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Abstract

The advent of new technologies, like Internet, digital audio formats, and

portable media players, make it easier to produce and distribute music, ex-

ponentially increasing the offer, but making it harder to find songs that

suits users’ tastes. Therefore an important topic in research today is the de-

velopment of music browsing, searching and organizing techniques and tools.

Music recommendation systems are one of the solutions to this problem.

They focus on generating playlists according to the similarities between a

chosen track and a predefined music collection. Similarities are generally

based on the physical, perceptive, and acoustical properties of the audio sig-

nal (content-based approach), or on manually defined tags (context-based

approach). Content information is obtained using Multimedia Information

Retrieval techniques that extract descriptors out of a song, like rhythm, har-

mony, or loudness. Songs can then be compared using algorithms specialized

on finding similarities between the extracted features, and matching items

are proposed to the user as a playlist.

The purpose of this thesis is to extend an existing content-based music

recommendation system, producing an application that generates playlists

according to the acoustic features of the audio being played. This appli-

cation works in both a local and a web environment, using a client-server

infrastructure where the recommendation engine is not tied to the player.

The core components of the application are exchangeable plugins. Similarity

is measured according to two different approaches: local and global. In the

local approach a song is segmented into a sequence of ”cells” that represent

highly homogeneous parts and similarity is evaluated over its descriptors.

In the global approach, the similarity is performed over the whole song us-

ing the evolution on time of the extracted features. In both approaches the

users are able to interact with the system by defining the desired feature

values in order to improve the output.
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Sommario

Con l’avvento di Internet, dei formati audio digitali e dei riproduttori musi-

cali portatili, la produzione e distribuzione di contenuti musicali ha subito

un’accelerazione notevole. L’abbondanza dell’offerta ha avuto come con-

seguenza un necessario ripensamento del nostro modo di reperire la musica

che ci interessa. Cos̀ı negli ultimi anni lo sviluppo di tecniche e di stru-

menti per la ricerca e l’organizzare di contenuti musicali sta acquistando

una notevole importanza tecnica.

I sistemi di ”music recommendation” sono una delle soluzioni a questo

problema. Essi si occupano della generazione di ”playlist” secondo criteri

di similarità tra un brano e una collezione di contenuti musicali. Questa

similarità si basa sulle proprietà fisiche, percettive e acustiche del segnale

audio (approccio ”content-based”) e su i tag definiti manualmente (approc-

cio ”context-based”). Le informazioni sul contenuto si ottengono tramite

tecniche di ”Multimedia Information Retrieval” che estraggono i descrittori

da un brano, come il tempo, l’armonia, oppure la rumorosità. I brani ven-

gono comparati attraverso funzioni di similarità tra le feature estratte. La

playlist proposta all’utente viene popolata sulla base di tali funzioni.

Lo scopo di questa tesi è l’estensione di un sistema di music recommen-

dation content-based esistente. L’applicazione è in grado di generare playlist

secondo le proprietà acustiche dell’audio riprodotto. Essa è in grado di fun-

zionare sia in modalità locale sia in modalità web, secondo un’infrastruttura

di tipo ”client/server” indipendente dalla piattaforma. L’applicazione è

stata dotata di funzionalità implementate attraverso plugin intercambiabili.

La similarità viene calcolata in due modi: locale e globale. Nel modo locale

il brano è segmentato in ”celle” omogenee dalle quali vengono estratte le fea-

ture da comparare. Nel modo globale la similarità dipende dell’evoluzione

nel tempo delle feature del brano completo. In entrambi i casi, l’utente può

interagire impostando i valori dei feature per migliorare l’output.
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Chapter 1

Introduction

Music recordings have always been the target of many different technological

evolutions. First there were analog storage mechanisms like vinyl records

and cassette tapes. Then computers changed much of our lifestyle and music

started to be stored on digital format using devices like CDs and MiniDiscs

(MDs). Compression algorithms and codification schemes made it possi-

ble to store audio tracks in small portable files. The internet brought the

possibility to share these files quickly and easily, and portable media players

allowed users to take their music anywhere. Companies saw the opportunity

to create a market where users can buy single songs instead of full albums

and download them on different devices. A new concept of radio on the

net gave birth to streaming technologies that allow users to start listening

to music as soon as the file download begins, with an offer that includes

different genres and audio qualities. Finally, the technological world is now

shifting to the ”Cloud”: the separation between what’s stored locally and

what’s stored remotely is disappearing thanks to the speed of internet and

the processing power of new mobile devices. Now files can be stored in many

different places, but retrieved at any time and any place. There isn’t a uni-

fied definition of what the Cloud is[18][5], but a simplified description tells

us that the Cloud is just a user friendly collection of systems that provide

storage and uninterrupted services in a network (music in our case). What

users gain by using the Cloud is the possibility if accessing all their files in

different locations, without the hassle of having to synchronize everything

manually device by device. As an example, figure 1.1 shows the way Ama-

zon implemented the Cloud concept tied to it’s commercial business.

The advent of these new technologies makes the production and dis-

1



2 Chapter 1. Introduction

Figure 1.1: Amazon’s rendition of a cloud based service

tribution of music and audio contents much easier. As a consequence the

amount of information made available to the average user is increasing over

time, and as the offer grows, it becomes harder to find music that suits one

particular taste. Helping the user find the music that he wants or may enjoy

is now more important than before. There are different types of solution

that can be implemented to improve the user’s listening experience. The

first one is called a ”music identification system” and it’s objective is to

identify a song using a small sample as input, regardless of its quality or

origin. Music identification systems can take small samples of audio and

analyze them to identify the song to which they belong. As these systems

become more advanced, they will be able to recognize suboptimal samples,

even when noise, hiss, or artifacts (clicks and pops) are present. Depending

on the techniques used, it is even possible to identify songs having simple

melodies, sung lyrics, or even musical scores as the input.

A broader approach is used by ”music recommendation systems”. These

systems may include a search function and a media player. They don’t try

to produce perfect matches like identification systems do, but instead focus

on generating song playlists according to the similarities between a chosen

track and a predefined music collection, trying to keep a balance between

quantity and quality (similarity). ”Music discovery systems” are an exten-

sion of recommendation systems, as their main purpose is to give the user

the possibility of finding new music according to the song provided as an

input, and a personal music collection or history of reproductions. We can

obtain a discovery system by filtering the output of a recommendation sys-

tem, removing any songs and artists that the user already knows. The result

will still be similar to the initial input, but will hopefully be new to the user.
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Music recommendation systems can be classified into two types: context-

based and content-based. Context-based systems describe music using a set

of global metadata, generally stored as labels or tags. These tags are in some

cases defined manually and they can give some information about the song,

like interpreters, genre, album, date, etc. There are also numeric tags that

can be generated automatically according to information obtained from the

user’s interaction with the system (e.g. number of sales, number of repro-

ductions, and ranking). There are two important methods worth mentioning

when it comes to gathering such data: ”collaborative filtering” and ”social

filtering”. On the first one, every action of a user is recorded including

reproduction statistics, history of selections, and the liked/disliked items.

The chronology of reproductions serves as a method to understand the in-

dividual preferences of a user, but can also be matched with the records

of other users to find patterns that can be exploited to create statistically

”ideal” playlists. Social filtering tends to be very similar, but the infor-

mation comes from users that belong to a more integrated social network,

like Facebook, Twitter, or Google+, where the actions of friends or contacts

may have a greater impact on what’s recommended or not. In this case the

playlist will reflect the predilections of the user’s friends and tries to increase

the possibility of discovering new songs thanks to the data gathered out of

the publications and posts of those contacts. For example, labels could be

similar to ”recommended by x” or ”n number of friends have listened to this

song”.

Content-based systems depend instead on the physical, perceptive, and

acoustical properties of the audio signal, which are an objective source of

information. This information is obtained using Multimedia Information

Retrieval (MIR) techniques that extract descriptors out of a song. These

descriptors are called ”features” and the process is called ”feature extrac-

tion”. They can describe properties like rhythm, harmony, or loudness.

Songs can then be compared using algorithms specialized on finding similar-

ities between the extracted features. Similar items are then used to generate

a reproduction playlist that’s presented to the user. However, features are

rarely used directly to generate a playlist. Instead, they are processed and

clustered into similar groups that are then labeled to generate metadata sim-

ilar to the one used by context-based recommendation systems, as can be

seen on figure 1.2. This grouping limits the versatility of the recommenda-

tions and favours performance over detail. There is however the advantage

of having a tag generated by a logical process instead of possibly faulty user
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input.

Feature 
Extraction

Label Generation Recommendation
Features SymbolsSignals Playlists

Figure 1.2: Workflow of a traditional recommendation system

One important difference between these two systems, on a user experi-

ence level, is that the content-based one can start generating playlists as

soon as the music is analyzed without requiring any prior user interaction,

since all the needed data is already contained in the song. On the other

hand, context-based systems always require a ”start-up” process where la-

bels are created or provided, which is not an immediate process and may

affect the availability and quality of the recommendation results. For ex-

ample, a rating system is not useful when the number of votes is too low,

and is useless when there are none. Another disadvantage of context-based

systems lays in the use of text labels, since they may contain typographic

errors, abbreviations, or idiomatic expressions.

However, content-based systems also have their own disadvantages. Recom-

mendations based only on physical properties are not directly adapted to

the user’s tastes and predilections. Two songs with similar content descrip-

tors may generate completely different reactions on the same person. To be

able to learn from the user’s experience and feedback, the system requires

to implement a context-like ranking system.

The purpose of this thesis is to extend an existing application that im-

plements a content-based music recommendation system that avoids the

clustering/labeling process, and favours user interaction in its place. The

objective is to let the user modify the value of these features dynamically

using different input methods. The workflow can be seen on figure 1.3 and

it shows how features are used directly into the recommendation process to

keep a higher level of precision.

The application must be extended following a set of prerequisites that

include new features mainly related to modularization, web streaming, and

feature comparison. The modifications aim to give the user more control

over the song’s features and their evolution over time, and to improve the
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Feature 
Extraction

Label Generation Recommendation
Features SymbolsSignals Playlists

Features

Figure 1.3: Workflow of the system to be extended

flexibility of the application on the programming and functional level. The

resulting software shall be more robust and easy to modify and extend.

