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Abstract

In this dissertation, some advanced methodologies for the study of non-stationary
signals in the joint time-frequency (TF) domain are presented, with the purpose of
characterizing the dynamic interactions between cardiovascular signals. This study is
motivated by the necessity of improving the understanding of the autonomic control of
the cardiovascular system, whose impairment is related with many pathologies. The
dissertation is articulated in three parts: An introduction in which relevant physio-
logical and methodological aspects are described; a methodological part in which TF
synthesis as well as TF spectral, coherence and phase difference analysis are described;
and a part in which the proposed methodologies are applied to physiological studies.

In the introduction, the control of sympathetic and parasympathetic nervous systems
on the cardiovascular regulation as well as the interactions between cardiovascular pa-
rameters and respiration are described. In particular, the physiological mechanisms
that are still unclear or that are currently matter of debate are highlighted. To better
contextualize the work proposed in the dissertation, a description of the most recent
time-varying techniques of analysis is also given.

The second part is composed of four chapters, §2–§5, which face the following issues:
simulation of non-stationary signals, spectral analysis, coherence analysis and phase
analysis in the TF domain.
In chapter §2, a method to generate non-stationary stochastic processes which mimic
the dynamics of cardiovascular signals is described. These processes are character-
ized by a predetermined and controlled TF structure: the design parameters that are
used as input of the model are either the instantaneous frequency and power or the
instantaneous frequency and spectral amplitude of each spectral component, and the
output is the stochastic process associated to them. The accuracy and robustness of
the method are evaluated in simulation studies which aim at simulating heart rate
variability during exercise stress test and listening to different music excerpts.
In chapter §3, the TF distributions belonging to the Cohen’s class are introduced.
In particular, the smoothed pseudo Wigner-Ville distribution (SPWVD) is described.
Owing to the possibility of performing an independent smoothing in time and fre-
quency, the SPWVD is considered one of the best options to analyze non-stationary
signals. A method to quantify the TF resolution of these distributions is proposed
and it is used throughout the entire dissertation. A simulation study based on signals
generated by means of the method presented in chapter §2 is carried out to evalu-
ate the accuracy of the SPWVD in conditions characterized by different degree of
non-stationarity. Finally, a method that performs a parametric decomposition of the
SPWVD is described. The advantage of this method, which will be used in a phys-
iological study in chapter §6, is that it allows separating relevant signal components
from noise, thus offering the possibility of reducing the interference terms that usually
appear in the distributions of the Cohen’s class.
Chapter §4 is about the estimation of time-frequency coherence between non-stationary
signals. Time-frequency coherence has the advantage of allowing the simultaneous lo-
calization of temporal intervals and spectral bands in which two signals are locally



correlated, thus providing robust and accurate tracking of local correlation changes.
Coherence estimates depend on the TF resolution of the distribution used in the esti-
mation. To give a correct interpretation of the results, two methods based on surrogate
data are proposed to assess whether the coherence estimates are statistically signifi-
cant. Two algorithms to automatically determine signal-dependent kernels which al-
low estimating TF coherence by SPWVD are proposed. In a comparative study which
involve both simulated and physiological recorded data, the SPWVD is shown to local-
ize with higher accuracy than other distributions, such as the multitaper spectrogram
(MTSP) and the continuous wavelet transform, the TF regions in which signals are
locally correlated. Finally, an example of application of TF coherence analysis on
cardiovascular signals, such as heart period variability, systolic arterial pressure vari-
ability and respiration, is given.
Chapter §5 is about the estimation of phase differences between cardiovascular signals
in the TF domain. Time-frequency phase difference analysis allows a fast tracking
of the variation of the degree of synchronization between the spectral components of
two signals. Moreover, phase difference information can be used to establish, to a
certain degree, causal relationships between non-stationary spectral components. The
use of the SPWVD to estimate TF phase differences is particularly suited because TF
phase difference estimates are reliable only around well localized time-varying spectral
band in which spectral components are locally correlated. The proposed methodology
is evaluated in different simulation studies based on both computer generated and
recorded physiological data.

In the second part of the dissertation, composed of chapters §6–§8, three physiological
studies are described.
In chapter §6, the effect that musical excerpts characterized by different emotional
valence has on HRV and respiration is studied. The characterization of the influence
of music on cardiovascular parameters has both physiological and clinical relevance,
since the use of music for therapeutic purposes is a matter of increasing interest. In
this study, it is shown that the emotional valence of music specifically affects the
respiratory frequency and the respiratory oscillations in HRV. It is shown that the
transition from a musical stimulus to another provokes variations characterized by
a first rapid response, which lasts about 10-20 seconds, and a seconds slower phase,
which last more than one minute. The cardio-respiratory interactions are also studied.
It is shown that musical excerpts characterized by different emotional valence do not
provoke different pattern of response in the coherence and phase differences between
HRV and respiration.
In chapter §7 the degree of similarity between the TF structure of HRV and the pulse
rate variability (PRV) obtained from the photoplethysmography (PPG) signal, during
tilt table test, is studied. The aim of the study is to assess whether PRV can be used
as a surrogate for HRV during non-stationary conditions. The use of PRV to indirectly
estimate HRV is interesting since the device used to estimate the PPG signal is not
cumbersome, is cheap, and widely used in the clinical environment. Time-frequency
and TF coherence analysis suggest that PRV can be used as alternative measurement
of the HRV, at least during tilt table test. The study also reveals that some differences
between HRV and PRV also exist, especially in the oscillations related with respira-



tion. However, in the analyzed signals, these differences, which are due to variations in
the pulse transit time, are not sufficient to modify the conclusions of the physiological
study.
In chapter §8, the cross TF analysis presented in chapters §4–§5 is applied to the
study of the dynamic interactions between RRV and systolic arterial pressure vari-
ability (SAPV). The study of these interactions is interesting because they are still
partially unclear, and because of the clinical relevance of baroreflex sensitivity, which
has both diagnostic and prognostic value. This study shows that during tilt table
test, postural changes provoke a fast decrease in the baroreflex sensitivity and phase
changes between RRV and SAPV. In another data base, the indices obtained by TF
analysis allows discriminating between healthy subjects and subjects with autonomic
dysfunctions.



Resumen y conclusiones de la tesis

En esta tesis doctoral se presentan algunas metodoloǵıas avanzadas para el estudio
de señales no estacionarias en el dominio conjunto tiempo-frecuencia (TF), con el
objetivo de caracterizar las interacciones dinámicas entre señales de origen cardiovas-
cular. El estudio está motivado por la necesidad de profundizar en la comprensión
del control autonómico del sistema cardiovascular, cuya disfunción está relacionada
con numerosas patoloǵıas. La tesis se articula en tres partes: una introducción a los
aspectos fisiológicos y metodológicos mas relevantes y estado del arte, una parte en la
cual se describen las metodoloǵıas propuestas y una parte en la que éstas metodoloǵıas
se aplican a estudios fisiológicos.

En la introducción se describen tanto el control que las dos ramas del sistema nervioso
autónomo, el sistema simpático y parasimpático, ejercen sobre ritmo card́ıaco, presión
arterial y circulación periférica, como las relaciones entre estas variables y la res-
piración. En particular, se destacan los aspectos fisiológicos que todav́ıa no se han
clarificado o cuya explicación no ha encontrado consenso general en la comunidad
cient́ıfica. Además, se hace una breve descripción de las técnicas de análisis tiempo-
variante mas recientes para contextualizar el trabajo propuesto en la tesis.

La segunda parte se compone de cuatro caṕıtulos, §2–§5, en los cuales se proponen
soluciones a los siguientes problemas : simulación de señales no estacionarias, análisis
espectral, análisis de coherencia y de fase, todo ello en el dominio TF.
En el caṕıtulo §2 se describe una metodoloǵıa para generar señales no estacionarias es-
tocásticas que simulen las dinámicas de señales de origen cardiovascular. Estas señales
se caracterizan por tener una estructura TF predeterminada y controlada, en el sen-
tido que el modelo de generación de datos recibe en ingreso los valores de frecuencia y
potencia instantaneas, o de frecuencia y amplitud del espectro instantaneas, de cada
componente espectral y devuelve el proceso estocástico asociado a ellos. La estabili-
dad y fiabilidad del modelo de generación de datos se estudia en dos condiciones que
simulan la variabilidad del ritmo card́ıaco (HRV) en prueba de esfuerzo y durante la
escucha de est́ımulos musicales.
En le caṕıtulo §3 se introducen las distribuciones TF de la clase de Cohen, y en par-
ticular la pseudo distribución de Wigner-Ville suavizada (SPWVD). La posibilidad
de realizar de manera independiente el suavizado temporal y frecuencial confiere a la
SPWVD una muy buena resolución TF, por lo que se considera una de las mejores
opciones para realizar el análisis no estacionario de la señal. Se propone un método
para cuantificar la resolución TF que caracteriza estas distribuciones, y que se usará a
lo largo de toda la tesis. Además se realiza un estudio de simulación, basado en señales
estocásticas generadas a partir del modelo presentado en el caṕıtulo §2, para evaluar
su precisión en condiciones caracterizadas por distintos grados de no estacionariedad.
Por último, se describe una metodoloǵıa que realiza una descomposición paramétrica
de las distribuciones de la clase de Cohen. La ventaja de esta metodoloǵıa, que se
usará en el estudio fisiológico descrito en caṕıtulo §6, está en que permite separar
ruido y componentes relevantes de la señal, permitiendo aśı eliminar los términos de
interferencia que suelen aparecer en las distribuciones de la clase de Cohen.



