
Politecnico di Milano

Facoltà di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Design and development of a new editor for

the SelfLet environment: SelfLetClipse2

Relatore: Elisabetta DI NITTO

Correlatore: Nicolò Maria CALCAVECCHIA

Tesi di Laurea di: Ngoc Hoang PHAM

Matr. 722839

Anno Accademico 2010-2011

To my parents and my dearest friend Binh Thai

Ringraziamenti

Thanks to my tutor Nicolo Calcavecchia for his suggestions and guidances

during the course of the thesis. Thanks to professor Elisabetta Di Nitto for

her suggestions and contributions to the thesis.

Thanks to my dearest friend Binh Thai for her understandings, patience

and support while I was doing the thesis.

Thanks to the Eclipse Graphical Modeling Framework Community Forum

Members for their kindness in helping newcomers into mastering the frame-

work.

Milano, November 27th 2011

Ngoc Hoang PHAM

Table of Contents

1 Introduction 1

2 The SelfLet model 3

2.1 Introduction . 3

2.2 The internal structure of the SelfLet 4

2.3 The SelfLet Conceptual Model 5

2.4 The current implementation of SelfLet: SelfLetClipse 9

2.5 Conclusion . 11

3 The main features of the new Editor: SelfLetClipse2 13

3.1 Introduction . 13

3.2 The new graphical editor SelfLetClipse2 14

3.3 The Palette . 16

3.4 The Properties view . 19

3.5 The SelfLet development lifecycle 20

3.6 Conclusion . 21

4 The meta-model and the EMF Editor 23

4.1 Introduction . 23

4.2 The meta-model . 24

4.3 The EMF Generator Model . 27

4.4 The EMF Editor . 28

4.5 Conclusion . 30

5 The implementation details 31

5.1 Introduction . 31

5.2 Installation prerequisites . 31

5.3 Defining the Graphical Definition Model 32

TABLE OF CONTENTS

5.4 Creating the Palette Creation Tool 37

5.5 Determining the Mapping . 38

5.6 Transforming the Generator Model 41

5.7 Creating the Diagram project 41

5.8 Customizing the Diagram . 42

5.9 Integrating with the previous SelfLetClipse 42

5.10 The source version control . 43

5.11 Conclusion . 44

6 The example of creating a SelfLet project 45

6.1 Introduction . 45

6.2 Project initialization . 46

6.3 Adding Complex Behavior Implementation 50

6.3.1 Adding States into the Complex Behavior Implementation 50

6.4 Adding Elementary Behavior Implementation 53

6.4.1 Adding States into the Elementary Behavior Implemen-

tation . 54

6.5 Adding More Services . 55

6.6 Adding More Service Diagrams 56

6.7 The project structure and packaging the SelfLet 56

6.8 Conclusion . 56

7 Conclusion and Future Works 59

7.1 Conclusion . 59

7.2 Future Works . 60

Bibliography 63

viii

Chapter 1

Introduction

With the tremendous evolution of the internet, the emergence of many appli-

cation models such as the Cloud computing, Software as a Service, Infrastruc-

ture as a Service, and the expansion of varying business domain models, the

computer systems’ complexity has approached the limits of human capability.

Autonomic computing, inspired by a term in biology that is the autonomous

nervous system in the human body, is a specific field of research with the hope

to find an answer to this complexity problem. It was initially introduced by

IBM researchers in 2001 and thereafter in 2003 [19] with their widely influential

paper: The vision of autonomic computing. In this paper, Kephart and Chess

described a system with self management capabilities representing by four as-

pects: self-configuration, self-optimization, self-healing and self-protection; the

intent is to free the system administrators from the burdening of configuration,

operation and maintenance while still guarantee the maximum performance in

a continous manner.

There have been many efforts in the industry in designing, building such self

managing systems[18, 22]. One of the approach that was taken at Politecnico di

Milano is the SelfLets approach [1, 4], a SelfLet is an Autonomic Element

that can: accomplish its goals by running well specified behaviors, interact

with other running SelfLets to obtain the help in achievement of its goal,

monitoring itself and its neighbors to discover potential problems or challenges

for improvement and applying autonomic policies. In the original paper of the

SelfLet , Bindelli et al. have described the SelfLet model and showed an

example of a SelfLet with some preliminary results. In the following develop-

ment papers made by Calcavecchia et al. [4], they have proposed a prediction

Introduction

model for the SelfLet along with an Integrated Development Environment for

SelfLet called SelfLetClipse. This implementation of the IDE has depen-

dencies to the ArgoUML libraries[8]. The work in this thesis focuses on the

development of the new editor for SelfLet framework called SelfLetClipse2

utilizing the powerful Eclipse Modeling Framework (EMF), Graphical Editing

Framework (GEF) and Graphical Modeling Framework (GMF) in order to cre-

ate the stunning graphical interfaces for diagrams of implementation behaviors

of SelfLets’ services at the same time persist the data model underneath the

generated diagram. The result is a fully integrated development environment

in Eclipse for the SelfLet framework that is easy to create, maintain and

develop.

The remaining of the thesis is organized as following: the second Chapter

briefly describes the SelfLet model, its development lifecycle and the cur-

rently available SelfLetClipse, the third Chapter presents the new features

of the new editor SelfLetClipse2, the fourth Chapter detailed the meta-

model for the graphical editor and its corresponding EMF Editor, the next

Chapter goes deeper into the implementation in which the combination of

the three frameworks: EMF, GEF, and GMF is employed in order to create

the desired graphical interfaces, the sixth Chapter comes with examples of

creating a complete SelfLet project, then the conclusion Chapter draws some

important points for future improvements.

2

Chapter 2

The SelfLet model

2.1 Introduction

The essence of autonomic computing is the capabilities of self management,

any implementation of autonomic computing should take into consideration

the four principal aspects of autonomic computing:

Self-configuration : the idea is to reduce at minimum the amount of manual

work done by humans, components and systems are self configured with

only the presence of high level policies.

Self-optimization : components and systems seek to improve themselves

with respect to performance and efficiency.

Self-healing : the system is capable of detecting failures by itself and repairs

itself without the interception of the system administrators.

Self-protection : the system automatically defends itself against the attacks

or cascading failures.

These principles have been applied into the construction of the SelfLet.

Specifically, each SelfLet is a self-sufficient piece of software which is located

in some kinds of logical or physical network. Multiple SelfLets are organized

using a network topology, for example with a direct connection between two

SelfLets , so that they can interact and communicate with each others as in

Figure 2.1.

The SelfLet model

Figure 2.1: The network of SelfLets interacting with each other

2.2 The internal structure of the SelfLet

As we can see in Figure 2.1, the SelfLet contains the Internal Knowledge,

the Negotiation Manager, the Autonomic Manager, the Behavior Manager and

Ability Execution Environment. All of these elements reflect the four aspects

of the self-management autonomic system.

• Internal Knowledge: contains the SelfLet’s Knowledge Base, the Service

Repository, the Behavior Repository, the SelfLet ’s attributes. Service

Repository and Behavior Repository are used to store the Services and

Behaviors that the SelfLet can do or can teach as described above.

• Negotiation Manager : manages the communication with other SelfLets

for the acquisition of Services and Behaviors Implementations.

4

2.3 The SelfLet Conceptual Model

• Autonomic Manager : manages the Policies existing in the SelfLet , it

monitors the events and fire the corresponding rules associated so that

SelfLet can automatically improve itself efficiently.

• Behavior Manager : runs the Behavior implementations within the

SelfLet , at one point in time, there might be two or more current behav-

ior implementations running due to the nested behavior implementation

or the waiting between remote behaviors’ requests.

• Ability Execution Environment : installs, uninstalls, stores and executes

abilities in .jar file extension

2.3 The SelfLet Conceptual Model

The conceptual model of the SelfLet is reported in Figure 2.2 with the

main element is SelfLet uniquely identified by an ID. SelfletProperties and

SelfletResources form the two main elements of a SelfLet.

Figure 2.2: The conceptual model of a SelfLet

5

The SelfLet model

• SelfletProperties : describes the SelfLet itself with information about

the location, the type of the SelfLet and the type of knowledges it has

along with values.

– General Knowledge: The general knowledge as it says in the name

for the SelfLet, it might be the name of the creator, or anything.

– Type Knowledge: The type knowledge is used to characterize the

SelfLet with distintive properties.

– Reds : The IP Address and Port of the current location of the

SelfLet

– Active/Passive: Specify if the current SelfLet is Active or Passive,

and the main Service that SelfLet is trying to achieve.

• SelfletResources : contains all the necessary resources that a SelfLet

needs to operate in a self-managed manner.

