
Politecnico di Milano
Scuola di Ingegneria dell’Informazione

Corso di laurea specialistica in Ingegneria dell’Automazione

Accurate real-time fluid dynamics using
Smoothed-Particle Hydrodynamics and CUDA

Relatore: Prof. Pier Luca LANZI
Correlatore: Prof. Davide MANCA

Tesi di Laurea di:
Michele PIROVANO Matr. 749324

Anno Accademico 2010-2011

Abstract

This thesis concerns the generation of physically and visually realistic simu-
lations of fluids, to be used in interactive virtual reality environments.

The goals of real-time rendering and physically realistic simulation of
fluids are not easy to achieve alone and providing both at once can be a
great challenge, due to their contrasting nature.

In order to achieve a good trade-off between performance and accuracy,
we extend a Smoothed-Particle Hydrodynamics approach for fluid modeling.
An extensive review of many of the techniques proposed in the years by
several authors is also provided in this thesis, producing a comprehensive
state-of-the-art view of the method.

Our SPH model for the simulation of multiple fluids is implemented both
as a serial program and as a parallel program, achieving real-time frame rates
thanks to the power of modern day’s Graphical Processing Units.

We provide solutions to the classic SPH formulation’s weaknesses by ex-
tending known solutions. In addition, new solutions for tensile instability,
free surface flow spurious surface tension and boundary handling are pro-
posed.

The provided SPH model is validated by comparison with an analytical
physically realistic model on a water jet test case. Our SPH implementation
is fast, versatile and accurate and provides a realistic fluid behavior for many
different situations.

Sommario

Lo scopo di questa tesi è ottenere una simulazione fisicamente e visivamente
realistica di fluidi da usare per ambienti interattivi di realtà virtuale.

Gli obiettivi di visualizzazione in tempo reale e di simulazione realistica
dei fluidi sono difficili da raggiungere e provvedere ad entrambi è una grande
sfida per via della loro natura contrastante.

Per ottenere un buon compromesso tra accuratezza e velocità di calcolo,
estendiamo un approccio basato su Smoothed-Particle Hydrodynamics per
la formulazione del modello dei fluidi. Molte delle tecniche proposte negli
anni da diversi autori sono presentate in questa tesi, proponendo una visione
comprensiva dello stato dell’arte del metodo SPH.

Il nostro modello SPH per la simulazione di fluidi multipli è implemen-
tato attraverso un programma seriale ed uno parallelo, ottenendo grazie alla
potenza delle schede grafiche moderne computazioni in tempo reale.

Presentiamo soluzioni per affrontare le debolezze della formulazione SPH
classica estendendo soluzioni conosciute. Nuove soluzioni per i problemi di
tensile instability, tensione superficiale fittizia e modellazione delle frontiere
del dominio fisico sono proposte.

Il modello SPH è validato comparandone l’accuratezza con un model-
lo analitico e fisicamente realistico attraverso l’analisi di un caso di test
appropriato. La nostra implementazione SPH è veloce, versatile ed accu-
rata e produce un comportamento realistico del fluido per molte situazioni
differenti.

a mia madre e mio padre,
a cui devo tutto ciò che sono

Acknowledgments

This work would not have been the same without any of the people that were
close to me or helped during my work.

Thanks to professor Pier Luca Lanzi for his ever-present support and in-
terest in my work and for the many opportunities he promptly gave me, I
did not know before that professors could be so kind.

Thanks to professor Davide Manca for his help, his questions and his
observations which spurred my interest in this work and thanks to doctor
Roberto Totaro for his rapidity in providing help when needed.

Thanks to D. K. Allister and M. Müller for their kind help in providing
directions for my work.

Thanks to my family, because none of this would have been possible with-
out their support.

Thanks to Federica for the many hours we spend together that always
make me forget all the problems and the work that await.

Thanks to my friends, for they still let me talk endlessly without smacking
me down.

Thanks to Priscilla, Eddie, Frattaglia, Kami and Sandy, because the end-
less hours working alone would not have been bearable without them jumping
on the desk or running around my legs.

3

List of Figures

1.1 Computational Fluid Dynamics approaches 16

2.1 Undamped oscillator . 34
2.2 Undamped oscillator for K=100: analytical solution 35
2.3 Position integration for K=100: undamped oscillator 35
2.4 Position integration for K=10000: undamped oscillator 36
2.5 Position integration for K=100000: undamped oscillator . . . 36
2.6 Velocity integration for K=100: undamped oscillator 37
2.7 Velocity integration for K=10000: undamped oscillator 37
2.8 Velocity integration for K=100000: undamped oscillator . . . 38
2.9 Damped oscillator . 38
2.10 Damped oscillator for K=100: analytical solution 39
2.11 Position integration for K=100: damped oscillator 40
2.12 Position integration for K=10000: damped oscillator 40
2.13 Position integration for K=15000: damped oscillator 41
2.14 Position integration for K=20000: damped oscillator 41
2.15 Gaussian kernel and its derivatives for h=1 46
2.16 Poly6 kernel and its derivatives for h=1 48
2.17 Spiky kernel and its first derivative for h=1 49
2.18 Viscosity kernel and its derivatives for h=1 50

3.1 Double density relaxation kernel functions for h=1 53
3.2 Cause of the spurious surface tension effect 57
3.3 Particles generated around the free surface of the fluid 59
3.4 Density contrast solution: effect on the interface 60
3.5 Boundary methods . 63
3.6 Separation of particle velocities using the improved penalty

approach . 64
3.7 Repositioning of a particle using the improved penalty approach 65
3.8 Energy conservation using the improved penalty approach . . 66
3.9 Comparison of the classic quasi-fluid boundary and the adapted

version . 68

4

4.1 Simulation report example . 75
4.2 Neighboring particles and the cells that are checked for a 2D

simulation . 84
4.3 Quasi-fluid rigid bodies: particle position 87
4.4 Fluid rendered with its surface normals and surface particles

marked as red . 92
4.5 Architecture differences as explained in the NVIDIA CUDA

Programming Guide . 94
4.6 CUDA execution model . 95

5.1 Water jet test case . 105
5.2 Water jet trajectory computed using the AXIM model 106
5.3 Water jet section computed using the AXIM model 106
5.4 Comparison of the density computation approaches for the

water jet test . 107
5.5 Comparison of the trajectories computed with the AXIM and

SPH models . 108
5.6 Error of the trajectory computed with the SPH model com-

pared to the AXIM model . 108
5.7 Comparison of the sections computed with the AXIM and SPH

models . 109
5.8 Error of the section computed with the SPH model compared

to the AXIM model . 109
5.9 Water jet test case simulated with CUDA 110
5.10 Test case for performance comparison 111
5.11 First test: double density relaxation 112
5.12 Second test: different viscosities 113
5.13 Third test: elastic behavior 114
5.14 Fourth test: quasi-fluid adapted boundary 115
5.15 Fifth test: two fluids with different densities 116
5.16 Sixth test: two fluid jets with different densities 117

List of Tables

2.1 Stability comparison: undamped position 42
2.2 Stability comparison: damped velocity 42
2.3 Stability comparison: damped position and velocity 42
2.4 Accuracy comparison . 43

6

List of Symbols

t Time . 15
v Velocity . 15
x Position . 20
a Acceleration . 29
f Force . 22
g Gravity acceleration . 28
A Generic fluid quantity .15
V Total fluid volume . 20
N Total number of particles . 21
navg Average number of particles .79
M Total fluid mass . 23
m Particle mass . 21
ρ Density . 21
ρ0 Rest density . 25
ρ̃ Adapted density . 59
δ Number density .54
P Pressure . 22
kP Pressure stiffness . 25
P near Near pressure . 53
P̃ Adapted pressure . 60
c Speed of sound inside the fluid . 25
µ Viscosity coefficient . 22
Π Artificial viscosity . 27
kel Elastic stiffness . 29
dL0 Spring rest length .29
CV Color value . 61
~n Surface normal . 61
κ Curvature . 61
σ Surface tension coefficient .61
Kcoll Collision stiffness . 66
xR Rigid body position .87
vR Rigid body linear velocity .87

7

θR Rigid body rotation .87
ωR Rigid body angular velocity . 87
MR Rigid body mass . 87
IR Rigid body rotational inertia .87
Fext Total forces acting on the rigid body . 87
Text Total torque acting on the rigid body . 87
η Adimensional XSPH coefficient . 25
∆t Time step . 30
δdirac Dirac’s delta function . 20
W Kernel function . 21
h Smoothing length . 21
r Spatial distance .20
a Particle a - first particle . 21
b Particle b - second particle .21

List of Source Codes

3.1 Simple penalty boundary approach 64
4.1 Particle number derived from number class and dimensions . . 79
4.2 Function for finding the appropriate cell given a particle . . . 85
4.3 Functions for finding the neighbor cells given a particle 86
4.4 Example CUDA kernel launch 95
4.5 Unique thread identifier in CUDA 96
4.6 CUDA fluid box initialization 98
4.7 CUDA square fluid flow initialization 99
4.8 Example complete CUDA kernel launch 100

9

Contents

List of Figures 4

List of Tables 6

List of Symbols 7

List of Source Codes 9

1 Introduction 13
1.1 Visually realistic fluid simulation 14
1.2 Computational Fluid Dynamics 15
1.3 Our approach to fluid modeling 16
1.4 Previous work . 17
1.5 Thesis organization . 19

2 Smoothed-Particle Hydrodynamics 20
2.1 Basic formalism . 20
2.2 Solving Navier-Stokes with SPH 22

2.2.1 Density computation 23
2.2.2 Equation of state for pressure 24
2.2.3 Pressure term . 26
2.2.4 Viscosity term . 27
2.2.5 External forces . 28
2.2.6 Elasticity . 28

2.3 Integration . 29
2.3.1 Algorithms . 30
2.3.2 Undamped harmonic oscillator 33
2.3.3 Damped oscillator . 38
2.3.4 Results . 42
2.3.5 Adaptive timesteps . 43

2.4 Kernels . 44
2.4.1 Kernel functions . 46

10

2.4.2 Smoothing length . 50
2.5 Conclusions . 51

3 Complex SPH model 52
3.1 Tensile instability . 52
3.2 Incompressible SPH . 53

3.2.1 Moving Particle Semi-Implicit 54
3.2.2 Pressure Corrected SPH 55

3.3 Multiple fluids . 56
3.4 Surface tension . 56

3.4.1 Spurious surface tension 57
3.4.2 Air particles generation 58
3.4.3 Multi-fluid adapted SPH 59
3.4.4 Controllable surface tension 60

3.5 Boundary methods . 62
3.5.1 Penalty approach . 63
3.5.2 Direct forcing . 66
3.5.3 Quasi-fluid particles 67
3.5.4 Ghost particles . 68
3.5.5 Rigid bodies . 68

3.6 Conclusions . 69

4 Implementation 70
4.1 Simulator and guided creation 70

4.1.1 Simulator . 70
4.1.2 Simulation choices . 71
4.1.3 Reports . 74
4.1.4 Guided creation: User-imposed parameters 76
4.1.5 Guided creation: System-imposed parameters 78
4.1.6 Guided creation: Extensions 81

4.2 Algorithms . 82
4.2.1 Main algorithm . 82
4.2.2 Neighbor lists . 83
4.2.3 Kernel functions . 85
4.2.4 Rigid bodies . 87

4.3 Rendering . 88
4.3.1 Known methods . 88
4.3.2 Implementation . 90

4.4 Parallelization . 93
4.4.1 CUDA basics . 94
4.4.2 Parallel SPH implementation 97

4.5 Conclusions . 103

5 Experimental results 104
5.1 The water jet test . 104

5.1.1 AXIM fluid jet model 104
5.1.2 SPH simulation of the water jet test 106

5.2 Parallel code performance . 109
5.3 Additional results . 112

5.3.1 Test 1: double density relaxation 112
5.3.2 Test 2: Viscosity . 113
5.3.3 Test 3: Elasticity . 114
5.3.4 Test 4: Quasi-fluid adapted boundary 115
5.3.5 Test 5: Two fluids with different densities 116
5.3.6 Test 6: Two jets with different densities 117

5.4 Conclusions . 118

6 Conclusions and future work 119

Bibliography 121

Chapter 1

Introduction

The computational simulation of fluids is a topic that has been gaining much
interest in the recent years. From blood flowing in vessels and arteries to
waves crashing on coasts, from the swirling of water around the hull of a
ship to flames engulfing a wooden object, computational fluid simulation re-
veals to be useful and has been successfully put to good use for many prob-
lems in classic physics as well as in astrophysics, civil, coastal and aerospace
engineering, weather prediction, surgery and graphics.

The study of fluid dynamics is one of the few branches of science in
which many problems have yet to be addressed and many questions are still
looking for answers. Suffice to say that the main unsolved mystery of applied
mechanics is the problem of fluid turbulence, described as one of the seven
Millennium Prize Problems by the Clay Mathematics Institute. In contrast
to the classic rigid body mechanics or even to the dynamics of non-rigid
solids, the comprehension of the motion of fluids is difficult to grasp, let
alone master.

Another important problem regards speed, because fluids must be sim-
ulated as a continuum and as such the computational power required even
for a simple simulation is way greater than, for example, in the case of rigid
body simulation. However, due to the computational power provided by
recent computers and to their fast-growing nature, what once was almost
impossible to reproduce swiftly can nowadays be simulated even at real-time
speeds with physically realistic results.

This achievement is most important in the graphic field where photo-
realistic fluids are sought after for interactive applications, when up to a few
years ago they were just the prerogative of special effects in movies. Video
games, virtual realities and immersive and interactive applications for many
purposes, such as chemical industrial training, military training or aerospace
pilot training, can benefit from the increased speed and much research has

13

been recently done on these fields.
The pursue of the goal of reproducing visually realistic fluids was once

performed from a graphics point of view by simulating fictitious fluids in order
to achieve the desired visual effect. Nowadays, researchers agree that, in order
to achieve a realistic visual effect, realistic physics must be simulated and as
such the field of graphics fluid visualization has been converging towards
the field of physically realistic fluid simulation, called Computational Fluid
Dynamics (CFD).

1.1 Visually realistic fluid simulation
This thesis aims at simulating fluids in a three-dimensional virtual reality
ambient in a physically and visually realistic way. In particular, the virtual
environment we considered as an example is a life-sized reconstruction of a
chemical plant used as a training ambient for field operators, inside of which
incidents involving chemicals are simulated.

Usually, in this situation as well as in video games and other interactive
applications, the simulation of fluids is usually implemented using simple par-
ticle systems, with no physical meaning underneath the visual effect. Smoke,
water and flame simulation for real-time applications has historically been
done with these particle systems, which are quite simple to implement and
fast. For example, in all the current virtual environment, water is represented
as a flow of particles falling to the ground and splashing on the surface, with-
out any physical parameter involved. The aim of this work is to introduce
realistic fluid animation in such environments and, because of this, a more
physically realistic approach must be taken.

Accordingly, this work had three main objectives.
First, we aim to achieve a physically realistic and accurate simulation. As

the simulator is used in a virtual reality environment focused on accidents
occurring in chemical plants, it is important to pursue realistic behavior of
the fluids in order to match what would happen in reality. This is the main
focus of this work.

Second, real-time frame rates are needed. Due to the nature of interactive
virtual environments, real-time simulation is a necessity, as the users are
expected to react instantaneously to the simulated environment and watch
the consequences of their actions.

Third, a visually realistic simulation is pursued. A perfect simulation
of the fluid would not feel realistic at all if the exterior, i.e. the visual
representation of it, would not live up to the expectations. In order to achieve
a virtual reality effect, appropriate rendering methods should be chosen.

14

1.2 Computational Fluid Dynamics
CFD aims at accurately simulating the motion of fluids so that different tests
can be performed on models and realistic data can be extrapolated from the
simulations.

Since the early 1990s, this branch of physics has been growing and has
seen spawning different methods for the simulation of fluids, based on the
many advancements in physics theory. The most successful methods have
been built upon forms of the Navier-Stokes equations, a mathematical model
describing the motion of fluids created in 1822.

Historically, computational methods based on the Navier-Stokes equa-
tions have been divided in two major forms: Eulerian methods and La-
grangian methods. Eulerian methods are distinguished from the fact that
the discretization of the fluid is done following a fixed spatial grid and all
quantities inside the fluid are considered at fixed locations (see figure 1.1a).
This family of methods has a longer history and has been thoroughly ex-
plored by scholars who have obtained many successes, such as the discovery
of an universally stable method by Stam [1999]. Nonetheless, this method has
its flaws, mainly because of its constrained nature, the difficulty to correctly
conserve mass and the difficulty to simulate interactions with other bodies or
with user input. Using a Lagrangian method, on the other hand, the fluid is
discretized at points inside the fluid that move with it, following the velocity
field by traveling with the flow. The fluid is in this case best described by
moving particles (see figure 1.1b). This approach has several benefits. First
of all, by abandoning the fixed grid, the method is unconstrained and is well
suited for simulating fluids that need to move in free space. In addition, these
methods allow for an easy implementation of interactions with other bodies
and user interaction. Conservation of mass is also quite simple to implement,
in contrast to Eulerian methods. At last, Lagrangian methods can be fast to
compute and this quality has become more and more important. Lagrangian
fluid simulation methods are, however, quite new and still present many open
problems, among them are stability and visualization.

The difference between the two approaches can be viewed in mathematical
terms by considering the rate of change of a quantity A inside the fluid during
its evolution:

DA

Dt
= δA

δt
+ A(v · ∇) (1.1)

In Eulerian methods, the right hand side is used, while in Lagrangian meth-
ods the left hand side is used, which is called material derivative taken along
a path moving with velocity v. This difference simplifies the equations used

15

(a) Eulerian method (b) Lagrangian method

Figure 1.1: Computational Fluid Dynamics approaches

in Lagrangian methods enormously. In this work, the simple derivative of
quantities dA/dt is used instead of the material derivative DA/Dt for sim-
plicity of notation, as usually done in the literature.

1.3 Our approach to fluid modeling
In this work, we chose to implement a fully Lagrangian model so that no
insuperable constraint on the motion of the fluid would have to be imposed
and so that the fluid could interact with other bodies and with the user with
ease.

Among Lagrangian methods we opted for Smoothed-Particle Hydrody-
namics (SPH), that is the most widely used method and on which major
research has been done in the last twenty years. The method was designed
for compressible fluids, but it has been extended to behave correctly even for
incompressible fluids. The method is still quite new and many problems have
yet to be addressed, but its usefulness has been proven in different aspect of
engineering.

Our SPH implementation fulfills all our three objectives: physical ac-
curacy, real-time frame rates and visual realism. Since SPH is based on a
discretization of the Navier-Stokes equations and the accuracy of the simu-
lation is easily scaled by changing the number of particles of the simulation,
our physical realism goal is fulfilled. Successful implementations of SPH for
interactive applications have been reported in the last years and we provide
our parallel version, running on a Graphics Processing Unit (GPU). The in-
crease of speed granted by the parallelization of the SPH algorithms is huge
and it allows us to create a real-time application with more than enough
particles for most cases. At last, due to the popularity of SPH and other
particle methods among graphics experts, many techniques for the visual-

16

ization of clouds of particles have been developed in the recent years, with
different grades of complexity and realistic visual results. We choose to focus
on simple point-based implementations for performance purposes.

As the SPH method is still young, many techniques have been and are still
being proposed as this thesis is written. Due to this, literature is not always
unanimous on the paths to follow in order to achieve a perfect simulation
and thus it can be hard to find a state-of-the-art presentation of the method.
We have thus conducted research on an SPH implementation suited to our
needs, reviewing many of the current techniques proposed in the literature
and adding new contributions to the international research.

1.4 Previous work
Previous work related to the subject of this thesis is here detailed, ranging
from particle systems to SPH formulations and to meshless surface visual-
ization.

The first formulation of particle systems is due to Reeves [1983] who pub-
lished his work on a method for fuzzy objects modeling as an alternative to
the classic vertex-based 3D modeling, in an attempt to improve movie special
effects. Following this work, many people extended the simple formulation to
achieve higher results in the graphics field, such as advanced particle systems
(Lander [1998], Burg [2000], Ilmonen and Kontkanen [2003]), inter-particle
forces (Miller [1989]), the creation of an API for particle systems (McAllis-
ter [2000]) and the goal of million-sized particle systems (Sims [1990], Latta
[2004]). Other researchers applied the formulations to different fields, such as
animal behavior (Reynolds [1987]), plant modeling (Reeves and Blau [1985])
and, shortly after, such as fluid simulation.

Particle systems and fluid rendering have been an important topic in
the graphics field due to their usefulness in the making of movies and video
games, with contributions by many different authors for the rendering of
smoke (Foster and Metaxas [1997], Fedkiw et al. [2001]), flames (Beaudoin
et al. [2001], Wei et al. [2002], Nguyen et al. [2002], James [2003]), clouds
(Horng-Shyang et al. [2004]) and liquids (Bourke [1997], Müller et al. [2003],
Keiser et al. [2005], Müller et al. [2007], Crane et al. [2007]). The famous
marching cube algorithm has also been used as well (Lorensen and Cline
[1987]).

After initial approaches using particle systems for physical modeling (Miller
[1989]), Smoothed-Particle Hydrodynamics was born in the field of astro-
physics as a method for simulating stars formation and matter aggregation,

17

thanks to the efforts of Lucy [1977] and Gingold and Monaghan [1977]. It
was not until the early 1990s, however, that researches started considering
the method for fluid simulation. In this field, the first formulation comes
from Monaghan [1992] where he introduces the method and its applications
on density, pressure and energy equations, as well as a fictitious viscosity
force. Following this article, he later published work on the free surface flow
of fluids (Monaghan et al. [1994]), with test cases that demonstrated how the
method could be useful in the field of fluid simulation. Several publications
followed, using the SPH method for modeling different fluids (Morris et al.
[1997]), analyzing its weaknesses and strengths and addressing problems like
tensile instability (Monaghan [2000]) or increasing efficiency with neighbor
lists (Anderson [1993]).