El caṕıtulo §4 trata de metodoloǵıas para la estimación de la coherencia TF en señales
no estacionarias. Estas metodoloǵıas tienen la ventaja de permitir la localización de
intervalos de tiempo a la vez que de bandas espectrales en las cuales las señales están
correladas, permitiendo un seguimiento fiel y robusto de las variaciones del grado de
correlación local. El grado de coherencia entre dos señales depende de la resolución TF
de la distribución usada para su estimación. Para permitir una correcta interpretación
de los resultados, se proponen dos métodos en los que se determina si el grado de co-
herencia estimado es estad́ısticamente significativo o si se debe a otras razones, como
a fluctuaciones aleatorias, ruido o a los parámetros del estimador empleado. En este
marco, se propone usar la SPWVD para la estimación de la coherencia. Se proponen
dos algoritmos para determinar de forma automática y adaptada a las señales el kernel
necesario para obtener estimaciones robustas de coherencia. En un estudio de com-
paración, la precisión, sensibilidad y especificidad, con la cual la SPWVD localiza en
el plano TF zonas en las cuales las señales están correladas y zonas en la que no están
correladas resulta superior a la precisión de otras técnicas basadas en espectrogramas
multi-ventanas (MTSP) y transformadas wavelet. Por último, se muestra un ejemplo
de aplicación de análisis de coherencia de señales cardiovasculares, que incluye el es-
tudio conjunto de la variabilidad del periodo card́ıaco (RRV), del intervalo del pulso
(PIV) y la respiración.
El caṕıtulo §5 trata el análisis de las diferencias de fase entre señales cardiovasculares en
el plano TF. El análisis de fase tiempo-variante permite determinar las variaciones del
grado de sincronización entre componentes espectrales contenidas en distintas señales
del sistema. Además, las estimaciones de las diferencias de fase se pueden usar para
establecer, aunque con un cierto grado de incertidumbre, relaciones causales entre
componentes espectrales. El uso de la SPWVD para la estimación de la diferencia
de fase entre señales no estacionarias resulta particularmente apropiado debido a que
ésta solo tienen sentido entorno a una estrecha banda frecuencial tiempo-variante en
la cual las señales estén significativamente correladas. La metodoloǵıa propuesta se
evalúa en variados estudios de simulación basados tanto en señales simuladas como en
señales fisiológicas.

En la segunda parte de la tesis, caṕıtulos §6–§8, se describen tres estudios fisiológicos
basados en el análisis no estacionario de la señal.
En el caṕıtulo §6, se estudia el efecto de est́ımulos musicales, caracterizados por tener
distinta valencia emocional, sobre las dinámicas de la HRV y de la respiración. La car-
acterización de la influencia de la música sobre ritmos cardiovasculares tiene, además
de interés fisiológico, relevancia cĺınica en cuanto el uso de la música con propósitos
terapéuticos ha crecido en los últimos años. Este estudio demuestra que la valencia
emocional de la música afecta de manera especifica a la frecuencia respiratoria y a las
componentes del ritmo card́ıacos relacionadas con el respiro. Además se demuestra
que la transición de un estimulo a otro provoca variaciones caracterizadas por una
primera fase rápida, de unos 10-20 segundos de duración, y una fase lenta del orden
de los minutos. Además del contenido espectral de estas señales, se estudian las in-
teracciones cardio-respiratorias. Sin embargo, se observa que est́ımulos musicales con
distinta valencia emocional no provocan distintas respuesta en el grado de coherencia
y en la diferencia de fase entre HRV y señal respiratoria.



En el caṕıtulo §7 se estudia el grado de similitud entre las estructuras TF de la señal
HRV y la señal de variabilidad del pulso (PRV) obtenida a partir de la señal foto-
pletismográfica de pulso (PPG) en prueba de tilt. El objetivo del estudio es com-
probar si la PRV puede usarse como medida indirecta de la HRV. El uso de la señal
PPG para la estimación de la HRV es de interés en cuanto la PPG es una medida
muy empleada en entorno cĺınico, y cuya adquisición necesita de una instrumentación
barata y cómoda. Tanto el análisis de la estructura TF de la HRV y PRV, como el
análisis de coherencia entre éstas, sugieren que la PRV puede ser empleada como me-
dida alternativa a la HRV. A pesar del elevado grado de similitud entre estas señales,
por lo menos en prueba de tilt, en el estudio se destacan algunas diferencias existentes
entre las dos señales, en particular en la componente relacionada con la respiración.
Sin embargo, en la base de datos analizada, estas diferencias, que se deben a la vari-
abilidad del tiempo que el pulso emplea para llegar al punto de medida de la PPG, no
son suficientes para modificar las conclusiones del estudio fisiológico.
En el caṕıtulo §8, el análisis TF cruzado presentado en los caṕıtulos §4–§5 se aplica
al estudio conjunto de la RRV y de la variabilidad de la presión sistolica (SAPV). El
estudio de las interacciones dinámicas entre presión arterial y periodo cardiaco es de
interés fisiológico, en cuanto algunos aspectos de estas interacciones no están claros,
y tienen relevancia cĺınica, debido a que indices de sensibilidad barorefleja card́ıaca
tienen valor diagnóstico y pronóstico. En prueba de tilt, el estudio muestra que el
estrés ortostático debido al cambio postural provoca una rápida disminución de la sen-
sibilidad barorefleja y un cambio en la diferencia de fase entre RRV y SAPV. En otra
base de datos, los indices extráıdos del análisis TF permiten discriminar entre sujetos
sanos y sujetos con disfunción del control autonómico del sistema cardiovascular.



Riassunto e conclusioni della tesi

In questa tesi di dottorato si propongono alcune metodologie avanzate per l’analisi di
segnali non stazionari nel dominio congiunto tempo-frequenza (TF), con l’obbiettivo
di caratterizzare le interazioni dinamiche tra segnali di origine cardiovascolare. Lo
studio è motivato dalla necessità di approfondire la comprensione del controllo che
il sistema nervoso autonomo esercita sul sistema cardiovascolare, le cui disfunzioni
possono manifestarsi in gravi patologie. La tesi si articola in tre parti: una prima
parte di stato dell’arte ed introduzione riguardante gli aspetti fisiologici e metodologici
più rilevanti e recenti; una seconda parte nella quale si descrivono le metodologie
proposte; una terza parte nella quale le metodologie proposte si applicano a studi
fisiologici.
Nell’introduzione si descrivono sia il controllo che il sistema nervoso simpatico e
parasimpatico esercita sul ritmo cardiaco, sulla pressione arteriosa e sulla circolazione
periferica, sia le interazioni di queste con l’attività respiratoria. Vengono messi in
rilievo quei meccanismi che a tutt’oggi non risultano del tutto chiari o la cui spie-
gazione non ha ancora trovato consenso generale tra la comunità scientifica. Inoltre,
per poter meglio contestualizzare le metodologie proposte, vengono brevemente
descritte le tecniche di analisi tempo-variante più recenti.

La seconda parte della tesi consta di quattro capitoli, §2-§5, nei quali vengono
proposte alcune soluzioni ai seguenti problemi: simulazione di segnali non stazionari,
analisi spettrale, di coerenza e di fase nel dominio TF.
Nel capitolo §2 viene proposta una metodologia per generare processi stocastici
non-stazionari che simulino le dinamiche tipiche di segnali di origine cardiovascolare.
Questi segnali sono caratterizzati da una struttura TF predeterminata e controllata,
nel senso che il modello di generazione dei dati riceve in ingresso i valori di frequenza
e potenza istantanei, oppure di frequenza ed ampiezza spettrale istantanei, di ogni
componente spettrale e da in uscita il processo stocastico associato ad essi. La
stabilità e l’accuratezza del modello di generazione dei dati vengono studiate in
condizioni che simulano la variabilità del ritmo cardiaco (HRV) in prova di sforzo e
durante l’ascolto di stimoli musicali.
Nel capitolo §3 si introducono le distribuzioni TF della classe di Cohen, ed in
particolare si descrive la smoothed pseudo Wigner-Ville distribution (SPWVD).
La possibilità di realizzare in maniera indipendente il filtro della Wigner-Ville
distribution in tempo ed in frequenza rende la SPVWD una delle migliori opzioni per
lo studio dei segnali non stazionari. Per quantificare la risoluzione TF di ciascuna
di queste distribuzioni viene proposto un metodo che verrà usato in tutto il lavoro
di tesi. Inoltre, per valutare l’accuratezza della SPWVD in condizioni caratterizzate
da diversi gradi di non stazionarietà, si realizza uno studio di simulazione nel quale
vengono utilizzati segnali stocastici generati a partire dal modello presentato nel
capitolo §2. Questo studio di simulazione mostra che la SPWVD è accurata e robusta.
In fine, viene descritta una metodologia che realizza una scomposizione parametrica
delle distribuzioni della classe di Cohen. Il vantaggio di questa metodologia, che
verrà usata nello studio fisiologico descritto nel capitolo §6, risiede nel fatto che essa
permette di separare le componenti rilevanti del segnale dal rumore, permettendo cos̀ı



di eliminare i termini di interferenza che appaiono nelle distribuzioni della classe di
Cohen.
Nel capitolo §4 viene affrontato il problema della stima della coerenza TF tra segnali
non stazionari. Le metodologie TF hanno il vantaggio di permettere di localizzare
simultaneamente intervalli temporali e bande spettrali nei quali due segnali sono
correlati, permettendo cos̀ı di stimare in maniera accurata e robusta l’andamento
temporale del grado di correlazione locale tra essi. Si mostra come il livello di
coerenza dipenda anche dalla risoluzione TF della distribuzione utilizzata per la
stima. Per poter permettere una corretta interpretazione dei risultati, vengono
proposte due metodologie attraverso le quali è possibile determinare, per ogni punto
del piano TF, se il livello di coerenza sia statisticamente significativo. In questo
capitolo viene proposto l’uso della SPWVD per la stima della coerenza TF. Vengono
proposte due metodologie per poter determinare in maniera automatica, a partir da
due segnali qualsiasi, i kernels necessari per ottenere stime di coerenza TF robuste
senza allo stesso tempo compromettere la risoluzione TF. In uno studio comparativo
l’accuratezza con la quale la SPWVD localizza nel piano TF regioni nelle quali
due segnali sono localmente correlati risulta essere maggiore dell’accuratezza di
altre tecniche di analisi TF, come quelle basate sul multitaper spectrogram o sulla
trasformata wavelet. In fine si mostra un esempio di applicazione che include lo studio
congiunto della variabilità del periodo cardiaco, dell’intervallo del pulso e del respiro.
Nel capitolo §5 si affronta il problema dell’analisi delle differenze di fase tra segnali
di origine cardiovascolare nel dominio TF. L’analisi di fase tempo-variante permette
di determinare le variazioni del grado di sincronizzazione delle componenti spettrali
di due segnali. Inoltre, la stima delle differenze di fase permette di stabilire, seppure
con un certo grado di incertezza, relazioni causali tra due componenti spettrali.
L’uso della SPWVD per la stima delle differenze di fase tra segnali non stazionari è
particolarmente appropriata in quanto essa ha senso solo se realizzata in strette bande
spettrali tempo-varianti nelle quali le componenti spettrali analizzate siano localmente
correlate. Attraverso specifici studi di simulazione che includono sia segnali simulati
che segnali fisiologici, si dimostra che la metodologia proposta è accurata e robusta.

