
POLITECNICO DI MILANO

Corso di Laurea Specialistica in Ingegneria Biomedica

Facoltà di Ingegneria dei Sistemi

Dipartimento di Bioingegneria

Tesi di Laurea Specialistica

SINGULARITY-ROBUST KINEMATIC

CONTROL OF A NOTES ROBOT

Relatori: Prof. Pietro CERVERI

 Prof. Tarcisio Antonio HESS-COELHO

Autore:

Daniel José DAMAS FOLLADOR

Matricola 734847

Anno Accademico 2011-2012

2

Acknoweldgments

To Aline, for her patience and unconditional support

To my professors Pietro and Tarcisio, for their attention and

availability

To my parents, Maria José e Wilson, for their love, comprehension

and for making possible every one of my accomplishments

3

Abstract

Driven by the surgeon’s desire for less-invasive procedures, a new

technique called NOTES (Natural Orifice Transluminal Endoscopic

Surgery) has emerged. The present instrumentation used for this

type of surgery is adapted from Endoscopy and is not perfectly

adequate for many reasons: lack of dexterity, lack of tactile feedback,

fewer degrees of freedom than desired. Those problems were the

motivation for a Italian research group to develop a robotic

manipulator with several advantages over the current technology.

The snake-like mechanical design of the robot contains three

kinematic singularities whose physical interpretation were one of the

objectives of this work. The second main goal of this work was to

design an adequate kinematic control algorithm for avoiding

singularities by using geometric redundancy from other degrees of

freedom. For that matter, four different trajectories were tested with

four different algorithms and the results were evaluated in terms of

tracking error in the Cartesian space and in the joint space.

4

Sommario

Spinto dal desiderio del chirurgo per meno invasivi, una nuova

tecnica chiamata NOTES (Natural Orifice Transluminal Endoscopic

Surgery) è emersa. La strumentazione attualmente utilizzata per

questo tipo di chirurgia è adattato da endoscopia e non è

perfettamente adeguata per molte ragioni: mancanza di destrezza, la

mancanza di feedback tattile, un minor numero di gradi di libertà di

quanto desiderato. Questi problemi sono stati la motivazione per un

gruppo di ricerca italiano per sviluppare un manipolatore robotico con

diversi vantaggi rispetto alla tecnologia attuale. Il serpente-come il

disegno meccanico del robot contiene tre singolarità cinematica cui

interpretazione fisica sono stati uno degli obiettivi di questo lavoro. Il

secondo obiettivo principale di questo lavoro è stato quello di

progettare un algoritmo adeguato controllo cinematico per evitare la

singolarità utilizzando la ridondanza geometrica da altri gradi di

libertà. Per questo, quattro diverse traiettorie sono stati testati con

quattro diversi algoritmi ei risultati sono stati valutati in termini di

tracking error nello spazio cartesiano e nello spazio dei giunti.

5

Contents

1. Introduction ... 11

1.1. Minimally Invasive Surgery ... 12

1.2. Laparoscopic Surgery ... 12

1.3. Robotic Surgery ... 13

1.4. NOTES ... 15

2. NOTESNAIL Project ... 18

2.1. Motivation ... 18

2.2. Construction details ... 20

2.3. NOTESnail Forward Kinematics 23

3. Singularities study .. 25

3.1. Singularity general theory ... 25

3.2. NOTESnail singularities study .. 29

3.2.1. Modeling workspaces with analytical geometry 31

3.2.2. Reachable coordinates and measure of redundancy 34

3.2.3. NOTESnail singular configurations 35

4. Robotics Control Algorithms ... 40

4.1. Computed torque control .. 42

4.2. Visual servoing control ... 42

4.3. Cartesian control ... 44

4.3.1. Jacobian transpose method 46

4.3.2. Jacobian pseudo-inverse method 46

4.3.3. Damped least squares method 48

4.3.4. Singular Value Decomposition method 48

4.3.5. Optimization method ... 49

6

5. Experimental Results ... 50

5.1. Trajectories ... 50

5.1.1. Pick and Pull .. 51

5.1.2. Type I singularity test trajectory 52

5.1.3. Type II singularity test trajectory 53

5.1.4. Suture simulation ... 54

5.2. Simulink models .. 56

5.2.1. Transpose Method .. 57

5.2.2. Pseudoinverse method .. 57

5.2.3. Damped least squares method 58

5.2.4. Singular value decomposition method 58

5.2.5. Optimization method ... 58

5.3. Graphical Cartesian space offset 59

5.4. Graphical joint space offset ... 65

6. Discussion and Conclusion.. 72

6.1. Trajectories ... 72

6.2. Transpose method ... 74

6.3. Damped least squares method 75

6.4. Singular Value Decomposition 76

6.5. Pseudoinverse method ... 76

6.6. Optimization algorithm ... 76

6.7. Final considerations ... 77

7. Bibliography ... 78

8. Appendix A .. 82

8.1. Robot object building MATLAB code 82

8.2. Optimization algorithm in MATLAB code 83

7

8.3. Singular Value Decomposition in MATLAB code 83

8.4. 2-module workspace Mesh in MATLAB code 84

8

Figure Index

Figure 1 - Laparoscopy vs. open surgery 12

Figure 2 - Example of robotic surgery system 14

Figure 3 - Pure NOTES transvaginal access 16

Figure 4 - NOTES instrument proposed in Singapore 18

Figure 5 - NOTESnail project scheme .. 20

Figure 6 - Bending joint actuator .. 21

Figure 7 - Torsion joint actuator ... 22

Figure 8 - NOTESnail fully assembled .. 22

Figure 9- NOTESnail Workspace ... 24

Figure 10 - Example of Type I singularity 27

Figure 11 - Example of Type II singularity 27

Figure 12 - Puma560 in rest position ... 28

Figure 13 - Puma560 "elbow lock" .. 29

Figure 14 - Puma560 "head lock" ... 29

Figure 15 - MATLAB NOTESnail representation 30

Figure 16 - First module workspace .. 32

Figure 17 - 2nd and 3rd joints action with the 1st joint set to zero.. 32

Figure 18 - 2-module workspace .. 33

Figure 19 - 2-module workspace .. 33

Figure 20 – Reachable point (yellow dot) 35

Figure 21 - Spherical coordinates ... 36

Figure 22 - 3rd joint singularity .. 36

Figure 23 - Motion from singular to alternative configuration 38

Figure 24 – Time vs. z coordinate during singularity avoidance

movement ... 38

Figure 25 - Time vs. x-coordinate during singularity avoidance

movement ... 38

Figure 26 - Time vs. y-coordinate during singularity avoidance

movement ... 39

Figure 27 - Singular configuration without non-singular reachable

symmetrical ... 39

9

Figure 28 - Control system block diagram 40

Figure 29 - Dynamic position-based look-and-move structure 43

Figure 30 - Dynamic image-based look-and-move structure 43

Figure 31 - Position-based visual servo 43

Figure 32 - Image-based visual servo ... 44

Figure 33 - Basic Cartesian Control Scheme 45

Figure 34 - Trajectory 1 final configuration 51

Figure 35 - Trajectory 1 joint space trajectory 51

Figure 36 - X-Z graphic of trajectory 5.1.2 52

Figure 37 - Y-X graphic of trajectory 5.1.2 52

Figure 38 - - Z-Y graphic of trajectory 5.1.2................................. 53

Figure 39 - Joint space trajectory of 3rd trajectory 53

Figure 40 - Laparoscopic suture .. 55

Figure 41 - Second trajectory in joint space coordinates 55

Figure 42 - Suture trajectory in Cartesian coordinates 56

Figure 43- Simulink model of the transpose method 57

Figure 44 - Pseudoinverse method simulink method 57

Figure 45 - Damped least squares method simulink model 58

Figure 46 - SVD method simulink method 58

Figure 47 - Optimization simulink model 59

Figure 48 - Trajectory 1, transpose method 60

Figure 49 - Trajectory 1, DLS ... 60

Figure 50 - Trajectory 1, pseudoinverse 60

Figure 51 - Trajectory 1, SVD... 61

Figure 52 - Trajectory 2, transpose method 61

Figure 53 - Trajectory 2, DLS method ... 61

Figure 54 - Trajectory 2, SVD method ... 62

Figure 55 - Trajectory 2, pseudoinverse 62

Figure 56 - Trajectory 3, DLS ... 62

Figure 57 - Trajectory 3, SVD... 63

Figure 58 - Trajectory 3, transpose method 63

Figure 59 - Trajectory 3, pseudoinverse 63

10

Figure 60 - Trajectory 4, DLS ... 64

Figure 61 - Trajectory 4, Transpose .. 64

Figure 62 - Trajectory 4, SVD... 64

Figure 63 - Trajectory 4, pseudoinverse 65

Figure 64 - Trajectory offset in trajectory 1, DLS 66

Figure 65 - Trajectory offset in trajectory 1, pseudoinverse 66

Figure 66 - Trajectory offset in trajectory 1, SVD 66

Figure 67 - Trajectory offset in trajectory 1, transpose method 67

Figure 68 - Trajectory offset in trajectory 2, DLS 67

Figure 69 - Trajectory offset in trajectory 2, Pseudoinverse 67

Figure 70 - Trajectory offset in trajectory 2, SVD 68

Figure 71 - Trajectory offset in trajectory 2, transpose 68

Figure 72 - Trajectory offset in trajectory 3, DLS 68

Figure 73 - Trajectory offset in trajectory 3, Pseudoinverse 69

Figure 74 - Trajectory offset in trajectory 3, SVD 69

Figure 75 - Trajectory offset in trajectory 3, transpose 69

Figure 76 - Trajectory offset in trajectory 4, DLS 70

Figure 77 - Trajectory offset in trajectory 4, Pseudoinverse 70

Figure 78 - Trajectory offset in trajectory 4, SVD 70

Figure 79 - Trajectory offset in trajectory 4, transpose 71

Figure 80 - Laparoscopic instrument joint variables 74

Figure 81 - damping constant x overall performance 75

11

1. Introduction

The earliest evidence of a surgical procedure occurred early in the

pre-history. The registration of a trepanation (opening of one or more

holes in the skull to relieve intracranial pressure) was found in cave

paintings and later in historical records (Capasso, 2002). Since then,

surgery has evolved throughout history, new techniques and

instruments have been developed and much has been learned about

the anatomy, physiology, risk of infection and contamination,

culminating today about 20 million Americans operated yearly (Roan,

2005).

