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Abstract

Computing facilities are an essential part of the fabric of our society,
and an ever-increasing number of computing devices is deployed within
the environment in which we live. The vision of pervasive computing is
becoming real. To exploit the opportunities offered by pervasiveness, we
need to revisit the classic software development methods to meet new
requirements: (i) pervasive applications should be able to dynamically
configure themselves, also benefiting from third-party functionalities dis-
covered at run time and, (ii) pervasive applications should be aware of,
and resilient to, environmental changes. In this thesis we focus on the
software architecture, with the goal of facilitating both the development
and the run-time adaptation of pervasive applications. More specifically,
we advocate for the adoption of the REST architectural style to deal
with pervasive environment issues. Indeed, we believe that, although
REST has been introduced by observing and analyzing the structure of
the Internet, its field of applicability is not restricted to it. Following
this belief, we created a new architectural style, called P-REST, that
is derived by REST by taking into account the inherent instability of
pervasive environments. We also provided the P-REST users with (i)a
methodology to design P-RESTful applications, (ii) a run-time support
called prime that natively provides the P-REST abstractions, and (iii)
a coordination language called pace meant to discover and orchestrate
functionalities available in the pervasive environment. Furthermore, we
devised a case study to show how the run-time support and the lan-
guage can be used to develop complex applications and to assess the
performance and scalability of prime.
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Riassunto

Le infrastrutture informatiche sono, al giorno d’oggi, una parte fonda-
mentale del nostro tessuto sociale e un numero sempre crescente di di-
spositivi viene continuamente attivato nell’ambiente che ci circonda. La
visione del pervasive computing sta diventando realtà. Per riuscire a
sfruttare fino in fondo le opportunità dell’ambiente pervasivo, si è senti-
ta la necessità di rivisitare le metodologie classiche di sviluppo software
alla luce delle mutate condizioni ambientali. Infatti le applicazioni per-
vasive dovrebbero poter autoconfigurarsi dinamicamente, anche traendo
beneficio da funzionalità di terze parti scoperte a tempo di esecuzione
e, inoltre, dovrebbero avere coscienza dei cambiamenti nell’ambiente e
continuare a funzionare correttamente nonostante questi ultimi. In que-
sta tesi vogliamo affrontare l’ambiente descritto sopra da un punto di
vista architetturale con l’obiettivo di facilitare sia lo sviluppo di soft-
ware pervasivo che l’adattamento a tempo di esecuzione necessario per
far fronte ai cambiamenti nell’ambiente. Andando più nello specifico, in
questa tesi, si vuol proporre l’adozione dello stile architetturale REST
per far fronte alle sfide poste dall’ambiente pervasivo. Infatti in questo
lavoro si sostiene che, nonostante REST sia stato introdotto sulla base
dell’osservazione e dell’analisi della struttura di internet, il suo campo
applicativo non sia ristretto ad internet stessa. Seguendo questa linea
di pensiero, si è creato un nuovo stile architetturale chiamato P-REST
derivato da REST tenendo in considerazione l’intrinseca instabilità de-
gli ambienti pervasivi. Inoltre, il nuovo stile è stato corredato da una
metodologia progettuale ad hoc, un supporto per l’esecuzione chiamato
prime che fornisca nativamente le astrazioni computazionali usate da
P-REST e, ultimo ma non ultimo, un linguaggio di coordinamento chia-
mato pace concepito per scoprire e orchestrare le funzionalità disponibili
nell’ambiente pervasivo. Per mostrare l’efficacia dell’intera metodologia,
dimostrare l’utilizzo degli strumenti messi a disposizione e valutare le
prestazioni di prime è stato condotto lo studio di un caso abbastanza
complesso da essere rappresentativo per le applicazioni pervasive.
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1. Introduction

The Internet evolution is moving fast from “sharing” to “co-creating”.
The clear distinction between content producer and consumer roles,
which characterized the Internet so far, is blurring towards a generic
“prosumer” role that acts indistinguishably as both producer and con-
sumer [1]. Hence, a “prosumer” is any active participant in a business,
information, or social computing process. When prosumers are inte-
grated with the computational environment and available anytime and
anywhere, they are generically denoted as “things”. Such “things” can
be the most disparate devices (e.g., desktop PCs, laptops, tablets, ap-
pliances, sensors, actuators, etc.). This situation is often referred to as
Internet of Things. Due to the multitude of possible different “things”
available within the environment, applications require knowledge and
cognitive intelligence in order to discover, recognize, and process such a
huge amount of heterogeneous information.
The above concepts underlie the Future Internet vision [1], which in

turn rests on the future communication and computational infrastruc-
ture. We will be virtually connected through heterogeneous means, with
invisible computing devices pervading the environments [2]. Such en-
vironments, referred to as pervasive networking environments, will be
composed as spontaneous aggregation of heterogeneous and independent
devices, which do not rely on predetermined networking infrastructures.
In pervasive networking environments applications emerge from com-

positions of the “things” available in the environment at a given time.
Such applications, sometimes also called open-world applications [3], are
characterized by a highly dynamic software architecture: both the com-
ponents that are part of the architecture and their interconnections may
change dynamically, while applications are running. New components
may, in fact, be created by component providers and made available
dynamically. Components may then be discovered, deployed, and com-
posed at run time, removing pre-existing bindings to other components.
Applications are often highly distributed, i.e., components are deployed
and run on different computational units. In many cases, the components
that constitute an application are also operated and run by decentralized
and autonomous entities.
Dynamic architectures of the kind we described above are created to
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1. Introduction

support the adaptive and evolutionary situation-aware behaviors that
characterize pervasive systems. Sometimes it may be useful to distin-
guish between adaptation and evolution. Adaptation refers to the actions
taken at run time and affecting the architectural level, to react to the
changing environment in which these systems operate. In fact, changes
in the physical context may often require the software architecture to
also change. As an example, a certain facility used by the application
may become unaccessible as a new physical environment is entered dur-
ing execution and a new facility may, instead, become visible. Or a
certain facility’s behavior may be changed unexpectedly by the owner of
the service and the change may be incompatible with its use from other
parts of the application. Evolution instead refers to changes that are
the consequence of requirements changes. For example, a 3-D interface
becomes available and must be used instead of the traditional interface
previously used. In general, long-lived pervasive systems require that
applications should follow some strategies to

• detect the relevant changes in the situation in which they operate,
such as the physical environment (or even the changing require-
ments), and

• react by self-organizing themselves and adapting their behavior in
response to such changes.

Adaptive pervasive systems raise many challenges to software engi-
neering as highlighted by Cheng et al. in [4]. Indeed, such systems stress
the known methods, techniques, and best practices to their extreme and
introduce new difficult problems for which new solutions are needed. The
notions of variability and adaptation must permeate all phases, from re-
quirements to design and validation, and even run time. Indeed, the
sharp traditional separation between development time and run time be-
comes blurring. Traditionally, changes are handled off-line, during the
maintenance phase. In the new setting, they must be also handled au-
tonomously at run time, as the application is running and providing
service. To achieve that, software systems must be able to reason about
themselves and their state as they operate, through adequate reflective
features available at run time. They must be able to monitor the envi-
ronment, compare the data they gather against an expected model, and
detect possible situational changes. Whenever a deviation is found, an
adaptation step must be performed, which modifies the software archi-
tecture and, as a consequence, the running application. For example, the
adaptation step might simply perform a new deployment and re-bindings
to different components, or re-binding to different external services. In
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1.1. Thesis structure

other cases, the adaptation strategies may be more complex. To lighten
the burden of dealing with all the problems presented above at run time,
it is of critical importance bringing at run time and keep alive the models
usually confined in the software design phase [5].
In the context just described, this thesis is concerned with finding the

most suitable architectural abstractions for the pervasive scenario and
provide a set of tools to assist developers from design time to run time.
The original contribution of this thesis are the following:

• a conceptual model to guide the development of adaptive pervasive
systems;

• a novel architectural style called P-REST, built upon the REST
style, that fits the scenario described above;

• the prime middleware designed and implemented to fully support
P-REST

• the pace coordination language embedded in prime to orchestrate
functionalities in pervasive environments.

1.1. Thesis structure

This thesis is structured as follows: Chapter 2 introduces to the general
scenario of adaptive systems and set the tone of the discussion for the
thesis; Chapter 3 explains the limitations of REST when dealing with
pervasive scenarios and how we overcame such limitations using the P-
REST style. Chapter 4 describes prime, the middleware we designed
and implemented as a run-time support for P-REST. Chapter 5 presents
the pace coordination language that we have devised to ease the devel-
opment of complex behavior in prime. Finally, Chapter 6 concludes the
thesis and outlines future research lines.
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2. Architectural issues of
adaptive pervasive systems

In this chapter we want to:

1. describe the general context of adaptive and evolvable systems,

2. narrow the focus to address the pervasive scenario, and

3. characterize the contribution of this thesis with respect to this
general scenario.

Thus the chapter is divided into two Sections, Section 2.1 will address
the first two points, while Section 2.2 will be concerned with the third
one.

2.1. Design models for adaptive systems

Research on dynamically adaptable and evolvable software systems be-
came very active in past decades. Already in 1995 Mary Shaw in [6]
advocated for the need of departing from the standard object-oriented
design paradigm for certain classes of problems where the control of a
process was the main concern. According to her, classic software design
tends to compute the desired output on the basis of the inputs only.
This approach fits smoothly most problems but, whenever the problem
must also take into account unpredictable variables that can change at
run time, the classic approach fails. Therefore, she proposed a design
model borrowed by the control theory. To take into account unpre-
dictable variables, she advocated for the introduction of a feedback loop
aimed at controlling the computing process and make it adaptable with
respect to the surrounding environment. The feedback loop is in charge
of continuously monitoring the output variables in order to modify input
variables to adjust the behavior of the computing process. Building on
the experience with the new design model, the author identifies the cases
the use of the new design model is convenient:

• when the task involves continuing action, behavior, or state
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2. Architectural issues of adaptive pervasive systems

• when the software is embedded; that is, it controls a physical sys-
tem

• when uncontrolled computation does not suffice, usually because
of external perturbations or imprecise knowledge of the external
state

In pervasive environments, like the ones we have described in the pre-
vious chapter, the external perturbations and the imprecise knowledge of
the environment are not only expected, but even likely. For these reasons
the community felt the necessity to rigorously investigate the problem of
controlling software. To do so, the need of a sharp distinction between
the computation that must be observed and controlled, and the software
that implements the controller soon arose. This separation of concerns,
according to Müller et al. in [7], allows for giving to the control loop
the same dignity of the controlled software along the whole development
process. It means that, not only the controlled software must be properly
designed, documented, developed, tested and maintained, but also the
control loop must be involved in the same activities. Besides, applying
the classic software engineering techniques to a modular control logic
helps in making it reusable, analyzable, composable, and cost-effective
as highlighted by Cheng et al. in [8].
Once recognized the need for a principled approach to software adap-

tation, the research community strove for identifying the conceptual en-
tities involved in adaptation and their relationships. A very high-level
conceptual model was presented by Dobson et al. in [9] where they
presented the model in Figure 2.1. Although the model is tailored to
the problem of network communication, the 4 main phases (i.e., Collect,
Analyze, Decide, Act) are valid for every self-adaptive system. For each
phase several approaches to the problems that must be coped with are
shown. Still, this model is very high-level, hence, it is not suitable for a
rigorous guidance during the design phase.
Moving towards a more concrete model, we must mention the one in-

troduced along with the proposal of autonomic computing. In the early
2000s, Kephart and Chess promoted the vision of autonomic comput-
ing [10], which focuses on a new generation of software systems that can
manage themselves to achieve their goals in a changing environment. A
system can be defined as autonomic if it enjoys the following properties:

Self-Configuration : an autonomic system should be able to (re)configure
itself according to a high-level goal. Such goal is just specified
declaratively, the system should figure out how the goal can be
reached.

8



2.1. Design models for adaptive systems

Figure 2.1.: high-level control loop for self-adaptive systems

Self-Optimization : an autonomic system should always take the oppor-
tunities to optimize itself proactively in order to improve efficiency.

Self-Healing : an autonomic system should react to its failures by de-
tecting (or even predicting) them and taking actions to restore its
functionalities

Self-Protection : an autonomic system should strive for protecting itself
from malicious external attacks as well as from unwise changes
coming from its user.

Such properties are often referred to as self-* properties.
Always according to [10], an autonomic system is built starting from a

collection of autonomic elements that interact with each other by provid-
ing and consuming services. Kephart and Chess also propose the high-
level software architecture that such autonomic elements must comply
with. In practice, they advocate for the installation of a feedback control
loop whose main components are depicted in Figure 2.2. There, the sta-
tus of the Managed Element is read by the Monitor through the Sensors.
The Analyzer recognizes possible deviations from the overall goals that
should be solved by the Planner. Then, the Executor exploits Actua-
tors to enact changes suggested by the planner. All the components just
described take advantage of the Knowledge gathered by the Autonomic

9



2. Architectural issues of adaptive pervasive systems

Managed Element

Sensors Actuators

Monitor

Analyzer

Executor

Planner

Knowledge

Autonomic Manager

Autonomic Element

Figure 2.2.: MAPE-K loop

Element about itself and its operating environment. The feedback loop
of Figure 2.2 has been named MAPE-K loop from the initials of its main
entities, that is, Monitor, Analyzer, Planner, Executor, and Knowledge.
After the publication of the autonomic manifesto, a lot of work has been
carried out to deeply investigate every component in Figure 2.2. A wide
coverage of this research is out of the scope of this thesis, see [11] for a
complete survey. Instead, here, we want to narrow the scope and focus
on the software architecture standpoint. Indeed, The MAPE-K cycle is
very high-level and general because it is designed to model every possible
autonomic system is every possible domains. It is clear that, by narrow-
ing the application domain, more precise architectural models can be
built, and a more precise model leads to an increased guidance in the
application design and development.

