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! Abstract

An analysis of the Lattice Boltzmann Method (LBM) has been developed as 

an alternating Computational Fluid Dynamic (CFD) method based on the 

collective behavior of microscopic particles. This numerical method contrasts 

with the traditional approaches which usually consider macroscopic 

descriptions by using Navier-Stokes (NS) equations. 

The specific purpose of the present thesis is to supply a comprehensive 

description of the field providing a source code for practical applications 

under GNU copyright.

In the first part the review of the fundamental macroscopic variables is 

emphasized to outline the NS equations with advantages and drawbacks.

Numerical methods are investigated in the second part, evolving from Cellular 

Automata, the most recent Lattice Gas Cellular Automata and specially its 

extension, the LBM.

The last part of this thesis shows the results of the method comparing to a 

traditional Navier-Stokes solver.  It is also pointed out the advantages adopted 

with LBM approach in nano-scale multiphase fluid flow under complex 

boundary conditions.





! Acknowledgments

I would like to express my gratitude to Prof. Guan Yeoh for the advices, 

support and freedom I have enjoyed during  my exchange in Australia that 

allowed me to follow my interests and points of view.

I would like to extend my gratitude to Prof. Gianluca D’Errico for supporting 

me through the course of this thesis work from Italy.

I also would like to thank the School of Mechanical and Manufacturing 

Engineering at UNSW and the researchers for helping  me for my future 

prospects with support, collaboration, and friendship.

My warm thanks to Luigi Dolci and Amie Baines for the huge amount of food 

they friendly  always shared with me at 56, Flinders.  Thanks Luigi for being  the 

big brother I have never had.

The welcome tranquility of Sydney, one of the world’s greatest city,  the 

gardens,  the national parks,  the ocean, the beaches, the easygoing  and 

friendly Sydneysiders, and the Oz Lifestyle, all contributed significantly to 

provide inspiration to see this work through to its conclusion.

The Lobby, Candy’s Apartment, and NSW State League Football Referees 

federation supported me through my Aussie Exchange Program with financial 

support.

Last but not the least, I would like to thank my family for their love all these 

years of studies specially for teaching me how to stand directly after falling 

and finding always the bright side of the life.  Finally,  I would like to dedicate 

this thesis to them.





! Contents

    Introduction

1. Fundamentals Fluid Mechanics! ! !

! 1.1 Macroscopic Description of Fluid Flow .......................... 3

! 1.2 The Incompressible Navier-Stokes Equations ................ 4

! 1.3 Reynolds Number ........................................................... 6

! 1.4 Poiseuille Flow ................................................................ 7

2. Cellular Automata

! 2.1 Introduction .................................................................... 9

! 2.2 History ............................................................................10

! 2.3 One-Dimensional Cellular Automata ............................. 11

! 2.4 Two-Dimensional Cellular Automata ............................. 12

" " 2.4.1 The “Game of Life” ........................................ 12

! 2.5 From PDEs to Ca .......................................................... 13

! 2.6 CA Applications ............................................................ 15

3. Lattice Gas Cellular Automata

! 3.1 Introduction to LGCA .................................................... 17

! 3.2 The HPP Lattice Gas Cellular Automata ....................... 18

! ! 3.2.1 Model ............................................................. 19

! ! 3.2.2 Coarse Graining ............................................. 20

! 3.3 The FHP Lattice Gas Cellular Automata ........................ 22

! 3.4 Dynamic of LGCA model ............................................... 23

! 3.5 Advantages and Disadvantages .................................... 25 



4. Boltzmann Gas Concepts

! 4.1 Kinetic Theory of Gases ................................................ 26

! 4.2 The Boltzmann Equation ............................................... 30

! 4.3 The Collision Operator: BGK Approximation ................ 32

! 4.4 Chapman-Enskog Expansion ....................................... 34

5. Lattice Boltzmann Method

! 5.1 Models .......................................................................... 37

! 5.2 Equilibrium Distribution Function .................................. 38

! 5.3 Governing Equations .................................................... 39

! 5.4 D3Q27 Model ............................................................... 42

6. Boundary Conditions

! 6.1 Periodic Boundary Conditions ...................................... 45

! 6.2 Velocity Boundary Conditions ....................................... 46

! 6.3 Bounce-Back Boundary Conditions ............................. 48

! 6.4 Zou-He Pressure and Velocity Boundary Conditions ... 49

7. Numerical Results

! 7.1 LBM Analysis ................................................................ 52

! ! 7.1.1 Flow Geometry .............................................. 52

! 7.2 The Code ...................................................................... 53

! 7.3 Flow Simulation ............................................................ 56

! 7.4 Finite Volume Results ................................................... 59

! ! 7.4.1 Ansys Prepropessing .................................... 59

! ! 7.4.2 Ansys Results ............................................... 61

! 7.5 Comparison of the results ............................................ 62

! 7.6 Conclusion ................................................................... 65

A  Appendix: D3Q27 Lattice Boltzmann Code

References





! Introduction

The Lattice Boltzmann Method represents a new powerful approach for a  

simulation of a wide range of complex flow problems in computational fluid 

dynamic. Based on mesoscopic kinetic equations, LBM constructs a 

simplified macroscopic model under the collective behavior of fluid particles. 

Historically this new method belongs to the class of Cellular Automata where 

a physical system is discretized in space and time, made up of identical cells. 

Each cell is  characterized by Boolean variables which evolves in function of 

the state of the neighbors.

The evolution of CA is described by Lattice Gas Cellular Automata introduced 

in 1973 by Hardy, Pomeau, and de Pazzis. The dynamic of the flow is 

simultaneously shown by the moving and colliding of point-particles. 

Particles are allowed to move on a discrete lattice and local collisions 

conserved mass and momentum.

From LGCA, the LBM was developed by the description of the evolution of 

the single-particle distribution function.  Each of these particles is given a 

discrete set of velocities for traveling  from one node on the grid to another.  

The particles are redistributed on each node according  to the rules that 

recover the collision process. Through the simplification of the collision terms 

proposed by Bhatnagar, Gross, and Krook (BGK), Lattice Boltzmann BGK 

was improved using an approximation to the equilibrium distribution function 

in order to cut down the cost of computation.  An important feature of this 

approximation is the conservation of mass, momentum, and energy.

The model used in the present thesis is D3Q27, twenty-seven nodes in a 

three dimension mesh, which represents the evolution of the D2Q9, nine 

nodes in a two-dimension domain. An improvement in the source code is 

outlined by the size of the mesh which is a user-defined variable. The results 

obtained show that the method chosen for writing down the computational 

code is one of the most efficiency and straightforward until now.





! Chapter 1

Fundamentals Fluid Mechanics

A review of the fundamentals is outlined in this  chapter in order to be familiar 

with the basic concepts of fluid mechanics. Details  are avoided, giving more 

emphasis to the physics.

1.1 Macroscopic Description of Fluid Flows

Fluid flows provide opportunities for mathematical modeling.  Continuum 

approximation is applied taking  into account the macroscopic flow 

configuration. 

Let L denote the characteristic length associated with the length of the 

domain and L! the size of the infinitesimally small volume elements;  

 L! ! L .  The hydrodynamic variables like density !, pressure p,  

temperature T and velocity  
!u  are meaningful at scale of the elementary fluid 

elements. They represent average values computed from particles. 

The derivation of macroscopic fluid flow description gives the general 

conservation equations for the elementary fluid elements,

    (1.1)!t" +# "u( ) = 0
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(1.2)

Where the partial derivatives !t = ! !t and !" = ! !r"  express variation 

in quantities with respect to time and space. The divergence, for instance, 

measures net variation of a quantity in spatial space. Equation (1.1) and (1.2) 

ensure mass and momentum conservation for elementary fluid elements. The 

momentum-flux tensor !"# gives the flux of the ! component of the 

momentum in ! direction.

In order to obtain a closed description of the fluid dynamic,  additional 

restrictions have to be considered.

1.2 The Incompressible Navier-Stokes Equations

Considering a constant density, conservation equation is written as,

(1.3)

And

(1.4)

Where F = !a refers to an external body force, for instance gravity. 

Rearranging the equation (1.4),

(1.5)

On the left hand side of the formula, the inertial of the volume is shown as,

Dt = !t + u"!" and on the right he forces acting on the volume are 

summed. 

!t "u( ) +#$ = 0

!u = 0

!"tu + !u #$u = %$p +$&visc +F

! "tu# + u$"$u#( ) = %"# p + "$ &#$
visc +F#
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Coming up to the dynamical description, another restriction has to be 

imposed on the viscous stresses. In a Newtonian fluid the viscous stresses 

!"#
visc

are linearly proportional to the strain rate defined as,

(1.6)

(1.7)

Where the four-rank tensor !"#$% measures the viscosity of the medium as 

internal friction of the fluid in function of temperature and pressure. 

An additional reduction is made by considering isotropic and incompressible 

fluids. 

(1.8)

Substituting this source term into the momentum equation (1.4), the Navier-

Stokes equation for an incompressible, isotropic Newtonian fluid is,

(1.9)

Where ! = µ "  is the kinematic viscosity and the term involving the 

laplacian of the velocity field, !"2u, represents diffusion of momentum. The 

second term on the right hand side is the only nonlinear ones; it is called 

convective term. Numerical methods are required to obtain approximate 

solutions for the equations (1.3) and (1.8)  together with the boundary 

conditions. 

Microscopic details of the fluid are completely ignored in the NS  equations. 

For instance, viscosity is an important terms to study the interaction between 

S!" = #"u! + #!u"( ) 2

!"#
visc = $"#%&S%&

! "#visc = $% #&%
visc = $%µ $%u& + $&u%( ) = µ$%$%u&

!u
!t

+ u "#u = $
1
%
#p +&#2u + a
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particles at the atomic level. In the Navier-Stokes equations, the pysical 

properties of the fluid are modeled with material parameters obtained from 

experimental measurements; that is a reason why NS  equations are 

applicable to so many different fluids.

1.3 Reynolds Number

The Navier-Stokes equations incorporates a very important 

mathematical property named dynamic similarity between fluids 

flow.

This parameter is the Reynolds Number, Re, a dimensionless number that 

measures the effects of the inertia and viscosity within the flow field. 

Generally, it is  used to characterize the behavior of the flow, such as laminar 

(Re<2300), transient (2300<Re<4000), or turbulent flow (Re>4000). Roughly, 

when an object is  moved trough the ambience, the gas molecules of the 

atmosphere near to the object are disturbed and they generate forces. The 

variables that modify the magnitude of the forces are the macroscopic 

quantities of the object and the behavior of the gas. 

Firstly, relevant dimensionless variables are defined as,

(1.10)

Where L and U refer to the characteristic lenght scale and fluid flow velocity 

of the macroscopic system. NS  equations are easily transformed into 

dimensionless form considering L and U constants,

(1.11)

Hence, by using the definitions in equation (1.9), it is straightforward to 

obtain,

r!
* =

r!
L

,   u!
* =

u!
L

,   t* = t U
L

,   P* = P 1
U 2 =

p
"

1
U 2 ,   a!

* = a!
L
U 2

!u"

!r#
=
! u"

*U( )
! r#

*L( ) =
U
L
!u*"
!r*#
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(1.12)

(1.13)

(1.14)

Where Re provides an estimate for the ratio of inertial forces to viscous 

forces quantifying their relative importance for given flow conditions. For 

instance, if Re number is high, inertial forces dominate the viscous forces and 

the flow becomes unstable.

1.4 Poiseuille Flow

The Poiseuille Flow is  an important type of flow driven by a pressure gradient 

between two parallel surfaces. The flow is characterized by a parabolic 

velocity profile with a maximum value in the middle of the pipe and a value of 

zero at the walls (no-slip boundaries). The parabolic velocity profile is given 

by,

(1.15)

where   G*
is the linear pressure gradient 

Pin ! Pout( )
L . 

Code 1.1 shows how to initialize the simulation of the velocity,  uProf(y), to 

Poiseuille profile in programming  language. yDim is the maximum dimension 

of the domain and uMax is the maximum velocity defined a priori.

U 2

L
!u*

!t*
+
U 2

L
u* "#*u

* = $
U 2

L
#*P

* +% U
L2

#*
2u* + U

2

L
a*

!u*

!t*
+ u* "#*u

* = $#*P
* +

1
Re

#*
2u* + a*

 
Re = !Lu

µ
=

Lu
"

  
u x( ) = G*

2µ
a2 ! u2( )
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!  ========================================================

!  Computation of Poiseuille profile for the inlet/outlet

!  ========================================================

FUNCTION uProf(y)

    USE simParam, ONLY: yDIm, uMax

    implicit none

    integer, INTENT(IN):: y

    double precision:: radius, uProf

    radius = dble(yDim-1) * 0.5d0

    uProf  = -uMax * ((abs(1 - dble(y-1) / radius))**2 - 1.0d0)

END FUNCTION uProf

Code 1.1. Computation of Poiseuille profile for the inlet/outlet.
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! Chapter 2

Cellular Automata

Cellular Automata (CA) are discrete dynamical systems that model complex 

behavior based on simple rules animating cells on a lattice. 

2.1 Introduction

While most of the systems can be broken down into identical components, 

each of them with the same rules,  the cellulars act together in order to create 

the complex behavior of the system [1].

In the simplest CA form, space is represented by a uniform discretized grid, 

where each cell has a finite state memory, the automata.

At each time step, all the cells change their current status synchronously to 

the next state according to a set of “local rules”.

The complexity of the pattern generated is the main reason that makes this 

method interesting. CA can be seen as an algorithm imposed on a group of 

cellulars that occupy a proper position on a grid [2].
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2.2 History

The history of CA dates back the nineteen-forties, when the Polish-Jewish 

mathematician Stanis"aw Ulam started to study the evolution of graphic 

construction under simple rules. His main goal was to construct self-

replicating  machines, building  copies of themselves. In the nineteen-fifties, 

Von Neumann suggested to consider a lattice space where each point had a 

finite number of connections to certain of its “neighbors” [3]. The two 

mathematicians worked together during this period to develop an automata 

system.

Thanks to the lattice network studied with Enrico Fermi, Ulam realized a 

lattice model for studying crystal growing  governed by simple rules. He found 

out that simple rules may generate complex and repetitive figure. 

