementors.engine.jme.BagItemRenderer(

"Models/ fishingRod / fishingRod .mesh.xml", 0.05,

"A hand -crafted fishing rod"

),

commonActionsRenderer: gui

}

]

}, bagModel , bagCombiner);

// Define actions

bag0.bindCommonActions(gui);

dialogueItem = Jives.get("coin", org.jives.core.JivesBagItem);

// ------------------------------- Scene 2 ------------------------------//

// Door to scene 1 --

scene2PortalTo1 = new org.jives.core.JivesActiveNode(" scene2PortalTo1 ",

new org.jives.implementors.engine.jme.PortalRenderer(

"Models/portal/portal.mesh.xml",

new com.jme3.math.Vector3f (-60, 6, -70)

)

);

scene2.addActiveNode(scene2PortalTo1);

scene2PortalTo1.bindAction(

new org.jives.actions.PortalAction(

" scene2PortalTo1Action ",

scene2 , scene1

)

);

// Pond ---

scene2Pond = new org.jives.core.JivesActiveNode(" scene2Pond ",

new org.jives.implementors.engine.jme.WaterNPCRenderer(

"Models/pond/pond.mesh.xml",

new com.jme3.math.Vector3f (-190, 7.4, 10),

1.2

)

);

scene2.addActiveNode(scene2Pond);

scene2Pond.bindAction(

new org.jives.actions.ActivateNodeWithItemAction(" useFishingRodAction ",

bag0 , scene2Pond ,

new org.jives.sim.JivesActionModelIntf ({

execute: function (jivesEvent) {

action = jivesEvent.getAction ();

if (action.getBag (). getSelectedItems (). size() != 1) {

gui.notification("Select exactly one item from bag "

+ "to proceed.");

} else {

selectedItem = action.getBag (). getSelectedItems ().get (0)

.getId ();

if (selectedItem.equals(" fishingRod ")) {

gui.notification("Fishing!");

} else {

gui.notification(selectedItem + " doesn ’t work here.");

}

}

},

getDescription: function () { return "Fish"; },

172 JiveScript jME Demo

render: function (jivesRenderableIntf) { gui.notification(

this.getDescription ()); }

})

)

);

// ------------------------------- Scene 1 ------------------------------//

// Door to scene 0 --

scene1PortalTo0 = new org.jives.core.JivesActiveNode(" scene1PortalTo0 ",

new org.jives.implementors.engine.jme.PortalRenderer(

"Models/portal/portal.mesh.xml",

new com.jme3.math.Vector3f (-170, 6, -90)

)

);

scene1.addActiveNode(scene1PortalTo0);

scene1PortalTo0.bindAction(

new org.jives.actions.PortalAction(

" scene1PortalTo0Action ",

scene1 , scene0

)

);

// Door to scene 2 --

scene1PortalTo2 = new org.jives.core.JivesActiveNode(" scene1PortalTo2 ",

new org.jives.implementors.engine.jme.PortalRenderer(

"Models/portal/portal.mesh.xml",

new com.jme3.math.Vector3f (-160, 6, -50)

)

);

scene1.addActiveNode(scene1PortalTo2);

scene1PortalTo2.bindAction(

new org.jives.actions.PortalAction(

" scene1PortalTo2Action ",

scene1 , scene2

)

);

// Coffer --

scene1Coffer = new org.jives.core.JivesActiveNode(" scene1Coffer ",

new org.jives.implementors.engine.jme.NPCRenderer(

"Models/coffer/coffer.mesh.xml",

new com.jme3.math.Vector3f (-180, 5, 10),

0.2

)

);

scene1.addActiveNode(scene1Coffer);

scene1Coffer.bindAction(

new org.jives.core.JivesAction(" openCoffer ",

new org.jives.sim.JivesActionModelIntf ({

execute: function (jivesEvent) {

bag0.addBagItem(Jives.get(" woodenStick ",

org.jives.core.JivesBagItem), 1);

bag0.addBagItem(Jives.get(" nylonWire",

org.jives.core.JivesBagItem), 1);

bag0.addBagItem(Jives.get("hook",

org.jives.core.JivesBagItem), 2);

gui.notification("Received a wooden stick , a nylon wire and "

+ "two hooks.");

},

getDescription: function () { return "Open coffer"; },

render: function (jivesRenderableIntf) { gui.notification(

this.getDescription ()); }

})

JiveScript jME Demo 173

)

);

// ------------------------------- Scene 0 ------------------------------//

// Door to scene 1 --

scene0PortalTo1 = new org.jives.core.JivesActiveNode(" scene0PortalTo1 ",

new org.jives.implementors.engine.jme.PortalRenderer(

"Models/portal/portal.mesh.xml",

new com.jme3.math.Vector3f (-100, 6, -10)

)

);

scene0.addActiveNode(scene0PortalTo1);

scene0PortalTo1.bindAction(

new org.jives.actions.PortalAction(

" scene0PortalTo1Action ",

scene0 , scene1

)

);

