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Summary

Nowadays, the power and the complexity of computing systems are

evolving and increasing at an unprecedented rate. The advantages of highly-

parallel systems could benefit an enormous variety of fields. However, the

growing complexity is making it unfeasible for the average programmer to

weight all the constraints and optimize the system for a wide range of ma-

chines and scenarios. The burden on programmers is noticeable and many

research efforts were spent in addressing this issue. Clearly, it is not fea-

sible to rely on human intervention to tune a system: conditions change

constantly, rapidly, and unpredictably. It would be desirable to have the

system automatically adapt to the mutating environment.

A new paradigm is to be explored for these systems to be developed.

Self-adaptive systems seem to be the answer to most of the problems previ-

ously described. They adapt their behavior and resources to automatically

find the best way to accomplish a given goal despite changing environ-

mental conditions and demands. Therefore, this kind of systems needs to

monitor itself and its context, discern significant changes, determine how

to react, and execute decisions: implementing the Observe Decide and Act

control loop.

The research work presented in this document aims at augmenting the

GNU/Linux operating system with autonomic features. The idea is to make

the system aware of the level of data contention among different tasks and

to allow it to take smart decisions about how to actually map them on the

xiii
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cores. Theoretical concepts about synchronization methods, memory hier-

archy, and task scheduling and mapping help in sustaining that moving

threads with high contention on the same core can lead to a reduction of

the tasks execution time. To put this design into practice, the following con-

tributions were made:

• a monitoring infrastructure able to quantify the lock contention among

threads was implemented;

• an adaptation policy to smartly move tasks onto cores was designed;

• the modifications to the kernel of the Linux operating system, in order

to include this policy, were made.

The remainder of this dissertation is organized as follows. Chapter 1

better introduces the work developed for this thesis, by clarifying the prob-

lem that has to be solved and defining a common terminology in order

to provide a shared background. Chapter 2 describes the context in which

this work was born, with a deep introduction to the autonomic computing

field. The attention is then focused on the state of the art on topics directly

related to this thesis: monitoring infrastructures and self-aware schedul-

ing algorithms. The theoretical aspects behind the designed system and the

developed framework are reported in Chapter 3, while the details of the

actual implementation are specified in the following Chapter 4. In order to

validate the proposed approach some experiments were performed: the re-

sults are reported and commented in Chapter 5. Last, Chapter 6 sums up

the contributions of this work of thesis, proposing some interesting future

development.



Sommario

La complessità e la potenza dei comuni dispositivi di calcolo cresce di

giorno in giorno: processori dotati di più core si possono trovare facilmen-

te nei computer portatili, architetture complesse ed eterogenee sono ormai

diffuse nei tablet, nei telefoni cellulari e nelle game console di ultima ge-

nerazione. Tuttavia, questa versatilità e questa potenza di calcolo devono

essere controllate e gestite debitamente affinchè non vengano sprecate: è

questa una delle sfide più impegnative nella progettazione di un sistema di

questo tipo. Questa è anche una delle ragioni principali per cui il controllo

delle risorse di un sistema non può essere interamente delegato all’utente

umano: esso non è adatto a svolgere tale compito, a causa dei cambiamenti

rapidi, inevitabili e spesso impredicibili delle condizioni in cui si trovano

sia il sistema stesso sia l’ambiente in cui esso “vive”. I dispositivi devo-

no essere in grado, raccogliendo informazioni su se stessi e sull’ambiente,

di adattarsi, in ogni istante, per raggiungere obbietivi prestazionali e di

sicurezza.

Affinchè tale idee possano essere integrate in un sistema reale, occorre

esplorare nuovi paradigmi di progettazione e design. Un sistema in grado

di fare quanto descritto è noto in letteratura con il nome di sistema adatta-

tivo (autonomico o self-aware). I sistemi adattativi rappresentano la risposta

a molti dei problemi posti nel paragrafo precedente: essi sono in grado di

adattare il proprio comportamento e le risorse di cui dispongono in modo

automatico, e con l’obbiettivo di raggiungere, nel miglior modo possibile,

xv
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i propri scopi, nonostante un ambiente in continua evoluzione. Per far ciò

un sistema deve essere in grado di monitorare se stesso e l’ambiente circo-

stante, di riconoscere gli eventi significativi, di determinare quali siano le

migliori azioni da intraprendere e di metterle in pratica. Questo paradigma

distingue chiaramente tre fasi: una di monitoring, una decisionale e una

in cui le azioni sono realizzate. Tale paradigma prende il nome di ciclo di

controllo ODA (Osserva – Decidi – Agisci).

Questa categoria di sistemi è oggetto di questo elaborato di tesi e più in

generale, del progetto CHANGE in cui questo lavoro si sviluppa. L’idea su

cui si basa CHANGE, in particolare AcOS (il sistema operativo adattativo

che si propone di realizzare) è l’integrazione del ciclo ODA all’interno di un

sistema operativo. Affinchè il sistema possa osservare il proprio stato sono

necessari dei monitor: per le prestazioni delle applicazioni, per il consumo

di potenza del sistema o, ancora, per la temperatura dei core o per la con-

tesa delle risorse. Con queste informazioni a disposizione, un motore deci-

sionale (basato su euristiche, piuttosto che su tecniche di machine learning)

deve in grado di prendere delle decisioni riguardo a quali siano le azioni

più adatte da intraprendere per raggiungere gli obbiettivi sia delle diverse

applicazioni che del sistema stesso. Agli attuatori è affidato il compito di

tradurre in pratica le decisioni prese durante la fase precendente.

Nello specifico, il lavoro di ricerca presentato in questo documento ha

lo scopo di inserire caratteristiche autonomiche all’interno del sistema ope-

rativo GNU/Linux. Intuitivamente, l’idea è quella di fare in modo che il

sistema operativo abbia ha disposizione informazioni che gli consentano di

quantificare e valutare la contesa di dati condivisi tra diversi thread che ese-

guono il loro codice. Il sistema dovrà quindi sfruttare queste informazioni

per migliorare le prestazioni di tali processi (prestazioni misurate in termi-

ni di tempo di esecuzione), grazie a degli spostamenti intelligenti di task sui

processori disponibili. Analizzando dal punto di vista teorico il funziona-
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mento dei metodi di sincronizzazione utilizzati, della struttura della gerar-

chia di memoria implementata nei moderni processori, e degli algoritmi di

scheduling e mapping del sistema operativo, è possibile sostenere che po-

sizionare thread che si scambiano molto spesso informazioni e contendono

per gli stessi dati su uno stesso processore, può portare a delle riduzioni nei

tempi di esecuzione. I contributi al sistema operativo in oggetto, necessari

affinchè quanto descritto possa essere effettivamente implementato, sono i

seguenti:

• un’infrastruttura che permetta di monitorare e quantificare il livello

di contesa sui dati condivisi da diversi thread;

• una (o più) politica decisionale che, presi i dati forniti dal monitor, sia

in grado di muovere intelligentemente i thread sui processori dispo-

nibili, con l’obbiettivo di minimizzare il loro tempo di esecuzione;

• la modifica del kernel del sistema operativo in oggetto, implementan-

do in esso la politica decisionale progettata.

Il resto di questa tesi è organizzato nel modo seguente. Il Capitolo 1

propone un’introduzione al lavoro svolto. In particolare il problema da af-

frontare viene esposto nei dettagli, sottolineandone i punti più critici. Nel

seguito sono introdotte le definizioni necessarie a costruire un vocabolario

condiviso riguardo gli argomenti alla base di questa tesi, con particolare

riferimento agli algoritmi di scheduling e mapping dei processi, alla strut-

tura gerarchica della memoria implementata nelle moderne architetture e

ai meccanismi di sincronizzazione utilizzati nella scrittura di applicazio-

ni multi-thread. In questo capitolo è data anche una breve introduzione al

campo dei sistemi operativi autonomici.

Tuttavia, questo concetto è meglio approfondito nel Capitolo 2 dedicato

alla definizione del contesto in cui questa tesi si colloca. Come detto, il con-

cetto di sistema operativo autonomico viene definito da un punto di vista
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puramente teorico; i più importanti esempi di sistemi operativi autonomici

sono quindi analizzati. Il resto del capitolo presenta lo stato dell’arte per gli

argomenti principali di questo lavoro: le infrastrutture di monitoring e gli

algoritmi di scheduling adattativi. In entrambi i casi, l’accento è posto su

due quantità in particolare: performance, da cui questo lavoro trae ispira-

zione, e la contesa dei dati, che questo lavoro tratta direttamente.

Il Capitolo 3 scende nello specifico degli aspetti teorici che supportano il

lavoro svolto. Vengono presentate le modifiche che andranno introdotte af-

finchè l’attuale sistema di monitoring possa essere esteso per offrire infor-

mazioni sulla contesa dei dati condivisi. Sono inoltre descritte le politiche

decisionali che permettono di muovere intelligentemente i thread , ottenen-

do delle riduzioni nei loro tempi di esecuzione.

I dettagli implementativi del lavoro sono presentati nel Capitolo 4. Sono

descritte le modifiche al sistema di monitoring, apportate sia alla sua imple-

mentazione all’interno del kernel, che alla libreria che ne espone le funzio-

nalità in user-space. Viene presentata la semplice libreria di locking debi-

tamente instrumentata in modo da permettere l’implementazione dell’ap-

proccio proposto. Vengono infine proposti i dettagli dell’implementazione

della politica incaricata di muovere i task sui processori, evidenziando in

particolare le criticità incontrate.

Il Capitolo 5 mostra i risultati ottenuti con il sistema operativo debitamente

modificato. In particolare, viene analizzato l’overhead dell’instrumentazio-

ne, e presentati alcuni esempi che permettono di comprendere il funziona-

mento del sistema e di valutarne le capacità.

Infine, il Capitolo 6 termina questo elaborato, riassumendo i punti cruciali

del lavoro svolto e proponendo alcuni interessanti sviluppi futuri.



Chapter 1

Introduction

The power and the complexity of computing systems are evolving and

increasing at an unprecedented rate: multi/many-core processors can be

easily found in servers, desktops and laptops systems, complex and het-

erogeneous architectures are nowadays widely diffused in tablets, mobile

phones, and game consoles [1]. On one hand, the advantages of highly-

parallel systems could benefit an enormous variety of fields. On the other

hand, the growing complexity is making it unfeasible for the average pro-

grammer to weight all the constraints and optimize the system for a wide

range of machines and scenarios [2]. Even though technologies have im-

proved, making a system perform at its best is a non-trivial task. The bur-

den on programmers is noticeable and many research efforts were spent

in addressing this issue. Clearly, it is not feasible to rely on human inter-

vention to tune a system: conditions change constantly, rapidly, and unpre-

dictably. It would be desirable to have the system automatically adapt to the

mutating environment [3].

A common believe is the need for new paradigms to be explored and

for new frameworks to be developed. Among those, self-adaptive systems

seem to be the answer to most of the problems previously described [3].

Self-Aware Adaptive computing systems adapt behavior and resources to

1
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automatically find the best way to accomplish a given goal despite chang-

ing environmental conditions and demands. Therefore, this kind of system

needs to monitor itself and its context, discern significant changes, deter-

mine how to react, and execute decisions.

The work described in this document is strictly related to the concepts

introduced above, and this chapter serves as an introduction to the whole

document. In particular, Section 1.1 gives an high-level description of the

problem this thesis aims at overcoming, while the basic concepts needed

to understand the issues and the implications described in the following

chapters are defined in Section 1.2.

1.1 Problem Statement

The design of a self-aware system able to abstract from low-level ar-

chitecture details and capable of dynamically adapt to them, taking away

this burden from the user, is a complex engineering problem. A wide range

of issues is to be taken into consideration while thinking at its structure:

among them the problem of resources allocation. Run-time information can

be exploited in order to better perform an hard problem such as resource

allocation. The term resource is very general: it can refer to the number of

cores, to the working frequency of the cores, to the quantity of memory, and

so on. In the same way, different types of quantities can be considered and

monitored in order to make the system aware of itself and able to better per-

form: cores temperature, power consumption, applications performance,

. . . . By coupling one (or more) resource(s) with one (or more) quantity(ties)

many different aspects of self-adaptability can be implemented.

The research work presented in this thesis aims at exploiting informa-

tion about resource contention (focusing on the contention of shared data

among tasks) in order to distribute more efficiently the applications on the



CHAPTER 1. INTRODUCTION 3

cores available in the system. The task of moving the executing entities

(technically called tasks) on the available processors is commonly known

with the name of task mapping, and is usually coupled with the task schedul-

ing problem: a brief overview of this concepts and some basic definitions

are given in Section 1.2.2. The scheduling algorithms implemented in mod-

ern operating systems running on multi-core architectures exploit, as pri-

mary strategy for placing tasks on cores, load balancing [4]. This means that

the scheduler tries to balance the runnable tasks across the available re-

sources to ensure fair distribution of CPU time. However, this approach

completely neglects the fact that a core is not an independent processor,

but rather a part of a larger on-chip system, sharing resources with other

cores. It has been documented in literature (see [5, 6] for further details) that

the performance of a task can vary greatly depending on which threads run

on the other cores of the same chip: this is especially true if several cores

share some memory components. For this reason, an introduction to the

hierarchical structure of memory in modern architectures is needed and is

given in Section 1.2.3.

Nowadays, processes schedulers do not take the non-uniform sharing

overheads into account. Threads that heavily share data will not typically

be co-located on the same chip, resulting in many high-latency inter-chip

communications. If the Operating System (OS) can detect the thread shar-

ing pattern and schedule the tasks accordingly, then tasks that intensively

exchange information could be scheduled on the same core and, as a result,

the communication overhead would be reduced by exploiting the proces-

sor cache levels. In order to provide the necessary information about re-

source contention to the OS, a monitoring infrastructure must be designed.

Programming languages and libraries support mechanisms to spawn threads

and to make communication and synchronization between them possible

(threads synchronization methods are presented in Sections 1.2.4). The ap-
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proach embraced in this work consists in instrumenting a user-space lock-

ing library in order to provide the OS enough information to understand

how much threads share information, i.e. how much they contend for a

data. This information is then used within the Linux kernel to affect the

work of the process scheduler, by influencing the mapping of the tasks on

the cores, in order to reduce data contention, thus improving applications

performance in term of their execution time.

The long term idea is to integrate the developed framework in a com-

pletely self-aware operating system, named Autonomic Operating System

(AcOS), and born within the Computing in Heterogeneous, Autonomous

’N’ Goal-oriented Environments (CHANGE) research group at Politecnico

di Milano. This framework should represent only a single service within the

whole operating system, i.e. it should provide only one of many possible

autonomic capabilities to the OS. This scenario introduces the problem of

efficiently orchestrating the available services, in order to meet the, pos-

sibly conflicting, goals of the different applications or of the system itself.

This topic was addressed in previous research works [7] and falls beyond

the scope of this document.

1.2 Background Definition

In order to better understand the motivations behind the investigation

of the problem described in the previous section and the solution that was

found, a clearer explanation of the context in which this work has been

developed is needed. First of all, a definition of autonomic computing is

to be given and its fundamental pillars must be introduced (Section 1.2.1).

The attention is then focused on topics directly related to the ones this re-

search work is based on: the problem of task scheduling and mapping (Sec-

tion 1.2.2) and the hierarchical memory organization of modern computer
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architectures (Section 1.2.3). Last, data sharing and synchronization meth-

ods are investigated in Section 1.2.4.

1.2.1 Autonomic Computing

The research work presented in this document finds its natural loca-

tion in the field of autonomic or self-adaptive computing. This term was firstly

coined by Paul Horn in 2001 [2], deliberately referring to biological self-

adaptation mechanisms. In particular, the analogy is made taking into ac-

count the nervous system of living beings, able to control common body

actions and parameters, taking away this burden from the conscious part

of the brain. Inspired by the same idea, autonomic systems should be able

to adjust and manage their vital parameters, taking actions autonomously

(monitoring the internal state of the system and the surrounding environ-

ment) and not asking the user to take care about these problems.

While formalizing the definition of an autonomic system in his mani-

festo [2], Horn listed some properties a system must own in order to show

a self-adaptive behavior and called them self-* properties. How these self-*

properties can be inserted into an autonomic system is not a straightfor-

ward topic: in literature, it is not possible to find a commonly shared model

able to solve this issue, but there is no doubt a new system design paradigm

must be introduced. This new paradigm is called autonomic control loop [2]

and various definitions and description of this control loop can be found.

All these description share a common basic idea: the system must some-

how be able to monitor itself and the relevant element of the surrounding

environment, reason on these data in order to take a decision according to

its goals, and put into practice the computed decision by properly tuning

its parameters.

For the purpose of this thesis, it is interesting to investigate how the

autonomic loop can be embedded in a specific system such as a computing
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system. First of all, monitors and actuators are to be identified, then a policy

is to be designed to properly use the available information and effectively

exploit the actuators.

In a common computing system, there are many quantities their mon-

itoring could prove to be interesting: from the temperature of the cores to

their power consumption, from the throughput of the system to its latency.

Looking at the problem description provided in Section 1.1, it is clear that

the quantity that is to be monitored to solve it must provide hints about

how much variables are contended between different tasks.

1.2.2 Task Scheduling and Task Mapping

A topic which is crucial for this research and needs to be investigated is

how tasks are scheduled for execution by the operating systems and how

they are located on the available resources. Having a clear idea of these sub-

jects is fundamental to realize how the behavior of the overall computing

system can be modified by acting on them.

Preliminary Definitions

When dealing with operating systems, it is worth having a clear idea of

some elementary concepts. In particular [8, 9]:

• Process. A process is an abstraction of a running program which rep-

resents an executing program, including its code, its data, and all the

information about its execution status.

• Thread. A thread of execution, usually shortened to just thread, is a

sub-entity within a process; it is a specific part of the executing pro-

gram in charge of doing some precise elaboration. A process may be

split into several threads which share the same address space, open

files, and, in general, the resources assigned to the process.
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• Task. A task is a schedulable entity (either a process or a thread).

While the first two definitions are universally accepted and adopted (since

proposed in the Portable Operating System Interfaces for uniX (POSIX)

standard), the last one is specifically related to the Linux kernel. However,

the definition of what a task is, is fundamental to understand the following

chapters and it is consistent with the context in which this thesis is devel-

oped. Summing up, from the point of view of the process scheduler and of

the thread mapper, processes and threads are perfectly equal and they can

be both called tasks.

Now, definitions of both process scheduling and thread mapping are

needed [10].

• Process Scheduling. The problem of process scheduling can be traced

back to a more general problem known with the name of Resource

Constrained Scheduling (RCS). In a few words, it is a generic problem

modelling a situation in which a set of activities must be completed

by using a limited set of available resources in order to optimize one

or more objective function(s).

• Thread Mapping. The thread mapping problem is quite orthogonal

to the process scheduling one. As said, the latter problem consists in

choosing which and how much to execute a task; the former one deals

with moving the task chosen for execution on the available resources,

taking into consideration their specific conditions. Examples of this

conditions are units load, temperature, power consumption, . . . .

Process Scheduling

In the context of a computing system, the activities to be scheduled are

what we called tasks and the available resources are the execution units or

cores. In particular, the scheduling algorithm of an operating system is in
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charge of choosing the execution order of the tasks and how much time to

give them for execution.

The role of the scheduler became more and more important with the at-

tempt for computing systems to give the illusion of multiple processes exe-

cuting at the same time. The phenomenon of apparent contemporaneity of

execution of several tasks on the same computer is referred to as multitask-

ing and it is obtained by rapidly interleaving the execution of the running

tasks on the available processor(s) [8, 9]. The decision power of the sched-

uler depends on the kind of multitasking adopted by the operating system.

In cooperative multitasking the scheduler is not allowed to stop the execution

of a task: it must wait the task itself to explicitly yield the assigned resource

(the processor on which it is executing) [9]. Such a paradigm was adopted

by oldest operating systems (Microsoft Windows up to 3.1 and Mac OS up

to 9): it allows a simpler implementation, but relies on tasks good faith to

avoid system starvation. To avoid this major drawback, preemptive multitask-

ing was introduced in modern operating system (Linux and the most recent

versions of Microsoft Windows and Mac OS) [9]. In this case, more power

is given to the scheduler: it is allowed to suspend a task execution in favor

of another task. A maximum execution time, called quantum, is given to

each task before being preempted. While preemptive multitasking requires

a more complex implementation, it allows to avoid malicious tasks to take

control of the system or normal program to get stuck in infinite loops due

to bugs, preventing the processing unit to be available for other tasks.

