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giorno per giorno fatiche e soddisfazioni, senza mai farmi mancare il suo
sostegno: a lei, ad Anita, é dedicato questo lavoro.
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Abstract

After extensive analysis of an existing rotorcraft simulation code, a new
algebraic rotor model was developed, based on quasi-steady flapping motion,
closed-form equations, and a polynomial expression of the induced velocity
according to the actuator disc theory, also including empirical models of the
vortex ring state and of the ground effect derived from experimental evidence.
The model core reduces to a set of three non linear equations which are solved
numerically. It includes coordinate trasformations that extend the validity
of the model for a generic three-dimensional orientation of the rotor with
reference to the airspeed vector. The new rotor model was integrated in
a comprehensive rotorcraft simulation framework and extensive testing and
comparison against other codes was performed.

Keywords: Rotorcraft, Helicopter, Algebraic rotor model.

Sommario

Dopo una dettagliata analisi di un codice di simulazione elicotteristica
esistente, si é sviluppato un nuovo modello algebrico di rotore basato su
un modello di flappeggio quasi-stazionario, su equazioni in forma chiusa e
su un’espressione polinomiale della velocitá indotta, secondo la teoria del
disco attuatore, includendo anche modelli empirici della condizione di anello
vorticoso e dell’effetto suolo, derivati da evidenze sperimentali. Il nucleo
del modello si riduce ad un sistema di tre equazioni non lineari, risolvibili
numericamente. Sono incluse le trasformazioni di coordinate che estendono la
validitá del modello per una generica orientazione tridimensionale del rotore
rispetto al vettore della velocitá relativa all’aria. Il nuovo modello é stato
integrato in un ambiente di simulazione per velivoli ad ala rotante ed é stato
sottoposto ad una estesa campagna di prove, anche comparative rispetto ad
altri codici.

Parole chiave: Ala rotante, Elicottero, Rotore algebrico.





Introduction

Flight mechanics modelling is an essential task in the aerospace design pro-
cess and rotorcraft make no exception. In the case of fixed-wing aircraft, it
is possible to analytically describe flight mechanics with relative ease and,
under appropriate hypotheses, simplify and decouple the equations, while
preserving a significant fidelity level. Rotorcraft, unfortunately, are much
more complex and their behaviour shows tight couplings, so that they are
less prone to be described accurately by the means of simple analytical re-
lationships. As a consequence of this complexity, numerical modelling and
simulation are very important even in the early stages of the design process
and enable basic tasks such as trim calculation.

It is easy to understand that the main challenge in modelling a rotorcraft
is obtaining an accurate estimate of forces produced by the rotor as a function
of flight conditions and rotor controls. An accurate description of a rotor
implies in-depht mechanics and aerodynamic concepts in order to represent
on one hand the blade relative DOFs (i.e. flapping and lead-lag motions),
as well as its flexibility properties, while reproducing, on the other hand, the
complex fully unsteady aerodynamic flow-field around the rotor. Moreover,
the two problems, mechanics and aerodynamics, need typically to be solved
iteratively due to aero-elastic couplings. This description, of course, must be
significantly simplified in order to be of any practical use in the field of flight
mechanics.

Several different approaches are possible for aerodynamic modelling: the
first and simplest option involves the use of an inflow model derived from
the actuator disc theory, the description of the blade trajectory in terms of a
truncated Fourier series, the spanwise analytical integration of aerodynamic
loads and the averaging along the rotation, that result in closed-form alge-
braic expressions for rotor forces [23]. A more detailed model can be obtained
by using the blade element theory [21] in order to numerically integrate the
aerodynamic loads, thus allowing complex blade geometries and the repro-
duction of non linear effects and blade vortex interaction. Beyond this level,
methods are available, that can widely vary in sophistication and can reach
the complexity of a full-blown CFD model.
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The latter approach is generally too complex for the purposes of flight
dynamics modelling, due to the combined requirements of a very high com-
putational cost and of a detailed description of the problem. Of the first two
approaches, the one based on the blade element theory is nowadays consid-
ered as the state-of-art and widely used, due to the increased availability of
computational resources.

The main scope of the work here presented is to recover the first, simpler
approach of an algebraic rotor model, reimplement it in a generalised form
and show that it can be efficiently and effectively used for modelling rotor
forces. This model would provide a useful tool for flight mechanics analysis,
especially in the early design phases, when only a small subset of parameters
are considered in order to describe the rotor.

As described in chapter 1, modelling formulations used in the Agusta-
Westland in-house flight mechanics code NFpath were reviewed. These for-
mulations were traced to their sources in literature in order to establish a
clear system of algebraic expressions, together with the hypotheses they are
rely on, which represent a proven model, well suited as a starting point for
further development.

Chapter 2 describes a new implementation of a rotor model mainly based
on the previously reviewed formulations; the model was generalised in order
to relax some of the hypotheses, especially by removing the previous limita-
tion to longitudinal motion. This resulted in a general purpose rotor model
for three-dimensional motion [14]. Also the modelling of ground effect was
the object of further attention. A significant effort was dedicated to ensuring
the numerical robustness of the solver.

The so obtained rotor model was then integrated into a wider frame-
work for full rotorcraft simulation, which includes models for fuselage and
aerodynamic appendages. This part of the work is described in chapter 3.

Both the rotor model and the complete rotorcraft model were the object of
extensive test that allowed an evaluation of their performance in comparison
to the original NFpath code and to the more complex CAMRAD code. These
evaluations are described in chapter 4.

2



Chapter 1

Review of NFpath formulations

1.1 Code description and assumptions

NFpath is a proprietary helicopter flight mechanics code, developed and used
by AgustaWestland for almost three decades for the purpose of performing
several different kinds of flight mechanics analyses. In the beginning of the
80s the code was initially conceived as a trim calculation tool; since then it
was extended and largely rewritten several times, adding a large number of
new features.

In the latest release, coded in Fortran 77, the code is able to carry out
the following main tasks:

� trim;

� direct simulation (calculate trajectory from a given control time his-
tory);

� inverse simulation (calculate controls from a given trajectory time his-
tory);

� stability analysis.

During the long timespan since its introduction, the code has proven very
reliable and models running on this code are routinely used in the Flight
Mechanics office at AgustaWestland.

The code was conceived on the basis of simplified assumptions [18] with
the aim of :

� reducing the computational cost, taking into account the constrained
computing resources that were available at the time of initial develop-
ment;
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� providing a simulation tool oriented to the preliminary design phase,
when typically many configuration details are still unknown and spe-
cialists focus their analysis on a relatively small number of parameters.

The main assumption in the model is that the motion of the vehicle is
limited to the longitudinal plane; this implies that yaw angle and yaw rate
are always null.

Based on this assumption, the problem of solving dynamic equilibrium
equations of the vehicle still retains one ambiguous degree of freedom because
either roll or sideslip angle need to be fixed. The choice was to assume that
sideslip always equals zero. Because of this assumption the roll angle can
be calculated at each time step by imposing that it must satisfy dynamic
equilibrium; roll rate is instead assumed to be negligible.

As a consequence of restricting the motion to the longitudinal plane and
imposing null sideslip, the lateral cyclic pitch and the tail rotor collective
pitch are implicitly determined, since they must satisfy latero-directional
equilibrium.

Coherently with the simplified assumptions described above, transforma-
tions between different reference frames are not performed by using complete
rotation tensors, but instead by the means of approximate trigonometric re-
lationships. This implies that the validity of the model is restricted to small
attitude angles.

Definitions of reference frames, as listed in appendix B, are always implied
in the following description.

1.2 Formulation of model components

The core model formulations are the ones conceived for the trim procedure,
originally implemented as the stand-alone program NFtrim; theoretical doc-
umentation is supplied in [16] and [17]. Additional up-to-date information
was gathered by source code analysis and comparison to the user manual
[13].

1.2.1 Main rotor model

The main rotor is represented by an algebraic model, constituted by a set of
closed-form, linear and non-linear equations.

One assumption that is common to all the equations is that rotor blades
are untwisted; that means, pitch angle is assumed constant along the radius.
As reported in [5], such a model is, as first approximation, equivalent to
modelling a rotor with linearly twisted blades, provided that constant pitch

4
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along the blade in the untwisted model is set equal to the pitch at the 75%
radial station in the twisted rotor. Thus, for the collective pitch we consider:

θ0 = θ75,twisted . (1.1)

Some other common quantities are defined, such as the advance parameter
with reference to the non-feathering plane µNF, the inflow parameter with
reference to the tip path plane λTPP and the induced inflow parameter λi:

µNF =
V cos(αTPP − a1NF)

vtip

, (1.2a)

λTPP =
V sin(αTPP − u)

vtip

, (1.2b)

λi =
u

vtip

, (1.2c)

where αTPP is the tip-path plane angle of attack, a1NF is the longitudinal
flapping angle with reference to the non-feathering plane, u is the uniform
induced velocity and Vtip is the tip speed.

1.2.1.1 Induced velocity model

In the calculation of induced velocity over the rotor, absolute value of the
thrust TTPP, referring to the TPP reference frame, will be used. In order
to account for the negative thrust case, the sign of the resulting induced
velocity will be adjusted according to the sign of the thrust. Because of
momentum conservation considerations, uniform induced velocity vector will
always be opposite to the thrust; since in our convention induced velocity is
positive downwards (downwash) and thrust is positive upwards, their values
will always have the same sign.

Hovering induced velocity is calculated according to actuator disc theory
[21]:

uh =

√
|TTPP|
2ρAMR

. (1.3)

When horizontal speed doesn’t exceed an empirical horizontal threshold,
the classical equations for axial flight, derived from the actuator disc theory,
are applied:

vv

uh

> −1 : uOGE = −1

2
vv +

1

2

√
v2

v + 4u2
h , (1.4a)

5
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vv

uh

< −2 : uOGE = −1

2
vv −

1

2

√
v2

v − 4u2
h , (1.4b)

where vv is the vertical speed (positive upwards, with reference to the inertial
frame).

The vertical speed range not covered by these equations is the moderate
descent condition, in which the disc actuator theory loses its validity because
of the vortex ring state phenomenon. The algorithm uses a proprietary em-
pirical formula, derived from experimental data, to provide the induced speed
value in this speed interval1.

Above the aforementioned horizontal speed threshold, induced velocity is
calculated as solution to the polynomial:

u4
OGE − 2u3

OGE sinαTPP + u2
OGEV

2 − u4
h = 0 . (1.5)

The physical solution to this equation is the minimum real positive root;
this root is found numerically.

Ground effect is introduced in the model by applying a correction to the
previously calculated induced velocity; a ground effect coefficient for axial
flight is calculated as a function of height over ground 2:

kIGE,0 = kIGE,0(zg) . (1.6)

In order to account for the reduction of ground effect at high speed, a
coefficient kIGE is calculated as a linear interpolation between kIGE,0 at zero
horizontal speed and unity at a given transition speed.

Finally, the value for uniform induced speed can be written as:

u =
TTPP

|TTPP|
kIGEuOGE . (1.7)

1.2.1.2 Closed-form equations for flapping

Closed form equations are used for flapping angles. These equations are de-
rived using the classical azimuth-averaged approach [23], with the addition of
a non-uniform induced velocity distribution based on the theory by Mangler
and Squire [12], as laid out by Bramwell [5], with the ordinary hypotheses
and assumptions described in [21] (Rotor flapping characteristics, Flapping
equations in forward flight).

1Company confidentiality restrictions apply: detailed information about this topic
cannot be disclosed.

2Company confidentiality restrictions apply: detailed information about this topic
cannot be disclosed. A public reference for this kind of approach can be found in [21]
(Aerodynamics of hovering flight, Ground effect).

6
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This approach leads to the closed form equation for the coning angle as
it appears in [21]:

a0 =
2

3

ρcR4tcd(1− e)
Iβ + eRMb

g

− Mb

Ω2
(
Iβ + eRMb

g

) , (1.8)

and to the longitudinal flapping coefficient a1NF and the lateral flapping co-
efficient b1NF as they appear in [5], with the addition of the pitch-rate con-
tribution from [21]:

a1NF =
2µNF

(
4
3
θ0 + λNF

)
− 16Θ̇

Ωγ(1−e)2 + 8
γ
εb1NF

1− 1
2
µ2

NF

, (1.9a)

b1NF =

4
3

(
µNFa0 + 1.1ν

1
2λi

)
− 8

γ
εa1NF

1− 1
2
µ2

NF

. (1.9b)

In both equations we can substitute:

λNF ≈ λTPP − µNFa1NF . (1.10)

The second equation is readily substituted in the first and solved for a1NF,
then substituted back in the second.

The non-uniform inflow model according to Mangler and Squire is intro-
duced by the function:

ν =
1− sin(−αTPP)

1 + sin(−αTPP)
. (1.11)

The cited model for non-uniform inflow model is valid based on the hy-
pothesis that airspeed is considerably larger than average induced velocity,
thus it is not applicable to the near-hover and low speed part of the flight
envelope. The code accounts for this limitation by setting ν to zero when
µNF is lower than an empirical threshold; setting ν to zero has the effect of
reducing the equations to the uniform-inflow form.

Other quantities introduced in the equations above are the blade mean
aerodynamic chord c and radius R, the air density ρ, the non dimensional
eccentricity of the flapping hinge e, the blade mass Mb, the blade moment
of inertia with reference to the flapping hinge Iβ, the pitch Θ and its time
derivative and the rotor angular speed Ω. Additionally, the Lock’s number
is defined as:

γ =
ρCl/αcR

4

Iβ
, (1.12)
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while the blade hinge offset factor is:

ε =
Mβ

Iβ
xcgeR

2 , (1.13)

and the thrust coefficient for the thrust TTPP with reference to the TPP is
defined as:

tcd =
CT

σ
=

TTPP

ρσAMRv2
tip

. (1.14)

Moreover we define the lift coefficient/angle of attack slope Cl/α for the
blade profile, the non-dimensional radial station of the blade centre of gravity
xcg, which is given as a ratio of R, and the solidity ratio:

σ =
NbcR

AMR

(1.15)

where Nb is the number of blades.

1.2.1.3 Evaluation of drag coefficient

The blade drag coefficient is assumed to be constant over the whole rotor
disc; the value to be used is calculated using a proprietary algorithm based
on averaging the drag coefficient calculated for for the azimuth ψ = 90°
(advancing blade) and ψ = 270° (retreating blade) at a fixed radial station.

The reasons for this approach are based on the empirical consideration
that the advancing blade is representative of high speed phenomena involv-
ing compressibility, while the retreating blade is representative of low speed
conditions, where the angle of attack is the dominating factor.

The foundations of the algorithm, as described in [2], involve calculating
the total airspeed at the two azimuths (including translation and rotation
contributions) and the respective angles of attack.