Nella seconda parte della tesi, capitoli §6-§8, vengono descritti tre studi fisiologici
basati sull’analisi non-stazionaria dei segnali.
Nel capitolo §6 si studia l’effetto che stimoli musicali, caratterizzati da diversa valenza
emozionale, hanno sulle dinamiche della HRV e del respiro. La caratterizzazione
dell’influenza che la musica esercita sulle oscillazioni dei segnali cardiovascolari ha sia
rilevanza fisiologica sia clinica, in quanto l’uso della musica per scopi terapeutici è
aumentato negli ultimi anni. Questo studio dimostra che la valenza emozionale della
musica influisce in maniera significativa sulla frequenza respiratoria e sulle componenti
del ritmo cardiaco relazionate col respiro. Inoltre si mostra che la transizione da
uno stimolo musicale ad un altro provoca variazioni caratterizzate da una prima fase
rapida, della durata di circa 10-20 secondi, e da una fase più lenta, della durata
nell’ordine dei minuti. Oltre all’analisi della struttura TF di questi segnali, in questo
capitolo vengono studiate le interazioni cardiorespiratorie. Da questo studio emerge
che stimoli musicali caratterizzati da diversa valenza emozionale non provocano
diverse risposte nel grado di coerenza e differenza di fase tra HRV e respiro.



Nel capitolo §7 si studia il grado di somiglianza tra la struttura TF della HRV e
della variabilità del pulso (PRV) ottenuta a partire dal segnale fotopletismografico
(PPG) durante prova di tilt. L’obbiettivo dello studio è valutare se la PRV può
essere usata come misura indiretta della HRV. L’uso del segnale PPG per la stima
dell’HRV è di interesse in quanto il PPG è un segnale molto utilizzato in ambito
clinico, e la cui acquisizione necessita di dispositivi economici e comodi per il paziente.
Sia l’analisi della struttura TF della HRV e della PRV, sia l’analisi di coerenza tra
queste, suggeriscono che la HRV può essere usata come misura alternativa della HRV.
Nonostante la somiglianza che caratterizza questi due segnali, per lo meno in prova
di tilt, nello studio vengono anche evidenziate alcune differenze, visibili soprattutto
nella componente relazionata con il respiro. Nella base di dati analizzata, queste
differenze, che sono principalmente dovute al tempo impiegato dal pulso pressorio
per raggiungere il punto di misura del PPG, non sono sufficienti a modificare le
conclusioni dello studio fisiologico.
Nel capitolo §8, l’analisi presentata nei capitoli §4-§5 viene applicata allo studio
congiunto della RRV e della variabilità della pressione sistolica (SAPV). Lo studio
delle interazioni dinamiche tra pressione arteriosa e periodo cardiaco è di interesse
fisiologico, in quanto può aiutare a chiarire alcuni aspetti delle interazioni cardiovas-
colari a tutt’oggi poco chiari, ed ha rilevanza clinica, in quanto indici della sensibilità
del baroriflesso hanno valore diagnostico e prognostico. In prova di tilt, questo studio
mostra che lo stress ortostatico dovuto al cambio posturale provoca una rapida
diminuzione della sensibilità del baroriflesso ed un cambio nella differenza di fase tra
RRV e SAPV. In un’altra base di dati, gli indici estratti dall’analisi TF permettono di
discriminare tra soggetti sani e soggetti con disfunzioni del sistema nervoso autonomo.
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Chapter 1. Introduction

This work has been realized within a joint PhD program in biomedical engineering
at both the University of Zaragoza, Spain, and the Politecnico di Milano, Italy. Part
of the work has also been done at the Universitat Politecnica de Catalunya, Barcelona,
Spain and at the Ecole Normale Supérieure de Lyon, France, where I studied during
four and five months, respectively.

1.1 Motivations

In western countries, cardiovascular diseases represent one of the major cause of death.
In order to detect and care cardiovascular dysfunctions, it is first necessary to under-
stand how the cardiovascular system works. Indeed, “increasing our understanding
of integrative cardiovascular physiology [...] will help us to elucidate how the system
works, when it works, and what may go wrong when it does not” [59]. Since the late
Seventies, mathematics and engineering has been used in the study of the cardiovas-
cular system. The work presented in this dissertation goes along with this line.
The overall aim of this study is to present some advanced methodologies for the char-
acterization of cardiovascular dynamics. In particular, two words, which will be ex-
tensively used throughout the dissertation, deserve attentions: characterization and
dynamics. By speaking of dynamics of the system, we refer to those mechanisms which
make the system able to continuously adapt to changing conditions. Given that the
system is subject to continuous (never ending and never stopping) perturbations, it
has an intrinsically non-stationary behavior. These changes are described through the
quantification of few relevant indices, derived by processing signals that can be non-
invasively acquired in usual clinical practice, such as electrocardiogram, continuous
arterial pressure, photopletismographic signal, respiratory signals etc. These indices
and their temporal evolution characterize the system. Among the different types of
methodologies that can be, or have been, used to analyze biomedical signals, we fo-
cused on time-frequency analysis. This choice is motivated by the need of measuring
at the same time the spectral content of cardiovascular signals, whose spectral com-
ponents have a specific physiological meaning, and its temporal evolution. Special
attention is put into the characterization of heart rate variability as well as into the
dynamic interactions of heart rate variability with respiration and arterial pressure.
To give a picture of the amount of studies concerning these topic, we counted the num-
ber of papers on “heart rate variability” and “baroreflex” that have been published in
the PubMed data-base1 from the Seventies up to now. The results are shown in Fig.
1.1, both in absolute unites, as number of papers (see panel (a)), and normalized on
the total number of papers that have been published in a given range of time (see panel
(b)). We observe that, although these topics were already studied in the Seventies,
the number of publications on them is still growing. Analogous results can be find in
[215]. Furthermore, if we refine the search and we select from the previous results only
those that also contain the word “time-frequency”, we see that in the last five years,
only 34 over 3132 papers published on heart rate variability, and 3 over 1603 papers
on the baroreflex, included time-frequency analysis (refer to the right-side y-label of

1http://www.ncbi.nlm.nih.gov/pubmed
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Figure 1.1: Number of publications in the PubMed data-base. Results are given as the
number of papers published every five years from 1970 to 2010, both in absolute unites,
as in (a), and normalized on the total number of papers published in the same interval
of time, as in (b). Black markers (left–side y–ticks) correspond to the search “heart
rate variability” (HRV) and “baroreflex” (BR), while red markers (right–side y–ticks)
correspond to “heart rate variability & time-frequency” (HRV+TF) and “baroreflex
& time-frequency” (BR+TF).

the Fig. 1.1). Time-frequency analysis, which was applied to the study of these topics
for the very first time in the late Nineties, is still little used in the characterization of
the cardiovascular dynamics.
Our hope is that the work presented in this dissertation could help to make this kind of
non-stationary signal processing a common tool for the analysis of biomedical signals,
with the aim of improving the understanding of the cardiovascular control.

1.2 Physiological aspects

The methodologies presented in the first part of this dissertation are used to char-
acterize changes and dynamic interactions between heart period, blood pressure and
respiration. In the following, a short description of important mechanisms involved
in cardiovascular control is given. Focus is put on short-term regulation that controls
cardiac cycle. Simultaneous changes that occur during cardiac cycle are shown in Fig.
1.2. An important characteristic of cardiac cycle, highlighted in this graphic, is that
changes in arterial pressure, cardiac output, heart period, etc., are simultaneous and
dynamically related.
Before describing relevant mechanisms of the neural control of the cardiovascular sys-
tem, it is important to mention some important parameters involved in hemodynamics.
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Figure 1.2: Events of the cardiac cycle for left ventricular function, showing changes
in left atrial pressure, left ventricular pressure, aortic pressure, ventricular volume, the
electrocardiogram, and the phonocardiogram (From [114])

Table 1.1 shows the normal range of blood volumes, cardiac output, blood pressure
and heart rate in adults. Knowledge of these values is relevant because hemodynamics
and the neural control of the cardiovascular system are continuously, dynamically and
mutually related.
As a brief introduction, it is helpful to review the relationships between mean arterial
pressure (MAP), cardiac output (CO), total peripheral resistance (TPR), heart rate
(HR), and stroke volume (SV) [120], whose normal ranges are shown in Table 1.1:

MAP = CO × TPR = (HR× SV )× TPR (1.1)

1.2.1 Neural control of the cardiovascular system

The autonomic nervous system plays a primarily role in the maintaining of homeosta-
sis, through the regulation of arterial pressure. All the variables considered in the
graphic of Fig. 1.2, which depicts the cardiac cycle, are controlled by the nervous
system.
The efferent autonomic signals are transmitted to the various organs of the body
through two major subdivisions called the sympathetic nervous system and the
parasympathetic nervous system [115]. In Table 1.2 and 1.3, some anatomical and
physiological characteristics of these systems are reported. In particular, in Table 1.2,
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1.2 Physiological aspects

Table 1.1: Important variables of the cardiovascular system

Measure Typical value Normal range
End-diastolic volume (EDV) 120 ml 65–240 ml
End-systolic volume (ESV) 50 ml 16–143 ml
Stroke volume (SV) 70 ml 55–100 ml
Ejection fraction (Ef) 58% 55–70%
Cardiac output (CO) 4.9 L/min 4.0–8.0 L/min
Systolic pressure 90–119 mmHg
Diastolic pressure 60–79 mmHg
Heart rate (HR) 70 bpm 60–100 bpm

the transmitters of the different nerves are shown. The sympathetic and parasympa-
thetic nerve fibers secrete mainly one or the other of two synaptic transmitter sub-
stances, acetylcholine or norepinephrine. Those fibers that secrete acetylcholine are
said to be cholinergic. Those that secrete norepinephrine are said to be adrenergic, a
term derived from adrenalin, which is an alternate name for epinephrine.
Table 1.3 lists the effects on different visceral functions of the body caused by stimu-
lating either the parasympathetic nerves or the sympathetic nerves. From this table, it
can be seen that sympathetic stimulation causes excitatory effects in some organs but
inhibitory effects in others. Likewise, parasympathetic stimulation causes excitation
in some but inhibition in others. Also, when sympathetic stimulation excites a par-
ticular organ, parasympathetic stimulation sometimes inhibits it, demonstrating that
the two systems occasionally act reciprocally to each other. However, most organs are
dominantly controlled by one or the other of the two systems.
In contrast with skeletal nervous system, low frequency of stimulation is required for
full activation of autonomic effectors. In general, only one nerve impulse every few
seconds suffices to maintain normal sympathetic or parasympathetic effect. Moreover,
the sympathetic and parasympathetic systems are continuously active, and the mean
basal rates of activity are known, respectively, as sympathetic tone and parasympa-
thetic tone [115]. While the tonic influences of a system are usually associated with
an average modulation, variations over the tone are usually called phasic stimulations.
The activity of the autonomic nerves that regulate cardiovascular function is deter-
mined by a network of neurons located in the medulla oblongata that receive in-
puts from (i) other central structures including the hypothalamus, cerebral cortex,
and medullary chemoreceptors; and (ii) peripheral reflexes arising from baroreceptor,
chemoreceptor, mechanoreceptor, thermoreceptor, and nociceptor afferents located in
the blood vessels, heart, lungs, skeletal muscles, skin, and viscera [241].
With respect to the expression shown in expression (1.1), the major point to make
is that the sympathetic nervous system can rapidly increase MAP by constricting ar-
terioles, or by increasing heart rate or stroke volume. While predominant effect of
activation of the parasympathetic nervous system is a rapid decrease of heart rate,
which will influence cardiac output [120].
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Table 1.2: Transmitters substances in the autonomic nervous system