An interesting classification of the process schedulers can be done by

looking at the goals they pursue. These goals are formalized by objective

functions, depending on the specific scheduling environment [9]:

• Batch systems usually process a series of programs, or jobs, sequen-

tially and without the need for manual intervention. Consequently,

nonpreemptive algorithms, or preemptive algorithms with long time
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periods for each process are often acceptable, since they reduce pro-

cess switches, improving performance.

• Interactive systems, as the name suggests, foreshadow a significant

interaction between the system and the users. In this case preemption

is essential to prevent a task to own the CPU for so much time to deny

the service to the other users.

• Real-time systems run jobs which have to meet time constraints. Pre-

emption in real-time systems is sometimes not needed because the

processes know that they may not run for long periods of time and

usually do their work and block quickly. Real-time systems can be

further classified in:

– Soft real-time: when time constraints are not that strict and the

scheduler provides its best effort to meet the deadlines, but it

does not ensure any sort of warranty.

– Hard real-time: when time constraints are strict. An error must

be returned by the scheduler if a deadline is missed.

Specific scheduling goals for each type of system can be formulated accord-

ing to the scheduling environments classification given before. In the same

way, among all the designed scheduling algorithms some are more suitable

for a type of system, some others are more suitable for other type of sys-

tems. Table 1.1 summarizes these two important aspects of tasks schedul-

ing. It does not claim to exhaust the topics, but only to give some hints

about them. A comprehensive dissertation about scheduling is out of the

scope of this document; scheduling algorithms that are strongly related to

this thesis will be analyzed in the next chapter, while you can refer to [8, 9]

for a first introduction.
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Goals Algorithm

All Systems Fairness

Policy Enforcement

Balance

Batch Systems Throughput First-Come First-Served

Turnaround time Shortest Job First

CPU utilization Shortest Remaining Time Next

Interactive Systems Response time Round Robin

Proportionality Priority Scheduling

Multiple Queues

Shortest Process Next

Real-Time Systems Meeting deadlines Rate Monotomic Scheduling

Predictability Earliest Deadline First

Table 1.1: Scheduling goals and algorithms according to the scheduling environment.

Thread Mapping

The problem of thread or task mapping arose later in the operating sys-

tem design field, due to the relative youth of multi-core and multi-chip

architectures. Besides the choice of which task has to run and when, it is

important to decide where it has to execute. The performance of current

shared-memory multi-processors systems heavily depends on the alloca-

tion of cores to parallel applications, especially in Non-Uniform Memory

Access (NUMA) systems [11]. Performing the core allocation without tak-

ing into account some specific characteristics of the executing tasks (e.g.

maximum speed-up or average parallelism) or the actual conditions of the

processors, can result in a bad system exploitation. Two simple examples:

allocating a high number of processors to a parallel application with small

speed-up will result in a loss of efficiency; running a great number of tasks
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on a single core, while leaving the other available ones unloaded will result,

again, in a loss of processor utilization.

The latter example introduces a problem which is solved, in modern

operating systems, by introducing a new component in the process sched-

uler, called load balancer. The goal of a load balancer is for each processor

to perform an equitable share of the total work load. In literature [12], it is

possible to find a clear distinction between:

• static load balancing: relies on an off-line a priori estimation of work

distribution, so that a programmer can build load balancing right into

a specific applications program.

• dynamic load balancing: refers to the case in which no a priori estima-

tion of load distribution is possible and load information is available

only during actual program execution.

Unfortunately the simplest form of load balancing, in which tasks re-

quiring differing times for completion are to be as equally distributed as

possible between n processors, is clearly equivalent to the partition prob-

lem, thus it is a NP-Complete problem as well [9]. As a result of this fact, re-

search on dynamic load balancing (the one implemented in modern OSes)

has focused on suboptimal procedures that use local information in a dis-

tributed memory architecture. Generally speaking, these procedures de-

scribe rules for migrating tasks from overutilized processors to underuti-

lized processors. Tradeoffs exist between achieving the complete balance

of the load and the communications costs associated with migrating tasks.

The Linux kernel implementation of the load balancing was deeply in-

vestigated and considered as an example for a possible implementation

for the development of this work. For this reason, it is further analyzed in

Chapter 2.
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1.2.3 Memory Hierarchy

Memory is a fundamental resource in a computing system, used, for ex-

ample, for data/code storing and for Inter Process Communication (IPC):

the OS is in charge of managing this important resource. The OS should

be able to provide the programmer with an infinitely large, infinitely fast

memory abstraction, that is also non-volatile (i.e. it does not lose its contents

when the electronic power fails). Unfortunately, even if the pace of tech-

nological development is getting faster and faster, such a memory is not

available. Consequentially, most computing system relies on a memory hier-

archy, exploiting different types of memories (with different speed/storage

capability ratio), to provide the requested abstraction [9].

Figure 1.1 shows an intuitive representation of the different memory

levels in a multi-core, multi-chip computing architecture. Only few regis-

ters are directly available on the same chip the core is on. Thus, few lev-

els of small, very fast, expensive, volatile cache memory, some gigabytes of

medium-speed, medium-price, volatile main memory (sometimes referred

as Random-Access Memory (RAM), inaccurately), and terabytes of slow,

cheap, non-volatile disk storage memory are necessary. Network storage

represents an highest level in the hierarchy level; however, for the purpose

of this work, the attention is limited to the previously presented levels.

• Processor Registers. Processor registers are at the top of the mem-

ory hierarchy, providing the fastest way to access data (usually only 1

CPU cycle) [13]. They offer a small amount of storage capability (the

most common registers are 8-bit, 32-bit or 64-bit capable) and come

in a limited number (from a few tens in x86, x86-64 and ARM ar-

chitectures to more than two hundred on the high-performance Intel

Itanium architecture) [14].

• Cache Memories. The slow access speed to the main memory repre-
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cache

Registers
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cache
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cache
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Figure 1.1: Memory hierarchy for a multi-core, multi-chip architecture.

sents a bottleneck in modern computing system [13]. A solution to

this problem is the introduction of one or more levels of cache mem-

ory. Cache memories are small and volatile memories, but allow a

high access speed (usually less than one hundred clock cycles).

• Main Memory. In contrast with caches, the main memory may take

hundreds of cycles to retrieve the requested data, but is way more

capable (up to tens of gigabytes). Caches and main memory are both

RAM (classified into SRAM and DRAM [13]), thus volatile memories:

their state is lost or reset when power is removed from the system.

• Non-volatile Memory. The lowest level of the memory hierarchy is
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occupied by persistent storage devices, which maintain the informa-

tion stored in them even when they are not connected to power. Many

technologies are used to produce storage devices: from older but more

reliable Hard-Disk Drive (HDD) to newer and faster Solid-State Disk

(SSD). Non-volatile storage devices are extremely slow in performing

read and write operations if compared with the other levels of the

hierarchy: this is the reason why all this hierarchy was created.

For the purpose of this thesis, it is worth better understanding how

caches actually work and how they can be exploited in order to improve

applications performance.

Cache Memories

The effectiveness of the introduction of different levels, i.e., a hierarchy,

of cache memories relies on computer programs peculiarity to obey to the

principle of locality:

• temporal locality: if a particular memory location is referenced by a

processor during the i-th cycle of execution, then with high probabil-

ity the same memory location will be accessed during the execution

cycle (i+ p) (where p is a small enough positive integer);

• spatial locality: if the data located at the address i is accessed by the

processor, then with high probability the data located at the address

(i + q) will be accessed too (with q being a small enough non-zero

integer).

In order to exploit this locality principle, caches employ buffering to reuse

commonly occurring items [15]. When the Central Processing Unit (CPU)

finds a requested data item in the cache, a cache hit takes place. A cache

miss occurs when the CPU does not find a data item it needs in the cache.

In this case, a fixed-size collection of data containing the requested word,
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called block or cache line, is retrieved from the main memory and stored in

the cache. This approach allows the cache to exploit both temporal locality

(since the processor is likely to need this word again in the near future) and

spatial locality (there is high probability that the other data in the block will

be needed soon). Obviously, there is a performance improvements if the

majority of the CPU data requests results in a cache hits, and the commu-

nication overhead with the main memory is reduced as much as possible.

A new issue now arises: larger caches have better hit rates but longer la-

tency. Thus, the trade-off between cache latency and hit rate is to be con-

sidered and analyzed. To address this trade-off, multiple levels of cache

were introduced, with small fast caches backed up by larger and slower

caches. Multi-level caches generally operate by checking the smallest Level

1 (L1) cache first. If the result is a cache hit, then the processor can proceed

at high speed. If the smaller cache misses, the next larger Level 2 (L2) cache

is checked, and so on, until the main memory is reached. Modern architec-

tures usually provides as many as three levels of on-chip caches [14].

L1 caches are usually dedicate to a single core, while L2 and L3 caches

can be shared among different cores and chips. Multi-level caches can be

strictly inclusive, in the sense that all data in the L(n) cache must also be in

the L(n+ 1) cache, or exclusive, meaning that the same data cannot be both

in L(n) and L(n + 1) cache. Many other intermediate policies are imple-

mented in commercial processors, but they have not a universally accepted

name [15].

The cache and the main memory have the same relationship as the main

memory and disk storage. In fact, not all the objects referenced by a pro-

gram need to reside in main memory: some of them may reside on the disk.

When a CPU references an item within a page (blocks the address space is

broken into) that is not present in the cache or main memory, a page fault

occurs. In this case, the entire page is moved from the disk to main memory,
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with a consequently high overhead in terms of time (so high that usually

the CPU switches to some other executable task while the disk access oc-

curs).

1.2.4 Race Conditions and Synchronization Methods

The importance of synchronization methods become clear when think-

ing about shared memory applications, i.e., applications that share the en-

tire address space or portion of memory with other applications during

their execution. Shared resources require protection from concurrent ac-

cess: if multiple threads/processes access and manipulate the same resource

at the same memory location at the same time, the threads/processes may

overwrite each other’s changes or access data while it is in an inconsistent

state [8]. These situations, where two or more thread/processes are read-

ing or writing some shared data and the final result depends on who runs

precisely when, are called race conditions [9]. Race conditions are source of

instability and are usually hard to debug, due to the non-determinism they

introduce. For this reason, race conditions are to be avoided when writing

code.

When dealing with concurrency problems, it is important to identify in

the source code the instructions that may create race conditions or dead-

locks. That part of the program where the shared memory is accessed is

called critical region or critical section [9]. To prevent problems when execut-

ing code inside a critical region, it is important for the programmer to en-

sure the code executes atomically: instructions complete without interrup-

tion as if the entire critical region was one indivisible instruction. Each OS

offers different methods to provide atomicity: in the following paragraphs

the attention is focused on both hardware and software synchronization

methods. In the case of software solutions, POSIX compliant synchroniza-

tion methods are presented [16].
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Atomic Operations

The lowest level of synchronization primitives is represented by atomic

operations. Atomic operations provide instructions that execute atomically:

the OS assures that these instructions are completed without interruption.

This is possible by disabling interrupts while their execution.

Two types of atomic operations exists: one operates on integer values,

the other operates on individual bits. Most architectures contain instruc-

tions that provide atomic versions of simple arithmetic operations. Other

architectures, lacking direct atomic operations, provide an operation to lock

the memory bus for a single operation, thus guaranteeing atomicity [8].

Referring in particular to the two sets of interfaces for atomic operations

supported by Linux, we have:

• atomic integer operations: these methods operate on a special data type,

named atomic_t. The use of this special type ensures that the data

types are not passed to any nonatomic functions and that clever but

erroneous compiler optimizations are performed. Common uses of

atomic integer operations are: counters implementation (through

atomic_inc() and atomic_dec() functions) or atomically per-

forming an operation and testing the result

(e.g., atomic_{sub|dec|inc}_and_test()).

• atomic bitwise operations: unlike integer ones, these operations are ar-

chitecture-specific and operate on generic memory addresses. Due to

this reason, their arguments are a pointer (to whatever data type) and

a bit number. Examples of atomic bitwise operations are

{set|clear|change|test}_bit() or

test_and_{set|clear|change}_bit().

The use of atomic operations is to be preferred, when possible, over more

complicated locking mechanisms, since the former ones, on most architec-
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tures, incur less overhead in terms of time and less memory waste.

Fences

Fences are an hardware synchronization mechanism which allows to in-

struct the compiler not to reorder instructions around a given point, called

barrier or fence. Occasionally, it is important that memory writes are seen by

other code and by the outside world in the specific order the programmer

intends. This is often the case with hardware devices but is also common

on multiprocessing machines [8].conclusioni: concetto spaziale, fontana

The use of fences is quite wide: a read memory barrier ensures that no

loads are reordered across its call. This means that no loads prior to the

call will be reordered to after the call, and no loads after the call will be

moved before the call. A write memory barrier functions in the same manner

of a read memory barrier, but with respect to stores instead of loads. Last

a simple memory barrier provides both a read and a write barrier. Special

types of barrier are conditional barriers: it proved to be useful to have a read

memory barrier but only for loads on which subsequent loads depend.

Spin Locks

The simplest software mechanism which allows to avoid race condi-

tions is to have a single variable, shared among all the concurrent processes

and called lock variable. This variable is initialized to 0 and can assume only

two values: 0 and 1. When a process attempts to enter its critical region

has to check the value of this variable: if the value of the lock variable is 0

it means there is no possibility of race conditions and the process can con-

tinue executing. Otherwise, if the value is 1, the process has to stop, waiting

for the lock variable to change its value: continuously testing a variable un-

til some value appears is called busy waiting. The synchronization method

that uses busy waiting is called spin lock.
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Spin locks are the most trivial type of lock and are used only when there

is a reasonable expectation that the wait will be short. If not, more complex

and efficient locks are needed.

Semaphores

A different synchronization approach is offered by semaphores. While

tasks consume computing resources in waiting for a spin lock to be re-

leased, semaphores manage to avoid resource wasting in this sense. When

a task attempts to acquire a semaphore that is unavailable, the semaphore

places the task onto a wait queue and puts it to sleep [8]. This mechanism

provides better processor utilization than spin locks because there is no

time spent busy looping. However, semaphores have much greater over-

head than spin locks: the programmer must take into consideration the ex-

ecution context in order to select the most suitable synchronization method

among the two. In particular, semaphores are well suited to locks that are

held for a long time.

Another interesting feature of semaphores is that they allow for an arbi-

trary number of simultaneous lock holders. This number can be set at dec-

laration time and it is called usage count or simply count. If the maximum

allowed value for count is set to 1, the semaphore is called binary semaphore

or mutex.

Mutexes

Binary semaphores are so widely used that they deserved a specific im-

plementation and, thus, deserve some more investigation. In literature they

are better known as mutexes, since they enforce mutual exclusion. They be-

haves similar to semaphores with a count of one, but they have a simpler

interface, more efficient performance, and additional constraints on their

use. This means that only one task can hold the mutex at a time, whoever
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locked a mutex must unlock it, and recursive locks and unlocks are not

allowed.

On one hand, preferring mutexes to semaphores is a matter of usage

count. On the other hand, the reasons for using spin locks instead of mu-

texes are the same presented in the previous paragraph, writing about sem-

aphores.

Condition Variables

Another synchronization device related to mutexes are condition vari-

ables [17]. Condition variables provide an efficient way to execute some

code only when a flag is set, and pausing when the flag is not set, hav-

ing the flag shared between tasks. Correctly, this can be done by protecting

the shared flag with a mutex, but this implementation is not efficient, since

the task function will spend lots of CPU whenever the flag is not set, check-

ing and rechecking the flag, each time locking and unlocking the mutex.

Condition variables allow to put the thread to sleep when the flag is not

set, until some circumstance changes that might cause the flag to become

set.

Barriers

Barriers allow to synchronize different threads by creating a checkpoint

at which the calling thread shall block until the required number of threads

has reached the same barrier. If a thread has to wait for other threads, it is

put to sleep. When the last thread reaches the barrier, a signal is delivered

to all the sleeping threads, awaking them and allowing them to continue

their execution.

Table 1.2 sums up the main features of the different typologies of syn-

chronization methods, trying to compare them and to underline when us-
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ing one mechanism is better than using another.

Requirement Advantages Disadvantages Features

Atomic

Operations

Low overhead Low expressiveness Single lock holder

Fences Low overhead Low expressiveness No instruction re-

ordering allowed

Semaphores CPU free during ex-

ecution

High overhead Multiple lock hold-

ers

Spin Locks Low overhead, high

expressiveness

CPU busy during

execution

Single lock holder,

suitable for short

lock hold time

Mutexes CPU free during

execution, high

expressiveness

High overhead Single lock holder,

suitable for long

lock hold time

Condition

Variables

CPU free during ex-

ecution

High overhead Conditional Execu-

tion

Barriers Low overhead, CPU

free during execu-

tion

Low expressiveness Checkpoints cre-

ation

Table 1.2: Synchronization methods comparison.

Using synchronization methods is a solution to guarantee the correct

execution of multi-threaded applications but, writing correctly synchro-

nized code is hard and a new class of bugs may arise, called deadlocks [17]. A

deadlock occurs when one or more threads are stuck waiting for something

that will never be available. Two simple examples of deadlock situations

are the following [8]:

• self-deadlock. If a thread of execution attempts to acquire a lock it al-



CHAPTER 1. INTRODUCTION 22

ready holds, it has to wait for the lock to be released. But it will never

release the lock, because it is busy waiting for the lock, as shown in

Table 1.3.

Thread 1

Acquire lock A

Acquire lock A, again

Wait for lock A to become available

... deadlock ...

Table 1.3: Self-deadlock pseudo-code.

• deadly embrace. Consider n threads and n locks; if each thread holds

a lock that another thread wants, all threads will be stuck waiting for

their respective locks to become available. Each thread is waiting for

the other, and none of them will ever release its original lock; there-

fore, none of the locks will ever be available. The following Table 1.4

explains the problem in the case n = 2.

Thread 1 Thread 2

Acquire lock A Acquire lock B

Try to acquire lock B Try to acquire lock A

Wait for lock B Wait for lock A

... deadlock ... ... deadlock ...

Table 1.4: Deadly embrace pseudo-code.

1.3 Summary

This first chapter introduced the research work that this document de-

scribes. First, an high-level description of the context and of the problem to
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be solved were given (Section 1.1). Then, the background needed to fully

understand the context was defined in Section 1.2. A brief discussion on the

field of self-aware computing systems was done in Section 1.2.1, since fur-

ther room is dedicated to them in the next chapter. The rest of the chapter

analyzed the basic concepts related to the issue of processes scheduling and

mapping (Section 1.2.2), to the hierarchical structure of memory in modern

computing architectures (Section 1.2.3), and to processes synchronization

methods (Section 1.2.4) in order to create a common terminology and make

the remainder of the document more easily comprehensible.

Next chapter moves the attention on a more specific and detailed defini-

tion of the context within this work is developed. First of all, a description

of the field of autonomic computing is given both from a theoretical an

from a practical point of view (thus giving the fundamental definitions and

presenting the more significant examples of autonomic operating systems).

Then, the focus is on the state of the art related to the topics treated and de-

veloped in this thesis: process monitoring and self-aware task mapping and

scheduling.



Chapter 2

Context Definition

The research work developed and described in this document finds its

natural location in the field of autonomic computing. In particular, the aim

of this work is to modify the Linux kernel in order to add autonomic ca-

pabilities to the GNU/Linux Operating System (OS). Before discussing the

approach exploited to insert these capabilities into the chosen OS and its ac-

tual implementation, it is useful to take stock of the research already done

on autonomic OSs and of the state of the art on system monitoring and

self-aware scheduling.

