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Abstract

In the last decades, Static RAM (SRAM) Field Programmable Gate Ar-
rays (FPGAs) have become an attractive technology for the electronics
of embedded systems, for both fast prototyping and �nal production.
Their most attractive feature is the �exibility, related to the opportunity
of re-programming (or recon�guring) the device in a few clock cycles
and on-line, while the device is operating. This allows the system imple-
mented on the FPGA to be updated/upgraded, also remotely.
SRAM-based FPGAs are currently employed in many applicative do-

mains and their use is being investigated also for mission-critical appli-
cations, such as the space scenario, the reference settings for this thesis.
In fact, in the space environment, such devices are an attractive tech-
nology for the possibility of remote update/upgrade, coping with the
di�culty of system maintenance. Nevertheless, the harsh environmental
conditions and the long lifetime required for space systems prevent the
straightforward adoption of SRAM-based FPGAs, due to their suscepti-
bility to faults. In fact, this same environment is particularly critical for
static RAM technology, susceptible to physical phenomena that cause
both transient and permanent faults. Thus, appropriate tolerance and
recovery techniques are adopted; in general, fault tolerance techniques
are mostly based on spatial redundancy, whereas recovery ones exploit
the FPGAs' recon�guration capability, allowing to cope with the occur-
rence of faults by re-programming the faulty parts.
Indeed, hardened systems may require many resources due to their size

and complexity, hence a single device may not su�ce in terms of available
resources, and multi-FPGA solutions are taken into account and inves-
tigated. Furthermore, the availability of more devices on multi-FPGA
platforms can be exploited to increase reliability as the overall func-
tionality is spread over multiple devices, possibly also using redundant
implementations.
The research proposed in this PhD thesis �ts in the described scenario.

The aim is the de�nition of a reliability-aware methodology for the design
of embedded systems on multi-FPGA platforms. The designed system
must be able to detect faults occurrence globally and autonomously, in
order to recover or to mitigate the e�ects of the faults. Two categories
of faults are identi�ed, based on their impact on the device elements;
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i) non-recoverable faults, that are those that cause a permanent problem,
making the portion of the fabric unusable, and ii) recoverable faults,
transient problems that can be �xed without causing a lasting e�ect.
While some aspects can be taken from previous solutions available

in literature, several open issues exist. In fact, reliability techniques
have been widely addressed in the case of systems based on a single
FPGA, but the problem extended to multi-FPGA platforms has been
rarely taken into account. Indeed, the single FPGA approaches can not
be straightforwardly adopted for the multi-FPGA scenario, that poses
several challenges, as, for instance, the partitioning of the system among
the available devices. Furthermore, in the previous contributions, only
recoverable faults are usually targeted, whereas non-recoverable ones are
rarely analyzed. Thus, no complete design methodology handling all the
peculiar issues of the considered scenario has been proposed yet, a gap
we aim at �lling with our work.
Not only we de�ne the methodology in its relevant aspects, but we

also design and develop a framework for supporting the designer in its
application. The �nal system thus exposes reliability properties and
increases its overall lifetime and availability.
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Riassunto

Negli ultimi decenni, i dispositivi FPGA (Field Programmable Gate Ar-
ray) basati su SRAM (Static RAM) sono diventati una tecnologia di
interesse per l'elettronica dei sistemi dedicati, sia per la prototipazione
veloce che per la produzione �nale. La loro caratteristica di maggio-
re interesse é la �essibilitá, relativa all'opportunitá di riprogrammare
(o ricon�gurare) il dispositivo in pochi cicli di clock e on-line, mentre
il dispositivo é operativo. Questo permette di aggiornare/migliorare il
sistema implementato sulla FPGA, anche remotamente.
Le FPGA basate su SRAM sono attualmente impiegate in molti domi-

ni applicativi e il loro uso viene vagliato anche per applicazioni critiche,
come lo scenario delle missioni spaziali, di riferimento per questa tesi.
Infatti, nell'ambiente spazio, tali dispositivi sono una tecnologia di in-
teresse per la possibilitá di aggiornamento/miglioramento remoto, che
fa fronte alla di�coltá di manutenzione del sistema. Tuttavia, le di�-
cili condizioni ambientali e il lungo tempo di vita richiesto per i sistemi
per lo spazio ostacolano l'immediata adozione delle FPGA basate su
SRAM, a causa della loro sensibilitá ai guasti. Infatti, questo stesso am-
biente é particolarmente critico per la tecnologia RAM statica, sensibile
a fenomeni �sici che causano guasti sia transitori che permanenti. Di
conseguenza, vengono adottate appropriate tecnologie di tolleranza e re-
cupero; in generale, le tecniche di tolleranza sono per lo piú basate sulla
ridondanza spaziale, mentre quelle di recupero sfruttano la capacitá di
ricon�gurazione delle FPGA, permettendo di far fronte al veri�carsi dei
guasti riprogrammando le parti guaste.
Invero, i sistemi irrobustiti possono richiedere molte risorse a causa del-

la loro dimensione e complessitá, quindi un singolo dispositivo puó non
essere su�ciente in termini di risorse disponibili, e le soluzioni multi-
FPGA vengono prese in considerazione e valutate. Inoltre, la disponibi-
litá di piú dispositivi sulle piattaforme multi-FPGA puó essere sfruttata
per aumentare l'a�dabilitá poiché la funzionalitá globale é distribuita su
piú dispositivi, eventualmente anche usando implementazioni ridondanti.
La ricerca proposta in questa tesi di dottorato si inserisce nello scenario

descritto. L'obiettivo é la de�nizione di una metodologia orientata all'af-
�dabilitá per il progetto di sistemi dedicati su piattaforme multi-FPGA.
Il sistema progettato deve essere in grado di identi�care il veri�carsi di
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guasti globalmente e autonomamente, per recuperare o mitigare gli ef-
fetti dei guasti. Vengono identi�cate due categorie di guasti, in base al
loro impatto sugli elementi del dispositivo: i) guasti non recuperabili, che
sono quelli che causano un problema permanente, rendendo inutilizzabile
la porzione del dispositivo, e ii) guasti recuperabili, problemi transitori
che possono essere risolti senza causare un e�etto persistente.
Nonostante alcuni aspetti possano essere presi da soluzioni precedenti

disponibili in letteratura, esistono molti punti aperti. Infatti, le tecni-
che di a�dabilitá sono state ampiamente a�rontate nel caso di sistemi
basate su una singola FPGA, ma il problema esteso alle piattaforme
multi-FPGA é stato raramente preso in considerazione. Invero, gli ap-
procci per singola FPGA non possono essere direttamente adottati per
lo scenario multi-FPGA, che pone molte s�de, come, per esempio, il par-
tizionamento del sistema tra i dispositivi disponibili. Inoltre, nei contri-
buti precedenti, sono di solito trattati solo i guasti recuperabili, mentre
quelli non recuperabili sono raramente analizzati. Di conseguenza, non
é ancora stata proposta una metodologia di progetto completa che ge-
stisca tutti i problemi peculiari dello scenario considerato, un vuoto che
puntiamo a colmare con il nostro lavoro.
Non solo de�niamo la metodologia nei suoi aspetti rilevanti, ma inoltre

progettiamo e sviluppiamo una struttura che supporti il progettista nella
sua applicazione. Di conseguenza il sistema �nale espone proprietá di
a�dabilitá e aumenta il suo tempo di vita globale e la sua disponibilitá.
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1. Introduction

In the last decades, Field Programmable Gate Arrays (FPGAs) have es-
tablished themselves as target technology for both fast prototyping and
�nal production of embedded systems. Among the many di�erent fami-
lies, Static RAM (SRAM) FPGAs are the most used devices, since they
o�er various advantages with respect to other technologies. In particular,
the most attractive feature of SRAM-based FPGAs is their �exibility, re-
lated to the opportunity of re-programming (or recon�guring) the device
in a few clock cycles and on-line, while the device is operating. This al-
lows the system implemented on the FPGA to be updated/upgraded,
also remotely. For this reason, such devices are currently employed in
many applicative domains and their use is being investigated also for
mission-critical applications, for example the space ones, where the di-
rect maintenance of the system is a di�cult task.
Nevertheless, SRAM-based FPGAs are more susceptible to faults than

alternative solutions (for example, Application Speci�c Integrated Cir-
cuits, ASICs), thus they can not be straightforward adopted for mission-
critical applications unless reliability techniques are applied. In partic-
ular for space applications, considered as target scenario of the thesis,
reliability is a strict requirement due to the harsh environmental condi-
tions and the di�culty of system maintenance. The widespread di�usion
of this kind of devices has led to the investigation and de�nition of design
techniques and methodologies for hardening and recovering FPGA-based
systems, with the �nal aim of exploiting such systems also in mission-
critical scenarios. In general, hardening techniques are mostly based on
spatial redundancy, whereas recovery ones exploit the FPGAs' recon-
�guration capability, allowing to cope with the occurrence of faults by
re-programming the faulty parts.
Indeed, as hardened systems require many resources due to their size

and complexity, a single FPGA may not su�ce in terms of available
resources, and multi-FPGA solutions start being taken into account and
investigated. Furthermore, the availability of more devices on multi-
FPGA platforms could be exploited to implement a distributed engine
devoted to fault management. In fact, the use of multiple FPGAs provide
an increased reliability as the overall functionality is spread over multiple
devices, possibly also using redundant implementations.
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While fault detection and masking techniques have been widely ad-
dressed in the case of systems based on a single FPGA, the problem
extended to multi-FPGA platforms has been rarely taken into account.
The multi-FPGA scenario arises various issues, e.g. the partitioning of
the system among the available devices, and the single FPGA approaches
can not be straightforwardly adopted. In literature, no complete design
methodology handling all the peculiar issues of the considered scenario
has been proposed yet, a gap we aim at �lling with our work. In this
thesis, we de�ne a complete methodology for designing reliable embed-
ded systems on multi-FPGA platforms. In the following, the proposed
research is introduced. First, we will provide an overview of the research
and will highlight the main contributions of our work, presenting also
the list of publications where the various aspects of the research have
been presented.

1.1. Research overview and statement of

originality

The thesis proposes a reliability-aware methodology for designing embed-
ded systems on multi-FPGA platforms, with the �nal aim of exploiting
commercial SRAM-based FPGAs for mission-critical applications. The
idea is to achieve fault tolerance against faults by exploiting the recon�g-
urable properties of the devices. Two categories of faults are identi�ed,
based on their impact on the device elements, such that a physical dam-
age occurs or not; i) non-recoverable faults, that are those that cause
a permanent problem, making the portion of the fabric unusable, and
ii) recoverable faults, transient problems that can be �xed without caus-
ing a lasting e�ect. Recoverable faults can be mitigated by recon�guring
the system (and possibly only the faulty sub-system portion) with the
same con�guration used before fault occurrence, whereas non-recoverable
faults, being characterized by a destructive e�ect, lead to the necessity
of relocating the functionality to a non-faulty region of the device. The
designed system must be able to detect the occurrence of faults globally
and autonomously, in order to recover or to mitigate their e�ects. Thus,
the methodology allows the overall system to continue working even if
faults occur, increasing both system reliability and lifetime.
The main innovative contributions raised by this thesis are summarized

as follows:

• De�nition of an overall reliable multi-FPGA system with distributed
control architecture. Rather than making each FPGA an indepen-
dent fault tolerant sub-system, able to locally detect and recover
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from faults, we have envisioned a distributed solution, where each
FPGA on the platform is in charge of monitoring and, in case
of fault, recon�guring the other devices. The aim is to achieve
a higher level of reliability in the overall system, trying to avoid
the single point of failure characterizing the centralized solution
and requiring to be implemented onto a particular device (e.g., an
ASIC or an antifuse-based FPGA).

• Management of both recoverable and non-recoverable faults. In lit-
erature, only faults recoverable by recon�guring the FPGA are
usually targeted, whereas faults physically damaging the device
are rarely analyzed. Nevertheless, also faults of the latter type
have become relevant in the embedded systems design in the recent
past, due to the increasingly smaller device and wire dimensions
and higher operational temperatures, increasing the need to take
them into account next to the other faults. We propose a classi�-
cation strategy and its companion algorithm for the discrimination
of faults in FPGAs based on their impact on the device elements
and the consequent possibility to recover from them.

• Design of the engine in charge of implementing the suitable recovery
strategy based on the type of fault. We propose the design of the
controller in charge of managing the fault recovery of the multi-
FPGA platform, contributing to the creation of the reliable system.
More precisely, we introduce a reliability-aware Recon�guration
Controller, aimed at performing the envisioned fault classi�cation
and managing the recon�guration process of the faulty parts of the
architecture to mitigate fault e�ects.

• De�nition of a complete �ow for designing autonomous fault toler-
ant systems on multi-FPGA platforms. In literature, methodolo-
gies for the design of autonomous fault tolerant systems on multi-
FPGA platforms have not been proposed yet. We aim at �lling
this gap by introducing a complete �ow for designing such reli-
able systems. Furthermore, we describe the developed prototype
framework, that implements the �ow and automates, as much as
possible, the design, hardening, and implementation of the envi-
sioned systems.

The innovative points are covered throughout the thesis, that is struc-
tured as follows. Chapter 2 presents the motivations of the proposed
work and introduces the background elements useful to set the basis for
understanding the rest of the thesis. Chapter 3 describes the proposed
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reliability-aware design methodology, and Chapter 4 introduces the re-
lated design �ow and prototype framework. Chapter 5 presents the clas-
si�cation strategy and its companion algorithm for the discrimination of
faults into recoverable and non-recoverable. Chapter 6 introduces the
design of the reliability-aware Recon�guration Controller, aimed at per-
forming the fault classi�cation and managing the recon�guration process.
Chapter 7 discusses the methodology evaluation, performed by imple-
menting a real case study. Finally, Chapter 8 closes the presentation of
this research, drawing some conclusions and giving some possible future
research directions.

1.2. Publications

The various aspects of the research presented in this thesis have been
published in international conference proceedings and international jour-
nals. The list of papers is the following.

DFT'10 Cristiana Bolchini, David Merodio Codinachs, Luca Fossati,
Antonio Miele, Chiara Sandionigi, A reliable recon�guration con-
troller for fault-tolerant embedded systems on multi-FPGA plat-
forms, IEEE International Symposium on Defect and Fault Toler-
ance in VLSI and Nanotechnology Systems, 2010, pp. 191-199

The paper presents the �rst proposal of the controller in charge of
managing the fault tolerance of multi-FPGA platform. The raised
innovative points are the identi�cation of a distributed control ar-
chitecture, allowing the avoidance of single points of failure, and
the de�nition of an overall reliable multi-FPGA system.

ESL'10 Cristiana Bolchini, Chiara Sandionigi, Fault classi�cation for
SRAM-based FPGAs in the space environment for fault mitigation,
IEEE Embedded Systems Letters, Volume 2, 2010, pp. 107-110

The letter describes the �rst proposal of fault classi�cation al-
gorithm to discriminate between recoverable and non-recoverable
faults occurring in SRAM-based FPGAs. By considering space ap-
plications, the controller de�nition starts from a characterization
of the radiation e�ects and aging mechanisms.

IOLTS'11 Cristiana Bolchini, David Merodio Codinachs, Luca Fossati,
Chiara Sandionigi, A reliable fault classi�er for dependable systems
on SRAM-based FPGAs, 17th IEEE International On-Line Testing
Symposium, 2011, pp. 105-110
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The paper presents an enhanced and formally evaluated fault clas-
si�cation algorithm. With respect to previous approaches, included
the one described in the previous letter, the main contributions of
the work are the formal de�nition of the parameters characteriz-
ing the algorithm, the evaluation of the conditions for correct fault
classi�cation, and the investigation of the reliable implementation
of the classi�er.

DFT'11 Cristiana Bolchini, Chiara Sandionigi, A reliability-aware parti-
tioner for multi-FPGA platforms, IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Sys-
tems, 2011, Accepted, To appear

The paper presents a partitioning approach for reliable systems
on multi-FPGA platforms. With respect to literature, where the
partitioning problem is solved by heuristic algorithms based on
non-accurate models, we have proposed a partitioner that identi�es
the global optimal solution in an acceptable execution time and can
be integrated in an overall reliability-aware design �ow.

From a wider point of view, part of the research here presented has
also been exploited in the single FPGA scenario, when smaller systems
are considered, leading to the following publications.

TC'10 Cristiana Bolchini, Antonio Miele, Chiara Sandionigi, A novel
design methodology for implementing reliability-aware systems on
SRAM-based FPGAs, IEEE Transactions on Computers, 2010, Ac-
cepted, To appear

The paper presents a methodology for the implementation of sys-
tems on single SRAM-based FPGAs with soft error mitigation
properties. This is the �rst proposal of complete design �ow for
realizing reliable FPGA-based systems. The approach has been
taken into account and extended for the scenario envisioned in the
thesis; more precisely, multi-FPGA platforms have been considered
for the implementation of systems able to cope with both recover-
able and non-recoverable faults.

ETS'10 Cristiana Bolchini, Antonio Miele, Chiara Sandionigi, Niccoló
Battezzati, Luca Sterpone, Massimo Violante, An integrated �ow
for the design of hardened circuits on SRAM-based FPGAs, 15th
IEEE European Test Symposium, 2010, pp. 214-219

In this paper, the design �ow presented in the previous one has
been enhanced. The framework integrates strategies independently
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designed to tackle the problem of recoverable faults. Also this ap-
proach has been considered and extended for the envisioned sce-
nario.

FPL'11 Cristiana Bolchini, Antonio Miele, Chiara Sandionigi, Auto-
mated resource-aware �oorplanning of recon�gurable areas in partially-
recon�gurable FPGA systems, 21st International Conference on
Field Programmable Logic and Applications, 2011, pp. 532-538

The paper presents a �oorplanner for FPGA-based systems. The
proposed �oorplanner is based on an accurate model of the devices
and takes into account all the elements characterizing them, namely
the constraints imposed by the peculiar structure of the fabric and
the recon�guration capabilities.

Finally, the following paper has been submitted to international con-
ference.

DATE'12 Cristiana Bolchini, Antonio Miele, Chiara Sandionigi, Increas-
ing autonomous fault-tolerant FPGA-based systems' lifetime, Sub-
mitted to Design, Automation and Test in Europe 2012

The paper proposes a methodology for the design of autonomous
fault-tolerant FPGA systems, with the �nal objective of increasing
the system's lifetime and availability. The main contribution of the
work is the design space exploration, that identi�es the most con-
venient with the �nal aim of maximizing the number of tolerated
non-recoverable faults.
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scenario

Our research proposes a methodology for designing reliable embedded
systems on multi-FPGA platforms, with the �nal objective of increasing
the system's lifetime in critical scenarios. This chapter presents the mo-
tivations of the proposed work and introduces the background elements
useful to set the basis for understanding the rest of the thesis.
The chapter is structured as follows: Section 2.1 discusses the moti-

vations leading to the proposed thesis. Section 2.2 introduces the fault
model that has been adopted as a reference for the de�nition of the
reliability-aware design methodology. Section 2.3 re�nes the model by
referring to the working scenario, namely the space environment, consid-
ered for its stringent reliability requirements due to the harsh environ-
mental conditions, the long lifetime of space missions, and the di�cult
of system maintenance. Finally, Section 2.4 draws the chapter summary.

2.1. Motivations

During the last decades, FPGAs have been adopted as a target technol-
ogy for both the fast prototyping and �nal production of embedded sys-
tems. Among the many di�erent FPGA families, SRAM-based ones are
the most used platforms, due to various advantages they present with re-
spect to alternative solutions. Compared to traditional microprocessors,
they reveal higher computational capability, lower power consumption,
and lower cost [2]. Moreover, thanks to the ability of changing their
behavior over time (feature often referred to as �recon�gurability�), they
provide an increased �exibility with respect to alternative hardware solu-
tions, like Application Speci�c Integrated Circuits (ASICs) and antifuse-
based FPGAs, that can be programmed only once. In fact, SRAM-based
FPGAs can be reprogrammed in a few clock cycles and on-line, while
the device is operating. The advent of such dynamically recon�gurable
hardware into the embedded systems domain allows for exploiting the
performance of hardware along with the adaptability of software; re-
con�gurable devices may achieve performance similar to hardware while
being as �exible as software, given that they can change the function
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they perform. As such, recon�gurable devices are a �rst class choice
for combining both adaptability and performance. Devices similar to
SRAM-based FPGAs are Flash-based FPGAs, enabling device recon�g-
uration through the use of non-volatile con�guration memory; neverthe-
less, such technology presents lower throughput, smaller amount of logic,
and higher costs. For these reasons, SRAM-based FPGAs are currently
employed in many applicative domains.
Given their peculiarities, SRAM-based FPGAs could be an attrac-

tive technology not only for the standard commercial market, but also
in mission- or safety-critical applications; for instance, the space envi-
ronment, considered as a possible application scenario for this work, is
particularly critical for the harsh operating conditions and the not af-
fordable maintenance. Nevertheless, such devices are more susceptible
to faults with respect to traditional solutions (e.g., ASICs) [3], thus fault
mitigation and recovery techniques are paramount to guaranteeing that
the system will work correctly. For this class of devices, in general, fault
detection/tolerance strategies are mostly based on spatial redundancy,
whereas recovery ones exploit the device's recon�guration capabilities
by performing scrubbing, readback or even partial recon�guration of the
faulty parts [4]. When a fault is detected, the a�ected functionality
is re-created on the FPGA, thus restoring the device's overall process-
ing capabilities. Traditionally, the major source of concerns has been
mainly represented faults causing errors in the memories devoted to the
application data and con�guration. These errors can be easily �xed by
rewriting the correct information. Nevertheless, also faults physically
damaging the device have become relevant for digital systems in the re-
cent past; in fact, as highlighted in 2003 by the International Road Map
of Semiconductors [5], such faults will have a higher impact due to the
increasingly smaller device and wire dimensions and higher operational
temperatures, raising the need to take them into account next to the
other faults.
Another aspect gaining importance is the limited amount of function-

alities FPGAs can accommodate. Indeed, as the size and complexity of
the systems being designed increase (in particular after the application
of fault tolerance techniques), a single FPGA may not su�ce in terms of
available resources, and multi-FPGA solutions start being taken into ac-
count and investigated (e.g., [6, 7, 8, 9]). Furthermore, the availability of
more devices on multi-FPGA platforms could be exploited to implement
a distributed engine devoted to fault management.
While fault detection and masking techniques have been widely ad-

dressed in the case of systems based on a single FPGA (e.g., [10, 11, 4]),
the problem extended to multi-FPGA platforms has been rarely taken
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into account. Moreover, only faults recoverable by recon�guring the
device are usually targeted ([4, 12, 11]), whereas faults physically dam-
aging the device are rarely analyzed. The approach in [1] presents a
design �ow for implementing digital systems on single SRAM-based FP-
GAs with soft error mitigation properties. While it could be adapted
to multi-FPGA platforms and extended to faults with destructive e�ect,
we claim that an ad-hoc solution for this scenario would consistently
improve the system's performance and its reliability. In literature, when
considering multi-FPGA platforms, the available devices are usually ex-
ploited to host replicas of the main system, as in [8], where three FPGAs
are used to apply the classical Triple Modular Redundancy (TMR) tech-
nique on the whole circuit. Each FPGA hosts the same con�guration
and a controller, implemented on an external radiation-hardened ASIC,
acts as a TMR voter. Indeed, this is a di�erent scenario with respect
to the one we envision; we aim at better exploiting the devices potential
and providing a scalable solution, independent of the number of FPGAs
used. In addition, the controller needs to be implemented on particular
ASIC technology, eliminating most of the advantages of having SRAM-
based FPGAs in the system, namely �exibility and relatively low cost.
To conclude, no complete design methodology handling all the peculiar
issues of the considered scenario has been proposed yet, a gap we aim at
�lling with our work.
In this thesis, we de�ne a complete methodology for designing reliable

embedded systems on multi-FPGA platforms. The �nal objective is the
exploitation of commercial SRAM-based FPGAs for mission-critical ap-
plications, realizing reliable systems that autonomously cope with both
faults recoverable by recon�guration and faults physically damaging the
device. In the next section, we introduce the adopted fault model, that
is at the basis of the proposed methodology.

2.2. Fault model

When designing fault mitigation strategies, the single fault assumption
is traditionally considered. We adopt such assumption because realistic
for the considered scenario. It implies that i) faults occur one at a
time and ii) the time between the occurrence of two subsequent faults
is long enough to allow the detection of the �rst fault before the second
one occurs. Indeed, the fault only produces an observable e�ect, an
error, if i) the fault occurs in a used resource and ii) the applied input
(sequence) is such that a di�erence in the data/behavior is caused with
respect to the fault-free situation. Thus, since it may happen that not all
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available resources are actually used, the observability of a fault is related
to the probability of the fault to hit a used resource. Furthermore, it
is necessary that the adopted detection mechanism identi�es the fault
situation with short latency between the fault occurrence and the error
detection.
It is worth noting that the single fault assumption prevents dealing

with faults accumulation, possibly leading to the failure of fault tolerance
techniques due to masking/biasing e�ects. In general, though, since the
proposed system is divided into areas, as described in Chapter 3, fault
mitigation techniques can also deal with multiple faults, provided they
occur in independent portions of the entire system. A full extension to
multiple faults management will be considered in future work, although
for some sets of multiple failures the proposed approach holds.
When considering SRAM-based FPGAs, it is possible to identify two

types of memory that can be subject to faults; the one storing the ap-
plication data being processed and the one storing the con�guration bit-
stream, that de�nes the functionality performed by the recon�gurable
fabric. If the data memory is corrupted, an erroneous value is produced,
whereas, when a fault corrupts a con�guration memory element, it mod-
i�es the programmed functionality. Con�guration memory accounts to
more than 95% of the fraction of the device sensitive to faults [12], thus
an erroneous functionality is the most common produced e�ect. Never-
theless, we aim at covering faults a�ecting both kinds of memories. To
cope with erroneous values, a reset of the application can be performed
or feedback loops to propagate the correct values to the registers can be
added, whereas, to restore erroneous functionalities, the con�guration
must be re-written.
In the next section, we provide a more detailed characterization of

faults by referring to the considered working scenario, namely the space
environment.

2.3. Working scenario: the space environment

The working scenario of this thesis is the space environment, selected
for the stringent reliability requirements of space applications due to the
harsh environmental conditions and the di�culty of system maintenance.
In fact, the massive presence of radiations possibly causes glitches in
the system elaboration, and maintainability operations are very di�cult
when considering that the communication with Earth is limited in both
availability and bandwidth, necessary to remotely cope with unpredicted
failure situations. Two problems have been identi�ed as main causes of
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faults in space; radiations and device aging. In the following, they are
analyzed in relation to the selected platform, SRAM-based FPGAs, by
identifying their main e�ects and characteristics. Finally, the adopted
fault classi�cation is presented.

2.3.1. Radiation e�ects

Radiations are the most common cause of faults in space. They consist of
di�erent particles, mainly electrons, protons and heavy ions, originated
from various sources, e.g. the sun, novas, and supernovas. Their energy
levels depend on the source and the orbit; in Van Allen belts region,
radiations' electrons and protons have energies up to tens and hundreds
of MeV, respectively, whereas solar cosmic rays have energies up to GeV,
and the galactic cosmic rays up to TeV [13]. Radiations, when hitting
an electronic device, can cause a problem mainly observable in memory
elements implemented with static cells. The e�ects can be divided into
two main groups [14]:

• Single Event E�ect (SEE), that is a measurable e�ect resulting
from the deposition of energy from a single ionizing particle strike,
and

• Total Ionizing Dose (TID) e�ect, that is a cumulative long term
ionizing damage mostly due to protons and electrons.