// NPC --

dialogueRenderer = new org.jives.implementors.engine.jme.nifty

.DialogueController ();

// Dialogue 0

scene0NPC0Dialogue0Root = makeDialogue ({

scene0NPC0Dialogue0Root : [

{

question: "Hello",

answer: "Nice to meet you",

actions: [

new org.jives.actions.StartDialogueAction(

" scene0NPC0Dialogue0RootReq0Action ",

" scene0NPC0Dialogue0Intro "

)

]

}

]

}, dialogueRenderer , dialogueRenderer);

makeDialogue ({

scene0NPC0Dialogue0Intro : [

{

question: "Where am I?",

answer: "You are in Jives basic demo",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "Who are you?",

answer: "I’m a non -playing character. I’m here to demonstrate "

+ "the dialogue system. Ask your questions .",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "Have a nice day",

answer: "Goodbye"

}

]

174 JiveScript jME Demo

}, dialogueRenderer , dialogueRenderer);

makeDialogue ({

scene0NPC0Dialogue0Dialogues : [

{

question: "Can you give me an item to put in inventory ?",

answer: "I can; but for demonstration , the limit has been "

+ "set to two items only.",

actions: [

new org.jives.actions.BagItemAction(

Jives.generateId (), dialogueItem , bag0

),

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "Can I trade items from my inventory ?",

answer: "Yes , we can trade. Activate me using the Trade action.",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "Can I trigger any action during a dialogue?",

answer: "Of course; Here , an action is triggered and "

+ "then the dialogue continues",

actions: [

new org.jives.core.JivesAction(" inDialogueAction ",

new org.jives.sim.JivesActionModelIntf ({

execute: function (jivesEvent) {

gui.notification("Light blinks and "

+ "walls tremble "

+ "for a moment ...");

},

getDescription: function () { return "In -dialogue "

+ "action"; },

render: function (jivesRenderableIntf) { gui

.notification(this.getDescription ()); }

})),

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Dialogues "

)

]

},

{

question: "I’ve understood , thank you!",

answer: "You ’re welcome!",

actions: [

new org.jives.actions.StartDialogueAction(

Jives.generateId (), " scene0NPC0Dialogue0Intro "

)

]

}

]

}, dialogueRenderer , dialogueRenderer);

// Bind dialogues to NPC

scene0NPC0 = new org.jives.core.JivesActiveNode(" scene0NPC0 ",

new org.jives.implementors.engine.jme.NPCRenderer(

"Models/Oto/Oto.mesh.xml",

new com.jme3.math.Vector3f (-160, 11.8, 35),

JiveScript jME Demo 175

1

)

);

scene0.addActiveNode(scene0NPC0);

scene0NPC0.bindAction(

new org.jives.actions.StartDialogueAction(

" scene0NPC0Dialogue0RootAction ",

scene0NPC0Dialogue0Root.getId()

)

);

// Bind trade to NPC

tradeItem = Jives.get("apple", org.jives.core.JivesBagItem);

catalog = new org.jives.implementors.engine.jme.ShopCatalog ();

catalog.addEntry(tradeItem , -1, dialogueItem , 2);

org.jives.implementors.engine.jme.SceneRenderState.setupTradeAction(

scene0NPC0 , bag0 , catalog);

// ------------------------------- Start --------------------------------//

// Trigger entrance action on scene 0

entranceAction = new org.jives.actions.PortalAction(" entrancePortal ", null ,

scene0);

entranceAction.execute(null);

// Prevent further scripting

__scripting(false);� �

Appendix D

Server-side Rendezvous directory
active page

Code Snippet D.1: Rendezvous directory active page� �
<?php

define("APPLICATION_DIRECTORY","./apps/");

function validate_ipv6($value) {

// has to contain ":" at least twice like in ::1 or 1234:: abcd

if (substr_count($value , ":") < 2) return false;

// only 1 double colon allowed

if (substr_count($value , "::") > 1) return false;

$groups = explode(’:’, $value);

$num_groups = count($groups);

// 3-8 groups of 0-4 digits (1 group has to be at least 1 digit)

if (($num_groups > 8) || ($num_groups < 3)) return false;

$empty_groups = 0;

foreach ($groups as $group) {

$group = trim($group);

if (!empty($group) && !(is_numeric($group) && ($group == 0))) {

if (! preg_match(’#([a-fA -F0 -9]{0 ,4})#’, $group)) return false;

} else ++ $empty_groups;

}

// the unspecified address :: is not valid in this case

return ($empty_groups < $num_groups) ? true : false;

}

if(empty($_GET[’op’])) {

$_GET[’op’] = "";

}

if($_GET[’op’] == ’add’ || $_GET[’op’] == ’remove ’) {

$match = false;

if(! empty($_GET[’addr’])) {

preg_match(’/[0 -9]{1 ,3}\.[0 -9]{1 ,3}\.[0 -9]{1 ,3}\.[0 -9]{1 ,3}/ ’,

$_GET[’addr’], $match);