The tangential and normal components of the asymptotic airspeed, with
reference to the plane normal to the shaft, are:

vS,t = V cosαS , (1.16a)

vS,n = V sinαS , (1.16b)

where αS is the angle of attack of the plane normal to the shaft; then, as-
suming that conditions at a given radial station xCd are representative of the
whole rotor, the total relative speed at the two considered azimuths are:

v90 = ΩxCd + vS,t , (1.17a)

8
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v270 = ΩxCd − vS,t , (1.17b)

while the normal component due to rotation is:

vΩ,n = ΩxCdRa1S . (1.18)

The angles of attack are then calculated as:

α90 = θ0 −B1 + tan−1

(
vS,n − u− vΩ,n

v90

)
, (1.19a)

α270 = θ0 −B1 + tan−1

(
vS,n − u− vΩ,n

v270

)
, (1.19b)

where B1 is the longitudinal cyclic pitch.

Once the angle of attack is known, the incidence contribution to the drag
coefficient can be calculated for each azimuth as a function of the angle of
attack, using experimental profile data (e.g. polynomial interpolations):

Cd,α,ψ = Cd,α,ψ(αψ); ψ = 90°, 270° . (1.20)

The compressibility contribution is calculated using a proprietary model
as a function of the difference between the local Mach number and a critical
Mach number Mcr

3:

Mψ =
vpsi

a
, (1.21a)

∆Mψ = Mψ −Mcr , (1.21b)

Cd,M,ψ = Cd,M,ψ(∆Mψ); ψ = 90°, 270° , (1.21c)

where Mcr is calculated using a proprietary formulation and a is the speed
of sound.

Then the two contributions can be added and the resulting values at the
two considered azimuths can be averaged:

Cd =
Cd,α,90 + Cd,M,90 + Cd,α,270 + Cd,M,270

2
(1.22)

3Company confidentiality restrictions apply: detailed information about this topic
cannot be disclosed.
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1.2.1.4 Closed form equations for forces and torque

The closed form equations for the thrust coefficient tcd, the H-force coefficient
hcd and the torque coefficient qC, as in [5], are4:

tcd =
CT

σ
=
Cl/α

4

(
2

3
θ0

1− µ2
NF + 9

4
µ4

NF

1 + 3
2
µ2

NF

+ λTPP

1− 1
2
µ2

NF

1 + 3
2
µ2

NF

)
, (1.23a)

hcd =
CH

σ
=

1

4
µNF

(
Cd + Cl/αλTPP

1
3
θ0

(
1− 9

2
µ2

NF

)
+ λTPP

1 + 3
2
µ2

NF

)
, (1.23b)

qC =
1

8
Cd(1 + kBµ

2
NF)− λTPPtcd − µNFhcd +Kitcdλi ; (1.23c)

where kB is known as the Bennet’s number (typically 4.7) and kB as the
“induced K”.

Dimensional quantities, including also the power required PMR, are de-
fined as:

TTPP,MR = tcdρσAv
2
tip , (1.24a)

HTPP,MR = hcdρσAv
2
tip , (1.24b)

QMR = qCρσARv
2
tip , (1.24c)

PMR = qcdρσAv
3
tip . (1.24d)

1.2.1.5 Reverse flow correction

The closed form equations described above are obtained by integration on a
full azimuth turn, neglecting that, in this way, the lift in the area interested
by the reverse flow is accounted for with the wrong sign [21].

The code implements a correction for this error only for the H-force.
Reverse flow effect on other quantities is neglected.

The correction is performed by numerically integrating the lift contribu-
tion to the H-force on the reverse flow region and making this contribution
non-dimensional:

hcd,corr =
1

ρσAv2
tip

Nb

2π

∫ 2π

π

∫ −µNFR sinψ

0

1

2
U2

TCl(φ) sinφ sinψφc dr dψ , (1.25)

where:
v1 = Ωr + v sinψ , (1.26a)

4In the calculation of required torque coefficient the code uses also proprietary correc-
tive contributions which are subject to company confidentiality restrictions.
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v2 = v sinαTPP − u , (1.26b)

φ = tan−1

(
v2

v1

)
, (1.26c)

UT =
√
v2

1 + v2
2 . (1.26d)

Special considerations are dedicated to the lift coefficient; since the angle
of attack in the reverse flow region is generally outside the range of appli-
cability of linearised aerodynamics, an empirical analytical expression that
approximates the lift coefficient at high angle of attack is used. A public
source of an empirical expression of the lift coefficient for high angles can be
found in [8] and in [21] (Airfoils for rotor blades, Representing airfoil data
with equations).

Once the coefficient for the lift contribution to H-force in the reverse flow
area hcd,corr is known, the error in the closed form H-force coefficient is com-
pensated by summing two times hcd,corr; this implies the assumption that the
wrong contribution of lift to the closed form H-force coefficient approximately
equals hcd,corr with the opposite sign. This is an approximation because the
two contributions are calculated in different ways, one analytically and one
numerically, and because the first relies on linearised aerodynamics, while
the second on a high-angle model.

1.2.1.6 Control moments

Control moments are directly proportional to flapping angles with reference
to the shaft reference frame:

MΘ,C =
1

2
NbMbxcgev

2
tipa1S , (1.27a)

MΦ,C = −1

2
NbMbxcgev

2
tipb1S , (1.27b)

1.2.2 Fuselage model

Fuselage angle of attack is calculated as difference between pitch and climb
angle:

αfus = Θ− τ , (1.28)

where the climb angle is defined as:

τ = tan−1

(
vv

vh

)
, (1.29)

11
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with vv and vh being the vertical (positive upwards) and horizontal speed
with reference to the inertial reference frame.

Because of rotor wake contraction, airspeed induced by the main rotor
on the fuselage will be in general kIB times the uniform induced velocity on
the rotor disc, with:

1 ≤ kIB ≤ 2 . (1.30)

If this coefficient is known, assuming that induced velocity is directed
downwards parallel to zTPP, total airspeed acting on the fuselage is the vector
sum of induced velocity and asymptotic airspeed:

vfus = v − kIBukTPP . (1.31)

The rotor-fuselage influence angle εfus is the angle between v and vfus,
defined as negative for downwash.

Values of the flat plate area f , of the lift coefficient Cl,fus and of the
pitching moment coefficient Cm,fus are calculated as a function of the an-
gle of attack, either through a linearised model, or through interpolation of
tabulated values:

f = f(αfus + εfus); , (1.32a)

Cl,fus = Cl,fus(αfus + εfus); , (1.32b)

Cm,fus = Cm,fus(αfus + εfus); , (1.32c)

Consequently we obtain the related dimensional quantities for fuselage
drag, lift and moment:

Dfus =
1

2
ρfv2

fus , (1.33a)

Lfus =
1

2
ρCl,fusAv

2
fus , (1.33b)

Mfus =
1

2
ρCl,fusARv

2
fus . (1.33c)

1.2.3 Horizontal tail model

The influence angle on the horizontal tail εht is defined as positive for an
increase of the angle of attack (upwash); it is obtained as a sum of the
contributions of fuselage and main rotor:

εht = εMR,ht + εfus,ht . (1.34)

The fuselage contribution is directly proportional to fuselage lift by an
empirical constant:

εfus,ht = −kI,fusCl,fus , (1.35)

12
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where kI,fus is normally positive; a positive lift deflects the flow downwards,
thus decreasing the angle of attack at the tail plane.

A proprietary algorithm evaluates the effect of the main rotor on the
horizontal tail plane, accomplishing different tasks5:

� determine whether or not the tail plane is in the wake of the rotor;

� evaluate the main rotor induced velocity contribution to airspeed at
the tail plane;

� evaluate the influence angle εfus,ht.

Pitch-rate contribution to local airspeed and angle of attack is also con-
sidered.

Values of the lift and drag coefficients are obtained as a function of the an-
gle of attack, either through a linearised model, either through interpolation
of tabulated values:

Cl,ht = Cl,ht(αfus + ιht + εht); , (1.36a)

Cd,ht = Cd,ht(αfus + ιht + εht); , (1.36b)

where ιht is the setting angle of the tail plane, which is assumed to be con-
trolled proportionally to the main rotor collective through a given constant:

ιht = ιht,0 + ιht,1θ0 . (1.37)

Forces are calculated as:

Lht =
1

2
ρAhtCl,fusv

2
ht , (1.38a)

Dht =
1

2
ρAhtCd,fusv

2
ht , (1.38b)

where Aht is the reference area.
Moments are then defined as:

MΘ,ht = − (Lht cos(αfus + εht) +Dht sin(αht + εht)) dht , (1.39a)

MΦ,ht = − (Lht cos(αfus + εht) +Dht sin(αht + εht)) lht , (1.39b)

where dht is the longitudinal distance between the horizontal tail aerodynamic
computational point and the moments reference point and lht is the lateral
distance.

5Company confidentiality restrictions apply: detailed information about this topic
cannot be disclosed.
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1.2.4 Vertical tail and tail rotor model

The vertical tail is modelled as a simple lifting surface; since sideslip is zero
by hypothesis, aerodynamic coefficients are assumed to be constant, thus
neglecting the contribution of combined pitch and roll to vertical plane angle
of attack:

Lvt =
1

2
ρAvtCl,htv

2
ht , (1.40a)

Dvt =
1

2
ρAvtCd,htv

2
ht , (1.40b)

Since tail rotor thrust TTR is calculated by imposing yaw equilibrium,
modelling of the tail rotor is limited to the calculation of other relevant
quantities as functions of thrust, using closed form equations analogous to
the ones used for the main rotor:

µTR =
V

ΩTRRTR

, (1.41a)

tcd,TR =
TTR

ρ(ΩTRRTR)2σTRATR

, (1.41b)

hcd,TR =
1

4
Cd,TRµTR , (1.41c)

uTR =
TTR

|TTR|

√
|TTR|

2ρATR

. (1.41d)

λTR =
uTR

ΩTRRTR

, (1.41e)

θ0,TR =

(
tcd,TR − λTR

Cl/α,TR
4 (1− 1

2
µ2

TR)
1+ 3

2
µ2

TR

)(
1 + 3

2
µ2

TR

)
Cl/α,TR

6

(
1− µ2

TR + 9
4
µ4

TR

) , (1.41f)

qC,TR =
1

8
Cd,TR(1 + kBµ

2
TR)− λTRtcd,TR − µTRhcd,TR . (1.41g)

QTR = qC,TRρσATRRTR(ΩTRRTR)2 , (1.41h)

PTR = qC,TRρσATR(ΩTRRTR)3 , (1.41i)

14



Review of NFpath formulations

Figure 1.1: Overview of forces, lateral view

1.3 Trim procedure

Historically the trim procedure was the first to be implemented in what would
later become the NFpath code; for this reason it can be considered the core of
the code, since all the assumptions and formulations where defined bearing in
mind the classical trim approach described in the literature (see [2] and [21])
based on solving the inverse problem for the rotor: given forces, required
controls are calculated using closed form equations. At present time, this ap-
proach is generally deprecated, since increased availability of computational
resources allows obtaining trim conditions by applying numerical gradient
methods to direct simulation models, with the advantage of using the same
formulation for both direct and inverse problems. The NFpath code actually
includes also a second trim procedure for using this alternative approach, but
the description of this procedure goes beyond the scope of our discussion.

In short, the algorithm used in NFpath for the classical trim procedure is
based on the following main steps:

� obtain estimates of unknown quantities required for the solution of
the inverse problem (e.g. forces, attitude), either using approximated
formulation, or values from the previous iteration, or guess values;

� calculate required controls, while imposing equilibrium constraints;

� update other unknown quantities;

� iterate.

15
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Figure 1.2: Overview of forces, rear view

Figure 1.3: Trim procedure algorithm overview
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As can be seen in figure 1.3, the algorithm is actually implemented in
the form of many nested iterative calculations, with the outer one being the
update of flat plate area. This approach requires the use of relaxation factors
in the update of quantities for each iteration in order to ensure convergence.

1.3.1 Preliminary calculations

The trim procedure starts with the calculation of constants defined only by
parameters, such as tip speed vtip and area A for both the main and the tail
rotor, the Lock number γ for the main rotor and so on.

Also the climb angle τ and the advance parameter (with reference to
inertial frame) for the considered horizontal and vertical speeds with reference
to the inertial frame are calculated:

µ =
vh

vtip

. (1.42)

All unknown quantities such as the longitudinal non-feathering flapping
angle a1NF, the fuselage angle of attack αfus and the horizontal component of
the main rotor equilibrating force DO are set to zero, while a guess value is
assumed for the average drag coefficient Cd of the main rotor.

1.3.2 Evaluation of main rotor forces, angle of attack and required
collective pitch

From here on, the iteration on the flat plate are begins. By considering only
the first term in eq. 3.39 in [5], a rough estimate for the H-force can be
obtained:

HTPP ≈
1

4
µρAv2

tipCd , (1.43)

and from this we can easily estimate angle of attack of the rotor disc:

αTPP ≈ − tan−1

(
D0 +HTPP

Wtot

)
, (1.44)

Starting the TPP angle of attack iteration, the first value to be calculated
is the advance parameter with reference to the non-feathering plane, which
is obtained using eq. 1.2a.

Horizontal equilibrium is imposed by:

TTPP sin(αTPP + τ) +HTPP cos(αTPP + τ)+

+
1

2
ρfv2

fus cos(τ − εfus) + +Dht cos(τ − εht) + Lht sin(τ − εht)+

− Teng cos Θ + Lfus sin(τ − εfus) + T TR sin ιcant sin Θ = 0 , (1.45)
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where Teng is the residual thrust generated by the engine, assumed to be
directed longitudinally aftwards.

From this equation an expression of the horizontal component of the main
rotor equilibrating force can be written:

D0 = −TTPP sin(αTPP + τ)−HTPP cos(αTPP + τ) =

=
1

2
ρfv2

fus cos(τ − εfus) +Dht cos(τ − εht) + Lht sin(τ − εht)+

− Teng cos Θ + Lfus sin(τ − εfus) + T TR sin ιcant sin Θ , (1.46)

where all quantities that are still unknown at the first iteration are set to
zero.

Similarly, vertical equilibrium can be imposed by:

TTPP cos(αTPP + τ)−HTPP sin(αTPP + τ)+

− 1

2
ρfv2

fus sin(τ − εfus)−Dht sin(τ − εht) + Lht cos(τ − εht)+

+ Teng sin Θ + Lfus cos(τ − εfus) + T TR sin ιcant cos Θ−Wtot = 0 , (1.47)

that can be turned into an expression for the rotor thrust with reference to
the TPP frame:

TTPP =
1

cos(αTPP + τ)
(HTPP sin(αTPP + τ)+

+
1

2
ρfv2

fus sin(τ − εfus) +Dht sin(τ − εht)− Lht cos(τ − εht)+

− Teng sin Θ− Lfus cos(τ − εfus)− T TR sin ιcant cos Θ +Wtot) , (1.48)

where Wtot is the weight force.
Now the average induced velocity can be determined as shown in section

1.2.1.1, and from this the inflow parameter with reference to the TPP frame
λTPP, according to eq. 1.2b.