SEEs can take many forms. They are distinguished into non-destructive
or destructive, based on their e�ect; non-destructive SEEs can be recov-
ered by resetting or recon�guring the device, whereas destructive SEEs
have a persistent e�ect even after a reset or a recon�guration since the
device is permanently damaged by the radiation. Non-destructive SEEs
due to radiations are commonly called Single Event Upsets (SEUs),
modeled as bit �ips. Particular types of SEUs are Single Event Dis-
turbs (SEDs), momentary voltage excursions at nodes, and Single Event
Functional Interrupts (SEFIs), interrupts leading to temporary non-
functionality of the a�ected device by involving power-on-reset, Select
map port or JTAG port. SEDs are treated as general SEUs, whereas
SEFIs are not taken into account in this thesis since they are negligible
in occurrence [15]. Other SEEs have the potential to destroy the de-
vice. Destructive SEEs are Single Event Latchups (SELs), energy from
a charged particle leading to an excessive supply power. They are not
taken into account in this work as test reports on SRAM-based FPGAs
reveal that no SEL was observed during the experiments, up to the max-
imum tested Linear Energy Transfer of tens of MeV · cm2/mg [16, 17],
that is su�cient for the considered applications.
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Also TID e�ects have the potential to destroy the device. TID de�nes
the total sum of radiations hitting the device. The unit of measurement
in the International System of Units is the Gray (Gy), de�ned by the
amount of 1 Joule of energy deposited per kilogram, however the depre-
cated unit rad (radiation absorbed dose) is still frequently used [14].

2.3.2. Aging e�ects

Device aging is the other analyzed cause, an important aspect for long-
lasting space missions, where system maintenance or substitution is dif-
�cult. Aging causes the following faults with destructive e�ect [18, 19]:

• Time Dependent Dielectric Breakdown (TDDB), that is a break-
down caused by charge �ow through the oxide,

• Electromigration (EM), that is a development of voids in metal
lines due to heavy current densities over a period of time,

• Hot-Carrier E�ects (HCE), that are interface traps a�ecting the
I-V characteristics of the transistors, and

• Negative Bias Temperature Instability (NBTI), that is the degra-
dation dependent on the time a PMOS transistor is stressed in the
circuit.

In the �eld of FPGAs, these faults are just being recently addressed, also
due to their rareness.

2.3.3. Adopted fault classi�cation

We identify two categories of faults based on the possibility to recover
from them by recon�guration; recoverable and non-recoverable faults.
Recoverable faults can be mitigated by recon�guring the system, and
possibly only the faulty sub-system portion, with the same con�gura-
tion used before fault occurrence. Non-recoverable faults permanently
compromise part or all of the device, such that further use of the cor-
rupted portion of the device must be avoided and the logic hosted must
be moved in a di�erent location. The identi�cation of the type of fault
occurred on the device is thus fundamental to apply the suitable recovery
strategy.
To summarize, recoverable faults are the ones caused by radiations

without a destructive e�ect, whereas non-recoverable faults are those
caused by radiations with destructive e�ect, radiations' accumulation
and device aging. Figure 2.1 shows such fault classi�cation based on the
analyzed causes and e�ects.
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Figure 2.1.: Cause-based fault classi�cation in the space environment.

2.4. Chapter summary

This chapter has presented the motivations that lead to the proposed
work, and has introduced the background elements useful to set the ba-
sis for understanding the rest of the thesis. The adopted fault model
has been described, and faults have been characterized also by refer-
ring to the selected working scenario, namely the space environment.
The adopted single fault assumption and the two identi�ed categories
of faults, recoverable and non-recoverable, constitute the basis of the
proposed design methodology, described in the next chapter.
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3. Proposed reliability-aware

design methodology

The wide use of FPGAs in critical scenarios, such as long-term space
missions, leads to the necessity of design methodologies for the realiza-
tion of systems able to autonomously cope with the occurrence of both
recoverable and non-recoverable faults. Indeed, the scenario is even more
complex when systems of considerable size are taken into account, re-
quiring the use of several FPGAs at once. However, no complete design
methodology handling all the peculiar issues has been proposed yet, a
gap we aim at �lling with our work. More precisely, in this chapter,
we introduce a methodology for the design of autonomous fault toler-
ant systems implemented on multi SRAM-based FPGAs, with the �nal
objective of increasing the system's lifetime and availability.
The chapter is structured as follows: Section 3.1 presents the proposed

design methodology. Section 3.2 describes the devised reliable system
and Section 3.3 shows the behavior of the proposed system in various
fault scenarios. Finally, Section 3.4 draws the chapter summary.

3.1. Reliability-aware design methodology

The proposed reliability-aware methodology realizes autonomous fault
tolerant systems implemented on multi-FPGA platforms, with the �-
nal objective of exploiting commercial SRAM-based FPGAs for mission-
critical applications. While some aspects can be taken from previous
solutions available in literature, several open issues for the proposed
methodology exist and have been investigated. They can be summa-
rized as follows:

• Reliability-aware architecture de�nition. First of all, it is neces-
sary to establish how to exploit the available SRAM-based FPGAs
to build the autonomous fault tolerant system. The architecture
implementing the system must be de�ned; the communication be-
tween FPGAs for data exchanging and con�guration must be iden-
ti�ed and the controller solution must be selected.
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• Reliability-aware circuit hardening and distribution. The nominal
application circuit must be hardened and distributed among the
FPGAs available on the platform. A set of metrics guiding in the
de�nition of the reliable solution must be selected, and a strategy
for identifying the most promising solution must be de�ned.

• Fault classi�cation strategy and Recon�guration Controller design.
It is necessary to de�ne a policy to classify the faults occurred in
the system as recoverable or non-recoverable, based on the fact
that the portion of the device is not actually compromised and
thus will not properly work. Furthermore, it is necessary to design
the engine in charge of implementing the recovery strategy. The
controller must be able to monitor a parametric number of error
signals, generated by a not known a-priori number of other FPGAs
in the architecture, and, based on the identi�ed type of fault, it
must perform the suitable recovery action.

The proposed methodology aims to cope with these open points. It is
composed of the following main activities, each of them trying to �x one
of the described issues, as shown in Figure 3.1:

• Architecture de�nition. This activity de�nes and characterizes the
autonomous fault tolerant system. It identi�es the platform topol-
ogy; given the available FPGAs, it establishes how they are con-
nected to each other for communication and con�guration. More-
over, it de�nes the controller solution, that could be centralized on
a single device or distributed among the available FPGAs.

• Design space exploration. This is the core of the proposed method-
ology; this activity is devoted to the hardening of the nominal cir-
cuit on the multi-FPGA platform. As the name suggests, we are
not just pursuing a working solution, rather the one o�ering the
most convenient trade-o� with respect to the designer's selected
metrics. The activity is composed of three main steps: i) harden-
ing, that selects and applies fault detection/tolerance techniques,
ii) partitioning, that distributes the obtained reliable circuit among
the available FPGAs, and iii) �oorplanning, that positions each
sub-circuit within the related device. A design space exploration
is performed to identify the most promising solution according to
a selected set of metrics.

• Fault management de�nition. This activity identi�es how to clas-
sify the faults and cope with their occurrence. It de�nes the con-
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troller engine, implementing the fault classi�cation and recovery
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Figure 3.1.: Proposed reliability-aware design methodology.

The next section deals with the �rst activity of the methodology, de�n-
ing and characterizing the proposed architecture.

3.2. Proposed autonomous fault tolerant system

The devised platform is composed of multiple SRAM-based FPGAs con-
nected to each other in a mesh topology, i.e., each FPGA is connected to
more than one FPGA and they can all connect to each other via multiple
hops [20]. In the general situation, the complete nominal, not hardened,
circuit implementing the actual application is distributed onto the plat-
form. When fault tolerance properties are required, a circuit hardening
approach based on a hybrid strategy is adopted; the circuit is hardened
by means of reliability techniques exploiting, for example, space redun-
dancy, and a recon�guration of the devices is used to mitigate fault e�ects
(e.g., as proposed in [11]). In this perspective, each FPGA hosts

• a hardened portion of the entire circuit, organized in independently
recoverable areas (IRAs [1]) that detect, mask/tolerate, and signal
the occurrence of a fault, and

• a Recon�guration Controller, that is the engine in charge of moni-
toring the error signals to trigger, when needed, the recon�guration
of the faulty part of the circuit.

17



3. Proposed reliability-aware design methodology

Rec 
Ctrl

Rec 
Ctrl

Rec 
Ctrl

Inter-FPGA communication connections

Inter-FPGA configuration connections

I/O signals

area
area area

area

area

area

area

area

area

area

area
area

Rec 
Ctrl area

area

areaarea area
area

Figure 3.2.: Proposed system architecture.

An overview of the system architecture is shown in Figure 3.2.
The circuit is designed to provide fault detection and localization in-

formation, by generating error signals to allow the detection of faults.
Fault detection and tolerance techniques, e.g., by means of spatial re-
dundancy, are used to identify the occurrence of the fault and to localize
the corrupted portion of the FPGA, the independently recoverable area.
Thus, we envision the circuit to be partitioned into areas, each one recon-
�gurable independently by the remaining part of the device upon fault
occurrence, as shown in Figure 3.3. In order to avoid that an area is
much more sensible than the others to faults, we assume that the overall
distribution of faults is uniform for all areas in the FPGA, which means
that all areas should be similar in terms of size and used resources. As
for the fault-error relation, it is also assumed that it does not sensibly
change throughout the entire circuit/device.
The areas' error signals are received by the Recon�guration Controller

hosted on the neighbor FPGA. The controller discriminates between re-
coverable and non-recoverable faults and, based on the identi�ed type,
performs the suitable recovery action. Should the fault be considered
as recoverable, the device is partially recon�gured by reloading the bit-
stream portion related to the faulty area, otherwise the faulty area be-
comes tagged as �unusable� and is relocated to a spare region reserved on
purpose on the FPGA. Indeed, before performing relocation, the spare
region is checked by means of software structural test.
An overview of the described system is reported in Figure 3.4, where

the global hardened multi-FPGA architecture is depicted (Figure 3.4(a))
together with the detail of the recon�guration approach (Figure 3.4(b)).
In case of a fault of an area on FPGAi+1, the Recon�guration Controller
hosted on FPGAi detects the anomaly, as shown in Figure 3.4 (a). The
fault is classi�ed as recoverable or non-recoverable and, based on the type
of fault, the Recon�guration Controller on FPGAi performs the recon�g-
uration using the correct bitstream, as shown in Figure 3.4 (b); if the
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Fig. 6. a) The reliability-aware system architecture, and b) the detail of the

hardened system: fault management to determine fault occurrence and partial

reconfiguration of the corrupted portion of FPGA device.

their characteristics in terms of costs and benefits, and their

impact on the circuit structure. Given such a model, it is possi-

ble to automate the application of the techniques allowing the

generation and the evaluation of different solutions, and, thus,

enabling the design space exploration. The model provides

the description of the techniques in terms of a combination

of various aspects; the achieved fault management capability,

a set of modifications on the circuit structure, and a set of

mapping constraints, described in the following.

First of all, techniques can be classified based on the fault
management property they offer, fault detection or fault tol-

erance. Moreover, since these techniques are based on redun-

dancy (mainly in space), each one of them is characterized by

a modification of the circuit due to the introduction of replicas

of the functional units and checking/voting components. Cost

characterization for these specific elements are provided by

the technique model itself, and are stored in the repository.

The number of IR Areas (Fig. ??b) is one of the elements

to be evaluated during the design exploration phase, since

as it grows it allows for a more precise fault localization

and consequently a reduced reconfiguration action (with low

time and power overheads); however, as the number increases,

the amount of voted/compared lines increases as well, raising

area overheads and introducing performance degradation. In

particular, these IR Areas are the result of the application

of the classical techniques with two additional elements:

components’ grouping and reconfigurable area mapping. More

precisely, when applying fault management techniques, the

two alternatives usually adopted either consider the entire

system as a unique entity, system level granularity, or work on

the single component, component level granularity. However,

it is also possible to gather components into groups, and apply

a technique with respect to such groups, thus obtaining a
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hardened implementation characterized by costs and benefits

that are a trade-off with respect to the two basic application

strategies ([?], [?]). In particular, components’ grouping allows

for a reduction in the number of voted/compared lines and

in a more precise fault localization capability, which can be

used to better focus the recovery action. Fig. ?? reports, as

an example, the application of the classical TMR technique

at different granularity levels, from system (Fig. ??a) to

component (Fig. ??c), considering also intermediate solutions

(Fig. ??b).

Finally, given a technique, a few mapping schemas can be

adopted for the hardened circuit; the trivial approach places

each hardened circuit on a unique IR Area, whose size, shape

and localization have to satisfy the device constraints. How-

ever, when considering some techniques, the different replicas

can also be mapped onto different IR Areas in different ways,

as shown in Fig. ?? for the TMR technique.

Altogether, components’ grouping and reconfigurable area

mapping determine how a technique is applied, and it is the

design exploration phase that analyzes the various possibilities

to identify those implementations that minimize the cost

functions the designer deems as important.

A peculiarity of the proposed framework is the flexibility

of the techniques’ repository: techniques are not hardcoded
in the algorithm implementing the design space exploration

but are modeled in terms of costs and impacts on the circuit.

Therefore, the list of techniques can be extended with new

ones but also reduced, allowing also the designer to (tem-

porarily) use only some techniques, providing a particularly

versatile approach. In the following paragraphs the model of

the considered techniques.

1) Duplication With Comparison (DWC): It aims at guar-

anteeing fault detection capabilities. It consists of adding a

replica of the functional unit and introducing a comparator;

the replica actually computes complemented values and the

comparator is implemented with a Two-Rail Checker (TRC)

[?], a Totally Self-Checking circuit able to detect differences

between the outputs of the nominal and duplicated units. Two-

Rail Checkers produce two output signals, adopting an odd-

parity code; {01,10} imply a fault-free situation, whereas

{00,11} denote the occurrence of a fault, either in one of

the two replicas or in the checker itself. For the technique

only one mapping strategy is adopted, which places the whole

Figure 3.3.: Detail of the hardened circuit, composed of independently
recoverable areas.

fault is recoverable, the functionality is restored by performing partial
recon�guration, otherwise a relocation of the functionality is performed,
moving the functionality on a non-faulty device region.

Indeed, it is necessary to prevent erroneous recon�gurations by detect-
ing faults a�ecting the controller, hence providing a reliable implemen-
tation of the engine. When the Recon�guration Controller signals the
presence of a fault in itself, it is handled as an area and recon�gured by
another controller hosted onto a di�erent FPGA. If implemented onto a
single FPGA platform, the system can work only until an error is not
detected in the Recon�guration Controller. Multi-FPGA platforms are
taken into account also for this reason (besides the large amount of avail-
able resources) and the Recon�guration Controller has been distributed
on the available devices.

Thus, rather than making each FPGA an independent fault toler-
ant sub-system, able to locally detect and recover from faults, we have
envisioned a distributed solution, where the Recon�guration Controller
hosted on an FPGA is in charge of recon�guring the areas hosted on a
neighbor FPGA. The aim is to achieve a higher level of reliability in the
overall system, trying to avoid the single point of failure characterizing
the centralized solution and requiring to be implemented onto a partic-
ular device (e.g., an ASIC or an antifuse-based FPGA, as in [8]). In
the next section, the behavior of the proposed reliable system in various
fault scenarios is presented.
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3.3. Additional fault scenarios

The proposed methodology implements a reliable system on multi-FPGA
platform with the �nal objective of increasing its lifetime and availability.
As described in the previous chapter, in designing the system, the single
fault assumption is adopted, implying that faults occur one at a time
and the time between the occurrence of two subsequent faults is long
enough to allow the detection of the �rst fault before the second one
occurs. However, we hereby consider other possible fault scenarios and
discuss how the proposed methodology behaves.

• Multiple faults. The proposed methodology can also deal with
multiple faults, provided they do not lead to the failure of fault
detection techniques or they occur in independent portions of the
entire system. We envision two scenarios, where multiple faults
occur i) on the same single FPGA or ii) on di�erent devices. In
the former case, the overall system would be able to cope with
this situation, and the designed controller would manage the con-
current faults in di�erent areas. Nevertheless, it is worth noting
that the proposed Recon�guration Controller and the implemented
fault classi�cation algorithm, described in the next chapters, have
been designed based on the single fault assumption. Therefore,
we expect tolerable glitches in the classi�cation possibly leading
to delays in tolerating a non-recoverable fault, as discussed in the
upcoming chapter. In the latter case, faults occurred on di�erent
FPGAs are recovered by the controllers in charge of monitoring the
devices, preventing a failure of the entire system. A failure could
occur when no recovery action can be performed due to faults con-
temporarily a�ecting all controllers; indeed, this is a rare, negligible
situation.
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• Failure of the recon�guration process. An error can occur during
the recon�guration process, triggered by the occurrence of a fault
in the monitored FPGA. This can happen because of i) a fault
in the Recon�guration Controller or ii) a fault in the inter-FPGA
communication. In the former case, the recon�guration is blocked
as soon as an erroneous behavior of the Recon�guration Controller
is observed and the fault is recovered by the controller on the neigh-
bor FPGA. In the latter case, no recovery action can be performed
for the faulty FPGA and the system gradually degrades.

To conclude, although the proposed methodology is based on the tra-
ditionally adopted single fault assumption, the obtained reliable system
can also deal with other more complex and not frequent fault scenarios.

3.4. Chapter summary

In this chapter, we have introduced the methodology we devised for the
design of autonomous fault-tolerant FPGA-based systems. We exploit
multi-FPGA platforms to build reliable systems able to autonomously
cope with both recoverable and non-recoverable faults, with the �nal
objective of increasing the system's lifetime. Di�erently from the past
approaches, rather than making each FPGA an independent fault toler-
ant sub-system, able to locally detect and recover from faults, we have
envisioned a distributed controller solution. Although the methodology
considers the traditionally adopted single fault assumption, the obtained
solution can also deal with other, infrequent fault scenarios.
In the rest of the thesis, the methodology's activities are described

in detail. Figure 3.5 provides an overview of the methodology, with
reference to the chapters and publications where the main topics are dealt
with (refer to Chapter 1 for the list of publications). The architecture
de�nition activity has already been presented in Section 3.2. The next
chapter introduces the proposed design �ow for obtaining the reliable
system.
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The methodology introduced in the previous chapter aims at realizing
systems able to autonomously cope with the occurrence of both recov-
erable and non-recoverable faults. An autonomous fault tolerant multi-
FPGA system has been proposed, and all the aspects to deal with for its
implementation have been described. In this chapter, a �ow for design-
ing such fault tolerant systems is introduced, as well as the developed
prototype framework implementing the �ow, in order to automate as
much as possible the design, hardening, and implementation.
The chapter is structured as follows: Section 4.1 presents the pro-

posed design �ow. Section 4.2 describes the multi-FPGA platform model
adopted in the �ow's activities and the subsequent sections focus on the
�ow's design space exploration tasks; Section 4.3 presents the prelim-
inary partitioning of the nominal circuit among the available devices,
Section 4.4 describes the circuit hardening, Section 4.5 reports the vali-
dation of the obtained solution, and Section 4.6 describes the positioning
of the circuit areas within each device. Section 4.7 presents the proto-
type framework implementing the design �ow. Section 4.8 proposes an
alternative design �ow, building the fault tolerant system and identify-
ing the suitable platform based on the number of non-recoverable faults
that must be tolerated, whereas the �ow previously described works on
a given platform. Finally, Section 4.9 draws the chapter summary.

4.1. Design �ow

The proposed design �ow identi�es a suitable reliable implementation
of the considered circuit and builds the overall fault tolerant system
presented in the previous chapter, as shown in Figure 4.1.
The nominal application circuit, modeled in terms of a structural de-

scription containing a set of components interconnected with each other,
is taken in input by the synthesis and parsing tasks. The synthesis ac-
tivity derives the implementation costs of each component. The parsing
activity builds a more agile representation of the circuit based on graph,
annotated with components' costs and characteristics, derived by the
preliminary analysis activity.
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Figure 4.1.: Proposed design �ow.

The costs and the model de�ned by analyzing the nominal circuit
are taken in input by the preliminary partitioning task, that distributes
the circuit components among the FPGAs available on the platform, by
achieving a uniform distribution and minimizing inter-FPGA communi-
cation. The output of the partitioning problem is a mapping, specifying
for each component its hosting on one of the devices.
For each FPGA, the circuit hardening task performs the application of

fault tolerance techniques to the sub-circuit hosted on the device, creat-
ing the independently recoverable areas. The task is, in turn, composed
of two activities; recovery strategy de�nition and independently recover-
able areas de�nition. The recovery strategy de�nition activity identi�es
the reliable system's parameters involved in the recovery strategy from
non-recoverable faults. For each FPGA available on the platforms, it
de�nes i) an estimate of the maximum number of non-recoverable faults
the system can autonomously recover from without any external action,
and ii) the maximum number of independently recoverable areas that can
be hosted on the device. Based on these parameters, the independently
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recoverable areas de�nition activity partitions the circuit components
into groups, each one hardened and mapped on independently recover-
able areas (IRAs [1]). Hardening is, at present, achieved by means of
Triple Modular Redundancy (TMR). However, it is possible to take into
account other techniques.
A validation task aims at improving the obtained solution. It is,

in turn, composed of two activities; recovery strategy re�nement and
reliability-aware partitioning. Considering the obtained hardened cir-
cuit, the recovery strategy re�nement activity can provide a more accu-
rate valuation of the number of tolerated non-recoverable faults. This
value is taken in input by the reliability-aware partitioning task, that
re-distributes the independently recoverable areas among the available
FPGAs by taking into account also possible recovery actions needed
during the system's lifetime. It reserves a suitable spare region for re-
locations in case of faults physically damaging the device. The output
of this partitioning problem is a mapping, specifying for each area its
hosting on one of the devices.
The �oorplanning task positions the independently recoverable areas

inside the related FPGA. It identi�es a suitable placement for the hard-
ened circuit and the recovery actions.
Finally, the implementation phase integrates the Recon�guration Con-

trollers, one for each FPGA, with the reliable circuit, building the pro-
posed overall reliable system. In this phase, all the bitstreams of the
identi�ed solution are generated.
In the following, more details about the tasks composing the design

space exploration are provided. Indeed, in order to de�ne a feasible solu-
tion, an accurate model of the multi-FPGA platform must be adopted.
In the next section, the proposed model is introduced.

4.2. Multi-FPGA platform model

We consider a platform composed of identical FPGAs, d ∈ D, where D

is the set of devices. Given the assumption of having identical devices
(together with the assumption of having a uniform distribution of the
system on the board, guaranteed by the partitioning approach), in case
a faulty device becomes unavailable, another FPGA could be possibly
exploited to substitute it. Nevertheless, the proposed model can be easily
extended to represent di�erent devices. The device information made
available to the �ow must specify both the existing resources and the
recon�guration properties of the considered FPGA.
FPGAs are characterized by several types of discrete and distributed
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resources, spread across the device. They are composed of three main
building blocks and have additional resources directly embedded on the
die. The main building blocks are i) Con�gurable Logic Blocks (CLBs),
composed of slices, ii) Input/Output blocks (IOBs), and iii) routing re-
sources. By opportunely con�guring them, the design functionality is
achieved. Additional resources are, for instance, RAM blocks (BRAMs),
DSPs and multipliers. They allow designers to take advantage of speci�c
hardware without the need to implement it using the CLBs, with an im-
provement in performance. Each FPGA is characterized by the number
of resources hosted on it, dev_resr, r ∈ R = {slice, bram, dsp}, in
terms of slices, BRAMs, and DSPs. Xilinx FPGAs are considered for
this model, although it is worth noting that R can be easily modi�ed
or extended to consider other types of resources. The various types of
resources are organized in columns distributed either uniformly or not.
FPGA families, even the less recent ones (e. g., Xilinx Spartan-3 [21]
or Virtex-II [22]), have heterogeneous resources. In addition more re-
cent families, such as Xilinx Virtex-4 [23] and Virtex-5 [24], adopt a not
uniform distribution. For each resource type, we extract the characteriz-
ing parameters, namely the number of columns, the number of resources
within each column, and the position of each column. Since all devices
share a common matrix-like structure, the FPGA is shaped as a grid of
slices with columns constituted by di�erent types of resources.
Another important feature of FPGAs' architecture is their recon�gu-

ration capabilities. In particular, it is important to identify the recon�g-
uration dimension, that can be mono-dimensional (1D) or bi-dimensional
(2D). In 1D recon�guration, the part of resources a�ected by the process,
called recon�gurable area, always spans the whole height of the device
(heightdev, expressed in terms of slices), exploiting a column organiza-
tion, while 2D recon�guration allows the speci�cation of the recon�g-
urable area in a 2D space, organized in columns and rows. In both cases
the smallest addressable con�gurable unit is the frame, a vertical line
of resources, and the recon�guration process can span the whole width
of the device (widthdev, expressed in terms of slices). The distinction
between the two recon�guration schemes is based on the number of rows
of frames; the 1D case is characterized by a single row of frames, while
the 2D case supports multiple rows. Less recent FPGA families, such as
Xilinx Virtex-II, o�er 1D recon�guration, while more recent ones, such
as Virtex-4 and Virtex-5, support the 2D scheme.
A schematic FPGA structure is shown in Figure 4.2. The proposed

model de�nes an accurate speci�cation of the FPGAs characteristics, al-
lowing the design �ow's activities to identify a feasible candidate solution
for the reliable system.
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Figure 4.2.: A schematic FPGA structure.

The inter-FPGA communication is implemented through dedicated
wires. We consider dev_wiresd1,d2 , d1,d2 ∈ D, that is the number of
wires between devices d1 and d2, and tot_wires, that is the number of
total external wires on the platform. The platform topology is modeled
by specifying the devices' adjacency and the communication paths be-
tween non adjacent devices; direct_commd1,d2 , d1,d2 ∈ D, equals to 1 if
devices d1 and d2 are adjacent, 0 otherwise, and non_direct_commd1,d2,d3 ,
d1,d2,d3 ∈ D, equals to 1 if device d1 allows the communication between
devices d2 and d3, 0 otherwise. In this model, topologies implemented
over dedicated wires (e.g., mesh or complete-graph topologies) are taken
into account, and the communication paths between non-adjacent de-
vices are de�ned by the designer.
Table 4.1 reports the parameters of the proposed model and Figure 4.3

summarizes them by characterizing a commercial multi-FPGA platform,
in particular a Synopsis HAPS-34 board [25]. It is worth noting that the
communication paths between non-adjacent devices are de�ned by the
designer; for example, FPGA 2 allows the communication from FPGA 1
to FPGA 3, whereas FPGA 4 allows the communication from FPGA 3
to FPGA 1. The proposed platform model is used by the design �ow's
tasks, described in the following.