At the same time Von Neumann, involved in developing the self-reproducing 

machines, figured out a new way to represent a physical universe with a set 

of elementary algorithms. He designed a two-dimensional self-reproduction 

automata in which each cell would change its twenty-nine states according 

to rules of the nearest neighboring cells.

After the diffusion of the Cellular Automata, other people developed research 

in this  field;  the German civil engineer, Konrad Zuse, began to create a binary 

calculating machine which involved program control and floating point 

arithmetic. The new idea of cellular computer started with high-capacity 

memory and relays. Zuse published also a monograph concerning the 

application of CA to physical problems such as hydrodynamics, 

electrodynamics and quantum theory.

The English mathematician John Horton Conway tried to set out simple rules 

for a two-dimensional, two state automata, self-replicating machine. His 

work, following  Ulam’s ideas, was called the “Game of Life” in which he 

simulated the evolution of a real society from a causal initial configuration 

through easy principles.
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In 1973, Hardy, Pomeau,  and De Pazzis simulated a cellular automata in a 

fluid flow. The model, called HPP from the initials of the three authors,  is 

characterized by a mass and momentum conservation. However, it does not 

yield the desired Navier-Stokes  equations in the macroscopic field. 

After more than a decade, in 1986, Frisch, Hasslacher, and Pomeau tried a 

higher symmetry with CA over a hexagonal lattice called FHP. They finally 

were able to lead to the Navier-Stokes equations.  

At the beginning of the eighties, the British scientist, Stephen Wolfram, 

carried out a one-dimensional CA where each cell may be interpreted as a k-

digit number with two states. With his research, he came up with a series of 

rules able to change the state of the cells, from active to inactive and vice 

versa, as a function of the neighborhood. 

In recent years, CA provides a basis and a new perspective for mathematical 

models for a wide variety of complex and natural phenomena described 

before by partial differential equations.

2.3 One-dimensional Cellular Automata

The basic idea behind the one-dimensional model consists of an infinite grid 

where each of the cells has a specific k-value, active or inactive, occupied or 

empty,  alive or dead, black or white. According to the !1  rule, the value ai

of position i  evolves as a function of the neighbors ai!1
t

 and  ai+1
t

.

(2.1)

For instance, a system used for one-dimensional CA is the Wolfram Code, or  

Totalistic Cellular Automaton, where “totalistic” means described by the total 

or the average of the neighborhood.

ai
(t+1) = !1 ai"1

t ,ai
t ,ai+1

t#$ %&
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2.4 Two-dimensional CA

In a two-dimensional cellular automata, the state of the cells is based on a 

m ! n  binary matrix.  Mathematically, the state ai, j
(t+1)

 of the i  and j  cell is 

given by the formula,

(2.2)

where !2  is a Boolean function of eight variables (Moore neighborhood).

A easy way to illustrate two dimensional automata concept is described by 

the “wave” in a sport stadium; each person reacts with the state of his 

neighbor, standing up or sitting down. 

2.4.1 The “Game of Life”

The Game of Life is a zero-player game that use an artificial intelligence  

simulating the evolution of a society of organisms basing on a certain rules.  It 

was introduced by Conway in the nineteen seventies as a two-dimensional 

CA.

This mathematical game is a very simple and powerful demonstration of how 

even few rules may not only cause order, created out of chaos from an initial 

condition, but also give rise to self-replicating structures.

The universe is defined as an infinite two-dimensional orthogonal grid made 

by square cells each of them have two possible states: live, shown by a 

marker, or dead, empty square. At each time step, based on the interaction 

between neighbors, we have the following four rules:

• any live cell with two or three neighbors stay alive (generation);

aij
(t ) = !2 ai"1, j"1

t ,ai"1, j
t ,ai"1, j+1

t ,ai, j"1
t ,ai, j+1

t ,ai+1, j"1
t ai+1, j

t ,ai+1, j+1
t#$ %&
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• any dead cell with three live neighbors around becomes a live 

cell (reproduction);

• any l ive cell with more than three neighbors dies 

(overcrowding);

• any l i ve ce l l w i th less than two ne ighbors d ies 

(underpopulated);

It is a fascinating game that give us a chance to observe what it will happen 

in the future; life is full of surprises.

2.5 From PDEs to CA

A different approach to describe and simulate the predicting  behavior of 

natural phenomena may be seen using numerical method.

CA represent a discrete counterpart of Partial Differential Equations (PDEs) 

with the benefit of being easily simulated, highly parallelizable [4], changing 

the perspective of the model to a local view.

Taking  into account a general PDE (2.3),  u defines the variable with respect 

to i,  time, and j,  space; m ui, j( )  contains all the ui, j  terms; n ui, j( )
defines all the Laplacian terms with respect to space; all the gradients 

applied are within o ui, j( )  term.

(2.3)

In order to transform the PDE (2.3)  to CA,  two different approaches can be 

followed: Backward Euler's Method and Forward Euler's Method.

The approximation of a differential equation through Forward Euler’s Method 

is given by the formula below,

f ui, j( ) = !u
!t

= m ui, j( ) +"x
2n ui, j( ) +"xo ui, j( )

! 13



(2.4)

Where the variable ht defines the step size between two time values.  

Substituting the partial differential equation into the equation (2.4),

 (2.5)

A more stable approach for larger ht values is outlined by Backeard Euler’s 

Method using a first order Taylor series,

(2.6)

Substituting the partial differential equation (2.3) into equation (2.6)  the CA 

model is obtained by,

(2.7)

Where the term hx  is the step size variable for space. 

Through this model, we obtain a much more simple mathematical method 

than the differential equation, just including addition,  subtraction, 

multiplication and division operations.

ui+1, j = ui, j + ht f ui, j( )

ui+1, j = ui, j + ht m ui, j( ) + n ui, j+1( ) ! 2n ui, j( ) + n ui, j!1( )( )
hx
2 +

o ui, j+1( ) ! o ui, j!1( )
2hx

"

#
$
$

%

&
'
'

ui+1, j = ui, j +
ht f ui, j( )

1! ht
"f u( )
"u i, j

ui+1, j = ui, j +
ht

1! ht
"m u( )
"u i, j

m ui, j( ) + n ui, j+1( )! 2n ui, j( ) + n ui, j!1( )
hx
2 +

o ui, j+1( )! o ui, j!1( )
2hx

#

$
%

&

'
(
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New studies are developing in this research field, mostly  in order to set up a 

software tool transforming PDE to CA and performing simulation.

2.6 CA Applications

We have already demonstrated in the “game of life”, chapter 2.4.1, that 

complexity can arise from very simple rules.

Several interesting  applications have been proposed for CA method such as 

cryptography and simulation of single particle system.

Usually this method is worth when the inherent parallelism improves the 

runtime of algorithms, but the ability to implement models efficiently remains  

the best behavior which drives applications.

In recent years, SIMD (single instruction multiple data) hardware makes the 

CA  such as compelling model for 3D graphics cards; it allows to a really 

good performance in the simulation of cellular space [5].

Another application is described by Hartka [6] in which CA is used in order to 

optimize circuitry. 

De Garis, Korkin, Peréz-Uribe and Sanchez [7] tried to implement a CA model 

in neural networks using programmable hardware. 

Burstedde et al. [8] implemented CA in the simulation of pedestrian with a 

non-deterministic model; this approach can be useful to optimize buildings 

for fast evacuation.

A novel approach at object recognition in image processing  is outlined by Fey 

and Schmidt [9], where they have an CA overlaid on an image sensor.  The 

sensor changes the state of each cell in function of the brightness of the 

light. In only 10 milliseconds, their chip is able to process a single image of 

! 15



640x480 pixels,  extracting  the positions and types of simple geometric 

shapes in taken images.
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! Chapter 3

Lattice Gas Cellular Automata

Lattice Gas Cellular Automata (LGCA) are discrete molecular models based 

on the movement of particles on a lattice in a microscopic level,  mimicking a 

fully dynamic fluid model. The derivation of a mesoscopic description of fluid 

flows usually starts  from the atomic perspective. It’s  easily demonstrable that 

LGCA technique can be reproduced by macroscopic Navier-Stokes 

equations.

3.1 Introduction to LGCA

Lattice Gas automata have been introduced in the early nineteen seventies 

by the French Yves Pomeau. By the late seventies, the Information 

Mechanics Group at MIT developed a new idea of building a special-purpose 

machine to simulate physic models [10]. During this time, S. Wolfram visited 

the MIT group and, stimulating  by their work, started to investigate on 

statistical mechanics for large fluid systems. 

In the nineteen seventy three, Hardy, De Pazzis,  and Pomeau introduced the 

so called HPP Lattice Gas Cellular Model using a square lattice [11]. The 

implementation of the motion of the particles was the interesting reason of 

making this model one of the greater than traditional CA. Due to the 

inadequate symmetry of HPP, this  method failed simulating the Navier-Stokes 

Equations.

! 17



Frisch, Hasslacher and Pomeau set up a new model based on hexagonal  

lattice-gas model (FHP)  [12]. This new model recovered isotropic flow in the 

continuum limit with a triangular mesh holding six momentum states.

This methodology was extended to a three-dimensional model developed 

with a hypercubic lattice. The Face Centered Hyper-Cubic lattice (FCHC) is  a 

regular crystal lattice that leads to isotropic Navier-Stokes flows.  An 

important tool to characterize and analyze this problem was found using a 

four-dimensional Face Centered Hyper Cubic lattice with twenty-four nearest 

neighbors. Research is still underway due to the large demand for local 

memory needed to initialize properly the complex iterations.

3.2 The HHP Lattice Gas Cellular Automata

Many macroscopically observable phenomena related to fluid dynamics have 

their origin in the underlying microscopic world.  For instance, surface tension 

represents the cohesive forces between molecules responsible for phase 

separation in the macroscopic scale. With an additional procedure, for 

instance with averaging, hydrodynamic variables are then computed from the 

variables of intermediate scale.  This alternating modeling philosophy is 

inherent in the mesoscopic description of the fluid flows.

The first and simplest model for the simulation of gas particles in a 

microscopic point of view, was called HPP, named according  to the initials of 

the three authors.

This model is a two-dimensional LGCA model with a discrete time, space and 

velocity and unit link length. It is defined over a square lattice where the 

particles, viewed as made of “Boolean molecules”, move on the grid with a 

constant mass and velocity.

The behavior of the model is characterized by different steps; first of all a 

analysis of the model with a microscopic point of view; then, updating 

synchronously  all the cells; finally taking  into account local iterations with 

neighborhood and obtaining macroscopic quantities such as density and 
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velocity of the flow. Through a microscopic model we are able to describe the 

macroscopic evolution of the fluid dynamic.

3.2.1 Model

The square lattice of the HPP model has four cells each of them associated 

to the nearest neighbor. A cell is connected with each link at all nodes and it 

may be empty, defined by the number 0, or occupied, defined by the number 

one (Boolean variables).

There are up to four molecules (particles), one at each vertex, with equal 

mass, unit speed whose velocities point in one of the four link directions. 

The particles move along  the edges of the lattice at each time step; each site 

(node)  is characterized by the Pauli exclusion principle1. The evolution of the 

particles brings to local collisions  and streaming along the direction of their 

velocity. When two particles enter in the same node and with opposite 

direction, they rotate by 90° conserving the mass and the momentum. 

Collision rules are showed in the figure 3.1; first case defined as “a”, shows 

the streaming step: the particle moves on the lattice following his original 

path. From the second and the third it is shown how local collision  between 

two particles occurred.

! 19

1 The Pauli exclusion principle defined that the simultaneous occupation of a 
vertex by identical molecules is forbidden.



Figure 3.1 Streaming and Collision rules for colliding particles.

As already mentioned before, HPP model suffers some limits; first of all the 

total number of particles moving  on the lattice is fixed. That does not 

represent the real continuum fluid,  obtaining  an undesirable feature of the 

model. A insufficient degree of rotational symmetry does not lead to the 

desired Navier-Stokes equations. 

3.2.1 Coarse Graining

Coarse Graining is a method studied in order to calculate at least the mean 

value for mass and momentum density. This method is used not only in 

thermodynamic or fluid dynamic applications but, biomolecular simulations  

as well [13]. 

HPP model: collision rules

(a)

(b)

(c)

time t time t+1

Conservation of mass and momentum.

9
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Looking at the behavior of this  method, the initial step is based on the 

initialization of each node. Usually the entire domain is divided into 

subdomains, 32 or 64 times bigger than the size of the square lattice, where 

the mass and momentum density are approximated. Averaging over 

neighboring  nodes ni (occupation number),  the mean occupation number 

Ni , which may be 0 or 1, is obtained with respect to the coordinates of the 

nodes  r
!

 and the time t .

(3.1)

The index i indicates the four possible nodes in the square lattice 

(i = 1,2, 3, 4 ).  

The mass density 
 
! x
!
, t( ) and momentum density 

 
j
!
x
!
, t( )  are obtained by 

the following formulas,

(3.2)

(3.3)

where  u
!

is the flow velocity with the direction ci .

The purpose of this method is to realized a reliable and low noisy model 

averaging on large enough subdomains under the limit of the core memory. 

 
Ni x
!
, t( ) = ni r

!
, t( )

 
! x
!
, t( ) = Ni x

!
, t( )

i=1

4

"

 
j
!
x
!
, t( ) = !u

!
= ciNi x

!
, t( )

i=1

4

"
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3.3 The FHP Lattice Gas Cellular Automata

FHP, named after the initials of the three authors, is  a two-dimensional model 

based on an hexagonal lattice. The particles are able to move on six sites fig. 

3.2,  all located at the same distance to the central node respectively, holding 

six possible lattice velocities. This moving is defined by a discrete time step 

with a constant speed.

Fig. 3.2 The hexagonal lattice.

This model observes the hexagonal symmetry which prevents the model from 

yielding  the Navier-Stokes equations in macroscopic limit [14].  On the 

contrary, the restrictions of the model are due to the conservation laws. The 

Pauli exclusion principle ensures that all the cells may be empty or occupied 

by at most one particle (Boolean variables). Mass and momentum density is 

conserved and the number of particles as well.