The objective of this project is to produce a content-based music recom-

mendation application that generates playlists according to the properties

of the audio being played, like tempo, mood, harmony, brightness, and loud-

ness. This application must work in both a local and a web environment,

with the possibility of being separated into a client-server infrastructure

where the recommendation engine is not tied to the player. The core com-

ponents of the application must be exchangeable, to give the possibility of

growth and further improvement. It must be able to compare the properties

of the audio segments of a song, or of the complete song if chosen, using the

extracted audio features or their evolutions on time, and it must let the user

interact with these properties to alter the output and improve the playlist

generated. All this must be done while trying to maintain the look and feel

of the original application that’s being extended.

The thesis is organized as follows:

• In chapter 2 we’ll take a look at the state of the art of music recom-

mendation systems. We are going to see how most current applica-

tions work and how they have different approaches for the creation of

playlists.

• In chapter 3, we define some of the most important theoretical concepts

that are used throughout this document.

• In chapter 4 the system design details are presented. This includes the

architecture of the system and software used.

• Chapter 5 explains the details behind the implementation of the new

software.
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• In Chapter 6 we evaluate the modifications done to the original appli-

cation.

• Finally, chapter 7 presents conclusions and guidelines for even further

future improvements and evolutions.



Chapter 2

State of the art

As introduced previously, most recommendation systems are aiming to con-

solidate themselves as platforms that can store, classify, filter, and stream

music, independent of where the user is and how he is connected. Today,

the most popular services are: Apple’s iTunes1, Amazon Cloud Player2, and

Google Music3.

Apple has recently launched a couple of new services called iCloud4 and

iMatch5, that allow paying clients to upload not only music, but also doc-

uments and pictures to Apple’s servers, so that they can be permanently

access through any device that is part of Apple’s product offer, like Macs,

iPads and iPhones, without any extra effort on the user’s side. iMatch is a

music identification system that analyzes the user’s music collection finding

matches with the iTunes database. If a match is found, the song is not

uploaded to iCloud, but instead the user gains access to a high-quality 256

Kbps AAC DRM-free file (which means that the file can then be shared

between devices). This set of functionalities becomes a music recommenda-

tion system when mixed with the iTunes service and its playlist generator,

iTunes Genius6.

Amazon’s cloud service has a simpler approach: the user can upload his

music collection and listen to it on the web or on Amazon’s tablet, the

1Apple Inc., http://www.apple.com/itunes/
2Amazon Inc., https://www.amazon.com/gp/dmusic/mp3/player
3Google, http://music.google.com
4Apple Inc., http://www.apple.com/icloud/
5”A Clear Explanation of iTunes Match”, http://www.macrumors.com/2011/11/14/a-

clear-explanation-of-itunes-match/
6”What is iTunes Genius?”, http://ipod.about.com/od/itunes/g/itunes genius.htm

7
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Kindle. The recommendation system that it uses is the one seen on Ama-

zon’s shopping web site, which simply recommends songs based on the user’s

acquisition history and Amazon’s most-sold tracks. Google Music instead

relies on the Android Market for purchasing music directly from the web

and from mobile devices, and uses a recommendation system only improved

by the social filtering done thanks to its connection with the social network

of Google+.

Google Music and Amazon Cloud Player are music recommendation sys-

tems that mainly use context-based techniques to describe and offer their

music. Other systems mix both content-based and context-based approaches

to increase the accuracy of the results. An example of this is Apple’s iTunes

Genius system, which advertises the complexity of it’s algorithms without

publicly revealing them. Other systems that use mostly context-based tech-

niques to create their playlists are: Last.fm7, using an engine called ”Au-

dioscrobbler”, keeps a record of what users listen to, and works mostly as a

music discovery system based on collaborative and social filtering; Spotify8,

which is focusing on music discovery through social filtering using Face-

book’s Open Graph protocol9; Jango10 and Grooveshark11 stream music

using recommendations based on labeling and social filtering; and finally we

have Stereomood12, an Italian web site that streams music based on social

filtering and labeling, classifying music according to ”mood tags”.

Since our application is related to content-based recommendation, we’ll

now introduce some of the applications or services, either academic or com-

mercial, that belong to this field. This list is divided in two sections: music

recommendation/discovery systems, and music identification systems.

2.1 Music Recommendation/Discovery Systems

The following applications and services include many different functions

like search, recommendation, reproduction, and commercialization of mu-

sic. Their main objective is to not only help the user find what he’s looking

for, but also to help him discover new music that may be of his liking. This

7Last.fm Ltd., http://www.last.fm
8Spotify Ltd., http://www.spotify.com
9Facebook, http://ogp.me

10Jango, http://www.jango.com
11Escape Media Group, http://http://grooveshark.com
12Facebook, http://http://www.stereomood.com/
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is usually done automatically as part of the reproduction of an audio track,

without requiring any particular user interaction.

2.1.1 Pandora 13

Figure 2.1: Pandora’s Graphical Interface

Being based on the Music Genome Project, a document related to Music

Recommendation Systems can’t ignore the work done by the Music Genome

Project and Pandora. It aims at describing songs by using many different

attributes obtained as the result of an analysis of their musical qualities.

Furthermore, these songs are also organized and filtered according to the

user’s input and collaborative filtering.

The types of features it handles are: Melody, harmony, tonality, rhythm, in-

strumentation, lyrics, vocals, influences, orchestration, etc. There are more

than four hundred different types, which they call ”genes”, and they give

Pandora the possibility of finding accurate similarities between different mu-

sical pieces. Also, in the case that a user doesn’t like or approve a particular

recommendation, there’s the option of rating the piece or actually banning

13Pandora Media, http://www.pandora.com
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it from playing again within a predefined amount of time (an example of

collaborative filtering).

Pandora’s user interface can be seen in figure 2.1.

2.1.2 Mufin 14

Figure 2.2: Mufin’s self-denominated ”interactive 3D music universe”

Mufin (Music Finder) is an offshoot from the Fraunhofer Institute. It

began as part of an investigation on ”audio fingerprinting”, which resulted

on a technology called ”AudioID”[1]. It offers a service that combines mood

based music recommendation and cloud storage functionalities to allow users

to listen to the music that suits their current emotional state on any sup-

ported device among PCs, mobiles, and web browsers.

Mufin requires that the user uploads the songs before they are analyzed.

In this way the system can determine their acoustic properties and classify

them as happy, sad, or as a mix of different classifications. As we have seen

on section 1, this is an example of a content-based approach that uses clas-

sification to label songs.

14Mufin GmbH, http://www.mufin.com
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What really distinguishes Mufin from the other services is its implemen-

tation of the playlist concept. Tracks can be displayed in a 3D environment

(”Audio Landscape”)2.2, where the user can navigate around using the re-

lationships between different items. It can also generate automatic playlists

with similar songs to the one currently playing.

2.1.3 Musicovery 15

Figure 2.3: Musicovery’s Flash interface in Italian

Musicovery is a service that allows the listener to choose songs according

to their mood using a matrix (”mood pad”) that exposes many different

values between 2 axes: dark/positive and calm/energetic.

The system extracts 40 acoustic parameters of each song, each parameter

taking between 3 to 20 values. An algorithm converts these values into a

position on the mood pad (seen on the top left of figure 2.3).16 The mood

pad’s concept is constantly evolving and improving and, as an interesting

feature, changes its recommendations according to the geographic position

of the user, to include local songs and genres and customize the interface,

as can be easily seen on the included snapshot.

This service also gives the user the opportunity to rate the songs (represented

as a heart for positive rates and a broken heart for the negative ones) to

include collaborative filtering.

15Vincent Castaignet & Frederic Vavrille, http://www.musicovery.com
16http://musicovery.com/aboutus/aboutus.html
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2.1.4 The Echo Nest 17

The Echo Nest is a platform (”music intelligence platform”) that offers an

extensive set of tools related to multimedia information retrieval, co-founded

by two MIT PhDs after 12 years of research and development done by the

MIT in conjunction with the Universities of Columbia and Berkeley[7]. It

crawls the web looking for musical content that is later analyzed to extract

and store features like tempo, mode, beats, segments, pitch, key, timbre, and

loudness. This information is exposed through a real-time API to registered

application developers that wish to create music related software, including

music recommendation systems, without having to implement the required

feature extraction techniques.

To obtain this information, the platform uses advanced techniques that

include data mining (analysis and filtering of data according to relevance),

natural language processing (using artificial intelligence to improve the sys-

tem’s understanding of human defined labels), acoustic analysis (feature

extraction), and machine learning (using artificial intelligence to improve

the system’s classification and pattern recognition).

One of the features offered by the platform is the possibility of auto-

matically creating static or dynamic playlists that may use one or different

types of recommendation according to the input given. For example, us-

ing collaborative filtering it allows skipping particular artists or ”boosting”

them so that they appear more often. Technically, the call is made using a

simple HTTP GET and the answer can be either in JSON, JSONP, XML,

or XSPF format, something that makes the platform compatible with most

modern systems, if not with all.

More interesting for our current approach is the possibility of searching

songs using the parameters depicted above. The platform even permits the

identification of songs (either with an HTTP GET or POST) thanks to

two custom ”fingerprinting” systems: The Echo Nest Musical Fingerprint

(ENMFP) and the Echoprint. The ENFMP is a closed source database

of roughly 30,000,000 songs and works better on full file recognition with

speeds around 20x the real time speed of the song. The Echoprint is an

open source database with approximately 200,000 songs publicly available,

and supports ”over the air” recognition, with speeds up to 100x real time

speed.

As an interesting fact, The Echo Nest has made a surprising deal with EMI

17The Echo Nest Corporation, http://the.echonest.com
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Music to allow developers to create innovative commercial applications for

artists under a revenue sharing model. As part of this partnership, users are

given access to different ”sandboxes” containing music from various artists

like Gorillaz, Pet Shop Boys, and Eliza Doolittle18.

2.1.5 SoundBite 19

The Centre for Digital Music (C4DM20) of the Queen Mary University of

London has created different applications that do feature extraction and mu-

sic recommendation. Feature extraction is done with programs like Sonic

Annotator21, Sonic Visualizer22, and the QM Vamp plugins23. Music recom-

mendation is done with SoundBite, a plugin that integrates with iTunes and

Songbird (a music organizer and player), adding a new icon on the interface

that can create a playlist according to the currently selected song (figure

2.4). To be able to do this, once the plugin is installed, SoundBite does

a content-based analysis of the user’s music collection. The technique in

Figure 2.4: SoundBite’s integration with iTunes

which SoundBite is based is called ”Audio Features Ontology”24[8], which is

part of the research done by the C4DM on ”Music Ontology”[17], a method

for describing music on the semantic web25.