4.3. Preliminary partitioning

The circuit components are taken in input by the partitioning task, that
distributes them among the available FPGAs. Each component is char-
acterized by its resource requirements, compc,r, c ∈ C, r ∈ R, that is the
number of resources of type r required by component c. The communi-
cation between the components is modeled by specifying the number of
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Table 4.1.: Multi-FPGA platform parameters.
Parameter Description
D Set of devices
R Set of resources
dev_resr Number of resources of type r hosted on the FPGA
heightdev Height of the FPGA in terms of slices
widthdev Width of the FPGA in terms of slices
dev_wiresd1,d2 Number of wires between FPGAs d1 and d2

tot_wires Number of total external wires on the multi-FPGA platform
direct_commd1,d2 Binary parameter equal to 1 if FPGAs d1 and d2 are adjacent
non_direct_commd1,d2,d3 Binary parameter equal to 1 if d1 allows the communication between d2 and d3

FPGA 1
xc4vlx100

FPGA 2
xc4vlx100

FPGA 4
xc4vlx100

FPGA 3
xc4vlx100

Deviceʼs resources

dev_resslice 49152

dev_resbram 240

dev_resdsp 96

tot_wires 1756

non_direct_commi,j,k

i=1 1 2 3 4 i=2 1 2 3 4

1 0 0 0 0 1 0 0 1 0

2 0 0 0 0 2 0 0 0 0

3 0 0 0 0 3 0 0 0 0

4 0 1 0 0 4 0 0 0 0

i=3 1 2 3 4 i=4 1 2 3 4

1 0 0 0 0 1 0 0 0 0

2 0 0 0 1 2 0 0 0 0

3 0 0 0 0 3 1 0 0 0

4 0 0 0 0 4 0 0 0 0

dev_wiresi,j

i \ j 1 2 3 4

1 0 729 0 149

2 729 0 149 0

3 0 149 0 729

4 149 0 729 0

direct_commi,j

i \ j 1 2 3 4

1 0 1 0 1

2 1 0 1 0

3 0 1 0 1

4 1 0 1 0

Figure 4.3.: Multi-FPGA platform model.

wires connecting each pair of components (comp_wiresc1,c2 , c1,c2 ∈ C)
and the throughput between components (comp_commc1,c2 , c1,c2 ∈ C). Fi-
nally, the designer can specify his/her requirements about the placement
of the components; same_devc1,c2 , c1,c2 ∈ C, equals to 1 if components
c1 and c2 must be placed on the same device, 0 otherwise. In this
way, the designer can constrain the placement of components charac-
terized by critical communication, for example components exchanging
data frequently. The proposed partitioner considers the designer's re-
quirements as constraints, but it can be easily modi�ed to handle them
as preferences. Note that we do not model connections shared between
components, since every wire is considered as a dedicated connection.
Hence, we overestimate the number of wires, but in this way we also
increase the weight of the connections used by more components. How-
ever, the designer can require that componets sharing connections are
placed on the same FPGA.
The problem of partitioning a circuit onto a multi-FPGA platform

is a multi-objective problem, since various metrics are considered when
distributing the circuit among the devices. We consider the following set
of metrics:

• Distribution uniformity. When considering circuit partitioning, it
is generally desirable to divide the circuit into portions of roughly
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equal sizes. This is even more important when reliability is taken
into account, to have balanced ratio between used and spare fabric.

• Number of external wires. The number of inter-FPGA connections
must be minimized both for the performance degradation with re-
spect to intra-FPGA wires and for the limited number of I/O pins
reserved for inter-FPGA communication.

• External communication. For the performance degradation char-
acterizing inter-FPGA connections, components with highest com-
munication requirements should be placed on the same device.

The output of the partitioning problem is a mapping, specifying for
each component its hosting on one of the devices. This is modeled by
the decision variable xc,d, that equals to 1 if component c is hosted on
device d, 0 otherwise. Furthermore, to account for communication, we
introduce the binary variables yc1,d1,c2,d2, equal to 1 if component c1 is
hosted on device d1 and component c2 is hosted on device d2.
The partitioning problem includes constraints associated with compo-

nents placement, system distribution, external wires, and external com-
munication, listed in Table 4.5.
Components placement constraints. The partitioner must place each

component on a device, as de�ned by Constraint C1. Moreover, the de-
signer's requirements related to the placement of componets on the same
device must be ful�lled. Constraint C5 allows to meet these requirements
by exploiting the variables yc1,d1,c2,d2, that identify the placement of each
couple of components. Constraints C2, C3, and C4 de�ne the valid values
of the variables yc1,d1,c2,d2, by referring to the variables xc,d; Constraints
C2 and C3 de�ne the minimum bound of yc1,d1,c2,d2 (if xc1,d1 or xc2,d2

equal to 0, then yc1,d1,c2,d2 equals to 0), whereas Constraint C4 identi�es
the maximum one (if both xc1,d1 and xc2,d2 equal to 1, then yc1,d1,c2,d2

equals to 1).
System distribution constraints. The system must be distributed uni-

formly among the available devices. The resources occupation on each
device, computed as the sum of the resources required by the Recon�g-
uration Controller and the components hosted on the device, as de�ned
by Constraint C6, can not be greater than the available resources, as
constrained by C7. The distribution of the system among the available
devices is uniform when the gap between the maximum and minimum
resources occupations among the devices is null. The maximum and
minimum occupations of each type of resources are constrained by C8
and C9, and the di�erence between them de�nes the gap, as computed
by Constraint C10.
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External wires constraints. The external wires are the connections
between components hosted on di�erent devices, by considering both
adjacent and non adjacent devices. The number of external wires be-
tween each couple of devices is computed by Constraint 11, by summing
the external connections between the components hosted on the devices.
This number is exploited to compute the number of external wires for
the communication between adjacent and non-adjacent devices, as de-
�ned by Constraints C12 and C13, respectively. The number of external
wires required for inter-FPGA communication can not be higher than
the available wires between each couple of devices, as constrained by
C14, and for the overall platform it is computed by Constraint C15.
External communication constraints. The computation of the external

communication exploits the computation of the external communication
of each component on each device, de�ned by Constraint C16, and the
external communication between each couple of devices, de�ned by Con-
straint C17. The external communication of each device is computed by
Constraint C18, by summing the external communication of the com-
ponents hosted on the device and the external communication between
non-adjacent devices through the considered one. Finally, the total ex-
ternal communication on the overall platform is computed by Constraint
C19, by summing the external communication of each device.
The partitioning problem includes only binary and continuous vari-

ables and linear constraints, hence it is a MILP problem. It is a multi-
objective problem, with the following objective function:

min(wgap ·
∑
r∈R

Gapr

dev_resr
+ wwires · Wires

tot_wires
+

wcomm · Comm∑
c1∈C

∑
c2∈C commc1,c2

)

where wgap, wwires, and wcomm are weights assigned by the designer.

4.4. Circuit hardening

This section describes the strategy adopted for hardening the circuit.
The traditional fault tolerance technique TMR is coupled with the FPGA
dynamic recon�guration property to achieve error mitigation capability.
This is applied to single components or group of components of the circuit
and mapped on areas that, in case of fault, are recoverable by recon�gu-
ration independently from the others. Indeed, the higher the number of
areas the �ner the fault detection granularity, but, at the same time, a
memory with higher capacity to store the recovery bitstreams is required.
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4.4. Circuit hardening

Table 4.2.: Preliminary partitioner constraints.

Components placement

C1
∑

d∈D xc,d = 1,∀c ∈ C

C2 yc1,d1,c2,d2 ≤ xc1,d1,∀c1, c2 ∈ C, d1, d2 ∈ D

C3 yc1,d1,c2,d2 ≤ xc2,d2,∀c1, c2 ∈ C, d1, d2 ∈ D

C4 yc1,d1,c2,d2 ≥ xc1,d1 + xc2,d2 − 1,∀c1, c2 ∈ C, d1, d2 ∈ D

C5
∑

d∈D yc1,d,c2,d ≥ same_devc1,c2,∀c1, c2 ∈ C

System distribution

C6 dev_occupationd,r =
∑

c∈C compc,r · xc,d + recr,∀d ∈ D,∀r ∈ R

C7 dev_occupationd,r ≤ dev_resd,r,∀d ∈ D,∀r ∈ R

C8 max_dev_occupationr ≥ dev_occupationd,r,∀d ∈ D,∀r ∈ R

C9 min_dev_occupationr ≤ dev_occupationd,r,∀d ∈ D,∀r ∈ R

C10 Gapr = max_dev_occupationr −min_dev_occupationr,∀r ∈ R

External wires

C11 d_to_d_wiresd1,d2 =
∑

c1∈C

∑
c2∈C comp_wiresc1,c2 · yc1,d1,c2,d2,∀d1, d2 ∈ D

C12 dev_dir_wiresd1,d2 = d_to_d_wiresd1,d2 · direct_commd1,d2,∀d1, d2 ∈ D

C13 dev_non_dir_wiresd1,d2 =∑
d∈D (d_to_d_wiresd1,d · non_direct_commd2,d1,d + d_to_d_wiresd,d2 · non_direct_commd1,d,d2)+∑
d3∈D

∑
d4∈D d_to_d_wiresd3,d4 · non_direct_commd1,d3,d4 · non_direct_commd2,d3,d4,∀d1, d2 ∈ D

C14 dev_dir_wiresd1,d2 + dev_dir_wiresd2,d1 + dev_non_dir_wiresd1,d2+

dev_non_dir_wiresd2,d1 ≤ dev_wiresd1,d2,∀d1, d2 ∈ D

C15 Wires =
∑

d1∈D

∑
d2∈D dev_dir_wiresd1,d2 + dev_non_dir_wiresd1,d2

External communication

C16 ext_comp_commc,d =
∑

c1∈C comp_commc,c1 · xc,d − comp_commc,c1 · yc,d,c1,d,∀c ∈ C,∀d ∈ D

C17 dev_to_dev_commd1,d2 =
∑

c1∈C

∑
c2∈C comp_commc1,c2 · yc1,d1,c2,d2,∀d1, d2 ∈ D

C18 dev_commd =
∑

c∈C ext_comp_commc,d +
∑

d1∈D

∑
d2∈D dev_to_dev_commd1,d2 · non_direct_commd,d1,d2,∀d ∈ D

C19 Comm =
∑

d∈D dev_commd

The circuit hardening task de�nes the independently recoverable areas
taking into account these issues. It performs a design space exploration
composed of two main activities, described in the following.

4.4.1. Recovery strategy de�nition

The �rst activity performed when hardening the circuit de�nes the pa-
rameters constraining the de�nition of the independently recoverable ar-
eas on the FPGAs. Such parameters are related to the adopted recovery
strategy, described in the following.
When recon�guring to cope with non-recoverable faults, a new con-

�guration that replaces the faulty region in the FPGA with a spare one
is loaded. The strategies for de�ning the recovery con�gurations can be
classi�ed into two categories:

• On-line bitstream computation, that dynamically creates the recov-
ery con�gurations, as in [26] and [27], and

• O�-line bitstream computation, that creates the alternative con�g-
urations during the design phase, as in [28] and [29].
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The former strategy means that only one bitstream is saved in memory
and that, if needed, it is modi�ed at runtime to assign the functionali-
ties to the correct areas. Partial dynamic recon�guration and bitstream
relocation provided by Xilinx FPGAs [30] are used for de�ning on-line
approaches. These approaches do not address the reliability issues re-
lated to the system's static region de�ned by the Xilinx design �ow, that
contains the global communication infrastructure and, possibly, the in-
ternal Recon�guration Controller. Actually, a fault a�ecting the static
region cannot be recovered and would a�ect the overall system. More-
over, the strategy would make the Recon�guration Controller heavily
dependent on the actual FPGA and it would consistently increase its
complexity. For these reasons we have not considered on-line bitstream
computation in our approach.
However, the other strategy, o�-line bitstream computation, requires

the storage of all the bitstreams that might be needed during the system's
lifetime, thus a large memory is required. In fact, the approach consists of
computing all the bitstreams that might be needed before deploying the
system and, at runtime, only the correct bitstream is loaded. For each
sequence of occurred non-recoverable faults and for each independently
recoverable area the circuit is divided into, a bitstream must be stored in
memory (refer to Figure 4.4). Indeed, it is necessary to maximize i) the
number of non-recoverable faults the system can autonomously recover
from without any external action, to improve the system's lifetime, and
ii) the number of areas, both to allow fault detection at �ner granularity
and to reduce the average partial scrubbing time required for coping
with recoverable faults. Also, it is required not to exceed the capacity
of the bitstream memory. Thus, the following parameters related to the
relocation strategy are de�ned:

• #faults, that is the number of non-recoverable faults for each
FPGA the system can autonomously cope with, and

• max_areas, that is the maximum number of independently recov-
erable areas the sub-circuits on the FPGAs are divided into.

To compute #faults, a hardened version of the circuit is taken into
account, partitioning each component in a di�erent area and applying
TMR. Then, the maximum number of tolerated non-recoverable faults
for each device d (max_faultsd) is the number of times the greatest area
hosted on the device can be moved onto a not used, fault-free region.
#faults is the minimum value among the identi�ed numbers of tolerated
non-recoverable faults:

#faults = min (max_faultsd,∀d ∈ D)
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Figure 4.4.: The adopted recovery strategy for non-recoverable faults.

When considering multiple subsequent non-recoverable faults, a spe-
ci�c bitstream is required for each sequence of occurred faults. Therefore,
assuming a given number of independently recoverable areas #areasd,
equal to the number of components hosted on FPGA d, to tolerate
#faults the following number of alternative bitstreams for each device
has to be generated:

#bitstreamsd =
#faults∑

i=0

#areasi
d,∀d ∈ D

It is worth noting that #bitstreamsd can be very high also for low
values of #faults, hence too a large memory should be required. Thus,
the number of areas max_areas is set by ful�lling the memory constraint:

max_areas = max

(
#areas |

#faults∑
i=0

#areasi ≤ memory_size

bitstream_size

)

being memory_size and bitstream_size the size of the memory and of
the bitstream for the selected device, respectively. max_areas is consid-
ered when de�ning the independently recoverable areas, as described in
the following.
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Figure 4.5.: TMR technique: di�erent application schemas.

4.4.2. Independently recoverable areas de�nition

By considering the parameter max_areas de�ned in the previous activ-
ity, the independently recoverable areas composing the hardened circuit,
described in Chapter 3, are de�ned. For each FPGA on the platform, the
components of the sub-circuit hosted on the device are grouped and a
hardening technique is applied on each identi�ed group. We select TMR
as fault tolerance technique and, borrowing from [1], we envision di�erent
strategies of applying it. Four di�erent strategies of TMR application
can be adopted on each group, containing one or more components, as
shown in Figure 4.5:

• TMR on 1 area, mapping the whole system (replicas and voter) on
a single area,

• TMR on 2 areas, mapping two replicas on an area and the third
replica and the voter on another area,

• TMR on 3 areas, mapping each replica on a di�erent area and the
voter with one of the replicas, and

• TMR on 4 areas, mapping each replica and the voter on four dif-
ferent areas.

Each of these strategies is a hardening technique, that identi�es the
independently recoverable areas where the groups of components are
mapped. Indeed, also other hardening techniques can be considered as
well.
We recall that the circuit is modeled as a set of components, c ∈ C,

interconnected with each other by wires; comp_wiresc1,c2 is the number
of wires between components c1 and c2, and comp_outc is the number of
output wires of component c. Each component is characterized by its re-
source requirements, comp_resc,r, that is the number of resources of type
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r required by component c. The activity partitions the nominal circuit
in groups, g ∈ G, where G is the set of groups, and applies a hardening
technique, t ∈ T, where T is the set of techniques, to each of them. Each
group is mapped on one or more areas, a ∈ A, where A is the set of areas.
Thus, each area of the hardened circuit hosts one or more components of
the nominal circuit and constitutes an independently recoverable area.
The parameters used in the circuit hardening are reported in Table 4.3.

Table 4.3.: Parameters used in the circuit hardening.
Parameter Description
C Set of components
G Set of groups
T Set of hardening techniques
A Set of areas
R Set of resources
comp_resc,r Number of resources of type r required by component c
comp_wiresc1,c2 Number of wires between components c1 and c2

comp_outc Number of output wires of component c

The de�nition of the independently recoverable areas hosted on each
device has been modeled as a MILP problem, whose inputs are the nomi-
nal circuit and the parameter max_areas identi�ed by the previous activ-
ity. The output is the hardened version of the circuit, described in terms
of a mapping between the components and the hardened groups. This is
modeled by the decision variables xc,g,t, that equals to 1 if component c
belongs to group g where technique t is applied, 0 otherwise. Moreover,
to account for the number of identi�ed groups and the communication
between groups, the following binary variables are introduced; yg,t, that
equals to 1 if group g where technique t is applied hosts at least a compo-
nent, and zc1c2,g,t, that equals to 1 if components c1 and c2 are assigned
to group g where technique t is applied. When solving the proposed
problem, the following metrics have been considered:

• Distribution uniformity, that is generally desirable to divide the
circuit into portions of roughly equal sizes, and is even more im-
portant when reliability is taken into account, to have balanced
areas reserved for relocations.

• Number of areas, that must be maximized both to allow fault detec-
tion at �ner granularity and to reduce the average partial scrubbing
time required for coping with recoverable faults.

• Number of wires between groups, that must be minimized for re-
ducing the resource requirement of the necessary TMR voters.
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The problem of hardening the nominal circuit and partitioning it
in independently recoverable areas includes constraints associated with
groups de�nition, wires between groups, and resources distribution, listed
in Table 4.5.
Groups de�nition constraints. The hardening process must assign each

component to a group, as de�ned by Constraint C1. Moreover, each
group hosting at least a component must be hardened by means of a
technique. Constraint C4 allows to meet this requirement by exploiting
the variables yg,t, that identify the groups hosting at least a compo-
nent. Constraints C2 and C3 de�ne the valid values of the variables yg,t,
by identifying the maximum bound and the minimum one, respectively.
Finally, the number of areas allocated for mapping the groups cannot
be higher than max_areas, required by the relocation strategy, or lower
than min_areas, possibly used to constrain the fault detection granular-
ity, as de�ned by Constraints C6 and C7, respectively. Constraint C5
computes the number of allocated areas by taking into account the num-
ber of groups and the number of areas required by the applied technique
(#areas_reqt).
Wires between groups constraints. The number of connections between

groups is identi�ed by computing the number of wires between compo-
nents hosted on di�erent groups, as de�ned by Constraint C11. The
variables zc1,c2,g,t are exploited. Constraints C8 - C10 de�ne the valid
values of the variables zc1,c2,g,t, by identifying the maximum bound (Con-
straints C8 and C9) and the minimum one (Constraint C10).
Resources distribution constraints. The resource requirement of each

area is computed by considering the occupation of the components hosted
on it and the occupation of the voter, as de�ned by Constraint C12. To
compute the occupation of the components hosted on the area, the pa-
rameters w_compt,a,r are exploited, de�ning the number of components
required by the applied technique on the area. To compute the occupa-
tion of the voter, depending on the number of voted wires, the parameters
w_votert,a,r are exploited, indicating the multiplication factor for wires.
Indeed, the resource requirements of the areas can not exceed the re-
source availability on the FPGA, as de�ned by Constraint C13. When
dedicated resources (e.g., BRAMs, DSPs) are not su�cient, it is possible
to convert them in slices; such conversion is made for all the replicas of a
module to have areas characterized by uniform distribution. Constraints
C14 and C15 identify the area with the minimum resource requirement
and the area with the maximum one, respectively. It is worth noting
how the area with the minimum resource requirement is de�ned by con-
sidering only the areas hosting components; we exploit the parameter M,
a enough big value that allows to avoid wrong values of minr when con-
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sidering areas without components. Finally, the gap between the largest
area and the smallest one, gapr, r ∈ R, needed to de�ne the uniform
distribution, is identi�ed by Constraint C16.

Table 4.4.: Independently recoverable areas de�nition constraints.

Groups de�nition

C1
∑

g∈G

∑
t∈T xc,g,t = 1,∀c ∈ C

C2 yg,t ≤
∑

c∈C xc,g,t,∀g ∈ G, t ∈ T

C3 yg,t ≥ xc,g,t,∀c ∈ C, g ∈ G, t ∈ T

C4
∑

t∈T yg,t ≤ 1,∀g ∈ G

C5 #areas =
∑

g∈G

∑
t∈T yg,t ·#areas_reqt

C6 #areas ≤ max_areas

C7 #areas ≥ min_areas

Wires between groups

C8 zc1,c2,g,t ≤ xc1,g,t,∀c1 ∈ C, c2 ∈ C, g ∈ G, t ∈ T

C9 zc1,c2,g,t ≤ xc2,g,t,∀c1 ∈ C, c2 ∈ C, g ∈ G, t ∈ T

C10 zc1,c2,g,t ≥ xc1,g,t + xc2,g,t − 1,∀c1 ∈ C, c2 ∈ C, g ∈ G, t ∈ T

C11 group_wiresg,t =
∑

c1∈C

∑
c2∈C comp_wiresc1,c2 · (xc1,g,t − zc1,c2,g,t) +

∑
c∈C comp_outc · xc,g,t,∀g ∈ G, t ∈ T

Resources distribution

C12 group_resg,t,a,r =
∑

c∈C comp_resc,r · xc,g,t · w_compt,a,r + group_wiresg,t · w_votert,a,r,∀g ∈ G, t ∈ T, a ∈ A, r ∈ R

C13
∑

g∈G

∑
t∈T

∑
a∈A group_resg,t,a,r ≤ devr,∀r ∈ R

C14 minr ≤ M · (1− yg,t · reqt,a) + group_resg,t,a,r,∀g ∈ G, t ∈ T, a ∈ A, r ∈ R

C15 maxr ≥ group_resg,t,a,r,∀g ∈ G, t ∈ T, a ∈ A, r ∈ R

C16 gapr = maxr −minr,∀r ∈ R

The objective function adopted in this problem is the following:

min(wres ·
∑
r∈R

gapr

devr
+ wareas · (1−

#areas

max_areas
)

+ wwires ·
∑

g∈G

∑
t∈T comp_wiresg,t∑

c1∈C

∑
c2∈C comp_wiresc1,c2 +

∑
c∈C comp_outc

)

being wres, wareas, and wwires designer-assigned weights. It is worth not-
ing that the sum of the weights must equal to 1. An optimal solution is
identi�ed, achieving a circuit able to o�er correct functionality even in
presence of non-recoverable faults.

4.5. Validation

The validation task aims at improving the obtained reliable solution. It
is composed of two activities, described in the following.

4.5.1. Recovery strategy re�nement

The previous task has de�ned the independently recoverable areas hosted
on each FPGA, taking into account the number of non-recoverable faults
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tolerated on each device (#faults). Indeed, #faults is a preliminary
estimate, evaluated by considering a hardening of the sub-circuits at
component level. The recovery strategy re�nement activity re-evaluates
the number of tolerated non-recoverable faults, by taking into account
the hardened circuit de�ned by the previous activity.
For each FPGA d, the maximum number of tolerated non-recoverable

faults (max_faultsd) is computed by considering the number of times
the greatest independently recoverable area hosted on the device can
be relocated on the spare region. Then, the constraint imposed by the
memory capacity is taken into account and the actual number of non-
recoverable faults tolerated by the system on each FPGA is de�ned as
follows:

#faults = min

(
#faultsd |

#faultsd∑
i=0

#areasi
d ≤

memory_size

bitstream_size
,∀d ∈ D

)

where #areasd is the number of independently recoverable areas hosted
on FPGA d and #faultsd ≤ max_faultsd is the tolerated number of
faults.
This value is considered by the subsequent reliability-aware partition-

ing activity, that re-distributes the circuit among the available FPGAs,
also taking into account the recovery actions.

4.5.2. Reliability-aware partitioning

The independently recoverable areas de�ned in the previous task are
taken in input by the reliability-aware partitioning task, that distributes
them among the available FPGAs, with the aim of possibly improving
the obtained solution. The reliability-aware partitioner is an extension
of the one presented in Section 4.3, considering also the possible recovery
actions needed during the system's lifetime.
In literature, the problem of partitioning hardware circuits has been

widely investigated and various approaches have been proposed. Some
contributions [31, 32, 33] partition design speci�cations at the behav-
ioral level, providing limited details about the systems' implementation,
which for FPGA platforms are quite relevant. Other approaches [34, 35]
take into account only the routing between FPGAs, without considering
the structure of the recon�gurable fabric, peculiar and heterogeneous in
the most recent FPGA families. Therefore, those works adopting either
a simpli�ed homogeneous model of the resources (e.g., [36, 37, 38]) or a
heterogeneous one but with a uniform distribution (e.g., [39]) can only
be used in speci�c application scenarios, since with the detailed model
of up-to-date devices would be inaccurate and would possibly lead to
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unfeasible solutions. Finally, some contributions seek a cover of the cir-
cuit in terms of used devices (e.g., [40, 41, 42, 43, 44, 45, 46]), however
these approaches do not model the platform's topology. Again, the ap-
proaches proposed in literature could be used as hints for a preliminary
exploration of the solution space, but not as �nal methods to be intro-
duced within an automatic design �ow, which should always produces a
feasible solution. Moreover, none of the approaches actually deals with
the speci�cs of hardened systems, which have additional requirements in
terms of resources and placement. Finally, while most of the contribu-
tions in literature present algorithms based on heuristics, we propose a
MILP model that identi�es the global optimal solution in an acceptable
execution time. It is worth noting that, even if the approach has been
designed to handle hardened systems, it is possible to use it also for
nominal systems, with no fault management features.
The partitioner takes as input the independently recoverable areas

composing the reliable circuit. Each area is characterized by its resource
requirements, areaa,r, a ∈ A, r ∈ R, that is the number of resources
of type r required by area a. The communication between the areas
is modeled by specifying the number of wires connecting each pair of
areas (areas_wiresa1,a2 , a1,a2 ∈ A) and the throughput between areas
(areas_comma1,a2 , a1,a2 ∈ A). Finally, the designer can specify his/her
requirements about the placement of the areas; same_deva1,a2 , a1,a2 ∈
A, equals to 1 if areas a1 and a2 must be placed on the same device, 0
otherwise.
When distributing the reliable circuit among the devices, the same

set of metrics of the preliminary partitioner are considered, namely the
distribution uniformity, the number of external wires, and the external
communication. The output of the partitioning problem is a mapping,
specifying for each area its hosting on one of the devices (it will be the
�oorplanner, in the subsequent step, to position it inside the device).
This is modeled by the decision variable xa,d, that equals to 1 if area a is
hosted on device d, 0 otherwise. Furthermore, to account for communi-
cation and the spare areas, the following binary variables are introduced:

• ya1,d1,a2,d2, equals to 1 if area a1 is hosted on device d1 and area
a2 is hosted on device d2;

• za,r,d, equals to 1 if area a requires the maximum number of re-
sources of type r on device d.

The partitioning problem includes constraints associated with areas
placement, system distribution, external wires, and external communi-
cation, listed in Table 4.5.
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Areas placement constraints. The partitioner must place each area on
a device, as de�ned by Constraint C1. Moreover, the designer's require-
ments related to the placement of areas on the same device must be
ful�lled. Constraint C5 allows to meet these requirements by exploiting
the variables ya1,d1,a2,d2, that identify the placement of each couple of ar-
eas. Constraints C2, C3, and C4 de�ne the valid values of the variables
ya1,d1,a2,d2, by referring to the variables xa,d; Constraints C2 and C3 de-
�ne the minimum bound of ya1,d1,a2,d2 (if xa1,d1 or xa2,d2 equal to 0, then
ya1,d1,a2,d2 equals to 0), whereas Constraint C4 identi�es the maximum
one (if both xa1,d1 and xa2,d2 equal to 1, then ya1,d1,a2,d2 equals to 1).
System distribution constraints. The system must be distributed uni-

formly among the available devices, by considering both the areas hosting
the system components and the spare ones. The spare area(s) must in-
clude enough resources to host the greatest area among the ones placed
on the device. Constraints C6 and C7 de�ne the variables za,r,d, neces-
sary to identify the greatest area for each type of resources on each device;
Constraint C6 de�nes that za,r,d equals to 0 if the area is not hosted on
the device, and Constraint C7 de�nes that there is one greatest area for
each type of resources on each device. The spare area is identi�ed by
Constraints C8 and C9; Constraint C8 de�nes that the spare area must
contain enough resources for relocating every area hosted on the device,
and Constraint C9 sets the resources requirements of the spare area to
equal the ones of the greatest area on the device for each type of re-
sources. A number of spare areas equal to the number of non-recoverable
faults speci�ed by the designer must be reserved on each device. The
spare areas concur in the computation of the resources occupation, to-
gether with the resources required by the Recon�guration Controller and
the areas hosted on the device, as computed by Constraint C10. The re-
sources occupation on each device can not be greater than the available
resources, as constrained by C11. The distribution of the system among
the available devices is uniform when the gap between the maximum and
minimum resources occupations among the devices is null. The maxi-
mum and minimum occupations of each type of resources are constrained
by C12 and C13, and the di�erence between them de�nes the gap, as
computed by Constraint C14.
External wires constraints. The external wires are the connections

between areas hosted on di�erent devices, by considering both adjacent
and non adjacent devices. The number of external wires between each
couple of devices is computed by Constraint 15, by summing the external
connections between the areas hosted on the devices. This number is
exploited to compute the number of external wires for the communication
between adjacent and non-adjacent devices, as de�ned by Constraints
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Table 4.5.: Reliability-aware partitioner constraints.