– Services : is the central of the SelfLet, Service specifies high level

description of a task. A Service has input parameters and at the

end of the execution produces the result output, Services can also

be exchanged among SelfLets through its OfferMode property. The

model for the Service is too complex to put into the same diagram

of the SelfLet so it is separated into Figure 2.3. As we can see

in Figure 2.3 a SelfLet can have many behavior implementations.

Behavior is an abstract class that are implemented by Elementary

Behavior or Complex Behavior.

– Behaviors : Behaviors are implemented as state diagrams with many

states and transitions between States, Initial States and Final States

are used in both Elementary Behavior and Complex Behavior, while

Intermediate State is used only in Complex Behavior Diagram, and

Invocation State is used only in Elementary Behavior Diagram.

∗ Elementary Behavior : represents a low level objective that is di-

rectly implemented by an ability, this is the concrete implemen-

tation of a Service, and it is also the simplest implementation of

a Service, it starts with an Initial State, then an Ability State

and then a Final State. These States are connected together.

6

2.3 The SelfLet Conceptual Model

Figure 2.3: The model of Services in the SelfLet

· Initial State: is the node of the beginning of every Behavior

implementation. It does not contain any state information.

· Invocation State: The Invocation State can do some Actions

and execute the Ability file with .jar extension.

· Final State: is the node that terminate the Behavior imple-

mentation. After the Final State, the Service may produce

its result as the output specified when it is declared.

∗ Complex Behavior : represents a high level objective and typi-

cally contains different subgoals, this is the concrete and com-

plex implementation of a Service, it starts with an Initial State

and then any of the Intermediate State, these Intermediate

States are free to connect to other States, however, there must

be a path from the Initial State to go to the Final State in the

diagram.

· Initial State: is the node of the beginning of every Behavior

implementation. It is also a normal State.

· Intermediate State: The Intermediate State can do some

7

The SelfLet model

Action and invoke other Services in case it needs help from

the neighbors. Complex Behaviors can contain one or many

Intermediate States, these States may connect to each oth-

ers or go to the Final States.

· Final State: is the node that terminate the Behavior imple-

mentation. After the Final State, the Service may produce

its result as the output specified when it is declared. It is

also a normal State.

– Actions : specify the task that a State in the Elementary Behavior or

Complex Behavior can take when the SelfLet enter to that State.

– Conditions : contain the condition that is written in XML format,

that specify the condition on transitioning between states in the

Behaviors’ State diagram.

– Abilities : contain the executable program unit that is normally

written in Java and packaged in a .jar packages, this program unit

performs a specific task in the SelfLet. This Ability file is invoked

by one State in the Elementary Behaviors. Later in the Chapter ,

we will see in more details the Elementary Behaviors.

– Rules : (or Policies) specify how the system reacts to events that

happen. Rules are written using an open source business rule man-

agement system called Drools[7]. Rules can be used to enable or

disable a Service

SelfLet’s Service can be offered in one of the following modes:

• Can Do: The Service itself can do the ability through one of its Elemen-

tary Behavior and return the values to the caller.

• Can Teach: The Service can teach the caller on how to do the specific

Behavior, by replicating one of its implementation Behaviors.

• Can Do and Can Teach: The Service can even do and teach

• Know Who Can Do: The Service knows who can do the certain Behav-

iors, it keeps a list of other Services in its knowledge base.

8

2.4 The current implementation of SelfLet: SelfLetClipse

• Know Who Can Teach: The Service knows who can teach the Behaviors,

it also keeps a list of other Services in its knowledge base.

• Know Who Can Do and Teach: The Service knows who can both do and

teach, it keeps a list of other Behaviors in its knowledge base.

• None: The Service can not do or teach anything, neither know who can

do nor who can teach.

2.4 The current implementation of SelfLet:

SelfLetClipse

SelfLet Integrated Development Environment has been previously imple-

mented as an Eclipse Plugin with the use of ArgoEclipse by Nicola Calcavec-

chia: SelfLetClipse[4]. This implementation focuses on the use of Eclipse

Graphical Modeling Framework to make graphical diagrams, integrates the

current version of SelfLetClipse but removes all the dependencies from Ar-

goEclipse.

SelfLetClipse is a plugin that supports 3 wizards for the creation of

SelfLet project:

• SelfLet: this wizard creates the SelfLet project with the following

folders: Abilities, Actions, Behaviors, Goals, Rules, Conditions and a

SelfLet configuration file. Figure 2.4 shows the first step in creating

a SelfLet project, it first asks the developers the information about

the SelfLet itself, the properties and its general knowledge. Figure

2.5 shows the second step in creating a SelfLet project, it asks the

developers the main Goal that the SelfLet is trying to achieve with

the input and output parameters, the output parameter is specified by

using a checkbox, the input parameters can be more than one. Figure

2.6 shows a screenshot of the current version of the SelfLetClipse IDE

project folder structure created and the default behavior of the SelfLet

by drawing an ArgoEclipse diagram with state information.

• Selflet Goal : this wizard is used to add a new Goal into the SelfLet

project, Goal is represented as an XML file with name and input, output

9

The SelfLet model

Figure 2.4: The SelfLetClipse’s SelfLet wizard properties description

Figure 2.5: The SelfLetClipse Goal description

10

2.5 Conclusion

Figure 2.6: The SelfLetClipse project structure and default behavior imple-

mentation

parameters. SelfLet developers have to create the behavior implemen-

tations by themselves.

• Selflet Behavior : this wizard is used to add a behavior implementation

into the SelfLet project by choosing which Goal it is implementing.

The work carried out by this implementation by Calcavecchia [4, 2, 5] relies

heavily on the uses of ArgoEclipse libraries to draw the Elementary/Complex

Behavior diagrams. Our work tries to remove these dependencies and builds

from scratch a new graphical editor using the Eclipse Graphical Modeling

Framework in combination with the Eclipse Modeling Framework and Eclipse

Graphical Editing Framework as we will later see in Chapter 5.

2.5 Conclusion

In this Chapter, we have reviewed the conceptual model of the SelfLet along

with its most complex structure, the Service, we also briefed the current im-

plementation of SelfLet, the SelfLetClipse. Based on these conceptual

models and the existing implementation, we are able to design and develop

the graphical interfaces representing the Service in terms of state diagrams,

UML representations and improving the current SelfLetClipse IDE with the

more in depth information about the SelfLet.

In the next Chapter, we will see the new features of the editor, we call it

SelfLetClipse2, and how it can be used to assist the SelfLet developers in

designing their desired autonomic systems.

11

Chapter 3

The main features of the new

Editor: SelfLetClipse2

3.1 Introduction

In this Chapter, we discuss in details the features and functionalities of the new

editor SelfLetClipse2 . SelfLetClipse2 is based on the standard Eclipse

platform, so it enjoys all the features and functionalities of an Eclipse plu-

gin, besides that, it combines three popular and industry proven frameworks

Eclipse Modeling Framework (EMF)[12], Eclipse Graphical Editing Framework

(GEF)[9], Eclipse Graphical Modeling Framework (GMF)[13] in order to create

the remarkable graphical editor.

Eclipse Modeling Framework EMF : EMF is a modeling framework and

code generation facility for building tools and applications based on a

structured data model. This structured data model is normally written

as Ecore Model. The framework then creates a helper generator model

based on this Ecore Model and generates the necessary classes and an

editor for testing the model.

Eclipse Graphical Editing Framework GEF : GEF provides technology

to create rich graphical editors and views for the Eclipse Workbench User

Interfaces.

The main features of the new Editor: SelfLetClipse2

Eclipse Graphical Modeling Framework GMF : GMF bridges the gap

between the EMF and GEF to enable the developers to build graphical

editor based on their model written using EMF.

3.2 The new graphical editor SelfLetClipse2

In the new implementation of the SelfLetClipse2, we reuse the SelfLet wiz-

ard of the previously available SelfLetClipse IDE to let the developers create

the standard SelfLet project. However, at the end of the wizard, the actions

taken are modified in order to create the default diagram and default diagram

data model. The two wizards SelfLet Goal and SelfLet Behavior of the

previous SelfLetClipse are changed to SelfLet Service and SelfLet Service

Diagram respectively. The new structure of the SelfLetClipse2 wizards is as

follows:

• SelfLet: This wizard is used to create the SelfLet project, in the first

step of the wizard, the SelfLet developers specify the SelfLet proper-

ties the same as in the previous implementation of SelfLetClipse in the

next step, then the main Service that the SelfLet is trying to achieve,

this step has the same interface as the previous SelfLetClipse, however,

the term Goal is now changed into Service, developers have to insert the

name of the Service along with its input and output parameters, there

can be zero or many input parameters but there must be one output

parameter for a Service. At the end of the wizard, the SelfLet project

is created in the workspace along with the default Service diagram and

the default Service data model as in Figure 3.1. This Service diagram

and Service data model are based on the GMF framework instead of

the ArgoUML as in the previous implementation. The Service diagram

created includes the default behavior implementation for the Service as

shown in Figure 3.2

• SelfLet Service: Once we have the SelfLet project in the workspace, we

can add more Services into the project by using this wizard. When the

wizard is started, the developers also have to declare the Service name

and its input and output parameters as when they create the SelfLet

14

3.2 The new graphical editor SelfLetClipse2

Figure 3.1: The SelfLetClipse2 project structure created

project with the main Service. At the end of this wizard, there are three

files created in the project workspace:

serviceName.xml : This file is created in the services folder of the

project workspace, it contains the service description and its input

and output parameters in XML format.

serviceName.service diagram : This file contains the graphical dia-

gram for the Service’s behavior implementation, it is created in the

behaviors folder in the project workspace. The default Service is

created with the same name as the Service domain data model. A

Service diagram contains behaviors implementations of a Service,

each Behavior can be Elementary Behavior or Complex Behavior.