18”EMI Partnership”, http://developer.echonest.com/sandbox/emi/
19C4DM Queen Mary University of London, http://www.isophonics.net/content/soundbite
20C4DM, http://www.elec.qmul.ac.uk/digitalmusic
21C4DM Queen Mary University of London, http://www.isophonics.net/SonicAnnotator
22C4DM Queen Mary University of London, http://sonicvisualiser.org
23C4DM Queen Mary University of London, http://www.isophonics.net/QMVampPlugins
24Music Ontology tools, http://motools.sourceforge.net/doc/audio features.html
25Music Ontology, http://musicontology.com
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2.2 Music Identification Systems

Some applications are not designed to recommend music to the user, but

to allow him to find a song he’s looking for using friendly and intuitive

methods. Searching for a song may yield a list of results consisting of dif-

ferent matches, in a similar way to how recommendation systems generate

playlists. In fact, a recommendation system generally uses the same type of

techniques to compare tracks and create recommendations.

Shown below are some popular web applications that use music identifi-

cation techniques to help users find a particular song.

2.2.1 Musipedia 26

Figure 2.5: Musipedia’s main menu

Inspired by Wikimedia, this web site helps people find the music they

are looking for by allowing them to use sound instead of text as a search

parameter. Users can whistle on the microphone, use a virtual piano, or just

tap the rhythm of the song on the keyboard by choosing the corresponding

option on the web site’s main menu, as seen on figure 2.5. The system uses

the melody, defined as pitch and rhythm, the melodic contour (description

of the notes as simply ”going up” or ”going down”, also called ”the Parsons

Code for Melodic Contours”), or just the rhythm to try and find coinci-

dences within its database. This search engine is called ”Melodyhound”

and it allows the user to retrieve music sheets, MIDI files, and information

about songs and composers.

The site also includes a free SOAP Interface that enables consuming appli-

cations to search their database using Web Services.

2.2.2 Midomi & SoundHound 27

Similarly to Musipedia, Midomi allows users to sing, hum, or whistle on their

microphone, using the interface shown in figure 2.6,to look for a particular

song. As a commercial solution, Midomi provides client application for the

26Rainer Typke, http://www.musipedia.org
27Rainer Typke, http://www.midomi.com



2.2. Music Identification Systems 15

Figure 2.6: Midomi’s ”Click and Sing” interface

mobile market, called SoundHound.

The most obvious problem of Midomi is that it can only find a song if it

already belongs to the service’s database. This database is fed with user

recordings and input, which is then compared with the searched melody.

2.2.3 Tunebot 28

Figure 2.7: Tunebot’s interface

Tunebot is a project done by the Interactive Audio Lab of the North-

western University (Evanston, USA), funded in part by the National Science

Foundation. Just like previous services, it allow users to search for a song

using as input a recording of the user singing or humming. The system also

allows music notation, even if the main interface doesn’t display that option

to the user (figure 2.7). The main difference with the previous solutions

28Northwestern University Interactive Audio Lab, http://tunebot.cs.northwestern.edu



16 Chapter 2. State of the art

is that this service doesn’t store actual songs, but instead it keeps only the

recordings uploaded by users, which are then analyzed and associated to the

real song in Amazon.com. The only way to find a song is if someone else

has already sung it or hummed it before on Tunebot.

The theoretical basis for this service includes research concepts like ”query

by humming”[15][11], ”online training of music search engines”[14], and also

”searchable melodies”[4].



Chapter 3

Theoretical Background

In this chapter we go deeper into the detail of what is a musical feature,

how these features are extracted, and how content-based recommendation

systems find similarities between tracks as part of the playlist generation.

3.1 Feature Extraction

To have a good recommendation system, first a good feature extraction has

to be done. If the quality or the fidelity of the features is not good enough,

it doesn’t matter how good the recommendation system is, the results will

not be acceptable. Our system will allow the user to interact directly with

the feature values, so they need to be easy to understand and associate with

the properties human can perceive when they listen to a song. Features like

tempo (measured as the number of beats per minute or BPM) or loudness

(measured as the RMS value of the signal) can be extracted after a low

level analysis of the audio signal, and they offer a good frame of reference to

evaluate song similarity since they are characteristics that people are already

familiar with, and can be easily related with concepts like ”slow music” or

”loud music”. On the other hand we have features that can be grouped to

describe more subjective measures (high level features). For example, mood

can be defined as a function of its timbre, intensity, and rhythm [16].

On section 1 we introduced the way in which recommendation systems

work, and how they do a classification using a set of features (labeling).

Figure 3.1 displays the structure of a typical classification system. The part

of the process that is of special interest for us is the pre-processing: inputs

must be monophonic, de-noised, down sampled audio signals. Also, since

features are rarely uniform during the whole track, the signal has to be

17
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Windowing/ 
Segmentation

De-noise

Feature 
Reduction

Training

Classification Decision
s(t)

Labels

Pre-Processing

DB

Figure 3.1: Structure of a generic classification system

split into smaller meaningful pieces. These pieces are generally defined by

changes in tempo, harmony, spectrum, etc. and can be selected manually

(human interaction) or automatically as part of the extraction logic.

The particular technique that concerns us is called ”measure of audio

novelty” [9]. Based on the concept of self-similarity, it is calculated using a

workflow (figure 3.2) that includes the following set of steps:

• Audio is parameterized using standard spectral analysis.

• Frames are tapered with a Hamming window and an FFT is applied.

• The logarithm of the FFT is used as the Power Spectrum of the signal.

• High frequency components (> Fs/4) are discarded as not relevant for

self-similarity.

• The resulting vectors are embedded into a matrix by means of a

(dis)similarity measure D:

Dc(i, j) ≡
vi · vj
‖vi‖‖vj‖

(3.1)

• The resulting matrix S contains the similarity metric for all the frame

combinations.

• Since S tends to look like a checkerboard, if we perform the convolution

along the diagonal with a checkerboard looking kernel (figures 3.3(a)

and 3.3(b)), we will obtain as a result a one-dimensional function that

corresponds to the measure of novelty. This Gaussian chequerboard
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Figure 3.2: Workflow of a novelty based segmentation system

kernel is obtained from a point to point multiplication between the

bi-dimensional Gaussian function and the following function:

f(x, y) =

{
+1 if sign(x) = sign(y)

−1 otherwise

• The track is then segmented based on the peaks found on the results.
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(a) Checkerboard Kernel (b) Convolution along the diagonal

The resulting pieces are then processed to extract the features, but avoid-

ing the labeling process that most systems do after the extraction.

Next we will describe some of the features that are used in this project:

3.1.1 Harmony

A simple definition of harmony is provided by the Encyclopedia Britannica:

Harmony, in music, the sound of two or more notes heard

simultaneously. In practice, this broad definition can also in-

clude some instances of notes sounded one after the other. If the

consecutively sounded notes call to mind the notes of a familiar

chord (a group of notes sounded together), the ear creates its own

simultaneity in the same way that the eye perceives movement

in a motion picture. In such cases the ear perceives the harmony

that would result if the notes had sounded together. In a nar-

rower sense, harmony refers to the extensively developed system

of chords and the rules that allow or forbid relations between

chords that characterizes Western music.

The key words here are ”notes” and ”chords”. The simplification we use in

this project is that harmony can be represented as a key (C, D, E, D#, Bb,

etc.) and a mode (major, minor). It’s obtained through a pitch analysis,

using a ”chromagram” obtained as a redistribution of the spectrum energy

along the different pitches (”chromas”) of the FFT of the signal, after lim-

iting the frequency range to cover only a few octaves and the magnitude to

only the 20 highest dB (figure 3.3).

Determining the harmony requires the computation of the key clarity

(the probability associated with each possible key candidate) through a

cross-correlation of the wrapped (octave information discarded) and nor-

malised chromagram, with similar profiles representing all the possible tonal-
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Figure 3.3: Unwrapped Chromagram

ity candidates[12][10]. The resulting graph indicates the cross-correlation

score for each different tonality candidate (Figure 3.4), and the maximum

value corresponds to the selected harmony.

Figure 3.4: Key clarity

3.1.2 Tempo

As referenced before, it’s expressed in BPM, and can be found through

the computation of an onset detection curve, applied to multiple functions

(signal envelope or spectrum), showing the successive bursts of energy corre-

sponding to the successive pulses (Figure 3.5). Peak picking is then applied

to the autocorrelation function of the onset detection curve.

3.1.3 Brightness

The brightness of a track is roughly based on the idea of sound having a

similar behaviour to visual brightness, and can be expressed as the power
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Figure 3.5: Tempo: onset detection

of the low-frequency bands over the power of the high-frequency ones. This

ratio usually ranges between 0.2 and 0.8. Considering a threshold close to

1500 Hz, as displayed on figure 3.6, brightness can be calculated by the

following formula:

brightness =

∫ +∞
thresholdX(ω)∫ threshold
0 X(ω)

(3.2)

Figure 3.6: Brightness

3.1.4 RMS

The ”root mean square” measure gives us the global energy of the signal

(closely following its envelope) using the formula:

xrms =

√√√√ 1

N

N∑
i=1

x2i =

√
x21 + x22 + x23 + ...+ x2N

N
(3.3)

3.1.5 Mood

Mood is a high-level feature describing the emotional content of a musical

piece. The lack of a standard set of emotions implies that any implementa-

tion is free to use any useful psychological description. For our project we use
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mood as the interaction between a measure of intensity (based on loudness)

that tries to define a particular segment of audio as energetic or not, and an

emotional component defined by the corresponding timbral analysis[3].

3.2 Feature Based Recommendation

Once we have extracted the features, the task of a recommendation system

is to take those results and use them to generate a track playlist based on a

given input. Since we are looking for similar items, this input will usually be

an array of features corresponding to the segment of audio being currently

played. Also, for this project the comparison process may take as input

free values defined directly by the user, but always within the valid range

of the feature. In this project we use two approaches to this process: using

similarity functions over the features corresponding to each segment of the

track(the cells obtained as part of the feature extraction process explained

on section 3.1), or by considering the features of a song as an array of values

changing over time. Since we were looking for a method that allowed us to

compare the evolution of a function over time, without the substantial loss of

precision that comes as a side effect of clustering methods, we decided to use

a short delay cross-correlation algorithm based on a one by one comparison

done with similarity functions.