Areas placement

C1
∑

d∈D xa,d = 1,∀a ∈ A

C2 ya1,d1,a2,d2 ≤ xa1,d1,∀a1, a2 ∈ A, d1, d2 ∈ D

C3 ya1,d1,a2,d2 ≤ xa2,d2,∀a1, a2 ∈ A, d1, d2 ∈ D

C4 ya1,d1,a2,d2 ≥ xa1,d1 + xa2,d2 − 1,∀a1, a2 ∈ A, d1, d2 ∈ D

C5
∑

d∈D ya1,d,a2,d ≥ same_deva1,a2,∀a1, a2 ∈ A

System distribution

C6 za,r,d ≤ xa,d,∀a ∈ A,∀r ∈ R,∀d ∈ D

C7
∑

a∈A za,r,d ≤ 1,∀r ∈ R,∀d ∈ D

C8 spare_resd,r ≥ areaa,r · xa,d,∀d ∈ D,∀r ∈ R,∀a ∈ A

C9 spare_resd,r =
∑

a∈A areaa,r · za,r,d,∀d ∈ D,∀r ∈ R

C10 dev_occupationd,r =
∑

a∈A areaa,r · xa,d + recr + max_faults · spare_resd,r,∀d ∈ D,∀r ∈ R

C11 dev_occupationd,r ≤ dev_resd,r,∀d ∈ D,∀r ∈ R

C12 max_dev_occupationr ≥ dev_occupationd,r,∀d ∈ D,∀r ∈ R

C13 min_dev_occupationr ≤ dev_occupationd,r,∀d ∈ D,∀r ∈ R

C14 Gapr = max_dev_occupationr −min_dev_occupationr,∀r ∈ R

External wires

C15 d_to_d_wiresd1,d2 =
∑

a1∈A

∑
a2∈A areas_wiresa1,a2 · ya1,d1,a2,d2,∀d1, d2 ∈ D

C16 dev_dir_wiresd1,d2 = d_to_d_wiresd1,d2 · direct_commd1,d2,∀d1, d2 ∈ D

C17 dev_non_dir_wiresd1,d2 =∑
d∈D (d_to_d_wiresd1,d · non_direct_commd2,d1,d + d_to_d_wiresd,d2 · non_direct_commd1,d,d2)+∑
d3∈D

∑
d4∈D d_to_d_wiresd3,d4 · non_direct_commd1,d3,d4 · non_direct_commd2,d3,d4,∀d1, d2 ∈ D

C18 dev_dir_wiresd1,d2 + dev_dir_wiresd2,d1 + dev_non_dir_wiresd1,d2+

dev_non_dir_wiresd2,d1 ≤ dev_wiresd1,d2,∀d1, d2 ∈ D

C19 Wires =
∑

d1∈D

∑
d2∈D dev_dir_wiresd1,d2 + dev_non_dir_wiresd1,d2

External communication

C20 ext_area_comma,d =
∑

a1∈A areas_comma,a1 · xa,d − area_comma,a1 · ya,d,a1,d,∀a ∈ A,∀d ∈ D

C21 dev_to_dev_commd1,d2 =
∑

a1∈A

∑
a2∈A areas_comma1,a2 · ya1,d1,a2,d2,∀d1, d2 ∈ D

C22 dev_commd =
∑

a∈A ext_area_comma,d +
∑

d1∈D

∑
d2∈D dev_to_dev_commd1,d2 · non_direct_commd,d1,d2,∀d ∈ D

C23 Comm =
∑

d∈D dev_commd

C16 and C17, respectively. The number of external wires required for
inter-FPGA communication can not be higher than the available wires
between each couple of devices, as constrained by C18, and for the overall
platform it is computed by Constraint C19.
External communication constraints. The computation of the external

communication exploits the computation of the external communication
of each area on each device, de�ned by Constraint C20, and the external
communication between each couple of devices, de�ned by Constraint
C21. The external communication of each device is computed by Con-
straint C22, by summing the external communication of the areas hosted
on the device and the external communication between non-adjacent de-
vices through the considered one. Finally, the total external communica-
tion on the overall platform is computed by Constraint C23, by summing
the external communication of each device.
The partitioning problem includes only binary and continuous vari-

ables and linear constraints, hence it is a MILP problem. It is a multi-
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objective problem, with the following objective function:

min(wgap ·
∑
r∈R

Gapr

dev_resr
+ wwires · Wires

tot_wires
+

wcomm · Comm∑
a1∈A

∑
a2∈A comma1,a2

)

where wgap, wwires, and wcomm are weights assigned by the designer.

4.6. Floorplanning

The �oorplanning task �nds a suitable placement of the hardened areas
on the FPGA fabric (refer to Table 4.1 for the parameters character-
izing the device). Indeed, also the Recon�guration Controller is con-
sidered as an area to be positioned on the device. The areas are seen
as rectangles of speci�ed height and width, identi�ed by coordinates [
(xBL,yBL),(xTR,yTR) ], being the bottom left corner and the top right
corner, respectively. To obtain a feasible implementation, they must
satisfy the following constraints:

• Each area is contained in the device:

0 ≤ xBLa < xTRa < widthdev, ∀a ∈ A

0 ≤ yBLa < yTRa < heightdev, ∀a ∈ A

• Di�erent areas do not overlap with each other:

a1 ∩ a2 = �, ∀a1, a2 ∈ A

• Each area satis�es the resources requirements:

areaa,r ≤ area_resa,r, ∀a ∈ A, ∀r ∈ R

where areaa,r is the number of resources of type r required by
components implemented in area a and area_resa,r is the number
of resources of type r contained in area a.

These areas, being recon�gurable, are subject to recon�guration con-
straints too. The FPGAs recon�guration capability is exploited by iden-
tifying the number of rows of frames (num_frame_rows) and the number
of frames per column for each kind of resource, allowing to accurately
compute the recon�guration overhead. The distinction between 1D and
2D recon�guration is modeled by imposing constraints on the de�nition
of the recon�gurable areas:
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• 1D. The height of the recon�gurable area must be equal to the
height of the device (each frame spans the whole height of the
device):

yBLa = 0, ∀a ∈ A

yTRa = heightdev − 1, ∀a ∈ A

• 2D. The height of the recon�gurable area can be multiple of the
height of the row of frames (heightframe_row):

yBLa = α · heightframe_row, ∀a ∈ A

yTRa = β · heightframe_row − 1, ∀a ∈ A

where α, β are integers ∈ (0, num_frame_rows].

• 1D and 2D. The width of the recon�gurable area must be multiple
of two slices columns:

xBLa = γ · 2, ∀a ∈ A

xTRa = δ · 2− 1, ∀a ∈ A

where γ, δ are integers ∈ [0,
widthdev

2
].

Figure 4.6 shows these rules, presenting the con�guration of a module
with (a) 1D and (b) 2D schemas.

Figure 4.6.: Comparison between 1D and 2D recon�guration schemas.

An example of recon�gurable area de�nition according to the intro-
duced model is shown in Figure 4.6, that presents (a) a correct speci�-
cation, and two incorrect ones, namely (b) an area that does not contain
the required resources and (c) an area that does not satisfy the recon�g-
uration constraints.
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(a) (b) (c)

Figure 4.7.: Recon�gurable area de�nition: (a) correct speci�cation, (b)
area that does not contain the required resources, and (c)
area that does not satisfy the recon�guration constraints.

Besides de�ning the initial placement, the complete set of recovery re-
placements for each possible sequence of area failure must be considered
(see Figure 4.4). The process is automated by means of a resource-aware
�oorplanner supporting 2D recon�guration constraints necessary to en-
able partial scrubbing. The adopted �oorplanner stems from classical
approaches, using an enriched sequence pair representation and exploit-
ing the simulated annealing engine customized to cope with the speci�c
scenario. The initial �oorplanner, presented in [47], has been extended
to perform forbidden region avoidance. First, the initial placement is
generated. Then, for each possible single non-recoverable fault, another
placement is found by avoiding the faulty region. The process continues
by following the order of the recovery actions from non-recoverable faults
as shown in Figure 4.4.
The �oorplanning task produces the placement constraints for each

area on the related FPGA. The hardened circuit is placed on the multi-
FPGA platforms and, integrating the necessary Recon�guration Con-
trollers (one for each FPGA), the proposed reliable system is imple-
mented.

4.7. Prototype framework

The proposed design �ow is implemented by a prototype framework, de-
veloped to support the designer in the realization of the reliable system.
In the following, the implementation of the �ow's main tasks (namely
partitioning, hardening, and �oorplanning) is described.
The circuit partitioning, both the preliminary and the reliability-aware

one, is based on MILP optimization models, described in Sections 4.3
and 4.5.2, respectively. Both models have been implemented in AMPL.
To solve the optimization problems, we used the IBM ILOG CPLEX
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12.1 tool, which implements a parallel branch and cut procedure [48].
The physical system supporting the partitioner execution is based on
VMWare ESXi 4.0, running on an Intel Nehalem dual socket quad-core
system with 32 GB of RAM. CPLEX is hosted on a Virtual Machine
(VM) running Ubuntu 11.04 Linux. The VM has four physical cores ded-
icated to its execution with guaranteed performance and 8GB of memory
reserved. The partitioner performance has been measured and evaluated
in terms of execution time, as reported in Appendix A, showing that,
despite being the partitioning problem NP-complete [49], the proposed
models run in acceptable time.
The CPLEX tool has been exploited also to solve the optimization

model for the independently recoverable areas de�nition task, described
in Section 4.4. Also this optimization model has been implemented in
AMPL.
Finally, the �oorplanning task has been developed in a C++ proto-

type. This �oorplanner has been empirically evaluated by means of the
experimental campaign reported in [47].
By performing the tasks above, the developed prototype framework

allows to identify the solution o�ering the most convenient trade-o� with
respect to the designer's requirements.

4.8. Design �ow for �xed number of

non-recoverable faults

The design �ow described in the previous sections builds the envisioned
fault tolerant system on a multi-FPGA platform speci�ed by the de-
signer. Alternatively, it is possible to de�ne the reliable system based on
the number of non-recoverable faults that must be tolerated; after pre-
dicting the number of non-recoverable faults expected during the mis-
sion lifetime, the minimum number of FPGAs required to implement
the hardened circuit and the Recon�guration Controllers is identi�ed. A
design �ow targeted at this second scenario is required.
The proposed �ow for designing the fault tolerant system when the

number of non-recoverable faults is �xed is shown in Figure 4.8. With
respect to the previous �ow, the required inputs and the preliminary
partitioning task change. Whereas the previous �ow takes in input the
model of the multi-FPGA platform, this second approach requires the
model of the single FPGAs composing the platform and the number
of non-recoverable faults to be tolerated. The circuit components are
taken in input by the reliability-aware iterative partitioning task, that
distributes them among the necessary FPGAs. A hardened version of the
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circuit is taken into account, where TMR is applied on each component.
By starting from two FPGAs, the partitioner distributes the hardened
components among the devices and increases the number of required
FPGAs as far as it identi�es the suitable spare region for tolerating the
non-recoverable faults. The subsequent tasks are the ones of the previous
�ow. The two approaches are compared in Chapter 7 by implementing
a real case study.

VHDL
nominal 
circuit

RELIABILITY-AWARE PARTITIONING

FLOORPLANNING

BITs

device model

circuit
model

IMPLEMENTATIONVHDL
Reconfiguration

Controller

reliable circuit

UCFs

mapping area-FPGA

recovery strategy definition

CIRCUIT HARDENING

RELIABILITY-AWARE ITERATIVE 
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mapping 
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independently recoverable areas definition
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SYNTHESIS AND PARSING

VALIDATION# non-rec 
faults
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Figure 4.8.: Design �ow for �xed number of non-recoverable faults.

4.9. Chapter summary

In this chapter, we have introduced a �ow for designing fault tolerant
systems according to the methodology proposed in the thesis. A proto-
type framework implementing the �ow has been developed, in order to
automate as much as possible the implementation of such systems. All
the various implementation issues characterizing modern FPGAs have
been taken into account and an accurate model of the multi-FPGA plat-
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form has been adopted. The proposed design �ow produces a feasible
solution implementing an autonomous fault tolerant system.
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When FPGAs, in particular SRAM-based ones, are exploited for mission-
critical applications, fault tolerance and recovery techniques must be ap-
plied, but �rst it is necessary to understand the faults themselves in order
to apply the suitable recovery action. In fact, some faults can be recov-
ered by recon�guring the device (and possibly only the faulty part) with
the same con�guration loaded before the fault occurrence, while others,
characterized by a destructive e�ect, lead to the necessity of relocating
the functionality loaded onto the faulty part of the device. This chapter
presents a classi�cation strategy and its companion algorithm for the
discrimination of faults in FPGAs based on their impact on the device
elements and the consequent possibility to recover from them, so clas-
sifying faults into two macro categories; recoverable and non-recoverable
ones. Once classi�cation has been carried out, the suitable fault recov-
ery strategy is applied, with the �nal aim of enabling the exploitation of
SRAM-based FPGAs for mission-critical applications, such as the ones
in the space environment. While the idea behind the classi�cation strat-
egy is straightforward and intuitive, the de�nition of the parameters at
the basis of such an approach is the real challenge and complex point.
The main contributions of our work are thus the formal de�nition of
the parameters characterizing the algorithm and the evaluation of the
conditions for correct fault classi�cation.
The chapter is structured as follows: Section 5.1 discusses the related

work. Sections 5.2 and 5.3 describe two preliminary proposals of fault
classi�cation algorithms, presented in [50] and [51], respectively. Sec-
tion 5.4 describes the proposed algorithm and Section 5.5 discusses its
evaluation. Finally, Section 5.6 draws the chapter summary.

5.1. Related work

Few works in literature deal with the problem of identifying faults that
physically damage the device.
An approach dealing with the discrimination of faults in FPGAs is

presented in [52]. The authors propose the use of a timer; if two errors
are revealed in the same position in a time interval smaller than a pre-
de�ned threshold, it is assumed that they are related to the presence of a
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fault that has physically damaged the device. The main drawback of the
approach is that it is based on the knowledge of the Mean Time Between
Failure (MTBF), that is highly variable, being dependent on the speci�c
operating conditions.
The work presented in [53] pursues an objective similar to ours, by

proposing a mechanism for the diagnosis of hard faults in microproces-
sors. The approach diagnoses hard faults at the Field Decon�gurable
Unit (FDU) level of granularity. When an error is detected in an in-
struction executed by the microprocessor, an error counter for every FDU
used by that instruction is incremented and, when a counter exceeds a
threshold, the related FDU is identi�ed as a�ected by a hard fault, and
is decon�gured and no longer used. As long as transient errors do not
lead the error counters to exceed the threshold, the counters are cleared
periodically with a frequency depending on the expected transient error
rates, or when a decon�guration is activated. Moreover, the threshold
is chosen not to be too small and is related to the speci�c FDU usage.
Although the overall solution is presented, no indication is available on
how to derive the parameters' value.
Indeed, we deem fundamental to be able to de�ne the values of the pa-

rameters to distinguish between recoverable and non-recoverable faults,
in a systematic way based on the application scenario. Therefore, al-
though the existing proposals are meaningful in terms of the presented
strategies, they cannot be adopted. In particular, we focus our attention
on how to derive such parameters, in a more general way, also determin-
ing them for our environmental space-mission context. More precisely,
with respect to the previous contributions, the proposed work formally
de�nes the parameters characterizing the algorithm and evaluates the
conditions for correct fault classi�cation, presenting a robustness analy-
sis, in order to see how the overall behavior may be a�ected by possible
impreciseness.

5.2. First preliminary proposal

A �rst preliminary proposal of fault classi�cation algorithm has been
presented in [50]. We propose a classi�cation of the fault a�ecting a
portion of the FPGA based on the absolute and relative frequency of
the detected faults. The rationale is that, if an area is a�ected by a
fault more frequently than the others, a relocation should take place to
prevent further use of the area.
The de�ned strategy keeps track of both the number of faults oc-

curring in each area (application areas and controller) and of their his-
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tory, recording the locations of the most recent observed faults. To
support this strategy, the Fault Classi�er has n separate counters, to
count the number of faults per area, and a trend bu�er to track the most
recent areas a�ected by the faults. The dimension of the bu�er is de-
termined by the application scenario, in such a way that the higher the
expected SEU frequency, the deeper the bu�er. It is worth noting that
the adopted methodology for system hardening produces solutions with
a limited number of application areas (see Chapter 3), thus the number
of counters is small and the bu�er has a manageable size. The foreseen
system lifetime is used to estimate a k threshold, together with the SEU
incidence. A combination of absolute and relative frequencies of the
area corruption contributes to determine which kind of recon�guration
to apply. More in detail, the fault classi�cation process considers i) the
faulty area presence in the bu�er, ii) the absolute value of the counter
related to the faulty area with respect to k, and iii) the relative value of
the counter with respect to the other counters, as reported in the �ow
diagram in Figure 5.1.

counter(i)++

push i in 
trend buffer 

i dominates in 
trend buffer? 

counter(i) > k?

counter(i) >> 
counter(j) ∀ j ≠ i?

No

No

No

Yes

Yes

Yes

error identified in 
area(i)

fault ← non-recoverablefault ← recoverable

Figure 5.1.: First proposal of fault classi�cation algorithm.

The �rst preliminary proposal of fault classi�cation algorithm is rough
and not evaluated, since the focus of [50] is on the design of the overall
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Radiation Aging
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Figure 5.2.: Cause-based fault classi�cation in the space environment.

engine managing fault tolerance. Thus, in this approach, a formal de�ni-
tion and accurate study of the parameters characterizing the algorithm
is not provided.

5.3. Second preliminary proposal

A detailed and re�ned version of the fault classi�cation algorithm has
been presented in [51]. The algorithm is based on a characterization of
the radiation e�ects and aging mechanisms in the space environment,
discussed in the upcoming subsection.

5.3.1. Fault quanti�cation

Based on the fault characterization in the space environment presented
in Chapter 2, we hereafter propose a fault quanti�cation, identifying the
parameters involved in the classi�cation algorithm. Recoverable faults
are the ones caused by radiations without a destructive e�ect, whereas
non-recoverable faults are those caused by radiations with destructive
e�ect, radiations' accumulation and device aging. Figure 5.2 shows such
fault classi�cation based on the analyzed causes and e�ects. It is worth
noting that the HCE and NBTI aging phenomena were not considered
in this second preliminary proposal, but the approach can be easily ex-
tended to consider such faults as well.
Recoverable faults, caused by radiations, are characterized by a fre-

quency that depends by the device's cross section (i.e., the fraction of
the device sensitive to radiations) and the target environment, whose
conditions heavily in�uence the radiations rate. The cross section is dis-
tinguished into static and dynamic; the former one is the total sensitive
fraction of the device, while the latter one is the operational fraction. A
radiation in an unused FPGA resource typically does not a�ect a circuit's
proper operation, consequently the fraction of faults due to radiations
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causing the circuit failures is directly proportional to the speci�c sensitive
subset of the FPGA static cross section. The second aspect in�uencing
the recoverable faults rate is the destined environment, characterized by
radiations rate that heavily depends by space environmental conditions.
By taking into account the average SEU rate forecast into the environ-
ment (λSEU ), the following formula has been proposed in [12] to calculate
the rate of the faults due to radiations that are non destructive, which
we identify as recoverable faults rate:

λrec =
Dynamic cross section
Static cross section

· λSEU

Based on this parameter, the Mean Time To Failure (MTTF) for recov-
erable faults can be estimated as:

MTTFrec =
∫ lifetime

0
t · flifetime(t) dt =

1
λrec

being flifetime(t) the exponential probability density function generally
assumed to apply to electronics hardware. Consequently, the estimated
number of recoverable faults is:

#faultsrec = lifetime · λrec

The other faults due to radiations are non-recoverable ones, and they
are destructive SEEs and TID e�ects. Their failure rate is related to
the amount of dose and does not obey to constant failure rates over
time. SEL occurrence has not been taken into account since test reports
on SRAM-based FPGAs reveal that no SEL was observed during the
experiments up to the maximum tested Linear Energy Transfer of tens
of MeV cm2/mg ([16], [17]), and no other data is available. TID e�ects
occurrence is calculated by considering the device's TID and computing
the predicted dose rate δ as follows:

MTTFTID =
TID

δ

Consequently, the number of non-recoverable faults due to TID e�ects
is the following:

#faultsTID =
lifetime

MTTFTID

The last class of non-recoverable faults includes those due to device ag-
ing: TDDB and EM. The MTTFs due to such faults are estimated by us-
ing the equations proposed in [19]. The MTTF due to TDDB is strongly
dependent on the thickness and area of the oxide, the gate voltage, the
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temperature and the leakage current through the gate; it is estimated
by exploiting the MTTF empirically evaluated for an older technology
(MTTFTDDB0) characterized by oxide thickness tox0 = 10nm and with
an applied gate voltage V0 = 7V :

MTTFTDDB =
MTTFTDDB0

10
tox0−tox

0.22 (V0
V )a−bT e

X+ Y
T

+ZT

kT

where X, Y , Z, a and b are constants obtained from empirically �tted
numbers for scaling. Thus, it is possible to estimate the expected number
of non-recoverable faults due to TDDB:

#faultsTDDB =
lifetime

MTTFTDDB

EM causes device aging involving interconnections, and its MTTF de-
pends primarily on the current density J and the wire length L as follows:

MTTFEM =
J−ne

E
kT

L

where n, E and k are constants. The expected number of non-recoverable
faults due to EM can be estimated as:

#faultsEM =
lifetime

MTTFEM

In conclusion, the foreseen number of non-recoverable faults is com-
puted as follows:

#faultsnrec = #faultsTID + #faultsTDDB + #faultsEM

and the total number of faults occurring during the system's lifetime is
computed as follows:

#faultstot = #faultsrec + #faultsnrec

5.3.2. Proposed classi�cation algorithm

The presented quanti�cation of faults a�ecting the FPGAs in the space
environment is used as the basis for the classi�cation algorithm. The
proposed algorithm classi�es the fault a�ecting a portion of the FPGA
as recoverable or non-recoverable based on the relative and absolute fre-
quency of faults, as in the �rst preliminary proposal, and also the esti-
mated scenario.

54
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The de�ned strategy keeps track of the history of faults, recording
the locations of the most recently observed faults in a trend bu�er, and
of the number of faults occurring in the payload sub-system, keeping
three separate counters, one for each type of non-recoverable fault (TID,
TDDB, and EM). The rationale is that, if an area is being a�ected by a
fault more frequently than the others, the algorithm veri�es whether the
relevant frequency is due to radiations accumulation or device aging. If
the estimated MTTF matches the present scenario, the fault is classi�ed
as non-recoverable, recoverable otherwise. For each fault detection, if
an area is being a�ected more than the others, a discrimination is made,
based on the number of recoverable faults that are estimated to occur be-
fore a non-recoverable fault (derived from the computed MTTFs). Thus,
each counter acts actually as a sort of timer. Such hypotheses are sup-
ported by the frequencies identi�ed for recoverable and non-recoverable
faults' occurrence. The proposed algorithm is described in the �ow dia-
gram in Figure 5.3.

counter(i)++

push i in trend buffer 

i dominates in 
trend buffer? 

radiations 
accumulation || aging?

No

No

Yes

Yes

error identified in area(i)

fault ← non-recoverablefault ← recoverable

Figure 5.3.: Second proposal of fault classi�cation algorithm.

The size of the trend bu�er is related to the target environment such
that the higher the expected fault rate the deeper the bu�er, and is based
on a de�ned observation period t:

l = λSEU · t

selecting t such that l >> m. The �rst control performed by the al-
gorithm veri�es if the fault identi�ed in areai has been registered more
frequently than faults in other areas during the last observations. The

55



5. Fault classi�cation

frequency in the trend bu�er is:

Presencei > α · Presencej ,∀j 6= i

where α is a constant chosen in the interval (1,l). The second control
performed by the algorithm discriminates between faults due to radia-
tions accumulation or device aging. The former aspect is estimated as
follows:

CounterTID > ThresholdTID =
#faultstot

#faultsTID

while device aging is estimated as follows:

CounterTDDB > ThresholdTDDB =
#faultstot

#faultsTDDB
||

CounterEM > ThresholdEM =
#faultstot

#faultsEM

Once the operating scenario is characterized, it is possible to derive
the parameters driving the fault classi�cation. We have developed a
prototype and have evaluated it by simulating the system behavior in a
case study, as reported in the next subsection.

5.3.3. Algorithm evaluation

An experimental session has been performed by considering a circuit
characterized by 2206 slices, implemented on a Xilinx Virtex-II XC2V1000
and equally distributed into 5 di�erent areas. A ten-years LEO mission
at 560 km, 35 degree inclination is envisioned. An observation period
t = 40 days has been selected, consequently setting the bu�er length
l = 11, and a trend bu�er constant α = 3. The experimental setup pa-
rameters, reported in Table 5.1, have been then computed with SPENVIS
[54], an interface for models of the space environment and its e�ects, and
by referring to [19].
The fault classi�cation algorithm has been implemented and evaluated

in a preliminary software version. When a fault occurs in the payload
system, the fault classi�cation algorithm, activated by the fault signal,
determines the fault type and triggers the recovery strategy. The Mean
Time To Repair (MTTR), corresponding to the time necessary to classify
the fault and to recon�gure/relocate the faulty area, is neglected since
it is much smaller than MTTFrec. Recoverable faults are simulated by
generating a fault in a payload system's area randomly chosen at various
time instants, while a non-recoverable fault is simulated by continuously
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Table 5.1.: Experimental setup parameters for the second preliminary
algorithm evaluation.

Input parameters Calculated parameters

Radiation-related parameters

Stat.cross sec. 0.15 · 10−8cm2 λrec 0.285 SEU/day
Dyn. cross sec. 0.01 · 10−8cm2 MTTFrec 3.5 days
λSEU 4.276 SEU/day #faultsrec 1040
δ 86.4 rad/day MTTFTID 2314.8 days
TID 200 krad #faultsTID 1.5768

ThresholdTID 666.50482
Aging-related parameters

T 629.77 K MTTFTDDB 476 days
tox 1.2 nm #faultsTDDB 7.668
V 3 V ThresholdTDDB 137

MTTFEM 2190 days
#faultsEM 1.7
ThresholdEM 618.2028

activating a fault in the chosen faulty area from a selected time instant.
In all cases the algorithm correctly classi�es the fault.

We also evaluated the ability to correctly discriminate faults even when
the MTTFrec has been erroneously estimated, to test the robustness of
the approach. In these situations, the classi�cation is not as prompt
as in the optimal case, and the number of times the fault is detected
and preliminary considered recoverable di�ers from the expected one.
However, the relative dominance of the area being detected as faulty
produces its e�ects and the fault is recognized as non-recoverable. For
instance, by referring to Figure 5.4, with an estimated MTTFrec = 3.5
days, should the real scenario be characterized by a MTTFrec = 5 days,
44 activations instead of 8 are required to enable the classi�cation to tag
the fault as non-recoverable.

However, it can be noted that, also for this algorithm, the parameteres
characterizing it (e.g., the bu�er length) have not been formally de�ned
and evaluated. In the following, we present the proposed fault classi�ca-
tion algorithm, clearing the limitations of the previous solutions.
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Figure 5.4.: Second preliminary algorithm robustness evaluation.