Nerves Type Transmitter
Sympathetic preganglionic cholinergic acetylcholine
Sympathetic postganglionic adrenergic norepinephrine
Parasympathetic preganglionic cholinergic acetylcholine
Parasympathetic postganglionic cholinergic acetylcholine

Table 1.3: Effect of sympathetic and parasympathetic activation

Organ Sympathetic stimulation Parasympathetic stimulation
Heart Increased rate Slowed rate
Heart Increased force of contraction Decreased force of contraction
Coronaries Constricted (α), dilated (β2) Dilated
Vessel Constricted No effect
Arterioles Constricted No effect
Adrenal medullae Release of (nor)epinephrine No effect
Arterial pressure Short-term increase Short-term decrease

(a) Sympathetic nervous system (b) Parasympathetic nervous system

Figure 1.3: Sympathetic and parasympathetic system (From [115])
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The sympathetic nervous system

Figure 1.3a shows the general organization of the peripheral portions of the sympa-
thetic nervous system. It is shown that sympathetic nervous system innervates the
heart, blood vessels, kidneys and adrenal medulla, and consequently it has a predom-
inant role in cardiovascular regulation.
Each sympathetic pathway from the cord to the stimulated tissue is composed of two
neurons, a short preganglionic neuron and a long postganglionic neuron. Such an ar-
rangement allows sympathetic discharge to cause diffuse responses involving multiple
regional effectors [241]. All preganglionic sympathetic neurons are cholinergic, while
most of the postganglionic sympathetic neurons are adrenergic (see Table 1.2). Ordi-
narily, the norepinephrine secreted directly into a tissue remains active for only a few
seconds, demonstrating that its reuptake and diffusion away from the tissue are rapid.
Epinephrine and norepinephrine are almost always released by the adrenal medul-
lae at the same time that the different organs are stimulated directly by generalized
sympathetic activation. Therefore, the organs are actually stimulated in two ways:
directly by the sympathetic nerves and indirectly by the adrenal medullary hormones.
The two means of stimulation support each other, and either can, in most instances,
substitute for the other. When secreted into the blood by the adrenal medullae, both
norepinephrine and epinephrine remain very active for 10 to 30 seconds; but their
activity declines to extinction over 1 to several minutes [115].
Before a transmitter substance secreted at an autonomic nerve ending can stimulate an
effector organ, it must first bind with specific receptors on the effector cells. There are
two major types of adrenergic receptors, alpha receptors and beta receptors. Nore-
pinephrine and epinephrine have slightly different effects in exciting the alpha and
beta receptors. Norepinephrine excites mainly alpha receptors but excites the beta
receptors to a lesser extent as well. Conversely, epinephrine excites both types of re-
ceptors approximately equally. Therefore, the relative effects of norepinephrine and
epinephrine on different effector organs are determined by the types of receptors in
the organs.
Sympathetic nerves are continuously active so all innervated blood vessels remain un-
der some degree of continuous constriction. Direct observation of the sympathetic
nerve activity shows that (i) discharges occur in a synchronized fashion, with many of
the nerves in the bundle being active at approximately the same time, and (ii) that
discharges generally occur with each cardiac cycle in a highly rhythmical fashion. Post-
ganglionic sympathetic nerves are composed of hundreds to thousands of unmyelinated
fibers that fire action potentials at almost the same time (synchronization) to give dis-
charges of summed spikes. Two features seem to characterize sympathetic discharges:
their firing frequency and amplitude. Some researches have made the hypothesis of
a differential control over the amplitude and frequency of sympathetic activity [173].
This hypothesis suggests that the network of cells involving the rostral ventrolateral
medulla (at brainstem) provide the basal level of nerve recruitment and determine
the firing frequency based on the intrinsic rhythmicity and phasic input from arterial
baroreceptors, but that inputs from cell groups with direct projections to the spinal
cord provide an extra level of gain/recruitment of fibers [173].
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Assessment of the sympathetic nerve activity: Because it is difficult to directly
record sympathetic outflow in humans, plasma concentrations of norepinephrine are
often used as a surrogate measure of postganglionic sympathetic nerve activity. Cau-
tion is warranted, however, as blood levels will be affected by changes not only in the
release of noreprinephrine but also in its reuptake and metabolism (clearance from the
blood). Furthermore, plasma norepinephrine provides limited insight into regional dif-
ferences in sympathetic nerve activity as it reflects the contribution of norepinephrine
spillover from all potential sources [241].
Radiotracer technology has been used extensively for studying norepinephrine kinetics
in humans and has now become a gold standard for assessing SNA in humans [173].
Norepinephrine in the plasma reflects the transmitter released by sympathetic nerves
that has spilled over into the circulation. Norepinephrine spillover rate gives the rate
at which norepinephrine released enters plasma and provides information about the
activity of sympathetic nerves in regions that are not accessible by percutaneous mi-
croneurography, such as the heart and kidney [59]. While this technique offers good
estimations of regional SNA, limitations are related to its low repeatability, to the fact
that it does not allows for continuous recording and to the evidence of non linear re-
lationship between actual sympathetic activity and the norepinephrine spillover [173].
Researchers have also attempted to use a measurement of heart rate variability
[1, 210, 172] (see also §1.2.3) as an index of sympathetic tone. However, there are
serious limitations to this technique. Specifically, while the low frequency variability
in heart rate is influenced by the sympathetic nervous system, there were also many
examples where known increases in SNA were not associated with changes in low fre-
quency variability [173, 79].
In humans, sympathetic activity is most often measured at the peroneal nerve, and the
most common measurement is muscle sympathetic neural activity, often called MSNA.
The technique involves the percutaneous insertion of a high-impedance tungsten mi-
croelectrode (the tip of which is only a few microns in diameter). Most sympathetic
neural recordings involve multiunit recordings, but single-neuron recordings are also
possible. The level of muscle sympathetic neural activity did not correlate to the
resting heart rate or blood pressure (within normal range) but was found to relate to
cardiac output and thus total peripheral resistance in males [173]. Muscle sympathetic
neural activity is characterized by a striking inter-individual variability in resting hu-
mans, but it is very reproducible in a given person [59]. Recently, it has been suggested
to be a good index of whole-body “net” sympathetic vasoconstrictor tone in healthy
young men [59].

Effect of the sympathetic nervous activity: As also shown in Table 1.3, the
sympathetic nerves have a dominant role in cardiovascular control due to their effects
to increase cardiac rate and contractility, cause constriction of arteries and veins,
cause release of adrenal catecholamines, and activate the reninangiotensin-aldosterone
system [241].

• Effects on the heart:
Cardiac sympathetic innervation of the heart includes innervation of the sinoa-
trial node, which allows sympathetic nerves to increase heart rate by increasing
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the slope of diastolic depolarization during the spontaneous sinoatrial node ac-
tion potential [59]. Sympathetic nerves also innervate the myocardium; increases
in sympathetic activity increase myocardial contractility and, therefore, increase
stroke volume. Thus, the sympathetic nervous system has both chronotropy
and inotropy effects on the heart [241]. Given the ability to modulate both car-
diac rate and stroke volume, the autonomic nerves provide an important remote
mechanism to rapidly adjust cardiac output to meet short-term changes in the
body’s needs. In humans, there is a good deal of tonic vagal discharge and a
moderate amount of tonic sympathetic discharge. The interplay of these tonic
activities results in a resting heart rate that is ≈ 30% lower than the intrinsic
heart rate of 90–100 beats/min and a cardiac output that is ≈ 30% higher than
in the absence of sympathetic discharge [173]. Additional sympathetic discharge
can increase heart rate and stroke volume and increase cardiac output. Con-
versely, withdrawal of tonic vagal or sympathetic discharge has opposing effects
to increase or decrease cardiac output, respectively [173].

• Effects on blood vessels: Sympathetic innervation of the peripheral vascula-
ture causes vasoconstriction primarily through the action of norepinephrine at
postsynaptic α-adrenergic receptors [59].
Vascular capacitance, mainly driven by venous capacitance, is strongly influ-
enced by sympathetic nervous activity. It is often overlooked that the venous
circulation receives considerable sympathetic innervation, and with 70% of the
blood volume can play a significant role in the acute cardiovascular responses to
sympathetic activation. Venoconstriction in the splanchnic circulation results in
a significant shift of blood towards the heart, increasing diastolic filling, and thus
increasing cardiac output. Blood that is forced out of the veins returns to the
heart, increasing end-diastolic volume and, via the Frank-Starling mechanism,
increasing stroke volume and cardiac output. As 20% of blood volume is located
in the veins of the splanchnic circulation, translocation of blood from this venous
reservoir due to sympathetic venoconstriction is a particularly effective way to
quickly redistribute blood from the venous side to the arterial side of the circu-
lation. Recently, it has been suggested that increases in venomotor tone driven
by sympathetic activity may be important mediators in cardiovascular disease
development [173].

• Effects on blood pressure: Sympathetic stimulation increases both propulsion
by the heart and resistance to flow, which usually causes a marked acute increase
in arterial pressure [115]. To understand how sympathetic activity can control
blood pressure, it is important to remind relationships reported in (1.1), which
show that blood pressure = cardiac output × total peripheral resistance. Flow
varies directly (and resistance inversely) with the fourth power of the vessel
radius. As a result, even small changes in vessel caliber can have relatively large
effects on vascular resistance and blood flow. Sympathetic neural control of
arteriolar resistance therefore offers a powerful mechanism to regulate regional
blood flows to individual organs and tissues. As the arterioles are the major
contributors to total peripheral resistance, sympathetic control plays a principal
role in the regulation of systemic blood pressure [241].
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Sympathetic control of blood vessels is mediated by the baroreflex, which is one
of the most important mechanisms for the short-term maintaining of the blood
pressure (see §1.2.2).