In 2003, Müller published an article on the utilization of SPH in inter-
active applications (Müller et al. [2003]), which earned the method much
fame due to the possibility to render realistic fluids in real-time. After this
article, SPH had gained increasing interest among worldwide researchers and
comparisons with more classical methods have been made (Agertz [2008]).

Spurious surface tension effects have been studied and controllable mod-
els have been proposed by different authors (Morris [1999], Grenier et al.
[2008], Becker and Teschner [2007], Zhou et al. [2008]), with the first exten-
sive formulation of the problem coming from Hoover [1998]. Solenthaler and
Pajarola [2008] propose a new adapted SPH method that removes spurious
tensions from multi-fluid simulations.

Methods for modeling the boundaries of SPH fluid simulations have been
initially proposed by Monaghan [1992], but many advancements have been
done on the subject with several approaches based on particle-based bound-
aries (Valizadeh et al. [2008], Crespo et al. [2007]), on direct or indirect
forcing (Müller et al. [2004], Yildiz et al. [2009], Becker et al. [2009]) or on
permeable boundaries (Lastiwka et al. [2008]).

In the last years, SPH’s main problems have been addressed and the
method has now evolved into a more mature state. SPH, born as a method
for compressible flows, has been extended in the recent years for incom-
pressible simulations thanks to the efforts of researchers like Khayyer et al.
[2008], Bao et al. [2009], Solenthaler and Pajarola [2008] and Ihmsen et al.
[2010]. Other phenomena have been simulated with SPH approaches, such
as viscoelasticity and plasticity (Clavet et al. [2005]). Melting transitions
have been implemented in the work of Losasso et al. [2006] and Keiser et al.
[2005], while granular materials are simulated in the work of Bell et al. [2005]
and ocean waves in the work of Capone [2009].

Still, many open problems persist and researches keep giving their an-
swers, often different and sometimes incompatible, so that no state of the art

18

SPH can be yet agreed upon. The once standard formulations are now just
a simple base on which authors have built different implementations, often
mixing SPH with other methods, such as in the case of the moving particle
semi-implicit method (Koshizuka and Oka [1996]), moving least-square ex-
tensions (Brownlee et al. [2007]) or level set hybrids (Chentanezg and Müller
[2010]).

1.5 Thesis organization
This thesis is organized as follows.

In chapter 2, the classic SPH model is presented and its equations are
explained. Different variations on the formalism of SPH are presented, the
fluid dynamics equations are solved, integration algorithms are explained and
compared and suitable kernel functions are detailed.

In chapter 3, we present a more complex SPH model, with extensions that
aim to solve the shortcomings of the classic approach. The tensile instability,
spurious surface tension and fluid compressibility problems are addressed and
our solutions are proposed. Surface tension models and boundary methods
are explained in detail. A rigid body coupling method is proposed.

In chapter 4, the implementation of the SPH model is addressed, detailing
our sequential CPU code and parallel GPU code, the latter providing real-
time frame rates. Algorithms for peculiar necessities are explained in detail
and our simulator, able to sustain multiple different fluids, is presented. The
rendering phase of the simulation is also addressed.

In chapter 5, the result we have obtained by making use of the implemented
SPH model are presented. A test case involving a water jet is detailed and our
SPH model is validated against a known analytical model. The performance
of the parallel code is compared to the serial implementation. Different tests
performed by making use of our SPH model are discussed.

In chapter 6, conclusions on the usefulness and versatility of our SPH model
are presented and future contributions for research in this area of knowledge
are proposed.

19

Chapter 2

Smoothed-Particle
Hydrodynamics

Smoothed-Particle Hydrodynamics (SPH) is a meshless Lagrangian method
for fluid simulation and its initial formulation for fluid dynamics is due to
Monaghan [1992]. SPH is based on the discretization of the characteristics
of the fluid as a continuum in discrete points, called particles, that represent
infinitesimal volumes of the fluid and move according to the flow’s velocity
field. Particles carry individual properties along the fluid that are smoothed
in the volume around the single particles, hence the name of the method.

This chapter illustrates the mathematical SPHmodel and briefly overviews
the state-of-art of the classic model.

2.1 Basic formalism
Given a fluid, the value of a property A in a point xa. A(xa), is written
as convolution of the quantity itself A(x), for all points x in the volume V ,
and Dirac’s delta function δdirac(r) evaluated on the distance r = |xa − x|
between the two points. The function δdirac(r) is zero everywhere except in
the origin, where it is equal to one.

Thus, A(xa) can be expanded as:

A(xa) =
∫
V
A(x)δdirac(r)dx (2.1)

This equation and the resulting spatial derivatives of A(xa) are computation-
ally expansive and as such they must be approximated.

To compute equation 2.1, two approximations are therefore introduced.
First, the function δdirac(r) is approximated by a kernel function W (r, h),

20

where h is called limited support and that means that W (r, h) evaluates to
zero when the distance r between the two points is greater than or equal to
h:

A(xa) ≈
∫
V
A(x)W (r, h)dx (2.2)

The kernel function W (r, h) converges to the function δdirac(r) when h tends
to zero.

Second, the volume V in equation 2.2 is discretized into a limited num-
ber N of particles, where each particle b represents a small volume Vb of
fluid, so that the integral can be approximated as a summation on all parti-
cles. Therefore, the quantity A(xa) in a point in space xa is evaluated as an
interpolation on all particles:

A(xa) ≈
∑N
b A(xb)VbW (rab, h)

≈ ∑N
b AbVbWab

(2.3)

Where rab represents |xa − xb|, Ab represents A(xb) and Wab represents
W (rab, h).

The error in approximating equation 2.1 with 2.3 is O(h2) and it depends
on the particle disposition inside the fluid, with more orderly dispositions
being more accurate, as quoted from Monaghan [1992]. The approximation
in equation 2.3 provides two important benefits. First, since A(xa) depends
only on the particles in its proximity a huge speed up can be achieved by
considering in the summation only those particles whose distance from the
point xa is less than the smoothing length h. Second, the spatial derivatives
of A(xa) only require the derivation of the kernel function W (r, h), which is
analytically known. In fact, for the first spatial derivative, the gradient, we
obtain the following equation by considering Ab and Vb constant with respect
to space:

∇Aa ≈
∑
b

Ab
mb

ρb
∇W (rab, h) =

∑
b

Ab
mb

ρb
∇Wab (2.4)

Where Aa represents A(xa) and Vb has been written as mb

ρb
, with mb being

the mass of a particle and ρb its density. We refer to equation 2.4 as the base
gradient formulation. Similarly, the second spatial derivative, the Laplacian,
has the following form:

∇2Aa ≈
∑
b

Ab
mb

ρb
∇2W (rab, h) =

∑
b

Ab
mb

ρb
∇2Wab (2.5)

Equation 2.4 and 2.5 introduce accuracy errors that can be avoided by rewrit-
ing the same equations with the density ρ placed inside the differential oper-

21

ators. This has the effect of achieving a higher-order approximation (Mon-
aghan [1992]), this effect is referred as the Second Golden Rule of SPH.

In order to limit the aforementioned accuracy errors, new formulations
for the computation of spatial derivatives of A(xa) have been proposed. A
first different formulation for equation 2.4 can be achieved by rewriting ∇Aa
as:

∇Aa ≈
1
ρa

∑
b

(Ab − Aa)mb∇Wab (2.6)

Where ρa is the density of particle a. We refer to this equation as the
difference gradient. Apart from reducing the accuracy error of the gradient
computation (Monaghan [1992]), equation 2.6 has an additional advantage
over the base gradient of equation 2.4, if A is constant, the gradient will be
zero everywhere, which is not true for the base gradient form. This form
tends to behave incorrectly, however, if the number of particles N is low.

Another formulation can be obtained by rewriting ∇Aa as:

∇Aa ≈ ρa
∑
b

(Ab
ρ2
b

+ Aa
ρ2
a

)mb∇Wab (2.7)

We refer to this equation as the summation gradient. This formulation still
has the limitation of not imposing a zero gradient for constant A, but it has
a higher accuracy than the original formulation 2.4 (Monaghan [1992]) while
maintaining a good behavior for a small number of particles.

Both equation 2.6 and 2.7 work on the assumption that the density is
not constant inside the fluid. This holds if the fluid that is simulated is not
completely incompressible, which is the usual case for classic SPH.

2.2 Solving Navier-Stokes with SPH
A SPH approach makes it easy to solve the Navier-Stokes equations of fluid
motion in order to provide realistic physics simulations.

The first equation that is needed is the momentum equation, which is
basically Newton’s second law for fluids:

ρ
dv

dt
= −∇P + µ∇2v + f ext = fpress + f viscos + f ext (2.8)

Where P is the fluid’s pressure and µ is its viscosity coefficient. This equation
ties the rate of change of the fluid velocity dv

dt
to all the forces that act on it.

These forces can be divided in pressure forces fpress, viscosity forces f viscos
and external forces f ext. More accurately, the forces should be called force

22

densities, due to their dimension being N
m3 , but we refer to them simply as

forces as usually done in the literature.
The second equation that will be used is the continuity equation and it

imposes the conservation of mass in the fluid.

dρ

dt
+ ρ(∇ · v) = 0 (2.9)

By solving equation 2.8 and 2.9 at each time step for every particle using
the SPH formulations of section 2.1, the accelerations of all particles are
computed and the simulation can be evolved by integrating the resulting
momentum equation and the simple relationship between each particle’s ve-
locity v and position x, usually by the application of a simple forward Euler
algorithm. The quantities needed for the simulation must be computed in
sequence, due to their interdependence. First, the density ρ of each parti-
cle must be computed, then its pressure P , then the pressure, viscosity and
external forces can be computed.

2.2.1 Density computation
It has already been mentioned in section 2.1 how any quantity in a point
inside the fluid, especially at particle positions, can be interpolated through
the use of SPH. The same approximation can be used to compute the first
needed quantity, the density ρa of each particle a at position xa.

Historically, density has been computed simply by applying the SPH in-
terpolant 2.3 for each particle.

ρa = ∑N
b ρbVbWab

= ∑N
b mbWab

(2.10)

Where Vb is mb/ρb.
This approach renders the continuity equation 2.9 unnecessary because,

as a consequence: ∫
V
ρ(x)dx =

∑
b

mb = M (2.11)

Where M is the total mass of the fluid, thus achieving mass conservation.
This simple expedient puts the SPH methods above many Eulerian ap-
proaches in terms of mass conservation, as it is often hard to maintain it
for low resolutions in a fixed grid. We consider the mass of a single particle
mb to be constant for each particle in the same fluid.

Equation 2.10 highlights however one of SPH main problems: the incor-
rect approximation and thus inaccurate interpolation that appears at the

23

fluid interface. This effect is called spurious surface tension as it applies a
fictitious force that tends to minimize the curvature of the whole fluid. Many
authors do not address this problem as they pursue a semi-realistic reproduc-
tion of liquids, mainly water, which is known to have surface tension effects,
and thus are content with the effect. In contrast, as the aim of this work is
to have a more realistic and controllable simulation, a surface tension which
is only the effect of an incorrect formulation must be eliminated. A detailed
discussion of this problem and solutions are written in section 3.4.1.

Another approach for density computation that extends the classic SPH
formulation in an attempt to solve the spurious surface tension problem is
based on the analysis of the continuity equation (2.9). By applying the
difference form of the gradient (equation 2.6) to the continuity equation (2.9),
a new equation can be derived:

dρ

dt
= −ρ(∇ · v)

dρa
dt

=
∑
b

mb(va − vb)∇Wab (2.12)

This equation is usually preferred to the density summation equation (2.10)
both because it is thought to eliminate the particle deficiency at the interface
and both because the fluid is more easily initialized, since all particles are
created with their density equal to the nominal rest density of the fluid ρ0.

However, Hoover [1998] has observed that this method is not capable
of completely eliminating the spurious surface tension effect. In addition,
although the initialization phase is more stable and easier to implement, the
interactions between particles can be physically inconsistent as density is
computed only when their velocities diverge. Thus, if a fluid is initialized
incorrectly and left to evolve, the particles will not tend to change their initial
situation, erroneously maintaining their initial density.

2.2.2 Equation of state for pressure
After computing the density of each particle, the corresponding pressure
can be obtained from it. In order to do so, authors have been employing
equations of state which are used to bind the properties of the fluid together,
specifically to compute pressure as a function of density. As the equation
of state is arbitrary, different choices can be made according to simulation
needs.

For example, a first equation of state can be derived from the ideal gas
state equation, which provides correct behavior for gases and compressible

24

fluids, by assuming a constant temperature:

Pa = kP ρa (2.13)

Where ρa is the particle’s density and Pa its pressure. kP is the pressure
stiffness coefficient and has the dimension [Nm

kg
] or, equally, [m2

s2].
A modification of equation 2.13 for liquids has been presented by Desbrun

and Cani [1996] in order for particles to reach a constant non zero density ρ0
when the fluid is at rest:

Pa = kP (ρa − ρ0) (2.14)

The coefficient kP can also be viewed as the squared speed of sound in the
fluid c2. For example, water has a speed of sound of around c = 1500 m/s,
which makes it a nearly-incompressible fluid. Since the coefficient kP for
water simulations is therefore in the order of millions, this can lead to in-
stabilities during the integration phase. Accordingly, several authors have
been obliged to use speed of sounds of orders of magnitudes lower than re-
ality. This fact has always been one of the most discussed problems of SPH
implementations that aim to achieve realism.

In order to simulate nearly-incompressible fluids, the use of Tait’s equa-
tion 2.15 has been suggested as an alternative equation of state by Monaghan
et al. [1994]:

Pa = ρ0kP
7 ((ρa

ρ0
)7 − 1) (2.15)

This equation allows for a greater degree of incompressibility as the pressure
is more sensitive to density fluctuation. Integration algorithms do not suffer
much from the stiffness of the equation and near-incompressibility can be
reached even with a lower speed of sound.

As is further discussed in section 3.2, in order to achieve incompressibil-
ity for fluids with high speeds of sound different equations must be used,
dropping the computation of pressure values with an equation of state.

As suggested by Monaghan et al. [1994], for free surface flows or for fierce
impacts a numerical correction on particle velocities should be implemented:

∆xa = ∆t
∑
b

η(vb − va)
ρb − ρa

mb∇Wab (2.16)

Where η is an adimensional coefficient chosen in the range [0, 1] and ∆t is
the simulation time step.

This correction is applied only to the final positions of the particles and it
has the effect of averaging their velocities according to surrounding particles.

25

As such, the resulting disposition of particles is smoother and calculations
become more accurate because of the orderly disposition.

2.2.3 Pressure term
The SPH approach is applied to the pressure term, obtaining an equation for
the computation of pressure forces:

fpressa = −∇Pa = −
∑
b

Pb
mb

ρb
∇Wab (2.17)

This term makes sure that the density fluctuations of the particles are small
by adding repulsive and attractive forces between neighboring particles based
on their distance and the difference between their densities. Therefore, if a
particle’s density ρa is lower than the designated rest density ρ0, the particle
will tend to attract the surrounding particles in an attempt to rise its density.
Vice versa, if a particle’s density is higher than the rest density, it will repulse
the surrounding particles.

The standard formulation in equation 2.17 is problematic as if the pres-
sure is constant in the whole volume of the fluid the gradient will be non
zero. We apply the Second Golden Rule of SPH for spatial derivatives (see
section 2.1) and use the summation form (equation 2.7) that is chosen over
the difference form (equation 2.6) as it behaves better for a small number of
particles.

fpressa = −ρa
∑
b

(Pb
ρ2
b

+ Pa
ρ2
a

)mb∇Wab (2.18)

In addition, as proposed by Müller et al. [2003], another less computation-
ally expansive formulation can be used by making the assumption that the
density is roughly constant thoroughly the fluid (as in the case of a weakly
compressible or incompressible fluid) and by using the mean of the two pres-
sures:

fpressa = −
∑
b

(Pb + Pa
2ρb

)mb∇Wab (2.19)

As a consequence of applying the SPH formulation to pressure equations,
a numerical artifact appears that is called in the literature tensile instability.
This effect can be observed as particles tend to form clusters by strongly
pulling a few close particles in order to reach their rest density instead of
pulling more particles with less force, causing numerical instabilities. This
problem has been addressed by several authors and different solutions can be
found in literature. This work provides a solution to this problem in section
3.1.

26

2.2.4 Viscosity term

The fluid’s viscosity term in the momentum equation (2.8) can be viewed
as a dissipative term, smoothing the fluid’s velocity field. This term has
been formulated in the literature using the SPH approach in different ways,
according to the degree of realism that was meant to be achieved.

In Monaghan’s first formulation, the viscosity forces are created by means
of an artificial viscosity term Πab added to the pressure computations (Mon-
aghan [1992]). By extending equation 2.18, the following equation can be
created:

fpressa + f visca = ρa
∑
b

(Pb
ρ2
b

+ Pa
ρ2
a

+ Πab)mb∇Wab (2.20)

Where the artificial viscosity coefficient Πab is given by:

Πab = −α(c̄ab)µab + βµ2
ab

ρ̄ab
(2.21)

Where the constants α and β are respectively 1 and 2 and ε is a small
constant used to prevent singularities, usually chosen as 0.01. c̄ab and ρ̄ab are
the mean sound of speed and density of particles a and b. This computation
of equation 2.21 is performed only if (vb − va) · (xb − xa) < 0, in order to
make sure that the viscosity forces are dissipative. The viscosity coefficient
µab is given by:

µab = h(vb − va) · (xb − xa)
(xb − xa)2 + ε2 (2.22)

Although controllable and providing conservation of angular momentum, this
formulation is still considered artificial and thus more realistic formulations
are preferred.

Morris et al. [1997] propose a new viscosity equation that is more realistic,
based on a hybrid SPH and finite difference approximation:

f visca =
∑
b

mb(µa + µb)
ρb

(vb − va)∇Wab (2.23)

As observed by Morris, this equation is best suited for low-speed flows.

Another interpretation is brought to us by Müller et al. [2003] by applying
the SPH formulation to the laplacian of the velocity field in the momentum

27

equation 2.8.

f visca = µa∇2v = µa
∑
b

(vb − va)
mb

ρb
∇2Wab (2.24)

Although good enough for Müller’s objectives, the Laplacian form is very
sensitive to particle disorder and as such the accuracy can be lower than
that of Morris’ equation 2.23. However, the computation performance of
this equation is higher as the Laplacian of the kernel function is usually
simpler to compute than its gradient.

As suggested by several authors, the pressure and viscosity computations
can be joined into a single step, since they do not depend on each other, thus
allowing the performance to be improved.

2.2.5 External forces

External forces acting on the fluid do not need particular formulations as
they can be added to particles as an additive term without trouble. This
quality of the SPH approach allows gravity and other constant forces as well
as different imposed forces such as wind or user-controlled interactions to be
implemented with ease as follows:

f exta = f grav + f other(t) = ρag + f other(t) (2.25)

Where g is the constant gravity acceleration. User-controlled forces can thus
be easily added as force fields, so that each particle can obtain the external
force acting on it by checking its position.

2.2.6 Elasticity

Additional forces can be easily added to the classic Navier-Stokes momentum
equation (2.8), such as elasticity forces. In order to achieve many different
effects and to have a suitable simulation for any material, in the work related
to this thesis the viscoelastic behavior as observed in some denser fluids such
as blood or polymers has been implemented. The implementation is based on
the work of Clavet et al. [2005]. Imaginary springs between each pair of close
particles are first created when the fluid is initialized, setting the rest length
dL0 of the springs as their initial distance. At each time step, the elastic
forces between all particles are then computed as a function of their distance
rab = xa − xb, the fluid’s elastic stiffness kel and the individual spring’s rest
length dL0 as in equation 2.26. Only half of the force is computed for particle

28

a as the other half is added to the other particle b.

f elastica = −1
2(rab − dL0)kel (2.26)

2.3 Integration
Since the simulation must be executed at discrete time steps, an integration
algorithm is needed. The equations we need to integrate take the following
form thanks to the SPH approach explained so far:{

ρdv
dt

= f(x)press + f(x, v)visc + f external
dx
dt

= v
(2.27)

Or, by explicating the acceleration a(x, v), which is therefore known at each
time step: {

ρdv
dt

= a(x, v)
dx
dt

= v
(2.28)

The aim is to solve the equations in 2.28 by advancing the velocity and
position of every particle at each time step, taking into account the compu-
tation cost of the chosen integration algorithm and its stability.

In the following comparison, we refer to some of the algorithms as sym-
plectic. This term comes from molecular dynamics and it means that the
integration algorithm conserves the energy of the system exactly. This prop-
erty is very useful for the problem at hand because we do not want the energy
of the fluid to increase or decrease due to numerical inconsistencies.

As noted by previous authors, the focus will be on lower order integration
algorithms, with an approach similar to molecular dynamics, since the com-
putational cost of evaluating higher order algorithms for many particles can
become a serious bottleneck for simulation performance. Because of this, the
widely used fourth order Runge-Kutta algorithm as well as Gears method or
other higher order algorithm have not been considered. The choice to not
use the fourth order Runge-Kutta algorithm could be regarded as a strange
one, since it is still quite performant, however the method does not have a
symplectic behavior and can thus be safely ignored.