}

if(! empty($_GET[’addr2 ’])) {

if(validate_ipv6($_GET[’addr2’])) {

// validating ipv6

echo "IPv6 valid\n";

} else {

echo "IPv6 null\n";

178 Server-side Rendezvous directory active page

}

}

if(! empty($_GET[’port’])) {

preg_match(’/[0 -9]{1 ,5}/’, $_GET[’port’], $match);

}

if(! $match || empty($_GET[’addr’]) || empty($_GET[’port’])

|| empty($_GET[’program ’])) {

// not inserted also ipv6 (addr2) due to the fact that some peers

// may not have a IPv6 address

$_GET[’op’] = "";

}

}

if($_GET[’op’] == ’query ’) {

if(empty($_GET[’program ’])) {

$_GET[’op’] = "";

}

}

switch($_GET[’op’]) {

case ’list’ :

$doc = new DOMDocument ();

$doc ->load(’rendezvous.xml’);

$rendezvous_list = $doc ->getElementsByTagName("rendezvous");

foreach($rendezvous_list as $rendezvous)

{

$program = $rendezvous ->getAttributeNode(’program ’)->value;

$MD5 = $rendezvous ->getAttributeNode(’md5’)->value;

$IPv4S = $rendezvous ->getElementsByTagName("ipv4");

$IPv4 = $IPv4S ->item(0)-> nodeValue;

$IPv6S = $rendezvous ->getElementsByTagName("ipv6");

$IPv6 = $IPv6S ->item(0)-> nodeValue;

$ports = $rendezvous ->getElementsByTagName("port");

$port = $ports ->item(0)-> nodeValue;

$PIDS = $rendezvous ->getElementsByTagName("pid");

$PID = $PIDS ->item(0)-> nodeValue;

$times = $rendezvous ->getElementsByTagName("time");

$time = $times ->item(0)-> nodeValue;

echo "$IPv4 - $IPv6 - $port - $PID - $program - $MD5 - $time\r\n";

echo "
";

}

break;

case ’add’ :

if (strcmp($_GET[’token’],md5($_GET[’pid’].$_GET[’program ’]))==0) {

$doc = new DOMDocument ();

$doc -> preserveWhiteSpace = false;

$doc -> load(’rendezvous.xml’);

$doc -> formatOutput = true;

$root = $doc ->documentElement;

$rendezvous_list = $root ->getElementsByTagName(’rendezvous ’);

$rendezvous = $doc ->createElement("rendezvous");

$root ->appendChild($rendezvous);

$program = $doc ->createAttribute("program");

$rendezvous ->appendChild($program);

Server-side Rendezvous directory active page 179

$programValue = $doc ->createTextNode($_GET[’program ’]);

$program ->appendChild($programValue);

$MD5 = $doc ->createAttribute("md5");

$rendezvous ->appendChild($MD5);

$MD5Value = $doc ->createTextNode($_GET[’md5’]);

$MD5 ->appendChild($MD5Value);

$IPv4 = $doc ->createElement("ipv4");

$text_IPv4 = $doc ->createTextNode($_GET[’addr’]);

$IPv4 ->appendChild($text_IPv4);

$rendezvous ->appendChild($IPv4);

$IPv6 = $doc ->createElement("ipv6");

$text_IPv6 = $doc ->createTextNode($_GET[’addr2 ’]);

$IPv6 ->appendChild($text_IPv6);

$rendezvous ->appendChild($IPv6);

$port = $doc ->createElement("port");

$text_port = $doc ->createTextNode($_GET[’port’]);

$port ->appendChild($text_port);

$rendezvous ->appendChild($port);

$PID = $doc ->createElement("pid");

$text_PID = $doc ->createTextNode($_GET[’pid’]);

$PID ->appendChild($text_PID);

$rendezvous ->appendChild($PID);

$time = $doc ->createElement("time");

$text_time = $doc ->createTextNode($_GET[’time’]);

$time ->appendChild($text_time);

$rendezvous ->appendChild($time);

$doc ->save(’rendezvous.xml’);

echo "Adding completed!";

} else {

echo "Adding failed. Token not corresponding.";

}

break;

case ’remove ’ :

if (strcmp($_GET[’token’],md5($_GET[’pid’].$_GET[’program ’]))==0) {

$doc = new DOMDocument ();

$doc -> preserveWhiteSpace = false;

$doc -> load(’rendezvous.xml’);

$doc -> formatOutput = true;

$root = $doc ->documentElement;

$rendezvous_list = $root ->getElementsByTagName(’rendezvous ’);

$nodesToDelete=array ();

foreach ($rendezvous_list as $rendezvous) {

$program = $rendezvous ->getAttributeNode(’program ’)->value;

$MD5 = $rendezvous ->getAttributeNode(’md5’)->value;

$IPv4=$rendezvous ->getElementsByTagName(’ipv4’)->item(0)-> textContent;

$IPv6=$rendezvous ->getElementsByTagName(’ipv6’)->item(0)-> textContent;

