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“Forty-two.”
said Deep Thought,

with infinite majesty and calm.





ABSTRACT

A pseudo-spectral parallel code for the direct numerical simulation of incompressible
Navier Stokes equations in a cylindrical domain is presented. The codes is aimed
at making possible the numerical simulations of high Reynolds number pipe flow.
The method is based on Fourier expansion in the azimuthal and axial direction and
compact finite-differences schemes along radial direction. This code has the peculiar
feature of being able to vary the number of azimuthal Fourier modes along the radial
direction. This feature, that is intended for addressing high values of Re while keeping
the computational cost under control, allows us to avoid that the spatial resolution,
set at the pipe wall by physical considerations, grows unboundedly as the pipe axis is
approached. After an initial description of equations and used numerical method, the
validation is performed by optimal energy growth and statistical analysis of a fully
developed turbulent flows at low Re.

Keywords: Direct Numerical Simulation, turbulent flows, pipe, cylindrical coordi-
nates, compact finite-differences, variable modes, regularity conditions, optimal en-
ergy growth.

In questo lavoro viene presentato un programma per la risoluzione numerica delle
equazioni di Navier Stokes in un dominio cilindrico. L’obiettivo dello sviluppo di
questo codice è il rendere possibile simulare numericamente correnti ad alto numero
di Reynolds in geometrie cilindriche. Il metodo di calcolo si basa su un’espansione
di Fourier lungo la direzione assiale e angolare e su un metodo a differenze finite
compatte lungo la direzione radiale. La caratteristica principale del codice sviluppato
è la possibilità di variare il numero dei modi angolari lungo il raggio: questo, pensato
per contenere il costo computazionale all’aumentare del numero di Reynolds, perme-
tte di evitare che la risoluzione spaziale, dettata da considerazioni fisiche a parete,
cresca senza controllo all’avvicinarsi dell’asse. Dopo una prima parte in cui vengono
introdotte le equazioni e i metodi numerici utilizzati, ci si presta a validare il codice
di calcolo, prima con l’analisi della perturbazione ottima e, quindi, delle statistiche di
un flusso turbolento, a basso numero di Reynolds, completamente sviluppato.
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NOMENCLATURE

Coordinate systems

x Axial coordinate

r Radial coordinate

θ Azimuthal coordinate

u Axial velocity

v Radial velocity

w Azimuthal velocity

y Wall-normal coordinate [y = 1 − r]

Physical quantities

ν Kinematic viscosity

k Perturbation energy

Reference quantities

R Pipe radius

D Pipe diameter

L Pipe length

Uc Centerline mean axial velocity

Ub Bulk velocity

Uc,P Centerline velocity of the discharge equivalent Poiseuille flow

uτ Friction velocity

Rec Reynolds centerline
[

Uc R
ν

]



vi Nomenclature

Reb Reynolds bulk
[

Ub D

ν

]

ReP Reynolds centerline of the discharge equivalent Poiseuille flow
[

Uc,P R

ν

]

Reτ Reynolds based on friction velocity
[

uτ R
ν

]



1. INTRODUCTION

Study of turbulence was born in the early 1870s when Osbourne Reynolds performed
his first experiments on transition in pipe flows, [Rey83]. Since then pipe flow has
had an uneven role in understanding turbulence: protagonist in first studies, such as
Nikuradse experiments on roughness, pipe flow has ever been subjected to a divided
attention during the second part of the past century.

A renewed interest

Projects like CICLoPE prove that experimentation on pipe flow is now living matter
and testify that this type of flow is a valuable tool to verify commonly accepted
theories or better understand open question, e.g. large scale structures and energy
transfer in wall-boundend shear flows or objection on universality of von Kármán
constant, [TPF+08].

Other fields of interest, in which pipe flow is involved, are investigation upon sim-
ilar behavior in turbulence structure between pipe, channel and turbulent boundary
layers [MHN+06] and development of flow control techniques for cylindrical geome-
tries, such as recent experiments by [ABB+10] on traveling waves.

One strong point of experiments regarding pipes is the lower amount of energy
needed: as the pressure drop is smaller than in the channel counterpart, that require
a bigger cross section to be considered two-dimensional, pipe facilities need smaller
fans and a smaller amount of energy.

Other advantages of pipe flow experiments are that pressure drop along the pipe
gives directly the wall mean shear stress and only length-to-radius ratio has to be
decided. This feature distinguish pipe from channel, where also spanwise direction
has to be set, and is common both to experiments and numerical simulations. In
numerical approach, has even a more profound meaning: the periodical condition,
that in channel flow case is a consequence of homogeneity hypothesis, in pipe flows is
natural.

State of the art

Despite that, first pipe Direct Numerical Simulation by [EUW+94] dates 7 years
later than the its channel counterpart by [KMM87], probably due to the numerical
difficulties associated to the cylindrical coordinate system.

In following years only a limited number of papers has followed, such as works by
[OF97] and [QS00]. All first works has in common the use finite-differences schemes
to approximates derivatives along the three coordinate directions: Fourier expansion
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Pipe Annular pipe

[EUW+94] [OF97] [QS00] [WM08] [COMB10] [QL02]

L 10R 10R 20R 15R πR . . . 20πR 8π(Ro − Ri)
Reτ 170 170 170 180, 1142 170, 500 175

FD2 FD2 FD2 FD2 S FDC(r)
S(x, θ)

Table 1.1: State of the art in pipe flow simulation − FD2: Second order finite-
differences, FDC: Compact finite differences, S: Spectral method

along homogeneous directions appeared later with [QL02], where a DNS of a flow in
a pipe with annular cross-section is performed and on which the developed program
is based.

From Reynolds number point of view, [EUW+94], with its Reτ = 180, is a bench-
mark for all following works and it has become a standard value for the validation
of a DNS codes. Run on higher values of Reynolds number, leaded to values around
1000, like recent work by [WM08], where scale separation starts to be visible.

As mentioned before, length of the pipe is also a sensible parameter in numerical
simulations: a length of 10R was used in the beginning of pipe simulation, but more
recent papers rose this value, up to 20R by [QS00] and 15R by [WM08]. Work by
[COMB10] tried to give an organic view of the problem, establishing that a sufficient
pipe length, in order to have correct statistics, is 8πR.

Azimuthal resolution problem

Both using finite-differences schemes or spectral methods, a peculiar problem, in per-
forming an efficient turbulent pipe flow simulation, has given by spatial resolution in
the axis region. Once spatial resolution has been set at the pipe wall by physical con-
siderations, azimuthal resolution grows unboundedly as the pipe axis is approached:
this behavior leads to restrictive limitations on time step magnitude, due to stability
issues of time integration schemes.

Figure 1.1: Azimuthal resolution issue

The solution implemented in our program is to vary number of azimuthal modes
moving towards radial direction, as proposed by [QL02] for pipes with annular cross-
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section, and more recently by [Boe11] for a conventional pipe. In those works az-
imuthal modes vanish, taking no account of how they decay approaching the axis.

In this work we will try to consider that applying reguarity conditions on modes
that vanish in the domain, derived by physical constraints on Fourier coefficients due
to cylindrical coordinate system [LB90].

Parallel strategies

In order to raise Reynolds number, a parallelization of computation is needed. Cur-
rently a parallel strategy, designed on the architecture of the cluster computer [QL04]
that will be used, has been preferred to a conventional MPI-based strategy, that
nevertheless would be taken in account for further development of the program.

The idea developed by P. Luchini explits compact support of the numerical scheme
used for the approximation of radial derivatives in order to easily split the calculation
between different machines, dividing radially the domain into slices [LQ06].

One slice depends on contiguous ones only by first and last point considered slice.
That being so, the amount of communication needed to perform a parallel simulation
is very low and permits to use a very simple architecture cluster computer.
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2. DIRECT NUMERICAL SIMULATION
CODE

This program brings to a further step the process of evolution of the code developed
by Luchini an Quadrio, [QL02], for an annular pipe flow, started by P. Luchini himself.

In this chapter a complete description of the DNS code is given. First of all
equations, on which the program is based, are introduced and some particular issues
with boundary condition will be faced.

Then, we will introduce adopted numerical method and give an overview to critical
part of the developed algorithm. At least, strategies used to parallelize the calculus
will be approached and evaluated.

2.1 Governing equations

The program is developed on the Fourier transformed Navier-Stokes equation along
axial and azimuthal direction, in primitive variables: in this section we describe the
derivation of those equations.