We classify an operation according to some criteria: (American

College of Surgeons, 2007)

 Based on urgency, according to the risk to patient survival,

surgery is considered elective, urgent or optional;

 Based on the purpose, an exploratory surgery may be (to

confirm diagnosis) or therapy;

 Based on the type of procedure, the surgery may vary

according to the standard intervention (e.g., amputation,

plastic surgery, transplantation, etc.);

 Based on anatomical site, taking as examples the

cardiovascular surgery, orthopedic and gastrointestinal.

 By type of equipment used, may involve classical tools (such

as a scalpel and forceps), more modern tools such as laser or

even mechatronic instruments, such as Intuitive Surgical's Da

Vinci Robot (Intuitive Surgical, 2010);

 By degree of invasiveness, surgery may be:

o open, which will involve the opening of several tissues of

the surgeon to achieve the desired target;

o minimally invasive surgery, which are made possible

through the lower courts, such as in laparoscopic surgery,

angioplasty and surgery NOTES

12

1.1. Minimally Invasive Surgery

A minimally invasive surgery is a procedure that involves a different

set of tools for the same objective of the open surgery, but with far

less damage to biological tissues. It is important to point out that all

the instrumentation for that type of surgery is specially designed and

submitted to constant innovation.

By comparison, minimally invasive surgeries have some advantages

over open surgery. A study in the department of surgery at Henry

Ford Hospital in Detroit in the USA (Velanovich, 2000) showed that in

addition to reducing pain for patients and quicker return to normal

function, the minimally invasive surgery (MIS) also result in better

quality of life compared with open techniques.

1.2. Laparoscopic Surgery

Laparoscopic or “minimally invasive” surgery is a specialized

technique for performing surgery. In the past, this technique was

commonly used for gynecologic surgery and for gall bladder surgery.

Over the last 10 years the use of this technique has expanded into

intestinal surgery.

Figure 1 - Laparoscopy vs. open surgery

13

As shown in Figure 1, in traditional “open” surgery the surgeon uses a

single incision to enter into the abdomen. Laparoscopic surgery uses

several 0.5-1cm incisions. Each incision is called a “port.” At each

port a tubular instrument known as a trochar is inserted. Specialized

instruments and a special camera known as a laparoscope are passed

through the trochars during the procedure. At the beginning of the

procedure, the abdomen is inflated with carbon dioxide gas to provide

a working and viewing space for the surgeon. The laparoscope

transmits images from the abdominal cavity to high-resolution video

monitors in the operating room. During the operation the surgeon

watches detailed images of the abdomen on the monitor. This system

allows the surgeon to perform the same operations as traditional

surgery but with smaller incisions.

In certain situations a surgeon may choose to use a special type of

port that is large enough to insert a hand. When a hand port is used

the surgical technique is called “hand assisted” laparoscopy. The

incision required for the hand port is larger than the other

laparoscopic incisions, but is usually smaller than the incision

required for traditional surgery. Compared to traditional open

surgery, patients often experience less pain, a shorter recovery, and

less scarring with laparoscopic surgery. (American Society of Colon &

Rectal Surgeons, 2008)

1.3. Robotic Surgery

Robotic surgery is a technique in which a surgeon performs surgery

using a computer that remotely controls very small instruments

attached to a robot.

This procedure is done under general anesthesia. The surgeon sits at

a computer station nearby and directs the movements of a robot.

Small instruments are attached to the robot's arms. The surgeon first

inserts these instruments into the patient’s body through small

surgical cuts. Under the surgeon's direction, the robot matches the

14

doctor's hand movements to perform the procedure using the tiny

instruments, as shown in Figure 2.

Figure 2 - Example of robotic surgery system

A thin tube with a camera attached to the end of the endoscope

allows the surgeon to view highly magnified three-dimensional

images on a monitor in real time. Robotic surgery is a type of

procedure that is similar to laparoscopic surgery. It also can be

performed through smaller surgical cuts than traditional open

surgery. The small, precise movements that are possible with this

type of surgery give it some advantages over standard endoscopic

techniques (Oleynikov, 2008).

Sometimes robotic-assisted laparoscopy can allow a surgeon to

perform a less-invasive procedure that was once only possible with

more invasive open surgery. Once it is placed in the abdomen, a

robotic arm is easier for the surgeon to use than the instruments in

endoscopic surgery. The robot reduces the surgeon's movements (for

example, moving 1/2 inch for every 1 inch the surgeon moves),

which reduces some of the hand tremors and movements that might

otherwise make the surgery less precise. Also, robotic instruments

can access hard-to-reach areas of your body more easily through

smaller surgical cuts compared to traditional open and laparoscopic

surgery.

15

During robotic surgery, the surgeon can more easily see the area

being operated on. The surgeon is also in a much more comfortable

position and can move in a more natural way than during endoscopy.

Robotic surgery may be used for a number of different procedures,

including (Oleynikov, 2008):

 Coronary artery bypass

 Gallbladder removal

 Hip replacement

 Hysterectomy

 Kidney removal

 Kidney transplant

 Mitral valve repair

 Radical prostatectomy

 Tubal ligation

Robotic surgery cannot be used for some complex procedures. For

example, it is not appropriate for certain types of heart surgery that

require greater ability to move instruments in the patient's chest,

with the present technology.

1.4. NOTES

NOTES (Natural Orifice Transluminal Endoscopic Surgery) was driven

by the surgeon’s desire for less invasive procedures and more

minimal access, the technique is based on the concept that the

peritoneal cavity can be accessed through natural orifices. NOTES

designates a surgical procedure that utilizes one or more patent

natural orifice of the body with the intention to puncture a hollow

viscera in order to enter an otherwise inaccessible body cavity.

(Kalloo, Singh, Jagannath, Niiyama, Hill, & Vaughn, 2004)

Natural orifices usually include the mouth (reaching the stomach),

anus (reaching the colon), vagina (reaching the uterus) and urethra

(reaching the bladder). Theoretically the advantages of a NOTES

procedure over the laparoscopic approach comes from avoiding an

16

external abdominal incision, a less invasive procedure that allows

minimization of anesthesia and analgesia and a reduction in

postoperative abdominal wall pain, wound infection, hernia formation

and adhesions. (Bowman, 2006)

Due to its novel concept and the ongoing medical process, the

connotation and classification of NOTES are still not definite and are

sometimes controversial. According to the present status of NOTES

studies, NOTES procedures are mainly divided into two categories;

“pure” NOTES and “hybrid” NOTES. (Geoffrey, Timothy, Jeffrey, Mihir,

Edward, & Ralph, 2008)

Figure 3 - Pure NOTES transvaginal access

The “pure” NOTES refers to a NOTES procedure that is completed

without any transabdominal ports, including the umbilicus, as shown

in Figure 3. The “hybrid” NOTES refers to the “mixed” technologies

using transabdominal instrumentation to facilitate the NOTES

procedure.

For analyzing the proper instrumentation to NOTES, it is valid to look

back at some procedures that have been done so far. (Kalloo, Singh,

Jagannath, Niiyama, Hill, & Vaughn, 2004) described a

cholecystectomy in a porcine model using a series of endoscopic

accessories such as the needle-knife, pull-type sphincterotome and

17

dilation balloons. The transgastric access was difficult in terms of

identifications, manipulation and resection of the gallbladder.

(Pai, Fong, Bundga, Odze, Rattner, & Thompson, 2006) in the other

hand, executed a transcolonic access because they believed that it

would allow a better visualization and endoscope stability because of

en face orientation to organs in the upper abdomen.

(Haber, et al., 2008) presented an initial experience of robotic NOTES

using the Da Vinci™ surgical system. Ten female pigs were submitted

into 10 pyeloplasties, 10 partial nephrectomies and 10 radical

nephrectomies successfully using a hybrid approach (umbilical and

transvaginal incisions). The intraoperative data showed small

operative time and blood loss, but some limitations were perceived:

there were 5 episodes of conflicts between instruments (representing

17% of the sample), 3 episodes of unwanted contacts between

endoscope and instruments (9%) and in 3 episodes (9%), the

instrument could not reach the kidney.

In short, NOTES is a very promising surgery technique with several

applications, including cancer surgery (Rieder & Swanstrom, 2011).

Many researchers (either medical doctors or biomedical engineers)

are looking for technologies and practice to improve this type of

surgery and improve patient outcomes.

18

2. NOTESNAIL Project

2.1. Motivation

Although NOTES is a very promising technique, some studies have

been conducted about the quality of manipulability of the

instrumentation currently in use and its limitations. One of the major

concerns, existent even in the laparoscopic surgery, is the hand-eye

coordination that limits three-dimensional triangulation. That issue is

accented in NOTES given that camera and instruments are in the

same axis, as shown in Figure 4.

Figure 4 - NOTES instrument proposed in Singapore

Another major obstacle for the surgeon is the flexibility of an

endoscope. In one hand, the instrument has to be flexible in order to

arrive at the correct site of operation. On the other hand, the

instrument has to be rigid in order to perform forces and pressures

adequate to the given task. (Bowman, 2006)

(Cerveri, 2008) suggests that NOTES operative instruments cannot

be simply adapted from other endoscopic or laparoscopic surgery

because of its significantly different working conditions:

 the surgeon cannot rotate the external portion of the

instrument in order to orient the tool inside the patient's body;

 the first part of the instrument (proximal part), which does not

enter the peritoneal cavity, must reach the entrance incision

which may be quite far from the external opening of the natural

orifice;

 the second part of the instrument (operative part, entering the

peritoneal cavity) needs several degrees of freedom to reach

19

the operative region, more than in endoscopic instruments

where 4 degrees of freedom are obtained just by rotating the

external portion of the instrument outside the patient's body;

 mechanical transmission of motion to the operative part of the

instrument from a handle outside the orifice is not feasible due

to length and geometry of the proximal part of the instrument.