When two or three particles collide in the same site,  as I describe in the 

previous chapter,  all the particles are reflected. The deflection of two particles 

leads to a randomly clockwise or counterclockwise rotation by 60°;  instead, if 

three particles meet at a node in a symmetry configuration they just invert 

their direction by 120° (Figure 3.3). 

The hexagonal lattice

c1

c2c3

c4

c5 c6 x

y

i

j

7
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Fig. 3.3 FHP collision rules.

3.4 Dynamic of LGCA model

Taking  into account the FHP model, the microdynamic of the system is 

defined by the evolution operator ! splitted in two different steps:  streaming 

(or propagation) S  and collision C .

(4.4)

FHP model: collision rules

p=1/2

p=1/2

Stochastic rule with Conservation of mass and momentum.

10

 ! = S !C
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The streaming identifies the movement of the particles entering  in the site  r
!

(position vector) at time t with the direction  c
!
i where i represents one of the 

six lattice directions (i = 1,2,  . . . ,6 ). 

(3.5)

Only six possible velocities are available in function of  !r
!

, lattice spacing, 

and !t , time step. 

(3.6)

Therefore, the propagation equation (3.7) with only the streaming step 

displays that a particle will continue in a straight line with the same direction  

of motion at the next time step. 

(3.7)

where  r
!
+ !r
!
"ci  is the next particle site at his nearest neighbor at t + !t

time step.

Collisions take place synchronously at every node and transform an initial 

state of a node s  to a final state s′ according to local rules (Fig. 3.2).  It is a 

local step in fact only particles of a single node are involved.

Due to collision, the particle can change the original direction with a new  c
!
i .   

The collision term 
 
!i ni r

!
, t( )( ) is  summed to the occupation number in 

order to obtain the LGCA equation (3.8).

 
S = ni r

!
, t( )

 
vi =

!r
!

!t
c
!
i

 
ni r
!
+ !r
!
"ci
"!
, t + !t( ) = ni r!, t( )
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(4.8)

3.5 Advantages and disadvantages

The FHP model is the advance step after the HPP model. Advantages are 

hold in the geometry construction and in the dynamic of the model. One of 

the main assets is due to the Boolean states giving the exact computing 

without any round-off error.  It is  also possible to improve the simulation with 

parallel computing obtaining faster results. 

The main problem of this approach is the statistical noise as random 

fluctuations that disappear in the continuum limit. That is the general problem 

when it is tried to recover macroscopic quantities from microscopic 

simulations.  Another disadvantage is due to the complexity to expand the 

model in three-dimensional problems keeping the sufficiently symmetric grid. 

The limited low-Mach number doesn’t let to simulate such models with high 

velocity required.

 
ni r
!
+ !r
!
"ci
"!
, t + !t( ) = ni r!, t( ) +#i ni r

!
, t( )( )
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! Chapter 4

Bolzmann Gas Concepts

The main idea of Boltzmann Gas Concepts is  characterized by the behavior 

of an ideal gas composed on a set of randomly moving and interacting 

particles.

Ludwig Boltzmann, in the eighteen seventies, played important rules with a 

new idea based on the description of ideal gases through classical 

mechanics.  Basically he thought that a statistical treatment of ideal gases is 

necessary and appropriate in order to reproduce the behavior of the real flow. 

Statistical mechanics is a branch of physics that applies probability theory 

using  mathematical tools on a large complex systems. One of its most 

successful applications is the kinetic theory of gases.

4.1 Kinetic Theory of Gases

Kinetic Theory of Gases is the simplest approach that studies the 

macroscopic properties of a large number of particles in terms of molecular 

motion [15].

In the eighteen fifty-nines, Maxwell realized that dealing with a huge amount 

of particles is useless and even difficult for the calculations. The new 

Maxwell’s idea focalized the attention on the averaging of the number of 

particles contained in an ideal gas.
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A typical volume of gas, for instance, contains 1023 particles; too many 

particles and collisions between them. It clearly appears to approach the 

collective behavior of molecules from a statistical point of view.

Firstly, basic assumptions are supposed in order to describe the dynamic of 

ideal gas, defined as a gas with low density and temperature:

- Identical particles are treated in a finite domain.

- Particles are modeled as finite spheres, all of them with unit 

diameter dimension.

- Collision between particles and walls of the container are dealt 

elastically.

- There is no long-range forces between particles. 

The N particles in a microstate system at time t are described by using two 

quantities: positions  r
!
i t( ) , and momentum  p

!"
i t( ) .

Calling 
 
f r
!
, p
"!
, t( ) the one-particle distribution function, the probability to 

find N number of particles with a given position and momentum in a volume 

dr3  and dp3  is shown by the double integral,

(4.2)

According to the kinetic energy, equation (4.2) is described in function of 

velocity in the three different directions x, y and z .

(4.3)

Where the function f ci( ) is the fraction of the particles having velocity  

within the interval ci ,ci + dci{ } .

 
N = f r

!
, p
"!
, t( )dr3 dp3!!

f cx( ) f cy( ) f cz( )d!!! cxdcydcz = 1
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In order to find out the distribution function,  one of the standard form for the 

distribution of an amount of energy between identical particles is described 

as,

(4.4)

Where A and B are two constants.

The product of the three distribution functions in x, y and z  direction gives 

the probability to find particles with a speed between c and c + dc in a three 

dimensional space cx ,cy ,cz( ) .

(4.5)

Therefore, the particles with that speed lyes between two shells with radius 

c  and c + dc . The volume of the spherical shell is defined as,

(4.6)

Thus, the probability density function is given by combination between the  

equations (4.5) and (4.6).

(4.7)

The mass is the same for all the particles, thus the kinetic energy is in 

function only on the speed. For that reason we are able to define the 

constants A and B, calculated integrating the distribution function over all 

possible speeds as,

f cx( ) = Ae!Bcx2

f c( ) = Ae!Bcx2Ae!Bcy2Ae!Bcz2 = A3e!Bc2

V = 4!c2dc

f c( )dc = 4!c2A3e"Bc2dc
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(4.8)

Where 
1
2
mc2 f c( )dc

0

!

" is the total energy of the system and f c( )dc
0

!

"
the total energy of the particles. 

Substituting the value of f c( )  in (4.8), yields,

(4.9)

But kinetic energy is equal to energy in terms of temperature of the gas,

 (4.10)

It is easy to find out the constant B substituting equation (4.10) in (4.9).

(4.11)

The constant A is  determined by finding the proportionality between f c( )

and c2e
!mc

2

2kT .

Thus, the result of the distribution of molecular velocities in a gas is given by 

the  equation (4.12),

1
2
mc2 =

1
2
mc2 f c( )dc

0

!

"
f c( )dc

0

!

"

1
2
mc2 = 3m

4B

1
2
mc2 = 3

2
kT

B =
m
3kT
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(4.12)

The function increases parabolically from 0 (low speed) to a maximum value 

and then decreases exponentially.  The position of the maximum depends on 

the temperature. The area below the curve is always equal to one. Roughly, 

the Maxwell-Boltzmann distribution function (4.12) shows how the speed of a 

moving particles changes at a particular temperature.  

The Maxwell-Boltzmann distribution function is considered as the 

cornerstone of the kinetic theory. From this starting  point, Ludwig  Boltzmann 

was able to derive the evolution of f in terms of microdynamic interactions.

4.2 The Boltzmann Equation

The Boltzmann Equation, as outlined in the previous chapter, describes the 

evolution of a single-particle distribution function. The statistical description 

of the number of particles (4.2)  with a given position and velocity does not 

change if an external force acts on the gas. The force F modifies the 

position x to x + cdt  and the velocity c to c + Fdt .

(4.13)

If collisions between particles take place, the rate of change (4.13) is 

subjected to modify its status.

(4.14)

Dividing the equation (4.14) by drdcdt,

f c( ) = 4! m
2!kT

"
#$

%
&'

3
2
c2e

(mc
2

2kT

f r + cdt,c + Fdt, t + dt( )drdc ! f r,c, t( )drdc = 0

f r + cdt,c + Fdt, t + dt( )drdc ! f r,c, t( )drdc =" f( )drdcdt
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(4.15)

Where 
df
dt is equal to,

(4.16)

The a term is equal to the acceleration and, related with force F by the 

Newton’s Second Law, a = F m ; thus, the Boltzmann Transport Equation 

is written as,

(4.17)

or

(4.18)

Equation (4.18) is the integro-differential equation from which is easy to draw 

out the macroscopic quantities, such as,

(4.19)

(4.20)

(4.21)

df
dt

=! f( )

df
dt

=
!f
!r
dr
dt

+
!f
!c
dc
dt

+
!f
!t
dt
dt

=
!f
!r
c + !f

!c
a + !f

!t

!f
!t

+
!f
!r
c + F

m
!f
!c

= "

!f
!t

+ c "#f =$

! r,t( ) = m f r,c,t( )dc"

! r,t( )u r,t( ) = m cf r,c,t( )dc"

! r,t( )e r,t( ) = 1
2
m ua

2 f r,c,t( )dc"
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Where m is the mass of a particle, ! the fluid density, ua the macroscopic 

speed flow defined as ua = c ! u and !e the energy density. All those 

equations (4.19, 4.20 and 4.21) are conservative mass, momentum and 

energy.

4.3 The Collision Operator: BGK Approximation

The collision operator is the main model in statistical physics for describing 

the iteration between colliding  particles. It is a complicated integral and a 

simplification is  needed in order to facilitate numerical and analytical 

solutions. 

Bhatnagar, Gross and Krook (BGK) in the nineteen fifty-four, and at the same 

period Welander [16], proposed a simplified linear model for Collision 

Operator in which a simple way to ensure a correct relaxation is  to image that 

each collision changes the distribution function f by an amount proportional 

to the difference between f  and a local Maxwellian f eq .

(4.22)

The coefficient ! is called collision frequency; the time-scale relaxation 

factor ! describes the rate at which particles relax back to their equilibrium 

position; when ! > 1, it is called subrelaxation as the particle distribution is 

not completely relaxed to equilibrium. Indeed,  overrelaxation when ! < 1,

since the particle distribution is moved beyond equilibrium. On the other 

hand ! cannot be lower than 0.5 otherwise numerical instabilities occur. The 

term f eq  represents the local Maxwellian equilibrium distribution function 

given by local conserved quantities such as, density,  speed and temperature 

(4.12).

! =" f eq # f( ) = 1
$

f eq # f( )

32!



Since collision operator must preserve both mass and momentum, the 

formulas are,

(4.23)

(4.24)

Substituting the equation (4.22)  in (4.18), the Boltzmann equation becomes a 

non-linear differential equation:

(4.25)

The discretization of the (4.23) in time and space along specific directions 

can be written as: 

(4.26)

This is the starting point of the Lattice Boltzmann Method that replaces the 

Navier-Stokes equation in fluid dynamic simulations. In order to solve the 

partial differential equation, the domain needs to be divided into lattices 

where the particles as distribution functions move along  specific directions 

(streaming) and collide each other (collision).

!i = 0
i
"

 
c
!
i !"i = 0

i
#

 

!f
!t

+ c "#f

Streaming
! "# $#

=
1
$

f eq % f( )
Collision

! "# $#

fi r + cidt,ci + Fdt,t + dt( ) = fi r,ci ,t( ) + dt
!

fi
eq r,c,t( ) " fi r,c,t( )#$ %&
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4.4 Chapman-Enskog Expansion

Chapman-Enskog  Expansion is a useful tool available for multi-scale 

analysis. This procedure is  based on a double expansion in the dependent 

and independent space-time x,t( )  variables.

Considering the single-particle distribution function, the formal expansion 

can be written as,

(4.27)

The former can be simplify as:

(4.28)

Where fi
0( ) = fi

eq
is the equilibrium distribution function and f 1 departure 

from this local equilibrium; ! is a parameter proportional to Knudsen 

number2 Kn;  if   Kn !1 , f may be approximated with only few degrees of 

freedom. 

The basic idea of multi-scale analysis is to represent space and time 

variables in terms of scale. 

Since the final aim of the LBM is the macroscopic hydrodynamics, only the 

first term represents the equilibrium component and the others is hold in a 

final term called f neq (non-equilibrium).

(4.29)

fi = ! n fi
n( )

n=0

"

#

f = f 0( ) + ! f 1( )

fi = fi
eq + fi

neq

34!

2 Knudsen number is a dimensionless number defined as the ratio between the 
mean free path of moleculae (lattice in LBM analysis) and the characteristic 
lenght scale . 



The non-equilibrium components have the order o k( ) with respect to the 

equilibrium one and kn describes the Knudsen number of the flow.

Similar expansion for time and space derivates assumes the following forms,

(4.30)

(4.31)

And, 

(4.32)

(4.33)

Referring to equation (3.4), streaming operator need to be proportional to 

Chapman-Enskog second-order space representation.

(4.34)

Similar for the collision operator,

(4.35)

The distribution functions fi
n( )

!t = "!t1 + "
2!t2

!
!t

= " n !
!t n( )

n=1

#

$

!r = "!r1

!
!r

= " n !
!ri

n( )
n=1

#

$

 
St ! !"t1 + !

2"t2 + !va"r1a +
1
2
! 2vavb"r1a"r1b

 C f[ ] ! C f 0!" #$ + %C ' f
1
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depend only on time via local density, macroscopic velocity and internal 

energy. 

Taking  into account only the fist order terms in the expansion, the Boltzmann 

Equation become,

(4.36)

Thanks to Chapman-Enskog tool analysis, we are able to define a numerical 

code in order to extract macroscopic quantities. On the other hand it is worth 

mentioning that the Chapman-Enskog perturbative treatment of the 

Boltzmann equation is generally  not convergent exposed to severe numerical 

instability.

!
!t

fi
0( ) + " fi

1( ) + ...( ) + c !
!r

fi
0( ) + " fi

1( ) + ...( ) + F
m

!
!c

fi
0( ) + " fi

1( ) + ...( ) = #
1
$

" n fi
n( )

n=0

%

&
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Chapter 5

Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) approximates the continuous 

Boltzmann equation to a discrete physical space with lattice nodes and a 

velocity space by a set of microscopic speed vectors [17].  