Geometry itself brings us to use a cylindrical coordinate system: x, r and θ are
axial, radial and azimuthal coordinates, as reported in Figure 2.1, and u, v and w the
respective velocities

θ

r

x2R

L

Figure 2.1: Coordinate system

Pipe radius R is taken as the reference length; once a reference velocity U is chosen,
a Reynolds Number Re can be defined:

Re =
U R

ν
(2.1)

where ν is the kinematic viscosity of the fluid.
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The non-dimensional Navier-Stokes equations for an incompressible fluid in cylin-
drical coordinates can be written as [VO96]:

∂u

∂x
+

1

r

∂ (rv)

∂r
+

1

r

∂w

∂θ
= 0 (2.2)

∂u

∂t
+

∂ (uu)

∂x
+

1

r

∂ (r vu)

∂r
+

1

r

∂ (wu)

∂θ
= −

∂p

∂x
+

+
1

Re

[

∂2u

∂x2
+

1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2

∂2u

∂θ2

] (2.3)

∂ (rv)

∂t
+

∂ (r uv)

∂x
+

∂ (r vv)

∂r
+

∂ (wv)

∂θ
− ww = −r

∂p

∂r
+

+
1

Re

[

∂2 (rv)

∂x2
+ r

∂

∂r

(

r
∂ (rv)

∂r

)

+
1

r2

∂2 (rv)

∂θ2
−

2

r

∂w

∂θ

] (2.4)

∂w

∂t
+

∂ (uw)

∂x
+

1

r2

∂ (r2 vw)

∂r
+

1

r

∂ (ww)

∂θ
= −

1

r

∂p

∂θ
+

+
1

Re

[

∂2w

∂x2
+

1

r

∂

∂r

(

r
∂w

∂r

)

+
1

r2

∂2w

∂θ2
−

w

r2
+

2

r3

∂rv

∂θ

] (2.5)

To close the differential problem an initial condition and a suitable set of boundary
condition are needed: the no-slip condition is imposed at wall and periodic boundary
conditions are employed in x direction. Boundary conditions on the axis will be
discussed in Section 2.1.2.

2.1.1 Transformed equations

As the flow is naturally periodical along the azimuthal direction and considered so
along axial direction, because of the hypothesis of homogeneity along that direction,
a truncated Fourier expansion along those two direction is performed, [QL02]. The
generic field variable a is now expressed as:

a(x, r, θ, t) =

+nx
∑

ix
−nx

+nθ
∑

iθ
−nθ

âix,iθ(r, t) eiα(ix) x+iβ(iθ) θ (2.6)

where:

α(ix) =
2π ix

L
= α0 ix; β(iθ) =

2π iθ
2π

= β0 iθ = iθ.

Here ix and iθ are integer indices corresponding to the axial and azimuthal directions.
α0 and β0 are the fundamental wavenumber: because of field natural periodicity along
azimuthal direction, β0 equals to 1.

In order to avoid any division by r, the equations of motion will be multiplied
by r2. Once the axial and azimuthal derivatives had been executed, the resultant
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equations are:

αr û −D1 (r iv̂) + β ŵ = 0 (2.7)

r2∂û

∂t
+ iαr2 ûu + D1

(

r2 ûv
)

− r ûv + iβr ûw = −αr2 ip̂ +

+
1

Re

[

D∗ (û) −
(

α2r2 + β2
)

û
]

(2.8)

r2∂v̂

∂t
+ iαr2 ûv + D1

(

r2 v̂v
)

− r v̂v + iβr v̂w − r ŵw = −D1
(

r2 p̂
)

+ 2r p̂ +

+
1

Re

[

D∗ (v̂) −
(

α2r2 + β2 + 1
)

v̂ − 2iβ ŵ
]

(2.9)

r2∂ŵ

∂t
+ iαr2 ûw + D1

(

r2 v̂w
)

+ iβr ŵw = −βr ip̂ +

+
1

Re

[

D∗ (ŵ) −
(

α2r2 + β2 + 1
)

ŵ + 2β iv̂
]

(2.10)

where D1 denotes the first derivative in radial direction and D∗(·) the second derivative

r ∂
∂r

(

r ∂(·)
∂r

)

.

Momentum equations are composed by a viscous linear term and a convective
non-linear term. That being so, momentum equation can be rewritten as:

r2∂û

∂t
= Cu + Vu (2.11)

r2∂v̂

∂t
= Cv + Vv (2.12)

r2∂ŵ

∂t
= Cw + Vw (2.13)

where the viscous and convective terms have been collapsed in:

Cu = −iαr2 ûu −D1
(

r2 ûv
)

+ r ûv − iβr ûw (2.14)

Cv = −iαr2 ûv −D1
(

r2 v̂v
)

+ r v̂v − iβr v̂w + r ŵw (2.15)

Cw = −iαr2 ûw −D1
(

r2 v̂w
)

− iβr ŵw (2.16)

Vu =
1

Re

[

D∗ (û) −
(

α2r2 + β2
)

û
]

− αr2 ip̂ (2.17)

Vv =
1

Re

[

D∗ (v̂) −
(

α2r2 + β2 + 1
)

v̂ − 2iβ ŵ
]

−D1
(

r2 p̂
)

+ 2r p̂ (2.18)

Vw =
1

Re

[

D∗ (ŵ) −
(

α2r2 + β2 + 1
)

ŵ + 2β iv̂
]

− βr ip̂ (2.19)

This notation will be useful when the time integration method will be introduced.
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Now we have a set of equations for each mode, where coupling is due to the non
linear therm C only. Navier Stokes equation will be solved in interior points only:
at the wall, the no slip condition is imposed. At the axis the solution is found by
regularity condition.

2.1.2 Regularity conditions

Using a Fourier expansion set us on some considerations about the behavior of Fourier
coefficients approaching the axis. These coefficients express both scalar quantities, i.e.
pressure, and vectorial quantities, so a separete treatment is needed [LB90].

For pressure, assumption that each coefficient is a regular function of the space,
leads to

p̂(r) ∼ r|β| as r → 0. (2.20)

A similar approach enables us to set the conditions on the three components of velocity
vector. For β 6= 0, the derived conditions are

û(r) ∼ r|β|

v̂(r) ∼ r|β|−1

ŵ(r) ∼ r|β|−1







as r → 0 (2.21)

while, for β = 0,

û(r) ∼ r0

v̂(r) ∼ r
ŵ(r) ∼ r







as r → 0. (2.22)

Note that the behavior of axial components u is the same of the scalar p, predictable
result because x coordinate does not takes part in the transformation between carte-
sian coordinates and cylindrical ones.

Considerations that have been made in this section will be useful when azimuthal
variable modes will be introduced. Differently to other DNS codes found in literature,
that just set to zero cut off modes, our implementation of this feature takes into
account how they decay approaching the axis: in order to consider that, regularity
conditions will be used as boundary conditions for modes that vanish in domain. This
treatment in implementing variable modes is expected to better approximate modes
trend, and so energy spectra, than former works.

2.2 Numerical methods

2.2.1 Time integration scheme

Time integration of the equations is performed by a partially implicit method, de-
scribed in [RM91]: an explicit methods is used for nonlinear convective terms and an
implicit methods for linear viscous ones.
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Once the following notation is introduced

u =





û
v̂
ŵ



 N (u) =





Cu

Cv

Cw



 V(u, p) =





Vu

Vv

Vw



 (2.23)

time integration scheme can be written as

r2ua = r2un + ∆t [α1 (V(un, pn) + V(ua, pa)) + γ1 N (un)] (2.24)

r2ub = r2ua + ∆t [α2 (V(ua, pa) + V(ub, pb)) + γ2 N (ua) + ζ1 N (un)] (2.25)

r2un+1 = r2ub + ∆t [α3 (V(ub, pb) + V(un+1, pn+1)) + γ3 N (ub) + ζ2 N (ua)] (2.26)

with:

α1 =
4

15
γ1 =

8

15

α2 =
1

15
γ2 =

5

12
ζ1 = −

17

60

α3 =
1

6
γ3 =

3

4
ζ2 = −

5

12
.

The method seen before takes no consideration of continuity condition. In order
to introduce the continuity equation, we set this notation:

x =









p̂
û
v̂
ŵ









c =









0
αr

−D1 r
β









L =





∂pVu ∂uVu ∂vVu ∂wVu

∂pVv ∂uVv ∂vVv ∂wVv

∂pVw ∂uVw ∂vVw ∂wVw



 (2.27)

Now it is possible to write the closed system that let us to calculate the substep
solution xs+1, given xs, where s is the substep index:
[

cT

(r2 − ∆tαs) L

]

xs+1 =

=

[

0
r2us

]

+

[

0
∆t (αs V(us, ps) + γ2 N (us) + ζ1 N (us−1))

]

(2.28)

This scheme is implemented in such a way to reduce the memory requirements to
a minimum: for each substep the program needs to store only three vectors: current
step right-hand-side, previous step state and previous step right-hand-side. Linear
system solution needs no further vectors because it is performed in place on the right-
hand-side stored memory.

2.2.2 Radial derivatives

The discretization of radial derivatives is performed through finite-differences compact
scheme over a molecule composed by three arbitrary spaced grid points, [Lel92].

Dn (f (ri)) ≈ Dn (f (ri)) =
1
∑

j
−1

dj
n(i) f (rj+i) (2.29)
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Compact schemes are also known as implicit finite-differences, because they typically
require the inversion of a linear system for the calculation of the derivative. In this
particular case it is possible to avoid that inversion introducing a zero-derivative
operator D0.