As an example of design model for autonomic systems in a specific
domain, we can refer to the model introduced by Bucchiarone et al.
in [12] that captures the life-cycle of Service Oriented autonomic sys-
tems (see Figure 2.3). The rightmost circle represents the (simplified)
traditional development process that starts with requirements elicitation,
goes through the system construction and arrives to the deployment and
to the run-time management. The leftmost circle, on the other hand,
represents the action needed for adaptation. Thus, it starts with the
recognition of the need for adaptation, followed by the search for a suit-
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2.1. Design models for adaptive systems

Requirement 

Engineering

Construction

Deplyoment & 

Provisioning

Operation & 

Management

Identify 

Adaptation 

Needs

Identify 

Adaptation 

Strategy

Enact 

Adaptation

Figure 2.3.: The life-cycle of adaptable service oriented autonomic sys-
tems

able adaptation strategy. Once such strategy is found, it is enacted and
the system undergoes to a new deployment phase and it resumes its
standard behavior (by reentering the rightmost cycle).
Following the example in [12], here we want to give a specialized and

refined version of the MAPE-K cycle for the pervasive domain. To this
extent, in [13] we presented the conceptual model depicted in Figure 2.4
to describe the fundamental concepts and properties that characterize
software architectures for adaptive pervasive systems. Notice that the
model is just a reference, hence it can result in very different implemen-
tations, even partial where it fits.
The conceptual model is aimed at handling and controlling the Appli-

cation entity. The latter is built using several software artifacts, which
can be owned by both the application developer and third parties. The
part owned by the application developer is called Controlled Application,
while the third-party software is represented by the External Service/-
Component entity. Such distinction is important because the Actuator
can only operate on the controlled application because the third-party
software is, by definition, out of its control. The controlled application
and the external services/components are immersed in the Environment.
The latter also contains Sensors to enhance the application with contex-
tual data.
A key role in the control of the application is played by the Require-

ment entity, which defines the initial input steering the construction of
the application assembly, as well as the desired run-time behavior. In-
deed, it defines the set of properties that the application must satisfy at
run time. Requirements are also important to precisely define the dif-
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2. Architectural issues of adaptive pervasive systems
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Figure 2.4.: Reference Architectural Model for Self-Adaptive, Pervasive
Systems

ference between evolution and adaptation: evolution refers to the ability
of reconfiguring the controlled application at run time as a response to
a change in the requirements, whereas adaptation refers to the ability
to modify the controlled application so that it can keep satisfying the
requirements in spite of changes within the execution environment. This
twofold role of requirements demands for (i) a Decision Maker, that as-
sembles an abstract description of the application complying with the
requirements, and (ii) a Monitor, that is in charge of collecting data
about the application’s run-time behavior to detect (and predict where
it is possible) possible violations of the requirements.
The decision maker is the entity that is in charge of enforcing require-

ments. It should be able of (i)creating an application complying with the
requirements from scratch and (ii) of adapting and evolving the applica-
tion at run time. The decision maker generates abstract descriptions of
the solutions it devises. The descriptions are abstract in the sense that
they don’t deal with implementation details and are technology-agnostic.
To devise such description, the decision maker needs to know the cur-
rent situation both of the controlled application and of the surrounding
environment. These two pieces of information are captured by the Appli-
cation Run-time Model and by the Environment Run-time Model entities,
respectively. The former captures the run-time state of the application,
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2.2. Architectural styles

whereas the latter is concerned with the surrounding physical context
and with all the third-party software offered in the environment. The
use of two models are needed because dealing with the real application
and the real environment is often intractable in non-trivial cases. As a
final remark on the decision maker, it can also be not completely au-
tomated and human-in-the-loop solutions are allowed by the reference
model.
The abstract descriptions produced by the decision maker are fed to

the Actuator. The last is introduced to decouple the decision maker by
the lower-level implementation details. On one hand, it executes the
command issued by the decision maker in order to create the applica-
tion (in the application synthesis phase) or manipulate the controlled
application (in case of adaptation or evolution). On the other hand, it
is in charge of keeping the controlled application synchronized with the
controlled application run-time model. Thus, the decision maker can
carry out its role without directly interacting with the controlled appli-
cation. The indirection allows for generating two equivalent applications,
implemented by means of two different technologies, starting from the
same abstract description. We only need to provide two different and
technology-specific actuators.
To continuously provide the decision maker with fresh information

about the environment, the conceptual model prescribe the presence of
a Monitor. Its final aim is updating the two run-time models with infor-
mation gathered from the real world. It feeds the environment run-time
model with both data gathered from external services/components that
are not part of controlled application and sensor data that provide rel-
evant information about the physical environment. Whereas the data
coming from the controlled application and from its external services/-
components are fed to the controlled application run-time model.

2.2. Architectural styles

In the previous section we have given a general overview of the problems
that arise when coping with software adaptation. Now we want to narrow
the focus to correctly frame our work. Specifically, referring to the model
in Figure 2.4, here we want to focus on the constraints that we can
impose on the design of the application (that are, then, reflected into the
application run-time model) to make the work easier for the actuator.
Indeed, constraining the application design decreases the number of free
variables that must be taken into account, on one hand, by the decision
maker to analyze and solve problems and, on the other hand, by the
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2. Architectural issues of adaptive pervasive systems

actuator to manipulate the running application.
Clearly, the constraints that are commonly imposed to the design of an

application must be well engineered in order to effectively benefit the run-
time adaptability. In literature a set of constraints is commonly called
architectural style. According to [14], “An architectural style defines a
vocabulary of components and connector types, and set of constraints
on how they can be combined.” By focusing on architectural styles,
it is possible to focus on adaptation from an abstract and high-level
standpoint, which may enable systematic and even formal reasoning.
Let us first observe that in the general case, if no specific constraints

are assumed on an architecture, a run-time change that requires dynamic
updates of components or connectors may require suspension of (parts
of) an application to achieve some desirable level of consistency. Man-
aging suspensions can be very complex. This problem has been faced
elsewhere in the literature [15, 16]. In these works applications are rep-
resented as graphs with components as vertices and connectors as edges.
Both works are focused on finding algorithms to safely substitute a com-
ponent without jeopardizing ongoing computations. The solutions, in
most cases, force the suspension of the most part of the components.
Taylor et al. in [17] scrutinized several architectural styles used by

state-of-art software systems according to the following criteria:

• How and how much the system’s behavior can be changed;

• How long the system’s evolution takes to be effective;

• How the state of the system is changed when that system evolves;

• In which environment the system is executing;

Examples of examined styles and corresponding systems are: the C2
style [18, 19, 20] supported by the ArchStudio tool suite; the publish-sub-
scribe style [21], implemented for example by Siena; the REST style [22]
used for web browsing; the CREST style [23] adopted by AJAX and
other JavaScript-based technologies.
The classification given in [17] is general and addresses generic adap-

tive systems. Here we are concerned with adaptive systems in pervasive
environments, thus we propose a classification along the following di-
mensions:

(i) the type of coupling imposed by the model on entities;

(ii) the degree of flexibility, that is, the ability of the specific model
to deal with the run-time growth of the application in terms of
involved components;
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(iii) the degree of genericity, that is the ability to accommodate hetero-
geneous and unforeseen functionalities into the running application;

(iv) the kind of dynamism, that is the possibility to rearrange the ap-
plication in terms of binding, as well as adding new functionality
discovered at run time.

Table 2.1 classifies the main architectural models in terms of their
characteristics with respect to the pervasive networking issues.

Table 2.1.: Distributed design models dimensions
Coupling Flexibility Genericity Dynamism

RPC tight % % %

OO tight % % %2

C2 loose ! % !

SOA loose ! % !2

REST loose ! ! %2

Remote Procedure Call (RPC) is the oldest design model for distributed
architectures and is based on functional distributed components
that are accessed in a synchronous fashion. This supports a client-
server style, where: (i) client and server are tightly coupled, (ii)
adding/removing functions strongly affects the behavior of the
overall network-based system, (iii) function signatures are strict,
and (iv) binding between entities is generally statically defined and
cannot vary and new functions cannot be discovered at run time.

Object Oriented architectures support distributed objects, and provide
higher-level abstractions by grouping data and the functions meant
to manipulate them and state encapsulation. The type of interac-
tion among objects, however, is synchronous. In summary: (i) in-
teracting objects are still tightly-coupled in a client-server fashion,
(ii) adding/removing entities while the system is running is hard to
support, (iii) interfaces are specified via strict method signatures,
and (iv) once a reference to a remote object is set, normally it does
not change at run time, and there is no predefined way of making
objects discoverable (i.e., supporting this feature requires for ad-
ditional ad-hoc effort). Two two representative implementations

2This feature is conceptually feasible, although several existing instantiations of the
architectural style do not support it.
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are the CORBA (Common Object Request Broker Architecture)
specification [24] that allows for remote object invocation and ma-
nipulation through a distributed broker, and JINI [25] that added
to the remote object manipulation a partial syntactic object dis-
covery facility. In both cases adaptation is not allowed by the
run-time support.

C2 style, introduced in [18, 19, 20], models a system as a set of com-
ponents and connectors. Each component has one top connector
and one bottom connector. A connector can accommodate an ar-
bitrary number of top and bottom components. Components can
issue requests towards their top connector (hence each component
is aware of the components connected to its top connector) and
generate notification towards the bottom component. Connectors
broadcast all the requests coming from the bottom components re-
laying them to the top components. The opposite happens for noti-
fications. Regarding our classification: (i) components are loosely
coupled because connectors prevent direct communication among
components; (ii) components can be added removed at run time
almost seamlessly by just linking and unlinking them to the con-
nectors of the running system; (iii) components must be aware of
the interface of the upper components while they are completely
independent from the lower components; (iv) connectors effectively
decouple components so modifying the system architecture at run
time is quite easy and intuitive. The principles of the C2 style
are used by ArchStudio [26] to realize architecture-based software
adaptation. ArchStudio is a complete suite of tools that takes care
of both the design and the run-time support for adaptive software.
the suite allows for adding and removing components in a C2 sys-
tem at run time by directly using the run-time representation of
the software architecture.

Service Oriented Architecture (SOA) a style in which networked en-
tities are abstracted as autonomous software services that can be
accessed without knowledge of their underlying technologies. In
addition, SOA opens the way to dynamic binding through dy-
namic discovery. In summary: (i) services are independent and
loosely-coupled entities, (ii) services can be easily added/removed
and accessed, irrespective of their base technology, (iii) service
access is regulated by means of well-defined interfaces, and (iv)
binding between services can in principle be dynamically estab-
lished at run time (although in existing SOA application this is
not common practice), and new entities may be discovered and
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bound dynamically. We can name two run-time supports that re-
lies on service orientation. The first one, ReMMoC [27], provides
SOA abstractions for pervasive systems and its main concern is
overcoming heterogeneity of communication protocols and coor-
dination mechanisms in mobile environments. The second one is
the ubiSOAP [28] middleware that makes the standard SOA in-
teractions seamless with respect to the underlying communication
technology.

REpresentational State Transfer (REST) , introduced by Fielding in
his doctoral thesis [22], differs from all the previous models in the
way distributed entities are accessed and in the way their seman-
tics is captured. REST entities are abstracted as autonomous and
univocally addressable resources, which have a uniform interface
consisting of few and well defined operations. In all previous cases,
entities have different and rich interfaces, through which designers
capture the semantic differences of the various entities. In REST,
all entities have the same interface. Semantic information is at-
tached separately to the identification mechanism that allows en-
tities to be accessed. In addition, interactions among REST enti-
ties are stateless. In summary: (i) resources are independent and
loosely-coupled entities, (ii) resources can be easily added, removed
and accessed, irrespective of their underlying technology, (iii) re-
source access is regulated by means of a uniform interface, and
(iv) binding between resources is dynamically established at run
time even though, in general, there is no standard way to discover
and access them. However, this might be achieved by means of
additional support. For the REST style we present four works. In
[29], Web principles and technologies have been applied to Ambi-
ent Computing. In particular, the proposed framework addresses
interoperability issues by using the Web Platform as a common
ground to build systems that follow the Ambient Computing prin-
ciples. The same line of research has been followed by the Cooltown
project [30], which extends web principles to devices and services
situated in the physical world. However, both approaches lever-
age Web standards to achieve interoperability, then they are also
bound by the web’s limitations, e.g., lack of mobility management,
point-to-point communication only, and client-server style interac-
tions. To this end, the XWeb [31] project presents a web-oriented
architecture relying on a new transport protocol, called XTP, that
provides mechanisms for finding, browsing, and modifying infor-
mation. A different line of research has been followed by Bonetta
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and Pautasso in [32] where they propose the adoption of REST
to design and implement liquid web services, that is, services able
to both scale up and scale out. Scaling up refers to the ability of
exploiting new hardware resources deployed in the original hosting
machine while scaling out refers to the exploitation of hardware
resource made available on different hosting machines.

The genericity of the interface coupled with the statelessness of the in-
teractions make REST an interesting candidate for implementing adap-
tive systems in pervasive environments. The next chapter is completely
devoted to deepen the understanding of this intuition and to make it
more precise and systematic.
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In the previous chapter we reviewed the architectural styles that best
lend themselves to run-time evolution and adaptation. In this chapter
we want to explain why we picked REST among the others and which
modifications are needed to adapt REST to the pervasive environment.
This work was already presented in [33].

3.1. Why REST?

The exploitation of the REST architectural style in the context of per-
vasive systems is still challenging, and literature so far has been focusing
mainly on interaction protocols. For example, Romero et al. [34] exploit
REST to enable interoperability among mobile devices within a pervasive
environment.
Unlike [34], we do not use REST principles to cope with heterogeneity,

rather we want to investigate how the REST design model can be used to
build applications able to evolve and adapt at run time. To this extent,
this section discusses how the design of self-adaptive applications benefits
from the REST principles.
Another similar research line is also pursued in the field of Web of

Thing [35, 36]. They try to enable “things” to be accessible and pro-
grammable via a RESTful interface. While they want to impose as-is
REST on networks of embedded sensors and actuators, we want to mod-
ify REST to make it suitable to pervasive environments.
The original REST architectural style [22] defines two main architec-

tural entities (see Figure 3.1): the User Agent that initiates a request and
becomes the ultimate recipient of the response, and the Origin Server
that holds the data of interest and responds to user agent requests. REST
defines also two optional entities, namely Proxy and Gateway, which
provide interface encapsulation, client-side and server-side, respectively.
The data of interest, held by origin servers, are referred to as Resources
and denote any information that can be named. That is, any resource is
bound to a unique Uniform Resource Identifier (URI) that identifies the
particular resource involved in an interaction between entities. Referring
to Figure 3.1, when a user agent issues a request for the resource identi-
fied as Rb to OriginServer2, it obtains as a result a Representation of the
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3. REST for pervasive systems

Figure 3.1.: REST Architectural Style

resource (i.e., ρb). A Representation is not the resource itself, but cap-
tures the current state of the resource in a format matching a standard
data type. Moreover, from the moment it is created on, a representation
is no longer bound to the evolution of the resource. It means that further
updates of the resource are not reflected on the representation and vice
versa.
The concept of Resource plays a pivotal role in the REST architectural

style. In fact, it can be seen as a model of any object in the world (i.e.,
“things”) with a clear semantics that cannot change over its lifetime.
An application built according to the REST style is typically made of
a set of interacting resources. An application built according to the
REST architectural style is said to be “RESTful” if it does respect the
four basic principles introduced by Fielding [22] and then elaborated by
Richardson and Ruby [37]: Addressability, Statelessness, Connectedness,
Uniformity. These principles, along with the design model they induce
on the application, seem to naturally apply to pervasive environments.
Addressability requires resources to have at least one URI. This allows

RESTful applications to be found and consumed, as well as their con-
stituent resources to be accessed and manipulated. The possibility to
retrieve and use constituent resources enables prosumers to opportunis-
tically reuse parts of a RESTful application in ways the original designer
has not foreseen [38].
The statelessness principle makes REST very appealing to pervasive

systems. It establishes that the state of the interaction between a user
and a RESTful application must always reside on the user side. Since
the state of the interaction is kept by the user, computations can be
suspended and resumed (without losing data) at any point between the
successful completion of an operation and the beginning of the next one.
Indeed, using two different but equivalent resources1, will produce the

1We define two resources as equivalent iff they have the same behavior and adopt
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same results. This is important in a pervasive environment since a com-
putation, hindered by the departure of a resource, can, in principle, be
resumed whenever an equivalent resource is available. Other advantages
— for non-ephemeral resources — are contents “cacheability” and the
possibility of load balancing through resource cloning. Hence, stateless-
ness enhances (i) decoupling of interacting resources, (ii) flexibility of
the model, since it allows for easily rearranging the application at run
time and, (iii) scalability, by exploiting resource caching and replication.
The price to pay derives from the need for an increased network capacity
because the whole state of the interaction must be transferred back and
forth at each request.
The connectedness principle, which refers to the need of linking re-

sources to one another, is the backbone of RESTful applications. It
was initially introduced by Fielding in his thesis as the “Hypermedia As
The Engine Of Application State” (HATEOAS) principle. Links among
resources induce a lightweight and dynamic work-flow such that:

1. clients are not forced to follow the whole workflow – i.e., they can
stop at any time – and,

2. workflows can be entered at any time by any client provided with
the proper URI.