5.4. Fault Classi�er speci�cation

The fault classi�cation algorithm is executed each time an error signal
from the monitored areas shows the presence of a fault. The monitoring
of the signals is continuous and the classi�cation begins when the error
is detected. The proposed classi�cation is based on the analysis of the
fault's frequency. An area is considered a�ected by a non-recoverable
fault when it has been �recorded� as faulty during the last K subse-
quent observations. The behavior of the Fault Classi�er implementing
the proposed algorithm is shown by the �ow diagram in Figure 5.5.
The challenge with this approach is selecting K; a too small K would

lead to erroneously consider most faults as non-recoverable, while a too
large K would cause not to recognize non-recoverable faults as such. In
order to properly assist the designer of the reliable system in dimension-
ing K, we introduce the following elements: i) Pmisr−nr is the accepted
probability of classifying a recoverable fault as non-recoverable, and
ii) Pmisnr−r is the accepted probability of classifying a non-recoverable
fault as recoverable. The value of K can be determined by using the
above introduced probabilities of a mistake in the classi�cation as thresh-
olds in relation to the events that actually cause the algorithm to fail in
classifying the fault. It is worth noting that, if the �rst kind of mistake is
made, a relocation of the area deemed as faulty is performed, discarding
an actually still healthy portion of the FPGA. In the second scenario,
instead, useless recon�gurations are performed without a real bene�t,
thus incurring in a waste of time and e�ort, and in the accumulation of
multiple faults.
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Figure 5.5.: Fault Classi�er behavior

Recoverable faults are mistaken for non-recoverable ones whenever K
subsequent recoverable faults occur all in the same area, and such event
occurs with a probability Parea×K equal to:

Parea×K =
(

1
n

)K

(5.1)

Therefore, to keep the probability of a mistake within the desired
threshold, we obtain:

K ≥ dlog 1
n
Pmisr−nre (5.2)

In the de�nition of K, also the other kind of classi�cation mistake
must be taken into account. A fault is mistaken as recoverable if a non-
recoverable one is not characterized by K subsequent detections because
a recoverable fault occurs within the sequence. As a result, as shown
in Figure 5.6, to avoid this situation, the time necessary to classify a
non-recoverable fault must be shorter than the time elapsing between
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Rec fault 1

Non-rec
fault A

lat

(K - 1) lat

MTBFrec

Rec error 1
Non-rec
error A

Non-rec
error A

Non-rec
error A

Rec error 2
Rec fault 2

lat

Fault A recognized
as non-recoverable

Figure 5.6.: Non-recoverable fault classi�cation

two recoverable faults, de�ned as MTBFrec. This must be avoided as it
leads to the violation of the single-error hypothesis on which this work is
based. The probability of this event occurring is related to the latency
lat, that is the time for a given non-recoverable fault to produce an
error. Since for the �rst (K − 1) times the system tries to recover by
recon�guring the area assuming it to be a recoverable error, (K − 1) ·
lat indicates the time necessary to recognize a non-recoverable fault,
where lat is associated with that speci�c fault. Nevertheless, as stated
in Chapter 3, we assume a homogeneous implementation of the system
onto the device, such that this parameter can be assumed as unique
for all faults, using an average value. The fault, not yet classi�ed as
non-recoverable, is hereafter called not-recovered. By considering this
scenario, the probability that a recoverable fault occurs before a previous,
non-recoverable one is identi�ed as such, is the following:

Plat =
(K − 1) · lat

MTBFrec
(5.3)

Based on this equation, the threshold K must satisfy the following con-
dition:

K ≤ MTBFrec

lat
Pmisnr−r + 1 (5.4)

By selecting a value of K which satis�es both Equation 5.2 and Equa-
tion 5.4, we obtain an algorithm that correctly identi�es non-recoverable
faults with desired level of accuracy. In general, though, latency is ne-
glected since the relation between fault and error is of orders of mag-
nitude smaller than fault occurrence, hence Equation 5.4 could be ne-
glected and no upper bound for K could be identi�ed. However, the
latency is a positive value that actually depends on the speci�c imple-
mentation, so an upper bound for K must be considered. We de�ne the
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optimum value of K as follows:

K = dlog 1
n
Pmisr−nre (5.5)

The choice of considering the errors' frequency for the classi�cation is
supported by the assumption that, when an area is a�ected by a non-
recoverable fault, errors in that area are signaled with a higher frequency
than errors due to recoverable faults. In fact, when an error is observed,
a recon�guration is triggered and, if the fault is recoverable, no error
is then detected for the subsequent time window corresponding to the
MTBFrec, otherwise the recon�guration produces a bene�t only until
an input causes the fault to be observed again (an error in the same area
is detected after latency lat). This situation occurs because, once we
observe an error due to a recoverable fault, we immediately recon�gure
the system, correcting the fault, and the next error will be seen when the
next recoverable fault happens (i.e., when the system is again hit by a
particle causing a SEU). Concerning errors due to non-recoverable faults,
instead, they are taken care of only once recognized, which happens with
a certain latency after they are �rst encountered. This means that, once
the �rst of such errors is seen, the next one will be observed as soon
as the fault propagates again to the system's outputs. More rigorously,
the frequency of a recoverable fault depends on its occurrence and its
observability, whereas a not-recovered fault (i.e., a non-recoverable fault
that has not been classi�ed as such yet) is already present in the system
and its frequency depends only on the latency related to the fault-error
relation. As stated, this value is of orders of magnitude smaller than the
MTBFrec, even for harsh environments as the space one. As a conse-
quence, we derive that the MTBFrec is bigger than the time elapsing
between observations of the same non-recoverable fault, hence we can
expect a number of not-recovered fault observations, here identi�ed as
K, before a recoverable fault occurs. Since the MTTR is equal for both
recoverable and not-recovered faults, the frequencies of recoverable and
not-recovered faults can be compared based only on their MTTFs, hence
justifying the assumption underlying to the algorithm's design.

5.5. Algorithm evaluation

This section describes the evaluation of the proposed algorithm, by pre-
senting the experimental setup and results in Sections 5.5.1 and 5.5.2,
respectively. Finally, the algorithm is compared with the related work
and the preliminary versions in Section 5.5.3.
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5.5.1. Experimental setup

The algorithm has been tested by simulating the behavior of four sys-
tems in the space environment, where recoverable faults are caused by
radiations without destructive e�ect (SEU ), and non-recoverable faults
are caused by radiations' accumulation (TID) and device aging (TDDB
and EM ). Ten-year long missions at three di�erent orbits have been en-
visioned: Low-Earth Orbit (LEO), Polar orbit, and Medium Earth Orbit
(MEO). We assume �ve years of Solar Minimum and �ve of Solar Max-
imum (characterized by recoverable faults rates λrecmin and λrecmax , re-
spectively), with two solar �ares lasting one week and one hour (λrecweek

and λrecday
, respectively). The frequency λrec predicted for each system

has been computed as Pr · λSEU , where Pr is the probability that the
fault hits a used resource, and λSEU is the forecast SEU rate. The val-
ues of Pr and λSEU , reported in Tables 5.2 and 5.3, respectively, are
computed by using the data provided in [12]. The values of λrec are
reported in Table 5.4. For each experimental session, also an average
value λrecavg between the various conditions have been computed. Such
data is the basis for the execution of 12 experimental conditions: three
di�erent orbits for each of the four considered systems.

Table 5.2.: Probabilities Pr in the payload systems.

Payload Dyn. cross sec. [cm2] [12] Pr

Multiplier 8.3 · 10−9 6.5 · 10−2

Counter 3.5 · 10−9 2.7 · 10−2

Synthetic 3.2 · 10−9 2.5 · 10−2

DSP kernel 8.9 · 10−9 6.9 · 10−2

Table 5.3.: Orbits' λSEU .

Orbit λSEUmin λSEUmax λSEUweek
λSEUday

[SEU/day] [SEU/day] [SEU/day] [SEU/day]
LEO 0.7 0.4 0.4 0.4
Polar 1.6 1.3 26.4 91.2
MEO 1 11 88.8 312

Also prediction of non-recoverable faults' rates has been performed to
identify a rough timeline for simulating non-recoverable faults. A rough
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Table 5.4.: Predicted λrec at the considered environmental conditions.

Orbit λrecmin λrecmax λrecweek
λrecday

[SEU/day] [SEU/day] [SEU/day] [SEU/day]
Multiplier

exp1 LEO 4.5 · 10−2 2.6 · 10−2 2.6 · 10−2 2.6 · 10−2

exp2 Polar 10.4 · 10−2 8.4 · 10−2 171.6 · 10−2 592.8 · 10−2

exp3 MEO 6.5 · 10−2 71.5 · 10−2 577.2 · 10−2 2028.0 · 10−2

Counter
exp4 LEO 1.9 · 10−2 1.1 · 10−2 1.1 · 10−2 1.1 · 10−2

exp5 Polar 4.3 · 10−2 3.5 · 10−2 71.3 · 10−2 246.2 · 10−2

exp6 MEO 2.7 · 10−2 29.7 · 10−2 239.8 · 10−2 842.4 · 10−2

Synthetic
exp7 LEO 1.7 · 10−2 10−2 10−2 10−2

exp8 Polar 4.0 · 10−2 3.2 · 10−2 66.0 · 10−2 228.0 · 10−2

exp9 MEO 2.5 · 10−2 27.5 · 10−2 222.0 · 10−2 780.0 · 10−2

DSP kernel
exp10 LEO 4.8 · 10−2 2.8 · 10−2 2.8 · 10−2 2.8 · 10−2

exp11 Polar 11.0 · 10−2 9.0 · 10−2 182.2 · 10−2 629.3 · 10−2

exp12 MEO 6.9 · 10−2 75.9 · 10−2 612.7 · 10−2 2152.8 · 10−2
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Figure 5.7.: Non-recoverable faults' timeline.

prediction is su�cient since the algorithm accuracy in identifying non-
recoverable faults does not depend on their time occurrence. The rate
of non-recoverable faults due to TID e�ect is computed by considering
a predicted dose rate of 86.4 rad/day [55] and, by taking into account a
Xilinx FPGA XCV1000, a TID of 60 krad [56]; we obtain MTBFTID

= 694 days. Finally, we have considered the MTBFs due to device aging
computed in [19], i.e., MTBFTDDB = 410 days and MTBFEM = 1460
days. The timeline of the predicted non-recoverable faults is shown in
Figure 5.7.
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5.5.2. Experimental results

The algorithm has been implemented in a software version for the evalua-
tion. A SystemC module implements the algorithm, activated by signals
simulating faults in the system. Recoverable faults are simulated by gen-
erating an error in an area randomly chosen. A non-recoverable fault is
simulated by activating a fault in an area and by keeping the signal active
until it is classi�ed as non-recoverable. As this holds for all simulated
areas and for both recoverable and non-recoverable faults, the validity of
the experimental results is not compromised. Note that for recoverable
faults, the MTTR has been neglected since it is much smaller than the
MTTF, being the former in the units of milliseconds and the latter of
days. In fact, the typical con�guration time is around one microsecond
per bit [57] and, in case of fault, only the faulty area must be recon�g-
ured. The experimental sessions consisted of measuring the algorithm
robustness and evaluating the condition for correct fault classi�cation.
In the �rst experimental session, we varied K according to Equa-

tion 5.5. In a �rst evaluation phase, in addition to varying the experi-
mental conditions according to Table 5.4, we analyzed the impact of the
number of areas, by using n = {3, 5, 10, 15, 20, 30}, yielding a total of
72 experiments. The accepted probability of performing an erroneous
classi�cation of the recoverable faults has been set to Pmisr−nr = 0.005,
which means that, by varying n, we obtained di�erent thresholds K. For
each experimental condition and for each value of n, we considered the
rate of recoverable faults mistakenly classi�ed (Rmisr−nr) as the fraction
between the number of mis-classi�cations and the number of injected re-
coverable faults. Table 5.5 presents the results by reporting the average
value of Rmisr−nr between the 12 conditions. It can be noted that, by
decreasing K, more errors are performed by marking recoverable faults
as non-recoverable. This is shown by the increasing value of Rmisr−nr .
However, Rmisr−nr ' Pmisr−nr when the algorithm operates in a safe
region, which means for su�ciently high values of K. In a second eval-
uation phase, we have set n to a �xed value (n = 5) and have varied
Pmisr−nr . Table 5.6 reports the average value of Rmisr−nr . Results are
not reported for Pmisr−nr > 0.1 since we would have K < 1, completely
hindering a proper classi�cation. It can be noted that, also by varying
Pmisr−nr , Rmisr−nr ' Pmisr−nr .
In the second experimental session, we evaluated the condition for

correct fault classi�cation by computing the maximum latency according
to Equation 5.3, as follows:

lat ≤
Pmisnr−r ·MTBFrec

K − 1
(5.6)
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Table 5.5.: Average Rmisr−nr by setting Pmisr−nr=0.005

n=3 n=5 n=10 n=15 n=20 n=30
(K=5) (K=4) (K=3) (K=2) (K=2) (K=2)

exp1 0 0 0.018 0.055 0.046 0.055
exp2 0.018 0.006 0 0.043 0.036 0.061
exp3 0.004 0.004 0.013 0.046 0.034 0.029
exp4 0 0 0 0.102 0.051 0.051
exp5 0.008 0.008 0.008 0.074 0.041 0.057
exp6 0 0.012 0 0.036 0.036 0.024
exp7 0 0 0 0.139 0.028 0.083
exp8 0.009 0.009 0.017 0.053 0.044 0.044
exp9 0 0 0 0.065 0.026 0.052
exp10 0 0 0.016 0.049 0.05 0.049
exp11 0.012 0.006 0.024 0.067 0.048 0.054
exp12 0.008 0.004 0.008 0.057 0.036 0.028

avg Rmisr−nr 0.005 0.004 0.104 0.065 0.04 0.049

Table 5.6.: Average Rmisr−nr by setting n=5

Pmisr−nr=0.001 Pmisr−nr=0.004 Pmisr−nr=0.01 Pmisr−nr=0.1
(K=5) (K=4) (K=3) (K=2)

exp1 0 0 0.064 0.156
exp2 0 0.006 0.018 0.165
exp3 0 0.004 0.034 0.143
exp4 0 0 0 0.154
exp5 0 0.008 0.033 0.164
exp6 0 0.012 0.024 0.167
exp7 0 0 0 0.167
exp8 0 0.009 0.053 0.21
exp9 0 0 0.026 0.208
exp10 0 0 0.049 0.164
exp11 0 0.006 0.054 0.164
exp12 0 0.004 0.036 0.17

avg Rmisr−nr 0 0.003 0.032 0.169
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This condition should guide the designer when de�ning the system, char-
acterized by a fault-error relation respecting the maximum latency. For
the values of K estimated in the previous experimental session, we com-
puted the latency by setting su�ciently low values of the misclassi�ca-
tion error probability, Pmisnr−r = {0.005, 0.01, 0.05, 0.1}, and computing
MTBFrec = 1

λrec
, where λrec is the worst value between the environmen-

tal conditions. Table 5.7 presents the results by reporting the average
value of lat in the 12 conditions. Results show fault classi�cation suc-
ceeds even with lat up to the order of hours (with a few exceptions in
the range of tens of minutes), which is a very high value considering
a typical fault-error relation, thus con�rming the algorithm rationale.
Moreover, it should be taken into account that we considered very strict
values for MTBFrec, by considering the worst case between the various
environmental conditions. Hence, the latency required for correct fault
classi�cation is even higher than the one computed. Finally, it should
be noticed that the latency increases when raising the value of Pmisnr−r ,
that can be higher than the selected Pmisr−nr since mistaking a fault
as recoverable is less serious than mistaking it as non-recoverable. In
fact, in the latter case, we discard an actually still healthy portion of
the FPGA. In all cases, the latency is in the order of hours also at high
orbits, where faults are more frequent. In most cases, several hours are
allowed for fault detection and recovery.

5.5.3. Comparison with related work

The proposed algorithm has been compared with the related work and
the preliminary versions. No comparison with the �rst preliminary ver-
sion of the algorithm has been performed since no indication for setting
the parameters characterizing the algorithm has been provided.
The approach in [52] can be considered equivalent to ours when K

is set to 2, if we do not �x a MTBF (not so easily predictable). Such
value of K is suitable when the number of areas is high enough (greater
than 10, according to our approach), otherwise it is possible to fall into
a mis-classi�cation of a recoverable fault as non-recoverable.
The algorithm in [53], targeted for microprocessors, is quite similar to

ours. Both approaches count the number of faults a�ecting the areas and
identify hard faults when a prede�ned threshold is exceeded. We veri�ed
that by setting the period for clearing the counters as MTBF of recov-
erable faults and the threshold as K, the algorithm in [53] has the same
classi�cation performance as ours. However, our approach only requires
the use of one counter of length K, whereas, in [53], it is necessary to set
as many counters as the areas, whose number can be very high; counters
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Table 5.7.: Average latency [hour]

K = 2 K = 3 K = 4 K = 5
exp1 73.85 36.92 24.61 18.46
exp2 24.61 12.31 8.21 6.15
exp3 6.05 3.03 2.02 1.51
exp4 177.78 88.89 59.26 44.44
exp5 59.26 29.63 19.75 14.81
exp6 14.57 7.29 4.86 3.64
exp7 192.00 96.00 64.00 48.00
exp8 64.00 32.00 21.33 16.00
exp9 15.74 7.87 5.25 3.93
exp10 69.57 34.78 23.19 17.39
exp11 23.19 11.59 7.73 5.80
exp12 5.70 2.85 1.90 1.43

Pmisnr−r=0.005 1.54 0.77 0.51 0.39
Pmisnr−r=0.01 3.09 1.54 1.03 0.77
Pmisnr−r=0.05 15.45 7.72 5.15 3.86
Pmisnr−r=0.1 30.90 15.45 10.30 7.72

can considerably impact the area occupation of the Fault Classi�er both
for their number and for the hardening process. Moreover, the structure
of our algorithm enables a formal and rigorous study of the e�ect of each
parameter.

Finally, we have taken into account the second preliminary version of
the algorithm. We have considered that a fault occurs relatively more
frequently than the others when only the faulty area is registered in a
bu�er of length K. Moreover, we have computed the thresholds related
to non-recoverable faults to analyze their absolute frequency, by consid-
ering the values reported in the previous section. We have evaluated
such algorithm by considering the number of fault observations required
to classify the fault as non-recoverable and by comparing it with K,
as shown in Figure 5.8. Results show that, in the second preliminary
version, the number of fault observations to recognize a non-recoverable
fault can be very high, whereas in the proposed solution is �xed.
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Figure 5.8.: Comparison of the number of fault observations to recognize
a non-recoverable fault in the proposed solution and the sec-
ond preliminary version of the algorithm.

5.6. Chapter summary

In this chapter, an algorithm for the distinction between recoverable and
non-recoverable faults has been designed. With respect to the other
works proposed in literature, we formally de�ne the parameters char-
acterizing the fault classi�cation algorithm and present rigorous mecha-
nisms for dimensioning them based on the desired classi�cation accuracy.
Two preliminary versions of the algorithm have been proposed and a �nal
solution has been accurately evaluated. Experimental results show that
the proposed algorithm recognizes non-recoverable faults with desired
level of accuracy and prove the e�ectiveness of the algorithm also with
respect to related work. The algorithm has been designed and tested for
space applications, being space the target scenario of the thesis, but the
work is suitable for any application that must tolerate both recoverable
and non-recoverable faults. The proposed algorithm is implemented by
the Fault Classi�er module of the Recon�guration Controller, presented
in the next chapter.
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design

This chapter proposes the design of the controller in charge of manag-
ing the fault recovery of the multi-FPGA platform, contributing to the
creation of the reliable system. We here introduce a reliability-aware
Recon�guration Controller, aimed at performing the fault classi�cation
presented in the previous chapter and managing the recon�guration pro-
cess of the faulty parts of the architecture to mitigate fault e�ects.
The Recon�guration Controller is the main component responsible for

the active fault mitigation process. It continuously monitors the error
signals from the neighbor FPGA and, upon error detection, triggers a
recon�guration, based on the classi�cation of the fault nature (recover-
able vs. non-recoverable). Should the fault be considered as recoverable,
the FPGA is partially recon�gured by reloading the bitstream portion
related to the faulty area, otherwise the faulty area is relocated to a spare
region by loading a new bitstream. Such recovery action by means of
recon�guration requires few seconds, and even few milliseconds in case
of recoverable fault, being the typical con�guration time around one mi-
crosecond per bit [57]. It is worth noting that the proposed approach is
suitable for stateless applications, since the application must be stopped
in case of non-recoverable fault; alternative solutions can be investigated
as future work.
Indeed, it is necessary to prevent erroneous recon�gurations by de-

tecting also faults a�ecting the Recon�guration Controller itself. Hence,
fault detection capability is required for the Recon�guration Controller,
also. More precisely, the controller itself can be seen as an area that,
in case of fault, is recovered or relocated based on the type of occurred
fault.
The chapter is organized as follows: Section 6.1 describes the related

work on controller design. Section 6.2 introduces a software implementa-
tion developed to validate the designed controller with respect to its re-
quirements, and Section 6.3 proposes a preliminary hardware reliability-
aware implementation. Section 6.4 presents the design of the proposed
solution and Section 6.5 describes the hardening of the module. Finally,
Section 6.6 draws �nal considerations.
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6.1. Related work

To the best of our knowledge, the engine closer to the one proposed and
described in this chapter has been presented by Honeywell in [8]. It con-
sists of a controller for a system composed of three FPGAs, each one
hosting the same implemented system and thus with the same con�gu-
ration. The controller, implemented on an external radiation-hardened
ASIC, acts as a TMR voter. Upon error detection, it recon�gures the
corrupted FPGA and re-synchronizes it with the two remaining FP-
GAs. Central in Honeywell's paper, as in our work, is the controller
module, necessary for an appropriate management of the overall system
functionality and responsible for detecting faults and correcting them
by recon�guring the FPGAs' functionalities. This solution has the in-
trinsic problem of applying device-level TMR, that generally leads to
an ine�cient exploitation of the multi-FPGA resources and computing
capabilities. A high amount of resources and power is also spent during
the recon�guration of the whole faulty FPGA, something that could be
limited by enabling the recon�guration of the faulty portion of the de-
vice. By applying TMR at a �ner granularity level, we better exploit
the devices potential and we provide a scalable solution, independent of
the number of FPGAs used. In addition, Honeywell's controller needs
to be implemented on speci�c ASIC technology, eliminating most of the
advantages of having FPGAs in the system, namely �exibility and rel-
atively low cost. Finally, the solution can cope with recoverable faults
but does not address non-recoverable ones.
Literature reports a few controller designs, however most of them focus

on dynamic partial self-recon�guration for single FPGA platforms, with-
out taking reliability issues into account [58, 59, 60, 61]. More precisely,
the authors of [58] propose a solution composed of a microprocessor, that
manages the recon�guration process, and of a controller for the Internal
Con�guration Access Port (ICAP) interface [62, 23], that enables on-chip
dynamic partial recon�guration. The microprocessor sends the recon�g-
uration request to the ICAP controller through a Device Control Register
bus, and the ICAP controller accesses a memory to fetch the bitstream
for recon�guration by performing Direct Memory Access (DMA) via a
Processor Local Bus (PLB). Besides introducing such architecture for
dynamic partial recon�guration, the authors introduce a method to cal-
culate the expected recon�guration throughput and latency. The use of
DMA and burst transfers allows the presented recon�guration controller
to work at a speed that is close to the theoretical maximum achievable
throughput.
A preliminary version of this recon�guration controller exclusively de-
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signed for the Xilinx Virtex-II Pro [62] FPGA is presented in [59]. In both
versions, particular relevance is given to the ICAP controller, constitut-
ing an essential aspect in the achievement of the obtained performance.
In fact, compared to an alternative realization using a state-of-the-art
solution, namely the OPB HWICAP IP-Core [63], a speed-up by a factor
of 20 has been achieved by the older version, and a speed-up by a factor
of 58 has been obtained by the new one.
A customized version of this recon�guration controller is shown in [60],

where the authors describe a framework used to create the most suitable
controller according to the recon�guration scenario where it will be used.
A set of metrics has been de�ned to describe the recon�guration scenario
and to set the following parameters of the recon�guration controller:
i) the bus interface of the ICAP controller, by allowing to choose between
the PLB and the On-chip Peripheral Bus (OPB), such that the problem
of having the ICAP controller on a bus and the memory on another
one no longer exists; ii) the implementation type, in terms of slices or
BRAMs, of the memory used to store the bitstream inside the ICAP
controller, in order to set the resources requirement; �nally, iii) the size
of the internal memory, by allowing to �nd a trade-o� between resources
requirement and recon�guration throughput. Thus, the attention has
been oriented towards the speed-up of the recon�guration process, as in
the previous two recon�guration controllers, and its simpli�cation.
Another type of controller, implemented by a stand alone IP-Core,

is presented in [61]. This custom soft core, called Parallel Con�gura-
tion Access Port (PCAP), performs partial dynamic self-recon�guration
through the SelectMAP port, by using a partial bitstream stored in a
BlockRAM memory within the FPGA itself. The proposed approach
stores partial bitstreams in the on-chip memory and reads them from
there under the control of PCAP. In this case, the recon�guration pro-
cess is accomplished without the ICAP controller, available only in some
FPGA families, and without a microprocessor managing the process.
While the analyzed solutions do not take into account the system's

fault tolerance and concentrate only on a single FPGA, they are the �rst
proposals of e�cient recon�guration controllers and, as such, they were
carefully taken into account while de�ning the presented solution, possi-
bly adopting the advantageous aspects they propose. However, our work
deals with the problem of multi-FPGA platforms' reliability, therefore
the attention is on the e�ects of faults and their mitigation rather than on
the overall performance. Hence, we propose a fault management strategy
that exploits the recon�guration capability of the devices to cope with
the occurrence of both recoverable and non-recoverable faults.
The component implementing the strategy, namely the Recon�gura-
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tion Controller, has been designed, by identifying its functionality and
features. Innovative points of the presented solution are:

• distributed, low cost Recon�guration Controller, eliminating the
need to deploy it on ad-hoc device,

• management of both recoverable and non-recoverable faults, and

• scalable use of multiple FPGAs to build a recon�gurable reliable
system.

A preliminary software implementation has been developed to validate
the designed controller with respect to its requirements, and two hard-
ware reliability-aware solutions have been proposed, as described in the
next sections.

6.2. Software implementation

Both software and hardware implementations of the Recon�guration
Controller have been taken into account, to identify the most convenient
solution, based also on the available FPGA platform. A preliminary
software implementation has been developed and deployed for a board
hosting a microprocessor, to re�ne the controller behavior and to verify
the external recon�guration aspect, triggered by the error detection.
The software-based system implementing the Recon�guration Con-

troller is shown in Figure 6.1. The Recon�guration Controller is imple-
mented by a MicroBlaze, that monitors the error signals from the other
FPGA(s) through a General Purpose I/O (GPIO) component. In case
of fault of a monitored FPGA, it takes the correct bitstream stored in an
SRAM memory and performs the recon�guration of the faulty portion
of the system through a JTAG component, that communicates with the
other FPGA through the con�guration link. The bitstreams are stored
in the SRAM memory through UART RS232 and the communication be-
tween all components is performed through OPB bus. The code executed
by the MicroBlaze is stored in a BRAM memory that communicates with
the processor through Local Memory Bus.
The design and prototype implementation of the Recon�guration Con-

troller have been de�ned using as a preliminary platform two Spartan-3A
FPGAs. One FPGA hosts the Recon�guration Controller and the other
one the system with fault detection properties. When a fault occurs in
the monitored system, the Recon�guration Controller performs the re-
con�guration of the system. The two FPGAs are connected through two
physical links, one for con�guration and one for communication. The
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Figure 6.1.: First prototype of Recon�guration Controller.

con�guration link is obtained through the use of a cable attached to the
A2 Expansion Connector of the Recon�guration Controller board and
the JTAG of the monitored system board, while the communication link
uses a cable attached to the A2 Expansion Connectors of the two boards,
as shown in Figure 6.2.
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Figure 6.2.: Software-based implemented prototype platform.

The system monitored by the Recon�guration Controller consists of
a counter on which the TMR is applied, as shown in Figure 6.3. The
counter computation is shown on the 7 segment display hosted on the
board, and the outputs of the 3 counters are sent to a voter. The voter
has been modi�ed to support the fault generation, simulated by pressing
a button on the board. The error signals are sent to the Recon�guration
Controller FPGA through the communication link.
When the Recon�guration Controller detects an error, it performs the
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Figure 6.3.: Reliable system.

recon�guration of the other FPGA by using the appropriate bitstream.
The recon�guration with di�erent bitstreams has been tested by creating
two versions of the counter; in the �rst version (bitstream 1) the count
is from 0 to 9, while in the second one (bitstream 2) the count considers
only even numbers. Bitstream 1 is loaded when fault occurs while 0, 1, 4
or 6 are displayed on the second board, otherwise bitstream 2 is loaded.