In literature concerning SPH, a consensus on the integration algorithm best
suited for the computation has not been reached and, in fact, several authors
just use a simple forward Euler algorithm with small time steps. We are
instead compelled to pursue interactivity and, as such, the time steps we work
with must be larger. On the other hand, the fluids we are likely to simulate,

29

water in primis, have high speeds of sound and rest densities and this, by
using an equation of state, results in an incredibly rigid behavior of the fluid
which in turn requires smaller timesteps. A trade-off between performance
and stability must thus be found. In order to address this problem, we have
produced a comparison between the algorithms used in different publications
and we have chosen the best suited for our needs. Since the law for position
and velocity advancement, using the Navier-Stokes equations, can be viewed
as a damped oscillator, comparisons are made by applying the algorithms to
the integration of the motion of a suitable example system (see sections 2.3.2
and 2.3.3).

2.3.1 Algorithms
We first introduce all the algorithms that have been considered and detail
their proprieties. In the following equations, we refer to x, v and a as the
position, velocity and acceleration of a single particle during the integration
from time t to time t + ∆t, referred to as t + 1 for simplicity’s sake. Accel-
eration is computed through the SPH approach described in section 2.2 as
a function f(x, v) of velocity and speed. The equations are solved for each
particle in the fluid at each time step.

Forward Euler

The forward Euler algorithm is the simplest integration algorithm that can be
considered. It has first order accuracy and an extremely low computational
cost and as such it is the most performant algorithm. The algorithm takes
the following form:

at+1 = f(xt, vt)
xt+1 = xt + vt∆t
vt+1 = vt + at+1∆t

(2.29)

Semi-implicit Euler

By simply swapping the velocity update with the position update a new
method can be obtained that, although so similar to the forward Euler
method, gains two important benefits: this method is symplectic and it
provides a much greater stability than equation 2.29.

at+1 = f(xt, vt)
vt+1 = vt + at+1∆t
xt+1 = xt + vt+1∆t

(2.30)

30

Verlet

In molecular dynamics, the Verlet algorithm and its variations are often
used due to their symplectic nature and their great stability. The particular
form of the position update comes from the third order Taylor expansion of
positions at times t+ ∆t and t−∆t:

xt+1 = xt + vtdt+ 1
2atdt

2 + 1
6btdt

3 +O(dt4)

xt−1 = xt − vtdt+ 1
2atdt

2 − 1
6btdt

3 +O(dt4)

Where bt is the jerk, the third time derivative of position. By adding the two
expressions together, a new integration algorithm can be obtained:

at+1 = f(xt, vt)
xt+1 = 2xt − xt−1 + at∆t2
vt+1 = (xt+1 − xt−1)/(2∆t)

(2.31)

Where the velocity is actually computed with a delay. The algorithm has
a global error of O(∆t2) both for position and velocity and a local error of
O(∆t4) for position and of O(∆t2) for velocity. It is thus regarded as a second
order accurate algorithm.

The drawbacks of the method lie in the need for the positions of the last
two steps for the computation of the new position, which also means that
the algorithm is not self-starting, and in the delay of the velocity.

Velocity Verlet

By modifying the Verlet method we can remove the method’s first weak-
ness, its not self-starting behavior, incorporating the velocity update in the
computations. Accuracy remains of the second order for both position and
velocity.

xt+1 = xt + vt∆t+ at

2 ∆t2
at+1 = f(xt+1, vt)
vt+1 = vt + at+1+at−1

2 ∆t
(2.32)

Corrected Velocity Verlet

A modification of the Velocity Verlet reveals to be necessary for damped
oscillation and uses a predictor-corrector approach. This adds a step and
thus decreases performance, but the increase in stability that can be gained

31

makes up for it.
vt+1 = vt + at

2 ∆t
xt+1 = xt + vt+1∆t
at+1 = f(xt+1, vt+1)∆t
vt+1 = vt + at+1

2 ∆t

(2.33)

Leapfrog

Leapfrog is an integration algorithm that is very similar to the Velocity Verlet
algorithms, but updates velocity at half timesteps. The name comes from the
fact that positions and velocities are computed at interleaved time points.
The method is often used in SPH implementations due to its good accuracy
and performance. The accuracy for position is the same as for the Verlet
algorithms, but it is O(∆t3) for velocity.

xt+1 = xt + vt−1/2∆t
at+1 = f(xt+1, vt+1)
vt+1/2 = vt−1/2 + at+1

(2.34)

The velocity at the current time can be computed, once again with a delay,
as:

vt = vt−1/2 + vt+1/2

2

Clavet

The method explained in Clavet’s paper (Clavet et al. [2005]) has much in
common with the Leapfrog method, as written by the author himself. This
method is however more costly, depending on the number of different forces
acting on the fluid, but it provides greater stability due to a prediction-
relaxation approach, close in concept to an implicit algorithm. A quality
of this method is that it can easily support time-varying timesteps. In the
algorithm, the steps are iterated for N forces, so that n = 1, 2, . . . , N . We
define x∗ and a∗ as the intermediate position and acceleration during the
computations.

x0
∗ = xt + vt−1/2∆t
an∗ = f(xn∗ , vt−1/2)
xn+1
∗ = xn∗ + an∗∆t2
xt+1 = xN∗
vt+1/2 = (xt+1 − xt)/∆t

(2.35)

32

Beeman

As presented by Capone [2009], Beeman’s algorithm provides fourth order
accuracy for position and third order accuracy for velocity.

xt+1 = xt + vt∆t+ (2
3at −

1
6at−1)∆t2

at+1 = f(xt+1, vt)
vt+1 = vt + (1

3at+1 + 5
6at + 1

6at−1)∆t
(2.36)

Velocity Corrected Beeman

A new formulation of Beeman’s algorithm can be found, again coming from
Capone [2009], which assures fourth order accurate velocity. A velocity
prediction-correction step is added. We refer to this version as the Veloc-
ity Corrected (VC) Beeman algorithm.

xt+1 = xt + vt∆t+ (2
3at −

1
6at−1)∆t2

vt+1 = vt + (3
2at −

1
2at−1)∆t

at+1 = f(xt+1, vt+1)
vt+1 = vt + (1

3at+1 + 5
6at −

1
6at−1)∆t

(2.37)

Position Corrected Beeman

Capone also introduces a new version of the algorithm, with a prediction-
correction approach for both velocity and position. We refer to this version
as the Position Corrected (PC) Beeman algorithm. The accuracy is again of
the fourth order for both position and velocity.

xt+1 = xt + vtdt+ (2
3at −

1
6at−1)∆t2

vt+1 = vt + (3
2at −

1
2at−1)∆t

at+1 = f(xt+1, vt+1)
xt+1 = xt + vt∆t+ (1

6at+1 − 1
3at)∆t

2

vt+1 = vt + (5
12at+1 + 8

12at −
1
12at−1)∆t

(2.38)

2.3.2 Undamped harmonic oscillator
Our objective is to compare the algorithms’ stability and their symplectic
behavior, as our focus is both on the conservation of energy inside the system
and on a stable simulation. Clavet’s algorithm 2.35 is not considered in the
comparison and instead is assumed to behave like the Leapfrog algorithm
2.34, as mentioned by the author (Clavet et al. [2005]).

As a first test, the algorithms have been compared by integrating the
motion of a well-known phenomena, the undamped harmonic oscillator. The

33

motion can be viewed as the movement of a point of mass M connected with
a spring with stiffness K and rest length L0 to a fixed ground. See figure 2.1.

Figure 2.1: Undamped oscillator

The position is initialized at point x0 and the point of mass is known,
in ideal conditions, to oscillate indefinitely with a frequency ω =

√
K
M
. The

acceleration of this motion can be found as being a(t) = −ω2x(t) and the
analytical expressions of the position and the velocity relative to time are
known and are as follows.

x(t) = A cos(ωt)
v(t) = −Aω sin(ωt) (2.39)

Where we have defined the amplitude A = x0. For this comparison, the
parameters have been chosen asM = 250 kg, x0 = x(0) = 0.5 m, ẋ(0) = 0 m.
The stiffness of the system will be varied in order to compare the behavior
of the algorithms.

By advancing the analytical expressions for 30 seconds with K = 100 N
m
,

the periodic motion is obtained as can be seen in figure 2.2a (for the position
of the motion) and 2.2b (for the velocity of the motion).

The different algorithms listed in section 2.3.1 for the integration of the
motion have been used with a timestep of h = 0.1s and K = 100, 10000 and
100000 N

m
. For the position, the following behavior is obtained. As we can see

in figure 2.3, simple Euler is not symplectic and diverges even for low stiffness,
so we discard it. By increasing the stiffness of the spring to K = 10000, we
see in figure 2.4 that many of the algorithms still behave correctly while the
Position Corrected Beeman and the Leapfrog algorithms must be removed
as they increase the energy of the motion. For K = 100000 the Verlet and
Semi-implicit Euler start increasing the energy of the simulation and are
thus removed. An additional increase of the stiffness over the current value

34

(a) Analytical position (b) Analytical velocity

Figure 2.2: Undamped oscillator for K=100: analytical solution

determines the instability of all the algorithms, decreeing the Velocity Verlet,
Beeman and Position Corrected Beeman algorithms the best for position
stability, as can be seen in figure 2.5 where the three solutions are overlying.

Figure 2.3: Position integration for K=100: undamped oscillator

35

Figure 2.4: Position integration for K=10000: undamped oscillator

Figure 2.5: Position integration for K=100000: undamped oscillator

36

For velocity integration, we obtain the following behavior. Again, the
Euler algorithm already behaves incorrectly at low stiffness, as can be seen
in figure 2.6. Increasing the stiffness to K = 10000, once again the Position
Corrected Beeman and the Leapfrog algorithms must be removed, as they
are seen increasing the energy of the motion (see figure 2.7). At K = 100000
the Semi-Implicit Euler algorithms diverges, in contrast with its behavior
for position, and it must be removed as well. The Velocity Verlet algorithm
decreases the amount of energy of the system as the stiffness reaches K =
100000 and we are left with the Standard and Velocity Corrected Beeman
algorithms alongside the Verlet algorithm, which however is seen slightly
increasing the energy of the system. The results can be seen in figure 2.8.

Figure 2.6: Velocity integration for K=100: undamped oscillator

Figure 2.7: Velocity integration for K=10000: undamped oscillator

37

Figure 2.8: Velocity integration for K=100000: undamped oscillator

2.3.3 Damped oscillator
The SPH model can be more correctly viewed as a damped system since
viscous forces act in order to decrease the energy of the system. Because
of this, it is better to compare the algorithms based on their stability in
integrating the motion of a dampened harmonic oscillator by adding to the
simple undamped system of section 2.3.2 a damping coefficient C = 2

√
KM .

See figure 2.9.

Figure 2.9: Damped oscillator

In this case, we consider the same parameters as for the undamped oscil-
lator. The equations of the motion become as follows, with an acceleration
of a(t) = −ω2x(t)− C

M
v(t). We define A = x0 and B = v0 + ωx0.

x(t) = (A+Bt)e−ωt
v(t) = −(Aω +B −Bωt)e−ωt (2.40)

Once again the different algorithms of section 2.3.1 are compared for

38

multiple values of K. By advancing the analytical expressions for 30 seconds
with K = 100 N

m
, the periodic motion is obtained as in figures 2.10a and

2.10b.

(a) Analytical position (b) Analytical velocity

Figure 2.10: Damped oscillator for K=100: analytical solution

The Modified Velocity Verlet algorithm is added in the comparison, as it
reveals to be useful in the integration of this kind of motion.

With low stiffness, K = 100, all algorithms behave correctly, as seen
in figure 2.11. As the stiffness is increased to K = 10000, all the Beeman
variants become unstable and must be removed, leaving the algorithms as
seen in figure 2.12. WithK = 15000, the Verlet, Velocity Verlet and Leapfrog
algorithms become unstable and are removed, the others remain stable as
seen in figure 2.13. At K = 20000 even the Modified Velocity Verlet and the
Semi-Implicit Euler algorithm become unstable, with the latter one diverging
earlier as seen in figure 2.14, leaving only the simple Euler algorithm, which
albeit being the worst for the undamped oscillation motion reveals to be
the most stable for this comparison. The same behavior is obtained for the
velocity comparison and as such it is not shown here.

39

Figure 2.11: Position integration for K=100: damped oscillator

Figure 2.12: Position integration for K=10000: damped oscillator

40

Figure 2.13: Position integration for K=15000: damped oscillator

Figure 2.14: Position integration for K=20000: damped oscillator

41

2.3.4 Results
Retrieving the results of the last two sections and based on the knowledge on
the proposed algorithms, they can be ordered in regards to their properties.

We order the algorithms in table 2.1 from worst to best in regards to their
stability in the undamped position comparison (see section 2.3.2):

Euler
PC Beeman, Leapfrog
Verlet, Semi-Implicit Euler
Velocity Verlet, Beeman, VC Beeman

Table 2.1: Stability comparison: undamped position

We order the algorithms in table 2.2 from worst to best in regards to their
stability in the undamped velocity comparison (see section 2.3.2):

Euler
PC Beeman, Leapfrog
Semi-Implicit Euler
Velocity Verlet
Verlet, Beeman, VC Beeman

Table 2.2: Stability comparison: damped velocity

We order the algorithms in table 2.3 from worst to best in regards to
their stability in the damped position and velocity comparison (see section
2.3.3), taking into account that the behavior is identical for both position
and velocity:

Beeman, PC Beeman, VC Beeman
Leapfrog, Verlet, Velocity Verlet
Semi-Implicit Euler
(Modified) Velocity Verlet
Euler

Table 2.3: Stability comparison: damped position and velocity

We also order the algorithms in table 2.4 from worst to best in regards
to their accuracy (as detailed in section 2.3.1).

In conclusion, we have chosen to discard the Beeman algorithms due to
their bad stability and non-symplectic behavior. The Euler and Semi-Implicit

42

1st order Euler, Semi-Implicit Euler
4th order position, 2nd order velocity Verlet, Velocity Verlet
4th order position, 3rd order velocity Leapfrog, Beeman
4th order position, 4th order velocity (Modified) Velocity Verlet

Table 2.4: Accuracy comparison

Euler are discarded as well because of their low accuracy order. With an eye
on accuracy and performance alongside the stability requirement, in this
thesis it has been decided to use the Modified Velocity Verlet algorithm 2.33
for most if not all simulations, as it is among the best algorithms in terms of
stability, it is symplectic, self-starting, performant and it has a good order
of accuracy.

In addition, when more accurate values are needed and performance can
be allowed to decrease, which is the case of non-real-time simulations, the
algorithm 2.35 proposed in the work of Clavet et al. [2005] is used due to
its accuracy, similar to the Leapfrog method 2.34, and due to the increased
stability given by its semi-implicit nature.

2.3.5 Adaptive timesteps
A larger time step allows the simulation to achieve higher performance at the
expanse of accuracy and, depending on the integration algorithm, of stability.
In order to achieve higher performance without renouncing to accuracy and
stability, the time step can be in some cases modified as time advances.

A first method introducing variable time steps consists of fulfilling a
Courant-Friedrichs–Lewy (CFL) condition, which is a necessary condition
for convergence in solving certain partial differential equations numerically
by discretization methods. The condition implies that the wavelength of a
wave moving across a discrete grid must be less than the grid’s length in
order to observe the movement. In mathematical terms:

v ·∆t
∆x ≤ Ccourant (2.41)

Where v is the velocity, ∆t the time step, ∆x the spatial grid length and
Ccourant the Courant constant which depends on the particular problem.

In SPH, the length ∆x is chosen as the smoothing length h of the system
and the condition is usually considered as global, hence based on the max-
imum possible velocity of any particle during the simulation. This implies
that the system dynamics must be known in advance or that the maximum
velocity must be estimated at run time. Accordingly, the constant is often

43

paired with an adimensional factor in the range [0, 1] in order to assure that
more caution is taken. The time step is adapted, at each iteration, according
to the condition:

∆t ≤ Ccourant
h

vmax

Several authors add more constraints alongside the CFL condition, such as
a modified CFL condition for acceleration:

∆t ≤ Cacc

√
h

amax

Both conditions have been implemented into our simulator for use with
the Semi-Implicit Euler algorithm (2.30) and the Clavet algorithm (2.35).
Whenever the CFL conditions are not fulfilled, the time step is lowered to
the maximum possible time step that fulfills them. In addition, the user can
choose that whenever this happens the simulation must be redone for the
current step. If the condition is instead fulfilled, the time step is raised so
that successive steps will be better performing. The time step is however
limited by a lower and upper limit, hard coded into the simulator, to ensure
a minimum degree of performance and stability.

2.4 Kernels
In this section, the properties of kernel functions and their uses are explained
in detail.

As defined in section 2.1, the kernel function W (r, h) depends on two
parameters, the spatial coordinate r and the smoothing length h. The pur-
pose of a kernel function is to approximate the Dirac’s delta function δdirac in
order to approximate the spatial distribution of a property inside the fluid.
The first condition for a kernel function is thus:

W (r, h) ≈ δdirac(r)

Because of this, the kernel functionW (r, h) can be arbitrarily created as long
as it fulfills three important conditions. In order to approximate the function
δdirac, the kernel function must thus:

• Be normalized, so that its integral across all space sums up to 1.∫ +∞

−∞
W (r, h) = 1

44

• Converge to the Dirac’s delta for h→ 0.

lim
h→0

W (r, h) = δdirac(r)

• Be differentiable in space at least up to the second order, for the com-
putation of the gradient and laplacian.

According to Monaghan [1992], a kernel with the latter characteristics will
produce at least a second order accuracy in the solution.

In addition, two other conditions have to be considered:

• For physical accuracy, the function should be even, so that the principle
of action-reaction is maintained.

W (r, h) = W (−r, h)

• The function should have limited support h, so that the interaction
length can be cropped for a great increase in performance.

W (r, h) = 0 for |r| > h

It can be useful to know that the dimension of the kernel is in the order of
[1
m3].

45

2.4.1 Kernel functions

In this section, several useful Kernel functions that have been used by authors
in their SPH models are presented.

Gaussian function

Monaghan’s first Golden Rule of SPH (Monaghan [1992]) says that if a phys-
ical explanation for the kernel must be found, then it should be considered
as a Gaussian function:

W (r, h) = 1
h3π

3
2
e−

r2
h2 (2.42)

Where the prefix term is needed for normalization. The Gaussian function
is differentiable infinite times, but it is computationally costly because of
the exponential term and it has no limited support, which means that the
function does not evaluate to zero for r ≥ h. It is therefore only considered
for its physical meaning.

Figure 2.15: Gaussian kernel and its derivatives for h=1

46

Cubic spline

This function has been first proposed by Monaghan and Lattanzio [1985] as
an approximation of the Gaussian function:

W (r, h) =

1
πh2 (1− 3

2
r2

h
+ 3

4
r3

h
) if r

h
≤ 1

1
πh2 (1

4(2− r
h
)3) if 1 < r

h
≤ 2

0 if r
h
> 2

(2.43)

This function has been reported to behave correctly in many situations and
is thus a preferred kernel among many authors. However, it is a conditional
function and this applies an additional cost in the computation. In addition,
the kernel drops to zero at twice the smoothing length and this can create
problems during the implementation, hence why we do not use this kernel
function in our SPH model.

47

Poly6

Müller, in his attempt to reach interactivity, proposes a new approximating
function which uses a sixth grade polynomial (Müller et al. [2003]):

W (r, h) = 315
64h9π

(h2 − r2)3

∇W (r, h) = −r 945
32h9π

(h2 − r2)2

∇2W (r, h) = −r 945
8h9π

(h2 − r2)(r2 − 3
4(h2 − r2))

(2.44)

This new function, called Poly6, permits many performance improvements.
It has limited support h, it is not conditional and the spatial coordinate r
appears squared, which means that, remembering that r will be the distance
between two particles, the costly operation of finding the root square of
r2 is avoided. On the other hand, the gradient of the kernel is physically
inaccurate, resolving to 0 for r = 0.

Figure 2.16: Poly6 kernel and its derivatives for h=1

48

Spiky

For the equations involving the gradient of the kernel function and in par-
ticular for the computation of the pressure forces (see section 2.2.3), Müller
uses a different yet still not expansive kernel, called Spiky kernel because of
its shape:

W (r, h) = 15
h6π

(h− |r|)3

∇W (r, h) = 45r
h6π|r|(h− |r|)

2
(2.45)

This kernel’s gradient reaches a large value when the spatial coordinate r
tends to 0, solving the vanishing gradient problem of the Poly6 kernel.

Figure 2.17: Spiky kernel and its first derivative for h=1

49

Viscosity

Both the Poly6 and the Spiky kernel (2.44 and 2.45) have a Laplacian with
negative values. Since the Laplacian in Müller’s work (and in this work as
well) is only used for viscosity calculations, it has been chosen to use a kernel
with an always positive Laplacian and thus modeling an always dissipative
force. In addition, the final form of the Laplacian is computationally cheap.

W (r, h) = 15
2h3π

(− r3

2h3 + r2

h2 + h
2r − 1)

∇W (r, h) = 15r
2h3π

(− 3r
2h3 + 2

h2 + h
2r3)

∇2W (r, h) = 45
h6π

(h− |r|)

(2.46)

Figure 2.18: Viscosity kernel and its derivatives for h=1

2.4.2 Smoothing length
The smoothing length parameter h is of utmost importance in an SPH sim-
ulation as it is directly tied to the simulation’s performance. Several authors
have reported that the smoothing length is also closely related to the stabil-
ity of the simulation and that it depends on the problem at hand. It is false
to assume that by increasing the smoothing length infinitely the results will
be perfect. This can be explained by the fact that with a high smoothing

50

length, due to the particles being sparse and due to inaccurate interfaces, the
simulation is more likely to compute erroneous values. On the other hand,
with a small smoothing length, not enough particles will take part in the
computations. Because of this, it is most important to choose an appropri-
ate smoothing length by trying to reach an agreement between performance
and stability. Our solution is explained in section 4.1.