3.2.1 Similarity Functions

Some of the features we use are just numeric values that can be compared

directly using the following function:

comparefeature(...) = 1− |feature1 − feature2| (3.4)

This applies to brightness and rms. However, harmony, tempo, and mood

require different approaches. Tempo, for instance, uses a distance function

calculated as a normalized Gaussian function centred in one of the two BMP

values and with an appropriate variance (Figure 3.7). It returns high values

when the two tempos are near and reasonably decreasing values when they

move away.

Harmony and mood instead rely on similarity tables and formulas that differ

according to the software implementation chosen. In particular, harmony’s

similarity functions may vary according to the type of music that’s being

analyzed. For example, Western music has different harmonic rules than

Eastern music. For this project we use the Western rules. In Table 3.1 and

Figure 3.8 we present the values of the compare function between (C, maj)
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Figure 3.7: Tempo similarity graph

and all other harmonies, and between (C, min) and all other harmonies.

The other values could be found musically transposing the notes.

Key Mode Value

C maj 1.00

min 0.25

C# maj 0.00

min 0.00

D maj 0.20

min 0.25

D# maj 0.10

min 0.00

E maj 0.10

min 0.85

F maj 0.25

min 0.25

F# maj 0.00

min 0.00

G maj 0.25

min 0.25

G# maj 0.10

min 0.00

A maj 0.10

min 0.90

A# maj 0.20

min 0.00

B maj 0.00

min 0.00

Key Mode Value

C maj 0.25

min 0.00

C# maj 0.00

min 0.00

D maj 0.00

min 0.00

D# maj 0.90

min 0.00

E maj 0.00

min 0.00

F maj 0.25

min 0.25

F# maj 0.00

min 0.00

G maj 0.25

min 0.25

G# maj 0.85

min 0.00

A maj 0.00

min 0.00

A# maj 0.25

min 0.00

B maj 0.00

min 0.00

Table 3.1: C Major (left) and C Minor (right) similarity measures

Beside this, the similarity measure also considers the keyClarity, i.e. the

confidence of the detected harmony. The key clarity not only expresses the
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(a) C Major similarity measure (b) C Minor similarity measure

Figure 3.8: Harmony similarity measure

probability of the correctness of the given harmony, but gives hints about

the amount of inharmonic noise present in the piece. If this value is very

high, a strong harmonic component is perceived by the listener. On the

contrary, when this value is low, the segment does not present a well-defined

harmony.

When two segments have both a high key clarity, the overall harmony sim-

ilarity function should consider the values defined in Table 3.1. However,

when two segments have both a low key clarity, the actual value of the key

is not important since the value has a low confidence.

In particular given two audio samples, with key clarity keyClarity1 and

keyClarity2 respectively with the key similarity computed as shown before

(see Table 3.1), the harmony similarity measure should show the qualitative

behaviour described in Table 3.2.

High Low keyClarity1

High Low High Low keyClarity2

High keySimilarity Medium Medium High

Low keySimilarity Medium Medium High

keySimilarity

Table 3.2: The qualitative measure of harmony similarity

.

The qualitative graph of the similarity function is shown in Figure 3.9;

when both key clarities are zero, the overall similarity is high, when both

are one, the value is the real key similarity.

The overall similarity measure is obtained by the combination of two

functions:

f1(...) = (1− keyClarity1) · (1− keyClarity2) (3.5)
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Figure 3.9: The qualitative graph of harmony similarity

that is maximum when both keyClarity1 and keyClarity2 are zero, and the

following:

f2(...) = keySimilarity · (1− |keyClarity1 − keyClarity2|) (3.6)

whose value decreases when keyClarity1 and keyClarity2 are distant. Fig-

ure 3.10(a) shows the graph of f1, whereas Figure 3.10(b) shows the graph

of f2.

(a) Graph of f1 (b) Graph of f2

Figure 3.10: Harmony similarity measure

The harmony similarity is obtained combining the contributes of the two

functions:

compareharmony(...) = f1(...) + (1− f1(...)) · f2(...) (3.7)

In Figure 3.11 an example of similarity function is plotted (key similarity is

set to 0.5). We can see that the qualitative behaviour resembles the one in

Figure 3.9.

Mood in our project is represented by four psychological classes: exuber-

ance, anxious, contentment, and depression. The distance measure among

the classes is summarised in Table 3.3. Using a bi-dimensional plane like

the one shown in figure 3.12 to calculate the mood[13], the similarity is 1.00
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Figure 3.11: Graph of compareharmony

when the two moods are the same, 0.33 when they are in the same column,

0.40 when they are in the same row and 0.10 otherwise.

Exuberance Anxious Contentment Depression

Exuberance 1.00 0.40 0.33 0.10

Anxious 0.40 1.0 0.10 0.33

Contentment 0.33 0.10 1.0 0.40

Depression 0.10 0.33 0.40 1.0

Table 3.3: Mood similarity table

Figure 3.12: Mood bi dimensional plane
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3.2.2 Cross-correlation

The cross-correlation between two signals gives us a good idea of how similar

they are. This is attained by applying a constantly increasing delay to one of

them and calculating the dot product between the correspondingly aligned

samples. The circular cross-correlation of two signals x and y can be defined

by:

1

N
(x ? y)(l)

4
=

1

N

N−1∑
n=0

x(n)y(n+ l), l = 0, 1, 2, . . . , N − 1. (3.8)

The lag l is an integer value, and the resulting values go from -1 to 1. A value

close to 1 means that both series are similar at that particular delay. In the

same way, a -1 indicates that the series are exactly opposite at that delay.

It’s also important to note that the cross-correlation is not commutative:

(x ? y) 6= (y ? x) (3.9)

This means that even if we use some sort of cache on the system to further

improve performance, our calculations have to be done in both directions

anyway.

The use of cross-correlation in this project allows the user to specify the

evolution of a particular feature or feature set, which will then be compared

with the whole feature database using the sum of the cross-correlations and

a weight system. For example, the user may want to listen to a song that

is slow on the beginning, fast on the middle, and slow again on the end,

just like figure 3.13 shows. After normalizing the data, we can calculate

the cross-correlation with another feature set (in red). The inputs and the

result (in green) can be seen on figure 3.14

We can see that after the first five samples, the cross-correlation value starts

to decrease since the shifted shapes of the signals are no longer similar. As

a conclusion of this we can consider using a lower delay since similar series

will give us the bigger cross-correlation within the first few samples. Fur-

thermore, the results will be finally filtered using a weighting mechanism

and a predefined threshold to avoid ”false positives”.

3.3 Ranking System

An important part of the original application that this project is expanding,

is the ranking system. This is a mechanism that learns the taste of the user
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Figure 3.13: User’s BPM selection
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Figure 3.14: Normalized cross-correlation of two feature sets

and ranks the music according to the history of the user’s preferences. The

more the system is ”trained”, the more it adapts to the inferred preferences

of the user, improving the quality of the recommended music. Since this
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process runs on the background, the user implicitly interacts with the learn-

ing algorithm by selecting items from the proposal list.

This ranking system was implemented by training a Gaussian Mixture

Model:

3.3.1 Gaussian Mixture Model (GMM)

GMMs are used in the field of speech processing, mostly for speech recog-

nition, speaker identification and voice conversion, because of their capabil-

ity to model arbitrary probability densities and represent spectral features.

The GMM approach assumes that the density of an observed process can

be modelled as a weighted sum of component densities bm(x):

p(x|λ) =
M∑

m−1
cmbm(x) (3.10)

where x is a d-dimensional random vector, M is the number of mixture com-

ponents and bm(x) is a Gaussian density, parameterised by a mean vector

µm and the covariance matrix Σm. The coefficient cm is a weight that is

used to model the fact that the different densities have different heights in

the probability density function. The parameters of the sound model are

denoted as λ = {cm;µm; Σm}, m = 1, ..., M. The training of the Gaussian

Mixture Models consists in finding the set of parameters λ that maximises

the likelihood of a set of n data vectors.

The Expectation Maximisation (EM) algorithm is one of the alternatives

available to perform such estimation[2]. It works by iteratively updating the

vector λ and the estimation of the probability density function p(m|xi, λ) for

each element in the training set. In the case of diagonal covariance matrices

the update equations become:

µnewm =

∑n
i=1 p(m|xi, λ) · xi
p(m|xi, λ)

(3.11)

Σnew
m =

∑n
i=1 p(m|xi, λ)(xi − µm)T (xi − µm)

p(m|xi, λ)
(3.12)

cnewm =
1

n

n∑
i=1

p(m|xi, λ) (3.13)

the value p(m|xi, λ) is updated at each iteration by the following equa-

tion:
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p(m|xi, λ) =
cmbm(xi)∑M
j=1 cjbj(xi)

(3.14)

Let us now consider the decision process: if we have a sequence of L ≥ 1

observations X = x1, x2, ..., xL and we want to emit a verdict, we have

to choose the model among λ1, λ2, ..., λK that maximises the a posteriori

probability for the observation sequence:

k̂ = arg max
1≥k≥K

P (λk|X) = arg max
1≥k≥K

P (X|λk)P (λk)

p(X)
(3.15)

The computation can be greatly improved: in fact p(X) is the same for

k = 1, ...,K. Furthermore, assuming that P (λk) are equal for each class of

sounds, and using logarithms and the independence between observations,

the sound recognition system computes:

K̂ = arg max
1≥k≥K

L∑
l=1

log(p(xi|λk)) (3.16)
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Chapter 4

System Design

The purpose of this project was to improve an existing music recommen-

dation application made in Java, adding some new features to extend its

functionality and prepare it for a larger implementation and use.

In this chapter we present the whole system design, the architecture

chosen, the software used, and the premises that lead to most of the decisions

taken in the process.

4.1 The existing application

The existing software, called ”PolySound”, is a content-based recommenda-

tion system created in Java[6]. When it reproduces a song, it also generates

a playlist according to the feature similarity between the currently playing

audio segment and the segments of the other available songs found in the

user’s music collection. The user also has the option to define manually the

value of the features that are used to generate the recommendation by using

graphical components and different types of input. The features it includes

are: tempo, brightness, rms, mood, and harmony.