Pathophysiology: What distinguishes the sympathetic nervous system is the
emerging evidence that overactivity is strongly associated with a variety of cardio-
vascular diseases [173]. Whether this increased sympathetic activity acts as a driver of
the disease progression or whether it is merely a follower is currently matter of debate.
In the following, we revised some of the conditions that are known to be associated to
chronic sympathoexitation [59, 173].

• Hypertension: The study of the mechanisms underlying hypertension is clin-
ically relevant because hypertension is a causative factor in the development of
heart failure, renal failure, and stroke. The causes of sympathoexcitation in as-
sociation with hypertension are unclear but may involve increases in chemoreflex
sensitivity to hypoxia or hypercapnia [59]. However, it is important to consider
that in the vast majority of cardiovascular diseases, there is a disproportion-
ate increase in renal sympathetic activity compared with sympathetic activity
to the muscle [173]. Chronic changes in blood pressure may be related with
sympathetic action on the kidney.

• Heart failure: Among patients with heart failure, muscular sympathetic ac-
tivity is strikingly increased. In terms of the occurrence of sympathetic bursts,
a healthy person may experience 30 to 50 bursts per 100 heart beats, whereas
patients with heart failure can experience as many as 90 to 100 bursts per 100
heart beats. This extreme sympathoexcitation has been shown to be a predictor
of mortality for patients with heart failure [59, 151]. Rapid increases in cardiac
sympathetic activity are associated with ventricular arrhythmias, coronary occlu-
sion, and damage to myocytes associated with the resulting high norepinephrine
levels. Moreover, the degree of sympatho-activation appears to be a good indi-
cator of long-term prognosis [173]. The fundamental processes underlying the
sympathetic activation in heart failure remain uncertain.

• Obesity: Muscle sympathetic neural activity is increased markedly among obese
patients and decreases with weight loss induced by exercise and diet [59]. Obesity
is often related with hypertension, with up to 70% of newly diagnosed hyperten-
sive cases are attributable to obesity [173]. Obese hypertensive subjects present
high level of norepinephrine spillover from the kidneys. The mechanism(s) by
which weight gain elicits sympathetic neural activation remains unclear [173].

• Sleep apnea: Sleep-related breathing disorders play an important pathophysi-
ological role in cardiovascular disease, and sympathetic activation is thought to
be a key mechanism linking sleep apnea to cardiovascular disease. For instance,
in patients with obstructive sleep apnea, muscular sympathetic activity is in-
creased, even during the awake state without apnea [59]. Over time, periodic
nocturnal sympathetic activation related to apnea appears to evolve into a rise
in the mean daytime level of sympathetic activity.

• Mental stress: Large-scale studies link hypertension development with chronic
mental stress in the workplace. Blood pressure has been shown to be elevated
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soon after migration, presumably due to stress [173]. The role of the sympathetic
nervous system in these events need further studies.

The parasympathetic nervous system

The anatomical organization of the parasympathetic nervous system is shown in Fig.
1.3b. About 75% of all parasympathetic nerve fibers are in the vagus nerves (cranial
nerve X), passing to the entire thoracic and abdominal regions of the body. The vagus
nerves supply parasympathetic nerves to the heart, lungs, esophagus, stomach, entire
small intestine, proximal half of the colon, liver, gallbladder, pancreas, kidneys, and
upper portions of the ureters [115].
Parasympathetic division consists of long preganglionic fibers that synapse on short
postganglionic fibers arising from ganglia located close to the effector targets. There-
fore, parasympathetic discharge causes fairly localized responses [241].
Either all or almost all of the postganglionic neurons of the parasympathetic system
are cholinergic. Thus, as shown in Table 1.2, all or virtually all the terminal nerve
endings of the parasympathetic system secrete acetylcholine. Acetylcholine activates
mainly two types of receptors, called muscarinic and nicotinic receptors.

Effect of the parasympathetic nervous system:

• Effects on the heart:
Tonic parasympathetic activation predominates over sympathetic tone at rest
[200]. Parasympathetic stimulation on the heart causes mainly opposite effects
than sympathetic stimulation: decreased heart rate and strength of contraction.
Heart rate reduction is mediated by inhibition of the sympathetic nervous system
and by direct hyperpolarization of sinus nodal cells. The membrane hyperpo-
larization decreases the spontaneous firing rate of the sinoatrial node and slows
conduction in the atrioventricular node, thereby slowing the intrinsic heart rate
[200].

• Effects on blood vessels:
Parasympathetic stimulation has almost no effects on most blood vessels except
to dilate vessels in certain restricted areas, such as in the blush area of the face
[115].

• Effects on arterial pressure:
Parasympathetic stimulation can provoke a decrease in arterial pressure, because
it decreases pumping by the heart but has virtually no effect on vascular periph-
eral resistance [115]. Very strong vagal parasympathetic stimulation can almost
stop or occasionally actually stop the heart entirely for a few seconds and cause
temporary loss of all or most arterial pressure.

Clinical implications: While elevated sympathetic activity is associated with an
adverse prognosis, a high level of parasympathetic activation confers cardio-protection
by several potential mechanisms [200]. Epidemiological data indicate that the resting
heart rate, a measure of vagus nerve function, predicts mortality. The higher the vagus
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nerve activity is, the slower the heart rate is, the greater the increase in the parasym-
pathetic component of heart rate variability is, and the better the outcome is [200].
Moreover, parasympathetic activation and its physiological effects are attenuated in
heart failure. And either direct or indirect vagus nerve stimulation could have direct
beneficial effects on remodeling and clinical outcomes.

1.2.2 Baroreflex

The baroreflex is a negative feedback system that buffers short-term fluctuations in
arterial pressure [120] by modifying the cardiovascular variables which, as shown in
(1.1), determine arterial pressure. Under a variety of environmental and physiological
circumstances, arterial blood pressure is regulated around a narrow range and arterial
baroreflexes are critically important for the beat-to-beat regulation of blood pressure
[120]. The importance of the baroreflex has been demonstrated in several experimental
data in which it has been observed that, in many animal species, arterial baroreceptor
denervation results in an increase of the variability of blood pressure [151].
The arterial baroreflex senses changes in blood pressure via baroreceptors, which are
sensory afferent nerve endings mainly located in the carotid sinus and the aortic arch.
The baroreceptors respond to stretching of the vessel wall. In general, increases in
this stretching as the result of a short-term increase in blood pressure lead to an
increase in afferent input into central autonomic nuclei (notably the nucleus tractus
solitarius). This increase in afferent input results in a reflex decrease in sympathetic
neural outflow (sympathetic baroreflex), which in turn decreases vasoconstrictor tone,
myocardial contractility (to decrease stroke volume), and heart rate. These sympa-
thetic influences work in conjunction with parasympathetic influences on the sinoatrial
node to decrease heart rate (vagal cardiac baroreflex). During a short-term decrease
in blood pressure, the opposite occurs, and the autonomic nervous system acts to
increase vasoconstriction, increase stroke volume, and increase heart rate [59].

Baroreflex control of sympathetic and parasympathetic outflow: Figure
1.4 summarizes arterial baroreflex control of sympathetic and parasympathetic outflow
[120]. At normal arterial pressures (middle graphic in Fig. 1.4) there is activity from
all neural components of the arterial baroreflex: both afferent and efferent limbs. Both
resistance and capacitance vessels are partially constricted. With regard to determi-
nants of heart rate, the sinoatrial and atrioventricular nodes receive sympathetic and
parasympathetic innervation, and both efferent outflows are active at rest. Baseline
heart rate is determined by the balance between these two opposing influences and the
relative contribution of the sympathetic and parasympathetic nervous systems varies
among species. In conscious humans, basal parasympathetic nerve activity to the heart
is the major determinant of baseline heart rate, whereas basal sympathetic nerve ac-
tivity has small or negligible effects. In addition, variation in resting heart rate among
individuals is caused mainly by differences in basal parasympathetic tone. There are
significant differences in the time delay of the response mediated by parasympathetic
and sympathetic efferents. Following a rapid rise in arterial pressure, parasympathetic
activation produces an immediate reaction (between 200 and 600 ms) [151]. On the
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contrary, the reaction to cardiac and vasomotor sympathetic activation occurs with
a 2-3 seconds delay and reaches maximal effect more slowly. An even more sluggish
response has been observed in the baroreflex control of venous return. Therefore,
the ability of the baroreflex to control heart rate on a beat-to-beat basis is exerted
through vagal but not sympathetic activity [151]. However, even for fast maneuvers,
like standing up from the supine position, the ability to increase heart rate quickly is
not of primary importance. Heart-transplant patients provide dramatic proof of this
contention since they can only change their heart rate by way of circulating hormones,
like norepinephrine, which takes at least a minute to have effect on heart rate after
standing up. Still, these individuals can stand up without any problem [139]. How-
ever, when the sympathetic innervation to the vasculature is lost, as it may occur in
autonomic failure, then the patient can no longer stand up since blood pressure starts
to drop immediately and, after some 5 s, consciousness is lost due to cerebral hypoxia
[139]. Therefore, the sympathetic efferent part of the baroreflex is of much more im-
portance, since it induces vasoconstriction in response to a drop in blood pressure
[139, 140]. Thus, for the control of blood pressure sympathetic outflow to the heart
and vasculature is far more important than what the vagus nerve does to heart rate
[140].
Although baroreflex has been widely studied, many aspects of the cardiovascular con-
trol are still unclear. For instance, in a recent debate [81, 141, 136], the involvement
of the baroreflex in the respiratory sinus arrhythmia (oscillations in heart period syn-
chronous with respiration, described in §1.2.4) has been discussed. Some authors [141],
advocated that baroreflex should be considered as the main responsible for respiratory
sinus arrhythmia. Following this hypothesis, the first explanation of respiratory sinus
arrhythmia is that it is due to respiratory induced blood pressure oscillations that are
translated into heart rate oscillations by the baroreflex. Others suggested that respira-
tory sinus arrhythmia has a central origin [80, 81, 136] and is not baroreflex mediated
[240]. This debate clearly shows that cardiovascular control, including baroreflex, is
far from being completely understood and that much work is still needed.
In a recent study, orthostatic hypotension was observed in patients with pure auto-
nomic failure despite the increase in leg vascular resistance [111]. The results shown in
[111] demonstrate that leg vasoconstriction during orthostatic challenges in patients
with pure autonomic failure is not abolished. This indicates that the sympathetic ner-
vous system is not the sole or pivotal mechanism inducing leg vasoconstriction during
orthostatic challenges. Additional vasoconstrictor mechanisms may compensate for
the loss in sympathetic nervous system control.