2.5 Conclusions
In this chapter, the basis of the SPH model has been discussed.

In section 2.1, the basic formalism, ideas and mathematical background of
a SPH model are presented, with extensions on the classic formulation.

In section 2.2, the solution of the Navier-Stokes momentum equation is
discussed by solving it using the SPH formalism, addressing density and
pressure as well as cohesion, viscosity, external and elastic forces.

In section 2.3, the resulting dynamic system is analyzed and many inte-
gration algorithms are confronted and tested for its solution.

In section 2.4, kernel functions are explained in detail and different func-
tions for different purposes are presented.

51

Chapter 3

Complex SPH model

In this chapter, the most important problems arising from a SPH approach
to fluid modeling are discussed and they are addressed by extending known
solutions. In addition, extensions to the classic model are presented in order
to increase the scope and versatility of the simulator.

3.1 Tensile instability
As introduced in section 2.2.3, tensile instability is a numerical problem
arising from the pressure force equations that can be seen as particles form
clusters trying to pull a few particles very close in order to reach rest density
instead of pulling more particles with less force.

Müller’s Spiky kernel of equation 2.45, aims at reducing this phenomenon,
as its gradient is created in such a way that the repulsion force between
particles during pressure computations increases greatly as the particles get
closer (Müller et al. [2003]). However, we have observed that the kernel shape
alone is not enough to solve this problem.

In order to address the tensile instability as thoroughly explained by
Monaghan [2000], we have implemented a method similar to Monaghan’s
and based on the work of Clavet et al. [2005], that introduces a method
called double density relaxation. Both Monaghan and Clavet, in different
ways, solve the clustering problem by the addition of an artificial pressure
term.

Our implementation differs from Clavet’s as his ideas are adapted to a
more classic SPH model. The main difference lies in the fact that instead of
using Clavet’s fictitious near density, the normal density ρa of each particle is
used. During the pressure computation, which is at default performed using
Tait’s equation of state (2.15), an additional near pressure P near

a is computed
as follows, actually resolving to the ideal state equation (2.14) for a fluid with

52

zero rest density:
P near
a = kPρa

Therefore, near pressure is always higher than zero and this value is used to
make sure that particles do not pull their neighbors too close.

During pressure force computation, Clavet’s idea is followed and a dif-
ferent kernel function is used for near pressure. The Spiky kernel gradient
∇Wab of equation 2.45 is used for standard pressure force computation. In
addition, a higher order kernel is used for near pressure, which resolves to a
kernel gradient ∇W near

ab with a smaller area, as shown in figure 3.1. The sum
of the two pressures give us the new pressure force, which can be observed
to eliminate tensile instability altogether. The new equation, using Müller’s
pressure force formulation (2.19), takes the following form:

fpressa = −
∑
b

mb

2ρb
((Pb + Pa)∇Wab + (P near

b + P near
a)∇W near

ab))

In addition, as observed by Clavet, the removal of the tensile instability high-
lights the spurious surface tension effect. This problem is further discussed
in section 3.4.

Figure 3.1: Double density relaxation kernel functions for h=1

3.2 Incompressible SPH
Born as a method for simulating compressible fluids, the basic SPH model is
not suited for the simulation of incompressible or even nearly-incompressible
flows. Since water can be viewed as a weakly compressible fluid, with its

53

speed of sound waves reaching 1500 meters per second, by using the standard
equations of state (see section 2.2.2) the resulting pressure forces tend to be
too large for a stable simulation and would require too small time steps.

Using the standard equation of state 2.14, the pressure stiffness coefficient
kP is in the order of a million and a small difference in density triggers a large
difference in pressure, leading to an unstable simulation. The use of equation
2.15 eases the problem as a larger speed of sound can be sustained, achieving
a less compressible fluid, but not yet incompressible. In both cases, a speed
of sound of at least two orders of magnitude less than the real one must be
taken for water-like simulations.

Because of this, an incompressible extension of SPH for the correct sim-
ulation of water flow has been one of the main goals in worldwide research,
with contributions from several authors. In particular, two methods have
been gaining visibility: Moving Particle Semi-Implicit and Pressure Cor-
rected SPH.

3.2.1 Moving Particle Semi-Implicit

Published by Koshizuka and Oka [1996], the Moving Particle Semi-Implicit
method has been introduced with the purpose to solve the stability issues of
using classic SPH for the simulation of incompressible fluids. The method
is quite similar to SPH, with the density and forces computations being the
same apart from the pressure forces computation phase.

First, the number density δa is defined as a value that contains an estimate
of the number of particles in the point xa:

δa =
∑
b

Wab (3.1)

Then, instead of computing the pressure forces as usual, a Poisson equation
of pressure is solved after discretizing it in a system of linear equations:

∇2Pa = −ρa
dt

δa − δ0

δ0 (3.2)

Where δ0 is the preferred constant number density when incompressibility
has been reached. Due to the computational cost of solving the Poisson
equation, in the work pertaining to this thesis another method has been
preferred.

54

3.2.2 Pressure Corrected SPH

Another approach for simulation of incompressible fluids has been proposed
by Bao et al. [2009] with particular emphasis on the computational costs
of the algorithms. This approach, called Pressure Corrected SPH, achieves
incompressibility without resorting to a Poisson equation, which is quite
time-consuming, and addresses the pressure disturbances and instabilities
arising from the use of an equation of state.

According to this approach, the equations of SPH are solved as usual,
but the pressure contribution is left out. Before the integration step begins,
the pressure term is instead solved with a new equation, which is obtained
by considering the continuity equation (2.9) alongside the ideal equation of
state (2.14):

dP

dt
+ kP ρ ∇ · v = 0

An iterative algorithm can be obtained by writing the latter equation in SPH
form and solving it for N steps, with n = 1, 2, ...N :

dP n+1
a = −kP dt

∑
b

(vnb − vna)mb∇W n
ab (3.3)

At each step n, a velocity update is obtained by substituting the difference
of pressure dP into the momentum equation 2.8:

dvn+1
a = −∇ dt

ρa
dP n

a

= −kP dt
ρb

∑
b(dP n

b − dP n
a)∇W n

ab

(3.4)

Equations 3.3 and 3.4 are supposed to be iterated alternatively until con-
vergence, but for performance purposes Bao et al. [2009] observes that the
iteration is convergent with very few steps and the pressure of every particle
reaches rest density in a small time, providing incompressibility.

In the work this thesis is based on, a variation of equation 3.4 has been
preferred based on the correct formula for the difference gradient variant
(2.6) and has been observed to behave more correctly.

dvn+1
a = −kP

dt

ρ2
a

∑
b

mb(dP n
b − dP n

a)∇W n
ab

Another expression for the last equation can be found by using the summa-
tion gradient variant 2.7, which we have observed behaves better for a limited

55

number of particles.

dvn+1
a = −kP dt

∑
b

(dP
n
b

ρ2
b

+ dP n
a

ρ2
a

)mb∇W n
ab

Using the Pressure Corrected SPH method, the speed of sound can safely be
assigned its real value without creating instabilities, thus achieving complete
incompressibility at the expanse of performance.

3.3 Multiple fluids
One challenge for a more complex SPH model is the simulation of multiple
fluids. SPH can be easily extended for multiple fluids as the equations pre-
sented thus far remain true for interactions between different fluids’ particles,
with additional physical phenomena emerging automatically. The different
particle masses are already taken into account in our equations and as such
densities, pressure and pressure forces are consistent, while a small modifi-
cation of the viscosity forces 2.20 using the mean viscosity between the two
interacting particles must be added.

Care must be taken when choosing a suitable smoothing length for the
whole system, which should be selected as being the minimum among all the
interacting fluids’ individual smoothing lengths.

One of the most notorious consequences of the SPH approach for multi-
fluid modeling is the automatic appearance of buoyancy effects. In the ex-
ample of two immiscible fluids poured in the same container, the less dense
fluid, that is with a lower rest density than the other, will tend to rise to the
surface. This can be easily seen in reality in the behavior of common fluids
like oil and water. As a consequence of the density summation approach,
on the interface between the two fluids a pressure gradient will be forming,
which will make the lower density particles rise and the higher density par-
ticles fall. However, due to the spurious interface effects that are discussed
in section 3.4, buoyancy can be more correctly simulated with additional
extensions.

3.4 Surface tension
Surface tension is another characteristic behavior of fluids, especially of liq-
uids such as water. This phenomenon can be observed when placing a leaf on
plain water or while watching certain insects walking on water. The water
exerts a force that blocks its penetration by outer bodies. In mathematical

56

terms, the surface tension is defined as the tension that a liquid imposes in
order to minimize its curvature. It is therefore of great interest to simulate
the surface tension effect.

3.4.1 Spurious surface tension
Before being able to create a controllable surface tension, a first important
problem must be addressed. This problem is the spurious surface tension
effect that arises from the use of the density summation approach (using
equation 2.10), which can however be observed even if using a continuity
approach (using equation 2.12). A detailed explanation of this phenomenon
can be found in the work of Hoover [1998].

At the fluid’s interface, the lack of particles or the presence of other
bodies’ particles with different densities decrease the accuracy of the kernel
interpolation, even at the density computation phase. This can be seen in
figure 3.2. In the figure, since less particles are available at the free surface,
the density of the surface particles will be lower than that of non-surface
particles, this will therefore create a pressure gradient which will tend to push
the surface particles inside the fluid, resulting in what is called a spurious
surface tension.

Figure 3.2: Cause of the spurious surface tension effect

The fake tension is uncontrollable and, even if some authors tolerate its
presence since no additional surface tension force must be added for the sim-
ulation of water-like fluids, it is to be considered an undesired consequences
and must be removed and substituted with a controllable, parametric and
physically realistic surface force. The error given by the spurious surface
tension is particularly problematic when the number of particles is small
and the smoothing length is large, but it still persists for higher resolution
simulations with many particles.

57

The spurious surface tension effect can be observed in three different
cases. The most problematic case is the free surface flow, since no particles
are placed outside the fluid. Fluid-fluid interfaces can also suffer from this
problem when the rest densities of interacting fluids are different. At last,
fluid-boundary interfaces suffer from spurious surface tension as well.

This work contains possible solutions to the three problems. A new
method is proposed for the free surface flow problem in the next section,
fluid-fluid interfaces are addressed in section 3.4.3 and boundaries which
avoid the problem are presented in section 3.5.

3.4.2 Air particles generation
In this work, a new approach is presented for the solution of the spurious sur-
face tension problem for free surface flows, since no other complete solutions
have been found in literature. Most research on spurious surface tension
is geared towards multi-fluid simulations and is not suited for simulations
where fluids get often in contact with air.

This work expands the idea contained in the work of Müller et al. [2005]
regarding the dynamic creation of air particles for additional graphical effects.
Müller tries to achieve the formation of water bubbles inside water that is
dropped into a container, but we think the method can be also used in order
to solve the spurious surface tension problem.

The idea is that the volume around the free surface is not composed of
empty space, but is actually filled with air. Air could be simulated as an
additional SPH fluid and, with the multi-fluid extension of section 3.4.3, in-
terface errors would disappear. This would however be quite computationally
expansive and remove the benefits of a Lagrangian implementation, mainly
the possibility to simulate only the needed portion of the simulation volume.

Air particles can however be added only around the fluid, creating a
coat of air in which the fluid is surrounded, while the rest of the simulation
volume is considered filled with still air and is not simulated. This option is
allowed because kernel functions drop above their smoothing length, so by
surrounding the fluid with air particles up to that distance the fluid finds
enough particles for its computations and removes spurious surface tension
effects. This idea is shown in figure 3.3.

The generation of particles is controlled by checking the magnitude of the
outward normal of surface particles ~n, which can be computed as shown in
section 3.4.4. An air particle is generated if the magnitude is higher than a
given threshold and it is removed when its density drops below a minimum
density, that means that the air particle is too far from the fluid.

The evolution of air particles is addressed by making use of the usual

58

SPH equations, but we have reported that this still gives birth to spurious
surface effects because air particles would still be in contact with the empty
space, so other techniques should be investigated and used.

This idea has yet to be fully implemented and tested because of time
constraints and as such it has not been used during the tests of chapter 5.

Figure 3.3: Particles generated around the free surface of the fluid

3.4.3 Multi-fluid adapted SPH
The phenomenon of spurious surface tension, as explained in section 3.4.1,
still persists at the interface of two or more fluids when their rest densities are
different, with a higher error the higher that difference is. Again, a fake ten-
sion arises between the interfaces, resulting in the fluids not correctly mixing
together and effects such as the Rayleigh–Taylor instability to not arise in
classic SPH simulations. The recent work of Solenthaler and Pajarola [2008]
aims at the removal of this problem by modifying the base SPH equations.
The basic idea is to have all particles treat neighboring particles as if they
had its same rest density ρ and mass m. Solenthaler defines a new non-
physical quantity which is used as an estimate of the number of particles in
a point of the fluid, the number density δ, which is the same as in equation
3.1 where it is part of the Moving Particle Semi-Implicit method of section
3.2.1.

Using the number density δ as in equation 3.1 for the density computation,
an adapted density ρ̃ can therefore be obtained:

ρ̃ = maδa (3.5)

As a consequence, the rest of the physical equations are modified to account
for this different density.

59

An adapted pressure P̃ can be computed from the adapted density ρ̃,
either with Tait’s equation 2.15 (as done by Solenthaler and Pajarola [2008])
or with a different equation of state. The force equations are then derived
using the adapted values which, if using for example Müller’s formulations,
take the following forms:

fpressurea = − 1
δa

∑
b

1
δb

P̃a + P̃b
2 ∇Wab (3.6)

f viscositya = − 1
δa

∑
b

1
δb

P̃a + P̃b
2 ∇Wab (3.7)

By using this method, the spurious surface tension arising at the interface
of two fluids is removed, resulting in a behavior similar to what is shown in
figures 3.4a and 3.4b.

(a) Without Adapted SPH (b) With Adapted SPH

Figure 3.4: Density contrast solution: effect on the interface

3.4.4 Controllable surface tension
Several authors have already proposed different solutions for surface tension
modeling. We have investigated and compared the known methods and we
present them here.

Curvature minimization

Proposed by Morris [1999], the method for surface tension modeling based
on curvature minimization relies on the mathematical macroscopic definition

60

of the phenomenon. This is also the method extended by Müller et al. [2003]
in their work.

First, surface particles must be located. In order to do so, we introduce
a parameter called color value CV , which is one at particle positions and
zero everywhere else. Using the SPH formulation, the color value for a given
particle a is:

CV
a =

∑
b

CV
b

mb

ρb
Wab =

∑
b

mb

ρb
Wab (3.8)

The inward surface normal ~n can then be computed as the gradient of the
color field:

~na = ∇CV
a =

∑
b

mb

ρb
∇Wab (3.9)

The surface normal ~n is computed for each particle and particles with the
normal magnitude higher than a chosen threshold are considered surface
particles. At last, the curvature κa of the fluid in a point xa is computed as
follows, inverting the value so to have positive curvature for convex surfaces:

κa = −∇
2CV

a

|~na|
(3.10)

The surface force for each surface particle can then be derived as follows:

f surfacea = σaκa~na = −σa∇2CV
a

~na
|~na|

(3.11)

This method has been used successfully in the literature, especially in multi-
fluid flows. In the latter case, the color value is taken into account only for
the same-fluid particles. As observed by Becker and Teschner [2007], the cur-
vature minimization approach has been intended for multi-phase simulations
and performs poorly with a single phase since there are no particles at the
free-flow interface or at the boundaries. Basically, this is the spurious surface
tension problem.

Microscopic attraction

Proposed by Becker and Teschner [2007], this method for surface tension
modeling ignores the global aspect of curvature minimization and instead
focuses on the microscopic interactions between particles that make surface
tension effects emerge. The idea behind the method is based on cohesion
forces that spawn from Van Der Waals interactions between particles of the
same fluid.

61

The surface tension force is thus computed as follows:

f surfacea = −σρb
mb

(xb − xa)Wab (3.12)

The method is best suited for free surface flows since it performs better for
a single phase (Becker and Teschner [2007]) and as such has been preferred
in this work for most simulations.

3.5 Boundary methods

As Smoothed Particle Hydrodynamics was born to model astrophysical phe-
nomena, where boundary conditions are scarce, there was at the beginning
little to no focus on the matter of finding suitable boundary implementations.
When the method became popular for fluid simulation, however, boundaries
became an aspect that could not be passed over.

Boundary methods are used in order to model the interaction of fluid
particles with solid boundaries, which could be walls, containers, or even an
abstract spatial end of the simulation. The boundaries are usually supposed
to be immobile, but every method can be extended for movable objects.

The methods for boundary collision modeling are divided in two major
families: penalty-based methods and force-based methods.

The former methods achieve a no-penetration condition by directly im-
posing constraints on the fluid particle’s velocities and positions, they are
relatively simple to implement and can be cheap, but they are less stable due
to the direct modification of particle’s positions and velocities and thus of
the interpolation points of the SPH approximation.

The latter methods, instead, impose new forces to the particles that reach
the boundary, thus presenting a continuity with the SPH method and modify-
ing positions and velocities according to the integration algorithms without
ruining stability. Among these methods, we have investigated the direct-
forcing approach, the quasi-fluid approach and the ghost-particles approach.

In our work, different boundary algorithms are implemented extending
the known methods. This versatile approach has been taken in order to
accommodate for different needs, so that the user can choose to focus on
performance or accuracy. All methods have been extended to improve their
stability and remove their shortcomings.

62

(a) Penalty (b) Direct Forcing

(c) Semi-fluid (d) Ghost particles

Figure 3.5: Boundary methods

3.5.1 Penalty approach

Born from classic particle system simulations, that have been used since the
late eighties in computer graphics, the standard penalty approach is quite
simple to implement and it is performant, but it can also give birth to in-
stabilities as particle velocities and positions are directly modified, without
taking into account the integration algorithms and SPH forces. In addition,
the method is based on chosen boundary conditions (Müller et al. [2004]) and
not on physical parameters, which renders the method useful for fast simu-
lations without accuracy objectives in mind such as in computer graphics.
The simplest penalty case consists of a box-shaped boundary placed at the
system’s origin. The source code 3.1 controls the collision of particles with
the boundary on the negative x-axis:

Already a few problems can be pointed out, such as the possible modifica-
tion of the particle’s energy and the completely elastic reflection. Following

63

i f (p a r t i c l e−>pos . x < boundaryDimension . x) {
p a r t i c l e−>pos . x = − boundaryDimension . x ; /// Push out

pa r t i c l e−>d i r . y = −pa r t i c l e−>d i r . y ; // R e f l e c t Y v e l o c i t y
pa r t i c l e−>d i r . z = −pa r t i c l e−>d i r . z ; // R e f l e c t Z v e l o c i t y

}

Source code 3.1: Simple penalty boundary approach

the classic method, the approach has been extended in this work with various
optimizations in order to provide a more versatile and accurate method.

• Shape-based reflection
In order to create different boundaries for different test cases, the
penalty boundary method has been generalized by computing the sur-
face normal BN of each boundary during a collision and thus separating
the normal velocity vN from the tangent velocity vT . The velocity of
the colliding particle can thus be divided as seen in figure 3.6.

vN = BN ∗ (BN ∗ v)

vT = v − vN
Due to this, for a completely elastic collision with an arbitrary bound-
ary, we just have to invert the normal velocity vN .

Figure 3.6: Separation of particle velocities using the improved penalty ap-
proach

• Boundary bounce and slip
Simple penalty boundaries simulate a completely elastic reaction. With
the use of bounce and slip coefficients, we can differentiate this behavior
for each fluid. The bounce coefficient Cbounce is included in the range
[0, 1], from no-bounce effects to completely elastic reactions. The slip

64

coefficient Cslip is included in the range [0, 1], with 0 simulating the
no-slip condition, useful for water simulations, and 1 simulating a full
slip.

v′ = −vN Cbounce + vT Cslip

• Particle collision checking and repositioning

After the collision, particles are repositioned according to the bound-
ary normal BN . For performance purposes, the actual collision point
is computed at the collided particle position as shown in figure 3.7,
which can be inaccurate. However, this does not visibly reduce the
simulation’s accuracy since time steps are small (Kelager [2006]).

Figure 3.7: Repositioning of a particle using the improved penalty approach

• Energy conservation

As explained by Kelager [2006], depending on the timestep and the
actual collision point, kinetic energy may erroneously increase. Energy
conservation is assured by reflecting only the actual velocity that was
omitted in the collision, using the penetration distance d for the purpose
as seen in figure 3.8

v′ = −vN Cbounce
d

|v|∆t + vT Cslip

• Direction control

A direction control has been implemented for all boundaries which
allows the boundary to block and reflect particles that travel in a chosen
direction. This can be useful for the simulation of water flowing in a
closed box by removing the collisions on the boundary ceiling.

65

Figure 3.8: Energy conservation using the improved penalty approach

3.5.2 Direct forcing
A first force-based solution comes from Monaghan et al. [1994] who proposed
to place fixed particles at the boundaries which would exert Lennard-Jones
forces in the center of close-by fluid particles, thus pushing them out of
the boundary. This expedient is based on observed inter-atom forces and
tries to achieve the no-penetration condition by considering the microscopic
interactions between the fluid and the boundary atoms, called solid particles.

The equation for the force between a fluid particle and a solid particle
takes the following form, that is computed only for h

|rab|
> 0 in order to have

only repulsive forces, where rab = xa − xb:

f boundab = Kcoll
rab
|rab|2

(
(

h

|rab|

)k1

−
(

h

|rab|

)k2

) (3.13)

Where the constants are chosen as k1 = 12 and k2 = 6. The rigidness
Kcoll can be chosen according to the problem as hand and, as suggested by
Monaghan et al. [1994], results are insensitive to its value, provided it is large
enough.