From previously estimated thrust, we can calculate the thrust coefficient:

tcd =
TTPP

ρσAv2
tip

, (1.49)

By manipulating eq. 1.23a we can now determine the required collective
pitch:

θ0 =

(
tcd − λTPP

Cl/α
4

(
1− 1

2
µ2

NF

)
1 + 3

2
µ2

NF

)
1 + 3

2
µ2

NF
Cl/α

6

(
1− µ2

NF + 9
4
µ4

NF

) , (1.50)
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and then the H-force as shown in sections 1.2.1.4 and 1.2.1.5.
By imposing again the horizontal equilibrium:

D0 + TTPP sin(αTPP + τ) +HTPP cos(αTPP + τ) = 0 , (1.51)

we can now update the value of the rotor disc angle of attack:

α
(k+1)
TPP = sin−1

(
−HTPP cos(α

(k)
TPP + τ) +D0

TTPP

)
− τ , (1.52)

that, using an adequate relaxation, will be used to iterate from the beginning
of section 1.3.2 until convergence on αTPP is reached.

1.3.3 Evaluation of flapping angles, fuselage angle of attack and
horizontal plane angle of attack

Applying equations presented in section 1.2.1.2, coning angle a0, longitudinal
flapping coefficient a1NF and lateral flapping coefficient b1NF are determined;
since the calculation is for a trimmed condition, the term proportional to
pitch rate is absent.

Then the longitudinal flapping coefficient with reference to the shaft refer-
ence frame is calculated (using a tentative value for B1 at the first iteration):

a1S = a1NF −B1 , (1.53)

which, in turn, allows to find the angle of attack of the fuselage:

αS = αTPP − a1S , (1.54a)

αfus = αS − ιS , (1.54b)

where ιS is the tilt angle of the main rotor mast (positive backwards).
From this the angle of attack on the tail plane can be found:

αht = αfus + ιht + εht , (1.55)

where the tail plane influence angle is calculated as described in section 1.2.3,
that also describes the calculation of tail plane forces that is performed at
this stage.

The pitch angle is given by:

Θ = αfus + τ , (1.56)
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1.3.4 Pitching equilibrium

Now all the contributions to the pitching moment can be calculated; fuselage
moment is described in section 1.2.2, horizontal tail in section 1.2.3, main
rotor control moments in section 1.2.1.6. Moreover we have a tail rotor
contribution (set to zero at the first iteration since not all the quantities are
already known):

MΘ,TR = −qC,TRρσTRATR(ΩTRRTR)2RTR − TTRdTR sin ιcant,TR , (1.57)

where ιcant,TR is the cant angle of the tail rotor rotor and dTR is the distance
between the tail rotor hub and the body frame origin along xB.

An additional contribution due to residual thrust from engines (again
assumed to be parallel to the longitudinal body axis at a distance heng):

MΘ,eng = −Tengheng , (1.58)

Then pitching equilibrium can be imposed by:

MΘ,C +MΘ,fus +MΘ,ht +MΘ,eng +MΘ,TR+

− dcgWtot cos Θ + (HTPP cos a1S + TTPP sin a1S)hcg , (1.59)

where dcg is the longitudinal distance between the centre of gravity and the
moment reference point, and hcg is the distance along zB between the moment
reference point and the main rotor hub.

Explicitating MΘ,C we obtain the required logitudinal control moment;
then, remembering the relation between cyclic pitch and flapping angle in
eq. B.5 and the expression of the control moment in eq. 1.27a we can obtain
an expression for updating the longitudinalcyclic pitch:

B1 = a1NF − a1S = a1NF −
2MΘ,C

NbMbxcgev2
tip

(1.60)

Until convergence is reached on B1, a new value is obtained by using an
adequate relaxation and this new value is used to iterate from section 1.3.2.

At this stage an average value for the drag coefficient on the main rotor
is calculated using the model described in section 1.2.1.3; this value is then
used for the purpose of evaluating forces and torque on the main rotor (see
section 1.2.1.4).

1.3.5 Main rotor torque compensation

Considering a counter-clockwise rotating main rotor, the force, positive to
the right, that must be applied at the tail to compensate the main rotor

20



Review of NFpath formulations

torque is:

Ttail =
PMR

ΩdTR

, (1.61)

where dTR is the longitudinal distance between the tail rotor hub and the
moment reference point.

Then the part of this force that has to be generated by the tail rotor is
TTR, that is obtained subtracting the vertical tail force and accounting tail
blockage and cant angle:

TTR,eff = Ttail −
Lvtdvt

dTR

, (1.62a)

TTR = TTR,eff
kbf

cos ιcant,TR

, (1.62b)

where dvt is the longitudinal distance between the vertical tail aerodynamic
computational point and the moment reference point, and kbf is the tail
blockage factor.

Using the equations given in section 1.2.4, it is possible to calculate the
required collective pitch at the tail rotor and the power required by it.

Then the total power required is:

Ptot =
PMR + PTR

ηtr

+ Pacc +
Tengvαfus

ηeng

, (1.63)

where Pacc is the power required by accessories, ηtr is the transmission effi-
ciency and ηeng is the efficiency related to the residual engine thrust at the
nozzle.

Knowing the lateral cyclic pitch (or assuming a value for it at the first
iteration), it is possible to calculate the lateral flapping coefficient:

b1S = A1 + b1NF . (1.64)

Imposing equilibrium of forces along xS:

TTPP sin b1S + Ttail −Wtot sin Φ = 0 , (1.65)

it is then possible to calculate the roll angle:

Φ = sin−1

(
TTPP sin b1S + Ttail

Wtot

)
. (1.66)

In the same way as already done for the pitching equilibrium, rolling mo-
ment for each component is calculated as described in the relevant paragraph;
moreover, we have the moment produced by the vertical tail:

MΦ,tail = TTR,effhTR + Lvthvt , (1.67)
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where hvt is the distance along zB between the moment reference point and
the vertical tail aerodynamic computational point.

We can then write an equilibrium equation about the roll axis:

MΦ,C +MΦ,tail +MΦ,ht + +Wtotlcg cos Φ +HTPPhcg sin b1S = 0 , (1.68)

where lcg is the lateral displacement of the centre of gravity from the cen-
terline; again, as it was done for the longitudinal cylclic pitch, the control
moment MΦ,C resulting from the equilibrium equation can be used into an
expression of the lateral cyclic pitch:

A1 = −b1NF + b1S = −b1NF −
2MΦ,C

NbMbxcgev2
tip

(1.69)

The so calculated value is then used for iterating from the calculation
of b1S, using an adequate relaxation to ensure stability and checking for
convergence against a preset threshold.

Concluding the outer iteration, the flat plate area of the fuselage is eval-
uated as a function of the angle of attack (see section 1.2.2), checked for
convergence and updated with adequate relaxation in order to iterate, if
necessary, from section 1.3.2.

Upon convergence of the flat plate area, controls and attitude angles for
the given flight condition are known, then the trim problem is solved.

1.4 Direct snapshot procedure

The direct snapshot procedure calculates forces and dependent controls (lat-
eral cyclic and tail rotor collective pitch) for a given set of states (horizontal
speed, vertical speed, pitch, pitch rate, ground distance) and independent
controls (main rotor collective and longitudinal cyclic pitch). The reason for
having two dependent controls resides in the constraints set by the hypothe-
ses of longitudinal motion and zero sideslip.

The procedure itself doesnt implement nor the equations of motion nor
the integration of them. These functions are implemented by an outer layer,
outside of the scope of this description.

The procedure is largely based on the trim procedure already described;
the details of the common parts will be omitted, as the reader can use the
trim procedure description for reference.

The climb angle and the advance ratio are calculated as already shown
in section 1.3.1. Then the angle of attack of the fuselage is readily obtained:

αTPP = Θ− τ , (1.70)
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Figure 1.4: Direct snapshot algorithm overview

and the flat plate area can be calculated as a function of it; also the fuselage
drag is readily calculated.

Then the fuselage lift coefficient and the fuselage moment coefficient are
obtained as a function of the angle of attack, and from them the lift and
moment themselves.

The advance parameter with reference to the non-feathering frame is cal-
culated (using a tentative value for a1NF at the first iteration) by eq. 1.2a.

Then using the latest value of the induced velocity (or a tentative value)
also the inflow and induced inflow parameters get calculated according to
eqs. 1.2b and 1.2c.

It is now possible to evaluate the equation given in section 1.2.1.4 for
the main rotor thrust coefficient, and dimensional thrust is readily obtained
from it. Once the thrust is known, a new value for induced velocity can be
calculated as a function of it, using the model described in section 1.2.1.1, and
then the value of the TPP angle of attack. After checking for convergence
on the induced velocity, it is possible, if needed, to iterate with the usual
relaxation technique from where the inflow and induced inflow parameters
were calculated.

Once convergence on induced velocity is obtained, the H-force coefficient
and its dimensional value are calculated as per section 1.2.1.4, as well as the
flapping angles as described in section 1.2.1.2.

Then it is possible to calculate the longitudinal flapping with reference
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to the shaft frame by eq. 1.53, and using it the TPP angle of attack can be
updated updated:

αTPP = αfus + ιS + a1S . (1.71)

Also the main rotor longitudinal control moment, as defined in section
1.2.1.6, is now known.

Induced velocity on the fuselage and on the horizontal tail, as well as
forces and moments acting on them, can be obtained as described in the
relevant sections 1.2.1.2 and 1.2.3.

Then also the main rotor required power and torque are calculated as per
section 1.2.1.4.

Duplicating the procedure described in 1.3.5, the forces and controls on
the tail rotor are obtained; with appropriate inputs, in this calculation the
code can also account for transmission limit, inoperative engines and rotor
angular velocity dynamics, that requires one more nested level of iteration.
Detailed description of this part of the algorithm is beyond the scope of this
document.

The lateral cyclic pitch is iteratively calculated as described in section
1.3.5.

At this point convergence on TPP angle of attack is checked: if needed
a new iteration is started with the calculation of µNF, using an adequate
relaxation for αTPP.

1.5 Simplified re-implementation of the model

1.5.1 Scope

Having gained a comprehensive understanding of the internals of some im-
portant parts of the NFpath code, it was decided to re-implement the direct
snapshot procedure, using the same formulations as the original software in
a new simplified model. There were many reasons for this intermediate step
before further developments, the most important being:

� the original model is reproduced in a simplified form and in a higher
level programming language, where formulations and algorithms are
clearly understandable, sacrificing computational efficiency in exchange
for readability;

� the simplified model can be tested for coherency of results against the
original model, thus validating the correctness of the interpretation of
the original model.
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� the simplified model provides a safe and user-friendly sandbox environ-
ment for formulation analysis and development prototyping, where it
is easier to modify, debug, test and run the source code.

An additional goal was added to the re-implementation task: the rotor
model was isolated from the rest of the iterative procedure, decoupling it
from other entities of the rotorcraft and implementing it in a module with
well defined interfaces. In this fashion the rotor model receives states (speed,
attitude, distance from ground) and complete controls (collective pitch, lon-
gitudinal and lateral cyclic pitch) and returns outputs (forces relative to the
tip-path plane and tip-path plane attitude), while parameters are separated
in a dedicated interface.

1.5.2 Methodology and tools

The simplified model was implemented using Freemat v4.0. Freemat is a cal-
culation tool oriented to the matrix algebra [3] which provides a command
line interface, a built-in function set, a programming language, diagram plot-
ting routines and a graphical user interface that closely reproduce the basic
functionality of the industry standard Matlab environment by Mathworks Inc.
Even thought not every feature in Matlab is exactly replicated in Freemat,
programming syntax and basic functions are largely interoperable between
the two environments.

The software is released as open source under the GNU General Public
Licence version 2.

Apart from the free availability and industry standard (partial) compati-
bility, one of the strong points that supported the choice of Freemat was the
availability of a very simple generic DLL interface, that provides a gateway
to compiled code written in lower level languages (such as C). This interface
enables easy testing of compiled program modules and will be discussed later.

1.5.3 Model structure

The heart of the re-implemented model is the routine that calculates forces,
moments and flapping angles on the isolated rotor. An overview of the algo-
rithm is shown in figure 1.5, which is self-explanatory, since the used formu-
lations are identical to those used in the NFpath direct simulation algorithm
and the concept itself is very similar. The most important differences are:

� all non-rotor related evaluations are moved outside of the core routine,
which is supposed to deal only with the rotor;
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Figure 1.5: Overview of the reimplemented algorithm for the rotor model

Figure 1.6: Overview of the reimplemented algorithm for the rotorcraft model
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� all the calculations that are not needed in the iterative calculations are
moved outside of the iteration cycles, in order to minimize computa-
tional cost;

� all the internal calculations are performed using only SI units (as op-
posed to NFpath, which uses mainly the MKS system, with some non-
coherent additions such as degrees and horsepower);

� the routine outputs forces with reference to the TPP reference frame,
control moments with reference to the body frame, the required power
at the shaft and the flapping angles; since the flapping angles define the
attitude of the TPP, it is possible to compute adequate transformations
in order to express all the forces and moments with reference to the
body frame;

� the remainder calculations required to emulate the NFpath direct sim-
ulation procedure for a complete helicopter are implemented into an
outer layer that calls the rotor model inside its loop in order to evalu-
ate rotor forces; the procedure implements an iteration on the lateral
cyclic pitch, which is looped until the partial trim condition is satis-
fied (lateral equilibrium, zero sideslip); an overview of the algorithm is
illustrated in figure 1.6.

1.5.4 Model validation

The re-implemented model was validated against the original NFpath code in
order to ensure that formulations used in NFpath were correctly understood
and that the modified algorithm is equivalent to the original. This validation
consisted in performing the following steps in different flight conditions:

1. an arbitrary time history for controls is defined;

2. NFpath simulation is run starting from trimmed condition;

3. for each time step in NFpath simulation, attitude, velocities and con-
trols are used as input for the re-implemented simulation;

4. results are compared.

It should be noted that no time integration is performed in the newly
implemented code and comparison is made on a snapshot-by-snapshot basis:
this procedure avoids the time integration of errors, so that the validation
is specific to the correctness of the evaluation of forces and other relevant
quantities at each instant of time.
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The comparison was performed using for both codes the same parameter
set, representative of a light twin helicopter comparable to the AW109, partly
derived from the example helicopter in [2].

The result of the comparison, as shown in the figures6 from 1.7 to 1.22,
is substantially an overplot, with some minor discrepancies which are con-
sidered to be due chiefly on the effect of preset tolerance on the differently
nested iterations, which control convergence on different variables, and, in a
minor way, to numerical truncation.