Developers use the Tool palette which contains the creation tools

for Service’s behavior implementation graphical elements to draw

into the canvas. The data underneath is saved into the file service-

Name.service as described next.

serviceName.service : This file is the underneath domain data model

for the diagram, it is the xml file that is created automatically when

developers add more elements into the drawing canvas, developers

can change the values of this file and the change is reflected im-

mediately in the diagram file. As an example, if the developers do

not want to keep the default name for the Service created, they can

modify the content of this file and the change is updated into the

graph automatically. It is also located in the behaviors folder in the

project workspace.

15

The main features of the new Editor: SelfLetClipse2

Figure 3.2: The SelfLetClipse2 default behavior implementation of the Ser-

vice and the palette

• SelfLet Service Diagram: This wizard is used to add additional imple-

mentation behavior for a Service that is declared within the SelfLet or in

other SelfLets At the end of the wizard, there are two files created: the

serviceName.service and serviceName.service diagram. The description

of these two files are mentioned above.

3.3 The Palette

When the developers create a Service Diagram, a default Service is added into

the drawing area, SelfLet developers do not need to add more than one Service

other than the default Service created, so as a result, there is no creation tool

for Service in the graphical editor. The diagram palette is shown in Figure

3.3. In the following section, we describe in details each creation tool of the

palette. The order in which the creation tool is described is changed to help

explaining the purpose of the Service Diagram. When the Service diagram is

first created, it has inside a Service graphical element that is a rectangle and

a label, it is created with default size big enough to contain the Elementary

Behavior and Complex Behavior.

Elementary Behavior : This creation tool is used to add the Elementary

Behavior graphical element into the drawing area of the Service dia-

gram inside the Service rectangle and label. The Elementary Behavior

graphical element has vertical layout. One Service can have as many

16

3.3 The Palette

Figure 3.3: The SelfLetClipse2 Diagram palette

Elementary Behavior graphical elements as desired. When adding new

element, the new one is automatically laid out vertically. Elementary

Behavior element represents a low level objective that is implemented by

an ability so it contains inside only the Initial State, Invocation State

and Final State.

Complex Behavior : This creation tool is used to add the Complex Behavior

graphical element into the drawing area of the Service diagram inside the

Service rectangle and label. The Complex Behavior graphical element

has also vertical layout, it is laid along with other Complex Behavior or

Elementary Behavior graphical elements. One Service can have as many

Complex Behavior graphical elements as desired. Complex Behavior

represents high level objective and typically refers to different Services,

it can contain inside one Initial State, one or many Intermediate States

and one or many Final States. Specific color is used to differentiate

between Elementary Behavior graphical element and Complex Behavior

graphical element.

Initial State : This creation tool is used to add the Initial State into the

Elementary Behavior or Complex Behavior in the diagram, developers

can not draw the States elements outside of Behavior graphical elements,

neither inside the Service nor out of the Service rectangle. This imple-

17

The main features of the new Editor: SelfLetClipse2

mentation helps prevent developers from creating unwanted diagrams.

Each Elementary Behavior and Complex Behavior must have one Initial

State.

Final State : This creation tool is used to add the Final State into the Ele-

mentary Behavior or Complex Behavior, the same restriction applies for

Final State, however, developers could create more than one Final State

in the Behavior graphical element.

Invocation State : This creation tool is used to add the Invocation State

to only the Elementary Behavior, as later in the Chapter we will see in

more details the Action in Invocation State. A special color is assigned

to Invocation State graphical element so that developers know they are

creating a State that is different from the Intermediate State as shown

below. We have used the features of GMF framework to restrict SelfLet

developers from putting Invocation State into Complex Behavior.

Intermediate State : This creation tool is used to add the Intermediate

State to only the Complex Behavior. The Action available for this State

is different from the Invocation State so we differentiate it with Invoca-

tion State by a different color.

Action : This creation tool is used to add the Action into the Invocation State

or Intermediate State, Action for Invocation State differs from Action

for Intermediate State. When adding the Action into the Invocation or

Intermediate State, the developers can open the Properties view of the

Eclipse platform and change the corresponding attributes of the Action.

Later in the Chapter, we will see how to do this.

State Connection : This creation tool is used to connect between one State

and the others. To add a connection, developers choose this creation

tool and drag it from one State to the other. For the diagram to be

concise, all the States in the Elementary Behavior or Complex Behavior

must have a path that goes from Initial State to Final State. This is

implemented in GMF as Audit control, we will see it in greater details

in the implementation Chapter 5.

18

3.4 The Properties view

3.4 The Properties view

The advantage of using the Eclipse platform framework is that we can use

the underlying architecture for various purpose, in this implementation of the

SelfLetClipse2 we have chosen to override the Properties view in order to

achieve the desired behaviors in the system. In this Section, we briefly see

which notable properties of each graphical element we can change and how they

change the corresponding graphical elements, the project workspace structure

and the domain data model underneath.

The Properties view is open by selecting menu Window, Show View, Other,

Properties of the standard Eclipse platform. Figure 3.4 show an example of

Properties for the Action of the Invocation State in the Elementary Behavior

implementation of a Service.

Figure 3.4: The SelfLetClipse2 Properties view for Action in Elementary

Behavior’s State

• Service: SelfLet developers can change the Service name as differently

from the one created by the wizard by navigating to the Properties view.

Changing the name reflects immediately in the diagram and also in the

domain model. The same applies for Elementary Behavior, Complex

Behavior, Invocation State and Intermediate State.

• Action: Action has the following properties:

Ability File : This property is overridden as the customization for the

GMF Framework in order to create a File Selector button, clicking

on the File Selector button opens a dialog box for selecting the

Ability File, it is restricted to only .jar file extension. The selected

.jar file is copied into the abilities folder and it serves as the purpose

of the Ability for the Invocation State in the Elementary Behavior

implementation of the Service.

19

The main features of the new Editor: SelfLetClipse2

Action File : The Action file is created automatically when

an Action is added into the Intermediate State or Invo-

cation State with the following file name format: service-

Name.behaviorName.stateName.action, because it is uniqued

for a state in a behavior in a service. Audit controls are used

to check if there is a duplicate serviceName or behaviorName or

stateName within each levels of containment. The Action file

contains the default template for the corresponding Intermediate

State or Invocation State in order to guide the SelfLet developers

into developing further actions as necessary.

Action Body : The Action Body is a string field that stores the visually

displayed information of the Action File, it is formatted as: do

/ActionFile

• State Connection: State Connection has the following properties:

Condition File : This property is overridden as the customization of

the GMF framework in order to create a File Selector for the XML

condition file, choosing the condition file from the File Dialog will

copy it into the project workspace under the conditions folder. The

path to the condition file is stored in this field for reference.

Body : This body is automatically created as closed square brackets

[Condition File], SelfLet developers can also change it to an equa-

tion string for example: p = 0.5 for displaying purpose.

3.5 The SelfLet development lifecycle

The development of a SelfLet system requires an in depth analysis into the

application being developed, the objectives and characteristics. The SelfLet

project is then created using the wizard SelfLet, developers have to specify

its corresponding properties and a main service with name and input and

output parameters. The wizard then creates a sample SelfLet project in the

workspace with default behavior implementation, the error condition and not

error condition file for transition between states in the default behavior of

the main service’s implementation. A service description file is created with

20

3.6 Conclusion

the parameters specified in the wizard. A SelfLet XML description file for

the whole system is created in the root project workspace. Developer can

then add new Service using the SelfLet Service wizard or add new Service

Diagram using the SelfLet Service Diagram Using the palette, developers are

able to draw the state diagram representing the behavior implementation of

a Service, it can be both Elementary or Complex behavior. By specifying

State’s Action and State’s Connection, developers are building gradually the

autonomic SelfLet system with Abilities, Actions, Behaviors and Conditions

and Service Calls for the SelfLet Rules might be added to the rules folder in

the project workspace using Drools language [7]. SelfLet workspace project

files and folders are created in parallel with the file system, at the end of the

development, SelfLet project can be packaged into a zip folder and it then

participates in a network of SelfLet autonomously.