Baroreceptors: In the normal operating range of arterial pressure, around 100
mmHg, even a slight change in pressure causes a strong change in the baroreflex
signal to readjust arterial pressure back toward normal. The baroreceptors respond
extremely rapidly to changes in arterial pressure; in fact, the rate of impulse firing
increases in the fraction of a second during each systole and decreases again during
diastole. Furthermore, the baroreceptors respond much more to a rapidly changing
pressure than to a stationary pressure. That is, if the mean arterial pressure is 150
mmHg but at that moment is rising rapidly, the rate of impulse transmission may
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Figure 1.4: Baroreceptor reflex responses to changes in arterial pressure. When arte-
rial pressure is elevated, afferent firing increases in carotid sinus nerve, which results in
decreased sympathetic nerve activity to heart and blood vessels and increased parasym-
pathetic nerve activity to heart, responses that will decrease arterial pressure. When
arterial pressure is lowered, the opposite responses occur. Also note the relationship
of phasic aortic blood pressure to firing of a single baroreceptor afferent nerve fiber at
different levels of mean arterial pressure (From [120]).

be as much as twice that when the pressure is stationary at 150 mmHg [114]. The
arterial baroreflex also responds to the normal small variations in blood pressure that
are continually induced by the respiratory cycle and by changes in posture in healthy,
resting humans.
Although the arterial baroreceptors provide powerful moment-to-moment control of
arterial pressure, their importance in long-term blood pressure regulation has been
controversial [114]. Some physiologists consider the baroreflex relatively unimportant
in chronic regulation of arterial pressure because baroreceptors tend to reset in 1 to 2
days to the pressure level to which they are exposed; the control level. This resetting
of the baroreceptors may attenuate their potency as a control system for correcting
disturbances that tend to change arterial pressure for longer than a few days at a
time. Experimental studies, however, have suggested that the baroreceptors do not
completely reset and may therefore contribute to long-term blood pressure regulation,
especially by influencing sympathetic nerve activity of the kidneys [114]. Recently, it
has been suggested that arterial baroreceptors play a role in long-term regulation of
arterial pressure under conditions of increased dietary salt intake [173].

Measurement of baroreflex sensitivity: Traditionally, baroreflex sensitivity
(BRS) is measured as the induced heart period lengthening (in ms) divided by the
causative change in previous systolic pressures (in mmHg) [139, 155]. Effectively, the
baroreflex appears to trade (unwanted) blood pressure variability for physiological
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heart rate variability. When the sympathetic baroreflex is less sensitive, the response
of the sympathetic nerves to a given change in arterial pressure will be less pronounced
and may be less able to return the pressure to baseline levels [59].
Originally, a pharmacological tool was used to quickly increase or decrease blood pres-
sure, i.e. an intravenous bolus injection of phenylephrine or nitroprusside, which in-
creases and decreases blood pressure, respectevely. While vasoconstrictor drugs, as
phenylephrine, allows one to mainly explore the vagal component of the baroreceptor
control of heart rate, the excitation of the sinus node that accompanies a reduction
in arterial pressure caused by the administration of vasodilators, as nitroglycerin, is
partly mediated through sympathetic mechanisms. Therefore vasodilators have been
used to obtain information on the sympathetic limb of heart rate control [151].
The lack of selectivity in the response has been claimed as one of the major limitations
of the use of vasoactive drugs. Indeed, the pressure stimulus causes a simultaneous ac-
tivation of multiple reflexogenic areas, particularly cardiopulmonary receptors, which
may interfere with or even counteract the arterial baroreceptor reflex. Moreover, va-
soactive drugs may directly affect the transduction properties of baroreceptors, the
central nervous system part of the reflex arc and the response of the sinus node [151].
Later, it was shown that this intervention could be replaced by the measurement
of spontaneous blood pressure variations and the ensuing heart period variations
[215, 225]. Specifically, the variations around the “Eigen frequency” of the baroreflex
at 0.1 Hz are useful, while the variations around respiratory frequency are controver-
sial [81, 136, 141, 142], for this purpose. Resonances in low frequency are induced
mainly by the latencies in the sympathetic efferent arm of the baroreflex, excited by
spontaneous variations in blood pressure. This explanation for the genesis of so-called
low-frequency blood pressure oscillations received its theoretical basis by the modeling
work of De Boer et al. [75, 139].
Two basic approaches have been established for spontaneous BRS quantification: one
based on time domain and the other on frequency domain measurements. In time-
domain, the sequence method [214] is based on the identification of three or more
consecutive beats in which progressive increases/decreases in systolic blood pressure
are followed by progressive lengthening/shortening in RR interval. The sensitivity of
the reflex is obtained by computing the slope of the regression line relating changes
in systolic pressure to changes in RR interval [151]. Evaluation of BRS by spectral
methods is based on the concept that each spontaneous oscillation in blood pressure
elicits an oscillation at the same frequency in RR interval by the effect of arterial
baroreflex activity [151]. There are some differences in the computational algorithms
of spectral indexes of BRS [155], which can be divided in autoregressive spectral meth-
ods [212, 168] and transfer function based methods [225].
However, BRS gives only a measure of part of the baroreflex, and not even the most
important component. It describes the ability of the baroreflex to change heart period
(or heart rate) in response to a change in blood pressure [139], while it gives no infor-
mation about the changes in the blood vessels operated by sympathetic nerves. Given
that the changes in heart period are principally related to the vagal efferent activity
to the heart, the BRS is sometime called vagal BRS or cardiac BRS [77]. For a more
detailed description of methods used for the assessment of spontaneous baroreflex sen-
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sitivity based in spectral analysis, please refer to §8.1.
An index of baroreflex control of sympathetic outflow (sympathetic BRS) is provided
by the relationship between muscular sympathetic nervous activity and diastolic blood
pressure during the drug boluses [77]. Diastolic blood pressure is used because muscu-
lar sympathetic nervous activity correlates more closely with diastolic blood pressure
than with systolic pressure. In a recent study [77], it was shown that that, within
individuals, there does not appear to be any direct correlation between the sensitiv-
ities of the cardiac and sympathetic efferent arms of the baroreflex mechanism, i.e.
between cardiac and sympathetic BRS. This result emphasizes the distinct pathways
associated with cardiac and sympathetic baroreflex control and the need to use caution
when drawing conclusions about the baroreflex as a whole if only one or the other arm
of the reflex is studied [77]. However, these observations do not reduce the clinical
relevance of cardiac baroreflex [151].

Clinical relevance: A quantitative description of baroreflex gain, that is, BRS, may
provide a useful index of neural regulation at the sinus atrial node. This information
has clinical and prognostic value in a variety of cardiovascular diseases, including my-
ocardial infarction and heart failure [151]. The knowledge that BRS may be altered
in patients with cardiovascular disease is not new [82]. Cardiovascular diseases are
often accompanied by an impairment of baroreflex mechanisms, with a reduction of
inhibitory activity and an imbalance in the physiological sympathetic-vagal outflow to
the heart, thus resulting in a chronic adrenergic activation [151].
Age and blood pressure have been demonstrated to be the most important correlates
of BRS. Although the exact mechanism is not known, loss of arterial distensibility is
generally regarded to be the main mechanism responsible for reduction of BRS in older
subjects [151]. The clinical relevance of spontaneous BRS analysis [215] is shown by
its ability to detect early impairment of autonomic function [96] and to provide infor-
mation of prognostic value, as in patients after stroke [226] or myocardial infarction
[149], or in the diagnosis of brain death [69]. In particular, the study described in [149]
enrolled almost 1300 patients under 80 years and showed that impaired vagal reflexes,
expressed by a depressed BRS (< 3 ms/mmHg), was a significant predictor of total
cardiac mortality, independently of well-established risk factors such as depressed left
ventricular function and the number of ectopic beats/hour [151].
Patients with low heart-rate variability or BRS have a reduced capability to antagonise
sympathetic activation through vagal mechanisms [149]. However, a low BRS added
predictive value to that of low heart-rate variability [149].
A number of papers have supported the pathophysiological and clinical relevance of
spontaneous BRS estimates. Indeed, the information yielded by laboratory and spon-
taneous methods appears to be complementary, when exploring the complexity inher-
ent in baroreflex cardiovascular modulation [213].

1.2.3 Heart rate variability

Heart rate is not constant, but varies over very short periods, even from beat to beat
[138]. These variations do not follow strictly regular patterns, but repeating phenom-
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ena may be observed. Best known is the respiratory sinus arrhythmia (see §1.2.4):
quickening of the heartbeat at inspiration, slowing at expiration [138]. This is entirely
vagally mediated. But this is not the only rhythm that can be discerned. Slow varia-
tions, with repetition periods of approximately 10 seconds, not related to respiration,
are present most of the time [135]. These may be very prominent in the upright posture
[138, 71]. Even slower rhythms can be observed over the course of the day if sufficient
time is allowed for recording, with the slowest one being the circadian pattern-speeding
heart rate up during the waking day and slowing it down during sleep.
In 1981, Akselrod et al. introduced power spectral analysis of these heart rate fluc-
tuations to quantitatively evaluate beat-to-beat cardiovascular control [2, 1]. From
the Eighties, heart rate variability analysis has received great attention from phys-
iologists, clinicians and bioengineers, because it was considered as a useful tool to
assess sympathetic and parasympathetic outflows [210, 171, 188]. Frequency-domain
analyses contributed to the understanding of the autonomic background of RR inter-
val fluctuations in the heart rate record [1]. However, as discussed in the following
paragraph, the usefulness of HRV indices to evaluate nerve traffic is controversial
[79, 172, 138, 215, 170].
The clinical importance of HRV became apparent in the late 1980s when it was con-
firmed that HRV was a strong and independent predictor of mortality following an
acute myocardial infarction [1].
Nowadays, heart rate variability analysis is considered as a non invasive methodology
of substantial utility to evaluate autonomic control mechanisms and to identify pa-
tients with an increased cardiac mortality [157]. It is accepted that it does not carry
quantitative measures of autonomic outflow [215, 170]. However, when associated to
other components of cardiovascular variability (blood pressure variability, respiration,
baroreflex etc.), heart rate variability provides important information about the auto-
nomic control of circulation, in normal and diseased conditions [215, 170].

Indices of HRV: Many indices have been proposed to quantify HRV properties.
Most of them were included in the Task Force of 1996 [1], and are reported in the
Table 1.4. They can divided in two groups:

• Time-domain indices:
These indices, reported in the upper part of Table 1.4, are the most simple. In
spite of their simplicity, a number of reports have confirmed, also in prospective
studies, their prognostic value as predictors of arrhythmic and total cardiac mor-
tality not only after myocardial infarction but also in patients with heart failure
[157, 1, 150]. In a continuous electrocardiographic (ECG) record, each QRS
complex is detected, and the so-called normal-to-normal (NN) intervals (that is
all intervals between adjacent QRS complexes resulting from sinus node depolar-
izations), are determined and mathematically processed [1, 223]. Time-domain
indices can be divided in two subgroups: statistical indices, mainly obtained form
mean and standard deviations of heart period, and geometric indices, mainly ob-
tained from the probability density function of the NN.