 The loss of force feedback also represents an issue. It is related

to minimally invasive surgery in general and it is particularly

relevant with NOTES because the instrument is longer with the

handle significantly far from the operative region.

That need to overcome these limitations suggest the benefits of

specific surgical instruments with high dexterity were the motivation

for a research team in Italy composed by students and professors of

4 major universities: Università degli studi di Genova, Politecnico di

Milano, Università degli studi di Bergamo and Università degli studi de

L’Aquila.

The research project has two breakthrough concepts: snail

architecture and variable stiffness actuation. Its first major objective

is to build a real-scale prototype with two different distal modules: a

VS-grasper and a micro-camera. The whole system scheme is shown

in Figure 5.

20

Figure 5 - NOTESnail project scheme

A second major objective is to build a control scheme that allows

position and force feedbacks in addition to collision avoidance, what

would improve patient and surgeon safety. The last objective is to

improve the quality of the visualization of the operating space.

From this point forward, this particular robot will be called NOTESnail.

2.2. Construction details

The NOTESnail mechanical project was done following a series of

technical requirements that are common to many surgical

applications, plus a series of requirements of our specific use:

 It has to be insertable in a 10-mm-diameter orifice;

 Sufficient maneuverability to move around a target;

 Remotely controllable using a remote console;

 Low heat dissipation and low energy consumption

 Autonomous illumination

 Electromechanical actuation

 Sensor for position encoding and mechanical interaction with

surrounding objects

21

 Sterilizable

 Visual and force servoing control schemes

Previous works done by the Italians have brought a modular concept,

with each independent module having two micro-motors moving a

bending joint (shown in Figure 6) and a torsion joint (shown in Figure

7). A computer-aided-design representation of the robot’s final

assemble is shown in Figure 8.

Figure 6 - Bending joint actuator

22

Figure 7 - Torsion joint actuator

Figure 8 - NOTESnail fully assembled

It is worth noticing the reasons for choosing the number of

independent modules. Three modules should be sufficient to provide

six degrees of freedom, which will be enough for the surgeon to reach

any site of operation with the correct orientation. A larger number of

modules would make control algorithms more complicated (what is

equivalent to say that it will have a larger computational cost)

23

Some of the features that are most important for simulating the

kinematic and dynamic behavior of NOTESnail are shown in Table 1.

Center of mass and moment of inertia were calculated using

computer aided design software and it can be found in Appendix A.

Table 1 - NOTESnail physical proprieties

Module length 3.5 cm

Bending joint range From -0.5 π rad to 0.5 π rad

Torsion joint range From -0.75 π rad to 0.75 π rad

Module total mass 48 grams

Camera mass 30 grams

Motor inertia 9.5e-10 kg/m2

Viscous friction 8e-7 Pa.s

2.3. NOTESnail Forward Kinematics

The forward kinematics problem is concern with the relationship

between the individual joints of the robot manipulator and the

position and orientation of the tool or end-effector. For computing the

forward kinematics equations of NOTESnail, the Danevit-Hartenberg

convention was used (Hess-Coelho, 2004):

Table 2 - Denavit-Hartenberg convention parameters

D-H a α d θ

1 0 -π/2 0 Θ1

2 0 π/2 L1 Θ2

3 0 -π/2 0 Θ3

4 0 π/2 L2 Θ4

5 0 -π/2 0 Θ5

EE 0 0 L3 Θ6

The Denavit-Hartenberg parameters made possible the construction

of a homogenous transform matrix (4-by-4 dimension) that provides

24

position and orientation of the end-effector according to the

coordinate system fixed at the base. Using those equations, varying

the joint angles along their ranges, it is possible to map the robot’s

workspace, shown in Figure 9.

Figure 9- NOTESnail Workspace

25

3. Singularities study

To better understand the meaning of a robot’s singularity, it is

necessary to understand the velocity kinematics and the manipulator

Jacobian. Mathematically, the forward kinematic equations define a

function between the space of Cartesian positions and orientations

and the space of joint positions. The velocity relationships are then

determined by the Jacobian of this function. (Spong, Hutchinson, &

Hutchinson, 2004)

This Jacobian matrix plays an essential rule in the analysis and

control of robot motion: from trajectory planning and execution to

transformation of forces and torques from the end-effector to the

manipulator joints. Another important propriety of a Jacobian matrix

(more precisely, its determinant) is the singularity detection.

3.1. Singularity general theory

Given a robot with n joints, the 6xn Jacobian J(q) defines a mapping

between the vector ̇ of joint velocities and the vector ̇ of end-

effector velocities. Infinitesimally, this defines a linear transformation

 ()

Equation 1

A set of joint coordinates that causes the Jacobian rank to decrease is

called a singular configuration or singularity. Their importance is

given because (Spong, Hutchinson, & Hutchinson, 2004):

 Singularities represent configurations from which certain

directions of motion may be impossible.

 At singularities, small end-effector velocities may correspond to

very large joint velocities;

 At singularities, small end-effector forces and torques may

correspond to very large joint torques.

 Singularities may correspond to boundaries of the manipulator

workspace

26

 Near singularities there will not exist a unique solution to the

inverse kinematics problem. In such cases there may be no

solution or there may be infinitely many solutions.

(Yoshikawa, 1985) defines a scalar value called “measure of

manipulability”, which is defined by Equation 2. That measure is

given for a certain manipulator at a given configuration. Some

authors (Oemoto & Ang Jr., 2007) use that measure for

distinguishing different behaviors of their control algorithm.

 √ (() ()

Equation 2

Many methods have been proposed to handle singularities and they

have been divided by (Oemoto & Ang Jr., 2007) in two main

categories. In the first category, a uniform control strategy is adopted

throughout the entire workspace, building a continuous function that

introduces a slight alteration to the task space specification or its

mapping to the manipulator joint space. This generally results in a

stable control strategy where the end-effector avoids the singular

configuration. The second involves a division of workspace where a

different control algorithm is applied to the region around the

singularities.

When the manipulator is at a singular configuration, motions and

forces along the singular direction are not controllable. If the task

includes a motion along that singular direction, it can be achieved

using the null space motion (which corresponds to minimizing a

potential function corresponding to the task goal).

(Oemoto & Ang Jr., 2007) divide singularities into two categories

according to the effect that null space motion has on them. Type I

singularities (as shown in Figure 10) are those where null space

motion creates end- effector motion in the singular direction and

causes the end-effector to escape the singular region through this

direction. Type II singularities (as shown in Figure 11) are those

where null space motion affects only internal joint motion, and

27

changes the singular directions without affecting the end-effector

motion/forces.

Figure 10 - Example of Type I singularity

Figure 11 - Example of Type II singularity

(Oemoto & Ang Jr., 2007) have implemented their singularity robust

algorithm in the textbooks most famous example Puma560, shown in

its rest configuration in Figure 12. Its Jacobian can be partitioned into

two parts, corresponding to “arm” and “wrist”. Analyzing that matrix

28

determinant, the authors were able to find three distinct singular

configurations corresponding to “elbow lock”, “wrist lock” and “head

lock”.

The “elbow lock” is an example of a type I singularity caused by the

alignment of two link axis (as show in Figure 13a). Even though q3 is

the reducing the measure of manipulability, it’s through its motion

that the robot can “fold out” of the singular configuration (as shown

in Figure 13b).

The “head lock” is an example of a type II singularity that happens

when the wrist point is exactly above the first joint axis (see Figure

14). A null-space motion can rotate the singular direction, allowing

the task to be completed without changing the end-effector position

or orientation (see Figure 14).

Figure 12 - Puma560 in rest position

29

Figure 13 - Puma560 "elbow lock"

Figure 14 - Puma560 "head lock"

3.2. NOTESnail singularities study

The Puma560 robot has a very important particular configuration that

allows it to decouple “arm” and “wrist”. That procedure becomes

highly useful given that the distance between joints at the wrist are

much smaller than those distances at the arm.

Therefore the Puma560 architecture implies that positioning will be a

task majorly achieved by the first three joints and orientation will be

majorly done by the three last joints, which are called “spherical

joint”. A spherical joint has also the special propriety that all three

rotation axis intersect in a common point.

Since NOTESnail has the same number of joints, all from the same

type (rotational), a similar approach of decouple position and

30

orientation could be hypothesized. Between the 4th and the 5th joints,

the distance is negligible, but the distance between the 5th and the 6th

joints correspond to one third of the robot’s total length. That means

that position and orientation will be tasks performed by all 6 joints.

From this point forward, it is convenient to distinguish orientation and

aiming. Using Denavit-Hartemberg convention, it is recommended

that the z-axis at the end-effector coordinate frame equals to the

“attack” direction, which in our case also equals to the last module

direction, as shown in Figure 15. Therefore, for the propos of this

thesis, aiming will be defined by the end-effector z-axis, expressed

in the base coordinate frame. Orientation will be given by the end-

effector rotation matrix, expressed in the base coordinate frame.

Figure 15 - MATLAB NOTESnail representation

Analyzing the homogenous transforms between coordinates systems

between the 6th joint and the end-effector (shown in Equation 3), it

31

may be inferred that the 6th joint plays no rule at positioning or

aiming of the end-effector. That last revolution joint is the surgeon

easiest resource for correctly orienting a grasper, for example.

Equation 3

It is assumed that the 6th joint range of motion will be capable of

providing all necessary orientations for the surgeon in a given aiming;

therefore, this last joint will be ignored in the analysis of (sections x-

y).