6Results from the reimplemented model are indicated as direct2d in the figures.
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Figure 1.7: Control time history, hover test case
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Figure 1.8: Coning, hover test case
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Figure 1.9: Longitudinal flapping, hover test case
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Figure 1.10: Lateral flapping, hover test case
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Figure 1.11: Thrust, hover test case
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Figure 1.12: H-force, hover test case
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Figure 1.13: Pitching control moment, hover test case
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Figure 1.14: Induced velocity, hover test case
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Figure 1.15: Control time history, µ = 0.34 test case
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Figure 1.16: Coning, µ = 0.34 test case
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Figure 1.17: Longitudinal flapping, µ = 0.34 test case
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Figure 1.18: Lateral flapping, µ = 0.34 test case
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Figure 1.19: Thrust, µ = 0.34 test case
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Figure 1.20: H-force, µ = 0.34 test case
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Figure 1.21: Pitching control moment, µ = 0.34 test case
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Figure 1.22: Induced velocity, µ = 0.34 test case

36



Chapter 2

Implementation of an algebraic rotor
model

2.1 Scope

Once the needed formulations were extrapolated from NFpath code and val-
idated, the isolated rotor model was re-implemented in a relatively lower
level language in order to obtain a software module supposed to serve as
rotor forces evaluator for a new rotorcraft simulation framework.

The objectives of this task were to:

� isolate the rotor model for the direct snapshot (for given parameters
and controls, the module calculates forces generated by the rotor) while
preserving the underlying proven formulations;

� extend the domain of the model to a fully three-dimensional motion;

� formulate rigorous transformations between couples of different refer-
ence frames, accounting for rigid body kinematics;

� introduce the effect of roll-rate (analogous to pitch-rate effect already
modelled);

� improve the implementation with particular focus on ensuring conti-
nuity of the outputs, that is of primary importance when the model is
called by gradient-based numerical methods (e.g. trim procedure);

� improve the inflow model with regard to:

– continuity;

– robustness;

– computational efficiency;
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– algorithm simplification;

� improve the ground effect model with regard to:

– continuity;

– new formulation of the ground speed influence on ground effect;

� use a single non linear solver as substitute to the nested iterations.

2.2 Methodology and tools

The model was implemented in ANSI C language, taking particular care in
the use of only standard portable language features and best programming
practices [11]. A considerable effort was applied in ensuring readability and
maintainability of the code through code modularity, consistent indentation
and a systematic use of comments and meaningful variable names.

The code was written, compiled, debugged and tested using the Integrated
Development Environment provided by Microsoft Visual C++ 2008 Express
Edition [15].

Since the rotor model is intended to be a software library and not a
stand alone application, in order to simplify testing of the model it was
compiled as a Dynamic Loading Library (DLL), which in turn was loaded by
the previously described software Freemat ; the latter provided an easy-to-use
interface for supplying data to the library and for post-processing results.

2.3 Model description

2.3.1 Structure

An overview of the rotor model is presented in figure 2.1. It is immediate to
see that the model is made up of two nested tiers: the innermost performs
the calculations in the shaft-wind reference frame, where the formulations
described in the previous chapters have their validity, while the outermost
tier takes care of all the necessary changes of basis to and from other reference
frames for inputs and outputs.

It can be seen, also, that all the nested iterations present in the legacy
algorithm have been replaced by a single set of three equations, which is
solved by the means of a numerical non linear solver. The inflow module,
including the ground effect model, is implemented as a separate model, which
is seen by the solver as a non-linear function.
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Figure 2.1: Overview of the rotor model algorithm

2.3.2 Rotations

2.3.2.1 Rotation from inertial triad to body triad

The rotation tensor from inertial triad to body triad, expressed in the inertial
reference frame, and its inverse rotation tensor, can be written as a function
of Eulers attitude angles in 3-2-1 sequence, in the form of a DCM (Direction
Cosine Matrix):

RI
I→B =

 cΨcΘ cΨsΘsΦ − sΨcΦ cΨsΘcΦ + sΨsΦ

sΨcΘ sΨsΘsΦ + cΨcΦ sΨsΘcΦ − cΨsΦ

−sΘ cΘsΦ cΘcΦ

 , (2.1a)

RB
B→I = (RI

I→B)T , (2.1b)

where, for the sake of compactness cΦ = cos Φ, sΦ = sin Φ, cΘ = cos Θ,
sΘ = sin Θ, cΨ = cos Ψ, sΨ = sin Ψ, and Φ, Θ and Ψ are the angles of roll,
pitch and yaw.

From here on, rotation tensors notation uses the subscript to indicate the
initial and final triads of the transformation, and the superscript to indicate
the triad used to express the tensor itself.

2.3.2.2 Rotation from design triad to body triad

The rotation tensor from design triad (STA-BL-WL frame) to body triad,
expressed in the design reference frame, and its inverse rotation tensor, can
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be written in the form of a DCM (Direction Cosine Matrix):

RD
D→B =

 −1 0 0
0 1 0
0 0 −1

 , (2.2a)

RB
B→D = (RD

D→B)T , (2.2b)

2.3.2.3 Rotation from body triad to shaft-body triad

According to Eulers theorem, a rotation between two reference systems can
be always described as a single rotation of a certain amount about a well
defined axis. In this fashion, a rotation tensor can be written as a function
of an angle and a unity vector defining the rotation axis, expressed in the
initial frame; this function is known as Euler-Rodrigues formula [4]:

RA
A→B(aA, φ) = I + sinφa× + (1− cosφ)a×a× . (2.3)

The shaft-body triad with reference to the body frame is defined by a
combination of three rotations in a well defined sequence:

1. a rotation of an angle π + ιtilt about jB, representing the fixed tilt of
the mast (summing π to the tilt angle makes iSB point backwards and
kSB point upwards as in a conventional main rotor configuration);

2. a rotation of an angle ιcant about iB, representing the cant of the mast;

3. a rotation of an angle ιcontr about a given unity vector acontr, repre-
senting the tilt control (nacelle angle) in a tilt-rotor vehicle; in other
words: the rotation from nominal shaft position (body attached) to
commanded shaft position.

In the current implementation acontr can be only set equal to one unity
vector between: iB, jB, kB.

Using the previously defined Euler-Rodrigues formula, the tensor result-
ing from the combination of the three rotations can be written as:

RB
B→SB = RB

B→tiltR
tilt
tilt→fixedR

fixed
fixed→SB

= RB
B→tilt(j

B
B, π + ιtilt)R

tilt
tilt→fixed(itiltB , ιcant)R

fixed
fixed→SB(jfixed

B , ιcontr)
= RB

B→tilt(j
B
B, π + ιtilt)R

tilt
tilt→fixed(Rtilt

tilt→BiBB, ιcant) · · ·
· · ·Rfixed

fixed→SB(Rfixed
fixed→BjB

B, ιcontr) ,
(2.4)

where:
Rtilt

tilt→B = (RB
B→tilt)

T , (2.5a)
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Rfixed
fixed→B = (RB

B→fixed)T = (RB
B→tiltR

tilt
tilt→fixed)T , (2.5b)

and as usual we have also the inverse rotation tensor:

RSB
SB→B = (RB

B→SB)T , (2.6)

2.3.2.4 Rotation from shaft-body triad to shaft-wind triad

The shaft-wind triad is defined by the shaft-body triad, rotated about kSB

so that the following conditions are satisfied:

1. the total airspeed vector V in the origin point C (rotor hub) lies on the
plane defined by iSW and kSW;

2. the unity vector iSW is directed as the projection of V on xSW.

A reference frame so defined allows to write the rotor equations under
simplified assumptions, since horizontal airspeed (with reference to the shaft)
will be always directed as iSW, regardless of the sideslip of the airframe; this
is coherent with the assumptions the classical closed form rotor equations
are based on.

The position of the pivot point P , that is the centre of rotation of the
nacelle in a tilt rotor configuration, known in the design frame, is expressed
in body frame:

rB
OP = RB

B→D(rD
DP − rD

DO) . (2.7)

The position of the rotor hub C, which is located along the mast axis at
a distance dpivot from the pivot, is expressed in body frame:

rB
OC = rB

OP + RB
B→SB(dpivotk

SB
SB) . (2.8)

The rotor hub position is considered the position where all rotor forces
are applied; also, asymptotic airspeed used in the calculation of rotor forces
is evaluated in this same point and assumed as uniform over the whole rotor
disc.

The total speed in C, including the component due to rigid body rotation,
is calculated as:

vB
C = vB

O + ωB × rB
OC . (2.9a)

vSB
C = RSB

SB→BvB
C . (2.9b)

where linear and angular velocities evaluated in the body frame origin point
O are used.

The wind speed, known in inertial frame, is expressed in shaft-body frame:

vSB
wind = RSB

SB→Iv
I
wind = (RB

I→BRB
B→SB)TvI

wind . (2.10)
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The total airspeed at point C is then:

VSB = −vSB
C + vSB

wind . (2.11)

We have now all the data required to determine the rotation tensor from
the shaft-body triad to the shaft-wind triad. Unity vector kSW is known by
definition:

kSB
SW = kSB

SB . (2.12)

Unity vector iSW is obtained as:

iSB
SW =

1√
(VSB · iSB

SB)2 + (VSB · jSB
SB)2


VSB · iSB

SB

VSB · jSB
SB

0

 , (2.13)

and the right-handed triad is completed by jSW:

jSB
SW = kSB

SW × iSB
SW . (2.14)

then the rotation tensor is written as a DCM:

RSB
SB→SW =

[
iSB
SW | jSB

SW |kSB
SW

]
, (2.15a)

RSW
SW→SB = (RSB

SB→SW)T . (2.15b)

2.3.2.5 Change of basis for controls

Pilot inputs for cyclic pitch controls define the attitude of the swash plate
with reference to a body-fixed azimuth reference; in our case the body fixed
azimuth is measured with reference to the shaft-body reference frame, as a
right handed angle ψSB about kSB, starting from iSB.

Since rotor force calculations are performed relative to airspeed direction
in the shaft-wind reference frame, cyclic pitch controls are to be expressed
with reference to this reference frame, with azimuth measured as a right
handed angle ψSW about kSW, starting from iSW.

Cyclic pitch as a function of azimuth (see eq. B.4) with reference to the
shaft-body frame is defined as:

θ(ψSB) = θ0 − ASB
1 cosψSB −BSB

1 sinψSB . (2.16)

The same can be written also with reference to the shaft-wind frame:

θ(ψSW) = θ0 − ASW
1 cosψSW −BSW

1 sinψSW , (2.17)
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where the azimuth differs from the previous one of the sideslip angle:

ψSW = ψSB + βSB . (2.18)

Recalling the identities:

sin(a− b) = sin a cos b− cos a sin b , (2.19a)

cos(a− b) = cos a cos b+ sin a sin b , (2.19b)

and rearranging we obtain the control angles with reference to the shaft-wind
frame:

ASW
1 = ASB

1 cos βSB −BSB
1 sin βSB , (2.20a)

BSW
1 = ASB

1 sin βSB +BSB
1 cos βSB . (2.20b)

2.3.3 Inflow model

2.3.3.1 Inflow solution according to the actuator disc theory

The inflow model described later on defines the rotor uniform self-induced
velocity as a function of the asymptotic airspeed V , the rotor disc angle of
attack αTPP, the thrust coefficient CT and the blade tip speed vtip.

The hovering induced velocity is calculated as:

uh = vtip

√
CT

2
(2.21)

This value is used as reference value for non-dimensional speeds:

v∗ =
V

|uh|
; (2.22a)

u∗ =
u

|uh|
. (2.22b)

The non-dimensional induced velocity, outside the vortex ring state re-
gion, is given by the actuator disc theory as the minimum real positive root
of a polynomial [2]:

u∗ (v∗, αTPP ) = min{u∗ ∈ < : p(u∗) = · · ·
· · ·u∗ 4 − 2v∗ sinαTPPu

∗ 3 + v∗ 2u∗ 2 − 1 = 0; u∗ ≥ 0} .
(2.23)

The root of the polynomial is found numerically (see A.1). Note that the
zero solution is acceptable if and only if CT is zero.
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2.3.3.2 Interpolation of the empirical inflow model for vortex ring
state condition

2.3.3.3 Vortex ring state

Normal and tangential components of the asymptotic speed are defined as:

vt = v∗ cosαTPP ; (2.24a)

vn = v∗ sinαTPP . (2.24b)

If 1 < vn < 2, the rotor is in a moderate descent condition, which is
heavily influced by the vortex ring state. In this condition the solution from
the actuator disc theory is not reliable.

The induced velocity that the rotor would produce in axial flight (vt = 0)
at the same normal airspeed is known from an experimental relationship:

u∗VRS0 = u∗VRS0(vn) (2.25)

In order to obtain a realistic value in the flight envelope region affected by
the vortex ring state, the empirical value for axial flight is weighted using the
values of the polynomial solution on borders of the vortex ring state region
as form functions:

a = 2− vn ; (2.26a)

v1 =
√

1 + v2
t ; (2.26b)

v2 =
√

4 + v2
t ; (2.26c)

u∗VRS = u∗VRS0

(
a
u∗(v1, αTPP)

u∗(1, αTPP)
+ (1− a)

u∗(v2, αTPP)

u∗(2, αTPP)

)
(2.26d)

In order to insure continuity of the solution and to restrict the effect of
the interpolation only to the region where vortex ring state decreases the
induced velocity, the interpolated value u∗VRS is used instead of u∗ only when
the value according to the actuator disc theory exceeds it.

In figure 2.2 the solution of the polynomial expression for the induced
velocity according to the disc actuator theory is shown; it is easy to see that
the values in the part of flight envelope affected by the vortex ring state
have no physical meaning and show significant discontinuity; in figure 2.3
the same data is smoothed using the experimental data as described before;
the comparison between the two solutions is shown by the difference plot
in figure 2.4, that confirms that the empirical correction is limited to the
portion of flight envelope affected by the vortex ring state, while the rest of
the envelope retains the solution according to the disc actuator theory. In
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Figure 2.2: Induced velocity from actuator disc theory as a function of tan-
gential and normal speed components

Figure 2.3: Induced velocity from actuator disc theory as a function of tan-
gential and normal speed components, with smoothing of experimental data
in the part of envelope affected by the vortex ring state
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Figure 2.4: Difference between the induced velocity calculated by the new
rotor model and the values calculated according to NFpath algorithm

Figure 2.5: Difference between the actuator discsolution and the the mixed
experimental-theoretical smoothed solution
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figure 2.5 a comparison between the new model and the results from NFpath
algorithms: it is evident that NFpath applies the vortex ring state empirical
correction only to part of the region affected by the phenomenon, leaving the
rest of the region uncorrected and with discontinuities that can propagate to
the rotor model and to the rotorcraft model, possibly creating problems for
the use of gradient methods (e.g. trim procedures).

2.3.3.4 Ground effect model

In order to evaluate ground effect it is necessary to calculate the hub distance
from ground along the mast axis and the absolute value of airspeed parallel
to ground:

dgnd =
−zgnd + (RI

I→BrB
OC) · kI

I

(RI
I→SBkSB

SB) · kI
I

, (2.27a)√
((RI

I→BvB
C) · iII)

2
+ ((RI

I→BvB
C) · iII)

2
, (2.27b)

where zgnd is the vertical distance of O from ground. Note that if the rotor is
upside-down (kSB pointing to ground) or the hub is under terrain level, dgnd

is set to negative; in this case the algorithm causes OGE to be forced.
Ground distance is evaluated along the mast axis in order to account

for the effect of rotorcraft attitude; this differs from the approach used in
NFpath, where only the vertical ground distance was considered.