3.6 Conclusion

In this Chapter, we have introduced the new features of the SelfLet its new

wizards, the diagram, the palette and its properties view with several cus-

tomization. The SelfLet development lifecycle briefly describes how the new

SelfLetClipse2 editor is used to help SelfLet developers to build their de-

sired autonomic system. In the next Chapter, we will see the SelfLet meta-

model and the corresponding EMF Editor. Chapter 5 will go in further details

into the implementation, how we combined the three frameworks: EMF, GEF

and GMF into creating an extraordinary graphical editor for SelfLet environ-

ment.

21

Chapter 4

The meta-model and the EMF

Editor

4.1 Introduction

In this Chapter, we take a look into the meta-model of the graphical editor

that we are going to describe in Chapter 5 and the generated EMF Editor

from the Model. We have used the GMF Framework to build the graphical

editor, the screenshot of the dashboard is shown in Figure 4.1. As we can see

from the Figure, the first step in creating a graphical editor is to create the

meta model: the Ecore Model. Ecore model can be created from the following

Figure 4.1: The GMF Dashboard

sources:

Annotated Java : The annotated java classes with annotation, such as

@model or @containment above the classes declaration, then the EMF

The meta-model and the EMF Editor

compiler can understand these classes as the model for the Ecore meta-

model. The EMF book[21] has many in depth tutorials on how to create

annotated java classes.

Ecore Diagram : the diagram that contains all the necessary packages,

classes, attributes and relationships between classes, this is the most

trivial way to build the meta model.

In this implementation, we have chosen to draw directly into the diagram

of Ecore our meta model for the editor as we already knew the conceptual

model of the SelfLet and the SelfLet’s most complex structure: Service.

The diagram for our Ecore Model (.ecore diagram) is shown in Figure 4.2,

the Ecore model (.ecore) is shown in Figure 4.3. These diagrams are slightly

different from the conceptual model we discussed in Chapter 2 because of the

simplicity of the graphical editors we implemented.

4.2 The meta-model

We have chosen to directly draw our Ecore model for our graphical editor, let’s

see in details the components that make up the Ecore kernel model:

EClass : EClass models classes themselves. Classes are identified by name

and have a number of attributes and references.

EAttribute : EAttribute models the attributes, EAttributes are identified

by name and have a type.

EDataType : EDataType represents simple data types whose details are not

modeled as classes, instead they are associated with a primitive or object

type that is defined in java. It is identified by name.

EReference : EReference models the associations between classes. It can be

aggregation or association or generalization type.

The graphical editor contains diagram of a SelfLets’ Service, so first we

draw a SelfLet EClass in the package, this SelfLet contains an Aggregation

connection to Service EClass so later on in the mapping, we can define the

graphical representation for the Service and map the Service to a tool in the

24

4.2 The meta-model

Figure 4.2: The Ecore Model diagram of our editor SelfLetClipse2

Figure 4.3: The Ecore Model of our editor SelfLetClipse2

25

The meta-model and the EMF Editor

Creation Tool and this Service domain model. In the next Chapter, we will

see into details how the mapping is done.

One Service might contain many Behavior implementation, we first draw

an abstract Behavior EClass, two concrete EClass Elementary and Complex

that have the Generalization into the abstract Behavior class. Service has an

Aggregation connection to Behavior so that Behavior and its concrete imple-

mentations can be put inside the Service rectangle.

Elementary Behavior has only 3 States: Initial State, Invocation State

and Final State. Complex Behavior has 3 or more States: Initial State, one

or many Intermediate State, and one or many Final State. This leads to

the creation of an abstract State EClass and four concrete Init, Intermediate,

Invocation, Final EClasses that have the Generalization connection into the

State. Behavior EClasses have its Aggregation connection into State Class.

In the next Chapter, we will see how we have mapped the Initial, Invocation

and Final State to only the Elementary Behavior and Initial, Intermediate and

Final State to only the Complex Behavior. Audit controls are used to limit

the exact one Invocation State in Elementary Behavior.

On transition between States, there might be a condition, however, we

might need to specify some properties of this condition such as the Condition

File and Condition Body for displaying purpose. A separate EClass is thus

created for Condition with “next” as the Aggregation connection from State

to Condition. We might want to know on that Condition, which is the target-

State so we specify an inverse connection called targetState from Condition to

State, notice that this is just an Association from Condition to State, not an

Aggregation connection.

Each State has an Action file which the Execution Manager uses to execute

the Action within the State, we need to put that Action inside the State for

viewing so we create an Action EClass and have an Aggregation of only 1

action for Action EClass, this makes us easy to put the additional properties

for Action into Action EClass.

At this point, we have finished defining the meta-model for our graphical

editor using the elements of the Ecore kernel models. The resulting meta-model

is shown in Figure 4.2.

26

4.3 The EMF Generator Model

4.3 The EMF Generator Model

After we have the Ecore model for our SelfLet meta language, we can create

the new EMF Generator Model by initializing the wizard New EMF Generator

Model, select the Ecore model that we have created and name the new Genera-

tor Model. The EMF Generator Model is used to generate the model code, the

factory classes and implementation classes in Java code for the Ecore Model.

It also generates the Edit code, Editor code and test code for the Ecore Model

we are developing. Figure 4.4 shows the Generator Model for SelfLetClipse2

The commands available are described as follows:

Generate Model Code : Generate the Model Code for the Ecore Model

that are located in the current project in the workspace, classes include:

the Model Classes, the Factory Class and Adaptor Class. Because EMF

and GEF follow the Model View Controller paradigm, this Model Classes

can be seen as the Model in MVC programming model.

Generate Edit Code : Generate the Edit Code for the Ecore Model that

are located in a separate project with the name formatted as modelPro-

ject.edit. This project contains the Provider classes for the Model, that

handles the getter/setter methods for the Model Classes.

Generate Editor Code : Generate the Editor Code for the Ecore Model

that are located in a separate project with the name formatted as model-

Project.editor. This project contains the classes and functions for the Ed-

itor of the Model, all of the necessary extension points and dependencies

for adding a complete Editor to the Eclipse Plugin Runtime Platform.

We will see this in section 4.4

Generate Test Code : Generate the Test Code for the Model Classes in a

separate project with the name formatted as follows: modelProject.tests.

Generate All : Generate all the codes in all projects described above, this is

often the convenient command that is most useful when there are small

changes in the Ecore Model that need to be updated to all the codes. In

this implementation, we have chosen to use this method for our Model

code, Model Edit code and Model Editor code because we do not make

27

The meta-model and the EMF Editor

any changes to these ones. The customization for the diagram graphical

editor happens only in the modelProject.diagram project, which is in the

next Chapter.

Figure 4.4: The SelfLetClipse2 EMF Generator Model with the pop up

menu

4.4 The EMF Editor

Because the EMF Framework is based on the general Eclipse Platform Frame-

work so the Editor that it creates also enjoys all of the functionalities of the

standard Eclipse Platform Environment, such as the Menus, Toolbars, Views,

Perspectives, Project Explorer, etc... The Editor also has a wizard that allows

developers to quickly add a new model file into the working project workspace.

The Editor created allows us to right click on the Top Level Domain Element

and add their children using the intuitive menu as in Figure 4.5. Developer

can also view the created domain data model in XML Editor or in a Standard

Eclipse Text Editor. The Figure 4.6 shows an example of the Editor in action,

the persisted data is saved into the parallel XML file in the File System.

28

4.4 The EMF Editor

(a) The new SelfLetClipse2 EMF Model Wizard added to the

standard Eclipse platform

(b) The new SelfLetClipse2 EMFModel Wizard with selection

of top level element

Figure 4.5: The new SelfLetClipse2 EMF Model Wizard

29

The meta-model and the EMF Editor

Figure 4.6: The SelfLetClipse2 EMF Model Editor

4.5 Conclusion

In this Chapter, we have shown the meta-model that we are going to use to

build the graphical editor for the SelfLet framework. Creating the EMF

Editor correctly is the critical step towards the creation of the graphical editor

using the GEF and GMF frameworks, because if the EMF Editor does not

reflect well the domain data model then the next step would totally be a failure.

In this Chapter, we have built the EMF Editor carefully and tested the result

in the Eclipse Runtime Configuration Environment. In the next Chapter, we

will see how the three frameworks EMF, GEF, GMF are employed to build

the graphical editor for the SelfLet environment.