5.1 Models

For the simulation of three-dimensional flow we will use the so called D3Q27 

square lattice model with twenty-seven discrete velocities. The common 

terminology referred to the lattice geometry is DnQm,  where n  represents the  

possible dimension of the model and m refers to the  number of speeds.   1042 Kang Xiu-Ying et al Vol. 17

Fig.1. The 3D lattice models. (a) 3DQ15; (b) 3DQ19; (c) 3DQ27.

Let fi(r, t) be a non-negative real number describ-

ing the distribution function of the fluid density at

node r and time t in which the fluid moves in direc-

tion ei. The distribution function evolves the single

relaxation time BGK operator according to the Boltz-

mann equation that is discrete in space–time,

fi(r + ei · δt, t + δt) = fi(r, t) +
f eq

i − fi(r, t)

τ
. (1)

Define macroscopic density ρ and velocity u as ρ =
∑

fi, ρu =
∑

fiei. In Eq.(1) δt is the time step, τ is

the relaxation coefficient; f eq
i is the equilibrium dis-

tribution function in direction i, which is related to

density ρ and velocity u = (ux, uy, uz). A common

choice is

f eq
i = ρωi

[

1 +
3ei · u

c2
+

9

2

(ei · u)2

c4
−

3

2

u
2

c2

]

, (2)

where ωi is the weight factor depending on the length

of the vector ei, and e = δx/δt, with δx = eδt being

the lattice constant. Table 1 lists the weight factors

used in the different models.

Table 1. The coefficients ωi in the equilibrium distribu-

tion function feq
i

for the different lattice Boltzmann mod-

els.

model 0 I II III

3DQ15 2/9 1/9 0 1/72

3DQ19 1/3 1/18 1/36 0

3DQ27 8/27 2/27 1/54 1/216

Note. A 0 indicates a rest particle, I is for links pointing

to the nearest neighbours, II is for links pointing to the

next-nearest neighbours, III is for links pointing to the

next-next-nearest neighbours.

The lattice Boltzmann models presented here

yield the correct hydrodynamic behaviour for an in-

compressible fluid in the limit of low Mach and Knud-

sen numbers. The macroscopic continuity equation

and the Navier–Stokes equation can be obtained by

Taylor expansion of the lattice Boltzmann equation

up to o(δt2) together with application of a multi-scale

Chapman–Enskog procedure,

∂tρ + ∂α(ρuα) = 0, (3)

∂t(ρuα) + ∂β(ρuαuβ)

= ∂αp + ν∂β [ρ(∂αuβ + ∂βuα)], (4)

where p and ν are the pressure and viscosity defined

by

p = c2
sρ, (5)

ν =
(2τ − 1)

6
c2δt, (6)

cs being the sound speed and c2
s = c2/3.

The stress tensor[15] can be obtained from the

non-equilibrium parts of the distribution function,

ταβ = −ρc2
sδαβ−

(

1 −

1

2τ

)

∑

i=0

(fi−f eq
i )eiα ·eiβ , (7)

which gives α- and β- components of the stress tensor.

The effect of the boundary conditions is very im-

portant in many fluid dynamical simulations. In lat-

tice Boltzmann method, the bounce-back boundary

rule is the simplest and computationally efficient way

to impose solid walls. However, it can attain second-

order accuracy only if the boundary is fictitiously

placed halfway between two nodes. Fillippova and

Hanel (abbreviated as FH) curved boundary condi-

tion using the interpolation technique can achieve the

second-order accuracy in the simulation of a flow with

a curved boundary.[16] But when the relaxation co-

efficient τ is near unity, it induces the computational

instability. Afterwards, Mei et al [17] improved the sta-

bility of the scheme. Due to its better computational

accuracy and robustness in handling curved walls, the

boundary treatment usually is used to deal with the

complex geometry problem.

Fig. 5.1 D3Q27 square lattice model. 

Each node has twenty-six neighbors connected by links. The distribution 

functions associated with the particles move move along these links in unit 

time step.
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5.2 Equilibrium Distribution Function

Taking  into account the particles moving in a medium with macroscopic 

velocity u,  the Maxwellian Distribution Function (4.12) is written as,

(5.1)

Using the Taylor Series expansion for e! x and ending up at the third order,

(5.2)

Hence, equation (5.1) is expanded around the stationary state as,

(5.3)

Studying the general form of the equilibrium distribution function, yields,

(5.4)

The constants A,B,C, and D can be determined basing on the mass, 

momentum and energy conservation principles. 

The density, scalar parameter, is equal to the sum of all the distribution 

functions used in the geometry model as,

 

(5.5)

 
f = !

2" 3
e
#
3
2
c
!
#u
!( )2

=
!
2" 3

e
#
3
2
c2

e3 c
!
$u
!
#u2( )

e! x = 1! x + x2

2
!
x3

3!

 

f = !
2" 3

e
#
3
2
c2

1+ 3 c
!
$u
!( ) # 32 u
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2
c
!
$u
!( )2%
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(
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eq = ! "# i A + Bci "u + C ci "u( )2 + Du2$
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'

! = fi
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If, for instance, the flow is stagnant, the velocity will be equal to zero and 

then the Equilibrium Distribution Function will be equal to the first Taylor 

Expansion term, A.

(5.6)

5.3 Governing Equations

Lets focus our attention on the one-dimensional diffusion equation, such as,

(5.7)

Where the variable ! may be temperature or momentum or density and the 

! parameter stands for thermal or mass diffusion coefficient or kinematic 

viscosity for mass and momentum diffusion.

Following with finite difference approximation for one-dimensional diffusion 

problem, the domain needs to be discretized in square grids.  Approximating 

the diffusion equation at a node i, we obtain, 

(5.8)

Rearranging the above equation,

(5.9)

fi
eq = !A" i

!"
!t

= # !" 2

!x2

Ti
n+1 ! Ti

n

"t
= # Ti+1

n ! 2Ti
n + Ti!1

n

"x2

Ti
n+1 = Ti

n +
!"t
"x2

Ti+1
n # 2Ti

n + Ti#1
n( )
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And reformulating as,

(5.10)

Substituting ! into equation (5.10),

(5.11)

(5.12)

For stability conditions !t "
!x2

2#
, hence the term 1!"( ) must be greater 

or equal to zero.

Examining  equation (5.12), the last term 
1
2
Ti+1

n + Ti!1
n( )  is the equilibrium 

value simplified by Ti
eq

  calculated by averaging the temperature around Ti .

(5.13)

Moving  on the Lattice Distribution Function for D3Q27 model and neglecting 

the force acting on the particles, we yield,

(5.14)

Ti
n+1 = Ti

n 1! 2"#t
#x2

$
%&

'
()
+
2"#t
#x2

Ti+1
n + Ti!1

n

2
$
%&

'
()

! =
2"#t
#x2

Ti
n+1 = Ti

n 1!"( ) +" Ti+1
n

2
+
Ti!1

n

2
#
$%

&
'(

Ti
n+1 = Ti

n 1!"( ) +"Tieq

!fi r,t( )
!t

+ ci
!fi r,t( )
!x

= "i
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Where i = 0,1,2,...,26 defines the twenty-seven possible speeds. The term 

ci is in function of the lattice length and the time step.

(5.15)

Taking  into account the BGK approximation for the rate of change of 

distribution function !i , the equation (5.14) becomes,

(5.16)

Applying the time discretization integrating over a time step, the equation 

becomes as,

(5.17)

And the space step,

(5.18)

Substituting equation (5.17) and (5.18) in the Boltzmann Equation, the time 

and space discrete formula is written as, 

  

(5.19)

Reformulated the (5.17) in order to find the similarity with equation (5.13), 

yields,

ci =
!r
!t

!fi r,t( )
!t

+ ci
!fi r,t( )

!t
= "

1
#

fi r,t( ) " fi
eq r,t( )$% &'

!fi
!t

"
fi r,t + #t( ) $ fi r,t( )

#t

!fi
!x

"
fi r + #r,t + #t( ) $ fi r,t + #t( )

#x

fi r + !r,t + !t( ) " fi r,t( ) = "
!t
#

fi r,t( ) " fi
eq r,t( )$% &'
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(5.20)

Where the relaxation time ! is written as,

(5.21)

5.4 D3Q27 Model

For the three-dimensional flow, D3Q27 model represents a good way in order 

to describe the fluid in the near equilibrium state of low-Mach number 

hydrodynamic.

The discrete set of velocities ei is defined as a vector with the following 

values for each node,

(5.22)

!        Nodes positions

    v(0:26,0) = (/0,1,0,-1, 0,1,-1,-1, 1,1,0,-1, 0, 1, 0,-1, 0,0,     &

                & 0,  1, -1, -1, 1, 1, -1, -1, 1/)

    v(0:26,1) = (/0,0,1, 0,-1,1, 1,-1,-1,0,1, 0,-1, 0, 1, 0,-1,0,     & 

                & 0,  1,  1, -1,-1, 1,  1, -1,-1/)

    v(0:26,2) = (/0,0,0, 0, 0,0, 0, 0, 0,1,1, 1, 1,-1,-1,-1,-1,1,     &

                & -1,  1,  1,  1, 1,-1, -1, -1,-1/)

Code 5.1 Position of the nodes.

fi r + !r,t + !t( ) = fi r,t( ) 1"#[ ] +# fi
eq r,t( )

! =
"t
#

ei =

0,0,0( ),                                                !  i = 0
±1,0,0( )c, 0,±1,0( )c, 0,0,±1( )c,          !  i = 1,2,3, 4,17,18
±1,±1,0( )c, 0,±1,±1( )c, ±1,0,±1( )c,    !  i = 5,6, 7,8,9,10,11,12,13,14,15,16,17,18
±1,±1,±1( )c,                                        !  i = 19,20,21,22,23,24,25,26

"

#
$
$

%
$
$
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Neglecting external forces, the transport equation for f r,c,t( )  is expressed 

by the Boltzmann equation as equation (5.16) where the collision term is 

approximated with BGK model. The equilibrium distribution function is given 

by,

(5.23)

Where c is the discrete particle velocity as (5.15). In twenty-seven square 

lattice, the equilibrium function for each node is,

(5.24)

The algorithm is as follows,

!  ========================================================

!  Compute equilibrium distribution

!  ========================================================

SUBROUTINE computeFeq(fEq,rho,u,uSqr)

    USE D3Q27COnst, ONLY: t, v

    USE simParam, ONLY: xDim, yDim, zDim

    implicit none

    double precision, INTENT(IN):: rho(zDim,yDim,xDim), &

 & uSqr(zDim,yDim,xDim), u(zDim,yDim,xDim,0:2)

    double precision, INTENT(INOUT):: fEq(zDim,yDim,xDim,0:26)

    integer:: i, x, y, z

    double precision:: uxyz

 
fi
eq = !" i 1+

3
c2

ei #u
!( ) + 9

2c4
ei #u
!( )2 $ 3

2c2
u
!
#u
!( )%

&'
(
)*

 

fi
eq = !" i 1# 3

2
u
!( )2$

%&
'
()

                                     *  i = 0

fi
eq = !" i 1+ 3 ei +u

!( ) + 9
2
ei +u
!( )2

#
3
2
u
!( )2$

%&
'
()

   *  i = 1,2,...,26

,

-
..

/
.
.
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    do i = 0, 26

        do x = 1, xDim

            do y = 1, yDim

                do z = 1, zDim

                   uxyz = u(z,y,x,0) * v(i,0) + u(z,y,x,1) * v(i,1) + &

   & u(z,y,x,2) * v(i,2)

                   fEq(z,y,x,i)=t(i)*rho(z,y,x)*(1.0d0+3.0d0* &

   & uxyz+4.5d0*uxyz*uxyz-1.5d0*uSqr(z,y,x))

                end do

            end do

        end do

    end do

END SUBROUTINE computeFeq

Code 5.2 Equilibrium Distribution Function.

The weight factor! i is defined as a vector with the follow values for each 

node,

(5.25)

!  D3Q27 Weights

    double precision,parameter:: t(0:26) =                        &

 &(/8.0d0/27.0d0,2.0d0/27.0d0,2.0d0/27.0d0,2.0d0/27.0d0    &

 &,2.0d0/27.0d0,1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0     &

 &,1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0     &

 &,1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0     &

 &,1.0d0/54.0d0,2.0d0/27.0d0,2.0d0/27.0d0,1.0d0/216.0d0    &

 &,1.0d0/216.0d0,1.0d0/216.0d0,1.0d0/216.0d0,1.0d0/216.0d0 &

 &,1.0d0/216.0d0,1.0d0/216.0d0,1.0d0/216.0d0/)

Code 5.3 Weight for D3Q27 model.

! i = 8
27       "  i = 0

! i = 2
27       "  i = 1,2,3,4,17,18

! i = 1
54       "  i = 5,6,7,8,9,10,11,12,13,14,15,16,17,18

! i = 1
216     "  i = 19,20,21,22,23,24,25,26

#

$

%
%%

&

%
%
%
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Chapter 6

Boundary Conditions

Boundary Conditions (BCs) are an essential part of any numerical method. 

For LBM they represent a critical part due to the microscopic point of view 

[18];  BCs need to be translated from macroscopic hydrodynamic quantities 

to microscopic BCs for particle distribution.

BCs are classified in four categories:

1) Periodic Boundary Conditions, easiest but sometimes not 

realistic.

2) Inflow Boundary Conditions, a desired velocity or pressure 

(density) set the inlet distribution functions. 

3) Outflow Boundary Conditions, very difficult to deal with and 

they usually  involve a combination of macroscopic quantities 

with distributions functions.

4) Wall Boundary Conditions,  which include slip and non-slip 

BCs, shows the iteraction between solid obstructions and fluid.

6.1 Periodic Boundary Conditions

Periodic BCs represents the simplest approach useful only in preliminary test 

as it implies hight symmetry of the flow domain [19]. 

(6.1)fi = feq
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It is applied directly to the particles distribution functions requiring only to 

copying the distribution function from the opposite boundary.

   do i = 0, 26

        do x = 1, xDim

            do y = 1, yDim

                do z = 1, zDim

                    f(z,y,x,i) = fEq(z,y,x,i)

                end do

            end do

        end do

    end do

Code 6.1 Periodic Boundary Conditions.