Following a standard procedure in the theory of Padé approximants, the first
derivative for i position is obtained by solving the linear system:

1
∑

j
−1

dj
1(i) (rj+i − ri)

m = D1 ((rj+i − ri)
m) for m = 0 . . . 2. (2.30)

Imposing that

1
∑

j
−1

dj
0(i)D1

(

(rj+i − ri)
m+1) =

1
∑

j
−1

dj
1(i) (rj+i − ri)

m+1 for m = 1 . . . 3 (2.31)

we obtain the zero-derivative coefficients dj
0(i). The remaining derivative is, finally,

calculated by solving

1
∑

j
−1

dj
∗(i) (rj+i − ri)

m =
1
∑

j
−1

dj
0(i)D∗ ((rj+i − ri)

m) for m = 0 . . . 2. (2.32)

Order of accuracy of finite-differences schemes has been investigated. Discrete
derivates obtained by applying compact schemes to sine function, has been compared
to algebraic values, defining

err1(r) = D1 (sin(r)) − D0 (cos(r)) (2.33)

err∗(r) = D∗ (sin(r)) − D0
(

r cos(r) − r2 sin(r)
)

(2.34)

As we can from Figure 2.2, D1 and D∗ operator present respectively a forth-order and
a second-order accuracy.
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Figure 2.2: Finite-differences accuracy
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Radial grid spacing

Law used to generate the radial grid is

ri =















1

tanh (cth)
tanh

(

cth

i

nr

)

if cth > 0

i

nr

if cth = 0

(2.35)

This law provide a knob parameter cth, that permits to adjust grid spacing, loosing
near axis and refining near wall, as shown in Figure 2.3.
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Figure 2.3: Finite-differences accuracy

2.2.3 Spatial resolution in the azimuthal direction

An intrinsic issue of cylindrical coordinates is that the azimuthal spatial resolution
increase when approaching the axis, as nθ is constant. This behavior has two undesired
effects: first, the region near the axis has an over resolution along azimuthal direction
and, second, the local CFL number increases in that area. This last consequence poses
serious stability limitations on time-step: as we are going to see in Section 4.2.1, time
step allowed for a constant distribution of azimuthal modes is dominated by local
CFL near the axis.

To overcome those problems, the truncation of the azimuthal Fourier series has
been made a function of the radial position. The expansion introduced with Eq. (2.6)
will be replaced by

a(x, r, θ, t) =

+nx
∑

ix
−nx

+nθ(r)
∑

iθ
−nθ(r)

âix,iθ(r, t) eiα(ix) x+iβ(iθ) θ. (2.36)

where nθ(r) can be an arbitrary function of radial position.
In reducing the number of azimuthal modes, some constraints have to be consid-

ered: as highlighted by Lewis and Bellan in [LB90], we can see from Eq. (2.22) that
the modes with β = 1 have a relevant importance because only those mode can have v̂
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and ŵ finite at r = 0. Taking this into account, any distribution nθ(r) should include
modes with β = 1 on the axis.

A first attempt at define a proper azimuthal modes distribution has been made:
the implemented nθ(r) law set a linear variation of the number of azimuthal modes in
order to maintain the spatial resolution lθ = 2π r

2 nθ(r)
as constant as possible along the

radial direction, Figure 2.4.
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Figure 2.4: Radial distribution of azimuthal modes − nr = 128, nθ = 128, cth = 0

This distribution has only geometric foundations and, probably, would not be
optimal. A better evaluation of number of modes needed could be based on comparison
of velocity power spectra between constant modes and variable modes. This should
give a more accurate idea of which modes are involved for each radial station.

Values of flow quantities for the first radial station where a mode appear, are
obtained applying regularity conditions, Section 2.1.2. Because of that and because
of length of finite-difference molecula, a mode have to appear at least in 3 contiguous
radial positions.

The discrete form of regularity conditions can be written as:

p̂α,β

(

riy0,β

)

+
2
∑

j
1

bcj
0(β) p̂α,β

(

riy0,β+j

)

= 0 (2.37)

ûα,β

(

riy0,β

)

+
2
∑

j
1

bcj
0(β) ûα,β

(

riy0,β+j

)

= 0 (2.38)

v̂α,β

(

riy0,β

)

+
2
∑

j
1

bcj
1(β) v̂α,β

(

riy0,β+j

)

= 0 (2.39)

ŵα,β

(

riy0,β

)

+
2
∑

j
1

bcj
1(β) ŵα,β

(

riy0,β+j

)

= 0 (2.40)
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where iy0,β is the radial index where modes β appear. Coefficients bcj
s(β) are obtained

by imposing, discretely, regularity conditions: hence, coefficients are calculated by
solving the system:

(

riy0,β

)|β|+2m−s
+

2
∑

j
0

bcj
s(β)

(

riy0,β+j

)|β|+2m−s
= 0 for m = 1 . . . 2. (2.41)

A special treatment is needed for bcj
1(0), the regularity condition applied to v̂α,0 and

ŵα,0. Their values is given by

(

riy0,0

)2m+1
+

2
∑

j
0

bcj
1(0)

(

riy0,0+j

)2m+1
= 0 for m = 1 . . . 2. (2.42)

2.3 Algorithm

The program is written using CPL, a programming language with related compiler
conceived by Paolo Luchini, [QL04]. CPL source is subjected first to a preprocessing
pass to generate an ANSI-C source, which is then compiled by any ANSI-compliant C
compiler. The meaning of CPL statements, keyword and programming structures can
be easily understood, since they are modeled after the most common programming
languages.

A strong point of this programming language, particularly useful in developing
this program, is the easy comb array management: variable modes need a comb
array of Fourier coefficients whose number varies radially that is simply and efficiently
implemented in the program, as we can see from the extract of the program reported
below.

VELOCITY=STRUCTURED ARRAY(u,v,w) OF COMPLEX

SHARED ARRAY(0..nx,-nz..nz) OF POINTER TO ARRAY(*) OF VELOCITY V

LOOP FOR ALL ix,m

IF iy0(m)>nyh THEN V(ix,m)=NULL ELSE

V(ix,m)=NEW SHARED ARRAY(MAX(iy0(m),nyl-1)..nyh+1) OF VELOCITY

END IF

REPEAT

Another useful feature are the implicit limits in flow control statements, that permit
to reduce the number of command lines and make easier to read the program source.
Here an example in calculating perturbation energy for each radial position:

LOOP FOR iy=MAX(0,nyl-1) TO MIN(ny-1,nyh)

LOOP FOR ALL ix,iz EXCEPT (ix=0 AND iz=0) OR iy<iy0(iz) WITH V(ix,iz,iy)

slice\_en(iy) = ~ + 1/2 * [NORM(u)+NORM(v)+NORM(w)]*[IF ix=0 THEN 1 ELSE 2]

REPEAT

REPEAT

As we can see, upper and lower limits of first and second index of variable V, are
automatically detected.
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2.3.1 Computing convolutions

Evaluation of convective term C, that is performed in function buildrhs, needs to
compute six convolution in order to evaluate ûu, v̂v, ŵw, ûv, ûw and v̂w.

Computational cost of a direct convolution in Fourier space goes with n2
x n2

θ. How-
ever, a standard procedure that permits to compute convolutions in a faster way is
used: thanks to convolution theorem and Fast Fourier Transform (FFT), the compu-
tational cost can be reduced to O (nxnθ log (nxnθ)).

Convolution theorem

The convolution theorem states that the Fourier transform of a convolution is the
pointwise product of Fourier transforms. This theorem suggests us to calculate the
convolution as a product in physical space and then transform back in Fourier space.

O (n2
x n2

θ) convolution

(a) Conventional convolution

product

IFT 2D

FFT 2D

O (nxnθ log (nxnθ))

O (nx nθ)

O (nxnθ log (nxnθ))

(b) Pseudospectral convolution

Figure 2.5: Computational cost

Thanks to FFT algorithm, computational cost of the whole operation is dominated
by the cost of FFT itself: so cost of whole operation goes with O (nxnθ log (nxnθ)),
instead of n2

x n2
θ of the conventional one. This approach is called pseudospectral con-

volution.

Fast Fourier Transform (FFT)

Fast Fourier Transform has some constraints about the number of point processed:
CPL built-in algorithm needs number of point in each direction to be a product of a
power of 2 and possibly a factor of 3.

In the light of those consideration, the number of points in axial direction will be
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expanded, during the convolution evaluation, to nx,d and must satisfy:

nx,d mod 2 = 0 ∧ nx,d ≥
3

2
nx (2.43)

Similarly, nθ,d(ir) has to be

nθ,d(ir) mod 2 = 0 ∧ nθ,d(ir) ≥ 3 nθ (2.44)

Note that nθ,d(ir) is a function of radial position because of the introduction of variable
azimuthal modes.

A reduction of stored memory is possible considering that quantities in physical
space are expressed by real numbers. Under this hypothesis, imaginary part is odd
respect spatial frequency: because of this we can store the positive frequency plan only,
for a one-dimension FFT. In two-dimension case, only one index can be reduced, in
our case the axial one.

2.3.2 Time step

The program can work with both a fixed and variable time step ∆t. The condition
used for the estimation of a proper ∆t is standard condition on CFL number. In order
to do that, variable χ(ir) is defined as:

χ(ir) = max
ix,iθ

(

|u|

∆x

)

+ max
ix,iθ

(

|v|

∆r

)

+ max
ix,iθ

(

|w|

r∆θ

)

(2.45)

where ∆x = L
nx,d

and ∆θ = 2π
nθ,d(ir)

. Its evaluation, made in physical space, is per-

formed during the first step of the time integration scheme where the convolution are
calculated.