This existing Java application was implemented as a NetBeans project,

organized in approximately 16 packages divided on libraries and function-

ality modules. It didn’t provide Feature Extraction functionalities, as this

part was done offline with a series of scripts using Matlab. The application

had some hardcoded paths indicating the folders corresponding to the audio

tracks to be played and their feature information.

33
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The features were stored in a series of XML files, one per feature, named

with the schema ”Song name feature type” (e.g. ”All I got.wav tempo.xml”).

There was also a file per track indicating the segmentation of the features,

named with the same schema, but with the text ”anchors” as the suffix (e.g.

”All I got.wav anchors.xml”). Feature files also had segmentation data (po-

sition in frames), similar to what anchors contain. An anchor’s position was

defined as a number of frames, which is dependant on the format of the

source file. This format was in this case the same one used to extract the

features: 16 bit monophonic PCM at 11025Hz audio.

<feature id=“tempo”> 
 <data> 
  <dataitem position=“1”> 
  <attributes>  
   <attribute name=“bpm”>93</attribute> 
  </attributes> 
  </dataitem> 
  <dataitem position=“220501”> 
  <attributes>  
   <attribute name=“bpm”>94</attribute> 
  </attributes> 
  </dataitem> 
  <dataitem position=“330751”> 
  <attributes>  
   <attribute name=“bpm”>116</attribute> 
  </attributes> 
  </dataitem> 
 </data> 
</feature> 

Figure 4.1: A feature’s xml representation

Running the application meant loading all the features into memory and

looping over them every time a recommendation needed to be done, using a

similarity function to rate them. The result was then displayed to the user

as a vertical list of tracks were the recommended piece was highlighted.

On the panel of the right, as can be seen on figure 4.2, there are 6

different tabs. Some of the most relevant ones are:

• Values: where the user can ”override” a feature value to modify the

output of the system.
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Figure 4.2: PolySound’s Graphical Interface

• Weights: the user can choose how much one feature affects the recom-

mendation output by changing its weight from 0 to 100 (%).

• Settings: found here are options that affect the rendering of the song

or the way the recommendation system works. The user can choose

to have one or many recommendations per playlist item, to automat-

ically add the current song to a ”Taboo List” (TabuList) so that the

song doesn’t get repeated again, to use beat-matching during the cross-

fading of two segments (speeding up or down the audio pieces to obtain

a speed match between them, without affecting the pitch), and to se-

lect the type of reproduction of the song, which can be normal (the

user can change songs when he wishes), skipped (the program auto-

matically selects the next recommended item), or continuous (the song

gets played from beginning to end without offering a playlist).

• Search: Find a track by name.

The application had no Play, Pause, or Stop functionality. It chose a song

randomly on startup and kept playing the audio until closed (when a track
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was finished, it automatically chose the next one).

4.2 Requested Features

Improving the current application implied modifying, and in some cases re-

building, the existing code. For this purpose we defined some requirements

at the beginning of the project, which we shall now explain in detail. The

first one is modularization: the new application must be neatly organized to

allow for easy modification of the code. It shall also be organized in clearly

defined packages and keep the functionalities distributed according to roles

and scopes.

The implementation must include ”over the web” features, since most cur-

rent applications are starting to point to the cloud for storage and trans-

mission of content. Of course, the infrastructure needed for a solution that

big would simply be too much for our project, so we are limiting the scope

to web streaming and a server-side common pool of songs.

Another important requirement is the use of a pluggable feature code im-

plementation. This means that if a new feature is to be added or eventually

removed from the system, it should be done as part of a process as simple

as possible. We are not aiming at ”hot swapping” of components, but the

idea is to be able to add .jar files to a particular path allowing the software

to load the code on startup and use it as needed. This plugin system should

be available for the client (graphical interface), as well as for the server.

Since the application must have web features, a request was made to include

the possibility of working online and offline, or maybe in a mixed mode. In

addition to this the client used must be exchangeable, meaning that anyone

can develop a client application for any device (PC, mobile, or web), using

any operative system and any programming language, and then connect to

our server. For this reason we have to choose carefully the core function-

alities of the system, since not all clients may be able to support advanced

functions.

Finally, as indicated on section 3.2, the system must use two recommenda-

tion approaches: the recommendation based on the features corresponding

to single segments (cells) done by the original application, and a recommen-

dation based on the feature evolution of a track over time to find similar

songs, instead of cells. Both options shall be made available to the user, so

he can choose which one to use.
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4.3 Architecture

The main concern when creating the new architecture was about the exten-

sion to the web-based paradigm. As a consequence we decided to migrate

to a ”Server/Client” architecture, instead of the original ”local only” im-

plementation. What this means is that the recommendation logic could

eventually be located on a remote server instead of on the client’s machine.

However, since the recommendation system needs to be able to recommend

songs from its own pool, streaming becomes the only feasible option.

4.3.1 Streaming

On-demand streaming works as follows: the client asks the server for a file,

the server responds with a header that indicates the type of the file (usu-

ally the MIME type) and the length of the download in bytes (if available).

The rest of the response corresponds to the binary data of the file that gets

buffered by the client. Depending on the format and length of the download,

the client may begin the reproduction of the audio stream after enough in-

formation has been buffered and decoded. If the user decides to change the

track, the process begins again.

It’s important to notice that this process can’t be done in real time: the

initial buffering time depends on the quality of the connection, so there’s

always latency between the moment the user chooses an item and the mo-

ment the file starts playing.

Since the existing application is based on track segmentation by predefined

anchors, the streaming logic has to overcome many different obstacles to give

an good user experience. For example, the server must be able to send only

the requested piece of audio to the client, instead of the whole file, since it’s

possible that the next request belongs to a different file altogether. In fact,

the client will be able to change pieces constantly (there’s actually an option

for this on the settings menu), and has to do cross-fading between pieces

when changing tracks, slowly decreasing the volume of the first song, while

at the same time increasing the volume of the starting one. This means that

the buffer cannot be fed directly to the sound card, since the signal may

have to be pre-processed before reproduction. This leads to a ”last minute

buffering” strategy that may be troublesome for large pieces.

Another thing to consider is that the original files may be in an inappro-

priate format for streaming and therefore may need to be converted. The

format must be chosen keeping into account file size and sound quality.
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All these considerations where analyzed and taken into account when

creating the architecture, but the last one is considerably more complicated

since we can’t ignore the possibility of having limited bandwidth clients

(e.g. mobile phone clients) in situations where it’s unaffordable to download

buffer segments that may not be played at all.

4.3.2 Server/Client Architecture

The requisite of making a web-based solution lead us to choose a server/client

architecture, but another requirement was that the solution should be able

to work in stand-alone mode too. This means that the user should be able

to use the application offline, but having the whole set of functionalities

offered by the server. Therefore the approach taken for this project was

to create a lightweight server for Data Storage (features and audio tracks),

Music Recommendation, and Audio Streaming; and a client for Audio se-

lection, reproduction, and preprocessing. Both can be executed on the same

machine when needed, without any extra installation of software.

The server is implemented with an embeddable Web Server and Database

(to replace the current application’s xml storage), which means that it’s

portable and doesn’t require any special configuration. The music and al-

bum art pictures are not stored in the database. They are loaded directly

from Hard Disk. Finally, the server exposes a Web Service that allows the

client to gather information about the tracks and segments, and to upload

configuration data.

We implemented a basic three tier architecture, where the Data Access

Layer (DAL) and the Business Logic Layer (BLL) are located on the Server,

and the Presentation Layer (PL) that includes the GUI is handled by the

Client. In figure 4.3 we can see how the DAL includes the persistence layer

that connects to the database. The BLL can also be seen and it includes the

core and the audio transcoding units. Audio is loaded from the file system

of the computer. It also loads the feature processing plugins. Finally the

GUI is in a different layer and it loads the graphical components for feature

interaction and the decoding code. The dotted lines in the figure indicate

pluggable components that may be modified without affecting the whole

solution.
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Figure 4.3: Three Tier Architecture

4.4 Software

The software used in the project includes the following applications or li-

braries:

4.4.1 Java 1

Figure 4.4: Java Logo

Java is a programming language originally created

by Sun Microsystems (now owned by Oracle). It

uses a syntax similar to C and C++. Execution

of Java code is done within a ”sand box” environ-

ment: the compiled code is executed by a software

called Java Virtual Machine (JVM) which runs, controls and monitors the

code, acting as an interface that gives access to the low level Operative Sys-

tem’s resources according to a predefined security structure. This is partly

done to avoid instability problems (e.g. blue screens of death in Windows)

caused by applications that access private memory or physical devices us-

ing incorrect drivers. This also allows the code to be executed on different

devices with different hardware and operative systems, since only the JVM

needs to be modified and ported.

1Oracle Corporation, http://www.java.net
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Java’s features can be extended with libraries. Some are already included

in the official distribution as part of the Java Runtime Environment (JRE),

like the ones required to play audio and read/write files. Others must be

downloaded and included in the application’s Classpath (a parameter that

indicates the physical path were each application should look for classes

on startup). There are also more advanced components that are included

within the Java Development Kit (JDK), a set of components and tools like

compilers, consoles, debuggers, etc.

Since Java is an Object-Oriented programming language, code is written

by creating classes associated to a particular namespace or package. This

namespace simplifies the access to the classes’ methods and define a logi-

cal grouping of functionalities. When compiled this code is exported to a

compressed file with either the .jar, .ear, or .war extension according to its

purpose.

4.4.2 NetBeans 2

Figure 4.5: NetBeans Logo

The whole implementation was done in Java us-

ing NetBeans version 7.0.1. NetBeans is not only

a Java IDE, but also an application platform that

enables developers to create applications for the

web, desktop, and mobile market. The latest ver-

sion supports the Java SE 7 specification with JDK 7 language features.

The platform also provides enhanced integration with Oracle databases and

with GlassFish3, an open source Web Server. NetBeans also provides an

easy way to do Swing GUI development, which translates into richer Java

components for the graphical user interface of the application.

Since one of the requests made was to modularize the previous applica-

tion, we chose to use a project of type ”NetBeans Platform Application”. A

”Module Suite” might have been equally useful, but the platform application

includes some code and libraries that makes it easier to create a fully-fledged

solution.