Furthermore, the state can be passed to a resource by means of the
URI where it can be retrieved. In this way such a state is retrieved only
when (if) needed, according to a lazy evaluation scheme.
Uniformity means that every resource must understand the core op-

erations and must comply with their definition.
Thus, there will be no interface problems among resources. Since

operations have always the same name and semantics, the genericity of
the model is improved. Clearly the problem is not completely solved
because data semantics and encoding must still be negotiated. It has
been argued that reliance on data encoding and semantics increases the
coupling between resources. However, REST eliminates the need for
negotiating also the name and semantics of operations, as it happens for
instance in SOA (See [39] for further discussions on the topic).
Differently from SOA, where service semantics is defined by means of

the operations it exposes, the semantics of a resource is identified by its
name. Indeed, is it a good practice for URIs to be self-explanatory in
order to ease human comprehension for human beings. However, such
practice is not strictly prescribed by the REST architectural style.

the same encoding for their representations.
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3.2. REST for pervasive systems

REST technologies rely on (i) the stability of the underlying communica-
tion environment and (ii) on a tightly-coupled synchronous interaction
protocol (i.e., HTTP). Pervasive environments, instead, require to (i)
cope with an ever-changing communication infrastructure because de-
vices join and leave the environment dynamically [40] and (ii) to support
loosely-coupled asynchronous coordination mechanisms [41].
This section investigates how the REST architectural style should be

modified to fit pervasive environments, and introduces the Pervasive-
REST (P-REST) design model. To this end, we need to make changes
at three levels of abstraction, namely the architectural, the coordination,
and the infrastructural levels.
As we observed, in pervasive environments and, more generally, in

systems envisioned for the Future Internet the role of “prosumer” will
be central. Furthermore, such a prosumer role might be played by any
“thing” within the environment. Hence, we foresee the necessity of de-
parting from usual REST description of the world, made in terms of
user agents that consume resources from origin servers (see Section 3.1).
Rather, the P-REST architectural style promotes the use of Resource
as first-class object that fulfills all roles. This means that, at the archi-
tectural level, we remove the distinction among user agents and origin
servers. so a resource can play both active and passive roles at the same
time.
To support coordination among resources, we extend the traditional

request/response REST mechanism through primitives that must be sup-
ported by an underlying middleware layer. First, we assume that a
Lookup service is provided, which enables the discovery of new resources
at run time. This is needed because resources may join and leave the
system dynamically. Once the resource is found, REST operations may
be used to interact with it in a point-to-point fashion. The Lookup ser-
vice can be implemented in several ways (e.g., using semantic informa-
tion [42], leveraging standard protocols [34]). However, we do not rely
on any specific implementation since we are focusing on the study of the
design model.
The Lookup service yields the URI of the retrieved resource. Since

resource locations may change as a result of both logical mobility (e.g.,
the migration of a resource from a device to another) and physical mobil-
ity (e.g., resources temporarily or permanently exiting the environment),
a service is needed to maintain the maps between resource’s’ URIs and
their actual location. Such service plays the role of a distributed Domain
Name System (DNS) [43].
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Figure 3.2.: P-REST Architectural Style

In addition, we adopt a coordination style based on the Observer pat-
tern, as advocated in the Asynchronous-REST (A-REST) proposal de-
scribed by [44]. This allows a resource to express its interest in state
changes occurring in another resource by issuing an Observe operation.
The observed resource can then Notify the observers when a change
occurs. In this case, coordination is achieved via messages exchanged
among resources.
Figure 3.2 summarizes the modification we made to the REST style.

Resources directly interact with each other to exchange their repre-
sentations (denoted by ρ in the Figure). Always in Figure 3.2, both
Resource1 and Resource2 observe Resource3 (messages a©). When a
change occurs in Resource3, it notifies (message b©) the observer re-
sources. Once received such a notification, Resource1 issues a request
for the Resource3 and obtains as a result the representation ρ3 (message
c©). Note that, while observe/notify interactions take place through
the point-to-multipoint connector (represented as a cube), REST oper-
ations exploit point-to-point connector (represented as a cylinder). All
the resources exploit both the Lookup operation to discover the needed
resources, and the DNS service to translate URIs into physical addresses.

3.2.1. P-REST meta-model

Along with the P-REST architectural style introduced above, we also
define a P-REST meta-model (depicted in Figure 3.3) describing the
pervasive environment, the entities within the environment, and the re-
lations among entities that define a pervasive application.
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The Environment entity defines the whole distributed and pervasive
environment as a resource container, which provides infrastructural fa-
cilities. In particular, it provides three operations that can be invoked
by a resource: (i) OBSERVE, which declares the interest of a resource in
the changes occurring in a different resource identified by a given URI,
(ii) NOTIFY, which allows the observed resource to notify its observers
about the occurred changes, and (iii) LOOKUP, which implements the
distributed lookup service. These operations are the straightforward im-
plementations of both the A-REST principle and of the lookup service,
respectively.
Since Resource is a unifying first-class object, the P-REST meta-

model describes every software artifact within the environment as a Re-
source. According to the Uniformity principle (see Section 3.1), each re-
source implements a set of well-defined operations, namely PUT, DELETE,
POST, and GET. The PUT operation updates the resource’s internal state
according to the new representation passed as parameter. The DELETE
operation results in the deletion of the resource. The POST operation
may be seen as a remote invocation of a function, which takes the repre-
sentation enclosed in the request as input. The actual action performed
by POST is determined by the resource providing it and depends on both
the input representation and the resource’s internal state. The seman-
tics of the POST operation is different for different resources. This differs
from the other operations whose semantics is always the same for every
resource. Even if the semantics of POST is not defined by the architec-
tural style, it is still constrained. Indeed, it can have only one semantics
per-resource, and thus, overloading is not allowed. The GET implements
a read-only operation that returns a representation of the current state
of the resource. Notice that resources are not required to always have all
operations enabled (e.g., a resource that models the seats available in a
cinema cannot be deleted by its users).
REST operations can be safe and/or idempotent. An operation is

considered safe if it does not generate side-effects on the internal state,
whereas it is idempotent if executing an operation N > 1 times yields
the same effect of executing the same operation once. GET is idempotent
and safe, PUT and DELETE are not safe but they are idempotent, whereas
for the POST operation nothing is guaranteed for its behavior.
The REST architectural style does not provide any means to describe

the semantics of resources, which is rather embedded in the URIs of
resources or delegated to natural language descriptions. Instead, P-
REST assumes that every resource is provided with meta-information
concerning both its static and dynamic properties. Indeed, P-REST
promotes resource’s semantics as first-class concern by explicitly intro-
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Figure 3.3.: P-REST meta-model

ducing the Description entity. A description contains both functional
and non-functional properties of a resource, possibly relying on a com-
mon ontology that captures the knowledge shared by the entire pervasive
environment [45]. Description can also define which operations, among
the available ones, are allowed or not – e.g., DELETE could be forbidden
on a specific resource. Moreover, Description entities are also used to
achieve dynamism (see Table 2.1). In fact, Descriptions support the im-
plementation of the lookup service by exploiting efficient algorithms for
distributed semantic discovery (e.g., [42]), thus enabling de facto run-
time resource discovery. Referring to the HTTP uniform interface that
underlies REST, a description contains not only the information usually
retrieved through the HEAD and OPTION operations but is also goes fur-
ther by providing the functional and non-functional specification of the
target resource.
At run time, resources have their own internal state, which should be

kept private and not directly accessible by other resources. To provide
access to the internal state, Representation entity is introduced. A rep-
resentation is a specific rendering of a resource internal state. Hence, a
representation is a complete snapshot of the internal state, which is made
available for third-party use. Every resource is associated with at least
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one representation, and multiple representations might be available for
a given resource. This is particularly useful when dealing with heteroge-
neous environments in which several different data encodings are needed.
A resource’s representation can be retrieved by means of the GET oper-
ation, which can also implement a negotiation algorithm to understand
which is the most suitable representation to return.
As introduced in Section 3.1, addressability principle states that ev-

ery resource must be identified by means of an URI. Hence, in P-REST,
every Resource is bound to at least one concrete URI (cURI), and mul-
tiple cURI can refer to the same resource. Resources without any cURI
are forbidden, as well as cURIs referencing multiple resources. However,
P-REST enhances the concept of URI by introducing the Abstract URI
(aURI) entity. Specifically, an aURI is a URI that identifies a group of
resources. Such groups are formed by imposing constraints on resource
descriptions (e.g., all the resources implementing the same functionality).
The scheme used to build aURIs is completely compatible with the one
used for cURI, thus they can be used interchangeably. Moreover aURIs
are typically created at run time by exploiting the LOOKUP operation
to find resources that must be grouped. This addition to the standard
concept of URI is meant to support a wider range of communication
paradigm. Indeed, using cURI allows for establishing point-to-point
communication while using aURI allows for point-to-point communica-
tion. The latter can be useful, for instance, to retrieve the values of an
entire class of sensors (e.g., humidity sensors scattered in a vineyard).
Resources can be used as building-blocks for composing complex func-

tionalities. Following [46], a Composition of resources is still a resource
that can, in turn, be used as a building-block by another composition.
Clearly a Composition must expose the REST uniform interface and
preserve its semantics, i.e., an idempotent call on the composite resource
cannot result on non-idempotent calls on the component resources.
REST naturally allows for two types of compositions: mashup and

work-flow. A mashup is a resource implemented by exploiting the func-
tionalities provided by third-party resources. In this case, an inter-
ested client always interacts with the mashup, which in turn decom-
poses client’s requests into sub-requests and routes them to the remote
resources. Responses are then aggregated within the mashup and the
result is finally returned to the client. On the other hand, a composition
built as work-flow directly leverages the HATEOAS principle. In this
case, an interested client starts interacting with the main resource and
then proceeds by interacting with the resources that are discovered/cre-
ated step-by-step as result of each single interaction.
Resources involved in a composition are handled by a Composition
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Logic, which is in charge of gathering resources together and, if they
were not designed to interact with each other, of satisfying possible in-
compatibilities (e.g., handling the encoding mismatches between repre-
sentations provided and expected by component resources).The compo-
sition logic is executed by a composition engine, which implements the
classic architectural adaptation policies, namely component addition, re-
moval, substitution and rewiring (we will discuss later how such opera-
tions work). In the case of mashups, the composition logic describes how
the mashup’s operation are implemented; that is, how they are wired to
component resources’ operations. Indeed, the composition logic is the
direct consequence of the exploitation of REST principles: (i) the com-
position is defined in terms of explicit relations between resources (i.e.,
connectedness), (ii) resources involved in the composition are explicitly
identified by means of resource identifiers (i.e., addressability) and, (iii)
operations on resources are expressed in terms of their interface (i.e.,
uniformity).
According to REST terminology, an application built following the

P-REST design model is said to be P-RESTful.

3.3. P-RESTful self-adaptive systems

We argue that self-adaptive applications for pervasive systems may ben-
efit from the adoption of the P-REST design model. To prove this, we
show how the conceptual model for self-adaptive systems (Section 2.1)
can be implemented by means of the P-REST meta-model (Section 3.2),
and show how the mechanisms provided by prime make P-RESTful ap-
plication effective.
Both the conceptual model (Figure 2.4) and the P-REST meta-model

(Figure 3.3) contain an environment entity. While in the conceptual
model the environment is populated by generic software artifacts, in P-
REST all the entities contained in the environment are modeled as a
resource.
As shown in Figure 2.4, the conceptual model revolves around the

architecture run-time model and the environment run-time model. In P-
REST, the architecture of the application is rendered by means of the
set of resources it is composed of and the composition logic that orches-
trates them. The type of composition used (i.e., workflow or mashup)
depends on the specific functional requirements of the application. The
environment run-time model is a composition of resources defined as a
mashup. The corresponding composition logic is in charge of realizing
the mashup by querying component resources and aggregating the re-
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sults of such queries. Thus, this composition logic plays the role of the
monitor.
Here we are not concerned with investigating how a decision maker

might exploit the run-time models to adapt/evolve the system. Rather
we want to show which mechanisms, enabled by P-REST, can be lever-
aged by the actuator to modify the running system according to de-
cision maker’s instructions. As reported by Oreizy et al. [47], an ac-
tuator operating at the software architecture level should support two
types of change: one affecting the components, namely component addi-
tion,component removal and component substitution, and one affecting
the connectors, namely connector rewiring.
The problem of dynamically deploying and/or removing a component

from an assembly has been repeatedly tackled in literature [15][16]. Such
solutions are often computationally heavy and require expensive coordi-
nation mechanisms. Moreover, preserving the whole distributed state is
often very difficult since the internal state of a component is not always
directly accessible. To make the problem easier, several architectural
styles have been introduced. According to P-REST, adding a new re-
source is trivial and requires two simple steps: (i) deploy the new re-
source within the environment, and (ii) make it visible by disseminating
its URI. Once these steps are performed, the resource is immediately
able to receive and process incoming requests.
On the other hand, removing a component can in general cause the loss

of some part of the distributed state. P-REST, instead, works around
this problem because of the stateless nature of the interactions. That
is, the removed resource carries away only its internal state, thus the
ongoing computations it is involved in are not jeopardized.
Substituting a component with another one cannot be simply accom-

plished by composing removal and addition operations. Specifically, the
issue here concerns how to properly initialize the substituting compo-
nent with the internal state of the substituted one. Indeed, due to
information hiding it is not always possible (and not even advisable)
to directly access the internal state of a component. Clearly the compo-
nent can always expose part of its internal state but there is no guarantee
about the completeness of the information provided. On the contrary,
P-REST imposes that a resource’s representation is a possible rendering
of its internal state, which is always retrievable by exploiting the GET
operation, even though the resource is embedded within a composition.
Thus, leveraging the interaction’s statelessness and the properties of a
resource’s representation, a P-REST resource can be substituted almost
seamlessly.
As pointed out by the P-REST meta-model (see Figure 3.3), every
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composition holds a composition logic describing it. Architectural run-
time adaptation can be achieved by modifying the composition logic.
Hence, the Composition Logic, which undertakes the run-time change,
offers a specific substitute operation that is aware of the composing
resources and of the status of requests in the composition.
It is important to remark that since the state of the new resource is

overwritten by the substitute routine, it is good practice to create the
new resource from scratch in order to avoid unpredictable side-effects.
Indeed, if the newly inserted resource is used concurrently by other com-
positions, overwriting its state can be disruptive. The complementary
argument applies to the substituted resource. It is not deleted because
it might be concurrently used by other compositions.
As for rewiring components, due to the stateless nature of the interac-

tions, changing the URIs within the Composition Logic is sufficient for
accomplishing the task. Referring to the meta-model in Figure 3.3, the
signature of the rewire operation is:

REWIRE (cURI old , cURI new)

Its semantics is such that the old cURI is substituted with the new
cURI. Unlike the substitute operation the state of the old resource is
not transferred to the new one.
It is important to remark that the execution of the composition script

must be suspended in a safe state before the adaptation actions can be
performed.
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The prime (P-Rest run-tIME) middleware provides the run-time sup-
port for the development of P-RESTful applications1. As depicted in
Figure 4.1, the prime architecture exploits a two-layer design where
each layer deals with a specific issue. Specifically, (i) prime commu-
nication layer implements an overlay network providing both point-to-
point and point-to-multipoint transports among nodes, and (ii) prime
programming model provides programmers with the proper abstractions
and operations to implement P-RESTful applications.
Communication layer – To deal with the inherent instability of per-
vasive environments, prime arranges devices in an overlay network built
on top of low-level wireless communication technologies (e.g., Bluetooth,
Wi-Fi, 3g, HSDPA, etc.). Such an overlay is then exploited to provide
two basic communication facilities, namely point-to-point and point-to-
multipoint. Point-to-point communication grants a given node direct
access to a remote node, whereas point-to-multipoint communication al-
lows a given node to interact with many different nodes at the same
time. Furthermore, the prime communication layer provides facilities
for managing both physical and logical mobility [40].
Programming model – prime provides the programming abstractions
to implement P-RESTful applications by leveraging the functional fea-
tures of the Scala programming language [48] and the Actor Model [49].
prime defines two main abstractions and a set of operations to be per-
formed on them. Resource represents the computational unit, whereas
Container handles both the life-cycle and the provision of resources. The
set of operations allowed on resources defines the message-based prime
interaction protocol and includes:

1. Access operations allows for accessing and manipulating resources,

2. Observe/Notify operation allows resources to declare interest in a
given resource and to be notified whenever changes occur,

3. Create operation provides the mechanism for creating a new re-
source at a given location and Move provides the mechanism to

1prime is available at http://code.google.com/p/prime-middleware/, under the
GNU/GPLv3 license.
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Figure 4.1.: prime software architecture

relocate an existing resource to a new location,

4. Lookup operation allows for discovering new resources on the basis
of a given description.

prime meets the set of requirements introduced in Section 2.2:

1. flexibility is achieved by exploiting the Actor Model, which, in turn,
relies on the prime overlay network to provide message-passing
interaction among actors,

2. genericity arises from the uniformity principle exploited in con-
junction with both code mobility and functional programming ca-
pabilities (e.g., high-order functions)

3. dynamicity is provided by means of semantic lookup, uniformity
and resource composition.