Once χ(ir) is known for all radial station, the program sets ∆t, that will be used
in next iteration, as:

∆t =
cflmax

max
ir

(χir)
. (2.46)

where cflmax is chosen by the user.

2.3.3 Files format

Simulation parameters file

This file sets up all parameters needed to perform a simulation and it must be named
cyl.in. They are, in order:

• nx,nr,nθ: number of axial and azimuthal modes and number of radial points;

• α0: axial fundamental wavenumber;
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• Re: Reynolds number;

• Q/2π or 〈∂xp〉: imposed mean axial flow or mean axial pressure gradient;

• ∆t or cflmax: imposed constant or variable time step;

• tmax: final simulation time;

• ∆tfield: time interval at which a file containing current field is written;

• ∆tplot: time interval at which mean flow profile is visualized using a gnuplot-
based function;

• input file: name of the field file to be used as initial condition, if not specified
a laminar flow with no disturbances is assumed.

Runtime file

During a simulation, a runtime file, containing some of peculiar flow quantities, is
generated. A new line is written for each time step and its structure is described in
Table 2.1.

time ∂rû0,0(1, t) û0,0(0, t) Q max
ir

(χir) k(t) ∆t

0 2 1 0.25 0 19.2 0.0520834

0.0520834 2 1 0.25 0 19.2 0.0520834

0.104167 2 1 0.25 0 19.2 0.0520834

· · ·

Table 2.1: Runtime file structure

Field file

The file where a field is stored is composed by a 1024 byte ASCII header, where some
of cyl.in parameters are reported, and a binary part, which contains in order:

• radial nodes array;

• an array containing, for non negative azimuthal wavenumber, the index of first
radial position where the wavenumber is considered;

• field file written by radial index, axial index and azimuthal index.
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2.4 Parallel strategies

In order to parallelize the calculation, two complementary parallel strategies have been
delineated. The firs one uses a group of distribuited-memory machines to radially
divide the domain between nodes; the second one is an SMP strategy exploits shared
memory configurations.

03

CPU 0

CPU 1

01

CPU 0

CPU 1

00

CPU 0

CPU 1

02

CPU 0

CPU 1

eth0eth1

eth0
eth0

eth0 eth1

eth1
eth1

switch eth2net

Figure 2.6: Cluster architecure

In Figure 2.6 a typical architecture, for which those strategies has been developed,
it is shown.

Distribuited-memory machines

The domain is divided between np nodes: a radial slice, from nr,l ip to nr,h ip radial
position, is assigned to each node.

1 2 34

Figure 2.7: Radial partition

In dividing domain into slices, it is necessary to be careful with balancing compu-
tational load between nodes: if load is not equally divided, because all machines have
to be synchronized during the simulation, the simulation speed will be the one of the
slowest process.

In case of a constant azimuthal modes distribution, the optimal load distribution
concurs with an equipartition of radial position between slides, because every xθ-plane
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costs computationally the same as all other ones. It is different if variable modes
are used: because of the variation of nθ, and hence nθ,d, between radial position,
computational cost varies with it.

A first and very preliminary attempt to balance computational load between nodes
has been made. The idea is to predict the computational cost of each slice as a
function of some simulation parameters. The function defined below, WLB(ir), express
the cumulative computational cost for each slice: that estimation is based on the
computational cost of the two-dimension FFT, function that should take most of the
computational time.

WLB(ir) =

ir
∑

jr

nr,l ip

nx,d nθ,d(jr) [ln (nx,d) + ln (nθ,d(jr)))] (2.47)

WLB is defined in order to dimensions the various WLB(nr,h ip) as computational cost
estimation of ip slice.

A simple algorithm sizes slices in order to get a computational cost partitioned as
equal as possible between slices. In Figure 2.8, an attempt of load-balancing is shown.
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(a) constant modes
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(b) variable modes

Figure 2.8: Load-balancing weight function − nx = 256, nr = 128, nθ = 128, np = 6

Parallel communication procedure is a development of the one used in [LQ06]: in
this former work, duplication of two first and last points of each slice was necessary,
limiting parallel performances. In this program, instead, this procedure has been
written by P. Luchini with no need of duplications along radial direction in order to
enhance parallel performances.
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Symmetric MultiProcessing (SMP)

On each node, two-dimensional FFT can be parallelized: for each radial station nx,d

stripes are divided between between the nSMP CPUs on the node, and then the same
with azimuthal direction. That is obtained by ”forking” new processes which read
from and write to the same memory space; those are handled by the operating system
itself, which assign one task to each CPU.

2.4.1 Parallel performances

Useful parameters for evaluating parallel performances are speedup factor S and par-
allel efficiency E:

S(np) =
Tnp

T1

E(np) =
S(np)

np

(2.48)

where Tnp
is the simulation time using np machines.

Thanks to the optimized communication procedure ideated by P. Luchini, the ideal
speedup factor Si is equal to number of computational nodes with a unitary parallel
efficiency:

Si(np) = np Ei(np) = 1. (2.49)

Some tests have been made on a system composed by ten AMD Opteron quad-core
800MHz CPUs, connected each other by GigabitLAN cards. The developed program
was capable, on 10 machines, of a speedup factor of almost 7.5 for a simulation, where
1025 axial, 513 azimuthal modes and 201 radial points have been considered.

These performances are expected to raise as Reynolds, and so problem size, in-
creases: bottleneck of this system is communication speed and, as the problem gets
bigger, communications between nodes are going to take a smaller part of run-time.
Helpful would be also a finer tuning of power-balancing procedure, that has been
treated in a preliminary way only.
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3. OPTIMAL ENERGY GROWTH

The study of optimal energy density growth has two goals: on one side, it would be
useful as a first step on the validation of the developed program and, on the other
hand, it will provide a initial field useful to generate a fully turbulent flow.

Reference for this part of the work will be the paper by Shmid and Henningson
[SH94].

3.1 Theoretical background

First of all, it is introduced the theory that leads to the energy growth function and
the optimal initial condition. As before, due to domain’s geometry, it is useful to
adopt a cylindrical coordinate system: x, r, θ indicate axial, radial and azimuthal
direction and u, v, w the respective velocities.

3.1.1 Governing equations

Starting point for this analysis are the linearized Navier-Stokes equations, where an
axial mean flow of the form U(r) has been assumed:

∂u

∂x
+

1

r

∂

∂r
(rv) +

1

r

∂w

∂θ
= 0 (3.1)

∂u

∂t
+ U

∂u

∂x
+ vU ′ = −

∂p

∂x
+

1

Rec

[

1

r

∂

∂r

(

∂u

∂r

)

+
1

r2

∂2u

∂θ2
+

∂2u

∂θ2

]

(3.2)

∂v

∂t
+ U

∂v

∂x
= −

∂p

∂r
+

1

Rec

[

1

r

∂

∂r

(

∂v

∂r

)

+
1

r2

∂2u

∂θ2
+

∂2u

∂θ2
−

v

r2
−

2

r2

∂w

∂θ

]

(3.3)

∂w

∂t
+ U

∂w

∂x
= −

1

r

∂p

∂θ
+

1

Rec

[

1

r

∂

∂r

(

∂v

∂r

)

+
1

r2

∂2u

∂θ2
+

∂2u

∂θ2
+

w

r2
−

2

r2

∂v

∂θ

]

(3.4)

Those equations have been non-dimensionalized by the pipe radius R and the center-
line velocity Uc. As a result, Reynolds number Rec is defined as R Ucl

ν
, where ν is the

kinematic viscosity.
Flow is periodic on the azimuthal direction and, for this study, will be considered

also periodic on axial direction: this assumption leads to express all the flow properties
as:









u
v
w
p









=
∑

α, β

e(iαx +iβθ)









û
v̂
ŵ
p̂









(3.5)
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where α ∈ R, β ∈ Z and [û, v̂, ŵ, p̂]T ∈ C.
In order to transform an algebraic-differential problem, as the Navier-Stokes equa-

tions, in an evolutive only problem, the radial velocity(v̂)-radial vorticity(η̂) formula-
tion is introduced. Defining the new variables

φ̂ = −irv ω̂ =
αrŵ − βû

βk2Rec r2
=

η̂

iβk2Rec r
, (3.6)

the obtained equations are:

(

Rec

∂

∂t
+ iαRecU

)

T φ̂ −
iαRec

r

(

U ′

k2r

)′

φ̂ = T
(

k2r2T
)

φ̂ + 2αβ2Rec T ω̂ (3.7)

k2r2

(

Rec

∂

∂t
+ iαRec U

)

ω̂ +
iU ′

r
φ̂ = S ω̂ +

2αRec

Re2
c

T φ̂ (3.8)

with:

k2 = α2 +
β2

r2
,

T =
1

r2
−

1

r

∂

∂r

(

1

k2r

∂

∂r

)

, S = k4r2 −
1

r

∂

∂r

(

k2r3 ∂

∂r

)

.