The code was made using Java 1.6 Source Level. In total, five platform

applications were created:

• Server Application, containing the DAL, BLL, and Feature plugin

loading code.

2Oracle Corporation, http://netbeans.org
3Oracle Corporation, http://glassfish.java.net/
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• Client Application, containing the playlist GUI and the Feature Com-

ponent/Audio Decoding plugin code.

• Feature Plugins Suite, where all the plugins are grouped and compiled.

• Feature Components Plugin Suite, where all the component plugins

are stored and compiled.

• Decoder Plugin Suite, where one decoder plugin is stored (may even-

tually contain more if needed).

The last three could have been implemented as independent Java Projects,

but keeping all the similar ones under the same suite saves a lot of time

when configuring common libraries and settings.

4.4.3 Apache Derby 4

Figure 4.6: Apache Derby

Logo

Since our application has to be executed even

on a standalone client, we need an embeddable

database, robust but portable. There were

two clear options: JavaDB or Derby. Actually

JavaDB is a ramification of the Derby project

that was made available with the JDK. Sadly, this

branch is not updated as much as the original Derby project, and hence we

decided to go directly with Derby.

Apache Derby is an open source relational database implemented entirely

in Java, with a very small footprint, which means that it’s highly portable.

It can also be configured as a server, but in this case we needed to use the

embedded mode to avoid extra configurations.

To access the database we used a persistence unit (JPA 2.0 with

EclipseLink5) on NetBeans that handles the connection pool, the authenti-

cation, and the queries, so we don’t have to write any Derby specific code

or stored procedure. In this way we completely isolate the database from

the code, allowing for fast switching and migration to different databases

when needed. In fact, if the server is to be deployed on its own machine to

do heavy operations, it would be recommended to switch the database to a

professional level product, like Oracle6, MS SQL7, DB28, or even MySQL9.

4Apache Software Foundation, http://db.apache.org/derby
5The Eclipse Foundation, http://www.eclipse.org/eclipselink/
6Oracle Corporation, http://www.oracle.com/us/products/database/index.html
7Microsoft Corporation, http://www.microsoft.com/sqlserver
8International Business Machines Corp., http://www.ibm.com/db2
9Oracle Corporation, http://www.mysql.com/
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4.4.4 FFmpeg 10

Figure 4.7: FFmpeg Logo

Since our application must be able to load any

of the songs available on the user’s music collec-

tion, it needs to have a transcoding engine able

to recognize different formats. In a ”server only”

solution it would be possible to keep all the music stored in a single format

to avoid some of the transcoding complexity, or maybe even acquire licensed

transcoding libraries (which can be very expensive) for a particular subset

of formats. But as one of our requirements implied, this solution must work

even on a standalone client, and we can’t ask a user to convert his whole

music collection to the format we choose, since that would be unrealistic and

troublesome at the least. We must also realize that most music collections

are still stored in MP3 format, which is a licensed format. This means that

to be able to do streaming of MP3 music, royalties have to be paid to Thom-

son11, which is something we obviously can’t afford. Therefore we decided

to find a single transcoding unit that could handle most formats and gives

us as an output whatever format we decided.

FFmpeg is free (depending on the codecs configured on compile time) cross-

platform software, that uses the libavcodec library to decode and encode

audio and video. It’s kept updated thanks to a big community of develop-

ers, which means that it’s constantly improved and fixed.

In ”client mode” we use FFmpeg’s command line to decode the original

track, getting a WAV audio file (PCM 16 bit LE) that can be passed di-

rectly to Java’s audio line. In ”server mode” we use it to transcode from

the original format to Ogg Vorbis12, which is a lossy patent free format that

gives us a smaller file that can be easily streamed to the client.

The server executes the FFmpeg command line using Java’s ProcessBuilder

to generate a temporal file that gets streamed when requested by the client.

We also attempted to use JNI13 and JNA14, Java libraries that enable ap-

plications to load native libraries (like the ones generated with C++), in an

attempt to access directly FFmpeg’s libavcodec, something that would yield

more efficiency on the transcoding process since we could do everything in

memory instead of doing expensive I/O writes and reads. In reality, the sta-

bility of FFmpeg’s libraries development makes it unreliable to code against

(at least in Java), and was thus discarded as an option.

10Multiple developers, http://ffmpeg.org
11Thomson, http://mp3licensing.com/royalty/software.html
12Xiph.Org., http://www.vorbis.com/
13Oracle Corp., http://java.sun.com/javase/7/docs/technotes/guides/jni/index.html
14Twall, http://jna.java.net
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4.4.5 Java Simple Plugin Framework 15

Figure 4.8: JSPF Logo

Another requisite insisted on making it easy to

add new features to the solution. This implied

creating disconnected code for the similarity func-

tions and cleaning all the code from possible refer-

ences to particular feature types. In fact, the new

application references the features only through

interfaces, passing objects based on the entities generated from the database.

Jspf allowed us to define an interface, both in the server and in the client,

which is consumed by the plugin suites. Those suites implement classes that

inherit from the plugin class exposed by jspf and follow the rules defined in

the interfaces. This way we can always rely on having a fixed set of methods

available on each and every plugin, which is read and stored on memory on

run time.

4.4.6 Jetty 16

Figure 4.9: Jetty Logo

We evaluated many different Web Servers when

designing the architecture. The server had to be

embeddable and portable, according to our needs.

There are many different offers available, some

including support for EJBs and .war deploy files.

We needed something that could handle web services and web streaming,

and hopefully small enough to be included in an installation file.

NetBeans, depending on the installation pack, can automatically install a

Web Server: GlassFish. GlassFish is a very capable server, with many

advanced options and native integration with NetBeans. It can also be used

in embedded mode. However, even in embedded mode, the jar files required

for proper execution of the server occupy between 20 and 30 MBs of disk

space, which is too big compared to the rest of the solution items. On the

other hand, we also evaluated the Tiny Java Web Server (TJWS)17. With a

really small footprint (100 - 200 KB) and support for servlets and .war files,

it can deal with average server tasks. Unfortunately we didn’t succeed on

making it work with our current solution, meaning that we couldn’t start it

up directly from code, which is what we wanted.

At the end we opted for Jetty, a server that offered everything we needed,

with an acceptable footprint (< 2 MB), with a simple API and with an

15R. Biedert, N. Delsaux, and T. Lottermann, http://code.google.com/p/jspf/
16The Eclipse Foundation and The Codehaus, http://jetty.codehaus.org/jetty/
17Dmitriy Rogatkin, http://tjws.sourceforge.net
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optional XML based configuration file system. We use Jetty to publish

a Web Service on the server machine, accessed on the clients with Java

Architecture for XML Binding (JAXB), and two streaming servlets (without

EJBs) that the client has to call alternating the order each time (for buffering

reasons). The port used can be changed by modifying the included XML

file.

4.4.7 JOrbis 18

When working in ”client mode” there is no need to compress the data that

the client gets from the server since they are located on the same machine

(or in the same LAN if needed). For this configuration, the server gives the

client uncompressed PCM streams, since the bandwidth cost is irrelevant

but the quality is expected to be high.

In ”server mode” the client will receive audio encoded in Ogg Vorbis format

(the output format can be easily modified in the settings file) since it gives

us at least 10x compression (at 64 Kbps) without much of a noticeable loss

in quality. The client uses the plugin interface to load a decoder when first

run. For this case we decided to use the decoding library JOrbis to generate

a proper PCM stream that the client software can consume normally.

JOrbis provides the tools to decode the audio, but it won’t directly generate

an output file. It’s the responsibility of the coder to convert the output into

something that Java’s audio system will understand and reproduce.

4.4.8 Database Schema

The original application used an xml-based approach for data storage. As

a solution grows and gains users, it starts storing more data, and there’s a

point in which loading xml files and then parsing them may become a bottle

neck for the system’s performance. When designing a software solution, it’s

important to foresee this possibility and to use a more robust system for

data storage. The best option in this case is to use a database since it’s

optimized to handle large amounts of information, with efficient indexing

and optimized querying capabilities that give us the best performance inde-

pendent of the amount of data consumed by the system.

As can be seen in figure 4.10, the database is organized in eleven tables:

18JCraft Inc., http://www.jcraft.com/jorbis/
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FeatureType

PK Id

 Name
 Description

GMM

PK Id

 GeneratedOn

Anchor

PK Id

FK3 IdTrack
FK1 IdAnchorType
 Position
 PositionMS
FK2 IdCluster

GMMPoint

PK,FK2 IdGMM
PK,FK1 IdAttributeType

 Point
 Tag

normalizedAttribute

PK,FK1 IdAttributeType
PK,FK2 IdTrack
PK PositionIndex

 Attribute

AnchorType

PK Id

 Name
 Description

Attribute

PK,FK2 IdAttributeType
PK,FK1 IdAnchor

 Attribute
 Tag

Track

PK Id

 Title
 Artist
 Album
 Composer
 Genre
 Comment
 Path
 Duration
 BitRate
 FileName
 MD5Hash
 MIMEType
 ArtPath

AttributeType

PK Id

FK1 IdFeatureType
 Name
 Description
 AllowTraining

Cluster

PK Id

 Description

crossCorrelation

PK,FK1 IdAttributeType
PK,FK2 IdTrack

 CrossCorrelation

Figure 4.10: Database Schema

4.4.9 Track

The Track table contains all the typical information pertaining to a song:

artist, album, genre, composer, etc. It also contains the data we need to be

able to use the track on the system: the path of the file, the file’s name,

the duration of the song in milliseconds, and the location of the Album Art

picture (if available).
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4.4.10 Anchor Type

The system has been designed considering two types of segmentation for

a song: variable anchors and fixed anchors. Variable anchors are defined

according to the analysis of the intra-homogeneity of the track. The more

homogeneous the song, the smaller the number of anchors (see section 3.1).

Fixed anchors, as the name indicates, define equally long segments all along

the track. They are used to define the feature sets used to calculate the

similarity of songs using the cross-correlation (see section 3.2.2). Variable

anchors are meant to be evaluated separately, hence rendering the system

able to give recommendations on a segment level. Fixed anchors are used as

vectors or series of points, equally distanced from each other, that are even-

tually used to compare the whole track instead of the segments with all the

other tracks on the database using cross-correlation (see section 3.2.2). This

table contains information for both anchor types with a small description of

each one.