$port=$rendezvous ->getElementsByTagName(’port’)->item(0)-> textContent;

$PID=$rendezvous ->getElementsByTagName(’pid’)->item(0)-> textContent;

$time=$rendezvous ->getElementsByTagName(’time’)->item(0)-> textContent;

if($IPv4 == $_GET[’addr’] && $IPv6 == $_GET[’addr2’] && $port

== $_GET[’port’] && $PID == $_GET[’pid’] && $program

== $_GET[’program ’] && $MD5 == $_GET[’md5’]

180 Server-side Rendezvous directory active page

&& $time != null) {

$nodesToDelete []= $rendezvous;

}

}

foreach ($nodesToDelete as $node) $node ->parentNode ->removeChild($node);

$doc ->save(’rendezvous.xml’);

echo "Removing completed!";

} else {

echo "Removing failed. Token not corresponding.";

}

break;

case ’query ’ :

$doc = new DOMDocument ();

$doc -> preserveWhiteSpace = false;

$doc -> load(’rendezvous.xml’);

$doc -> formatOutput = true;

$root = $doc ->documentElement;

$rendezvous_list = $root ->getElementsByTagName(’rendezvous ’);

$nodesToDelete=array ();

foreach ($rendezvous_list as $rendezvous) {

$program = $rendezvous ->getAttributeNode(’program ’)->value;

$MD5 = $rendezvous ->getAttributeNode(’md5’)->value;

$IPv4=$rendezvous ->getElementsByTagName(’ipv4’)->item(0)-> textContent;

$IPv6=$rendezvous ->getElementsByTagName(’ipv6’)->item(0)-> textContent;

$port=$rendezvous ->getElementsByTagName(’port’)->item(0)-> textContent;

$PID=$rendezvous ->getElementsByTagName(’pid’)->item(0)-> textContent;

$time=$rendezvous ->getElementsByTagName(’time’)->item(0)-> textContent;

if($program != $_GET[’program ’] || $MD5 != $_GET[’md5’]) {

$nodesToRemove []= $rendezvous;

}

}

foreach ($nodesToRemove as $node) $node ->parentNode ->removeChild($node);

$doc ->save(APPLICATION_DIRECTORY.’rendezvous_ ’.$_GET[’program ’].’.xml’);

echo "Query completed!";

break;

case ’queryinactive ’ :

$doc = new DOMDocument ();

$doc -> preserveWhiteSpace = false;

$doc -> load(’rendezvous.xml’);

$doc -> formatOutput = true;

$root = $doc ->documentElement;

$rendezvous_list = $root ->getElementsByTagName(’rendezvous ’);

$nodesToDelete=array ();

$programFilesToKeep=array ();

$filesToDelete=array ();

foreach ($rendezvous_list as $rendezvous) {

$program = $rendezvous ->getAttributeNode(’program ’)->value;

$MD5 = $rendezvous ->getAttributeNode(’md5’)->value;

$IPv4=$rendezvous ->getElementsByTagName(’ipv4’)->item(0)-> textContent;

$IPv6=$rendezvous ->getElementsByTagName(’ipv6’)->item(0)-> textContent;

$port=$rendezvous ->getElementsByTagName(’port’)->item(0)-> textContent;

$PID=$rendezvous ->getElementsByTagName(’pid’)->item(0)-> textContent;

$time=$rendezvous ->getElementsByTagName(’time’)->item(0)-> textContent;

if(($_GET[’time’] - $time) > 60000) {

$nodesToRemove []= $rendezvous;

}

$programFilesToKeep []= $program;

Server-side Rendezvous directory active page 181

}

foreach ($nodesToRemove as $node) $node ->parentNode ->removeChild($node);

$files = scandir(APPLICATION_DIRECTORY);

foreach ($files as $index => $file) {

foreach ($programFilesToKeep as $programFile) {

if(strcmp($file ,’rendezvous_ ’.$programFile.’.xml’)==0) {

unset($files[$index]);

}

}

}

foreach ($files as $file) {

if(is_file(APPLICATION_DIRECTORY.$file)) {

unlink(APPLICATION_DIRECTORY.$file);

}

}

$doc ->save(’rendezvous.xml’);

echo "Query inactive rendezvous completed!";

break;

case ’updatetime ’ :

if (strcmp($_GET[’token’],md5($_GET[’pid’].$_GET[’program ’]))==0) {

$doc = new DOMDocument ();

$doc -> preserveWhiteSpace = false;

$doc -> load(’rendezvous.xml’);

$doc -> formatOutput = true;

$root = $doc ->documentElement;

$rendezvous_list = $root ->getElementsByTagName(’rendezvous ’);

foreach ($rendezvous_list as $rendezvous) {

$program = $rendezvous ->getAttributeNode(’program ’)->value;

$MD5 = $rendezvous ->getAttributeNode(’md5’)->value;

$IPv4=$rendezvous ->getElementsByTagName(’ipv4’)->item(0)-> textContent;

$IPv6=$rendezvous ->getElementsByTagName(’ipv6’)->item(0)-> textContent;