Next Sections clarify these aspects and provide implementation details
about the communication layer (Section 4.1) and the programming model
(Section 4.2), respectively.

4.1. The PRIME communication layer

prime arranges devices in an overlay network, a virtual network of nodes
and logical links built on top of an existing actual network [50]. Indeed,
overlay networks implement a set of network services that are not avail-
able in the native network. Hence, in prime the overlay network imple-
ments the mechanisms for the management of the logical links between
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nodes and for the message exchange. In particular, prime embeds (i)
the protocols that keep the overlay network connected when the topology
of the underlying native network changes as a consequence of mobility,
and (ii) the routing algorithms that regulates the message flow between
nodes with reference to the specific coordination model used.
Due to the high dynamism inherent to the pervasive networking en-

vironment, the main requirement for the overlay network is the ability
to self-organize into a flexible topology, as well as to maintain it. To
this end, prime leverages the REDS framework [51]. Specifically, REDS
arranges nodes in an overlay to provide both content-based publish/sub-
scribe and point-to-point communication. REDS nodes can be either
thin nodes or broker nodes. Thin nodes are used by REDS users to send
and receive messages, whereas the broker nodes are responsible for imple-
menting the desired routing strategy and managing the routing tables.
Topology construction and maintenance are key issues when dealing

with overlay networks. To this extent, different strategies might be ex-
ploited depending on the nature of the “relationship” between nodes,
namely physical or logical. Physical relationships are those emerging
from the physical environment and the underlying native network, such
as in the case of unstructured networks, where links between nodes are
established by considering physical context – e.g., radio interferences
and energy consumption [52]. On the other hand, logical relationships
are implied by the application domain, such as in the case of peer-to-peer
networks, where links between nodes are established by considering the
high-level business logic – e.g., file sharing and content-based routing [53].
prime exploits a synergic strategy in order to optimize overlay networks
with respect to both physical and logical nodes relationships [54].
To meet the prime requirements, we added two class of functionalities

to REDS, namely the bootstrap support and the code mobility facilities.
In the remainder of this section we will address both.
When a prime node bootstraps, it is associated with both a thin

node and a broker node, where the thin node represents the gateway for
incoming and outgoing messages – referred to as Gateway Thin Node
(GWTN from now on). However, to effectively enter the overlay net-
work, the prime node needs to discover an access point (i.e., a broker
node that is already part of the overlay) and connect to it. To this end,
prime resorts to UPnP (Universal Plug and Play) [55], which provides a
standard protocol to publish, discover and consume services in a subnet.
Specifically, every prime node advertises itself and, when a discovery
request is received, it returns its own IP address, along with contextual
information related to it. According to [54], this includes: (i) available
energy and physical location, (ii) mobility profile (e.g., a desktop ma-
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chine, a laptop, a mobile phone, etc.) since the more it is stable the
more a node is qualified to play the access point role, and (iii) com-
putational resources since powerful nodes can better accomplish routing
tasks. When the new prime node searches the network for access points,
it receives as result a set of records describing the broker nodes eligible
for such a role. Thus, the requesting node evaluates the obtained results,
and connects to the broker node that best fits for the access point role.
The overall overlay infrastructure is then built by iterating such a proce-
dure for every newly started prime node. Furthermore, such mechanism
based on UPnP is also exploited to cope with network instability. Due
to device mobility, a prime node might become isolated from the rest of
the overlay. Thus, the algorithm above is restarted to allow the node to
discover a new access point, and re-join the overlay.
It is worth to note that, in order to guarantee the correct message

exchange between prime nodes, when the overlay topology changes the
routing tables should be updated accordingly. To this extent, prime
provides a specific Domain Naming System, as stated by P-REST (see
Section 3.2), which maintains the mapping between prime nodes and
their actual location within the overlay. REDS provides developers with
mechanisms to define their own routing strategies, as well as to build and
update routing tables. Since REDS identifies both broker and thin nodes
with a unique name, which is used to route packets, prime encodes rout-
ing tables as maps, where the key represents the final destination (thin
node name), and value is the next hop in the overlay towards the desti-
nation. Indeed, sending a packet to a symbolic name of a node causes
the packet to be delivered, hop by hop, to the right host in the network.
Further, to effectively account for mobility issues, prime defines a spe-
cific set of rules achieving the correct update on the routing tables. First,
in case of multiple registrations of the same identifier, the last registra-
tion overrides the previous one. Second, prime always grants unique
names for new nodes. Hence, whenever a node is moved, it is regis-
tered at the new location with the old name. Such a new registration
is then propagated throughout the whole overlay network, updating de-
facto the naming system with the new location for the node. Moreover,
since prime implements point-to-multipoint communication by leverag-
ing the native REDS publish/subscribe protocol, subscription tables are
updated according to the publish/subscribe semantics [51].
Referring to the genericity requirement, prime should be able to ac-

commodate heterogeneous and unforeseen functionalities into the run-
ning application. It means the prime must enable all its nodes to han-
dle resources whose bytecode appeared somewhere in the system at run
time. To this extent, the prime communication layer leverages code
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mobility [40] and enables prime to dispatch messages whose bytecode is
known by the source node only. Specifically, prime adopts two different
approaches to code mobility, according to the specific coordination model
used. Concerning point-to-point communication, prime implements an
end-to-end strategy that enables two prime nodes to exchange bytecode.
Whereas, concerning point-to-multipoint communication, prime adopts
a hop-by-hop strategy that, starting from the origin node, spreads the
executable code towards multiple destinations.
Independently of the specific strategy, prime implements an ad-hoc

classloader hierarchy to cope with the “missing class” problem. In fact,
when sending a message containing a Java object, such an object is se-
rialized into a byte array and delivered towards the destination. There,
the object must be deserialized before it can be used. However, if the ob-
ject is unknown to the destination (i.e., the destination node has not the
bytecode for the received object), the object cannot be deserialized. To
this extent, prime implements a custom classloader which is in charge of
retrieving the bytecode for the missing classes and load them at run time
in the local JVM to allow a correct deserialization. The JVM specifica-
tion allows for creating a tree-like hierarchy of classloaders to load classes
from different sources. When a classloader in the hierarchy is asked for
loading a class, it will, as a first step, ask its parent classloader. If the
parent classloader cannot find the class, the child classloader tries to load
it itself. If also the child classloader fails, a ClassNotFoundException is
thrown. prime exploits such a feature by defining a custom prime class-
loader as child of the standard Java Bootstrap classloader. When loading
classes the prime classloader delegates to its parent classloader. If the
Bootstrap classloader fails, then the bytecode is not available within the
local node and should be retrieved remotely. Thus, the prime class-
loader contacts the origin prime node asking for the missing bytecode.
The origin side retrieves the bytecode from its classpath and sends it
back to the requesting node. Now, the local prime classloader holds
the needed bytecode and can load the class and deserialize the incoming
object. If other classes are missing, then such a procedure is iterated
until the entire class closure is retrieved.
As introduced above, prime implements an end-to-end strategy to

achieve point-to-point code mobility among nodes. Referring to Fig-
ure 4.2, let A be a prime node sending a message to a prime node
B, and let cla, clb be the prime classloader of A and B, respectively.
Whenever B receives a packet, it asks clb for loading the needed class
to deserialize the packet. clb asks its parent classloader for loading the
needed class. Clearly, if bytecode for the objects in the packet is not avail-
able, the bootstrap classloader will throw a ClassNotFoundException,
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class name

load class

A B

Figure 4.2.: Sequence diagram for point-to-point code mobility

and the control is passed to clb. clb extracts the name of the needed
class, and asks for it to cla. cla processes the request, encapsulates
the needed bytecode into a message, and sends it back to B. Once the
bytecode is available at clb, it can be loaded into the JVM. The whole
procedure is recursively applied until the whole closure of the original
class is available on B. The retrieved bytecode is now stored on B and
made available for further instantiations.
As for the point-to-multipoint communication, this solution is not ap-

plicable. In fact, as discussed above, prime point-to-multipoint com-
munication relies on the REDS content-based publish/subscribe native
protocol. Because of the adoption of such coordination model, mes-
sage sender and receiver are completely decoupled, and do not have any
knowledge about each other. Moreover, applying the end-to-end strategy
to point-to-multipoint communication would flood the overlay network
and the source node would be overwhelmed by requests for bytecode
retrieval. To this extent, prime adopts a hop-by-hop strategy, which
spreads the bytecode across the overlay towards all the destinations.
Since REDS exploits content based routing, when a message is pub-
lished to a broker, the broker deserializes the message, matches its con-
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tent against the stored subscriptions, and forwards the message to the
next hop in the overlay towards the matching subscribers. If the mes-
sage contains unknown bytecode, such a deserialization will fail due to
the “missing class” problem. Then, prime applies the end-to-end strat-
egy described above at each hop along the path between the publisher
and each subscriber. It is worth to note that such a solution is optima
since REDS implements a subscription forwarding strategy over a tree-
based topology [51]. This guarantees messages to be routed through the
minimum spanning-tree connecting the publisher to all the subscribers.

4.2. The PRIME programming model

Following the P-REST conceptual-model discussed in Section 3.2, the
prime programming model revolves around two abstractions: (i) re-
source, which represents the computational unit, and (ii) container,
which handles both the life-cycle and the provision of resources. Indeed,
the prime programming model exploits the Scala Actor System [49]. An
actor system is a set of actors the interact with each other only through
immutable messages, every other interaction is forbidden. Every actor
has its own mailbox where incoming messages are queued. Messages are
dequeued sequentially and processed one by one according to the spe-
cific semantics of an actor. Such processing results in at least one of the
following events:

1. changes in the internal state of the actor,

2. generation of new messages,

3. creation of new actors.

If a message does not generate at least one pf the previous reactions,
it does not affect the computation.
by benefiting from its intrinsic qualities: i.e., functional programming

features, event-based computation and concurrency, as well as Java inter-
operability. Hence, the set of prime’s abstractions is fully implemented
in Scala and exploits the actor model, whereas the communication layer
is implemented in Java and integrated as external stand-alone library.
Furthermore, prime nodes interact with each other by means of mes-

sage passing, by delegating the effective message delivery to the under-
lying communication layer. This allows prime developers to implement
a pervasive application as a set of independent and autonomus network-
based actors, which interact through message-passing, irrespectively of
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their actual locations (i.e., either local or remote). Indeed, from the de-
veloper’s perspective, a pervasive application is abstracted as a composi-
tion of interacting resources, according to the P-REST conceptual-model
(see Figure 3.3).

4.2.1. Resources in PRIME

Following the above discussion, the Resource abstraction is directly mapped
to a Scala actor. In particular, a Resource actor is defined as a Scala
abstract class that must be extended by any resource to be deployed
within prime. According to the P-REST conceptual-model, when ex-
tended and instantiated, a Resource object is initialized by specifying:
(i) the cURI address, (ii) the set of operations available for the specific
resource (defined as a set of constants) and, (iii) the resource’s Descrip-
tion that allows the resource to be found by interested parties.
According to the Scala Actor Model, Resource implements the act()

method, which is the method where actors process messages. In this spe-
cific case, the act method defines a resource’s passive behavior. prime
Resource declares the act() method as final to prevent overriding and
then enforcing resources to conform to the REST uniformity principle:
act() accepts only messages defined by the P-REST uniform interface
(see Section 3.2), and handles them by invoking the corresponding meth-
ods. Moreover, PUT, DELETE, and GETmethods are declared as final
and implement the well known semantics defined by REST. Whereas, the
POST method is declared abstract to allow developers to implement
their own semantics. Furthermore, according to the Observer pattern
defined by P-REST (see Section 3.2), a resource notifies the observers
whenever its internal state changes. To this end, when executing PUT,
DELETE or POST operations, the resource actor exploits the underly-
ing prime communication layer to send a point-to-multipoint message
notifying the occurred changes.
Still according to P-REST, a resource plays a prosumer role, i.e., it is

able to fulfill both roles of producer and consumer. In order to access
external resources and consume them, a given resource sends request
messages to the resources of interest and receives response messages. To
this extent, prime defines a workflowEngine classes to be instantiated
by any Resource that wants to consume external resources, by exhibiting
active behaviors. Indeed, the active behavior is specified by a pace script
(we will introduce pace in Chapter 5) implementing the composition
logic defined by P-REST (see Figure 3.3).
As stated by P-REST, resources interact with each other by exchang-

ing their representations. prime provides resource’s representation by
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serializing the resource instance into a byte array. Indeed, all the fields
specifying the internal state of a resource are serialized into the array.
However, since a prime resource is implemented as a Scala Actor class, it
is not directly serializable. In fact, a Scala actor maps straightforwardly
to Java Thread class, which is not serializable as well. To cope with this
issue prime exploits the traitmechanism provided by the Scala language.
In Scala, traits are used to define object types by specifying the signa-
ture of the supported methods, similarly to interfaces in Java. However,
unlike Java interfaces, traits can be partially implemented, i.e., it is pos-
sible to define default implementations for some methods. Thus, prime
defines a special Scala trait, which extends the Java Externalizable in-
terface and implements custom serialization/deserialization mechanisms
through two methods, namely writeExternal and readExternal. Both
methods are automatically invoked by the JVM when the object is seri-
alized and deserialized, respectively.
On one hand, writeExternal makes use of the Java reflection mecha-

nism to (i) discover the names and the values of the attributes of a class
extending Resource, (ii) filter out the attributes inherited by Actor2,
and (iii) serialize the remaining attributes using standard serialization.
On the other hand, when the JVM deserializes a Resource, it instantiates
an empty object and invokes the readExternal method, which in turn
reads serialized attributes from the input stream, and makes use of the
reflection mechanism to properly assign values to resource’s attributes.
This mechanism allows for the automatic generation of resources repre-
sentation. Indeed, a Representation stores the byte array generated by
the writeExternal method.