Our algorithm iterates over all fluid particles and checks for the pres-
ence of neighboring solid particles, then uses the provided force to create a
no-penetration condition. The no-slip condition is instead enforced by con-
sidering the solid particles in the viscosity computation.

This work also introduces a less expensive variant to Lennard-Jones forces,
based simply on an SPH formulation of a direct force that we have observed
as being good enough for simple simulations.

f boundab = rab
|rab|

Kcoll
mb

ρb
Wab

In addition, a distinction is made between static and dynamic boundaries,
the latter being rigid bodies, in order to reflect the force on the solid objects

66

as well. This is done even for solid-solid interactions, effectively creating
a two-way coupling behavior. However, a more consistent method can be
found for this purpose, as is discussed in the next section.

3.5.3 Quasi-fluid particles

In order to achieve a greater inter-connection between SPH fluids and rigid
boundaries, new techniques have been proposed in the recent years which try
to extend the SPH formulation to rigid bodies. Among them, the quasi-fluid
particles method proposed by Crespo et al. [2007] is still simple to implement
and provides good results.

With this approach, layers of rigid particles are placed below the bound-
ary surface that satisfy the same SPH equations of the fluids but that re-
main fixed in space. Three layers are usually placed so that there are enough
particles for correct computations. By providing continuity with SPH, this
method achieves greater stability and accuracy. A performance loss, how-
ever, is observed, as the method increases the number of particles of the
simulation.

In addition, this method is a step towards a comprehensive approach for
fluid and solid simulation, since rigid bodies are actually modeled as clouds
of linked particles.

This method is still new and presents unsolved questions, such as the
value of parameters to be chosen for rigid particles. In this work, it has been
observed that density can be chosen arbitrarily and allows heavy objects to
not be effected by the fluids or light objects to be moved. The pressure stiff-
ness coefficient must be high in order to allow the no-penetration condition,
so that particles do not get too close to the boundary. The viscosity coeffi-
cient can be chosen in order to provide a no-slip condition (high viscosity)
or some degree of slip (low viscosity).

The quasi-fluid boundary method has been enhanced in this work by using
the multi-fluid adapted SPH proposed by Solenthaler and Pajarola [2008], so
that the spurious tension arising at the interface between the fluid and the
boundary is removed, allowing for a complete adhesion of the fluid to the
boundary surface.

As can be seen in figure 3.9, using the adapted quasi-fluid boundary
method the particles of the fluid tend to get closer to the boundary particles,
removing the spurious surface tension effect on the interface and increasing
the simulation’s stability.

67

(a) Not adapted (b) Adapted

Figure 3.9: Comparison of the classic quasi-fluid boundary and the adapted
version

3.5.4 Ghost particles
This method is similar to the quasi-fluid particles boundary approach, but it
aims at achieving higher performance. Boundaries are not filled with parti-
cles at their creation, instead ghost particles are created dynamically outside
the boundary over the course of the simulation. Ghost particles are born
when a fluid particle gets close enough to the boundary, mirroring the prop-
erties of the interacting particles, but with the normal velocity inverted, thus
enforcing a repulsion.

Proposed initially by Randles and Libersky [1996], the method is also
used by other authors, such as Valizadeh et al. [2008], in their research. It
has been reported as being both efficient and accurate and it adapts easily
do different boundaries, even dynamically.

Due to time constraints, a ghost particles boundary method has not been
implemented in this work.

3.5.5 Rigid bodies
In addition to static boundaries, it is of great interest to simulate rigid bodies
alongside fluids, in order to simulate the complexity that arises from their
interactions. Examples are a boat floating on water, objects transported by
the flow, liquid dripping from a cup and many more everyday situations.

Rigid body mechanics are well understood and can be simulated efficiently
with simple methods. By extending these methods with a SPH approach,
we obtain a complete two-way interaction between solids and fluids. Several
methods have been proposed in literature, such as by Becker et al. [2009] or
by Müller et al. [2004], in addition to more simple Verlet methods used for
fast rigid body dynamics such as those present in video games.

In this work, a new method is developed, which is born from the choice
of a quasi-fluid boundary approach. Much like a fixed boundary, each rigid

68

body contains a fixed number of fake particles called rigid particles inside
its volume, placed underneath the body’s surface. These particles fulfill the
SPH equations exactly like fluid particles, directly affecting the fluids they
enter in contact with, but their position will be dependent on the rigid body’s
movement.

By implementing an action-reaction approach on the interaction of the
rigid particles with fluids’ particles, or even with other bodies’ rigid particles,
two-way interaction is achieved. This allows us to simulate an even greater
range of problems.

The algorithm can be found in section 4.2.4.

3.6 Conclusions
In this chapter, extensions to the classic SPH model are proposed and de-
tailed in order to provide solutions to its shortcomings.

In section 3.1, the tensile instability problem is addressed and a solution
is presented under the form of a variant on the double density relaxation
algorithm.

In section 3.2, the compressibility issue is addressed and two methods,
Moving Particle Semi-Implicit and Pressure Corrected SPH, are detailed for
its solution.

In section 3.3, the issue of multiple-fluids simulation is addressed.

In section 3.4, the spurious surface tension problem is addressed and solu-
tions are proposed for different cases. In addition, models for fully control-
lable surface forces are proposed.

In section 3.5, boundary methods are explained and improved upon. An
extension for the two-way coupling of fluids and rigid body dynamics is also
presented.

69

Chapter 4

Implementation

In this chapter, the implementation of the SPH model discussed in the previ-
ous chapters is presented. Two different softwares have been created, a serial
implementation and a parallel implementation, and are explained in detail.

4.1 Simulator and guided creation
The simulator developed in order to implement the SPH model as discussed
in the previous chapters is described in the following sections, with details
on peculiar implementations and choices.

The code of the serial SPH implementation has been written in the C++
programming language and the visualization and interaction aspects have
been developed by making use of the Simple DirectMedia Layer (SDL) li-
braries and the OpenGL graphics libraries. The code runs on a Windows
machine and is compiled with Visual C++ 2005.

4.1.1 Simulator
As we delved inside the project, we quickly realized that due to the complex
mathematics involved and their fragility, we would need a more structured
simulator in order to achieve the correct simulation of different scenarios.
A simulator based on our SPH model has thus been produced which allows
multiple fluids with several different starting conditions that can be specified
by the user.

The base of the simulator is the SPHSystem class that governs all the
global aspects of the simulation. Using the simple API as explained in section
4.1, the user can define different fluids and rigid bodies and they are inserted
into the system accordingly.

70

The simulator allows the definition of different emitters in the system
by instantiating the class SPHEmitter and all emitters are accessible by
the system trough a linked list. Each emitter, on the other hand, owns
a dynamically linked list of particles and updates them at each time step.
Emitters determine the creation and the destruction of individual particles
and all the particles of a single emitter share its physical properties, its
initialization procedures and its color properties.

Rigid bodies are accessed and created in much the same way as emitters,
linked in a dynamic list in the SPHSystem class.

The individual properties of each particle are stored in the SPHParticle
class and particles are organized in different linked lists according to their
local index (inside the emitter), global index and neighbor cell index (see
section 4.2.2 for details).

Utilities

Various utilities have been implemented for a greater ease of use of the sim-
ulator and for more efficient coding.

Positions, velocities and other vector values are managed by istances of
the tVector class. This class also implements various useful functions for
vector math, such as dot and cross product or normalization.

Similar to the tVector class, a tColor class has been created for ease of
access to color properties, stored as RGB values.

Additional utilities are contained in the Utils.cpp, DrawUtils.cpp and
SPHUtils.cpp files for ease of access to additional mathematical computa-
tions, drawing primitives and common SPH routines.

Since instabilities can occur when single particles get too close to each
other and in fast flows simulations this can happen, a set of optional warn-
ings have also been implemented in order to predict situations of potential
instability, with the added option to reset or entirely removed the unstable
particles.

4.1.2 Simulation choices
Before the simulation begins, the user can define which options to use for
the many aspects of the simulation. Many different choices, implementa-
tions of the techniques illustrated in the previous chapters, are presented
through the use of enumerations in order to let the user decide what ap-
proach would be best for their case or to compare them. The user can make
choices on the kernels used in the computations, on integration algorithms,
on rendering variables, on force equations and on the boundaries methods.

71

Many additional choices are instead imposed by the simulator, as we have
been reporting that some algorithms become unstable when used together.
Default choices are imposed based on our observations.

Integration

As discussed in section 2.3.1, all the different integration algorithms that
have been compared have also been implemented. As previously stated, the
default value is the Velocity Verlet algorithm.
enum Integrat ionAlgor i thm {EULER, VERLET, CLAVET, VEL_VERLET,

LEAPFROG, BEEMAN, BEEMAN_PC, BEEMAN_PC_CAPONE} ;

Density equation

The two different density equations of section 2.2.1 have been implemented.
In addition to the summation multi-fluid adapted method, the adaptive form
has been extended for a continuity approach. The default approach uses the
adapted density summation equation.
enum DensityEqType {DE_SUMMATION, DE_SUMM_ADAPTED, DE_CONTINUITY

, DE_CONTINUITY_ADAPTED} ;

Pressure equation of state

The two proposed equations of state and the pressure correction approach as
shown in sections 2.2.2 and 3.2.2 are made available. The default equation
of state is the Tait’s equation for weakly compressible fluids, found to be
sufficient for most of our needs.
enum EquationOfState {EOS_IDEAL, EOS_TAIT, EOS_CORRECTION} ;

Pressure forces equation

The different pressure equations discussed in section 2.2.3 have been imple-
mented, as well as multi-fluid adapted versions. The default approach uses
Müller’s adapted pressure equation.
enum PressureEqType {PR_MULLER, PR_MULLER_ADAPTED, PR_MONHAGHAN,

PR_MONHAGHAN_ADAPTED} ;

72

Viscosity forces equation

Again, for viscosity, the different equations discussed in section 2.2.4 have
been implemented, with the default being Müller’s force with the multi-fluid
adaptation.
enum ViscosEqType {VI_MULLER, VI_MULLER_ADAPTED, VI_MON92,

VI_MORRIS} ;

Surface tension equation

For surface tension computation, we have implemented the methods listed
in section 3.4.4. The default approach has been chosen as Becker’s micro-
interaction method because of its better behavior in free surface flow simu-
lation.
enum TensionEqType {

ST_CURV_MU, // Mül ler 03
ST_MICRO_BE // Becker 07

} ;

Emission

For emission purposes, several different choices are provided. The fluid can
be created as a continuous stream with a square section (continuous-square
mode) or circular section (continuous-circle mode). It can be created as a
volume of fluid, such as a box (one shot-box mode) or a sphere (one shot-
sphere mode). The fluid can also be created as a spray of liquid originating
from a single point (spray-cone mode) or as an empty emitter, to be filled dy-
namically (remote-empty mode, used in the air particles generation method
of section 3.4.2).
enum EmissionType {EMIS_CONTINUOUS, EMIS_ONESHOT, EMIS_SPRAY,

EMIS_REMOTE} ;
enum EmitterType {EMIT_BOX, EMIT_SPHERE, EMIT_SQUARE,

EMIT_CIRCLE, EMIT_CONE, EMIT_EMPTY} ;

Rigid bodies

The rigid body simulator provides many different shapes:
enum RigidbodyShape {RS_BOX, RS_CUBE, RS_SPHERE, RS_PLANE,

RS_CYLINDER, RS_CUP} ;

73

As discussed in section 3.5, the different boundary methods have been im-
plemented, with the penalty-based approach chosen as the default for better
performance).

enum RigidbodyType {
RT_PENALTY, // Penal ty based
RT_FIXED_LEN, // Lennard−Jones f o r c e s
RT_SEMIFLUID, // Quasi f l u i d p a r t i c l e s

}

4.1.3 Reports
In order to analyze properties of the implemented SPH model, a number
of functions have been created for reporting different data regarding the
simulation. The user can specify what type of data is needed and get feedback
on the simulation.

Time data

Data regarding simulation time can be gathered from the running program in
order to estimate the computation time of each routine. This is quite useful
for code optimization and as a mean of pinpointing bottlenecks in the appli-
cation. It must be noticed that the values provided by the time estimation
routines are in no way absolute and must only be viewed as relative to each
other.

The time routines take advantage of Windows’ clock functions for com-
putations with one second resolution or, when available, of the performance
counter functions, which allow resolutions of under one millisecond. The
GPU routines instead use Unix’s internal time functions.

In addition, by making use of Fish [2001]’s glFont routines, the simulation
time is shown on the screen in real-time as a text in the bottom left part of
the simulation screen.

Simulation statistics

A simulation report can be printed to the console or to a text file using
a single function. This report shows various information on the current
simulation, such as a list of emitters and rigid bodies with their parameters
and system-wide parameters and options. A report example is given in figure
4.1.

74

Figure 4.1: Simulation report example

Simulation data

Functions for data estimation of different characteristics have been imple-
mented. The data gathered can be useful for comparison with analytic or
different models’ data. Routines are provided for the estimation of the tra-
jectory of the fluid, the volume occupied and the section of streams and
the position of the center of mass of the simulated fluid. The estimation is
conducted differently for each needed data type.

Trajectory is estimated by dividing particles in groups according to their
spawn time, with particles with close-by lifetimes belonging to the same
group and assumed to travel together. As the simulation advances, the com-

75

putation of each group’s barycenter is performed at timed intervals and the
trajectory is then estimated for each group at that interval. At last, the
positions of the barycenter of all groups at a given life-time are averaged to
obtain a final trajectory.

Section is estimated by checking the maximum distance between parti-
cles of the same group. This estimation however suffers from the fact that
particles in the same group can potentially diverge greatly and continue on
very different paths and from fluid fragmentation artifacts.

A MATLAB program has been created for data processing and allows the
user to visualize the data gathered from the simulation in graphical form, as
shown in the results of chapter 5.

Image data

Image data concerns all images rendered by the simulator through the OpenGL
context. All rendered images of a single simulation can be saved as auto-
matically ordered files with a chosen format between PNG and BMP. The
screen saving routine makes use of Windows’s Graphic Device Interface Plus
(GDI+).

4.1.4 Guided creation: User-imposed parameters
Due to the huge mathematical complexity of the model and its fragility when
parameters are not chosen accordingly, especially when trying to simulate
realistic fluid physics, a set of guided creation mechanisms and a simple API
interface have been created for the user. All that is up to the user is to choose
the main characteristics of the simulation, such as the initial conditions of the
fluid and its physical properties, while all the rest is derived by the simulator.

The parameters that are for the user to choose are here listed and prob-
lems that may arise from incorrect values are commented.

Physical parameters

All physical parameters are imposed by the user. The parameters that can
be assigned and the correspondent functions are listed below.

• Rest density setRestDensity(float)
The parameter ρ0 determines the density of each particle at rest. It
influences the magnitude of pressure forces because a big difference
between a particle’s density and the fluid’s rest density determines a
high pressure. The dimension of this parameter is [kg

m3].

76

• Speed of sound setSpeedOfSound(float)
The parameter c0 determines the speed of sound inside the fluid. This
value is used in pressure force computations and it can be the primary
cause for instability. It is therefore advised to use a smaller than reality
speed of sound for weakly compressible fluids, up to three orders of
magnitude lower, or better use the incompressible SPH option. The
dimension of this parameter is [m

s
].

• Viscosity coefficient setV iscosity(float)
The parameter µ determines the magnitude of viscous forces inside the
fluid. The dimension of this parameter is [Ns

m2].

• Surface tension setSurfaceTension(float)
The parameter σ determines the magnitude of surface forces at the
interface of the fluid. The dimension of this parameter is [N

m
].

• Elastic stiffness setElasticStiffness(float)
The parameter kel determines the magnitude of elastic forces inside the
fluid. The dimension of this parameter is [N

m
].

Emitter type and shape

Different emitter types and shapes have been implemented in order to provide
the simulator with different starting conditions for the fluids, so that different
test cases can be easily simulated.

• Instant Cube The most basic shape is the fluid cube, or box, in
which the fluid is initialized in a 3D grid of chosen size in the x, y and
z dimensions. The initial positions of the particles inside the volume
of the emitter can be fixed or randomly generated. All particles are
emitted at once.

• Instant Sphere Another basic shape is the fluid sphere. The fluid is
initialized inside a sphere of chosen radius and with fixed or random
positions. Again, all particles are emitted at once.

• Square Flow In order to simulate fluid flows, suitable emitters have
been added. The square emitter spits particles alongside a chosen axis
with a chosen velocity. The particles are initialized on a 2D grid of
chosen size. The emitter keeps emitting particles, recycling particles
that exceed their maximum lifetime.

77

• Circle Flow Similar to the square flow emitter, the circle emitter
differs as it initializes the particles in a circular area. This emitter is
very useful for the simulation of water jets.

Initial dimensions of the fluid

The total volume of the emitted fluid can be specified at start up by inserting
the x,y and z dimensions of the emitter based on the emitter’s shape.

Initial position of the fluid

The position of the emitter can be chosen by the user and defaults to the
origin of the simulation area. Particles belonging to the emitter assume their
origin to be the emitter’s position.

Initial speed of the fluid

The speed of the emitter can be assigned by the user and it is added to all
emitted particles at the start of their lifetime. This value is useful for the
initialization of fluid flows.

Total number of particles

The total number of particles is not chosen directly. The user must decide
on the number class nClass of the simulation that is chosen as an integer in
the range [0, 10] and that sets the resolution of the emitter. Therefore, the
number of particles for the simulation is chosen based on the number class
value and the emitter’s dimensions.

The number class determines Nl, the number of particles assigned to the
minimum dimension of the initial volume of the fluid. The higher nClass
is, the more particles are used, with a consequent decrease in performance
and increase in accuracy and resolution. The total number of particles is
then chosen according to Nl by computing the relative size of the other two
dimensions and setting their assigned number of particles as in the source
code 4.1.

4.1.5 Guided creation: System-imposed parameters
The parameters that are automatically assigned by the system according to
the chosen user parameters are now listed.

78

int getPart ic leNumber (tVector dim , int n , tVector ∗ dimN) {
f loat min = dim . x ;
i f (dim . y < min) min = dim . y ;
i f (dim . z < min) min = dim . z ;
dimN−>x = (n + (n−1)∗(dim . x/min −1)) ;
dimN−>y = (n + (n−1)∗(dim . y/min −1)) ;
dimN−>z = (n + (n−1)∗(dim . z/min −1)) ;
return dimN−>x∗dimN−>y∗dimN−>z ;

}

Source code 4.1: Particle number derived from number class and dimensions

Average number of particles

The average number of particles navg is chosen at startup by the simulator
according to the number class nClass of the emitter in order to increase the
stability of the simulation. This parameter should be the smallest possible
to increase performance, but big enough to provide accurate results. In
the literature there has not yet been a general consensus on an appropriate
number. In the performed tests, a value of navg = 32 has been proven
successful for most simulations, although for better stability in the case of a
small number of particles a different navg for each nClass can be chosen. This
value is still strongly dependent on the problem at hand at may be increased
by the user in order to increase stability at the expanse of performance.

Kernel function smoothing length

With our approach, similar to what has been proposed by Kelager [2006], the
smoothing length h used in the kernel functions is chosen to be the radius of
a sphere so that the average number of particles navg contained inside that
sphere is big enough. By defining the particle number density as N/V , where
V is the total volume of the fluid and N is the total number of particles, we
can find the particles inside a sphere of radius h with the following equation:

navg = N

V

3
4πh

3
a

The smoothing length is then:

ha = 3

√
3V navg
4πN (4.1)

As mentioned previously, navg is the only user-chosen quantity and it depends
on the problem at hand.

79

Variable smoothing length

As noted by several authors, the smoothing length can be varied at each time
step in order to increase the accuracy of the simulation. For this purpose, the
smoothing length is chosen dynamically for each particle so that the number
of nearby particles is constant. This is achieved by varying the smoothing
length of a particle ha from the fluid’s base smoothing length h according to
the relation of the density of the particle ρa to its rest density ρ0:

ha = h

√
ρ0

ρa
(4.2)

Particle mass

The mass of a single particle in an emitter is constant and chosen at the
initialization phase. It is determined by the volume V , the rest density ρ0 of
the fluid and by the total number of particles N :

ma = V ρ0

N

As a consequence, the total mass of the fluid can be found by multiplying
the singular mass of a particle for the total number of particles. Since the
mass is always constant in a single emitter, it could be removed from the
summations in the equations, but since different fluids with different masses
can interact in this implementation, it must be left inside.

Life

The life of a particle, that is its individual time since birth in the simulation,
is useful for determining when to dispose of it and for rendering purposes.
As such, it is saved in memory for each particle. The maximum life of all
particles in an emitter can be imposed by the user for any emitter, but since
it is used as the threshold for recycling of particles in fluid flow emitters, it is
automatically initialized in that case at the best value in order to limit the
total number of particles in the scene. An emitter having a maximum life
set to zero will not destroy emitted particles.

Fixed inter-particle initial distance

According to the chosen emitter type, the initial position of each particle in
the emitter is imposed. A fixed position algorithm allows the simulator to
determine a suitable initial fixed distance between each pair of particles. By

80

choosing this method instead of randomly placing the particles inside the
volume, the accuracy and the stability of the simulation can greatly increase
(Monaghan [1992]).

Since the total number of particles, the volume and the rest density of
the fluid are user-chosen and the smoothing length is assigned according to
their values, we impose a fixed start distance based on the geometry of the
emitter and these parameters. Because of this, however, the particles may
initially be too close and create strong pressures. It has been observed that
if this happens the simulation can break.