Two are the main limitations characterizing a software implementa-
tion, namely the sharing of the microprocessor with the application be-
ing normally executed, and the hardening against faults. As far as the
former aspect is concerned, should the available microprocessor be ex-
ploited to run the nominal application (otherwise the platform would not
host a microprocessor, to begin with), the fault mitigation management
application would have to be executed periodically, during idle time, thus
introducing a latency in fault detection and management. Considering
the latter aspect, the prototype did not expose reliability features, since
hardening by means of software-based techniques is expensive in terms
of overhead (code and performance degradation) as well as it only al-
lows for a partially reliable system [64]. A possible solution to achieve
the necessary reliability consists in adopting a fault tolerant IP, such as
Leon2-FT [65]. However, the �nal cost is quite prohibitive, with an oc-
cupation of available resources on an xc2v3000 FPGA requiring about
24% registers, 37% Block RAMs and 79% LUTs. For these reasons, a
hardware solution, whose design is presented in the next sections, has
been preferred.
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6.3. Preliminary proposal

In our preliminary proposal, presented in [50], the fault detection ca-
pability required for the Recon�guration Controller is guaranteed by
means of readback; each Recon�guration Controller of the system pe-
riodically accesses the neighbor FPGA to perform the partial readback
of the con�guration memory corresponding to the controller, to detect,
and eventually repair, faults. Thus, the main tasks of the controller are:
i) continuously monitoring the neighbor FPGA's error signals from the
application areas, ii) periodically monitoring the controller hosted on
the neighbor FPGA, and iii) upon error detection in one of the areas,
application ones or controller, trigger a recon�guration, based on the
classi�cation of the fault nature. The �ow diagram shown in Figure 6.4
reports the behavior of the Recon�guration Controller.
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Figure 6.4.: Recon�guration Controller �ow diagram.

In order to carry out such tasks, the following modules have been
identi�ed as fundamental �building blocks�: Recon�guration Interface, in
charge of performing the physical implementation of the recon�guration
process, providing access to the FPGA con�guration memory interface,
andManager, to control the Recon�guration Interface based on error de-
tection and classi�cation policies, determining what bitstream shall be
used to recon�gure the platform and mitigate (recover or relocate) the
e�ect of the fault. The Manager is, in turn, composed of the following
elements: i) a Readback Module, for the neighbor controller veri�cation,
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ii) a Fault Classi�er, to determine whether the detected fault can be con-
sidered recoverable or non-recoverable, and iii) a Bitstream Module, that
retrieves the data and information to perform the necessary recon�gu-
ration. Note how the Recon�guration Interface is a bottleneck for the
overall system reliability as a fault in it could trigger undesired recon�g-
uration, possibly corrupting the functionalities of the neighbor FPGA.
Hence, even if there is no explicit self-analysis of the absence of faults in
the Recon�guration Controller, the controller itself is designed to avoid
such undesired recon�gurations; when the recon�guration request is as-
serted, the error signals are checked to detect if an error has actually been
raised, otherwise the recon�guration is blocked. An overview of the re-
sulting Recon�guration Controller structure is presented in Figure 6.5,
and the detailed presentation of the Manager module is proposed in the
next subsections.
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Figure 6.5.: Preliminary Recon�guration Controller block diagram.

6.3.1. Readback Module

While the hardened application system organized in areas, as described
in Chapter 3, is designed to be self-checking, i.e., it incorporates logic
to detect the presence of a fault causing an error in its functionalities,
this is not true for the Recon�guration Controller itself. As explained,
the Recon�guration Controller is designed to behave correctly even if
a fault occurs in the portion of the FPGA hosting it. However it is
the neighbor Recon�guration Controller's task, through the Readback
Module, to determine the presence of such a fault.
We adopt the following strategy. The presence of a fault in the Recon-

�guration Controller of FPGAi+1 is determined by the Recon�guration
Controller of FPGAi, which periodically reads the con�guration data and
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compares it with a golden model stored in a protected memory. Such op-
eration is performed every Trb time instants, estimated on the MTBF of
the adopted fault model in the envisioned application scenario, mimick-
ing the methodologies presented in [4]. Furthermore, an enable signal,
coming from the Bitstream Module, is provided in input, to block the
readback activity while the neighbor FPGA is being recon�gured to cor-
rect a previously detected error.
The output of the comparison, errorRCi+1 , is encoded with the clas-

sical Two-Rail Code (TRC) [66], to provide an adequate level of pro-
tection within the Recon�guration Controller module, hence preventing
internal faults from triggering unnecessary/incorrect recon�gurations of
the monitored neighbor controller RCi+1. Such output signals are sent to
the Fault Classi�er, in charge of classifying the fault as recoverable or
non-recoverable.

6.3.2. Fault Classi�er

The Fault Classi�er module receives the error signals from the Read-
back Module (errorRCi) and from the monitored n application areas
(errorapp area1 , · · · , errorapp arean) of FPGAi+1, and, when an error is
detected, it classi�es the fault as recoverable or non-recoverable. In de-
tail, the input of the module is a (n+1) × 2 bits signals, since each error
signal is encoded with the TRC. Furthermore, as in the Readback Mod-
ule, an enable signal, coming from the Bitstream Module, is provided to
specify when the error signals are to be considered valid, or not. In fact,
as soon as an error is detected, that fault is classi�ed but other error
signals should not be taken into account, otherwise the same fault may
be accounted for more than once. Fault classi�cation must be disabled in
the time frame going from fault detection to the moment fault recovery
has been completed.
In this preliminary proposal of controller, the Fault Classi�er imple-

ments the algorithm described in Chapter 5. The output of the Fault
Classi�er module feeds the Bitstream Module with the information about
having detected or not a fault, and on the derived nature, recoverable
or non-recoverable, to trigger a partial or complete recon�guration of
the neighbor FPGA. The output con�gurations are 01 (no error), 00
(recoverable fault) and 11 (non-recoverable fault).

6.3.3. Bitstream Module

Upon error detection and based on the fault classi�cation, the Bitstream
Module disables fault classi�cation and triggers a recon�guration action,
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accessing the protected memory to retrieve the appropriate con�guration
data. With such information, it programs the Recon�guration Interface
to carry out the FPGA (partial) recon�guration to recover from the
fault. The bitstreams are organized in memory as follows: the �rst
bitstream consists of the current con�guration of the monitored FPGA
and is used for partial recon�guration in case of a recoverable fault. The
other bitstreams are used to recover from non-recoverable faults, each
one of them appropriate for the detected faulty area.
To implement such functionality, inputs to the Bitstream Module

are the fault type, application areas error, and RC error signals.
When necessary, the Bitstream Module interacts with the memory to
retrieve the desired (partial) bitstream, configuration data, to be for-
warded to the Recon�guration Interface, together with a reconfiguration
request, in terms of FAR, word, and data (i.e., the information neces-
sary to perform the recon�guration). An acknowledge signal, ack, is
used to increase the Recon�guration Controller reliability, by having an
additional �ag to check that recon�guration has been performed cor-
rectly. When the ack is received it means that fault recovery is complete
and fault classi�cation can be re-enabled (through enable signal), thus
restoring the system to its nominal behavior.

6.3.4. Solution evaluation: limits

The designed Recon�guration Controller is the �rst proposal of con-
troller managing both recoverable and non-recoverable faults. It is a
distributed, low cost engine, eliminating the need to deploy it on ad-hoc
device and allowing scalable use of multiple FPGAs to build a recon�g-
urable reliable system.
In this �rst proposal, the reliability of the controller is guaranteed

by means of readback, that is an expensive operation and subject to
errors. Thus, we investigated the reliable implementation of the engine,
as described in the next section.

6.4. Proposed solution

The design and prototype implementation of the proposed Recon�gura-
tion Controller have been de�ned using as a preliminary platform the
one presented in Section 6.2, where each FPGA is connected to the
other through the physical links for con�guration and communication.
The recovery bitstreams are stored for each device in an XCF02S se-
rial con�guration Flash PROM, that, besides con�guration data, can
possibly store additional non-volatile data. Each FPGA hosts both the
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Recon�guration Controller and part of the system with fault detection
properties; the application system is partitioned and distributed among
the available devices by exploiting the partitioner presented in the next
chapter.
The module implementing the proposed Recon�guration Controller is

composed of the following elements, as shown in Figure 6.6:

• Fault Classi�er, that implements the algorithm proposed for fault
classi�cation, as presented in Chapter 5,

• Bitstream Address Calculator, that identi�es the memory position
of the bitstream for recovering from the occurred fault,

• Manager, that moves the con�guration data from memory to the
interface for recon�guration,

• Bitstream Module, that retrieves the bitstream from memory, and

• Recon�guration Interface, that performs the physical implementa-
tion of the recon�guration process.
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Figure 6.6.: Proposed Recon�guration Controller block diagram.

6.4.1. Fault Classi�er

The module implementing the fault classi�cation algorithm receives in
input the error_signals from the areas (application areas or controller)
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and an enable signal specifying when the error signals are to be con-
sidered valid (the Fault Classi�er is disabled during the recovery phase).
We assume that on the error signals the areas adopt TRC, whereas the
enable signal, generated within the Recon�guration Controller, is not
encoded since the presence of faults in the overall controller is revealed
by an error signal generated by the controller itself. The Fault Clas-
si�er generates three outputs: fault_identified to signal whether a
fault has been detected, fault_type to specify whether it is recover-
able or not, and faulty_area to specify the area where the fault has
occurred. The entire information is then used to trigger the appropriate
recon�guration/relocation strategy, managed by the module in charge
of executing the re-programming of the neighbor FPGA. The input sig-
nals are used, together with the following local information, to classify
the fault upon detection of an error condition on the input signals from
the monitored areas: last_ira to specify the area identi�ed as faulty
the last time an error has been detected, error_counter to identify
the number of consecutive errors detected on the area speci�ed in the
above mentioned register, and the parameter K to specify the thresh-
old for classifying a fault as non recoverable. The resulting structure
of the nominal Fault Classi�er module is reported in Figure 6.7. It is
possible to identify the internal signals used to characterize the situa-
tion, error_detected (when an area is identi�ed as faulty), same_area
(whether the area identi�ed as faulty is the same as the last detected
area), and max_count (whether the number of consecutive fault detec-
tions in the same area has reached the pre-de�ned threshold K). These
signals are used to de�ne the control of the entire module, described
in terms of the FSM reported in Figure 6.8. The FSM generates the
internal clock and reset signals (namely clk and rst) used to control
the module evolution, and the (re)setting of the instantiated registers.
A VHDL description of the module has been developed for simulation
and synthesis purposes. Figure 6.9 reports the waveforms of the module
behavior following the detection of a non-recoverable fault.

6.4.2. Bitstream Address Calculator

The Bitstream Address Calculator is in charge of identifying the mem-
ory position of the con�guration data for fault recovery. When the
fault_identified signal is asserted, the module locates the suitable
recovery bitstream based on fault_type and faulty_area information.
As soon as the memory position has been identi�ed, the bs_ready signal
is asserted. When the number of non-recoverable faults exceeds the sup-
ported threshold, the recovery bitstream can not be located; in this case,
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Figure 6.8.: Fault Classi�er FSM.

the Bitstream Address Calculator signals an error by asserting bs_error.

6.4.3. Manager

The Manager is the module that, upon error detection, moves the bit-
stream retrieved by the Bitstream Module to the Recon�guration Inter-
face. When the Fault Classi�er arises the fault_identified signal, the
Manager disables the classi�er module through the enable signal, indi-
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Figure 6.9.: Fault Classi�er behavior when monitoring 10 areas and a
non-recoverable fault occurs on area #3.

cating that the error signals are not to be considered valid during the
recovery phase, and waits for the assertion of the bs_ready signal, speci-
fying when the bitstream is ready to be retrieved. If the bitstream for re-
covering from the occurred fault can not be located, the bs_error signal
is asserted by the Bitstream Address Calculator. Otherwise, as soon as
the con�guration data can be read, the module asserts the prog signal to
begin the recon�guration process and starts the bitstream transfer from
the Bitstream Module to the Recon�guration Interface. It manages the
data move between the two modules by using the read and data_ready

signals of the Bitstream Module and the load and rdy signals of the
Recon�guration Interface. When the transfer is completed, it de-asserts
the prog signal and waits for the assertion of the done signal. If an
error occurs during the recon�guration process, the rec_error signal is
asserted by the Recon�guration Interface.
The Manager's behavior is described in terms of the FSM reported in

Figure 6.10. The error signals from the Bitstream Address Calculator
and the Recon�guration Interface are not shown for sake of representa-
tion clearness. When the bs_error or rec_error signals are asserted, a
transition from the current state to an error one is performed. Successive
transitions from the error state are to itself. The error state indicates
that the occurred fault cannot be recovered and the whole system is
labeled as faulty.

6.4.4. Bitstream Module

The Bitstream Module is in charge of retrieving the recovery bitstream
from memory. Based on the position information provided by the Bit-
stream Address Calculator and the reading request from the Manager, it
retrieves the con�guration data and sends them to the Recon�guration
Interface.
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Figure 6.10.: Manager FSM.

To support the adopted prototype platform, where the recovery bit-
streams are stored in a Xilinx con�guration PROM, we exploited the
PROM reader module presented in [67]. The recovery con�guration data
are stored in PROM as user-de�ned data separated by synchronization
patterns, used by the module to locate the requested bitstream. This
module can be replaced by another one accessing a di�erent memory.

6.4.5. Recon�guration Interface

The Recon�guration Interface performs the physical implementation of
the recovery process, by providing access to the JTAG interface, used
in the prototype platform for managing recon�guration. It handles the
JTAG functions needed for programming. The module is controlled by
the Manager as described in Section 6.4.3 and receives the con�gura-
tion data from the Bitstream Module. It controls the JTAG interface
signals to the con�guration interface. Indeed, this module can be easily
substituted to manage di�erent con�guration interfaces.
We recall that, in case of recoverable fault, the recovery action re-

quires few milliseconds, whereas, in case of reallocation, few seconds are
required to identify the suitable recovery bitstream and to perform re-
con�guration.

6.5. Recon�guration Controller hardening

The reliability of the Recon�guration Controller must be guaranteed to
block erroneous recon�gurations of the monitored FPGA and to include
the module into an overall reliable system. Thus, it is necessary to detect
faults a�ecting any portion of the controller and to guarantee the cor-
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rectness of the recon�guration process. In the following, the hardening
of each component of the controller is analyzed and discussed. Particu-
lar attention has been devoted to the Fault Classi�er, for which di�erent
hardened implementations have been analyzed, for the criticality of the
classi�cation task.

6.5.1. Fault Classi�er hardening

Fault detection is required for the Fault Classi�er and it can be con-
sidered su�cient since the engine is able to work correctly even when
it is reset after recon�guration, because of the robustness of the algo-
rithm's parameters. In fact, a single fault in any one of the parameters
being used by the classi�cation algorithm can only slightly impact on
the overall process. Should a fault occur, it will be detected and a reset
(and recon�guration) of the controller would only cause a minor delay
in classifying a fault as not-recoverable. In case of recoverable faults,
the most frequent ones, a loss of information has no negative e�ects.
Otherwise, in the rare, worst case where a non-recoverable fault has oc-
curred and has not been identi�ed yet as such in the payload system,
when the Fault Classi�er is reset, the fault's observations required for
correct fault classi�cation are at most 2K-1 instead of K (we recall that
K is the threshold for classifying a fault as non-recoverable). This is
an acceptable value if considering that K assumes only small values and
the latency estimated for the fault-error relation, now reduced since the
threshold is increased, is high enough to give a wide margin for reduc-
tion. Hence, even the most critical registers for discriminating between
faults, i.e., the ones related to the error_counter and the last_ira,
when reset, do not compromise seriously the correctness of the classi-
�cation. Therefore, we deemed su�cient to guarantee the detection of
faults in this portion of the entire architecture. Nevertheless, for the
sake of completeness, implementations achieving fault tolerance proper-
ties have been investigated. In particular, our analysis took into account
the following hardened solutions: i) an implementation that applies Du-
plication With Comparison (DWC) on the module, ii) a Self-Checking
(SC) implementation based on the application of error detection codes,
iii) a Self-Checking implementation coupled with TMR applied to the
most critical registers (SC+), and iv) an implementation where TMR
is applied to the entire system with a �ne granularity, by following the
approach o�ered by Xilinx's TMRTool (X-TMR) [68].
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Duplication With Comparison: DWC

In this implementation, two replicas of the Fault Classi�er receive the
same inputs and their outputs are compared by Two-Rail Code Checkers
(TRCCs) for mismatch. The design is straightforward and no speci�c
issues arise in the implementation of the solution, provided the hierarchy
is guaranteed during the synthesis process. The tree of TRCCs is applied
to the module's primary outputs, amounting to a total of n+2 lines, being
n the number of areas in the monitored FPGA. Such implementation is
shown in Figure 6.11.
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Figure 6.11.: Fault Classi�er with DWC.

Self-Checking via Error Detecting Codes: SC

For the SC implementation, three classes of elements that constitute
point of failures have been identi�ed: i) the states of the FSM, ii) the in-
ternal variables of the datapath, and iii) the outputs. The analysis of the
number of states of the control FSM and the values stored in the other
registers allowed us to select the 1-hot code, to protect all the registers
of the module, thus adopting a very well known (and thus easily imple-
mentable) encoding. In particular, since one of the monitored areas may
be faulty at most, based on the adopted working hypotheses, the content
of the faulty_area and last_area (from Figure 6.7) naturally exploits
a 1-hot encoding. A similar analysis holds for register area, bu�ering
the input error signals; eventually, it might contain an all 0s con�gura-
tion, when no fault is detected on the monitored area. Therefore, by
concatenating the complement of the error_detected signal with area,
an immediate, cost-free 1-hot encoding is obtained. For example, when
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monitoring 3 areas, if no fault is detected, the resulting code is 0001

since register area contains all 0s (no error is signalled) and the com-
plement of error_detected is 1. On the other hand, the content of
the register is 0010, 0100 or 1000 when area #1, #2 or #3 is detected
as faulty, respectively. Therefore, the 1-hot code is a natural choice for
the speci�c register. For the other internal variables (state register and
error_counter), since the number of states is limited, the code is not too
expensive (the typical limitation of this code). The primary outputs are
single lines (fault_identified and fault_type), encoded with a Two-
Rail Code, whereas faulty_area is the encoded content of the register.
The adoption of this code is particularly interesting, especially since the
code is usually recognized and supported also by automatic synthesis
tools, which usually have very little open con�guration options, espe-
cially when targeting FPGA platforms, where the designer's control of
the �nal implementation is hard to achieve. The SC implementation of
the Fault Classi�er is shown in Figure 6.12 and consists of the functional
module generating encoded data and the necessary 1-hot/TRC checkers.
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Figure 6.12.: SC Fault Classi�er.
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SC and TMR: SC+

A �rst fault tolerant implementation has been de�ned by protecting the
most critical registers with TMR, using a feedback loop to propagate
the correct value to the protected registers, thus avoiding any glitch in
the stored values, especially useful for the case of non-recoverable faults.
The resulting structure is reported in Figure 6.13, where the triplicated
registers can be seen, as well as the additional voters, which not only
perform a majority vote but also signal the presence of a mismatch on
the inputs, for fault detection.

fsm_edc

clock
reset

enable

ar
ea

n

er
ro
r_
si
gn
al
s[
(n
x2
)-1
:0
]

fa
ul

ty
_a

re
a

la
st

_a
re

a_
1

er
r_

co
un

te
r_

1

K

K

1

er
ro

r_
de

te
ct

ed

same_area[1:0]

fault_identified[0]

fault_type[0]

faulty_area[n-1:0]

max_count[1:0]

clk

rst

trcc

1 1

fault_identified[1]

fault_type[1]

chk 
1hot

chk 
1hot

trcc trcc trcc

trcc trcc

trcc

error[1:0]

chk 
1hot

state[3:0]

la
st

_a
re

a_
2

la
st

_a
re

a_
3

voter

n

er
r_

co
un

te
r_

2

er
r_

co
un

te
r_

3

voter

trcc

2
2 K

trcc chk 
1hot

00..10

>>

M
U

X00..01

11

2n

Figure 6.13.: SC Fault Classi�er with TMR on the critical registers.

X-TMR

As a �nal alternative, we applied fault tolerance to the overall module
with a �ne granularity. We implemented the solution achieved by using
X-TMR, that applies TMR to the entire system with a �ne granularity.
Unlike traditional TMR, X-TMR triplicates i) all inputs, including clocks
and throughput logic, ii) feedback logic, and iii) all ouputs. It inserts
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majority voters on feedback paths, and minority voters on outputs to de-
tect and disable incorrect output paths. Such solution is the one usually
adopted for recon�gurable FPGAs in high-radiation environments.

Cost analysis

The proposed implementations are compared in Table 6.1 with respect to
their overheads, in terms of area occupation (number of used slices and
�ip �ops). The selected device is a Xilinx Virtex-II XC2V1000. Each
implementation has been analyzed by varying K and n as discussed in
Chapter 5, to derive a trend in the implementation costs.
As expected, as the number of monitored areas n increases, the size

of the Fault Classi�er increases, in all nominal and hardened versions.
The most expensive solution is the one obtained by using X-TMR, en-
tailing overheads around 370%, as expected. For the other implementa-
tions, the incidence of the fault detection/tolerance added functionality
is within the foreseen, typical bounds, keeping the �nal hardened im-
plementation within acceptable costs, that is less than 2% of the entire
FPGA resources. In particular, overheads range from 40% and about
100%, based on the di�erent solutions, allowing the designer to select
the solutions s/he deems more interesting.

Table 6.1.: Area occupation (slices and FFs � in parenthesis) of the Fault
Classi�er implementations and related overhead.

Solution K=2 (n=15) K=3 (n=10) K=4 (n=5) K=5 (n=3)
area occ. over. area occ. over. area occ. over. area occ. over.

Nominal 86 (52) - 60 (36) - 40 (22) - 29 (16) -
DWC 176 (104) 105% 120 (72) 100% 81 (44) 102% 58 (32) 100%
SC 120 (53) 40% 96 (39) 60% 57 (25) 42% 47 (20) 62%
SC+ 133 (53) 55% 107 (39) 78% 67 (25) 67% 58 (20) 100%
X-TMR 406 (201) 372% 283 (138) 372% 186 (81) 365% 141 (57) 386%

The SC implementation allows us to have a competitive solution,
characterized by acceptable costs and bene�ts in terms of reliability.
It has been compared to the nominal solution in Table 6.2, in terms
of area occupation of the modules composing the Fault Classi�er (see
Figure 6.7). Not all modules entail an increment in cost, in particular
error_detected_module and the registers faulty_area and last_area,
that do not require modi�cations in the SC version. Alternative solu-
tions, with acceptable but higher costs, do not entail signi�cative bene�ts
in terms of additional reliability.
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Table 6.2.: Area occupation (slices and FFs � in parenthesis) of the Fault
Classi�er modules for the nominal version and the SC one.

Module K=2 (n=15) K=3 (n=10) K=4 (n=5) K=5 (n=3)
Nom. SC Nom. SC Nom. SC Nom. SC

fsm 9 (4) 14 (6) 9 (4) 14 (6) 9 (4) 14 (6) 9 (4) 14 (6)
error_detected_module 27 (15) 27 (15) 18 (10) 18 (10) 13 (10) 13 (10) 8 (6) 8 (6)
faulty_area 15 (15) 15 (15) 10 (10) 10 (10) 5 (5) 5 (5) 3 (3) 3 (3)
last_area 15 (15) 15 (15) 10 (10) 10 (10) 5 (5) 5 (5) 3 (3) 3 (3)
same_area_module 4 (0) 8 (0) 3 (0) 4 (0) 2 (0) 2 (0) 1 (0) 2 (0)
error_counter_module 5 (3) 3 (2) 5 (3) 5 (3) 5 (3) 6 (4) 5 (3) 8 (5)
max_count_module 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 2 (0)

6.5.2. Other components hardening

The hardening of the other modules composing the Recon�guration Con-
troller requires the introduction of fault detection and tolerance proper-
ties. For the Recon�guration Interface, fault tolerance is required since
it is necessary to guarantee the correctness of the recon�guration. For
the other components, i.e., Manager, Bitstream Address Calculator, and
Bitstream Module, fault detection su�ces since by detecting erroneous
situations, it is possible to block erroneous recon�gurations. Thus, the
selected hardening strategy applies TMR on the Recon�guration Inter-
face and DWC on the other components. The costs of the hardened
implementation are reported in Table 6.3. As for the Fault Classi�er's
cost analysis, the selected device is a Xilinx Virtex-II XC2V1000.

Table 6.3.: Area occupation of the Recon�guration Controller compo-
nents' hardened implementations.

Component Slices FFs
Recon�guration Interface 909 723
Manager 26 10
Bitstream Address Calculator 28 20
Bitstream Module 142 112
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6.6. Chapter summary

The chapter has presented the design of the Recon�guration Controller,
i.e., the module in charge of managing the fault recovery of the multi-
FPGA platform. We introduced a controller performing the following
main tasks: i) continuous check of the error signals from the monitored
FPGA, ii) classi�cation of fault into recoverable or non-recoverable, and
iii) management of the recon�guration process to mitigate fault e�ects.
Since the module will be hosted on an SRAM-based FPGA, it has been
designed to be reliable itself, to prevent erroneous recon�gurations by
identifying an erroneous behavior of the controller as soon as it is ob-
servable. A preliminary software implementation has been developed to
re�ne the controller behavior. Due to the main limitations character-
izing a software implementation, a hardware implementation has been
preferred, and two reliability-aware solutions have been proposed.

90



7. Methodology evaluation

The reliability-aware design methodology presented in the thesis has
been evaluated by implementing a real case study. The design �ow de-
scribed in Chapter 4 has been followed, and the developed prototype
framework has allowed to automate, as much as possible, the system
implementation. Di�erent solutions have been explored, and the one
o�ering the most convenient trade-o� with respect to the designer's se-
lected metrics has been identi�ed.
The chapter is structured as follows: Section 7.1 describes the selected

case study and Sections from 7.2 to 7.5 present the experimental results
for the various tasks of the design �ow. Sections 7.6 and 7.7 compare the
results with the ones obtained by implementing an alternative version of
the proposed design �ow and the �ow for �xed number of non-recoverable
faults, respectively. Finally, Section 7.8 draws the chapter summary.

7.1. Case study

The multi-FPGA platform selected for the evaluation of the design method-
ology is a commercial board, a Synopsis HAPS-34 [25]. It is composed
of four Xilinx FPGAs xc4vlx100, interconnected to each other in a mesh
topology through connections for communication and con�guration. Fig-
ure 7.1 shows the platform model, together with the parameters charac-
terizing it. We recall that the platform model is composed of identical
FPGAs, di ∈ D, where D is the set of devices. Each FPGA is character-
ized by the resources hosted on it, dev_resr, r ∈ R = {slice, bram,

dsp}, that is the number of resources in terms of slices, BRAMs, and
DSPs, respectively. The FPGA is shaped as a grid of slices with columns
constituted by di�erent types of resources. The inter-FPGA communi-
cation is performed by dedicated wires; dev_wiresd1,d2 is the number
of wires between devices d1 and d2, and tot_wires is the number of
total external wires on the platform. The platform topology is modeled
by specifying the devices' adjacency and the communication paths be-
tween non adjacent devices; direct_commd1,d2 equals to 1 if devices d1

and d2 are adjacent, 0 otherwise, and non_direct_commd1,d2,d3 equals to
1 if device d1 allows the communication between devices d2 and d3, 0
otherwise.
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xc4vlx100
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xc4vlx100

FPGA 3
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dev_resslice 49152

dev_resbram 240
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i=1 1 2 3 4 i=2 1 2 3 4

1 0 0 0 0 1 0 0 1 0

2 0 0 0 0 2 0 0 0 0

3 0 0 0 0 3 0 0 0 0

4 0 1 0 0 4 0 0 0 0

i=3 1 2 3 4 i=4 1 2 3 4

1 0 0 0 0 1 0 0 0 0

2 0 0 0 1 2 0 0 0 0

3 0 0 0 0 3 1 0 0 0

4 0 0 0 0 4 0 0 0 0

dev_wiresi,j

i \ j 1 2 3 4

1 0 729 0 149

2 729 0 149 0
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4 149 0 729 0

direct_commi,j

i \ j 1 2 3 4

1 0 1 0 1

2 1 0 1 0

3 0 1 0 1

4 1 0 1 0

Figure 7.1.: Multi-FPGA platform model.