3.2.1. Modeling workspaces with analytical geometry

Each of NOTESnail modules has two joints: a bending mechanism is

the proximal part and a torsion mechanism in the distal part. In this

section, two different workspaces will be modeled: as if the end-

effector was placed at the end of the 1st module and as if it was at

the end of the 2nd module.

These models will be represented by an analytic geometry equation

and a graphical representation. Both models will be useful to check if

a certain configuration is reachable, evaluating singularities, building

optimization algorithms and more, as shown in the next sections.

The first workspace, corresponding to the 1st and 2nd joints is shown

in Figure 16, and it’s equation may be approximated by:

Equation 4

Where d is the module’s length and Equation 4 exists only if .

32

Figure 16 - First module workspace

The second workspace is a solid. Initially, the combination of the 2nd

and 3rd joints actions on the second module would build a surface in

the shape of half-sphere, centered at one point at the first module

workspace (given by the 1st joint angle) as shown in Figure 17. If the

1st joint angle is varied within its range, the end result is shown in

Figure 18 and Figure 19.

Figure 17 - 2nd and 3rd joints action with the 1st joint set to zero

33

Figure 18 - 2-module workspace

Figure 19 - 2-module workspace

34

The solid can be approximated by a torus (approximation only valid

for and), but its general equation is given by

Equation 5.

 √

Equation 5

3.2.2. Reachable coordinates and measure of redundancy

As pointed in earlier sections, this analysis will be based on

positioning and aiming, ignoring the effects of the 6th joint.

If the end-effector is anchored at a certain point in space, all the

possible aiming vectors summed would build a sphere solid centered

at that certain point (represented in Figure 20 by the yellow point).

Taking account that the aiming vector has the same direction as the

module’s longitudinal axis, that sphere radius is equal to the module’s

length. As a result, the relevant geometric model is a surface in the

shape of a sphere centered in the end-effector desired point with

radius equal to the module’s length (represented in Figure 20 by the

red sphere). That geometric model is equivalent to the Equation 6.

()
 ()

 ()

Equation 6

Where () are the desired Cartesian coordinates of the end-

effector and d is the module’s length.

Conclusion 1: If the sphere surface intersects the torus-like solid,

then () is reachable.

Conclusion 2: The intersection between the sphere surface and the

torus-like solid is a spherical cap.

Conclusion 3: The spherical cap area corresponds to the number of

the NOTESnail possible configurations (meaning all possible aiming)

with the desired positioning (as shown in Figure 20). That figure will

be called measure of redundancy.

35

Figure 20 – Reachable point (yellow dot)

3.2.3. NOTESnail singular configurations

The singular configurations, as introduced in the section 3.1, were

found using screw theory

3.2.3.1. 2nd joint – type I singularity

The 2nd joint being equal to +π/2 or –π/2 represent a type I

singularity because it represents the frontier of the 2-module

workspace. The last module is an important part on determining the

end-effector’s orientation and the job of positioning the end-effector

becomes a task of the first two modules.

To analyze the possible motions when the singular configuration has

been reached, the best coordinate system to be used is the one

shown in Figure 21. Because of the frontier interpretation, it is clear

that any movement that is tangent to the 2-module workspace would

be possible (represented by ̂ and ̂). In the ̂ negative direction, any

motion is still allowed, but the positive direction of ̂ is impossible, as

well as any other trajectory that contains that vector as a partial

component.

36

Figure 21 - Spherical coordinates

3.2.3.2. 3rd joint – type I singularity

The 3rd joint singularity also represents a boundary singularity, as

shown in Figure 22, but physically, it also represents the annulation

of the effects of the 2nd joint, given the mechanical architecture

shown in Figure 15. It is important to notice that the 3rd joint

singularity is contained in the 2nd joint singularity, both in physical

and mathematical meaning, which means that a singularity avoidance

algorithm for the 2nd joint will be also effective for the 3rd joint.

Figure 22 - 3rd joint singularity

37

3.2.3.3. 5th joint – type II singularity

The 5th joint singularity, given by (θ5 = 0) represents the physical

alignment of the 2nd and 3rd module and is the only one between the

ones studied so far that is perfectly avoidable by using an alternative

configuration, as shown in Figure 23. This implies that when

approximating a singular configuration, the desired control algorithm

would create an internal motion to reach the alternative configuration

without passing through the singularity, as shown in Figure 23, Figure

24, Figure 25 and Figure 26.

From this point, some problems have emerged:

 Given the robot’s joint limits, not all singular configurations

have a symmetrical non-singular configuration, as the one

shown in Figure 27

 Depending on the rotation angle that the robot is introduced in

the patient’s body, the rotation joints limits may represent an

issue to internal motion.

 Having a symmetrical non-singular configuration would require

the control system to be coordinated by a navigation system,

which would be complex and independent from the user. That

navigation system would have to be capable of measuring the

end-effector’s position and orientation in order to input the

commands to create the internal motion capable of avoiding the

singularity. That system is not difficult to design, but its

necessity should be well evaluated according to the behavior of

the inverse kinematics algorithms.

38

Figure 23 - Motion from singular to alternative configuration

Figure 24 – Time vs. z coordinate during singularity avoidance movement

Figure 25 - Time vs. x-coordinate during singularity avoidance movement

39

Figure 26 - Time vs. y-coordinate during singularity avoidance movement

Figure 27 - Singular configuration without non-singular reachable symmetrical

40

4. Robotics Control Algorithms

Starting from the general control theory, a controller manipulates the

dynamic system inputs in order to obtain a desired output called

“reference”. An open-loop control system does not measure outputs

in order to alter control. On the other hand, a closed-loop control

system has sensors whose measures are used to drive dynamic

changes in the overall system. (Ogata, 2001)

A closed-form control system is usually represented in a block

diagram, as shown in Figure 28. The most common objectives of a

control algorithm are:

 Disturbance robustness;

 Improve performance around uncertain models;

 System stabilization;

Figure 28 - Control system block diagram

There are many control techniques and methodologies that can be

applied to the control of manipulators. The particular control method

chosen as well as the manner in which it is implemented can have a

significant impact on the performance of the manipulator and

consequently on the range of its possible applications. For example,

continuous path tracking requires a different control architecture than

does point-to-point control. (Spong, Hutchinson, & Hutchinson, 2004)

In addition, the mechanical design of the manipulator itself will

influence the type of control scheme needed. For example, the

control problems encountered with a Cartesian manipulator are

fundamentally different from those encountered with an elbow type

41

manipulator. In sections 0 to 4.3, some control schemes (or their

important components) are presented.

Since every control scheme is based on a reference value (given as

an input), an important paradigm that needs to be explored is the

trajectory planning versus real-time human-controller input. The first

is majorly used in many industrial and autonomous robots, since their

tasks are programmable and will be executed in repeatedly.

In trajectory planning (or generation), the basic problem is to move

the manipulator from an initial configuration to a final configuration

(maybe via some other configuration). The trajectory will be a set of

positions, velocities and accelerations for each degree of freedom.

The constrains may be spatial, temporal and/or about smoothness.

The solutions for the trajectory generation problem may be in the

joint space or in the Cartesian space.

While giving a solution in the joint space has the advantages of

singularity avoidance and less calculations, the solution may not

follow a straight line. On the other hand, a solution in the cartesian

space has many discontinuity problems such as unreachable and

singular configurations along the path.

Many authors have proposed solutions for a smooth, fast and reliable

path generation using mathematical interpolation or genetic

algorithms (Abo-Hammour, Mirza, Mirza, & Arif, 2002). Some of

these solutions include singularity and/or obstacle avoidance, very

useful for pre-programmed tasks.

The problem is that the surgeon controlling NOTESnail will give real-

time inputs to the system in the Cartesian space, which is the

intuitive space for humans. The reference and the “sensor feedback”

will be both be given by the surgeon, therefore, the electronic control

will be necessary only for stabilizing the system

42

4.1. Computed torque control

This is a classical dynamic control technique when the rigid-body

dynamic model is inverted to compute the demand torque for the

robot based on current joint angles and joint angle rates and demand

joint acceleration (Paul, 1981).

In the case of the simulation toolkit used in this work, the inverse

dynamics of NOTESnail is calculated using the recursive Newton-Euler

algorithm. As the dynamics parameters are not exactly known, the

toolkit’s author recommends the introduction of a perturbance.

(Corke, 2008)

However, computer torque control algorithms have as an input a

trajectory (or a desired position) given in the joint space, which is

undesirable for our user. For moving from the Cartesian space (user-

friendly) for the joint space, both inverse kinematics and inverse

Jacobian functions are required.

4.2. Visual servoing control

Visual servoing is the concept in which machine vision can provide

closed-loop position control for a robot end-effector. The task is to

use visual information to control the pose of the robot’s end-effector

relative to a target object or a set of target features. (Hutchinson,

Hager, & Corke, 1996)

Visual servoing depends on a series of other subjects, such as:

coordinate transformations; velocity of a rigid object; camera

projection models; image features and image features parameter

space; and camera configuration (end-effector mounted or fixed in

the workspace)

There is a taxonomy, introduced by (Sanderson & Weiss, 1980),

which categorizes visual servo systems into 4 different schemes

(shown in Figure 29 to Figure 32) by answering two questions:

 Is the control structure hierarchical, with the visual system

providing set-points as input to the robot’s joint-level controller,

43

or does the visual controller directly compute the joint-level

inputs?

 Is the error signal defined in 3D (task space) coordinates, or

directly in terms of image features?

Figure 29 - Dynamic position-based look-and-move structure

Figure 30 - Dynamic image-based look-and-move structure

Figure 31 - Position-based visual servo

44

Figure 32 - Image-based visual servo

Today, the applications of this technology remain limited due to the

high costs of technology and the skills required to construct an

integrates visually controlled robot system (Hutchinson, Hager, &

Corke, 1996) , but still is a very useful tool for NOTESnail.