4.2.2. Containers in PRIME

prime handles resource’s life-cycle and provisioning through the Container
actor, which is implemented as a Scala singleton object. This forces ev-
ery prime node to have one and only one container handling the hosted
resources. Indeed, the Container object stores references to the hosted
resources into a resource repository built as a map whose keys are the
resources’ cURIs and values are the corresponding resource instance.
Since a container is an active party in prime, it also owns a cURI

address, which is used to access container’s services. Hence, the container
is in charge of handling three classes of incoming messages: (i) messages
addressed to a specific resource hosted by the container, (ii) messages
directly addressed to the container itself, and (iii) messages without an

2Scala Actors are not serializable and do not contain information regarding the
resource internal state.

41



4. PRIME

explicit recipient. In the first case, the container simply forwards the
message payload to the right Resource actor. Messages addressed to the
container are directly handled and processed. Finally, messages without
an explicit recipient are received by the prime node either as result of an
active subscription within the publish/subscribe system submitted by a
local resource (see Section 4.1), or as a lookup request: notifications are
delivered to subscribed resources, whereas lookup messages are processed
by the container itself.
Concerning the outgoing messages issued by hosted resources, the con-

tainer is in charge of forwarding such messages towards their destination
by means of the proper communication protocol. Specifically, Lookup
messages are broadcast throughout the overlay; Notify messages are
published by means of the publish/subscribe communication; Observe
messages are encoded as subscriptions; the other messages are simply
forwarded towards the final destination by exploiting the point-to-point
communication facility.
As already pointed out, the container is in charge of managing re-

sources life-cycle and provision. In particular, a container creates and
moves resources, provides support for resources lookup, as well as grants
resource access. While resource access is managed by the resource it-
self through its interface, creation, relocation and lookup operations are
managed by containers.
To create a resource, the container must be provided with information

concerning the Representation of the resource to be created, and an
optional cURI to be assigned to the resource. When creating a new re-
source, the container checks whether the cURI has been specified or not
(if not a cURI is automatically generated), and extracts the Resource in-
stance from the provided Representation. The newly created Resource
is then deployed within the container and a new entry is added to the
resource repository. Finally, the new Resource is initialized and started.
When moving a resource from a container CA to a container CB, prime

needs to coordinate the two containers in order to guarantee both the
correct deployment of the resource within the container CB, and the de-
livery of messages to the resource new location (to avoid packet loss).
Specifically, CA locks the resource and buffers all the incoming messages
addressed to it. Once the resource is locked, prime performs the move
operation in three steps: (i) CA waits for the locked resource to consume
all the messages in its mailbox; (ii) CA generates a Representation
for the locked resource; (iii) CA invokes a Create operation on CB by
passing both Representation and cURI of the Resource to be moved;
the new resource is created in CB and kept locked. Once these steps are
successfully accomplished, prime updates the naming system (for both
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point-to-point and point-to-multipoint communication) with the new lo-
cation for the moved resource and unlock the resource in CB. Finally,
CA removes the resource from its resource repository, and forwards all
the buffered messages towards CB. The resource is now able to consume
old messages, as well as the new ones that are directly delivered to the
new location.
Finally, lookup operation is used to query the prime overlay for re-

sources of interest on the basis of their descriptions. In particular, lookup
takes advantage of Scala functional features by allowing developers to
specify their own lookup strategy as a filter function, which is used to
filter out results to be returned to requesters:

lookup:
(Filter: Description => Boolean, d:Description) => cURI[]

lookup is a high-order function that, given the filter function and
the description d as parameters, returns the list of cURI matching the
provided description. As we have already pointed out in 3.2, the results
of the lookup operation represent an aURI.
Lookup is also used to implement the resource finder tool. Such tool

issues a lookup request a filter functions the matches every resource to
gather the references to all the resources in the network and present
them to the user. The latter can decide to install resources on its device
by issuing a GET on the remote resource and then using the retrieved
Representation as input for a local CREATE.
To complete the description of the Container we need to explain how

it communicates with the underlying layer described in Section 4.1. To
cope with messages flowing from Container to REDS, we created a
CommunicationGateway class that makes the communication functionali-
ties available through a unique and simple interface. CommunicationGateway
accepts messages coming from the Container and prepares them to be
processed by REDS. Apart from standard REDS primitives, CommunicationGateway
also exposes a primitive for sending broadcast messages (the broadcast is
implemented by subscribing, by default, every node in the REDS overlay
to the “broadcast” topic). Instead, for messages flowing in the opposite
direction (from REDS to Container), we implemented the Receiver
class that gathers messages coming from the point-to-point and publish-
subscribe facilities and puts them in the Container’s mailbox.
As a summary, we present in Figure 4.3 the class diagram for the

classes composing the prime programming model.
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Figure 4.3.: Class diagram for the prime programming layer

4.2.3. Messages in PRIME

The prime programming model is based on the message passing concur-
rency paradigm. Hence, all of the operations available for Containers
and Resources are encoded as messages. The latter ones are organized
as a class hierarchy.
Referring to Figure 4.43, a prime message (PrimeMsg) is defined as a

class implementing the Java Serializable interface, and declares two
attributes, namely Destination and Payload. Payload is an abstract
class defining the id attribute only. Since the prime communication
layer supports asynchronous communication only, as dictated by the ac-
tor model, id is used to bind requests with the corresponding responses.
Further, prime defines six types of Payload.
Observe message is used by a resource to declare its interest in changes

occurring in remote resources. The uri attribute refers to the cURI
identifying the resource of interest. Such a message is handled by the
prime communication layer as a REDS subscription, where the uri at-
tribute is the discriminant used to filter events. On the other side, every
resource notifies occurred changes by generating a Notify message. A

3Note that the syntactical conventions used in figure are the Scala ones (e.g., generics
are denoted with square brackets, rather that with angular brackets as in Java).
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Serializable

-uri : String
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-from : String

Notify

-ReplyTo : String

Request

-code : String

Error

-respCode : String

-respRep : Option[Representation[ _ <: Resource]]

-replyTo : String

RESTResp

-results : Iterable[String]

LookupReply

-op : RESTOps.Value

-rep : Option[Representation[ _ <: Resource]]
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-lookupFilter : Description => Boolean

-d : Description

Lookup

-to : String

-what : String

Move

-rep : Representation[ _ <: Resource]

-uri : Option[String]

Create

has

Figure 4.4.: The message hierarchy defined by prime interaction proto-
col

Notify message has a from field identifying the origin resource cURI.
Note that, the Notify message does not carry any information about the
changes happened in the observed resource. Rather, any observer can
decide whether it needs to get an update or not. The Notify message
is handled by the prime communication layer as a REDS notification,
which is matched against active subscriptions and delivered to recipients.
The Request abstract class represents generic requests exchanged among

resources, and defines a replyTo field containing the cURI of the origin
resource. Indeed, a Request can be a RESTMsg, a Move a Create, or
Lookup. RESTMsg encapsulates REST operations (i.e., GET, POST, PUT,
and DELETE) to be performed on the destination resource. Specifically,
the op attribute is defined as an enumeration identifying the specific
operation to be performed, whereas rep carries a resource representa-
tion if needed. Move message defines two attributes: to contains the
cURI of the destination location (i.e., a container’s address), and what
contains the cURI of the resource to be moved. Create message de-
fines two attributes: rep contains the representation used to instantiate
the new resource at the given location (container), and uri (which is
optional) contains the cURI to assign to the new resource. This set
of messages is handled by the prime communication layer through the
point-to-point facility. Finally, the Lookup message is used to query the
prime nodes in the environment to discover resources of interests. As
discussed above the Lookup message carries the lookupFilter and the
Description to be matched. The above request messages can generate
three types of responses: (i) RESTResp is used to reply to the RESTMsg by
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possibly carrying a response representation (respRep), depending on the
specific operation invoked; (ii) LookupReply is used to reply to Lookup
request by carrying the results obtained by applying lookupFilter; (iii)
Error is used to acknowledge the requester when a REST operation fails.
Response messages are dispatched by the prime communication layer
through the point-to-point facility.
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By building the prime middleware we, in practice, put in place a dis-
tributed actor system built on top of a publish-subscribe system (REDS).
Actors are a very good abstraction for dealing with distributed and asyn-
chronous environments. Indeed, they are perfect to implement simple,
passive Resources that are reactive elements that must only process
incoming messages and answer the sender with the result of a computa-
tion. The same argument does not apply for active resources (i.e., the
ones with a CompositionLogic). The latter ones must send requests
and assemble the responses to coordinate several resources. Indeed, the
request-response semantics of messages in P-REST poorly fits the actor
model. To show how much this issue is relevant we will make use of an
example. Let a Composition Logic A issue a GET request to a Resource
B, if we were using a remote procedure call coordination mechanism the
pseudo-code would be:

result =
send(PrimeMessage(URIB, RESTMsg(GET, None, URIA, getId)))

The call would be synchronous and the execution would suspend until
the arrival of the response. The result carried by the response would
be put in the result variable and the execution could continue. But the
actor model is all about asynchronous communication and lock-free con-
currency. To achieve the same behavior we need to adopt a work-around
that dramatically diminishes the readability of the code, increases the
probability of introducing bugs and increments the development time. In
particular, the issue of the request and the handling of the response take
place in two separate places. Such solution is sketched in the following:

case 1 =>
send(PrimeMessage(URIB, RESTMsg(GET, None, URIA, getId)))
case 2 => . . .
case 3 => . . .
case RESTResp(respCode, rep, replyTo, id) if(id == getID) =>
process response
case 5 => . . .
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The PrimeMessage is issued towards B in a case branch and the re-
sponse is handled in a different branch. Such branches can even be in
different actors and it would make the problem worse. Moreover, actors
do not block, thus the actor that issued the request can process other
messages while waiting for the response, even messages of the same type
of the response. Therefore, a mechanism to bind responses to their re-
quests must be put in place. We use unique identifiers (the getId variable
in the example) to solve the last problem.
In summary we have to face a trade-off, on one side we have the

advantage of asynchronous message passing and of the shared-nothing
concurrency approach of the actor model, on the opposite we have to
deal with an increased effort in writing and developing applications in
this scenario. To cope with this problem we decided to raise the level
of abstraction and design and implement a domain specific language to
compose Resources in prime that we called pace (a loose acronym for
Prime Composition languagE). pace, as every coordination language,
should be able to coordinate the different tasks that must be carried out
to achieve a final goal. Such tasks in pace can be either third-party
Resources queried through prime or local functions written in another
language (in our case Scala or Java) that can be used in pace scripts.
Besides, we also provided the language interpreter with the possibility
to modify programs at run time. Actually, the approach can be used
for every actor system but we implemented a prototype development
environment tailored for our work.

5.1. Background

The growth in complexity and heterogeneity of software systems im-
posed the need of raising the level of abstraction in order to make the
software development process as rigorous as possible. One of the earliest
ideas was proposed by Gelernter and Carriero [56]. They advocated that
programming consists of

computational part: the tasks that must be executed to achieve the final
goal

coordination part: the order in which tasks must be executed to achieve
the final goal.

The composition language we envision is a coordination one. The
core of the language is concerned with using URIs to retrieve Resource’s
Representations and manipulate and combine them. In practice, an ap-
plication written using such language, will hinge on the data (Representations)
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exchanged among composing Resources. In the past, a lot of research
has been conducted on programming languages that promoted the data-
flows among instruction to first-class citizens. They are known as data-
flow languages. The introduction of this alternative architecture was
mainly motivated by the inherent unsuitability of the von Neumann’s
architecture to the massive parallelism due to its global program counter
and its shared memory that rapidly become bottlenecks in parallel pro-
grams [57]. To this extent, data-flow approach proposed a completely dif-
ferent computational model suitable to parallelism. In the data-flow com-
putational model, a program is represented by a directed graph where
nodes represent instruction, while arcs represent the data dependencies
between instructions and are unbounded FIFO queues. When all the
arcs entering a node (the firing set for that node) have data on them,
the node becomes a fireable node. The instruction represented by a fire-
able node is actually executed at any time after the node became fireable.
The result of the execution is the removal of the first element from every
entering arc and the production of a result that must be place on at least
one of the outgoing arcs. Then, the node stops executing as long as it is
again non-fireable.

A = X + Y

B = Y / 10

C = A*B

+ /

*

10YX

C

Figure 5.1.: A simple program and its translation into the equivalent
data-flow graph
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In Figure 5.1 is shown the translation of a simple program (on the
left-hand side) into the equivalent data-flow graph (on the right-hand
side). Input data — two variables (X and Y) and a constant (10) —
are represented at the top of the graph. At the beginning, two nodes
are fireable, namely the addition and the division nodes. They can be
executed concurrently and their result will be placed on their outgoing
arcs. When both have finished, the multiplication node becomes fireable
and can produce the result C. Under the assumption of having a true
parallel hardware, the advantage of using data-flow languages to exploit
parallelism is clear. Let alone the speedup, the real gain is the implicit
parallelization of the program. In von Neumann architectures, the pro-
grammer must explicitly parallelize programs by manually identifying
cases where parallelism can be exploited and then by using memory-
locking techniques. Rather, in the data-flow architecture, parallelism is
implicitly and automatically exploited whenever it is allowed by data
dependency. Even from this small example we can notice two important
issues. The first one is that instructions don’t have an execution order
anymore. Indeed, they are executed whenever it is possible. Moreover,
all the operators are purely functional since no side effect is allowed. Data
are never modified but they are read from the incoming arcs and new
data are generated as result and placed on the output arcs. The func-
tional operators along with the ordered queues are enough to guarantee
a deterministic behavior for the model, that is, for a given set of inputs,
a program always produces the same set of outputs (see [58, 59, 60] for
further details).
In [61] Johnston et al. review the state-of-art data-flow languages and

build a list of features that are more or less common to all the data-flow
languages. Such list comprises:

1. data dependencies equivalent to scheduling,

2. freedom from side-effects,

3. single assignment of variables,

4. an unusual notation for iterations due to features 2 and 3,

5. lack of history sensitivity in procedures.

To allow the data dependencies to induce scheduling (1) the features
2 and 3 are fundamental. Indeed, if variables can either be reassigned
during execution or being modified at run time by other routines, the
scheduling decided by the compiler at compile time can be invalidated at
run time. Moreover, because of the single-assignment rule, the order of
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statements is, in general, not relevant. Single assignment conflicts with
the imperative style in loops (4). Indeed the classic increment of the loop
variable is forbidden. To cope with this problem, loops are implemented
through special keywords such as next to calculate the value of the loop
variable at the following iteration (the Lucid language [62] is the first
example where such solution has been adopted). Last, but not least,
usually data-flow languages take from the functional languages the lack
of history sensitivity for procedures (5) because in a language without
deterministic order of execution, histories cannot be univocally built by
a programmer. Therefore, operations must have a functional flavor and
the result of an invocation must rely only on the input parameters and
not on previous invocations.
It is clear that exploiting a data-flow approach to compose and coor-

dinate software components is very appealing especially in distributed
environment for two different reasons:

1. the data focus allows for a more natural approach to modeling
compositions since, if aided with a visual support, it can also be
used and understood by non technical people;

2. the developer must not identify the tasks that can be parallelized
since the execution model allows for automatically parallelization.

