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Sommario

Gli ultimi anni hanno rappresentato un punto di svolta nelle modalità di progettazione e

costruzione dei sistemi di calcolo. Le applicazioni continuano a richiedere maggior potenza di

calcolo ed efficienza, ma questi obiettivi non possono essere raggiunti sultanto migliorando (ad

esempio, incrementandone la frequenza operativa) una stessa architettura di sistema, come è

avvenuto per lungo tempo. Anche nei sistemi embedded e portatili, l’architettura di calcolo

tradizionale, basata su una singola unità computazionale centrale, sta diventando obsoleta

a favore di architetture multi-core, in cui diverse unità computazionali sono a disposizione,

permettendo di sfruttare l’esecuzione di task paralleli.

Questo cambiamento nella struttura delle architetture di calcolo da un processore cen-

tralizzato a un numero crescente di core indipendenti richiede un ripensamento dello stile di

programmazione, per riuscire a scrivere applicazioni efficienti e affidabili in grado di sfruttare

le nuove architetture. Inoltre, i requisiti in termini di prestazioni (ad esempio, a livello di qual-

ità del servizio) e i limiti esterni (come limitazioni sul consumo di potenza o sulla massima

temperatura raggiungibile) sono sempre più stringenti in un ampio ventaglio di scenari (dalle

infrastrutture di cloud computing ai dispositivi mobili). Questa situazione rende difficile per

gli sviluppatori applicativi, oltre che essere esperti nel loro specifico campo, rimanere anche

aggiornati sulle competenze di sistema necessarie per essere in grado di ottimizzare il software

per le architetture che vogliono supportare.

Una possibilità per ridurre questo sovraccarico dagli sviluppatori di applicazioni, è creare

sistemi di calcolo capaci di adattare la loro struttura e il loro comportamento alle necessità

delle applicazioni. Gli sviluppatori di sistema possono realizzare uno strato software di basso

livello capace di dare all’architettura di calcolo capacità di auto-adattamento, permettendo ai

sistemi di calcolo di perseguire sia l’obiettivo di raggiungere massime prestazioni sotto diverse

xiv
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condizioni operative sia di mantenere il proprio stato all’interno di un confine desiderato (per

esempio, in termini di consumo di potenza, temperature, ...). Un sistema capace di esibire

questo comportamento è detto autonomico, o auto-adattativo e ricercatori con background in

informatica e teoria del controllo si sono aggregati in una comunità di ricerca che si occupa

di creare innovazione in termini di capacità dei sistemi di calcolo di auto-gestire i propri

parametri di esecuzione.

La struttura di quasi quasi tutti i moderni sistemi di calcolo può essere suddivisa in

tre livelli principali: i componenti hardware, il sistema operativo e le applicazioni. Il livello

dell’hardware è piuttosto eterogeneo e i suoi componenti sono raggiungibili attraverso inter-

facce di basso livello che sarebbe troppo complesso utilizzare direttamente. Il sistema operativo

si occupa di gestire l’hardware ed esporre delle interfacce di più alto livello alle applicazioni. Le

applicazioni utilizzano le astrazioni offerte dal sistema operativo per raggiungere gli obiettivi

per cui il sistema di calcolo viene utilizzato. Poiché il sistema operativo è il componente che

è incaricato di gestire le risorse di sistema, esso è il primo strato su cui si deve lavorare per

permettere al sistema di ragggiungere caratteristiche autonomiche, come descritto sopra. Per

estendere il concetto di sistema operativo in questa direzione, è necessario adottare un sistema

di controllo basato su un anello in retroazione, all’interno del quale dei monitor raccolgano

informazioni riguardo lo stato del sistema e il suo ambiente e dei motori decisionali siano in

grado di analizzare questa conoscenza per mettere in atto azioni correttive per mantenere il

sistema all’interno dello spazio di stato desiderato.

Uno dei componenti del sistema operativo che ha maggior impatto sul comportamento

a runtime di un sistema di calcolo è lo scheduler dei processi. Di fatto, lo scheduler è il

componente che determina in che modo le capacità computazionali offerte dall’architettura

di calcolo vengano assegnate alle applicazioni in esecuzione. Questo compito è diventato di

grande importanza con il supporto del multitasking nei vecchi sistemi con singolo processore ed

è diventato ancora più cruciale con l’introduzione di processori multicore e capaci di supportare

più thread in parallelo (SMT).

L’idea che ha dato origine a questa tesi è la creazione di uno scheduler capace di valutare

le prestazioni delle applicazioni e di adattare le proprie decisioni basandosi sulle necessità, in

termini di prestazioni desiderate, delle applicazioni stesse. Per realizzare questa idea, il primo

passo è la creazione di un monitor per raccogliere le informazioni riguardo le prestazioni
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delle applicazioni e la definizione di una modalità per definire degli obiettivi prestazionali. In

seguito, va determinata una politica di adattamento capace di confrontare le prestazioni mis-

urate con quelle desiderate e di agire sullo scheduler modificandone le decisioni per permettere

alle applicazioni di raggiungere gli obiettivi predefiniti.

Lo scopo del lavoro prosentato in questa tesi è quello di sviluppare tutti questi passi, pro-

gettando una metodologia per dotare un sistema operativo di capacità di auto-adattamento

e implementando uno scheduler adattativo capace di prendere in considerazione lo stato del

sistema e gli obiettivi prestazionali della applicazioni nel decidere come assegnare alle ap-

plicazioni in esecuzione le risorse computazionali a disposizione. Più nel dettaglio, il primo

contributo di questa tesi è la formalizzazione, attraverso la definizione di termini appropriati

e di una metodologia, di un approccio di alto livello al problema di creare un sistema oper-

ativo autonomico migliorando quelli esistenti. Il lavoro proposto in questa tesi, però, non si

limita a formalizzare e presentare la metodologia e va oltre, progettando un sistema operativo

autonomico (denominato AcOS) e implementandolo come una estensione del kernel Linux.

La fase implementativa è focalizzata sulla creazione dei primi due componenti autonomici di

AcOS: una interfaccia di monitoring delle applicazioni, chiamata “Heart Rate Monitor” e una

estensione dello scheduler, chiamata “Performance-Aware Fair Scheduler”, che utilizza il mon-

itor per modificare il meccanismo di scheduling a seconda delle prestazioni e degli obiettivi

delle applicazioni. I risultati di questa implementazione dimostrano che l’approccio propost è

realizzabile e pongono le basi per lavori futuri, che si focalizzeranno sull’estensione di AcOS

con altre capacità autonomiche.

Questa tesi descrive il lavoro brevemente illustrato in questo Sommario, dallo studio in-

iziale dello stato dell’arte fino all’implementazione, test e valutazione del sistema proposto.

La trattazione è suddivisa nei seguenti Capitoli (in lingua inglese):

• Il Capitolo 1 illustra i concetti principali utili a meglio comprendere il resto del docu-

mento.

• Il Capitolo 2 presenta alcuni lavori correlati nell’area dei sistemi operativi, focalizzando

l’attenzione su quelli legati a caratteristiche autonomiche.

• Il Capitolo 3 dà una visione dello stato dell’arte riguardo a monitoring e scheduling che

è stato considerato per progettare il sistema proposto.
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• Il Capitolo 4 offre una presentazione dei contributi di questa tesi in termini di definizione

di una metodologia e progettazione del sistema di monitoring e dello scheduler.

• L’implementazione che è stata realizzata su Linux è dettagliatamente descritta nel Capi-

tolo 5 e il Capitolo 6 propone alcuni risultati sperimentali che validano e caratterizzano

il laovoro svolto.

• Infine, il Capitolo 7 offre alcune osservazioni conclusive e suggerisce possibili direzioni

per i futuri lavori che saranno sviluppati su AcOS.



Summary

The last decade signed a turning point in the way computing systems are engineered and

built. The applications still require ever-increasing computing power and efficiency, but this

cannot be achieved by just enhancing (e.g., by increasing the operating frequency) a well-

established architecture, as it happened before. Even in embedded and mobile devices, the

traditional architecture based on a single central processing unit is becoming obsolete in favor

of multi-core architectures, where different processing cores are available for leveraging parallel

computation.

This change in the structure of the computing architectures from a centralized processing

unit to several independent cores requires a reworking of the programming style needed to

produce efficient and reliable applications for supporting the new architectures [35]. Moreover,

performance requirements (e.g., in terms of quality of service) and runtime bounds (e.g., limits

on power consumption or working temperature) are more and more specific and demanding in

a variety of scenarios (from cloud computing facilities to embedded and mobile devices) [40].

This situation makes it hard for application developers to retain, beyond the expertise in the

specific domain of the application, also competence in tuning their software for the underlying

architecture.

A possibility for relieving this overburden from application developers is to devise comput-

ing systems equipped with the capability of adapting their structure and behavior to the needs

of the running applications. System developers can create a low-level layer able to enhance the

bare computing architecture with self-adaptive capabilities, enabling the computing system

to both pursue the goal of maximum performance under any working conditions and maintain

its status inside any wanted boundary (e.g. power consumption, system temperature, . . . ). A

system capable of this behavior is named autonomic, or self-adaptive and researchers from

xviii
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computer science and control have gathered in an autonomic computing research community

able to build innovation in the self-management of computing systems [41].

The structure of almost all the modern computing systems can be divided in three main

layers: the hardware components, the operating system and the applications. The hardware

layer is quite heterogeneous and its components export very low-level interfaces that would

be too complex to be directly used by the applications. The operating system takes care of

managing the hardware layer and to export more suitable interfaces to the applications. The

applications use the system resources exposed by the operating system to execute the tasks

the system was built for. Since the operating system is the component that is in charge of

managing the resources of the computing system, this is the first system layer that should

be extended to enable the system towards an autonomic operation, as described above. To

extend the concept of operating system in this direction, the current open loop operation mode

must be changed to a closed loop control. In such control loop, monitors allow the system

to gather knowledge about its status, a decision engine analyzes these data and evaluates

possible actions that are provided by actuators that can alter the system status according to

its needs.

One of the operating system components which has a great impact on the runtime behav-

ior of the overall system is the process scheduler. In fact, this is the component that decides

how the processing capabilities offered by the underlying architecture are to be allotted to the

running applications. This activity became fundamental when multitasking uniprocessor sys-

tems were introduced and has become even more important with the introduction of multicore

and simultaneous multithreading enabled processors.

The idea that gave birth to this thesis is to create a performance aware adaptive process

scheduler able to take into account the current and desired performance of the running ap-

plications when deciding how to assign the computing resources. In order to realize this idea,

the first step is to provide the operating system with a monitor to gather information on the

current performance of the running applications and a means of defining performance goals

for these applications. Then, it is necessary to determine a suitable way for acting on the

scheduler and an adaptation policy able to take decisions about what actions are to be taken

based on the current measured performance and the performance goals.

The aim of the work presented in this thesis is to develop all of these steps, designing a
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methodology for enhancing a commodity operating system with self-adaptive capabilities and

implementing a performance aware adaptive scheduler capable of taking into consideration

the status of the system and the performance goals when deciding how to share the available

computing resources among the running applications. More in details, the first contribution

of this thesis is the formalization, by defining a suitable vocabulary and a methodology,

of a high-level approach to the problem of enhancing a commodity operating system with

autonomic capabilities. The work proposed in this thesis, however, goes beyond the mere

formalization of a methodology by actually designing an autonomic operating system (named

AcOS) and implementing it as an extension of the Linux kernel. The implementation is focused

on the creation of the first two autonomic components in AcOS: a general-purpose software

monitoring system, called “Heart Rate Monitor”, and an extension to the process scheduler,

named “Performance Aware Fair Scheduler”, which uses the monitor to bring performance-

awareness into the scheduling decisions. The results of this implementation demonstrate that

this approach is applicable and lay a base for future works focused on extending AcOS with

more autonomic features.

This thesis describes the work briefly outlined in this summary, from the initial study of

the state of the art to the implementation, test and validation of the proposed system. The

discussion is divided into the following Chapters:

• Chapter 1 is meant for illustrating and defining the key concepts needed to better

understand the remaining of the document.

• Chapter 2 presents an overview of some interesting related works in the area of operating

systems, with focus on those featuring autonomic capabilities.

• Chapter 3 outlines the state of the art in monitoring and scheduling analyzed in a

preliminary study for designing the proposed monitor and scheduler.

• Chapter 4 contains a presentation of the contributions of this thesis in terms of definition

of a methodology and design of the proposed monitor and scheduler.

• Chapter 5 gives a thorough view of the work done for implementing the proposed system

over Linux and experimental results validating this system are presented in Chapter 6.

• Finally, Chapter 7 comes to some conclusive remarks and suggests possible directions

for future works on AcOS.





Chapter 1

Introduction

The work proposed in this thesis is related with different research areas (operating systems,

monitoring, process scheduling), with the ideas of autonomic computing keeping the different

parts together. An introduction to some concepts in these areas is provided in this Chapter.

First, an overview of the general problem of exploiting the new computing architectures

subject to diverse requirements is proposed in Section 1.1, giving an initial motivation for

this thesis. Then, some definitions in the area of adaptive systems, which may be used to

tackle this problem, are recalled in Section 1.2, focusing on the area of operating systems.

Finally, Section 1.3 gives some relevant concepts about monitoring and tracing techniques

and Section 1.4 contains a brief dissertation about the scheduling problem, focusing on the

role of the process scheduler in operating systems.

1.1 General problem Overview

The evolution of information management in human activities has led to the contemporary

information society, where computing systems and devices gained a pervasive presence in

all the aspects of modern life. This trend, together with the ever increasing performance

demands from the applications, has determined, in the last decade, a turning point in the

structure of the computing architectures. The traditional structure with a single Central

Processing Unit (CPU) in charge of performing all the computations has been pushed to its

limits and, in order to still improve the performance, multicore architectures have become

the new mainline paradigm. The evolution of computing systems has led from isolated single

1
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machines that took a whole room to an intricate worldwide network made of connections

between heterogeneous devices (from embedded systems and handhelds to supercomputers,

through personal computers and laptops) constantly connected and communicating [40] and

the multicore paradigm is rapidly taking over in the architectures of all these devices, even

in an embedded and mobile context. This change towards a parallel architectural paradigm

makes it more difficult for application developers to produce efficient and portable software

and introduces difficulties at the operating system (OS) level in enabling the applications to

benefit from all the capabilities of these new architectures [76].

The increased complexity of the computing systems, from the architectural to the in-

frastructural level, is leading to a scenario where computing systems will be beyond human

ability to efficiently managing them [40]. This trend of increasing complexity is very difficult

to contrast just with the usual approaches of (software) engineering or by seeking innovations

in programming methods; a brand new approach is needed to keep the Information Technol-

ogy (IT) infrastructures manageable and make them more efficient in serving our automation

needs.

1.2 Autonomic Computing

A promising approach to address the problem exposed in Section 1.1 is to move the burden of

managing the computing systems complexity into the computing systems themselves, making

them able to self-manage their resources by autonomously making low-level decisions accord-

ing to high-level goals specified by the systems’ users. Such approach has been proposed by

Paul Horn (from International Business Machines Corporation TM (IBM)) under the name

of autonomic computing. In 2001, Horn published a manifesto [40] that outlines the target

characteristics of computing systems built following the autonomic paradigm. The term ‘au-

tonomic’ was chosen referring to the autonomic nervous system in biological life, which is

in charge of controlling the unconscious actions in a living body. For instance, in humans,

the autonomic nervous system monitors and controls the heart rate, the body temperature

and a number of other vital parameters to ensure to the body a steady internal state called

‘homeostasis’. What is really interesting about the autonomic nervous system, is that it does

all of its work ‘in background ’, without any of us being aware of its activity. This permits us to
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focus on our daily tasks, without having to care about all these low-level though fundamental

functions. This is how autonomic computing systems are intended to behave: they must be

able to internally manage their resources, exposing a simple high-level interface for the users

to express the goals they want the system to pursue.

1.2.1 Self-* Properties

For a system to behave according to the autonomic paradigm, it needs to present some prop-

erties, which basically involve some sort of knowledge of its internal status and of its working

environment. These properties are needed for enabling the system to be self-adaptive [62] (i.e.

able to adjust itself to changes happening during operation), which is the base for presenting

an autonomic behavior, and are referred to as ‘self-* properties’. Some of these self-* proper-

ties are already mentioned in the IBM manifesto [40] and are further formalized by Kephart

and Chess [47]; a more complete hierarchical taxonomy is provided by Salehie and Tahvildari

[62], who identifies three levels of self-* properties under the domain of self-adaptive software.

The hierarchical view proposed by Salehie and Tahvildari is valid beyond the boundaries of

self-adaptive software and can be applied to generic autonomic systems; this taxonomy [62]

is proposed represented in Figure 1.1. The Figure lays down the different self-* properties in

Figure 1.1: Self-* properties taxonomy as proposed by Salehie and Tahvildari [62]

a pyramid, showing a hierarchical organization divided into three levels:

• A “general level ” of self-* properties includes self-adaptiveness and self-organization,

where the former property refers to the system as a whole entity able to modify its
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behavior according to the working conditions and the latter emphasizes the system

being formed by (semi-)independent modules able to orchestrate their work to achieve

a given goal.

• A “major level ” includes the properties initially identified by the IBM autonomic com-

puting initiative, which go under the category of self-management :

– Self-configuration is the ability of the system to automatically configure itself ac-

cording to high-level policies.

– Self-optimization enables the autonomic system to autonomously tune its working

parameters to always yield the best performance.

– Self-healing is the capability of detecting, diagnosing and repairing localized prob-

lems in both software and hardware.

– Self-protection targets the ability of the autonomic system to defend the system

against incoming attacks and to anticipate problems, acting to mitigate or com-

pletely avoid them.

• A “primitive level ” defines the basic properties needed in order to support the ones

classified in the major and general levels:

– Self-awareness means that the system possesses knowledge of its internal state and

behavior, which is gathered through self-monitoring.

– Context-awareness indicates knowledge by the system of the current conditions of

the context it is operating in.

This taxonomy identifies a large set of self-* properties that are desirable in a generic auto-

nomic system. Clearly, not all the self-adaptive systems need or can implement all of these

properties; for instance, self-awareness may be enough to allow self-adaptiveness and self-

optimization in a system put in a protected environment, while context-awareness may be

more desirable for a system working in an unpredictable environment.

1.2.2 Autonomic Control Loop

In order to build a system able to expose the self-* properties outlined in Section 1.2.1,

a new paradigm of how a system is to be controlled must be introduced. This paradigm
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is characterized by a recurrent sequence of actions which consist in gathering information

about itself and its surroundings (gaining self- and context-knowledge), evaluating the new

information and acting in order to react to any relevant change. This operational scheme

constitutes a control loop typical of autonomic systems. In literature, there exist various

definitions of this control loop (at least three, which are shown here), each of which highlights

some peculiarities of how the loop works. A first version of the autonomic control scheme is

named Self-adaptation control loop [62] and it is represented in Figure 1.2. This representation

Detection

Monitoring

Decision

Action

Environment

System

Sensors

Actuators

Figure 1.2: Self-adaptation control loop

emphasizes the separation between the detection and decision phases. The detection process

is in charge of analyzing the data coming from the sensors and to detect when something

should be changed in order to restore the system from an unwanted state into its desired

working conditions. The decision process is in charge of determining what should be changed,

i.e., picking the right action to be performed. A second version of the autonomic control loop

is called Monitoring, Planning, Analyzing, Executing thanks to shared Knowledge (MAPE-

K) [41, 47] and it is represented in Figure 1.3. When an autonomic element is described by

means of the MAPE-K representation, the component which implements the control loop is



CHAPTER 1. INTRODUCTION 6

Knowledge

Analyzing

Monitoring
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Executing

Environment

System

Sensors

Actuators

Figure 1.3: MAPE-K control loop

referred to as the autonomic manager, which interacts with the managed element by gathering

data through sensors and acting through actuators (or effectors) [41]. This control scheme

emphasizes the fact that a shared knowledge about the system and its environment must be

detained in order to successfully execute the autonomic control scheme. A third version of the

autonomic control loop is named Observe Decide Act (ODA) loop [66] and it is represented in

Figure 1.4. This representation is more general with respect to the MAPE-K and Self-adaptive

schemes and, being more generic, it summarizes the essence of the autonomic control loop.

The steps of the ODA loop are observation of the internal and environmental status, decision

of what action (or whether no action at all) is to be taken, based on the observations and

action, i.e., perturbation of the internal or external status in order to modify it towards a

better condition for the system. More in details, the stages of the ODA loop are characterized

as follows:

• The observation phase is generally accomplished by using monitors (for instance, ther-

mometers, throughput meters, latency measures, event counters . . . ) to gather informa-

tion about the environment and the internals of the system.
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Observation
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System / Environment
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Figure 1.4: Observe Decide Act control loop

• The decision phase takes into account the data gathered through the observation and

an additional input representing the decision policy(ies) implemented in the system,

which can be based on different techniques including control theoretic controllers, neural

networks, machine learning agents, . . .

• The action phase is performed through actuators, which are devices (virtual or physical)

which allow the system to alter its internal status or the operating environment.

The ODA loop is the minimal representation for the class of control loops (including the

MAPE-K and Self-adaptive schemes) that can be used to equip a system with self-adaptive

properties; thus, in this document, this loop will be kept as the reference for how autonomic

systems are controlled. In an autonomic system, the ODA control loop may appear at different

levels, where each component of the system (e.g., hardware modules in a computing system)

is thusly controlled at a lower level and there is a higher-level controller (e.g., a software

coordinator) which orchestrates the modules towards the specified goals.

1.2.3 Computing Systems Structure

Most of the modern computing systems can be modeled according to a common general struc-

ture consisting of three layers: Hardware Components, operating system and Applications; this

structure is represented in Figure 1.5. This representation is very general and different com-

puting systems present variations of this structure where the thickness of each layer depends

on the characteristics the system is designed for. For instance, an embedded device targeted for
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. . .App App App App App

Operating System
Scheduler File System Dev. Drivers . . .

CPU(s) Memory Devices . . .

Applications

HW Components

Figure 1.5: Main Layers in the structure of a modern computing system

some very specific task usually has limited hardware resources, a very thin OS layer and a few

lightweight running applications, while grid [29] and cloud computing systems (e.g., Amazon

Elastic Compute Cloud (EC2)1) may use resources spread across thousands of geographically

distributed systems with a complex distributed OS and a huge number of computationally

demanding applications. Even with all these differences, the basic three-layers model can be

found in almost any modern computing system. According to this representation, it appears a

reasonable and natural decision to choose the OS layer as the target for enabling self-adaptivity

in a computing system. This is because the operating system layer already detains the role

of managing the system resources and to enhance the system with self-adaptive properties,

it makes sense to augment the operating system’s management capabilities with autonomic

features.

1.2.4 Adaptivity in Operating Systems

The goal of building autonomic computing systems is very generic and encompasses an entire

field of research directed at realizing the vision outlined in Section 1.2. To be able to effectively

realize this vision, though, it is necessary to identify a more specific area of research to be the
1http://aws.amazon.com/ec2/
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first to benefit from the ideas of autonomic computing. Since almost any modern computing

system relies on some sort of operating system (i.e., a software layer which exposes to users

and applications higher level abstraction of the hardware interfaces), this is the component

that has been identified by companies and researchers (IBM with K42 [8], the Massachusets

Institute of Technology (MIT) with SEEC and Corey [38, 79] and others [14, 36, 42]) as the

one where to introduce the autonomic paradigm in a computing system. This choice seems

reasonable, since the OS is the component usually in charge of managing the system resources,

so this is the system layer at which it is crucial to include autonomic features; this autonomic

management layer could then exploit further autonomic facilities at the architectural level, if

available.

The goal of building an autonomic (or self-adaptive) OS, translates to the creation of an

operating system able to autonomously adapt the management of the underlying hardware

resources in order to ensure the wanted performance to the running applications and to

provide the best possible experience to its users, while taking in consideration the operating

constraints (for instance, in terms of power consumption). In order to do so, the OS must

be able to control itself by the means of the ODA loop and the following facilities must be

implemented:

• System monitoring needs to be expanded to enable the OS to efficiently gather infor-

mation about the status of its resources and other systems that may form the operating

environment. This information is needed in order to perform the observation phase of

the ODA loop and must include data on the working conditions of the system (for

instance, the temperature of the processor(s), the available memory, . . . ) and on the

current performance of the running applications.

• Decision policies must be implemented in order to analyze the data gathered by the

system monitors and determine the proper actions to meet the current goals. In this

context, also an efficient and user friendly mechanism for specifying goals must be

provided to both end users and applications.

• Actuators are needed to alter the system status, thus providing the action phase. These

actuators must be controlled by the decision policies and can act on any tunable param-

eter of the system; some common OS subsystems in which an actuator could be useful
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are [38]:

– Frequency and voltage scaling, to adapt the computing power of the processors to

the need of the running applications, avoiding at the same time to consume too

much power or produce too much heat.

– Memory management, to provide the right amount and the right kind of memory

according to application needs and system memory availability.

– Process scheduling and core allocation, to allow to each application a correct share

of computing resources, in order to meet its goals while not interfering with other

running processes.

The proposal of a methodology for enhancing a commodity operating system with autonomic

capabilities and the implementation of support for applications’ performance monitoring and

adaptive process scheduling are the key contributions of this thesis for providing an enabling

technology towards the creation of a complete autonomic OS.

1.3 Monitoring and Tracing

Monitoring and tracing techniques are useful, in autonomic computing systems, to perform

the observation phase of the ODA control loop (or, equivalently, the monitoring phase of the

MAPE-K or Self-adaptation control loops). Within this context, two types of monitoring may

be identified [41]:

• Passive monitoring may be done just by using the existent operating system facilities

to extract information about the system status. For instance, under Linux, the /proc

pseudo-filesystem contains runtime information such as processor status, memory uti-

lization, running programs, . . .

• Active monitoring implies a modification of the monitored application (i.e., instrumen-

tation) and/or of the operating system in order to retrieve some desired information

which cannot be provided by the available system tools.

The monitor proposed in this thesis performs active monitoring, as it consists in a patch for

the operating system and requires instrumenting the applications to be monitored.
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Hardware and software monitoring components are not only used in autonomic systems,

but are exploited for many different purposes (e.g., performance analysis, software and compil-

ers optimization, fault detection, program characterization). Depending on the purpose they

are used for, monitors may have different characteristics and provide different types of met-

rics. A rough classification of two different approaches towards monitoring defines the classes

of time-driven versus event-driver monitors [39].