4.3. Cartesian control

An important objective in controlling a robot manipulator is to ensure

that the end-effector tracks a desired Cartesian (task) space

trajectory as closely as possible. This is a difficult problem because, in

the description of the manipulator dynamics, the control torques are

defined in terms of joint variables and not end-effector variables.

(Misra, Patel, & Balafoutis, 1988)

Manipulator control is therefore usually performed in joint space. The

desired task space trajectory is transformed to joint space at

sufficiently many points to ensure that any error in tracking the joint

space trajectory will not cause the end-effector to deviate

significantly from the desired trajectory in task space. However, since

the relationship between joint variables and end-effector variables is,

in general, highly nonlinear, it is possible that a small deviation in a

joint space trajectory can cause a relatively large deviation in the

corresponding task space trajectory.

The basic scheme for a Cartesian control uses:

45

 The reference is a trajectory given in end-effector

homogenous transforms;

 The error is the difference between the reference and the

actual position (given by the joint angles encoders plus a

forward kinematics algorithm);

 This error is transformed in a (6x1) differential vector

equivalent to a column vector of Cartesian velocities;

 This vector is multiplied by the inverse of the manipulator

Jacobian. The result is a column vector of joint velocities;

 If this vector of joint velocities is integrated, the actual joint

configuration is achieved and the feedback the system, as

presented in Figure 33.

Figure 33 - Basic Cartesian Control Scheme

In the basic scheme presented, it is noticeable the importance of the

singular configurations during the operation of the Jacobian inverse.

Since the simple matrix inversion does not exist near singularities,

other methods should be explored in order to make the Cartesian

control well-behaved near singular configurations.

These algorithms, which basically solve the inverse kinematics

problems, are vastly explored in the literature and include: cyclic

coordinate descent methods (Wang & Chen, 1991); pseudoinverse

methods (Whitney, 1969); Jacobian transpose methods (Balestrino,

de Maria, & Sciavicco, 1984); damped least squares methods

(Wampler, 1988); quasi-Newton and conjugate gradient methods

46

(Wang & Chen, 1991); and neural nets and artificial intelligence

methods (Oyama, Chong, Agah, & Maeda, 2001).

For the propose of this work, four inverse kinematics algorithms were

selected using the following criteria: simplicity of implementation,

computational cost, real-time application and adequacy to the task

(since many of the algorithms are designed for computer graphic

applications, which have a larger number of degrees of freedom,

more complicated constrains, etc.) (Tolani, Goswami, & Badler,

2000).

For simplicity, it won’t be considered any aspects of self-collision or

joint limits (except for the optimization algorithm).

4.3.1. Jacobian transpose method

The basic idea is very simple: use the transpose of J instead of the

inverse of J . That is, we set Δθ equal to:

Δθ = αJTe;

Equation 7

for some appropriate scalar α. Now, of course, the transpose of the

Jacobian is not the same as the inverse; however, it is possible to

justify the use of the transpose in terms of virtual forces. (Balestrino,

de Maria, & Sciavicco, 1984)

4.3.2. Jacobian pseudo-inverse method

The pseudoinverse method sets the value Δθ equal to:

Δθ = J*e;

Equation 8

where the n x m matrix J* is the pseudoinverse of J , also called the

Moore-Penrose inverse of J . This inversion can be used for all

matrices, even those which are not full rank. The pseudoinverse gives

the best possible solution to the equation JΔθ = e in the sense of

least squares.

(Buss, 2004) affirms that:

47

Let Δθ be defined by Equation 8. First, suppose e is in the range

(i.e., the column span) of J . In this case, JΔθ = e; furthermore,

Δθ is the unique vector of smallest magnitude satisfying JΔθ =

e. Second, suppose that e is not in the range of J. In this case,

JΔθ = e is impossible. However, Δθ has the property that it

minimizes the magnitude of the difference JΔθ - e.

Furthermore, Δθ is the unique vector of smallest magnitude

which minimizes ||JΔθ-e||, or equivalently, which minimizes

||JΔθ-e||2.

The pseudoinverse is not immune to stability problems in the

neighborhoods of singularities. If the configuration is exactly at a

singularity, then the pseudoinverse method will behave well and

won’t try a movement in an impossible direction. However, if the

configuration is close to a singularity, then the pseudoinverse method

will lead to very large changes in joint angles, even for small

movements in the target position.

The pseudoinverse has the further property that the matrix (I – J*J)

performs a projection onto the nullspace of J. Therefore, for all

vectors φ, J(I – J*J)φ = 0. This means that we can set Δθ by

Δθ = J*e + (I – J*J) φ

Equation 9

for any vector φ and still obtain a value for Δθ which minimizes the

value J Δθ - e. By choosing special values of φ, it is possible to

achieve secondary goals other that following to a demanded

trajectory. For example, φ can be set to return the joint angles back

to rest positions (Girard & Maciejewski, 1985): this can help avoid

singular configurations.

A number of authors have used the nullspace method to help avoid

singular configurations by maximizing Yoshikawa's manipulability

measure (Yoshikawa, 1985). (Maciejewski & Klein, 1985) used the

nullspace method for obstacle avoidance.

48

4.3.3. Damped least squares method

The damped least squares method can be theoretically justifed as

follows: Rather than just finding the minimum vector Δθ that gives a

best solution to equation e = J Δθ, we find the value of Δθ that

minimizes the quantity

||J Δθ – e||2 + λ2|| Δθ||2,

Equation 10

where λ Є R is a non-zero damping constant. By using singular value

decomposition, it can be shown that JTJ+λ2I is non-singular. Thus,

the damped least squares solution is equal to:

 () ⃗

Equation 11

Now, JTJ is a n x n matrix, where n is the number of degrees of

freedom. It is easy to show that (JTJ+λ2I)-1JT = JT(JJT+λ2I)-1. Then,

 () ⃗

Equation 12

The advantage of Equation 12 over Equation 11 is that the matrix

inversion is executed over a m x m matrix instead of a n x n (m being

the number of degrees of freedom and n being the number of joints,

which is usually larger).

4.3.4. Singular Value Decomposition method

Let A be a real m x n matrix with m≥n:

Equation 13

Where:

UTU=VTV=VVT=In and Σ=diag(σ1,…, σn).

The matrix U consists of n orthonormalized eigenvectors associated

with the n largest eigenvalues of AAT, and the matrix V consists of the

orthonormalized eigenvalues of ATA. The diagonal elements of Σ are

the non-negative square roots of the eigenvalues of ATA; they are

called singular values. It is assumed that:

49

σ1≥ σ2≥ … ≥ σn≥ 0

Thus, if rank(A)=r, σr+1= σr+2= … = σn=0. The decomposition

presented in Equation 13 is called the singular value decomposition

(SVD). (Golub & Reinsch, 1970)

One of the applications of the SVD procedures is the calculation of the

pseudoinverse X, that satisfies the following four properties:

 A X A = A;

 X A X = X;

 (A X)T = A X;

 (X A)T = X A.

The unique solution is denoted by A+. It is easy to verify that if

A=UΣVT, then A+=VΣ+UT where Σ+=diag(σi
+) and

4.3.5. Optimization method

There are many optimization algorithms available for the inverse

kinematics calculation. For the propos of this work, it was chosen the

minimization of constrained non-linear multivariable function. The

variables to be optimized are the joint angles and the function to me

minimized is:

 () ((()))

Where “abs” calculates the absolute value inside the parenthesis,

“norm” calculates the norm of the matrix inside the parenthesis and

“fkine” calculates the forward kinematics of the “robot” while in the

configuration set by “q”.

In comparison with inverse kinematics methods that use any

variation of the Jacobian matrix, the optimization method has the

vantage of respecting the joint limits, but the disadvantage of higher

computational cost. Both methods have problems near singularities,

depending on the choice of the initial guess.

50

5. Experimental Results

When dealing with surgical applications of robots, specially having a

human input for the manipulator’s motion, it is very important to

have a singularity-robust motion control, in order to avoid tracking

errors, blockages or any other undesired behavior that would risk a

patient surgery.

For better choosing a motion control algorithm, a series of tests were

conducted in order to analyze the behavior of each method presented

in sections 4.3.1 to 4.3.5. The testing protocol involves a series of

steps from building a trajectory to collecting the results, which will be

presented in the next few sections.

5.1. Trajectories

The trajectories were chosen in two different perspectives: in the

first, one should try to mimic possible motions a surgeon would

execute inside the operating room; in the second, the robot’s

behavior in extreme singularity conditions have to be tested, even if

those situations are not applicable in a real world application.

As mentioned in previous sections, simulated trajectories have to be

set in the Cartesian space, since those are the natural command

inputs for the human controller. But, to make sure that those

trajectories are composed only of reachable configurations, they are

all tested through a optimization algorithm.

This testing algorithm uses the same objective function of the inverse

kinematics in section 4.3.5, but returns a time-stamped array of joint

space coordinates and a time-stamped array of the objective function

value at that given set of coordinates. In other terms, gives a

measure of the error during the trajectory.

All the following testing trajectories have a tracing error inferior to

10-5 meters and the norm of the maximum linear velocity is inferior

to 0.5 cm/s.

51

5.1.1. Pick and Pull

The pick-and-pull trajectory is a common trajectory to be used in the

operating room. Literary hundreds of times the surgeon has to grab a

piece of tissue or suture line and pull it in other direction. The

proposed trajectory follows a straight line along the positive direction

of z-axis.

The orientation is kept parallel to the X-Z plane with a 45 degrees

rotation around the negative axis of Y, as shown in Figure 34. The

total distance traveled is 2 centimeters, starting from [3;-5;-4,5].

The trajectory in joint coordinates is shown in Figure 35:

Figure 34 - Trajectory 1 final configuration

Figure 35 - Trajectory 1 joint space trajectory

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10Jo
in

t
A

n
gl

e
 (

ra
d

)

Time (s)

3rd trajectory in joint space

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

52

5.1.2. Type I singularity test trajectory

This is a trajectory that is not comparable to real-world applications,

but is important as an extreme condition test. In this situation, the

starting point was not a Cartesian coordinate route: the procedure

was to block angles for joints 1, 3, 4, 5 and 6 while varying the 2nd

joint within its full range.

