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Abstract 

Driven by the surgeon’s desire for less-invasive procedures, a new 

technique called NOTES (Natural Orifice Transluminal Endoscopic 

Surgery) has emerged. The present instrumentation used for this 

type of surgery is adapted from Endoscopy and is not perfectly 

adequate for many reasons: lack of dexterity, lack of tactile feedback, 

fewer degrees of freedom than desired. Those problems were the 

motivation for a Italian research group to develop a robotic 

manipulator with several advantages over the current technology. 

The snake-like mechanical design of the robot contains three 

kinematic singularities whose physical interpretation were one of the 

objectives of this work. The second main goal of this work was to 

design an adequate kinematic control algorithm for avoiding 

singularities by using geometric redundancy from other degrees of 

freedom. For that matter, four different trajectories were tested with 

four different algorithms and the results were evaluated in terms of 

tracking error in the Cartesian space and in the joint space. 
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Sommario 

Spinto dal desiderio del chirurgo per meno invasivi, una nuova 

tecnica chiamata NOTES (Natural Orifice Transluminal Endoscopic 

Surgery) è emersa. La strumentazione attualmente utilizzata per 

questo tipo di chirurgia è adattato da endoscopia e non è 

perfettamente adeguata per molte ragioni: mancanza di destrezza, la 

mancanza di feedback tattile, un minor numero di gradi di libertà di 

quanto desiderato. Questi problemi sono stati la motivazione per un 

gruppo di ricerca italiano per sviluppare un manipolatore robotico con 

diversi vantaggi rispetto alla tecnologia attuale. Il serpente-come il 

disegno meccanico del robot contiene tre singolarità cinematica cui 

interpretazione fisica sono stati uno degli obiettivi di questo lavoro. Il 

secondo obiettivo principale di questo lavoro è stato quello di 

progettare un algoritmo adeguato controllo cinematico per evitare la 

singolarità utilizzando la ridondanza geometrica da altri gradi di 

libertà. Per questo, quattro diverse traiettorie sono stati testati con 

quattro diversi algoritmi ei risultati sono stati valutati in termini di 

tracking error nello spazio cartesiano e nello spazio dei giunti. 
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1. Introduction 

The earliest evidence of a surgical procedure occurred early in the 

pre-history. The registration of a trepanation (opening of one or more 

holes in the skull to relieve intracranial pressure) was found in cave 

paintings and later in historical records (Capasso, 2002). Since then, 

surgery has evolved throughout history, new techniques and 

instruments have been developed and much has been learned about 

the anatomy, physiology, risk of infection and contamination, 

culminating today about 20 million Americans operated yearly (Roan, 

2005). 

We classify an operation according to some criteria: (American 

College of Surgeons, 2007) 

 Based on urgency, according to the risk to patient survival, 

surgery is considered elective, urgent or optional; 

 Based on the purpose, an exploratory surgery may be (to 

confirm diagnosis) or therapy; 

 Based on the type of procedure, the surgery may vary 

according to the standard intervention (e.g., amputation, 

plastic surgery, transplantation, etc.); 

 Based on anatomical site, taking as examples the 

cardiovascular surgery, orthopedic and gastrointestinal. 

 By type of equipment used, may involve classical tools (such 

as a scalpel and forceps), more modern tools such as laser or 

even mechatronic instruments, such as Intuitive Surgical's Da 

Vinci Robot (Intuitive Surgical, 2010); 

 By degree of invasiveness, surgery may be: 

o open, which will involve the opening of several tissues of 

the surgeon to achieve the desired target; 

o minimally invasive surgery, which are made possible 

through the lower courts, such as in laparoscopic surgery, 

angioplasty and surgery NOTES 
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1.1. Minimally Invasive Surgery 

A minimally invasive surgery is a procedure that involves a different 

set of tools for the same objective of the open surgery, but with far 

less damage to biological tissues. It is important to point out that all 

the instrumentation for that type of surgery is specially designed and 

submitted to constant innovation. 

By comparison, minimally invasive surgeries have some advantages 

over open surgery. A study in the department of surgery at Henry 

Ford Hospital in Detroit in the USA (Velanovich, 2000) showed that in 

addition to reducing pain for patients and quicker return to normal 

function, the minimally invasive surgery (MIS) also result in better 

quality of life compared with open techniques. 

1.2. Laparoscopic Surgery 

Laparoscopic or “minimally invasive” surgery is a specialized 

technique for performing surgery. In the past, this technique was 

commonly used for gynecologic surgery and for gall bladder surgery. 

Over the last 10 years the use of this technique has expanded into 

intestinal surgery. 

 

Figure 1 - Laparoscopy vs. open surgery 
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As shown in Figure 1, in traditional “open” surgery the surgeon uses a 

single incision to enter into the abdomen. Laparoscopic surgery uses 

several 0.5-1cm incisions. Each incision is called a “port.”  At each 

port a tubular instrument known as a trochar is inserted.  Specialized 

instruments and a special camera known as a laparoscope are passed 

through the trochars during the procedure. At the beginning of the 

procedure, the abdomen is inflated with carbon dioxide gas to provide 

a working and viewing space for the surgeon. The laparoscope 

transmits images from the abdominal cavity to high-resolution video 

monitors in the operating room. During the operation the surgeon 

watches detailed images of the abdomen on the monitor. This system 

allows the surgeon to perform the same operations as traditional 

surgery but with smaller incisions. 

In certain situations a surgeon may choose to use a special type of 

port that is large enough to insert a hand. When a hand port is used 

the surgical technique is called “hand assisted” laparoscopy. The 

incision required for the hand port is larger than the other 

laparoscopic incisions, but is usually smaller than the incision 

required for traditional surgery. Compared to traditional open 

surgery, patients often experience less pain, a shorter recovery, and 

less scarring with laparoscopic surgery. (American Society of Colon & 

Rectal Surgeons, 2008) 

1.3. Robotic Surgery 

Robotic surgery is a technique in which a surgeon performs surgery 

using a computer that remotely controls very small instruments 

attached to a robot.  

This procedure is done under general anesthesia. The surgeon sits at 

a computer station nearby and directs the movements of a robot. 

Small instruments are attached to the robot's arms. The surgeon first 

inserts these instruments into the patient’s body through small 

surgical cuts. Under the surgeon's direction, the robot matches the 



14 
 

doctor's hand movements to perform the procedure using the tiny 

instruments, as shown in Figure 2. 

 

Figure 2 - Example of robotic surgery system 

A thin tube with a camera attached to the end of the endoscope 

allows the surgeon to view highly magnified three-dimensional 

images on a monitor in real time. Robotic surgery is a type of 

procedure that is similar to laparoscopic surgery. It also can be 

performed through smaller surgical cuts than traditional open 

surgery. The small, precise movements that are possible with this 

type of surgery give it some advantages over standard endoscopic 

techniques (Oleynikov, 2008). 

Sometimes robotic-assisted laparoscopy can allow a surgeon to 

perform a less-invasive procedure that was once only possible with 

more invasive open surgery. Once it is placed in the abdomen, a 

robotic arm is easier for the surgeon to use than the instruments in 

endoscopic surgery. The robot reduces the surgeon's movements (for 

example, moving 1/2 inch for every 1 inch the surgeon moves), 

which reduces some of the hand tremors and movements that might 

otherwise make the surgery less precise. Also, robotic instruments 

can access hard-to-reach areas of your body more easily through 

smaller surgical cuts compared to traditional open and laparoscopic 

surgery. 
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During robotic surgery, the surgeon can more easily see the area 

being operated on. The surgeon is also in a much more comfortable 

position and can move in a more natural way than during endoscopy. 

Robotic surgery may be used for a number of different procedures, 

including (Oleynikov, 2008): 

 Coronary artery bypass 

 Gallbladder removal 

 Hip replacement 

 Hysterectomy 

 Kidney removal 

 Kidney transplant 

 Mitral valve repair 

 Radical prostatectomy 

 Tubal ligation 

Robotic surgery cannot be used for some complex procedures. For 

example, it is not appropriate for certain types of heart surgery that 

require greater ability to move instruments in the patient's chest, 

with the present technology. 

1.4. NOTES  

NOTES (Natural Orifice Transluminal Endoscopic Surgery) was driven 

by the surgeon’s desire for less invasive procedures and more 

minimal access, the technique is based on the concept that the 

peritoneal cavity can be accessed through natural orifices. NOTES 

designates a surgical procedure that utilizes one or more patent 

natural orifice of the body with the intention to puncture a hollow 

viscera in order to enter an otherwise inaccessible body cavity. 