1.3.1 Time-Driver Monitoring

Probably, the most simple idea for characterizing a process (in our case, the execution of a

program) is sampling its behavior through time. Within this context, two relevant concepts

are the ones of program state and execution trace (Definitions 1.1 and 1.2).

Definition 1.1 (Program state). At any time t, the state ΣP (t) of an executing program P

is a snapshot of its runtime properties (e.g., process counter, stack and head content, threads

of execution, . . . ).

Definition 1.2 (Execution trace [28]). The execution trace of a program P is a sequence,

possibly infinite, of program states ΣP (t0),ΣP (t1), . . ..

A time-driven monitor samples a relevant portion of the state of a program at regular

intervals and, based on the obtained trace, provides summary statistical information about the

program execution. This type of monitors is useful in some contexts, but they are insufficient

for a behavioral analysis of the program [41], which is required for some applications.

1.3.2 Event-Driven Monitoring

A different approach to monitoring the execution of a program is based on the basic concept

of event (Definition 1.3).

Definition 1.3 (Event [39]). An event is an atomic instantaneous action.

More specifically, an event may be a bit pattern in a register (when dealing with hardware

monitoring) or a specific instruction which is inserted in the monitored program code in

specific code blocks under investigation (program instrumentation). An event-driven monitor

may record events in two manners, depending on the application:
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• Creating an event trace which, similarly to the execution trace of a program, records

a list of the events. Differently from the execution trace (which relies on regular time

sampling), an event trace must contain, for each event, the timestamp at which it

occurred.

• Storing, for each type of event, the number of times i occurred in an event counter (for

instance, event counters may be found in most modern microprocessors [69]).

An event trace yields more information and allows more complex off line analysis [41]. If the

monitoring information is to be used online (as it is the case within an autonomic control

loop), however, an event counter may be sufficient.

This thesis proposes a software event-driven monitor which internally uses an event counter

but also keeps a sampled trace of the values of the counter.

1.4 Process Scheduling

The monitor proposed in this thesis is used in an adaptive-scheduling autonomic control loop

to build applications’ performance awareness into the process scheduler of a commodity oper-

ating system. Scheduling is a generic problem and it is not constrained within OS research; this

Section briefly introduces some theoretical issues about the generic scheduling problem and

then focuses on operating system, providing some useful concepts about process scheduling.

1.4.1 Resource Constrained Scheduling Problem

The problem of scheduling or, more precisely, the Resource Constrained Scheduling Problem

(RCSP) is a generic problem modeling a situation in which a set of activities must be com-

pleted by using a limited set of available resources, with the aim of optimizing one or more

objective function(s). More formally, a specific instance of the problem can be characterized

by using a classification scheme of the form α|β|γ [63], where:

• α represents the resource environment.

• β indicates the activities characteristics (duration, precedence constraints, deadlines,

. . . ).
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• γ describes the objective function, which involves the maximization or minimization of a

certain quantity subject to certain constraints depending on the context of the problem.

Once having defined the characteristics of the problem by using the proposed scheme, it is

possible to give the following definition of the Resource Constrained Scheduling Problem:

Definition 1.4 (RCSP [63]). Let J be a set of partially ordered activities and let j0, jn+1 ∈ J

be a unique dummy beginning activity and a unique dummy terminating activity, respectively

(so that always J 6= ∅). Let T be a set of temporal steps (e.g. years, weeks, µseconds, . . . ). Let

G(J,A) be an acyclic directed precedence graph representing precedence relations among the

activities; i.e. (j, j′) ∈ A if and only if the activity j needs to be performed before the activity

j′. Let R denote a set of resources and let cjr be the processing time of the activity j over the

resource r. Each activity j is to be assigned to exactly one resource r for being processed and

that resource cannot process another activity j′ 6= j until j has been processed (i.e. after cjr

temporal steps).

Under the above setup, the RCSP consists in minimizing the makespan, i.e. the maximum

time necessary to complete all of the activities j ∈ J .

Definition 1.4 gives a generic definition of the RCSP, which applies to the case of process

scheduling in operating systems, where the resources are constituted by the computational

power of the system processor(s), the activities are the programs being executed and the

objective is to assign the processor(s) to the executing programs according to given priorities

among the programs. Specific terminology and concepts are in use in the particular field of

process scheduling in operating system and are relevant to understand the state of the art

and the contribution of this thesis; more details on this matter are provided in the next

paragraphs.

1.4.2 Processes, Threads, Tasks

The problem of process scheduling arose in operating systems in the 1960s [72], with the need

of running more than one program at the same time over limited computing resources (at the

time, a single CPU). Within this context, it is useful to remember the following definitions:

Definition 1.5 (Process [72]). A process is an abstraction of a program being executed,

including its code, its data and all the information about its execution status.
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Definition 1.6 (Thread [72]). A thread of execution (or, simply, thread) is a sub-entity

within a process; it is a specific part of the executing program in charge of doing some precise

elaboration. A process may be split into several threads which share the address space, open

files and, in general, the resources assigned to the process.

The former two definitions are quite classical and well-established, being defined by the

Portable Operating System Interface for uniX (POSIX)2 standard. Within this work, another

concept is used, which is taken from the nomenclature used within the Linux kernel, to ease

the discussion when talking about scheduling:

Definition 1.7 (Task [52]). A task is a schedulable entity (either a process or a thread).

Thus, from the point of view of the scheduler (at least, in Linux), processes and threads

are perfectly equal and go under the name tasks. The following discussion uses the term task

exactly as defined above, adapting as needed from the cited literature in case the term process

was used with the generic connotation of task. An exception to this rule is the term process

scheduler, which should be more consistently named task scheduler, but it has been chosen to

keep the original name for historical reasons.

1.4.3 Multitasking

Another important concept related to process scheduling is specified in Definition 1.8.

Definition 1.8 (Multitasking [52, 72]). The phenomenon of apparent contemporaneity of

execution of several tasks on the same computer is referred to as multitasking and it is obtained

by rapidly interleaving (as the process scheduler decides) the execution of the running programs

on the available processor(s), thus giving the illusion of parallel execution.

Historically, two different kinds of multitasking have been implemented in operating sys-

tems [52, 72]:

• In cooperative multitasking, the currently running task must explicitly yield the processor

to let another runnable task (i.e. a task waiting for the CPU) be put in execution.
2Institute of Electrical and Electronics Engineers (IEEE) family of standards formally defined as IEEE

1003. The international name of such standard is ISO/IEC 9945.
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• Preemptive multitasking gives more power to the scheduler, allowing it to preempt a

running task, i.e. to suspend its execution in favor of another runnable task. The maxi-

mum time allowed for a task to run without being preempted is usually called quantum

or period.

Cooperative multitasking was commonly used in operating systems up to Microsoft Windows

3.1 and Mac OS 9. This paradigm is simpler to implement (as it does not require any kind

of time accounting or soft interrupts from the OS), but has a major disadvantage: one task

could never voluntarily yield the CPU, leading all the other tasks to starvation (i.e. waiting

forever for being executed). This could happen both if a malicious program is written in order

to harm the system or if a program gets stuck in an infinite loop because of a bug. This

drawback was historically addressed with the introduction of preemptive multitasking, which

is the most common multitasking mechanism used in modern operating systems, including

Linux and the more recent versions of Mac OSX and Windows.

1.4.4 Scheduling Environments and Goals

The process scheduler in an OS is in charge of solving the specific RCSP of allocating the

computational power of the available CPUs to the runnable tasks in order to optimize a

certain objective function. The nature of this objective function depends on the scheduling

environment the system is operating in; a classification of the possible scheduling environments

is proposed below [72]:

• Batch systems are characterized by a huge amount of jobs to be completed sequentially,

without users impatiently waiting for interacting with a specific task. This environment

is typical of servers or workstations for scientific computations

• Interactive systems have a certain number of users who want to interact with some tasks

specific to each user. This is the typical case of desktop computers.

• Real time systems run tasks that need to respect specific deadlines for doing their job,

so scheduling must be quite rigid to respect these constraints; these systems are further

classified in:
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– Hard real time indicates that the deadlines expressed by the tasks are strict and

the scheduler should return an error when not being able to enforce a deadline.

– Soft real time schedulers, on the other hand, do not guarantee each deadline to be

met, but usually guarantee a bounded Quality of Service (QoS) in terms of how

many deadlines may be missed.

To highlight the differences between real time and non real time tasks, the latter are sometimes

referred to as best effort [16], since there are no deadlines to enforce.

The classification of scheduling environments exposed above gives an idea of how the

process scheduler objective may be different according to the context the OS is operating

in. More specifically, some of the more common scheduling goals (which directly translate to

objective functions) are reported below, associating them to the environments in which they

are more relevant:

• Some scheduling goals are relevant in any environment [72]:

– Fairness - giving to equal tasks (i.e. tasks with the same priority - or importance)

a fair share of the CPU.

– Balance - keeping all the parts of the system as busy as possible; spread the work

load onto all the available resources.

• A batch environment targets the following goals [72]:

– Throughput maximization - maximizing the number of completed jobs (i.e. tasks)

per time unit.

– Turnaround time minimization - making the time taken for a job to complete since

it was first scheduled as small as possible.

– CPU use maximization - keeping the processor always as busy as possible.

• In an interactive system, the scheduling goals are [72]:

– Response time minimization - minimizing the time required for a task to respond

to an interactive request from a user.

– Proportionality - giving all the users the expected share of computing resources for

their tasks.
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• Real time systems have the following scheduling goals [72]:

– Meeting deadlines - enforce the respect of the deadlines for real time tasks.

– Predictability - being able to deterministically say in advance whether a deadline

can be enforced or not.

The above classification seems very neat in assigning specific scheduling goals to each environ-

ment. The problem with real-world computing systems (e.g. a laptop or a personal computer)

is that the actual scheduling environment is usually mutable according to the current running

applications and to the current users’ objectives. This fact makes it quite hard to determine

the best scheduling goal for such systems, especially if this choice is to be made at compile

time. An autonomic process scheduler should be able to go further and infer at runtime the

current goal based on knowledge of the system status and on the performance goals expressed

by the applications and user.

1.4.5 Task Classes

Another important element for the process scheduler to consider besides the type of environ-

ment (as described in Section 1.4.4) is the nature of the tasks that are currently competing

for the use of the processor. A common classification of the behavior of task with respect to

its interactivity is given below [52]:

• Input/Output (I/O)-bound tasks are characterized by frequently blocking (and thus

voluntarily yielding the processor) waiting on I/O requests (for instance, writing on the

disk or waiting for the user to type input data).

• CPU-bound tasks spend most of their time executing code.

Many process schedulers (e.g. the Linux O(1) scheduler [1]) tend to give more priority to

I/O-bound tasks, with the aim of favoring interactivity (low response time), counting on the

fact that these tasks run only for a short time and then voluntarily yield the processor. The

drawback of such an approach is the difficulty of classifying a task as either I/O- or CPU-

bound at runtime. Other schedulers (such as the Linux Completely Fair Scheduler (CFS) [45])

do not try to profile tasks to determine their interactivity level, but use different mechanisms

to ensure good response time for interactive tasks.
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1.4.6 Scheduling Policies

Since the introduction of multitasking systems, various simple scheduling algorithms have

been designed. These algorithms are often tailored on one specific scheduling environment

(see Section 1.4.4) and behave poorly when the environment changes. All the modern oper-

ating systems try to implement general purpose scheduling algorithm which should behave

well under the real case of a mutable environment, hard to be classified in one specific cat-

egory. The following discussion briefly presents some of the most known algorithms for each

environment [72].

Scheduling in Batch Systems

In batch systems, the preferred scheduling algorithms are usually nonpreemptive or preemptive

with a long time period. Two of the most known nonpreemptive scheduling algorithms suitable

in batch systems are First Come First Served (FCFS) and Shortest job First (SF) [72].

FCFS is probably the simplest existing scheduling algorithm and it consists in placing

the tasks in a First In First Out (FIFO) queue, assigning the processor sequentially to each

task in the order of request. The simplicity of the algorithm is its main strength, but its

noonpreemptive nature is a major disadvantage when both I/O- and CPU- bound tasks

require the processor. In this context, the CPU-bound tasks will use much of the CPU time,

thus sensibly slowing down the other tasks.

SF is a nonpreemptive algorithm that assumes that the run times for each tasks are known

in advance. The rule is, again, fairly simple and it is to choose the shortest runnable job for

execution. This algorithm, by always running the shortest task first, yields an optimal (i.e.

minimal) turnaround time, provided that all the jobs are available simultaneously.

Scheduling in Interactive Systems

Interactive systems must prefer scheduling algorithms which favor interactivity, even if loos-

ing performance in terms of throughput. Common scheduling algorithms in this context are

Round Robin (RR) and Priority Scheduling, with the possible optimization of using multiple

queues [72].

RR is a preemptive scheduling algorithm which introduces the concept of quantum of
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execution time.

Definition 1.9 (Quantum [52]). In process scheduling, a quantum (also referred to as period,

or timeslice) is a specified time interval defining how long a task is allowed to continuously

run before being preempted.

The RR algorithm works by simply putting all the runnable tasks in a list and switching

to the next runnable task whenever either the current task yields the processor or its quantum

expires. The crucial parameter in RR is the length of the quantum, which should be tuned to

get a proper trade-off between the required interactivity level and the efficiency in terms of

throughput. In fact, using a short quantum ensures good interactivity, but it harms throughput

due to the cost of context switch (i.e. the process of changing the task which is being executed).

On the other hand, a long quantum allows better throughput but harms interactivity.

One of the assumptions behind the RR algorithm is that tasks are all equally important.

It frequently happens, especially in multiuser systems, that not all tasks are equal and that

some tasks, being more important, may need a greater share of CPU time than the other

tasks. In such a context, the Priority Scheduling algorithm may help [72]. The idea behind

this preemptive algorithm is that each task has a priority level, called nice level in UNIX-like

operating systems; at preemption time (or when a task blocks), the runnable task with the

highest priority is the next to be run. The base Priority Scheduling algorithm works with only

one queue of tasks ordered according to their priority value.

In some cases, there is the need to adapt the duration of the quantum to the priority of

the task (for instance, tasks at higher priority may be wanted to have a longer quantum than

tasks at lower priority). In this cases, a Multiple Queues Priority Scheduling algorithm may

be used [72]. This algorithm is an evolution of the Priority Scheduling algorithm and it works

by using one queue per each priority level and moving tasks among the queues according to

some kind of assumption about how interactive they will be in the near future.

Scheduling in real Time Systems

Scheduling in real time systems needs mechanisms that are quite different from the ones

used for non real time systems. This is because in real time systems the tasks come with

specific deadlines to respect and these are much more constraining on how to manage the
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assignment of resources than throughput or interactivity goals. Usually, real time scheduling

assumes that the tasks are periodic and each period is referred to as a job [72]. The main issue

with scheduling in this context (especially in the case of hard real time) is that the scheduler

needs to be able to predict whether it will be possible to meet each deadline and this is quite

difficult to achieve, especially if the scheduling algorithm must be dynamic (i.e. it must make

scheduling decisions at runtime). In order to do so, the behavior of each task (in particular,

the worst-case execution time of each job) must be known to the scheduler, which thus needs

a very precise knowledge of the tasks it is scheduling. Definition 1.10 more precisely defines a

real time scheduling context.

Definition 1.10 (Real time tasking model [26]). A real time system can be modeled as a

set Γ = {τi} of n periodic tasks, where each task τi is modeled by a sequence of jobs, each

described by the pair (Ci, Pi): Ci is the worst-case execution time of the individual jobs and Pi

is the minimum inter-arrival time between two consecutive jobs. An implicit deadline is that

every job should terminate before the arrival of the next job.

Within this context, one common concept (defined in Definition 1.11) is the one of schedu-

lability :

Definition 1.11 (Schedulability [26]). In a real time system, a set Γ = {τi} of n periodic

tasks, where each task τi is assigned a computation budget of Qi time units per reservation

period Ti, is said to be schedulable if:
n∑
i=1

Qi
Ti
≤ 1

The assignment of Qi and Ti for all i ∈ [1, . . . , n] characterizes the different real time schedul-

ing algorithms.

Two of the most well-known ad classic process scheduling algorithms for real time systems

are RMS and EDF:

• Rate Monotonic Scheduling (RMS) [50] is used when the priorities for the tasks are

statically assigned based on the expected execution time of a job (the quicker the job,

the higher the priority). This algorithm allows to pose a sufficient condition to the

schedulability of n tasks as an upper bound on CPU utilization, which is about 70%,

when n→∞ [50].
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• Earliest Deadline First (EDF) [46] is a dynamic algorithm where the tasks are placed

in a queue and, at each scheduling event, the task with the nearest deadline is the next

to be executed. The schedulability condition for this algorithm is given by
∑n

i=1
Ci
Pi
≤ 1

(see Definition 1.10 for definitions of Ci and Pi).

In general, real time scheduling algorithms are not suitable for scheduling ordinary tasks and

usually (hard) real time operating systems offer a high-priority real time scheduling facility and

non real time scheduling at lower priority for non real time tasks (for instance, RTLinux [83]

provides a hard real time microkernel plus the ordinary Linux kernel, which is executed at

lower priority and can be preempted at any time by real time tasks, to manage non real time

tasks).

General Purpose Scheduling

The above discussion gives an idea on how complex the scenario of process scheduling in

operating systems is, with its multiple environments, each requiring specific performance goals.

This complexity makes it quite difficult to provide a general purpose scheduling algorithm

with good performance in a mixed environment (with requirements in both throughput and

interactivity). This is because it is hard to define an algorithm able to match these conflicting

requirements (i.e., ensuring an acceptable QoS to the different running applications) in a

continuously mutable environment such as the one generated in the normal use of a personal

computer. Some schedulers have been able to achieve good general purpose performance either

by using complex heuristics to analyze the running tasks at runtime (for instance, the Linux

O(1) scheduler [1]) or by using fairness as the leading goal for scheduling decisions (this choice

is the one behind the Linux CFS [45]). The breakthrough in this area, however, would be a

scheduling algorithm able to know the tasks’ goals in order to adapt its policy to give the

best possible performance to each task according to its needs. One of the contributions of

this thesis is the development of a process scheduler which, leveraging the ideas of autonomic

computing and the ODA control loop, aims at achieving preliminary results in this direction.
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1.5 Chapter Summary

An introduction to the concepts in the areas of autonomic computing, monitoring and trac-

ing, and process scheduling, useful for the understanding of this thesis, was provided in this

Chapter. The field of autonomic computing is quite recent and many researchers are working

to realize the vision proposed at the beginning of this Chapter. Monitoring and tracing and

process scheduling, on the other hand, are two less recent areas but both are related to au-

tonomic computing systems: monitors are used in the autonomic control loop, while process

scheduling is the OS component chosen in this thesis to be revised towards self-adaptation.

The next Chapter contains an overview of some important works in autonomic computing,

monitoring and process scheduling that are relevant to the scope of this thesis and form the

state of the art which is the basis for the work presented in the subsequent Chapters.



Chapter 2

Related Works

An overview of some relevant works in the area of operating systems (with focus on OSes

equipped with autonomic features) is proposed in this Chapter. The traditional design of

OSes, originally conceived for classic single-processor architectures, is becoming outdated,

being inadequate to support the new features introduced in modern architectures (e.g., multi-

and many-cores or General Purpose computation on Graphics Processing Units); incremental

changes to well-established OSes are not enough anymore and a need for a redesign is arising.

Several projects are proposing innovation designing new OSes; a few of these are presented in

Section 2.1. Some of the projects aimed at renewing the design of operating systems introduce

autonomic features; these projects are particularly interesting and are treated more extensively

in Section 2.3 (K42 by IBM) and Section 2.4 (Angstrom project by the MIT).

2.1 New Design Proposals for Operating Systems

The evolution of computing systems has led to a continuous increment of the their complexity.

This trend is beginning to have consequences on how the operating system is able to manage

the resources of the underlying hardware architecture [76]. The problem is that when the

basic design at the base of the most diffused operating systems (e.g. Linux, Windows or Mac

OSX) was conceived, the architecture of computing systems was much simpler than today.

For instance, contemporary operating systems were originally designed to operate on a single

core or a small number of cores and thus they are not well suited to manage systems with

an increasing number of processors [76]. Another feature current operating systems are not

23
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properly designed to manage is heterogeneity [56]. In fact, most contemporary commodity

OSes are designed to manage systems that are uniform and cache coherent [56, 76], hypotheses

that are starting not to hold any longer with the current evolution of system architectures.

Moreover, the proposal, in 2001, of the autonomic computing paradigm posed new challenges

to OS designers to address and alleviate the increasing difficulty of application developers

to explicitly handle parallelism, energy efficiency, reliability and predictability issues [38]. To

address the afore mentioned issues, several research projects are proposing new designs for

the next generation of operating systems. Some of the most interesting projects are presented

in this first part, highlighting the goals and the design characteristics of each:

• The Factored Operating System (fos) [76] (from MIT) is targeted at creating an highly

scalable operating system for many-cores computing systems.

• Corey [79] is another project developed at MIT and it proposes a different management

of data structures to reduce the performance footprint of the OS in multicore systems.

• Barrelfish [14] is developed at Eidgenoessische Technische Hochschule, Zurich (ETH,

Zurich) in collaboration with Microsoft research at Cambridge and it proposes an oper-

ating system design referred to as the multikernel.

• Microsoft Helios [56] targets heterogeneous systems which can be managed with satellite

kernels, an idea analogue to Barrelfish’s multikernel.

Some more details about each of these projects are presented in the remaining of this Section,

focusing on features that are interesting for this work; for a more complete presentation, refer

to the cited literature.

The fos project starts from the observation that the trend in computer architectures is

going in the direction of packing an increasing number of computing units in a single chip,

leading to systems that, in the next decade, may reach 100s or even 1000s of cores per chip [2].

Since current operating systems were not designed for such highly parallel architectures (even

if recent developments are highly improving scalability in this terms [15]), fos proposes a

novel design to exploit the available parallelism, discarding the classical locking mechanisms

and cache coherency requirements that hamper performance in this kind of scenarios. More
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precisely, fos is designed according to a few recommendations proposed by the authors for

future operating systems [76]:

• separate the execution resources of the operating system and the applications;

• avoid the use of hardware locks;

• avoid global cache coherent shared memory.

One of the most interesting proposals in fos is the separation of execution resources of the

operating system and the applications. To realize this concept, in fos the system is decomposed

in three main layers [76]:

• a thin microkernel;

• an OS layer, constituted by a set of servers which provide system services;

• applications which make use of the services according to their needs;

A portion of the microkernel executes on each processor core, in order to control access to

hardware resources and to manage the delivery of messages (by the means of a name cache)

for servers and applications communication. On top of this low-level layer, the system servers

and the applications execute on separate cores, realizing the separation of resources between

the OS and the applications. This approach is quite radical, as it requires the availability of a

number of execution units in the system at least equal to the maximum number of executing

threads. Thus, fos is designed for future many-core systems and current cloud systems [53,

77], which provide today the wide number of processing units required for the fos approach to

be applicable. One very interesting consequence of the resource separation approach is that

the process scheduler, in fos does not deal with time multiplexing, but treats a problem of

space multiplexing. In fact, its duty is to define exclusive assignments of the cores, which are

spatially distributed on the chip(s), to the tasks in execution. Other interesting points can be

found in more recent publications [53], where two design principles were added by the authors

to the recommendations mentioned above:

• The OS should adapt the use of resources to changing system needs, by measuring the

utilization of each service and allocating more or less cores to its servers according to

the current need.
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• Faults in system services must be detected by a watchdog process and handled by the

name server by reassigning faulted communication channels.

These two principles introduce some ideas of autonomic computing into fos, indicating that

its design is being extended in this direction (see also Section 2.4).

Corey [79] is a prototype operating system that, as fos, addresses the computational ef-

ficiency problem on systems with many cores. The approach is less radical than the fos’s

one and the target systems for Corey do not require hundreds of cores: the focus is to make

applications scale well with the number of cores by improving the management and exploita-

tion of processor caches and shared data structures. The underlying observation is that with

the parallel computing allowed by the presence of more than one core, contention on shared

OS data becomes a problem and the applications spend a lot of time waiting to get the

required locks, thus strongly hampering performance. The problem with contemporary op-

erating systems is that shared data structures are required by the semantics of the OS to

simplify resource management. Corey proposes the introduction of three new OS interfaces to

improve the management of shared data, avoiding the use of shared structures unless strictly

necessary [79]:

• Address ranges are a kernel-provided abstraction that corresponds to a range of virtual-

to physical memory mappings. An application can define multiple address ranges, label-

ing each as shared or private. This gives more degrees of freedom in managing memory

with respect to the two classic paradigms of having a unique address space (either pri-

vate for single processes or shared among threads). This should allow to mark as shared

only the data structures that really need sharing, reducing synchronization issues on

data that are private to one thread.

• Kernel cores provide an abstraction that allows applications to dedicate specific cores to

kernel functions and data. A kernel core can be dedicated to manage hardware devices

or to execute system calls coming from applications being executed on different cores.

• Shares offer to the applications a means of dynamically create shared data (such as

lookup tables) and defining at which level these data must be shared. This facility

allows a finer control on shared structures, making it possible to avoid unnecessary

contentions on data that need not be shared.
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By introducing these interfaces, Corey is less radical than fos in that it does not enforce

separation between OS and applications resources, but (with the kernel cores abstraction)

it gives to applications the possibility of choosing whether to require a separated execution

environment for a particular OS service. This makes Corey more flexible than fos and allows

it to bring performance improvements starting from systems with eight or more cores, as

shown in experimental results [79]. These interfaces should enable a finer control on the

sharing of resources so that subsystems as the process scheduler (which often uses shared

data, hampering performance with many cores [79]) can be made more efficient and scalable.

The drawback of such approach is that the system relies on a wise use of these interfaces by the

applications to ensure good performance, thus exposing even more complexity to application

developers. The approach taken by Corey is interesting in addressing efficient exploitation of

new hardware architectures but, probably, it could be more effective if it provided autonomic

features to hide some complexity from the application developers.

The Barrelfish [14] operating system is another project addressing the scalability prob-

lems of operating systems on new multicore and heterogeneous architectures and it does so

by proposing to rethink the structure of an OS as a distributed system of functional units

communicating by means of explicit message passing. Barrelfish developers aim at creating

an operating system able to flawlessly scale to heterogeneous architectures. The peculiarity

of such architectures is that they often contain programmable units which cannot be made

cache coherent with the rest of the system (e.g. GPUs or NICs) or do not support shared

memory at all. To be more precise, a heterogeneous system can be characterized by at least

three types of diversity [65]:

• Non-uniformity refers to non uniform memory architectures (e.g. Non Uniform Mem-

ory Access (NUMA) systems); this characteristic will increase its relevance in future

architectures, making the structure of processing units resemble a network.