New set of variables, φ̂ and ω̂, describe completely the problem: û, v̂ and ŵ can be
recovered exploiting the continuity equation and the definitions of the radial vorticity:

û = −
α

k2r

∂φ̂

∂r
− β2Rec ω̂, v̂ = −

i

r
φ̂, ŵ = −

β

k2r2

∂φ̂

∂r
+ αβrRec ω̂ (3.9)

The boundary conditions that have to be imposed on φ̂ and ω̂ for the solid wall
are directly given by the no-slip condition:

φ̂ = φ̂
′
= ω̂ = 0 at r = 1. (3.10)

The centerline boundary condition, instead, are given by the fact the velocity vector
has a vanishing azimuthal dependence as the centreline is approached. That leads to

φ̂ = φ̂
′
= 0 for β = 0

φ̂ = ω̂ = 0 for |β| = 1

φ̂ = φ̂
′
= ω̂ = 0 for |β| ≥ 2











at r = 0. (3.11)

In order to make easier to work with those equations, it will be of advantage

to adopt a matrix form of the problem. Introducing the vector q =
[

φ̂, ω̂
]T

, the

governing equations will assume the form

Lq + Rec

∂

∂t
Mq = 0 ⇒

∂q

∂t
=

(

−
1

Rec

M−1L

)

q = Aq (3.12)
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with:

L =











iαRecUT −
iαRec

r

(

U ′

k2r

)′

− T (k2r2T ) −2αβ2Rec T

iU ′

r
−

2αRec

Re2
c

T iαRec U k2r2 − S











M =

[

T 0

0 k2r2

]

.

Considering the numerical approximation A of the operator A and its spectral
decomposition A = TΛT−1, we are able to solve the Cauchy problem:

{

q̇ = Aq

q(0) = q0

⇒ q(t) = eAt q0 = TeΛtT−1 q0 (3.13)

3.1.2 Kinetic energy and energy growth function

As we are interested in the transient growth of the perturbation energy, we must
express k as a function of the variable q. Manipulating its definition, we obtain:

k =

∫ 2π

0

∫ 1

0

1

2

(

|û|2 + |v̂|2 + |ŵ|2
)

r dr dθ =

= π

∫ 1

0

(

|û|2 + |v̂|2 + |ŵ|2
)

r dr =

= π

∫ 1

0







∣

∣

∣
φ̂

′
∣

∣

∣

2

k2r2
+

∣

∣

∣
φ̂

∣

∣

∣

2

r2
+ k2r2β2 Rec |ω̂|2






r dr,

(3.14)

that is an expression of q =
[

φ̂, ω̂
]T

. Defining the scalar product (·, ·)E as

(q1,q2)E = π

∫ 1

0

(

φ̂
′

1φ̂
∗′

2

k2r2
+

φ̂1φ̂
∗

2

r2
+ k2r2β2 Rec ω̂1ω̂

∗
2

)

r dr. (3.15)

we are able to rewrite k with its induced norm:

k = ‖q‖2
E = (q,q)E = qH QE q (3.16)

where QE is an appropriate weighting operator.
The energy growth function G(t) is defined as

G(t) = max
k(0)6=0

k(t)

k(0)
(3.17)
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and, remembering the Eq. (3.16), it is possible to explicit its time dependency:

G(t) = max
q0 6=0

‖q(t)‖2
E

‖q0‖
2
E

=
∥

∥eAt
∥

∥

2

E
=
∥

∥CTeΛtT−1C−1
∥

∥

2

2
(3.18)

where QE is the numerical approximation of QE and QE = CTC its Cholesky de-
composition.

3.1.3 Optimal initial condition

The optimal initial condition is defined as the q0 such that

Gmax = max
t≥0

G(t) = max
q0 6=0

∥

∥CTeΛtGmaxT−1C−1Cq0

∥

∥

2

2

‖Cq0‖
2
2

(3.19)

. Let z be the first right singular vector of CTeΛtGmaxT−1C−1. The optimal initial
condition is:

q0,opt = C−1 z (3.20)

3.2 Results

In this section we will apply tools developed in the previous section in order to compare
results given by linear theory and by DNS simulation.

For the numerical approximation of the introduced operators in linear theory, a
fourth order finite-difference scheme is used for radial derivatives with an uniform
radial grid.

First of all, Figure 3.1 shows the optimal energy growth function for a streamwise
constant perturbation at various azimuthal wavenumbers, compared with the original
results by Shmid and Henningson. As we can see the results obtained are compatible
with the original work considering both energy growth function peaks and shape.

3.2.1 Comparison between DNS and linear theory

We will now compare with linear theory results on energy growth obtained by DNS
code, in order both to get an initial validation of the program and to study the
influence of initial energy magnitude.

A laminar flow, with ReP equal to 3000, has been considered.

Direct Numerical Simulation

Thanks to Eq. (3.20), optimal initial condition in transformed variables can be cal-
culated. However, in order to build an initial field compatible with the developed
program, we need that field expressed in primitive variables. Applying Eq. (3.9), we
get the three components field, as shown in Figure 3.2, where an arbitrary normaliza-
tion has been used.
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Figure 3.1: Optimal energy growth function − Re = 3000 and α = 0
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Figure 3.2: Optimal perturbation in primitive variables and cross section of pertur-
bation field − Re = 3000, α = 0 and β = 1
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For all simulations of this chapter a pipe length of 2πR has been considered and
number of azimuthal and axial modes has been set to 65 with an equally spaced radial
grid, cth = 0. Simulations have been run for 200 time units with a variable time step
calculated in order to maintain a CFL number equal to 1.

nx nr nθ L cht Re Q cflmax tmax

32 64 32 2πR 0 3000 0.5π 1.0 200

Table 3.1: DNS parameters

Effects by initial energy magnitude

The theory developed before is based on linearized Navier-Stokes equations: consider-
ing that those equation have their validity for small perturbation of the laminar flow,
we expect that growth of perturbation energy k will depend by the magnitude of the
initial perturbation field. As a measure of initial magnitude has been considered the
perturbation energy k(0) at the initial time. The response of the system has been
studied when varying k(0) from 10−4 to 10−16.

In Figure 3.3, we can have a first look of obtained results: as the lowest energy
case match the theoretical function, for an initial energy equal to 10−6, the energy
growth shows a lower energy peak and, for k(0) = 10−4, instead, there is no similarity
to the linear case.
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Figure 3.3: Energy transient growth − Re = 3000, α = 0 and β = 1

An explanation of this behavior is the loss of the monochromatic property of
the energy growth because, during the time evolution, other modes are involved.
Figure 3.4 reports a measure of this coupling effect, i.e. difference between the total
perturbation energy and contribution to k(t) given by initially excited mode. We can
see that the higher the initial energy, the greater the coupling effect.

Introducing a scalar measure of these two errors may be useful. Here are defined
the error on the energy growth errk and a measure of coupling between modes errcoupl.:

errk =
‖g − gref‖

2
L2

‖gref‖
2
L2

, errcoupl. =
‖g − gα, β‖

2
L2

‖g‖2
L2

(3.21)
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Figure 3.4: Coupling - Re = 3000, α = 0 and β = 1

where g(t) = k(t)
k(0)

. As reference for errk, a simulation with k(0) = 10−20 and cfl = 0.2
has been taken.

Figure 3.5 shows the influence of k(0) up these two quantities. As the coupling
effect gets smaller, the error on the energy growth decreases, supporting the assump-
tion that we have made before, until it reaches an asymptotic value, probably due to
roundoff noise float or some issues due to CFL number.
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Figure 3.5: Influence of k(0) - Re = 3000, α = 0

The mean flow is also involved in this transient: as we can see from Figure 3.6
while coupling effect is higher, i.e. higher values of initial perturbation energy, mean
flow characteristics vary enormously from Poiseuille flow. When k(0) is set to 10−4,
mean centerline axial velocity halves itself while wall-normal derivative peaks to one
and a half of its initial value.
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Effects by CFL number

A posteriori study on the influence on the energy growth by CFL number has been
made: keeping an initial perturbation energy of 10−16, CFL number has been varied
between 0.2 and 1.0, value used for previous simulations.
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Figure 3.7: Influence of CFL number − k(0) = 10−16, Re = 3000, α = 0 and β = 1

Figure 3.7 shows no significative influence on coupling. Instead, there is a little
effect on energy error, that decreases as the CFL number approaches to zero: because
of regularity of this influence, all previous observations on function behavior are still
well-founded.



4. TURBULENT FLOW

In this chapter previously developed, optimal initial condition theory will be used to
generate a fully turbulent flow in order to compare its statistics with other similar
work in literature.

As main reference has been chosen work developed by Quadrio an Sibilla, [QS00].
In this work, flow in 20R length pipe is studied for a Reynolds number ReP , based
on centerline velocity of discharge equivalent Poiseuille flow, of 4900.

nx nr nθ L cht Re Q cflmax

128 96 64 20R 0 4900 0.5π 1.0

Table 4.1: DNS parameters − it is reminded that nx and nθ are half the axial and
azimuthal modes added to α = 0 and β = 0 mode.