Pautasso and Alonso exploited the first benefit by proposing the JOpera
visual composition language [63] and run-time support [64]. The JOpera
language models both data-flow and control-flow dependencies among
the tasks in the composition and the development environment is in
charge of keeping the two perspectives consistent. The approach does
not exploit the data-flow model to implicitly achieve parallelization,
rather, the latter is achieved through imperative constructs inserted in
the control-flow perspective. In [63] Pautasso and Alonso point out that
the data-flow perspective is not enough to model every process because it
ignores indirect dependencies (e.g., tasks communicating through databases
or configuration files) or because there are dependencies that are not
data-related like a compensation handler. In the language we are going
to propose from the next section on, the first issue is addressed by adopt-
ing a purely functional approach where no side-effects are allowed and
thus no indirect dependencies can be introduces, while the compensation
handler issue is out of our research scope.
Regarding the second benefit — the implicit parallelization —, a com-

plete general-purpose coordination language has not been proposed. Rather,
researchers focused on raising the level of abstraction by proposing lan-
guages where nodes in the data-flow graph are functions written in differ-
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ent languages. For example Bernini and Mosconi [65] proposed a visual
data-flow language called VIPERS where the node in the data-flow graph
are Tcl fragments. Also textual approaches exist, like GLU [66] that em-
beds C fragments in the LUCID [62] data-flow language. These solutions
exploit the implicit parallelism and delegate to other languages the whole
computation. As a final remark, they are mostly focused on exploiting
parallel computers for scientific computations and are not designed to fit
distributed environments.

5.2. PaCE: Syntax and Semantics

As we have widely discussed previously in this chapter, pace adopts
the data-flow execution model to make parallelism implicit, and thus
less problematic, for the application developer. To achieve this goal we
followed the state of art and we opted for a purely functional language
with a single-assignment policy. Moreover, to keep pace light and simple
we made it dynamically typed, thus Representations’ type are only
checked at run time.
Last but not least, we decided to design pace as an interpreted lan-

guage and not as a compiled one because, as we will see later, we want
to be able to modify pace programs at run time.

5.2.1. Syntax

pace’s syntax reminds that of an imperative syntax where every instruc-
tion is an assignment except for control structures and for the output
mechanism. Since we are in a functional environment, functions can just
produce a result starting from their inputs without changing the sur-
rounding environment. So, the only effects produced by the application
of a function are contained in the returned result that must be imme-
diately stored in a variable, otherwise the execution of the function has
no effects and it results completely useless. As we mentioned before, the
only operations that can be used in a non-functional fashion are the out-
put ones. The OUTPUT non-terminal allows for using the write primitive
to print on the standard output and for using ad-hoc functions provided
by the user.
As we have already pointed out, pace and its run-time support, even

if can be used as a general-purpose framework, are tailored to P-REST.
Therefore, all of the P-REST operations are directly embedded in the
language. Thus, they can be found in Figure 5.2, where the generative
EBNF for pace is shown. Though, they are not treated all in the same
way.
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The P-REST access operations are all derived from the OP non-terminal.
OPONEPAR are invoked with one mandatory parameter – i.e., the list of
URIs identifying the target resources –, whereas OPTWOPAR gets the URIs
list, and an additional parameter containing a representation. Return
values are lists of representations, and depend on the specific operation
used: GET returns the representation of the target resource; PUT, DELETE
and POST return a representation of the status code (e.g, “ERROR”, “OK”,
and “NORESPONSE”). All of these operations are designed to work on
lists of URIs to mimic the aURI mechanism.
Moving on to the other operations introduced by P-REST, two of

them (CREATE and LOOKUP) are treated separately just for intrinsic differ-
ences in the syntactical structure, while the OBSERVE operation is treated
in a completely different way. The LOOKUP operation is invoked with
only one parameter, that is, the identifier of the function used to fil-
ter the Resources, and the value returned is a (possibly empty) list of
URIs. The CREATE operation is invoked by always providing the URI
of the Container where the new Resource must be created and the
Representation that must be used as a basis for the creation. A third
parameter can be optionally provided if the caller wants to impose a spe-
cific URI for the newly-created resource. The return value is the URI of
the new Resource even if the optional parameter is set. The OBSERVE op-
eration, as we have already pointed out in 4.2, introduces an event-driven
communication model. It is reflected in the syntactic form adopted in
pace. It closely resembles a control structure since it has a body that
is enclosed by parentheses and introduced by a keyword. In this case
the keyword is observe and is followed by a list of URIs that must be
monitored. The instructions contained in the body of the observe struc-
ture are executed whenever an event coming from the observed resources
arrives.
It is also possible to issue GET and PUT on two special URIs: stdin

and stdout, respectively. The operation a = GET(stdin) reads from
the standard input a string and store it in the variable a. As opposite,
the instruction PUT(stdin, URI) writes the value denoted by URI on the
stdout.
Call to external functions can be generated by the ASSGNM nonterminal.

Two kind of functions can be invoked:

Side-effect-free functions that have a functional flavor, return a value
and are used to manipulate pace variables (e.g., to translate the
data from one encoding to another) and

State-manipulation functions (smfun) that are used to manipulate the
internal state of the composite resource and return no value.
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The last elements left to examine are the control structures. Some
problem could arise from the iteration structure. Indeed, as already
mentioned, the single assignment prevents the implementation of stan-
dard loops where the loop variable is incremented at every cycle. To
cope with this problem we used a higher-level control structure of the
form:

while var in b1 to b2 { . . . }

where the value of variable var ranges between b1 and b2. In this way we
don’t need to explicitly update var thus the single assignment is not a
problem anymore. Two more control structures are provided, the infinite
loop (i.e., while (true) {...}) and the classic conditional structure
(i.e., if (cond) {...} else {...}).

5.2.2. Semantics

Here we want to give an overview on the semantics of pace. It is im-
portant to understand that we are not concerned with defining the op-
erational semantics for the P-REST operations, rather we are concerned
with specifying the behavior of pace as a coordination language.

pace is inspired by data-flow languages and, thus, it adopts the data-
flow execution model. Though, it is implemented on top of an imperative
framework and with an imperative syntax and semantics. The most
prominent problem is parallelizing, where possible, the sequential code.
To this extent, we decided to not completely abandon the sequential
execution but to make asynchronous the execution of each instruction.
Thus, instructions are still evaluated in order and one by one but the
execution does not wait for an instruction to finish before continuing.
Since the execution of an instruction is asynchronous the execution does
not stop as long as data for executing new instructions are available.
Each operation is invoked and returns immediately by yielding a future
variable. A future variable is a variable that will be eventually filled with
the result of a computation. When the value of the variable is accessed,
if it has already been filled, the value is normally used, otherwise the
computation suspends waiting for the variable to be filled.
This approach, in principle, allows pace scripts to be executed accord-

ing to the data-flow execution model, but, practically, the execution of
parallel operations cannot be started at the same time but they are exe-
cuted as soon as the interpreter reaches them. As a consequence, by pay-
ing the little penalty of a non-perfect parallelism, the information about
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the order of instructions is available at run time for ScriptInterpreter.
This is of fundamental importance for dealing with I/O and control struc-
tures. Indeed, in classic data-flow languages, the order of instructions
is completely lost at run time, therefore the input operations are very
tricky. Let us use the following example to better explain:

a = read()
c = op1(a)
b = read()

It is easy to notice that the two reads are independent, thus, according
to the data-flow execution model, they can be executed in any order. As
a consequence, it is impossible to bind the result coming from a read to
the right variable because there is no information about the execution
order. What happens is explained rigorously through the Petri net in
Figure 5.3. The problem lies in that the user can insert both a and b
without any constraint and they can be non-deterministically read by
the first or the second read
To cope with the problem we rely on the instruction order and on

the mutual exclusion for the access to the standard input. In this way,
the first read is executed and it locks the standard input. When the
second read should be executed it is suspended as long as the first read
receives its input. If we hadn’t any information about the instruction
order, finding a deterministic order among the reads would have been
impossible. In Figure 5.4 is presented the Petri net that models the
correct behavior. In this case the two reads are ordered and the place
labeled as stdin lock ensures the mutually exclusion for the access to
the standard input. Moving on to the output mechanism, the same
problem does not arise for the write. Indeed, it can take place whenever
the variable that must be written becomes available. Even if an external
function is used instead of the built-in write, there is no problem because
they should only be a way to use an output means different from the
standard one.
So far we have explained how the normal execution flow is calculated

in a pace script, now we must explain how this normal flow can be
altered by control structures. We are referring to the loop (i.e., while)
and to the conditional expression (i.e., if-else). Even if it is quite
similar, the observe structure will be treated separately. Let us start
with the conditional structure. As soon as the conditional expression
becomes evaluable, it is evaluated and the proper branch is executed.
In practice, the execution flow is calculated according to the rules we
have explained before with the only addition that every instruction in
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both branches of the conditional structure implicitly depends on the
evaluation of the conditional structure. In Figure 5.5 a Petri net is used
to precisely specify the behavior of the if-else control structure. Notice
that potential dependencies of the body from previous instructions are
not reported in the Petri net for the sake of clarity.
The looping support, instead, is slightly more complicated. Indeed, the

concept of loop does not fit well the data-flow paradigm but, as already
recognized by Ackerman in [67], having loops, instead of the equiva-
lent tail recursion, is fundamental for the adoption of the paradigm.
The problem of loops in data-flow languages is that variables cannot
be updated in different iterations. Some common computation, like the
following for the factorial of 5, cannot take place:

int res = 1
for ( int i = 1; i <= 5; i++){
res *= i

}

In pace we decided, as a design decision, to not address this problem.
Indeed, we conceived pace as coordination language, therefore no com-
putation should take place in pace scripts since it should take place in
remote services or in external functions. Putting aside this design con-
siderations, we want to explain how the execution flow is calculated in
pace in case of loops. We wanted to keep the while structure as close as
possible to the imperative flavor. To do so we forced every iteration to
happen in isolation, that is, all the instructions in an iteration must be
completed before the next iteration can begin and all the variables allo-
cated in one iteration are deallocated at the end of the iteration itself to
avoid violating the single-assignment rule. It can be thought as if the end
of the body of a loop is a synchronization point for all the instructions
executed in the body. Clearly, if any instruction in the loop body has
a dependency on data from outside the loop, it must be satisfied before
the first iteration can take place. In Figure 5.6 is presented the Petri net
that models this approach. To keep the Petri net simple and focus only
on the execution flow for loops, we assume here that no dependency is in
place neither (i)among instructions within the body nor (ii) among in-
structions in the body and previous instructions. The synch place forces
the net to wait for the completion of all the instructions in the body
before allowing the while condition to be evaluated again. In case of
infinite loop the execution can continue as soon as all the operations in
a given iteration finish because there is no condition to be evaluated.
The introduction of the observe operation is an attempt to allow

event-based programming in pace. So far we have assumed that the
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only coordination mechanism exploited by pace is the request-response
one. In distributed systems computations on a network node can be trig-
gered by events happening in another node. That is why we inserted the
observe operation in the P-REST architectural style (see 3.2). In pace
the observe operation accepts as parameter a list of containing the URIs
of the resources that must be observed. As soon as the input parameter
is available, the underlying OBSERVE primitive of prime is invoked. From
this point on, every event that arrives from the observed resources is put
on a queue. Them, the queue is emptied and the events are consumed
one by one by executing the body of the observe structure is executed
according the execution model we have outlined before. Notice that an
observe block is executed in isolation in a separated thread to avoid to
lock the entire computation in an infinite loop. Once again, we use a
Petri net for specifying the behavior of the control structure under exam-
ination (Figure 5.7). In this case, the event generator produces tokens
(events) that the observe must consume one by one. The place labeled
as event arrived models the incoming queue.
As for the external functions, side-effect-free and state-manipulation

functions must be treated separately. The former ones do not introduce
any problem because they are perfectly compliant with the data-flow
paradigm.The latter ones (smfuns) can conflict with the POST opera-
tion since it can modify the internal state of the composition. Besides,
concurrent smfuns can potentially modify the same data. To this ex-
tent, on one hand, pace provides mutual exclusion mechanisms to avoid
the simultaneous access to the state of the composite resource. On the
other hand, POST and smfuns should not be used contemporary to avoid
unforeseen (and unpredictable) behaviors of the pace scripts.

5.3. PaCE: Interpreter

In the previous section we have outlined the execution model we devised
for pace. In this section we want to explain how the pace interpreter can
execute the scripts and map them to prime. The ScriptInterpreter
class is instantiated by the WorkFlowEngine class in prime. The WorkFlowEngine
class acts, then, as a gateway for messages both generated by and ad-
dressed to the ScriptInterpreter.
First of all, the interpreter is written in Scala and takes advantage

of the Scala parser combinator [68] library. The latter implements a
backtracking parsing algorithm so it is not very optimized but it was
not a main concern for our prototype. Each production of the EBNF
is recognized and translated to obtain the desired semantics. The in-
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terpretation procedure is a recursive one and uses an auxiliary symbol
table that contains all the bindings between the variable names and their
values. The data structure we have chosen to implement the symbol ta-
ble is a slightly modified map. Indeed, it, not only supports the usual
operations for maps (random access through keys), but it also maintains
the insertion order of the keys. Anyway, the map accepts keys of type
String (the variable names) and values of type Future[Any]1. In the
following we will use the same outline we adopted for presenting pace’s
semantics. Therefore, we will start explaining how the asynchronicity is
achieved for standard instructions, then we will focus on the I/O system
and, eventually, we will address the control structures.
Before going into more details, a consideration is in order. Although

we said that the operations in pace are executed on lists of parameters,
here, for the sake of clarity, we assume that operations are applied on lists
with just one element. After all, the generalization is straightforward. An
operation on a list of n parameters is equivalent to n parallel operations
where every operation accept one parameter of the list. The results, the
result of the operation on a list of parameters can be built by juxtaposing
the results of the parallel operations.
Since pace is of functional inspiration, the instructions are all as-

signments where to a left-hand side (LHS) is assigned a right-hand side
(RHS). The LHS is the name of the variable that will contain the value
produced by the RHS. Thus, it must be inserted in the symbol table as a
key and bound to its value. The way used to obtain the value is key here.
In RHS there can be either a P-REST operation (except OBSERVE), an
external function call, or a constant. Let us examine the first case before.
For the P-REST operations to be executed, prime must be exploited. To
this extent, a worker thread is spawned and it is charged with handling
the P-REST request, we called such thread RequestHandler. The first
action the RequestHandler takes is substituting all the variable names
in RHS with the corresponding values. Such values can be found in the
symbol table. As we have already pointed out, the values in the symbol
table are Future variables so the actual value might not be there when
needed. Thus the RequestHandler must suspend and wait for all the
needed variables to become available. If the request were handled by the
main parsing thread and not by the RequestHandler, the execution of
the pace script would have been suspended, hence preventing the fol-
lowing instructions to be executed even if all the data dependencies were
satisfied. Once all the variables needed to issue the P-REST request be-

1The type Any in Scala is the super-type of every other type, including primitive
types