• Frequency domain indices:
Interest for frequency domain parameters derives from the possibility of iden-
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tifying periodic oscillations in HRV and to correlate these oscillation patterns
to neural discharge. In fact, vagal and sympathetic cardiac controls operate on
heart rate in different frequency bands [215]. Low frequency (LF; 0.04–0.15 Hz)
fluctuations in HR are affected by electrical stimulation of both vagal and sympa-
thetic cardiac nerves in animals. Similarly, in humans, LF powers are reduced by
either parasympathetic or sympathetic blockade; parasympathetic blockade by
atropine eliminates most HR fluctuations at high frequency (HF; 0.15–0.4 Hz);
thus, HRV at HF is a satisfactory, although partly incomplete, measure of vagal
cardiac control, whereas LF components reflect both sympathetic and parasym-
pathetic modulation, without excluding a role of humoral factors, gender and
age. The LF/HF ratio was proposed as measure of the sympatho-vagal balance
[210, 188] and was also effective to study autonomic control in those clinical con-
ditions associated with an increase sympathetic and reduced vagal modulation
of sinus node such as, for example, the acute phase of myocardial infarction or
the initial phases of heart failure [157]. Since the beginning, however, it was
evident that the physiological interpretation of LF and HF components and of
LF/HF ratio was progressively more problematic when moving from short-term
to 24 hour recordings, and recently it has been suggested that spectral analysis
of HRV must be restricted to short term recordings under controlled conditions
in order to measure more correctly and to interpret more safely LF and HF com-
ponents [157].
The origin and the interpretation of the LF rhythm of heart rate variability, is by
far the most controversial. It is known to be related to Mayer’s wave, oscillations
of arterial pressure lower than respiration with a period of approximately 10 s
[135]. Several data suggest that heart rate oscillations buffer Mayer’s wave [135].
Unfortunately, the function as well as physiological determinants of Mayer’s wave
frequency and amplitude are still largely unknown [135].

Clinical relevance: The clinical relevance of HRV analysis is related to the well-
established link between autonomic cardiac control and cardiovascular mortality, in-
cluding sudden cardiac death, with HRV being a key marker of such a relationship. In
fact, reduced HRV is associated with increased mortality after myocardial infarction
and increased risk of sudden arrhythmic death [215]. One of the basic assumptions
used to explain the negative predictive value of reduced HRV was the concept that
overall HRV was largely dependent on vagal mechanisms and that a reduction in HRV
could reflect an increased sympathetic and a reduced vagal modulation of sinus node;
i.e., an autonomic imbalance favouring cardiac electrical instability [157]. Changes in
HRV have been also shown to identify favorable changes in cardiac autonomic control
after cardiac resynchronization therapy in patients with severely symptomatic heart
failure [215]. These observations strongly suggest that HRV, in addition to represent-
ing a research tool, should become a more widely employed clinical parameter [215].

Criticisms: The usefulness of HRV indices has been seriously criticized by some
authors. Criticisms do not deny the clinical relevance of HRV, but they question its
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Table 1.4: Indices of HRV, from [1]. NN=NN intervals corresponding to heart period
during sinus rhythm; SD=Standard deviation

Variable (Units) Description

Time-domain
SDNN (ms) SD of all NN
SDANN (ms) SD of the averages of NN in all 5-min segments of the entire

recording
RMSSD (ms) The square root of the mean of the sum of the squares of

differences between adjacent NN
SDNN index
(ms)

Mean of the SD of all NN for all 5-min segments of the
entire recording

SDSD (ms) SD of differences between adjacent NN
NN50 count Number of pairs of adjacent NN differing by more than 50

ms in the entire recording
pNN50 (%) NN50 count divided by the total number of all NN
HRV triangular
index

Total number of all NN divided by the height of the his-
togram of all NN measured on a discrete scale with bins of
7.8125 ms (1/128 seconds)

TINN (ms) Baseline width of the minimum square difference triangular
interpolation of the highest peak of the histogram of all NN

Differential
index (ms)

Difference between the widths of the histogram of differ-
ences between adjacent NN measured at selected heights

Logarithmic in-
dex

Coefficient φ of the negative exponential curve ke−φ t,
which is the best approximation of the histogram of ab-
solute differences between adjacent NN

Variable (Units) Description

Frequency-domain
power (ms2) The variance of NN over 5 min
VLF (ms2) Power in VLF range (f ≤0.04 Hz)
LF (ms2) Power in LF range (f ∈ [0.04− 0.15] Hz)
LF norm (nu) LF power in norm units LF/(total power-VLF)x100
HF (ms2) Power in HF range (f ∈ [0.15− 0.4] Hz)
HF norm (nu) HF power in norm units HF/(total power-VLF)x100
LF/HF Ratio LF(ms2)/HF(ms2)
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physiological interpretation. In 1997, Dr Ekberg wrote a critical review [78] that sup-
port the opinion that calculations of sympathovagal balance, proposed ten years before
[210], may obscure rather than illuminate human physiology and pathophysiology. In
the paper, Dr Ekberg claimed that the ratio of the LF power to HF power is not
suitable to quantitatively evaluate autonomic nervous activity owing to the following
reasons [78]:

– Vagal contributions to baseline LF RR-interval fluctuations are great, and ev-
idence that baseline LF RR-interval spectral power is related quantitatively to
sympathetic-cardiac nerve traffic is nonexistent.

– Most evidence refutes the notion that LF RR-interval spectral power tracks
baroreflex-mediated changes of sympathetic nerve activity.

– Baseline respiratory-frequency RR-interval fluctuations are related significantly
but imperfectly to the level of human vagal-cardiac nerve traffic.

– Moderate changes of arterial pressure, which alter vagal-cardiac nerve activity,
do not change HF RR-interval fluctuations, and changes of breathing frequency
and depth, which profoundly alter HF RR-interval fluctuations, may not change
vagal-cardiac nerve activity at all.

Finally he questioned the hypothesis that sympathetic and parasympathetic nervous
systems continuously interact [79], suggesting that the construct of sympatho-vagal
balance imposes attributes on physiological regulatory mechanisms that they do not
possess [78].
This critical appraisal caused many of the members of the task force [1] to answer
to these criticisms to support the usefulness of HRV indices in cardiovascular control
analysis [172, 237, 169].
Ten years later, a series of editorial papers about whether cardiovascular variability is
or is not an index of autonomic control of circulation [215, 170] refocused the debate
about the role of HRV indices in physiology. All authors agreed that neither low
frequency (< 0.15 Hz) nor high frequency (> 0.15 Hz) indices can be used as exclusive
markers of sympathetic and parasympathetic activity, respectively [170]. And some
of them suggested that heart rate variability provides only a qualitative marker of
cardiac parasympathetic regulation through respiratory sinus arrhythmia (RSA). In
the debate, on one side, Taylor and Studinger [215, 170] argued that quantification of
autonomic activity has not been achieved, and suggested that efforts should be focused
on establishing more direct links to underlying physiology. For these authors, the point
is that there is more to be learned from cardiovascular periodicities than what they
may or not say regarding baseline levels of autonomic nerve traffic [215, 170]. On the
other side, Parati et al. [215, 170] claimed that HRV analysis has already established
a basis for autonomic interpretation of results and that future modeling will expose
underlying physiology.
These debates and discussions, which should include the more recent debate about
the origin of respiratory sinus arrhythmia [141, 81] and Mayer’s Wave [135], show that
research in cardiovascular variability is far from being over and much effort is needed
in multi-signal analysis.
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Representations of heart rate variability

In the literature, several methodologies to mathematically describe heart rate vari-
ability have been proposed. Here we report a brief description of the most common
ones:

• Interpolation: Heart rate variability can be estimated just by evenly resampling
the inverse interval function, i.e. the reciprocal of the heart period. In the
interpolation process, the n-th heart period should be arbitrarily assign to a given
temporal instant, which usually is the time of occurrence of one of the two QRS
complexes which determine the beginning and the end of the heart period. This
procedure is not based on a physiological model. The representation of a discrete
unevenly sampled time series as a continuous signal is often a requirement of
many signal processing techniques, among which there is time-frequency analysis.

• Autoregressive model: Autoregressive models as well as ARMA and ARMAX
models are widely used to describe heart rate variability and the interactions of
cardiovascular signals [165, 167, 31]. The use of these models is rarely motivated
by cardiovascular physiology, and is principally due to the possibility of using
very powerful methodologies of time series spectral and cross spectral analysis.
Although the use of these models is rarely based on cardiovascular physiology, it
offers the possibility of using very powerful methodologies of time series spectral
and cross spectral analysis.

• IPFM: The integral pulse frequency modulation (IPFM) model has been used to
explain the mechanisms of control of the autonomic system over the heart rate
[179, 178, 221]. The IPFM model is based on the hypothesis that the sympa-
thetic and parasympathetic influences on the sino-atrial node can be represented
by a single modulating signal, and the beat trigger impulse is generated when
the integral of this function reaches a threshold. The heart timing signal, which
assume the IPFM model, has been demonstrated to provide an unbiased esti-
mation of the ANS modulation, even in the presence of isolated ectopic beats
[179, 178]. Recently, a time-varying threshold IPFM model was proposed to be
used in situations in which the mean heart period is time varying, as during
exercise stress testing [18].

• Point process: Recently, a point process model has been also used to study heart
rate and heart rate variability [29, 28]. A point process is a random process
for which any realization consists of a set of isolated points in time. In this
framework, the waiting time until the next R-wave event or, equivalently, the
length of the next R-R interval, obeys an history-dependent inverse Gaussian
process probability density. The time-varying parameters of this model are esti-
mated by local maximum likelihood and assessed using a model goodness-of-fit
by Kolmogorov-Smirnov tests based on the time-rescaling theorem [28, 55]. The
mean and the standard deviation of the probability density function are used to
give instantaneous estimates of heart rate and heart rate variability. Recently,
this point process framework has been combined with bi-variate autoregressive
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models to include the influence of respiration and to assess cardiovascular inter-
actions [63, 62].