• Core diversity is not very diffused today, where most of the multiprocessor architectures

are homogeneous (i.e. all of the processors are exactly the same), but it is normal to

find it in embedded systems, where there are often different specialized processing units.

Moreover, core diversity will become an issue in any system with the increasing practice

of exploiting GPUs or FPGAs for specific tasks.
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• System diversity indicates diversity among the hardware components of different sys-

tems. This diversity is very evident (think of a mobile phone against an internet server)

and it makes it difficult for application programmers to write software required to run

efficiently on diverse platforms.

To address these three levels of diversity, the developers propose a design of a system where

all inter-core communications are explicit; this model is called multikernel [14] and it is rep-

resented in Figure 2.1. The multikernel defines the design of an operating system formed
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Figure 2.1: Multikernel model structure (adapted from [14])

by separate entities in execution on each programmable component of the system and asyn-

chronously communicating by means of message passing. This structure makes the overall OS

hardware-neutral, in that only the OS nodes contain architecture-dependent code, but the

operating system as a whole is unaware of the specific architectures of the processors it is

running on. One interesting part of this model defines the design of a process scheduler based

on five design principles that are thought to be important for supporting the mixed workload

expected on a general-purpose multicore or heterogeneous system [58]:

• Time multiplexing on each core is still needed and scheduling is not to be reduced to

spatial partitioning. This is particularly important in heterogeneous architectures, where

the computational power is not equal among the different processing units.

• Scheduling is to be performed at different time scales (i.e. at different frequencies): long-

term placement of applications onto cores, medium-term resource allocation in reaction

to applications demands and short-term fine-grained per-core thread scheduling.
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• The scheduler should reason online about the hardware to use the best policy on each

node. This is implemented in Barrelfish through a System Knowledge Base (SKB) based

on a subset of First Order Logic (FOL) where information about the hardware is main-

tained.

• Online reasoning should be applied to each application. This implies that the sched-

uler should know about applications workload and requirements; to enable this, Bar-

relfish allows applications to present a scheduling manifest exposing long-term require-

ments as constrained cost-functions in the ECRC Common Logic Programming System

(ECLiPSe) language [17].

• Applications and OS must communicate to negotiate resource allocation. This is done

by using dispatcher groups that should allow performance tuning according to the ap-

plications’ needs.

The first principle sharply distinguishes the Barrelfish approach from the ideas in fos, where

time multiplexing is completely dropped, relying on the abundance of homogeneous cores. The

other four principles introduce concepts affine with the autonomic computing ideas, with the

use of a System Knowledge Base used to make the OS aware of its status. As for the interfaces

exposed by Corey, the pitfall with this approach could lie in relying too much on applications

programmers, who are in charge of expressing scheduling goals in a manifest encoded in a

(possibly) unfamiliar logic language.

Helios [56] is an operating system which shares many goals and design features with

Barrelfish. More precisely, Helios targets heterogeneous platforms, with the goal of simplifying

the task of application development on such systems. To achieve this goal, Helios is based on

satellite kernels, which define a model very similar to the multikernel proposed in Barrelfish,

where the satellite kernels correspond to the multikernel OS nodes. A satellite kernel can run

on any programmable component featuring:

• a CPU;

• some amount of Random Access Memory (RAM);

• a timer;
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• an interrupt controller;

• the capability of catching exceptions (i.e. trap).

These requirements are quite constraining with respect to current hardware components: for

instance, GPUs are generally not equipped with timers or interrupt controllers, thus prevent-

ing a satellite kernel to run on such a component. With respect to this, the authors state that

these requirements will be widely satisfied in the next generation of hardware components.

Satellite kernels are designed to export a single, uniform set of OS abstractions across the

whole system. The duty of satellite kernels is to hide the heterogeneity of the system to the

application programmer, who can rely on the Application Programming Interface (API) and

abstractions offered by the OS. Each satellite kernel is a microkernel composed of a scheduler,

a memory manager, a namespace manager and a module in duty of managing communication

with the other satellite kernels. The communication between applications or services happens

by the means of a message passing system, which is implemented for both communications

within the same satellite kernel and for communications between different satellite kernels.

The capability of exposing a single consistent system-wide abstraction is made possible thanks

to this mechanism of message passing, which is split in two parts [56]:

• Local message passing manages communications within a single satellite kernel.

• Remote message passing is used when a communication must traverse between different

satellite kernels.

The local message passing system is provided by the Singularity framework [42], over which

Helios is built. This framework supports safe and efficient process software isolation (Soft-

ware Isolated Processes (SIPs)) and a fast zero-copy means of passing messages within the

same address space. Thus, local message passing (which should be the most common case

of communication within the OS) has a very fast implementation. Remote message passing

is made possible by the existence of a system-wide namespace; it is less efficient (it requires

copying data), but it allows to maintain the same communication style even when dealing

with inter-kernel communications. To exploit this unique system abstraction over heteroge-

neous hardware, the Instruction Set Architectures (ISAs) of the disparate processing units

hosting the satellite kernels must be encapsulated and a unique programming language must
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be available for application development. This is achieved in Helios by using a two-phase

compilation strategy, where an application written in Sing# (which is a derivative of the C#

language [32]) is first compiled into an intermediate language - the Common Intermediate

Language (CIL) of the .NET framework - and then translated to the ISA of the unity where

it is to be executed. An application can express preferences about the type of device onto

which be executed. This is made possible by allowing the specification of an affinity value

with another process (e.g. a device driver or a satellite kernel), which can be positive (indi-

cating preference for being executed on the same unit) or negative (to indicate preference for

separated execution).

2.2 New Operating Systems and Autonomic Features

The projects afore illustrated in the previous Section propose ideas and design principles to

renew operating systems in order to get the most out of the new hardware architectures that

are becoming available. The main effort is to better support multicore and heterogeneous sys-

tems, which are the big novelties in the new architectures with respect to those contemporary

operating systems were designed for. Some projects - i.e. fos and Corey - are more targeted

towards multicore systems, while others - i.e. Barrelfish and Helios - are more explicitly aimed

at supporting heterogeneous architectures. Beyond the different realizations, there are some

common ideas among these projects, which will probably be at the base of commercial future

operating systems:

• The shared memory model is problematic with multicore and heterogeneous architec-

tures. New operating systems should base internal communication on the message pass-

ing paradigm.

• Especially in heterogeneous systems, the OS should consist of a network of small nodes,

one for each programmable computing device available in the system.

• The key feature in the operating systems of the new generation will be the ability to scale

very efficiently with respect to the availability of (heterogeneous) computing resources.

These ideas can lead to a great innovation in operating systems design, but the core of these

projects does not thoroughly take into consideration the issues in terms of complexity for users
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and applications developers (see Chapter 1). Other projects exist that are more explicitly

trying to innovate by founding future operating systems on the autonomic paradigm. These

projects share with the already mentioned ones some design strategies, but are more targeted

towards enabling self-* properties (Section 1.2.1) in a newly designed OS. Two interesting

projects with these characteristics have been analyzed:

• K42 [8] is the proposal of IBM research to address the need of autonomic capabilities

in computing systems [61].

• The Angstrom project [75] is being developed at the MIT Computer Science and Ar-

tificial Intelligence Laboratory (CSAIL) and it is intended at creating a fundamentally

new computing architecture to meet the challenges of extreme-scale computing. The

Angstrom project is aimed at extending fos with the autonomic featured provided by

a SElf-awarE Computational model (SEEC) [38], thus realizing a SElf-aware Factored

Operating System (Sefos).

An analysis of the K42 operating system is proposed in Section 2.3, while SEEC and Sefos

are presented in Section 2.4.

2.3 The K42 Operating System

K42 [8] is a research kernel designed for cache-coherent 64-bit multiprocessor and NUMA

systems and it is based on the Tornado operating system [33]. The key goals of K42 include [8]:

• Efficiently scale both up towards large multiprocessor and NUMA systems and down to

small multiprocessors, running as efficiently as kernels that do not scale up.

• Be modular and simple extensible, being available as open-source software to a large

research community.

• Allow applications to customize the OS behavior in how it manages their resources and

let the system adapt to changing workload characteristics.

To achieve these goals, the overall structure of K42 is based on a microkernel design [7],

where there is a small exception-handling component (the microkernel) and a number of
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servers which marshal all of the operating system functionalities. The microkernel provides

basic functionalities such as memory management, process management, Inter-Process Com-

munication (IPC), networking and device support (where the latter two are planned to be

moved out of the microkernel [8]), while the servers provide all the more advanced OS func-

tions (e.g. file system, sockets, pipes, . . . ). Each server lives in its own separate address space

and the system relies on a fast IPC mechanism to allow efficient communications among the

servers and from the applications to the servers. Moreover, K42 moves some functionalities

traditionally implemented in the kernel (e.g. thread scheduling) to userspace libraries, allow-

ing application developers to redefine the behavior of such modules. This system structure is

all built upon object orientation (the OS code is written in C++), allowing a high level of

modularity, but still maintaining API and ABI compatibility (by the means of an emulation

layer) with programs written and compiled for Linux.

2.3.1 Autonomic Capabilities Through Hot-Swapping

The object oriented design of the kernel allows K42 to support online reconfiguration [67]

and dynamic update [13] mechanisms, which permit to modify (i.e. alter or substitute) the

components of the OS and to apply updates to the system without any downtime. These

mechanisms are realized through a procedure called hot-swapping, which consists in allowing

monitoring code, diagnostic code and function implementations to be dynamically inserted

and removed in live systems [4, 5]. This ability of supporting interposition and replacement of

active OS code (both at server and at userspace-library level) allows K42 to show autonomic

capacities of self-adaptation to a changing environment in several ways [5]:

• The system can be highly optimized for the common case, while ad-hoc solutions for

the uncommon cases may be hot-swapped at need.

• Caches and memory management policies can be swapped at runtime according to the

current data access pattern, in order to always use the best performing policy with

respect to the current status.

• Support for architecture-specific features can be hot-swapped, allowing to exploit all

the features peculiar to each architecture but keeping a fast and simple architecture-

independent base implementation.
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• Shared and partitioned version of the file pages caching mechanism are hot-swappable,

allowing optimization for sequential or highly parallel applications.

• Applications can provide specific implementations of the OS services, which are imple-

mented as userspace libraries, and K42 is able to hot-swap to the application-provided

implementation as needed.

• Monitoring objects can be interposed into the relevant OS code sections by the applica-

tions that benefit from the information gathered by such monitors. Applications that do

not require monitoring will thus not be slowed down by the execution of the monitoring

code.

To effectively perform these operations in an autonomic way, a very important feature in

any autonomic system is the monitoring system which must provide updated and accurate

information about the current status of the system. Further discussion of the K42’s (and

others) monitoring systems can be found in Section 3.1.3.

2.3.2 Process Scheduling

The process scheduler in K42 is based on an interesting approach named two-level schedul-

ing [3]. The main feature of this approach is the division of the process scheduler in two

subsystems: one running in kernelspace and one in userspace. Moving part of the process

scheduler to user level is quite unconventional but it helps in two directions [3]:

• The userspace scheduler subsystem operates on single threads without the need of con-

text switches and without the kernel even being aware of what its operation. This can

improve performance in many situations.

• The partial implementation of the scheduler in a userspace library allows the applications

to tailor, if needed, this scheduling level at their own needs, simply by reimplementing

the library.

As said, the user-level scheduler treats threads; more precisely, it schedules threads that live

within the same address space (i.e. that belong to the same process) and are grouped in an

entity called dispatcher. The threads contained in the same dispatcher are indistinguishable
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to the kernel-level scheduler and are fully managed by the user-level scheduler, which usually

does its job without any need of context switching. The kernel-level scheduler treats dis-

patchers and it assigns the resources by using entities at a higher level in the hierarchy, called

resource domains. Each resource domain groups a subset of the dispatchers and it is the entity

which actually owns the rights to use the hardware resources. The hierarchy just described is

represented in Figure 2.2 in the case of a system with four processors. Each resource domain
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Figure 2.2: Scheduling entities in K42 [3]: dispatchers, processes and resource domains

owns a fraction of each available CPU and the kernel-level scheduler is in charge of fairly as-

signing each processor to the resource domains according to its owned fraction. The expected

use for resource domains is to fairly assign CPU time to users by binding one resource domain

to each user. Within a resource domain, each dispatcher is bound to a specific CPU and the

kernel may move a dispatcher to a different processor for load-balancing purposes.

This two-level scheduling approach has the advantage to decouple the assignment of CPU

time (which is done at the granularity level of the dispatchers) and the scheduling needs
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of the applications. A process could use a single dispatcher with many threads and define

the scheduling policy that marshals the threads by reimplementing the user-level scheduling

code; this would be equivalent, at the kernel-level scheduler, to a single-threaded process.

On the other side, a process could use multiple dispatchers to attain real parallelism (on

a multiprocessor system) or to assign different scheduling characteristics (e.g. priority) to

different sets of threads. This mechanism is indeed quite powerful but, as for other techniques

illustrated before (e.g. in Corey and Barrelfish - presented in Section 2.1), it strongly relies on

application developers, requiring - in order to have maximum control - to completely redefine

the user-level scheduling policy.

2.4 Angstrom Project

The Angstrom project [75] has been recently created to deal with autonomic systems and it is

currently targeted at extending fos [76] in an autonomic direction. As illustrated in Section 2.1,

fos implements the operating system services (for instance the file system) as fleets of servers

bound to some cores in a multicore or cloud system. The goal of the Angstrom project is to

create a new service in charge of providing fos with autonomic capabilities. The framework for

realizing this layer is called SEEC [38] and it presents the typical structure of an autonomic

system based on the ODA control loop; more precisely, the SEEC framework is composed of

three main components [38]:

• an observation layer;

• a decision layer;

• services in charge of taking actions on the system.

As in the classic ODA loop, in SEEC the observation layer is in charge of monitoring the

status of the system and of providing this information to the decision layer; the duty of

the decision layer is to analyze the available information in order to determine what actions

should be taken and to trigger the action of the services on the system. Currently, the only

monitoring interface available in SEEC is an API named Application Heartbeats (AH) (further

investigated in Section 3.1.3). The decision layer is realized by a control theory-based control
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system which supports three controllers with different dynamic behaviors. Finally, there exist

some services acting on various parameters of the system [38]:

• A frequency scaler uses Dynamic Voltage and Frequency Scaling (DVFS) to adjust the

clock speed of the system processor(s).

• A core allocator is in charge of assigning a subset of the available system processors to

the running processes.

• A Dynamic Random Access Memory (DRAM) allocator is useful when more than one

memory controller is available on the system (which is true, for instance, on NUMA

computers) and it is capable of assigning the memory controllers to the running pro-

cesses.

• A power manager uses combined actions of the previous services (which, in turn, deter-

mine higher or lower power consumption) to directly affect the power consumption of

the system.

Currently, the SEEC framework has not yet been implemented as a fos service, but has been

implemented over Linux. This implementation is completely done in userspace [38], avoiding

the need of directly modifying the kernel, but it posing some limitations on the effectiveness of

the autonomic actions. For instance, the core allocator service, which is in charge of assigning

a subset of the available system processors to the running applications, acts on the system

by altering the affinity mask of a process. In Linux, this value is defined for each process and

it allows to indicate a subset of the available cores over which the process may be scheduled;

the core allocator changes the affinity mask from userspace through a system call (syscall),

incurring in the overhead due to the kernel crossing. Experimental results [38] show that this

strategy can yield performance improvements, but the realization of such service in userspace

poses a number of limitations (beyond the overhead due to system calls) on its precision in

affecting the system status. The main limitation is that the core allocator has the only chance

of modifying the affinity mask to direct the scheduling of the process, but the final decisions

are taken by the Linux scheduler, which autonomously determines, for instance, whether a

task is to be moved for load-balancing reasons. This example shows how working in userspace

can be limiting in a monolithic kernel such as Linux, allowing just a loose control on the
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system. This consideration is one of the reason underlying the choice of directly patching

the Linux kernel for the implementation of the monitor and adaptive scheduling mechanism

proposed in this thesis.

2.5 Summary

The works presented in this Chapter rise interesting issues in the ability of contemporary

operating systems to really fulfill their role of exposing efficient and simple interfaces to ease

applications developers in accessing all the resources offered by the bare hardware. These works

on innovation in operating systems suggest that new approaches are needed to successfully

exploit the new available architectures and the ideas of autonomic computing can be the base

over which building a research effort to address these problems.



Chapter 3

State of the Art in Monitoring and

Scheduling

The work proposed in this thesis has the goal of providing a methodology for enhancing a

commodity OS with autonomic capabilities leveraging the ODA loop. To do so, both a generic

monitoring infrastructure (to provide the observation phase) and an adaptive process scheduler

(as a proof of concept realization of the decision and action phases) are proposed. To help

the design of this components, a preliminary study has been conducted on previous works on

monitoring and process scheduling non necessarily related with autonomic computing. Some

of these works are illustrated in ths Chapter: Section 3.1 covers related works dealing with

monitoring and Sections 3.2 to 3.4 present existing process schedulers.

3.1 Runtime Monitoring Infrastructures

Gathering relevant runtime information is a crucial operation in the effort of building au-

tonomic computing systems. For this reason, an autonomic system must be equipped with

a proper monitoring infrastructure able to provide the information required to enable the

wanted self-* properties. Monitoring infrastructures in computing systems may be built in

different forms and work at different levels; this Section provides an overview of some inter-

esting works available in literature which were considered during the design of the monitor

proposed in this thesis.

39
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3.1.1 Low Level Processor Monitors

Most modern general purpose processors are equipped with on-chip hardware giving runtime

information. Performance monitoring hardware in processors is characterized by two compo-

nents: performance event detectors and event counters [69]. The information provided by these

hardware monitors represents low-level details on the efficiency of the processor in executing

the code; for instance, there exist event counters for the number of completed instructions of

a certain type (e.g., floating point) or for characterizing branch prediction (e.g., number of

mispredicted branches) [69].

Since the data provided by hardware event counters represent very low-level information,

they are not easy to be directly used to infer useful information about the running programs.

To allow the use of this information, researchers proposed APIs that ease the access to hard-

ware monitors. Within the High Performance Computing (HPC) community, Browne et al.

[18] proposed - back in 2000 - a common interface towards performance counters able to

support different microprocessors and operating systems (from the Intel Pentium Pro/II/III

on Linux to the Cray T3E,EV5 on Unicos/mk). The monitoring hardware, however, became

much more complex with the next generation of microprocessors and , in 2004, Sprunt [68]

proposed two tools, called brink and abyss, to provide a high level simple interface to the

complex performance monitoring hardware found on Pentium 4 processors. This work rep-

resents one of the first efforts to exposing high level interfaces - through descriptions in the

eXtensible Markup Language (XML) - to the complex hardware event counters of those pro-

cessors. More recent works consider the fact that performance counters in microprocessors

were not designed to be exploited by the users, but simply as debugging tools for hardware

architects [78]. One proposal for overcoming the limitations posed by traditional performance

counters is to introduce reconfigurable or programmable monitoring elements within the hard-

ware architecture, able to decouple the monitoring action from the operation of the CPUs [64].

A different approach has been proposed by West et al. [78], who focus on monitoring multicore

processors and propose the introduction of a specialized CPU core dedicated at the collection

ad evaluation of performance data.

The low level processor monitors are improving from just providing counters for some

events (which are hard to use other than for low-level debugging) to allowing more flexible and
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structured access to specific runtime information. Recent works propose architectural changes

(such as the introduction of a dedicated core [78] or the use of reconfigurable components [64])

in order to extend the utility this approach from debugging and statistical analysis to runtime

use of monitoring information for improving performance and hardware utilization by the

software being executed.

3.1.2 Software and Applications Monitors

A different approach, which does not require modifications in the hardware architectures, to

provide useful application-specific information at an higher level than hardware counters is

operating at software level. Software monitoring usually consists in instrumenting (either man-

ually or automatically) the applications to be monitored by introducing calls to a monitoring

API. This kind of runtime software monitors are used for profiling, performance analysis,

software optimization as well as software fault-detection, diagnosis, and recovery [28]. An in-

teresting idea in this context which has been picked up in the work proposed by this thesis is

the use of the procfs pseudo filesystem to expose monitoring information (as done by Jancic

et al. [44] for monitoring cluster applications).

In fault detection software monitors, a well established practice is the use of “I-am-alive”

signals called heartbeats [70]. In fault detection applications, these signals are used to asses

the correct operation of a specific component; the same idea has been later used, in a self-

awareness context different from fault detection, for the purpose of measuring applications’

progress [37] (see Section 3.1.3). This idea of heartbeats as a generic monitoring unit for

measuring progress is at the base of the monitor proposed in this thesis.

3.1.3 Monitoring in Autonomic Computing

Two notable examples of the use of monitoring infrastructures in a self-aware and autonomic

context are given by the K42’s performance monitoring and tracing infrastructure [6] and by

the monitoring facility used in the SEEC framework [37].

Performance Monitoring and Tracing in K42

K42 is equipped with a tracing infrastructure that manages the logging of any interesting

system event for debugging or monitoring of the system [80]. The key features of such infras-
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tructure are [6]:

• The provision of a unified set of events for any monitoring activity, including correctness

debugging, performance debugging and performance monitoring.

• When not in use, the impact of the monitoring infrastructure on system performance is

low enough to allow it to be kept compiled-in, permitting data gathering to be dynam-

ically enabled/disabled at runtime. It is also possible to completely exclude (at compile

time) some events from being built to obtain zero impact on useless events.

• The monitoring infrastructure takes care only of collecting and making available the

events; the analysis of such information is thus decoupled from its gathering.

• The event logging mechanism is flexible enough to provide cheap collection of data for

both small or large amounts of data per event.

These characteristics, coupled with the hot-swapping ability to insert monitoring objects into

the operating system code at runtime, give to K42 a suitable way of gathering information on

its state, which is a crucial capability for an autonomic system. More in details, the monitoring

infrastructure is used in K42 to realize a Continuous Program Optimization (CPO) [19, 81]

paradigm, where the information provided by a Performance and Environment Monitoring

(PEM) infrastructure are used by CPO agents to address performance problems. The infor-

mation provided by the PEM come under the shape of XML-specified events (from low level

events, such as cache misses, to higher level software related events) and the CPO infrastruc-

ture provides an API for manual instrumentation.

On one hand, the proposed infrastructure is complete and potentially supports multiple

programming languages. On the other hand, PEM poses a notable burden on systems and

applications developers, who must provide both an XML specification of each event and the

associated code.

Application Heartbeats

The monitoring facility found in literature which is most related with the work presented in

this thesis is part of the SEEC framework used in the Angstrom project (see section 2.4) and

is called Application Heartbeats [37]. Application Heartbeats is a monitoring API providing
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a simple way of measuring applications’ performance in critical sections by relying on the

abstraction of an heartbeat. Within this context, a heartbeat is a periodic signal sent from

the application to the API to indicate progress in its job. The metric used by Application

Heartbeats to evaluate the current performance of the monitored applications is their current

heart rate, i.e. the number of heartbeats each application has sent in a time unit. Obviously,

the heart rate of an application is measured in heartbeats
second .

Application Heartbeats allows the applications to specify a target heart rate and a target

latency between specially tagged heartbeats: once the application has set its targets, it can

send heartbeats to enable the monitoring of its current performance. An example of use of

this monitoring API is a video encoder [37] that sets a target heart rate of 30heartbeatssecond and

sends one heartbeat after each encoded video frame. In this way, the application indicates the

will to be assigned enough resources to produce thirty frames per second. In fact, this kind of

application has the right behavior to be monitored with the approach of sending heartbeats;

i.e. there is a computational intensive code section, which is realized as a loop, and the

straightforward way of measuring performance is to send one heartbeat at each iteration of

the loop. Unfortunately, not all the applications have a behavior similar to this and thus not

every application can be monitored with this approach. Even if limited to a specific class of

applications the monitoring offered by Application Heartbeats is quite effective and it has

the great advantage of being simple, requiring a relatively small effort from the application

programmer.

3.2 Process Scheduling in Linux

Some of the projects presented in the first part of this Chapter (K42 in particular - see

Section 2.3.2) propose ideas for the process scheduler to better support the new architectures

they target. The process scheduler is a central component of most modern operating systems

and it is often target of continuous evolution aimed at better supporting all of the working

conditions that the system must support. In this context, an interesting case study is offered

by the evolution of the process scheduler in the Linux kernel. The information to analyze the

evolution of the Linux process scheduler is easily retrievable thanks to the open source and

community based development model of this kernel: this model encourages contributors to
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question the existing implementation on the public mailing list and to freely propose patches,

leading to continuous evolution [52]. This Section provides a brief history of the evolution

of the process scheduler (for non real time tasks) in Linux and a presentation of how this

component works in the current versions of the kernel. The current process scheduler used in

Linux provides the base for the implementation of the adaptive, performance aware scheduler

proposed in this thesis.

3.2.1 O(1) scheduler

The initial versions of the Linux kernel (the first version was published by Linus Torvalds in

1991 [52]) did not focus on having a very efficient process scheduler and, up to the 2.6 series

(more precisely, up to Linux 2.6.8.1, released in 2004 [1]), this component was very simple

and scaled quite poorly when increasing the number of processes or number of available

processors [52]. The first interesting implementation of the Linux scheduler is was written

by the developer Ingo Molnar and merged in the Linux mainline sources with the release of

version 2.6.8.1 [1]. This process scheduler takes into consideration the heterogeneous targets

of Linux, which is used in both servers and desktop systems (which usually have different

scheduling goals, as explained in Section 1.4.4). One of the most interesting features of this

scheduler is that it is guaranteed to do its job (i.e. picking the next task to be executed) in a

constant time, not depending on the number of tasks to be scheduled. An algorithm with this

characteristic is denoted as O(1), with the Big-O notation [23]; hence, this implementation of

the Linux scheduler is commonly referred to as the “O(1) scheduler ”. The capability of this

scheduler to always run in constant time allows it to scale very well with the number of tasks

and it is attained thanks to two key data structures [1]:

• For each available processor, there is runqueue, which contains all the runnable tasks

assigned to that CPU.

• Each runqueue contains two priority arrays, respectively marked as active and expired.