58



5.3. PaCE: Interpreter

come available, the PrimeMessage is built and a unique id2 is generated
and attached to the PrimeMessage. The latter is forwarded to the host-
ing WorkFlowEngine and, in turn, to the hosting Container. Now the
problem is properly binding the eventual response to the right request,
hence to the right LHS. To do so, a receiving actor (implemented by the
RecActor class) is created and bound to the id of the request. Such
binding is stored in the WorkFlowEngine so that the response will be
forwarded to the right RecActor. Every RecActor is initialized with an
output buffer where the response will be eventually placed. Now every-
thing is in place for retrieving the response and binding it to the request.
The last problem is updating the symbol table. Obviously, the key that
must be added is the LHS. The corresponding value should be a Future
variable wrapping the response. To obtain such variable we used the
Scala future block. A future block is a block of code that returns a value.
At run time, when a future block is reached, a Future variable is imme-
diately returned and the code block is concurrently executed in another
thread. When the block is completed, the returned value is automati-
cally inserted in the Future variable that was returned in the first place.
Going back to the problem at hand, the value that must be inserted in
the symbol table is the Future variable returned by a future block that
waits for the corresponding RecActor to put the response on the output
buffer.
It is important to notice that, actually, RecActor is an abstract class

with two specialized subclasses: GreedyRecActor and TimedRecActor.
The latter is used for retrieving responses for the lookup operation while
the former serves all the other operations. The difference is that in the
case of lookup, the issuer must accumulate the results coming from an
unknown number of Containers and present them together, whereas in
all the other cases only one response is expected and it is immediately
put on the buffer. For this reason, in case of lookup, there is no way
to know when the RecActor can stop and return the results. Thus the
TimedRecActor is initialized with a timeout. Once the latter expires the
results are put on the output buffer and further responses are discarded.
As for the invocation of external functions, the run-time support in-

vokes them in a future block, so the RHS to be put in the symbol table
is immediately returned without going through the RequestHandler.
Nonetheless, the external functions can share among them a state. This
departs from the functional paradigm used to invoke the remote P-REST
operations. To prevent possible conflicts they are executed in isolation
exploiting the information about the execution order and adopting a so-

2The id is unique for the single WorkFlowEngine
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lution similar to the one adopted for the aforementioned read problem.
Moving on to the I/O mechanism. to enforce the behavior described in

Figure5.4 we just needed to entrust the reading mechanism to a specific
actor called InputActor that wraps the access to the standard input and
enqueues all the read requests to guarantee the mutual exclusion.
As for control structures, the if-else structure is handled by using

the equivalent control structure in Scala. The implicit dependency on
the condition evaluation is ensured because the values needed for the
evaluation must be looked up in the symbol table. The look-up procedure
suspends if any value is still not available. Such suspension takes place
before the parsing of any branch has begun.
As for the while structure, the same mechanism used for the if-else

is applied to impose the dependency on the condition evaluation. In this
case we also need to guarantee the isolation of each iteration. To do
so, we exploit the particular properties of the symbol table. Indeed, the
latter can be accessed both as a map and as a list. At the beginning
of every iteration, we store the value of the highest index in the symbol
table. At the end of every iteration we try accessing all the variables
with an index higher than the one we stored. All these variables have
been allocated in the loop body. In this way synchronization is achieved.
Moreover, all the variables allocated in an iteration are removed from the
symbol table because they cannot be reassigned in the following iteration
due to the single-assignment rule.
To complete the picture, only the observe operation is left to cover.

It exploits the same mechanism of the while structure to execute itera-
tions in isolation (while it does not need the initial synchronization that
is both needed for the while and if-else structures). The difference is
that, since the triggering notifications can come from any of the observed
resources, most likely the observe body will need the URI of the resource
generating the specific event. To this end, the ScriptInterpreter
makes available a special variable called obsURI containing such URI.
Notice that every observe block has its own obsURI variable that can-
not be accessed from outside the block. As already mentioned, the body
of the observe is executed in a separate thread by a third subclass of
the RecActor class. It is called ObserveRecActor and it is initialized
with the body of the observe structure and, whenever an event arrives,
it triggers the parsing and the execution of the body.

5.3.1. Support for external functions

External functions are of fundamental importance for pace since they
carry out all the computation that is not related to the P-REST op-
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erations. In order to be used, external functions must be made avail-
able to the interpreter at run time. To this extent, the developer of a
P-RESTful application can define all the functions he needs by adding
them to a class that extends the ExternalFunctions abstract class. The
latter has all the machinery needed to parse, validate and make avail-
able all the functions defined in its subclasses. To achieve its goal, the
ExternalFunctions class makes heavy use of the Java reflection. Every
function is parsed, its name extracted, its return type validated and its
body made invokable by the pace interpreter. The name of the function
is added to a special symbol table called funSymTable contained in the
ExternalFunctions class. It is a hashmap that maps the names to the
body of the functions. Hence, its type is HashMap[String, Method].
The ExternalFunctions class exposes a method to invoke the func-

tions it wraps. This method has following signature:

invoke (methName: String, pars: Any*): Future[Option[Any]]

The invoke method accepts the name of the functions that must be
invoked and a list (possibly empty) of parameters3. The method executes
the function denoted by methName in a future block, so that the invo-
cation is, again, asynchronous. Clearly, the invoked function can have
no returning type so the complete return type of the invoke function is
Future[Option[Any]]. Besides, the invoke method prevents conflicts
among smfuns by executing them serially. In this way the asynchronous
execution of the pace script is not hindered and the safety of the execu-
tion is guaranteed.
As a final remark, it is important to point out that the same solu-

tion used for external functions can be applied to the case of external
variables. The external variables are added to the symbol table when
the ScriptInterpreter is initialized along with the container variable
that is available by default and contains the URI of the local Container.

5.4. Run-time Adaptation in PaCE

As we mentioned in 3.3, one of the desiderata for P-RESTful applica-
tion is to be adaptable and evolvable at run time. Always in 3.3, we
reported that it is commonly accepted that an application must support
4 operations on its component and connectors to achieve adaptability
and evolvability. Such operations are:

3the notation Any* is the Scala notation for the Java varargs.
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• Component addition

• Component removal

• Component substitution

• Connector rewiring

As a first step, we need to understand what these operations mean
in pace. Component addition and removal refer to the possibility to
add or remove a URI from a specific list. Connector rewiring means
changing the binding between the name and the corresponding value for
a variable containing a URI. Component substitution is like a connector
rewiring except that the state of the older resource must be transferred
to the new one.
For the ScriptInterpreter to be able to execute one of these opera-

tions, it must suspend the execution of the script to avoid inconsistencies
since the symbol table must be manipulated. All the requests for recon-
figuration are evaluated asynchronously, that is they are queued and,
whenever the ScriptInterpreter is in a safe state, they are executed.
The interpretation procedure reaches a safe state whenever it recursively
tries to evaluate a new non-terminal because the symbol table is not ac-
cessed by any other thread. Therefore, the ScriptInterpreter accesses
the list of reconfiguration actions and carries them out one by one.
The component addition and removal are easily addressed. They are

both handled in their dedicated functions whose signature is:

def add(what: String, to: String)
def remove(what: String, from: String)

Firs of all, the what parameter is examined. It can either be a variable
name (if so, it must be present in the symbol table) or directly an URI. In
the former case the actual value must be retrieved from the symbol table,
in the latter the variable can be used as is. Then, the list denoted by
the name in to (from, respectively) is extracted from the symbol table.
Now, the new URI must be added (or removed if it exists) from the list
just retrieved. As a last step, the symbol table must be updated and
addition (removal) is finished.
As for the connector rewiring the signature of the handling function

is:
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def rewire(what: String, with: String)

In this case the what parameter is always a variable name, so it must
be looked up in the symbol table. The with parameter, instead, is always
a URI. The symbol table must be updated by discarding the old binding
for the what variable in favor of the new binding with the with variable.
The component substitution is handled by its own function with the

following signature:

def substitute(what: String, with: String)

The only difference with respect to the rewire function is that, not
only the the symbol table is updated, but also a GET is issued towards
the old URI and the response is used to issue a PUT towards the new URI.
In this way the state of the old resource is transferred to the new one.
A final remark is in order for the case of adaptations that involve a

variable containing the URIs of an observe. Indeed the variable of the
observe structure is used only once, that is, at the beginning when the
subscription towards the remote resources are generated. Thus, every
adaptation operation must be examined carefully:

add: in this case the intended semantics is adding a new resource to the
pool of the already observed resources. Thus, whenever an add
is requested, a new subscription must be made in order to start
following also the new resource. Furthermore, to make the script
catch immediately up with the change, the body of the observe is
executed by using the added URI as obsURI;

remove: the intended semantics is the opposite of the add operation. It
means that one resource must not be followed anymore. Thus the
corresponding subscription in the publish/subscribe system must
be removed;

rewire: the expected behavior is dropping the old resource pool in favor
of a new one. This operation is implemented by executing the
remove of every URI in the old list followed by the add of every URI
in the new list. The series of add operations impose the execution
of the observe body with every new variable used as obsURI;

63



5. PaCE

substitute: this operation, if applied to the variable containing the ob-
served resources does not affect the behavior of the observe block.

Notice that if the variable containing the list of observed resources ap-
pear in other places in the script, for those cases are applied the standard
rules for adaptation described above.
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%
% ID = ([A-Za-z] | [0-9])+
% INTEGER = [1-9]([0-9])*
% URI = ID
% OP = ‘get’ | ‘put’ | ‘delete’ | ‘post’
% STATEMENTS = STATEMENT*
% BLOCK = ‘{’ STATEMENTS ‘}’
% STATEMENT = LOOP | BLOCK | ASSGNM | OBSERVE | CREATE | OUTPUT
% | INFLOOP | IF | WRITE | LOOKUP
% OBSERVE = ‘observe(’ URI ‘)’ BLOCK
% CREATE = ID ‘= create(’ URI ‘,’ ID ‘)’
% | ID ‘= create(’ URI ‘,’ ID ‘,’ URI ‘)’
% LOOKUP = ID ‘=’ ‘lookup(’ ID‘)’
% ASSGNM = ID ‘=’ OP ‘(’ URI (‘,’ ID)? ‘)’
% | ID ‘=’ ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’
% | ID ‘= read()’
% OUTPUT = ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’
% | ‘write(’ID‘)’
% | ‘write(’STRING‘)’
% LOOP = ‘while’ ID ‘in’ INTEGER ‘to’ INTEGER BLOCK
% INFLOOP = ‘while (true)’ BLOCK
% IF = ‘if (’BOOLEXP‘)’ BLOCK ‘else’ BLOCK
% BOOLEXP = BOOLEXP
% ( ‘&&’ | ‘||’ | ‘<’ | ‘>’| ‘<=’ | ‘>=’ | ‘==’ )
% BOOLEXP
% | ID | INTEGER | STRING |‘!’ BOOLEXP
% | ‘(’ BOOLEXP ‘)’| ‘true’| ‘false’

ID = [A-Za-z]([A-Za-z] | [0-9])*
INTEGER = [1-9]([0-9])*
STRING = "([A-Za-z] | [0-9])*"
URI = ID+ | STRING+
OP = OPTWOPAR ‘(’ URI ‘,’ ID ‘)’

| OPONENOPAR ‘(’ URI ‘)’
OPTWOPAR = ‘post’ | ‘put’
OPONEPAR = ‘get’ | ‘delete’
BLOCK = ‘’ STATEMENT ‘’
STATEMENT = LOOP | ASSGNM | OBSERVE | CREATE | OUTPUT

| INFLOOP | IF | LOOKUP
| STATEMENT+

OBSERVE = ‘observe(’ URI ‘)’ BLOCK
CREATE = ID ‘=’ ‘create(’ URI ‘,’ ID ‘)’

| ID ‘=’ ‘create(’ URI ‘,’ ID ‘,’ URI ‘)’
LOOKUP = ID ‘=’ ‘lookup(’ ID ‘)’
ASSGNM = ID ‘=’ OP

| ID ‘=’ ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’
| ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’

| ID ‘=’ ‘read()’

OUTPUT = ID ‘(’ (STRING)? (‘,’ STRING)* ‘)’
| ‘write(’ ‘stdout’ ‘,’ ID ‘)’
| ‘write(’ ‘stdout’ ‘,’ STRING ‘)’

LOOP = ‘while’ ID ‘in’ ID ‘to’ ID BLOCK
INFLOOP = ‘while’ ‘(’ ‘true’ ‘)’ BLOCK
IF = ‘if’ ‘(’ BOOLEXP ‘)’ BLOCK ‘else’ BLOCK
BOOLEXP = BOOLEXP

( ‘&&’ | ‘||’ | ‘<’ | ‘>’| ‘<=’ | ‘>=’ | ‘==’ )
BOOLEXP
| ID | INTEGER | STRING |‘!’ BOOLEXP
| ‘(’ BOOLEXP ‘)’| ‘true’| ‘false’

Figure 5.2.: EBNF for pace
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start

a = read() b = read()

a obtained b obtained

op1(a)

finish

PROGRAMSTDINUSER

insert a insert b

Figure 5.3.: The behavior of two independent reads with a pure data-
flow execution model
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PROGRAM

a = read()

wait for a

PROGRAMSTDIN

RIGHT  READ

insert a

wait for read

a obtained

op1(a)

b = read()

wait for b

b obtained

finish

USER

stdin lock

ready to insert a

ready to insert b

insert b

Figure 5.4.: The behavior of two independent reads in pace execution
model
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if condition evaluable

condition true condition false

if body else body

finish

Figure 5.5.: The behavior of the if control structure
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while condition evaluable

condition false condition true

finish .  .  .  .op1 op2 op3 opn

synch

Figure 5.6.: The behavior of the while control structure
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EVENT GENERATION

event 

arrived

.  .  .  .op1 op2 op3 opn

synch

OBSERVE

ready to 

process

Figure 5.7.: The behavior of the observe control structure
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To assess the effectiveness of prime, this Chapter describes a use case
scenario and its implementation, to show how prime capabilities are
exploited to develop a pervasive application.

6.1. The Pervasive Slideshow scenario:
description

Alice, a university full professor, is going to give a seminar about her
recent research activity. Alice enters the conference room carrying her
laptop, where she stores both the slides she is going to present and the
related handout. The conference room provides speakers with a smart-
screen available on the local wireless network, whereas the audience is
supposed to be equipped with devices (e.g., laptop, smartphone, PDA),
which can be used for displaying either the slide currently projected on
the screen or the handout. We want the audience to be on pace with the
presentation. It means that the audience and the speaker must refer to
the same slide and to the same page of the handout. As a default, the
audience will be following the slides of the presentation. Should someone
in the audience switch from the slides to the handout, he should be able
to do so at run time without reinstalling or restarting the presentation
software. Note that, all the devices mentioned above – i.e., Alice’s laptop,
smart-screen and audience’s devices – are supposed to have a prime
instance deployed and running.

6.2. The Pervasive Slideshow scenario:
implementation

The Pervasive Slide Show application conforms to the P-REST conceptual-
model. The resources involved are the following:

Presentation and Handout are the resources that actually own the
data, that is all the slides of the presentation and all the pages of the
handout. The presentation and the handout are modeled as lists of
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images that Alice can browse by issuing the forward or backward com-
mands. These interactions are handled through a pace script deployed
on their WorkflowEngine. Whenever Alice wants to move through the
presentation (or the handout), the Presentation (Handout) updates the
pointer to the current slide accordingly and propagate the change to
whole environment. Notice that the updates on Presentation are also
propagated to the projector, while the updates on the Handout are not.

CurrentSlide and CurrentPage resources encapsulate the image cor-
responding to the current slide or page. They are meant to be observed
by all the components of the audience to spread the updates coming from
Presentation and Handout resources. They also serve as a decoupling
mechanism between the Presentation and Handout resource, on one
hand, and the audience, on the other. If such mechanism were not in
place, according to the statelessness principle of REST, the whole state
of Presentation and Handout should be transferred to the audience at
every update, by introducing an unnecessary traffic overhead on the net-
work. Both CurrentSlide and CurrentPage are passive resources where
only the GET and PUT operations are enabled. The GET is used by the au-
dience, while the PUT operation are used by Presentation and Handout,
respectively, to manage updates.