Ground effect is taken into account by multiplying the uniform induced
velocity, calculated for OGE conditions, by a coefficient kgnd that is function
of the distance between hub and ground along the shaft axis and of the
airspeed parallel to ground.

Defining the function that evaluates the coefficient kgnd, special care was
used in making sure that this coefficient is a continuous function of the ground
distance and airspeed.

The coefficient kgnd for axial flight is known as an empirical function of the
ground distance (in the form of distance/radius ratio), limited to minimum
and maximum boundaries1:

dgnd < dgnd,lo : kgnd,0 = kgnd,0(dgnd,lo) ,
dgnd,lo ≤ dgnd ≤ dgnd,hi : kgnd,0 = kgnd,0(dgnd) ,
dgnd > dgnd,hi : kgnd,0 = 1 ,

(2.28)

The aim of the following additions to this simple ground effect model is to
add a realistic representation of the behaviour of ground effect versus ground

1Company confidentiality restrictions apply: detailed information about this topic
cannot be disclosed.
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h
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IGE Boundary OGE Boundary

Espo. (IGE Boundary) Lineare (IGE Boundary)

Espo. (OGE Boundary) Lineare (OGE Boundary)

Figure 2.6: Experimental Curtiss-Sun diagram with interpolations

speed, defining a continuous transition between the hover condition (where
ground effect is maximum) and high advance ratio motion (where ground
effect is absent).

Based on linearisation of experimental data in the form of Curtiss-Sun
diagrams [9], as shown in figure 2.6, the algorithm calculates an upper bound-
ary ground airspeed for completely developed ground effect as a function
of non-dimensional ground distance; for a ground airspeed lesser than this
boundary, the coefficient kgnd is equal to the one calculated for axial flight.
In the same fashion, a lower boundary airspeed for out-of-ground-effect con-
dition is calculated and kgnd is assigned as unity for airspeeds greater than
this boundary:

µ∗ = µNF

√
2

CT

. (2.29a)

µ∗IGE = cIGE,0 + cIGE,1dgnd , (2.29b)

µ∗OGE = cOGE,0 + cOGE,1dgnd , (2.29c)

For airspeeds between the two boundaries a cosine interpolation is used in
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Figure 2.7: Ground effect coefficient

order to ensure continuity:

µ∗ < µ∗IGE : a = 1 ,

µ∗IGE ≤ µ∗ ≤ µ∗OGE : a = 1
2

(
1 + cos

(
π

µ∗−µ∗IGE

µ∗OGE−µ
∗
IGE

))
,

µ∗ > µ∗OGE : a = 0 ,

(2.30)

The described interpolation results in a continuous function, as depicted in
figure 2.7:

kgnd = 1− (1− a)kgnd,0 , (2.31a)

u = uhkgnd min{u∗;u∗VRS} . (2.31b)

The properties of the described ground effect model will be described in
detail in section 4.3.

2.3.3.5 Accounting for negative thrust

According to the momentum balance equation, the uniform induced velocity
will have always the same direction and opposite sign as the thrust. Since
in the convention used thrust is positive upwards and induced velocity is
positive downwards, numerical values of u and CT will always have the same
sign.
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In case CT is negative, the calculation is performed in the same way as de-
scribed above, but CT , αTPP , and uh are replaced with their opposites. With
these substitutions the resulting value of u has the correct sign (negative)
and vortex ring state is evaluated in the correct normal airspeed range.

2.3.4 Rotor equations

Closed-form equations for rotor forces and flapping used in the described
model are derived under the assumption that the blade is untwisted. As
already noted before, such a formulation is an acceptable approximation of a
blade with a moderate linear twist, provided that the pitch of the real blade,
measured at 75% of the radius, equals the uniform pitch in the untwisted
model, so:

θ0 = θ75,twisted . (2.32)

2.3.4.1 Non-linear equation set

A non linear function for the inflow, including a model for vortex ring state
and ground effect, has been obtained; recalling the relationship between the
angle of the attack of the disc and the longitudinal flapping angle, and the
expression of the latter with reference to the non-feathering plane:

αTPP = αSW + aSW
1 , (2.33a)

aSW
1 = aNF

1 −B1 , (2.33b)

it is possible to express the induced velocity u as a non-linear function of the
thrust coefficient CT and of the longitudinal flapping coefficent aNF

1 .
In order to complete the problem we still need two more equations for CT

and aNF
1 . These equations can be derived in closed form by substituting the

truncated Fourier expansion of blade flapping into the differential equation
of flapping [23, 5, 21]. A possible expression of these two equations, where
inflow distribution has been modelled according to [12], is the following:

CT = σ
CL/α

4

(
2

3
θ0

1− µ2
NF + 9

4
µ4

NF

1 + 3
2
µ2

NF

+ λTPP

1− 1
2
µ2

NF

1 + 3
2
µ2

NF

)
, (2.34a)

aNF
1 =

2µNF( 4
3
θ0+λTPP)− 16Θ̇

Ωγ(1−eβ)2
− Φ̇

Ω

1+ 3
2
µ2

NF

+ 8
γ

ε
1+ 3

2
µ2

NF

4
3

(
µNFa0+1.1ν

1
2 λi

)
1+ 1

2
µ2

NF

1−
(

8
γ

ε
1+ 3

2
µ2

NF

)(
− 8
γ

ε
1+ 1

2
µ2

NF

) . (2.34b)

By substituting the following definitions:

λTPP =
V sinαTPP − u

vtip

, (2.35a)
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λi =
u

vtip

, (2.35b)

ν =
1 + sinαTPP

1− sinαTPP

, (2.35c)

γ =
ρCL/αcR

4

Iβ
, (2.35d)

ε =
Mb

Iβ
xcgeβR

2 , (2.35e)

in Eqs. 2.34, a set of three algebraic non linear equations with three unknown
variables is obtained:

CT = f1

(
CT, a

NF
1 , u

)
, (2.36a)

aNF
1 = f2

(
CT, a

NF
1 , u

)
, (2.36b)

u = f3

(
CT, a

NF
1 , u

)
, (2.36c)

which can be solved numerically. In the model implementation the equations
were divided by reference values in order to improve their conditioning and
then solved using Broyden’s method (see section A.2).

2.3.4.2 Additional closed-form rotor equations

The average drag coefficient used in the following equations is calculated
using the same proprietary algorithm introduced in section 1.2.1.3.

The lateral flapping coefficient is calculated using the following closed
form equation, incorporating the effect of roll rate:

b1NF =

4
3

(
µNFa0 + 1.1ν

1
2λi

)
− 16Θ̇

Ωγ(1−e)2 − Θ̇
Ω
− 8

γ
εa1NF

1− 1
2
µ2

NF

. (2.37)

The H-force coefficient is calculated as:

hcd =
CH

σ
=

1

4
µNF

(
Cd + Cl/αλTPP

1
3
θ0

(
1− 9

2
µ2

NF

)
+ λTPP

1 + 3
2
µ2

NF

)
, (2.38)

It is important to point out that in the present implementation the model
doesnt take into account the effect of reverse flow area in the calculations of
the H-force, as well as in all the other evaluations. For comparison pur-
poses, it is useful to remember that in NFpath the reverse flow correction is
implemented only for the H-force evaluation.
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The required torque coefficient is calculated by eq. 1.23c, with the “in-
duced K” evaluated as a linear interpolation between the hovering value and
the forward flight value in the low speed range.

Dimensional values for thrust and H-force, with reference to the TPP
frame, required torque and required power are given by eqs. 1.24.

Control moments about the rotor hub, with reference to the shaft-wind
reference frame, are directly proportional to the flapping coefficients:

My,SW,C =
1

2
NbMbxcgev

2
tipa1SW , (2.39a)

Mx,SW,C = −1

2
NbMbxcgev

2
tipb1SW . (2.39b)

2.3.5 Accounting for rotor sense of rotation

The calculation of rotor forces is set up for rotors rotating counter-clockwise
(positive right-handed rotation about kSB); in case a rotor is indicated in the
parameters as clockwise rotating, the following adjustments apply:

� A1 is used in place with the opposite sign;

� the sign of resulting values of b1NF, b1SW, Mx,SW,C, and QR is changed.

2.3.6 Change of basis for flapping angles

The longitudinal and lateral flapping angles a1SW and b1SW, which are readily
obtained by eqs. B.5 from the previously calculated values of a1NF and b1NF,
are referred to the shaft-wind reference frame. They need to be brought to the
rotorcraft-fixed shaft-body frame in order to describe the rotor disc attitude
relative to the body. This change of basis, that involves a single rotation
along kSW can be performed using the same approach used in section 2.3.2.5.

The flapping angles with reference to the shaft body reference frame can
be written as:

a1SB = b1SW cos βSB + b1SW sin βSB , (2.40a)

b1SB = −b1SW sin βSB + b1SW cos βSB . (2.40b)

2.3.7 Change of basis for rotor forces

The longitudinal flapping angle a1SW can be regarded as the geometrical
angle between iSW and the intersection of the tip-path plane and the plane
defined by iSW and kSW; likewise, the lateral flapping angle b1SW can be seen
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as the geometrical angle comprised between jSW and the intersection of the
tip-path plane and the plane defined by jSW and kSW.

In these terms, the flapping angles do not define a proper rotation se-
quence between the tip-path plane triad and the shaft-wind triad. Anyway,
since flapping angles are typically small, it is legitimate to consider a1SW as
a rotation angle along jSW and b1SW as a rotation angle along iSW.

Moreover, being both rotations angles small, it is legitimate to consider
the rotation resulting from the combination of the two rotations as indepen-
dent of the sequence; on the basis of this assumption, the rotation tensor
between the shaft-wind triad and the tip-path plane triad can be approxi-
mated as:

RSW
SW→TPP =

 1 0 a1SW

0 1 b1SW

−a1SW −b1SW 1

 , (2.41)

thus the rotation tensor between the body triad and the tip-path plane triad
is:

RB
B→TPP = RB

B→SWRSW
SW→TPP = RB

B→SBRSB
SB→SWRSW

SW→TPP . (2.42)

Now we can perform the change of basis on the rotor forces, bringing
them to the body frame:{

FB
R

MB
R

}
=

[
RB

B→TPP 0
0 RB

B→SW

]{
FTPP

R

MSW
R

}
(2.43)

where:

FTPP
R =


HTPP

0
TTPP

 (2.44a)

MSW
R =


Mx,SW,C

My,SW,C

−kCCW − JRΩ̇

 (2.44b)

and:

� kCCW is 1 for counter-clockwise rotating rotors (positive right-handed
rotation along kSB) and -1 for clockwise rotating rotors (the angular
velocity Ω and its time derivative are positive with reference to the
sense of rotation defined by kCCW);

� JR is the angular moment of inertia of the isolated rotor relative to the
shaft axis.
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Note that the torque QR is the required torque, positive right-handed
about kSB; the previously shown formulas take into account the rotor inertia
and angular acceleration in order to determine the value (and the sign) of
the torque that the rotor applies to the airframe.

2.4 Limitations and foreseen developments

The described model shows all the typical limitations of algebraic rotor mod-
els [19]:

� the span-wise parametrization of the blade geometry must be described
as a function that can be analytically integrated (in the present imple-
mentation geometry parameters are span-wise constant);

� non uniformity of the inflow can only be introduced by a function that
can be analytically integrated (presently accomplished according to the
theory of Mangler and Squire);

� the rotor is represented by a disc model, with only coning and flapping
degrees of freedom;

� the loads are analytically integrated over the disc and averaged in az-
imuth;

� the rotor disc doesnt have any dynamics of its own and responds im-
mediately to control inputs or aerodynamic perturbation.

The latter limitation is of major importance in understanding the possible
uses of the rotor model: the absence of disc own dynamics has the conse-
quence that the model allows only quasi-steady simulation. Rotorcraft rigid
body dynamics and rotor dynamics can be regarded as cascading feedback
systems, where the rotor dynamics describe the inner loop: then, as a rule
of thumb, the quasi-steadiness assumption can be assumed to be acceptable
as long as the bandwidth of controls and perturbations acting on the inner
loop is at least one order of magnitude lower than the lower edge of rotor
bandwidth; since our model is based on a first order truncated representa-
tion of flapping only, this frequency can be approximated with the angular
revolution frequency Ω/2π. For a typical medium helicopter this means that
a quasi-steady simulation is acceptable up to an input bandwidth in the or-
der of magnitude of 0.5 Hz, which is enough only for gentle manoeuvres and
low-gain control systems.
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The aforementioned limitation could be possibly mitigated, while preserv-
ing the computational advantage of analytically integrated loads, by replac-
ing the set of algebraic equations with a set of ordinary differential equations
that describe the dynamics of the disc degrees of freedom (coning and flap-
ping angles), as proposed in [6] and [7].

Another important limitation of the proposed model is the absence of
corrections for the reverse flow region; in this region classical closed-form
equations account for lift with the wrong sign and, also, the linearised aero-
dynamic model is not representative of the high incidence conditions that
are found in the concerned region. This error, that becomes sensible at high
advance ratios, can be corrected in at least two ways:

� lift can be numerically integrated on the reverse flow region and the
obtained force can be summed two times to the analytically obtained
forces (assuming that the erroneous contribution of lift has opposite
sign and about the same absolute value of the correction);

� closed-form equations that analytically account for the reverse flow
can be obtained by dividing the disc in three domains (advancing area,
retreating area not affected by reverse flow, retreating area affected by
reverse flow) and separately integrating on the three domains using the
correct lift convention, then summing the contributions, as proposed in
[21].

Neither of these proposed approaches was included in the first release of
the rotor model here described, because it was decided to focus on the core
algorithms, leaving this and other refinements to a possible future revision
of the whole set of formulations.

The second proposed approach can be achieved with relative ease by
newly deriving the closed-form equations from the flapping moment equa-
tion; doing so could also allow at the same time to obtain a fully coherent
set of equations (presently the equations come from different sources in the
literature), to remove unwanted assumptions (e.g. gravity approximately di-
rected as the shaft) and to add the dependency from parameters that are
presently not accounted for (e.g. blade twist, root cut-out, tip loss, pitch-
flapping coupling, etc.). A good starting point for removing some of these
assumptions can be found in [6].

Additionally, two more limitations must be taken into account:

� the pitch-flapping phase delay is fixed to 90°(that, strictly speaking, is
exactly true only for zero flapping hinge offset);
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� the closed form equations used are derived under the assumption that
the rotor is fully articulated.