Simulation by Quadrio and Sibilla was performed on a finite difference grid with
257 × 97 × 129 points along axial, radial and azimuthal direction: to maintain an
equivalent spatial resolution we chose 257 modes along axial direction, 129 along az-
imuthal direction and 97 points on pipe radius and the same domain length. Variable
azimuthal modes have been used.

4.1 Transition

As we saw in Section 3.2.1, for higher values of initial perturbation energy all modes
are involved in energy growth and, also, the mean velocity profile is highly perturbed
during transient. The idea is to exploit this behavior to force a Poiseuille flow to
transient to a turbulent flow, despite its property to be linearly stable for any value
of Reynolds number.

In order to do that we impose an initial optimal perturbation energy higher than
used in previous investigations and add a small random noise in all the other modes.

optimal pert. noise

αopt βopt kopt(0) kn(0)

0 1 5 · 10−3 5 · 10−9

Table 4.2: Initial condition
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Figure 4.1 shows the transient in k(t), where various contributes to it are high-
lighted: k0,1 indicates perturbation energy due to α = 0 and β = 1 mode only, hence
k0,∗ indicates all streamwise-constant contributes.
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Figure 4.1: k during transition

After 5 time units perturbation energy is no longer monochromatic, and other
streamwise-constant azimuthal modes are activated. Energy peaks after 8 units, while
the perturbation still remain constant along the axis, Figure 4.3b.

First oscillations along axial direction appear after 14 time units, as we can see
in Figure 4.1 and in Figure 4.3c. From this point flow nature changes radically: high
magnitude oscillations compare in lower half of domain, decaying in a turbulent flow
after almost 80 time units.

As we can see from Figure 4.3i, a distinction between a lower and a upper part of
pipe is still visible after 50 time units and gradually vanishes as long as flow become
fully turbulent, Figure 4.3j.

Some information about the behavoir of mean flow profile can be found in run-time
file, Figure 4.2. Centerline velocity quickly decay while perturbation energy grows and,
after a few oscillations, reaches its steady value. On the wall energy growing influence
is lower and stramwise velocity wall-normal derivative starts to change when energy
peaks: Figure 4.3a shows that wall mean stress starts to change when the perturbation
structure reaches the wall.
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Figure 4.3: Evolution of mean velocity magnitude during transition − cross section:
x = 0; upper section: A-A; lower section: B-B
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4.2 Fully developed turbulent flow

After 500 time units, we considered turbulent flow fully developed. From this time,
simulation have been forked into three distinct simulations: one uses constant az-
imuthal mode, another azimuthal variable modes with no regularity conditions and a
last one azimuthal variable modes applying regularity conditions, as before. Figure 4.4
shows temporal stories of perturbation energy of the three simulations.
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Figure 4.4: Perturbation energy evolution for fully turbulent flow

Statistics have been computed on 41 fields taken at a constant rate of 20 time
units: total sampling time results to be 800 time units, corresponding to the time
taken to cover 20 pipes length at Ub.

Present [QS00] [OF97]
v.m. v.m. (w/o r.c.) c.m.

Uc/Ub 1.315 1.317 1.315 1.31 1.31
Ub/uτ 14.40 14.40 14.50 14.24 14.41
Uc/uτ 18.94 18.97 19.07 18.63 18.87
ReP 4900 4900 4900 4900 4900
Rec 3222 3228 3221 3210 3200
Reτ 170.1 170.1 169.0 172 170

[WM08] [LMMC97] [EUW+94] [EUW+94]
DNS PIV

Uc/Ub 1.31 1.29 1.31 1.30
Ub/uτ 14.61 14.77 14.73 14.88
Uc/uτ 19.25 19.11 19.31 19.38
ReP 5300 5600 5300 5450
Rec 3230 3620 3475 3550
Reτ 180 190 180 183

Table 4.3: Global properties for mean turbulent flow
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In Table 4.3, are shown some global quantities computed for the turbulent flows
from the three different simulations. They are compared with results from both
numerical simulations and experiments, at equal or similar Reynolds numbers: all
flow indicators of performed simulations are very close to reference results reported
in Table 4.3, even to experimental results by [EUW+94].

All selected reference simulations are based upon second order finite-differences
scheme for derivatives approximation in all coordinate directions. Main differences
between those works can be found in pipe length. [QS00], with its L/R ratio equal
to 20, is the longest simulation considered and the closest to 8πR pipe length, recom-
mended by [COMB10] for convergence of turbulence statistics. L/R ratio for other
simulations varies between 10 of older works by [EUW+94], [LMMC97] and [OF97]
to 15 by [WM08].

Turbulent flow present also the near-wall peak at y+ ≈ 14 and λ+ ≈ 110 described
by [HM07] for channel flow, both for variable and constant modes, as we can see from
Figure 4.5. However, because of low Reynolds number, there is not the outer peak.
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Figure 4.5: Premultiplied axial power spectrum of axial velocity fluctuation α Φ+
uu

along wall-normal direction − colored surface: variable modes simulation;
contour lines: constant modes simulation

Those peaks can be found in all wall-bounded turbulent flows, such as channels an
boundary layers, at the same wall distance and wavelength measured in wall units,
[MHN+06].

4.2.1 Variable and constant azimuthal modes

A peculiarity of this code is our introduction of variable azimuthal modes: in this
section we are going to compare results obtained with the two different modes distri-
butions in order to find limits and advantages.

A first comparison is made on mean velocity and Reynolds mean stresses profiles:
as we can see from Figure 4.6, where y denotes radial distance from the wall, no
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significative difference is visible on mean velocity and also a good consistency with
the log law is shown, despite the low Reynolds number. However, Reynolds mean
stresses differ in near wall region, as reported in Figure 4.7. Especially on 〈ww〉 and
〈ww〉, variable modes simulations overestimate stress value respect constant modes
one.

Azimuthal resolution

Resolution problems, due to the variable azimuthal modes distribution, can explain
those differences. In order to better understand this behavior, in Figure 4.8, azimuthal
power spectra of axial velocity fluctuation along radial direction are reported. This

β

r

 

 

10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1e−9  

1e−8  

1e−7  

1e−6  

1e−5  

1e−4  

Figure 4.8: Azimuthal power spectra of axial velocity fluctuation Φuu − colored sur-
face: variable modes simulation; contour lines: constant modes simulation

figure gives an idea of the approximation made by varying azimuthal modes by com-
paring energy levels along radial direction. Near the axis, energy cutoff due occurs
for an energy level of 10−8 and variable modes energy contours match constant modes
ones. However, in near wall region approaching inner energy peak, cutoff occurs
for higher energy and energy contours differs between variable and constant modes
simulations.

A solution for this problem could be an azimuthal modes distribution based on
perturbation energy distribution along radial direction.

Regularity conditions

A distinctive characteristic of developed code is considering regularity constraints on
Fourier series coefficients in using variable azimuthal modes, Section 2.1.2.

Azimuthal power spectra reported in Figure 4.9 permits us to appreciate benefits
given by this feature on statistics: we can see that, both near the axis and the wall,
energy cutoff is smoother and energy level more similar to constant modes simulation,
if regularity conditions are applied.
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Time step

A strong point of variable azimuthal modes is that they allow a higher time step than
constant ones. We can see from Figure 4.10 that actual gain on time step is over 10
times.
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Figure 4.10: Time step

Obviously this has its influence on run-time: as we can see from Table 4.4, constant
modes simulation needed a number of time steps 12.25 time higher than the variable
one. Also, considering that a variable modes time integration step takes less time
than constant, gain on runtime is higher than that.

v.m. v.m. (w/o r.c.) c.m.

16811 16800 205760

Table 4.4: Number of time integration steps from t=500 to t=900

An explanation of this behavior can be found in the evaluation of time step by a
CFL condition. As we have described in Section 2.3.2, time step is calculated by the
variable χ, which can be seen as the CFL number for an unitary time step.
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Figure 4.11 reports mean χ along radial direction. The effect of variable modes is
clearly visible: while, in constant modes case, the azimuthal contribute grows mono-
tonically approaching the axis, in Figure 4.11(b) we can see the effect of nx,d changing
along radial direction. The ratio between peaks of 〈χ〉 results to be 12.25, that, as
predictable, equals to the inverse of ratio of the number of time-integration.
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5. CONCLUSIONS

A Direct Numerical Simulation code, based on an axial and azimuthal Fourier expan-
sion of Navier Stokes equation, has been developed.

Innovative feature of this code is the introduction of variable azimuthal modes
along radial direction on which regularity conditions are applied, Section 2.2.3: respect
former implementation of variable azimuthal modes, this method allow us to take into
account physical constraints on the coefficients of Fourier expansion.

Moreover, compact support given by compact finite-differences scheme, permitted
us to easily parallelize the program, Section 2.4, this reducing to a minimum the
amount of communications between machines.

Validation

Program has been validated following two different strategies, one based on laminar
flow and one on turbulent statistics.