$port=$rendezvous ->getElementsByTagName(’port’)->item(0)-> textContent;

$PID=$rendezvous ->getElementsByTagName(’pid’)->item(0)-> textContent;

$time=$rendezvous ->getElementsByTagName(’time’)->item(0)-> textContent;

if($IPv4 == $_GET[’addr’] && $IPv6 == $_GET[’addr2’]

&& $port == $_GET[’port’] && $PID == $_GET[’pid’]

&& $program == $_GET[’program ’] && $MD5 == $_GET[’md5’]

&& $time != null) {

$rendezvous ->removeChild($rendezvous ->getElementsByTagName(’time’)

->item (0));

$newtime = $doc ->createElement("time");

$text_newtime = $doc ->createTextNode($_GET[’time’]);

$newtime ->appendChild($text_newtime);

$rendezvous ->appendChild($newtime);

$response = "Update process completed! New time: ";

$timetoprint = $_GET[’time’];

echo $response.$timetoprint;

$doc ->save(’rendezvous.xml’);

}

}

} else {

182 Server-side Rendezvous directory active page

$response = "Update process not completed. Token not corresponding.";

echo $response;

}

break;

case ’gettoken ’ :

$token = md5($_GET[’pid’]. $_GET[’program ’]);

echo $token;

break;

default :

?>

<h1>Rendezvous directory </h1 >

<?php

}

?>� �

Bibliography

[1] Awio Web Services LLC. W3Counter - Free Realtime Web Analytics.

http://www.w3counter.com/, Nov. 2011.

[2] Barbieri, T., and Paolini, P. Reconstructing Leonardo’s ideal city - from

handwritten codexes to webtalk-II: a 3D collaborative virtual environment

system. In Proceedings of the 2001 conference on Virtual reality, archeology,

and cultural heritage (New York, NY, USA, 2001), VAST ’01, ACM, pp. 61–

66.

[3] Belfore, II, L. A., Krishnan, P. V., and Baydogan, E. Common

scene definition framework for constructing virtual worlds. In Proceedings of

the 37th conference on Winter simulation (2005), WSC ’05, Winter Simula-

tion Conference, pp. 1985–1992.

[4] Biuk-Aghai, R. P., and Simoff, S. J. An integrative framework for

knowledge extraction in collaborative virtual environments. In Proceedings

of the 2001 International ACM SIGGROUP Conference on Supporting Group

Work (New York, NY, USA, 2001), GROUP ’01, ACM, pp. 61–70.

[5] Blascovich, J. Social influence within immersive virtual environments.

Springer-Verlag New York, Inc., New York, NY, USA, 2002, pp. 127–145.

[6] Blizzard Entertainment. World of Warcraft. http://eu.battle.net/

wow/en/, Sept. 2011.

http://www.w3counter.com/
http://eu.battle.net/wow/en/
http://eu.battle.net/wow/en/

184 BIBLIOGRAPHY

[7] Bosser, A. G. Massively multi-player games: matching game design with

technical design. In Proceedings of the 2004 ACM SIGCHI International

Conference on Advances in computer entertainment technology (New York,

NY, USA, 2004), ACE ’04, ACM, pp. 263–268.

[8] Buyukkaya, E., and Abdallah, M. Efficient triangulation for P2P net-

worked virtual environments. In Proceedings of the 7th ACM SIGCOMM

Workshop on Network and System Support for Games (New York, NY, USA,

2008), NetGames ’08, ACM, pp. 34–39.

[9] Cai, W., Lee, F. B. S., and Chen, L. An auto-adaptive dead reck-

oning algorithm for distributed interactive simulation. In Proceedings of the

thirteenth workshop on Parallel and distributed simulation (Washington, DC,

USA, 1999), PADS ’99, IEEE Computer Society, pp. 82–89.

[10] Chan, L., Yong, J., Bai, J., Leong, B., and Tan, R. Hydra: a

massively-multiplayer peer-to-peer architecture for the game developer. In

Proceedings of the 6th ACM SIGCOMM workshop on Network and system

support for games (New York, NY, USA, 2007), NetGames ’07, ACM, pp. 37–

42.

[11] CodeWeavers. WineHQ - Run Windows applications on Linux, BSD,

Solaris and Mac OS X. http://www.winehq.org/, Sept. 2011.

[12] CPlusPlus.com. cplusplus.com - The C++ Resources Network. http:

//www.cplusplus.com/, Aug. 2011.

[13] Cube3. ActiveWorlds Managed .NET SDK. http://awmanaged.codeplex.

com/, Oct. 2011.

[14] Dachselt, R., Hinz, M., and Meissner, K. Contigra: an xml-based ar-

chitecture for component-oriented 3D applications. In Proceedings of the sev-

http://www.winehq.org/
http://www.cplusplus.com/
http://www.cplusplus.com/
http://awmanaged.codeplex.com/
http://awmanaged.codeplex.com/

BIBLIOGRAPHY 185

enth international conference on 3D Web technology (New York, NY, USA,

2002), Web3D ’02, ACM, pp. 155–163.