(Kalloo, Singh, Jagannath, Niiyama, Hill, & Vaughn, 2004) 

Natural orifices usually include the mouth (reaching the stomach), 

anus (reaching the colon), vagina (reaching the uterus) and urethra 

(reaching the bladder). Theoretically the advantages of a NOTES 

procedure over the laparoscopic approach comes from avoiding an 
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external abdominal incision, a less invasive procedure that allows 

minimization of anesthesia and analgesia and a reduction in 

postoperative abdominal wall pain, wound infection, hernia formation 

and adhesions. (Bowman, 2006) 

Due to its novel concept and the ongoing medical process, the 

connotation and classification of NOTES are still not definite and are 

sometimes controversial. According to the present status of NOTES 

studies, NOTES procedures are mainly divided into two categories; 

“pure” NOTES and “hybrid” NOTES. (Geoffrey, Timothy, Jeffrey, Mihir, 

Edward, & Ralph, 2008) 

 

Figure 3 - Pure NOTES transvaginal access 

The “pure” NOTES refers to a NOTES procedure that is completed 

without any transabdominal ports, including the umbilicus, as shown 

in Figure 3. The “hybrid” NOTES refers to the “mixed” technologies 

using transabdominal instrumentation to facilitate the NOTES 

procedure. 

For analyzing the proper instrumentation to NOTES, it is valid to look 

back at some procedures that have been done so far. (Kalloo, Singh, 

Jagannath, Niiyama, Hill, & Vaughn, 2004) described a 

cholecystectomy in a porcine model using a series of endoscopic 

accessories such as the needle-knife, pull-type sphincterotome and 
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dilation balloons. The transgastric access was difficult in terms of 

identifications, manipulation and resection of the gallbladder. 

(Pai, Fong, Bundga, Odze, Rattner, & Thompson, 2006) in the other 

hand, executed a transcolonic access because they believed that it 

would allow a better visualization and endoscope stability because of 

en face orientation to organs in the upper abdomen. 

(Haber, et al., 2008) presented an initial experience of robotic NOTES 

using the Da Vinci™ surgical system. Ten female pigs were submitted 

into 10 pyeloplasties, 10 partial nephrectomies and 10 radical 

nephrectomies successfully using a hybrid approach (umbilical and 

transvaginal incisions). The intraoperative data showed small 

operative time and blood loss, but some limitations were perceived: 

there were 5 episodes of conflicts between instruments (representing 

17% of the sample), 3 episodes of unwanted contacts between 

endoscope and instruments (9%) and in 3 episodes (9%), the 

instrument could not reach the kidney. 

In short, NOTES is a very promising surgery technique with several 

applications, including cancer surgery (Rieder & Swanstrom, 2011). 

Many researchers (either medical doctors or biomedical engineers) 

are looking for technologies and practice to improve this type of 

surgery and improve patient outcomes. 
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2. NOTESNAIL Project 

2.1. Motivation 

Although NOTES is a very promising technique, some studies have 

been conducted about the quality of manipulability of the 

instrumentation currently in use and its limitations. One of the major 

concerns, existent even in the laparoscopic surgery, is the hand-eye 

coordination that limits three-dimensional triangulation. That issue is 

accented in NOTES given that camera and instruments are in the 

same axis, as shown in Figure 4. 

 

Figure 4 - NOTES instrument proposed in Singapore 

Another major obstacle for the surgeon is the flexibility of an 

endoscope. In one hand, the instrument has to be flexible in order to 

arrive at the correct site of operation. On the other hand, the 

instrument has to be rigid in order to perform forces and pressures 

adequate to the given task. (Bowman, 2006) 

(Cerveri, 2008) suggests that NOTES operative instruments cannot 

be simply adapted from other endoscopic or laparoscopic surgery 

because of its significantly different working conditions: 

 the surgeon cannot rotate the external portion of the 

instrument in order to orient the tool inside the patient's body; 

 the first part of the instrument (proximal part), which does not 

enter the peritoneal cavity, must reach the entrance incision 

which may be quite far from the external opening of the natural 

orifice; 

 the second part of the instrument (operative part, entering the 

peritoneal cavity) needs several degrees of freedom to reach 
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the operative region, more than in endoscopic instruments 

where 4 degrees of freedom are obtained just by rotating the 

external portion of the instrument outside the patient's body; 

 mechanical transmission of motion to the operative part of the 

instrument from a handle outside the orifice is not feasible due 

to length and geometry of the proximal part of the instrument. 

 The loss of force feedback also represents an issue. It is related 

to minimally invasive surgery in general and it is particularly 

relevant with NOTES because the instrument is longer with the 

handle significantly far from the operative region. 

That need to overcome these limitations suggest the benefits of 

specific surgical instruments with high dexterity were the motivation 

for a research team in Italy composed by students and professors of 

4 major universities: Università degli studi di Genova, Politecnico di 

Milano, Università degli studi di Bergamo and Università degli studi de 

L’Aquila. 

The research project has two breakthrough concepts: snail 

architecture and variable stiffness actuation. Its first major objective 

is to build a real-scale prototype with two different distal modules: a 

VS-grasper and a micro-camera. The whole system scheme is shown 

in Figure 5. 
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Figure 5 - NOTESnail project scheme 

A second major objective is to build a control scheme that allows 

position and force feedbacks in addition to collision avoidance, what 

would improve patient and surgeon safety. The last objective is to 

improve the quality of the visualization of the operating space. 

From this point forward, this particular robot will be called NOTESnail. 

2.2. Construction details 

The NOTESnail mechanical project was done following a series of 

technical requirements that are common to many surgical 

applications, plus a series of requirements of our specific use: 

 It has to be insertable in a 10-mm-diameter orifice; 

 Sufficient maneuverability to move around a target; 

 Remotely controllable using a remote console; 

 Low heat dissipation and low energy consumption 

 Autonomous illumination 

 Electromechanical actuation 

 Sensor for position encoding and mechanical interaction with 

surrounding objects 
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 Sterilizable 

 Visual and force servoing control schemes 

Previous works done by the Italians have brought a modular concept, 

with each independent module having two micro-motors moving a 

bending joint (shown in Figure 6) and a torsion joint (shown in Figure 

7). A computer-aided-design representation of the robot’s final 

assemble is shown in Figure 8. 

 

Figure 6 - Bending joint actuator 
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Figure 7 - Torsion joint actuator 

 

Figure 8 - NOTESnail fully assembled 

It is worth noticing the reasons for choosing the number of 

independent modules. Three modules should be sufficient to provide 

six degrees of freedom, which will be enough for the surgeon to reach 

any site of operation with the correct orientation. A larger number of 

modules would make control algorithms more complicated (what is 

equivalent to say that it will have a larger computational cost) 
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Some of the features that are most important for simulating the 

kinematic and dynamic behavior of NOTESnail are shown in Table 1. 

Center of mass and moment of inertia were calculated using 

computer aided design software and it can be found in Appendix A. 

Table 1 - NOTESnail physical proprieties 

Module length 3.5 cm 

Bending joint range From -0.5 π rad to 0.5 π rad 

Torsion joint range From -0.75 π rad to 0.75 π rad 

Module total mass 48 grams 

Camera mass 30 grams 

Motor inertia 9.5e-10 kg/m2 

Viscous friction 8e-7 Pa.s 

 

2.3. NOTESnail Forward Kinematics 

The forward kinematics problem is concern with the relationship 

between the individual joints of the robot manipulator and the 

position and orientation of the tool or end-effector. For computing the 

forward kinematics equations of NOTESnail, the Danevit-Hartenberg 

convention was used (Hess-Coelho, 2004): 

 

Table 2 - Denavit-Hartenberg convention parameters 

D-H a α d θ 

1 0 -π/2 0 Θ1 

2 0 π/2 L1 Θ2 

3 0 -π/2 0 Θ3 

4 0 π/2 L2 Θ4 

5 0 -π/2 0 Θ5 

EE 0 0 L3 Θ6 

 

The Denavit-Hartenberg parameters made possible the construction 

of a homogenous transform matrix (4-by-4 dimension) that provides 
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position and orientation of the end-effector according to the 

coordinate system fixed at the base. Using those equations, varying 

the joint angles along their ranges, it is possible to map the robot’s 

workspace, shown in Figure 9. 