That causes NOTESnail to pass through a type I singularity twice:

when q2 equals to –π/2 and to –π/2, as shown in (same legend as

previous equivalent figures). The Cartesian coordinates visualization

is provided in.Figure 36, Figure 37 and Figure 38.

Figure 36 - X-Z graphic of trajectory 5.1.2

Figure 37 - Y-X graphic of trajectory 5.1.2

53

Figure 38 - - Z-Y graphic of trajectory 5.1.2

5.1.3. Type II singularity test trajectory

This trajectory follows the same principle of trajectory 5.1.2

concerning real-world application, but instead of varying the 2nd joint

variable, the 5th joint singularity is the one to be studied.by using the

exactly equivalent procedure. The joint space variables visualization

is shown in Figure 39 (note that some joint coordinates can’t be

visualized since all have the same value “0”).

Figure 39 - Joint space trajectory of 3rd trajectory

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

0 1 2 3 4 5 6 7 8 9 10

Jo
in

t
A

n
gl

e
 (

ra
d

)

Time (s)

3rd trajectory in joint space

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

54

5.1.4. Suture simulation

Another trajectory vastly used in the operating theater is the suture,

as shown in Figure 40. The movements shown in the sections A, C, D,

E and F are achieved with the previous “pick and pull” movement.

The most complicated movement is shown in Figure 40-B when the

surgeon does and helix-like trajectory in order to “wrap” the suture

line around the grasper body.

That movement can be mathematically approximated with an helix

around the end-effector z-axis. According to the common surgery

practice, instead of keeping the orientation constant during the

complete trajectory, it will be used to help the circular movement.

Joints 1, 2 and 3 will be used for the linear movement along the last

module z-axis. Joints 4 and 5 will be used for the circular movement

of the helix.

The trajectories in the joint space and in the Cartesian space are

shown in Figure 41 and Figure 42 respectively. In Figure 42, the

colors yellow, magenta and cyan represent the Cartesian coordinates

x, y and z respectively.

55

Figure 40 - Laparoscopic suture

Figure 41 - Second trajectory in joint space coordinates

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0
0

,4
4

0
,8

8
1

,3
2

1
,7

6
2

,2
2

,6
4

3
,0

8
3

,5
2

3
,9

6
4

,4
4

,8
4

5
,2

8
5

,7
2

6
,1

6
6

,6
7

,0
4

7
,4

8
7

,9
2

8
,3

6
8

,8
9

,2
4

9
,6

8

Jo
in

t
A

n
gl

e
 (

ra
d

)

Time (s)

Suture Trajectory in Joint Space

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

56

Figure 42 - Suture trajectory in Cartesian coordinates

5.2. Simulink models

Simulink, developed by Mathworks is a tool for modeling, simulating

and analyzing dynamic systems. Its primary interface is based in

block diagrams, making it easy to change architectures, parameters

and etc. That was the main reason for choosing it for the propos of

this work.

In all models, the blocks are the following:

 the Cartesian trajectory is obtained from a MATLAB file

(resulted from a “trajectory building” file);

 the difference between the actual position and the desired

position is computed in the form of a (6x1) differential vector;

 this Cartesian differential vector is transformed in a joint space

differential vector according to one of the methods;

 A proportional integrative operation is performed. The gain can

be altered as desired;

 The forward kinematics operates the variables back to the

Cartesian space;

-7

-6

-5

-4

-3

-2

-1

0

1

2

0 1 2 3 4 5 6 7 8 9 10

D
is

ta
n

ce
 (

cm
)

Time (s)

Suture Trajectory

X Axis

Y Axis

Z Axis

57

 The “plot” block provides the user to a visualization of the

movement.

5.2.1. Transpose Method

The transpose method is self-explanatory. The joint variables are

taken in each step for the calculation of the manipulator’s Jacobian,

which will be transposed in order to multiply the Cartesian differential

vector.

Figure 43- Simulink model of the transpose method

5.2.2. Pseudoinverse method

The pseudoinverse method introduces a larger number of block in

order to perform the operations described in the section 4.3.2. The

block named “Subsystem1” in Figure 44 has a user-determined input

called “null-space vector” in order to perform such an operation.

Figure 44 - Pseudoinverse method simulink method

58

5.2.3. Damped least squares method

This Simulink model is also self-explanatory. The mathematical

operations proposed in the section 4.3.3 is performed with a user-

defined input for the damping constant.

Figure 45 - Damped least squares method simulink model

5.2.4. Singular value decomposition method

For the SVD method, a MATLAB function was created instead of

combining many Simulink® blocks, making the overall model clearer.

This function can be found in Appendix A

Figure 46 - SVD method simulink method

5.2.5. Optimization method

The optimization method has the least self-explanatory Simulink

model (Figure 47). The block transforming the difference between the

actual state and the desired trajectory in a differential vector was

59

kept because that is the user’s play in the system. The differential

vector being the joystick input.

The optimization code represented by “ikinebot_full” is shown below:

function [qt yout] = ikinebot_simulink (robot,diff,qi)

liminf = [-pi/2 -3*pi/4 -pi/2 -3*pi/4 -pi/2 -3*pi/4];
limsup = [pi/2 3*pi/4 pi/2 3*pi/4 pi/2 3*pi/4];
% compute final configuration
ti = fkine(robot,qi);
di = tr2diff(ti);
df = di+diff;
tr = diff2tr(df);
%optimization algoritm
f = @(x)full_matrix_op(x,robot,tr);
[qt yout] = fmincon(f,qi,[],[],[],[],liminf,limsup);

end

Figure 47 - Optimization simulink model

5.3. Graphical Cartesian space offset

For all figures in this section, the horizontal axis corresponds to the

time (in seconds) and the vertical axis corresponds to the following

legend is valid for all figures in section 5.3:

 Dark Blue = linear error in x-axis

 Green = linear error in y-axis

 Red = linear error in z-axis

 Cyan = rotational error around x-axis

 Magenta = rotational error around y-axis

60

 Yellow = rotational error around z-axis

Figure 48 - Trajectory 1, transpose method

Figure 49 - Trajectory 1, DLS

Figure 50 - Trajectory 1, pseudoinverse

61

Figure 51 - Trajectory 1, SVD

Figure 52 - Trajectory 2, transpose method

Figure 53 - Trajectory 2, DLS method

62

Figure 54 - Trajectory 2, SVD method

Figure 55 - Trajectory 2, pseudoinverse

Figure 56 - Trajectory 3, DLS

63

Figure 57 - Trajectory 3, SVD

Figure 58 - Trajectory 3, transpose method

Figure 59 - Trajectory 3, pseudoinverse

64

Figure 60 - Trajectory 4, DLS

Figure 61 - Trajectory 4, Transpose

Figure 62 - Trajectory 4, SVD

65

Figure 63 - Trajectory 4, pseudoinverse

5.4. Graphical joint space offset

In this section, it will be provided the difference between the real

trajectory in the joint space and the projected one (obtained with the

optimization algorithm). For all figures in this section, the horizontal

axis corresponds to the time (in seconds) and the vertical axis

corresponds to the following legend:

 Dark Blue = error for the 1st joint

 Green = error for the 2nd joint

 Red = error for the 3rd joint

 Cyan = error for the 4th joint

 Magenta = error for the 5th joint

 Yellow = error for the 6th joint

66

Figure 64 - Trajectory offset in trajectory 1, DLS

Figure 65 - Trajectory offset in trajectory 1, pseudoinverse

Figure 66 - Trajectory offset in trajectory 1, SVD

67

Figure 67 - Trajectory offset in trajectory 1, transpose method

Figure 68 - Trajectory offset in trajectory 2, DLS

Figure 69 - Trajectory offset in trajectory 2, Pseudoinverse

68

Figure 70 - Trajectory offset in trajectory 2, SVD

Figure 71 - Trajectory offset in trajectory 2, transpose

Figure 72 - Trajectory offset in trajectory 3, DLS

69

Figure 73 - Trajectory offset in trajectory 3, Pseudoinverse

Figure 74 - Trajectory offset in trajectory 3, SVD

Figure 75 - Trajectory offset in trajectory 3, transpose

70

Figure 76 - Trajectory offset in trajectory 4, DLS

Figure 77 - Trajectory offset in trajectory 4, Pseudoinverse

Figure 78 - Trajectory offset in trajectory 4, SVD

71

Figure 79 - Trajectory offset in trajectory 4, transpose

72

6. Discussion and Conclusion

The main objective of this work was to test kinematic control

algorithms in real world surgery trajectories. The algorithm should

well behave when in singular configuration either following the

original trajectory in joint space or using other degrees of freedom to

follow the trajectory in Cartesian space.

As analyzed in Section 3.2.3, the only singular configurations truly

avoidable without changing position or orientation are the one caused

by the 5th joint angle equal zero. Some of those configurations have a

symmetric non-singular configuration, and one may consider the

motion between a quasi-singular configuration and its symmetric.

The first concern would be if the internal joint motion would affect the

surrounding tissues. That should not be a problem since the operation

site is inflated with carbon dioxide making enough room for the

manipulator to move.

The second concern is about the small end-effector motion which is

inevitable during the internal joint motion. In the worst case scenario,

if the surgeon is performing a suture or other delicate procedure, will

a 1 cm displacement affect his technique or the patient’s outcome?

6.1. Trajectories

During the testing phase of this work, many different trajectories

were considered in order to evaluate the performance of the

kinematic control algorithms. The available computational tools for

NOTESnail real-time 3-D visualization required a joint-space input,

making it difficult to draw up trajectories based on intuition.