30

Chapter 5

The implementation details

5.1 Introduction

In this Chapter, we go through the steps for building the graphical editor using

the combination of the three frameworks: EMF, GEF and GMF. We have

seen in the previous Chapter how we used the EMF for creating the Ecore

Model and the corresponding EMF Editor for our SelfLetClipse2 graphical

editor. In this Chapter, we go into details the remaining steps which include

defining the graph, creating the tool, defining the mapping, transforming the

mapping to the generator model, generating the diagram code, customizing the

diagram code, adding Auditing containers and finally testing the diagram in

the Eclipse Runtime Workspace. But first, in the next section, we talk about

the installation prerequisites.

5.2 Installation prerequisites

We use Eclipse Helios the classic 3.6.2 version that can be downloaded from

this link: [10], the reason for choosing this Eclipse Helios is the stability of

the GMF Framework which enables us to focus our attention to developing

the graphical editor but not on catching up with the newest capabilities that

the frameworks provide. The result graphical editor is of course deployable

into Eclipse Indigo, the latest release [11] at the time of writing. The second

installation requirement is the Eclipse Modeling Tools which include the EMF,

the GEF and the GMF. These frameworks can be installed using the Eclipse

The implementation details

Helios Update site from the standard Eclipse framework choosing the “Model-

ing” category. Figure 5.1 shows a screenshot of this dialog. The following lists

the packages that need to be installed:

EMF - Eclipse Modeling Framework SDK : The full EMF SDK for de-

velopment.

Graphical Editing Framework GEF SDK : The full GEF SDK for de-

velopment.

Graphical Modeling Framework (GMF) Runtime SDK : The run-

time for the GMF

Graphical Modeling Framework SDK : The full GMF SDK for develop-

ment.

Besides that, we also need to install the “Plugins Development Tools” for

various functionalities, project templates and perspectives that are suitable for

developing an Eclipse Plugin.

That concludes the installation requirements for our graphical editor. The

next Section goes into details the steps in creating a Graphical Editor using

the GMF Framework.

5.3 Defining the Graphical Definition Model

In the previous Chapter, which we have shown the GMF Dashboard in Figure

4.1, we have examined the Domain Ecore Model (.ecore) and the Domain

Gen Model (.genmodel) along with the EMF Editor. As we can see from

the dashboard, the next step would be to define the graph or the graphical

definition model (.gmfgraph).

The easiest way to create the Graphical definition Model is to let the GMF

Framework to create automatically for us, however, we still have to add and

customize a lot of items within the model created. Figure 5.2 shows the final

result of our SelfLetClipse2 editor’s graphical definition model. To start

the automatic process of creating the graphical definition model, the GMF

Dashboard has a convenient command “Derive” from the “Domain Model”

(.ecore) to launch the “Graphical Definition Model” wizard. Figure 5.3 shows

32

5.3 Defining the Graphical Definition Model

Figure 5.1: Eclipse Helios standard dialog for installing new software, the

installation requirements are: EMF, GEF, GMF and the Plugins Development

Tools

33

The implementation details

an example of definition wizard when we have selected the top level domain

element as the SelfLet. The following list shows the definition of the available

selection in the wizard, as well as the graphical definition created.

Node : The selected domain element is created as a Node, the standard

creation is a FigureDescriptor with a rectangle and a label. The rectangle

represents the graphical definition for the domain element selected, while

the label might be one of its attributes.

Link : The selected domain element is created as a Link, usually it is a

polyline connection without the decorator

Label : The selected attribute is created as a Label in the graphical definition.

Figure 5.2: The SelfLetClipse2 Graphical Definition Model

After the generation phase, we might have the graphical definition that

is not really suitable for our purpose but with basic structure. The top level

element is the Canvas that the user is going to draw on, on this canvas, there are

34

5.3 Defining the Graphical Definition Model

Figure 5.3: The Graphical Definition Model wizard assistance

several children, the most interesting and difficult to construct is the Figure

Gallery. This is where all the definitions of the graphical editor is created.

The following shows a list of items we have used in the graphical definition

for SelfLetClipse2. Of course there might be rooms for improvement in this

graphical definition for the editor to look better.

Figure Gallery : contains all the Figure Descriptor for the graphical editors,

this is the first place that we have to make modifications and additions.

In the SelfLetClipse2, we have the Figure Descriptors for the following

items:

ServiceFigure : This is the top level Figure that is a rectangle and

contains a label for Service Name and a compartment for its corre-

sponding Elementary Behavior Figure and Complex Behavior Fig-

ure. Elementary Behavior Figure and Complex Behavior Figure are

positioned vertically by customizing the diagram code later in the

next Chapter.

35

The implementation details

ElementaryBehaviorFigure : This is the Figure for the Elementary

Behavior, it is a rounded rectangle with a label for Behavior name

and a rectangle compartment for storing inside its States.

ComplexBehaviorFigure : This is the Figure for the Complex Behav-

ior, it is also a rounded rectangle with a label for Behavior name

and a rectangle compartment for storing its various States.

InitFigure : The Figure for the Initial State in the Elementary Behav-

ior Figure or Complex Behavior Figure, it is an Ellipse with black

background with small size.

FinalFigure : The Figure for the Final State in the Behavior Figure,

it is an Ellipse with an ellipse inside and bigger size than the Initial

State.

IntermediateStateFigure : The Intermediate State in the Complex

Behavior Figure, it is a rectangle with no label but contains another

rectangle compartment for storing Action Figure.

InvocationStateFigure : The Invocation State in the Elementary Be-

havior Figure, it is a rectangle with no label but contains another

rectangle compartment for storing the Action Figure.

StateNameLabelFigure : The Label for the State Name

ActionBodyLabelFigure : The Label for the Action Body

StateNextFigure : The polyline connection Figure for transition be-

tween States in the Behavior Figure. It uses a decoration on one

side of the connection for enabling the arrow like connection.

Node : The Actual Node drawable in the Canvas, it specifies the Figure

Descriptor as described earlier. So in our Canvas, there are the following

Nodes: Initial State Node, Final State Node, Intermediate State Node,

Invocation State Node, Service Node, Elementary Behavior Node, Com-

plex Behavior Node.

Connection : The Actual Connection drawable in the Canvas, in our Canvas,

there is only one Connection that connect between States in the Behavior

Figure.

36

5.4 Creating the Palette Creation Tool

Compartment : The Actual Compartment drawable in the Canvas, we have

in total 5 compartments: Service Compartment, Elementary Behav-

ior Compartment, Complex Behavior Compartment, Intermediate State

Compartment, Invocation State Compartment.

Diagram Label : The actual Diagram Label that can be drawn in the Can-

vas.

With the Graphical Definition Model ready, we are ready to create the

Creation Tool for the Palette in the next Section.

5.4 Creating the Palette Creation Tool

The Palette Creation Tools are the tools that the user can use to draw an item

into the Canvas. The GMF Dashboard can be used to assist the creation of the

Creation Tools. The “Derive” command from the Domain Model to Creation

Tool in the GMF Dashboard enables us to create automatically our desired

Creation Tools.

In SelfLetClipse2, we envisioned a diagram palette with the follow-

ing creation tools: (The order has been changed to reflect the logic of the

SelfLetClipse2 editor)

Elementary Behavior : Creation Tool for drawing the Elementary Behavior

inside the Service

Complex Behavior : Creation Tool for drawing the Complex Behavior in-

side the Service

Initial State : Creation Tool for drawing the Initial State inside the Elemen-

tary Behavior or Complex Behavior

Final State : Creation Tool for drawing the Final State inside the Elemen-

tary Behavior or Complex Behavior.

Intermediate State : Creation Tool for drawing the Intermediate State in-

side the Complex Behavior.

Invocation State : Creation Tool for drawing the Invocation State inside

the Elementary Behavior.

37

The implementation details

Action : Creation Tool for drawing the Action inside the Elementary Behav-

ior or Complex Behavior.

State Connection : Creation Tool for drawing the Connection between the

States.

There is no Creation Tool for Service, as we create one Service by default

when user creates a new graph. We will see how to do that in Section 5.8.

With each Creation Tool, we can specify the Default Image or Bundle

Image for the small icon and big icon. These icons files are imported into the

project sources as resources files. The Figure 5.4 shows the final result of our

Creation Tool.

Figure 5.4: The SelfLetClipse2 Palette Creation Tool Definition

5.5 Determining the Mapping

The next step as shown in the GMF Dashboard is combining the Domain

Model, the Graphical Definition Model and the Creation Tools into the Map-

ping Model (.gmfmap). This mapping model is the way we tell the GMF

38

5.5 Determining the Mapping

Framework how we would like to combine our domain model with the graph-

ical model and the creation tool. The “Combine” command from the three

elements into the Mapping Model in the GMF Dashboard helps us to initial-

ize the wizard to do the mapping. The final result of the SelfLetClipse2

Mapping Model is shown in Figure 5.5. We briefly describe the Mapping for

our SelfLetClipse2 Editor as it is the most important part of designing the

graphical editor using the GMF Framework.