 

Figure 9- NOTESnail Workspace 
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3. Singularities study 

To better understand the meaning of a robot’s singularity, it is 

necessary to understand the velocity kinematics and the manipulator 

Jacobian. Mathematically, the forward kinematic equations define a 

function between the space of Cartesian positions and orientations 

and the space of joint positions. The velocity relationships are then 

determined by the Jacobian of this function. (Spong, Hutchinson, & 

Hutchinson, 2004) 

This Jacobian matrix plays an essential rule in the analysis and 

control of robot motion: from trajectory planning and execution to 

transformation of forces and torques from the end-effector to the 

manipulator joints. Another important propriety of a Jacobian matrix 

(more precisely, its determinant) is the singularity detection. 

3.1. Singularity general theory 

Given a robot with n joints, the 6xn Jacobian J(q) defines a mapping 

between the vector  ̇ of joint velocities and the vector  ̇ of end-

effector velocities. Infinitesimally, this defines a linear transformation 

    ( )   

Equation 1 

A set of joint coordinates that causes the Jacobian rank to decrease is 

called a singular configuration or singularity. Their importance is 

given because (Spong, Hutchinson, & Hutchinson, 2004): 

 Singularities represent configurations from which certain 

directions of motion may be impossible. 

 At singularities, small end-effector velocities may correspond to 

very large joint velocities; 

 At singularities, small end-effector forces and torques may 

correspond to very large joint torques. 

 Singularities may correspond to boundaries of the manipulator 

workspace 
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 Near singularities there will not exist a unique solution to the 

inverse kinematics problem. In such cases there may be no 

solution or there may be infinitely many solutions. 

(Yoshikawa, 1985) defines a scalar value called “measure of 

manipulability”, which is defined by Equation 2. That measure is 

given for a certain manipulator at a given configuration. Some 

authors (Oemoto & Ang Jr., 2007) use that measure for 

distinguishing different behaviors of their control algorithm. 

  √    ( ( )  ( ) 

Equation 2 

Many methods have been proposed to handle singularities and they 

have been divided by (Oemoto & Ang Jr., 2007) in two main 

categories. In the first category, a uniform control strategy is adopted 

throughout the entire workspace, building a continuous function that 

introduces a slight alteration to the task space specification or its 

mapping to the manipulator joint space. This generally results in a 

stable control strategy where the end-effector avoids the singular 

configuration. The second involves a division of workspace where a 

different control algorithm is applied to the region around the 

singularities. 

When the manipulator is at a singular configuration, motions and 

forces along the singular direction are not controllable. If the task 

includes a motion along that singular direction, it can be achieved 

using the null space motion (which corresponds to minimizing a 

potential function corresponding to the task goal). 

(Oemoto & Ang Jr., 2007) divide singularities into two categories 

according to the effect that null space motion has on them. Type I 

singularities (as shown in Figure 10) are those where null space 

motion creates end- effector motion in the singular direction and 

causes the end-effector to escape the singular region through this 

direction. Type II singularities (as shown in Figure 11) are those 

where null space motion affects only internal joint motion, and 
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changes the singular directions without affecting the end-effector 

motion/forces. 

 

Figure 10 - Example of Type I singularity 

 

Figure 11 - Example of Type II singularity 

 

(Oemoto & Ang Jr., 2007) have implemented their singularity robust 

algorithm in the textbooks most famous example Puma560, shown in 

its rest configuration in Figure 12. Its Jacobian can be partitioned into 

two parts, corresponding to “arm” and “wrist”. Analyzing that matrix 
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determinant, the authors were able to find three distinct singular 

configurations corresponding to “elbow lock”, “wrist lock” and “head 

lock”. 

The “elbow lock” is an example of a type I singularity caused by the 

alignment of two link axis (as show in Figure 13a). Even though q3 is 

the reducing the measure of manipulability, it’s through its motion 

that the robot can “fold out” of the singular configuration (as shown 

in Figure 13b). 

The “head lock” is an example of a type II singularity that happens 

when the wrist point is exactly above the first joint axis (see Figure 

14). A null-space motion can rotate the singular direction, allowing 

the task to be completed without changing the end-effector position 

or orientation (see Figure 14). 

 

Figure 12 - Puma560 in rest position 
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Figure 13 - Puma560 "elbow lock" 

 

Figure 14 - Puma560 "head lock" 

3.2. NOTESnail singularities study 

The Puma560 robot has a very important particular configuration that 

allows it to decouple “arm” and “wrist”. That procedure becomes 

highly useful given that the distance between joints at the wrist are 

much smaller than those distances at the arm. 

Therefore the Puma560 architecture implies that positioning will be a 

task majorly achieved by the first three joints and orientation will be 

majorly done by the three last joints, which are called “spherical 

joint”. A spherical joint has also the special propriety that all three 

rotation axis intersect in a common point. 

Since NOTESnail has the same number of joints, all from the same 

type (rotational), a similar approach of decouple position and 
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orientation could be hypothesized. Between the 4th and the 5th joints, 

the distance is negligible, but the distance between the 5th and the 6th 

joints correspond to one third of the robot’s total length. That means 

that position and orientation will be tasks performed by all 6 joints. 

From this point forward, it is convenient to distinguish orientation and 

aiming. Using Denavit-Hartemberg convention, it is recommended 

that the z-axis at the end-effector coordinate frame equals to the 

“attack” direction, which in our case also equals to the last module 

direction, as shown in Figure 15. Therefore, for the propos of this 

thesis, aiming will be defined by the end-effector z-axis, expressed 

in the base coordinate frame. Orientation will be given by the end-

effector rotation matrix, expressed in the base coordinate frame. 

 

 

Figure 15 - MATLAB NOTESnail representation 

 

Analyzing the homogenous transforms between coordinates systems 

between the 6th joint and the end-effector (shown in Equation 3), it 
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may be inferred that the 6th joint plays no rule at positioning or 

aiming of the end-effector. That last revolution joint is the surgeon 

easiest resource for correctly orienting a grasper, for example. 

 

  
  

           

          

  
  

  
  

  
  

 

Equation 3 

It is assumed that the 6th joint range of motion will be capable of 

providing all necessary orientations for the surgeon in a given aiming; 

therefore, this last joint will be ignored in the analysis of (sections x-

y). 

3.2.1. Modeling workspaces with analytical geometry  

Each of NOTESnail modules has two joints: a bending mechanism is 

the proximal part and a torsion mechanism in the distal part. In this 

section, two different workspaces will be modeled: as if the end-

effector was placed at the end of the 1st module and as if it was at 

the end of the 2nd module. 

These models will be represented by an analytic geometry equation 

and a graphical representation. Both models will be useful to check if 

a certain configuration is reachable, evaluating singularities, building 

optimization algorithms and more, as shown in the next sections. 

The first workspace, corresponding to the 1st and 2nd joints is shown 

in Figure 16, and it’s equation may be approximated by: 

         

Equation 4 

Where d is the module’s length and Equation 4 exists only if    . 
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Figure 16 - First module workspace 

The second workspace is a solid. Initially, the combination of the 2nd 

and 3rd joints actions on the second module would build a surface in 

the shape of half-sphere, centered at one point at the first module 

workspace (given by the 1st joint angle) as shown in Figure 17. If the 

1st joint angle is varied within its range, the end result is shown in 

Figure 18 and Figure 19. 

 

Figure 17 - 2nd and 3rd joints action with the 1st joint set to zero 
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Figure 18 - 2-module workspace 

 

Figure 19 - 2-module workspace 
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The solid can be approximated by a torus (approximation only valid 

for     and         ), but its general equation is given by 

Equation 5. 

           √      

Equation 5 

3.2.2. Reachable coordinates and measure of redundancy 

As pointed in earlier sections, this analysis will be based on 

positioning and aiming, ignoring the effects of the 6th joint. 

If the end-effector is anchored at a certain point in space, all the 

possible aiming vectors summed would build a sphere solid centered 

at that certain point (represented in Figure 20 by the yellow point). 

Taking account that the aiming vector has the same direction as the 

module’s longitudinal axis, that sphere radius is equal to the module’s 

length. As a result, the relevant geometric model is a surface in the 

shape of a sphere centered in the end-effector desired point with 

radius equal to the module’s length (represented in Figure 20 by the 

red sphere). That geometric model is equivalent to the Equation 6. 