In the last few years the awareness of the design of the most popular

and traditional operating systems being outdated, grew considerably. New

computing systems, made up with heterogeneous components and way

more complex, require the design of the OS to be rethought. Contempo-

rary OSes were conceived to manage uniform and cache-coherent systems,

not considering the increasing number of programmable units available in

modern architectures [18] and their growing heterogeneity [1].

One step in the OS redesign process is, exactly, the introduction of auto-

nomic capabilities: the aspect is addressed in Section 2.1. In Section 2.2 par-

ticular attention is deserved to the state of the art on system monitoring

and tracing (Section 2.2.1), fundamental for the system to know something

24
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about its status and the status of the surrounding environment. Last, in

Section 2.2.2, the field of *-aware tasks scheduling and mapping is deeply

analyzed, particularly focusing on the topic of contention-aware scheduling

and mapping, tightly coupled to the work presented later.

2.1 Autonomic Operating Systems

Taking into consideration autonomic capabilities while designing new

OSes is not a mere academic exercise, but helps applications developers

in avoiding explicitly handle parallelism, and explicitly consider energy

efficiency, reliability and predictability issues [19]. New OSes should pro-

vide a further abstraction layer between the hardware and the programmer,

hiding the complexity of the underlying system by self-managing their re-

sources. The following sections address exactly this topic, first from a theo-

retical point of view, analyzing the principles that lead the design of a new

autonomic operating system, then from the practical one, introducing the

projects available in literature.

2.1.1 Design Principles

The self-* properties proposed by Horn in [2], were further investigated

by Kephart and Chess [20] and put in a taxonomy, presented in [21] by

Salehie. The different levels at which Self-* properties are considered, are

shown in Figure 2.1 and presented below:

• Properties such as self-awareness and context-awareness are located at

the lowest level of the hierarchy proposed: the primitive level. These

two capabilities allow the ones in the higher levels of the hierarchy

to appear. They refer to the ability of the system of monitoring and

being aware of its self states and behaviors, and of its context, i.e. the

operational environment.



CHAPTER 2. CONTEXT DEFINITION 26

Self-
adaptiveness

Self-configuring

Self-protecting

Self-optimizing

Self-healing

Self-awareness

Context-awareness

General
Level

Major
Level

Primitive
Level

Figure 2.1: Self-* properties hierarchy.

• The main properties envisioned by Horn belong to a major level and,

as already said, are the ones directly related to the human body self-

adaptation capabilities to the changes in its status or in the environ-

ment it lives in. Due to their specific interest, these properties are

listed and further analyzed in the following paragraphs.

– Self-configuring. The capability of a system of installing, configur-

ing and integrate different sub-modules automatically and dy-

namically. All this should be done in response to changes in

the internal status of the system or in the external environment.

High-level policies are to be specified in order to lead the system

to the desired goal, without forcing constraints on how this goal

is to be reached.
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– Self-healing. Directly linked to self-diagnosis and self-repairing, it

is the ability of a system to react to localized problems both in

software and hardware. It is achieved by firstly discovering and

diagnosing faults, and then trying to fix them; proper actions can

be taken also to prevent failures.

– Self-optimizing is the capability of managing performance and re-

source allocation; more in general, to autonomously tune the pa-

rameters the system works on, in order to satisfy the different

requirements. This property is also known with the name of self-

tuning or self-adjusting [22].

– Self-protecting. This capability allows the autonomic system both

to detect and recover from the effects of malicious attacks, and

to anticipate problems, taking actions in advance to avoid them

or, at least, to mitigate their effects.

• The highest level, named general level, refers to properties which con-

sider the whole system as a single entity. Self-organization and a pleth-

ora of self-* properties, which fall under the umbrella of self-adapt-

iveness (such as self-management/government/maintenance/control/evalu-

ation), belong to this level.

So far, the basic definitions of autonomic computing were given and its

fundamental pillars introduced: now, the steps a system must implement

to show an autonomic behaviour deserve to be further investigated. In lit-

erature, it is not possible to find a commonly shared model able to solve

this issue, but there is no doubt a new system design paradigm must be

introduced. This new paradigm is called autonomic control loop [2]. Various

definitions and description of this control loop can be found: the most com-

mon ones are described in the remainder of this section.
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A first version of the autonomic control loop is described by Salehie

again in [21]. A clear description of the stages the Self-adaptation control loop

is made up of is given in Figure 2.2. The Monitoring stage allows the auto-

nomic system to interface with self and with the environment, reading the

data coming from the available sensors. These data are analyzed in the De-

tecting stage, asked for identifying when and where the system must change,

according to current internal and external conditions. During the Decision

stage, the system is in charge of deciding what is to be changed in the sys-

tem and how these actions must take place. The mapping of actions into

tasks, performed by actuators, is carried out in the Acting stage of the loop.

Monitoring

Detecting Deciding

Acting

Module
Module

Module

System

Environment

Sensors
Actuators

Figure 2.2: From [7] – Self-adaptation control loop.

This first interpretation of the autonomic control loop highlights the dif-

ference between the when/where and the what/how of a change, decoupling

them in two different stages (Detection ad Decision, respectively). While

sharing with this one the same basic ideas, other interpretations focus their
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attention on slightly different details. The Monitoring, Planning, Analyzing,

Executing with shared Knowledge (MAPE-K) loop [20] (Figure 2.3), for exam-

ple, emphasizes the presence of a central entity storing the global knowl-

edge about the system. Monitoring, Analyzing, Planning and Executing are

the four stages the loop is constituted, with K standing for the shared knowl-

edge, accessible from all the steps.

Module
Module

Module

Monitor

Analyze Plan

Execute
Knowledge

ActuatorsSensors

System

Figure 2.3: From [7] – MAPE-K control loop.

The Observe Decide Act (ODA) loop [23], shown in Figure 2.4, represents

a third version of the autonomic control loop. Even if it can be considered

equivalent to the other interpretations of the autonomic loop, the ODA loop

better captures the essence of autonomic computing, by clearly dividing

the system design in three simple and sharply distinct stages. Due to this

reason, each single step of this loop deserves to be further investigated:
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Figure 2.4: ODA control loop.

• Observe. The observation phase consists in sensing both the external

environment and the internal behavior of all the sub-systems in order

to maintain and update information about the state of the system. The

sensing task is accomplished by monitors: thermometers, voltmeters

and throughput meters are only a few examples of widely diffused

monitors.

• Decide. This phase is performed taking into account the data ob-

tained by the monitors and an high-level goal. The knowledge of the

goal guides the logic of the system in coming up with a suitable de-

cision which should approach the state of the system to the desired

one.

• Act. Once the decision has been taken, it is put into practice in the act-

ing phase through the actuators. Actuators are able to modify some
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system parameters in order to alter its behavior.

Even if the presented autonomic loops come with different names and num-

ber of steps, they are all based on the same basilar concepts, as the reader

can easily realize.

The following section lists some interesting research projects trying to

insert autonomic capabilities in an operating system. Their analysis is in-

teresting in order to understand their strong and weak points for the im-

plementation of a new autonomic operating system.

2.1.2 Existing Projects

In literature, it is possible to find many examples of operating systems

specifically designed to provide autonomic capabilities: some of them are

more targeted towards multi- and many-core systems (fos – Section 2.1.2,

Corey – Section 2.1.2, Sefos – Section 2.1.2), while others are more focused

on supporting heterogeneous architectures (Barrelfish – Section 2.1.2, He-

lios – Section 2.1.2, K42 – Section 2.1.2).

Factored Operating System (fos)

The Factored Operating System (fos) [1] has been designed and imple-

mented at the Massachusetts Institute of Technology (MIT) and, as antic-

ipated, targets many-cores computing systems. In facts, the trend in com-

puter architectures is heavily going in the direction of packing an increas-

ing number of computer units on a single chip [24]. The belief this project

is based on is that the real bottleneck in contemporary OSes is represented

by the use of hardware locks and global cache-coherent shared memories.

The novel design introduced by fos suggests to exploit the available par-

allelism by separating the execution resources of the operating system and

the applications.
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To obtain this separation, the OS was designed in three layer: a thin micro-

kernel, at the basis; an OS layer, made up of servers providing typical sys-

tem services; and an application layer, which makes use of the services of-

fered by the operating system. By executing a portion of the micro-kernel

on each core, the system is able to better control the access to hardware

resources and to exploit caches for messages delivery, allowing servers

and applications to communicate. Such an approach proved to be valid

in system with an high number of cores (hundred and more) or in cloud-

systems [25, 26].

Recent improvements of the operating systems blazed new trails to-

ward the introduction of autonomic capabilities in fos [25]. First, the OS

should adapt the use of resources to changing system needs, by measuring

the utilization of each service and allocating more or less cores to its servers

according to the current need. In this context, it is worth noting how, in the

fos OS, the task scheduler has to deal with space (cores) multiplexing, in-

stead of the classical time multiplexing problem. Second, the introduction

of autonomic capabilities could improve the faults detection and recovery

process: faults in system services must be detected by a watchdog process

and handled by the name server by reassigning faulted communication

channels.

Corey

As fos, Corey [27] is an experimental OS targeting towards multi-core

systems and, as fos, it is developed at the Computer Science and Artifi-

cial Intelligence Laboratory (CSAIL) at MIT. In contrast with fos, however,

Corey implements a less radical approach, not requiring a computing sys-

tem with hundreds of core to work properly. The specific goal of Corey is

to improve applications scalability with reference to the number of cores,

by better managing and exploiting processor caches and shared data struc-
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tures. The idea underlying the implementation of such OS is the following:

in order to avoid contention on data shared by different cores, new inter-

faces must be proposed to improve the management of these shared data,

avoiding the use of shared structures unless strictly necessary. Three are

the interfaces that have been implemented:

• Address ranges. They are an abstraction, provided by the kernel, corre-

sponding to a range of virtual-to-physical memory mappings. Multi-

ple ranges can be defined by an application; each of these ranges has

to be mapped as shared or private. This flag allows to mark as shared

only the data structures that really need sharing, reducing synchro-

nization issues on data that are private to one thread. Comparing this

interface with the classical paradigms implemented in common OSes,

a new degree of freedom is introduced in the shared memory man-

agement.

• Kernel cores. This abstraction allows applications to declare that a spe-

cific core is to be dedicated to kernel functions. Hardware device

managing or system calls execution are two simple examples of what

dedicating a single core to a specific function means.

• Shares. This last interface offers to the application the possibility to

create shared data and to specify at which level these data must be

shared. As it was for address ranges, this interface introduces a fur-

ther degree of freedom in the management of data contention and

makes it possible to avoid unnecessary contention on data that need

not to be shared.

Thanks to these new interfaces, the Corey OS proved to be more flexible if

compared with fos, since it gives to applications the possibility of choosing

the level of separation between the OS and application resources (while fos

statically enforces this separation).
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The main drawback of the described approach is the higher complex-

ity of the exposed interfaces. Thus, the operating system has to rely on a

wise use of such interfaces by the application: a future development of the

system is the introduction of autonomic capabilities to reduce the exposed

complexity [27].

The Angstrom Project

The Angstrom project [28] was born, again, in the CSAIL at MIT and

aims at extending the already described fos OS, coupling it with a SElf-

awarE Computational model (SEEC). SEEC introduces new autonomic fea-

tures to the existing operating system, creating a new Self-aware factored

operating system (Sefos), i.e., a self-aware operating system able to meet

the challenges introduced by many-cores architectures.

As explained in the first section of this chapter, fos offers basic services

(e.g., file system, memory management, network management), bounding

them to specific cores. The aim of the Angstrom project is to create a new

service in charge of introducing more autonomic features into fos. This

new service is made available through SEEC, a framework which imple-

ments the typical ODA decision loop (see Section 1.2.1). The autonomic

system, augmented with SEEC, executes and monitors itself using sensors.

The system is able to react to the sensed conditions, taking decisions and

acting to guarantee applications performance. The adopted monitoring in-

terface is Application Heartbeats (further analyzed in Section 2.2.1). There

is a decision engine acting on the system to set the values of each decision

parameter. This decision engine exploits a control theory based control sys-

tem, working on the following services to tune several parameters of the

system:

• a frequency scaler which implements a Dynamic Voltage and Frequency

Scaling (DVFS) policy to adjust the clock speed of the available cores;
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• a core allocator, able to assign a subset of the system processors to the

running processes;

• a DRAM allocator which efficiently manages multiple memory con-

trollers (if more than one is available in the system) and assigns them

to running tasks;

• a power manager, in charge of combining the previous services in order

to directly affect the power consumption of the computing system.

However, when multiple decisions are to be taken at the same time, it is

not clear how the coordination between the different actuation mechanisms

available in the system takes place.

Analyzing the implementation of the system, some possible vulner-

abilities/weak points can be identified. First of all, SEEC is completely

written in user-space, limiting the actual effectiveness of the approach: the

implementation of some services in kernel-space would be advisable and

more effective. Notice also that Sefos relies on trusted actuators: no security

checks are performed on the taken decision, thus malicious entities cannot

be detected and deactivated.

Barrelfish

While the OSes analyzed up to now where focused on multi/many-core

systems, an operating system devoted to improve scalability on heteroge-

neous architectures is Barrelfish [29]. When talking about heterogeneity, it

can be classified at least in three different levels [30]:

• Non-uniformity: it refers to non-uniform memory architectures, for ex-

ample Non-Uniform Memory Access (NUMA), and it is a character-

istic more and more present in modern architectures, making the set

of processing units similar to a network.
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• Core diversity: is related to heterogeneity on multiprocessor architec-

tures. Nowadays, common architectures contain processors that are

exactly the same, thus homogeneous; Graphics Processing Units (GPUs)

and Field Programmable Gate Arrays (FPGAs) con be seen as diverse

cores if used for specific tasks. However, it is normal to find hetero-

geneous cores in embedded systems, where often there are different

specialized processing units.

• System diversity: is the most high level type of diversity and indicates

diversity among the hardware components of different systems. A

mobile phone and a internet server represent a significant example of

system diversity: it is quite difficult for application programmers to

write software required to run efficiently on diverse platform.

The main idea Barrelfish is based on is the design of a completely dis-

tributed operating system, made up of functional units using explicit mes-

sage passing to communicate. This design technique allows the system

to work properly and efficiently even if programmable units that cannot

be made cache coherent with the rest of the system (such as GPUs and

Network Interface Controllers (NICs)) or do not support shared memory at

all are part of the architecture. This is possible trough a multi-kernel model [29]

in which all the inter-process communications are managed explicitly.

The multi-kernel idea is exemplified in Figure 2.5. Here it is possible to

see how separate entities execute on each programmable component of

the system and asynchronously communicate by means of message pass-

ing. The main advantage of such an approach is the possibility to execute

architecture-dependent code on each node, while leaving the operating sys-

tem completely unaware of the specific architectures of the processors it is

running on: with this meaning, the OS is considered to be hardware-neutral.

Barrelfish shows an autonomic behavior in the sense that exploits a

System Knowledge Base (SKB) to make the operating system aware of its
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Figure 2.5: Multi-kernel model in the Barrelfish Operating System.

status. The knowledge base stores information about the hardware avail-

able in the system and its performance; information is maintained so that

using a subset of First Order Logic (FOL) some reasoning is made possi-

ble [31]. This reasoning is exploited mainly by the process scheduler, as it

is clear reading the design principles (described in [31]) which inspired its

implementation:

• The System Knowledge Base can be exploited to take on-line deci-

sions about the hardware on which processes are to be scheduled:

this should permit to select the best policy on each node.

• While distributing resources, the scheduler must be aware of all ap-

plications workload and requirements. Applications can expose this

information through a scheduling manifest, written in the ECRC Com-

mon Logic Programming System (ECLiPSe) language [32].

• In contrast with fos, the scheduling problem cannot be reduced to a

mere spatial partitioning: time multiplexing is also needed on each
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core.

• Different time scales can be identified in order to make the scheduling

algorithm more effective: long-term placement of application on cores,

medium-term resource allocation in reaction to application demands

and short-term fine-grained per-core thread scheduling.

• Communication between the applications and the OS is needed to

obtain efficient resource allocation: dispatcher groups are in charge of

tuning system parameters to let applications meet their performance

goals.

Along with the analysis of the OS design, a single drawback arose: as

several of the previously described projects, Barrelfish relies too much in

applications programmers’ ability and good will.

Helios

Helios is an operating system designed in the Microsoft Research lab-

oratories to simplify the task of writing, deploying, and tuning applica-

tions for heterogeneous platforms [18]. To achieve these goals, Helios in-

troduces the concept of satellite kernels, which export a single, uniform set

of OS abstractions across CPUs of disparate architectures and performance

characteristics. This model is very similar to the one proposed by Barrelfish

with the multi-kernel (Section 2.1.2). A satellite kernel can run indifferently

on any programmable component having at least: a CPU, an (even little)

amount of Random-Access Memory (RAM), a timer, an interrupt handler,

and a mechanism able to catch exceptions. The listed constraints are not

that loose, even if they appear to be so: GPUs, for example, are not allowed

to run a satellite kernel since they are not usually equipped with timers or

interrupt controllers. Authors rely on future generations of these hardware

components for the obstacle to be overcome [18].
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Through satellite kernels the heterogeneity of the underlying hardware

is hidden to the application programmer, who can rely on the Application

Programming Interface (API) and on the abstractions offered by the OS.

Each satellite kernel can be considered a micro-kernel and is made up of a

scheduler, and memory/namespace/communication managers. In partic-

ular, access to I/O services such as file systems are made transparent via

remote message passing, which extends a standard micro-kernel message-

passing abstraction to a satellite kernel infrastructure. The message-passing

system is provided by the Singularity framework [33] and offers both lo-

cal message passing (for communications within a single satellite kernel)

and remote message passing (for communications between different satel-

lite kernels). This framework allows to implement safe and efficient process

software isolation and a fast zero-copy means of passing messages within

the same address space (highly reducing the local message passing over-

head).

Helios offers to the application programmer a unique system abstrac-

tion over heterogeneous hardware: this is possible by encapsulating the

Instruction Set Architecture (ISA) of each processing unit and providing a

unique programming language for the applications development. To do

that a two-stage compilation strategy [34] is implemented: applications,

written in Sing# (a derivative of the C# programming language), are first

compiled into an intermediate language, called Common Intermediate Lan-

guage (CIL) and part of the .NET framework, and then translated to the

specific ISA of the node where are to be executed.

To simplify the process of application deploy and performance tuning, He-

lios exposes an affinity metrics to developers. Affinity provides a hint to the

OS about whether a process would benefit from executing on the same plat-

form as a service it depends upon. Processes are allowed to specify a [18]:

• processes affinity: indicates the coupling level between two processes.
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It can be positive (two processes should run on the same satellite ker-

nel – e.g., a driver and a process that uses it) or negative (preference

for separate execution).

• platform affinity: indicates the preference for an application to run on a

specific type of architecture (Out-of-order x86 and Vector CPU are only

two examples of architectures, a typical x86 processor and a GPU,

respectively).

• self-reference affinity: indicates the ability of a process to efficiently

scale-out its performance by running multiple instances of itself on

different devices or NUMA domains.

K42

K42 [35] is an open source research operating system designed and de-

veloped by IBM with the collaboration of the University of Toronto, since

1998. It is focus on supporting heterogeneous architectures, thus specifi-

cally targets Shared-Memory symmetric Multi-Processor (SMMP) and NUMA

64-bit computing systems (currently running on PowerPC and

Microprocessor without Interlocked Pipeline Stages (MIPS) platforms) [36].

The OS, which consists mainly in a Linux-compatible kernel, is based on

the Tornado and Hurricane operating systems [37], both developed by the

University of Toronto.

K42 aims at reaching the following goals [36, 35]:

• scalability and performance: K42 efficiently scales on a variety of hetero-

geneous systems, from large multi-processors and NUMA systems to

small multi-processors or single-processor systems;

• adaptability: K42 manages system resources in a way that matches the

evolving needs of the running applications, contributing to the auto-

nomic behavior of the overall system;
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• customizability, extensibility and maintainability: due to its open source

nature, K42 guarantees a natural high degree of customizability; more-

over, it is extensible in the sense that allows new platforms and appli-

cations to be simply added; last, the possibility of straightforwardly

upgrade the system with new components without interrupting the

services makes it easily maintainable.