Because of these two limitations, the validity of the present implementa-
tion of the model for representing hingeless rotors is dubious.
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Integration of a complete rotorcraft
model

3.1 Scope

This chapter describes a rotorcraft simulation model being developed at
AgustaWestland Flight Mechanics office. The author of the present work
contributed to this model by supplying the complete rotor model and the
complete input file reader module, while also collaborating to the definition
of general architecture, data structure and interfaces, to the programming
and integration of other modules and to testing and debugging of the com-
plete model; moreover the author performed a preliminary validation, that
will be described in chapter 4.

The aim of the work is to provide a comprehensive rotorcraft model,
incorporating features and formulations of well tested legacy codes (e.g. a
rotor model derived from NFpath) into a modern and flexible framework,
constituted by a library that provides a standardised interface to different
user software (e.g. off-line analysis pre/postprocessors, real time simulators,
etc.).

3.2 Methodology and tools

The model was implemented in fully standard ANSI C language using the
same integrated development environment described in section 2.2. Also in
this case the general purpose mathematical software Freemat was used as test
pre/postprocessor, through the use of scripts exploiting the DLL interface of
the model library.



Chapter 3

3.3 Model description

3.3.1 Structure

The rotorcraft model is composed by a number of component force evaluators,
which compute the generalised force vector with reference to the body frame
for each component (e.g. main rotor, tail rotor, fuselage, etc.), using speeds
calculated by the kinematic equations. These contributions are summed and
fed into the dynamic equations in order to obtain the accelerations.

3.3.2 Equations of motion

Through the kinematic equations the linear and angular velocities with ref-
erence to the inertial frame are obtained:{

vI
O

ωI

}
=

[
RI

I→B 0
0 RI

I→B

]{
vB
O

ωB

}
. (3.1)

In order to write the dynamic equations, we first define a mass matrix
using the mass, the first moments of inertia Si and the second moments of
inertia Jij of the complete rotorcraft, referred to body axes and to their origin
O (which is not necessarily the center of mass):

M =

[
mI ST

O

SO JO

]
=


m 0 0 Sx 0 0
0 m 0 0 Sy 0
0 0 m 0 0 Sz
Sx 0 0 Jx Jxy Jxz
0 Sy 0 Jyx Jy Jyz
0 0 Sz Jzx Jzy Jz

 . (3.2)

Then a matrix is obtained from the generalised velocity vector with ref-
erence to the body frame with the south-west cross product operator [4]:

WB =

{
vB
O

ωB

}
, (3.3a)

WB
×sw =

[
ωB
× 0

vB
× ωB

×

]
=


0 −ωz ωy 0 0 0
ωz 0 −ωx 0 0 0
−ωy ωx 0 0 0 0

0 −vz vy 0 −ωz ωy
vz 0 −vx ωz 0 −ωx
−vy vx 0 −ωy ωx 0

 . (3.3b)
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The total generalised force vector is defined as the sum of the component
contributions:

fg =
∑
i

{
FB
i

MB
i

}
. (3.4)

Then the dynamic equations can be written in form of a set of linear
equations:

MaB = fg −WB
×swMWB . (3.5)

where the generalised accelerations vector is:

aB =

{
v̇B
O

ω̇B

}
, (3.6)

that can be obtained by solving the linear system; since the mass matrix
is symmetric definite positive, the system can be efficiently solved by using
Cholesky’s decomposition.

3.3.3 Component models description

For reference, see the definitions of reference frames in appendix B and the
rotations already described in section 2.3.2.

3.3.3.1 Rotors

The rotor model has already been extensively described in chapter 2. Two
instances of the same model are used for the main rotor and the tail rotor.

The rotor model provides four control inputs and two rotor state inputs:

� collective pitch;

� longitudinal cyclic pitch;

� lateral cyclic pitch;

� controlled tilt (nacelle position);

� shaft angular rate;

� shaft angular acceleration.

Both the main and tail rotor have the controlled tilt input statically set
to zero, since this feature will be used in the future for modelling of non-
conventional configurations (tilt rotor).

Since the rotorcraft model doesnt include at present time any model of
the engine and of the drivetrain, rotor rotation dynamics are not simulated;
then the shaft angular rate is constantly set to the nominal value from the
input file, while the shaft angular acceleration is statically set to zero.
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3.3.3.2 Gravity

The position of the centre of gravity G, which is known in the design frame,
is expressed in body frame:

rB
OG = RB

B→D(rD
DG − rD

DO) . (3.7)

The gravity force, as a function of total mass m, is known with reference
to the inertial frame:

gI = gkI
I . (3.8)

Then its expression with reference to the body is a function of the rotation
tensor obtained from the attitude Eulers angles:

gB = RB
B→Ig

I . (3.9)

Then the generalised force vector for gravity, with moments referred to
the reference point O, is:{

FB
G

MB
G

}
=

{
gB

rB
OG × gB

}
. (3.10)

3.3.3.3 Aerodynamic surfaces

The component models a semi-wing having its root in the origin W of the
aerodynamic surface local reference frame. The axis yW lies spanwise at
quarter-chord position. The semi-wing extends of a semi-span s in the direc-
tion of positive yW if the parameter dW has the value +1, otherwise in the
direction of negative yW if dW = −1.

The orientation of the reference frame with reference to the body frame
is defined first by a rotation about kB of the sweep angle Λ, multiplied by
dW, followed by a rotation about iB of the anhedral angle Γ, multiplied by
dW (and decremented of π/2 in the case of vertical tail). Then the rotation
tensor from body triad to horizontal tail local triad is given by:

RB
B→W = RB

B→sweepR
sweep
sweep→W

= RB
B→sweep(kB

B, dWΛ)Rsweep
sweep→W(isweep

B , dWΓ)
= RB

B→sweep(kB
B, dWΛ)Rsweep

sweep→W(Rsweep
sweep→BiBB, dWΓ) ,

(3.11)

where the intermediate rotation tensors are function of a rotation direc-
tion and a rotation angle through the Euler-Rodrigues formula (see section
2.3.2.3).
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Similarly, for the vertical tail we have:

RB
B→W = RB

B→sweepR
sweep
sweep→W

= RB
B→sweep(kB

B, dWΛ)Rsweep
sweep→W

(
isweep
B , dWΓ− 1

2
π
)

= RB
B→sweep(kB

B, dWΛ)Rsweep
sweep→W

(
Rsweep

sweep→BiBB, dWΓ− 1
2
π
)
,
(3.12)

The position of the wing root W with reference to the body frame can be
obtained from the design frame position through the usual transformation:

rB
OW = RB

B→D(rD
DW − rD

DO) . (3.13)

The aerodynamic computational point A is estimated to be at quarter
chord, half span:

rW
WA =


0

1
2
dWs
0

 . (3.14a)

rB
OA = rB

OW + RB
B→WrW

WA . (3.14b)

The previous expression of the ACP represents an approximation when
roll-rate or pitch rate are not null.

The total speed in A, including the component due to rigid body rotation,
is calculated as:

vB
A = rB

O + ωB × rB
OA . (3.15a)

vW
A = RW

W→BvB
A . (3.15b)

A change of basis is performed also on the wind speed:

vW
wind = RW

W→Iv
I
wind = (RI

I→BRB
B→W)TvI

wind . (3.16)

The total airspeed at point A is then:

VW = −vW
A + vW

wind . (3.17)

The climb angle is:

τ = tan−1

(
VW · kW

W

VW · iWW

)
. (3.18)

Then the angle of attack is known by adding the setting angle:

α = τ + ι; (3.19)
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A new triad AW is obtained by rotating the aerodynamic surface local
triad of the angle of attack, so that xAW is aligned to the airspeed:

RW
W→AW =

 cosα 0 − sinα
0 1 0

sinα 0 cosα

 , (3.20)

Aerodynamic coefficients are calculated as a function of the angle of attack
in the usual way, using a linearised model or an interpolation.

Then forces and moments can be calculated:

FAW
wing =

1

2
ρ|VW|2S


−Cd

0
−Cl

 , (3.21a)

MAW
wing =

1

2
ρ|VW|2Sc


0
Cm

0

 , (3.21b)

where S is the area of the aerodynamic surface and c the chord.
The generalised force vector for the aerodynamic surface, with moments

referred to the reference point O, is then:{
FB

wing

MB
wing

}
=

[
RB

B→AW 0
0 RB

B→AW

]{
FAW

wing

MAW
wing

}
+ · · ·

· · ·+
{

0
rB
OA × (RB

B→AWFAW
wing)

}
.

(3.22)

3.3.3.4 Fuselage

The position of the fuselage aerodynamic computational point Q with ref-
erence to the body frame can be obtained from the design frame position
through the usual transformation:

rB
OQ = RB

B→D(rD
DQ − rD

DO) . (3.23)

The total speed in A, including the component due to rigid body rotation,
is calculated as:

vB
Q = rB

O + ωB × rB
OQ . (3.24)

The wind speed is considered with reference to the body frame and
summed to get the total airspeed:

vB
wind = RB

B→Iv
I
wind = (RI

I→BRB
B→W)TvI

wind . (3.25a)
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VB = −vB
Q + vB

wind . (3.25b)

The sideslip is defined as:

β = tan−1

(
VB · kB

B

VB · iBB

)
. (3.26)

While the angle of attack is:

α = tan−1

(
VB · kB

B√
(VB · iBB)2 + (VB · jB

B)2

)
. (3.27)

The six fuselage aerodynamic coefficients Cd, Cs, Cl, Cr, Cm and Cy are
calculated as a function of the angles of attack and sideslip using a linearised
model or an interpolation.

A new triad BW is obtained by rotating the body triad so that xQW is
aligned to the airspeed:

RB
B→BW =

 cosα cos β − sin β − sinα cos β
cosα sin β cos β − sinα sin β
− sinα 0 cosα

 , (3.28)

Then forces and moments can be calculated in this reference frame:

FBW
fus =

1

2
ρ|VB|2A


−Cd

Cs

−Cl

 , (3.29a)

MBW
fus =

1

2
ρ|VB|2AR


−Cr

Cm

−Cy

 , (3.29b)

where A is the reference area and R is the reference length for the coefficients;
usually it is assumed that A is the main rotor area and R the main rotor
radius.

The generalised force vector for the fuselage, with moments referred to
the reference point O, is:{

FB
fus

MB
fus

}
=

[
RB

B→BW 0
0 RB

B→BW

]{
FBW

fus

MBW
fus

}
+ · · ·

· · ·+
{

0
rB
OQ × (RB

B→BWFBW
fus )

}
.

(3.30)
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Figure 3.1: Rotorcraft model architecture

3.4 Implementation

The general architecture of the model is illustrated in figure 3.1. The rotor-
craft model receives states (namely position, attitude Eulers angles, speeds
and angular rates) and controls (main rotor collective, longitudinal and lat-
eral cyclic pitch, tail rotor collective) as input; these are passed on to the
components modules, which use them to calculate generalised forces; these
forces are summed and applied to the motion equations in order to calcu-
late the rotorcraft accelerations, which are returned by the model as output,
together with a set of additional outputs (e.g. forces, flapping angles, etc.).

Components are designed in order to be modular; some of them represent
more than one instance in the rotorcraft: for example, forces on vertical tail
plane and on horizontal tail planes are all calculated by a single aerodynamic
surface module.

At present time, the model architecture is statically fixed and represents
a conventional rotorcraft, although all the necessary infrastructure in the
modules is already in place for a more flexible configuration that will be
allowed by future developments.

It should be noted that the rotorcraft model and the component models

64



Integration of a complete rotorcraft model

communicate according to a one-to-many scheme, with no direct interaction
between different components. For this reason no interference is modelled at
present time. At the time of writing, a comprehensive interference model,
which will combine the contributions of each component into a single airspeed
perturbation field, is in its initial development.

3.4.1 Parameter structure

The model receives the rotorcraft parameters from an external library, that
reads a rotorcraft description file; the file is supplied according to the FMR
(Flight Mechanics Rotorcraft) file format specification [1], which is a file
format being developed at AgustaWestland Flight Mechanics office with the
aim of having a single software-independent rotorcraft description file.

Also the internal model parameter structure is modelled after the FMR
specification; this will allow in the immediate future to replace the input file
reader library with a standardised library, presently in final development,
that will provide complete management of the data structure, including the
following features:

� read FMR-formatted input files;

� provide a library of standard constants;

� calculate dependent parameters from input parameters;

� allocate memory for the data structure;

� set and retrieve values in the data structure;

� allow for encryption and access protection.

3.4.2 External interfaces

In figure 3.2 an overview of the simulation framework is shown. The previ-
ously described model is used as simulation back-end; it outputs the rotor-
craft accelerations to a front-end module containing procedures to calculate
trim conditions, integrate a single time step and linearise the model; this
module provides an abstraction layer to external software (e.g. pre/post-
processors, real-time simulators) that can use the underlying model through
a standardised interface; additionally, it provides the possibility of using other
back-end models conforming to the same standard interface. Alternatively,
the user can interact with the model through dynamically linked executables
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Figure 3.2: Framework architecture

(shown as test.exe in the figure) or interact with it via general purpose soft-
ware such as Freemat or Matlab, either directly through the DLL interface
or using dedicated interface modules (such as Matlab MEX files).

3.5 Limitations and foreseen developments

From the modelling point of view, the presented rotorcraft shows at the
current time three main limitations, that add to the ones already described
for the rotor model:

� no interference model is implemented;

� some components are not modelled (e.g. engines, drivetrain, landing
gear);

� the rotorcraft configuration is fixed (conventional helicopter).

While the third limitation is relatively easy to eliminate with moderate
effort, the other two require a considerable amount of active development.
In particular the interference model, at the moment of writing in its incep-
tion phase, represents a challenge, since the design objective is to obtain a
generic method in which all the components contribute to a unique airspeed
perturbation field, abandoning the classical one-to-one interference schemes
based on the use of empirical coefficients. Although challenging, achieving
such generality is not negotiable for two reasons:
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� generality of the interference scheme is a prerequisite for flexible rotor-
craft configuration;

� a method not relying on empirical coefficients would be of great use
in the analysis of novel rotorcraft designs, especially those with uncon-
ventional configurations, where limited experimental or statistical data
for interference coefficients is available.

As far as the implementation is concerned, what is still missing is the
complete integration of the data structure management library AWFMR and
the development in low level language of the procedural functions (trim, step,
linearization), which are at the moment prototyped outside of the library in
Freemat/Matlab environment.
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Numerical results

Several numerical tests, some of which will be described later on, were per-
formed using the described rotorcraft model; some of them involved a com-
parison to results produced by other software, used as reference, namely:

1. NFpath, representing the company’s standard proven tool in the field
of simplified rotorcraft models (level 1 mathematical model in the Pad-
fields classification [19]);

2. Camrad, representing a higher fidelity model not intended for real-time
use (level 2 mathematical model in the Padfields classification).

While comparison to NFpath has the scope of ensuring the correctness of
the newly implemented model using a reference that is homogeneous in the
majority of formulations and assumptions, the comparison to Camrad serves
the aim of verifying coherence of results from an engineering point of view
(in terms of orders of magnitude) and having a measure of improvements
obtained, keeping in mind the major differences between the models.