In order to solve this problem, the user can still increase the average
number of particles navg, thus increasing the smoothing length and damping
the effect of initialization instabilities. However, this decreases performance.

Another option is to instead initialize the fixed distance as a factor of the
smoothing length, thus allowing particles to reach rest density with ease. We
have observed that a suitable factor is in the range [0.8, 0.9] h, as this means
that particles need to only pull a few other particles to reach rest density,
resulting in a small compression of the initial fluid volume.

4.1.6 Guided creation: Extensions
Additional extensions to the creation phase have been implemented, based
on our simulation needs.

Relaxation phase

The fluid can be initialized through a relaxation phase in which the fluid is
allowed to move freely with greatly increased viscosity in order to reach a
more stable situation.

Our algorithm updates the simulation without actually advancing the
time step, as if the fluid was the only thing not frozen in time. No gravity
force is added and the viscosity coefficient is greatly increased. The real
simulation begins when the maximum velocity of any particle in the fluid is
less than a given threshold for at least three simulation steps.

Inlet flow

Adapted from the work of Lastiwka et al. [2008], an inflow area has been
implemented. This initialization area provides a more stable start for the
simulation of inlet flows, such as in the case of our water jet simulation (see
chapter 5). By providing a permeable interface with equally spaced particles,
the particles are less affected by spurious surface tension and instabilities at

81

their birth, since the number of particles for the interaction would be too
small otherwise.

This has been implemented by creating an inlet volume with section equal
to the spawning section and length equal to four times the smoothing length
of the fluid in order to provide enough particles. All particles are born inside
this area and travel in the direction of the speed of the flow. All properties
of the particles are computed but forces, so that the particle motion is com-
pletely kinematic. When any particle reaches its real birth position (that is,
it has traveled for the length of the inlet area), standard computations are
resumed for that particle.

4.2 Algorithms
The algorithms created for the simulator are here presented. The parallel
code shares many solutions in its implementation with the serial code, so in
this section the focus is on the CPU serial code.

4.2.1 Main algorithm
The main algorithm performs the initialization phase and the simulation
loop.

Initialization

The first step is context initialization using the SDL routines. This phase
creates the window in which the simulation takes form and manages the event
listeners for user inputs.

Both CPU and GPU code make use of the OpenGL graphic libraries for
rendering. The initialization phase takes also care of the OpenGL scene cre-
ation, assigning lights, enabling OpenGL states and configuring the viewport
and camera matrices.

At last, the SPH system is initialized by adding emitters in the scene,
setting non-default parameters such as a different equation of state or dif-
ferent integration algorithms, setting the chosen boundaries, setting display
modes and choosing the physical time step.

Main loop

The main loop consists of two separately timed phases: the simulation step
and the rendering step.

82

The rendering step is performed at each render time step, which is at
default computed every 0.02 seconds of the physical simulation (drawing 50
frames per seconds), during which the program draws the scene. All the
emitters, the rigid bodies and the boundary are drawn at once.

The simulation step is performed at each physical time step and consists
of different phases, based on the options and parameters chosen at start up.
All the following steps are performed for all emitters in the system:

1. All particles are loaded into their neighbor cells (see section 4.2.2).

2. Before-step integration updates are performed and particles are ad-
vanced to their partial positions.

3. Physical SPH computations are performed, resulting in forces for the
current time step being evaluated. Based on each emitter’s parameters,
some of the computations can be avoided.

4. After-step integration updates are performed and particles are ad-
vanced to their final positions.

5. The collisions between fluid particles and boundaries and rigid bodies
are computed and particles are repositioned accordingly.

6. Rigid body positions are updated.

4.2.2 Neighbor lists
Since each particle is supposed to interact with every other particle inside
the fluid, the basic approach would be to use a brute force algorithm, which
would be in the order of O(N2) where N is the total number of particles
of the simulation. Since the number of particles is supposed to be high, the
computational cost would become unsustainable, especially for an interactive
environment.

Instead, by making sure that the kernels have finite support as in equation
2.4, we can only compute the interactions between each pair particles and
its close neighbors. By taking an average number of neighbors navg, the
algorithms become of the order O(N · navg), which provides a great increase
in performance.

In order to achieve a very high performance and to take advantage of the
peculiarities of a SPH formulation, neighbor lists have thus been introduced.
The idea behind a neighbor list is that if we divide the simulation volume
in a grid of correctly-sized cells, when computing the properties of particle
a, we have to check only the particles inside the particle’s corresponding cell

83

and in the surrounding cells. In 2D, this means 9 cells and in 3D this means
27 cells. If the cell size is chosen accordingly, a given cell contains only a
fraction of the total particles of the simulation, the neighboring navg particles
at average.

Since all kernel functions we have chosen to implement drop off above
the smoothing length h, The cell size is chosen as h itself. This allows any
particle to find all neighboring particles in a radius of h.

Figure 4.2: Neighboring particles and the cells that are checked for a 2D
simulation

Algorithm

The algorithm we have developed for the neighbor list is based on three
phases: the initialization, the loading and the finding phase. All of this is
contained in a suitable class called NeighbourList.

In the initialization phase, performed once at the start of the simulation,
the three-dimensional grid is created with a chosen cell size, dependent on
the global smoothing length of the system, and with a chosen cell number.
By increasing the cell number a higher performance can be achieved at the
expanse of memory occupancy.

In the loading phase, performed at the start of each simulation step, the
corresponding cell for all particles is found, arranging them with a linked
list for each cell. The corresponding cell is found according to the particle’s
position thanks to the source code 4.2, which clamps the position of the par-
ticle around the grid size. Because of this, the simulation volume is virtually
infinite. However, there is a drawback as particles in very distant positions
could belong to the same cell. This is not a problem for the SPH compu-
tations as their distance would be way too big for the particles to interact,
but it could impede performance if the cell number is not high enough. For
our simulations, a cell number of 323 has been chosen, which has proved
successful.

84

int NeighbourList : : f i n dCe l l (t P a r t i c l e ∗ pt) {
int posx = ((int) (pt−>pos . x/(CELL_RES∗h))% N_CELLS) ;
i f (pt−>pos . x < 0) posx += N_CELLS−1;
int posy = ((int) (pt−>pos . y/(CELL_RES∗h))% N_CELLS) ;
i f (pt−>pos . y < 0) posy += N_CELLS−1;
int posz = ((int) (pt−>pos . z /(CELL_RES∗h))% N_CELLS) ;
i f (pt−>pos . z < 0) posz += N_CELLS−1;
return posx + posy ∗ N_CELLS + posz ∗ N_CELLS ∗ N_CELLS;

}

Source code 4.2: Function for finding the appropriate cell given a particle

In the neighbor find phase, which is performed at each SPH computation
for all particles, each particle checks which cell it belongs to according to the
above code, then retrieves a list of all neighbor cells. During the following
computations it then checks the interactions with the particles belonging to
the 27 neighbor cells and no more. The functions for the neighbor find phase
are shown in the source code 4.3.

4.2.3 Kernel functions
All kernels are contained in the SPHKernel class. This class provides an
interface for the computation of kernel values according to the chosen kernel
shape. All the kernel functions proposed in section 2.4 have been imple-
mented apart from the cubic spline and Gaussian kernel, in order to impose
a cut-off value equal to the smoothing length for all calls.

For the computation of kernels, two modes are available: pre-computed
or real-time. By using the pre-computed kernel mode, all calculations for the
various kernel functions are done in advance at the start of the simulation
and the results are stored in arrays of fixed size. Whenever a kernel value is
needed, a simple access is performed. The advantage of this approach is in
performance, as additional computations are avoided during the simulation.
The disadvantage lies in the greater memory needs and, most importantly,
in the impossibility to change the smoothing length. Another implemented
variant of the pre-computed mode uses hashed tables for the kernel value
access phase. This avoids the necessity of computing the distance between
particles at each look-up for those kernels, such as with the Poly6 kernel
function (2.44) that needs just the squared distance. With the real-time
kernel mode, on the contrary, all calculations are done at each kernel value
look-up. This can hinder performance if smoothing kernel functions are not
chosen accordingly. However, due to the possibility for variable smoothing
lengths and how this can increase performance, in addition to the necessity of

85

void NeighbourList : : f indNeighbours (tP a r t i c l e ∗ pt , int ne ighs []) {
int i = f i n dCe l l (pt) ;
int n1 [9] , n2 [9] , n3 [9] ;
f indNeighboursZ (i−(N_CELLS∗N_CELLS∗(N_CELLS−1))>=0 ? i−(

N_CELLS∗N_CELLS∗(N_CELLS−1)) : i+N_CELLS∗N_CELLS, n1) ;
f indNeighboursZ (i , n2) ;
f indNeighboursZ (i−N_CELLS∗N_CELLS<0 ? N_CELLS∗N_CELLS∗(

N_CELLS−1)+i : i−N_CELLS∗N_CELLS, n3) ;
for (int i i = 0 ; i i < 9 ; i i ++){

ne ighs [i i] = n1 [i i] ;
ne ighs [i i +9] = n2 [i i] ;
ne ighs [i i +18] = n3 [i i] ; }

}
// Finds the ne ighbours at a cons tant y
void NeighbourList : : f indNeighboursY (int i , int ne ighs []) {

ne ighs [0] = i%N_CELLS == 0 ? i−1+N_CELLS : i −1;
ne ighs [1] = i ;
ne ighs [2] = i%N_CELLS == N_CELLS−1 ? i+1−N_CELLS : i +1;

}

// Finds the ne ighbours at a cons tant z
void NeighbourList : : f indNeighboursZ (int i , int ne ighs []) {

int n1 [3] , n2 [3] , n3 [3] ;
f indNeighboursY (i%(N_CELLS∗N_CELLS)−(N_CELLS∗(N_CELLS−1))>=0

? i−(N_CELLS∗(N_CELLS−1)) : i+N_CELLS, n1) ;
f indNeighboursY (i , n2) ;
f indNeighboursY (i%(N_CELLS∗N_CELLS)−N_CELLS<0 ? N_CELLS∗(

N_CELLS−1)+i : i−N_CELLS, n3) ;
for (int i i = 0 ; i i < 3 ; i i ++){

ne ighs [i i] = n1 [i i] ;
ne ighs [i i +3] = n2 [i i] ;
ne ighs [i i +6] = n3 [i i] ;

}
}

Source code 4.3: Functions for finding the neighbor cells given a particle

simulating different fluids with different smoothing lengths, we have decided
to settle for this solution.

An API for easy access to the kernel functions has been developed. All
kernel values look-ups are performed through the use of three functions:
getKernel, getKernelGrad and getKernelLapl, corresponding to the base ker-
nel, its gradient and its Laplacian. The user needs only to call the correspond-
ing function using as parameters the KernelType enumeration constant which
determines the chosen kernel shape, the two particles interacting (or their
distance) and the smoothing length.

86

In addition, default kernels are imposed by the simulator if none is spec-
ified. These kernels follow the considerations discussed in section 2.4.

4.2.4 Rigid bodies
In our implementation, all rigid bodies extend the RigidBody class and are
created by defining their shape, position and mass. As discussed in section
3.5, the implementation is based on a quasi-fluid approach. The initialization
phase creates the rigid particles inside the rigid body, positioning them on
three layers as seen in figure 4.3. The parameters are then assigned to each
rigid particle. The rigid body total inertia I is computed according to the
rigid particles’s position.

Figure 4.3: Quasi-fluid rigid bodies: particle position

The algorithm for the evolution of the rigid body dynamics is reported
here as implemented in the work related to this thesis.

In the algorithm, vR, xR, ωR and θR are respectively the linear velocity,
position, angular velocity and angle of rotation of the center of mass of the
rigid body. Fext and Text are the total external force and torque acting on the
body and MR and IR are its total mass and rotational inertia. N is the total
number of particles inside the rigid body and bi is the lever arm of particle
i, which is basically xi − xR. The algorithm is as follows:

• Gather external forces (i.e. gravity)

• Apply forces to the whole body and derive temporary cinematic prop-
erties

v′R = (g + Fext
MR

)∆t+ vtR

x′R = v′R∆t+ xtR

87

ω′R = Text
IR

∆t+ ωtR

θ′R = ω′R∆t+ θtR

• Reflect the rigid motion on each rigid body particle i

v′i = v′R + bti × ω′R

b′i = bti + (bti × ω′R)∆t

x′i = x′R + b′i

• Apply local forces to particles during the SPH computations and up-
date the local velocities (with j indicating another particle)

v′′i =
∑
j

f(i, j)
ρi

• Compute the linear and angular speed of the whole rigid body

vt+1
R =

∑
miv

′′
i

MR

= m̄
∑
v′′i

MR

=
∑
v′′i
N

ωt+1
R = I−1

R

∑
b′i ×miv

′′
i

• Compute the final position and angle of the whole rigid body

xt+1
R = vt+1

R ∆t+ xtR

θt+1
R = ωt+1

R ∆t+ θt+1
R

4.3 Rendering
The rendering aspect of the simulation has been considered in this work,
although with a lower priority than the interactive and physical aspects.
Our aim is achieving real-time and realistic rendering of different fluids with
various degrees of verisimilitude.

4.3.1 Known methods
Particle systems have been used for many years in computer graphics and
many techniques have been created for their visualization. Some useful tech-
niques are reviewed here and their features are detailed. The problem of

88

particle system rendering lies in their meshless nature and thus the lack of a
proper surface. Because of this, the rendering methods must usually find a
way to reconstruct the surface.

Billboards

A first simple method, used even in the first particle systems in the work of
Reeves [1983], places billboarded textures at particle positions. Billboarded
textures are small two-dimensional images that are always oriented towards
the viewer. This method is useful for smoke or flame rendering, especially
when paired with a color value for each particle that varies with the heat of
the particle, but results are poor for liquid rendering.

Marching cubes

Created by Lorensen and Cline [1987], the marching cube algorithm is a
method for 3D surface reconstruction that creates a triangle-based mesh
from a set of voxel data. This method is widely used in the rendering of
Eulerian grid based fluid simulations, as the fixed spatial grid renders the
method easy to implement. The basis of this algorithm is a list of graphical
primitives which are selected by using the data around a single voxel. These
primitives, when combined together, form a continuous surface.

With non-grid based methods the algorithm can still be used, such as in
the case of meta balls rendering (Bourke [1997]). The algorithm can thus
be used for meshless models, such as with SPH and particle systems, and
renders a dense fluid-like material. However, this can be computationally
costly in respect to more advanced methods.

Screen space meshes

A more recent and advanced method, useful for achieving real-time render-
ing, has been proposed by Müller et al. [2007]. The idea behind the screen
space meshes method, as the name implies, is to render only the visible
shape resulting from the cloud of points, thus limiting its use to single-view
rendering.

Using this method, an initial depth map and silhouette is created in
screen space, creating a 2D triangle mesh. The result is then transformed
back in 3D space for additional rendering computations, such as refractions
and lighting.

This method achieves a good effect for liquids without the costly op-
erations involved in a marching cubes algorithm and it has been recently

89

extended in order to increase its realism in the work of van der Laan et al.
[2009].

4.3.2 Implementation
Since our simulator has been created with testing in mind, particle render-
ing is given a visual aid purpose. However, additional methods could be
implemented upon the existing system.

Render modes

Different render modes have been implemented. With the use of a keyboard
shortcut the various modes can be toggled. All choices are contained in the
RenderType enumerator.

• Points
The particles are shown as small points. This display mode achieves
great performance at the expanse of the loss of depth. This mode is
not suited for realistic rendering.

• Aliased lines
The particles are shown as small aliased lines, drawn in their direc-
tion of travel according to their speed. This mode is useful for the
visualization of fast motion and for the visual rendering of sparks.

• Vectors
All particles are shown as a point and a vector pointing in a cho-
sen direction. This display mode is useful for the visualization of the
properties of a fluid as vector fields. Different values can be chosen
as vectors: speed, pressure force, viscosity force, surface tension and
surface normal.

• Quad
This fast display mode shows all particles as small squares. This mode
retains most of the performance of point visualization and adds depth
as the square size changes according to particles position.

• Billboard
This display mode renders all particles as billboarded sprites. An image
can be loaded into the simulator and is rendered as a small square
with transparency. Color hue change is supported. This method is

90

widely used in particle systems. The visual effect is good for fire and
smoke rendering, (Foster and Metaxas [1997]), but it looks unnatural
for liquids.

• Sphere

This display mode is the slowest among those implemented by us but
it is also the most visually appealing. It renders all particles as small
spheres. The GPU code improves this visualization mode by making
use of a smooth sphere particle shader and virtual buffer objects (Green
[2010]).

Particle colors

The color of individual particles in an emitter can be chosen by the user
as fixed or as a function of a particular parameter. The different choices
available are useful for the visual evaluation of the fluid’s properties. The
possible choices are available in the ColorType enumerator as follows:

• Preset

A preset color can be assigned to all particles of an emitter. This is
useful for the visualization of multiple fluid interactions.

• Life

The color of the particles can be chosen as a function of their lifetime.
This can be useful for the rendering of flames or smoke, with particle
color fading to black as the particles reach their maximum life. Both a
start and end color can be chosen and the color is interpolated between
the two.

• Density

Color can be based on density, with above rest-density particles having
a strong red hue and below rest-density particles having a light blue
color. This can be useful for the visualization of fluid compressibility.

• Speed

Color can be based on speed, with faster particles having a yellow
hue and slower ones having a blue shade. This can be useful for the
visualization of the velocity gradient of the fluid.

91

• Neighbor Cells
The color of the particles can be based on their assigned neighbor cell.
This is useful for the visualization of neighbor cells position in the 3D
grid.

• Normal
The color of a particle is chosen as red if it is on the surface of the fluid,
blue otherwise. This is useful for surface reconstruction.

Figure 4.4: Fluid rendered with its surface normals and surface particles
marked as red

Rigid bodies and boundary rendering

In this work, various display modes have been developed for rigid body and
boundary rendering, again with a focus on performance and testing. The
different choices can be found in the RigidRenderType enumerator.

• Solid
This display mode renders the body shape with a solid user-defined
color, with computed normals for lighting. It is a simple and effective
method for realistic rendering. Transparency is also supported.

• Wireframe
Useful for boundary rendering, the wireframe display mode shows only
the edges of the body, allowing the user to see the fluid inside or other
elements behind it.

92

• Point
All rigid bodies are rendered as clouds of points, corresponding to the
fixed body particles. This mode is useful for analyzing the interactions
between solid and fluid particles. The center of mass is given a red hue.

• Velocity
All particles are shown as lines pointing towards their direction of
travel, with magnitude tied to their speed. This display mode is useful
for analyzing solid and fluid interactions.

4.4 Parallelization
The SPH model proposed and implemented thus far can be used to achieve
good performance, with a simple SPH model containing a few hundreds parti-
cles achieving real-time frame rates. However, for more complex and accurate
simulations, a few hundreds of particles are not enough and, as has been al-
ready discussed, a more complex model is needed for realistic simulations,
which requires additional computations.

In order to achieve interactive frame rates for a complex model, the trend
in the recent years has been to focus on parallelization, that is the use of a
Graphic Processor Unit (GPU) for the implementation of the model.

A modern GPU has a very different architecture compared to Central Pro-
cessing Units (CPU). Since the purpose of a CPU is the serial computation
of simple binary operations, its classic architecture sports many registers (for
memory usage), a Control Unit, a few Arithmetic and Logical Units (ALU),
several buses for data transfer and a fast cache for data memorization. On
contrast, a GPU consists of many parallel ALUs, each with its own register,
while the control and local memory parts are given less importance, because
it is designed for highly parallel computation, exactly what graphics render-
ing is about.

Thanks to its peculiar architecture, the GPU can and has been used as a
parallel machine, with hundreds or thousands of threads running at the same
time on the chip, while a CPU can only sustain one at a time (or, with re-
cent multi-core CPUs, up to four). A great range of problems can be solved
with a parallel approach instead of a serial one with a terrific increase in
performance and this is why interest on GPU computing has grown increas-
ingly for many different fields, not only in the graphic industry, but even for
chemistry, mathematics and physics, spanning a few new programming en-
vironments and extensions to classic programming languages. Among these
environments, the Compute Unified Device Architecture (CUDA), property

93

(a) CPU (b) GPU

Figure 4.5: Architecture differences as explained in the NVIDIA CUDA Pro-
gramming Guide

of NVIDIA, is at this moment the most used and most supported architec-
ture.

4.4.1 CUDA basics
CUDA allows a programmer to use extensions for common programming lan-
guages, originally for C, in order to take advantage of the GPU’s processing
power. Due to the fast-growing power of GPUs, CUDA has been designed
with a scalable programming model in mind, which allows parallel programs
to scale their performance with the number of processors the assigned device
is equipped with. The model that allows all of this is based on thread group-
ing. A fixed number of threads are grouped into a block and many blocks
are allocated to a single processor in the device. The hardware underneath
makes sure to distribute the blocks according to its architecture, while the
programmer only has to designate the dimensions of the grid of blocks and
of the single blocks.

Both the grid and block dimensions can be defined in one, two or three
dimensions, in order to mimic the domain of the problem at hand. For our
3D simulation problem, this has been taken into account.

Kernels

Using CUDA, the programmer is able to write GPU code alongside CPU
code, mixing serial and parallel code effectively. Due to this, the parallel
(GPU) code can be used as an extension to already existing serial (CPU)
code. Serial code is contained in host functions, while parallel code must be
executed in kernel functions. Kernel functions are defined by the declaration
specifier _global_ and by the dimensions of the grid and blocks, which

94

Figure 4.6: CUDA execution model

determine the number of parallel threads, as shown in the example source
code 4.4. Kernel functions are imposed to have a void return type.