All these goals are reached through simple yet interesting design princi-

ples:

• object-oriented design: K42 implements each system resource (i.e., an

open file or a running process) as an object, storing a reference to

it in a globally shared Object Translation Table (OTT). This object-

orientation allowed the development of a scalable kernel, since every

system resource is managed by a per-instance object or set of objects.

This choice wisely guarantees applications the ability to best serve

their needs, which can vary as the time goes on. Autonomic capabili-

ties are provided to swap on-the-fly these per-instance objects;

• avoidance of centralized code and data structures: the K42 design includes

the use of distributed code and data structures, allowing the pro-

grammer to avoid global locks, which usually degrade both perfor-

mance and scalability;

• micro-kernel design [38]: the overall structure of K42 is based on a micro-

kernel design, made up of a small exception-handling component

(the micro-kernel) and many servers which marshal all of the op-

erating system functionalities. The micro-kernel is in charge of pro-

viding basic functionalities (memory, process, and network manage-

ment, IPC, . . . ), while servers provide more advanced OS features

(file system, sockets, . . . ). Moreover, some system functionalities are

moved from the kernel to user-space libraries, allowing applications
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developers to redefine the behavior of such modules.

Figure 2.6 should help the reader to better understand the structure of the

K42 OS.
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Figure 2.6: The K42 operating system structure.

Looking more specifically into the autonomic capabilities K42 is equip-

ped with, the object oriented design allows the support of online recon-

figuration [39] and dynamic update [40] mechanisms. These mechanisms

allow the components of the OS to be modified on-line and to apply up-

dates to the system without any downtime. The realization of these ideas

is made possible trough the so called hot-swap procedure, which enables
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the switch among available implementations of the same living component.

More specifically, monitoring code, diagnostic code and implementations

can be dynamically inserted and removed in functioning systems [41, 42].

Thanks to the hot-swap mechanism, K42 can be highly optimized for the

common case of execution, hot-swapping ad-hoc solutions for uncomm-

mon cases. With the same idea in mind, caches and memory management

policies can be changed at runtime, taking into consideration the current

data access patterns in order to always use the best performing policy;

shared and partitioned versions of the file pages caching mechanisms are

hot-swappable, allowing optimization for sequential or highly parallel ap-

plications. Exploiting user-space libraries, applications can provide spe-

cific implementation of the OS services that can be hot-swapped by K42,

if needed. Last, monitoring objects can be interposed into the relevant OS

code sections by applications that benefit from the information gathered by

such monitors: in this way applications that do not require monitoring are

not slowed down by the execution of the monitoring code.

2.2 State of the Art

Thanks to the definitions given at the beginning of this chapter, it is

possible to clearly state which are the main objectives of this thesis:

1. the implementation of a monitoring infrastructure which would al-

low to gather information about the level of lock-protected data con-

tention among different threads in the system;

2. the design of a decision mechanism able to improve applications per-

formance in term of their execution time, by mapping tasks on cores

taking into consideration the information provided by the newly de-

signed monitor;



CHAPTER 2. CONTEXT DEFINITION 44

3. actually find a way, i.e., the right actuation technique, to perform this

tasks migration.

With this aims clear in mind, the state of the art related to this topics is to be

investigated. In particular, the field of system monitoring and tracing (re-

lated to point 1.) and the one of self-aware tasks scheduling and mapping

(according to the points 2. and 3.), with reference not only to contention but

also to other relevant quantities.

2.2.1 System Monitoring

Augmenting an operating system with autonomic capabilities cannot

abstract from a simple and lightweight, yet powerful and comprehensive

monitoring infrastructure. The monitor must be able to provide to deci-

sion engine all the information needed to perform its work on the sys-

tem, and only it: for this reason it must be carefully designed and imple-

mented. There are many quantities their monitoring could be interesting

(cores temperature and power consumption, applications performance, re-

sources contention, . . . ): some of them are easily accessible and quantifiable,

some others are trickier to be retrieved and synthesized.

Temperature monitoring is quite straightforward to be performed, due

to the presence of specialized sensors on all modern architectures. Moving

from single-core processors to multi/many-core architectures, temperature

sensors evolved from a single analogical element located in the middle of

the Integrated Heat Spreader (IHS) (and monitoring the temperature of the

whole package) to several on-chip Digital Thermal Sensors (DTS) located

in the most significant hot-spots of each processor [43]. Since many sen-

sors are present for each core, a more accurate measurement is possible: by

convention the core temperature is the highest among the measured ones.

Temperature sensors resolution is usually 1 Celsius degree. The data mea-

sured by these sensors are stored in processor registers and made available
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to the OS through simple interfaces, depending on the architecture pro-

ducer (see [14] for an example).

The interest in monitoring also processors power consumption is becom-

ing more and more important, due to the increasing diffusion of mobile

battery-constrained devices. In opposition with temperature, on-line mea-

surement of processors power consumption proved to be difficult: the sim-

plest and most accurate way to do that is by connecting an oscilloscope to

the output pins of a processor. Obviously, this is possible only in laboratory

and for research purposes, but it is not feasible on common devices [44].

When dealing with mobile devices, a power consumption estimation can be

performed by evaluating the variation of the battery charge level [45, 46].

In the case of desktop or server machines, mathematical models can be

built [47, 48]: a model can provide only an estimation and usually its accu-

racy its directly proportional to its complexity.

Other two fundamental quantities to be monitored to implement au-

tonomic capabilities are applications performance and resources contention.

Both these topics proved to be really interesting and challenging: for this

reason, next sections (Sections 2.2.1 and 2.2.1, respectively) are devoted to

their investigation.

Performance

In this Section, performance monitoring and tracing infrastructures are

investigated. In particular the ones that allow K42 and Sefos to have a

performance-aware behavior are presented. A lot of attention is dedicated

to a framework not introduced before: Heart Rate Monitor (HRM). This

framework is based on ideas similar to the ones proposed by Application

Heartbeats (the Sefos monitoring layer), but aims at improving it under

many aspects. It has been developed by the Computing in Heterogeneous,

Autonomous ’N’ Goal-oriented Environments (CHANGE) resource group
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at Politecnico di Milano and it is the framework chosen to be modified and

adapted in order to offer information about resource contention too.

K42 Monitoring and Tracing Infrastructure As described in Section 2.1.2,

the K42 operating system shows an autonomic behavior: in order to re-

trieve enough information to do so, it is equipped with a tracing infras-

tructure that manages the logging of any interesting system event [49]. The

coupling of such an infrastructure with the K42 ability to hot-swap system

components and dynamically insert monitoring objects into the OS code,

is crucial for the system to show autonomic capabilities. This framework is

characterized by the following features:

• A unified set of event is available for each monitoring activity: from

correctness debugging, to performance debugging and monitoring.

• It is lightweight and non-invasive in the sense that, even when not in

use, the monitoring infrastructure is kept compiled-in, allowing data

gathering to be dynamically enabled or disabled at runtime. How-

ever, it is also possible to exclude it from the compilation, if zero im-

pact is to be obtained.

• As the definition of monitor explains, the infrastructure is in charge

only of collecting and making available the gathered information,

leaving the analysis task to another component.

• The event logging mechanism is flexible enough to provide cheap

collection of data for both small and large amounts of data per event.

Sefos Monitoring Infrastructure – Application Heartbeats The monitor-

ing infrastructure offered by SEEC for the Sefos OS is known with the name

of Application Heartbeats [50]. Application Heartbeats offers a portable,

simple and usable user-space library for monitoring an application actual
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progress towards its goals. This framework implements a simple, yet ef-

fective and extremely powerful monitoring infrastructure: the API is made

of a small set of functions that makes it straightforward to use. This API

provides a simple abstraction, the heartbeat, which allow to measure ap-

plications performance in critical sections. More formally, an heartbeat can

be defined as a periodic signal sent from the application to the API to indi-

cate its progress. Heartbeats makes it possible to declare performance goals

through another simple concept: the heart rate. The hear rate is simply de-

fined as the number of heartbeat generated by an application in a time unit

and is measured in heartbeats
seconds

[
hb
s

]
.

Any application using the Application Heartbeat API has standardized

methods to:

• assert its performance goals specifying a certain number of parame-

ters when it registers: minimum and maximum heart rate, the size of

the monitoring window, the size of the heartbeats history buffer, and

others.

• update at runtime its progress calling a function that emits an heart-

beat. The framework automatically updates all the necessary infor-

mation about the global heart rate and the window heart rate, and

other internal structures;

• monitor the progress of the execution. The available information is

made available to either external interested observers or to the appli-

cation itself: these two scenarios are shown in Figure 2.7.

A typical example of Application Heartbeats use is a video encoder [50],

which measures the quality of its service (QoS) in frames per second: 30−35

frames per second are usually to be delivered to offer a good quality. The

video encoder can be instrumented in order to generate an heartbeat every

time a video frame is processed. An external observer can consequently
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Figure 2.7: From [7] – (a) Heartbeats statistics used by the application itself to perform self-

optimization; (b) optimization of system parameters by an external observer, working on

one or more applications.

improve (or reduce) the encoder performance through the modification of

some parameters, such as the number of cores assigned to it.

The Application Heartbeats monitor is particularly suitable for instru-

menting applications where there is a computational intensive code sec-

tion, realized as a loop in the code: one heartbeat is sent at each iteration

of the loop. Unfortunately, it is not possible to find such a behavior in all

the applications: Application Heartbeats proved to be a lightweight and

effective monitoring infrastructure, even if limited to a specific class of ap-

plications [51, 52, 53].

Heart Rate Monitor (HRM) The ideas behind Heart Rate Monitor (HRM)

[54] resemble those behind Application Heartbeats (see the previous Sec-

tion). However, the authors aim at improving its functionality. The fact that

Application Heartbeats is a portable user-space active monitor prevents a

portion of commodity operating systems (i.e., the kernel) to easily access

the information it provides, making the development of kernel-space adap-

tation policies troublesome. Moreover, Application Heartbeats only sup-

ports multi-threaded applications forgetting about multi-processed appli-
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cations and makes use of synchronization even for signaling progresses.

HRM is an active monitor, integrated with Linux, supporting applications

with multiple threads, multiple processes, and any feasible mix of threads

and processes, which avoids synchronization to reduce its overhead as much

as possible. HRM sacrifices portability to functionality and, just like Appli-

cation Heartbeats, it exposes a compact API, allowing applications and sys-

tem developers to instrument applications and build both user- and kernel-

space adaptation policies. The HRM framework is deeply analyzed in this

Section, since it represents the starting point for the implementation of this

research work.

The HRM framework inherits from Application Heartbeats the defini-

tion of heartbeat as a signal emitted by any of the application’s tasks at a

certain point in the code and indicating application’s progresses. A new

concept is introduced: hotspot; an hotspot is a performance-relevant portion

of code executed by any of the application’s tasks and usually abstracts the

most time consuming portion of a program. Since an application is a set of

tasks pursuing a set of objectives, any of the tasks working towards one of

such objectives can emit heartbeats. For this reason, the definition of group

as a subset of application’s tasks pursuing a common objective was intro-

duced. Groups are non-intersecting subsets; hence, a task belongs to only

one group at a time. It is important to notice how such a definition does not

neglect the existence of multi-grouped applications (e.g., a group encoding

the audio stream and a group encoding the video stream in an audio/video

encoder), a case Application Heartbeats completely neglects. The concept

of group allows HRM to support multi-programmed applications adopt-

ing multiple threads, multiple processes, or a mix of both processes and

threads: it is enough to attach each of the application’s tasks to the relevant

group. Within HRM, a unique Group IDentifier (GID) identifies a group.

Given the definitions of hotspot and group, it comes natural to define a re-
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lation n to 1 between such entities. Each of the tasks belonging to a group

executes the same hotspot, which is characterized by its heartbeats count,

performance measures, and performance goal. The heartbeats count is linked

to the number of times each task executed the hotspot. Performance measures

are expressed in heartbeats per second and capture the concept of heart

rate, which is the frequency at which tasks emit heartbeats. The performance

goal is expressed as a desired heart rate range, delimited by a minimum heart

rate and a maximum heart rate, similarly to Application Heartbeats.

The implementation of HRM consists of two parts, a user-space library

and the kernel-space code. The user-space library exposes the API for both

applications and systems developers; the API’s basics are reported in Ta-

ble 2.1. While the API’s functions for applications developers grant the

ability to instrument applications, providing a way to specify performance

goals and signal progresses, the API’s functions for systems developers

are meant to retrieve applications’ performance measures and performance

goals.

The API exposes two functions, hrm_attach and hrm_detach, to attach

the current task to the group identified by a GID and to detach the current

task. Two functions, hrm_set_active and hrm_set_inactive, are im-

plemented to either set active or inactive the current task: a task is said to

be active if it is executing the hotspot, inactive otherwise. These two states

prove to be useful to maintain performance measures in programs using

“spawn & kill” parallelization (e.g., x264 in the PARSEC 2.1 benchmark

suite [55]), in which there is no guarantee that at least one active task is al-

ways alive.

Different applications may be concerned with either long- or short-term

trends. Therefore, the API exposes both hrm_get_global_rate, to catch

long-term trends through the average heart rate over the whole execution

time, and hrm_get_window_heart_rate, to catch short-term trends (i.e.,
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Function Description

heartbeat Emit a heartbeat

heartbeatN Emit n heartbeats

hrm_attach Attach the task to group identified by GID

hrm_detach Detach from group

hrm_set_{active|inactive} Set the task active or inactive

hrm_set_{min|max}_heart_rate Set the minimum or maximum heart rate

hrm_set_window_size Set the sliding window size

hrm_set_timer_period Set the timer period

hrm_get_{global|window}_heart_rate Get the global or window heart rate

hrm_get_{min|max}_heart_rate Get the minimum or maximum heart rate

hrm_get_{window_size|timer_period} Get the window size or the timer period

Table 2.1: Functions exposed by the HRM user-space API

variable-length trends) through the heart rate measured over a time win-

dow. The window size, which is expressed in timer periods, is used to con-

trol the amount of past measures to account for; the timer period controls

how often performance measures are updated. The window size and the

timer period can be set through hrm_set_window_size and

hrm_set_timer_period respectively. Two additional functions,

hrm_set_min_heart_rate and hrm_set_max_heart_rate, are expos-

ed to adjust performance goals, which are defined as a desired heart rate

range. Other functions are available to retrieve performance goals and per-

formance goals related parameters. The most important API’s functions are

heartbeat and heartbeatN. Calls to these functions are inserted within

the hotspot of a program to signal progresses by incrementing the summa-

tion of heartbeats either by 1 or by a generic integer value.

The kernel-space implementation of HRM consists of an API that mim-

ics a subset of the functions described above, and the core of the active
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Figure 2.8: Figure 2.8(a) denotes the structure of the implementation of HRM; Figure 2.8(b)

shows the organization of memory pages devoted to heartbeats count; Figure 2.8(c) shows

the organization of the memory page dedicated to performance measures and performance

goal

monitor. Figure 2.8(a) shows the globally accessible list of groups at the

very base of the implementation of HRM. The list of groups can be read

in parallel and written serially by hrm_attach and hrm_detach func-

tion calls; to guarantee correctness, the list of groups is protected by a read-

/write lock. Each group is provided with a set of memory pages devoted to

heartbeats count and a memory page dedicated to performance measures

and performance goal. The amount of memory pages to store heartbeats is

a compile time tunable parameter.

Memory pages are shared between the kernel-space and the user-space to

reduce the overhead in accessing the information as much as possible. More

specifically, the content of memory pages devoted to heartbeats count is

the most critical to HRM since it can be concurrently accessed at a high

rate by both kernel-space tasks and user-space tasks. A way to avoid over-

heads and concurrency issues consists in splitting the heartbeats count in a

set of per-task heartbeats counts; hence, function calls to both heartbeat
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and heartbeatN reduce to an atomic variable increment. The amount of

heartbeats counts stockpiled in memory pages is architecture dependent

since they are cache line aligned. The implementation of HRM instantiates

standard-sized memory pages of 4 Kbytes and x86 and x86-64 microproces-

sors feature cache lines of 64 bytes: this implies that each memory page can

contain up to 64 heartbeats counts. Figure 2.8(b) shows the organization of

the memory pages devoted to heartbeats count focusing on tasks accessing

dedicated cache line aligned heartbeats counts.

Different applications and adaptation policies may be concerned with

either long- or short-term trends. Therefore, the 64 bytes of the memory

page dedicated to performance measures and performance goal contain

both a global heart rate, which accounts for the whole execution of a group

and catches long-term trends, and a window heart rate, which accounts for

the execution of a group over a time window and catches short-term trends.

The global heart rate and the window heart rate are respectively computed

according to Equation 2.1 and Equation 2.2. In the Equations, g indicates

the group, t indicates the current time, t0 indicates the time at which the

group was created, and tw indicates the time at which the window started.

The performance measures are asynchronously updated in kernel-space in

the context of a High-Resolution (HR) timer.

ghrg(t) =

∑
i cnti(t)

t− t0
(2.1)

whrg(t) =

∑
i cnti(t) − cnti(tw)

t− tw
(2.2)

The second chunk of 64 bytes of the memory page, dedicated to per-

formance measures and performance goals, contains a minimum heart rate

and a maximum heart rate to define a performance goal through a heart

rate range. Other available parameters are the window size and the timer

period; the latter sets the frequency at which performance measures are

updated, while the former sets the window size expressed in timer peri-
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ods. Figure 2.8(c) shows the organization of the memory page dedicated

to performance measures and performance goal; each task accessing these

information maps the whole memory page.

Resource contention

With reference to the work described in this dissertation, the most in-

teresting quantity to be monitored is the contention of resources among

different threads. Monitoring such a quantity is not that easy as it could

be for temperature: there are no sensors able to measure how much a data

is contended among different tasks. Previous works about this topic faced

this issue mainly undertaking two different roads: by exploiting hardware

techniques or by implementing higher-level software approaches.

Hardware Approaches Detecting sharing patterns of threads automati-

cally has always been a challenge. One of the first idea in this direction was

to exploit page protection mechanisms to identify active sharing among

threads. In [56] this approach is used to implement software Distributed

Shared Memory (DMS). However it has some important drawbacks [57]:

first of all, the coarse granularity of detecting page-level contention can

lead to an high degree of false sharing. Moreover, protecting pages results

in high overhead with an attendant increase in page-table traversals and

Translation Look-aside Buffer (TLB) flushing operations.

A more effective and low-weight way to gather data about contention

is by using the data sampling features of the Performance Monitoring Unit

(PMU) available in today’s processing units. PMUs integrate Hardware

Performance Counters (HPCs) that can be used to monitor and analyze

performance in real-time, offering finer-grained information and having

far lower overheads (since most of the monitoring is offloaded to the hard-

ware) [57]. HPCs allow the counting of detailed micro-architectural events
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in the processor, such as branch miss-predictions and cache misses. Thresh-

olds can be set on individual quantities in order to interrupt the processor

when they are overcome. Moreover, PMUs make additional registers avail-

able for user inspection: from the addresses that cause cache misses to the

corresponding offending instructions.

The quantities that can be monitored through HPCs are not directly re-

lated to data contention. However programmers often use these counters to

improve application performance by monitoring section of code to detect

and optimize hotspots and by building a model from this information in

order to quantify the contention among different tasks. For example in [57]

the system maintains vector of cache accesses to detect threads that share

data and examines memory access stalls to determine which threads are us-

ing data from a faraway cache. A different methodology, always exploiting

HPCs, is described in [6]: the marginal gain metric is defined as the deriva-

tive of task’s miss-ratio curve over time. Hardware counters are used to

measure the miss-ratio and some modifications to cache controllers are in-

troduced. The observation subsystem proposed in [58] inspects relevant

performance counters, gathering information on a per-thread basis. In par-

ticular, processors counters taken into account during measurements are:

Last Level Cache (LLC) misses, LLC references, instruction retired, core cy-

cles, and reference cycles. The choice of the performance counters to be

taken into consideration while designing a monitoring system exploiting

them is fundamental. In fact, the quantity of counters that can be enabled

is limited. Moreover many constraints are posed on their use and the doc-

umentation describing them is quite poor [57].