Mapping : The container for the Mapping of elements, it is obligatory ele-

ment.

Canvas Mapping : This is the first element in the mapping, it specifies

which domain model and element we are working on, in our case, it is

the SelfLet. It specifies which Palette we are working on, that is the

Creation Palette we have created earlier. It also specifies which Diagram

Canvas we are drawing into, that is the graphical definition model we

have created earlier.

Top Node Reference : The outer most mapping element in the editor, in

this mapping, we have chosen to specify the Containment Feature as the

Selflet.service:Service so that the first node to draw in the diagram is the

Service. A little explanation is necessary here about the Containment

Feature, it is known as by-value aggregation in UML, containment is a

stronger type of association that implies a whole-part relationship: an

object cannot, directly or indirectly, contain its own container; it can

have no more than one container and its life span ends with that of its

container.

Node Mapping : The first Node Mapping for Service contains the labels

for Service Name and two Child References for Elementary Behavior

and Complex Behavior. Elementary Behavior in turn contains the Node

Mapping with a label and three Child Reference for Initial State, the

Invocation State and the Final State. Complex Behavior contains the

Node Mapping with a label and three Child Reference for Initial State,

the Intermediate State and the Final State. Child Reference for Invoca-

tion State and Intermediate State are worth talking about because they

contain Node Mapping with Child Reference to Action. Each Action

39

The implementation details

then has its own Node Mapping to the Diagram Label ActionBodyLa-

bel. Each Node Mapping has its own Element in the Domain Model,

its Diagram Node in the Graphical Definition Model and its Creation in

the Palette. The concept continues with other Node Mapping and Child

Reference.

Link Mapping : Link Mapping specifies what happen when user uses the

Palette Creation Tool to connect between one Node in the Diagram to

the other. In our SelfLetClipse2, we use only the connections be-

tween States, so, the containment feature is the State.next:Condition,

the Element is the Condition Element, the Target Feature is the Condi-

tion.targetState:State, the Creation Tool is the State Connection in the

Palette and the Diagram Link is the Connection StateNext.

Figure 5.5: The SelfLetClipse2 Mapping Model

In this mapping, we can also define the Audits Container which is used to

validate the graphical diagram that users create with our specific constraints,

for example, to restrict only one Invocation State can be inserted into the

40

5.6 Transforming the Generator Model

Elementary Behavior. The language that is used to define the Audits Control

is OCL - The Object Constraint Language [17]

5.6 Transforming the Generator Model

After we have finished defining the Mapping Model for our SelfLetClipse2

editor, we can use the convenient command in the GMF Dashboard called

“Transform” to create the Diagram Editor Generator Model (.gmfgen). This

is the helper file in creating the diagram code project. In this Generator

Model, we can specify the domain model file extension, the graphical editor

file extension, apart from many other features of the graphical editor that we

are going to create. While transforming the mapping model to the generator

model, GMF also allows us to transform into a Rich Client Platform RCP[14].

In this implementation, we have chosen to implement SelfLetClipse2 as a

Plugin for the Eclipse Platform, so we do not choose RCP as the option.

5.7 Creating the Diagram project

The Diagram project can be created using the command “Generate Dia-

gram Editor” available in the GMF Dashboard. This activates the process

of generating the source code for the diagram project in the workspace, the

name format is “modelProject.diagram”. Up to now we have five projects in

the workspace “modelProject”, “modelProject.edit”, “modelProject.editor”,

“modelProject.tests”, “modelProject.diagram”. If there are no build errors

in the workspace (normally the generated code does not contain any errors if

we do everything correctly, otherwise it informs us where the errors are). We

can start a new Runtime Configuration to test the editor and add some test

diagrams by using the wizard created by the diagram project. However, we

are not able to add anything into the Drawing Canvas, as we have chosen to

not include the Service Creation Tool. Next step, we have to customize the

Diagram code to do our modification.

41

The implementation details

5.8 Customizing the Diagram

The following customizations have been made to the Diagram project in order

to get the desired Editor as we have seen in Chapter 3.

• Adding automatically the Service Figure when the new Diagram is cre-

ated.

• Creating the Vertical Layout for the Elementary Behavior and Complex

Behavior in the Service Figure.

• Enabling the File Selector in the Properties view in order for selection

of the Abilities File with .jar extension

• Copying automatically the Abilities .jar file when user selects it from the

dialog and putting it into the project workspace and storage file system.

• Creating automatically the Action file template and Action Body when

an Action is added in the State in the Elementary Behavior or Complex

Behavior.

The source code shown the specific actions taken for these customization

are omitted because later in Section 5.10, we will talk about the source version

control used in SelfLetClipse2 that enables us to see the differences we made

to each commits.

5.9 Integrating with the previous SelfLetClipse

The IDE SelfLetClipse developed by Calcavecchia [4, 2, 5] has integrated

three wizards for the creation of SelfLet project, SelfLet Goal and SelfLet

Behavior. In this new editor SelfLetClipse2, we would like to integrate

one existing wizard: the SelfLet wizard to create the SelfLet project in

the workspace, we take dependencies of SelfLetClipse2 for the previous

SelfLetClipse and rewrite the “performFinish” function of the wizard to

create the new project structure of the SelfLet and new diagram with the

new editor.

We rename the SelfLet Goal with the SelfLet Service in order to let

SelfLet developers to add new Service into the project, however, at the end of

42

5.10 The source version control

the wizard, we rewrite the “performFinish” function to create the new diagram

and diagram domain model based on the new editor implemented.

In doing this, the existing SelfLet developers have little difficulties in

getting familiar with the new editor and project structure.

5.10 The source version control

We have implemented SelfLetClipse2 in Eclipse and we used heavily Git[6]

as our source control system, each small change is committed to Git so that

the committed message makes sense. The project is uploaded into GitHub[16]

as the repository for sharing and collaborating. Up to the time of writing, 38

commits have been created for SelfLetClipse2 as can be seen in Figure 5.6.

Because the GMF Framework uses the generated code as the main methods for

creating diagram editors, some of our modifications might be lost if we tried to

delete the whole project and regenerate again, one can use the Rewrite History

function of Git to move the commits with [.diagram project] message to the

top. By doing this, the changes made specifically to diagram project code

remain.

Figure 5.6: The Git Commit History of the graphical editor SelfLetClipse2

43

The implementation details

The SelfLetClipse2 project is located at: [20]

5.11 Conclusion

In this Chapter, we have gone through the whole process of creating the

complete graphical editor using the GMF Dashboard as an assistance to our

process, however, modifications are necessary and customizations to the final

graphical editor also requires some investigations. We have strongly been con-

vinced that by combining the three frameworks EMF, GEF and GMF, we can

create astonishing graphical editors for any domain model and use the data

underneath for various processing and management purpose.

In the next Chapter, we will walk through some examples of creating the

graphical diagrams for Service with Elementary Behavior and Service with

Complex Behavior.

44

Chapter 6

The example of creating a

SelfLet project

6.1 Introduction

In order to show the advantages of using the newly developed integrated de-

velopment environment, in this Chapter, we will show the main characteristics

of SelfLetClipse2 using an example of creating different SelfLet projects

to be deployed in the Cloud. Three SelfLets to be created are: SelfLet

with cloud optimization policy, Cloud Manager , Cloud SelfLet. In the paper

by Calcavecchia et. al.[3] “Developing applications in the Cloud through the

SelfLet framework”, these entities have been explained very clearly, here, we

summarize the description:

SelfLet with cloud optimization policy : the SelfLet that provides ser-

vices whose execution is independent of the physical hosting context.

Cloud Manager : the most important SelfLet and owns the informa-

tion required to access the cloud infrastructure. It interacts with the

Infrastructure-as-a-Service provider API to start, terminate and manage

the Virtual Machine instances execution.

Cloud SelfLet : the SelfLet that is hosted on a Virtual Machine instance

in the cloud.

The example of creating a SelfLet project

6.2 Project initialization

The SelfLet project is created using the SelfLet wizard that is available in

SelfLet category when user selects the menu File -> New -> Other... of the

standard Eclipse framework. Figure 6.1 shows the screenshot of the SelfLet

category along with three items:

Figure 6.1: The SelfLetClipse2 SelfLet category with three items: SelfLet,

SelfLet Service, SelfLet Service Diagram

SelfLet project is created using the SelfLet wizard. Here we describe

each of the wizards available in the Figure:

SelfLet : For creating the SelfLet project in the workspace. This wizard

guides the developers from defining the SelfLet properties to adding the

main Service into the SelfLet. After finishing the wizard, a SelfLet

project with the basic structure is created and a service diagram and

service data model are created.

SelfLet Service : For creating new Service and Service Diagram at the

same time.

46

6.2 Project initialization

SelfLet Service Diagram : For creating only Service Diagram, this Ser-

vice Diagram may serve as the reference for other behavior implementa-

tion intermediate state in other SelfLet.