On the other hand, the old-fashion approach on drawing trajectories

revealed important kinematic limitations on a 3-module NOTESnail

design:

 If the approach while designing a trajectory was to maintain a

fixed orientation while moving the end-effector’s Cartesian

73

coordinates, the workspace became very limited. As shown in

section 3.2.2, given the end-effector position and orientation, it

is possible to retrieve the position of the 4th and 5th joints and

the configuration is reachable if and only if:

o The position of the 4th and 5th joints is inside the 2-

modules workspace shown in Figure 18;

o The 4th and 5th joint angles necessary to position the last

module are inside the allowed range.

These two conditions make the number of possible trajectories

with fixed orientation very limited when considering the size of

the workspace.

 As shown in Figure 17, the [-3π/4;3π/4] range for the rotation

joints combined with the [-π/2;π/2] range for the bending joint

seems to be more than enough for building a half-sphere

capable of reaching any desired point, but when considering

these points in a trajectory, some problems emerge:

o One should consider the suture motion, as shown in

Figure 40, when done with common 4-DOF laparoscopic

instruments. The circular motion done around the suture

line when analyzed in joint variables (as shown in Figure

80) would give a continuous increasing value (from 0 to

2.n.π, where n is the number of suture rotations), which

is not compatible with NOTESnail joint range limitations.

74

Figure 80 - Laparoscopic instrument joint variables

Comparing all inverse kinematics algorithms, a few considerations

have to be pointed out:

6.2. Transpose method

The transpose method has the worse behavior among all solutions: it

has a slow convergence and step instability (resulting in the comb-

like graphic as shown in Figure 48, for example).

In the Cartesian space, the transpose method has one of the worse

performances, but on the other hand, it keeps a closer distance to the

expected joint space trajectory when considering a singularity-rich

route.

On the other hand, following closer to the expected joint trajectory

implies that there is no singularity avoidance using other degrees of

freedom, which was one of the main goals of this work.

75

6.3. Damped least squares method

The damped least squares method has different performances in the

Cartesian space and in the joint space according to the damping

constant:

 In the real world reachable trajectories, DLS method has the

same great performance as the pseudoinverse and SVD

methods (both in Cartesian and joint space). In the case of a

real world unreachable trajectory, the DLS has a better

performance than pseudoinverse and SVD (both in Cartesian

and joint space).

 In extreme singularities conditions, DLS method has an

equivalent performance to SVD and pseudoinverse methods

when analyzing the Cartesian space and the best performance

when analyzing the joint space offset.

 The damping constant affects the overall performance when

varying between the values of [-1;1]. Out of this range, the

performance is kept saturated in the extreme values. The

resulting performance x damping constant graphic has a

Gaussian-like format centered in 0, as shown in .The best

damping constant value found during the test is -0.01

Figure 81 - damping constant x overall performance

76

6.4. Singular Value Decomposition

Similarly to the pseudoinverse method, the SVD method is very

robust and stable algorithm. Both methods have a closer performance

to the initial objective of this work: to use other degrees of freedom

for singularity avoidance while keeping the desired trajectory in the

Cartesian space. No other considerations are worth pointing out.

6.5. Pseudoinverse method

The pseudoinverse method, as the SVD method, has the behavior

which is closest to this work’s objective. Both methods have exactly

the same performance when the null space projection vector is zero,

but it points out the advantage of the pseudoinverse over SVD

method.

By manipulating the null space projection vector, one can achieve to

avoid singular configurations by creating internal motion, which is the

great objective of this work. The best manipulation of the null space

projection can be an objective of future work. The only manipulation

proposed is shown in Equation 14:

‖ ‖

 ‖ ‖

Equation 14

This manipulator was though to keep the manipulator as far as

possible of singular configuration. The problem with that algorithm is

that those configurations become unreachable and a large portion of

the workspace is lost.

6.6. Optimization algorithm

The optimization algorithm is very successful when planning

trajectories and executing the inverse kinematics, but becomes

impracticable when executing in real-time. Simulink simulations could

not progress any greater than zero time-stamp and would also block

the operating system.

77

6.7. Final considerations

Given all considerations about singular configurations in the

NOTESnail system and the behavior of the inverse kinematics

algorithms, the author of this work suggests that the singularity

avoidance would benefit from increasing the number of construction

modules.

The increase in the number of modules will provide the system with 8

degrees of freedom, 2 more that the necessary to reach any point

with any orientation, what will provide any inverse kinematics

algorithm the necessary redundancy to achieve the initial objective of

singularity avoidance.

Given the collected data, the best option for the kinematic control is

the pseudoinverse method. This algorithm answers to the main goal

which was to use other degrees of freedom to overcome a rank-

deficient Jacobian matrix simple inverse, as well as behaves perfectly

along singularity-free paths.

The possibility of exploring null space projection vectors gives the

pseudoinverse method an advantage over the Singular Value

Decomposition and can be a powerful tool when the manipulator is

forced into a border singularity. The tracking error in the Cartesian

space is acceptable, especially because there are no computer-

generated paths, but a human visual control.

Finally, this work showed to importance of analyzing the physical

meaning of each singularity and which kinematic control algorithm is

more appropriated for compensating a 3-module mechanical design

the is very suited for the propos of NOTES but highly limited in terms

of possible trajectories.

78

7. Bibliography

Abo-Hammour, Z., Mirza, N., Mirza, S., & Arif, M. (31 de December

de 2002). Cartesian path generation of robot manipulators

using continuous genetic algorithms. Robotics and Autonomous

Systems, 41(4), pp. 179-223.

American College of Surgeons. (2007). A Guide to Surgical

Specialists. Acesso em 26 de 10 de 2011, disponível em

American College of Surgeons:

http://www.facs.org/public_info/yourhealth/guide.html

American Society of Colon & Rectal Surgeons. (2008). Laparoscopic

Surgery - What Is It? Acesso em 26 de 10 de 2011, disponível

em Patients & Public Information:

http://www.fascrs.org/patients/treatments_and_screenings/lap

aroscopic_surgery/

Balestrino, A., de Maria, G., & Sciavicco, L. (1984). Robust Control of

Robotic Manipulators. Proceedings of the 9th IFAC World

Congress, 5, pp. 2435-2440.

Bowman, D. E. (02 de 2006). ASGE/SAGES Working Group on

Natural Orifice Translumenal Endoscopic Surgery: White Paper

October 2005. Gastrointestinal Endoscopy, 63(2), pp. 199-203.

Buss, S. R. (2004). Introduction to Inverse Kinematics with Jacobian

Transpose, Pseudoinverse and Damped Least Squares methods.

University of California, Department of Mathematics, San Diego.

Capasso, L. (2002).

 scienze infermieristiche. Roma: SEU.

Cerveri, P. (2008). Strumenti micro robotici modulari innovativi per la

chirurgia transluminale endoscopica. Progetto di Ricerca. Milan,

MI, Italy.

79

Corke, P. (December de 2008). Robotics Toolbox for Matlab. Acesso

em 15 de 11 de 2011, disponível em Peter Corke:

http://www.petercorke.com

Geoffrey, B., Timothy, A., Jeffrey, C., Mihir, D., Edward, C., & Ralph,

C. (11 de 2008). Nomenclature of Natural Orifice Translumenal

Endoscopic Surgery (NOTES) and Laparoendoscopic Single-Site

Surgery (LESS) Procedures in Urology. Journal of Endourology,

22(11), pp. 2575-2582.

Girard, M., & Maciejewski, A. A. (1985). Computational modeling fot

he computer animation of legged figures. Computer Graphics,

19, pp. 263-270.

Golub, G., & Reinsch, C. (29 de 04 de 1970). Singular value

decomposition and least squares solutions. Numerische

Mathematik, 14(5), pp. 403-420.

Haber, G.-P., Crouzet, S., Kamoi, K., Berger, A., Aron, M., Goel, R.,

et al. (June de 2008). Robotic NOTES (Natural Orifice

Translumenal Endoscopic Surgery) in Reconstructive Urology:

Initial Laboratory Experience. Urology, 71(6), pp. 996-1000.

Hess-Coelho, T. (2004). Modelagem cinemática 3-D. São Paulo, SP,

Brasil.

Hutchinson, S., Hager, G. D., & Corke, P. I. (October de 1996). A

tutorial on visual servo control. IEEE Transactions on robotics

and automation, 12(5), pp. 651-67.

Intuitive Surgical. (2010). The da Vinci Surgical System. Acesso em

26 de 10 de 2011, disponível em Intuitive Surgical:

http://www.intuitivesurgical.com/products/davinci_surgical_sys

tem/

Kalloo, A. N., Singh, V. K., Jagannath, S. B., Niiyama, H., Hill, S. L.,

& Vaughn, C. A. (07 de 2004). Flexible transgastric

peritoneoscopy: a novel approach to diagnostic and therapeutic

interventions in the peritoneal cavity. Gastrointestinal

Endoscopy, 60(1), pp. 114-117.

80

Loulmet, D., Carpentier, A., d'Attellis, N., Berrebi, A., Cardon, C.,

Ponzio, O., et al. (1999). Endoscopic coronary artery bypass

grafting with the aid of robotic assisted instruments. Journal of

Thorac Cardiovasc Surgery, pp. 118:4-10.

Maciejewski, A. A., & Klein, C. A. (1985). Obstacle avoidance for

kinematically redundant manipulators in dynamically varying

environments. International Journal of Robotic Research, 4, pp.

109-117.

Misra, P., Patel, R. V., & Balafoutis, C. A. (1988). Robust Control of

Robot Manipulators in Cartesian Space. American Control

Conference, (pp. 1351-1356).

Oemoto, D., & Ang Jr., M. (12 de September de 2007). Singularity

robust algorithm in serial manipulators. Robotics and

Computer-Integrated Manufacturing, 25, pp. 122-134.

Ogata, K. (2001). Modern Control Engineering (4 ed.). Prentice Hall.

Oleynikov, D. (10 de 2008). Robotic Surgery. Surgical Clinics of North

America, 88(5), pp. 1121-1130.