A great work on contention monitoring was performed by Federova

et al. [59, 60, 4]. After a deep state of the art analysis, the authors came

up with a methodology which allows to identify the solo LLC miss rate as

one of the most accurate predictors of the degree to which applications
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will suffer when co-scheduled. Then, they propose the design of a threads

classification scheme, according to their memory behavior, used to design

a suitable scheduling policy.

Software approaches The resource contention monitoring issue is tra-

ditionally related to the use of hardware counters: only a few examples

of meaningful software approaches relying on system simulation can be

found in literature. Among them the most important proved to be the one

by Cho and Jin [61]: this work involves simulation on a chip multithread-

ing and multiprocessing processor, comparing private and shared caches

among cores in a platform with a novel architecture in which memory

pages map into cache slices. Exploiting this enhancement, the authors demon-

strated that the OS, using its knowledge of memory page usage, can make

intelligent cache management decisions.

The monitoring infrastructure proposed in Chapter 3 and described in

Chapter 4 does neither exploits hardware counters (due to the limitations

previously exposed) nor architecture simulation. The designed approach

aims at instrumenting a user-space lock library with the HRM framework

(presented in 2.2.1), exploiting it not to monitor application performance,

but lock contention among threads.

2.2.2 *-aware Scheduling and Mapping

Autonomic capabilities can be shown in many different ways within an

operating system: by dynamically swapping the implementation of a sys-

tem feature with reference to the present conditions [23, 7], by adjusting

cores frequencies in order to meet security requirements related to tem-

perature [62, 63], by modifying the applications nice value to meet their

goals [7]. This work of thesis is focused on introducing autonomic capa-

bilities in a system by working on how tasks are mapped on the available
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cores, with the explicit aim of reducing resource contention. For this rea-

son, this Section investigates the state of the art on scheduling and mapping

algorithms which take into consideration several run-time information to

perform their job.

Power-aware and temperature-aware scheduling are both interesting

and challenging topics, but unfortunately go beyond the scope of this dis-

sertation. The former topic is well introduced in [53], which proposes Pow-

erDial a system for dynamically adapting application behavior to execute

successfully in the face of load and power fluctuations, actually reducing

the computational resources that the application requires to produce its re-

sults. These reductions translate directly into performance improvements

and power savings. Experimental results show also that PowerDial can sig-

nificantly reduce the number of machines required to service intermittent

load spikes, enabling reductions in power and capital costs.

A comprehensive overview on temperature-aware scheduling is given in [64].

Moreover, the authors propose Dimetrodon, a framework implementing a

software preventive thermal management mechanism by the injection of

CPU idle cycles while scheduling tasks. This technique proved to be ex-

tremely flexible and demonstrated its efficiency compared to hardware tech-

niques under throughput and latency-sensitive real-world workloads, achiev-

ing profitable trade-offs for temperature reductions up to 30% due to rapid

heat dissipation during short idle intervals.

Performance-aware and contention-aware scheduling are, instead, strict-

ly related to the work proposed in the next chapters. Thus, both of them are

deeply analyzed in the following sections. First of all, however, a brief in-

troduction to the evolution of the process scheduler in Linux is necessary:

the Linux scheduler does not provide an autonomic behavior, but repre-

sents the base case on which some of the presented works have been built

and this thesis work is built on, as well.
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Base case: the Linux Scheduler

One of the components that is most frequently updated and improved

in an operating system is the process scheduler. The Linux process sched-

uler does not represents an exception: this section analyses the evolution of

the scheduling algorithm from the its first implementation to the present

Completely Fair Scheduler (CFS). This component has been continuously

improved, thanks to, for example, load balancing techniques, but it is not

possible to state that it shows autonomic capabilities: many improvements

are thus possible under this point of view.

The scheduler algorithm included in the first versions of the Linux ker-

nel (released by Linus Torvalds in 1991 [8]) did not aim at obtaining the best

performance, but above all to be reliable. It was very simply designed, pro-

viding quite poor scaling capabilities with reference both to the number of

executing processes and to the number of available execution units. Despite

this, the first implementation of the algorithm did not change until 2004,

when Linux 2.6.8.1 was released [65]. In this Linux release, a new version

of the scheduling algorithm was inserted: it was designed in order to take

into account the heterogeneous targets of Linux (used both in desktop and

in server environments). The main feature of this new scheduler, the one

that gives the name to it, is its ability to pick the next task to be executed in

a constant time, not depending on the number of tasks to be scheduled or

on the number of available processors. Using a mathematical term, it has

a O(1) complexity, with the Big-O notation [66]. This important feature al-

lows the process scheduler to achieve better scaling performance than the

previous implementation, introducing two fundamental data structures:

• a runqueue structure for each processor in the system, storing a pointer

to the task assigned to that CPU for execution;

• two priority arrays for each runqueue: tasks are moved from the first
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one, named active to the second one, named expired, when they run

out of their execution quantum. When the active array is empty, the

scheduler simply inverts the two labels. The two priority arrays con-

tain linked lists, one for each priority level.

Each task is assigned a priority level by combining a static value, called nice,

and a dynamic value computed by the scheduler to improve interactivity.

In the O(1) scheduler, this is possible through a quite complex heuristics

(well describe in [67]) which classifies the task into CPU-bound or I/O-

bound, giving the latter ones higher priority.

This implementation of the scheduling algorithm introduces, for the first

time in Linux, the idea of load balancing: in order to keep the workload

distributed on the available processors, tasks are moved from overloaded

runqueues to the underloaded ones.

A great innovation in the scheduling algorithm was introduced by the

Completely Fair Scheduler (CFS), released with Linux 2.6.23 in 2007 [8],

and representing the scheduling algorithm used in the current versions of

the kernel. This scheduler was designed by the same author of the O(1)

scheduler and aims at solving the limitations of it predecessor: the com-

plex heuristics for tasks classification mainly. To do that the basic idea of

Rotating Staircase Deadline Scheduler (RDSL) was embraced: being fair

in CPUs assignment without trying to characterize the behaviour of each

task [68]. The fairness the name of the scheduler refers to is related to as-

signing computing resources to the tasks in execution. This is obtained by

introducing the concept of virtual runtime and by discarding the concept of

quantum of execution, fundamental in the O(1) scheduler implementation.

The virtual runtime [8] of a task is the actual amount of time spent by the

task running on a processor, normalized by the number of runnable tasks.

This quantity is measured in nanosecond and represents the time the task

would have run on an ideal machine able to support perfect parallel execu-
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tion, with an ideal number of processors equal to the number of runnable

tasks. The CFS updates the virtual runtime of each task periodically (at

each kernel tick) and, when needed, chooses the task with the lowest value

of virtual runtime for execution.

The CFS algorithm inherits the runqueues data structure from the O(1)

scheduler, but implements it in a different way. In order to optimize perfor-

mance in choosing the next task for execution, runqueues are implemented

as red-black trees [66]. This particular class of balanced binary trees allows

insertion and deletion of elements with a O(log(n)) complexity, where n

refers to the number of tasks in the tree, and is topologically ordered so

that the task with the minimum virtual runtime is always the leftmost leaf

of the tree [8]. The algorithm previously described achieves good schedul-

ing performance with reference both to interactivity and throughput, while

it does not really allow the user to influence the scheduler job.

In CFS the load balancer was improved too: with the diffusion of multi-core

architectures its role become crucial. The load balancer is invoked periodi-

cally by the scheduler code, randomly on one of the CPUs available in the

system. The balancing algorithm tests whether there is in the system a core

that is busier than the one on which it is executing. If the answer is yes, the

busiest runqueue is selected and one task is moved from that runqueue to

the current one. On the other hand, if the answer is no, nothing happens.

This algorithm relies on the fact that its code will be statistically executed

with the same frequency on each CPU. This is true, in the sense that exper-

imental results show the load balancer allows, on average, to reach an even

fairer distribution of the tasks on the CPUs runqueue.

Performance-aware Scheduling and Mapping

Once the most interesting infrastructures for performance monitoring

has been introduced, it is time to see how the information gathered by them
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is exploit in order to make the scheduling algorithm autonomic and behave

differently according to the changing conditions.

Scheduling in Sefos Due to the fact that the SEEC framework is com-

pletely implemented in user-space, the Linux scheduler algorithm was not

directly modified, but its decisions are indirectly affected from a user-space

library [19]. More specifically, the work of the scheduler in SEEC is guided

by a service named core allocator. This service is in charge of assigning a

subset of the available processing units in the system to the running appli-

cations. This is possible, in Linux and from user-space, by duly modifying

the affinity mask of the interested process. An affinity mask is a bit mask

associated with each task indicating what processor(s) it should be run on

by the scheduler of the OS. Each bit in the bit mask represents an available

processor: if the corresponding bit value is 1 the task is allowed to run on

that processor, if it is set to 0 this is not true.

Experimental results [69] show that this approach is enough to obtain

performance improvements. However the realization of such service in

user-space poses a number of limitations on the precision of the service

in affecting the system status. The main limitation is that the core allocator

can only indirectly map the tasks on the available processors, by modify-

ing their affinity mask, but the final decisions are taken by the kernel-level

Linux scheduler, which autonomously determines, for instance, when a cer-

tain task is to be moved. Despite the simplicity of the approach, this main

drawback convinced the authors that a kernel-space implementation of the

same service would be advisable when merging the SEEC framework with

the fos operating system.

Scheduling in K42 The tracing infrastructure that K42 offers, allows the

implementation of a performance-aware scheduler. This component imple-

ments an interesting approach, known as two-level scheduling [70], which is
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designed in order to divide the process scheduler in two subsystems: the

first one running in kernel-space and the second one in user-space. This

approach, absolutely consistent with the micro-kernel idea the OS is based

on, permits to achieve the following advantages:

• Improve performance by having only a single thread scheduler run-

ning in user-space (which avoids context switches), without the ker-

nel ever being aware of what it does;

• Allow applications to tailor the scheduler at the user-space level ac-

cording to their needs, simply by reimplementing the library.

The user-space scheduler is in charge of managing threads belonging to the

same process (thus, sharing the same address space). Threads are packed

into an entity called dispatcher: the kernel-space scheduler is not able to

distinguish among threads contained in the same dispatcher, leaving the

burden of managing them to the user-space scheduler. The kernel-space

scheduler can only schedule the dispatchers, assigning them the resources

by using resource domains, entities at a higher level in the hierarchy. More

formally, each resource domain groups a set of dispatchers; the rights to use

the hardware resources is given by the kernel-space scheduler to a resource

domain. Resource domains are supposed to fairly assign CPU time to users

by binding one resource domain to each user. Within a resource domain,

each dispatcher is bound to a specific CPU and the kernel may move a

dispatcher to a different processor for load-balancing purposes.

Such an approach leaves a lot of freedom and control to the applica-

tion developer, relying on its ability. In fact, the programmer could decide

to create a process using a single dispatcher with many threads and de-

fine the scheduling policy that marshals the threads by reimplementing the

user-space scheduler code. On the other hand, the programmer could use

multiple dispatchers to obtain real parallelism or to assign them different
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scheduling characteristics.

Performance-Aware Fair Scheduler (PAFS) As described in Section 2.2.1,

the HRM framework has been developed within the Linux kernel. Thus,

the Performance-Aware Fair Scheduler (PAFS) [54] modifies, exploiting data

coming from HRM, the Linux Completely Fair Scheduler (CFS) in order to

make it aware of the applications performance. When designing PAFS the

authors considered three main goals: first, applying a best-effort approach

to drive the instrumented applications towards meeting their performance

goals; second, being able to flawlessly manage also legacy applications;

and third, being safe, ensuring that no task of any application (either in-

strumented or legacy) ever results in starvation. PAFS observes the perfor-

mance measures of the instrumented applications, trying to speed up or

slow down their tasks according to whether they are matching or not their

performance goals.

HRM allows expressing performance goals in terms of a heart rate range

delimited by a minimum heart rate and a maximum heart rate. These two

bounds are interpreted by the proposed adaptive process scheduler as fol-

low: the minimum heart rate defines a strong lower bound for performance

while the maximum heart rate defines a weak upper bound for perfor-

mance. The adaptive process scheduler assigns microprocessors’ time to

tasks in order to keep the performance measures of monitored applications

above their minimum heart rate, penalizing as needed the ones that are

performing over their maximum heart rate. However, no guarantees on

performance goals matching are given (for instance, this could even be im-

possible due to resources scarcity).

The default, performance-unaware CFS scheduler implemented in Linux

exposes two interesting properties that make it a solid base to build PAFS

on: fairness and second non-starvation. PAFS introduces the concept of per-
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formance-aware fairness, meaning that the process scheduler gets fair in as-

signing microprocessors time accounting also for applications performance

and performance goals. The introduction of performance-aware fairness

consists in modifying the computation of the virtual runtime, taking into

consideration application’s current performance and its performance goals.

The non-starvation property is proved to be preserved by these modifica-

tions. The decision policy which decides how much the application’ current

performance and its goals are related to the virtual runtime is a simple yet

effective heuristics, which defines this relationship as the ratio between ei-

ther the global heart rate or the window heart rate and an average between

the minimum heart rate and maximum heart rate. In this way, tasks are

progressively advantaged when their heart rate is less than the minimum

heart rate while they are progressively disadvantaged when their heart rate

is greater than the maximum heart rate. When the heart rate matches the

performance goal the behavior of PAFS replicates that of CFS.

Other interesting research works related to performance-aware schedul-

ing are Performance-Driven Processor Allocation (PDPA) [71] and Scheduler

for Multimedia And Real-Time applications (SMART) [72, 73]. The for-

mer project focuses on processor allocation in shared-memory multipro-

cessor systems, where no knowledge of the application is available when

applications are submitted. SelfAnalyzer is used to dynamically analyzing

speed-up, efficiency and execution time of running applications and a new

scheduling policy that distributes processors considering both the global

conditions of the system and the particular characteristics of running appli-

cations is designed. The importance of the interaction between the medium-

term and the long-term scheduler to control the multiprogramming level in

the case of the performance-aware scheduling policies is also highlighted.

The second project, SMART, supports applications with time constraints,

and provides dynamic feedback to applications to allow them to adapt
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to the current load. The integrated support for real-time applications and

conventional processes allows the user to prioritize across real-time and

conventional computations, and dictates how the processor is to be shared

among applications of the same priority. Dynamic and seamless resource

allocation is also granted by the framework itself: real-time tasks are shed

and their execution rates are regulated when the system is overloaded,

while providing better value in underloaded conditions than previously

proposed schemes.

These projects are not further investigated in this document (the in-

terested reader can refer to the cited bibliography for more information)

in order to focus the attention on the state of the art on contention-aware

scheduling (treated in the next section).

Contention-aware Scheduling and Mapping

While the contention monitoring approaches proposed in literature dif-

fer a lot from the one proposed in this work (based on HRM, as explained

in Chapter 3), the scheduling policies that have been designed provide an

interesting background to compare and improve the one presented in this

document.

DI, DIO, and DINO Based on the classification schemes derived from

the evaluation of the LLC miss rate (via hardware performance counters),

a scheduling policy named Distributed Intensity (DI) was designed [59]. In

the DI algorithm all the tasks are assigned a value equal to their solo miss

rate, and classified as memory intensive or non-intensive. The goal is then to

spread the threads across the system such that the miss rate are distributed

as evenly as possible. In order to move the tasks in the best way possible,

the notion of memory hierarchy entities is taken into account. Memory hi-

erarchy entities are distinct hardware modules (e.g., cores, chips, packages)
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each of which is located on its own level of memory hierarchy (see Sec-

tion 1.2.3). During the initialization phase, the algorithm determines the

number of memory hierarchy levels and the number of distinct entities on

each level. DI then tries to even out the miss rate on all levels of memory

hierarchy, assigning tasks on the base on the solo miss rates of the appli-

cations. The real miss rate of applications will change when they share a

cache with a co-runner. The DI scheduler is implemented as a user-space

scheduler running on top of the Linux kernel. It enforces all scheduling

decisions via system calls which allow it to bind threads to cores.

However, DI uses solo miss rate estimated using stack distance profiles

as the input to the classification scheme. The stack distance profiles require

extra work to obtain while the algorithm is running, thus the presented

approach is not feasible online. An improvement of such algorithm, ex-

ploiting the same classification scheme and scheduling policies as DI, was

implemented in order to obtain the miss rates of applications dynamically

online via performance counters. This algorithm is named Distributed In-

tensity Online (DIO) [59, 60]. The dynamic nature of the obtained miss rates

makes DIO more resilient to applications that have a change in the miss

rate due to LLC contention. While running, DIO continuously monitors the

miss rate of applications and thus accounts for phase changes. To minimize

migrations due to phase changes of applications, miss rates are collected

not more frequently than once every billion cycles and an average of them

is used for scheduling decisions. Every billion cycles the new miss rates are

measured and the tasks assignment is re-evaluated based on the updated

miss rate running average values for the workload. As DI, also DIO is com-

pletely implemented in user-space, thus managing the assignment of tasks

to cores using affinity interfaces exposed by the Linux kernel.

The DIO algorithm proved to have the inherent ability to predict when a

group of tasks co-scheduled on the same memory domain will improve
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or degrade each other’s performance. Further research revealed that this

ability could be exploited to build a power-aware scheduler (called DIO-

POWER) that would not only mitigate resource contention, but also reduce

system energy consumption. The idea which inspired the design of such

algorithm is that clustering tasks on as few memory domains as possible

reduces power consumption [59].

The same research group tried to bring the same algorithm on a NUMA

system obtaining poor results [74]: not only contention was not manage ef-

ficiently, but sometimes performance were even hurt when compared to a

default contention-unaware scheduler. This is due to the fact that NUMA-

agnostic migrations fail to eliminate contention for some of the key hard-

ware resources on multi-core systems and create contention for additional

resources. To overcome these difficulties a new version of the DIO algo-

rithm was designed and named Distributed Intensity NUMA Online (DINO).

DINO prevents superfluous thread migrations, but when it does perform

migrations, it moves the memory of the threads along with the threads

themselves. DINO represents an evolution of DIO, thus it inherits the same

basilar concepts, reviewed, when needed, in order to adapt to NUMA ar-

chitectures.

Futex Aware Scheduling Technique A work even more related to the one

presented in the next chapters is the one discussed in [75]. The aim of the

Futex Aware Scheduling Technique (FAST) project is to efficiently reuse the

thread’s state that is already in a processor’s cache by enforcing an affinity

between the processor and threads executing on them, applying this idea

to locks and data in critical sections protected by these locks.

The whole framework is developed, again, in user-space, modifying

only partially the O(1) scheduler implementation in the Linux 2.6 kernel.

Contention is monitored through Perfmon [76], a performance monitoring



CHAPTER 2. CONTEXT DEFINITION 68

tool which allows to collect counts or samples from unmodified binaries

and uses hardware performance counters. The additional information com-

ing from this monitor enables the scheduler to take intelligent decisions for

tasks that are contending for locks. In order to obtain such an intelligent

behavior, the OS has been modified as follows:

• a new entry was added to the structure describing each sigle task,

named cpu_lock. This new field is supposed to store the identifier

of the physical Central Processing Unit (CPU) the task will need to

run on when it acquires a lock;

• the futex_wake() function was modified in order to set the cpu_lock

field for the acquiring task equal to the identifier of the CPU of the re-

leasing task;

• the O(1) scheduler was modified to check the cpu_lock field when

migrating a task or when trying to activate a blocked task. In partic-

ular, if the cpu_lock value is valid the task is accordingly migrated,

if not the scheduler performs its operations as usual.

Moreover, in order to avoid any load balancing problem, the default sched-

uler tasks migration mechanisms is given higher priority over the pre-

sented policy.

The results reported in [75] are very interesting under the point of view

of cache miss rate reduction, showing good improvements both with micro-

benchmarks and with more general benchmark. However, no results are

described about the overall execution time, useful to understand if a real

improvement was reached. Moreover, the described approach is nowadays

outdated, due to the new Completely Fair Scheduler implemented in the

Linux kernel.