NFpath has been described extensively in chapter 1.
Camrad is a code implementing a comprehensive analytical model of ro-

torcraft aerodynamics and dynamics, that combines structural, inertial and
aerodynamic models [10]. The core of the software is the trim procedure,
which uses a non linear solver based on Newton-Raphson method to solve
the algebraic equations for the trim variables. As in the model described
in the present work, the rotor is modelled using the quasi-steady assump-
tion. The rotor model used by Camrad is based on the blade-element theory,
applied to a hierarchical structure of modelling schemes; the reference data
was generated using a rigid blade structural model combined with a uniform
inflow model. The code release used was AICAM 2.0 (release September
2004), which is a version of the original software Camrad/JA by Johnson
Aeronautics, incorporating several customizations by AgustaWestland.
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Rotorcraft parameter sets supplied to the different software were set up
in order to represent as precisely as possible the same physical entities in
the different models, but avoiding any tuning that could mask differences
in the mathematical models. The parameters used dont represent exactly
any real-world rotorcraft, anyway they are representative of a medium-class
conventional helicopter such as the AW139.

Since the new model doesnt include any implementation of interferences,
all the relevant options in NFpath and Camrad were deactivated (e.g. down-
load, blockage, etc.). This has the consequence that results obtained have
a significance only in a fair comparison of different codes using the same
conditions, while the physical significance of data is reduced, especially in re-
gions of the flight envelope where interference effects are not negligible (e.g.
download at low advance ratios).

4.1 Trim analysis

Since the trim procedure provided by the front-end module described in sec-
tion 3.4.2 was still not available, a prototype trim procedure was implemented
in Freemat environment; the procedure, given flight speeds, uses Broyden’s
iterative non linear solver (see section A.2) to equate all linear and angular
accelerations to zero, thus, obtaining attitude end controls for trimmed flight
under the condition of zero sideslip (yaw angle is fixed).

An horizontal speed sweep trim analysis was performed with each of the
three codes, at sea level, standard ISA atmospheric conditions and out of
ground effect; the results, summarized in figures from 4.1 to 4.4, show very
good agreement between the different codes, with the novel model performing
very similarly to NFpath, whose physical formulation is almost identical.

A noticeable improvement is found in the values of the coning angle, as
a consequence of fixing a bug found in the NFpath implementation of the
relevant closed form equation.

Roll angle and lateral flapping angle show deviations from NFpath values
towards Camrad values, as a result of the implementation of a fully three-
dimensional model with rigorous transformations between different reference
frames.

An almost constant offset in shaft power value can be noticed between
Camrad and the other two codes; the reason for this has not been investi-
gated, however it is likely to be a consequence of different models for drag
coefficient and induced power evaluations.
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Figure 4.1: Attitude Euler’s angles in trim as a function of horizontal speed
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Figure 4.2: Control angles in trim as a function of horizontal speed
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Figure 4.3: Flapping angles in trim as a function of horizontal speed
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Figure 4.4: Shaft power in trim as a function of horizontal speed
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4.2 Validation of components

A validation of the components, considering each one independently from the
others, was performed using the following procedure:

1. an horizontal speed sweep trim analysis was performed with the refer-
ence software (alternatively NFpath or Camrad) in standard conditions
(sea level, standard ISA atmosphere and out of ground effect);

2. for each speed condition, trim values for attitude and controls from the
reference software were used to produce a direct snapshot using the
model under validation;

3. forces, moments and other relevant quantities for each component of
the model under validation were compared and plotted against the
respective result generated by the reference model.

Forces and moments are given in body frame. All moments are referred
to the same reference point in the rotorcraft; in the analysis presented later
on, this reference point was set in the same location as the centre of gravity.

4.2.1 Rotors

For the purpose of comparing the different rotor models, the correction for
the H-force in NFpath was switched off, coherently with the absence of reverse
flow corrections in the new model. Since Camrad is based on a blade element
model, modelling of reverse flow is inherently correct; this can be a cause for
discrepancies between results produced by Camrad and those form other
models not accounting for reverse flow.

The model shows a substantial agreement with NFpath results for quan-
tities related to the rotor, as can be seen in figures 4.5 and 4.6.

Comparison versus Camrad, as shown in figures from 4.7 to 4.14, results
in a very good agreement as far as the forces are concerned; moments show a
similar trend, although values deviate, especially in the medium-high speed
range. Agreement of flapping angles proves very satisfactory with the excep-
tion of the lateral flapping, that shows a noticeable deviation in the low speed
range; at higher speed the trend is similar, while keeping a significant offset.
Both deviations need to be investigated; however it is reasonable to assume
that they can be traced to the different self induction models and to the fact
that in the algebraic rotor model the blade flapping motion form is imposed
(as 1st order Fourier series). It is also worth considering that, as noted in the
experimental results comparison contained in [5], unsatisfactory modelling of
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Figure 4.5: Main rotor forces resulting from NFpath trimmed attitude and
controls
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Figure 4.6: Main rotor moments resulting from NFpath trimmed attitude
and controls
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Figure 4.7: Main rotor flapping angles resulting from Camrad trimmed atti-
tude and controls
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Figure 4.8: Main rotor torque required resulting from Camrad trimmed at-
titude and controls
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Figure 4.9: Main rotor forces resulting from Camrad trimmed attitude and
controls
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Figure 4.10: Main rotor moments resulting from Camrad trimmed attitude
and controls
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Figure 4.11: Tail rotor flapping angles resulting from Camrad trimmed atti-
tude and controls
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Figure 4.12: Tail rotor torque required resulting from Camrad trimmed at-
titude and controls
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Figure 4.13: Tail rotor forces resulting from Camrad trimmed attitude and
controls
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Figure 4.14: Tail rotor moments resulting from Camrad trimmed attitude
and controls
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lateral flapping is a common deficiency of analytically integrated rotor mod-
els and can be traced to the strong dependency of the lateral flapping on the
longitudinal induced speed distribution, which in turn is usually affected by
several assumptions. Moreover, torque shows an almost constant offset that
was already discussed in section 4.1.

4.2.2 Gravity

As expected, gravity forces calculated by the different codes agree perfectly,
as shown in figures 4.15 and 4.16.

4.2.3 Fuselage

Limiting to the in-plane longitudinal fuselage forces and moments, outputs
show good agreement with NFpath results, as depicted in figures from 4.17 to
4.19; the major difference is embodied by the fact that the tested model im-
plements a fully three-dimensional aerodynamic body model characterised by
six coefficients and rigorous reference frames rotations, then yawing moment
is reproduced and other forces and moments show minor discrepancies.

The goodness of the three-dimensional fuselage aerodynamic model is
confirmed by the near overplot in the comparison versus Camrad, shown in
figures from 4.20 to 4.22.

It is worthwhile to note that the fuselage is one of the components that
are more strongly affected by the absence of an interference model: this is
easy to see considering that in hover condition, according to the model, the
fuselage produces no force at all, while physically it should be subject to a
noticeable force in zB direction due to the download.

4.2.4 Aerodynamic surfaces

As expected, the simple aerodynamic model for aerodynamic surfaces nearly
overplots the reference data from both NFpath (figures from 4.23 to 4.26)
and Camrad (figures from 4.27 to 4.31).

4.3 Analysis of the ground effect model

As described in section 2.3.3.4, a novel ground effect model was implemented;
the behaviour of this new model has been compared versus NFpath. Two
trim-to-trim comparisons were run, one at constant ground altitude and
varying horizontal speed and one in hover at variable ground altitude. Addi-
tionally the variation of thrust coefficient versus horizontal speed at constant
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Figure 4.15: Gravity forces resulting from Camrad trimmed attitude and
controls
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Figure 4.16: Gravity moments resulting from Camrad trimmed attitude and
controls
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Figure 4.17: Fuselage angle of attack resulting from NFpath trimmed attitude
and controls
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Figure 4.18: Fuselage forces resulting from NFpath trimmed attitude and
controls
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Figure 4.19: Fuselage moments resulting from NFpath trimmed attitude and
controls
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Figure 4.20: Fuselage Angle of attack resulting from Camrad trimmed atti-
tude and controls
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Figure 4.21: Fuselage forces resulting from Camrad trimmed attitude and
controls
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Figure 4.22: Fuselage moments resulting from Camrad trimmed attitude and
controls
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Figure 4.23: Horizontal tail angle of attack resulting from NFpath trimmed
attitude and controls
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Figure 4.24: Horizontal tail lift and drag resulting from NFpath trimmed
attitude and controls
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Figure 4.25: Horizontal tail forces resulting from NFpath trimmed attitude
and controls
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Figure 4.26: Horizontal tail moments resulting from NFpath trimmed atti-
tude and controls
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Figure 4.27: Horizontal and vertical tail angle of attack resulting from Cam-
rad trimmed attitude and controls
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Figure 4.28: Horizontal tail forces resulting from Camrad trimmed attitude
and controls
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Figure 4.29: Horizontal tail moments resulting from Camrad trimmed atti-
tude and controls
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Figure 4.30: Vertical tail forces resulting from Camrad trimmed attitude and
controls
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attitude and controls was analysed; well start by reviewing this latter anal-
ysis, since it gives the rationale for accepting the model.

4.3.1 Constant attitude and controls analysis

As described in section 1.2.1.1, NFpath evaluates the ground effect based
on an experimental curve that relates induced velocity to ground distance;
the coefficient introducing the ground effect is linearly interpolated between
hover and a fixed speed, which is assumed to be the upper limit for ground
effect. As a result, the decrease of ground effect because of horizontal speed
is immediate as soon as the rotorcraft begins to move; moreover the speed
boundaries and the altitude boundaries of the ground effect region are inde-
pendent of each other.

Based on the descriptions of the ground effect phenomena found in litera-
ture [9, 21], this kind of modelling can be substantially improved; particularly,
the sensible effect of accelerating a rotorcraft from hover in ground effect con-
dition is often described as a smooth increase of thrust as the vehicle begins
to move, then an abrupt thrust decrease followed by another smooth increase
as the vehicle accelerates outside of the ground effect speed region.

The simple model presented in section 1.2.1.1 seems to reproduce cor-
rectly this effect, at least from a qualitative point of view. This can be seen
clearly in figure 4.32, where the trend for the thrust coefficient versus advance
ratio, with constant attitude and controls, is shown.

The trend in the cited figure appears also very similar to the ones ap-
pearing in analogous experimental diagrams appearing in [9]; unfortunately
this comparison can be assessed only from a qualitative point of view. It
was impossible to reproduce the experimental rotor described in the cited
reference using the newly implemented model, because of two reasons: the
data describing the rotor in the article is incomplete; the described rotor is
hingeless, therefore it would be incorrectly represented by the current model.

4.3.2 Horizontal speed sweep trim analysis

A trim-to-trim speed sweep comparison of the in-ground-effect behaviour
of the model compared to the original NFpath code output confirms the
qualitative considerations above and confirms that continuity of results is
achieved on all the outputs of the model. Results are shown in figures from
4.33 to 4.37.
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Figure 4.31: Vertical tail moments resulting from Camrad trimmed attitude
and controls
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Figure 4.32: Thrust coefficient versus advance ratio at constant attitude and
controls
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Figure 4.33: Trimmed attitude versus horizontal speed in ground effect
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Figure 4.34: Trimmed flapping angles versus horizontal speed in ground effect
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Figure 4.35: Trimmed shaft power versus horizontal speed in ground effect
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Figure 4.36: Trimmed controls versus horizontal speed in ground effect
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4.3.3 Ground altitude sweep trim analysis

Another trim-to-trim comparison was performed, this time with a ground
altitude sweep. As expected, the model behaves just like NFpath, because
it shares with it the same experimental curve describing the relationship
between induced velocity and ground altitude in hover. As in other analyses,
the only significant deviations are found in the coning angle, for the reason
explained in section 4.1, and also in the roll angle and in the lateral cyclic
pitch control, because of the different, more precise kinematics in the new
model. Results are shown in figures from 4.38 to 4.42.
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Figure 4.37: Trimmed induced velocity versus horizontal speed in ground
effect
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Figure 4.38: Trimmed attitude versus ground altitude, hovering
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Figure 4.39: Trimmed flapping angles versus ground altitude, hovering
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Figure 4.40: Trimmed shaft power versus ground altitude, hovering
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Figure 4.41: Trimmed controls versus ground altitude, hovering
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Figure 4.42: Trimmed induced velocity versus ground altitude, hovering
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Conclusions

Through an accurate review of the algorithms used in the well proven NFpath
code and their comparison to the available literature, a reliable starting point
for further development of a simplified rotor model was obtained. The result
was a set of equations describing the model and their supporting hypotheses.

The equations were used to newly implement a numerical model, still
retaining most of the original limitations, such as the restriction of motion
to the longitudinal plane. The re-implemented numerical model was tested
against the original code, in order to confirm the coherency of the formula-
tions with the original code.

Starting from the previously obtained set of equations, a new generalised
model was developed. The main innovation was to consider a fully three-
dimensional motion; in order to accomplish this result, it was necessary to
correct the closed form equations so that also the effects of roll rate are taken
into account; then the equations need to be solved in a shaft-wind reference
frame, rotated of the sideslip angle, so that the azimuth of relative speed is
fixed in this reference frame. The introduction of the shaft wind reference
frame and the removal of the hypothesis of small attitude angles required
to establish a set of reference frame transformations for arbitrary attitude
angles. Also the model for ground effect was improved. The model was
implemented as modular code in C language, with particular care to ensure
numerical robustness.

The rotor model was then integrated in a complete rotorcraft simulation
model; the author partly contributed also to the general architecture of this
complete rotorcraft model and to its implementation. The complete rotor-
craft model was designed to be modular; each module represents a force eval-
uator for each rotorcraft subsystem, whose contributions are then summed.

Both the isolated rotor model and the complete rotorcraft model were the
object of an extensive test campaign, with the aim of robustness verification
and preliminary validation; all the tests were run in parallel with the original
NFpath code and with a blade element simulation provided by the CAMRAD
code; this comparison allowed the assessment of the validity of the new model
and of the achieved improvements.



Conclusions

In the light of the results of these comparisons, it is possible to say that
the model of the rotor effectively reproduces rotor forces and proved to be
robust. While the comparison to NFpath shows coherence against a proven
code of the same class, the tests against CAMRAD confirm that the general-
isation and innovations introduced in the new formulations are reliable. The
same satisfactory evaluation is valid also for the complete rotorcraft model;
though important features such as an interference model are still missing,
the overall validity of the model was confirmed. Also the goodness of the
code architecture was confirmed, making this model a good starting point
for further development.