__global__ void kerne lFunct ion (int param) {
// P a r a l l e l code

}

int main () {
// S e r i a l code
. . .
// Kernel invoca t i on
kerne lFunct ion<<< gridDim , blockDim >>>(param) ;

}

Source code 4.4: Example CUDA kernel launch

The programmer can also specify routines that can only be called by
parallel code with the specifier _device_.

Threads

When a kernel is invoked, all threads execute in parallel the instructions
included in the kernel function. All threads can access the dimensions of the
grid and the block as well as the position of the block inside the grid and
the position of the thread inside the block. This information can be accessed
thanks to the variables gridDim, blockDim, blockIdx and threadIdx. As
such, an unique thread identifier can be computed as seen in the source code
4.5.

95

__device__ getThreadUniqueId () {
return threadIdx . x + blockDim . x∗ threadIdx . y + blockDim . x
∗blockDim . y∗ threadIdx . z .

}

Source code 4.5: Unique thread identifier in CUDA

Memory

Memory hierarchy must be taken into account carefully when working with
parallel code, since the memory available on the GPU device is often limited
and subject to additional restrictions.

NVIDIA devices have different memories available with different sizes
and scopes. The CUDA programmer must fully understand the differences
among the different memory types in order to take advantage of parallel
computation effectively, as memory usage can be a potential bottleneck if
not properly approached.

• Global Memory
Global memory resides on the device and can be accessed by all kernel
threads. It is slower but has a greater capacity than other memories.
Global memory must be allocated prior to the kernel launch using the
dedicated CUDA allocation functions. Since global memory is linear,
particular care must be taken as threads computing in parallel should
access different and subsequent memory addresses in groups of 16, 32 or
64 bytes in order to assure a coalescing behavior. If this does not hap-
pen, memory accesses is automatically serialized and this can greatly
impede performance, neglecting the advantages of parallelism. Note
that newer devices of computational capability 2.0 or higher, such as
the GTX480 we use for our simulations which sports a NVIDIA Fermi
architecture, greatly reduce these requirements.

• Shared Memory
Shared memory is accessed by all the threads in a single block. This
memory is smaller but has lower latency than global memory and the
opportunity to replace global memory with shared memory should be
taken where possible.

• Local Memory
Each thread has a private fast local memory area which is quite small.
Care must be taken as memory exceeding the local memory constraints
overflows to global memory.

96

• Constant Memory
Constant memory is really fast but it can be written only by host code
and therefore parallel threads can only read it. It is useful for storing
parameters that must be accessed by all threads and that do not vary
during kernel launches. However, constant memory still presents some
issues, such as its context scope which obliges the programmer to put
all calls to constant memory in the same file.

• Texture Memory
Texture memory works similarly to constant memory, but it is opti-
mized for two-dimensional access and thus is better used for 2D do-
mains.

Warps

In addition to the global memory’s constraints, special care must be taken
on per-thread memory access and execution. Threads are grouped in warps
of 32 and each warp executes independently in a block. Because of this, all
32 threads execute in parallel inside a single multiprocessor and their execu-
tion should be convergent. If threads diverge, as in the case of improperly
balanced conditionals, a performance loss could be noticed.

Compiling

CUDA code must be put into .cu files, which are extensions of simple .c files
in which CUDA routines can be called and the extension’s identifiers are
supported. The CUDA Toolkit comes with a compiler called NVCC that
can compile .cu files. The compiler however calls the C or C++ compilers
when used on .c or .cpp files, allowing the programmer to mix the different
extensions. In order to take advantage of the compute capability 2.0 features,
the option −gencodearch = compute_20, code = sm_20 must be used when
compiling.

4.4.2 Parallel SPH implementation
A parallel version of our SPH model has been implemented in order to take
advantage of the huge performance benefits that a GPU can provide. The
model is based on a simple version of what has been discussed in the previous
chapters, but it could be extended to incorporate all solutions that have been
provided. In the simple model only the variations that have been observed
to behave more correctly for the system have been implemented.

97

For the parallel code, the implementation of the SPH system has been
rewritten in C++, C and CUDA. The window and input management is
provided by Xlib while the graphical aspects are still coded using OpenGL.
We also took advantage of the CUDA-OpenGL interoperability.

This work is based on the Particles demo available in the CUDA Software
Development Kit (SDK). The implementation follows the work of Green
[2010] and expands on the ideas presented in the document.

Initialization

The initialization phase is similar to the CPU code (see section 4.2.1), but
an additional step is done in order to initialize the CUDA context and the
interoperability between CUDA and OpenGL.

In addition, during the initialization phase of the SPH system, arrays
are allocated for particle positions, velocities and their physical parameters.
Much like Green [2010] does, the position and velocity values for each particle
are saved in a groups of four floats, which means 32 bytes, in order to assure
coalescing (see 4.4.1). The parameters of the simulation are allocated in an
array of floats both in global host and device memory.

For better performance, constant memory should be used, but the con-
straints on the coding of constant memory declarations contrast with the
need for different classes and files in order to increase the usability of the
code. As such, we have preferred to use global memory.

Block dimensions are imposed as 8*8*8, with a total of 512 threads per
block, half of the maximum possible but chosen as to allow symmetry along-
side the three axes. The grid dimensions are based on the total number of
particles and their initial position, dividing the number of particles per length
by the block’s length, effectively taking advantage of the three-dimensional
domain of the problem.

Two of the emitter types discussed in the previous chapters have been
implemented: the fluid box and the square fluid flow. Both take advantage
of the three-dimensional block and grid dimensions. The fluid box emitter is
initialized with the source code 4.6.

pos . x = threadId . x ∗ d ;
pos . y = threadId . y ∗ d ;
pos . z = threadId . z ∗ d ;

Source code 4.6: CUDA fluid box initialization

The fluid flow emitter is initialized with the modified algorithm, as can
be seen in the source code 4.7. In this case, each particle is given a lifetime

98

value and is emitted at periodic times in a two-dimensional section.

pos . x = threadId . x ∗ d ;
pos . y = threadId . y ∗ d ;
pos . z = 0 ;

Source code 4.7: CUDA square fluid flow initialization

Main algorithm

The main loop of section 4.2.1 is extended with parallel code. At the be-
ginning of each step the parameters are updated in device memory with a
memory set call, then the update routine is launched.

The update routine launches a subsequent kernel for each needed SPH
step, with one thread per particle. The usage of many different kernels
is needed for thread synchronization, as the kernel functions contain loops
regarding neighboring particles, whose number is variable for each particle.
This gives birth to thread divergence and even calls to the_synchthreads()
routine, which should synchronize all threads in a kernel, does not suffice.

After each kernel launch, errors are checked with a suitable function and
the serial and parallel code is synchronized. This allows the program to wait
for the kernels to finish before advancing to the next step.

All particle kernels share the same base implementation, which can be
summarized in the example kernel launch in the source code 4.8. C wrappers
are used so that CUDA functions can be called by C++ code and our utility
functions.

The following kernels are therefore launched in succession:

• Emission

Particles are emitted at each time step according to the period of emis-
sion and the shape of the emitter. In the case of the fluid box emitter,
this happens once at the first step. In the case of the fluid flow emitter,
the particles are emitted periodically.

• Neighbor search

The neighbor search is based on an uniform grid implementation and
provides each particle with an array of neighboring particle indexes to
be used in the following steps.

99

__global__ void doSomethingForEachPartic le (
f loat ∗ posArray ,
f loat ∗ velArray ,
devParams) {

u int index = getGlobal Index () ;
i f (checkEmiss ion (index , devParams)) return ; // Check i f

the p a r t i c l e i s emi t ted

// Get p a r t i c l e va l u e s from the g l o b a l arrays
f l o a t 4 pos = posArray [index] ;

// Do something to the p a r t i c l e
. . .

// Write back to the g l o b a l arrays
posArray [index] = pos ;

}

extern "C"{
void cuDoSomething (

f loat ∗ pos ,
f loat ∗ vel ,
f loat ∗ hostParams ,
f loat ∗ devParams) {

dim3 block = getB lockS i ze (hostParams) ;
dim3 gr id = getGr idS i ze (hostParams) ;

doSomethingForEachParticle<<<grid , block>>>(
(f l o a t 4 ∗) pos ,
(f l o a t 4 ∗) ve l ,
devParams) ;

cuCheckLastError ("DoSomething") ;
cuSync () ; // For host−k e rne l s ynchron i za t i on

}
}

Source code 4.8: Example complete CUDA kernel launch

100

• Integration - Before Step
The before-step update of the integration scheme is advanced using the
Modified Velocity Verlet integration algorithm, chosen as explained in
section 2.3.1.

• Density and Pressure
For each particle, its density is computed using the standard density
summation approach (equation 2.10), using the neighboring indexes
provided by the neighbor search step. Since pressure is independent
for each particle, we also compute it for each particle according to
Tait’s equation of state (2.15). Density and pressure values are stored
in arrays in global memory. The near-pressure correction of tensile
instability as explained in section 3.1 has been also implemented.

• Viscosity and Pressure Forces
Viscosity and pressure forces are computed in a single pass using Müller’s
SPH equations. Forces are stored in global memory.

• Integration - After Step
The after-step update of the integration scheme is advanced using the
Modified Velocity Verlet integration algorithm, chosen as explained in
section 2.3.1.

• Boundary Collisions
Boundary collisions with the boundary box are checked. For the simple
system, the penalty approach as discussed in section 3.5.1 has been
chosen due to the presence of a single phase and since the high number
of particles diminishes interface problems. Dimensions and bounce and
slip factors can be assigned.

• Life Check
At last, in the case of timed particles, those particles whose life has
ended are removed or respawned if needed.

Parallel neighbor list

The neighbor list is created with an uniform grid implementation as suggested
by Green [2010]. A two-dimensional array of grid cells gridCells, that contain
the particles, and an array of grid cell counters gridCellCounters, that store
the number of particles for each cell, are saved in global memory. A kernel
for parallel neighbor list creation is launched. Each particle finds the index

101

of the cell it belongs to with the same algorithm used in CPU code, then
places itself in the cell’s list and increases the cell counter. The uniform grid
approach is extended in this work with an infinite grid.

By taking advantage of CUDA’s atomic operations, available on devices of
compute capability 2.0, the cell counter can be increased independently from
other particles, although this could lead to serialization when many particles
are added to the same cell. However, since each cell usually contains a small
number of particles, the uniform grid has been observed as being good enough
for our purpose.

The big difference from the CPU code (see section 4.2.2) lies in the static
nature of this implementation since dynamic linked lists are replaced by static
arrays. As such, the maximum number of cells and the maximum number of
particles for each cell must be correctly assigned.

Rendering

CUDA provides the programmer with a series of functions that guarantee
the interoperability with OpenGL on the same GPU device. Since both
environments operate on the graphics processor, if care is not taken, their
interaction could lead to improper memory accesses.

A Virtual Buffer Object (VBO) can be mapped to either the CUDA or
OpenGL context. This allows the programmer to switch between the parallel
operations and rendering with ease. Because of this, the particle position
array is stored as a VBO and we map it to CUDA when performing parallel
computations and to OpenGL when rendering directly from the VBO.

In addition, a VBO is mapped for the color property of each particle in
order to render the color values directly from it. Different color gradients can
be chosen for each simulation, based on the life, density or velocity magnitude
of particles, and are assigned with a suitable kernel launch.

The example shader contained in the CUDA SDK’s particles demo is used
(Green [2010]). Rendering is possible as points or as shaded spheres.

Once again, a function for screen saving has been added, that uses the
Cairo libraries for image manipulation and saving. (see Cairo [2010]).

Utilities

For ease of use, a set of function wrappers written in C has been implemented
so that the use of CUDA routines from C++ code is made possible. The
utility functions allow the programmer to allocate, set, copy, print and free
device memory, map and unmap VBOs, check for memory info usage and
handle errors. In addition, our utilities include vector operations as exten-

102

sions of the CUDA SDK examples and of our own tVector class used in the
serial code.

4.5 Conclusions
In this chapter, the implementation of our SPH model is presented. Exten-
sions and optimizations created in order to increase the performance and
versatility of our SPH simulator are detailed.

In section 4.1, the implemented SPH simulator and the guided creation
phase, which allows the system to automatically compute most of the critical
parameters of the simulation, are explained in detail.

In section 4.2, the algorithms used for the creation or optimization of our
SPH simulator are explained.

In section 4.3, the final rendering of the fluid is addressed, discussing known
approaches and presenting the rendering options of our SPH simulator.

In section 4.4, a parallel implementation of the SPH model on a GPU
device is presented, in order to greatly increase the performance of the sim-
ulation.

103

Chapter 5

Experimental results

The proposed SPH model has been validated on a test case that has been
provided by domain experts: the water jet test case. In this chapter, the re-
sults of this validation are presented. In addition, several tests are performed
in order to highlight the versatility of the SPH model. The performance gain
of the GPU implementation over the CPU implementation is reported.

5.1 The water jet test
The water jet test case involves the formation of a small hole in a tank filled
with water, a possible fault appearing in chemical plants. At the beginning
of the test, the tank is filled with water up to a height hmax, then, a hole
of chosen radius rhole is created at an assigned height hhole. Water flows at
constant speed v out of the hole until there is no more liquid, creating a jet
that travels up to a maximum range xrange, where it touches the ground. A
representation of the test is shown in figure 5.1.

For this test, we are interested in simulating with our SPH model the
water jet trajectory and its section with accuracy. In order to validate our
SPH model, we compared its results to the data gathered from the AXIM
model, that is an analytical and physically realistic model of a water jet
(Brambilla and Manca [2009a], Brambilla and Manca [2009b]).

5.1.1 AXIM fluid jet model
Data regarding the water jet test case has been gathered using the AXIM fluid
jet model. The model is adapted from the work of Clark [1988] and it is based
on a mathematical representation of the physics of a jet of liquid, providing
accurate analytical solutions for trajectory, velocity and jet radius evolution.

104

Figure 5.1: Water jet test case

The model has also been validated by Brambilla and Manca [2009a] with
experimental data.

Using the AXIM model, the liquid has been initialized with the parame-
ters of pure water at a temperature of 25 ◦C, with a density of 1000.0 kg/m3,
a dynamic viscosity coefficient of 8.9 · 10−4 Pa · s and a surface tension coef-
ficient of 72.8 mN/m. The water tank is placed on the ground and filled to
a height of hmax = 6.5 m, with a hole of radius rhole = 0.1 m positioned at
hhole = 3.5 m from the ground. The axis of the hole is parallel to the ground.
The water is subject on the free surface and at the hole to the atmospheric
pressure (101325 Pa), while the coefficient of discharge of the hole is set to
0.61.

Using these parameters, the speed of the water flow from the hole, com-
puted using the AXIM model, is 4.76 m/s. The range of the water jet is
xrange = 3.97 m, that is the distance alongside the x-axis from the hole to
the point at which the water is assumed to hit the ground.

The model is used to compute the analytical trajectory of the water jet,
as shown in figure 5.2. In the plot, y is the jet height from the ground and
x is the range of the jet, both measured in meters.

The model is also used to compute the analytical section of the water jet
alongside its whole trajectory, with a methodology derived from the work of
Mashayek et al. [2008]. The data is shown in figure 5.3. In the plot, y is the
dimension of the water jet section (or, more accurately, half of the section,
because it is assumed to be symmetric) alongside the y-axis measured in
meters and t is the time in seconds at which the section is evaluated alongside
the fluid’s trajectory.

105

Figure 5.2: Water jet trajectory computed using the AXIM model

Figure 5.3: Water jet section computed using the AXIM model

5.1.2 SPH simulation of the water jet test

Our SPH simulator has been applied to reproduce the water jet test case and
the results are compared with the data gathered from the AXIM model. The
test is performed using the CPU code.

A circle flow emitter is created at the position (0.0, 3.5, 0.0) using the inlet
flow extension (see section 4.1.6). Just like with the AXIM model, the liquid
is initialized with a rest density of 1000.0 kg/m3, a viscosity coefficient of
8.9 ·10−4 Pa · s and a surface tension coefficient of 72.8 mN/m. The number
class of the simulation, that defines the number of particles, is 3, thus a
total of 32768 particles are used, so to have enough particles for an accurate
simulation. The hole is again created with a radius of 0.1 meters and its
axis parallel to the ground. The initial speed is chosen as obtained from the
Axim model: 4.76 m/s. The SPH integration is performed using a physical
time step of 0.001 s, using the Modified Velocity Verlet algorithm (see section
2.3). In order to use the Tait’s equation of state for pressure computation

106

and thus achieve better performance (equation 2.15), the speed of sound of
the water is defined as 1.5 m/s, that is three orders of magnitude lower than
the actual water’s speed of sound. This has however the effect of increasing
the compressibility of the fluid. The SPH equations and kernels are based
on Müller’s variants (section 2.2).

The continuity approach is used for the computation of density because
the jet has a large free surface and we thus diminish surface tension problems.
If a density summation approach were to be used, a large spurious surface
tension would arise. The difference between the two approaches can be seen
in figures 5.4a and 5.4b. Our modified double density relaxation extension is
also enabled (see section 3.1). The boundary that represents the ground is
a flat plane placed at the origin, with no bounce or slip coefficient, and uses
the simple and performant penalty-based approach (see section 3.5.1) since
our aim is to model the jet, not the formation of the pool on the ground.

(a) Summation (b) Continuity

Figure 5.4: Comparison of the density computation approaches for the water
jet test

The trajectory of the water jet simulated with the SPH model is estimated
and the comparison with the data retrieved from the AXIM model is shown
in figure 5.5. In the plot, y is the height of the water jet from the ground and
x is the range of the jet, both measured in meters. The trajectory simulated
with SPH is consistent with the AXIM model data, apart from an error that
is due to jet fragmentation as the jet travels. The error plot can be seen in
figure 5.6.

The section of the water jet simulated with SPH is retrieved as well and
a comparison is made (see figure 5.7). In the plot, y is the dimension of
the section alongside the y-axis, measured in meters, while t is the time in
seconds at which the section is evaluated alongside the fluid’s trajectory.

107

Figure 5.5: Comparison of the trajectories computed with the AXIM and
SPH models

Figure 5.6: Error of the trajectory computed with the SPH model compared
to the AXIM model

The error between the two models can be seen in figure 5.8 and it high-
lights a problem with the SPH model. The error appears because the SPH
simulation is subject to the compressibility problems arising from the choice
of Tait’s equation of state, which has been chosen for performance reasons.
In addition, using a continuity approach for the density computations an
error is added when the particles’ velocities are too similar, as in this case.

We think that by simulating the air around the jet, in order to remove
the spurious surface tension, and using a density summation approach the
simulation will behave more correctly. Because of this, either the whole
volume should be modeled with SPH resulting in a huge number of particles
(and in this case it would be better to choose an Eulerian method), or a new
extension should be added, such as the air particle generation idea of section
3.4.2.

Alternatively, as can be seen in the GPU water jet video (at http://

108

http://vimeo.com/32460374

Figure 5.7: Comparison of the sections computed with the AXIM and SPH
models

Figure 5.8: Error of the section computed with the SPH model compared to
the AXIM model

vimeo.com/32460374), that uses the density summation approach, by using
a large number of particles the section correctly diminishes as the jet velocity
increases due to gravity pulling the fluid downwards (as also shown in figure
5.9). Using a large number of particles while maintaining the same average
number of particles navg results in a smaller smoothing length and this, as a
consequence, inhibits the effect of the spurious surface tension.

5.2 Parallel code performance
We have compared the performance of the CPU and GPU versions when used
on the same example test case that has been created for the comparison. In
order to focus on the physical simulation throughput, rendering time has not
been taken in consideration.

109

http://vimeo.com/32460374

Figure 5.9: Water jet test case simulated with CUDA

The CPU code runs in a Windows 7 environment on a 64 bit AMD
Phenom 8650 triple-core processor at 2.30 GHz, with 4.00 GB of RAM.
The GPU code runs in an OpenSUSE Linux environment on a 64 bit quad-
core processor with 4.00 GB of RAM and a NVIDIA Fermi GTX480 GPU.
Although the comparison is made on two different machines due to external
requirements, the performance gain of the GPU code over the CPU code,
that is as we will see in the order of 102, is so great that the differences
between the two machines are negligible.

The test case is performed with 163 = 4096 particles, the average number
of particles navg is chosen as 27 and the timestep is chosen as 0.001s. The
emitter is initialized as a cube of fluid placed at the system’s origin. Müller’s
equations, Tait’s equation of state and the double density relaxation exten-
sion are used (see sections 2.2 and 3.1). No gravity force is added and no
boundary is created.

The physical parameters are set as follows: ρ0 = 1000.0 kg/m3, c0 =
10.0 m/s, µ = 10.0 Pa · s, σ = 0.0 N/m kel = 0.0 N/m. In both implemen-
tations, the neighbor list is initialized with 32 cells per side.

We compare the performance results by checking the execution times when
the simulation time reaches 0.005s.

The CPU code is slow and the density and pressure computations take
almost 150 ms for a single step. In addition, the surface tension step, which
also computes the color values and normals of all particles (and this is done
even for σ = 0 N/m), takes almost 90 ms. The total time of the compu-
tation is 277 ms just to simulate a 1 ms step and, removing the rendering
time of 36 ms, we can say that the update took roughly 241 ms. This low
performance is due to serialization. Since the average number of neighbors
for a single particle is 27 and since each particle must iterate over all the

110

(a) CPU (b) GPU

Figure 5.10: Test case for performance comparison

neighbors, we get at average 4096 ∗ 27 = 110592 kernel function evaluations
at each time step, counting only the density computations.

Performing the example test using the parallel code, the computation
time takes 3 ms for the simulation of a single step of 1 ms.