The tasks are moved to the expired array as they run out of their timeslice (see Def-

inition 1.9) and, when no more tasks remain in the active array, the scheduler simply

inverts the labels (which entails simply updating two pointers, which is done in constant

time).
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Priority arrays contain linked lists, one for each possible priority level, which enumerate all

the runnable tasks for the associated priority; each task has an assigned timeslice which is

computed when the task is moved from the active to the expired array. The priority assigned

to the task depends on a static value (called nice value, according to the POSIX standard)

and on a dynamic component which is computed by the scheduler to improve interactivity.

To do so, the O(1) scheduler uses a quite complex [45] heuristic to classify the tasks as CPU-

bound or I/O-bound and gives higher priority to the tasks classified as I/O-bound, which are

identified as the ones requiring better interactivity. Moreover, this scheduler supports load-

balancing mechanisms to keep the workload distributed on the available processors and offers

a very simple soft real time support managing real time tasks with FIFO or RR queues at

maximum priority.

3.2.2 Completely Fair Scheduler

The scheduling algorithm currently used in Linux is called CFS and it has been introduced

in the kernel version 2.6.23, released in 2007 [52]. This scheduler was designed by the same

developer who wrote the O(1) scheduler and it is intended for resolving the limitations of its

predecessor, mainly linked with the complex heuristics used to determine the interactive or

batch behavior of the tasks [45].

The design of CFS has been influenced by the Rotating Staircase Deadline Scheduler

(RDSL), proposed by the kernel hacker Con Kolivas but not merged into the Linux mainline

sources. RDSL was based on the idea of being fair in CPU assignment, without trying to

characterize the behavior of the tasks [48] and CFS, as the name suggests, fully embraced

this idea. To achieve fairness, in CFS, the classic concept of timeslice (also used in the O(1)

scheduler) was discarded and a the idea of virtual runtime of a task (Definition 3.1) was

introduced.

Definition 3.1 (Virtual runtime [52]). The virtual runtime (or, in short, vruntime) of a task

is the actual runtime (the amount of time spent running) of the task normalized (i.e. weighted)

by the number of runnable tasks. It is measured in nanoseconds.

The idea behind the virtual runtime is similar to the concept of Virtual Finishing Time

(VFT), which was in use in fair queuing algorithms as a way to measure the degree to which an
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activity has received its proportional allocation of resources [54]. The vruntime, specializing

this concept to process scheduling, represents the time a task would have run on an ideal

machine able to support perfect parallel execution (i.e. with as many processors as the number

of runnable tasks).

The virtual runtime of the tasks being executed is updated either at each scheduler tick

(which, in CFS is dynamically determined and not fixed) or when a task yields the processor.

The nice value of the running tasks is taken into account during the vruntime update operation

and it is used to weigh the update value: tasks with a higher priority (lower nice value) will

get a larger weight and a smaller vruntime update. Thanks to this mechanism, the CFS does

not have any concept of a fixed timeslice and the scheduler simply chooses the task with the

lowest vruntime [34], leaving it in execution as long as it has the lowest virtual runtime within

its runqueue.

As in the O(1) scheduler, in the CFS there is one runqueue for each available processor;

the difference lies in how this runqueue is implemented. In CFS, the runqueues are based on

red-black trees, which are a particular class of balanced binary trees [23]. This data structure

allows insertion and deletion complexity of O(log n), where n is the number of nodes (i.e. the

number of tasks in the runqueue) and it is topologically ordered so that the node with the

minimum index (i.e. the task with the minimum runtime) will always be the leftmost leaf of

the tree [52].

Thanks to its focus on fairness, the CFS achieves good scheduling performance with respect

to both interactivity and throughput (sometimes sacrificing the latter for maintaining the

former [34]). Part of the contribute of this thesis (see Section 5.3) consists in defining a way

of enhancing the CFS with performance awareness, making it take into account the current

and the declared target performance of the running applications and consequently adapt its

choices with the aim of satisfying the needs of the applications.

3.3 Real Rime Schedulers

Scheduling real time tasks traditionally defines a different context with respect to schedul-

ing non real time tasks. In fact, real time scheduling is usually required in specific con-

texts, with well defined requirements of deterministic execution times, such as in automatic
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controllers [30], embedded systems, or multimedia applications [25]. In modern computing

systems, heterogeneous scheduling needs of different tasks running in parallel may blur the

differences between the traditional scheduling environments [16] (see Section 1.4.4). Real time

tasks, however, are well separated from non real time tasks by the fact that they are based

on the specification of deadlines by the applications developers.

Since real time scheduling capabilities are required in non real time-only systems, various

projects in literature tried to offer integrated support for both real time and best effort tasks.

One of the simplest approaches is provided by Linux (see Section 3.3.1), which implements a

very simple real time scheduling class at maximum priority. A more articulated approach is

provided by ad-hoc process schedulers specifically designed for supporting both real time and

regular tasks (two examples are covered in Section 3.3.2) and there exist even whole operating

systems targeted for real time (Section 3.3.3).

3.3.1 Vanilla Linux

Real time handling in Linux (referring to the 2.6 vanilla kernel series - where the term ‘vanilla’

indicates the main Linux branch managed by Linus Torvalds [73]) is implemented in a quite

simple way by giving to real time tasks maximum priority over any other runnable task. So,

any real time task that becomes runnable will preempt any other non real time task. More

precisely, there exist two real time scheduling classes called SCHED_FIFO and SCHED_RR, which

are allowed to dispose of 95% of the available processor(s) bandwidth. The remaining 5% is

reserved for regular tasks to prevent starvation with high real time load. The two classes differ

in how they manage the real time tasks [52]:

• SCHED_FIFO implements a simple First Come First Served scheduling algorithm, which

is not preemptive;

• SCHED_RR works according to the Round Robin scheduling algorithm, which is preemp-

tive and based on timeslices.

This approach towards real time scheduling is quite naïve and, in fact, treats real time tasks in

a best effort manner, since it does not even allow specifying deadlines. Linux, being targeted

at desktop and server systems rather than real time systems, trades off real time accuracy for

simplicity.
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3.3.2 Integrated Real Time and Best Effort Schedulers

In literature, there are some projects which try to build an integrated process scheduler able

to manage both real time and non real time tasks. The motivation for this effort is that, in

modern computing systems, the traditional notions of real time and best effort scheduling

environment have fractured into a blurred spectrum of classes [16] and thus there is a need

for a process scheduler able to handle all these heterogeneous requirements.

Brandt et al. [16] present the Rate-Based Earliest Deadline (RBED): an integrated multi

class real time scheduler. RBED provides a unified scheduling approach and it is based on

a general model of real time scheduling called Resource Allocation/Dispatching (RAD). The

idea at the base of this model is to separate the processes of deciding the share of resources to

be granted to a task (i.e., resource allocation) and of determining the timing of the delivery

of the assigned resources (i.e., dispatching). To simultaneously handle real time and non real

time tasks, RBED assigns a target rate of progress and a period to each task; for real time

tasks, these parameters are determined based on the deadlines, while for best effort tasks a

semi-arbitrary period is assigned with the goal of ensuring high responsiveness. The scheduler,

then, dynamically adjusts the periods trying to both meet real time deadlines and not starving

any best effort task. RBED has been implemented in Linux 2.4.20 (completely substituting

the original scheduler) and experimental evaluations show that it is able to manage tasks from

different classes at the price of adding a small scheduling overhead with respect to the default

Linux scheduler.

The practice, adopted in RBED [16], of assigning an estimated period to non real time tasks

introduces an artificial constraint (the arbitrary period) to tasks which are not characterized in

this manner by the application developers [54]. Another interesting work focused on providing

an integrated process scheduler with support for best effort along with real time tasks has

been proposed by Nieh and Lam [55]. The authors present a Scheduler for Multimedia And

Real Time applications (SMART) which, similarly to RBED, is based on the separation of

importance and urgency of tasks:

• the importance of a task is related to its priority assigned from the user at runtime;

• urgency is defined only for real time tasks and it is related to the time constraints

expressed by the deadlines.
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To measure the importance of a task, SMART uses a value-tuple composed of the priority and

the Biased Virtual Finishing Time (BVFT) of the task; the priority is a static quantity, while

the BVFT is a dynamic quantity used to measure the degree to which each task has been

allotted its share of resources. By using the importance and urgency of tasks, SMART does

not need (as opposed to RBED) to add pseudo real time constraints to best effort tasks. The

authors implemented SMART in the Solaris UNIX operating system [55] and demonstrated

superior performance with respect to the UNIX SRV4 scheduler in supporting multimedia

applications.

3.3.3 Real Time Operating Systems

A different approach to managing the scheduling of real time tasks along with non real time

tasks is the design of a specific operating system, usually referred to as a Real Time Operating

System (RTOS). This solution is sometimes applied in industrial contexts with the goal of

using commodity hardware instead of expensive and complex ad-hoc controllers [30] to manage

real time operations. Some notable examples of RTOSes have been designed for embedded

systems, which are often used for mobile devices or industrial control applications, for instance

Windows CE, VxWorks, Jbed and others [12]. These OSes are designed for tiny systems with

limited resources and do not scale well to more powerful platforms. Other real time operating

systems are designed to scale to different platforms and, among these, two notable examples

(Real Time Linux (RTLinux) [83] and Real Time Application Interface (RTAI) [59]) allow

the coexistence of real time and not real time tasks by directly managing real time tasks and

relying on the Linux kernel for non real time operations.

RTLinux [83] enhances the Linux kernel with hard real time capabilities while still sup-

porting all of the features provided by Linux. This is done by creating a real time kernel which

directly handles the real time tasks and relies on Linux to do all the non real time manage-

ment. The real time kernel is kept as simple and deterministic as possible and it intercepts

all of the interrupts. If an interrupt refers to a real time task, then the interrupt handler is

directly provided by the real time kernel, which offers hard real time guarantees on execution

times, providing direct access to the raw hardware. The Linux kernel acts as the idle task of

the real time handler and thus it is a fully preemptible process that is executed only when

no real time task requires the processor. This structure enforces maximum priority to real
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time events, which can preempt the Linux kernel at any time, while still providing all of the

capabilities offered by Linux for non real time tasks.

A similar approach is proposed by RTAI [59], which patches the Linux kernel by installing

a generic Real Time Hardware Abstraction Layer (RTHAL) [30], which is implemented in a

kernel module (i.e. a dynamically loadable extension) which provides real time management.

The RTHAL has exclusive direct access to the hardware and it provides a software emulation

that lets Linux keep working unchanged for non real time tasks. Real time tasks are managed

by the RTHAL module, which supports three scheduling policies [30] (see Section 1.4.6 for

definitions):

• a fully preemptible FCFS policy for voluntary cooperative scheduling;

• a Round Robin policy;

• an EDF policy which allows the definition of deadlines.

Thanks to this design, RTAI enables general purpose CPUs to be used in time critical systems

such as controllers for aeroservoelastic systems [30].

A common characteristic of RTOSes is presenting a layered structure, with a prioritized

layer in charge of dealing with real time tasks and a preemptible layer which manages best

effort tasks. This fact makes this kind of systems more suitable for specific applications mainly

focused on real time tasks where best effort tasks are a minority. A system where real time

and best effort tasks are present in similar amounts, would probably better managed by an

integrated scheduler such as the ones illustrated in Section 3.3.2.

3.4 Adaptive Process Schedulers

Recently, along with the ideas on autonomic computing, some research projects in literature

propose adaptive process schedulers, i.e. schedulers that have the capability of adapting the

scheduling policy in use according to the system status with respect to some specified goals.

Adaptive features have been proposed with different goals, from improving cache locality or

decreasing lock contention to maximizing applications performance. This Section illustrates

some of these works that employ adaptive techniques for process scheduling.
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3.4.1 System Status Aware Scheduling

In general, the goal of producing an adaptive scheduler is to get better scheduling decisions by

taking in consideration the status of the system and/or the needs of the users. Some adaptive

optimization do not require input from the users: two examples are lock contention [82] and

cache memory locality [20].

Xian, Srisa-an, and Jiang [82] propose a contention-aware scheduler designed for large

Java applications in multicore systems. In this work, they propose a Linux-based system

scheduler able to exploit locking information coming from the Virtual Machine (VM) in order

to proactively reduce the possibility of lock contention. This is done by taking two actions:

• Dynamically clustering threads that share similar lock-protected structures and serial-

izing each cluster.

• Giving longer execution quanta and higher priority to threads that are in the middle of

critical sections.

This approach is shown to achieve up to a 15% performance boost (in terms of execution time)

when running large multithreaded applications, at the price of a 3% performance degradation

for smaller applications.

Chen et al. [20] work in the opposite context of embedded real time systems and propose

a scheduler aware of cache memory usage by the tasks in execution. The aim of this work is

to improve the performance by adapting the scheduling decisions to maximize the reuse of

cached data. This is done focusing on an embedded execution environment that continuously

executes a single application and applying both optimizations at compilation time and adap-

tive decisions at runtime. Within this very constrained scenario (and with some hypotheses

on the application behavior), the authors are able to improve the performance of about 13%

over classic real time scheduling algorithms.

3.4.2 Tasks Classification

Other adaptive schedulers try to take into account users’ preferences; an example is a work

by Lim and Cho [49], who propose an approach to process scheduling based on fuzzy inference,

where the idea is to classify the tasks in execution according to their behavior and determine
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the preference of the users for each class. With this information, the scheduler should be able

to adapt its decisions according to the nature of the running tasks (batch, interactive or real

time) and to the user’s preference for each class. The authors propose a Linux-based system,

where the needed information is gathered with two new modules: a process classification

module analyzes the tasks logs to classify their behavior and a user modeling subsystem

analyzes the users’ preferences. These preferences are gathered by requiring feedback from

the users, which is done by asking some questions when they log out about their feeling

on the system performance. All the information is represented by using fuzzy sets and a

fuzzy inference engine is then in charge of setting the tasks priority based on this knowledge

base. The authors show that the fuzzy rules are able to make the scheduler adapt to the

user’s expressed preference, but these techniques incur in a relevant overhead with respect to

standard scheduling techniques.

3.4.3 Adaptivity for Applications Performance

Adaptive approaches to process scheduling have been applied also to improve the performance,

either considering the QoS of multimedia applications or seeking maximum throughput in

parallel applications.

The management of multimedia applications is somewhat in the middle between real time

and best effort scheduling, as these applications do have QoS requirements, but are often

not treated like real time applications (i.e., application programmers do not explicitly insert

deadlines in the code). A possible approach to this problem is instrumenting the applications

with a suitable API for specifying deadlines and then using a scheduler based on a feedback

loop to adapt the amount of allotted CPU time according to the requests and the available

resources. This approach, which is similar to the solution employed in this thesis, has been

proposed by Cucinotta et al. [26]. This work, however, does not currently support multi

threaded applications and uses real time concepts in contrast with the general monitoring

approach based on autonomic computing proposed by this thesis. The main focus of the

project is on the scheduling policy, which employs control theory techniques.

Another work focusing on applications performance has been proposed by Corbalan, Mar-

torell, and Labarta [21], who deal with the problem of maximizing the performance of parallel

applications on multicore systems. The scheduler uses a helper library, called SelfAnalyzer,
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to retrieve the speedup achieved by an application when it is assigned more or less cores and

determines at runtime the optimal number of cores to maximize the application’s performance.

3.5 Summary

Monitoring infrastructures in computing systems have been largely used in different contexts

and at different levels. Autonomic computing system, however, still lack a monitoring infras-

tructure able to prove really efficient, scalable, lightweight and easy to use for applications

developers and users in a goal oriented environment.

The results shown by existing adaptive schedulers indicate that this component can highly

benefit from an autonomic behavior in many different cases and these works show how im-

portant gathering meaningful information (through appropriate monitoring infrastructures)

is in order to make the autonomic approach really effective. The proposed methodology to

enhance a commodity operating system with autonomic capabilities through a generic moni-

toring infrastructure and the use of this methodology for creating a performance-aware process

scheduler on top of Linux are presented in the next Chapter, illustrating in detail the contri-

butions of this thesis.



Chapter 4

Proposed Approach

The proposal of this thesis for the creation of autonomic computing systems is presented in

this Chapter, from the underlying vision to the details regarding the proposed methodology

to extend a commodity operating system with an autonomic layer. The general approach is

illustrated in Section 4.1, where the goals, model and components at the base of the project

are defined. The focus is then moved, in Section 4.2, to the direct contributions of this thesis to

the creation of an autonomic layer in a commodity OS by providing a monitoring facility and a

proof of concept adaptation policy managing performance-aware adaptive process scheduling.

4.1 Vision and High-Level Structure

The work proposed in this thesis embraces the ideas expressed by the autonomic comput-

ing community [41] and tries to decline them into a feasible approach to the realization of

that vision. The motivation for this effort comes from the observation, shared by different

researchers - see the related works illustrated in Chapter 3, that the organization of current

computing systems is exposing too much complexity to the software developers. The lack

of strong system support for the evolutions seen in computer architectures (e.g., multi- and

many-cores and heterogeneous computing units) obliges applications developers to take into

account lower-level details about the target architectures, making the software design process

more complex. This issue can be addressed with a neat distinction between system and appli-

cations developers, where the former are in charge of supporting the computing architectures

and offering suitable high level interfaces to the latter.

54
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Within this context, the overall research objective is the creation of self-aware computing

systems to tackle the complexity problematics illustrated in Chapter 1, dealing with any kind

of modern computing device: from mobile devices and desktops to servers, mainframes and

huge computing facilities. This vision is shared with the Computing in Heterogeneous, Au-

tonomous ’N’ Goal-oriented Environments (CHANGE) research group [10], which is founded

on the belief that system developers should employ techniques based on the ideas of au-

tonomic computing for enabling computing systems to continuously adapt towards optimal

performance. Within this context, the concept of performance is extended beyond the mere

idea that “the faster, the better ”, but it comes to include objectives such as minimization of

power consumption and thermal efficiency together with the goal of ensuring to the users an

experience as close as possible to their needs.

The proposed approach to realize this vision in actual computing systems is based on

the idea of leveraging the ODA control loop (see Section 1.2.2) at different levels within the

system. Starting from the architectural level, each component can benefit from internal ODA

loops to realize autonomic management “in the small”; proceeding at a higher level, broader

ODA loops should orchestrate the different subsystems and, at the top level, a system-wide

control loop, aware of the system as a whole, should be in charge of pursuing maximum

runtime performance (in the broad sense explained above).

4.1.1 Goals and Contributions

The long term goal of the CHANGE group [10] is the realization of the autonomic revolution

introduced in Chapter 1 by creating methodologies and designs for computing systems able

to adapt their behavior according to their internal and environmental status and to optimize

the running applications in order to ensure a consistent user experience on many different

architectures and in different environments. To do so, the group works on various aspects

of computing systems, from architectures to operating systems and development tools. The

aim is to allow application developers to concentrate on what their applications must do,

leaving all the architecture-dependent details to be managed by the autonomic features of the

systems where they will be deployed. To come to this scenario, all of the components of a

computing system could be modified in order to create an autonomic behavior in the system

as a whole. Within this context, the first and most important system layer to be reworked in
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an autonomic direction is the operating system; this is true for at least three reasons:

• The OS is the system layer which exposes the system resources towards the applications;

hence, it has a direct link with the applications, which are the entities that the autonomic

system must serve according to their performance requirements.

• The operating system has, on the other side, direct access to the hardware resources

and it is in charge of managing them.

• Since the OS is a software system, it is possible to work at this level in an agile way,

without the need of requiring hardware modifications to the architectures or to the

components. This could be a further step to improve the autonomic features once the

autonomic base system in the OS layer will be ready.

To sum up, the OS is the glue between the hardware and the applications and it is possible

to work with relative ease at this level. Therefore, the first goal on the road to autonomic

computing is the realization of an autonomic layer within the OS: this layer will serve as the

basis and support for successive improvements both at architectural and applicative level.

Within this context, the contributions of this thesis are:

• The description and formalization of the high-level approach towards autonomic com-

puting (which has been defined in collaboration with the CHANGE research group [10]);

this matter is covered in Sections 4.1.2 and 4.1.3.

• The proposal of a methodology for creating operating system-level autonomic capabili-

ties leveraging the ODA control loop (refer to Section 4.2) and, in details:

– the design of a general purpose monitoring infrastructure to provide the observation

phase;

– the demonstration of the applicability of the proposed approach by employing the

monitor for performance-aware adaptive process scheduling.

• The implementation of both the monitor and the adaptive process scheduler over the

Linux kernel [73] (this is treated in Chapter 5).

• The evaluation and characterization of the implemented system with both ad-hoc micro

benchmarks and real workloads (experimental results are presented in Chapter 6).
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The remainder of this thesis gives a detailed report of these contributions.

4.1.2 Autonomic Computing System Model

Most modern computing systems can be subdivided into three layers: Hardware Components,

operating system and Applications (see Section 1.2.3); the model for an autonomic computing

system should not distort this well established structure, but augment it:

• Within the hardware layer, each component should embed integrated autonomic con-

trollers to autonomously manage its lower level parameters in order to maintain a stable

working status.

• At the upper level, the applications should embed similar software mechanisms to tune

their behavior, taking into consideration also the users’ preferences.

• Both the hardware components and the applications should expose information about

their status towards the OS which should use these data to implement a number of

ODA loops using a combination of the available information sources to take decisions

and act onto the OS subsystems, which in turn will alter the runtime status.

As argued in 4.1.1, the first place where to act in extending the classic computing system model

is the last in the above list, i.e., the operating system; this vision is represented in 4.1, which

shows some examples of interaction between the system components, the autonomic layer and

the applications. The Figure represents an extension of the classic three-layered structure of

a computing system, where an autonomic layer has been added within the operating system.

This autonomic layer contains a number of autonomic controllers using information coming

from the hardware architecture and the software in execution in order to optimize the runtime

status; more in details:

• The applications are allowed to explicitly communicate to the autonomic layer their

performance goals (which can be specified by the developers or the users) and are

continuously monitored to capture any deviation from the required performance.

• The hardware components are monitored both in terms of performance and in terms of

health status (for instance, working temperature, voltage, . . . ) and their performance
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Figure 4.1: Proposed model for an autonomic computing system

capabilities and health restrictions (such as maximum working temperature) are con-

sidered with respect to the current conditions.

• The components of the operating system are controlled (according to a certain policy)

in order to apply any needed modifications aimed at making the system fit into the

status space defined by the goals expressed by the applications and the runtime system

constraints. These components can then affect both the applications or the hardware

components, thus closing the control loop.

For instance, the ODA loop highlighted in the Figure gets information (i.e., status and goals)

from the running applications through a monitoring facility and is able to compare the status

with the goals, determining how to act on the process scheduler. This process has been com-

pletely implemented for this thesis as a proof of concept to illustrate the capabilities of this

enabling technology.
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4.1.3 Autonomic Components

The observation, decision and action phases in the ODA loops present within the autonomic

computing system are realized through two principal autonomic components:

• monitors preside over the observation phase;

• adaptation policies manage the decision and action phases.

More in detail, a monitor provides an interface between the system and users on one side

and the autonomic layer on the other: it fetches relevant information from the system and

goals from the users and it makes these data available to the other autonomic components

offering a suitable API. A monitor is characterized by what measure it records (called the

target measure) and it can span different levels of the system. For instance, there could be

a temperature monitor that simply records and makes available to the autonomic layer the

thermal state of part of the system, thus bringing information from the hardware to the

OS layer; another kind of monitor can measure the performance of the running applications

according to some appropriate metric. A monitor must also provide a means of specifying

which are the desired values for its target measure. For instance, a performance monitor must

provide a way of stating performance goals for the monitored applications in terms of a range

of desired values in the metric used by the monitor that represent the desired runtime state

for each application. This range of desired values is the goal for that target measure.

Adaptation policies access the information provided by one or more monitors and are

able to compare the measures with the goals, using a decision mechanism (e.g., based on

machine learning or control theory) to determine whether any corrective action is needed. If

the measures do not match the goals, an adaptation policy disposes of one or more actuation

hooks within the system (e.g. within a device driver or the process scheduler) where it can

modify some parameters (e.g. the clock frequency of a processor or the CPU time assigned to

an application) to alter the system status. In this way, each adaptation policy, coupled with

one or more monitors, identifies a separate ODA loop within the autonomic system.

Since within the same system different adaptation policies may coexist and have contrast-

ing goals or clash in the use of actuation hooks, there is the need for an higher level component

in charge of coordinating the operation of the adaptation policies. This component, named

adaptation manager, has the role of coordinating the autonomic action and has access to all
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the monitors and has visibility towards the system as a whole. A representation of a snapshot

of a possible status of the autonomic layer of a computing system is represented in Figure 4.2.

The Figure represents three monitors gathering measures and goals for three different targets
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Figure 4.2: Autonomic components operating within the autonomic computing system model

and three adaptation policy getting monitoring information from one or more of the available

monitors and acting on the system as needed. The Figure also shows the adaptation manager,

which has view over all the monitors and can act on the adaptation policies enabling or dis-

abling their operation with the aim to reach the global system goals. For instance, there could

be different adaptation policies working on the same target and using the same monitoring

information but different decision mechanisms (e.g., an heuristic versus a control theory-based

policy); in this case, the adaptation manager would be in charge of choosing the best policy

according to the runtime context.

The work proposed in this thesis is focused on the development, at the operating system

level, of a software monitor, which provides a way of getting information from the running

applications and an adaptation policy using this information to act on the process scheduling

process. These two components create a first OS-level ODA autonomic control loop and build

a base for the future realization of more monitors and adaptation policies. Since, up to now,

only one ODA loop exists, there is no need for the adaptation manager, which is left for future

work.
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4.2 AcOS: an Autonomic Operating System

The structure proposed in the first part of this Chapter describes the general approach towards

the creation of autonomic management capabilities in computing systems. As already argued,

the first level where to work in this direction is the operating system, where an autonomic

layer must be created. One of the design choices made at the beginning of this work was

whether starting to build a new operating system designed for being autonomic or modifying

an existing commodity operating system and enhance it. Creating a new operating system

would grant great flexibility, but would impose an enormous overhead in building all the

low-level structure for interfacing towards the hardware resources, requiring a great amount

of work to be done prior to being able to focus onto the autonomic features. On the other

hand, extending an existing operating system allows to reuse what already exists, even though

reducing the design flexibility. The chosen approach is extending the Linux kernel to create

a base for an Autonomic OS (AcOS) with a first autonomic control loop, which can be

incrementally extended in future works realizing more monitors, adaptation policies and the

adaptation manager. The use of Linux as the base for AcOS offers some advantages with

respect to extending a different operating system or starting the development of the new OS

from scratch:

• Linux is a modern OS with support for different architectures and its source code is

freely accessible and modifiable (which is not true for some major commodity OSes,

e.g., Microsoft Windows or Mac OSX).