(    )
  (    )

  (    )
     

Equation 6 

Where (        ) are the desired Cartesian coordinates of the end-

effector and d is the module’s length. 

Conclusion 1: If the sphere surface intersects the torus-like solid, 

then (        ) is reachable. 

Conclusion 2: The intersection between the sphere surface and the 

torus-like solid is a spherical cap. 

Conclusion 3: The spherical cap area corresponds to the number of 

the NOTESnail possible configurations (meaning all possible aiming) 

with the desired positioning (as shown in Figure 20). That figure will 

be called measure of redundancy. 
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Figure 20 – Reachable point (yellow dot) 

3.2.3. NOTESnail singular configurations 

The singular configurations, as introduced in the section 3.1, were 

found using screw theory 

3.2.3.1. 2nd joint – type I singularity 

The 2nd joint being equal to +π/2 or –π/2 represent a type I 

singularity because it represents the frontier of the 2-module 

workspace. The last module is an important part on determining the 

end-effector’s orientation and the job of positioning the end-effector 

becomes a task of the first two modules. 

To analyze the possible motions when the singular configuration has 

been reached, the best coordinate system to be used is the one 

shown in Figure 21. Because of the frontier interpretation, it is clear 

that any movement that is tangent to the 2-module workspace would 

be possible (represented by  ̂ and  ̂). In the  ̂ negative direction, any 

motion is still allowed, but the positive direction of  ̂ is impossible, as 

well as any other trajectory that contains that vector as a partial 

component. 
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Figure 21 - Spherical coordinates 

3.2.3.2. 3rd joint – type I singularity 

The 3rd joint singularity also represents a boundary singularity, as 

shown in Figure 22, but physically, it also represents the annulation 

of the effects of the 2nd joint, given the mechanical architecture 

shown in Figure 15. It is important to notice that the 3rd joint 

singularity is contained in the 2nd joint singularity, both in physical 

and mathematical meaning, which means that a singularity avoidance 

algorithm for the 2nd joint will be also effective for the 3rd joint. 

 

Figure 22 - 3rd joint singularity 
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3.2.3.3. 5th joint – type II singularity 

The 5th joint singularity, given by (θ5 = 0) represents the physical 

alignment of the 2nd and 3rd module and is the only one between the 

ones studied so far that is perfectly avoidable by using an alternative 

configuration, as shown in Figure 23. This implies that when 

approximating a singular configuration, the desired control algorithm 

would create an internal motion to reach the alternative configuration 

without passing through the singularity, as shown in Figure 23, Figure 

24, Figure 25 and Figure 26. 

From this point, some problems have emerged: 

 Given the robot’s joint limits, not all singular configurations 

have a symmetrical non-singular configuration, as the one 

shown in Figure 27 

 Depending on the rotation angle that the robot is introduced in 

the patient’s body, the rotation joints limits may represent an 

issue to internal motion. 

 Having a symmetrical non-singular configuration would require 

the control system to be coordinated by a navigation system, 

which would be complex and independent from the user. That 

navigation system would have to be capable of measuring the 

end-effector’s position and orientation in order to input the 

commands to create the internal motion capable of avoiding the 

singularity. That system is not difficult to design, but its 

necessity should be well evaluated according to the behavior of 

the inverse kinematics algorithms. 
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Figure 23 - Motion from singular to alternative configuration 

 

Figure 24 – Time vs. z coordinate during singularity avoidance movement 

 

Figure 25 - Time vs. x-coordinate during singularity avoidance movement 
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Figure 26 - Time vs. y-coordinate during singularity avoidance movement 

 

Figure 27 - Singular configuration without non-singular reachable symmetrical 
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4. Robotics Control Algorithms 

Starting from the general control theory, a controller manipulates the 

dynamic system inputs in order to obtain a desired output called 

“reference”. An open-loop control system does not measure outputs 

in order to alter control. On the other hand, a closed-loop control 

system has sensors whose measures are used to drive dynamic 

changes in the overall system. (Ogata, 2001) 

A closed-form control system is usually represented in a block 

diagram, as shown in Figure 28. The most common objectives of a 

control algorithm are: 

 Disturbance robustness; 

 Improve performance around uncertain models; 

 System stabilization; 

 

Figure 28 - Control system block diagram 

 

There are many control techniques and methodologies that can be 

applied to the control of manipulators. The particular control method 

chosen as well as the manner in which it is implemented can have a 

significant impact on the performance of the manipulator and 

consequently on the range of its possible applications. For example, 

continuous path tracking requires a different control architecture than 

does point-to-point control. (Spong, Hutchinson, & Hutchinson, 2004) 

In addition, the mechanical design of the manipulator itself will 

influence the type of control scheme needed. For example, the 

control problems encountered with a Cartesian manipulator are 

fundamentally different from those encountered with an elbow type 
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manipulator. In sections 0 to 4.3, some control schemes (or their 

important components) are presented. 

Since every control scheme is based on a reference value (given as 

an input), an important paradigm that needs to be explored is the 

trajectory planning versus real-time human-controller input. The first 

is majorly used in many industrial and autonomous robots, since their 

tasks are programmable and will be executed in repeatedly. 

In trajectory planning (or generation), the basic problem is to move 

the manipulator from an initial configuration to a final configuration 

(maybe via some other configuration). The trajectory will be a set of 

positions, velocities and accelerations for each degree of freedom. 

The constrains may be spatial, temporal and/or about smoothness. 

The solutions for the trajectory generation problem may be in the 

joint space or in the Cartesian space. 

While giving a solution in the joint space has the advantages of 

singularity avoidance and less calculations, the solution may not 

follow a straight line. On the other hand, a solution in the cartesian 

space has many discontinuity problems such as unreachable and 

singular configurations along the path. 

Many authors have proposed solutions for a smooth, fast and reliable 

path generation using mathematical interpolation or genetic 

algorithms (Abo-Hammour, Mirza, Mirza, & Arif, 2002). Some of 

these solutions include singularity and/or obstacle avoidance, very 

useful for pre-programmed tasks. 

The problem is that the surgeon controlling NOTESnail will give real-

time inputs to the system in the Cartesian space, which is the 

intuitive space for humans. The reference and the “sensor feedback” 

will be both be given by the surgeon, therefore, the electronic control 

will be necessary only for stabilizing the system 
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4.1. Computed torque control 

This is a classical dynamic control technique when the rigid-body 

dynamic model is inverted to compute the demand torque for the 

robot based on current joint angles and joint angle rates and demand 

joint acceleration (Paul, 1981). 

In the case of the simulation toolkit used in this work, the inverse 

dynamics of NOTESnail is calculated using the recursive Newton-Euler 

algorithm. As the dynamics parameters are not exactly known, the 

toolkit’s author recommends the introduction of a perturbance. 

(Corke, 2008) 

However, computer torque control algorithms have as an input a 

trajectory (or a desired position) given in the joint space, which is 

undesirable for our user. For moving from the Cartesian space (user-

friendly) for the joint space, both inverse kinematics and inverse 

Jacobian functions are required. 

4.2. Visual servoing control 

Visual servoing is the concept in which machine vision can provide 

closed-loop position control for a robot end-effector. The task is to 

use visual information to control the pose of the robot’s end-effector 

relative to a target object or a set of target features. (Hutchinson, 

Hager, & Corke, 1996) 

Visual servoing depends on a series of other subjects, such as: 

coordinate transformations; velocity of a rigid object; camera 

projection models; image features and image features parameter 

space; and camera configuration (end-effector mounted or fixed in 

the workspace) 

There is a taxonomy, introduced by (Sanderson & Weiss, 1980), 

which categorizes visual servo systems into 4 different schemes 

(shown in Figure 29 to Figure 32) by answering two questions: 

 Is the control structure hierarchical, with the visual system 

providing set-points as input to the robot’s joint-level controller, 
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or does the visual controller directly compute the joint-level 

inputs? 

 Is the error signal defined in 3D (task space) coordinates, or 

directly in terms of image features? 

 

Figure 29 - Dynamic position-based look-and-move structure 

 

Figure 30 - Dynamic image-based look-and-move structure 

 

Figure 31 - Position-based visual servo 
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Figure 32 - Image-based visual servo 

Today, the applications of this technology remain limited due to the 

high costs of technology and the skills required to construct an 

integrates visually controlled robot system (Hutchinson, Hager, & 

Corke, 1996) , but still is a very useful tool for NOTESnail. 