[15] Dalpane, A. Netbeans plugin: Mozilla Rhino content assist. http://

plugins.netbeans.org/plugin/39133/, Aug. 2011.

[16] Dalpane, A., and Segalini, S. Java Interactive Virtual Enviroment Sys-

tem - Official Web Site. http://sourceforge.net/projects/jives/, Sept.

2011.

[17] de Oliveira, J. C., Ahmed, D. T., and Shirmohammadi, S. Perfor-

mance enhancement in mmogs using entity types. In Proceedings of the 11th

IEEE International Symposium on Distributed Simulation and Real-Time

Applications (Washington, DC, USA, 2007), DS-RT ’07, IEEE Computer

Society, pp. 25–30.

[18] Fabre, Y. A framework for mobile-agents embodied in X3D networked

virtual environment. In Proceedings of the eighth international conference on

3D Web technology (New York, NY, USA, 2003), Web3D ’03, ACM, pp. 113–

122.

[19] Falko Braeutigam. Ozone - Java OODBMS. http://sourceforge.net/

projects/ozone/, Oct. 2011.

[20] Fan, L., Taylor, H., and Trinder, P. Mediator: a design framework

for P2P MMOGs. In Proceedings of the 6th ACM SIGCOMM workshop

on Network and system support for games (New York, NY, USA, 2007),

NetGames ’07, ACM, pp. 43–48.

[21] Free Software Foundation. Bash - GNU Project. http://www.gnu.

org/software/bash/, Nov. 2011.

[22] Free Software Foundation. Welcome to GPLv3 - GPLv3. http://

gplv3.fsf.org/, Sept. 2011.

http://plugins.netbeans.org/plugin/39133/
http://plugins.netbeans.org/plugin/39133/
http://sourceforge.net/projects/jives/
http://sourceforge.net/projects/ozone/
http://sourceforge.net/projects/ozone/
http://www.gnu.org/software/bash/
http://www.gnu.org/software/bash/
http://gplv3.fsf.org/
http://gplv3.fsf.org/

186 BIBLIOGRAPHY

[23] Garćıa, P., Montalà, O., Pairot, C., Rallo, R., and Skarmeta,

A. G. MOVE: component groupware foundations for collaborative virtual

environments. In Proceedings of the 4th international conference on Collab-

orative virtual environments (New York, NY, USA, 2002), CVE ’02, ACM,

pp. 55–62.

[24] Geeknet Inc. SourceForge.net: Find, Create, and Publish Open Source

software for free. http://sourceforge.net/, Oct. 2011.

[25] Google Inc. Business Photos from Google. http://maps.google.com/

help/maps/businessphotos/index.html, Sept. 2011.

[26] Google Inc. Google Maps with Street View. http://maps.google.it/

intl/com/help/maps/streetview/, Sept. 2011.

[27] Halepovic, E., and Deters, R. The JXTA performance model and

evaluation. Future Gener. Comput. Syst. 21 (March 2005), 377–390.

[28] Hemminger, S. Netem. http://swik.net/netem, Nov. 2011.

[29] Hu, S.-Y., and Chen, J.-F. Von: a scalable peer-to-peer network for

virtual environments. Ieee Network 20, 4 (2006), 22–31.

[30] Ingles, B. The future of Java™ game development. In Proceedings of the 44th

annual Southeast regional conference (New York, NY, USA, 2006), ACM-SE

44, ACM, pp. 698–701.

[31] jMonkeyEngine. jMonkeyEngine 3.0 — Java OpenGL Game Engine.

http://jmonkeyengine.com/, Aug. 2011.

[32] Khronos Group. OpenGL - The Industry Standard for High Performance

Graphics. http://www.opengl.org/, Aug. 2011.

http://sourceforge.net/
http://maps.google.com/help/maps/businessphotos/index.html
http://maps.google.com/help/maps/businessphotos/index.html
http://maps.google.it/intl/com/help/maps/streetview/
http://maps.google.it/intl/com/help/maps/streetview/
http://swik.net/netem
http://jmonkeyengine.com/
http://www.opengl.org/

BIBLIOGRAPHY 187

[33] Kienzle, J., Verbrugge, C., Bettina, K., Denault, A., and

Hawker, M. Mammoth: a massively multiplayer game research frame-

work. In Proceedings of the 4th International Conference on Foundations of

Digital Games (New York, NY, USA, 2009), FDG ’09, ACM, pp. 308–315.

[34] Kirner, T. G., Kirner, C., Kawamoto, A. L. S., Cantão, J., Pinto,

A., and Wazlawick, R. S. Development of a collaborative virtual environ-

ment for educational applications. In Proceedings of the sixth international

conference on 3D Web technology (New York, NY, USA, 2001), Web3D ’01,

ACM, pp. 61–68.

[35] Lee, D., Lim, M., Han, S., and Lee, K. ATLAS: A Scalable Network

Framework for Distributed Virtual Environments. Presence: Teleoper. Vir-

tual Environ. 16 (April 2007), 125–156.