• Linux is widespread and an autonomic framework on top of it allows to keep full com-

patibility with legacy applications and to offer a well known development environment

for the creation of new applications.

• The open and community-based development style of Linux allows to directly access all

the source code and easily find documentation and support. Moreover, Linux is contin-

uously tested against security bugs and any fix distributed for Linux is automatically

available for the Linux-based autonomic OS.

The extension of Linux proposed in this thesis, serving as a base for AcOS, consists in a soft-

ware monitor based on the abstraction of heartbeats (the same used in Application Heartbeats
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- see Section 3.1.3) and an adaptation policy exploiting the monitor to measure applications

performance for enhancing the default process scheduler in Linux (which is the CFS - see

Section 3.2.2).

The choice of using Linux as the base for AcOS drove the design process towards placing

both the monitor and the adaptation policy in kernelspace. This choice is the most natural in a

monolithic kernel such as Linux, which implements the process scheduler fully in kernelspace.

Moreover, the proposed monitor is designed to offer improved functionality and performance

with respect to AH, which is completely implemented in userspace [37] and, even though

being open source software, could not represent a solid alternative to realize the goals of this

project. The remaining of this Section offers a thorough illustration of the design choices at

the base of the different components of the proposed system.

4.2.1 Monitoring Applications’ Performance

In order to create an autonomic control loop able to realize adaptive scheduling with the

aim of helping the applications in execution reach their performance goals, the first step is to

clarify how applications’ performance can be measured in a simple and efficient way. To do

so, it is important to remember the definition of task in Linux (see Definition 1.7), which is

the atomic schedulable entity. Some other definitions are useful to understand the monitoring

framework that has been defined; first of all, Definition 4.1 precises the meaning of the term

application.

Definition 4.1 (Application). An application is any program in execution; it can be a single

process, a thread group or a group of cooperating processes.

In general, the applications are the entities to be monitored and thus monitoring an

application can involve the measurement of the performance of a single process, a group of

threads or a group of cooperating processes. In general, the performance monitoring of an

application involves dealing with one or more tasks. More in details, an application to be

monitored could be structured in different ways in terms of parallelism:

• An application could be a single process, autonomously doing its job.

• An application could exploit thread level parallelism by letting a set of threads work in

parallel.
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• More than one process could cooperate by the means of IPC in an application exploiting

process level parallelism.

All these types of applications must be correctly managed by the adaptive scheduling ODA

control loop; for this purpose, it is useful to define the concept of group, which is explained

in Definition 4.2.

Definition 4.2 (Group). A group is an ensemble of tasks which share performance monitor-

ing.

The concept of group is intended to allow the monitoring of applications that exploit

parallelism in various ways. For this reason, a group can be composed in three different ways:

• it can include a single task;

• it can be intra-application (the members are threads with a common parent);

• it can be inter-application (the members are tasks belonging to different processes).

The first possibility is for monitoring single-threaded applications, the second allows mon-

itoring applications that use thread-level parallelism and the last can be used to monitor

applications that are based on process-level parallelism (the lack of support for process-level

parallelism is one of the shortcomings of Application Heartbeats). The concept of group is

important because it really defines the performance-monitored atom. In fact, a group is used

to aggregate the performance monitoring of different tasks that cooperate to perform a com-

mon job: measuring the performance of each task alone does not make much sense, but the

performance of the group is what counts. For this reason, each group must be characterized by

a current performance indicator and a performance goal; the question is now how to represent

them.

Probably, the most direct way of fetching first-hand information about the performance

of a group of tasks is asking the task themselves to signal how they are proceeding. To do so,

however, a simple way to instrument the software is required, which must be easy to use for

applications developers. The proposed monitoring infrastructure is based on the idea of making

the tasks of a monitored group emit heartbeats; this concept is clarified in Definition 4.3).

Definition 4.3 (Heartbeat). A heartbeat is an atomic signal sent from an group (i.e. by one

of its component tasks).
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The concept of heartbeats has been used in literature mainly for monitoring availabil-

ity [71] and, depending on how heartbeats are used to instrument a group, it is possible to

exploit them to monitor different properties (for instance, for monitoring lock contention [31]).

Within this work, heartbeats are used in a similar way to how they are employed by Appli-

cation Heartbeats [37]: an heartbeat must be emitted by a group to indicate progress in its

execution.

To be suitable for being monitored in performance by issuing heartbeats, a group must

be characterized by at least one CPU-bound section of code referred to as a hotspot (see

Definition 4.4), which is where heartbeats are emitted.

Definition 4.4 (Hotspot). A hotspot is a performance-relevant code section executed by an

application.

Within each group, there will be at most one active hotspot at the same time, which may be

structured in different ways: it may belong to a single task, be executed in parallel by several

tasks or be spread into parts, each executed by a single task that does some independent

work, and then converging to a single point. In general, the hotspot coincides with a loop into

which a repetitive work is performed (either by a single task or by several tasks in parallel)

and the end of the hotspot is usually where the application issues heartbeats to indicate that

an iteration has been completed. The hotspot is owned by the tasks which execute its code

and each task accounts the number of heartbeats it emitted while executing that code. Two

examples of hotspot are represented in Figure 4.3. Figure 4.3(a) represents an application

where a single task does all the work throughout the hotspot and, at every iteration, it emits

an heartbeat. In this case, there will be a unique group containing the task. Figure 4.3(b)

shows a scenario in which a main task controls the work (with some adequate synchronization

mechanism), while the body of the loop is in fact executed by some other tasks, which may

work in parallel. In this case, the heartbeat may be emitted by the controlling task, after every

thread has finished its part of the job; in this situation, there would be again only one group

formed by the main task alone. Another possibility is that the tasks performing the work (for

instance, in the case of a thread pool) are be grouped together and emit an heartbeat each

at the end of their job.

Another useful concept regarding the state of a task is its activity, which is defined in



CHAPTER 4. PROPOSED APPROACH 65

hotspot

...

for ( ... ) {
        .
        .
        .
        heartbeat();
}

...

(a) Single task

.

.

.

hotspot

Working
threads

...

for ( ... ) {
        .
        .
        .
        heartbeat();
}

...

(b) Multiple tasks

Figure 4.3: Graphical representation of an hotspot

Definition 4.5.

Definition 4.5 (Task activity). A monitored task is in an active state if it is currently

executing a code section where heartbeats are emitted; i.e. if it is executing the code of an a

hotspot.

The activity of a task should be taken into consideration by the actuation policies to

decide whether or not to act on the task. For instance, in the situation proposed above, where

there is a “father” task that spawns some “son” tasks that actually perform the work and

emit heartbeats, the father could initially create the group and remain inactive, while the

sons add themselves to the group and become active when they begin executing the cyclical

code. Within this context, the father is simply waiting for the sons to do the work and thus it

must not be affected by actions based on the group performance; this information is exposed

through the activity state of the tasks.

According to the description proposed up to now, an application may be organized in

groups, each of which can contain one or more tasks. Each group, to be interesting from a

performance-monitoring point of view, contains a hotspot and its tasks emit a heartbeat each

time they terminate the execution of the hotspot. Each task, then, owns a counter (similar

to the event counters found in monitoring literature - see 3.1) showing the total number of

heartbeats it emitted while executing the hotspot. Based on this setup, it seems logical to

used the metric defined in Definition 4.6 to measure the current performance of a group.
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Definition 4.6 (Heart rate). The heart rate of a group is the number of heartbeats issued per

time unit by its tasks; it is measured in heartbeats
second .

The definition of heart rate allows to answer to the question regarding how to represent

the current performance indicator and the performance goal. Each group is characterized by

a current heart rate and a goal heart rate. The current heart may be evaluated over the whole

execution time of a hotstpot (in this case it is referred to as global heart rate), or over a certain

time window (in which case it becomes a window heart rate). Intuitively, the faster a hotspot

is executed, at a higher rate the heartbeat counters of the tasks will increase (i.e., there will

be a higher throughput), yielding a higher heart rate. Hence, the current heart rate is suitable

to be used as an indicator for the current performance of the group. The performance goal,

on the other hand, is represented as a goal heart rate (a broader discussion on this matter

may be found in Section 4.2.5).

The monitoring infrastructure designed and developed in this thesis is based on the con-

cepts just exposed. The monitor works by receiving the heartbeats emitted by the tasks in

the monitored groups and efficiently yielding statistics in the form of heart rates. In fact,

such metric is not specific to performance monitoring and, depending on how the applications

are instrumented, it provides a quite generic infrastructure for different measurements. As

outlined above, this infrastructure is suitable to be used for performance monitoring of ap-

plications characterized by one or more CPU-bound sections which are repeatedly executed

and represented as hotspots. The periodic behavior of the hotspot guarantees that the heart

rates reported by the monitor are meaningful both as a description of the past performance of

the group and as an estimation of its future behavior if the border conditions are maintained.

This property is very important, since the monitor is used in a ODA closed loop controller.

Clearly, this is a limitation to the scope of applications suitable to be monitored, but it is

necessary to ensure that the data gathered by the monitor are meaningful, which is crucial

for the control loop to work as expected.

4.2.2 Heart Rate and Real Time

Applications with a periodic behavior are often taken into account in real time contexts,

for instance by Cucinotta et al. [26] (see Section 3.4.3). The hypothesis of periodicity, when

dealing with real time, allows to simplify the model by considering each task as split into
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a sequence of jobs characterized by the same worst-case execution time. Then, a deadline is

associated to each job, which must absolutely terminate its execution before the deadline (in

case of hard real time) or, in the case of soft real time, must ensure a certain QoS (i.e. do not

miss the deadline on average, with bounded miss rate).

While the deadlines used in a real time context are set locally for each iteration of the

periodic job, the heart rate of a hotspot provides a measure on average of the speed at which

a hotspot is being executed (i.e., a measure of its average throughput). The heart rate is an

aggregated measure which gives a global view of the average execution rate, but does not

consider deadlines on each iteration. For this reason, using a heart rate to characterize the

performance of an application is very different from a hard real time approach, to which the

concept of specific deadlines on each job is crucial.

The heart rate, as used in this thesis, can be used to represent the current QoS of a group;

this is similar to what is done is soft real time systems. In fact, the goal (defined as a desired

heart rate) is a requirement of average execution behavior with respect to the current heart

rate i.e., it defines a certain desired quality of service in the execution of a hotspot. This is

similar to a soft real time system where a periodic task is requested, at each iteration (i.e.,

for each job), to match a deadline on average. The heart rate, however, brings no knowledge

of how fast each iteration was executed and it trades off some precision for more simplicity.

For this reason, a heart rate is more suitable in a best effort context, where no guarantees are

given, but it is possible to try and satisfy at the best of the system’s capabilities, the desired

QoS of the monitored applications.

4.2.3 The Heart Rate Monitor

The monitoring facility created for this thesis is based on the concepts illustrated in Sec-

tion 4.2.1 and its function is to expose information about the heart rates of the groups of

tasks, which constitute the monitored applications; hence, the monitor has been called Heart

Rate Monitor (HRM). As already argued, this approach is not limited to performance mon-

itoring and, depending on how the code is instrumented, the heart rate can represent other

properties, such as the contention over a lock. For this reason, HRM has been designed to

be as general as possible and its use has then been specialized to performance monitoring;

moreover, the monitor has been designed for Linux, but its structure must be easily portable
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to any other monolithic kernel and, possibly, also to non monolithic operating systems. With

these considerations in mind, the design of HRM has been based on some principles:

• The monitor should be as lightweight as possible on the monitored applications.

• The impact of the monitor on the performance should be zero for non monitored appli-

cations.

• The structure of the monitor should limit the need of locking on shared data structures.

• The information gathered by the monitor should be easily accessible by adaptation

policies working inside the kernel and the same information should be made available

also to adaptation policies operating in userspace.

The first principle is important because the monitor must be able to gather meaningful infor-

mation on the performance and thus the overhead given by the measurements on the execution

of the tasks must be minimal. At the same time, the monitor should have no influence on tasks

that are not being monitored, ensuring the same execution performance as in a system where

the monitor does not exist. These two principles are matched in the design of the monitor by

leveraging the following properties:

• The computation of the statistics (i.e. the heart rates of the groups) is decoupled from

the emission of heartbeats by the monitored applications.

• The tasks must register by using a certain API to enable performance monitoring; by

using this API, applications developers can instrument their software specifying how

the monitored groups are composed.

Decoupling the heartbeats emission and the statistics computation (which is an improvement

with respect to the design of the Application Heartbeats API used in the SEEC framework[38])

is done by moving the computation of the heart rates in a routine periodically executed in the

context of a high resolution timer (high resolution timers are available in most modern kernels,

such as Linux and FreeBSD). This feature allows minimal direct impact of the monitor on

the monitored tasks (as low as a single atomic increment on a counter to emit a heartbeat),

matching the first principle. Moreover, the tasks must register, by the means of a function
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call to a provided API, to activate performance monitoring; thus, the direct overhead on non

monitored applications is zero.

Within Linux (in contrast with message passing-based environments), shared data struc-

tures are commonly used for communication among different execution entities. This mecha-

nism is simple and convenient in many cases, but it can lead to performance issues, particularly

in multicore or multiprocessor systems, where a poor design of shared data may generate use-

less traffic on the buses to maintain cache coherency, thus causing a huge overhead on the

system. The proposed design uses one or more memory pages (a page weighs 4KB in Linux on

most architectures) per group, which are mapped both into the user address space (allowing

access to the tasks of the group) and into the kernel address space (allowing the asynchronous

computation of the heart rates). Each task member of a group is assigned a field in the

shared memory containing a counter which is to be atomically incremented for each emitter

heartbeat. The shared pages also contain the performance statistics for the group, which are

computed on the kernel side based on the heartbeats counters. This design allows group-wide

visibility of the performance information but limits the cache coherency traffic as each task

increments only its own counter and does not access the others (more in details, cache align-

ment of the different fields in the page has been considered during the implementation phase

to avoid incurring in false sharing issues). Moreover, the heartbeats emission is completely

lockless and locking is used only for group management (adding and removing tasks) and

statistics computation.

Finally, the heart rates of the monitored groups are easily made available to adaptation

policies running inside the kernel by means of a global groups list and can be shown to

userspace adaptation policies by using a shared page and a registration mechanism similar to

the one used for task monitoring registration. Also the goal heart rate of the group is stored

within its shared memory area and it may be changed by the application itself or by the user

at runtime; the adaptation policies can get this information by simply reading the related

fields.

A graphical representation of the proposed design for a group is given in Figure 4.4, where

the read/write interactions of the various agents (i.e. tasks, statistics computation agent,

adaptation policies and users) are highlighted. As the Figure shows, each task members of the

group is assigned a proprietary counter which it can increment (which is an atomic operation)
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Figure 4.4: Design of a group of performance monitored tasks

to emit an heartbeat. The Statistics computation agent runs asynchronously in the context

of a high resolution timer and it writes the current heart rate in a specific field after having

computed it based on the values read from the counters. The adaptation policies are allowed

to read the current heart rate: this, coupled with the capability of the adaptation policies

to read the desired heart rate, is the link between the observation and decision phases for a

ODA loop using HRM. Also the users can access to the current heart rate of the group for

informational purposes (this is allowed, in the proposed implementation, through the procfs

pseudo filesystem). The users can also read and adjust the desired heart rate for the group,

which can also be modified by the tasks (through calls to the monitor’s API). Except for

the desired heart rate, which is not modified very often and does not pose synchronization

issues, no field in the structure of the group is written by more than one entity; moreover,

the increments of the counters are atomic operations and thus the emission of heartbeats is

completely lockless. With this design, locks are needed only when computing the statistics (to

ensure that no task dies in the meanwhile) and for adding/removing tasks to/from a group.

As the analysis presented in Chapter 6 shows, this structure allow a very small overhead of

HRM over the monitored applications.

Considering HRM as part of an ODA control loop, it interacts with two different kinds

of entities: applications, by registering groups of their tasks and issuing heartbeats, act as

producers, while the adaptation policies which make use of the monitor acts as consumers, as
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they “consume” the monitoring information produced by the applications through HRM. The

exact form of these monitoring information (i.e., the current heart rate and the goal heart

rate) is better defined in the next two Sections.

4.2.4 Provided Statistics

As illustrated above, the performance metric used by the proposed monitor is the heart rate

of the monitored groups; this information is computed by a routine which is periodically (with

a period of one time slot) awaken by a high resolution timer. More in details, two different

statistics are computed for each group:

• the global group heart rate;

• the heart rate on a specified window.

The global group heart rate is simply the total sum of the heartbeats emitted by the tasks

members of the group divided by the total monitoring time. More precisely, the global heart

rate for group g composed by the tasks t1, t2, . . . , tN which has been monitored for t seconds

is given by Equation (4.1).

global_hrg(t) =

∑N
i=0 counteri(t)

t

[
heartbeats

second

]
(4.1)

The window heart rate of a group is defined on the last W time slots (which are w = W ×

timeslot_duration seconds long) by the formula shown in Equation (4.2), where the meaning

of the symbols is the same as in Equation (4.1).

window_hrg(t) =

∑N
i=0 counteri(t)−

∑N
i=0 counteri(t− w)

w

[
heartbeats

second

]
(4.2)

The global and window heart rates may be used alternatively or contemporary by adaptation

policies according to what option fits better their needs. The duration of the time slot and

the length of the window are parameters of the system and can be adjusted at run time for

each group according to the needs of the monitored application. These parameters are tightly

related to the performance goal that developers and users require for an application; this

matter is discussed in Section 4.2.5.

The design traits exposed above define the main points upon which the realization of HRM

is based. More details on the realized implementation of the monitor are given in Section 5.2.
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4.2.5 Desired Heart Rate and Performance Goal

According to the methodology described in Section 4.1.3, monitors act as interfaces between

the system and the users and the autonomic layer by providing a measure and a goal regarding

a certain target. Following this prescription, HRM provides, beyond the global and window

heart rate, a means for applications and users to specify a desired heart rate, serving as a goal

for the adaptation policies using the monitor. The most simple way to specify a desired heart

rate would be to use a single value. In that case, for instance, an adaptation policy would

know that if the current heart rate were smaller than the goal, the monitored group would be

too slow. Setting a single value, however, can be limiting because it is often the case that not

a single value is admissible, but a range going from a minimum to a maximum. Clearly, the

interpretation of such range depends on the adaptation policy which uses the monitor and on

how the applications are instrumented.

The choice of using a desired range, between a minimum and a maximum heart rate

seemed reasonable for HRM, since it is generic enough to fit different uses for the monitor

and (as explained shortly) allows a useful interpretation when HRM is used for monitoring

the applications’ performance.

In fact, the desired heart rate, despite being specified by the monitor, needs to be consistent

with the adaptation policies that make use of it. More precisely, the goal must be consistent

with the measure provided by the monitor, but it also must be expressed in a suitable way

for the policy to use it for making its decisions. This means that it is necessary to give an

interpretation of the desired heart rate range in terms of performance monitoring, which is

what HRM is used for by the adaptive scheduling adaptation policy. Considering that the

adaptive scheduler is based on a best effort paradigm, an deals with trying to match a desired

Quality of Service, an interesting interpretation of the desired heart rate range is represented in

Figure 4.5. The graph shown in the Figure represents the measured heart rate of a monitored

group; the desired heart rate is the lighter shaded area defined by a minimum heart rate and

a maximum heart rate thresholds. Since the heart rate measures the throughput of a group

within a hotspot, it can be used to measure if the group is being executed fast enough to

ensure a certain quality of service. Hence, it is possible to link the QoS with the heart rate in

the following way:
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Figure 4.5: Representation of the used performance goal in terms of an interval of desired heart rates between

a minimum and a maximum

• The minimum heart rate is the lowest heart rate that ensures the required quality of

service. AcOS always tries to bring the performance of all the monitored applications

over their respective minimum heart rates.

• The maximum heart rate is an upper bound to the required quality of service in the sense

that further increasing the heart rate would not bring relevant benefits in term of QoS.

This value determines a relevant action by the system (i.e. a reduction of the application

performance) only if the currently executing applications are determining contention

on the system resources. If there are enough resources to let all the applications run

over their maximum heart rate, AcOS will not strive to unnecessarily slow down the

applications and they will run over the limit1.

Thus, the minimum heart rate is a hard bound, in the sense that the system will always

do its best to keep all the applications over this limit, so as to ensure the wanted QoS to

each. The maximum heart rate is rather a soft bound, which is used mainly to decide which

application(s) to slow down when in the need of transferring resources to an application that
1Note that there are other possible interpretations of the maximum heart rate bound which define it as a

‘hard ’ limit, as discussed below.
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is running below its minimum heart rate. Of course, in this case, the applications that are

penalized are the ones that are currently overperforming their upper bound.

Notice that using the minimum and maximum heart rates as a hard and a soft bound

totally depends on the interpretation of the goal heart rate given while using HRM as an

application performance monitor within a best effort adaptive scheduling control loop. A

different interpretation could be given, for instance by binding the maximum heart rate to

power consumption: in this case, the upper bound would be the strong one. This example

shows that the desired heart rate range is a flexible way of specifying the goal heart rate, as

it admits different interpretations according to the adaptation policy which uses HRM and to

what measure it is used for.

Besides the lower and upper bounds on the heart rate, the other parameters that define the

performance goal are the duration of the time slot used for sampling the heart rates and the

size of the considered window. HRM allows to tune both these parameters at run time for each

monitored group. A correct setup of the time slot is important to ensure that the monitoring

information (in terms of both global and - if used - window heart rates) is meaningful. For

instance, an application with a very variable heart rate should be monitored with a small

time slot to be able to catch all the variations. Another problem with the setting of these

parameters could incur when monitoring a slow application characterized by a low heart rate

with a time slot and a window size too short (i.e., sampling at a too high frequency and

using a too small window). In this case, the application would be likely to not have emitted

any heartbeat within the window, leading to a misleading measure of zero heart rate on the

window.

In sum, the performance goal for a monitored group is defined as a desired range of heart

rates (where the lower bound is hard and the upper bound is soft) which is linked with a

requirement in terms of QoS. The duty of an adaptation policy using HRM in this way to

monitor the applications’ performance is to act on the system so as to make the current heart

rate (either global or over a window) stay above the minimum heart rate, stealing, if needed,

resources from groups overperforming their upper bound and transferring them to groups

running below the lower bound.
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4.2.6 The Performance Aware Fair Scheduler

The Performance Aware Fair Scheduler (PAFS) is the adaptation policy that, together with

HRM, is used to realize a performance aware adaptive scheduling control loop in AcOS. This

adaptation policy tries to balance the assignment of the available computing resources to both

monitored (through HRM) and legacy non monitored applications, boosting the possibility for

the formers to meet their performance goals and keeping the fairness properties for the latter.

It is to be noted that Performance Aware Fair Scheduler (PAFS) is a best effort scheduler and

it does not give guarantees on the achieved performance, thus not belonging to the real-time

kingdom, but it explores the possibility of coupling a best-effort approach with the ability of

still driving the performance towards goals in terms of QoS (as explained in Section 4.2.5).

The main idea underlying PAFS is to alter the process scheduler used in Linux (which is

the CFS - presented in Section 3.2.2) in order to make it aware of the monitoring data coming

from HRM. The CFS is, as the name says, fair. This means that it strives to give to each

concurrently running task the same amount of processor time on average. One of the conse-

quences of this feature (and of how it is managed) is that it is able to ensure non starvation

of any task even under heavy workloads; this is achieved while ensuring good responsiveness

and without losing time in trying to characterize the tasks’ behavior to understand if they

require interactivity. In the CFS, the management of the runqueues is done by keeping the

tasks ordered in a red-black tree (i.e. a type of balanced binary tree), where the key is their

vruntime. The vruntime of a task is (see Definition 3.1) a quantity representing the ideal

runtime of the task as if it were executed on a machine supporting perfect parallelism (i.e.

with unbounded computing resources). At each scheduling tick (or whenever a context switch

is required), the task with the lowest runtime (i.e. the leftmost in the tree) is the one that is

picked up for execution. The vruntime of the currently running task is periodically updated

by taking in consideration the execution context, which includes how long the task was actu-

ally allowed to execute, the number of tasks on the runqueue, and their priorities (i.e., their

nice value) [52]. As the vruntimes increase, the runqueue is kept ordered and the task with

the lowest vruntime is always chosen. These properties of the CFS make it an interesting

scheduling algorithm; the CFS does not have any means of knowing how the applications it

schedules are performing with respect to the expectations of the developers or users. This
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scheduling algorithm, despite considering to some extent the execution context, is based on

the only aim of achieving fairness, which sometimes is not the best way to go for yielding a

good QoS. PAFS has been created to overcome this limitation, keeping the good properties of

the CFS but altering how it treats HRM-enabled applications, which offer their current and

goal heart rate as additional information to be used by the scheduler. In brief, the idea un-

derlying PAFS is to modify the vruntime update mechanism for the monitored applications,

using the monitoring information provided by HRM to compute its increment. By doing so,

the scheduler becomes aware of the performance of the applications for which the additional

information is available, while it keeps being fail towards the legacy tasks.

Suppose that the task τi is currently in execution on a certain processor (i.e., it currently

has the lowest vruntime among the tasks on that runqueue); if at time t either a context switch

or a scheduler tick occurs, the vruntime of the task vτi is updated according the Equation (4.3).

vτi(t+ 1) = vτi(t) + δτi(t), δτi(t) > 0 ∀t, τi (4.3)

The property expressed on the right of the formula is crucial for the CFS to ensure non

starvation of any runnable task. In fact, under any condition, the virtual runtime of the task

currently in execution is always updated with a strictly positive increment at least as often

as the scheduler tick frequency (which is 1000 Hz by default for desktop system). Thus, if

there are other runnable tasks on the runqueue, the vruntime of the task in execution will

eventually increase to not being the minimum anymore and the task will be preempted in

favor of another one. This applies at any time and thus each runnable task will be picked up

and cannot suffer starvation: this is a desirable property which must not be broken by PAFS.

The update of the vruntime is the chosen point of application of the autonomic action of

PAFS; this means that in place of the δ value computed by the CFS there is a new increment

value, call it pτi , which keeps the property of strict positivity and embeds the knowledge on

the applications’ performance provided by HRM. The autonomic action of PAFS, with respect

to the unmodified CFS, depends on the relationship between pτi and δτi ; in particular:

• If pτi < δτi , the task τi will be advantaged, as its updated vruntime will be lower than

what it would have been with the CFS; thus, it will be kept in execution for a longer

time, receiving a larger share of processor time.