4.3. Cartesian control 

An important objective in controlling a robot manipulator is to ensure 

that the end-effector tracks a desired Cartesian (task) space 

trajectory as closely as possible. This is a difficult problem because, in 

the description of the manipulator dynamics, the control torques are 

defined in terms of joint variables and not end-effector variables. 

(Misra, Patel, & Balafoutis, 1988) 

Manipulator control is therefore usually performed in joint space. The 

desired task space trajectory is transformed to joint space at 

sufficiently many points to ensure that any error in tracking the joint 

space trajectory will not cause the end-effector to deviate 

significantly from the desired trajectory in task space. However, since 

the relationship between joint variables and end-effector variables is, 

in general, highly nonlinear, it is possible that a small deviation in a 

joint space trajectory can cause a relatively large deviation in the 

corresponding task space trajectory. 

The basic scheme for a Cartesian control uses: 
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 The reference is a trajectory given in end-effector 

homogenous transforms; 

  The error is the difference between the reference and the 

actual position (given by the joint angles encoders plus a 

forward kinematics algorithm); 

 This error is transformed in a (6x1) differential vector 

equivalent to a column vector of Cartesian velocities; 

 This vector is multiplied by the inverse of the manipulator 

Jacobian. The result is a column vector of joint velocities; 

 If this vector of joint velocities is integrated, the actual joint 

configuration is achieved and the feedback the system, as 

presented in Figure 33. 

 

Figure 33 - Basic Cartesian Control Scheme 

In the basic scheme presented, it is noticeable the importance of the 

singular configurations during the operation of the Jacobian inverse. 

Since the simple matrix inversion does not exist near singularities, 

other methods should be explored in order to make the Cartesian 

control well-behaved near singular configurations. 

These algorithms, which basically solve the inverse kinematics 

problems, are vastly explored in the literature and include: cyclic 

coordinate descent methods (Wang & Chen, 1991); pseudoinverse 

methods (Whitney, 1969); Jacobian transpose methods (Balestrino, 

de Maria, & Sciavicco, 1984); damped least squares methods 

(Wampler, 1988); quasi-Newton and conjugate gradient methods 
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(Wang & Chen, 1991); and neural nets and artificial intelligence 

methods (Oyama, Chong, Agah, & Maeda, 2001). 

For the propose of this work, four inverse kinematics algorithms were 

selected using the following criteria: simplicity of implementation, 

computational cost, real-time application and adequacy to the task 

(since many of the algorithms are designed for computer graphic 

applications, which have a larger number of degrees of freedom, 

more complicated constrains, etc.) (Tolani, Goswami, & Badler, 

2000). 

For simplicity, it won’t be considered any aspects of self-collision or 

joint limits (except for the optimization algorithm). 

4.3.1. Jacobian transpose method 

The basic idea is very simple: use the transpose of J instead of the 

inverse of J . That is, we set Δθ equal to: 

Δθ = αJTe; 

Equation 7 

for some appropriate scalar α. Now, of course, the transpose of the 

Jacobian is not the same as the inverse; however, it is possible to 

justify the use of the transpose in terms of virtual forces. (Balestrino, 

de Maria, & Sciavicco, 1984) 

4.3.2. Jacobian pseudo-inverse method 

The pseudoinverse method sets the value Δθ equal to: 

Δθ = J*e; 

Equation 8 

where the n x m matrix J* is the pseudoinverse of J , also called the 

Moore-Penrose inverse of J . This inversion can be used for all 

matrices, even those which are not full rank. The pseudoinverse gives 

the best possible solution to the equation JΔθ = e in the sense of 

least squares. 

(Buss, 2004) affirms that: 
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Let Δθ be defined by Equation 8. First, suppose e is in the range 

(i.e., the column span) of J . In this case, JΔθ = e; furthermore, 

Δθ is the unique vector of smallest magnitude satisfying JΔθ = 

e. Second, suppose that e is not in the range of J. In this case, 

JΔθ = e is impossible. However, Δθ has the property that it 

minimizes the magnitude of the difference JΔθ - e. 

Furthermore, Δθ is the unique vector of smallest magnitude 

which minimizes ||JΔθ-e||, or equivalently, which minimizes 

||JΔθ-e||2. 

The pseudoinverse is not immune to stability problems in the 

neighborhoods of singularities. If the configuration is exactly at a 

singularity, then the pseudoinverse method will behave well and 

won’t try a movement in an impossible direction. However, if the 

configuration is close to a singularity, then the pseudoinverse method 

will lead to very large changes in joint angles, even for small 

movements in the target position. 

The pseudoinverse has the further property that the matrix (I – J*J) 

performs a projection onto the nullspace of J. Therefore, for all 

vectors φ, J(I – J*J)φ = 0. This means that we can set Δθ by 

Δθ = J*e + (I – J*J) φ 

Equation 9 

for any vector φ and still obtain a value for Δθ which minimizes the 

value J Δθ - e. By choosing special values of φ, it is possible to 

achieve secondary goals other that following to a demanded 

trajectory. For example, φ can be set to return the joint angles back 

to rest positions (Girard & Maciejewski, 1985): this can help avoid 

singular configurations. 

A number of authors have used the nullspace method to help avoid 

singular configurations by maximizing Yoshikawa's manipulability 

measure (Yoshikawa, 1985). (Maciejewski & Klein, 1985) used the 

nullspace method for obstacle avoidance. 
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4.3.3. Damped least squares method 

The damped least squares method can be theoretically justifed as 

follows: Rather than just finding the minimum vector Δθ that gives a 

best solution to equation e = J Δθ, we find the value of Δθ that 

minimizes the quantity 

||J Δθ – e||2 + λ2|| Δθ||2, 

Equation 10 

where λ Є R is a non-zero damping constant. By using singular value 

decomposition, it can be shown that JTJ+λ2I is non-singular. Thus, 

the damped least squares solution is equal to: 

   (       )     ⃗ 

Equation 11 

Now, JTJ is a n x n matrix, where n is the number of degrees of 

freedom. It is easy to show that (JTJ+λ2I)-1JT = JT(JJT+λ2I)-1. Then, 

     (       )   ⃗ 

Equation 12 

The advantage of Equation 12 over Equation 11 is that the matrix 

inversion is executed over a m x m matrix instead of a n x n (m being 

the number of degrees of freedom and n being the number of joints, 

which is usually larger). 

4.3.4. Singular Value Decomposition method 

Let A  be a real m x n matrix with m≥n: 

       

Equation 13 

Where: 

UTU=VTV=VVT=In and Σ=diag(σ1,…, σn). 

The matrix U consists of n orthonormalized eigenvectors associated 

with the n largest eigenvalues of AAT, and the matrix V consists of the 

orthonormalized eigenvalues of ATA. The diagonal elements of Σ are 

the non-negative square roots of the eigenvalues of ATA; they are 

called singular values. It is assumed that: 



49 
 

σ1≥ σ2≥ … ≥ σn≥ 0 

Thus, if rank(A)=r, σr+1= σr+2= … = σn=0. The decomposition 

presented in Equation 13 is called the singular value decomposition 

(SVD). (Golub & Reinsch, 1970) 

One of the applications of the SVD procedures is the calculation of the 

pseudoinverse X, that satisfies the following four properties: 

 A X A = A; 

 X A X = X; 

 (A X)T = A X; 

 (X A)T = X A. 

The unique solution is denoted by A+. It is easy to verify that if 

A=UΣVT, then A+=VΣ+UT where Σ+=diag(σi
+) and 

  
  

 

  
         

  
             

4.3.5. Optimization method 

There are many optimization algorithms available for the inverse 

kinematics calculation. For the propos of this work, it was chosen the 

minimization of constrained non-linear multivariable function. The 

variables to be optimized are the joint angles and the function to me 

minimized is: 

 ( )     (    (        (       ))) 

Where “abs” calculates the absolute value inside the parenthesis, 

“norm” calculates the norm of the matrix inside the parenthesis and 

“fkine” calculates the forward kinematics of the “robot” while in the 

configuration set by “q”. 

In comparison with inverse kinematics methods that use any 

variation of the Jacobian matrix, the optimization method has the 

vantage of respecting the joint limits, but the disadvantage of higher 

computational cost. Both methods have problems near singularities, 

depending on the choice of the initial guess. 
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5. Experimental Results 

When dealing with surgical applications of robots, specially having a 

human input for the manipulator’s motion, it is very important to 

have a singularity-robust motion control, in order to avoid tracking 

errors, blockages or any other undesired behavior that would risk a 

patient surgery. 