[36] Menchaca, R., Balladares, L., Quintero, R., and Carreto, C.

Software engineering, HCI techniques and Java technologies joined to develop

web-based 3D-collaborative virtual environments. In Proceedings of the 2005

Latin American conference on Human-computer interaction (New York, NY,

USA, 2005), CLIHC ’05, ACM, pp. 40–51.

[37] Michelson, B. M. Event-Driven Architecture Overview. (Originally Pub-

lished February 2, 2006), Feb. 2011.

[38] Microsoft Corporation. Introduction to Direct3D 10 (SIG-

GRAPH 2007). http://www.microsoft.com/download/en/details.aspx?

displaylang=en&id=2858, Aug. 2011.

[39] Morgan, G., Lu, F., and Storey, K. Interest management middleware

for networked games. In Proceedings of the 2005 symposium on Interactive 3D

graphics and games (New York, NY, USA, 2005), I3D ’05, ACM, pp. 57–64.

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=2858
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=2858

188 BIBLIOGRAPHY

[40] Mozilla. Rhino - Javascript for Java. http://www.mozilla.org/rhino/,

Aug. 2011.

[41] Mythic Entertainment. Ultima Online. http://www.uoherald.com/,

Sept. 2011.

[42] NetApplications.com. Net Applications - Bringing Together Applica-

tions, Services and Partners. http://www.netapplications.com/, Nov.

2011.

[43] Nifty GUI. Nifty GUI - a Nifty GUI for your Java OpenGL/LWJGL ap-

plication. http://nifty-gui.lessvoid.com/, Oct. 2011.

[44] Okanda, P., and Blair, G. OpenPING: a reflective middleware for the

construction of adaptive networked game applications. In Proceedings of 3rd

ACM SIGCOMM workshop on Network and system support for games (New

York, NY, USA, 2004), NetGames ’04, ACM, pp. 111–115.

[45] Oliveira, M. Virtual environment system layered object model. In Pro-

ceedings of the 2004 ACM SIGCHI International Conference on Advances in

computer entertainment technology (New York, NY, USA, 2004), ACE ’04,

ACM, pp. 194–202.

[46] Oliveira, M., Crowcroft, J., and Slater, M. An innovative design

approach to build virtual environment systems. In Proceedings of the work-

shop on Virtual environments 2003 (New York, NY, USA, 2003), EGVE ’03,

ACM, pp. 143–151.

[47] OpenWonderland Foundation. Open source 3D virtual collaboration

toolkit: Open Wonderland. http://openwonderland.org/, Aug. 2011.

[48] Oracle. Java SE Desktop Technologies - Java 3D API. http://www.

oracle.com/technetwork/java/javase/tech/index-jsp-138252.html,

Aug. 2011.

http://www.mozilla.org/rhino/
http://www.uoherald.com/
http://www.netapplications.com/
http://nifty-gui.lessvoid.com/
http://openwonderland.org/
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138252.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138252.html

BIBLIOGRAPHY 189

[49] Oracle. Java SE Documentation at a Glance. http://www.oracle.com/

technetwork/java/javase/documentation/index.html, Oct. 2011.

[50] Oracle. Java SE Downloads. http://www.oracle.com/technetwork/

java/javase/downloads/index.html, Oct. 2011.

[51] Oracle. java.com: Java + You. http://java.com/en/, Aug. 2011.

[52] Oracle. javax.script - Java Platform SE 6. http://download.oracle.com/

javase/6/docs/api/javax/script/package-summary.html, Oct. 2011.

[53] Oracle. Jogl - Java.net. http://java.net/projects/jogl/, Aug. 2011.

[54] Oracle. Jxta - Java.net. http://java.net/projects/jxta, Sept. 2011.

[55] Oracle. lwjgl.org - Home of the Lightweight Java Game Library. http:

//lwjgl.org/, Aug. 2011.

[56] Oracle. NetBeans IDE. http://www.netbeans.org/, Nov. 2011.

[57] Pinho, M. S., Bowman, D. A., and Freitas, C. M. Cooperative object

manipulation in immersive virtual environments: framework and techniques.

In Proceedings of the ACM symposium on Virtual reality software and tech-

nology (New York, NY, USA, 2002), VRST ’02, ACM, pp. 171–178.

[58] Quax, P., Monsieurs, P., Jehaes, T., and Lamotte, W. Using au-

tonomous avatars to simulate a large-scale multi-user networked virtual en-

vironment. In Proceedings of the 2004 ACM SIGGRAPH international con-

ference on Virtual Reality continuum and its applications in industry (New

York, NY, USA, 2004), VRCAI ’04, ACM, pp. 88–94.