4.4.11 Anchor

Anchors indicate the position of a new segment in the track. The table

contains: the id of the track, the id of the anchor type, the position in

samples, and the position in milliseconds.

4.4.12 Feature Type

In this table the system stores all the features that shall be made available

to the client. It’s simply defined by a name and a short description.

4.4.13 Attribute Type

A feature may be composed of one or more, different measures. For example,

tempo is measured as BPMs, brightness is simply brightness, but mood is

represented with a key, a mode, and a key clarity. We defined all these

values as attribute types, a subset of the feature types. The table contains

all the same fields of the Feature Types table, plus the Feature Type’s id.

4.4.14 Attribute

What we call an attribute is simply the feature’s value. It’s defined by an

attribute type id and an anchor’s id. The value was defined as a decimal

(length 24, precision 20), but since the system in the future may have to

support string values, a ”tag” field was also included.
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4.4.15 Normalized Attribute

Since we need to compare whole feature sets using the cross-correlation, we

need vectors of the same length. This means that we need to find the longest

vector size, and resize all the other vectors to have the same number of points

through interpolation. This is an expensive process, thus we decided to cre-

ate this table that gets loaded the first time the vector comparison algorithm

is executed. Next time the process is launched, if there haven’t been done

any modifications to the saved features, these pre-calculated points can be

loaded directly from the database, improving performance. If a new feature

set is added to the database, and it has more anchors than the previous

maxima, the algorithm reconstructs the whole normalized set to match the

new vector length.

4.4.16 Cross-correlation

Once we have the normalized attributes, we still have to do the cross-

correlation between every single feature set in the database (for the ”fixed”

anchor type). Since we don’t want to be doing this every single time a recom-

mendation needs to be generated, we also store the results on the database.

As we said before cross-correlation is not commutative, which means that

we have to calculate and store the result for x ? y and y ? x. It uses a small

portion of hard disk space, but it can save a lot of processing time, especially

when the user is not searching for particular features or feature evolutions.

4.4.17 GMM

The original application defined the basis for a system to classify user choices

and improve the sorting of the playlist recommendations. This table is

created for legacy reasons, as it replaces the current xml file used to store

the GMM point info.

4.4.18 GMM Point

The previous table is basically an index table, while this one contains the

actual training points. The only difference with the previous xml schema is

the inclusion of a tag field, emulating the modification done to the attributes

to include string data.
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4.4.19 Cluster

In the case we need to improve the performance of the system, a non-labeling

clustering algorithm would have to be implemented to avoid looping over the

whole database with each recommendation. For this reason a cluster table

was created and some extra fields were added to the Anchor and Attribute

Type tables: Anchors have a Cluster Id, and Attribute Types have an ”allow

training” field, which tells the system if the type contains data that should

be used to classify the values.



Chapter 5

Implementation

Due to the complexity of the system and to the requirements defined at

the beginning of the project (section 4.2), the software was designed as

a server/client solution. The server role is responsible for executing most

of the memory and processor consuming tasks (playlist generation, audio

streaming, web service, etc.), therefore it was very important to keep per-

formance under control while developing it. The client is responsible for

audio reproduction, song searching, feature value settings, feature weight-

ing, and special effects.

On this chapter we explain the programming technicalities behind the

application, according to what was already explained on the design chapter,

we’ll explain the workflow of the software, and then we’ll define how the

server and the client work in detail.

5.1 User interaction

Before we explain how the system works, it’s good to remember what a user

can do with the software. First, the graphical interface was created trying

to imitate the original program, with the playlist on the left and the options

on the right (see figure 4.2). Using this interface the most basic things that

the user can do are: search for songs to play, choose segments or songs to

reproduce, and pause or stop the reproduction. The advanced functionali-

ties include: choosing the type of recommendation to use (by piece, or for

the full track), defining fixed feature values to modify the output of the

recommendation system or to search for songs (or segments), changing the

weights that tell the system how relevant a single feature should be for the
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recommendation algorithm, and switching between reproduction styles and

effects (e.g. continuous playing, beat-matching).

5.2 System startup

To begin using the system, the server needs to be executed before the client.

The reason for this is that the client needs to fetch important configuration

data from the server on startup.

5.2.1 Server startup

The first thing the server does when started, as can be seen on the top

of figure 5.1, is to load all the preferences stored on the configuration file.

This file is created automatically the first time the application is run, and

its administration is done automatically using Java’s Preferences class and

NetBeans’ NbPreferences class, called using a class called settings.java. The

configuration file is created on a folder within the application’s root while

debugging, or within the user’s personal preferences folder when run nor-

mally. Within this file the application can find different settings, like the

path of the FFmpeg program, a flag indicating if the server should encode

it’s output, the encoding preferences, the maximum number of recommen-

dations that can be done in one call, the path of the plugins, and some of

the error and information messages that can be passed to the client.

The next thing the server does is to read all the feature types available on

the database. After this step, the system loads the feature plugins, .jar files

that contain the code necessary to find the similarity between features of a

particular type. We discard the classes that correspond to feature types not

available on the database and store the rest on a shared dictionary. Next,

the server loads all the attributes available on the database and creates a

series of dictionaries that will be used later to calculate the similarities be-

tween features.

Since we have to calculate the cross-correlation between features, it

would be better to do it offline. However, for practical effects this process

can be done on startup, after checking if the values stored on the database

need to be updated or not. This means that if a new song is added to the

collection, the process has to be run for the missing items. Also, if the num-

ber of anchors in one of the new songs surpasses the previous maximum, a
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Load Preferences
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Feature Types

Load
Feature Plugins

Load Attributes
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Start Web Server

Hard Disk

DB

Figure 5.1: Steps of the server’s startup

process of re-interpolation will have to be executed before calculating the

cross-correlation. More details on this topic can be found on section 5.3.4.

Finally the web server is started. Jetty loads its own configuration file

and publishes the web service and stream servlets. The web service is respon-

sible of handling all the non streaming related interaction between the client

and the server. This includes queries to the database, uploading and down-

loading of settings, requesting audio pieces (but not downloading them),

and eventually shutting down the web server. The streaming servlets do the

streaming when called by the client, passing as a result the piece that was



52 Chapter 5. Implementation

requested suing the web service.

It’s important to add that we implemented the client using a singleton

pattern, which means keeping only one version of an item in memory, in-

stead of constantly recreating it as needed. This improves performance and

extends the scope of the variables, making them easier to use.

5.2.2 Client startup

When the client is initialized, the first thing it does is to ask the server

about the anchor types available on the database (using the web service).

This is shown in figure 5.2. Then it asks for the available feature types.

This is important since the client must render controls that depend on this

information to give the corresponding options to the user. After the server

responds, the client proceeds with the loading of the settings. The configu-

ration file of the client is different from the configuration file of the server

and are stored in different paths.

Once the application has finished loading and the rendering of the UI is

complete, the plugin manager loads the feature components that allow the

user to interact with the feature values, and the decoder that shall be used

when the system is working on ”server mode” (please refer to section 4.3.2).

The feature components are then added to the options tab panel, and the

decoder is stored on a shared variable.

5.3 Main operation

The client application needs to communicate with the server application to

ask for a piece of audio and then to stream it. The main token we use to

do this communication is the database entity ”anchor”. Anchors, as seen on

section 4.4.11, indicate the position of the different segments of a song. It

has a track and a type and is a small element that we can send and receive

without spending too much bandwidth. Anchors can be received as a result

of two processes: searching for a song or as a recommendation after choosing

a segment of audio to play.

We now proceed to explain the workflow of this communication, as seen

on figure 5.3, step by step:
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Figure 5.2: Steps of the client’s startup

5.3.1 Searching for a song

To start using the application the user has to choose an initial song. The

original program would load a random song on startup, but we decided to

change this in our project because of possible bandwidth issues. In our case,

the client can search by title, artist, or album using text. An additional

option is to perform a search using feature values directly, accessed through

the feature components that were loaded on startup.
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Workflow
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Figure 5.3: The system’s workflow

The server will always respond with a list of anchors (elements from the

database) that can then be chosen and played. It doesn’t give us tracks

directly, but anchors are always logically connected to tracks once they are

retrieved from the database. This means that once the list of anchors arrives,
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the software can generate a list of the tracks corresponding to the imported

anchors. Then, with another call to the web service, we can get all the other

anchors that correspond to each track. This method is also used to create

the recommendation playlist, as will be explained in due time.

Once a result list is obtained, the user can make a choice between any

of the different tracks available. This is a big modification from the way the

original application worked. The PolySound application would only allow

the user to play recommended segments. We decided to give more freedom

to the user, allowing him to pick any segment, even if it wasn’t recommended

by the server.

5.3.2 Choosing an audio segment

When the client application renders the playlist, the user can choose any

piece of audio he wishes by clicking on it with the mouse. At this point, the

client calls the web service’s method ”playPiece”, passing as parameters the

id of the anchor, the current feature weights, and the feature values fixed

by the user. When the server receives this information, it reads the anchor

data from the database and launches two process in parallel: creation of

the temporal file corresponding to the chosen piece and the generation of a

recommendation list that fits it.

5.3.3 Temporal files

The server uses FFmpeg to create the temporal files that get streamed to the

client. We keep two configurations stored in the settings file: one for uncom-

pressed audio (client mode) and one for compressed audio (server mode).

The format we use for uncompressed audio is 16 bit LE PCM at 44 Khz, this

gives us good quality audio at the price of having big temporal files. The

compressed format we use is Ogg Vorbis with a quality of 64 Kbps, which

gives us a quality similar to that of an MP3 file at 96 or 128 Kbps, but with

a smaller size.

5.3.4 Recommendation generation

Since our system doesn’t use clustering techniques, the recommendation al-

gorithm is implemented as a loop that compares anchors or tracks, feature
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by feature. If the user has fixed a feature value using the GUI, that value

replaces the one native to the anchor. If the process is done segment by seg-

ment (anchorType = 1), just like the original application did, the anchor’s

features are passed as parameters to the corresponding feature plugin’s sim-

ilarity function (see section 3.2.1), in a process that gives us a normalized

decimal value as a response: 0 means no similarity, 1 means a perfect match.