For better choosing a motion control algorithm, a series of tests were 

conducted in order to analyze the behavior of each method presented 

in sections 4.3.1 to 4.3.5. The testing protocol involves a series of 

steps from building a trajectory to collecting the results, which will be 

presented in the next few sections. 

5.1. Trajectories 

The trajectories were chosen in two different perspectives: in the 

first, one should try to mimic possible motions a surgeon would 

execute inside the operating room; in the second, the robot’s 

behavior in extreme singularity conditions have to be tested, even if 

those situations are not applicable in a real world application. 

As mentioned in previous sections, simulated trajectories have to be 

set in the Cartesian space, since those are the natural command 

inputs for the human controller. But, to make sure that those 

trajectories are composed only of reachable configurations, they are 

all tested through a optimization algorithm. 

This testing algorithm uses the same objective function of the inverse 

kinematics in section 4.3.5, but returns a time-stamped array of joint 

space coordinates and a time-stamped array of the objective function 

value at that given set of coordinates. In other terms, gives a 

measure of the error during the trajectory. 

All the following testing trajectories have a tracing error inferior to 

10-5 meters and the norm of the maximum linear velocity is inferior 

to 0.5 cm/s. 
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5.1.1. Pick and Pull 

The pick-and-pull trajectory is a common trajectory to be used in the 

operating room. Literary hundreds of times the surgeon has to grab a 

piece of tissue or suture line and pull it in other direction. The 

proposed trajectory follows a straight line along the positive direction 

of z-axis. 

The orientation is kept parallel to the X-Z plane with a 45 degrees 

rotation around the negative axis of Y, as shown in Figure 34. The 

total distance traveled is 2 centimeters, starting from [3;-5;-4,5]. 

The trajectory in joint coordinates is shown in Figure 35: 

 

Figure 34 - Trajectory 1 final configuration 

 

Figure 35 - Trajectory 1 joint space trajectory 
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5.1.2. Type I singularity test trajectory 

This is a trajectory that is not comparable to real-world applications, 

but is important as an extreme condition test. In this situation, the 

starting point was not a Cartesian coordinate route: the procedure 

was to block angles for joints 1, 3, 4, 5 and 6 while varying the 2nd 

joint within its full range. 

That causes NOTESnail to pass through a type I singularity twice: 

when q2 equals to –π/2 and to –π/2, as shown in (same legend as 

previous equivalent figures). The Cartesian coordinates visualization 

is provided in.Figure 36, Figure 37 and Figure 38. 

 

Figure 36 - X-Z graphic of trajectory 5.1.2 

 

Figure 37 - Y-X graphic of trajectory 5.1.2 
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Figure 38 - - Z-Y graphic of trajectory 5.1.2 

5.1.3. Type II singularity test trajectory 

This trajectory follows the same principle of trajectory 5.1.2 

concerning real-world application, but instead of varying the 2nd joint 

variable, the 5th joint singularity is the one to be studied.by using the 

exactly equivalent procedure. The joint space variables visualization 

is shown in Figure 39 (note that some joint coordinates can’t be 

visualized since all have the same value “0”). 

 

Figure 39 - Joint space trajectory of 3rd trajectory 
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5.1.4. Suture simulation 

Another trajectory vastly used in the operating theater is the suture, 

as shown in Figure 40. The movements shown in the sections A, C, D, 

E and F are achieved with the previous “pick and pull” movement. 

The most complicated movement is shown in Figure 40-B when the 

surgeon does and helix-like trajectory in order to “wrap” the suture 

line around the grasper body. 

That movement can be mathematically approximated with an helix 

around the end-effector z-axis. According to the common surgery 

practice, instead of keeping the orientation constant during the 

complete trajectory, it will be used to help the circular movement. 

Joints 1, 2 and 3 will be used for the linear movement along the last 

module z-axis. Joints 4 and 5 will be used for the circular movement 

of the helix. 

The trajectories in the joint space and in the Cartesian space are 

shown in Figure 41 and Figure 42 respectively. In Figure 42, the 

colors yellow, magenta and cyan represent the Cartesian coordinates 

x, y and z respectively. 
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Figure 40 - Laparoscopic suture 

 

Figure 41 - Second trajectory in joint space coordinates 
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Figure 42 - Suture trajectory in Cartesian coordinates 

5.2.  Simulink models 

Simulink, developed by Mathworks is a tool for modeling, simulating 

and analyzing dynamic systems. Its primary interface is based in 

block diagrams, making it easy to change architectures, parameters 

and etc. That was the main reason for choosing it for the propos of 

this work. 

In all models, the blocks are the following: 

 the Cartesian trajectory is obtained from a MATLAB file 

(resulted from a “trajectory building” file); 

 the difference between the actual position and the desired 

position is computed in the form of a (6x1) differential vector; 

 this Cartesian differential vector is transformed in a joint space 

differential vector according to one of the methods; 

 A proportional integrative operation is performed. The gain can 

be altered as desired; 

 The forward kinematics operates the variables back to the 

Cartesian space; 
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 The “plot” block provides the user to a visualization of the 

movement. 

5.2.1. Transpose Method 

The transpose method is self-explanatory. The joint variables are 

taken in each step for the calculation of the manipulator’s Jacobian, 

which will be transposed in order to multiply the Cartesian differential 

vector. 

 

Figure 43- Simulink model of the transpose method 

 

5.2.2. Pseudoinverse method 

The pseudoinverse method introduces a larger number of block in 

order to perform  the operations described in the section 4.3.2. The 

block named “Subsystem1” in Figure 44 has a user-determined input 

called “null-space vector” in order to perform such an operation. 

 

Figure 44 - Pseudoinverse method simulink method 
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5.2.3. Damped least squares method 

This Simulink model is also self-explanatory. The mathematical 

operations proposed in the section 4.3.3 is performed with a user-

defined input for the damping constant. 

 

Figure 45 - Damped least squares method simulink model 

5.2.4. Singular value decomposition method 

For the SVD method, a MATLAB function was created instead of 

combining many Simulink® blocks, making the overall model clearer. 

This function can be found in Appendix A 

 

Figure 46 - SVD method simulink method 

 

5.2.5. Optimization method 

The optimization method has the least self-explanatory Simulink 

model (Figure 47). The block transforming the difference between the 

actual state and the desired trajectory in a differential vector was 
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kept because that is the user’s play in the system. The differential 

vector being the joystick input. 

The optimization code represented by “ikinebot_full” is shown below: 

function [qt yout] = ikinebot_simulink (robot,diff,qi) 

  
liminf = [-pi/2 -3*pi/4 -pi/2 -3*pi/4 -pi/2 -3*pi/4]; 
limsup = [pi/2 3*pi/4 pi/2 3*pi/4 pi/2 3*pi/4]; 
% compute final configuration 
ti = fkine(robot,qi); 
di = tr2diff(ti); 
df = di+diff; 
tr = diff2tr(df); 
%optimization algoritm 
f = @(x)full_matrix_op(x,robot,tr); 
[qt yout] = fmincon(f,qi,[],[],[],[],liminf,limsup); 

  
end 

 

 

Figure 47 - Optimization simulink model 

 

5.3. Graphical Cartesian space offset 

For all figures in this section, the horizontal axis corresponds to the 

time (in seconds) and the vertical axis corresponds to the following 

legend is valid for all figures in section 5.3: 

 Dark Blue = linear error in x-axis 

 Green = linear error in y-axis 

 Red = linear error in z-axis 

 Cyan = rotational error around x-axis 

 Magenta = rotational error around y-axis 
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 Yellow = rotational error around z-axis 

 

Figure 48 - Trajectory 1, transpose method 

 

Figure 49 - Trajectory 1, DLS 

 

Figure 50 - Trajectory 1, pseudoinverse 
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Figure 51 - Trajectory 1, SVD 

 

Figure 52 - Trajectory 2, transpose method 

 

Figure 53 - Trajectory 2, DLS method 
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Figure 54 - Trajectory 2, SVD method 

 

Figure 55 - Trajectory 2, pseudoinverse 

 

Figure 56 - Trajectory 3, DLS 
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Figure 57 - Trajectory 3, SVD 

 

Figure 58 - Trajectory 3, transpose method 

 

Figure 59 - Trajectory 3, pseudoinverse 
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Figure 60 - Trajectory 4, DLS 