By selecting the SelfLet wizard, the next step in the wizard is defining

the properties of the SelfLet.

Figure 6.2 shows how we define the properties of the different SelfLet

projects.

After specifying the SelfLet properties, developers are asked to give the

main Service description. This includes the Service name and its inputs, out-

put parameters. Output parameter is specified using the checkbox before the

parameter name (It’s how the previous SelfLetClipse was done.)

Figure 6.3 shows the description of the Video Search Service for the Cloud

Optimization Policy SelfLet with its name and input, output parameters.

After finishing the SelfLet wizard, the standard SelfLet project is created

in workspace with the following folders:

• abilities : the folder container for storing the abilities files in .jar format.

These files are called by the Invocation States in the Elementary Behav-

ior’s implementation. When first created, this folder does not contain

any item, SelfLet developers have to develop the specific task for the

elementary behavior and use the File Selector in the Invocation State’s

Action property to copy the ability file into this folder. The files are then

copied into the project workspace and in parallel into the file system.

• actions : contains the actions of the States in the Behavior Implemen-

tations of all the Services inside the current SelfLet. This action files

are block of codes that serves as the template for adding further Actions

using the standard java language. Parameters in Action files are sub-

stituted by the Execution Manager each time the Execution Manager

parses successfully the parameters in the Action files.

• behaviors : contains the diagram files and domain model files for the

diagram editor of Behavior Implementation of the Services. Diagram file

is edited using the “Service Diagram Editing” Editor that we created in

the last Chapter, the elements in the Diagram are saved in parallel into

the xml domain model file.

47

The example of creating a SelfLet project

(a) Cloud SelfLet Optimization Policy

(b) Cloud Manager

(c) SelfLet Cloud

Figure 6.2: The creation of three SelfLet projects using the wizard

48

6.2 Project initialization

Figure 6.3: The SelfLetClipse2 Service description

• conditions : contains the condition files that are written in XML that

specifies the transitioning condition between one state and the other

in the Elementary Behavior or Complex Behavior implementations of a

Service.

• rules : contains the rules for the entire SelfLet project, rules are written

in Drools language.

• services : contains the services description of the SelfLet project, ser-

vices descriptions are stored as XML file with name, input, output prop-

erties.

• selflet.xml : contains the xml description of the SelfLet project, prop-

erties that developers declared in the wizard, all the files and folders

existing in the SelfLet project.

Figure 6.4 shows the screenshot of the project after creation using the

SelfLet wizard. It contains the folder structures as described above, and a

default Service container for adding implementation behaviors into it. This

default Service has the name the same as the name of the Service domain

model file, which is: serviceName.service. In the next Section, we add the

Complex Behaviors for the corresponding SelfLet projects.

49

The example of creating a SelfLet project

Figure 6.4: The SelfLetClipse2 initial project creation template

6.3 Adding Complex Behavior Implementa-

tion

The creation tool “Complex Behavior” in the Palette is used to add Complex

Behavior implementation into a Service. It is also positioned vertically inside

the Service rectangle. Adding more Complex Behavior is done by selecting the

Complex Behavior and clicking on the area outside of the existing Elementary

Behaviors or Complex Behaviors of the Service.

Complex Behavior has its Name displayed as a label and the property

Name can be changed immediately when the Complex Behavior is added into

the diagram or with the properties View of the Eclipse Platform (Eclipse ->

Window -> Show View -> Other -> Properties).

6.3.1 Adding States into the Complex Behavior Imple-

mentation

Complex Behavior implementations are also expressed using the State Dia-

grams the same as Elementary Behavior. The following list shows the steps

which can be used to add States into the Complex Behavior:

• Use the creation tool “Initial State” to add the Initial State into the

Complex Behavior implementation the same as Elementary Behavior.

• Use the creation tool “Intermediate State” to add the Intermediate State

into the Complex Behavior implementation. Developer needs to specify

50

6.3 Adding Complex Behavior Implementation

its Name, so this Name can be used to create the Action file path and

Action file template. Many Intermediate States can be added into the

Complex Behavior diagram without causing the SelfLetClipse2 IDE

to validate any errors. These Intermediate States can have connection

between each others.

• Use the creation tool “Action” to add the actual Action into this In-

termediate State. Action for this Intermediate State contains only the

Action file property and Action body.

• “Action file” property is created automatically by the SelfLetClipse2

IDE. The format of the Action file template created in the project

workspace is the same as in the Elementary Behavior section above: ser-

viceName.complexBehaviorName.stateName.action. “Body” property

is created for viewing purpose with the format as “do /actionFile-

Name.action”

• Use the creation tool “Final State” to add as many Final States into the

Complex Behavior implementations as desired.

• Create the connection between the States by using the State Connection

creation tool, drag from Initial State to the Intermediate State, and

from Intermediate State to other Intermediate States or Final States.

The implementation is considered valid if from the Initial State there is

always a path to the Final States, and every States must be able to reach

the Final States by following a certain path.

• Click on the connection and open the Properties View to see its own

properties. Moving between States requires a State to satisfy a certain

condition, this condition is specified in the Condition File property of

the connection. All condition files are saved in the “conditions” folder in

the workspace.

The resulting Complex Behavior implementation for Cloud Manager can

be seen in Figure 6.5

The Complex Behavior implementation for SelfLet with Cloud Optimiza-

tion Policy can be seen in Figure 6.6

51

The example of creating a SelfLet project

Figure 6.5: The Cloud Manager Complex Behavior implementation

Figure 6.6: The SelfLet with Cloud Optimization Policy Complex Behavior

implementation

52

6.4 Adding Elementary Behavior Implementation

The Complex Behavior implementation for Cloud SelfLet can be seen in

Figure 6.7

Figure 6.7: The Cloud SelfLet Complex Behavior implementation

6.4 Adding Elementary Behavior Implemen-

tation

SelfLet developers use the creation tool “Elementary Behavior” in the Palette

to add Elementary Behavior implementation into a Service. This Elementary

Behavior is positioned vertically inside the Service rectangle. Adding more

Elementary Behavior is done by selecting the Elementary Behavior and clicking

on the area outside of the existing Elementary Behaviors or Complex Behaviors

of the Service.

Elementary Behavior has its Name displayed as a label and the property

Name can be changed immediately when the Elementary Behavior is added

into the diagram or with the properties View of the Eclipse Platform (Eclipse

-> Window -> Show View -> Other -> Properties).

53

The example of creating a SelfLet project

6.4.1 Adding States into the Elementary Behavior Im-

plementation

In designing of the SelfLet, we have chosen to describe the behaviors of

any Service as the State diagram. Elementary Behavior inherits this feature.

The following list shows the steps which can be used to add States into the

Elementary Behavior:

• Use the creation tool “Initial State” to add the Initial State into the

Elementary Behavior implementation.

• Use the creation tool “Invocation State” to add the Invocation State into

the Elementary Behavior implementation. Developer needs to specify its

Name, so this Name can be used to create the Action file path and Action

file template. Only one Invocation State can be added into the Diagram,

adding more Invocation State into the Elementary Behavior causes the

SelfLetClipse2 IDE to raise a problem into the current file. This prob-

lem can be seen by using the standard Eclipse Platform Problems view

(Eclipse -> Window -> Show View -> Other -> Problems).

• Use the creation tool “Action” to add the actual Action into this Invo-

cation State. Action does not have Name, but they have 3 properties.

• Open the Properties view of the Eclipse Platform, click on the current

Action to see its properties. The property Ability File needs to be set so

that the current Invocation State does some real ability.

• Click on the three dots button next to the Ability File field to choose

the Abilities file with .jar extension. The dialog has been fixed to enable

choosing only the .jar files.

• “Action file” property is created automatically by the SelfLetClipse2

IDE when it detects the valid .jar file has been selected. The format of

the Action file template created in the project workspace is the follow-

ing: serviceName.elementaryBehaviorName.stateName.action. “Body”

property is created for viewing purpose with the format as “do /action-

FileName.action”

54

6.5 Adding More Services

• Use the creation tool “Final State” to add one Final State into the Ele-

mentary Behavior implementation.

• Create the connection between the States by using the State Connection

creation tool, drag from Initial State to the Invocation State, and from

Invocation State to Final State.

The resulting Load Cloud SelfLet Elementary Behavior implementation of

the Cloud SelfLet project can be seen in Figure 6.8

Figure 6.8: The Cloud SelfLet - Load Cloud SelfLet Elementary Behavior

implementation with its properties view

Other elementary behavior implementations for other Services and

SelfLets are omitted as they have the same structures with the one described

here.

6.5 Adding More Services

Adding new Service is done by going through the wizard SelfLet Service in

the SelfLet category as we saw in Figure 6.1. The wizard takes the developers

to the description page of the Service where developers can enter the Service

Name and input, output parameters.