6.2 Velocity Boundary Conditions

When we model a flow with a prescribed velocities or pressure profiles, we 

need to specify macroscopic quantities such as velocity or pressure (density).  

Dealing with the pressure is equivalent to imposing  density conditions thanks 

to the equations of state [20].

Considering a D3Q27 model, the velocities ux , uy  and uz are determined 

studying the distribution functions.

 

(6.2)

Knowing the density, the velocities are set equal to the difference between 

inlet and outlet nodes. 

(6.3)

! = fi
i=0

26

"

ux =
f1 + f5 + f8 + f9 + f13 + f19 + f23 + f26 + f22 ! f3 + f6 + f7 + f11 + f15 + f20 + f24 + f25 + f21( )( )

"
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(6.4)

(6.5)

!  ========================================================

!  Compute velocity from distribution functions

!  ========================================================

SUBROUTINE computeMacros(image,f,rho,u,uSqr)

    USE simParam, ONLY: xDIm, yDim, zDim

    implicit none

    integer, INTENT(IN):: image(zDim,yDim,xDim)

    double precision, INTENT(IN):: f(zDim,yDim,xDim,0:26)

    double precision, INTENT(INOUT)::u(zDim,yDim,xDim,0:2),     &

           &   rho(zDim,yDim,xDim),uSqr(zDim,yDim,xDim)

    integer:: x,y,z

    

    do x = 1, xDim

        do y = 1, yDim

            do z = 1, zDim 

             rho(z,y,x)  = (f(z,y,x,0) + f(z,y,x,1) + f(z,y,x,2)   +  &

           & f(z,y,x,3)  + f(z,y,x,4)  + f(z,y,x,5)  + f(z,y,x,6)  +  &

           & f(z,y,x,7)  + f(z,y,x,8)  + f(z,y,x,9)  + f(z,y,x,10) +  &

           & f(z,y,x,11) + f(z,y,x,12) + f(z,y,x,13) + f(z,y,x,14) +  &

           & f(z,y,x,15) + f(z,y,x,16) + f(z,y,x,17) + f(z,y,x,18) +  &

           & f(z,y,x,19) + f(z,y,x,20) + f(z,y,x,21) + f(z,y,x,22) +  &

           & f(z,y,x,23) + f(z,y,x,24) + f(z,y,x,25) + f(z,y,x,26))

              u(z,y,x,0) = ((f(z,y,x,1) - f(z,y,x,3) + f(z,y,x,5)   - &

            & f(z,y,x,6)  - f(z,y,x,7)  + f(z,y,x,8)  + f(z,y,x,9)  - &       

            & f(z,y,x,11) + f(z,y,x,13) - f(z,y,x,15) + f(z,y,x,19) - & 

            & f(z,y,x,20) + f(z,y,x,23) - f(z,y,x,24) + f(z,y,x,26) - &

            & f(z,y,x,25) + f(z,y,x,22) - f(z,y,x,21)) / rho(z,y,x))

              u(z,y,x,1) = ((f(z,y,x,2) - f(z,y,x,4) + f(z,y,x,5)   + &

            & f(z,y,x,6)  - f(z,y,x,7)  - f(z,y,x,8)  + f(z,y,x,14) - &

            & f(z,y,x,16) + f(z,y,x,10) - f(z,y,x,12) + f(z,y,x,19) - &

            & f(z,y,x,22) + f(z,y,x,20) - f(z,y,x,21) + f(z,y,x,24) - &

            & f(z,y,x,25) + f(z,y,x,23) - f(z,y,x,26)) / rho(z,y,x))

uy =
f2 + f5 + f6 + f14 + f10 + f19 + f20 + f24 + f23 ! f4 + f7 + f8 + f16 + f12 + f22 + f21 + f25 + f26( )( )

"

uz =
f9 + f17 + f11 + f10 + f12 + f19 + f20 + f21 + f22 ! f13 + f18 + f15 + f14 + f16 + f23 + f24 + f25 + f26( )( )

"
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              u(z,y,x,2) = ((f(z,y,x,9) - f(z,y,x,13) + f(z,y,x,17) - &

            & f(z,y,x,18) + f(z,y,x,11) - f(z,y,x,15) + f(z,y,x,10) - &

            & f(z,y,x,14) + f(z,y,x,12) - f(z,y,x,16) + f(z,y,x,19) - &

            & f(z,y,x,23) + f(z,y,x,20) - f(z,y,x,24) + f(z,y,x,21) - &

            & f(z,y,x,25) + f(z,y,x,22) - f(z,y,x,26)) / rho(z,y,x))                 

                uSqr(z,y,x) = u(z,y,x,0) * u(z,y,x,0) + u(z,y,x,1) *  &

            & u(z,y,x,1) + u(z,y,x,2) * u(z,y,x,2)

            end do            

        end do

    end do

END SUBROUTINE computeMacros

Code 6.2 Macroscopic variables from distribution functions.

6.3 Bounce-Back Boundary Conditions

Bounce-Back no-slip BCs is one of the most important benefits of the LBM. 

Basically, the distribution functions propagating towards the solid boundary 

are simply scattered back into the fluid domain along a direction rotated by 

180° radiants.

If the boundary is placed on the solid boundary, bounce-back gives only first 

order accuracy [21];  second order accuracy is achieved when the wall is 

placed half-way from the lattice sites.

For instance, if the distribution functions f7 , f4  and f8  are known, after the 

streaming process boundary conditions is applied as,

 

(6.6)

Bounce-Back BCs ensures mass and momentum conservation at the 

boundary.  It may be apply to all the lattices on the solid surface in modeling 

flow over an obstacle.

f7 = f5
f4 = f2
f8 = f6

!
"
#

$#
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Fig. 6.1 Bounce-Back rules: (a) Specular reflection, (b)  bounce-back 

condition and (c) trapping wall condition.

Bounce-Back may be Slip conditions, it means that the Discrete Functions 

are reflected to a mirror-like fashion instead of being bounce-back.  Slip 

occurs when the fluid particles are specularly reflected and the tangential 

velocity is preserved; the wall would not exert tangential stresses on the fluid 

and slippage would be observed.

6.4 Zou-He Pressure and Velocity Boundary Conditions

Underlining  a new method proposed by Zou Qisu and He Xiaoyi [22] using an 

idea of Bounce-Back of non-equilibrium distribution, we are able to obtain 

excellent results shown by a second-order accuracy.

Assumptions, such as steady flow independent of x, need in order to satisfy 

the differential equation which is  a second-order approximation of the Navier-

Stokes equations.

Taking  into account the bottom node, the boundary is aligned in x-direction 

with f4 ,  f7 ,  f8  pointing into the wall. Boundary conditions are calculated 

after streaming  step, thus, f0 ,  f1,  f3,  f4 ,  f7 ,  f8  are known. If ux and uy  

are specified on the wall, f2 ,  f5 ,  f6  and ! need just to be determined from 

equations (6.2).

(6.7)

Boundary Conditions

Bounce Back rule:

(a) (b) (c)

(a) Specular reflection, (b) bounce back condition and (c) trapping
wall condition

15

f2 + f5 + f6 = ! " f0 + f1 + f3 + f4 + f7 + f8( )
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(6.8)

(6.9)

Substituting equation (6.7) in equation (6.9),

(6.10)

We assume that the bounce-back rule is  still correct for the non-equilibrium 

part of the particle distribution, thus, f2 ! f2
eq( ) = f4 ! f4

eq( )
. Knowing  f4 ,  

the distribution functions f2 , f5 ,   f6  are figure out as,

(6.11)

(6.12)

(6.13)

Taking  into account pressure Boundary Condition and supposing  a flow 

boundary along y-direction, the pressure at the inlet and the velocity along y-

direction is known, it is clear how to find out f1,  f5 ,  f8 , 

(6.14)

(6.15)

f5 ! f6 = "ux ! f1 ! f3 ! f7 + f8( )

f2 + f5 + f6 = !uy + f4 + f7 + f8( )

! =
1

1" uy
f0 + f1 + f3 + 2 f4 + f7 + f( )#$ %&

f2 = f4 +
2
3
!uy

f5 = f7 !
1
2
f1 ! f3( ) + 1

2
"ux +

1
6
"uy

f6 = f8 !
1
2
f1 ! f3( ) + 1

2
"ux +

1
6
"uy

f1 + f5 + f8 = !in " f0 + f2 + f3 + f4 + f6 + f7( )

f1 + f5 + f8 = !inux + f3 + f6 + f7( )
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(6.16)

Substituting equation (6.14) in (6.16),

(6.17)

Using the bounce-back rule for the non-equilibrium part normal to the inlet 

( f1 ! f1
eq( ) = f3 ! f3

eq( )
), the unknown distribution functions are calculated 

as,

(6.18)

  

(6.19)

(6.20)

A special treatment must be considered for the corner node. After the 

streaming step, we find out that,

(6.21)

(6.22)

(6.23)

(6.24)

Similar procedure is applied for the top inlet node and outlet corner nodes.

f5 ! f8 = f2 ! f4 + f6 ! f7

ux = 1!
f0 ! f2 + f4 + 2 f3 + f6 + f7( )"# $%

&in

f1 = f3 +
2
3
!inux

f5 = f7 !
1
2
f2 ! f4( ) + 1

6
"inux

f8 = f6 !
1
2
f2 ! f4( ) + 1

6
"inux

f1 = f3 + f1
eq( ) ! f3

eq( )( ) = f3

f2 = f4 + f2
eq( ) ! f4

eq( )( ) = f4

f5 = f7

f6 = f8 =
1
2

!in " f0 + f1 + f2 + f3 + f4 + f5 + f7( )#$ %&
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Chapter 7

Numerical Results

A brief explanation about numerical analysis is described in order to 

compared numerical solution using two different method:  LBM and Finite 

Volume analysis.  Incompressible, isothermal and unsteady fluid flow will be 

taken into account.

7.1 LBM Analysis

LBM serves as exceptional numerical laboratories for a wide number of 

processes in different fields [].  The common idea with LBM is to approximate 

and solve the Boltzmann equation from the particle perspective and focus on 

the macroscopic quantities.    

Here a discussion of the main characteristic of the 3D code is presented in 

order to clarify the practical use of the equation in computer language.

7.1.1 Flow Geometry

The model used is D3Q27 in three-dimension square lattice in a 

computational parallelepiped domain.

The dimension of the model is in function on the total length of the 

microchannel; the ratio between the length of the domain and the length of 

the mesh must be integer number.
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7.2 The code

An overview of LBM algorithm is shown in figure 7.1. The code is  divided in 

three steps: initialization, collision and streaming phase.

Initialization phase defines the macroscopic quantities such as velocity, 

density, Reynolds number, geometry domain and number of iterations we 

want to run for collision and streaming phase. Poiseuille profile is set up as 

BCs for the velocity at the inlet of our domain.

Collision phase is based on four sub steps; first of all we compute the inlet 

and Bounce-Back BCs. Then, we find out the macroscopic velocity through 

the particle distribution functions. After calculating the equilibrium distribution 

function, we are able to compute the collision operator.

Streaming phase is the last of the three steps: each population function is 

shifted one site along  their corresponding lattice direction. Important to 

underline that the code does not need any temporary memory for this phase.

The result to analyze is the macroscopic velocity of fluid flow. The 

components x,y and z are printed out to a text file in two format: Tecplot and 

Matlab. For each mesh point we obtain three different velocities: vx, vy and vz.
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!  ========================================================

!  Constants for simulation setup

!  ========================================================

MODULE simParam

!        Dimension of the domain

    integer, parameter:: xDim   = 250

    integer, parameter:: yDim   = 50

    integer, parameter:: zDim   = 50

    integer, parameter:: obstX  = xDim/5

    integer, parameter:: obstY  = yDim/2

    integer, parameter:: obstR  = yDim/10+1

!        Adimensional Mesh size:

    double precision, parameter:: deltaT = 0.25d0

!        Increment numbers

    double precision, parameter:: deltaX = xDim / deltaT 

    double precision, parameter:: deltaY = yDim / deltaT 

    double precision, parameter:: deltaZ = zDim / deltaT 

!        Number of steps

    integer, parameter:: tMax = 500

!        Variables defined

    double precision, parameter:: uMax = 0.02d0

    double precision, parameter:: Re = 10.0d0

END MODULE simParam

Code 7.3 Domain variables

In order to reach the right accuracy the number of iterations might be around 

500. This is due to the fact that for small lattice size, the time of CPU is 

usually low, and therefore, the time reduction is not very sensible. In contrast, 

if the lattice has a large size, the time reduction is sensible. 
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!  ========================================================

!  Construct an array the defines the flow geometry

!  ========================================================

SUBROUTINE constructImage(image)

    USE cellConst

    USE simParam, ONLY: xDim, yDim, zDim, obstX, obstY, obstR

    USE D3Q27Const, ONLY: v

    implicit none

    integer, INTENT(INOUT):: image(zDim,yDim,xDim)

    integer:: x,y,z

!        Definition of the Boundary 

    image(:,:,:)     = fluid

    image(:,:,1)     = inlet

    image(:,:,xDim)  = outlet

    image(:,1,:)     = wall

    image(:,yDim,:)  = wall

    image(1,:,:)     = wall

    image(zDim,:,:)  = wall

!        Circular obstacle

    do x = 1, xDim

        do y = 1, yDim

            do z = 1, zDim

                if (((x-obstX)**2 + (y-obstY)**2) <= (obstR**2) ) &

                   &   image(z,y,x) = wall

            end do

        end do

    end do

END SUBROUTINE constructImage

Code 7.4 Flow geometry variables

Open and solid-wall BCs are implemented: Bounce-Back BCs is specified on 

the walls and Poiseuille flow at the inlet. At macroscopic level of fluid flow, 

velocity and Reynolds number is defined a priori.
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7.3 Flow Simulation

For presenting an overall view of the flow simulation in the microchannel, the 

contours of velocity field have been shown in figure 7.1. 

Figure 7.1 Velocity contour ux  along x-axis. 