A first validation, Section 3.2.1, has been made comparing DNS results of optimal
perturbation energy growth in laminar flow to its theoretical trend. Simulated re-
sults match linear theory as long as initial perturbation energy density remains under
10−10 U2

c,P .
Secondly, the code has been validated by comparing statistics, obtained from tur-

bulent fields generated by developed program, to results found in literature, as re-
ported in Section 4.2. In order to generate a fully developed turbulent flow, on which
statistics can be calculated, an high energy optimal perturbation has been used to
force laminar flow to reach the turbulent regime, as described in Section 4.1.

Discussion

Comparing results obtained by constant and variable azimuthal modes, some minor
differences has been noticed in azimuthal power spectra. First attempt of variable
azimuthal modes distribution was based on geometrical considerations only and didn’t
take into account the azimuthal modes energy distribution in near wall region.

This problem can be easily solved by adopting an azimuthal modes distribution
that consider energy trend along radial direction, such as the proposed one in Fig-
ure 5.1. In this prospective the radial distribution of azimuthal modes will depend
on Reynolds number: in fact, the position of the near wall energy peaks described by
[MHN+06] scales with Re.

The comparison between simulations performed with or without variable modes
confirmed also other expected strong points of developed program. Use of regularity
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Figure 5.1: Azimuthal power spectra of axial velocity fluctuation Φuu − colored sur-
face: variable modes simulation; contour lines: constant modes simu-
lation, red contour: Φuu = 10−8; red dashed line: suggested energy-
compliant azimuthal modes distribution

conditions, in variable modes approach, smoothed energy cutoff in azimuthal power
spectra respect to simple cut condition. Expected gain on time step is also present:
performing two simulation at the same imposed CFL number, variable modes simu-
lation time step results higher by an order of magnitude respect constant simulation
one, with direct impact on run-time of simulation.

Further developments

Compact finite-differences scheme, that have been used in calculating radial second
derivative, presents only a second order accuracy, despite first derivative operator
which is forth-order. An enhancement of order of accuracy of D∗ operator would
secure a forth-order accuracy to the whole method.

Parallel performances of the program are also to be tuned: a parallel efficiency
by 75% has been achieved by a simulation split upon ten machines, Section 2.4.1, a
long way off from theoretical speedup given by program architecture. Better results
can be obtained by improving load-balancing between nodes: this enhancement can
be easily carried out by refining load-balancing weight function, that has only been
drafted in this version of the code.

Program source has been written in order to be flexible: it implements a pure
DNS but the modular structure makes easier further development, such as a passive
scalar equation or a time-dependent boundary condition on wall, feature that could
be useful to a better study of flow-control strategies.

All those features makes the developed code a powerful instrument in turbulence
study: we have built a virtual wind-tunnel, now it is only to be used.
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APPENDIX





A. FURTHER STATISTICS

r 〈u〉 〈uu〉 〈vv〉 〈ww〉 〈uv〉 〈τ〉

0.0000E+00 6.5757E-01 9.0353E-04 5.0621E-04 5.0537E-04 -4.5578E-22 7.2504E-19

1.0417E-02 6.5738E-01 8.3603E-04 5.0615E-04 5.0673E-04 2.2643E-05 -1.4063E-06

2.0833E-02 6.5738E-01 8.3603E-04 5.0615E-04 5.0674E-04 2.2644E-05 -1.7882E-06

3.1250E-02 6.5719E-01 8.3415E-04 5.0665E-04 5.0811E-04 3.3702E-05 -4.0711E-06

4.1667E-02 6.5696E-01 8.3219E-04 5.0742E-04 5.1006E-04 4.4030E-05 -5.0779E-06

5.2083E-02 6.5667E-01 8.3848E-04 5.0836E-04 5.1252E-04 5.5239E-05 -6.1365E-06

6.2500E-02 6.5633E-01 8.4534E-04 5.0966E-04 5.1548E-04 6.6255E-05 -7.2025E-06

7.2917E-02 6.5594E-01 8.5609E-04 5.1111E-04 5.1890E-04 7.7810E-05 -8.2429E-06

8.3333E-02 6.5549E-01 8.6752E-04 5.1294E-04 5.2275E-04 8.9225E-05 -9.2583E-06

9.3750E-02 6.5499E-01 8.8135E-04 5.1492E-04 5.2707E-04 1.0097E-04 -1.0246E-05

1.0417E-01 6.5445E-01 8.9575E-04 5.1733E-04 5.3179E-04 1.1253E-04 -1.1222E-05

1.1458E-01 6.5385E-01 9.1180E-04 5.1990E-04 5.3689E-04 1.2427E-04 -1.2200E-05

1.2500E-01 6.5320E-01 9.2837E-04 5.2289E-04 5.4225E-04 1.3584E-04 -1.3190E-05

1.3542E-01 6.5250E-01 9.4623E-04 5.2603E-04 5.4789E-04 1.4757E-04 -1.4184E-05

1.4583E-01 6.5175E-01 9.6476E-04 5.2955E-04 5.5381E-04 1.5922E-04 -1.5166E-05

1.5625E-01 6.5095E-01 9.8466E-04 5.3314E-04 5.6005E-04 1.7104E-04 -1.6114E-05

1.6667E-01 6.5011E-01 1.0056E-03 5.3709E-04 5.6660E-04 1.8277E-04 -1.7018E-05

1.7708E-01 6.4922E-01 1.0281E-03 5.4108E-04 5.7358E-04 1.9459E-04 -1.7883E-05

1.8750E-01 6.4828E-01 1.0516E-03 5.4540E-04 5.8103E-04 2.0625E-04 -1.8730E-05

1.9792E-01 6.4730E-01 1.0766E-03 5.4977E-04 5.8907E-04 2.1789E-04 -1.9576E-05

2.0833E-01 6.4628E-01 1.1024E-03 5.5450E-04 5.9764E-04 2.2937E-04 -2.0436E-05

2.1875E-01 6.4522E-01 1.1292E-03 5.5930E-04 6.0679E-04 2.4080E-04 -2.1315E-05

2.2917E-01 6.4411E-01 1.1566E-03 5.6448E-04 6.1648E-04 2.5213E-04 -2.2208E-05

2.3958E-01 6.4295E-01 1.1845E-03 5.6974E-04 6.2675E-04 2.6348E-04 -2.3106E-05

2.5000E-01 6.4175E-01 1.2131E-03 5.7537E-04 6.3746E-04 2.7484E-04 -2.3994E-05

2.6042E-01 6.4050E-01 1.2425E-03 5.8104E-04 6.4855E-04 2.8630E-04 -2.4860E-05

2.7083E-01 6.3921E-01 1.2729E-03 5.8704E-04 6.5989E-04 2.9782E-04 -2.5700E-05

2.8125E-01 6.3788E-01 1.3044E-03 5.9298E-04 6.7148E-04 3.0943E-04 -2.6520E-05

2.9167E-01 6.3650E-01 1.3371E-03 5.9921E-04 6.8329E-04 3.2109E-04 -2.7325E-05

3.0208E-01 6.3509E-01 1.3706E-03 6.0538E-04 6.9538E-04 3.3279E-04 -2.8120E-05

3.1250E-01 6.3363E-01 1.4046E-03 6.1183E-04 7.0775E-04 3.4454E-04 -2.8909E-05

3.2292E-01 6.3214E-01 1.4389E-03 6.1826E-04 7.2055E-04 3.5633E-04 -2.9696E-05

3.3333E-01 6.3060E-01 1.4735E-03 6.2505E-04 7.3376E-04 3.6818E-04 -3.0490E-05

3.4375E-01 6.2902E-01 1.5084E-03 6.3185E-04 7.4743E-04 3.8005E-04 -3.1294E-05

· · ·

Table A.1: Flow mean quantities − variable modes with regularity conditions
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r 〈u〉 〈uu〉 〈vv〉 〈ww〉 〈uv〉 〈τ〉