Oyama, E., Chong, N. Y., Agah, A., & Maeda, T. (2001). Inverse

kinematics learning by modular architecture neural networks

with performance prediction networks. Robotics and

Automation, 2001. Proceedings 2001 ICRA. IEEE International

Conference on, 1, pp. 1006-1012.

Pai, R., Fong, D., Bundga, M., Odze, R., Rattner, D., & Thompson, C.

(Setembro de 2006). Transcolonic endoscopic cholecystectomy:

a NOTES survival study in a porcine model. Gastrointestinal

Endoscopy, 64(3), pp. 428-434.

Paul, R. P. (1981). Robot Manipulators: Mathematics, Programming,

and Control. Cambridge, MA, USA: The MIT Press.

Rao, G., Reddy, N., & Banerjee, R. (04 de 2008). NOTES: Human

Experience. Gastrointestinal Endoscopy Clinics of North

America, 18(2), pp. 361-370.

81

Rieder, E., & Swanstrom, L. (September de 2011). Advances in

cancer surgery: Natural orifice surgery (NOTES) for oncological

diseases. Surgical Oncology, 20(3), pp. 211-218.

Roan, S. (2005). Anesthesia's effects may linger after patient goes

home. Acesso em 25 de 10 de 2011, disponível em Pittsburgh

Post-Gazette: http://www.post-

gazette.com/pg/05201/540318.stm

Sanderson, A. C., & Weiss, L. E. (1980). Image-based visual servo

control using relational graph error signals. Proc. IEEE, pp.

1074-1077.

Spong, M., Hutchinson, S., & Hutchinson, M. (2004). Robot Dynamics

and Control (1 ed.). Wiley.

Tolani, D., Goswami, A., & Badler, N. (2000). Real-Time Inverse

Kinematics Techniques for Anthropomorphic Limbs. Graphical

Models, 62, pp. 353-388.

Velanovich, V. (01 de 01 de 2000). Laparoscopic vs open surgery.

Surgical Endoscopy, pp. 16-21.

Wampler, C. W. (1988). Applications of damped least-squares

methods to resolved-rate and resolved-acceleration control of

manipulators. Journal of Dynamic Systems, Measurement, and

Control, 110, pp. 31-38.

Wang, L.-C., & Chen, C. C. (August de 1991). A combined

optimization method for solving the inverse kinematics

problems of mechanical manipulators. Robotics and

Automation, IEEE Transactions on, 7(4), pp. 489-499.

Whitney, D. E. (June de 1969). Resolved motion rate control of

manipulators and human prostheses. IEEE Transactions on

Man-Machine Systems, 10(2), pp. 47-53.

Yoshikawa, T. (1985). Dynamic manipulability of robot manipulators.

Journal of Robotic Systems, 2, pp. 113-124.

82

8. Appendix A

8.1. Robot object building MATLAB code

clear L

d=3.5;

L{1} = link([pi/2 0 0 0],'standard');
L{2} = link([-pi/2 0 0 d],'standard');
L{3} = link([pi/2 0 0 0],'standard');
L{4} = link([-pi/2 0 0 d],'standard');
L{5} = link([pi/2 0 0 0],'standard');
L{6} = link([0 0 0 d],'standard');

L{1}.qlim = [-pi/2 pi/2];
L{2}.qlim = [-pi pi];
L{3}.qlim = [-pi/2 pi/2];
L{4}.qlim = [-pi pi];
L{5}.qlim = [-pi/2 pi/2];
L{6}.qlim = [-pi pi];

L{1}.m = 0.033;
L{2}.m = 0.015;
L{3}.m = 0.033;
L{4}.m = 0.015;
L{5}.m = 0.033;
L{6}.m = 0.015+0.030; % with microcamera

% Center of Mass in respect to the origin of each link
L{1}.r = [0.000179 0.000243 0.025109];
L{2}.r = [0 0.017786 0.000012];
L{3}.r = [0.000179 0.000243 0.025109];
L{4}.r = [0 0.017786 0.000012];
L{5}.r = [0.000179 0.000243 0.025109];
L{6}.r = [0 0.017786-0.0177 0.000012];

% Momento of inertia (from CAD)
L{1}.I = [7.543e-006 2.337e-006 8.587e-006 2.147e-6 -

3.194e-7 8.8e-7];
L{2}.I = [9.645e-007 1.696e-006 1.693e-006 1.44e-7 -

1.311e-7 -1.522e-7];
L{3}.I = [7.543e-006 2.337e-006 8.587e-006 2.147e-6 -

3.194e-7 8.8e-7];
L{4}.I = [9.645e-007 1.696e-006 1.693e-006 1.44e-7 -

1.311e-7 -1.522e-7];
L{5}.I = [7.543e-006 2.337e-006 8.587e-006 2.147e-6 -

3.194e-7 8.8e-7];
L{6}.I = [9.645e-007 1.696e-006 1.693e-006 1.44e-7 -

1.311e-7 -1.522e-7];

% Motor inertia (from datasheet)
L{1}.Jm = 9.5e-010;
L{2}.Jm = 9.5e-010;
L{3}.Jm = 9.5e-010;
L{4}.Jm = 9.5e-010;
L{5}.Jm = 9.5e-010;
L{6}.Jm = 9.5e-010;

83

% Motor reduction
L{1}.G = 1024*14/3;
L{2}.G = 1024*33/6;
L{3}.G = 1024*14/3;
L{4}.G = 1024*33/6;
L{5}.G = 1024*14/3;
L{6}.G = 1024*33/6;

% viscous friction (motor referenced) (from datasheet)
L{1}.B = 8e-7;
L{2}.B = 8e-7;
L{3}.B = 8e-7;
L{4}.B = 8e-7;
L{5}.B = 8e-7;
L{6}.B = 8e-7;

bot3 = robot(L);

bot3.name = '3rd module';

bot3.manuf = 'PoliMi';

clear L d;

8.2. Optimization algorithm in MATLAB code

function [qt yout] = ikinebot_full (robot,tr,qi)

liminf = [-pi/2 -3*pi/4 -pi/2 -3*pi/4 -pi/2 -3*pi/4];
limsup = [pi/2 3*pi/4 pi/2 3*pi/4 pi/2 3*pi/4];
f = @(x)full_matrix_op(x,robot,tr);
[qt yout] = fmincon(f,qi,[],[],[],[],liminf,limsup);

end

function y = full_matrix_op(x,robot,tr)

y = abs(norm(tr-fkine(robot,x)));

end

8.3. Singular Value Decomposition in MATLAB code

function y = svd_inv(J)

[U,S,V] = svd(J);

y = inv(U*S*V');

end

84

8.4. 2-module workspace Mesh in MATLAB code

d = 3.5;
n = 50;
% calota interna 1
theta = (-n:2:n)/n*pi/2;
phi = (-n:2:n)'/n*pi/2;
cosphi = cos(phi);
dsinphi = d*sin(phi);
dcostheta = d*cos(theta);
dsintheta = d*sin(theta);

x = cosphi*dcostheta + ones(n+1,1)*dsintheta;
y = cosphi*dsintheta - ones(n+1,1)*dcostheta;
z = dsinphi*ones(1,n+1);
c = ones(n+1);

surf(x,y,z,c)

hold on

% calota interna 2
theta = (-n:2:n)/n*pi/2;
phi = (-n:2:n)'/n*pi/2;
cosphi = cos(phi);
dsinphi = d*sin(phi);
dcostheta = d*cos(theta);
dsintheta = d*sin(theta);

x = -cosphi*dcostheta + ones(n+1,1)*dsintheta;
y = -cosphi*dsintheta - ones(n+1,1)*dcostheta;
z = -dsinphi*ones(1,n+1);
c = ones(n+1);

surf(x,y,z,c)

%calota externa
th1 = (-n:2:n)/n*pi/2;
th2 = (-n:2:n)'/n*pi/2;
costh2 = cos(th2);
dsinth2 = d*sin(th2);
dcosth1 = d*cos(th1);
dsinth1 = d*sin(th1);

xa = costh2*dsinth1 + ones(n+1,1)*dsinth1;
ya = - costh2*dcosth1 - ones(n+1,1)*dcosth1;
za = dsinth2*ones(1,n+1);
c = ones(n+1);

surf(xa,ya,za,c)

n = 20;

% borda 1
th2 = (-n:2:n)/n*pi/2;
th3 = (-n:1:0)'/n*pi/2;
dcosth3 = d*cos(th3);

85

dsinth3 = d*sin(th3);

x = -dcosth3*ones(1,n+1) -d*ones(n+1);
y = -dsinth3*cos(th2);
z = dsinth3*sin(th2);
c = ones(n+1);

surf(x,y,z,c)

% borda 2
th2 = (-n:2:n)/n*pi/2;
th3 = (0:1:n)'/n*pi/2;
dcosth3 = d*cos(th3);
dsinth3 = d*sin(th3);

x = dcosth3*ones(1,n+1) +d*ones(n+1);
y = dsinth3*cos(th2);
z = dsinth3*sin(th2);
c = ones(n+1);

surf(x,y,z,c)

x0 = 0;
y0 = -10.5;
z0 = 0;

scatter3(x0,y0,z0,50,'filled','y');

x0 = x0*ones(n+1);
y0 = y0*ones(n+1);
z0 = z0*ones(n+1);
r0 = 3.5;

% -pi <= theta <= pi is a row vector.
% -pi/2 <= phi <= pi/2 is a column vector.
theta = (-n:2:n)/n*pi;
phi = (-n:2:n)'/n*pi/2;
cosphi = cos(phi); cosphi(1) = 0; cosphi(n+1) = 0;
sintheta = sin(theta); sintheta(1) = 0; sintheta(n+1) = 0;

x = x0 + r0*cosphi*cos(theta);
y = y0 + r0*cosphi*sintheta;
z = z0 + r0*sin(phi)*ones(1,n+1);
c = 2*ones(n+1);

surf(x,y,z,c)

alpha(0.5)
axis equal
hold off
clear all