Figure 7.1 show just the results  in a middle plane of the model. The data 

obtained reflects the results we were supposed to get; an increasing of the 

velocity up to the double on the lateral surface of the obstacle and the 

stagnation point on the contact between fluid and obstacle. 
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Fig. 7.2 3D view of the velocity contour ux  along x-axis.

The velocity contour for ux shows the results of the LBM analysis along x-

direction at z equal to 25 millimeters; at the inlet the Poiseuille profile is 

defined with a velocity range between 0 m/s on the borders and a maximum 

value given a priori. Close to the obstacle,  a stagnation point has the right 

velocity equal to 0 m/s and on the surfaces at 90° with respected to the 

stagnation point the velocity has the maximum value equal to 0.03 m/s. 

Finally, at the output a parabolic velocity profile is outlined as aspected. 

The velocity at the walls is shown in figure 7.3. The velocity is not equal to 

zero but tends to zero.
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Fig. 7.3 Zoom in view of the stream vectors near the obstacle. 

This is due to the limit of the 3D LBM mesh geometry; the center point of the 

mesh is positioned on the border of the domain, then, half of the cube points 

out of the domain and the other, respectively, inside.

Fig. 7.3 3D view for the velocity contour ux  on the borders.

58!



Fig. 7.4 Streamlines.

7.4 Finite Volume Results

A traditional Navier-Stokes solver will be used in order to compare the results 

obtained with LBM approach. We will shown that LBM results are satisfactory 

for the investigated case.

7.4.1 Ansys Preprocessing

The general-purpose commercial CFD/CAE package Ansys [23] is chosen in 

order to provide a basis of comparison for LBM results. Ansys is a Finite 

Volume Navier-Stokes solver and is usually  utilized for the study of wide 

simulations of fluid flows . But not all of them are adequate for describing the 

flow;  such as microscopic flows, with Knudsen number not infinitesimal, are 

described by particle-particle and particle-wall interactions. Knudsen number 

cannot be considered as small as for the propagation of ultrasound due to 

the high frequency of the sound wave;  even shock waves,  when a flow 

changes from supersonic to subsonic, including drastic changes in 

temperature, pressure, and density,  cannot be sufficiently studied with NS 
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equations.  Basically, Knudsen number is a appropriate variable in order to 

understand if a specific case may be modeled with NS or LBM approach. If 

the flow regimens have kn greater than 0.1,  the Navier-Stokes equation fail;  in 

that case, the gas must be described in greater detail, or by extended 

macroscopic models.

The model taken into account in the analysis is valid for both approaches, NS 

and LBM. For the present study, three-dimensional incompressible, unsteady 

flow is used in the simulation with Ansys software. The computational domain 

is discretized with cubic cells  where an unstructured mesh grids with higher 

density is used close to the circular cylinder obstacle. 

Fig. 7.5 Discrete nonuniform lattice mesh grids

The BCs taken into account are the same as LBM approach: no-slip, inlet 

and outlet BCs. The walls of the domain are classified as no-slip bounce-

back BCs. At the inlet, constant velocity profile is set up with a velocity equal 

to 0.02 m/s normal to x-direction. Indeed,  an average static pressure is 

defined at the outlet.

The fluid considered is isothermal air at 25°; the number of iterations are 

1000 with a timescale factor equal to 1.0. The criteria of convergence is 

limited as 10-6 residual target.  
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7.4.2 Ansys Results

The reference solution was computed using  a fine mesh close to the 

obstacle. It should be noted that the CPU time could probably be reduced by 

choosing an optimized mesh.

Fig. 7.6 Velocity profile ux  using CFX compiler.

Figure 7.6 shows the velocity profile ux along the center plane of the channel; 

the maximum velocity close to the obstacle is equal to 0.04 m/s. At the point 

of impact between obstacle and flow, we are able to see the stagnation point 

with velocity equal to zero. After the obstacle the flow try to become steady 

with a maximum velocity equal to 0.03 m/s.

The results of streamlines plots, figure 7.7, clearly depicting the flow pattern 

structure in the cavity. This is to make a vision comparison between LBM and 

Finite Volume flows.   
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Figure 7.7 3D Streamline view with 25 seed points.

7.5 Comparison of the results

In this section, the provided computational results will be compared with 

regard to accuracy, performance, timing measurements and memory 

requirements.

The goal is to take into account four points within the domain;  at each point 

the velocity will be studied in order to find out the difference between the two 

approaches.  The reason of the position of the points is in function on the 

main peaks of speed. The closest point to the inlet is Point 1; it is defined in 

order to study the income velocity before the contact with the obstacle. Point 

2 is the highest in y-direction; it is useful for studying the change of the 

velocity profile due to the boundary conditions and the obstacle. The middle 

point after the obstacle is Point 3; the inlet flow is deviated because of the 

obstacle. Point 3 is able to figure out the changes within the fluid flow as a 

result of the obstacle. The furthest point from the inlet but closest to the 

outlet is Point 4.
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Figure 7.9 Position of the points.

Table 7.1 shows the results of the velocity for the components, x, y and z 

using Ansys. The last value v is the vectorial sum of the three components. 

 

CFX x y z ux uy uz v

Point 1 25 25 25 2,49E-02 -4,50E-05 1,42E-05 2,490E-02

Point 2 50 40 25 3,96E-02 4,05E-03 3,50E-05 3,981E-02

Point 3 150 25 25 3,56E-02 1,23E-06 1,83E-05 3,560E-02

Point 4 100 25 40 2,30E-02 4,81E-05 2,11E-04 2,300E-02

Table 7.1 Velocity results for CFX analysis.

LBM x y z ux uy uz v

Point 1 25 25 25 1,87E-02 2,41E-04 -2,27E-06 1,872E-02

Point 2 50 40 25 1,96E-02 1,41E-04 1,28E-06 1,962E-02

Point 3 150 25 25 1,99E-02 1,13E-06 7,00E-07 1,986E-02

Point 4 100 25 40 1,64E-02 3,39E-06 3,04E-05 1,635E-02

Table 7.2 Velocity results for LBM analysis.
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x y z !v

Point 1 25 25 25 25%

Point 2 50 40 25 51%

Point 3 150 25 25 44%

Point 4 100 25 40 29%

Table 7.3 Comparison between CFX and LBM results.

The comparison between CFX and LBM values are shown in table 7.3. The 

percentage represents the error taking into account the Ansys’ value as the 

reference.

Point 2, below the obstacle, has a difference equal to 51%; that is due to two  

main reasons. With the old release of Ansys, a parabolic velocity profile is 

unfeasible to set up at the inlet. Indeed, a constant velocity is clearly easy to 

define. The speed of the point (0,40,25) in the inlet is equal to 0.02 m/s, 

indeed, in the Poiseuille profile, it is  equal to 0.0097 m/s,  almost the half of 

the previous value. If we study the discrepancy between the two different 

velocities at the inlet,  the difference in percentage is equal to 51%. Another 

difference is imposed by the mesh.  Non-uniform triangular and quadrangular 

mesh is defined close to the circular obstacle,  indeed, a square grid is set up 

in LBM analysis with an accuracy equal to the length of the cubic mesh. For 

instance, reducing the size of the D3Q27 model we are able to decrease the 

error up to 5 percentage points.  This is a limitation of the commercial 

softwares; usually they are less flexible and adaptable to specific 

applications.

The performance in terms of time measurements and memory required is 

calculated using Linux-Debian operating system with a processor 2.53  GHz 

Intel Core 2 Duo and RAM 4 GByte 1067 MHz. The three-dimension LBM 

model is fixed with 625000 nodes with 500 steps in order to have a good 

accuracy.  The time required to solve the model is 8 minutes and 32 seconds 

against the 15 minutes and 47 seconds of the CFX analysis. 
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7.6 Conclusion

Generally, in most practical situations, the systems are too complex to be 

reduced to a system of equations which are analytically tractable. PDEs are 

translated to algebraic difference equations which are then solved locally at 

each space sub-division generally speaking therefore of Finite-Difference or 

Finite-Element. LBM represents an additional approach based, first of all, on 

the advantage of the simplicity of coding. That is  one the reason why LBM is 

preferred in the simulation of Rayleigh-Benard convection or the von Karman 

vortex street.  Moreover, the LBM is a valid approach in order to study the 

nanoscale fluid flow such as blood analysis .

In terms of accuracy, it increases progressively from 3D models with 9 nodes 

reaching the greatest value with 27 nodes. Related to the state of the art, the 

mesh with 27 nodes is the best studied till now even if the differences 

between 27 and 19  nodes are not so relevant in terms of accuracy, memories 

required and computational time.

The order of convergence of LBM is exhibited for the second-order 

convergence with low memory required. The source code was developed 

without any temporary memory for the streaming  and collision step.  The 

memory required is  in function of the order of convergence and the number 

of mesh; each mesh has 27 distribution functions stored in a swap memory.

Another great advantage is the timing measurements. The code written in 

Fortran90 compared with the finite volume analysis with the same number of 

mesh needs half of the time and lower CPU frequency. It is also true that a 

commercial software needs to run subroutines that are not needed for the 

model but implemented inside the commercial code.

In terms of accuracy, the commercial software needs almost the double time 

than the Lattice Boltzmann Method in order to get at least the same precision 

as the source code. This is due to the numerous modules that the software 

has to compile and analyze while the code compiles just what it is written 

into. Trying to change only the computer’s hardware with a better processor’s 

frequency up to 3.16 GHz Intel core 2 Duo and RAM 32 GByte, the time 
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required to obtain the same accuracy decreases much more for CFX analysis 

than LBM. This is due to the increasing of the RAM: if the RAM is not enough 

for the analysis, Ansys tries to storage data on a swap memory on the hard 

disk drive. Because of the mechanical design limitations the speed of the 

data access is  lower than a volatile Random-Access memory modules. That 

is another reason why CFX needs more time to run.

One of the last aspect to take into account is the memory required; in both 

cases the memory is  in function of the number of mesh and the number of 

loops of the code.  If a better accuracy is required, the number of loops has to 

be increased and the memory rises. A great feature of Debian OS  is the 

possibility to use swap memory on the hard disk drive. On the other hand the 

performance in frequency time measuring decreases exponentially due to the 

mechanical design limitation.
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! Appendix A

D3Q27 Lattice Boltzmann Code

The following code presented is the summary of the LBM in 3D with D3Q27 

model written in Fortran90. 
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!  ========================================================

!  Constants that identify different cell-types according

!        to the dynamics they implement

!  ========================================================

MODULE cellConst

    integer, parameter:: fluid = 0, wall = 1, inlet = 10, outlet = 11

END MODULE cellConst

!  ========================================================

!  Lattice constants for the D3Q27 lattice

!  ========================================================

MODULE D3Q27Const

!  D3Q27 Weights

    double precision,parameter:: t(0:26) = (/              &

&  8.0d0/27.0d0,2.0d0/27.0d0,2.0d0/27.0d0,2.0d0/27.0d0     &

&, 2.0d0/27.0d0,1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0     &

&, 1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0     &                                          

&, 1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0,1.0d0/54.0d0     &                                         

&, 1.0d0/54.0d0,2.0d0/27.0d0,2.0d0/27.0d0,1.0d0/216.0d0    &                                        

&, 1.0d0/216.0d0,1.0d0/216.0d0,1.0d0/216.0d0,1.0d0/216.0d0 &                                        

&, 1.0d0/216.0d0,1.0d0/216.0d0,1.0d0/216.0d0/)

!  D3Q27 Directions

    integer:: v(0:26,0:2)

!       = (/(/0,1,0,-1,0,1,-1,-1,1/),(/0,0,1,0,-1,1,1,-1,-1/)/)

!        D3Q27 Opposite Bounce Back

    integer, parameter:: opposite(0:26) = (/

             0,3,4,1,2,7,8,5,6,15,16,13,14,11,12, 

             9,10,18,17,25,26,23,24,21,22,19,20/)

END MODULE D3Q27Const



!  ========================================================

!  Constants for simulation setup

!  ========================================================

MODULE simParam

!        Dimension of the domain

    integer, parameter:: xDim   = 250

    integer, parameter:: yDim   = 50

    integer, parameter:: zDim   = 50

    integer, parameter:: obstX  = xDim/5

    integer, parameter:: obstY  = yDim/2

    integer, parameter:: obstR  = yDim/10+1

!        Adimensional Mesh size:

    double precision, parameter:: deltaT = 0.3d0

!        Increment numbers

    double precision, parameter:: deltaX = xDim / deltaT 

    double precision, parameter:: deltaY = yDim / deltaT 

    double precision, parameter:: deltaZ = zDim / deltaT 

!        Number of steps

    integer, parameter:: tMax = 700

!        Variables defined

    double precision, parameter:: uMax = 0.02d0

    double precision, parameter:: Re = 10.0d0

END MODULE simParam

!  ========================================================

!  The main program, implementing a flow past a cylinder

!  ========================================================

PROGRAM unsteady

    USE simParam, ONLY: xDim, yDim, zDim, tMax

    implicit none

    double precision:: omega, time1, time2, timeTot  

    double precision, dimension(:,:,:,:), allocatable:: u, fEq, f 

    double precision, dimension(:,:,:), allocatable:: rho, uSqr

    integer, dimension(:,:,:), allocatable:: image

    integer:: tStep,z,y,x,i

    allocate(f(zDim,yDim,xDim,0:26))

    allocate(fEq(zDim,yDim,xDim,0:26))

    allocate(u(zDim,yDim,xDim,0:2))

    allocate(uSqr(zDim,yDim,xDim))

    allocate(rho(zDim,yDim,xDim))

    allocate(image(zDim,yDim,xDim))

    CALL constructImage(image)

    CALL computeOmega(omega)

    CALL initMacro(rho,u,uSqr)

    CALL computeFeq(fEq,rho,u,uSqr)
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    do i = 0, 26

        do x = 1, xDim

            do y = 1, yDim

                do z = 1, zDim

                    f(z,y,x,i) = fEq(z,y,x,i)

                end do

            end do

        end do

    end do

    timeTot = 0.0d0

    do tStep = 1, tMax

        CALL CPU_TIME(time1)

        CALL inletOutlet(f,rho,u,image)

        CALL boundaries(f,image)

        CALL computeMacros(image,f,rho,u,uSqr)