CHAPTER 4. PROPOSED APPROACH 77

• Otherwise, if pτi < δτi , the task i will be penalized, as it will tend to be executed for a

shorter time with respect to the other runnable tasks on the same runqueue.

Clearly, if pτi = δτi , there is no modification over the default behavior of the CFS.

The new increment must be function of the relationship between the current and the

desired heart rates of the group the task τi is member of; moreover, pτi must still take into

account how long the task τi has been running for since the last update. Since the focus of this

work is not on decision techniques, it has been chosen to look for the simplest possible policy

able to satisfy these requirements. Proving the effectiveness of this simple decision mechanism

demonstrates the validity of the approach and opens the way to future works focused on

providing more sophisticated decision policies for PAFS. The decision mechanism that has

been defined in this thesis for determining pτi is the heuristic which scales the δτi increment

computed by the CFS according to how the current heart rate compares with the desired

range. To do so, a simple performance indicator, referred to as πg(τi)(t) has bee defined to

represent the performance, at time t of the group g(τi) the task τi is member of as a producer.

The formula used to compute this performance indicator is given in Equation (4.4). In the

formula, hrg(τi) represents the current heart rate of the group, while mhrg(τi) and Mhrg(τi)

refer to the minimum and maximum heart rates.

πg(τi)(t) =
hrg(τi)(t)

h̄rg(τi)(t)
, h̄rg(τi)(t) =

mhrg(τi)(t) +Mhrg(τi)(t)

2
(4.4)

Thus, the performance indicator at a certain time is defined as the ratio between the current

heart rate of the group and the average between the minimum and maximum heart rates. This

performance indicator is used to scale the CFS-computed increment as in Equation (4.5).

pτi(t) =


1
Sm
πg(τi)(t)δτi(t), hrg(τi)(t) < mhrg(τi)(t)

δτi(t), mhrg(τi)(t) ≤ hrg(τi)(t) ≤Mhrg(τi)(t)

SMπg(τi)(t)δτi(t), hrg(τi)(t) > Mhrg(τi)(t)

, Sm, SM ≥ 1 (4.5)

As the formula shows, the performance indicator of a group is used to scale the increment

of its producers when the current heart rate is outside the desired range, while the δτi is

used as-is when the current heart rate is within the minimum and the maximum bounds. In

this way, the exact behavior of the CFS is maintained for the tasks of those monitored groups

which are yielding the desired Quality of Service, while the increment is modified for the tasks
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in those groups which are running either too fast or too slow. Since the performance indicator

πτi - as shown in Equation (4.4) - is smaller than one when the current heart rate is below

the minimum, and it is greater than one when the current heart rate is over the maximum,

the increment will be correctly scaled down (advantaging the tasks) or up (disadvantaging

them) as it should be. The additional terms Sm and SM are two parameters used to increase

the “strength” of the autonomic action, if needed. When both Sm and SM are set to 1, the

performance indicator is used “as it is” to scale the increment; increasing the values of these

two parameters will increase the action on the vruntime update (i.e., setting Sm > 1 will

yield lower increment values when hrg(τi) < mhrg(τi) and setting SM > 1 will result in higher

increment values when hrg(τi) > Mhrg(τi)).

4.3 Summary

Within this Chapter, a methodology for the creation of autonomic computing systems, as

intended within the CHANGE group, is formalized and illustrated. Particular attention is

dedicated, in the second part of the Chapter, to the main contributions carried by this thesis,

which regard the proposal of a software monitor and its use to measure applications’ per-

formance for realizing performance-aware adaptive scheduling. The design proposed for the

proposed monitor (i.e., HRM) is focused on being lightweight while offering the performance

statistics to any adaptation policy that may need them. The performance aware process sched-

uler that has been created for this thesis (i.e., PAFS) is the first of these adaptation policies

to be realized and, with its simplicity, serves as a test bench for the whole approach. In the

next Chapter, the implementation over the Linux kernel that realizes the design proposed

above is illustrated for both the performance monitor and the adaptive process scheduler.



Chapter 5

Proposed Implementation

A first prototype of AcOS, comprising the Heart Rate Monitor, used as an applications’ per-

formance monitor and the Performance-Aware Fair Scheduler has actually been implemented

over the Linux kernel, following the design principles expressed in Chapter 4. This implemen-

tation, which is illustrated in details in this Chapter, is based on Linux-2.6.35.14 [73], which

is a longterm-support release; the proposed modifications, however, are not specific to this

version and can be ported with very little effort to newer kernel releases (as long as no major

changes are introduced in the modified portions of kernel code). The rest of this Chapter

presents the realized implementation by first showing some general ideas (in Section 5.1) and

then focusing on HRM (Section 5.2) and PAFS (Section 5.3), where the latter makes use of

the former to gather the information it needs to be aware of the performance of the tasks it

must schedule.

5.1 From Linux towards AcOS

The methodology illustrated in Chapter 4 has been employed to implement the proposed

monitor (i.e., HRM), which is used to measure applications’ performance and the adaptation

policy, namely PAFS, which uses the monitor to augment the default process scheduler used

in Linux (i.e., the CFS) with performance-awareness. This work is the first step towards

the creation of an autonomic layer over Linux and the creation of a Linux-based autonomic

operating system.

Linux is a monolithic kernel and it implements the process scheduler fully in kernelspace;

79
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for this reason, the most suitable way of creating the PAFS adaptation policy is to modify

the process scheduler within the kernel. As the adaptation policy is to be implemented within

the kernel, it is a good idea to build also HRM in kernelspace, to grant easier access for PAFS

to the monitoring information. HRM, however, needs to fetch the heartbeats emitted by the

instrumented applications, which live in userspace: for this reason an interface from userspace

to kernelspace is needed to allow the tasks to emit heartbeats. The creation of a neat and

efficient such interface is a key contribution of the implementation part of the work presented

in this thesis. Moreover, the proposed implementation takes into account issues such as false

sharing in multicore systems and lock contention, granting outstanding performance (i.e., low

overhead) to the monitoring infrastructure and simplicity of implementation to the adaptation

policy (thanks to the very simple in-kernel availability of the monitoring information). The

whole implementation of the autonomic components has been wrapped by using preprocessor

macros for conditional compiling and an “Autonomic Operating System” menu has been added

to the Linux configuration system, with entries to choose whether to enable HRM and/or

PAFS or to compile them out, leading to a vanilla Linux. Also all the parameters that are

tunable at compile time can be set through a configuration entry (i.e., CONFIG_*) and the

dependencies between the autonomic components (e.g., PAFS requires HRM) are tracked by

the configuration tool. This implementation practices allow great flexibility and modularity

and ease the future addition of more autonomic components.

The result of the implementation of HRM and PAFS are two kernel patches (one for

each component) and a userspace library, namely libhrm, which offers the API to be used for

instrumenting the applications to be monitored; the patches and the source code for libhrm

will be soon made freely available on the website of the CHANGE group [10]. The remaining

of this Chapter covers the technical details and documents the implementation.

5.2 Heart Rate Monitor

The implementation of the Heart Rate Monitor follows the design described in Section 4.2.3

focusing on being lightweight (i.e., limiting as much as possible the overhead over the moni-

tored tasks), precise and easy to use.
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5.2.1 Overall structure

HRM consists of a patch to the Linux kernel, which enhances it with the new monitoring

infrastructure, and a userspace library (named libhrm), which exposes an API to be used for

instrumenting applications and accessing to the monitoring information from userspace. The

relationships between the applications, HRM and the adaptation policies (either in kernel- or

userspace) resemble a producer-consumer model where the applications, by emitting heart-

beats, produce monitoring information through HRM and the adaptation policies are the

consumers using this information. Hence, this terminology is used in the implementation of

HRM. Note that HRM supports consumers (i.e., adaptation policies) both in kernelspace (by

directly exposing the relevant data structures) and in userspace (through libhrm). The support

for userspace consumers, however is not directly used in this thesis as the only implemented

adaptation policy is PAFS, which works in kernelspace. This capability will be used by future

works extending AcOS with different adaptation policies.

A quick overview of the overall structure of the implementation of HRM over Linux can

be summarized in the following points:

• The interface between kernel- and userspace has been realized by employing the procfs

pseudo-filesystem [22] as a firsthand communication channel used to allow mapping

shared memory pages both in kernel- and userspace. Producers and consumers can then

make use of the libhrm API (which wraps in easy-to-use function calls the communica-

tion protocol over the procfs and the shared memory) to access the respective HRM’s

functionalities.

• The data structure representing a task within the Linux kernel (which is coded in the

source file include/linux/sched.h and called struct task_struct) has been extended

by adding a field with a new data structure containing the monitoring information.

• Each group contains a list of its producers (i.e., its member tasks) and a list of its

consumers (i.e., the userspace adaptation policies requesting the monitoring information

regarding the group); kernelspace adaptation policies are not tracked by HRM, as they

can directly read the fields in the kernel data structures and there is no additional work

to be done for letting them access the monitoring information.
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These points are expanded and more extensively covered in the next Sections, providing a

thorough overview of how HRM has been implemented over the Linux kernel.

5.2.2 A Smart Interface for Producers and Consumers

For HRM to be a useful monitoring utility, it must be easy to use by applications developers

and final users, which must be given simple APIs and interfaced for doing so; moreover,

the implementation of the communication channels must be fast for high-frequency channels

(e.g., heartbeats emission). One of the challenges during the development of HRM was being

able to find an efficient way to let the applications issue heartbeats. Since HRM resides in

kernelspace, while the instrumented applications are executed in userspace, the emission of a

heartbeat must find a way to go across the two different addressing spaces. Moreover, since

some applications may be characterized by a hotspot executed at very high frequency (with

heart rates of millions of heartbeats per second), a strong requirement is to have a very quick

heartbeats issuing mechanism. For this reason, the option of using a system call has been

immediately discarded, as it implies a context switch and does not comply with the need of

being very quick [52]. As already stated while describing the design of HRM (in Section 4.2.3),

it has been chosen to use a shared memory area to allow bidirectional communication between

kernel- and userspace. Producers (i.e., monitored tasks) are offered an API to issue heartbeats,

while consumers (i.e., userspace adaptation policies, which may also reside within a monitored

application itself, in the case of a self-adjusting application) can use library functions to access

the monitoring information (i.e., current and goal heart rate).

Shared Memory Creation through mmap and procfs

The allocation and mapping of the shared memory area must be done on the kernel side,

but it must be triggered by a request coming from userspace. For this reason, there is the

need of a communication channel open beforehand to allow these requests. A possible way of

doing so would be using syscalls, but it has been chosen to avoid introducing new system calls

(which, in Linux, need a unique identifier that could clash with new system calls that may

be introduced by upstream in future[52]) to maintain the highest possible compatibility with

mainline Linux for easing the port of the autonomic layer to newer kernel versions. Instead of

system calls, the creation of the shared memory area is based on a mechanism using the procfs



CHAPTER 5. PROPOSED IMPLEMENTATION 83

pseudo file system [22] and the existing mmap system call[22]. Some new files have been added

within the procfs by modifying the kernel source file fs/proc/base.c; these files reside in the

folders associated with each existing task (i.e., /proc/$PID/task/$TID) and are used by the

libhrm API implementation to manage the creation of the shared memory channel. Each file

is associated a callback function for the different possible file operations from userspace (i.e.,

read, write, or mmap); when a libhrm function performs one of these operations on a hrm_*

file, it is in fact calling the correspondent kernelspace handler, which manages the request.

The procfs files are listed in Table 5.1, with a description of what each file operation is used

for. These files are used by the libhrm functions to initialize the shared memory for holding the

Table 5.1: HRM-related pseudo-files in the procfs and their use

FILE NAME1 READ2 WRITE2 MMAP2

hrm_
{
producer |
consumer

}
_group -

Attach to/detach from

a group.
-

hrm_
{
producer |
consumer

}
_counter

Read mapping address

for counters shared

memory.

-
Request access to the

counters3.

hrm_
{
producer |
consumer

}
_stats_target

Read mapping address

for statistics and goals

shared memory.

-

Request access to the

statistics and goals of

the group.
1 The files are contained under the prefix /proc/$PID/task/$TID, for each existing task.

2 Only the task owning the prefix directory (i.e., the task with thread id $TID) is authorized to such operations.

3 Producers are returned the exact address of their counter and have R/W access; consumers are allowed readonly access.

heartbeats counters, the statistics (i.e., the monitoring information: global and window heart

rates), and the group goal. When an userspace task (either an instrumented task in a producer

or a task belonging to a userspace adaptation policy) calls the appropriate libhrm function

to request being attached to a certain group, it passes as parameters the requested group’s

id (i.e., $gid) and a flag indicating whether it is requesting to be attached as a producer or

as a consumer (i.e., $pc). Then, the communications are managed according to a protocol

implemented through libhrm and the kernel (in proc/fs/base.c), which is represented in

Figure 5.1. As the diagram shows, the attach call from the task to libhrm is followed by a

write of the $gid parameter to a file on the procfs to pass the request to the kernel. This file is

located in the /proc/$PID/task/$TID directory corresponding to the process and thread ids
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m
e

libhrmProducer /
consumer

attach($gid, $pc)
fprintf(hrm_$pc_group_fd, "%d", $gid)

OK / error

procfs callback

[OK]
mmap(..., $PROT, MAP_SHARED, hrm_$pc_counter_fd, 0)

OK / error

[OK]
mmap(..., $PROT, MAP_SHARED, hrm_$pc_stats_target_fd, 0)

OK / error

OK / error

HRM shared memory init protocol

[OK]
fscanf(hrm_$pc_counter_fp, "%lu", &counter_address)

[$pc == producer] counter user address
[$pc == consumer] counters area base address

[OK]
fscanf(hrm_$pc_stats_target_fp, "%lu %lu", &s_a, &t_a)

statistics user address and
goal user address

Figure 5.1: Communication protocol used for initializing and mapping the memory areas shared between

kernelspace and userspace

of the calling task and it is either hrm_producer_group or hrm_consumer_group, according to

the value of the $pc parameter. The callback function implemented on the kernel side passes

the request to HRM, which performs some operations to attach the requesting task to the

group; the most important steps are the following:

• It makes an authorization check, allowing only the task owning the file in the procfs to

make the request (this forbids any task to make a request for another one).

• It gets the $gid value and it calls an internal HRM function which attaches the task to

the group; this operation involves the following two main steps:

– allocating the data structures tracking the producer or the consumer;

– looking for the requested group and, if it does not exist, creating it and allocating

the memory to be shared;
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• If anything goes in error, it cleans up what was done and returns an error; otherwise,

the request was successful and all is set up to permit the mapping of the shared memory.

If the attach request to the kernel was successful, libhrm issues the mmap() system call on the

hrm_
{
producer |
consumer

}
_counter file to request the memory area containing the counters to be

mapped onto the caller’s address space. If the caller is a producer, the mapping is requested

(by means of the $PROT parameter) with read/write permissions, as the task needs to emit

heartbeats. Consumers need to read the counters memory area because it contains the tids

of all the producers members of the group; since they must not write, but only see what

tasks are registered, in this case the mapping is read only. The correspondent procfs callback

function, after having checked that the caller task is already attached to a group and having

made some authorization checks, remaps the counters memory area into the caller’s address

space by means of the remap_pfn_range() kernel function. If the operation was successful,

the caller has now the counters memory, which was allocated by the kernel, mapped onto its

own address space, but the mmap() function only returns a page-aligned mapping address,

while the the exact address (i.e., page-aligned base + offset) of the counter is needed. The

exact address is exposed by the kernel on the hrm_
{
producer |
consumer

}
_counter files; hence, libhrm

reads the proper file and, depending on whether it was called by a producer or by a consumer,

it gets a different address:

• a producer is given the exact address of its counter entry;

• a consumer (which has a read only map) is returned the base address of the counters

memory area.

Thus, a producer will be able to emit heartbeats to its counter, while a consumer will have read

only access to the whole area. The protocol for mapping the memory containing the group’s

statistics and goal works exactly in the same way just described for the counters mapping,

with the difference that both producers and consumers are given two exact addresses (i.e.,

base + offset) for the statistics and goals fields.

All these operations are wrapped by the libhrm API (which is more extensively covered

in Section 5.2.6) and a task just needs to make a single call to the attach function to obtain

this fast and convenient shared memory-based communication channel across kernelspace and

userspace.
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Shared Memory Structure

The memory areas used to allow emitting of heartbeats on one side and exposing statistics

on the other are allocated within the kernel in the form of memory pages. The request of free

memory pages in the kernel is done by calling the function __get_free_pages(), which takes

the number of requested pages (which must be a power of two) and returns the address of a

block of the requested number of pages (i.e., the pages are physically contiguous in memory).

For each HRM group, there are at least two memory pages, used for storing the heartbeats

counters, the statistics, and the goals with this organization:

• a minimum of 1 and a maximum of 16 pages are devoted to the counters (this parameter

is configurable at compile time with the CONFIG_HRM_GROUP_ORDER configuration entry);

• one page is used to store both the statistics and the goals.

The contiguity of the allocated pages is very convenient when more than one page is used

to store counters, as the whole memory area is contiguous and there is no need to track the

page limits. In Linux, on most architectures, a memory page is 4 KB (i.e., 212 Bytes) long;

Table 5.2 shows a representation of the structure of a memory page containing heartbeats

counters. The table shows that the counters’ memory page is simply an array of slots each

containing a data structure representing a producer task registered to the group. For each

task, the following fields are tracked:

• the tid of the task owning the counter is stored in const pid_t tid;

• the const int used tracks whether the slot is or not in use by a task;

• the int active signals whether the task is in an active state (i.e., if it is executing the

hotspot);

• finally, the heartbeats count is maintained in the uint64_t counter field.

The next field in the Table, namely, uint8_t padding[40], is interposed between two entries

to avoid false sharing issues on multicore processors. The padding is 40 Bytes long to reach, for

each block, the size of 64 Bytes, which is the cache-line size on modern x86* processors, which

HRM is currently targeting. To support different architectures, the length of the padding
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Table 5.2: Structure of a shared memory page used by HRM for counters

OFFSET1 CONTENT DESCRIPTION

0x000 const pid_t tid 1st task identifier.

0x004 const int used
Housekeeping fields.

0x008 int active

0x010 uint64_t counter Heartbeats counter.

0x018 uint8_t padding[40] Padding for cache alignment.

0x040 const pid_t tid 2nd task identifier.

0x044 const int used
Housekeeping fields.

0x048 int active

0x050 uint64_t counter Heartbeats counter.

0x058 uint8_t padding[40] Padding for cache alignment.
...

...
...

0xFC0 const pid_t tid 64th task identifier.

0xFC4 const int used
Housekeeping fields.

0xFC8 int active

0xFD0 uint64_t counter Heartbeats counter.

0xFD8 uint8_t padding[40] Padding for cache alignment.
1 The offset is expressed in Bytes.

must simply be adjusted accordingly. The cache-alignment of the counters was initially not

considered and was added after some initial experimental evaluations of the monitor overhead,

which gave unexpected results due to false sharing problems (see Chapter 6 for more details).

With this organization of the counters, each page can hold up to 64 counters and HRM

supports groups with 64 counters per used memory page, reaching support for 1024 tasks per

group with 16 dedicated memory pages (which is the current maximum allowed, but it is just

an arbitrary choice, larger values could be used with no issues).

The information related to the statistics and goals of a group is stored in a separate

memory page; its structure is shown in Table 5.3. As shown in the Table, the top part of

the page contains two fields which are used to store the group’s statistics (i.e., the global

and window heart rates); these statistics are periodically computed in the context of a high

resolution timer, as illustrated in Section 5.2.5. After the first two fields, there is a padding
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Table 5.3: Structure of a shared memory page used by HRM for statistics and goals

OFFSET1 CONTENT DESCRIPTION

0x000 uint32_t global_heart_rate
Group’s statistics.

0x004 uint32_t window_heart_rate

0x008 uint8_t padding[56] Padding for cache alignment.

0x040 uint32_t min_heart_rate
Group’s goal heart rates.

0x044 uint32_t max_heart_rate

0x048 size_t window_size Time window size.

0x050 int64_t timer_period Statistics computation period.
1 The offset is expressed in Bytes.

entry which serves for cache alignment, just as in the counters’ pages. The second block

contains information related to the group’s goal; in particular:

• The uint32_t min_heart_rate and uint32_t min_heart_rate fields hold the group’s

maximum and minimum goal heart rates. These values may be changed by the adap-

tation policies (which may be done directly for kernelspace ones and through libhrm

for userspace ones) or by the users through a special pseudo-file in the procfs (see

Section 5.2.3 for more details).

• The time window considered when computing the window heart rate is stored in the

size_t window_size field. The CONFIG_HRM_WINDOW_SIZE kernel configuration entry

allows to specify a default window size, which may be tuned at compile time from 128

to 1024 timer periods. Moreover, the window size may be specified at runtime by the

producers through libhrm.

• Finally, the value of the timer period is held in the field int64_t timer_period; this

value is configurable at compile time via the CONFIG_HRM_TIMER_PERIOD configuration

entry.

As already highlighted, this structure of the shared memory pages allows to support applica-

tions with groups up to 1024 tasks (but this is just an arbitrary limit) which are assigned a

private cache-aligned counter each for lockless heartbeats emission. This features, along with
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the asynchronous statistics computation (better illustrated in Section 5.2.5), are some of the

key contributions of this thesis in terms of engineering of an efficient general-purpose software

monitoring system.

5.2.3 Statistics Visualization and User Control

Other than being useful for the adaptation policies, the statistics computed by HRM (i.e., the

global and window heart rates of the monitored groups) are also directly exposed to the users,

who can display them. Moreover, the users must be allowed to manually change the goals of

groups associated to applications they own; this possibility is of key importance to give the

users the power to modify those goals which could be (possibly on purpose) set too high or too

low by the applications developers. The possibility of displaying the monitoring information

and of changing the maximum and window heart rates is realized through dedicated pseudo-

files in the procfs, as shown in Table 5.4. The /proc/hrm pseudo file is used only for exposing

Table 5.4: HRM-pseudo-files for displaying monitoring information and managing the groups’ goal

FILE NAME READ WRITE

/proc/hrm
Display monitoring information

for all the monitored groups.
-

/proc/$PID/task/$TID/hrm_goal Display the group’s goal1. Modify the group’s goals1.
1 Only the user owning the corresponding task is authorized to these operations

human-readable information about the monitoring activity HRM is performing. an example

of the output returned when reading this file from console is the following (reported on two

columns):

gid: 37 gid: 42
tids: 2519 2520 2521 tids: 2516 2517
global heart rate: 1433 global heart rate: 748
window heart rate: 1439 window heart rate: 799
minimum heart rate: 1300 minimum heart rate: 780
maximum heart rate: 1500 maximum heart rate: 1000
window size: 125 window size: 50
timer period: 100000 timer period: 100000

The pseudo-file reports the current monitoring information reported by HRM. In the example,

there are two monitored groups (with gids 37 and 42), which are currently tracking the prgress
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of three and two producer tasks respectively. For each group, the current and the goal heart

rates are shown, together with the window size and the timer period. These data can be

useful for applications developers, as a debugging tool during applications instrumentation

or to users and system administrators to monitor the current state of the applications in

execution monitored with HRM.

The /proc/$PID/task/$TID/hrm_goal can be used only by the user who owns the corre-

sponding task (i.e., the one with tid equal to $TID). When reading this file, the current goal

of the group the task is member of (as a producer) is displayed (or an error is returned if

the task is not currently monitored). By writing to this file (e.g., from the shell, with echo

$CMD > /proc/$PID/task/$TID/hrm_goal), the users can change the current goal by using

the following commands:

• with the “m$VALUE”, it is possible to set the new minimum heart rate to $value;

• to set the maximum heart rate to a $VALUE, the command is “M$VALUE”.

The procfs callback function makes some simple checks (e.g., it verifies that the maximum

heart rate is greater than the minimum heart rate) and modifies the goal for the group the

task associated with the used file is member of as a producer.

5.2.4 Structure of a Group within the Kernel

On the kernel side, a group of tasks monitored with HRM is represented with a dedicated data

structure added in the new kernel header file include/linux/hrm.h. This source file contains

all the definitions of the new data structures introduced with HRM and the prototypes of

the kernelspace API used within the procfs callback functions to interact with HRM. The

data structure used to represent a group is named struct hrm_group and it is reported in

Listing 5.1, with some comments describing the different fields.
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1 struct hrm_group {
2 int gid; /* group’s identifier */
3 struct hrm_memory counters; /* manage shared memory for counters */
4 struct hrm_memory stats_target; /* manage shared memory for stats and goals */
5
6 struct {
7 int window_begin; /* index of first heartbeats snapshot */
8 int window_end; /* index of last heartbeats snapshot */
9
10 struct {
11 u64 counter; /* heartbeats counter snapshot */
12 struct timespec
13 elapsed_time; /* timestamp of this heartbeats count */
14 } window[HRM_WINDOW_SIZE]; /* array used as circular buffer for tracking
15 the last HRM_WINDOW_SIZE heartbeats counts */
16
17 u64 history; /* field for keeping dead producers’ counters */
18 } history; /* keep track of heartbeats history */
19
20 DECLARE_BITMAP(counters_allocation,
21 HRM_GROUP_SIZE); /* bitmap to track the used counter slots */
22
23 struct hrtimer timer; /* hrtimer for statistics accounting */
24 struct timespec timer_period; /* hrtimer activation period */
25 struct timespec elapsed_time; /* time since group was created */
26 struct timespec timestamp; /* group creation timestamp */
27
28 struct list_head producers; /* list of registered producers */
29 struct list_head consumers; /* list of registered consumers */
30 rwlock_t members_lock; /* group members lock */
31
32 struct list_head link; /* link to next group in the groups list */
33 };

Listing 5.1: Data structure representing a HRM group within the Linux kernel (defined in
include/linux/hrm.h)
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The new data structure contains all the group-related information. The first field is the group’s

identifier, which is unique in HRM (i.e., if a task requests to be attached to the gid of an

existing group, it is added to that group and there is no means of creating a new one with

the same identifier). The next two fields are used to keep track of the memory pages allocated

for the counters and the statistics and goals; the type of these fields is another data structure

added by HRM: the struct hrm_memory, reported in Listing 5.2.