The two projects presented in this section are the ones that are more

strictly related with and that mainly inspired the approach described in the
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next chapters. Some other interesting works on contention-aware schedul-

ing are [58] and [57]. They do not introduce original elements, thus they

did not deserve a specific paragraph in this chapter.

2.3 Summary

This chapter provided a wide and high-level bird’s eye view on the

context this thesis deals with. First, in Section 2.1 the design principles

for autonomic systems to be implemented are shown and most important

operating systems providing autonomic capabilities were presented. Af-

ter this introduction the work state of the art on system monitoring and

*-aware process scheduling is investigated (Section 2.2). In particular, Sec-

tion 2.2.1 described monitoring techniques focusing on performance mon-

itoring (specifically HRM) and resource contention monitoring, in order

to make a comparison between existing approaches and the proposed one

possible. Then, Section 2.2.2 explained how the information gathered by

the monitor infrastructure is exploited to improve the process schedul-

ing mechanism, both for performance and resource contention quantities.

Moreover, a brief evolution of the Linux scheduling algorithm was sketched

in order to introduce the basic concepts used by the *-aware algorithms and

by the one implemented for this research work.

At this point, all the concepts needed to understand the work have been

introduced and the related works have been investigated. The original part

of this thesis can presented: next Chapter 3 describes in the details how

the monitoring framework and the scheduling policy have been designed,

leaving the implementation details explanation in Chapter 4.



Chapter 3

Proposed Approach

The aim of this third chapter is to introduce the real contribution of this

thesis to the research in the field of autonomic computing. The work devel-

oped in the last months is only a small brick in a more ambitious research

project: CHANGE. The goal of this project is to implement a new auto-

nomic operating system, named AcOS, from scratch: nowadays the whole

system has been designed, while the actual implementation relies on the

GNU/Linux operating system.

The author gave his contribution to the design of the overall idea behind

the creation of the AcOS operating system and actually contributed, with

the work described in this document, in the following two directions:

• in the implementation, based on the HRM framework, of a new type

of monitor for lock contention among threads;

• in the design of an adaptation policy able to exploit the information

gathered from the newly introduced monitor to map the tasks exe-

cuting in the system to the available CPUs in order to achieve a per-

formance improvement, in term of a reduction of the tasks execution

time.

The structure and the ideas the AcOS is based on, are presented in Sec-

70
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tion 3.1. The following two sections are devoted at explaining in the details

the concepts this specific work is built on. First, in Section 3.2 why and

how HRM, which is born as a performance monitor, can be converted to a

resource contention monitor is shown and the modification needed to the

framework in order to allow this new use are presented. Then, Section 3.3

explains the theoretical foundations that guided the implementation of an

adaptation policy for the mitigation of the lock contention and the result-

ing improvement in tasks performance through the reduction of their exe-

cution time.

3.1 The CHANGE view

The CHANGE (standing for Computing in Heterogeneous, Autonomous

’N’ Goal-oriented Environments) research group works at the Dipartimento

Elettronica e Informazione (DEI) in Politecnico di Milano in the field of op-

erating systems. The aim of the research developed by the group is the de-

sign and the implementation of a completely new operating system show-

ing self-aware capabilities. The Operating System (OS) should be able to

run on any modern computing device: from desktop to server computing

systems, from mobile phones to tablets. This is possible thanks to a power-

ful autonomic layer that allows the system to understand the features and

the limitation of the environment it is running on, continuously ensuring

optimal performance. In this context the concept of performance is wider

than usual. In fact, this term does not refers only to the throughput of the

system or to the execution time of the running applications, but considers

also aspects such as the system safety (in term of temperature, for example)

or the system uptime and duration (considering its power consumption in

relation with the battery length, in a mobile system). Thus, the operating

system has to meet two types of needs:
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• system goals: referring to objectives related to the system as a whole,

such as keeping the temperature of the cores under a certain thresh-

old in order to avoid protection mechanisms to be activated or min-

imizing the power consumption of the system to let it last/consume

as little as possible. System goals are specified by the system designer

and are strictly related to the hardware the system is equipped with.

• application-specific goals: are specified, through a standardized inter-

face, by the applications running on the system. The system itself is

in charge of providing the best effort in order to achieve the goals of

al the applications, being fair in doing this and paying attention to its

goals too.

3.1.1 Terminology

Before getting into the details of how the envisioned operating system

works, some terminology is needed to avoid any kind of misunderstand-

ing.

• Application. An application is an element capable of making one or

more entities of the system aware of its performance goals and its

current status.

• Monitor. A monitor is an entity equipped with sensors able to gather

information from the monitored applications or from the system. With-

in this context, it is important to notice that goals, expressed by an

application, are defined using data that can be measured through a

monitor.

• Adaptation Policy. An adaptation policy is an element whose objec-

tive is to observe applications through monitors, in order to decide

on a strategy to change the behavior of the self-adaptive computing
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system for meeting the goals declared by the applications. A self-

optimizing application is a special application in which the roles of

application and adaptation policy co-exist.

• Adaptation Manager. The adaptation manager is a singleton element

detecting whole system problems and applications meeting or not

their goals, allocating (de-allocating) them to (from) adaptation poli-

cies.

3.1.2 The AcOS self-adaptive control loop

As described in Section 1.2.1, a computing system that aims at showing

an autonomic behavior has to implement the so called self-adaptation control

loop. Among the ones presented in the cited section, the control loop design

chosen to be embedded in the new OS is the Observe Decide Act (ODA)

control loop. Differently from the autonomic systems analyzed in the state

of the art (Section 2.1), the OS here described aims at exploiting the control

loop at different levels. At a lower level, the single component can benefit

from autonomic management via internal ODA loop and, at higher level, a

broader control loop, having a clear knowledge of all the components the

system is made up of and aware of the system status as a whole, can orches-

trate the different components in order to achieve system and application-

specific goals. This self-awareness should allow the burden of the system

parameters tuning process to be taken away from the programmer. More-

over, it should also allow the applications developers to concentrate on

what their applications must do, leaving all the architecture-dependant de-

tails to be managed by the autonomic features of the system where their

software will be deployed. The resulting system is a self-adaptive comput-

ing system whose structure is presented in Figure 3.1.
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Figure 3.1: Block diagram of the approach proposed to design and implement self-adaptive

computing systems.

Observe

In this context, two distinct roles are clearly defined: applications devel-

opers and systems developers. The former are in charge of writing appli-

cations and, if needed, of instrumenting them in order to provide as much

information as possible to the self-adaptive computing system (e.g., user-

specified goals). The latter are in charge of writing monitors, which can

be either active or passive and allow the self-adaptive computing system to

collect as much information as possible, adaptation policies, providing as

many ways as possible to change the behavior of the self-adaptive comput-

ing system (e.g., a specialized adaptive process scheduler), and the adap-

tation manager. With reference to monitors, a monitor is said to be active

when applications require to be to manually instrumented to provide infor-

mation: this is the case of Heart Rate Monitor (HRM) when used as a perfor-

mance monitor as described in Section 2.2.1. On the other hand, a monitor

is considered passive when no intervention on the application code is re-

quired to the programmer in order to provide relevant information: a tem-

perature monitor, exploiting cores sensors, is a passive monitor. A special

case is represented by the contention monitor described in the next section:
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while exploiting HRM to emit heartbeats, there is a locking library level

between the monitor and the application. In this sense, the monitoring of

the locking library is actually active, since its instrumentation was needed,

while the monitoring of the application can be considered to be passive: if

the programmer is using the instrumented locking library to manage con-

tention in its code, no further modifications to the application are needed

for contention information to be made available to the system.

Decide and Act

The resulting self-adaptive computing system exploits the ODA con-

trol loop, as pointed out in Figure 3.1. Monitors are responsible for yield-

ing measures and goals (e.g., performance, temperature, power consump-

tion, resource contention, . . . ), hence implementing the observe phase of

the ODA control loop. The decide phase of the ODA control loop is parti-

tioned between the adaptation manager and adaptation policies. The adap-

tation manager is in charge of detecting problems through measures and

goals reported by monitors and of deciding on a strategy to allocate ap-

plications to adaptation policies. Adaptation policies are meant to change

the behavior of the self-adaptive computing system by working on a set

of parameters that can belong to either the computing system or the appli-

cations, and tuning their influence in accordance with measures and goals

retrieved through monitors.

The role of the adaptation manager in the system economy is challeng-

ing and important, yet not fundamental [7]. It stands at the center of the

higher-level decision loop and exploits the awareness given by the avail-

able monitors to elaborate a plan for future behavior. The aim is to tune

performance in order to make each monitored process achieve its perfor-

mance goals. In particular, the adaptation manager is in charge of: deter-

mine and constantly updating the available adaptation policies and the
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monitored applications; gathering the information coming from the moni-

tored processes; analyzes the performance-related data in order to under-

stand whether to enact a correction policy; decides which application are to

be allocated (de-allocated) to (from) adaptation policies and communicate

them this decisions. The decision policy that drives the adaptation manager

is based on machine learning techniques, which were proved powerful tools

for managing the increasing complexity of computing systems [51]. The de-

sign principles that guided the implementation of the adaptation manager

are the following:

• the interface between the adaptation manager and the adaptation

policies is extremely simple, allowing fast and low-overhead com-

munication;

• there is no need to model the behavior of the adaptation policies, and

for the adaptation manager to know its effects in advance: this capa-

bility is provided by the machine learning engine.

The research on this component is still ongoing and, at the time this the-

sis has been written, a stable version of it is not available. For this reason,

the system used for the implementation does not show a adaptation man-

ager, relying only on the lower-level ODA loop implemented within each

adaptation policy.

3.1.3 CHANGE over Linux

In order to realize a first prototype of the sketched operating system,

named Autonomic Operating System (AcOS), the GNU/Linux OS was cho-

sen as a starting point. The advantages of relying on an already established

open-source OS instead of starting writing the whole system from scratch

are summarized below:
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• Linux is widespread and an autonomic framework on top of it al-

lows to keep full compatibility with legacy applications and to offer

a well known development environment for the creation of new ap-

plications.

• The diffusion of Linux in many environments (from mobile and em-

bedded devices to servers and supercomputers) offers support for a

wide set of architectures where the autonomic OS can natively run.

• The open and community-based development style of Linux allows

to directly access all the source code and easily find documentation

and support. Moreover, Linux is continuously tested against security

bugs and any fix distributed for Linux is automatically available for

the Linux-based autonomic OS.

• Linux, through its developers, already addresses the major issues with

contemporary operating system. Thus, the CHANGE group can be

more focused on the autonomic features, without the need to invest

too much time in other issues that would require a lot of attention in

a OS developed from scratch.

The next two sections focus more specifically on the work developed

for this thesis: the design both of a monitor, able to provide the system in-

formation about the contention of locks within different threads, and of a

adaptation policy which exploits the information provided by this moni-

tor in order to improve application performance, acting on task mapping

within the Linux kernel.

3.2 HRM for Contention Monitoring

The Heart Rate Monitor (HRM) was presented and deeply analyzed in

Section 2.2.1, introducing it as a framework for applications performance
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monitoring. The approach proposed by HRM and, before, by Application

Heartbeats, can have a wider interpretation, since provides the applica-

tions a way to communicate that something is happening with a certain

frequency, not strictly coupled with the concept of the progress of the job

they are performing. It is possible to state that the meaning of an heartbeat

emission and of the heart rate value depend on the interpretation the adap-

tation policy gives to it. Having this idea in mind, it is possible to interpret

the emission of an heartbeat as a communication by a task which notifies

that it is stuck waiting for a lock to be released and cannot go on with its

job.

This new meaning of an heartbeat inspired the research work presented

here and demonstrates the flexibility of the HRM framework. When deal-

ing with HRM for lock contention measuring, an heartbeat is emitted ev-

ery time a task is not able to access its critical section, since another task is

holding the lock. In this scenario, some endpoints of the HRM performance

version need a review:

• if when considering performance a greater heart rate means a bet-

ter application behaviour, a lower heat-rate represents better perfor-

mance if lock contention is considered;

• the definition of a maximum and minimum heart rate is quite useless

if dealing with contention, since the desired heart rate value should

be the lowest possible. In the case of performance monitoring, the

definition of a minimum heart rate threshold was fundamental to

tune the system parameters and, when possible, strictly respected.

The maximum heart rate value, on the other hand, was to be set in

order to fix an upper bound to the required quality of service, in or-

der to avoid useless computation and, consequently, a temperature

increase or an energy waste. However, meeting this constraint was

not considered to be crucial.
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• a desired heart rate equal for all the applications and not depending

on them is 0. In fact, if an heart rate of 0 is reached, it means that no

tasks is trying to acquire a lock without being able to do that: thus,

there is no contention between threads.

Intuitively, the idea is to write a lock library instrumented with HRM

and emitting one heartbeat every time the acquisition of a lock fails. In par-

ticular, it makes sense to emit an heartbeat not every time a lock acquisition

fails, but if and only if the lock acquisition fails and the task holding the lock

is actually executing on another processor.

To demonstrate the validity of the proposed approach a simple lock

library was implemented, containing only spin-locks. As described in Sec-

tion 1.2.4, spin-locks are one of the simplest implementation of locks: they

simply wait for the lock variable to change its value and continuously test

it, in a busy waiting fashion. Spin-locks are still widely used, while their use

is usually coupled with other synchronization methods. For these reasons,

a library lock containing spin locks is enough to demonstrated that the de-

scribed methodology is valid, while it would be advisable to extend the

instrumented lock library with other synchronization methods to obtain a

better description of threads contention.

In order to put into practice the described methodology, each lock is to be

associated with a HRM group, allowing the system to retrieve an heart rate

for each group (i.e., a number describing the contention over the associ-

ated lock). However, the current implementation of HRM does not allow to

do this, since, as mentioned before, groups are non-intersecting subsets: a

task belongs to only one group at a time (the support for multi-task groups

come by default with HRM). In the envisioned approach, each lock must

be associated with a group: by maintaining the previous implementation,

it would be possible to consider applications contending only for a single

lock, which is not a very common case in real applications. Thus, a redesign
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of the HRM framework was needed in order to insert this new feature in it

(implementation details are discussed in Section 4.1).

Even after these modifications, the HRM monitoring infrastructure main-

tain some basic design goals:

• instrumented applications performance should suffer as little as pos-

sible from the monitoring overhead;

• non-instrumented applications performance should not suffer at all

from the presence of monitored applications;

• the information gathered by the monitor should be easily accessible

by other interested system components, both in kernel-space and in

user-space.

These design principles are met thanks to some wise implementation choices.

First of all, the computation of the statistics is decoupled from the emission

of the heartbeats: this was done by moving the code in charge of doing

the calculation in a routine periodically executed thanks to the high resolu-

tion timers available within the Linux kernel. Moreover, the tasks registra-

tion to a group is made possible through a clear Application Programming

Interface (API) (only partially modified for the introduction of multi-group

registration support): in this way the monitoring is activated only on inter-

ested application, making the direct overhead on non monitored applica-

tions zero.

The gathered information is shared with the interested components in user-

space exploiting the great support to shared data structures provided by

Linux. This mechanisms proved to be simple and convenient in many cases,

while leading to possible performance issues in multi-core and multi-proce-

ssor systems where a poor design of shared data may generate useless traf-

fic on the buses to maintain cache coherency. The communication of the

monitored information is even simpler within the kernel, where a global
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groups list is stored and easily accessible. Last, it is worth noting that the

heartbeats emission is, also, completely lock-less: locks are needed only for

adding and removing tasks to/from a group and for guaranteeing the cor-

rectness of the statistics computation.

The statistics that are made available by the monitor are exactly the

same exposed by the original HRM and are computed for each group:

• the global heart rate, defined as the number of heartbeats emitted by

all the member of a given group divided by the total monitoring time.

More formally, the global heart rate is:

global_hrn(t) =
∑N

i=0 cntri(t)
t

[
heartbeats

seconds

]
where n is the Group IDentifier (GID), t is the time, in seconds, passed

since the creation of the group, and the index i goes from 0 to N (the

number of tasks in the group).

• the window heart rate, calculated on the last W time slots, i.e. on the

last W× timeslot_duration seconds. With a mathematical formula:

window_hrn(t) =
∑N

i=0 cntri(t) −
∑N

i=0 cntri(t−w)

w

[
heartbeats

seconds

]
where all the variables have the same meaning as before and w is the

effective duration, in seconds, of the time slot.

Next section is devoted to the explanation of the algorithms imple-

mented in order to reduce contention, thus improving application perfor-

mances.

3.3 Adaptation Policies

In order to exploit the locality of the critical section, data tasks that re-

quire the same lock should be moved to the processor that is executing the
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task that currently holds the lock. The advantages of implementing such

a policy are several. For example, when a lock is released and the thread

that blocked on the lock is awakened, it directly uses the data in its local

cache rather than doing remote bus requests to fetch the data [75]. This is

quite important, given the fact that the current microprocessors are much

faster than the memory subsystem and the system bus, and hence have to

use the data in their cache very efficiently. Additionally, this translates into

a reduction in the number of requests in the bus and hence improvement

in the scalability of Symmetric Multi-Processor (SMP) systems. The thread

is then able to perform the computation in the critical section faster and to

release the lock quicker, since the data is already present in its local cache.

All these advantages should speed up applications that have heavy syn-

chronization overhead.

According to these concepts, the adaptation policy should be able to

move tasks that contend for the same lock on the same processor. By de-

sign, if all threads that share the same lock are moved on the same execu-

tion unit, no more heartbeats will be generated within that group, leading

to a decreasing global heart rate and null window heart rate. This is due

to the fact that if a thread is not able to acquire a lock it is not possible

for the lock owner to be in execution, since all the threads are mapped to

the same processor. Thus, the adaptation policy that has to be implement

should aim at reaching a zero window heart rate for each existing group,

remembering that an higher heart rate corresponds to an higher contention

on the considered lock.

3.3.1 Lock Contention Data

Before looking at the adaptation policies, it is worth investigating which

are and how are organized the data that can be exploited. The implemented

system gathers information about the current status of the instrumented
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processes periodically. This period can be varied: in the performed exper-

iments this value, after some tuning, was set to 1 second, which provides

a good trade-off between the algorithm reactivity and its overhead. Con-

tention data are read from the monitor and stored in specific data structures

before starting operating on them, with the specific aim of reducing mem-

ory accesses and of optimize storing space. The available data structure are

the following:

• group_array: an array with a dynamic length which is constantly

updated in order to contain the GIDs of the groups active in the sys-

tem;

• heartrate_array: an array of the same length of the group_array

storing their respective window heart rate;

• sorted_group_array: another array of the same length of the pre-

vious two, containing the indexes of the first one so that they are

sorted by decreasing window heart rate

• task_array: an array containing pointers to the task_struct de-

scribing each instrumented task running in the system;

• incidence_matrix: a n×m matrix, where n is the number of mon-

itored tasks and m is the number of active groups. The cell (i, j) in the

matrix is equal to 1 if and only if the group gj contains the task ti.

Just to clarify the concepts, Figure 3.2 proposes a visualization of the storing

structures presented above.

3.3.2 Implemented Heuristics

Two different adaptation policies where designed for this work of the-

sis, both based on simple heuristics. The first and the simplest one does not
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Figure 3.2: Data structures used to store information about the monitored tasks.

use all the described structures: in particular, it does not sort the group_-

array at each iteration, but it simply find the group with the highest win-

dow heart rate, neglecting the others. Once the group has been selected,

the incidence_matrix is parsed in order to find all the tasks belonging

to that group. All these tasks are then moved to the same processor. A CPU

counter is then increased and the cycle starts again. The pseudo-code for

this simple heuristics is shown in Listing 1.