 

Figure 61 - Trajectory 4, Transpose 

 

Figure 62 - Trajectory 4, SVD 
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Figure 63 - Trajectory 4, pseudoinverse 

5.4. Graphical joint space offset 

In this section, it will be provided the difference between the real 

trajectory in the joint space and the projected one (obtained with the 

optimization algorithm). For all figures in this section, the horizontal 

axis corresponds to the time (in seconds) and the vertical axis 

corresponds to the following legend: 

 Dark Blue = error for the 1st joint 

 Green = error for the 2nd joint  

 Red = error for the 3rd joint  

 Cyan = error for the 4th joint  

 Magenta = error for the 5th joint  

 Yellow = error for the 6th joint 
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Figure 64 - Trajectory offset in trajectory 1, DLS 

 

Figure 65 - Trajectory offset in trajectory 1, pseudoinverse 

 

Figure 66 - Trajectory offset in trajectory 1, SVD 
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Figure 67 - Trajectory offset in trajectory 1, transpose method 

 

Figure 68 - Trajectory offset in trajectory 2, DLS 

 

Figure 69 - Trajectory offset in trajectory 2, Pseudoinverse 
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Figure 70 - Trajectory offset in trajectory 2, SVD 

 

Figure 71 - Trajectory offset in trajectory 2, transpose 

 

Figure 72 - Trajectory offset in trajectory 3, DLS 
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Figure 73 - Trajectory offset in trajectory 3, Pseudoinverse 

 

Figure 74 - Trajectory offset in trajectory 3, SVD 

 

Figure 75 - Trajectory offset in trajectory 3, transpose 
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Figure 76 - Trajectory offset in trajectory 4, DLS 

 

Figure 77 - Trajectory offset in trajectory 4, Pseudoinverse 

 

Figure 78 - Trajectory offset in trajectory 4, SVD 
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Figure 79 - Trajectory offset in trajectory 4, transpose 

  



72 
 

6. Discussion and Conclusion 

The main objective of this work was to test kinematic control 

algorithms in real world surgery trajectories. The algorithm should 

well behave when in singular configuration either following the 

original trajectory in joint space or using other degrees of freedom to 

follow the trajectory in Cartesian space. 

As analyzed in Section 3.2.3, the only singular configurations truly 

avoidable without changing position or orientation are the one caused 

by the 5th joint angle equal zero. Some of those configurations have a 

symmetric non-singular configuration, and one may consider the 

motion between a quasi-singular configuration and its symmetric. 

The first concern would be if the internal joint motion would affect the 

surrounding tissues. That should not be a problem since the operation 

site is inflated with carbon dioxide making enough room for the 

manipulator to move. 

The second concern is about the small end-effector motion which is 

inevitable during the internal joint motion. In the worst case scenario, 

if the surgeon is performing a suture or other delicate procedure, will 

a 1 cm displacement affect his technique or the patient’s outcome? 

6.1. Trajectories 

During the testing phase of this work, many different trajectories 

were considered in order to evaluate the performance of the 

kinematic control algorithms. The available computational tools for 

NOTESnail real-time 3-D visualization required a joint-space input, 

making it difficult to draw up trajectories based on intuition. 

On the other hand, the old-fashion approach on drawing trajectories 

revealed important kinematic limitations on a 3-module NOTESnail 

design: 

 If the approach while designing a trajectory was to maintain a 

fixed orientation while moving the end-effector’s Cartesian 
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coordinates, the workspace became very limited. As shown in 

section 3.2.2, given the end-effector position and orientation, it 

is possible to retrieve the position of the 4th and 5th joints and 

the configuration is reachable if and only if: 

o The position of the 4th and 5th joints is inside the 2-

modules workspace shown in Figure 18; 

o The 4th and 5th joint angles necessary to position the last 

module are inside the allowed range. 

These two conditions make the number of possible trajectories 

with fixed orientation very limited when considering the size of 

the workspace. 

 As shown in Figure 17, the [-3π/4;3π/4] range for the rotation 

joints combined with the [-π/2;π/2] range for the bending joint 

seems to be more than enough for building a half-sphere 

capable of reaching any desired point, but when considering 

these points in a trajectory, some problems emerge: 

o One should consider the suture motion, as shown in 

Figure 40, when done with common 4-DOF laparoscopic 

instruments. The circular motion done around the suture 

line when analyzed in joint variables (as shown in Figure 

80) would give a continuous increasing value (from 0 to 

2.n.π, where n is the number of suture rotations), which 

is not compatible with NOTESnail joint range limitations. 
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Figure 80 - Laparoscopic instrument joint variables 

Comparing all inverse kinematics algorithms, a few considerations 

have to be pointed out: 

6.2. Transpose method 

The transpose method has the worse behavior among all solutions: it 

has a slow convergence and step instability (resulting in the comb-

like graphic as shown in Figure 48, for example). 

In the Cartesian space, the transpose method has one of the worse 

performances, but on the other hand, it keeps a closer distance to the 

expected joint space trajectory when considering a singularity-rich 

route. 

On the other hand, following closer to the expected joint trajectory 

implies that there is no singularity avoidance using other degrees of 

freedom, which was one of the main goals of this work. 
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6.3. Damped least squares method 

The damped least squares method has different performances in the 

Cartesian space and in the joint space according to the damping 

constant: 

 In the real world reachable trajectories, DLS method has the 

same great performance as the pseudoinverse and SVD 

methods (both in Cartesian and joint space). In the case of a 

real world unreachable trajectory, the DLS has a better 

performance than pseudoinverse and SVD (both in Cartesian 

and joint space). 

 In extreme singularities conditions, DLS method has an 

equivalent performance to SVD and pseudoinverse methods 

when analyzing the Cartesian space and the best performance 

when analyzing the joint space offset. 

 The damping constant affects the overall performance when 

varying between the values of [-1;1]. Out of this range, the 

performance is kept saturated in the extreme values. The 

resulting performance x damping constant graphic has a 

Gaussian-like format centered in 0, as shown in .The best 

damping constant value found during the test is -0.01 

 

Figure 81 - damping constant x overall performance 
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6.4. Singular Value Decomposition 

Similarly to the pseudoinverse method, the SVD method is very 

robust and stable algorithm. Both methods have a closer performance 

to the initial objective of this work: to use other degrees of freedom 

for singularity avoidance while keeping the desired trajectory in the 

Cartesian space. No other considerations are worth pointing out. 

6.5. Pseudoinverse method 

The pseudoinverse method, as the SVD method, has the behavior 

which is closest to this work’s objective. Both methods have exactly 

the same performance when the null space projection vector is zero, 

but it points out the advantage of the pseudoinverse over SVD 

method. 

By manipulating the null space projection vector, one can achieve to 

avoid singular configurations by creating internal motion, which is the 

great objective of this work. The best manipulation of the null space 

projection can be an objective of future work. The only manipulation 

proposed is shown in Equation 14: 

              

  

‖  ‖
 
  ‖  ‖

  
 

  
     

 

  
     

Equation 14 

This manipulator was though to keep the manipulator as far as 

possible of singular configuration. The problem with that algorithm is 

that those configurations become unreachable and a large portion of 

the workspace is lost. 

6.6. Optimization algorithm 

The optimization algorithm is very successful when planning 

trajectories and executing the inverse kinematics, but becomes 

impracticable when executing in real-time. Simulink simulations could 

not progress any greater than zero time-stamp and would also block 

the operating system. 



77 
 

6.7. Final considerations 

Given all considerations about singular configurations in the 

NOTESnail system and the behavior of the inverse kinematics 

algorithms, the author of this work suggests that the singularity 

avoidance would benefit from increasing the number of construction 

modules. 

The increase in the number of modules will provide the system with 8 

degrees of freedom, 2 more that the necessary to reach any point 

with any orientation, what will provide any inverse kinematics 

algorithm the necessary redundancy to achieve the initial objective of 

singularity avoidance. 

Given the collected data, the best option for the kinematic control is 

the pseudoinverse method. This algorithm answers to the main goal 

which was to use other degrees of freedom to overcome a rank-

deficient Jacobian matrix simple inverse, as well as behaves perfectly 

along singularity-free paths. 

The possibility of exploring null space projection vectors gives the 

pseudoinverse method an advantage over the Singular Value 

Decomposition and can be a powerful tool when the manipulator is 

forced into a border singularity. The tracking error in the Cartesian 

space is acceptable, especially because there are no computer-

generated paths, but a human visual control. 