1 struct hrm_memory {
2 unsigned long kernel_address; /* kernelspace address of the tracked memory area */
3 size_t size; /* size of the memory area at kernel_address */
4 struct list_head maps; /* list of attached userspace mappings */
5 };

Listing 5.2: Kernelspace data structure (defined in include/linux/hrm.h) for tracking allocated shared
memory pages

The kernel_address field stores the kernelspace base address of the memory area. Remember

that, if more than one page is used for the counters, the whole memory area is nonetheless

contiguous, so it is enough to keep the base address and the size of the area (stored in the

size field). The last field of the struct hrm_memory is used to keep track of which userspace

processes have the correspondent memory area mapped to their address space. This list (see

Love [52] for how linked lists) links to entities of type struct hrm_memory_map (reported in

Listing 5.3), which are used to store the mapping-related information.

1 struct hrm_memory_map {
2 pid_t pid; /* pid of the process owning the mapping */
3 unsigned long user_address; /* userspace address of the mapped memory */
4 int references; /* tasks within the thread group using the mapping */
5 struct list_head link; /* link to the next memory map in the list */
6 };

Listing 5.3: Kernelspace data structure (defined in kernel/hrm.c) for managing memory mappings

For each existing mapping, HRM stores the pid (i.e., the process identifier) corresponding

to the address space where the memory is mapped. Recall that, in Linux (as in most *NIX

systems), the address space is shared among a process and the threads in the same groups

(i.e., with that process as their parent) and the thread group is identified by the pid. The

next field stores the userspace base address of the mapping and the references field counts
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how many tasks in the thread group are using the mapped memory. Finally, the last field of

the struct hrm_memory_map links to the next structure in the list.

Going back to the struct hrm_group (refer to Listing 5.1), the next field after the struc-

tures for managing the shared memory pages is a nested data structure accessible from within

the group as history. This structure is used to keep the group’s history, i.e., to manage the

time window for computing the window heart rate (which is done by keeping the window_begin

and window_end indexes to use the window[HRM_WINDOW_SIZE] array as a circular buffer) and

to keep track of the heartbeats counters of terminated tasks, which must still be considered

for correctly computing the global heart rate. More details regarding the computation of the

statistics can be found in Section 5.2.5.

After the structures for managing the counters’ history, the next field is a kernel macro

for declaring a “counters_allocation” bitmap used to keep track, on the kernel side, of the

allocation of the counters in the shared pages to the producers that register to the group.

This field is simply a bitmap counting as many bits as the maximum number of manageable

counters. When the bit in position n in the bitmap is set, this means that the counter slot in

position n in the counters’ shared memory is in use (and the corresponding active field in

the page - as represented in Table 5.2 - is set).

The next block of fields of the struct hrm_group is devoted to the management of the

high resolution timer used for computing the statistics and to keeping track of the elapsed

time since the group was created and the last field is a link to the next group in the global

groups list, which is defined in kernel/hrm.c as shown in Listing 5.4.

1 LIST_HEAD(hrm_groups); /* declaration of the global groups list */
2 DEFINE_SPINLOCK(hrm_groups_lock); /* spinlock for protecting the groups list */

Listing 5.4: Declaration of the global HRM groups list (found in kernel/hrm.c)

A spinlock is declared along with the groups list, and it is used for locking it to avoid con-

currency issues when adding and removing groups. Moreover, both the list and the spinlock

are declared as extern in the header file include/linux/hrm.h and thus both are globally

accessible from anywhere in the kernel.

The block of fields over the list hook in struct hrm_group are used for keeping track of

the producers and consumers currently attached to the group. In particular, there are two
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lists, respectively linking to producers and consumers, and a lock to protect the lists. Only

one lock is used to protect both lists to reduce the locking complexity, since some experiments

showed that using two locks did not ensure big performance improvements but primarily made

the locking code more complex to use and maintain. The lists of producers and consumers

link entities of respective types struct hrm_producers and struct hrm_consumers, which

are reported in Listing 5.5.

1 struct hrm_producer {
2 int counter_index; /* index of the counter assigned in the shared page */
3
4 struct hrm_counter *counter; /* pointer to the counter address */
5 struct hrm_stats *stats; /* pointer to the group’s statistics */
6 struct hrm_target *target; /* pointer to the group’s goal */
7
8 struct hrm_group *group; /* back reference to the group */
9
10 unsigned long counter_user_address; /* userspace mapped address of the counter */
11 unsigned long stats_user_address; /* userspace mapped address of the statistics */
12 unsigned long target_user_address; /* userspace mapped address of the goals */
13
14 struct list_head link; /* link to the next producer in the list */
15 };
16 struct hrm_consumer {
17 struct hrm_group *group; /* back reference to the group */
18
19 unsigned long counter_user_address; /* userspace mapped base address of the counters */
20 unsigned long stats_user_address; /* userspace mapped address of the statistics */
21 unsigned long target_user_address; /* userspace mapped address of the goals */
22
23 struct list_head task_link; /* used for tracking the groups a consumer task is
24 attached to */
25 struct list_head group_link; /* link to the group’s producers list */
26 };

Listing 5.5: Kernelspace data structures for HRM producers and consumers (declared in
include/linux/hrm.h)

These data structures basically contain references to the HRM data needed by the produc-

er/consumer. In particular, the struct hrm_producer contains a link to the next entity in

the producers list (the head of this list is the struct list_head producers field in the

struct hrm_group). A similar field is present ihrm_detachn the struct hrm_consumer, where

the struct list_head group_link field has this same role, linking to a list with head in
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the struct list_head consumers field of the struct hrm_group. Moreover, in the struct

hrm_consumer there is another list (i.e., struct list_head task_link), which is used to

keep track of what groups a consumer is attached to. This is done by placing the head of

this list in the struct task_struct, which is defined in include/linux/sched.h and is the

data structure used by Linux to keep track of all the runtime information related to a task.

In particular, the additions made to this structure to support HRM are shown in Listing 5.6.

1 struct task_struct {
2 ...
3 struct hrm_producer hrm_producer; /* used if the task is an active HRM producer */
4 struct list_head hrm_consumers; /* used for tracking the observed groups in case
5 the task is active as a HRM consumer */
6 }

Listing 5.6: Additions to the task task_struct (in include/linux/sched.h) to support HRM producers and
consumers

The two additions are placed at the end of the task structure and are used in this way:

• The first field is used to keep the information needed to the task when it is active as a

producer. Since a task may be attached to only one group at the same time, a list is not

required here and a single data structure of type struct hrm_producer (see Listing 5.5)

holds all the information regarding a producer task.

• Since a consumer may be attached to more than one group at the same time, to track

all the groups a consumer is attached to a list is needed. The second field in Listing 5.6

is the head of such list, which is linked to structures of type struct hrm_consumer

through the field task_link (refer to Listing 5.5).

Thus, each entity of type struct hrm_consumer acts as an interface between a task and the

groups it is attached to as a consumer, allowing a group to know what consumers are currently

attached to it and, at the same time, a task to know what groups it is attached to. To do so,

this structure is contained, as already clarified, in two lists.

The discussion proposed above, covers the most relevant data structures at the base of the

organization of a group. This structure is not trivial and there are some interesting interactions

between the various entities. To clarify how these occur, Figure 5.2 shows a diagram of the

organization of a group. In the Figure, only some fields of the various data structures are
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Figure 5.2: Structure of a HRM group

reported, and the role of the lists with head in the group’s data structure are highlighted.

Also the presence of the global groups list is reported in the Figure, which highlights the

role of the locks at protection of the global groups list (see Listing 5.4) and of the group’s

members lists (see Listing 5.1); the list of consumers with head in the struct task_struct

is not shown. The areas in the bottom left corner represent the shared memory pages used

for the counters and the statistics and goals.

As already highlighted in Section 5.2.2, the structure at the base of the HRM’s groups

allows completely lockless heartbeats emission and makes this operation very efficient thanks

to the shared-memory architecture. The next Section completes the overview of the kernel-side

implementation of HRM, presenting how the statistics are computed.

5.2.5 Statistics accounting

According to the proposed design for HRM, the primary monitoring information it provides are

the global and window heart rates of the monitored groups. The computation of these statistics

is decoupled from the emission of heartbeats by the instrumented tasks and it is managed by
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a kernelspace routine which is periodically awaken by a timer; this timer is realized with a

high-resolution timer (hrtimer), which ensures good accuracy even with high system load [52].

As already mentioned when describing the structure of a group, the period of computation

of the statistics is a parameter of each group and it is stored in the timer_period field of its

shared page used for storing the statistics. In the current implementation, this value cannot be

changed at runtime (i.e., all the groups will keep the default period), but allowing to set a timer

period specific for each group, if needed, is a straightforward extension. The fixed value for the

timer period can be configured at compile time by modifying the CONFIG_HRM_TIMER_PERIOD

configuration entry; the supported values are 1, 10, 100, and 1000ms and the default value

is 100ms. As for the number of pages used for the counters, also these values are arbitrary

and there is no real limitation to adding support for different periods. Setting a period too

long,however, could imply a too low sampling frequency, making the monitor imprecise in

catching rapid variations of the heart rates. Setting the period to short, on the other hand,

reduces the possible duration in time of the time window used for computing the window

heart rate (currently, a value up to 1024 timer periods is supported) and might increase the

overhead due to more frequent execution of the statistics computation routine. The supported

values are believed to cover a wide range of needs.

The timer period rules how often the statistics (i.e., the global and window heart rates)

are computed, which is done once per period; the computation of the statistics proceeds as

follows:

• The global heart rate is simply computed as the total sum of the emitted heartbeats

over the elapsed monitoring time (as expressed in Equation (4.1)).

• The computation of the window heart rate is performed as shown in Equation (4.2)

by using the array which elements are defined in the structure nested in the struct

hrm_group (and reported in Listing 5.1). This array, which length can be set at compile

time with the CONFIG_HRM_WINDOW_SIZE configuration entry, is used as a circular buffer

to store, at each timer awakening, a snapshot of the current group heartbeats count

and the current timestamp. The two indexes (namely, window_begin and window_end)

found in the history data structure nested into the struct hrm_group are used to keep

track of the entry in the circular buffer holding the heartbeats count at the beginning of
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the time window and of the entry containing the current heartbeats count. The update

of these indexes can be done very efficiently (with a quick bitwise AND) if the buffer size

is a power of two; for this reason all the possible configurable sizes for the array size are

powers of two.

The current time, used to update the time accounting fields in the HRM’s data structures

which are needed to compute the statistics, is got by means of the getrawmonotonic() func-

tion, which returns the current raw kernel timestamp. Since the current timestamp is retrieved

at each timer activation, the heart rates computed by HRM make use of the most accurate

timing information available within the kernel and thus offer a pretty precise accounting.

A preliminary evaluation to support this claim has been realized through an ad-hoc mi-

crobenchmark which launches a simple multithreaded application which does nothing but

emit a desired number of heartbeats in a loop and then terminates. The application has been

executed over an idle system, so that its heart rate wold not be altered by contention with

other applications and could be determined by placing a usleep() instruction of the desired

period within the hotspot. Before exiting, the benchmark computes its actual heart rate with

double floating point precision by dividing the number of emitted heartbeats by the actual

execution time and compares this value with the measure provided by HRM. The test was

run several times with different combinations of throughputs, number of emitted heartbeats,

and number of threads; the measure HRM always proved as precise as possible, resulting

exactly the nearest smaller integer value to the real heart rate: thus, the maximum error of

the measure is of 0.9̄hbs . This error comes from the choice of not using floating point arith-

metic within the kernel (which is a troublesome and discouraged practice [52]), but sticking

to integer operations; this means that HRM is not able to measure sub-unit heart rates (i.e.,

applications emitting less than a heartbeat per second). To partially overcome this limitation,

the libhrm API (which is illustrated in Section 5.2.6) offers a heartbeatN() function, which

emits N heartbeats at once.

The impact of the truncation of the heart rate measure done by HRM on its accuracy

clearly depends on the value of the heart rate itself. The relative error is maximum when the

real heart rate is of 0.9̄hbs and just one heartbeat is emitted per iteration: in this extreme case,

HRM would yield a constant measure of 0hbs , with a 99% relative error. The situation, however,

gets better as the heart rates increase, as the maximum error decreases as 0.9̄
real_heart_rate (for



CHAPTER 5. PROPOSED IMPLEMENTATION 99

instance, it is of 25% when the measured heart rate is of 4hbs , and it drops below 10% with a

measured heart rate of 10hbs ). This analysis shows that HRM is pretty precise when dealing

with reasonably high heart rates, but it is not well suited to monitor applications with very

low heart rate. This is a caveat to who instruments applications to do so in a proper way,

so as to be sure that a suitable number of heartbeats will be emitted under any use case.

By doing so, it is possible to make the error on the measure almost as small as desired (just

paying attention to avoid overflows in the counters).

5.2.6 API for Producers and Consumers

Kernelspace adaptation policies can make use of HRM simply by interacting with its data

structures (in particular, with the global list of groups and with the fields added to the struct

task_struct - see Section 5.2.4). The applications to be instrumented and userspace adapta-

tion policies, on the other hand, need an interface letting them interact with the kernel. This

interface is realized by the userspace portion of HRM, which is named libhrm and is intended

for offering a simple yet effective API for producers (i.e., applications to be instrumented)

and consumers (i.e., userspace adaptation policies). The API exposed by libhrm (and defined

in the file hrm.h) is reported in Table 5.5. As the table shows, the API counts a handful

Table 5.5: libhrm userspace API for producers and consumers1

Function Parameters Description
heartbeat2 Emit a heartbeat
heartbeatN2 n: unsigned int Emit n heartbeats
hrm_attach gid: int, consumer: bool_t Attach the task to a group
hrm_detach Detach from group
hrm_set_{active|inactive}2 Set the task active or inactive
hrm_set_{min|max}_heart_rate2 {min|max}: uint32_t Set the minimum or maximum heart rate
hrm_set_window_size2 size: size_t Set the sliding window size
hrm_get_{global|window}_heart_rate Get the global or window heart rate
hrm_get_{min|max}_heart_rate Get the min. or max. heart rate
hrm_get_{window_size|timer_period} Get the window size or the timer period

1every function receives an additional parameter of type hrm_t *,which is the underlying data structure
2consumers (i.e., adaptation policies) cannot call this functions

of functions which expose to both producers and consumers the respective functionalities of

HRM. The implementation of these functions is based on variations of the protocol described

in Section 5.2.2 and used by the hrm_attach() function to register a task to a group.
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The typical workflow of an instrumented task using HRM as a producer begins by call-

ing the htm_attach() function to register to a group; the function takes as parameters

the desired group id and a flag indicating whether the task is a producer or a consumer.

Then, the task may change the goal of the group it has been attached to by using the

hrm_set_{min|max}_heart_rate() functions and it can set the window size to be used for

computing the window heart rate by means of the hrm_set_window_size() routine. If no

window is set, HRM simply does not compute the window heart rate, yielding only the global

heart rate. When the task begins executing the hotspot, it must call the hrm_set_active

function to notify HRM that it is ready to emit heartbeats and, from now on, it can use the

heartbeat() or the heartbeatN() functions to emit heartbeats. At the end of the execution

of the hotspot, the task should notify HRM by calling the hrm_set_inactive() routine and,

prior to exiting, it can call hrm_detach() to cleanup its internal data. The last two calls in

the workflow, however, are not compulsory, as hooks to the cleanup code have been added

in the kernel/exit.c kernel source file, so that, if not already done, the cleanup phase is

automatically executed upon exit.

Also a userspace adaptation policy would begin the interaction with HRM by calling the

hrm_attach() function, this time specifying the consumer flag. A consumer, however cannot

call some of the functions in the API (i.e., those marked with 2 in Table 5.5); basically, it

can just get the monitoring information regarding the grouped he registered to, which is all

it needs. As already said, there are currently no userspace adaptation policy implemented

in AcOS but, as shown, HRM already fully supports this possibility and is ready for future

developments in this direction.

5.3 Performance Aware Fair Scheduler

The monitoring infrastructure created with HRM finds a first use in the realization of a

performance aware adaptive scheduling ODA control loop, which is bases its observation phase

on HRM and its decision and action phases on PAFS. As already pointed out in Section 4.2.6,

when explaining the design chosen for PAFS, it has been chosen to keep this first adaptation

policy as simple as possible, avoiding complex decision techniques and adopting a simple

heuristic. Due to the well defined infrastructure offered by HRM, it has been possible to
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follow this conduct also in the implementation phase of PAFS: having direct access to the

monitoring information allowed to implement the heuristic with a tiny patch counting few

lines of added code to the kernel source file kernel/sched_fair.c.

5.3.1 Plugging the Heuristic into the CFS

The Linux kernel function which is in charge of updating the virtual runtime of the tasks is

called update_curr() and it is implemented in the source file kernel/sched_fair.c. This

function retrieves the amount of time the current task has been executed for since the last

update and it passes it to a helper function, called __update_cur(), which weighs this value

by means of the calc_delta_fair() function, which computes the final vruntime increment

value, which is referred to as δτi in Equation (4.3). The point of application of the adaptation

policy has been identified right after the weighted vruntime is computed by the CFS. At this

point, a call another helper function called __calc_delta_pafs() has been introduced; this

function actually implements the heuristic for weighing the vruntime increment according to

the current performance of tasks registered as producers in a monitored group. To do so, it

performs the following steps:

• First, it checks if the task is an active producer; if it is not, it simply returns the

unmodified value computed by the CFS.

• If the task is actually an active producer, the function retrieves the goal and statistics

of its group through the hrm_producer field in its struct task_struct.

• Then, the function computes the performance indicator as in Equation (4.4) and imple-

ments the heuristic expressed in Equation (4.5). If for the current group, the window

heart rate is available (i.e., if the size of the time window is set to a value greater than

one), this measure is used for the current heart rate, otherwise the global heart rate is

considered.

Note that inserting the computation of the new vruntime update in this place means that the

vruntime will be always updated with the most recent performance information available and

that it will not be updated more frequently than needed. This strategy allows to put a very

tiny overhead (as the required computations are not really onerous) whenever the vruntime
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would have been updated in any case and it avoids the need of going through the list of groups

to retrieve the monitoring status.

Thanks to the well integrated structure of HRM within Linux and to the simplicity of the

heuristic, the implementation of the performance aware adaptation policy has been quite easy,

with the main difficulty in finding the best application point within the implementation of the

CFS. The main advantage of using this simple heuristic is that it is possible to seamlessly plug

it into the CFS in the exact point where the vruntime was already updated. More complex

policies (e.g., an adaptive controller based on identification techniques [51]) may be smarter

than this heuristic, but would require the creation of a more complex infrastructure to compute

the pτi at regular intervals, which poses some integration problems with the dynamic ticks

used in the CFS.

5.4 Summary

The implementation of the first prototype for AcOS is presented in this Chapter. This first

version of AcOS featurs a software monitor (i.e., HRM) and an adaptation policy (i.e., PAFS)

using the monitor to measure applications’ performance and realizing a performance aware

adaptive scheduling control loop. HRM offers a complete infrastructure for computing the

heart rate of the instrumented applications, supports both userspace and kernelspace adap-

tation policy, and allows the users to set the goals and display the statistics. Thanks to the

functionality of HRM and to its good integration within Linux, the implementation of PAFS

has been eased, consisting in a small addition to the CFS’s source code. The next Chapter

validates this implementation, by testing both the performance monitor (and comparing it

with AH) and the overall performance aware scheduling capabilities of the proposed system.



Chapter 6

Experimental Results

The results of experimental evaluation of the implementation proposed in Chapter 5 are illus-

trated in this Chapter. First of all, the experimental environment is illustrated in Section 6.1

in terms of both the hardware platforms and the software tools and benchmarks employed.

Then, an overview of all the tests that have been done is given in Section 6.2. HRM has been

evaluated in terms of efficiency (i.e., monitoring overhead) and functionality in characterizing

a real workload; the results of this evaluation are reported in Section 6.3. Then, the whole

performance aware adaptive scheduling control loop, comprising HRM and PAFS, has been

evaluated on real workloads and under different conditions; the results of these experiments

are shown in Section 6.4.

6.1 Experimental Environment

In order to evaluate and characterize the behavior of the proposed system under different

points of view and in different contexts, an articulated environment has been chosen to re-

alize the experiments proposed in this Chapter. The experimental environment comprises

three different hardware platforms, a microbenchmark and a real application which has been

instrumented with libhrm.

6.1.1 Hardware Platforms

To evaluate the efficiency of HRM as a software monitor, two different platforms have been

chosen equipped with different processors offering on the same ISA (i.e., x86_64), but based

103
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on different microarchitectures:

• Platform A is a workstation featuring a Intel R©PentiumTMD 820 dual-core microproces-

sor (based on the Smithfield microarchitecture) clocked at 2.80GHz with 1MB of Last

Level Cache (LLC) per core and, as the main memory, 1GB of DDR2-800.

• Platform B is a workstation equipped with a more recent quad-core Intel R©CoreTMi7-

870 microprocessor (based on the Lynnfield microarchitecture) clocked at 2.93GHz with

8MB of shared LLC and, as the main memory, 4GB of DDR3-1066.

The main difference between the two platforms (apart from the age), is that the proces-

sor of platform A does not have shared Last Level Cache among the cores and, for this

reason, a false-sharing issue would result in a greater performance drop than in a microar-

chitecture based on a shared LLC design (as the microprocessor of platform B). As it is

shown when presenting the results, the first platform has been used during the development

of HRM to evaluate possible performance issues of this kind. The processor of platform B

also supports the HyperthreadingTMtechnology for Simultaneous MultiThreading (SMT) and

the TurboBoostTMbut some preliminary experiments showed that these advanced features

introduced noise in the experimental data, and have thus been disabled during the tests.

Due to some logistic issues unrelated with this work, during the tests it has been needed to

substitute platform B with another similar workstation, which has been used for the remain-

ing experiments. This workstation, referred to as platform C, is equipped with a quad-core

Intel R©CoreTMi5 750 microprocessor (based on the same Lynnfield architecture of the CPU

found in platform B) clocked at 2.67GHz and, as the main memory, 4GB of DDR3-1333.

The setup of the three platforms is quite representative of current desktop, laptop or

low-end server systems that could benefit from the autonomic features proposed by AcOS

by simply installing a properly patched Linux kernel. A validation of the proposed system

on different architectures not easily supported by Linux (such as some mobile devices) could

require modifications to the implementation (for instance an additional userspace library to

permit the use of HRM from within the dalvik virtual machine which is used by Android [43]

over Linux) and is left for future works.
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6.1.2 Software Test Bench

The mass storage of all the three testing platforms has been formatted and a netinst version

of Debian [11] Squeeze has been installed. The default Linux kernel shipped with Debian

has been substituted with Linux version 2.6.35.14 patched with the AcOS according to the

implementation described in Chapter 5.

Two different applications have been used to evaluate HRM and PAFS:

• An ad-hoc microbenchmark, called tachycardia has been created to evaluate the moni-

toring overhead imposed by HRM. As the name suggests, this application does nothing

but trying to emit heartbeats as fast as possible.

• To evaluate HRM and PAFS on a real workload, the x264 video encoder [57] has been

instrumented with libhrm.

Tachycardia is a simple microbenchmark and its only purpose is to evaluate how fast HRM is

able to record heartbeats. On the other hand, x264 is a widely used video encoder presenting

some characteristics which make it a suitable test bench for the proposed system:

• The kernel of the video encoding process works as a loop within which the video frames

are subsequently encoded: this workload is well suited to be instrumented with HRM.

• x264 is used within the popular parsec benchmark suite [74] (in fact, the version of the

encoder used for the tests is not taken from parsec, but directly downloaded from the

reference website [57]).

• The source code of x264 is freely available online [57].

• x264 supports different presets (from placebo to ultrafast), which make the encoding

process faster or slower by affecting the quality of the resulting video. This possibility

allows to choose a reference video and run different instances of x264 with different

presets to have applications with different heart rates running simultaneously.

For the experiments involving x264, the chosen reference video to encode is “Big Buck Bunny”,

which is freely available online [9], MP4 version at 1920x1080 pixels HD resolution; the task

of x264 is to convert this video to the H.264 compressed format. The encoding process, in
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the used version of x264, is realized by using a thread pool (with a desired number of theads),

which manages the encoding of the frames. The instrumentation simply creates one group per

encoder and all the working threads are added to the group, emitting one heartbeat for each

generated frame and hence contributing to the heart rate of the group. In the experiments,

except where differently indicated, x264 is run with 4 threads (as many as the cores of platform

C, where the tests involving x264 have been performed).

For some tests, there was the need of simulating a condition of high system load; to do so,

the CPU burn [60] tool, which is designed to heavily load CPUs, has been used. In particular,

in the experiments involving CPU burn, the used program is burnP6.

The results concerning x264 have been recorded by exploiting the /proc/hrm pseudo-file,

through which HRM exposes the monitoring information to the users. A shell script was used

to log the contents of this file once per second; then, the raw data have been parsed to draw

the graphs.

6.1.3 Experimental Parameters

Prior to gathering the data proposed in this Chapter, some preliminary tests have been run

to identify reasonable values for the compile-time tunable parameters for PAFS and HRM; as

the optimization of the system parameters is not the focus of this work, these experiments are

not very interesting and are omitted from the proposed results. Unless diversely indicated,

all the proposed experiments have been run with the settings shown in Table 6.1. The actual

PARAMETER VALUE DESCRIPTION

HRM_TIMER_PERIOD 100ms Period for statistics computation

HRM_WINDOW_SIZE 1024 Maximum length for the time window

Sm 2 PAFS additional scaling factor when hr < mhr

SM 3 PAFS additional scaling factor when hr > Mhr

Table 6.1: System parameters used for the experiments run to obtain the presented results

duration of the time window can be set at runtime and it has been tuned for the chosen

workload (i.e., the encode of the Big Buck Bunny HD video from MP4 to H.264 by using

x264). The effects of changes to this parameter on the provided statistics is more interesting
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for the scope of this work and are further analyzed in Section 6.3.2.

6.2 Performed experiments

The results presented in this Chapter are related to six different experiments; three concerning

only HRM and the other three also involving PAFS. More in details, results for the following

experiments are proposed:

• The experiments regarding HRM alone are illustrated in Section 6.3; these include an

analysis of the (positive) impact of the cache-alignment optimization (see Section 5.2.2),

the evaluation of the monitoring overhead (by means of tachycardia), with a direct

comparison with a state of the art software monitor, and the characterization of the

runtime behavior of a run of x264 with different settings for the window size.