        CALL computeFeq(fEq,rho,u,uSqr)

        CALL collide(f,fEq,omega,image)

        CALL stream(f)

        CALL CPU_TIME(time2)

        write(*,*) 'tStep = ', tStep

        timeTot = timeTot + (time2-time1)

    end do

    

    CALL writeInput(omega)

    CALL writeImage(image)

    CALL writeOutput(u,0)

    CALL writeOutputMATLAB(u,0)

    write(*,*) dble(tMax) * (dble(yDim * xDim)) &

               & / timeTot ,'cells per second'

    deallocate(f)

    deallocate(fEq)

    deallocate(u)

    deallocate(uSqr)

    deallocate(rho)

    deallocate(image)

END PROGRAM unsteady

!  ========================================================

!  Compute the relaxation parameter from the Reynolds number

!  ========================================================

SUBROUTINE computeOmega(omega)

    USE simParam, ONLY: Re, uMax, obstR, deltaT

    implicit none

    double precision, INTENT(INOUT):: omega

    double precision:: nu

    nu    =  uMax * 2.0d0 * dble(obstR) / Re

    omega = 1.0d0 / (((3.0d0*nu)/deltaT)+0.5d0)

END SUBROUTINE computeOmega
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!  ========================================================

!  Construct an array the defines the flow geometry

!  ========================================================

SUBROUTINE constructImage(image)

    USE cellConst

    USE simParam, ONLY: xDim, yDim, zDim, obstX, obstY, obstR

    USE D3Q27Const, ONLY: v

    implicit none

    integer, INTENT(INOUT):: image(zDim,yDim,xDim)

    integer:: x,y,z

!        Nodes positions

    v(0:26,0) = (/0,1,0,-1, 0,1,-1,-1, 1,1,0,-1, 0, 1, 0,-1, 0,0, &

                 & 0,  1, -1, -1, 1, 1, -1, -1, 1/)

    v(0:26,1) = (/0,0,1, 0,-1,1, 1,-1,-1,0,1, 0,-1, 0, 1, 0,-1,0, &

                 & 0,  1,  1, -1,-1, 1,  1, -1,-1/)

    v(0:26,2) = (/0,0,0, 0, 0,0, 0, 0, 0,1,1, 1, 1,-1,-1,-1,-1,1, &

                 & -1,  1,  1,  1, 1,-1, -1, -1,-1/)

!        Definition of the Boundary 

    image(:,:,:)     = fluid

    image(:,:,1)     = inlet

    image(:,:,xDim)  = outlet

    image(:,1,:)     = wall

    image(:,yDim,:)  = wall

    image(1,:,:)     = wall

    image(zDim,:,:)  = wall

    

    do x = 1, xDim

        do y = 1, yDim

            do z = 1, zDim

                if (((x-obstX)**2 + (y-obstY)**2) <= (obstR**2) ) &

                   &   image(z,y,x) = wall

            end do

        end do

    end do

END SUBROUTINE constructImage
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!  ========================================================

!  Initialize the simulation to Poiseuille profile at

!        an equilibrium distribution

!  ========================================================

SUBROUTINE initMacro(rho,u,uSqr)

    USE simParam, ONLY: xDim, yDim, zDim

    implicit none

    double precision, INTENT(INOUT)::rho(zDim,yDim,xDim), &

             & u(zDim,yDim,xDim,0:2),uSqr(zDim,yDim,xDim)

    double precision:: uProf

    integer:: y,z

    

    do z = 1, zDim

        do y = 1, yDim

            u(z,y,:,0) = uProf(y)

            u(z,y,:,1) = 0.0d0

            u(z,y,:,2) = 0.0d0

        end do

    end do

    rho  = 1.0d0

    uSqr(:,:,:) = u(:,:,:,0) * u(:,:,:,0) + u(:,:,:,1) * u(:,:,:,1) + &

                & u(:,:,:,2) * u(:,:,:,2)

END SUBROUTINE initMacro

!  ========================================================

!  Compute equilibrium distribution

!  ========================================================

SUBROUTINE computeFeq(fEq,rho,u,uSqr)

    USE D3Q27COnst, ONLY: t, v

    USE simParam, ONLY: xDim, yDim, zDim

    implicit none

    double precision, INTENT(IN):: rho(zDim,yDim,xDim), uSqr(zDim,yDim,xDim), u

(zDim,yDim,xDim,0:2)

    double precision, INTENT(INOUT):: fEq(zDim,yDim,xDim,0:26)

    integer:: i, x, y, z

    double precision:: uxyz

    do i = 0, 26

        do x = 1, xDim

            do y = 1, yDim

                do z = 1, zDim

                    uxyz = u(z,y,x,0) * v(i,0) + u(z,y,x,1) * v(i,1)  &

                    & + u(z,y,x,2) * v(i,2)

                    fEq(z,y,x,i) = t(i) * rho(z,y,x) * (1.0d0+3.0d0 * &

                    & Uxyz + 4.5d0 * uxyz * uxyz - 1.5d0 * uSqr(z,y,x))

                end do

            end do

        end do

    end do

END SUBROUTINE computeFeq
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!  ========================================================

!  Compute velocity from distribution functions

!  ========================================================

SUBROUTINE computeMacros(image,f,rho,u,uSqr)

    USE simParam, ONLY: xDIm, yDim, zDim

    implicit none

    integer, INTENT(IN):: image(zDim,yDim,xDim)

    double precision, INTENT(IN):: f(zDim,yDim,xDim,0:26)

    double precision, INTENT(INOUT)::u(zDim,yDim,xDim,0:2), &

                & rho(zDim,yDim,xDim),uSqr(zDim,yDim,xDim)

    integer:: x,y,z

    

    do x = 1, xDim

        do y = 1, yDim

            do z = 1, zDim

                rho(z,y,x)=(f(z,y,x,0) + f(z,y,x,1) + f(z,y,x,2)    &

        & + f(z,y,x,3)  + f(z,y,x,4)  + f(z,y,x,5)  + f(z,y,x,6)    &

        & + f(z,y,x,7)  + f(z,y,x,8)  + f(z,y,x,9)  + f(z,y,x,10)   &

        & + f(z,y,x,11) + f(z,y,x,12) + f(z,y,x,13) + f(z,y,x,14)   &

        & + f(z,y,x,15) + f(z,y,x,16) + f(z,y,x,17) + f(z,y,x,18)   & 

        & + f(z,y,x,19) + f(z,y,x,20) + f(z,y,x,21) + f(z,y,x,22)   &

        & + f(z,y,x,23) + f(z,y,x,24) + f(z,y,x,25) + f(z,y,x,26))  &

                u(z,y,x,0)=((f(z,y,x,1) - f(z,y,x,3) + f(z,y,x,5)   &

        & - f(z,y,x,6)  - f(z,y,x,7)  + f(z,y,x,8)   + f(z,y,x,9)   &

        & - f(z,y,x,11) + f(z,y,x,13) - f(z,y,x,15)  + f(z,y,x,19)  &

        & - f(z,y,x,20) + f(z,y,x,23) - f(z,y,x,24)  + f(z,y,x,26)  &

        & - f(z,y,x,25) + f(z,y,x,22) - f(z,y,x,21)) / rho(z,y,x))

                u(z,y,x,1)=((f(z,y,x,2) - f(z,y,x,4) + f(z,y,x,5)   &

        & + f(z,y,x,6)  - f(z,y,x,7)  - f(z,y,x,8)  + f(z,y,x,14)   & 

        & - f(z,y,x,16) + f(z,y,x,10) - f(z,y,x,12) + f(z,y,x,19)   &

        & - f(z,y,x,22) + f(z,y,x,20) - f(z,y,x,21) + f(z,y,x,24)   &

        & - f(z,y,x,25) + f(z,y,x,23) - f(z,y,x,26)) / rho(z,y,x)) 

                u(z,y,x,2)=((f(z,y,x,9) - f(z,y,x,13) + f(z,y,x,17) &

        & - f(z,y,x,18) + f(z,y,x,11) - f(z,y,x,15) + f(z,y,x,10)   &

        & - f(z,y,x,14) + f(z,y,x,12) - f(z,y,x,16) + f(z,y,x,19)   &

        & - f(z,y,x,23) + f(z,y,x,20) - f(z,y,x,24) + f(z,y,x,21)   &

        & - f(z,y,x,25) + f(z,y,x,22) - f(z,y,x,26)) / rho(z,y,x))                 

                uSqr(z,y,x) = u(z,y,x,0) * u(z,y,x,0) + u(z,y,x,1)  &

        & * u(z,y,x,1) + u(z,y,x,2) * u(z,y,x,2)

            end do            

        end do

    end do

END SUBROUTINE computeMacros
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!  ========================================================

!  Implement Bounce-back on upper/lower boundaries

!  ========================================================

SUBROUTINE boundaries(f,image)

    USE D3Q27Const, ONLY: opposite

    USE cellConst, ONLY: wall

    USE simParam, ONLY: xDim, yDim, zDim

    implicit none

    integer, INTENT(IN):: image(zDim,yDim,xDim)

    double precision, INTENT(INOUT):: f(zDim,yDim,xDim,0:26)

    double precision:: fTmp(0:26)

    integer:: i, x, z, y

   do x = 1, xDim

        do y = 1, yDim

            do z = 1, zDim

                if (image(z,y,x) == wall) then

                    do i = 0, 26

                        fTmp(i) = f(z,y,x,opposite(i))

                    end do

                    do i = 0, 26

                        f(z,y,x,i) = fTmp(i)

                    end do

                end if

            end do

        end do

    end do

END SUBROUTINE boundaries

!  ========================================================

!  Use Zou/He boundary condition to implement Dirichlet

!        boundaries on inlet/outlet

!  ========================================================

SUBROUTINE inletOutlet(f,rho,u,image)

    USE cellConst, ONLY: inlet, outlet

    USE simParam

    implicit none

    double precision, INTENT(INOUT):: f(zDim,yDim,xDim,0:26), &

                   & u(zDim,yDim,xDim,0:2),rho(zDim,yDim,xDim)

    integer, INTENT(IN):: image(zDim,yDim,xDim)

    double precision:: uProf

    integer:: x, y, z

    do x = 1, xDim

        do y = 1, yDim

            do z = 1, zDim

                if (image(z,y,x) == inlet) then

                    u(z,y,x,0) = uProf(y)

                    u(z,y,x,1) = 0.0d0

                    u(z,y,x,2) = 0.0d0
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                else if (image(z,y,x) == outlet) then

                    u(z,y,x,0) = uProf(y)

                    u(z,y,x,1) = 0.0d0

                    u(z,y,x,2) = 0.0d0

                end if

            end do

        end do

    end do

CONTAINS

!  ========================================================

!  Computation of Poiseuille profile for the inlet/outlet

!  ========================================================

FUNCTION uProf(y)

    USE simParam, ONLY: yDIm, uMax

    implicit none

    integer, INTENT(IN):: y

    double precision:: radius, uProf

    radius = dble(yDim-1) * 0.5d0

    uProf  = -uMax * ((abs(1 - dble(y-1) / radius))**2 - 1.0d0)

END FUNCTION uProf

!  ========================================================

!  Streaming step: the population functions are shifted

!        one site along their corresponding lattice direction

!        (no temporary memory is needed)

!  ========================================================

SUBROUTINE stream(f)

    USE simParam

    implicit none

    double precision, INTENT(INOUT):: f(zDim,yDim,xDim,0:26)

    double precision:: periodicHor(xDim), periodicVert(yDim), &

         & periodicWid(zDim)     

!  -------------------------------------

!  right direction

    periodicVert    = f(1,:,xDim,1)

    f(1,:,2:xDim,1) = f(1,:,1:xDim-1,1)

    f(1,:,1,1)      = periodicVert

!  -------------------------------------

!  up direction

    periodicHor       = f(1,yDim,:,2)

    f(1,2:yDim,:,2)   = f(1,1:yDim-1,:,2)

    f(1,1,:,2)        = periodicHor

!  -------------------------------------

!  left direction

    periodicVert      = f(1,:,1,3)

    f(1,:,1:xDim-1,3) = f(1,:,2:xDim,3)

    f(1,:,xDim,3)     = periodicVert

!  -------------------------------------

!  down direction

    periodicHor        = f(1,1,:,4)

    f(1,1:yDim-1,:,4)  = f(1,2:yDim,:,4)

    f(1,yDim,:,4)      = periodicHor
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!  -------------------------------------

!  up-right direction

    periodicHor          = f(1,yDim,:,5)

    periodicVert         = f(1,:,xDim,5)

    f(1,2:yDim,2:xDim,5) = f(1,1:yDim-1,1:xDim-1,5)

    f(1,1,1,5)           = periodicVert(yDim)

    f(1,2:yDim,1,5)      = periodicVert(1:yDim-1)

    f(1,1,2:xDim,5)      = periodicHor(1:xDim-1)

!  -------------------------------------

!  up-left direction

    periodicVert           = f(1,:,1,6)

    periodicHor            = f(1,yDim,:,6)

    f(1,2:yDim,1:xDim-1,6)   = f(1,1:yDim-1,2:xDim,6)

    f(1,2:yDim,xDim,6)       = periodicVert(1:yDim-1)

    f(1,1,xDim,6)            = periodicVert(yDim)

    f(1,1,1:xDim-1,6)        = periodicHor(2:xDim)

!  -------------------------------------

!  down-left direction

    periodicVert           = f(1,:,1,7)

    periodicHor            = f(1,1,:,7)

    f(1,1:yDim-1,1:xDim-1,7) = f(1,2:yDim,2:xDim,7)

    f(1,1:yDim-1,xDim,7)     = periodicVert(2:yDim)

    f(1,yDim,xDim,7)         = periodicVert(1)

    f(1,yDim,1:xDim-1,7)     = periodicHor(2:xDim)

!  -------------------------------------

!  down-right direction

    periodicVert         = f(1,:,xDim,8)

    periodicHor          = f(1,1,1:xDim,8)

    f(1,1:yDim-1,2:xDim,8) = f(1,2:yDim,1:xDim-1,8)

    f(1,1:yDim-1,1,8)      = periodicVert(2:yDim)

    f(1,yDim,1,8)          = periodicVert(1)

    f(1,yDim,2:xDim,8)     = periodicHor(1:xDim-1)