55

The example of creating a SelfLet project

On finishing the wizard, three files are created in the project workspace:

Service description file in “services” folder, Service Diagram and Service Dia-

gram Model file in “behaviors”.

The Service Diagram created has the empty Service container for storing

Behavior Implementations in the State Diagrams. The name of the Service is

given as default as the name of the Service domain model file.

6.6 Adding More Service Diagrams

Additional Service Diagram can also be added to the project in the workspace

without having to create a new Service description. This is done by using the

wizard SelfLet Service Diagram in Figure 6.1. This wizard asks the developers

only the name for the Service domain model data file and Service diagram file

names.

The result is the Service Diagram and Service Diagram Model file with the

Service having its name as the name of the Service Diagram Model file.

6.7 The project structure and packaging the

SelfLet

In this implementation of the SelfLetClipse2 IDE, we have tried to make it

easier for SelfLet developers to add their own abilities .jar files by providing

the File Selector in the properties of the Action in the Invocation State of

Elementary Behavior. Action file is created automatically as the templates

for assisting SelfLet developers to add their own implementations. All the

files are then saved into the file system within the project workspace. This

folder structure might be packaged in a .zip folder as a self-managing package

to deploy in the execution environment.

6.8 Conclusion

At this point, we have reached the final phase of creating three different

SelfLets projects using the new SelfLetClipse2 IDE available as the plugin

for Eclipse. The resulting graphical editor allows the SelfLet developers to

56

6.8 Conclusion

create their own fantastic graphical diagrams for SelfLet behavior implemen-

tations, the diagram domain data is saved in parallel in XML makes it possible

to handle processing of the implementations by the Behavior Execution Man-

ager and other Execution Environment in the SelfLet Framework.

In the next Chapter, we will make important conclusion and suggestions

for future works of the project.

57

Chapter 7

Conclusion and Future Works

7.1 Conclusion

In this thesis work, we have reached the final goal of implementing a new

integrated development environment for the SelfLet framework within the

context of autonomic computing. We would like now to summarize the impor-

tant points in this work:

• In the first Chapter, we have briefly introduced autonomous computing

concepts and how the SelfLet framework is related to this context.

• The internal structure of the SelfLet autonomous element is examined

in details in the next Chapter, following by the conceptual model and the

previous implementation of the SelfLet, the SelfLetClipse version 1.0

that supports three different wizards and context checks in the standard

Eclipse Runtime Platform.

• In the next Chapter, we have presented the many new features of the new

editor for the SelfLet environment, the SelfLetClipse2, in the heart of

the editor is the graphical editor with the capability of creating stunning

graphical diagrams suitable for Elementary Behavior implementations

and Complex Behavior implementations of one or many Services in a

SelfLet project. This graphical editor comes with a Palette for selecting

the proper creation tools to draw into the diagram canvas, the Properties

View is used as a method for SelfLet developers to add extra attributes

and ability/action files into the SelfLet project in the workspace. In the

Conclusion and Future Works

same Chapter, we have walked through a standard SelfLet development

lifecycle.

• In the Chapter 4 we have introduced the meta-model for the graphical

editor that we used for the implementation. This meta-model enables us

to create the valid EMF editor for the domain data model. Having this

EMF editor is the very important part of building the graphical editor

because it ensures the correctness of the graphical editor on the domain

data created.

• Chapter 5 walks through the remaining steps in creating the graphical

editor for the SelfLet Service’ Behavior implementations. Following the

steps as described, one can easily make modifications to any part of the

diagram from the Palette, to the Properties View, to the graphical repre-

sentation of the elements in the graph. This enables great customization

and enhancements for future improvements.

• The Chapter 6 has gone through a complete example of making a

SelfLet project with the graphical diagram using the SelfLetClipse2

wizards and diagram palette.

7.2 Future Works

Due to the time limit, in this thesis work, an evaluation of how the SelfLet

developers use the new SelfLetClipse2 to create their preferred SelfLet

projects has not been taken. This evaluation must be done carefully in order to

create the user-friendly graphical editor and integrated development environ-

ment for the SelfLet developers. One of the possibilities from this evaluation

is the validity checks for the SelfLet being developed such as syntax checking,

missing behaviors, checks on conditions, supports for autonomous policies that

are written in Drools language, etc...

Another possibility is the support for the deployment of the newly created

SelfLets. The developers must be able to design and run the SelfLets easily

from the same interface.

Other improvement for the SelfLetClipse2 IDE might be the integration

of Xtext[15] as the primary editor for the SelfLet configuration file, SelfLet

60

7.2 Future Works

developers then use this editor to insert autonomous elements into the SelfLet

project. This requires combining Xtext with the three frameworks used in this

thesis work: EMF, GEF and GMF for the complete integration between the

Xtext editor and the graphical editor. All changes made in the Xtext editor

should be reflected in the graphical editor and vice versa. The new process for

creating the SelfLet project would be:

• SelfLet developers use the wizard to create the standard SelfLet

project as in SelfLetClipse2. At the end of the project creation, the

project folder structure is created in the workspace with the default di-

agram and the Xtext editor for the SelfLet configuration.

• SelfLet developers can either use the Xtext editor to add autonomous

elements into the project or use the wizards to accomplish the same thing.

The Xtext editor contains a parser/compiler for analyzing elements in

the configuration and adds/removes the corresponding elements to/from

the SelfLet project.

• SelfLet developers use the SelfLetClipse2 graphical editor to add the

Service Behavior Implementations diagrams.

61

Bibliography

[1] S. Bindelli, E. Di Nitto, R. Mirandola, and R. Tedesco. Building auto-

nomic components: The SelfLets approach. Automated Software En-

gineering - Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM

International Conference, pages 17 – 24, Sept 2008.

[2] N. M. Calcavecchia, D. Ardagna, and E. Di Nitto. The Emergence of Load

Balancing in Distributed Systems: the SelfLet Approach. Springer Basel,

2010.

[3] N. M. Calcavecchia, D. Ardagna, E. Di Nitto, and A. Gandini. Developing

applications in the cloud through the selflet framework. Politecnico di

Milano, Italy, 2011.

[4] N. M. Calcavecchia and E. Di Nitto. Incorporating prediction models

in the selflet framework: a plugin approach. 1st International Workshop

on Run-time mOdels for Self-managing Systems and Applications. Pisa,

Italy, 2009.

[5] N. M. Calcavecchia, E. Di Nitto, D. J. Dubois, C. Ghezzi, V. Mazza,

and M. Rossi. Complex Autonomic Systems for Networked Enterprises:

Mechanisms, Solutions and Design Approaches. Adaptive infRasTructures

for DECentralized Organizations, 2011.

[6] Scott Chacon. Pro git, (http://progit.org/).

[7] JBoss Community. Drools the business logic integration platform, (http:

//www.jboss.org/drools).

[8] Software Freedom Conservancy. Argouml modeling tool, (http://

argouml.tigris.org/).

BIBLIOGRAPHY

[9] The Eclipse foundation. Eclipse editing framework, (http://www.

eclipse.org/modeling/gef/).

[10] The Eclipse Foundation. Eclipse helios sr2 packages, (http://www.

eclipse.org/downloads/packages/release/helios/sr2/).

[11] The Eclipse Foundation. Eclipse indigo package, (http://www.eclipse.

org/downloads/).

[12] The Eclipse foundation. Eclipse modeling framework, (http://www.

eclipse.org/modeling/emf/).

[13] The Eclipse foundation. Graphical modeling project, (http://www.

eclipse.org/modeling/gmp/).

[14] The Eclipse Foundation. Rich client platform, (http://www.eclipse.

org/home/categories/rcp.php).

[15] The Eclipse Foundation. Xtext, (http://www.eclipse.org/Xtext/).

[16] GitHub. Github social coding, (https://github.com/).

[17] Object Management Group. The object constraint language, (http://

www.omg.org/spec/OCL/2.0/).

[18] Markus C. Huebscher and Julie A. Mccann. A survey of autonomic com-

puting - degrees, models and applications. Imperial College London.

[19] J.O Kephart and D.M. Chess. The vision of autonomic computing. IEEE

Computer Society, 36:41 – 50, Jan 2003.

[20] Ngoc Hoang Pham. The selfletclipse2 editor on github, (https://github.

com/pnhoang/Selflet).

[21] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.

EMF: Eclipse Modeling Framework, Second Edition. Addison-Wesley Pro-

fessional, December 16, 2008.

[22] Zhenxing Zhao, Congying Gao, and Fu Duan;. A survey on autonomic

computing research. Computational Intelligence and Industrial Applica-

tions, 2009. PACIIA 2009. Asia-Pacific Conference, pages 288 – 291, Nov

2009.

64