Comparing the computation time of the GPU code to that of the CPU
code, we get a performance multiplier of almost 100. This can be explained as
the parallel code limits severely the impact of the number of particles, since
all computations are assumed to be performed in parallel with one thread
for each particle.

Repeating the test with 323 = 32768 particles, we observe that the CPU
code takes 2677 ms. This is roughly ten times the amount it took to simulate
the same period with 4096 particles.

The GPU code, on the other hand, takes only 18ms, six times more than
with 4, 096 particles. The performance in respect to the CPU code gains thus
a multiplier of 148.

In these test, the GPU implementation still does not reach a real-time
performance, but a slow-motion effect is achieved. It must be noted that
due to the stability of the Modified Velocity Verlet integration algorithm
and to the optimizations implemented in our SPH model, timesteps up to
15 ms have been taken during some of our simulations, resulting in real-time
performance for up to 30000 particles at once.

In addition, more optimizations could be implemented in the parallel code
in order to take advantage of constant, shared and texture memory which
have not been implemented in the work pertaining to this thesis due to time
constraints and thus achieve even higher performance.

Videos showcasing the capabilities of the GPU implementation can be
viewed at http://vimeo.com/32460374 (water jet test case) and http://
vimeo.com/32460409 (water splash).

111

http://vimeo.com/32460374
http://vimeo.com/32460409
http://vimeo.com/32460409

5.3 Additional results
In order to test the capabilities and the versatility of our SPH simulator,
additional tests have been performed.

5.3.1 Test 1: double density relaxation
Using our modified double density relaxation algorithm as in section 3.1,
an initial volume of water, shaped as a cube, is left to evolve with gravity
set to zero. As can be seen in the frames in figure 5.11. the fluid tends to
minimize the curvature and form a sphere, resulting in a spurious surface
tension. As can be seen in the last frame, taken after five seconds, the
result is stable and tensile instability is avoided due to the double density
relaxation. The spurious surface effect, although uncontrollable, is usually
considered beneficial for water simulations. A complete video can be found
at http://vimeo.com/32459971.

(a) 0.000 s (b) 0.300 s (c) 0.600 s

(d) 0.900 s (e) 1.200 s (f) 5.000 s

Figure 5.11: First test: double density relaxation

112

http://vimeo.com/32459971

5.3.2 Test 2: Viscosity
Different cubes of fluid with different viscosity coefficients, lowest on the
left and highest on the right, are seen landing on a flat plane. The fluids
behave correctly as the more viscous fluid tends to maintain its shape for a
longer time. See the frames in figure 5.12. A complete video can be found
at http://vimeo.com/32460051.

(a) 0.000 s (b) 0.160 s

(c) 0.420 s (d) 0.600 s

(e) 0.760 s (f) 0.900 s

Figure 5.12: Second test: different viscosities

113

http://vimeo.com/32460051

5.3.3 Test 3: Elasticity
A cube of fluid is given a high elasticity stiffness and is dropped in a box
boundary. As can be seen, following equation 2.26, a jelly-like elastic behavior
can be easily obtained. See the frames in figure 5.13. A complete video can
be found at http://vimeo.com/32460167.

(a) 0.200 s (b) 0.400 s (c) 0.600 s (d) 0.800 s

(e) 1.000 s (f) 1.200 s (g) 1.400 s (h) 1.600 s

(i) 1.800 s (j) 2.000 s

Figure 5.13: Third test: elastic behavior

114

http://vimeo.com/32460167

5.3.4 Test 4: Quasi-fluid adapted boundary
A mass of liquid is dropped in a cube box, using the quasi-fluid boundary
method of section 3.5.3, improved with the adapted extension. The fluid
can be seen to adhere to the boundary surface without forming erroneous
surface tensions at the interface, solving the spurious surface tension problem.
See the frames in figure 5.14. A complete video can be found at http:
//vimeo.com/32460260.

(a) 0.340 s (b) 0.680 s (c) 1.060 s (d) 1.400 s

(e) 1.780 s (f) 2.150 s (g) 2.500 s

Figure 5.14: Fourth test: quasi-fluid adapted boundary

115

http://vimeo.com/32460260
http://vimeo.com/32460260

5.3.5 Test 5: Two fluids with different densities
Two fluids with different densities are dropped in the same spherical con-
tainer. At the collision, the less dense fluid cannot resist the mass of the
denser fluid and is scattered around. See the frames in figure 5.15. A com-
plete video can be found at http://vimeo.com/32460294.

(a) 0.000 s (b) 0.500 s (c) 1.000 s (d) 1.500 s

(e) 2.000 s (f) 2.500 s (g) 3.000 s

Figure 5.15: Fifth test: two fluids with different densities

116

http://vimeo.com/32460294

5.3.6 Test 6: Two jets with different densities
Two fluid jets with different densities collide at mid-air. The denser jet’s
motion continues almost unaltered, while the less dense fluid is scattered
around. See the frames in figure 5.16. A complete video can be found at
http://vimeo.com/32460345.

(a) 0.100 s (b) 0.200 s (c) 0.300 s (d) 0.400 s

(e) 0.500 s (f) 0.600 s (g) 0.700 s (h) 0.800 s

(i) 0.900 s (j) 1.000 s

Figure 5.16: Sixth test: two fluid jets with different densities

117

http://vimeo.com/32460345

5.4 Conclusions
In this chapter, we have discussed the results that can be achieved by making
use of our implemented SPH simulator.

In section 5.1, the physical realism of a SPH model is compared to the
AXIM model, known to be realistic and accurate. The results are commented
and explained.

In section 5.2, a performance comparison between the serial CPU imple-
mentation and the parallel GPU implementation is performed.

In section 5.3, additional visual results for different test cases are shown,
highlighting the versatility of the SPH simulator.

118

Chapter 6

Conclusions and future work

Using our SPH approach, a performant and accurate model has been created
which is also versatile, allowing us to simulate viscous, slow moving fluids as
well as jets of water with ease and at the same time.

By extending the classic method with the solutions provided in this the-
sis, a greater degree of accuracy and stability can be achieved, allowing the
SPH model to rival with older established computational fluid dynamics ap-
proaches.

Due to its Lagrangian nature and its performance, SPH allows us to
simulate the real-time interactions with different fluids, bodies or even the
user and does not constrain the simulation volume, providing a good model
to be used with virtual reality simulators, video games or other interactive
applications.

At last, particle methods such as SPH are good candidates for a GPU
implementation and the performance gain that we achieved permits real-time
frame rates, resulting in an interactive, realistic, multi-purpose and extensive
fluid simulator.

To this day, due to its young nature, SPH is still open to new solutions on
some of its shortcomings, mainly on stability and the spurious surface tension
issue. Much work can be done in this direction by extending known methods
or producing new approaches. In addition, more phenomena apart from
those mentioned in this work could be formulated with an SPH approach,
such as plasticity (Clavet et al. [2005]) and thermal and magnetic equations
(Monaghan [1992]).

Thanks to the increase of parallel computation power of current GPUs
and following the trend of Moore’s law, in the near future SPH models might
easily achieve real-time performance even for millions of particles. This,
coupled with the fact that even a few thousands of particles can give good
visual and even physically realistic results, could lead to SPH being widely

119

used in real-time applications such as virtual reality environments.
SPH can already easily simulate the change of phase of a fluid from liq-

uid to gas and backwards. This can be done by adding a temperature value
to each particle, computed again with an SPH equation, and changing its
properties based on it. In addition, since two-way coupling with rigid body
dynamics methods can be easily achieved and rendered consistent with the
SPH model with methods such as the quasi-fluid boundary approach, a com-
plete phase change model could be implemented even for solid to liquid,
solid to gas and backwards transformations. Alternatively, by focusing on
adding SPH formulations of solid’s effects such as elasticity and plasticity,
even solids could be modeled using the standard SPH equations. Some recent
works, such as the work of Solenthaler [2010], are already aiming at creating
an unique, consistent, complete, realistic and real-time model for solid and
fluid simulation.

120

Bibliography

Oscar Agertz. Fundamental differences between sph and grid methods. Tech-
nical report, Institute for Theoretical Physics, University of Zürich, 2008.

Richard Anderson. Nearest neighbour trees and n-body simulation. Technical
report, Department of Computer Science and Engineering - University of
Washington, 1993.

Kai Bao, Hui Zhang, Lili Zheng, and Enhua Wu. Pressure corrected sph for
fluid animation. In Computer Animation and Virtual Worlds, volume 20,
pages 311–320, 2009.

Philippe Beaudoin, Sébastien Paquet, and Pierre Poulin. Realistic and con-
trollable fire simulation, 2001.

Markus Becker and Matthias Teschner. Weakly compressible sph for free
surface flows. ACM SIGGRAPH Symposium on Computer Animation,
pages 1–8, 2007.

Markus Becker, Hendrik Tessendorf, and Matthias Teschner. Direct forcing
for lagrangian rigid-fluid coupling. IEEE Transactions on Visualization
and Computer Graphics, 15(3):493–503, May 2009.

Nathan Bell, Yizhou Yu, and Peter J. Mucha. Particle-based simulation
of granular materials. In Eurographics/ACM SIGGRAPH Symposium on
Computer Animation (2005), 2005.

Paul Bourke. Implicit surfaces (metaballs). http://paulbourke.net/
miscellaneous/implicitsurf/, June 1997.

Sara Brambilla and Davide Manca. Accidents involving liquids: a step ahead
in modeling pool spreading, evaporation and burning. Journal of Haz-
ardous Materials, 161:1265–1280, 2009a.

Sara Brambilla and Davide Manca. Dynamic process and accident simula-
tions as tools to prevent industrial accidents. Chemical Product and Process
Modeling, 4:1–15, 2009b.

121

http://paulbourke.net/miscellaneous/implicitsurf/
http://paulbourke.net/miscellaneous/implicitsurf/

R. A. Brownlee, P. Houston, J. Levesley, and S. Rosswog. Enhancing sph
using moving least-squares and radial basis functions. In Algorithms for
Approximation: Proceedings of the 5th International Conference, pages
103–112, 2007.

John Van Der Burg. Building an advanced particle system.
http://www.gamasutra.com/view/feature/3157/building_an_
advanced_particle_.php, June 2000.

Cairo. Cairo library 1.10.2. http://cairographics.org/, 2010.

Tatiana Capone. Sph numerical modeling of impulse water waves generated
by landslides. Master’s thesis, Sapienza University of Rome, 2009.

Nuttapong Chentanezg and Matthias Müller. Real-time simulation of large
bodies of water with small scale details. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages
197–206, 2010.

M. M. Clark. Drop breakup in a turbulent flow – i. conceptual and modeling
considerations. Chemical Engineering Science, 43:671–679, 1988.

Simon Clavet, Philippe Beaudoin, and Pierre Poulin. Particle-based vis-
coelastic fluid simulation. In Eurographics/SIGGRAPH Symposium on
Computer Animation, 2005.

Keenan Crane, Ignacio Llamas, and Sarah Tariq. Real-time simulation and
rendering of 3d fluids. GPU Gems 3, 2007.

A.J.C. Crespo, M. Gomez-Gesteria, and R.A. Dalrymple. Dynamic boundary
particles in sph. In 2nd International Workshop on SPHERIC-Smoothed
Particle Hydrodynamics, pages 152–155, 2007.

M. Desbrun and M. P. Cani. Smoothed particles: A new paradigm for ani-
mating highly deformable bodies. In Computer Animation and Simulation
’96 - Proceedings of EG Workshop on Animation and Simulation), pages
61–76, 1996.

R. Fedkiw, J. Stam, and H.W. Jensen. Visual simulation of smoke. In
SIGGRAPH ’01 Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 23–30, 2001.

Brad Fish. glfont library. http://students.cs.byu.edu/~bfish/glfont.
php, 2001.

122

http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php
http://www.gamasutra.com/view/feature/3157/building_an_advanced_particle_.php
http://cairographics.org/
http://students.cs.byu.edu/~bfish/glfont.php
http://students.cs.byu.edu/~bfish/glfont.php

Nick Foster and Dimitris Metaxas. Modeling the motion of a hot, turbulent
gas. Technical report, University of Pennsylvania, Philadelphia, 1997.

R. A. Gingold and J.J. Monaghan. A numerical approach to the testing of
the fission hypothesis. Monthly Notices of the Royal Astronomical Society,
181:375, 1977.

Simon Green. Particle Simulation Using Cuda. NVIDIA Corporation, 1.3
edition, 2010.

N. Grenier, D. Le Touzé, M. Antuono, and A. Colagrossi. An improved sph
formulation for multi-phase flow simulations. In Proc. of 8th Int. Conf. on
Hydrodynamics (ICHD 2008), 2008.

Wm. G. Hoover. Isomorphism linking smooth particles and embedded atoms.
Physica A, 260:244–254, 1998.

Liao Horng-Shyang, Chuang Jung-Hong, and Lin Cheng-Chung. Efficient
rendering of dynamic clouds. In Proceedings of the 2004 ACM SIGGRAPH
international conference on Virtual Reality continuum and its applications
in industry, pages 19–25, 2004.

M. Ihmsen, N. Akinci, M. Gissler, and M. Teschner. Boundary handling
and adaptive time-stepping for pcisph. In Proc. VRIPHYS, pages 79 – 88,
2010.

Tommi Ilmonen and Janne Kontkanen. The second order particle system.
Journal of WSCG, 11(1):13–19, 2003.

Bryan Feldman James. Animating suspended particle explosions, 2003.

Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip Dutré,
and Markus Gross. A unified lagrangian approach to solid-fluid anima-
tion. In Point-Based Graphics, 2005. Eurographics/IEEE VGTC Sympo-
sium Proceedings, pages 125–133, 2005.

Micky Kelager. Lagrangian fluid dynamics using smoothed particle hydro-
dynamics. Science, 2006.

A. Khayyer, H. Gotoh, and S. Shao. Corrected incompressible sph method
for accurate water surface tracking in breaking waves. Coastal Engineering
(2008), 55(3):236 – 250, 2008.

S. Koshizuka and Y. Oka. Moving-particle semi-implicit method for frag-
mentation of incompressible fluids. Nucl. Sci. Eng., 123:421–434, 1996.

123

Jeff Lander. The ocean spray in your face. Game Developer, pages 13–19,
July 1998.

Martin Lastiwka, Mihai Basa, and Nathan J. Quinlan. Permeable and non-
reflecting boundary conditions in sph. Technical report, Department of
Mechanical and Biomedical Engineering, National University of Ireland,
Galway, Ireland, 2008.

Lutz Latta. Building a million-particle system. http://www.gamasutra.
com/view/feature/2122/building_a_millionparticle_system.php,
June 2004.

William Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. In Computer Graphics (SIGGRAPH
87 Proceedings), volume 21, pages 163–170, 1987.

F. Losasso, G. Irving, E. Guendelman, and R. Fedkiw. Melting and burning
solids into liquids and gases. In IEEE Transactions on Visualization and
Computer Graphics, pages 343–352, 2006.

L. B. Lucy. A numerical approach to the testing of the fission hypothesis.
Astronomical Journal, 82:1013–1024, 1977.

A. Mashayek, A. Jafari, and N. Ashgriz. Improved model for the penetration
of liquid jets in subsonic crossflow. AIAA Journal, 46:2674–2686, 2008.

David K. McAllister. The design of an api for particle systems. Technical
report, Department of Computer Science, University of North Carolina at
Chapel Hill, 2000.

G. Miller. Globular dynamics: A connected particle system for animating
viscous fluids. Comput. and Graphics, 13(3):305–309, 1989.

Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid
simulation for interactive applications. In Eurographics/SIGGRAPH Sym-
posium on Computer Animation, 2003.

Matthias Müller, Simon Schirm, Matthias Teschner, Bruno Heidelberger,
and Markus Gross. Interaction of fluids with deformable solids. Computer
Animation and Virtual Worlds - Special Issue: The Very Best Papers from
CASA 2004, 15(3-4), 2004.

Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus Gross.
Particle-based fluid-fluid interaction. In Eurographics/SIGGRAPH Sym-
posium on Computer Animation, pages 1–7, 2005.

124

http://www.gamasutra.com/view/feature/2122/building_a_millionparticle_system.php
http://www.gamasutra.com/view/feature/2122/building_a_millionparticle_system.php

Matthias Müller, Simon Schirm, and Stephan Duthaler. Screen space meshes.
ACM SIGGRAPH Symposium on Computer Animation, page 9–15, 2007.

Joseph J. Monaghan. Smoothed particle hydrodynamics. Annual review of
astronomy and astrophysics, 30:543–574, 1992.

Joseph J. Monaghan. Sph without a tensile instability. Journal of Compu-
tational Physics, 159:290–311, 2000.

Joseph J. Monaghan and J. C. Lattanzio. A refined particle method for
astrophysical problems. Astronomy and Astrophysics (ISSN 0004-6361),
149(1):135–143, 1985.

Joseph J. Monaghan, M.C. Thompson, and K. Hourigan. Simulation of free
surface flows with sph. Journal of Computational Physics, 110(2), 1994.

Joseph P. Morris. Simulating surface tension with smoothed particle hydro-
dynamics. Int. J. Numer. Meth. Fluids, 33:333–353, 1999.

Joseph P. Morris, Patrick J. Fox, , and Yi Zhu. Modeling low reynolds
number incompressible flows using sph. Technical report, School of Civil
Engineering, Purdue University, West Lafayette, Indiana 47907, 1997.

Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Physically
based modeling and animation of fire, 2002.

NVIDIA. NVIDIA CUDA C Programming Guide. NVIDIA Corporation,
3.1.1 edition.

P. W. Randles and L. D. Libersky. Smoothed particle hydrodynamics - some
recent improvements and applications. Comput. Methods Applied Mech.
Eng., 139:375–408, 1996.

William T. Reeves. Particle systems—a technique for modeling a class of
fuzzy objects. ACM Transactions on Graphics, 2(2):91–108, 1983.

William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms
for shading and rendering structured particle systems. SIGGRAPH Com-
put. Graph., 19:313–322, July 1985.

Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral
model. SIGGRAPH ’87 Proceedings of the 14th annual conference on
Computer graphics and interactive techniques, 21(4):23–34, 1987.

125

Karl Sims. Particle animation and rendering using data parallel computation.
In SIGGRAPH ’90 Proceedings of the 17th annual conference on Computer
graphics and interactive techniques, pages 405 – 413, 1990.

Barbara Solenthaler. Incompressible fluid simulation and advanced surface
handling with SPH. PhD thesis, Faculty of Economics, Business Adminis-
tration and Information Technology of the University of Zurich, 2010.

Barbara Solenthaler and R. Pajarola. Density contrast sph interfaces. ACM
SIGGRAPH / EG Symposium on Computer Animation, pages 211–218,
2008.

Jos Stam. Stable fluids. In SIGGRAPH 99 Conference Proceedings, Annual
Conference Series, volume 8, pages 121–128, August 1999.

A. Valizadeh, M. Shafieefar, J.J. Monaghan, and S.A.A. Salehi Neyshaboori.
Modeling two-phase flows using sph method. Journal of Applied Sciences,
8:3817–3826, 2008.

Wladimir J. van der Laan, Simon Green, and Miguel Sainz. Screen space fluid
rendering with curvature flow. I3D ’09 Proceedings of the 2009 symposium
on Interactive 3D graphics and games, 2009.

Xiaoming Wei, Wei Li, Klaus Mueller, and Arie Kaufman. Simulating fire
with texture splats, 2002.

M. Yildiz, R. A. Rook, and A. Suleman. Sph with the multiple boundary tan-
gent method. International journal for numerical methods in engineering,
77:1416–1438, 2009.

Guangzheng Zhou, Wei Ge, and Jinghai Li. A revised surface tension model
for macro-scale particle methods. Powder Technology, 183(1):21 – 26, 2008.

126

	List of Figures
	List of Tables
	List of Symbols
	List of Source Codes
	Introduction
	Visually realistic fluid simulation
	Computational Fluid Dynamics
	Our approach to fluid modeling
	Previous work
	Thesis organization

	Smoothed-Particle Hydrodynamics
	Basic formalism
	Solving Navier-Stokes with SPH
	Density computation
	Equation of state for pressure
	Pressure term
	Viscosity term
	External forces
	Elasticity

	Integration
	Algorithms
	Undamped harmonic oscillator
	Damped oscillator
	Results
	Adaptive timesteps

	Kernels
	Kernel functions
	Smoothing length

	Conclusions

	Complex SPH model
	Tensile instability
	Incompressible SPH
	Moving Particle Semi-Implicit
	Pressure Corrected SPH

	Multiple fluids
	Surface tension
	Spurious surface tension
	Air particles generation
	Multi-fluid adapted SPH
	Controllable surface tension

	Boundary methods
	Penalty approach
	Direct forcing
	Quasi-fluid particles
	Ghost particles
	Rigid bodies

	Conclusions

	Implementation
	Simulator and guided creation
	Simulator
	Simulation choices
	Reports
	Guided creation: User-imposed parameters
	Guided creation: System-imposed parameters
	Guided creation: Extensions

	Algorithms
	Main algorithm
	Neighbor lists
	Kernel functions
	Rigid bodies

	Rendering
	Known methods
	Implementation

	Parallelization
	CUDA basics
	Parallel SPH implementation

	Conclusions

	Experimental results
	The water jet test
	AXIM fluid jet model
	SPH simulation of the water jet test

	Parallel code performance
	Additional results
	Test 1: double density relaxation
	Test 2: Viscosity
	Test 3: Elasticity
	Test 4: Quasi-fluid adapted boundary
	Test 5: Two fluids with different densities
	Test 6: Two jets with different densities

	Conclusions

	Conclusions and future work
	Bibliography