Projector resource is deployed on the smart-screen and is a purely pas-
sive resource with the only PUT operation enabled. Whenever a PUT is
issued towards the Projector resource, the enclosed representation is
interpreted as an image and rendered on the screen.

Reader resource is installed at run time on the audience’s devices and
is used to render the slideshow or the handout on such devices. It is con-
figured to follow, by default, the slideshow by observing CurrentSlide.
It is also possible, for the audience, to toggle between the slideshow and
the handout. It is a purely active resource, thus no operation is enabled.

So far, we gave the big picture and we presented all the actors involved.
In the following, we will go in more details and present and explain the
pace scripts used.
We start with the script for Presentation and Handout. Since Presentation

and Handout are very similar, in Figure 6.1 we present the script for
Presentation only. The first instruction is a lookup needed to retrieve
the URI of a Projector resource. The projSearch parameter is an ex-
ternal function that is designed to recognize the Projector resource.
Then, the script does not wait for the lookup to yield its results, and
immediately enters an infinite loop. The latter handles the interactions
with the speaker. A read is issued to decide whether the slideshow must
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proj = lookup(projSearch)
while (true){

cmd = read()
if (cmd == ‘‘fwd’’){

rep = getNextSlide()
PUT(currSlide, rep)
PUT(projector, rep)

}
if (cmd == ‘‘bwd’’){

rep = getPreviousSlide()
PUT(currSlide, rep)
PUT(projector, rep)

}
}

Figure 6.1.: pace script for Presentation resource

move forward or backward. If a forward command is inserted by the
user, the script resorts to the getNextSlide external functions to obtain
the representation of the next slide. It is an example in which exter-
nal functions have a shared state, indeed, the external function extracts
the binary representation of the next slide and updates the pointer to
the current slide. Now, if the lookup has already yielded its results
(if not the script just suspends), the script issues a PUT towards both
Projector and CurrentSlide1. Two considerations are in order here.
Firstly currSlide, the URI of CurrentSlide, is provided as an external
variable since the owner of the presentation also owns CurrentSlide and
knows its URI. The second consideration, instead, concerns the lookup.
The latter can return a list of URI. In this case we decided to project
the presentation on every projecting device found in the overlay, so the
PUT is issued towards an aURI, that is, all the results coming out of
lookup. If we wanted to filter the lookup result, we should have used
an external function of apply the filter. As a final remark, the Handout
script is almost identical. The only difference is that the handout must
not be projected, therefore the PUT is issued towards CurrentPage only.
Moving on, we examine the script for the Reader resource (see Fig-

ure 6.2). It uses two external variables, namely the URIs of CurrentSlide
and CurrentPage. Such URIs can be directly embedded in the script
because Reader is developed and deployed by the same developer of

1The case of a backward command is exactly the same, except from invoking the
getPreviousSlide function instead of the getNextSlide function
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observe(slURI){
slide = GET(obsURI)
view(slide)

}
while(true){

cmd = read()
if(cmd == ‘‘ho’’)

sub(obsURI, hoURI)
if(cmd == ‘‘pres’’)

sub(obsURI, presURI)
}

Figure 6.2.: pace script for Reader resource

CurrentSlide and CurrentPage. The script starts with an observe. As
stated in Chapter 5, the body of the observe is entrusted to an indepen-
dent thread, which is executed every time the observed resources send
out a notification. In this specific case, every time an event is generated
by CurrentSlide, the script issues a GET to retrieve the representation
of the new slide. When the representation arrives it is displayed through
the view external function. The latter is allowed for not returning any
value because it is an output function. The second part of the script
is an infinite loop that handles the interaction with a user in the audi-
ence. Indeed, the loop allows for toggling between the slideshow and the
handout. The toggling operation is implemented through the rew exter-
nal function. It is just a wrapper for the rewire operation exposed by
the ScriptInterpreter described in 5.4. As a consequence, the binding
for the obsURI variable is changed and, since the change involves an ob-
served URI, a new evaluation of the body of the observe is forced. The
final result is that now the Reader is showing the handout and not the
slideshow anymore.
Figure 6.3 gives a comprehensive picture of slideshow case. For the

sake of clarity, we left out the resources concerning the handout. The
Presentation’s workflowEngine broadcasts a Lookup message search-
ing for a resource able to render the slideshow. As a result, it obtains
the Projector’s cURI that, in our example, matches the lookup request.
Once obtained the Projector’s cURI, Alice can start the slideshow. To
this end, Presentation sends a PUT message, containing the representa-
tion of the first slide, to Projector, and then creates the CurrentSlide
resource also initialized with the representation of the first slide.
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Alice Presentation CurrSlide ReaderAlice Projector ReaderBob Bob

Lookup

ProjectorURI

CREATE(firstSlide)

PUT(firstSlide)

GET

ReaderRep

CREATE(readerRep)

OBSERVE

GET

CurrSlideRep

next

PUT(newSlideRep)

PUT(newSlideRep)

Notify

Notify

GET

GET

currentSlideRep

currentSlideRep

show

show

Alice’s laptop Projector Bob’s laptop

Figure 6.3.: Sequence diagram for our scenario

When entering the conference room, Bob uses the prime resource
finder built-in tool, which lists all the resources available within the over-
lay network, to explore the environment and find the Reader resource.
Hence, selecting Reader from the list, the prime node issues a GET op-
eration to retrieve a representation of Reader, which, in turn, is used to
create the ReaderBob resource. Once this resource is created it performs
two actions: (i) it gets the state of CurrentSlide to initialize itself, and
(ii) it declares interest on observing the CurrentSlide resource (i.e.,
OBSERVE message).

When Alice needs to show the next slide of her presentation, she issues
a forward command that is handled by the Presentation’s workflowEngine
by performing a PUT operation on both Projector and CurrSlide. Mod-
ifying the Projector resource causes the projected slide to change, while
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modifying CurrSlide generates notifications towards all the resources
that are observing CurrSlide. Then, ReaderBob receives such a notifi-
cation and retrieves the new CurrentSlide representation, which is then
visualized on his devices.

6.3. Evaluation

This section describes the quantitative analysis carried out to assess the
prime scalability. We set up two experiments: the first one to assess
the scalability of prime with respect to the pervasive slideshow scenario
described in Section 6.1, the second one to assess the scalability of the
code mobility facilities we implemented in REDS.

6.3.1. prime scalability experiments

The analysis aims at demonstrating that prime performance, expressed
in terms of memory footprint and CPU load, is compatible with the
characteristics of handheld devices available nowadays on the market –
i.e., memory: 1GB RAM, CPU: Dual-core 1.2GHz. To this extent, we
set up a virtual machine, configured according to the above parameters,
and run two different experiments: the first one aims at evaluating how
a prime instance handles a high number of concurrent requests,the sec-
ond one at evaluating how prime instance, handling a large number of
resources, impacts device performance.
Figure 6.4 presents the performance of Alice’s device when faced with

requests from 100 remote nodes. Specifically, plotted data has been
gathered by profiling the prime node hosted on Alice’s laptop. Region 1
(from 0 to 13 seconds) shows the computational burden induced by the
deployment of the prime Container, as well as of the Presentation
and CurrSlide resources. The memory footprint is stable around 3.0%-
4.0%, which is mostly due to the need of loading images in memory.
The CPU load is very low because all the resources are idle. Region 2
(from 13 to 117 seconds) corresponds to the creation of the nodes, and
the installations of the PresReaders. The memory footprint presents a
fluctuation due to garbage collection and reaches a maximum of 10%.
The CPU load, on average, is lower than 10%. In Region 3 (from 117 to
142 seconds), both memory footprint and CPU Load are stable around
6% and 5% respectively, due to absence of activity. In Region 4 (from 143
to the end) the memory footprint increases to 6.5% and the CPU Load
has a spike reaching about 95%, as consequence of the remote updates.
The sensible decrease of memory footprint, around 1.5%, at second 156
is due to the JVM garbage collector. This suggests the adoption of an
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1 2 3 4

1 2 3 4

Figure 6.4.: Concurrent requests

aggressive garbage collection policy. Indeed, an increased rate of the
garbage collector invocations sensibly decreases the memory footprint of
prime, at the expense of a slight increase in CPU load.
Figure 6.5 presents the results obtained in terms of memory footprint

and CPU load required by a container to handle 100 resources. Specif-
ically, plotted data has been gathered by profiling the prime node con-
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1 2 3 4

1 3 42

Figure 6.5.: Resource management

taining the 100 attendees at once during the execution of the Pervasive
Slide Show. Note that, the Presentation resource is deployed at a dif-
ferent node. Looking at Figure 6.5, we can notice that the trend of
gathered data follows the same pattern observed in the first experiment.
Moreover, the memory footprint never exceeds the 4.5%, and CPU Load
is, on average, around 13%.
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On the basis of such analysis, we can then conclude that prime is com-
patible with the characteristics of handheld devices available nowadays
on the market.

6.3.2. prime code mobility experiments

The experiment we want to show here is aimed at assessing the perfor-
mance of the code mobility facility we implemented in REDS. In partic-
ular, we are interested in evaluating the overhead introduced by moving
bytecode among nodes. To do so we built several overlays with a grow-
ing number of nodes and a tree topology, we subscribed all the node
except the root to the “broadcast” topic, and, then, we measured the
times that took for a packet published by the root on the “broadcast”
topic to be delivered to all the nodes in the tree. The packet contained
a class weighting about 991Kb that, at the startup, was only deployed
on the root node. We sent the packet twice, so that the first time the
missing class must be transferred to all the receiving nodes, while the
second time the class is already available and only the packet itself must
be relayed. To give more relevance to the experiments we iterated each
of them 5 times and the values reported here are average values.
The first topology we tried is a linear one. We started with a topology

with only two nodes (a sender and a receiver) and we arrived to a linear
topology with ten node (one sender and nine receiver).
In Figure 6.6 results are reported. The upper diagram depicts the

transmission time for the packet in our experiment. The dashed line
refers to the time needed to transfer the packet with the missing class
from the root, where it is published, to the only leaf of the linear tree.
It means that the time needed to transfer 9 times the missing bytecode
is close to 3 seconds. While the transfer penalty is not negligible, it is
important to notice that, once the class is disseminated in the overlay,
no more penalty is introduced. Indeed, the solid line refers to the time
needed to deliver the same message for the second time, when the missing
class is already present in the whole overlay. In the lower diagram is
depicted the percentage overhead imposed by the need of transferring
the missing bytecode. It is the percentage of the total transfer time used
to move bytecode. In this case, the overhead is very high and steadily
over the 90%.
Moving to the next run of the experiment, we used a complete binary

tree with varying depth. We started with a depth of 2 (hence with 3
nodes) and the we added a full level for every new run of the experiment
up to a depth of 5. Thus the sequence is 3,7,15,31. Figure 6.7 shows
how the changed topology directly impacts the difference between the
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Figure 6.6.: Experiments with linear topology

transfer time with and without bytecode transfer. Both with and without
bytecode moving the transfer time grows exponentially with respect to
the number of nodes. Though, it is very interesting the results rendered
in the overhead diagram. Indeed, when the number of nodes grows the
percentage of time dedicated to bytecode transfer becomes more and
more negligible with respect to the total transfer time. Indeed, in this
case, we passed from values over 90% for 15 nodes to values under 20%
for 31 nodes.
The last experiment has been conducted with a complete ternary tree
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Figure 6.7.: Experiments with a binary complete tree topology

topology with a depth ranging from 2 to 4. The max number of nodes
involved in this case is 40 and the sequence is 4,13,40.
Also in this case the highest arrival time grows sensibly with the num-

ber of nodes (see Figure 6.8). Still, it is interesting to notice that in the
experiments with 40 nodes, the time taken to deliver the packet for the
first time is slightly lower than the time needed for the second time. It
just means that the first set of runs was “luckier” then the second one
and the overhead for bytecode mobility is smaller than the normal fluc-
tuation of REDS performance. The overhead diagram confirms the trend
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6. PRIME in action

-20

0

20

40

60

80

100

4 13 40

M
o

b
ile

 C
o

d
e

 O
ve

rh
e

ad
[%

]

Number of Nodes

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

4 13 40

P
ac

ke
t T

ra
n

sm
is

si
o

n
Ti

m
e

 [m
Se

c]

Number of Nodes

Figure 6.8.: Experiments with a ternary complete tree topology

already noticed in Figure 6.7, that is, the modified version of REDS (the
one with the bytecode mobility facilities) scales as well as the standard
REDS when the number of nodes grows enough.
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7. Conclusion

In this thesis we have addressed the problem of designing, developing and
orchestrating applications operating in pervasive environments. Such ap-
plications are required to support adaptive and evolutionary behaviors to
deal with changes occurring in the environment. Changes are mainly the
result of both the dynamic appearance/disappearance of functionalities
and the interaction with an uncertain physical context.
In this context, we presented in Chapter 2 our model-centric concep-

tual model, which identifies the building blocks of self-adaptive pervasive
systems dealing with both adaptation and evolution. In Chapter 3, we
advocated the benefits of the REST architectural style in pervasive set-
tings (due to its loose coupling, flexibility and dynamism) and proposed
Pervasive-REST (P-REST), a design model for pervasive applications de-
rived from REST. We also provided a meta-model for P-REST meant to
be instantiated to design applications that follow the P-REST principles.
In this context, a middleware should provide proper abstractions and
mechanisms satisfying the flexibility, genericity and dynamicity require-
ments. To this extent, in Chapter 4 we presented the prime middleware
that provides the programming abstractions for the development and the
execution of pervasive applications adhering to the P-REST principles.
Further, in Chapter 5 a coordination language called pace has been in-
troduced to ease the task of orchestrating resources deployed within the
prime middleware. pace interpreter also provides primitives to modify
the script at run time to implement the canonical adaptation actions. Fi-
nally, to prove the effectiveness of the whole framework, in Chapter 6, we
presented a case study in which we went through the whole development
process from the design phase to the run-time adaptation phase.
This work opens several research lines that can be worth following

in future. The first and more pressing need for the our framework is
a standard way to describe resources. Currently, the implementation of
such feature is left to the developers that can define their own description
systems and the appropriate filter functions to be used by the lookup
service. A standard description framework would enable the creation of
default and configurable lookup functions and, as a consequence, would
further relieve the development effort.
Moving on to pace, right now every instruction is executed as soon
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7. Conclusion

as possible according to the data-flow execution model. This mechanism
favors the parallelism but, in some cases, this is not the most suitable
behavior. For instance, if a script must retrieve the state of a remote
resource and the developer wants an updated result, pace cannot provide
any guarantee in this sense. Thus, we want to investigate the insertion
in pace of a call-by-name semantics for remote operations. In this way
the execution of an instruction becomes lazy and does not take place as
soon as possible anymore but it is delayed as much as possible. Clearly
this mechanism does not substitute the standard invocation semantics
but is meant to work side by side with it. Further work can be carried
out to achieve a higher degree of parallelism by improving the parallel
execution of the iterations of a cycle and of the external functions. As for
the cycles, if iterations are completely independent they can be executed
concurrently according to the patterns identified by Pautasso and Alonso
in [69]. Cases in which the iterations are possibly not independent are
when a read or an external function are involved.
Last but not least, it would be very useful providing a user-friendly in-

terface to handle a prime instance. Currently, indeed, every interaction
is handled through either the command line or the bootstrap parame-
ters.
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