The second heuristics is more complex. At each iteration the

sorted_group_array is filled in with the indexes of the group_array,

sorted by decreasing value of the corresponding window heart rate. Then,

for each group, following the order of the sorted array, the tasks belonging

to that group are retrieved. All these tasks are again, moved to the same
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Algorithm 1 Pseudo-code for the first heuristics.
initialize cpu_counter to 0

loop

update contention data

find max in the heart_rate_array

store the index of this element in j

for all i in task_array do

if incidence_matrix(i,j) == 1 then

move task i to the processor cpu_counter % online_cpus

end if

end for

increment cpu_counter

end loop

processor. When a task is selected for the first time, its row in the incidence

matrix is set to all zeros in order to avoid the policy to move the task again,

to accomplish the needs of other groups with a lower heart rate. Again,

a CPU counter is used and incremented in order to equally distribute the

tasks on all the available processors. The pseudo-code also for this second

heuristics has been written and it is reported in reported in Listing 2.

The first approach proved not to provide good performance when deal-

ing with an high number of groups, since the number of cycles required to

spread the tasks among all the CPUs was too high. For this reason, after the

first experiments, this first implementation was abandoned in favour of the

second one which showed better performance, as shown later in Chapter 5.

Execution Example A practical example of this second implementation

can help in understanding how it works. Imagine to have 7 tasks, attached

to 3 different groups as shown in the incidence matrix in Table 3.1.

When the adaptation policy notices the presence of new groups in the sys-
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Algorithm 2 Pseudo-code for the second heuristics.
initialize cpu_counter to 0

loop

update contention data

sort the heart_rate_array

store the sorted indexes in the sorted_group_array

for all i in sorted_group_array do

for all j in task_array do

if c == 1 then

move task with index i to the processor cpu_counter mod

online_cpus

for all k in group_array do

set incidence_matrix(i,j) = 0

end for

end if

end for

increment cpu_counter

end for

end loop
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GID 10 20 30

window hr / / /

sorted index / / /

PID CPU cnt 0

10000 0 0 1

10001 1 0 1

10002 1 1 1

10003 0 1 0

10004 0 1 0

10005 1 0 0

10006 1 0 0

Table 3.1: Adaptation policy example: starting scenario.

tem, all the data structures are filled in, retrieving the window heart rate of

each group, and computing the array containing the their sorted indexes.

The data structures at this step of execution are shown in Table 3.2.

Now, the heuristics starts doing its job: the group with the highest win-

dow heart rate is selected (with GID 20 in this example) and the three tasks

belonging to it (with PID 10002, 10003 and 10004, respectively) are moved

on the same processor. The rows related to these tasks are filled with zeros

and the CPU counter is incremented. Following the window heart rate in

a decreasing order, the group with GID 30 is considered: the tasks still be-

longing to this group according to the incidence matrix are the ones with

PID 10000 and 10001. They are moved to the processor with ID 1, the corre-

sponding rows are set to 0 and the CPU counter is newly incremented. Last,

the two remaining tasks are moved to CPU 2. The first iteration of the cycle

ends since no more groups are to be analyzed: after the selected period the

algorithm is executed again, working on updated data.
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GID 10 20 30

window hr 10K 30K 20K

sorted index 2 0 1

PID CPU cnt 0

10000 0 0 1

10001 1 0 1

10002 1 1 1

10003 0 1 0

10004 0 1 0

10005 1 0 0

10006 1 0 0

Table 3.2: Adaptation policy example: data structures initialization.

3.4 Summary

This chapter presented the original contribution of this work to the

CHANGE project and to the autonomic operating system field. In particu-

lar, the attention was focused on the explanation of the theoretical concept

behind the developed work. Section 3.1 presented the design principles

that inspired the creation of the AcOS operating system and its conceptual

structure, in which this thesis is located. The focus was then moved to the

methodology that was followed in the design of the lock contention moni-

toring infrastructure and in the instrumentation of a simple locking library,

in Section 3.2. Last, Section 3.3 described the adaptation policy for the tasks

performance improvement from an high-level point of view, providing a

simple example in order to better understand its behavior. Implementation

details of the whole framework, made up of both the monitoring infras-

tructure and the adaptation policy, are presented in the next Chapter 4.
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GID 10 20 30

window hr 10K 30K 20K

sorted index 2 0 1

PID CPU cnt 0

10000 0 0 1

10001 1 0 1

10002 1 1 1

10003 0 1 0

10004 0 1 0

10005 1 0 0

10006 1 0 0

10 20 30

10K 30K 20K

2 0 1

CPU cnt 1

0 0 1

1 0 1

0 0 0

0 0 0

0 0 0

1 0 0

1 0 0

10 20 30

10K 30K 20K

2 0 1

CPU cnt 2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

1 0 0

10 20 30

10K 30K 20K

2 0 1

CPU cnt 2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Table 3.3: Adaptation policy example: heuristics.



Chapter 4

Proposed Implementation

This chapter describes the main technical and implementation details

which allowed to put into practice the concepts presented in the previ-

ous chapter. This practical part required both to understand and modify

already existing code, and also to design and write part of the code from

scratch. It was also required to implement code both in user-space and in

kernel-space. In particular, the extension of the Heart Rate Monitor (HRM)

framework (see Section 4.1) needed a lot of modification in kernel-space,

while leaving the user-space library quite unmodified. The lock library,

presented in Section 4.2, was completely developed in user-space, while

the adaptation policies (Section 4.3) were coded in kernel-space.

As already pointed out, the whole framework is developed within the

GNU/Linux operating system, with the 2.6.35.14 kernel version [77]. The

2.6.35 version of the kernel was chosen since it was the latest longterm re-

lease at the time this work of thesis began (and it is still the latest long term

release at the time this thesis is written). In Linux lingo if a release if marked

as longterm, it means that it will be supported with bug fixes and security

patches for a longer time than standard stable releases (in fact, the last final

.14 version number is an incremental number used for updates to the base

long term release, registered as 2.6.35).

90
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4.1 HRM Extension

The first step performed to get in touch with the already developed

Heart Rate Monitor (HRM) library was writing a patch for the 2.6.35.14

kernel version, since the at the time it was available up to the 2.6.35.13 ker-

nel release. This task was quite straightforward, since the differences in the

two releases were not related to files and structures interesting the moni-

toring library. However, this was a great occasion to become familiar both

with the Linux kernel and with the library itself, starting to understand

what and where was to be added code in order to allow one task to be in

many groups.

The HRM framework is made up of a kernel-space implementation which

does mainly all the job and a user-space library that exposes the functions

needed to exploit the features implemented in kernel-space. The main mod-

ification that were needed to introduce to possibility for a task to attach to

more than one group can be summarized as follow:

• the task_struct data structure, which contains all the important

information about a task and is located in include/linux/sched.h, was

modified to store a list of data structures about groups (named

hrm_struct), instead of only one;

• the main monitoring structure, hrm_struct in include/linux/hrm.h

(the one representing the real monitor: one for each group and for

each task) was integrated with some fields allowing to better manag-

ing the new features;

• all the related functions, in kernel/hrm.c and fs/proc/base.c, and their

definitions, in include/linux/hrm.h, were modified in order to be con-

sistent with the new concepts.

1 struct hrm_struct {



CHAPTER 4. PROPOSED IMPLEMENTATION 92

2 int counter_index;

3

4 struct hrm_counter *counter;

5 struct hrm_stats *stats;

6 struct hrm_target *target;

7

8 struct hrm_group *group;

9

10 unsigned long counter_user_address;

11 unsigned long stats_user_address;

12 unsigned long target_user_address;

13

14 struct task_struct *task;

15

16 struct list_head link_group;

17 struct list_head link_monitor;

18 };

Listing 4.1: The hrm_struct data structure in include/linux/hrm.h.

The hrm_struct in Listing 4.1 is the data structure that allows the moni-

tored information to be made available in the kernel both for periodic statis-

tics computation and for the kernel components interested in accessing it.

It contains information about the group counter, the computed statistics

and the group goals (*counter, *stats, and *target, respectively) and

the relative memory addresses to allow data to be read from user-space

components. link_group is a pointer to a global list containing all the

groups currently available in the system. All these fields were inherited

from the previous implementation of HRM and maintained, even if some

are useless in this case, in order to guarantee the compatibility with the per-

formance use of the monitor. The new fields are underlined in Listing 4.1

and their use is explained below:

• struct task_struct *task: this field allows to store a pointer

to the task_struct of the task the hrm_struct is coupled with.

The previous implementation allowed, by browsing the *counter



CHAPTER 4. PROPOSED IMPLEMENTATION 93

pointer to retrieve the PID of the task; however, it was absolutely not

convenient to access the PID and then retrieve the

task_struct from this, when it is easily available in kernel and the

storing of this pointer does not required a big overhead.

• struct list_head link_monitor: is a pointer to a list storing

the hrm_struct data structures of all the other groups the current

task is attached to. It allows to easily go through all the groups a task

is part of without retrieving all the existing groups before.

Some helper functions are exported by include/linux/hrm.h in order to

make the use of HRM capabilities in kernel easier.

1 int hrm_add_task_to_group(struct task_struct *task, int gid);

2 int hrm_delete_task_from_group(struct task_struct *task, int gid);

3 int hrm_task_is_enabled(struct task_struct *task);

4 int hrm_task_is_enabled_group(struct task_struct *task, int gid);

5 int hrm_task_is_active(struct task_struct *task, int gid);

Listing 4.2: Helper functions exported by include/linux/hrm.h.

This functions signatures have been slightly modified in the new HRM

version. First of all, the concepts of a task being enabled and active have

a new meaning. A task is said to be simply enabled if it exists at least

one group it is attached to; the fact to be enabled can be also restricted

to single group: a task is said to per enabled for the group with GID gid

if it is attached to that group. This is the reason why the function named

hrm_task_is_enabled_group() was introduced. A task is considered

to be active with reference to a group with GID gid if its counter is set to

active, i.e. when it is within an hotspot.

The hrm_delete_task_from_group() function has a new parameter,

int gid, which represents the GID of the group the task is to be removed

from. Obviously this parameter was not needed in the previous implemen-

tation, since a task was able to attach only to a single group.
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hrm_add_task_to_group()maintains the same signature as before, but

necessarily its implementation is changed due to the need of keeping all the

lists containing the hrm_struct updates.

A global variable named hrm_groups_count was also introduced, in or-

der to store the number of existing groups, and kept updated every time a

groups is created or destroyed. The presence of this variable is needed to

make the creation of the data structures used by the adaptation policy more

optimized.

The modifications introduced in kernel-space reflects in a few correc-

tions in libhrm, the user-space library that allows user space application to

use the monitoring infrastructure. These modifications are not that inter-

esting and deserve not to be further investigated here. Simply, the need for

the GID to be specified when detaching from a group is made explicit and

the related functions writing (in user-space) and reading (in kernel-space)

the /procfs were changed accordingly.

4.2 Lock Library Implementation and Instrumentation

In order to test the validity of the approach explained in the previous

chapter, it was necessary to instrument a lock library with the new HRM

monitoring infrastructure, allowing a single task to attach to more than one

group. The doubt was about writing a lock library completely from scratch

or trying to adapt an already existing library. The latter option was dis-

carded because it was not easy to find trustable code to start from and the

GNU/Linux lock library (implemented in the glibc) proved to be too much

optimized and offered too many features to make the instrumentation fea-

sible. For these reasons, it was decided to create a new lock library from

scratch, implementing only the functionalities needed to prove the valid-

ity and the feasibility of the proposed approach. Thus, the attention was
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focused on spin-locks, which represents the simplest type of memory syn-

chronization methods that allows the presented research to work.

The data structure which defines the spin-lock is simple and contains

only two fields: a volatile bool named lock, and a variable pid_lock of

type pid_t (see Listing 4.3). The former, is the variable which says if there

is any task currently holding the lock;the latter field contains the PID of the

task, if any, currently holding the lock.

1 typedef struct lock_t{

2 bool lock;

3 pid_t pid_lock;

4 };

5 typedef struct lock_t lock;

Listing 4.3: Spin-lock type definition.

The functionalities exposed by the library are the basic ones expected

for a lock library to provide. In particular, an initialization function and the

two functions to acquire (or try to acquire) and release a lock (Listing 4.4).

Each function is further analyzed in the remainder of this section.

1 void init(lock_t *L);

2 void acquire(lock_t *L, hrm_t *monitor);

3 void release(lock_t *L);

Listing 4.4: Function prototypes exposed by the lock library.

The initialization function, as can be seen in Listing 4.5, simply takes the

pointer to a lock and initialize its fields to meaningful values: in particular,

the lock is set not to be hold and the PID of the task holding the lock, which

does not exist, is set to 0.

1 void init(lock_t *L)

2 {

3 L->lock = false;

4 L->pid_lock = 0;

5 }
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Listing 4.5: Spin-lock initialization function.

More interesting is the lock acquisition function, fully report in List-

ing 4.6. The atomic instruction __sync_lock_test_and_set() (see Sec-

tion 1.2.4) is exploited to atomically test the value of the lock variable and

to set it to true if possible, in order to avoid race conditions to appear.

__sync_lock_test_and_set() returns the value previously stored in

memory: thus, in the case the lock is already hold by another task, the exe-

cution enters the while loop. For the reasons already exposed in the previ-

ous chapter, it is meaningful for a task to emits heartbeats if and the only if

the task currently holding the lock is currently running. However this infor-

mation is not available in user-space: in this context it is possible to know

only if a task is runnable. A task is said to be runnable either if it currently

running or it is on a runqueue waiting to run.

1 void acquire(lock_t *L, hrm_t *monitor)

2 {

3 while ( __sync_lock_test_and_set(&L->lock, true) ){

4 if (syscall(__NR_isrunning, L->pid_lock)) {

5 heartbeat(monitor);

6 }

7 else {

8 pthread_yield();

9 }

10 }

11 L->pid_lock = (pid_t) syscall(__NR_gettid);

12 }

Listing 4.6: Spin-lock acquisition function.

The information about a task effectively running or not is available only

in kernel-space: for this reason a new syscall was implemented to expose

this information also in user-space. Listing 4.7 shows the code for the new

system call: taking as input parameter the PID of the task, it checks if it is
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running on one of the available CPUs and returns a value accordingly.

1 SYSCALL_DEFINE1(isrunning, pid_t, pid){

2 struct task_struct *task;

3 int i;

4

5 task = find_task_by_vpid(pid);

6 for(i = 0; i < get_present_cpus(); i++) {

7 if(task_running(cpu_rq(i), task)) {

8 return 1;

9 }

10 }

11 return 0;

12 }

Listing 4.7: Implementation of the isrunning() syscall in kernel/sched.c.

Going back to Listing 4.6, if the task holding the lock is running the task

executing the code emits an heartbeat meaning that it is stuck waiting for it

and continues to do that in a busy waiting fashion, until it is preempted or

it is able to acquire the lock. On the other hand, if the PID stored in the lock

structure belongs to a task that is not running the current task yields the

CPU it is running on, without emitting any heartbeat. Thus, it is useless for

it to continue waiting if it wont have the possibility to acquire the desired

lock. When the task is able to acquire the lock saves its PID in the provided

field in the lock structure, retrieving it thanks to another syscall, this time

already exported by the kernel. Obviously, the acquire function takes as

input parameter also an hrm_t *monitor, which represents the monitor

on which heartbeats are to be emitted.

Last, the lock release function was implemented (Listing 4.8). It is kept

as simple as possible: the lock variable value is set to false, without the

need to use atomic instruction, since it is not possible for race conditions to

arise (the lock is hold by only one task a time and there is no possibility for

two different tasks to try to release the same lock at the same time).
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1 void release(lock_t *L)

2 {

3 __sync_lock_test_and_set(&L->lock, false);

4 }

Listing 4.8: Spin-lock release function

For an application to be instrumented with this framework, it has to

make use of this lock library and of the libhrm too, in order to create the

hrm_t *monitor to be passed to the lock library.

4.3 Kernel-space Adaptation Policy Implementation

The actual implementation of the adaptation policy is the one that re-

quired most of the efforts spent in this thesis work. Mainly not in the design

of a suitable heuristics, but in understanding:

• where and when to insert the periodical gathering of the contention

data from the monitor infrastructure: the choice of the instant in which

to perform this task is not trivial at all and must be carefully investi-

gated;

• how to actually move tasks from one runqueue to another, in a legal

way.

These are the two main issues this paragraph addresses and to which tries

to find a solution.

4.3.1 When and Where

Choosing the proper time in which to let the adaptation policy act proved

not to be an easy task. Different roads were pursued before finding the one

which seems to be the best available one:



CHAPTER 4. PROPOSED IMPLEMENTATION 99

• kernel tick. The time inside the kernel is beaten by a tick, which is

emitted with a period of 1 millisecond. A timer interrupt handler ex-

ists and is invoked every time one tick is charged to the current pro-

cess. This component calls a update_process_times() function

(located in kernel/timer.c), which is in charge of performing all the pe-

riodical operations related to the kernel tick, in particular: run local

kernel timers, run POSIX CPU timers, and propagate the tick to the

scheduler. The first idea was to add a function performing the work

of mapping threads on core according to contention information in

this function. However, in this context was not possible, due to the

high number of locks hold, to efficiently modify the affinity mask of

the task. Thus, the only possible actuation was to directly move task

from one runqueue to another. Unfortunately this approach, as better

explained later, has a serious drawback and was discarded.

• high resolution timers. High resolution timers, also known with the

name of hrtimer, provide an infrastructure for the implementation of

timers with a resolution up to a 1 nanosecond. Thanks to them it is

possible to schedule a function to be executed periodically inside the

kernel. This was exactly what it was needed. However, hrtimers have

the not really known drawback of executing always on the same CPU:

in particular, the one on which they were initialized. This fact, cou-

pled with the limitation of moving tasks from one runqueue to an-

other, implied the need for creating a timer for each CPU available in

the system and to synchronize them. This approach, however, proved

to have an high overhead on the system and was, then, discarded.

• kernel threads. This last option was, finally, the chosen one. Kernel

threads are, as the name suggests, an implementation of threads in

kernel-space. The advantages of this approach is that the thread func-
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tion is executed outside the context of any other task, thus allowing

to operate in an environment where locks can be easily managed.

Once that the suitable technique to periodically manage the available

data about contention has been chosen, it is possible to explain how it was

implemented. First of all a new file, kernel/contention.c, was created and

added to the compilation tool-chain. The initialization of the kernel thread

is done through a module_init() call, which invoke the kthread_-

contention_init() function, showed in Listing 4.9. Here the kernel

thread is initialized to call the __manage_contention() function, where

an infinite loop executes a sleep of CONTENTION_CHECK_PERIOD millisec-

onds and then call the main function for managing the contention:

manage_contention().

1 static int __init kthread_contention_init(void)

2 {

3 struct task_struct *ts;

4

5 ts = kthread_run(__manage_contention, NULL, "Contention thread");

6 return 0;

7 }

8

9 static void __manage_contention(void)

10 {

11 for(;;)

12 {

13 msleep(CONTENTION_CHECK_PERIOD);

14 manage_contention();

15 }

16 }

Listing 4.9: The kernel thread initialization function.

The function that actually implement the heuristics policy described in

the previous chapter can be found in kernel/sched.c and is fully reported

in Listing 4.10. This function exactly follows the pseudo-code showed in

Listing 2. Only some aspects are to be underlined:
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• the initAndPopulateGroupArrays() is in charge of filling in all the data

structures with the data gathered from the HRM monitor at each cy-

cle;

• the lock on the HRM group list is acquired at the beginning of the

function in order to read the group list without risks for a race condi-

tion, and released at the end;

• cpu_count is an integer global variable initialized to 0;

• sched_setaffinity() is used to actually map tasks on cores, as will be

explained in a few paragraphs.

1 int manage_contention(void) {

2 struct hrm_group *group;

3 struct hrm_struct *hrm;

4 struct hrm_stats *stats;

5 int *grp_incid_matrix, *grp_array, *ordered_grp_array,

*heartrate_array;

6 struct task_struct **task_array, *task;

7 struct rq *curr_rq;

8 unsigned long groups_lock_flags;

9 int index, curr_cpu, groups_count_loc, i, j, tmp;

10 cpumask_var_t new_mask;

11

12 read_lock_irqsave(&hrm_groups_lock, groups_lock_flags);

13

14 if (hrm_groups_count > 0) {

15 /*

16 ... data structure allocation ...