The selected case study considers a circuit that performs image edge
detection, to be used by an overall control system for people/objects
recognition. It detects the image edges and converts the image to transfer
it to di�erent devices. In a �rst phase, the edges are detected and over-
lapped on the image. Then, the obtained raw bitmap image is encoded
into a JPEG compliant coded bitstream, selected as standard format.
Finally, as color conversion is necessary when transferring data between
devices that use di�erent color models, the image is converted to another
color system. In Figure 7.2(a), the nominal circuit structure is shown,
annotated with the requirements <area_wiresa1,a2 , area_comma1,a2> for
the communication between modules; the throughput area_comma1,a2 is
identi�ed by the number of bits processed at a time. The resource re-
quirements of the circuit are reported in Table 7.1, by considering the
implementation onto a Xilinx FPGA xc4vlx100 device. It is worth not-
ing that a hardened implementation of the circuit, for example by means
of the classical TMR technique, could not be hosted onto a single FPGA
for lack of resources, hence multiple FPGAs should be exploited.

By considering the selected multi-FPGA platform and circuit, the pro-
posed reliability-aware design �ow, shown in Figure 7.3, has been applied,
as described in the following.

7.2. Preliminary partitioning

The circuit components have been distributed among the devices avail-
able on the selected multi-FPGA platform.

We recall that the partitioning is a multi-objective problem, consider-
ing as metrics the distribution uniformity and the minimization of the
external communication both in terms of wires and throughput. The
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Table 7.1.: Resource requirements of the case study circuit.

# Component #Slices #BRAMs #DSPs
1 loader 2341 12 -
2 gs coder 1 130 - -
3 gs coder 2 135 - -
4 gs coder 3 120 - -
5 gs coder 4 105 - -
6 detector 41 - -
7 merger 17 - -
8 controller edge 12 - -
9 host interface 160 - -
10 bu�er 2212 12 -
11 converter 3512 - -
12 transformer 2046 - -
13 zig zag scanner 46 2 -
14 quantizer 76 3 1
15 run length encoder 266 2 -
16 hu�man encoder 3560 - -
17 byte stu�er 63 - -
18 j�f generator 89 1 -
19 mux 19 - -
20 controller jpeg 200 - -
21 color converter 2435 - -
Total 17585 32 1

adopted objective function is the following:

min(wgap ·
∑
r∈R

Gapr

dev_resr
+ wwires · Wires

tot_wires
+

wcomm · Comm∑
c1∈C

∑
c2∈C commc1,c2

)

In the preliminary partitioning task, we aim at achieving a solution uni-
formly distributed among the available FPGAs, to have balanced ratio
between used and spare fabric for applying the hardening techniques,
thus preferring the distribution uniformity with respect to the other
metrics. A tuning of the weights for the objective function has been
performed, as reported in Appendix B, and the following weights have
been adopted: wgap = 0.7, wwires = 0.1, and wcomm = 0.2.
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Figure 7.3.: Proposed design �ow.

The output of the partitioning is shown in Figure 7.4, together with
the parameters characterizing the identi�ed solution. The proposed ap-
proach achieves a uniform distribution of the circuit on the platform,
also taking into account the external communication both in terms of
wires and throughput. The partitioner's execution time for distributing
the case study circuit among the four available devices is 33 s.

7.3. Circuit hardening

After partitioning the circuit among the available FPGAs, each sub-
circuit is hardened by applying TMR to single components or groups
of components, de�ning independently recoverable areas as described in
the following.
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Figure 7.4.: Case study circuit partitioning on the selected multi-FPGA
platform.

7.3.1. Recovery strategy de�nition

In the �rst activity of the circuit hardening task, the number of non-
recoverable faults tolerated by the system on each FPGA (#faults)
and the maximum number of independently recoverable areas each sub-
circuit can be divided into (max_areas) are computed. We hereafter
recall how to de�ne these parameters.
To compute #faults, a hardened version of the circuit is taken into ac-

count, by partitioning each component in a di�erent area and by applying
the TMR hardening technique. Table 7.2 reports the resource require-
ments of the hardened components. The maximum number of tolerated
non-recoverable faults for each FPGA is the number of times the great-
est area hosted on the device can be moved onto a not used, fault-free
region; Table 7.3 reports the parameters max_faultsd computed for each
FPGA d. Thus, #faults, being the minimum value among the identi�ed
numbers of tolerated non-recoverable faults, is 2.
To ful�ll the memory constraint, a maximum number of independently

recoverable areas max_areas the sub-circuits can be divided into must
be de�ned; in fact, a too large memory should be required to store a
recovery bitstream for each component. max_areas is set as follows:

max_areas = max

(
#areas |

#faults∑
i=0

#areasi ≤ memory_size

bitstream_size

)

being memory_size and bitstream_size the size of the memory and
of the bitstream for the selected device, respectively. The size of the
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7.3. Circuit hardening

Table 7.2.: Resource requirements of the case study circuit's hardened
components.

Component #Slices #BRAMs #DSPs
loader 7411 36 -
gs coder 1 422 - -
gs coder 2 437 - -
gs coder 3 392 - -
gs coder 4 347 - -
detector 155 - -
merger 147 - -
controller edge 220 - -
host interface 1320 - -
bu�er 6740 36 -
converter 10640 - -
transformer 6222 - -
zig zag scanner 222 6 -
quantizer 308 9 3
run length encoder 918 6 -
hu�man encoder 10728 - -
byte stu�er 333 - -
j�f generator 403 3 -
mux 189 - -
controller jpeg 1864 - -
color converter 7437 - -
Total 17585 32 1

Table 7.3.: De�nition of the parameters max_faultsd for each FPGA d.

Parameter FPGA 1 FPGA 2 FPGA 3 FPGA 4
max_faultsd 5 5 2 2
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Figure 7.5.: TMR technique: di�erent application schemas [1].

memory selected for storing the recovery bitstreams is 256 MB and the
size of the bitstream for the considered FPGA (xc4vlx100) is 3.66 MB.
Thus, max_areas equals to 7.

7.3.2. Independently recoverable areas de�nition

By considering the parameter max_areas de�ned in the previous activ-
ity, for each FPGA on the platform, the components of the sub-circuit
hosted on the device are grouped and TMR is applied on each identi�ed
group. We recall that four di�erent strategies of TMR application can
be adopted on each group, containing one or more components, as shown
in Figure 7.5:

• TMR on 1 area, mapping the whole system (replicas and voter) on
a single area,

• TMR on 2 areas, mapping two replicas on an area and the third
replica and the voter on another area,

• TMR on 3 areas, mapping each replica on a di�erent area and the
voter with one of the replicas, and

• TMR on 4 areas, mapping each replica and the voter on four dif-
ferent areas.

We have implemented the optimization model presented in Chapter 4,
de�ning the independently recoverable areas composing the hardened cir-
cuit. Table 7.4 reports, for each FPGA, the identi�ed groups, together
with the contained components, the independently recoverable areas of
each group, and the resource requirements of each area. Based on the
evaluation presented in Appendix D, the following weights have been
adopted for hardening the sub-circuits: wres = 0.6, wareas = 0.3, and
wwires = 0.1. Thus, the distribution uniformity is achieved, also taking
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7.3. Circuit hardening

Table 7.4.: De�nition of the independently recoverable areas for each
FPGA.

FPGA 1

Group Components Area #Slices #BRAMs #DSPs
1 color converter 1 2435 - -

2 2435 - -
3 2567 - -

FPGA 2

Group Components Area #Slices #BRAMs #DSPs
2 loader, gs coder 1, 2, 3, 4, 1 2901 12 -

detector, merger 2 2901 12
controller edge 3 2997 12

FPGA 3

Group Components Area #Slices #BRAMs #DSPs
3 host interface, bu�er 1 2372 12 -

2 2372 12 -
3 3184 12 -

4 converter 1 3512 - -
2 3512 - -
3 3620 - -

FPGA 4

Group Components Area #Slices #BRAMs #DSPs
5 transformer, zig zag scanner, 1 2805 8 1

quantizer, run length encoder 2 2805 8 1
byte stu�er, j�f generator, 3 3345 8 1
mux, controller jpeg

6 hu�man 1 3560 - -
2 3560 - -
3 3608 - -

into account the maximization of the number of areas, as required to ap-
ply the fault classi�cation algorithm. Moreover, the minimization of the
external wires is considered, to avoid solutions with groups where com-
ponents are not connected to each other. Figure 7.6 shows the identi�ed
6 groups, each one composed of one or more independently recoverable
areas, with a total of 18 areas. The average execution time for hardening
each sub-circuit is 3 s.
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Figure 7.6.: Groups composing the hardened circuit.

7.4. Validation

The validation task aims at improving the obtained reliable circuit. The
two activities composing the task are described in the following.

7.4.1. Recovery strategy re�nement

By taking into account the de�ned hardened circuit, the number of tol-
erated non-recoverable faults is re-evaluated.
For each FPGA d, the maximum number of tolerated non-recoverable

faults (max_faultsd) is computed by considering the number of times
the greatest independently recoverable area hosted on the device can
be relocated on the spare region. Then, the constraint imposed by the
memory capacity is taken into account and the actual number of non-
recoverable faults tolerated by the system on each FPGA is de�ned as
follows:

#faults = min

(
#faultsd |

#faultsd∑
i=0

#areasi
d ≤

memory_size

bitstream_size
,∀d ∈ D

)

where #areasd is the number of independently recoverable areas hosted
on FPGA d and #faultsd ≤ max_faultsd is the tolerated number of
faults.
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Table 7.5 reports the values of max_faultsd and #faultsd for each
device. For the selected case study, the identi�ed number of tolerated
non-recoverable faults is #faults = 2, con�rming the preliminary eval-
uation.

Table 7.5.: De�nition of the parameters max_faultsd and #faultsd for
each FPGA d.

Parameter FPGA 1 FPGA 2 FPGA 3 FPGA 4
max_faultsd 13 14 8 8
#faultsd 3 3 2 2

7.4.2. Reliability-aware partitioning

By considering the hardened circuit de�ned by the previous task, the
independently recoverable areas are re-distributed among the FPGAs,
with the objective of obtaining a possible better partitioning. Indeed,
the areas belonging to the same group are constrained to be hosted on
the same FPGA, by opportunely setting the parameters same_devc1,c2 ,
c1, c2 ∈ C, expressing whether components c1 and c2 must be on the
same device. We implemented the reliability-aware partitioner based on
the optimization model presented in Chapter 4. The partitioner is an
extension of the preliminary one, considering also the possible recovery
actions.
Since in the preliminary partitioning task we have privileged the dis-

tribution uniformity with respect to the other metrics, here we have
preferred the minimization of the external communication, by consider-
ing the following weights: wgap = 0, wwires = 0.5, and wcomm = 0.5. The
obtained partitioning is shown in Figure 7.7, together with the parame-
ters characterizing it. The solution exploits only three FPGAs, su�cient
for hosting the system and reserving the spare region for the recovery
actions. The partitioner's execution time for identifying the solution is
6 s.
When considering also the distribution uniformity, the same solution

obtained by the preliminary partitioner is achieved. The selected weights
are the following: wgap = 0.3, wwires = 0.4, and wcomm = 0.3. As shown
in Figure 7.8, that reports the solution together with the parameters
characterizing it, all the devices available on the platform are exploited
when also the distribution uniformity is taken into account. For this
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Figure 7.7.: Hardened circuit partitioning on the selected multi-FPGA
platform when privileging the minimization of the external
communication.

solution, taken into account for the subsequent step of the design �ow,
the partitioner's execution time is 12 s.
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Figure 7.8.: Hardened circuit partitioning on the selected multi-FPGA
platform when considering a trade-o� of the metrics.
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7.5. Floorplanning

7.5. Floorplanning

The �oorplanning activity positions each hardened sub-circuit within the
assigned FPGA. Each FPGA has been modeled as a grid of 49152 slices
(384 rows and 128 columns), with �ve columns of BRAMs and one of
DSPs, according to the adopted FPGA device.
Figure 7.9 shows the �oorplan of each sub-circuit. This task con�rms

the feasibility of the identi�ed solution and produces the positioning
constraints for implementing the system on the multi-FPGA platform.
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Figure 7.9.: Floorplan of each hardened sub-circuit on the related FPGA.
Finally, the de�ned hardened circuit is integrated with the Recon�gu-

ration Controllers (one for each FPGA), creating the envisioned reliable
system. The design �ow has required almost one minute for performing
the various explorations, namely partitioning, independently recoverable
areas de�nition, and �oorplanning. It produces the con�gurations for
implementing the system on the FPGAs and the recovery bitstreams.

7.6. Alternative design �ow

The design �ow proposed in the thesis de�nes the reliable solution by
performing a design space exploration composed of activities in the fol-
lowing order: i) preliminary partitioning, ii) hardening, iii) reliability-
aware partitioning, iv) validation, and v) �oorplanning. It can be noted
that the hardening activity can be performed before the partitioning one,
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7. Methodology evaluation

thus an alternative design �ow can be considered. In this section, the
alternative �ow shown in Figure 7.10 is implemented and the obtained
solution is compared with the one of the proposed �ow.
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Figure 7.10.: Alternative design �ow.

The �rst activity of the alternative design space exploration performs
the hardening of the circuit. Since the proposed hardening optimization
model supports circuit with up to 10 components, as reported in Ap-
pendix C, the circuit has been analyzed to reduce the number of compo-
nents to be hardened. The preliminary grouping shown in Figure 7.11 has
been identi�ed, based on the components' resource requirement and in-
terconnections. A minimum number of 12 areas is required, by consider-
ing a minimum of 3 areas for each FPGA to apply the fault classi�cation
algorithm. The hardening activity has been performed by adopting the
following weights for the objective function of the optimization model:
wres = 0.8, wareas = 0, and wwires = 0.2; the distribution uniformity is
achieved, also taking into account the minimization of the external wires.
Table 7.6 reports the hardened groups identi�ed by the activity, together
with the contained components, the independently recoverable areas of
each group, and the resource requirements of each area. The solution is
composed of 6 groups, each one composed of 3 independently recoverable
areas, with a total of 18 areas.
The obtained hardened circuit has been distributed among the avail-

able FPGAs. We aimed at achieving distribution uniformity, that has
been preferred with respect to the other metrics, to have balanced ra-
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7. Methodology evaluation

Table 7.6.: Alternative design �ow: De�nition of the independently re-
coverable areas.

Group Components Area #Slices #BRAMs #DSPs
1 G1, G2 1 2901 12 -

2 2901 12 -
3 2997 12 -

2 G3, G6, G8 1 2965 8 1
2 2965 8 1
3 3813 8 1

3 G4 1 2212 12 -
2 2212 12 -
3 2316 12 -

4 G5 1 3512 - -
2 3512 - -
3 3620 - -

5 G7 1 3560 - -
2 3560 - -
3 3608 - -

6 G9 1 2435 - -
2 2435 - -
3 2567 - -

tio between used and spare fabric for recovery actions. The following
weights have been adopted for the objective function of the optimiza-
tion model: wgap = 0.8, wwires = 0.1, and wcomm = 0.1. The output of
the partitioning is shown in Figure 7.12, together with the parameters
characterizing the identi�ed solution. Only three FPGAs are exploited
and no gap smaller than 19527 in terms of slices can be achieved due
to the availability of external wires, which constrains the distribution of
the components.

For each FPGA, the number of tolerated non-recoverable faults has
been evaluated. Table 7.7 reports the values of i) max_faultsd, com-
puted by considering the number of times the greatest independently re-
coverable area hosted on the device can be relocated on the spare region,
and ii) #faultsd, computed by taking into account the constraint im-
posed by the memory capacity. The identi�ed number of non-recoverable
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Figure 7.12.: Partitioning of hardened circuit in alternative design �ow.

faults tolerated by the system is #faults = 2.

Table 7.7.: De�nition of the parameters max_faultsd and #faultsd for
each FPGA d in alternative design �ow.

Parameter FPGA 1 FPGA 2 FPGA 3 FPGA 4
max_faultsd 8 - 8 8
#faultsd 2 - 2 2

Finally, the �oorplanning activity has positioned each sub-circuit within
the assigned FPGA, as shown in Figure 7.13.
It can be noted that, by following the alternative design �ow, we can

not exploit all the devices available on the platform. In fact, the avail-
ability of inter-FPGA connections on the platform constrains the distri-
bution of the hardened areas, indeed characterized by higher communica-
tion requirements with respect to single nominal components. Moreover,
it is worth noting that the execution of the hardening activity before the
partitioning one does not allow to de�ne the number of areas (and con-
sequently the error detection granularity) based on the evaluation of the
recovery actions; the hardening activity in the proposed design �ow can
be guided by the recovery strategy de�nition. Thus, we deem that the
proposed design �ow can achieve better solutions than the alternative
one.
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Figure 7.13.: Floorplan of each hardened sub-circuit on the related
FPGA in alternative design �ow.

7.7. Design �ow for �xed number of

non-recoverable faults

Throughout this chapter, the proposed design methodology has been
evaluated by building the envisioned fault tolerant system on a multi-
FPGA platform speci�ed by the designer. Alternatively, it is possible
to de�ne the reliable system based on the number of non-recoverable
faults to be tolerated, by following the design �ow shown in Figure 7.14.
In this section, we follow this alternative �ow, by considering two non-
recoverable faults to be tolerated on each FPGA.

The circuit components are taken in input by the reliability-aware
iterative partitioning task, that distributes them among the necessary
FPGAs. We recall that the partitioner takes into account a hardened
version of the circuit, where TMR is applied at component-level, and,
by starting from two FPGAs, increases the number of required devices
as far as it identi�es the suitable spare region for tolerating the non-
recoverable faults. The partitioning of the selected case study is shown
in Figure 7.15. Two FPGAs are su�cient to tolerate two non-recoverable
faults on each device.
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Figure 7.14.: Design �ow for �xed number of non-recoverable faults.

7.8. Chapter summary

In this chapter, we have evaluated the reliability-aware design method-
ology presented in the thesis by implementing a real case study onto a
commercial multi-FPGA platform. The design �ow introduced in Chap-
ter 4 has been followed, and the developed prototype framework has
allowed to automate, as much as possible, the system implementation.
Di�erent solutions have been explored and compared, by opportunely
setting the parameters of the exploited optimization models. The per-
formed experimental session has allowed to evaluate and re�ne each task
of the �ow, in particular by tuning and analyzing the parameters. The
experimental results, reported for each task, show that the proposed
methodology identi�es a reliable solution o�ering the most convenient
trade-o� with respect to the designer's selected metrics.
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Figure 7.15.: Reliability-aware partitioning of the case study circuit
when following the design �ow for �xed number of non-
recoverable faults.

110



8. Conclusions and future

research directions

The research presented in this thesis has proposed a complete method-
ology for the design of reliable embedded systems on multi-FPGA plat-
forms. The �nal aim of the work has been the exploitation of commercial
SRAM-based FPGAs for mission-critical applications for systems of con-
siderable size, requiring the use of more than a single FPGA device. In
particular, we have considered space applications, characterized by strict
reliability requirements due to the harsh environmental conditions and
the di�culty of system maintenance.
The proposed methodology leads the designer in the realization of

a multi-FPGA system able to detect and cope with the occurrence of
faults globally and autonomously, thus extending its lifetime and avail-
ability. A circuit hardening approach based on a hybrid strategy has
been adopted; the circuit is hardened by means of traditional reliabil-
ity techniques, e.g. exploiting space redundancy, and a recon�guration
of the FPGAs is used to mitigate fault e�ects. We have identi�ed two
categories of faults, based on the possibility to recover from them by
recon�guration: Recoverable faults, that can be mitigated by recon�gur-
ing the system (and possibly only the faulty sub-system portion) with
the same con�guration used before fault occurrence, and non-recoverable
faults, that are caused by a destructive e�ect and lead to the necessity of
relocating the functionality to a non-faulty region of the device. In the
envisioned reliable system, each FPGA hosts i) a hardened portion of the
entire circuit, organized in independently recoverable areas that detect,
mask/tolerate, and signal the occurrence of a fault, and ii) a Recon�g-
uration Controller, in charge of monitoring the error signals and, when
needed, performing the suitable recon�guration of the faulty part based
on the type of fault. The obtained autonomous fault tolerant system can
continue working even if faults occur, thus increasing its lifetime. It is
worth noting that the solution we pursue is not a generic one, rather it
is identi�ed by means of a design space exploration, to evaluate di�erent
trade-o�s, meeting the designer's interests and constraints.
The main innovative contributions provided by this thesis are summa-

rized as follows:
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8. Conclusions and future research directions

• De�nition of a reliable multi-FPGA system with distributed control
architecture. Rather than making each FPGA an independent fault
tolerant sub-system, able to locally detect and recover from faults,
we have proposed a distributed solution, where each FPGA hosts a
hardened portion of the system and a Recon�guration Controller.
The aim is to achieve a higher level of reliability in the overall sys-
tem, trying to avoid the single point of failure characterizing the
centralized solution, that needs to be implemented onto a particu-
lar device (e.g., an ASIC or an antifuse-based FPGA).

• Management of both recoverable and non-recoverable faults. In lit-
erature, only recoverable faults are usually targeted, whereas non-
recoverable ones are rarely analyzed and taken into account. The
reliable system obtained by following the proposed methodology is
able to discriminate between the two type of faults and cope with
them.

• Design of the Recon�guration Controller. We have proposed the
design of the engine in charge of performing the envisioned fault
classi�cation and managing the recon�guration process. The re-
liability of the Recon�guration Controller has been guaranteed to
block erroneous recon�gurations of the monitored FPGA and to
include the module into the overall reliable system.

• De�nition of a complete �ow for designing autonomous fault tol-
erant systems on multi-FPGA platforms. To our knowledge, in
literature there are no methodologies for the design of reliable sys-
tems on multi-FPGA platforms. We introduced a complete �ow
for designing such systems, and developed a prototype framework,
by implementing the �ow and automating, as much as possible,
the design, hardening, and implementation of the system.

The work that has been presented in this thesis is the �rst proposal of
a reliability-aware design methodology for embedded systems on multi-
FPGA platforms. Thus, there are directions for future work aimed at its
improvement and re�nement. They are summarized in the following.

• Experimental evaluation of the system reliability. A methodological
evaluation of the proposed hardened system has been carried out
and discussed. Nevertheless, an empirical evaluation can be per-
formed by means of a fault injection campaign, to experimentally
analyze the reliability achieved by the proposed system.

• System resynchronization after a recon�guration. In the thesis, the
problem of resynchronizing the system after recon�guration has
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not been coped with. The approach is suitable for stateless ap-
plications and it can be extended by implementing contributions
proposed in literature (e.g., [69]). A future work consists in investi-
gating the resynchronization issue. In the �nal envisioned system,
after realizing partial recon�guration to cope with the occurrence
of a recoverable fault, the recovered area is synchronized with the
correct ones.

• De�nition of a reliable recon�guration protocol. Throughout the
thesis, we have assumed that the recon�guration process is per-
formed successfully. This is supported by the consideration that
recon�guration is executed only on-demand, to cope with a de-
tected error, hence, by taking into account a typical fault frequency,
the occurrence of a new fault is unlikely. Nevertheless, for the sake
of system reliability, it is necessary to guarantee that when repro-
gramming the device, either to recon�gure with the same bitstream
or to relocate a functionality, no new fault causes a problem leading
the system into an unknown state.

• De�nition of recovery data storage. As stated in Chapter 4, a spe-
ci�c recovery bitstream is required for each sequence of occurred
non-recoverable faults. Indeed, the number of bitstreams can be
very high also for tolerating few non-recoverable faults, hence too
a large memory should be required to store the con�guration data.
Thus, strategies of data compression must be considered for mini-
mizing the occupation of recovery bitstreams in memory.

Besides the identi�ed future directions, the proposed work can be re�ned
by reviewing the design �ow to exploit lower level or runtime information
in the various steps.
To conclude, this research has tackled several issues for the design of

reliable multi-FPGA systems, achieving the proposal of a whole method-
ology. This has opened new research issues that can be pursued to re�ne
the overall approach.
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A. Partitioner performance

evaluation

This appendix reports the evaluation of the performance achieved by the
proposed partitioning approach, presented in Chapter 4. We show that,
despite being the partitioning problem NP-complete [49], our approach,
based on Mixed Integer Linear Programming (MILP) optimization mod-
els, runs in acceptable time. As described in Chapter 4, two models have
been proposed, for the preliminary partitioning and for the reliability-
aware one. Since the preliminary partitioner can be considered a simpli-
�cation of the other one, not taking into account the possible recovery
actions, we hereafter consider the reliability-aware partitioner for the
performance evaluation.
We recall that, to solve the optimization problems, we used the IBM

ILOG CPLEX 12.1 tool, which implements a parallel branch and cut
procedure [48]. The physical system supporting the partitioner execution
is based on VMWare ESXi 4.0, running on an Intel Nehalem dual socket
quad-core system with 32 GB of RAM. CPLEX is hosted on a Virtual
Machine (VM) running Ubuntu 11.04 Linux. The VM has four physical
cores dedicated to its execution with guaranteed performance and 8GB
of memory reserved.
In order to show the partitioner's performance, an extensive exper-

imental analysis has been performed, by considering a large set of in-
stances. The partitioner's parameters have been varied as shown in Ta-
ble A.1. It is worth noting that same_deva1,a2 can take only values 0
or 1, and the sum of the objective function's weights must equal to 1.
Platforms with up to 8 devices connected in a mesh topology and char-
acterized by the resources reported in Figure A.1, showing a Synopsis
HAPS-34 commercial board [25], have been considered. Circuits include
up to 30 areas. The other parameters of the partitioner were randomly
generated by assuming a uniform distribution in the reported intervals.
In order to evaluate the performance of the proposed optimization

model, the average optimization time required for instances of variable
size is shown in Table A.2; each value reported in the table corresponds
to the average time over 10 randomly generated instances. A total num-
ber of 150 instances have been considered. For the most of the consid-
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A. Partitioner performance evaluation

FPGA 1
xc4vlx100

FPGA 2
xc4vlx100

FPGA 4
xc4vlx100

FPGA 3
xc4vlx100

Deviceʼs resources

dev_resslice 49152

dev_resbram 240

dev_resdsp 96

tot_wires 1756

non_direct_commi,j,k

i=1 1 2 3 4 i=2 1 2 3 4

1 0 0 0 0 1 0 0 1 0

2 0 0 0 0 2 0 0 0 0

3 0 0 0 0 3 0 0 0 0

4 0 1 0 0 4 0 0 0 0

i=3 1 2 3 4 i=4 1 2 3 4

1 0 0 0 0 1 0 0 0 0

2 0 0 0 1 2 0 0 0 0

3 0 0 0 0 3 1 0 0 0

4 0 0 0 0 4 0 0 0 0

dev_wiresi,j

i \ j 1 2 3 4

1 0 729 0 149

2 729 0 149 0

3 0 149 0 729

4 149 0 729 0

direct_commi,j

i \ j 1 2 3 4

1 0 1 0 1

2 1 0 1 0

3 0 1 0 1

4 1 0 1 0

Figure A.1.: Multi-FPGA platform model.

ered problem instances, the overall execution time to identify the opti-
mal solution is around few seconds or few minutes, and for instances of
maximum size (which are larger than nowadays real applications), the
execution time is around 3 minutes. Thus, the proposed model runs in
acceptable time, despite being the problem NP-complete.

Table A.1.: Values of partitioner's parameters.