Finally, this work showed to importance of analyzing the physical 

meaning of each singularity and which kinematic control algorithm is 

more appropriated for compensating a 3-module mechanical design 

the is very suited for the propos of NOTES but highly limited in terms 

of possible trajectories. 
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8. Appendix A 

8.1. Robot object building MATLAB code 

clear L 

  
d=3.5; 

  
L{1} = link([pi/2  0 0 0],'standard'); 
L{2} = link([-pi/2 0 0 d],'standard'); 
L{3} = link([pi/2  0 0 0],'standard'); 
L{4} = link([-pi/2 0 0 d],'standard'); 
L{5} = link([pi/2  0 0 0],'standard'); 
L{6} = link([0     0 0 d],'standard'); 

  
L{1}.qlim = [-pi/2  pi/2]; 
L{2}.qlim = [-pi    pi]; 
L{3}.qlim = [-pi/2  pi/2]; 
L{4}.qlim = [-pi    pi]; 
L{5}.qlim = [-pi/2  pi/2]; 
L{6}.qlim = [-pi    pi]; 

 

L{1}.m = 0.033; 
L{2}.m = 0.015; 
L{3}.m = 0.033; 
L{4}.m = 0.015; 
L{5}.m = 0.033; 
L{6}.m = 0.015+0.030;  % with microcamera 

  
% Center of Mass in respect to the origin of each link 
L{1}.r = [ 0.000179    0.000243     0.025109 ]; 
L{2}.r = [ 0           0.017786     0.000012 ]; 
L{3}.r = [ 0.000179    0.000243     0.025109 ]; 
L{4}.r = [ 0           0.017786     0.000012 ]; 
L{5}.r = [ 0.000179    0.000243     0.025109 ]; 
L{6}.r = [ 0           0.017786-0.0177     0.000012 ];  

  
% Momento of inertia (from CAD) 
L{1}.I = [  7.543e-006   2.337e-006      8.587e-006     2.147e-6   -

3.194e-7      8.8e-7]; 
L{2}.I = [  9.645e-007   1.696e-006      1.693e-006     1.44e-7    -

1.311e-7     -1.522e-7]; 
L{3}.I = [  7.543e-006   2.337e-006      8.587e-006     2.147e-6   -

3.194e-7      8.8e-7]; 
L{4}.I = [  9.645e-007   1.696e-006      1.693e-006     1.44e-7    -

1.311e-7     -1.522e-7]; 
L{5}.I = [  7.543e-006   2.337e-006      8.587e-006     2.147e-6   -

3.194e-7      8.8e-7]; 
L{6}.I = [  9.645e-007   1.696e-006      1.693e-006     1.44e-7    -

1.311e-7     -1.522e-7]; 

  
% Motor inertia (from datasheet) 
L{1}.Jm =  9.5e-010; 
L{2}.Jm =  9.5e-010; 
L{3}.Jm =  9.5e-010; 
L{4}.Jm =  9.5e-010; 
L{5}.Jm =  9.5e-010; 
L{6}.Jm =  9.5e-010; 
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% Motor reduction 
L{1}.G =  1024*14/3; 
L{2}.G =  1024*33/6; 
L{3}.G =  1024*14/3; 
L{4}.G =  1024*33/6; 
L{5}.G =  1024*14/3; 
L{6}.G =  1024*33/6; 

  
% viscous friction (motor referenced) (from datasheet) 
L{1}.B =   8e-7; 
L{2}.B =   8e-7; 
L{3}.B =   8e-7; 
L{4}.B =   8e-7; 
L{5}.B =   8e-7; 
L{6}.B =   8e-7; 

 

  
bot3 = robot(L); 

  
bot3.name = '3rd module'; 

  
bot3.manuf = 'PoliMi'; 

  
clear L d; 

 

8.2. Optimization algorithm in MATLAB code 

function [qt yout] = ikinebot_full (robot,tr,qi) 

  
liminf = [-pi/2 -3*pi/4 -pi/2 -3*pi/4 -pi/2 -3*pi/4]; 
limsup = [pi/2 3*pi/4 pi/2 3*pi/4 pi/2 3*pi/4]; 
f = @(x)full_matrix_op(x,robot,tr); 
[qt yout] = fmincon(f,qi,[],[],[],[],liminf,limsup); 

  
end 

 
function y = full_matrix_op(x,robot,tr) 

  
y = abs(norm(tr-fkine(robot,x))); 

  
end 

 

8.3. Singular Value Decomposition in MATLAB code 

function y = svd_inv(J) 

  
[U,S,V] = svd(J); 

  
y = inv(U*S*V'); 

  
end 
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8.4. 2-module workspace Mesh in MATLAB code 

d = 3.5; 
n = 50; 
% calota interna 1 
theta = (-n:2:n)/n*pi/2; 
phi = (-n:2:n)'/n*pi/2; 
cosphi = cos(phi); 
dsinphi = d*sin(phi); 
dcostheta = d*cos(theta); 
dsintheta = d*sin(theta); 

  
x = cosphi*dcostheta + ones(n+1,1)*dsintheta; 
y = cosphi*dsintheta - ones(n+1,1)*dcostheta; 
z = dsinphi*ones(1,n+1); 
c = ones(n+1); 

  
surf(x,y,z,c) 

  
hold on 

  
% calota interna 2 
theta = (-n:2:n)/n*pi/2; 
phi = (-n:2:n)'/n*pi/2; 
cosphi = cos(phi); 
dsinphi = d*sin(phi); 
dcostheta = d*cos(theta); 
dsintheta = d*sin(theta); 

  
x = -cosphi*dcostheta + ones(n+1,1)*dsintheta; 
y = -cosphi*dsintheta - ones(n+1,1)*dcostheta; 
z = -dsinphi*ones(1,n+1); 
c = ones(n+1); 

  
surf(x,y,z,c) 

  

  
%calota externa 
th1 = (-n:2:n)/n*pi/2; 
th2 = (-n:2:n)'/n*pi/2; 
costh2 = cos(th2); 
dsinth2 = d*sin(th2); 
dcosth1 = d*cos(th1); 
dsinth1 = d*sin(th1); 

  
xa = costh2*dsinth1 + ones(n+1,1)*dsinth1; 
ya = - costh2*dcosth1 - ones(n+1,1)*dcosth1; 
za = dsinth2*ones(1,n+1); 
c = ones(n+1); 

  
surf(xa,ya,za,c) 

  
n = 20; 

  
% borda 1 
th2 = (-n:2:n)/n*pi/2; 
th3 = (-n:1:0)'/n*pi/2; 
dcosth3 = d*cos(th3); 
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dsinth3 = d*sin(th3); 

  
x = -dcosth3*ones(1,n+1) -d*ones(n+1); 
y = -dsinth3*cos(th2); 
z = dsinth3*sin(th2); 
c = ones(n+1); 

  
surf(x,y,z,c) 

  
% borda 2 
th2 = (-n:2:n)/n*pi/2; 
th3 = (0:1:n)'/n*pi/2; 
dcosth3 = d*cos(th3); 
dsinth3 = d*sin(th3); 

  
x = dcosth3*ones(1,n+1) +d*ones(n+1); 
y = dsinth3*cos(th2); 
z = dsinth3*sin(th2); 
c = ones(n+1); 

  
surf(x,y,z,c) 

  
x0 = 0; 
y0 = -10.5; 
z0 = 0; 

  
scatter3(x0,y0,z0,50,'filled','y'); 

  
x0 = x0*ones(n+1); 
y0 = y0*ones(n+1); 
z0 = z0*ones(n+1); 
r0 = 3.5; 

  
% -pi <= theta <= pi is a row vector. 
% -pi/2 <= phi <= pi/2 is a column vector. 
theta = (-n:2:n)/n*pi; 
phi = (-n:2:n)'/n*pi/2; 
cosphi = cos(phi); cosphi(1) = 0; cosphi(n+1) = 0; 
sintheta = sin(theta); sintheta(1) = 0; sintheta(n+1) = 0; 

  
x = x0 + r0*cosphi*cos(theta); 
y = y0 + r0*cosphi*sintheta; 
z = z0 + r0*sin(phi)*ones(1,n+1); 
c = 2*ones(n+1); 

  
surf(x,y,z,c) 

  
alpha(0.5) 
axis equal 
hold off 
clear all 

 