When the comparison is done track by track (anchorType = 2), the sys-

tem creates one vector for each feature, and loads it with the features that

correspond to each anchor of the track. This vectors are then normalized

in length using interpolation. The resulting normalized vectors are then

cross-correlated with all the other vectors of the same feature type. This

cross-correlation is done using the same similarity functions used to compare

the single segments, but give us a match corresponding to the evolution of

the features on the song. To improve performance, these results are stored

on the database so the system doesn’t have to recalculate them every time.

In both cases, once we have the similarity for each feature we need to

evaluate its relevance according to the value of the weight that the user has

chosen. If the user chose a weight of zero, the feature must not be taken

into account. This is calculated by multiplying the similarity by the weight.

The final average similarity is then calculated as the sum of the weighted

similarities, divided by the number of features:

Savg =

n∑
i=1

Si ∗Wi

n
(5.1)

To avoid recommending songs with a very low similarity average, the

system uses a threshold (loaded from the settings) to decide which items are

worthy of being sent to the client as part of the playlist. The resulting list

of anchors is first sorted according to the GMM training data stored on the

database (see section 3.3.1), and then it is sent as a response to the client,

so it can be rendered and displayed to the user.

5.3.5 Streaming

The generated playlist is received and stored by the client. Immediately

after, the application calls one of two streaming URLs on the server to get

the next audio segment to reproduce. The reason to keep two of them was
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to avoid problems with simultaneous access, and to be able to swap seg-

ments easily during execution. When the server receives the call it loads the

correct piece from hard disk, and feeds it to the client with a header that

indicates if the content belongs to a .wav file or a .ogg file, and the size of

the file. Once the whole file has been sent to the client, the server launches

a new thread to create the temporal file corresponding to the next segment

of the song. By doing this we save some time when the client asks for the

next piece, since the web service won’t have to create it and can focus on

generating the playlist.

When the client starts receiving the audio file it follows the workflow

shown in figure 5.4. If the file is in Ogg format, it gets decoded by the client

to obtain a PCM stream. Once we have a PCM stream, either streamed or

decoded, the application splits the segment in 3 smaller pieces just like in

figure 5.5. The purpose of this is to store 3 different buffers that will al-

low the application to do special effects, like cross-fading or beat-matching.

As soon as one of the smaller pieces is available it gets stored on a shared

”BlockingQueue”, a Java object that stores items on a FIFO (First In, First

Out) queue that’s thread safe, so we can store new pieces at the same time

that the application is retrieving older items.

When the user chooses a different song, the system needs to do cross-

fading between segments. This process is done between the initial piece of

the next anchor, and the final piece of the current one, which has been stored

in a fourth shared buffer. The result replaces both pieces in the queue and

allows for a smooth transition.

5.3.6 Reproduction

The client contains a class for reproducing the audio found on the shared

queue that runs on its own processor thread. This thread keeps reading the

queue and sending the audio to Java’s SourceDataLine so it can be played

by the soundcard. This thread keeps running until the queue is empty or

until it’s killed by the main class. Once it has played the set of pieces

corresponding to a full segment, it tells the main class that it’s finished so

the GUI can be updated and the recommendation playlist that was stored

before can be displayed to the user.
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Main Piece
Mix

Threshold
Mix

Threshold

Figure 5.5: The streamed segment split in three pieces
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5.3.7 Autoselection

To keep the system always running, even in the absence of the user’s inter-

vention, there’s a timer that gets enabled as soon as the reproduction of a

segment is started. As soon as the timer reaches a predetermined number

of seconds (loaded from the settings), the system automatically blocks the

playlist and chooses the next piece of the track by calling the web service’s

”playPiece” method. In this way we try to guarantee that the client has

enough time to download the next piece of the song, avoiding a silent gap

in the reproduction.

5.4 NetBeans

(a) Server Project Structure (b) Client Project Structure

The workflows and processes explained above were implemented entirely

on NetBeans. The project distribution can be seen on figures 5.6(a) and

5.6(b). The server contains references to the derby (database), eclipselink

(persistence), jetty (web server), and jspf (plugins) libraries described on

section 4.4. The module plgTrans contains the code that loads the FFmpeg

command line and does the file transcoding. Then we can see the Data
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Access Layer (DAL) called plgDAL, a library responsible of connecting to

the database using entity classes that represent its tables and relationships.

plgPlugin contains the interfaces that the feature plugins must implement

to be loaded by the application. Finally, there’s the Business Logic Layer

(BLL) responsible for all the main processing of the server. It is distributed

in four packages: plgCore, where resides the code that creates the recom-

mendation playlists; plgServlet, where the streaming pages (servlets) are

kept; plgSession handles all the queries to the DAL and contains the fa-

cades that expose the CRUD (Create, Read, Update, Delete) functionality;

plgWeb contains the installer class that handles the startup of the server,

the settings handler, a small utilities class, and the web service code.

Figure 5.6: An early implementation of the GUI

The client project contains references to the jaxb (web service client) and

jspf (plugins) libraries. There is a library called plgWSClient that contains

the code necessary to access the server’s web service. plgPluginC contains

the interfaces for the plugin components and the decoder. plgUI is the main

module and it contains several packages: plgConnect contains all the classes

that access the web service through plgWSClient calls; plgPlay is responsible

for playing the music and detecting the audio format of the streamed audio,

telling the application if there’s need of using the decoder plugin; plgRun,

just like plgWeb in the server, is in charge of handling the startup of the

client with an installer class that also stores most of the singleton objects

that are used across the program, keeping settings synced, and offering a few
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simple utilities; plgStream is the class that downloads the audio pieces and

enqueues them for the classes on plgPlay; at last we have plgUI, containing

all windows, panels, and controls that conform the graphical interface of the

application.

The GUI is done using Java’s swing components, plus some custom com-

ponents, including modified versions of the feature components offered by

the original PolySound software. A snapshot of an alpha version of the in-

terface can be seen on figure 5.6, where it can be seen that it aims at keeping

the same ”look and feel” of the original one.
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Chapter 6

Conclusions and future

developments

6.1 Conclusions

This work proposes an extension on an existing music recommendation ap-

plication adding code modularity, ”over the web” functionalities, pluggable

components, support for different clients, and a new recommendation ap-

proach based on the feature evolution of a track over time. The final result

is a server/client architecture implemented as a pair of NetBeans Platform

Applications, and three NetBeans Module Suites for plugins.

The two applications can be executed on the same machine if needed, but

offer better performance when used on different machines. The communi-

cation between them is done using a web service and the audio pieces are

downloaded by the client as a binary stream. Audio is transcoded using

FFmpeg using temporal files that are stored on the server’s hard disk. The

client can decode the audio using a library contained in an exchangeable

plugin. The recommendations can be based on the similarity of the features

belonging to an audio segment (”variable anchor”), or the feature set of the

whole song (”fixed anchor”).

Audio decoding performed on the client side can be troublesome if the

audio segments are too small (< 4s), because the time it takes to convert

the next piece into PCM data may be longer than the time it takes to finish

the current piece. This can generate silent gaps in the audio output. The

system however shouldn’t work with pieces this small, so this problem can

be neglected. However, long pieces may also cause problems as the encoded
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piece needs to be streamed completely before being split into the 3 buffers

used for mixing (see section 5.3.5). One approach to solve this problem is

explained in section ??.

The web features of the server (web services and streaming) were not

implemented using Enterprise Java Beans (EJB), a Java technology used

for enterprise applications. The code, however, was made to be compatible

with EJB and can be easily modified by adding the corresponding metadata.

The use of plugins works like expected and makes it much simpler to modify

the components without worrying about breaking the functionality of the

application. Plugins must always comply with the provided interfaces before

they can be used on the system, which means that they must follow the rules

defined by the application. Plugins are also free to use their own libraries

and resources, keeping them independent of the resources or libraries used

by the main software.

6.2 Future Developments

There are many ways in which this solution could be improved in the fu-

ture, that weren’t implemented because they were either out of the project’s

scope, or they contradicted the specified requirements. Also, future devel-

opments may take advantage of the new client/server architecture, since it

opens up new possibilities to programmers. Some of the most important

improvements that could be developed in the future are listed bellow.

Using the libavcodec library directly, instead of the FFmpeg command

line for audio transcoding, would greatly improve the overall performance of

the system. As was explained on section 4.4.4, FFmpeg uses libavcodec to

perform encoding and decoding of music. Using this library directly would

be faster than using FFmpeg. The inconvenience is that the libavcodec is

a native library and is meant to be used from low level applications using

C++ language. It is only possible to reference this library in Java using

interfaces like JNI and JNA, but this requires advanced C++ knowledge

and familiarity with the FFmpeg code.

The time it takes the system to create a playlist will increase as the

number of songs in the collection grow. Eventually this may cause timeout

errors because the server will take too long to respond. Also the memory

usage of the server could increase beyond Java’s supported limits for the

same reason. This are technical problems that may arise when the num-
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ber of songs increases to a number not foreseen during the design of this

project, and may be a result of the hardware (physical memory) and soft-

ware (Java) used. Within acceptable values (hundreds of songs) this is not a

risk, and the application behaves correctly. To be able to use a bigger music

collection, the recommendation algorithm will have to be revised and tested.

One of the biggest bottlenecks of the application is the need to keep and

fill many different buffers to be able to create special transition effects on

the pieces. An improvement in performance could be achieved by passing

the streamed data directly to the reproduction system (see section 5.3.6),

instead of the enqueueing system, and doing a low level mixing process di-

rectly on the reproduction buffers (instead of our queue buffers). This would

eliminate the problems with small and long pieces explained in section 6.1

since audio would be decoded on the fly. The low level mixing would prob-

ably have to be implemented using native code (C++).

The current solution was implemented for a single user. The system can

be adapted to work on a multiple user environment if needed. It would

require the creation of new tables on the database to store user information

(name, age, location, password hash), to indicate the songs that belong to

a user, and to keep personal preferences realtive to the server. The web

service could accept the user id as a new parameter, and the stream servlets

could also accept a user token as part of the URL to differentiate between

users.

Giving the user the possibility to upload his own music to the system

would turn the application into a Cloud Service (as described in section 1).

The user would then be able to keep his songs on the server, and stream

the audio using any supported client. This would require the availability of

hard disk space on the server, and the definition of a standard format for

the uploaded song files.

Another interesting extension of the program would be a feature extrac-

tion system. The current application uses features extracted offline using

Matlab. Creating an application that extracts the features automatically

would help the user to update his music collection, which is something that

he currently can’t do.
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