[59] Roxr Software LTD. Clicky - Web Analytics in Real Time. http:

//www.getclicky.com/, Nov. 2011.

http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/documentation/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://java.com/en/
http://download.oracle.com/javase/6/docs/api/javax/script/package-summary.html
http://download.oracle.com/javase/6/docs/api/javax/script/package-summary.html
http://java.net/projects/jogl/
http://java.net/projects/jxta
http://lwjgl.org/
http://lwjgl.org/
http://www.netbeans.org/
http://www.getclicky.com/
http://www.getclicky.com/

190 BIBLIOGRAPHY

[60] Russell, G., Donaldson, A. F., and Sheppard, P. Tackling online

game development problems with a novel network scripting language. In

Proceedings of the 7th ACM SIGCOMM Workshop on Network and Sys-

tem Support for Games (New York, NY, USA, 2008), NetGames ’08, ACM,

pp. 85–90.

[61] Second Life. Virtual Worlds, Avatars, free 3D chat, online meetings -

Second Life Official Site. http://secondlife.com/, Aug. 2011.

[62] Sony Online Entertainment. EverQuest II Online Game - Official Game

Site. http://everquest2.com/, Sept. 2011.

[63] StatCounter. StatCounter - Free Invisible Web Tracker, Hit Counter and

Web Stats. http://www.statcounter.com/, Nov. 2011.

[64] The Eclipse Foundation. Eclipse - The Eclipse Foundation Open Source

community website. http://www.eclipse.org/, Nov. 2011.

[65] Vani, V., and Mohan, S. Interactive 3D class room: a framework for

Web3D using J3D and JMF. In Proceedings of the 1st Amrita ACM-W

Celebration on Women in Computing in India (New York, NY, USA, 2010),

A2CWiC ’10, ACM, pp. 24:1–24:7.

[66] Verna, D., and Grumbach, A. Can We Define Virtual Reality? The

MRIC Model. In Virtual Worlds (1998), J.-C. Heudin, Ed., vol. 1434 of

Lecture Notes in Computer Science, Springer, pp. 29–41.

[67] Versant Corp. DB4O - Java & .NET Object Database - Open Source

Object Database, Open Source Persistence, OODB. http://www.db4o.com/,

Oct. 2011.

[68] Verstrynge, J. The JXTA Java™ Standard Edition Implementation Pro-

grammer’s Guide, 2011.

http://secondlife.com/
http://everquest2.com/
http://www.statcounter.com/
http://www.eclipse.org/
http://www.db4o.com/

BIBLIOGRAPHY 191

[69] Web3D Consortium. Basic, External Authoring Interface. http://

www.web3d.org/x3d/content/examples/ExternalAuthoringInterface/

index.html, Aug. 2011.

[70] Web3D Consortium. Web3D Consortium - VRML Archives. http://

www.web3d.org/x3d/vrml/, Aug. 2011.

[71] Web3D Consortium. X3D for Developers. http://www.web3d.org/x3d/,

Aug. 2011.

[72] White, W., Koch, C., Gehrke, J., and Demers, A. Better scripts,

better games. Queue 6 (November 2008), 18–25.

[73] Wikimedia Foundation. Wikimedia.org. http://www.wikimedia.org/,

Nov. 2011.

[74] Workflow, T., Coalition, M., and Number, D. Workflow Manage-

ment Coalition White Paper - Events. ReVision (1999).

[75] Zwitserloot, R., and Spilker, R. Project Lombok. http://

projectlombok.org/index.html, Oct. 2011.

http://www.web3d.org/x3d/content/examples/ExternalAuthoringInterface/index.html
http://www.web3d.org/x3d/content/examples/ExternalAuthoringInterface/index.html
http://www.web3d.org/x3d/content/examples/ExternalAuthoringInterface/index.html
http://www.web3d.org/x3d/vrml/
http://www.web3d.org/x3d/vrml/
http://www.web3d.org/x3d/
http://www.wikimedia.org/
http://projectlombok.org/index.html
http://projectlombok.org/index.html

	List of Figures
	List of Code Snippets
	List of Tables
	Abstract
	Estratto
	Introduction
	Development of a Virtual Environment system

	Technological background
	VRML
	X3D
	Java3D
	JOGL
	LWJGL
	OpenGL
	Direct3D
	jMonkeyEngine
	Nifty GUI
	Client/Server
	Peer-To-Peer
	JXTA
	DB4O
	Ozone
	C++
	Java
	Lombok

	Related work
	Motivations and targets
	Design and Implementation
	Design
	Inventory Data Structure
	Event Driven Architecture
	TradeItemsAction Protocol
	Networking Layer Architecture
	JiveScript grammars
	Critical conditions and their resolution

	Implementation
	Universal Platform
	Networking Layer
	Middleware Layer
	Application Layer

	Development and Usage
	Developer's Manual
	Development using JIVES
	Building the JIVES project

	User's Manual
	Shell User's Manual
	jME User's Manual
	Java Applet User's Manual

	Sample JiveScripts

	Performance Metrics and Evaluation
	Performance Metrics
	Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	JIVES Class Diagram
	JiveScript Shell Demo
	JiveScript jME Demo
	Server-side Rendezvous directory active page
	Bibliography