!  -------------------------------------

!        up-in direction

    periodicVert              = f(zDim,:,1,10)

    periodicWid               = f(:,yDim,1,10)

    f(2:zdim,2:yDim,:,10)     = f(1:zdim-1,1:yDim-1,:,10)

    f(1,2:yDim,1,10)          = periodicVert(1:yDim-1)

    f(1,1,1,10)               = periodicVert(yDim)

    f(2:zDim,1,1,10)          = periodicWid(1:zDim-1)   

!  -------------------------------------

!        up-out direction

    periodicVert              = f(1,:,1,14)

    periodicWid               = f(:,yDim,1,14)

    f(1:zDim-1,2:yDim,:,14)   = f(2:zDim,1:yDim-1,:,14)

    f(zDim,2:yDim,1,14)       = periodicVert(1:yDim-1)

    f(zDim,1,1,14)            = periodicVert(yDim)

    f(2:zDim,1,1,14)          = periodicWid(1:zDim-1)    

!  -------------------------------------
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!        down-out direction

    periodicVert              = f(1,:,1,16)

    periodicWid               = f(:,1,1,16)

    f(1:zDim-1,1:yDim-1,:,16) = f(2:zDim,2:yDim,:,16)

    f(zDim,1:yDim-1,1,16)     = periodicVert(2:yDim)

    f(zDim,yDim,1,16)         = periodicVert(1)

    f(1:zDim-1,yDim,1,16)     = periodicWid(2:zDim)

!  -------------------------------------

!        down-in direction

    periodicVert              = f(zDim,:,1,12)

    periodicWid               = f(:,1,1,12)

    f(2:zDim,1:yDim-1,:,12)   = f(1:zDim-1,2:yDim,:,12)

    f(1,1:yDim-1,1,12)        = periodicVert(2:yDim)

    f(1,yDim,1,12)            = periodicWid(zDim)

    f(2:zDim,yDim,1,12)       = periodicWid(1:zDim-1)

!  -------------------------------------

!        in-right direction

    periodicWid          = f(:,1,xDim,9)

    periodicHor           = f(zDim,1,:,9)

    f(2:zDim,:,2:xDim,9) = f(1:zDim-1,:,1:xDim-1,9)

    f(2:zDim,1,1,9)      = periodicWid(1:zDim-1)

    f(1,1,1,9)           = periodicWid(zDim)

    f(1,1,2:xDim,9)      = periodicHor(1:xDim-1)

!  -------------------------------------

!        in-left direction

    periodicWid             = f(:,1,1,11)

    periodicHor             = f(zDim,1,:,11)

    f(2:zDim,:,1:xDim-1,11) = f(1:zDim-1,:,2:xDim,11)

    f(2:zDim,1,xDim,11)     = periodicWid(1:zDim-1)

    f(1,1,xDim,11)          = periodicWid(zDim)

    f(1,1,1:xDim-1,11)      = periodicHor(2:xDim)

!  -------------------------------------

!        out-left direction

    periodicWid               = f(:,1,1,15)

    periodicHor               = f(1,1,:,15)

    f(1:zDim-1,:,1:xDim-1,15) = f(2:zDim,:,2:xDim,15)

    f(1:zDim-1,1,xDim,15)     = periodicWid(2:zDim)

    f(zDim,1,xDim,15)         = periodicWid(1)

    f(zDim,1,1:xDim-1,15)     = periodicHor(2:xDim)

!  -------------------------------------

!        out-right direction 

    periodicWid               = f(:,1,xDim,13)

    periodicHor               = f(1,1,:,13)

    f(1:zDim-1,:,2:xDim,13) = f(2:zDim,:,1:xDim-1,13)

    f(1:zDim-1,1,1,13)      = periodicWid(2:zDim)

    f(zDim,1,1,13)          = periodicWid(zDim)

    f(zDim,1,2:xDim,13)     = periodicHor(1:xDim-1)

!  -------------------------------------

!        in-right-up direction 

    periodicVert               = f(zDim,:,xDim,19)

    periodicHor                = f(zDim,yDim,:,19)

    periodicWid                = f(:,ydim,xDim,19)

    f(2:zDim,2:yDim,2:xDim,19) = f(1:zDim-1,1:yDim-1,1:xDim-1,19)

    f(1,2:yDim,1,19)           = periodicVert(1:yDim-1)

    f(1,1,1,19)                = periodicVert(yDim)

    f(1,1,2:xDim,19)           = periodicHor(1:xDim-1)

    f(2:zDim,1,1,19)           = periodicWid(1:zDim-1)
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!  -------------------------------------

!        in-left-up direction 

    periodicVert                 = f(zDim,:,1,20)

    periodicHor                  = f(zDim,yDim,:,20)

    periodicWid                  = f(:,yDim,1,20)

    f(2:zDim,2:yDim,1:xDim-1,20) = f(1:zDim-1,1:yDim-1,2:xDim,20)

    f(1,2:yDim,xDim,20)          = periodicVert(1:yDim-1)

    f(1,1,xDim,20)               = periodicVert(yDim)

    f(2:zDim,1,xDim,20)          = periodicWid(1:zDim-1)

    f(zDim,yDim,1:xDim-1,20)     = periodicHor(2:xDim)

!  -------------------------------------

!        in-right-down direction 

    periodicVert                 = f(zDim,:,xDim,22)

    periodicHor                  = f(zDim,1,:,22)

    periodicWid                  = f(:,1,xDim,22)

    f(2:zDim,1:yDim-1,2:xDim,22) = f(1:zDim-1,2:yDim,1:xDim-1,22)

    f(1,1:yDim-1,1,22)           = periodicVert(2:yDim)

    f(1,yDim,1,22)               = periodicVert(1)

    f(zDim,1,2:xDim,22)          = periodicHor(1:xDim-1)

    f(2:zDim,yDim,1,22)          = periodicWid(1:zDim-1)

!  -------------------------------------

!        in-left-down direction

    periodicVert                   = f(zDim,:,1,21)

    periodicHor                    = f(zDim,1,:,21)

    periodicWid                    = f(:,1,1,21)

    f(2:zDim,1:yDim-1,1:xDim-1,21) = f(1:zDim-1,2:yDim,2:xDim,21)

    f(1,1:yDim-1,xDim,21)          = periodicVert(2:yDim)

    f(1,yDim,xDim,21)              = periodicVert(1)

    f(1,yDim,1:xDim-1,21)          = periodicHor(2:xDim)

    f(2:zDim,yDim,xDim,21)         = periodicWid(1:zDim-1)

!  -------------------------------------

!        out-right-up direction

    periodicVert                 = f(1,:,xDim,23)

    periodicHor                  = f(1,yDim,:,23)

    periodicWid                  = f(:,yDim,xDim,23)

    f(1:zDim-1,2:yDim,2:xDim,23) = f(2:zDim,1:yDim-1,1:xDim-1,23)

    f(zDim,2:yDim,1,23)          = periodicVert(1:yDim-1)

    f(zDim,1,1,23)               = periodicVert(yDim)

    f(1,yDim,2:xDim,23)          = periodicHor(1:xDim-1)

   f(1:zDim-1,1,1,23)           = periodicWid(2:zDim)

!  -------------------------------------

!        out-left-up direction

    periodicVert                   = f(1,:,1,24)

    periodicHor                    = f(1,yDim,:,24)

    periodicWid                    = f(:,yDim,1,24)

    f(1:zDim-1,2:yDim,1:xDim-1,24) = f(2:zDim,1:yDim-1,2:xDim,24)

    f(zDim,2:yDim,xDim,24)         = periodicVert(1:yDim-1)

    f(zDim,1,xDim,24)              = periodicVert(yDim)

    f(zDim,1,1:xDim-1,24)          = periodicHor(2:xDim)

    f(1:zDim-1,1,xDim,24)          = periodicWid(2:zDim)

!  -------------------------------------
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!        out-left-down direction

    periodicVert                     = f(1,:,1,25)

    periodicHor                      = f(1,1,:,25)

    periodicWid                      = f(:,1,1,25)

    f(1:zDim-1,1:yDim-1,1:xDim-1,25) = f(2:zDim,2:yDim,2:xDim,25)

    f(zDim,1:yDim-1,xDim,25)         = periodicVert(2:yDim)

    f(zDim,yDim,xDim,25)             = periodicVert(1)

    f(zDim,yDim,1:xDim-1,25)         = periodicHor(2:xDim)

    f(1:zDim-1,yDim,xDim,25)         = periodicWid(2:zDim)

!  -------------------------------------

!        out-right-down direction

    periodicVert                   = f(1,:,xDim,26)

    periodicHor                    = f(1,1,:,26)

    periodicWid                    = f(:,1,xDim,26)

    f(1:zDim-1,1:yDim-1,2:xDim,26) = f(2:zDim,2:yDim,1:xDim-1,26)

    f(zDim,1:yDim-1,1,26)          = periodicVert(2:yDim)

    f(zDim,yDim,1,26)              = periodicVert(1)

    f(zDim,yDim,2:xDim,26)         = periodicHor(1:xDim-1)

    f(1:zDim-1,yDim,1,26)          = periodicWid(2:zDim)

END SUBROUTINE stream

!  ========================================================

!  LBGK collision step

!  ========================================================

SUBROUTINE collide(f,fEq,omega,image)

    USE simParam, ONLY: xDim, yDim, zDim

    USE cellConst, ONLY: wall

    implicit none

    integer, INTENT(IN):: image(zDim,yDim,xDim)

    double precision, INTENT(IN):: fEq(zDim,yDim,xDim,0:26), omega

    double precision, INTENT(INOUT):: f(zDim,yDim,xDim,0:26)

    integer:: x,y,z,i

   do i = 0, 26

        do x = 1, xDim

            do y = 1, yDim

                do z = 1, zDim

                    if (image(z,y,x) /= wall) f(z,y,x,i) =  &

                    &  * f(z,y,x,i) + omega * fEq(z,y,x,i)

                end do

            end do

        end do

    end do

END SUBROUTINE collide
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!  ========================================================

!  Write the components of the velocity to a text file, 

!        with indices (x,y)

!  ========================================================

SUBROUTINE writeOutput(u,tStep)

    USE simParam, ONLY: xDim, yDim, zDim

    implicit none

    integer, INTENT(IN):: tStep

    double precision, INTENT(IN):: u(zDim,yDim,xDim,0:2)

    integer:: x,y,z

    character (LEN=100):: fileName

    write(fileName,*) tStep

    fileName = adjustl(fileName)

    open(13,file='output_Ux_Uy_Uz_3D_TECPLOT'//trim(fileName)//'.dat')

!-------number of field variables to be printed

 write(13,800) 

800 format(' VARIABLES = X, Y, Z, Ux, Uy, Uz')

!-------field variables

 write(13,900) xDim,yDim,zDim

900  format(' ZONE T="VELOCITY"',' I=',i3,' J=',i2,' K=',i2,'  &

        & C= BLUE',' F=POINT')

    do z = 1, zDim

        do y=1, yDim

            do x=1, xDim

                write(13,102) x,y,z,u(z,y,x,0),u(z,y,x,1),u(z,y,x,2)

            end do

        end do

    end do

102     format(3i10,f20.10,f20.10,f20.10)

    close(13)

END SUBROUTINE writeOutput

!  ========================================================

!  Write the flow geometry to a file

!  ========================================================

SUBROUTINE writeImage(image)

    USE simParam, ONLY: xDim, yDim, zDim

    implicit none

    integer, INTENT(IN):: image(zDim,yDim,xDim)

    integer:: x,y,z

    open(13,file='output_Image_3D.dat')

    do x=1, xDim

        do y=1, yDim

            do z=1, zDim

                write(13,102) x,y,z,image(z,y,x)

            end do

        end do

    end do

102 format (3i10,3i10) 

close(15)

END SUBROUTINE writeImage
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!  ========================================================

!  MATLAB: Write the components of the velocity to a text 

!        file, with indices (x,y)

!  ========================================================

SUBROUTINE writeOutputMATLAB(u,tStep)

    USE simParam, ONLY: xDim, yDim, zDim, tMax

    implicit none

    integer, INTENT(IN):: tStep

    double precision, INTENT(IN):: u(zDim,yDim,xDim,0:2)

    integer:: x,y,z

    character (LEN=100):: fileName,dir

    fileName = adjustl(fileName)

    open(15,file='output_Ux_Uy_Uz_3D_MATLAB_data_'// &

                   & trim(fileName)//'.txt')

    do x=1, xDim

        do y=1, yDim

            do z=1, zDim

                write(15,102) x,y,z,u(z,y,x,0),u(z,y,x,1),u(z,y,x,2)

            end do

        end do

    end do

    close(15)

END SUBROUTINE writeOutputMATLAB

!  ========================================================

!  Print out simulation parameters to screen and create a

!        input_MATLAB.txt

!  ========================================================

SUBROUTINE writeInput(omega)

    USE simParam

    implicit none

    double precision, INTENT(IN):: omega

    character (LEN=100):: fileName

    write(*,*) 'xDim                 = ', xDim

    write(*,*) 'yDim                 = ', yDim

    write(*,*) 'zDim                 = ', yDim

    write(*,*) 'Obstacle X           = ', obstX

    write(*,*) 'Obstacle Y           = ', obstY

    write(*,*) 'Obstacle Z           = ', zDim

    write(*,*) 'Obstacle Radius      = ', obstR

    write(*,*) 'Mesh Size            = ', deltaT

    write(*,*) 'tMax                 = ', tMax

    write(*,*) 'uMax                 = ', uMax

    write(*,*) 'Re                   = ', Re

    write(*,*) 'omega                = ', omega
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    open(13,file='input_MATLAB.txt')

    write(13,*) xDim

    write(13,*) yDim

    write(13,*) zDim

    write(13,*) obstX

    write(13,*) obstY

    write(13,*) zDim

    write(13,*) obstR

    write(13,*) deltaT

    write(13,*) tMax

    write(13,*) uMax

    write(13,*) Re

    write(13,*) omega

    

    close(13)

END SUBROUTINE writeInput
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