Parameter Description Value
|D| Set of devices 4, 6, 8
|A| Set of areas 5, 10, 15, 20, 30
num_faults Number of tolerated non-recoverable faults [1, 4]
area_resa,r=slice Number of slices of area a [50, 2000]
area_resa,r=bram Number of BRAMs of area a [0, 10]
area_resa,r=dsp Number of DSPs of area a [0, 5]
area_wiresai,aj Number of wires between areas ai and aj [0, 30] if i 6= j, 0 otherwise
area_commai,aj Throughput between areas ai and aj [0, 60] if i 6= j, 0 otherwise
same_devai,aj Placement of areas ai and aj on the same device {0, 1}
wgap Weight for the distribution uniformity (0,1)
wpins Weight for the minimization of the number of external wires (0,1)
wcomm Weight for the minimization of the external throughput (0,1)

Table A.2.: Partitioner's execution times [s].

|A|\|D| 4 6 8
5 0.33 1.98 2.00
10 1.49 4.46 9.12
15 3.66 10.46 20.00
20 7.63 27.01 67.69
30 22.25 83.70 197.79
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B. Weights tuning for the

partitioning task

When distributing a circuit on a multi-FPGA platform by exploiting
the partitioner presented in Chapter 4, the suitable weights of the ob-
jective function must be set. More precisely, wgap, wwires, and wcomm

must be opportunely de�ned, expressing the designer's preferences about
the achievement of distribution uniformity and minimization of external
communication. We recall that wgap is related to the distribution uni-
formity, wwires to the number of used external wires, and wcomm to the
throughput for external communication. Hereafter, we perform a tuning
of the weights, by considering the case study presented in Chapter 7.
We have evaluated three scenarios, where we privilege the distribution
uniformity, the minimization of external communication, and both them
contemporarily.
Table D.1 reports the parameters characterizing the solutions obtained

when focusing on an improvement of the distribution uniformity with re-
spect to the other metrics. More precisely, for each solution, the following
parameters are reported; the selected weights (wgap, wwires, wcomm), the
maximum gap of resources occupation among the devices, the number
of required external wires, and the throughput for external communi-
cation. We have evaluated various solutions, obtained by varying the
weight wgap in the interval [0.6, 1]. It can be noted that, for wgap greater
than 0.7, the solutions do not entail a signi�cative improvement in dis-
tribution uniformity. No gap smaller than 2840 in terms of slices can be
achieved due to the availability of external wires, which constrains the
distribution of the components. The best solution achieving distribution
uniformity, also taking into account the minimization of the external
communication both in terms of wires and throughput, is obtained by
setting the following weights: wgap = 0.7, wwires = 0.2, and wcomm = 0.1.
The obtained solution is shown in Figure B.1. It can be noted that, in
the achieved partitioning, FPGA 4 hosts two components that do not
communicate each other. Thus, for the selected case study, we set the
weights wgap = 0.7, wwires = 0.1, and wcomm = 0.2, obtaining the solu-
tion shown in Figure B.2. These are the weights selected for the design
�ow's preliminary partitioning task, that aims at achieving a solution
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B. Weights tuning for the partitioning task

uniformly distributed among the available FPGAs.
Table B.2 reports the parameters characterizing the solutions obtained

when privileging the minimization of external communication. It can be
noted that, for wgap less than 0.2, the whole circuit is assigned to a single
FPGA.
Finally, Table D.4 reports the parameters characterizing the solutions

obtained when both the distribution uniformity and the minimization of
external communication are taken into account almost in equal measure.
It is worth noting that, for wgap ≤ 0.3, the minimization of external
communication is privileged, whereas, for wgap ≥ 0.4, the distribution
uniformity is preferred.

Table B.1.: Partitioning solutions when privileging the distribution uni-
formity.

Weights Gap Wires Comm
wgap wwires wcomm slice bram dsp
1 0 0 2840 8 1 521 1513
0.9 0.05 0.05 2840 9 1 373 1024
0.8 0.1 0.1 2840 10 1 321 950
0.7 0.2 0.1 2840 12 1 289 879
0.7 0.1 0.2 3930 12 1 325 522
0.6 0.2 0.2 4073 12 1 251 554

Table B.2.: Partitioning solutions when privileging the minimization of
external communication.

Weights Gap Wires Comm
wgap wwires wcomm slice bram dsp
0 0 1 17585 32 1 0 0
0 1 0 17585 32 1 0 0
0.1 0.4 0.5 17585 32 1 0 0
0.2 0.4 0.4 14684 20 1 24 64
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Figure B.1.: Case study circuit partitioning on the selected multi-FPGA
platform by setting wgap = 0.7, wwires = 0.2, and wcomm =
0.1.

Table B.3.: Partitioning solutions when considering both the distribution
uniformity and the minimization of external communication.

Weights Gap Wires Comm
wgap wwires wcomm slice bram dsp
0.3 0.4 0.3 14684 20 1 24 64
0.4 0.3 0.3 4073 12 1 251 554
0.5 0.2 0.3 4073 12 1 251 554
0.5 0.3 0.2 4073 12 1 251 554
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FPGA 1

FPGA 4

FPGA 2

FPGA 3

m
rg

mux host if
byte s

jfif

zig zag 
scan

ctrl jpeg

quantizer rle

dtc
edge

gs 1
gs 2
gs 3

gs 4
loader

huffman transf bufferconverter

color 
converter

Figure B.2.: Case study circuit partitioning on the selected multi-FPGA
platform by setting wgap = 0.7, wwires = 0.1, and wcomm =
0.2.
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C. Hardening approach

performance evaluation

This appendix reports the analysis of the performance achieved by the
proposed hardening approach, presented in Chapter 4. The optimization
model's execution time has been evaluated by performing an extensive
experimental analysis.
We recall that, to solve the optimization problems, we used the IBM

ILOG CPLEX 12.1 tool, which implements a parallel branch and cut
procedure [48]. The physical system supporting the partitioner execution
is based on VMWare ESXi 4.0, running on an Intel Nehalem dual socket
quad-core system with 32 GB of RAM. CPLEX is hosted on a Virtual
Machine (VM) running Ubuntu 11.04 Linux. The VM has four physical
cores dedicated to its execution with guaranteed performance and 8GB
of memory reserved.
The performed experimental analysis has considered various instances,

obtained by varying the model's parameters. Circuits with up to 15
components have been taken into account. The components are assigned
to groups, whose cardinality is the minimum between the number of
components (|C|) and the number of areas the circuit can be divided
into (max_areas). The parameter max_areas gets the following values:
i) d|C|/2e, to consider an average case where the maximum number of
areas is less than the number of components, ii) |C|, when the number of
areas is equal to the number of components, and iii) |C| · 4, to consider
the worst case assigning each component to a group where TMR on 4
areas is applied. The other parameters characterizing the circuit were
randomly generated by assuming a uniform distribution in the intervals
reported in Table C.1.
In order to evaluate the performance of the proposed optimization

model, the average optimization time required for instances of variable
size is shown in Table C.2; each value reported in the table corresponds
to the average time over 10 randomly generated instances. A total num-
ber of 150 instances have been considered. When no execution time is
reported, out-of-memory errors have occurred for one or more of the ran-
dom instances. Thus, the proposed model is suitable when considering
circuits with up to 10 components, characterizing most of nowadays ap-
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C. Hardening approach performance evaluation

plications or obtained after partitioning the circuit among the available
devices. For larger circuits, heuristic algorithms should be applied.

Table C.1.: Values of partitioner's parameters.

Parameter Description Value
comp_resc,slice Number of slices required by component c [0,1000]
comp_resc,bram Number of BRAMs required by component c [0,10]
comp_resc,dsp Number of DSPs required by component c [0,5]
comp_wiresc1,c2 Number of wires between components c1 and c2 [0,32]
comp_outc Number of output wires of component c [0,32]

Table C.2.: Hardening approach's execution times [s].

|C|\max_areas d|C|/2e |C| |C| · 4
5 0.07 0.49 1.58
10 5.15 988.31 1549.10
11 7.02 820.21 -
12 13.42 1692.97 -
15 23228.80 - -
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D. Weights tuning for the

hardening task

When de�ning the independently recoverable areas composing the hard-
ened circuit, the optimization model presented in Chapter 4 is exploited.
Indeed, the suitable weights of the objective function must be set. More
precisely, wres, wareas, and wwires must be opportunely de�ned, expressing
the designer's preferences. We recall that wres is related to the achieve-
ment of distribution uniformity, wareas to the maximization of the number
of independently recoverable areas, and wwires to the minimization of the
number of wires between groups. Hereafter, we perform a tuning of the
weights by taking into account the case study presented in Chapter 7, in
particular the sub-circuit performing edge detection, that is one of the
sub-circuits considered for the hardening task in the methodology eval-
uation. As in Chapter 7, we set max_areas = 7. We have evaluated four
scenarios, where we privilege i) the achievement of distribution unifor-
mity, ii) the maximization of the number of areas, iii) the minimization
of the number of wires between groups, and iv) a trade-o� of the metrics.
Table D.1 reports the parameters characterizing the solutions obtained

when focusing on an improvement of the distribution uniformity with re-
spect to the other metrics. More precisely, for each solution, the following
parameters are reported; the selected weights (wres, wareas, wwires), the
maximum gap of resources occupation among the areas, the number of
areas, and the number of wires between groups. We have evaluated vari-
ous solutions, obtained by varying the weight wres in the interval [0.5, 1].
When only the distribution uniformity is taken into account (wres = 1),
the circuit's components are grouped in a single area. For wres included
in the interval [0.6, 0.9], the same solution achieving a trade-o� between
the distribution uniformity and the number of areas is obtained. In the
following, other solutions obtained by setting wres ≤ 0.4 are evaluated.
Table D.2 reports the parameters characterizing the solutions obtained

when privileging the maximization of the number of independently re-
coverable areas, by varying the weight wareas in the interval [0.5, 1]. For
wareas ≥ 0.7, the identi�ed number of areas equals to max_areas, hence
the maximization is achieved.
Table D.3 reports the parameters characterizing the solutions obtained
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D. Weights tuning for the hardening task

when privileging the minimization of the number of wires between groups.
By varying the weight wwires in the interval [0.5, 1], the minimization of
external wires is always achieved.
Finally, Table D.4 reports the parameters characterizing the solutions

obtained when a trade-o� between the metrics is required. In all cases,
the same solution is achieved.
To conclude, the following weights must be set to privilege the related

metric: wres ≥ 0.6 for distribution uniformity (without considering the
solution obtained by setting wres = 1, identifying a single area), wareas

≥ 0.7 for the maximization of the number of areas, and wwires ≥ 0.4 for
the minimization of the number of wires. The presented results should
help the designer in adopting the suitable weights according to his/her
requirements.

Table D.1.: Hardened solutions when privileging the distribution unifor-
mity.

Weights Gap #areas #wires
wres wareas wwires slice bram dsp
1 0 0 0 0 0 1 24
0.9 0.1 0 96 0 0 3 24
0.9 0 0.1 0 0 0 1 24
0.8 0.1 0.1 96 0 0 3 24
0.7 0.2 0.1 96 0 0 3 24
0.7 0.1 0.2 96 0 0 3 24
0.6 0.2 0.2 96 0 0 3 24
0.5 0.3 0.2 96 0 0 3 24
0.5 0.2 0.3 96 0 0 3 24
0.5 0.4 0.1 1953 12 0 7 122
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Table D.2.: Hardened solutions when privileging the maximization of the
number of areas.

Weights Gap #areas #wires
wres wareas wwires slice bram dsp
0 1 0 2603 12 0 7 148
0.1 0.9 0 1801 12 0 7 218
0 0.9 0.1 2781 12 0 7 63
0.1 0.8 0.1 2631 12 0 7 63
0.3 0.7 0 1801 12 0 7 218
0.2 0.7 0.1 2631 12 0 7 63
0.1 0.7 0.2 2631 12 0 7 63
0.2 0.6 0.2 2631 12 0 7 63
0.3 0.6 0.1 2631 12 0 7 63
0.4 0.6 0 96 0 0 3 24
0.3 0.5 0.2 96 0 0 3 24
0.2 0.5 0.3 2631 12 0 7 63
0.4 0.5 0.1 1953 12 0 7 122

Table D.3.: Hardened solutions when privileging the minimization of
wires between groups.

Weights Gap #areas #wires
wres wareas wwires slice bram dsp
0 0 1 5802 24 0 2 24
0.1 0 0.9 0 0 0 1 24
0 0.1 0.9 2901 12 0 4 24
0.1 0.1 0.8 96 0 0 3 24
0.2 0.1 0.7 96 0 0 3 24
0.1 0.2 0.7 96 0 0 3 24
0.2 0.2 0.6 96 0 0 3 24
0.3 0.2 0.5 96 0 0 3 24
0.2 0.3 0.5 96 0 0 3 24
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D. Weights tuning for the hardening task

Table D.4.: Hardened solutions with a trade-o� between the metrics.

Weights Gap #areas #wires
wres wareas wwires slice bram dsp
0.4 0.3 0.3 96 0 0 3 24
0.3 0.4 0.3 96 0 0 3 24
0.3 0.3 0.4 96 0 0 3 24

126



Bibliography

[1] C. Bolchini, A. Miele, and C. Sandionigi. A novel design method-
ology for implementing reliability-aware systems on SRAM-based
FPGAs. Transactions on Computers, 2010.

[2] T. Kuwahara. FPGA-based Recon�gurable On-board Computing
Systems for Space Applications. PhD thesis, Universitat Stuttgart,
Institute of Space Systems, 2009.

[3] R. Katz, K. LaBel, J. J. Wang, B. Cronquist, R. Koga, S. Penzin,
and G. Swift. Radiation e�ectcs on current �eld programmable
technologies. IEEE Trans. Nuclear Science, 6(44):1945�1956, 1997.

[4] C. Carmichael, M. Ca�rey, and A. Salazar. Correcting Single-Event
Upsets Through Virtex Partial Con�guration. Technical Report
XAPP216, Xilinx Inc., June 2000.

[5] ITRS. International Technology Roadmap for Semiconductors.
http://www.itrs.net/links/2010itrs/home2010.htm.

[6] S. D'Angelo, C. Metra, S. Pastore, A. Pogutz, and G. R. Sechi.
Fault-Tolerant Voting Mechanism and Recovery Scheme for TMR
FPGA-Based Systems. In Proc. IEEE Int. Symp. Defect and Fault-
Tolerance in VLSI Systems, pages 233�240, 1998.

[7] F. Lima Kastensmidt, G. Neuberger, R. F. Hentschke, L. Carro,
and R. Reis. Designing Fault-Tolerant Techniques for SRAM-Based
FPGAs. IEEE Design and Test of Computers, 21(6):552�562, 2004.

[8] G. L. Smith and L. de la Torre. Techniques to enable FPGA
based recon�gurable fault tolerant space computing. In Proc. IEEE
Aerospace Conference, page 11 pp., 2006.

[9] V. Rana, M. Santambrogio, D. Sciuto, B. Kettelhoit, M. Köster,
M. Porrmann, and U. Rückert. Partial Dynamic Recon�guration
in a Multi-FPGA Clustered Architecture Based on Linux. In Proc.
IEEE Int. Parallel and Distributed Processing Symp., pages 1�8,
2007.

127



Bibliography

[10] P. K. Samudrala, J. Ramos, and S. Katkoori. Selective triple Mod-
ular redundancy (STMR) based single-event upset (SEU) tolerant
synthesis for FPGAs. IEEE Trans. Nuclear Science, 51(5):2957�
2969, October 2004.

[11] C. Bolchini and A. Miele. Design Space Exploration for the Design of
Reliable SRAM-based FPGA Systems. In Proc. IEEE Int. Symp. on
Defect and Fault-Tolerance in VLSI Systems, pages 332�340, 2008.

[12] K. S. Morgan. SEU-induced Persistent Error Propagation in FP-
GAs. PhD thesis, Brigham Young University, 2006.

[13] J. L. Barth, C. S. Dyer, and E. G. Stassinopoulos. Space, Atmo-
spheric, and Terrestrial Radiation Environments. IEEE Trans. Nu-
clear Science, 50(3), 2003.

[14] ECSS. Methods for the calculation of radiation received and its
e�ects, and a policy for design margins. Technical Report ECSS-
E-ST-10-12C, European Cooperation for Space Standardization,
November 2008.

[15] C. Carmichael and C. W. Tseng. Correcting Single-Event Up-
sets in Virtex-4 FPGA Con�guration Memory. Technical Report
XAPP1088, Xilinx, October 2009.

[16] C. Poivey, M. Berg, S. Stansberry, M. Friendlich, H. Kim, D. Pet-
rick, and K. LaBel. Heavy ion SEE test of Virtex4 FPGA
XC4VFX60 from Xilinx. Technical Report T021607XC4VFX60,
Muniz Engineering Inc., University of Southern California, NASA-
GSFC, June 2007.

[17] D. Petrick, W. Powell, J. W. Howard Jr., and K. A. LaBel. Virtex-II
Pro SEE Test Methods and Results. In Military and Aerospace Ap-
plications of Programmable Devices and Technologies Conf., 2004.

[18] S. Srinivasan, P. Mangalagiri, Y. Xie, N. Vijaykrishnan, and
K. Sarpatwari. FLAW: FPGA Lifetime AWareness. In Proc. Design
Automation Conf., 2006.

[19] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan,
M. J. Irwin, and K. Sarpatwari. Toward Increasing FPGA Lifetime.
IEEE Trans. Dependable and Secure Computing, 5(2):115 � 127,
2008.

128



Bibliography

[20] S. Hauck, G. Borriello, and C. Ebeling. Mesh routing topologies
for multi-fpga systems. In IEEE Proc. Int. Conf. Computer Design:
VLSI in Computer & Processors, pages 170�177, 1994.

[21] Xilinx. Spartan-3 FPGA Family Data Sheet. Technical Report
DS099, December 2009.

[22] Xilinx. Virtex-II Platform FPGA: Complete Data Sheet. Technical
Report DS031, March 2005.

[23] Xilinx. Virtex-4 FPGA Con�guration User Guide. Technical Report
UG071, August 2010.

[24] Xilinx. Virtex-5 FPGA Con�guration User Guide. Technical Report
UG191, June 2009.

[25] Synplicity. HAPS-34. http://www.synopsys.com/home.aspx.

[26] David P. Montminy, Rusty O. Baldwin, Paul D. Williams, and
Barry E. Mullins. Using relocatable bitstreams for fault tolerance.
In Proc. of NASA/ESA Conf. on Adaptive Hardware and Systems,
pages 701�708, 2007.

[27] X. Iturbe, K. Benkrid, T. Arslan, I. Martinez, M. Azkarate, and
M.D. Santambrogio. A Roadmap for Autonomous Fault-Tolerant
Systems. In Proc. Conf. Design and Architectures for Signal and
Image Processing, pages 311�321, 2010.

[28] S. Mitra, W.-J. Huang, N.R. Saxena, S.-Y. Yu, and E.J. McCluskey.
Recon�gurable Architecture for Autonomous Self-Repair. IEEE De-
sign & Test of Comp., 21:228�240, May 2004.

[29] R. Noji, S. Fujie, Y. Yoshikawa, H. Ichihara, and T. Inoue. An
FPGA-based fail-soft system with adaptive recon�guration. In Proc.
Intl. On-Line Testing Symp., pages 127�132, 2010.

[30] Xilinx Inc. http://www.xilinx.com.

[31] Frank Vahid. I/O and performance tradeo�s with the FunctionBus
during multi-FPGA partitioning. In Proceedings of the 1997 ACM
Fifth International Symposium on Field-Programmable Gate Arrays,
pages 27�34, 1997.

[32] Iyad Ouaiss, Sriram Govindarajan, Vinoo Srinivasan, Meenakshi
Kaul, and Ranga Vemuri. An integrated partitioning and synthesis
system for dynamically recon�gurable multi-fpga architectures. In

129



Bibliography

In Proceedings of Parallel and Distributed Processing, pages 31�36,
1998.

[33] Preetham Lakshmikanthan, Sriram Govindarajan, Vinoo Srini-
vasan, and Ranga Vemuri. Behavioral partitioning with synthesis
for multi-fpga architectures under interconnect, area, and latency
constraints. In Proceedings of the 15 IPDPS 2000 Workshops on
Parallel and Distributed Processing, pages 924�931, 2000.

[34] Kalapi Roy and Carl Sechen. A timing driven n-way chip and multi-
chip partitioner. In Proceedings of the 1993 IEEE/ACM interna-
tional conference on Computer-aided design, pages 240�247, 1993.

[35] S. Hauck and G. Borriello. Logic partition orderings for multi-fpga
systems. In Field-Programmable Gate Arrays, 1995. FPGA '95.
Proceedings of the Third International ACM Symposium on, pages
32 � 38, 1995.

[36] Kalapi Roy-Neogi and Carl Sechen. Multiple FPGA partitioning
with performance optimization. In Proceedings of the 1995 ACM
Third International Symposium on Field-Programmable Gate Ar-
rays, pages 146�152, 1995.

[37] J.I. Hidalgo, J. Lanchares, and R. Hermida. Partitioning and place-
ment for multi-FPGA systems using genetic algorithms. In Euromi-
cro Conference, 2000. Proceedings of the 26th, volume 1, pages 204
�211 vol.1, 2000.

[38] J.I. Hidalgo, R. Baraglia, R. Perego, J. Lanchares, and F. Tirado.
A parallel compact genetic algorithm for multi-fpga partitioning. In
Parallel and Distributed Processing, 2001. Proceedings. Ninth Eu-
romicro Workshop on, pages 113 �120, 2001.

[39] Nam Sung Woo and Jaeseok Kim. An e�cient method of partition-
ing circuits for multiple-FPGA implementation. In Proceedings of
the 30th international Design Automation Conference, pages 202�
207, 1993.

[40] Roman Kuºnar, Franc Brglez, and Krzysztof Kozminski. Cost min-
imization of partitions into multiple devices. In Proceedings of the
30th international Design Automation Conference, pages 315�320,
1993.

[41] Nan-Chi Chou, Lung-Tien Liu, Chung-Kuan Cheng, Wei-Jin Dai,
and Rodney Lindelof. Circuit partitioning for huge logic emula-

130



Bibliography

tion systems. In Proceedings of the 31st annual Design Automation
Conference, pages 244�249, 1994.

[42] Roman Kuºnar, Franc Brglez, and Baldomir Zajc. Multi-way netlist
partitioning into heterogeneous FPGAs and minimization of total
device cost and interconnect. In Proceedings of the 31st annual
Design Automation Conference, pages 238�243, 1994.

[43] Dennis J.-H. Huang and Andrew B. Kahng. Multi-way system par-
titioning into a single type or multiple types of FPGAs. In Proceed-
ings of the 1995 ACM Third International Symposium on Field-
Programmable Gate Arrays, pages 140�145, 1995.

[44] Prashant Sawkar and Donald Thomas. Multi-way partitioning for
minimum delay for look-up table based FPGAs. In Proceedings of
the 32nd annual ACM/IEEE Design Automation Conference, pages
201�210, 1995.

[45] Wen-Jong Fang and Allen C.-H. Wu. Performance-driven multi-
FPGA partitioning using functional clustering and replication. In
Proceedings of the 35th annual Design Automation Conference,
pages 283�286, 1998.

[46] Helena Krupnova and Gabriele Saucier. Iterative improvement
based multi-way netlist partitioning for FPGAs. In Proceedings of
the Conference on Design, Automation and Test in Europe, 1999.

[47] C. Bolchini, A. Miele, and C. Sandionigi. Automated resource-aware
�oorplanning of recon�gurable areas in partially-recon�gurable
FPGA systems. In Int. Conf. on Field Programmable Logic and
Applications, 2011, To appear.

[48] L. Wolsey. Integer Programming. John Wiley and Sons, 1998.

[49] Sadiq M. Sait and Habib Youssef. VLSI physical design automation.
World Scienti�c Publishing Co. Pte. Ltd., 2004.

[50] C. Bolchini, L. Fossati, D. Merodio Codinachs, A. Miele, and C. San-
dionigi. A Reliable Recon�guration Controller for Fault-Tolerant
Embedded Systems on Multi-FPGA Platforms. In Proc. IEEE Int.
Symp. Defect and Fault Tolerance in VLSI Systems, 2010.

[51] C. Bolchini and C. Sandionigi. Fault Classi�cation for SRAM-based
FPGAs in the Space Environment for Fault Mitigation. IEEE Em-
bedded Systems Letters, 2010.

131



Bibliography

[52] Salvatore Pontarelli, Marco Ottavi, Vamsi Vankamamidi,
Gian Carlo Cardarilli, Fabrizio Lombardi, and Adelio Sal-
sano. Analysis and evaluations of reliability of recon�gurable fpgas.
Journal of Electronic Testing, 24(1-3):105�116, 2008.

[53] F. A. Bower, D. J. Sorin, and S. Ozev. A Mechanism for Online
Diagnosis of Hard Faults in Microprocessors. In Int. Symp. on Mi-
croarchitecture, pages 197 � 208, 2005.

[54] European Space Agency. SPENVIS. http://www.spenvis.oma.be/.

[55] R. H. Maurer, M. E. Fraeman, M. N. Martin, and D. R. Roth.
Harsh Environments: Space Radiation Environment, E�ects and
Mitigation. Johns Hopkins APL Technical Digest, 28(1), 2008.

[56] V. Bocci, M. Carletti, G. Chiodi, E. Gennari, E. Petrolo, A. Sala-
mon, R. Vari, and S. Veneziano. Radiation test and application of
FPGAs in the ATLAS Level 1 Trigger. In Workshop on Electronics
for LHC Experiments, 2001.

[57] P. Alfke. Xilinx FPGAs: A Technical Overview for the First-Time
User. Technical Report XAPP097, Xilinx, December 1998.

[58] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hübner, and
J. Becker. A multi-platform controller allowing for maximum Dy-
namic Partial Recon�guration throughput. In Proc. Int. Conf. Field
Programmable Logic and Applications, pages 535�538, 2008.

[59] C. Claus, F. H. Muller, J. Zeppenfeld, and W. Stechele. A
new framework to accelerate Virtex-II Pro dynamic partial self-
recon�guration. In Proc. IEEE Int. Parallel and Distributed Pro-
cessing Symp., pages 1�7, 2007.

[60] A. Cuoccio, P. R. Grassi, V. Rana, M. D. Santambrogio, and D. Sci-
uto. A Generation Flow for Self-Recon�guration Controllers Cus-
tomization. In IEEE Int. Workshop Electronic Design, Test and
Applications, pages 279�284, 2008.

[61] S. Bayar and A. Yurdakul. Dynamic Partial Self-Recon�guration
on Spartan-III FPGAs via a Parallel Con�guration Access Port
(PCAP). In Proc. HiPEAC Workshop on Recon�gurable Computing,
2008.

[62] Xilinx. Virtex-II Pro and Virtex-II Pro X FPGA User Guide. Tech-
nical Report UG012, November 2007.

132



Bibliography

[63] Xilinx. OPB HWICAP Product Speci�cation. Technical Report
DS280, March 2004.

[64] M. Sonza Reorda, M. Violante, C. Meinhardt, and R. Reis. A low-
cost SEE mitigation solution for soft-processors embedded in sys-
tems on programmable chips. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 352�357, 2009.

[65] ESA Microelectronics. LEON2-FT. Website, 2009. http://www.

esa.int/TEC/Microelectronics/SEMUD70CYTE_0.html.

[66] D. Nikolos. Self-testing embedded two-rail checkers. J. Electronic
Testing, Theory and Applications, 12(1-2):69�79, 1998.

[67] Xilinx Inc. Reading User Data from Con�guration PROMs. Tech-
nical Report XAPP694, Xilinx Inc., November 2007.

[68] Xilinx Inc. Xilinx TMRTool, 2006.

[69] Conrado Pilotto, José Rodrigo Azambuja, and Fernanda Lima Kas-
tensmidt. Synchronizing triple modular redundant designs in dy-
namic partial recon�guration applications. In Proceedings of the
21st annual symposium on Integrated circuits and system design,
pages 199�204. ACM, 2008.

133