· · ·
3.5417E-01 6.2741E-01 1.5438E-03 6.3904E-04 7.6144E-04 3.9200E-04 -3.2104E-05

3.6458E-01 6.2575E-01 1.5799E-03 6.4624E-04 7.7578E-04 4.0398E-04 -3.2911E-05

3.7500E-01 6.2405E-01 1.6168E-03 6.5379E-04 7.9027E-04 4.1606E-04 -3.3710E-05

3.8542E-01 6.2231E-01 1.6547E-03 6.6129E-04 8.0494E-04 4.2816E-04 -3.4498E-05

3.9583E-01 6.2052E-01 1.6937E-03 6.6910E-04 8.1967E-04 4.4038E-04 -3.5271E-05

4.0625E-01 6.1871E-01 1.7341E-03 6.7678E-04 8.3457E-04 4.5262E-04 -3.6020E-05

4.1667E-01 6.1685E-01 1.7757E-03 6.8477E-04 8.4959E-04 4.6501E-04 -3.6739E-05

4.2708E-01 6.1496E-01 1.8184E-03 6.9264E-04 8.6486E-04 4.7740E-04 -3.7430E-05

4.3750E-01 6.1303E-01 1.8620E-03 7.0083E-04 8.8022E-04 4.8993E-04 -3.8099E-05

4.4792E-01 6.1107E-01 1.9064E-03 7.0891E-04 8.9568E-04 5.0239E-04 -3.8758E-05

4.5833E-01 6.0907E-01 1.9517E-03 7.1735E-04 9.1108E-04 5.1492E-04 -3.9420E-05

4.6875E-01 6.0704E-01 1.9980E-03 7.2563E-04 9.2652E-04 5.2728E-04 -4.0090E-05

4.7917E-01 6.0498E-01 2.0456E-03 7.3428E-04 9.4200E-04 5.3969E-04 -4.0758E-05

4.8958E-01 6.0288E-01 2.0947E-03 7.4270E-04 9.5768E-04 5.5192E-04 -4.1408E-05

5.0000E-01 6.0075E-01 2.1455E-03 7.5138E-04 9.7346E-04 5.6417E-04 -4.2034E-05

5.1042E-01 5.9859E-01 2.1979E-03 7.5970E-04 9.8942E-04 5.7616E-04 -4.2652E-05

5.2083E-01 5.9640E-01 2.2519E-03 7.6821E-04 1.0054E-03 5.8808E-04 -4.3290E-05

5.3125E-01 5.9417E-01 2.3077E-03 7.7619E-04 1.0215E-03 5.9966E-04 -4.3964E-05

5.4167E-01 5.9191E-01 2.3653E-03 7.8430E-04 1.0375E-03 6.1115E-04 -4.4685E-05

5.5208E-01 5.8961E-01 2.4248E-03 7.9184E-04 1.0538E-03 6.2225E-04 -4.5453E-05

5.6250E-01 5.8727E-01 2.4861E-03 7.9946E-04 1.0702E-03 6.3328E-04 -4.6267E-05

5.7292E-01 5.8489E-01 2.5489E-03 8.0643E-04 1.0869E-03 6.4393E-04 -4.7125E-05

5.8333E-01 5.8246E-01 2.6133E-03 8.1349E-04 1.1037E-03 6.5462E-04 -4.8032E-05

5.9375E-01 5.7998E-01 2.6791E-03 8.1973E-04 1.1205E-03 6.6499E-04 -4.8997E-05

6.0417E-01 5.7746E-01 2.7469E-03 8.2599E-04 1.1368E-03 6.7550E-04 -5.0030E-05

6.1458E-01 5.7488E-01 2.8173E-03 8.3129E-04 1.1528E-03 6.8572E-04 -5.1124E-05

6.2500E-01 5.7224E-01 2.8913E-03 8.3643E-04 1.1679E-03 6.9620E-04 -5.2257E-05

6.3542E-01 5.6954E-01 2.9697E-03 8.4041E-04 1.1826E-03 7.0637E-04 -5.3430E-05

6.4583E-01 5.6678E-01 3.0532E-03 8.4412E-04 1.1966E-03 7.1674E-04 -5.4689E-05

6.5625E-01 5.6396E-01 3.1425E-03 8.4647E-04 1.2106E-03 7.2664E-04 -5.6099E-05

6.6667E-01 5.6106E-01 3.2383E-03 8.4848E-04 1.2243E-03 7.3678E-04 -5.7717E-05

6.7708E-01 5.5807E-01 3.3414E-03 8.4881E-04 1.2380E-03 7.4646E-04 -5.9578E-05

6.8750E-01 5.5497E-01 3.4526E-03 8.4864E-04 1.2512E-03 7.5649E-04 -6.1723E-05

6.9792E-01 5.5176E-01 3.5727E-03 8.4648E-04 1.2642E-03 7.6597E-04 -6.4187E-05

7.0833E-01 5.4842E-01 3.7022E-03 8.4349E-04 1.2763E-03 7.7593E-04 -6.6982E-05

7.1875E-01 5.4493E-01 3.8421E-03 8.3802E-04 1.2873E-03 7.8535E-04 -7.0112E-05

7.2917E-01 5.4126E-01 3.9937E-03 8.3134E-04 1.2963E-03 7.9535E-04 -7.3588E-05

7.3958E-01 5.3742E-01 4.1583E-03 8.2138E-04 1.3037E-03 8.0459E-04 -7.7449E-05

7.5000E-01 5.3336E-01 4.3365E-03 8.0977E-04 1.3090E-03 8.1419E-04 -8.1816E-05

7.6042E-01 5.2906E-01 4.5287E-03 7.9428E-04 1.3130E-03 8.2242E-04 -8.6823E-05

7.7083E-01 5.2450E-01 4.7357E-03 7.7665E-04 1.3153E-03 8.3075E-04 -9.2611E-05

7.8125E-01 5.1961E-01 4.9583E-03 7.5460E-04 1.3162E-03 8.3710E-04 -9.9359E-05

7.9167E-01 5.1435E-01 5.1973E-03 7.3031E-04 1.3152E-03 8.4313E-04 -1.0731E-04

8.0208E-01 5.0865E-01 5.4539E-03 7.0111E-04 1.3124E-03 8.4643E-04 -1.1674E-04

8.1250E-01 5.0244E-01 5.7288E-03 6.6972E-04 1.3073E-03 8.4905E-04 -1.2801E-04

8.2292E-01 4.9559E-01 6.0228E-03 6.3327E-04 1.3006E-03 8.4794E-04 -1.4153E-04

8.3333E-01 4.8799E-01 6.3348E-03 5.9472E-04 1.2916E-03 8.4555E-04 -1.5776E-04

8.4375E-01 4.7948E-01 6.6631E-03 5.5118E-04 1.2796E-03 8.3814E-04 -1.7726E-04

8.5417E-01 4.6989E-01 7.0025E-03 5.0619E-04 1.2635E-03 8.2835E-04 -2.0082E-04

8.6458E-01 4.5898E-01 7.3458E-03 4.5654E-04 1.2419E-03 8.1151E-04 -2.2942E-04

8.7500E-01 4.4647E-01 7.6795E-03 4.0642E-04 1.2144E-03 7.9044E-04 -2.6431E-04

8.8542E-01 4.3200E-01 7.9849E-03 3.5274E-04 1.1789E-03 7.5913E-04 -3.0704E-04

8.9583E-01 4.1513E-01 8.2331E-03 3.0016E-04 1.1351E-03 7.2059E-04 -3.5939E-04

9.0625E-01 3.9531E-01 8.3849E-03 2.4598E-04 1.0787E-03 6.6776E-04 -4.2342E-04

9.1667E-01 3.7191E-01 8.3796E-03 1.9553E-04 1.0098E-03 6.0359E-04 -5.0120E-04

9.2708E-01 3.4415E-01 8.1421E-03 1.4640E-04 9.2387E-04 5.2123E-04 -5.9434E-04

9.3750E-01 3.1123E-01 7.5741E-03 1.0410E-04 8.2386E-04 4.2542E-04 -7.0254E-04

9.4792E-01 2.7243E-01 6.5916E-03 6.6223E-05 7.0543E-04 3.1499E-04 -8.2202E-04

9.5833E-01 2.2732E-01 5.1587E-03 3.7801E-05 5.7319E-04 2.0280E-04 -9.4323E-04

9.6875E-01 1.7614E-01 3.4089E-03 1.6262E-05 4.2065E-04 1.0232E-04 -1.0511E-03

9.7917E-01 1.2002E-01 1.6794E-03 4.9011E-06 2.5516E-04 3.3747E-05 -1.1303E-03

9.8958E-01 6.0757E-02 4.4088E-04 3.0631E-07 8.8298E-05 4.0892E-06 -1.1757E-03

1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -1.2050E-03

Table A.1: Flow mean quantities − variable modes with regularity conditions (con-
tinue)
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Figure A.1: Azimuthal power spectra of velocity fluctuation − colored surface: vari-
able modes simulation; contour lines: constant modes simulation
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Figure A.2: Power spectra of axial velocity fluctuation Φ+
uu − colored surface: variable

modes simulation; contour lines: constant modes simulation
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Figure A.3: Power spectra of radial velocity fluctuation Φ+
vv − colored surface: vari-

able modes simulation; contour lines: constant modes simulation
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Figure A.4: Power spectra of azimuthal velocity fluctuation Φ+
ww − colored surface:

variable modes simulation; contour lines: constant modes simulation
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Figure A.5: Premultiplied power spectra of axial velocity fluctuation αβ Φ+
uu − col-

ored surface: variable modes simulation; contour lines: constant modes
simulation
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Figure A.6: Premultiplied power spectra of radial velocity fluctuation αβ Φ+
vv − col-

ored surface: variable modes simulation; contour lines: constant modes
simulation
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Figure A.7: Premultiplied power spectra of azimuthal velocity fluctuation αβ Φ+
ww −

colored surface: variable modes simulation; contour lines: constant modes
simulation
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Figure A.8: Correlations of velocity fluctuation at r = 0.91667 (y+ ≈ 14)
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Figure A.9: Axial power spectra of axial velocity fluctuation
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Figure A.10: Axial power spectra of radial velocity fluctuation
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Figure A.11: Axial power spectra of azimuthal velocity fluctuation
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Figure A.12: Azimuthal power spectra of axial velocity fluctuation
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Figure A.13: Azimuthal power spectra of radial velocity fluctuation
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Figure A.14: Azimuthal power spectra of azimuthal velocity fluctuation
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