17 */

18 initAndPopulateGroupArrays(grp_incid_matrix, grp_array,

task_array, heartrate_array);

19 groups_count_loc = hrm_groups_count;

20 read_unlock_irqrestore(&hrm_groups_lock, groups_lock_flags);

21 /*

22 ... sorting groups according to their window heart rate ...

23 */

24 for (i = 0; i < groups_count_loc ; i++) {
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25 if (heartrate_array[ordered_grp_array[i]] > 0) {

26 for (j = 0 ; j < MAX_TASKS; j++) {

27 if (grp_incid_matrix[j * groups_count_loc +

ordered_grp_array[i]] == 1) {

28 cpumask_clear(&new_mask);

29 cpumask_set_cpu(cpu_count % num_present_cpus(),

&new_mask);

30 sched_setaffinity(task_array[j]->pid, new_mask);

31 memset(&grp_incid_matrix[j * groups_count_loc],

0, sizeof(int) * groups_count_loc);

32 }

33 }

34 cpu_count++;

35 } else {

36 break;

37 }

38 }

39 /*

40 ... cleaning up the allocated data structures ...

41 */

42 } else {

43 read_unlock_irqrestore(&hrm_groups_lock, groups_lock_flags);

44 }

45 return 0;

46 }

Listing 4.10: Heuristics implementation in kernel/sched.c.

4.3.2 How

Two are the considered ways to map the tasks on the cores: both are

briefly presented here.

• Inspired by the work done by the load balancer, an idea is to directly

move a certain task from a runqueue to another. The role of the load

balancer within the process scheduler is to find the busiest runqueue

in the system and move a task from that runqueue to the one the

load balancer code is executing. To do that, this component exploits



CHAPTER 4. PROPOSED IMPLEMENTATION 103

a function named pull_task(), which takes as input parameters

the source and the destination runqueues, the destination CPU and

the task to be moved. Due to the context in which this function is

executed, a major limitation arises: the destination runqueue must

be the local runqueue. This means that the task can be moved only on

the runqueue of the CPU on which the core is running. This drawback

was enough for the use of this function to be avoided.

• The second approach is indirect, in the sense that consists in mod-

ifying the affinity mask of the task that has to be moved. The defi-

nition of affinity mask has been already given in Section 2.2.2 when

talking about Sefos. However, simply setting the affinity mask of the

task is not enough, since in this way the task has to wait for the

load balancer to be invoked before being actually moved. In order

to trigger this mechanism, a specific function, as the one called by

sched_setaffinity() system call is to be invoked, or the

sched_setaffinity() itself. However this is possible if and only

if this function is executed outside the context of any other task: as

the one offered by the kernel thread.

4.4 Summary

The implementation details that allowed to write a completely work-

ing system were presented in this chapter. In particular, the modification

introduced to the HRM framework in order to allow it to support multi-

group and then to be used as a monitor for lock contention were described

in Section 4.1. The motivations for the implementation of a simple spin-

lock libraries and some interesting details about the exposed functions are

summarized in Section 4.2. Last Section 4.3 contains the solutions that have

been found in order to solve the two main issues related to the adaptation
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policies implementation: when and where add the code that synthesizes the

monitoring information and computes the decision and how actually im-

plement the mapping of tasks on the available cores. After having seen how

the proposed contention monitor and the adaptation policy have been de-

signed and implemented (in Chapter 3 and Chapter 4, respectively), some

preliminary results that validate the effectiveness of the proposed approach

are presented in the following Chapter 5.



Chapter 5

Experimental Results

In this chapter the experiments performed and the gathered results are

shown and explained. In particular, in Section 5.1 the testing environment

on which the experiments were performed are presented. Section 5.2 de-

scribes some experiments aiming at proving the validity of the proposed

approach through synthetic micro-benchmarks, while Section 5.3 presents

some results related to the applications instrumentation overhead. Exper-

iments which explains how the adaptation policy actually works are de-

scribed in Section 5.4. Last, data related to the real performance improve-

ments obtained in term of reduction of process execution time, are intro-

duced in Section 5.5, analyzing the behaviour of both micro-benchmarks

and real world applications.

5.1 Experimental Environment

The Linux kernel used for the implementation of the kernel part of the

monitoring infrastructure and for the adaptation policy is the 2.6.35 re-

leased, since marked as longterm. The development started from the 2.6.35.13

minor release and a patch was written in order to port the HRM monitoring

infrastructure to the following 2.6.35.14 release. The modified Linux ver-

105
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sion was used as the kernel of GNU/Linux operating system, in is Debian

6.0 squeeze distribution.

The experiments described in the following sections were done on a

x86 − 64 machine featuring a quad-core Intel Core i7 − 870 microproces-

sor running at 2.93 GHz with 8 MB of shared Last Level Cache (LLC), and

4 GB of DDR3 − 1066; this microprocessor supports Simultaneous Multi-

Threading (SMT) through Intel Hyper-Treading (HT) technology and of-

fers the Intel Turbo Boost Technology, but these advanced features were

disabled for all experiments.

5.2 Preliminary Experiments

In order to validate the approach described in the previous chapters,

some specific tests were performed. In particular it would be interesting

to analyze how the monitored heart rate changes according to the number

of threads that shares a single lock and to the length of the critical section

(quantified as the number of instructions executed between the lock acqui-

sition and its release). These experiments were run writing an application

instrumented with the developed locking library, but without enabling the

adaptation policy in the kernel.

The first aspect to be analyzed is the relation between heart rate and the

number of thread effectively contending for a single lock. In the following

plot, it is shown the global heart rate when the same simple application is

run with a number of threads varying from 2 to 8. The function executed by

the threads simply increments a counter after having acquired the lock, and

releases it immediately. The number of times the counter is incremented

each time is used to vary the length of the critical section. As an example

the case in which the counter is incremented 10000 times is presented.

As expected, the global heart rate is proportional to the number of threads
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Figure 5.1: Heart rate behavior varying the number of threads (10000 increments in the

critical section).

contending for the lock, independently from the length of the critical sec-

tion. The lowest heart rate is obtained with only two threads sharing the

same lock; the value of the heart rate then increases when the number of

threads gets bigger. This behaviour is better explained by Figure 5.2, in

which the final value of the global heart rate, representing the average heart

rate of the application during the whole execution, is plotted.
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Figure 5.2: Average heart rate behavior varying the number of threads (10000 instructions

in the critical section).

The average heart rate increases quite linearly when the number of

threads goes from 2 to 4, while the steepness of the fitting curve decreases

when the number of threads grows again. This is due to the fact that the the

machine on which the experiments are performed has 4 physical cores, thus

only for threads can actually run in parallel (remember the Intel Hyper-

Treading technology is disabled).

In order to test the behavior of the system according to the length, ex-

pressed in number of instructions, of the critical section the same applica-

tion was used, varying the times the counter is incremented each time the

lock is acquired. According to the results shown in the following plots (Fig-

ures 5.3, zoomed in Figures 5.4, and Figures 5.5), as expected, the heart rate

increases as the length of the critical section increases. However, looking

at the value the heart rate assumes when the number of instructions in the

critical section is in the order of magnitude of 1, 100, and 10000, it is possi-

ble to say that this factor influences the behavior of the heart rate to a lesser

extent.
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Figure 5.3: Heart rate behavior with 2 threads and 1 a single increment in the critical section.
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Figure 5.4: Heart rate behavior with 2 threads and 1 a single increment in the critical section

– Zoom in.

It is possible to see that the behavior of the heart rate is quite heteroge-

neous when varying the number of instruction in the critical sections from

1, to 100 to 10000. However, it is clear that the higher the number of threads
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Figure 5.5: Average heart rate behavior with 2 threads (1 increment in the critical section).

sharing a lock is, the higher the measured heart rate of the group related to

that lock will be.

Looking at the plots, it is also possible to note how the execution time

varies as expected. In particular, in Figure 5.1 the executed time is directly

proportional to the number of threads sharing the lock: if a lower number

of threads shares the lock, the synchronization overhead is lower, thus the

overall execution time. Similarly, from Figure 5.3 it is possible to see that

the execution time is lower if the number of increments executed in critical

section is higher. This is because the number of synchronization instruction

is reduced, and the threshold value of the counter is reached in less time.

5.3 Instrumentation Overhead

One of the first experiments performed to evaluate the modification to

the HRM framework and the newly developed locking library was the

evaluation of their overhead on real word applications. The benchmark

suite chosen to be instrumented is the Stanford Parallel Applications for
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Shared Memory (SPLASH) suite [78], in its second review [79], applying

the patch provided by the University of Delaware [80] in order to allow the

compilation on modern operating systems. The SPLASH-2 suite of paral-

lel applications aims at facilitating the study of centralized and distributed

shared-address-space multiprocessors. The suite provide several benchmarks

classified by their computational load balance, communication to computa-

tion ratio and traffic needs, important working set sizes, and issues related

to spatial locality. One of the main targets is to assist people who will use

the programs in architectural evaluations to prune the space of application

and machine parameters in an informed and meaningful way.

This benchmark suite was chosen since it offer multi-threaded applica-

tions sharing a lot of data and makes use, among the others, of spin-locks

as synchronization methods. The instrumentation of all the applications

proved not to be that easy, and sometimes infeasible. Thus, it was decided

to focus the attention on the applications that seemed to be the best suitable

one for performing test: raytrace.

This application renders a three-dimensional scene using ray tracing. A hi-

erarchical uniform grid is used to represent the scene, and early ray ter-

mination and antialiasing are implemented. A ray is traced through each

pixel in the image plane, and reflects in unpredictable ways off the objects

it strikes. Each contact generates multiple rays, and the recursion results

in a ray tree per pixel. The image plane is partitioned among processors

in contiguous blocks of pixel groups, and distributed task queues are used

with task stealing. The major data structures represent rays, ray trees, the

hierarchical uni- form grid, task queues, and the primitives that describe

the scene. The data access patterns are highly unpredictable in this appli-

cation.

Many tests were run on the application that were correctly instrumented

(by substituting the old synchronization mechanisms with the new spin
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lock library) and an overhead spanning the range 2% to 11%, with an av-

erage under the 5%. The variation of the overhead is due to the different

number of threads spawn by the application, the input file provided to it or

the level of anti-aliasing requested by the user. Obviously, this percentage

gives only an idea of the overhead, since it depends on the number of lock

operations by the specific application. The obtained results are quite pos-

itive, since the overhead introduced by the instrumentation is acceptable.

Moreover, the time lost with the overhead is, in many cases, widely re-

gained by the advantages introduced by the adaptation policy that exploits

this new information.

5.4 Scheduler Adaptivity

The following experiments are aimed at proving and explaining how

the adaptation policy works. The working scenario is the following one: 3

different threads (t1, t2, and t3) are running in the system and two locks are

contended, lock lA and lock lB. t1 contends only for lA, t3 contends only

for lB, while t2 contends first for lA, then for lB. The experiment in two

different cases: once with a version of the kernel with the adaptation policy

switched off, once with the adaptation policy enabled.

During the execution two HRM groups will be created, since two are

the locks on which the three threads contend. t1 attaches only to group

lA, t3 only to group lB, while t2 to both the groups. Figure 5.6 shows the

behavior of the global heart rate (solid line) and the window heart rate

(dashed line) of the two groups when the adaptation policy is switched off.

The three threads are mapped by the CFS on three different cores (as shown

in Figure 5.7) and remain of the same cores during all the execution time.

At the beginning the lA group has a positive window rate, since thread t1

and t2 are contending for it. The global heart rate is high until t2, after about
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10 seconds of execution, starts contending for lB: at this time the window

heart rate of the lA group falls down to zero and its global heart rate starts

to decrease. In a similar way,when t2 starts contending for the other lock the

window and global heart rate of the second group show a similar behavior.

The window heart rate reaches its maximum value suddenly until the end

of the execution, and the global heart rate increases exponentially.

By enabling the adaptation policy in the kernel, the plot that is obtained

is reported in Figure 5.8. Figure 5.9 shows how the threads are mapped

on the available cores during all the execution time. Again, the threads

are mapped by the CFS on three different cores. When t1 and t2 start con-

tending for lA, thus generating a positive heart rate, the adaptation policy

moves both the threads to the same core: in this way the window heart

rate suddenly falls to 0 and the global heart rate starts decreasing. When t2

starts contending for lB a positive heart rate is emitted by the second group:

both the global and the window heart rate were zero until that time. The

adaptation policy moves the second thread to the same core of the third

thread, thus reducing the emitted heart rate: the window heart rate falls to

zero, while the global heart rate decreases.

5.5 Performance Improvements

A simple micro-benchmark was implemented in order to show the im-

provements in term of the reduction of the execution time if the adaptation

policy is enabled within the kernel. The micro-benchmark simply consists

in a process spawning a variable number of threads. These threads try to

increment a counter that is shared among them, thus contending for the

lock it is protected with.

Table 5.1 shows the resulting execution times, comparing the case in

which the adaptation policy is enabled within the kernel and the case in
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which it is not. The data in the Free execution column refers to the case in

witch the kernel is not augmented with the adaptation policy; data in the

Constrained Execution column are gathered with the adaptation policy en-

abled. Each test was repeated 5 times, the reported data are the average

ones.

Free Execution Constrained Exec.

Threads Increm. Avg.

Exec.

Time [s]

Std. Dev. Avg.

Exec.

Time [s]

Std. Dev. Speed-up

2 100M 23.279 0.032 9.935 0.319 2.343×

2 1G 233.070 1.091 103.395 2.528 2.254×

4 100M 24.346 0.27 20.227 0.752 1.204×

4 1G 242.883 0.92 207.553 2.687 1.170×

8 100M 38.405 1.312 19.868 0.932 1.933×

8 1G 389.087 25.452 415, 562 6.556 0.936×

Table 5.1: Execution times improvements on a simple micro-benchmark.

The results showed in the table testifies the validity of the pursued ap-

proach and the correctness of the developed implementation. Notifiable

improvements are obtained: in particular, the reduction in the applications

execution times is higher if the number of threads contending the lock is

smaller. Moreover, when the number of threads becomes high with refer-

ence to the number of available execution units, other factors start to have

more influence on the execution (e.g., context switches). The only case in

which a negative speed-up is obtained (i.e., a value lower than 1) is the last

one. However, the adaptation policy proves to provide a higher stability to

the execution since the obtained standard deviation (6.556 s) is way lower

than the free execution case (25.452 s).
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In order to test the performance improvement not on a simple micro-

benchmark, but on a real application, the already presented raytrace appli-

cation from the SPLASH-2 benchmark suite was considered. The test were

performed running a varying number of instances of the application, al-

ways with 4 threads each and all with the same parameters related to the

input file and the anti-aliasing. Again, the experiments were repeated 5

times: average data and statistics are listed in Table 5.2.

Processes Statistics Free Exec. Constrained Exec. Speed-up

4 Avg. Exec. Time [s] 35.08 25.259 1.389×

Std. Deviation [s] 0.736 1.528

3 Avg. Exec. Time [s] 26.29 25.133 1.046×

Std. Deviation [s] 4.822 1.634

2 Avg. Exec. Time [s] 17.641 25.042 0.704×

Std. Deviation [s] 3.849 1.907

Table 5.2: Execution times improvements on the raytrace benchmark.

In the first case, in which 4 instances of raytrace are run, all the cores

are busy and there is high contention among the different threads: a real

speed-up of 1.389× is obtained. This is the best condition in which to ob-

tain improvements: in fact, by reducing the number of processes execut-

ing in parallel, the speed-up decreases. This is due to the fact that, in the

case cores are not so busy, spawning the different threads of the same ap-

plication to different cores (thus, not having advantages from sharing the

same processor) can lead to better performance (with a negative speed-up

of 0.704× in the case of only 2 processes running): in this case the bottle-

neck is represented by the available executing resources and not by data

contention. In conclusion, by looking at the trend, the speed-up is likely to

grow in the case the number of threads or processes increases.

It is worth also noting how the execution time in the case of constrained
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execution (i.e., when the adaptation policy is enable in the kernel) is quite

constant, since all the 4 threads of a process are always moved to one pro-

cessor, independently of the number of executing processes. On the other

hand, the execution time in the case of free execution is clearly decreasing.

5.6 Summary

This chapter presented the experimental results obtained putting into

practice the approach and the implementation details described in the pre-

vious chapters. First, the environment on which the experiments were per-

formed is described, both the architecture the computing system is equipped

with and the operating system (Section 5.1). Different types of experiments

were designed in order to validate the proposed approach (Section 5.2),

show the overhead in terms of execution time introduced by the instrumen-

tation (Section 5.3), and explain how the adaptation policy actually works

(Section 5.4) and which are the performance improvements, both on simple

micro-benchmarks and on a real word application (Section 5.5).

Chapter 6, which concludes this dissertation, wraps up the work de-

veloped, trying to highlights its major contributions and some criticalities.

Moreover, some possible improvements of the approach are proposed and

left as future works.



CHAPTER 5. EXPERIMENTAL RESULTS 117

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0  5  10  15  20  25  30

H
e
a
rt

 R
a
te

 [
h
b

/s
]

Time [s]

Lock A ghr
Lock A whr
Lock B ghr
Lock B whr

Figure 5.6: Hear-rate for the described execution scenario, when the adaptation policy is

switched off.

Figure 5.7: Threads mapping on cores, while executing the described scenario, when the

adaptation policy is switched off.
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Figure 5.9: Threads mapping on cores, while executing the described scenario, when the

adaptation policy is switched on.



Chapter 6

Conclusions

This chapter concludes the description of the developed work. After

having analyzed the context of autonomic operating systems and having

investigated the state of the art on monitoring and self-aware scheduling,

the original contributions of the work were presented and described in the

details. These contributions are briefly summarized here.

• Starting from the existing HRM framework, designed for performance

monitoring, it was extended to allow a task to attach to more than one

group. In this way, it was possible to use this framework as a basis

for contention monitoring too, showing the flexibility of the concept

of heartbeat and heart rate.

• A simple locking library was implemented, containing only the func-

tionality necessary to the proposed approach to be validated. This

user-space library was then instrumented with the new HRM frame-

work, to enable applications written using it to share information

about their shared data contention.

• Two different adaptation policies, based on simple heuristics were

designed. These policies decide how to move tasks on the available

cores, integrating the work done by the Linux process scheduler. Based

119
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on the fact that tasks running on the same core experience lower com-

munication overhead when they share data, the policy moves tasks

with an high heart rate value on the same core, in order to improve

their performance.

• The adaptation policies were actually implemented within the Linux

kernel, focusing the attention on avoiding the criticalities related to

the moment in which the policy acts and how it acts.

The work presented in this document introduced the enabling technol-

ogy for monitoring contention of data shared among threads and showed

how the new information can be exploited in order to insert autonomic ca-

pabilities within an operating system. This autonomic capability is repre-

sented by the ability of moving tasks on the available cores, according to the

information about contention provided by the monitor. The advantage of

this autonomic capability can be noticed at the user level in the decreasing

of the execution time of threads heavily sharing data with other threads.

6.1 Future Works

The good results obtained and described in Chapter 5 prove the validity

of the implement approach and stimulate the research on this field to go on.

There are some aspects of the implementation that represent a limitation or

that can be further investigated: these are left as future works. In particular:

• at the moment, the implemented lock library allows the applications

to use only spin-locks. If an application needs to use more complex

synchronization systems has to exploit other libraries, obviously not

able to be monitored. Thus, in order to have more precise informa-

tion about data contention, the instrumented library should be ex-

tended to include other synchronization methods, such as condition

variables, barriers, . . . .
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• the adaptation policies designed are based on really trivial heuristics.

It would be interesting to explore other possibilities for the monitor-

ing data to be exploited: control theory is only on example of the tech-

niques that the policies can rely on.

• in the current implementation, even if both the data related to the

global and the window heart rate of the application are exposed by

the monitor, only the window heart rate is actually used in the cal-

culation of the heuristics. The global heart rate could be exploited in

order to have an idea of the past behavior of the threads contention

and to implement a more accurate policy.

• it would be interesting to dynamically vary the period at which the

policy is executed, may relating it to the heart rate of the tasks run-

ning on the system. At the moment the period is fix and it is necessary

to recompile the whole kernel to change it.
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