• The results of the experiments involving PAFS are presented in Section 6.4; the three

proposed experiments concern trying to improve the Quality of Service against an ex-

ternal load, diversifying the performance of two homogeneous instances of x264, and

inverting the performance of two heterogeneous (i.e., with different presets) instances of

the video encoder.

The discussion proposed in remaining of this Chapter shows and analyzes the results of the

performed experiments.

6.3 Heart Rate Monitor

The Heart Rate Monitor has been evaluated to determine how efficient it is; i.e., how much

performance overhead it adds when used to monitor applications. The design and implemen-

tation of HRM is focused on being as lightweight as possible (e.g., by allowing fully lockless

heartbeats emission) and it is designed so that its impact on the performance of the system

is null if no monitored group is currently being executed. An analysis of the results provided

by HRM in term of efficiency is proposed in Section 6.3.1. The second experiment involving

HRM is its use to characterize the execution of an instance of x264 encoding the reference

video; the results of this test are proposed in Section 6.3.2.
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6.3.1 Monitoring Overhead

To evaluate the overhead of the performance monitor over the monitored applications (i.e. the

overhead of emitting heartbeats), a simple approach would be to launch the same application

instrumented and not instrumented and to compare the subsequent execution times. This

approach, however, highly depends on the heart rate of the application. A more general, and

synthetic, way of measuring the monitoring overhead is to shrink as much as possible the work

carried on within the hotspot, leaving only the computations needed to emit the heartbeats

and compute the statistics. Pushing this idea to its limit, the best application to measure only

the monitor overhead is one that does nothing but emitting heartbeats at the highest frequency

possible. The custom microbenchmark called tachycardia has been realized according to this

idea: it does nothing but create a desired number of threads, attach to a group and start

emitting heartbeats at the highest frequency possible, equally dividing the workload among

the threads. By using tachycardia, the monitor overhead can be measured as the time (or

the number of clock cycles) needed for it to be executed. Clearly, the lower this value or,

conversely, the higher the throughput, the better (i.e. the lower the monitoring overhead).

Both the experiments proposed in this Section have been recorder without additional system

load.

The first experiment performed using tachycardia is an evaluation of the benefits ensured

by the cache-alignment padding added in the shared memory pages (refer to Section 5.2.2).

This experiment has been realized on platform A, which features the dual-core processor

with private per core LLC. This platform has been chosen because the characteristics of

its microarchitecture emphasize the negative effects of false-sharing issues. The experiment

consists in measuring the heartbeats throughput HRM is able to provide with and without

the optimization. To do so, tachycardia has been run multiple times with a different of threads

to emit one million heartbeats. The execution time has been recorded and the throughput

has been analytically computed as 1000000
execution time

[
hb
s

]
. Figure 6.1 presents the results of this

test. As shown by the plots, the version of HRM without the cache-alignment optimization

provides a lower throughput with respect to the optimized version (which has been used for all

the other experiments). Moreover, the optimized version scales as expected with the number

of threads, as it reaches the peak throughput with two threads (recall that the processor of
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Figure 6.1: Comparison between the maximum heartbeats throughput achievable with HRM with and without

the cache-alignment optimization. The measure is on the emission of 1 million heartbeats with 1 to 8 threads

on platform A; the timer period is set to 100ms and the size of the window is 0 periods. The plots show the

average of 1000 experiments; the maximum coefficient of variation (not reported in the graph) is cv = σ
µ
= 0.19.

Higher is better

platform A is dual-core). The non-optimized version, on the other hand, reaches the worst

performance with two threads: this result is due to the high traffic generated on the bus to

update the falsely-shared counters in the two private caches; the effect is emphasized by the

fact that the two threads run on one core each and there is no serialization, thus increasing

the contention on the falsely shared memory areas.

The second experiment regarding the monitoring overhead has been conducted on plat-

form B (which features a quad-core processor) and, beyond characterizing the overhead of

HRM on a different microarchitecture, it also allows a comparison with Application Heart-

beats (see 3.1.3), a state of the art open source [24] monitor which leverages the same basic

concepts at the base of HRM. To allow this comparison, tachycardia has been instrumented

with the library offered by Application Heartbeats (using the shared memory option for com-

munication, instead of the slower one based on files), and the same test of emitting 1 million
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heartbeats as fast as possible has been run with both HRM and Application Heartbeats on

platform B. Figure 6.2 shows the results of these experiments.
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Figure 6.2: Comparison between the maximum heartbeats throughput achievable with HRM and Application

Heartbeats. The measure is on the emission of 1 million heartbeats with 1 to 8 threads on platform B; the

timer period is set to 100ms and the size of the window is 0 periods. The plots show the average of 1000

experiments; the maximum coefficient of variation (not reported in the graph) is cv = σ
µ
= 0.16.

Higher is better

The Figure represents the throughput achieved with both the optimized and the non-optimized

version of HRM and the throughput ensured by Application Heartbeats. As the graphs show,

both versions of HRM are mush faster than Application Heartbeats, with a speedup from one

to two orders of magnitude times faster. Moreover, Application Heartbeats does not scale at

all with respect to the number of threads, as it yields maximum throughput with only one

thread.

The results of these two experiments demonstrate that the design and implementation

of HRM achieved the efficiency goals for which it was engineered. Moreover, the comparison

with Application Heartbeats demonstrates that HRM, beyond providing more functionalities

(e.g., support for multi-processed applications), also guarantees a much lower overhead on the
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monitored applications.

6.3.2 Characterization of a Real Workload

The third experiment regarding HRM is its use to characterize the execution of a run of x264

encoding the reference video. HRM is capable of exporting both the global heart rate of a

group (i.e., the average heartbeats emitted per second from the beginning of the execution up

to the current instant) and the window heart rate, which is measured only a time window and

considers only the latest emitted heartbeats (up to the depth of the window), discarding the

previous history. The depth of the time window can be set at runtime both by the applications

and by the users; using a window of different lengths means considering a different span of

time and thus providing different measurements. This experiment, and all the subsequent

ones, has been realized on platform C, which features a quad-core processor. For this test,

a 4-threaded instance of x264 has been run with the superfast preset and its execution has

been recorded by using five different window sizes: from 1s to 10s. Figure 6.3 shows these

results. As the Figure shows, increasing the window size smooths the recorded heart rate, as

it averages the emitted heartbeats over a longer time span. In particular, the measurements

done with the window size do 1s are quite irregular, as it records very short time trends during

the execution. At the opposite side, the last plot is very smooth, and it tends to overlap with

the global heart rate measure. Among the five runs, the one in the middle, i.e., the one with

a window size of 5s seems the most balanced one, capturing the fluctuations but avoiding

too quick variations. After this quick analysis, a window size of 5s has been chosen for the

remaining experiments. Clearly, this parameter depends on the application and on the data;

the choice based on this analysis is justified by the fact that all the remaining tests are realized

with the same application and on the same data.

Another interesting observation that can be made on Figure 6.3 is that the first part of

execution proceeds at a faster pace (with the window heart rate being above the global heart

rate), then the two lines are nearer and, in the last part, the heart rate decreases a little.

These fluctuations are due to the video being encoded, which clearly requires more intensive

computations in the last part. Since also the remaining tests use the same video, these trends

can be found also in the following results regarding PAFS.
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Figure 6.3: Characterization of the execution of a real workload with HRM using different durations for the

time window. The five plots show five runs of x264 encoding the reference video with preset superfast using 4

threads. The timer period is set to 100ms and, for each run, the size of the time window has been changed,

from 10 periods (i.e., 1s) to 10s. The black dotted line shows the global heart rate, while the gray line plots

the window heart rate

6.4 Adaptive Scheduling Capabilities

The evaluation of PAFS has been realized using the same workload characterized with HRM

alone in Section 6.3.2. In that experiment, the default Linux scheduler (i.e., the CFS) was used,

without the patch enabling PAFS. The experiments illustrated in the present Section compare

the behavior of the CFS with the behavior achievable with PAFS by setting performance goals

for the monitored applications; all these experiments have bee realized on platform C, which

is equipped with a quad-core microprocessor, and by using the window heart rate on the last

5 seconds as the current heart rate considered by PAFS (see Section 6.3.2 for the motivation

of this choice). The idea is to evaluate how PAFS can prove useful in some likely use cases

for PAFS. The tests have been engineered to characterize the system by both showing its

strengths and finding its weaknesses, which will be targeted in future works.
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6.4.1 Contrasting External Load

The first use case for PAFS is the execution of one instrumented application on a highly loaded

system. In this scenario, the proprietary of the application may want to boost its performance

and, to do so, he/she could use PAFS to set a goal heart rate. Clearly, if different users share

the same system, each one could possibly be willing to maximize the performance of his/her

own applications, hence penalizing the others. The other users, however can always react

by setting higher goals for their applications, and so forward. In such a setup, the system’s

computing resources will not be enough to reach all the goals of the applications. The final

result, will be that all the monitored applications will be equally advantaged over the non

monitored ones, leading to fairness among the evil-behaving users. This is a nice side-effect

of how PAFS is plugged in into the CFS, preserving the baseline property of fairness.

Under the hypothesis that only one application is HRM enabled in the system, it is possible

to evaluate the functionality of PAFS in coping with the need of boosting its performance

against high system load by setting different goals and verifying if PAFS is able to let the

application achieve them. To do so, a run of x264 encoding the reference video with the

ultrafast preset (which is faster that veryfast, and has been chosen to reduce the duration

of the test) has been recorded both with and without system load. The background system

load has been obtained by executing four (as the number of available cores) instances of the

burnP6 stress test. Figure 6.4 shows the results of this measurements This first measure was

taken without setting any goal (i.e., setting both minimum and maximum heart rate at 0): in

this situation, PAFS behaves just as the plain CFS; the results of this runs are superimposed

in Figure 6.4 (in this case, despite being reported on the same plot to allow a comparison,

the two encoders did not run concurrently). As the Figure shows, the execution with high

system load is far slower that without the additional load, taking less than 100 seconds -

with a global heart rate of about 150hbs - versus more than 7 minutes - with a global heart

rate of just 31hbs . The aim of the experiment is being able, via setting heart rate goals higher

than 31hbs , to boost the performance of the application running on an overloaded system. to

verify this capability, the possibility for the user to set the desired heart rate through the

/proc/$PID/task/$TID/hrm_goal pseudo-file has been exploited. More in detail, an initial

goal of [25 : 35]hbs (i.e., a minimum heart rate of 25hbs and a maximum heart rate of 35hbs )
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Figure 6.4: Comparison of the execution traces of the global and window heart rates of a video encoder with

and without high system load. Both traces regard a 4-threaded x264 encoder with preset ultrafast ; the one

proceeding faster has been recorded with no additional system load, the other had four burnP6 instances

running simultaneously

has been set and kept for 40 seconds. Then, the goal was changed to [45 : 55]hbs for 40 more

seconds; the same thing has been done by changing the goal to [65 : 75]hbs and, finally, to

[85 : 95]hbs . The four instances of burnP6 have been kept running for the whole duration of

the test. Figure 6.5 represents the results of this experiment.

In the Figure, the shaded areas represent the heart rate goals changed during the execution as

described above. The first desired range captures the current performance of the application,

and thus PAFS does not act differently from the CFS, but for smoothing its performance

on the short term when it would have gone over the upper bound (which, in any case, is

considered as a soft bound - see Section 4.2.5). When the desired heart rate is changed, PAFS

is able to speed up the encoder, being able to keep the window heart rate over the minimum

of 45hbs for almost all the 40 seconds. At the next change of the goal, the action of PAFS

becomes weaker, being able to meet the minimum required QoS only partially during the

execution. The last goal is evidently too high for the system to achieve it, and PAFS just
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Figure 6.5: Execution trace of the global and window heart rates of a video encoder with performance goals

under high system load. The application is a 4-threaded x264 encoder with preset ultrafast ; the shaded areas

represent the goal for the application

advantages the encoder as much as possible, but without reaching the desired heart rate.

Notice that the total execution time is now about 230s, with a global heart rate over 60hbs :

this represents a speedup of 2× with respect to the situation with no goals set (which is

represented in Figure 6.4). Even when the desired goal could be reached (i.e., from second

40 to second 120), PAFS was not able to keep the window heart rate well within the desired

range, but is just able to keep it a little above the minimum. This limitation is due to the

simplicity of the heuristic implemented for this thesis and could probably be overcome with a

smarter policy. Even with this simple decision mechanism, however, PAFS proves to be able

to boost the performance of an instrumented application towards reachable goals.

6.4.2 Performance Separation

The experiment proposed in Section 6.4.1 considered the scenario where only one instru-

mented application is running on a heavily loaded system. A different use case is when two
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instrumented applications with similar heart rates (and, hence, similar execution times) are

running concurrently. In this situation, it could be the case that the user desires one of the two

applications to run faster, sacrificing the performance of the other to get a shorter execution

time. This situation has been modeled by using two 4-threaded instances of x264 running

concurrently with the preset superfast to encode two copies of the reference video (in this

case, no additional load is applied). The runtime behavior of the two applications (i.e., Group

1 and Group 2) in this scenario when no performance goal is set is represented in Figure 6.6.

As expected, the Figure shows that both the global and the window heart rates of the two
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Figure 6.6: Window and global heart rates during the execution of two applications performing the same job

with no performance goals. The two groups are two 4-threaded x264 encoders working on the reference video

with the superfast preset

encoders are almost overlapping: when no goal is set, PAFS behaves just like the CFS and

applies complete fairness among the tasks in execution. The purpose of this test is verifying

if PAFS is able to boost one of the two applications, while slowing down the other. To verify

this capability, the performance goal has been set to [5 : 40]hbs for Group 1 and to [70 : 100]hbs

for Group 2; note that the global and window heart rates are out of both of these bounds
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for most of the time when no goal is set (see Figure 6.6). Figure 6.7 represents the results of

setting the two different goals for the two homogeneous groups.
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Figure 6.7: Window and global heart rates of two applications performing the same job with different per-

formance goals. The two groups are two 4-threaded x264 encoders working on the reference video with the

superfast preset; the goal for Group 1 is set to [5 : 40]hb
s
, while the goal for Group 2 is at [70 : 100]hb

s

As the traces in the Figure show, the system was able to speed up the execution of the

encoder instrumented in Group 2, keeping both its global and window heart rate above its

minimum bound for most of the execution time. The other encoder, instrumented in Group

1 overperforms its upper bound for almost all the execution time: in fact, it would have been

unnecessary to slow it down further, as all the monitored applications were running faster than

their minimum desired heart rate. also notice that, when the execution of Group 2 terminates,

Group 1 receives a huge speed up: this is due to the fact that it is now the only application

in execution on the system and. Thus, with no contention for the computing resources (the

encoder has 4 threads, as many as the processor’s cores, and its being executed alone), the

action of PAFS on its vruntime has no sensible effect on the performance of the application.

Again, this situation is due to how the implemented heuristic works and to the interpretation
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given to the upper bound. In some situations, it could be useful to use the maximum heart

rate as a performance cap: further studies in this direction are left for future works. Another

thing to notice is that speeding up one of the two encoders did not really affect the overall

execution time, as both encoders terminate after about 230s, just as when no goals was set.

6.4.3 Performance Inversion

The last use case proposed for PAFS is the situation where there are two concurrent applica-

tions with different performance: one of the two is faster (i.e., it has a faster execution time)

than the other. In this situation, it could be sometimes desirable to speed up the slower appli-

cation to have it finish before the other, for instance because the result it provides is currently

more urgent than the other. This context has been modeled by having two 4-threaded x264

encoders working on two copies of the reference video with different presets (i.e., superfast and

ultrafast). As usual, the two applications have been first concurrently run with no goals set, to

evaluate the base case for the experiment. The plot in Figure 6.8 represents this measure. As
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Figure 6.8: Window and global heart rates during the execution of two video encoders running with different

presets and no performance goals. The two groups are two 4-threaded x264 encoders working on the reference

video, respectively with the - slower - superfast and the - faster -ultrafast preset
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shown in the Figure, the preset ultrafast is faster, yielding a global heart rate of almost 100hbs ,

against a global heart rate of about 65hbs of the group corresponding to the encoder working

with superfast preset. Similarly as before, the experiment consists in modifying the runtime

behavior by setting a lower goal for the faster group and a higher goal for the slower group.

Hence, the minimum heart rate for the superfast encoder is set to 80hbs , and its maximum

heart rate is set to 115hbs ; the performance goal for the ultrafast encoder is set to [30 : 65]hbs .

Figure 6.9 plots the heart rates measured with these goals set.
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Figure 6.9: Window and global heart rates during the execution of two video encoders running with different

presets and inverse performance goals. The two groups are two 4-threaded x264 encoders working on the

reference video, respectively with the - slower - superfast and the - faster -ultrafast preset. The goal for the

superfast encoder is set to [80 : 115]hb
s
, while the ultrafast encoder’s goal is at [30 : 65]hb

s

As the Figure shows, PAFS has been able to speed up the slower encoder just a little above

its minimum heart rate, while the faster encoder outperforms its upper bound for almost all

the execution time. The speedup of the superfast encoder, however, is sufficient for letting it

terminate before the ultrafast encoder, capsizing the situation when no goals are set. Just as

before, when the superfast encoder terminates, the performance of the ultrafast springs up, as

it is the only application in execution. Again, notice that the overall execution time needed
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for terminating the two jobs is approximatively equal to the time needed when no goals are

set.

Since the strength of the autonomic action of PAFS highly depends on the amount of

contention for the computing resources, it is possible to increase this quantity to see if the

resulting effect is enhanced. In all the experiments presented up to this point, the encoders

were run with 4 working threads, which is the optimal choice for a quad-core processor, as

the one present on platform C, which is used in all these tests. An additional experiment

has been performed with two 8-threaded encoders, one with the superfast and one with the

ultrafast preset (just as in the previous experiment). As expected, adding more threads does

not increase the performance of the encoders when no goals are set (the graph showing this

situation is omitted here, since it is very similar to Figure 6.8). When it comes to setting

performance goals, however, the increased contention for processor time enhances the action

of PAFS, as shown in Figure 6.10.
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Figure 6.10: Window and global heart rates during the execution of two video encoders running with different
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s
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s



CHAPTER 6. EXPERIMENTAL RESULTS 121

As shown in the Figure, this time PAFS has given further speedup to the superfast encoder,

further slowing down the ultrafast one with respect to the experiment with 4-threaded en-

coders represented in Figure 6.9. Again, the performance inversion does not sensibly affect

the overall execution time.

6.5 Summary

Within this Chapter, the results gathered through a variety of experiments performed to

evaluate the proposed system are illustrated and analyzed. HRM proves to have achieved its

goals of being lightweight and it outperforms a state of the art software monitor based on the

same basic ideas. Moreover, the cache-alignment optimization allows the monitor to scale well

with respect to the number of threads on multi-core processors, and the adjustable window

size allows it to catch shorter or longer term trends, as needed by the monitored application.

The evaluation of PAFS demonstrates that, even with the simple heuristic used as the decision

mechanism, it is able to add the possibility of specifying goals in terms of QoS to a best effort

scheduling approach. In fact, PAFS is often able to let the monitored groups achieve their

goals when these are reachable with the available computing resources. To do so, however,

there must be enough contention over the computing resources, otherwise the strength of

the adaptation policy weakens, up to having no sensible effect. The results also highlight the

limits of the current implementation of PAFS, which is enough to demonstrate the validity

of the approach, but it leaves room for improvements (mainly in terms of a smarter decision

mechanism), showing an interesting direction for future works on AcOS. In the next Chapter,

some more detailed conclusions on the work described in this thesis are proposed and some

possible directions for future works are suggested.



Chapter 7

Conclusions

The work described in this thesis provides both a theoretical formalization and the design and

implementation of the enabling technologies to enhance commodity operating systems with

autonomic capability of self-management in a goal-oriented scenario. After an introduction,

which serves to define some basic concepts, the study of the state of the art and related works

provides an overview of how existing projects and systems tackle the problems addressed by

this thesis. These problems concern the ever increasing complexity of computing system and

the overburden this complexity imposes on applications developers. The proposed approach

to tackle these issues is based on the ideas coming from the autonomic computing research

community and it includes proposals of renovation within all the layers of a computing sys-

tem (i.e., hardware architecture, operating system, and applications). These innovations are

based on the concept of a feedback self-management loop composed of the basic operations of

observation, decision, and action. In particular, the OS has been identified as the most urgent

portion of the system to be enhanced with autonomic capabilities; hence, this thesis is focused

on the creation of the enabling technologies to build an autonomic operating system through

the enhancement of commodity OSes with an autonomic layer. Within this context, a novel

software monitor (i.e., HRM) and an adaptation policiy (i.e., PAFS) have been designed and

implemented over Linux to prove the validity of the approach. This Chapter has the role of

proposing some additional conclusive remarks (in Section 7.1) and of giving some cues for

future works (in Section 7.2).
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7.1 Concluding Remarks

As the results (analyzed in Chapter 6) of the experimental evaluation of the proposed system

show, HRM and PAFS prove to be interesting enabling technologies to augment, at the OS-

level, the self-management ability of computing systems. These first autonomic components

deployed onto a commodity operating system prove the realizability of the approach and open

the scene for future AcOS developments.

HRM is based on a sound design and a smart implementation, which result in outstand-

ing efficiency (i.e., low overhead) with respect to a state of the art solution. Moreover, it is

capable of supporting a wide range of parallel applications (supporting both multi-threaded

and multi-processed groups), and it provides a flexible and general purpose means of instru-

menting the applications to provide runtime information (in the form of an heart rate) to the

autonomic layer. The provided statistics are pretty accurate (under the hypothesis of a sound

instrumentation yielding a reasonable heart rate) and the availability of both a global heart

rate and a window heart rate (computed over a runtime-tunable time span) allow to capture

both long and short time trends.

A possible use of HRM is to measure the performance of CPU-bound applications char-

acterized by a hotspot ; this is the role the monitor covers in the performance aware adaptive

scheduling control loop realized by PAFS, an adaptation policy built on top of Linux’s CFS.

PAFS, despite being currently based on a simple heuristic as the decision mechanism, is able

to prove its usefulness in some use cases based on a real workload. In particular, by exploiting

the possibility of specifying performance goals for the monitored applications, it is possible

to drive their runtime behavior to satisfy the desired QoS (provided that this is possible with

the available resources). This capability realizes the novel idea of performance aware fairness,

introducing the possibility of expressing QoS requirements within a best effort context.

The experimental evaluation, however, also highlights some shortcomings of the imple-

mented system, which are mainly related with the lack of a smart decision mechanism; these

weaknesses indicate an interesting way for future works devoted to the creation of more elab-

orated decision engines to be used within the autonomic operating system. Some cues for

future works in this and other directions are provided in the next Section.
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7.2 Future works

As already highlighted, the experimental results showed the limitations of the simple decision

mechanism used for PAFS. This heuristic is enough to prove the validity of the approach,

but probably a more elaborated policy would better serve a production system. This obser-

vation indicates the first interesting area for future developments focused on the creation of

smarted decision mechanisms for PAFS or different adaptation policies. Within this context,

a viable possibility (which is already in phase of development within the CHANGE research

group) is to exploit ideas from control theory to create decision engines based on feedback

controllers with the capability of performing online identification of their parameters. Such

controllers, are able to exploit knowledge about the past autonomic actions (which is not

done by the heuristic currently used in PAFS) to capture trends in the evolution of the sys-

tem and use this information to apply better corrective actions. Another interesting area for

future works regarding the decision phase is the study of machine learning and artificial in-

telligence techniques to further improve the adaptation policies and to create the adaptation

manager, which will have the role of orchestrating the different adaptation policies towards

global system goals.

Lots of space for future works also lies in the creation of more autonomic components,

which can be built over the base provided by the work presented in this thesis, to extend the

capability of AcOS of building self-management and goal-orientation into computing systems.

Possible ideas for building more autonomic capabilities in AcOS (some of which are already

being explored within the CHANGE research group) include working on thermal or power

consumption awareness by acting on frequency and voltage scaling, improving the locking

mechanisms to reduce contention, and researching adaptivity in memory management.

Future works more specific to the proposed implementation could consider the following

ideas:

• Concerning the use of the minimum and maximum heart rates as a performance goal, a

different interpretation of the upper bound on the heart rate could be given, for instance,

as a limit to the power consumption determined by the application. This should be

possible by determining a relation between the heart rate and the power consumption

due to that application. With this interpretation, also the upper bound would be hard
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and the system should always strive to keep the heart rate of the applications below

that limit. The work on determining a meaningful relationship between the heart rate

and the power consumption is not trivial (especially on multicore or heterogeneous

architectures) and research in this direction is being carried on within the CHANGE

group. This interpretation is different from the soft one used by PAFS and it could come

useful to different adaptation policies focusing, for isntance, on frequency and voltage

scaling.

• PAFS is plugged into the CFS by affecting the update of the vruntime; future works

may focus on trying to use different (or more) points of application for the autonomic

action, for instance affecting the duration of the dynamic tics used in the CFS, or the

weights used to compute the vruntime.

• Another possible work may be directed towards extending PAFS with the ability to act

on the core allocation of the monitored tasks (which is currently left to the standard

behavior defined by the CFS). Works in this direction could give to the control loop

more power on the computing resources assignment, allowing a stronger action on the

system status.

• The current implementation of the proposed system is based on Linux. Porting the

codebase of HRM and PAFS to new releases of the kernel will not be a complex work, as

long as no major changes are performed to the mainline implementation of the portions

of the kernel code that were modified. However, it could be interesting to port HRM

to different platforms, to allow the use of the same performance monitor on devices

not supported by Linux. Clearly, porting HRM to a platform completely different from

Linux would probably require re-engineering part of the monitor; a port to a similar

monolithic kernel, on the other hand, is an easier task (in fact, a HRM port to the

FreeBSD kernel has already been realized).

Another very interesting area for broader future works, which the author will probably

start exploring in first person in the near future, is the creation of a standalone autonomic

operating system. This means creating a new kernel (or using a very thin microkernel as

a base), to build AcOS from the roots, instead of just creating an autonomic layer over a
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commodity operating system such as Linux. Clearly, a project of this type requires a longer

time to come to interesting results (which is the main reason behind the choice of Linux in the

first place). The experience gained through this and other works, however, could be invested

in the creation of an operating system built from its roots with autonomic management in

mind.

In conclusion, this thesis creates a base for AcOS, proposing a Linux-based implementa-

tion of an operating system able to build performance awareness into the process scheduling

process. The results showed in the experimental evaluation of the system demonstrate that

the approach is valid and that it is suitable to serve as a basis for future works, being just

incremental improvements, or complete revolutions.
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