The possible future enhancements should focus on the limitations that
the model still retains because of the original assumptions and formulations
that were used. In the case of limitations related to hypotheses, there is
little room for further generalisation, because most of the limitations are di-
rectly connected with the choice of an algebraic rotor model. On the other
side, a new formulation of the set of closed form equations could be obtained
with no major conceptual difficulties, but requiring long analytical manip-
ulations; this effort would lead to a well defined set of coherent equations
that would replace the current one, derived from many different heteroge-
neous sources in the literature. In this process many additional parameters
(e.g. blade twist, root cut-out, pitch-flapping coupling) could be introduced,
while reverse-flow region and gravity effects could be accurately modelled.
A further step forward could be accomplished by transitioning from a set
of algebraic equations to a set of ordinary differential equations accounting
for time derivatives of flapping coefficients; this approach would eliminate
the assumption of quasi-steadiness of the rotor, thus making the model more
reliable for the simulation of unsteady and fast manoeuvres.
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Numerical methods

A.1 Polynomial solution for the inflow

As introduced in section 2.3.3.1, the general solution for the uniform induced
velocity, according to the disc actuator theory, is given by the minimum real
positive root of the following 4th order polynomial [2]:

p(u∗) = u∗ 4 − 2v∗ sinαTPPu
∗ 3 + v∗ 2u∗ 2 − 1 = 0 . (A.1)

Since coefficients are functions of other variables, analytical solution of
the polynomial, though theoretically feasible, is not practical for a software
implementation; then the desired solution will be found numerically.

In order to efficiently and robustly find a numerical solution for the poly-
nomial, it is necessary to bracket the solution itself [20], that means: there
is the need to know two values u∗1, u∗2 that satisfy:

� p(u∗1)p(u∗1) < 0, that means that the polynomial evaluates in the two
brackets with different sign;

� the domain interval defined by the two variables contains one and only
one root of the polynomial.

In order obtain the required brackets, analysis of the polynomial function
is required; for ease of discussion we can perform the analysis graphically,
referring to the diagrams from figure A.1 to figure A.6, that show the value
of the polynomial as a function of induced velocity, airspeed and incidence.
For negative and moderately positive incidences, finding the desired solution
is straightforward, since the value of the polynomial decreases monotonically
with the induced speed and there is only one positive root for each combina-
tion of airspeed ad incidence.

As soon as the positive incidence approaches the value for vertical descent,
multiple positive roots appear and the polynomial is no more monotonically
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Figure A.1: Induced velocity polynomial residual for αTPP = −π/2

Figure A.2: Induced velocity polynomial residual for αTPP = −π/4
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Figure A.3: Induced velocity polynomial residual for αTPP = 0

Figure A.4: Induced velocity polynomial residual for αTPP = π/4
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Figure A.5: Induced velocity polynomial residual for αTPP = π/2− 0.1

Figure A.6: Induced velocity polynomial residual for αTPP = π/2
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decreasing with induced speed; here lies the difficulty in finding suitable
brackets for searching the minimum real positive root.

This can be in fact easily accomplished by observing that, if the polyno-
mial evaluates positive in u∗ = 1, then the minimum real positive root lies in
the interval [0, 1]; if instead it evaluates negative the minimum real positive
root exceeds the unity.

While the first interval is a valid bracket for root finding, we still miss
an upper limit for the second interval. This can be found remembering that,
according to the actuator disc theory, maximum induced speed is found as:

max(u∗) = −1

2

vv

uh

+
1

2

√
v2

v

u2
h

+ 4 , (A.2)

evaluated for vv/uh = −2. This maximum represents the value obtained
prolonging the branch of the induced speed curve for axial flight in climb,
hover or slow descent to the lower boundary of the vortex ring state vertical
speed range; although this solution doesnt represent a physical solution, it
represents the maximum that the induced velocity calculated according to
the disc actuator theory can never exceed.

Finally, a procedure for finding the minimum real positive root of the
polynomial is found:

1. the polynomial is evaluated in u∗ = 1;

2. if p(1) = 0, then u∗ = 1;

3. if p(1) > 0, then u∗ ∈ [0, 1];

4. if p(1) < 0, then u∗ ∈ [1, 3.4142];

Since we know the bracket in which to look for the root and the searched
root is real, the search is performed using a robust combination of bisection
and Newton-Raphson methods, based on the rtsafe algorithm described in
[20], modified in order to specialize for polynomial root finding.

Given a polynomial and its first derivative:

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 , (A.3a)

dp

dx
(x) = nanx

n−1 + (n− 1)an−1x
n−2 + · · ·+ 2a2x+ a1 , (A.3b)

we look for a real unique root r in a given bracket:

∃!r ∈ [a, b] : p(r) = 0 , (A.4a)
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a < b; p(a)p(b) < 0 . (A.4b)

Defining rk as the numerical approximation of r at the k-th iteration, at
each iteration the algorithm checks if the Newton step would lead outside of
the bracket:(

(rk − bk)
dp

dx
(rk)− p(rk)

)(
(rk − ak)

dp

dx
(rk)− p(rk)

)
≥ 0 (A.5)

or if the convergence is too slow:

2|p(rk)| > hk|
dp

dx
(rk)| (A.6)

If any of the two conditions is verified, a bisection is applied:

hk+1 =
1

2
(bk − ak) , (A.7a)

rk+1 = ak + hk+1 , (A.7b)

otherwise a Newton step is performed:

hk+1 =
p(rk)
dp
dx

(rk)
, (A.8a)

rk+1 = rk − hk+1 , (A.8b)

If the step hk is lower than the desired tolerance, the iteration is halted and
rk is assumed as the numerical solution. Otherwise the bracket is updated:

p(rk+1) < 0 : ak+1 = rk+1; bk+1 = bk ,
p(rk+1) > 0 : ak+1 = ak; bk+1 = rk+1 .

(A.9)

and a new iteration is started.

A.2 Broyden’s method

Broydens method has been selected for use as solver of the non linear equa-
tions set in the rotor model, as described in section 2.3.4.1, as well as for
the prototype trim procedure used for analyses section 4.1. This method
is particularly suited for an efficient solution of set of equations where the
analytical derivatives are not known, since it is Jacobian-free; a numerical
approximation of the Jacobian is calculated only for the initialization and
later, if needed, as a reset in case of convergence problems.
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The basics of the method are illustrated in [22]; some modifications were
derived from the implementation described in [20].

Given a system of non linear equations:

f(x) = 0 , (A.10)

we define xk as the numerical approximation of the solution at the k-th
iteration and fk as the residual:

fk = f(xk) , (A.11)

then the foundation of the method lies in the solution of a linear system and
in the update of the solution and of the matrix Qk at each iteration:

Qksk+1 = f(xk) , (A.12a)

xk+1 = xk + sk+1 , (A.12b)

Qk+1 = Qk +
fk+1s

T
k+1

sT
k+1sk+1

, (A.12c)

with Q0 that is initialised as the numerical centred difference Jacobian matrix
of f(x0).

Convergence can be detected on the solution (by comparing a norm of sk
to the tolerance on the solution) or on the residual (by comparing a norm of
fk to the tolerance on the residual).

Some additional features in order to improve robustness of the method
were implemented. In order for a step to be acceptable, we set the condition:

fT
k+1fk+1 < fT

k fk . (A.13)

In case the condition is not satisfied, the step is not accepted and the
following actions are taken before trying a new step:

� if Qk was calculated as an update to the previous step, a new Qk is
calculated as the numerical Jacobian in xk, and a new xk+1 is calculated
with it;

� if Qk is already the numerical Jacobian in xk, the new xk+1 is calculated
halving the advance sk+1.

By repeating the second action for a sufficient number of times, it is
guaranteed that a value for sk+1 will be found, which is little enough in order
for xk+1 to satisfy the condition for the acceptance of the step. Then the
regular iteration scheme can be resumed.
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Reference systems

Each reference frame is described by three unitary vectors i, j, k; coordinates
along the respective axes are named x, y, z; the reference frame is identified
by a subscript.

B.1 Inertial frame

The origin of the inertial frame is an arbitrary fixed point in space. Axis zI

is directed as as the gravity acceleration:

kI =
g

|g|
. (B.1)

Vector iI points toward an arbitrary direction (possibly North) normal to
kI, and jI completes a right-handed triad.

Contrary to this definition, in NFpath formulations, vertical quantities
referred to the inertial frame are positive upwards.

B.2 Design frame

The design frame and its origin D, which is fixed relative to the airframe, are
defined by the STA-BL-WL coordinate system according to the customary
convention: iD is directed to the aft of the vehicle, jD is positive to the right
and kD is positive upwards.

B.3 Body frame

The origin O of the body frame is an arbitrary point fixed to the airframe; this
point is assumed as reference for position, velocities, accelerations, forces, and
moments acting on the vehicle. Vector iB is directed longitudinally towards
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Figure B.1: Overview of the main reference frames

Figure B.2: Main reference frames, lateral view
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Figure B.3: Flapping angles, lateral view

Figure B.4: Flapping angles, rear view
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Figure B.5: Relationship between shaft-body and shaft-wind reference sys-
tems

the front of the vehicle (typically in the plane of symmetry), jB is normal to
iB and directed to the right and kB completes a right-handed triad, being
directed downwards.

For the sake of simplicity, in this document the design frame and the
body frame share the same orientation of axis, with i and k having inverted
signs in the respective frames. Thus the body triad with reference to the
design frame will be assumed to satisfy:

iD = −iB , (B.2a)

jD = jB , (B.2b)

kD = kB . (B.2c)

In NFpath the origin of the body frame, that is the reference point for
moments, is located at the intersection of the rotor shaft axis with the plane
parallel to iB and jB containing the centre of gravity.

B.4 Shaft-body frame

The shaft-body frame identifies the reference rotor configuration accounting
for tilt angle, cant angle and nacelle tilt angle (for tilt-rotors). The origin P
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Reference systems

of the shaft frame is located along the rotor mast axis, at the nacelle pivot
hinge; for conventional rotorcraft P is an arbitrary point along the rotor mast
axis, possibly the rotor hub centre.

The unity vector kSB is directed as the mast axis, pointing upwards, while
vector iSB points backward. The third vector jSB completes a right-handed
triad.

B.5 Shaft-wind frame

The origin C of the shaft-wind is the hub centre. All rotor forces are assumed
to be applied to this point.

The unity vector kSW is directed as the mast axis, pointing upwards, and
is identical to kSB. The unity vector iSB is normal to kSW and lies on the
plane defined by kSW and the asymptotic airspeed vector V. The direction
of iSW is the same as the direction of the projection of V on a plane normal
to kSW. The unity vector jSW completes a right-handed triad.

The shaft wind triad is defined so that the airspeed vector v always
lies on the right half-plane defined by iSW and kSW. This property is of
great importance for the calculation of forces acting on the rotor, since it
allows using the classical closed-form equations, which are always defined for
a forward advancing rotor.

B.6 Shaft frame

In the NFpath code the shaft-wind frame and its rotation with reference to the
shaft-body frame are not defined; however, if we assume that the rotorcraft
advances and take into account the hypothesis that motion is restricted to
the longitudinal symmetry plane, we can consider the shaft-wind frame to
coincide with the shaft-body frame; in this case the unique frame will be
called simply shaft frame and it will be indicated with subscript S.

B.7 Tip-path plane frame, flapping and blade pitch

Blade flapping motion is approximated as first order truncated Fourier series
having coning and flapping angles as coefficients:

β(ψ) = a0 − a1 cosψ − b1 sinψ . (B.3)

The coning and flapping angles can be referred either to the shaft-body
frame, or to the shaft wind frame; the blade azimuth ψ is measured from the
direction of iSB or iSW, according to the reference frame being considered.
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Appendix B

When the flapping hinge eccentricity eβ is zero, the trajectory of the blade
tips defined by the previous series lies on a plane that is called tip-path plane
(TPP). The same definition of TPP will be retained also for non-zero eccen-
tricity values, which are typically in the order of a few percent of the rotor
radius, since the blade tip trajectory is nonetheless a good approximation of
a plane.

The unity vector iTPP has the same direction and sign as the projection of
the asymptotic airspeed on the TPP, kTPP is normal to the TPP and pointing
upwards relative to the rotor and jTPP completes a right-handed triad.

Similarly the blade pitch is defined as a first order truncated Fourier
series:

θ(ψ) = θ0 − A1 cosψ −B1 sinψ . (B.4)

The following relationships are assumed as valid, even if they are strictly
true only for rotors with zero flapping hinge eccentricity:

aNF
1 = aSW

1 +B1 ; (B.5a)

bNF
1 = bSW

1 − A1 . (B.5b)

that means that the force-motion phase delay on the blade is assumed to be
always exactly 90°.
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Nomenclature

Symbols

Unless otherwise stated, SI units are implied.

a0 Coning angle
a1 Longitudinal flapping angle
A Rotor disc area
A1 Lateral cyclic pitch
b1 Lateral flapping angle
B1 Longitudinal cyclic pitch
c Blade chord
Cd Drag coeffcient
Cl Lift coeffcient
CL/α Slope of the lift/AoA curve for the blade profile
CH H-force coefficient
CT Thrust coefficient
eβ Flapping hinge eccentricity
g , g Gravity acceleration vector, absolute value
hcd H-force coefficient (alternative definition)
H H-force
iA, iA, iA Unit vectors for reference frame A
Iβ Blade flapping moment of inertia
JO Second moment of inertia matrix, pole O
m Total rotorcraft mass
Mb Blade mass
Nb Number of blades
P Power
Q Shaft torque
R Rotor radius
RC

A→B Rotation tensor from frame A to frame B, measured in frame C
SO First moment of inertia matrix, pole O
tcd Thrust coefficient (alternative definition)



Nomenclature

T Thrust
u Induced velocity
uh Induced velocity, hovering condition
vh Horizontal speed, inertial
vtip Blade tip speed
vv Vertical speed, inertial, positive upwards
V, V Asymptotic speed vector, absolute value
xcg Radius of the blade centre of mass, divided by R
zg Height over ground
α Angle of attack
αTPP Angle of attack of the rotor disc
β Flapping angle
βSB Sideslip angle
γ Lock’s number
ε Hinge offset factor or influence angle
θ Blade pitch
θ0 Collective pitch, untwisted blade
θ75,twisted Collective pitch, measured at 75% span of the real blade
Θ Attitude Euler’s pitch angle
ι Setting angle
λ Inflow parameter
λi Induced inflow parameter
µ Advance parameter
ν Parameter for the inflow distribution
ρ Air density
σ Rotor solidity ratio
τ Climb angle
Φ Attitude Euler’s roll angle
ψ Blade azimuth
Ψ Attitude Euler’s azimuth angle
Ω Rotor angular speed

Acronyms and abbreviations

AoA Angle of Attack
CFD Computational Fluid Dynamics
DOF Degree of Freedom
fus Fuselage
HT Horizontal tail
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Nomenclature

I Inertial (reference frame)
MR Main Rotor
NF Non-Feathering (plane)
SB Shaft-Body (reference frame)
SW Shaft-Wind (reference frame)
TPP Tip-Path Plane
TR Tail rotor
VT Vertical Tail
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