1.2.4 Respiratory sinus arrhythmia

Cardiorespiratory interactions are mediated by both mechanical effects related to
hemodynamics, and neural control mainly related to vagal (parasympathetic) activity.
Respiratory sinus arrhythmia (RSA) is the variation in heart rate that occurs during a
breathing cycle, or heart rate variability in synchrony with respiration. In short-term
HRV, RSA is the most prominent and consistent component. It appears in power
spectrum of RR interval as a peak within the so-called HF band (0.15–0.4 Hz) or,
more appropriately, as a peak at respiratory frequency. It is believed that RSA is
mediated solely by vagus due to the difference in frequency characteristics of signal
transfer between sympathetic and vagal modulation of heart rate. Because the mag-
nitude of RSA is attenuating with progressive suppression of cardiac vagal activity
and abolished by complete vagal blockage with atropine, RSA has been proposed and
widely used as a quantitative index of cardiac vagal function [117, 2, 229].
The magnitude of RSA increases with rest and decreases with strain or tension. RSA
is increased in the supine position and decreased in the upright position [211]. It be-
comes greatest during sleep and is greater during slow wave sleep than REM sleep. It
also increases with relaxation and decreases with physical and mental stresses [117].
Moreover, RSA decreases with advancing age and severity of cardiac diseases. In par-
ticular, in patients with coronary artery disease, RSA at rest decreases progressively
with advancing severity of coronary artery disease [117].
Although RSA was already studied at the beginning of XXth century, it is still far
from being completely understood, and it is consider a complex phenomenon whose
physiological role is still a matter of debate [246].
The importance of RSA is motivated by the following reasons: (i) It is frequently
employed as an index of cardiac vagal tone or even believed to be a direct measure of
vagal tone. For this reason RSA is classically described as a vagally mediated increase
and decrease in heart rate concurrent with inspiration and expiration, respectively.
(ii) It is used to index disease risk or severity [113]; (iii) It is a central point in the
evolution theory of neural control of cardiorespiratory interactions [112]. However,
there are many concerns regarding the interpretation of RSA, which are described in
the following section.

Interpretation of RSA: The simple magnitude of RSA is often assumed to be a
valid index of cardiac parasympathetic control. However, as explained in [112], there
are many significant caveats regarding vagal tone interpretation. The main concerns
are:

(i) Respiratory parameters of rate and volume can confound relations between RSA
and cardiac vagal tone. Alterations in respiration rate and tidal volume had
profound effects upon RSA magnitude: RSA magnitude under steady-state con-
ditions is inversely related to respiration rate and directly related to tidal volume.
However, these effect have been reported to be unrelated to directly determined
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levels of cardiac vagal tone [113]. A number of laboratory studies document that
within-individual changes in respiratory parameters of rate and tidal volume can
seriously confound the association of RSA and cardiac vagal tone. Respiratory
influences upon RSA amplitude become a problem for assessment of cardiac vagal
tone whenever respiratory rate and/or tidal volume substantially differ between
groups or conditions, and whenever RSA, respiratory parameters and cardiac
vagal tone all do not systematically covary with each other [112]. The most
likely explanation for the RSA variations due to changes of respiration rate and
volume, is that they are related to phasic patterning of vagal effects upon heart
rate, owning to respiratory gating [80]. Therefore, in this case RSA cannot be
used to quantitatively measure vagal tone.
To exclude respiratory confounding effects from RSA, subjects are sometimes
asked to breath at a paced rate [113]. Another technique is to adjust for the
influence of tidal volume. The measure is simply RSA divided by tidal volume
when time domain-measures are used [113], or the transfer function from cross-
spectral analysis of the RRI and respiratory time series when spectral analysis
is employed [62]. In both cases, it characterizes the amount of RSA amplitude
change per liter tidal volume. Due to the reciprocal relation between rate and
tidal volume, this adjustment may dampen or even eliminate the RSA depen-
dency upon respiration rate [112]. Finally, experts suggest that the only way
to ascertain whether RSA differences are related to respiratory parameters in a
particular study is to measure both respiration and RSA, as well as to examine
relations between the two [112].

(ii) Although within-subject relations between RSA and cardiac vagal control are
often strong, between-subject associations may be relatively weak [112]. Fur-
thermore, it is not clear what exactly individual differences in RSA represent.

(iii) RSA measurement is strongly influenced by concurrent levels of momentary phys-
ical activity, which can bias estimation of individual differences in vagal tone.
Therefore, it is plausible that even small laboratory differences in movement dur-
ing baseline measurement may produce effects upon RSA that could be wrongly
inferred as evidence of constitutional differences in autonomic control [112].

(iv) RSA amplitude is affected by beta-adrenergic tone and may not be a pure vagal
measure. RSA was shown to be sensitive to variations in cardiac vagal tone when
cardiac sympathetic tone was absent, or was relatively low and stable. However,
there is not confirmation about the parasympathetic specificity of RSA, i.e. that
RSA always specifically reflects cardiac vagal control independently from how
cardiac sympathetic activity changes [112]. However, it has been shown that
R-R interval correction of RSA can reduce or eliminate the influence of basal
levels of cardiac sympathetic tone. Concerning possible sympathetic effects on
RSA, it is worth mention that a pronounced decrease in RSA magnitude may
signify true reduction of vagal outflow from brain to heart, or a primary increase
in sympathetic tone that leads to an interaction with vagal activity, or both.

(v) RSA and cardiac vagal tone may dissociate under certain circumstances. Dis-
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sociation has been observed in experiments in which phenylephrine was used to
activate vagal baroreflex response. The relation between RSA and vagal tone
was relatively proportional and linear until heart rate slows down to very low
levels. As heart rate further decreases, so does magnitude of RSA [105]. Some
results suggest that the relation between RSA and vagal tone is quadratic across
the entire range of vagally mediated heart change [105].
Another instance of dissociation between cardiac vagal tone and RSA appears
to occur during stimulation of the carbon dioxide chemoreceptors [112].

Recently, it was suggested that the apparent associations between RSA and cardiac
vagal tone can be explained as indirect consequences; i.e., whenever the cardiac vagal
tone changes in response to the resting level of the cardiopulmonary system, RSA
appears to change parallel to it [117]. This hypothesis, which supports the idea that
the degree of respiratory modulation of cardiac vagal outflow and cardiac vagal tone
may be regulated separately and independently of each other, can explain the possible
dissociation between the respiratory cardiac vagal modulation and cardiac vagal tone
under certain conditions. According to this hypothesis, RSA should be considered as
an intrinsic resting function of cardiopulmonary system [117].

Origin of RSA: Three main hypothesis exist to explain the origin of RSA. Ac-
cording to them, RSA is due to (i) a central mechanism [81], (ii) the barobaroreflex
[75, 141, 142], (iii) the mechanical stretching of the sinoatrial node [44, 186]; (iv) or a
mixture of them [136].
Those who support the central origin for RSA, pointed out that vagal-cardiac motoneu-
ron membrane potentials fluctuate at respiratory frequencies, modulate responsiveness
of vagal motoneurons to arterial baroreceptor inputs, and impose a respiratory rhythm
on vagal-cardiac nerve traffic and heart periods. Therefore, central respiratory gating
of vagal motoneuron responsiveness [80] is sufficient to explain respiratory sinus ar-
rhythmia [81]. According to this hypothesis, the strong correlation between systolic
pressure and RR intervals at respiratory frequencies reflects the influence of respiration
on these two measures, rather than arterial baroreflex physiology [80, 15]. A central
mechanism is thought to be more likely than baroreflex also due to the observation
that the latencies between a change in the respiratory component of the arterial pres-
sure and a related change in the respiratory component of th RR (i.e. RSA) reported
in the literature is too short to be due to baroreflex mechanisms. Moreover, RSA is
still present in subjects with baroreflex failure [136], and causal analysis also support
the hypothesis that baroreflex can not be considered as the unique origin of RSA
[218, 247, 219, 136].
The hypothesis that RSA is mainly a reflex phenomenon, driven by incoming informa-
tion from baroreceptors, relies on a model [75, 47, 48]. According to this hypothesis the
RSA is due to respiratory induced blood pressure oscillations (mainly due to variations
in the stroke volume following intrathoracic pressure changes) that are translated into
heart rate by the baroreflex [141]. Consequently, RSA would reduce diastolic pressure
variability. This hypothesis does not refute animal experiments that show respiration
to modulate centrally the blood pressure to heart period reflex, but it suggests that
in awake humans this phenomenon is insufficient to explain respiration-to-heart rate
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Figure 1.5: Schema showing the effects of RSA and its inversion (inverse RSA) on
the relationship between alveolar gas volume and capillary blood flow during inspi-
ration and expiration. Horizontal bows and vertical arrows indicate the volume of
blood flow and the direction of gas flow, respectively. RSA improves respiratory gas
exchange efficiency though matching between alveolar ventilation and capillary perfu-
sion throughout respiratory cycle, while inverse RSA results in increased alveolar dead
space (wasted ventilation) and increased intrapulmonary shunt. (From [118, 117, 258])

relations [141].
A third hypothesis suggests that, given the complexity of human cardio-respiratory
physiology, RSA should be the results of many causes. Among others, there are the
feedback from the lungs and, possibly, atrial stretch receptors [142].
This debate points out the need of improved methodologies that undertake the limi-
tation of classical temporal or spectral analysis [236].

Physiological role of RSA Respiratory sinus arrhythmia is a physiologic phe-
nomenon reflecting respiratory-circulatory interactions universally observed among
vertebrates. Some studies have shown that the efficiency of pulmonary gas exchange is
improved by RSA, suggesting that RSA may play an active physiologic role [118, 258].
As shown in the schema of Fig. 1.5, the matched timing of alveolar ventilation and
its perfusion with RSA within each respiratory cycle could save energy expenditure
by suppressing unnecessary heartbeats during expiration and ineffective ventilation
during the ebb of perfusion. Thus RSA may have a positive influence on gas exchange
at the level of the lung via efficient ventilation/perfusion matching [258, 117]. This
hypothesis is in agreement with the definition of the RSA as an “intrinsic resting func-
tion of cardiopulmonary system” previously mentioned [117].
However, recent results [246] have been presented that do not support the hypothesis
that RSA optimizes pulmonary gas exchange efficiency via clustering of heart beats in
inspiration. In that study [246], contrary to assumptions in the literature, no signif-
icant clustering of heart beats was observed, even with high levels of RSA enhanced
by slow breathing [246]. It is suggested that some process other than the clustering
of heart beats may be responsible for previously reported associations between RSA
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and indexes of pulmonary gas exchange efficiency. Authors speculate that the en-
hancement of gas exchange may be mediated by mechanical effects. The falling intra
thoracic pressure associated with spontaneous inspiratory efforts lowers right atrial
pressure and facilitates blood flow to the right ventricle because the rate of venous
return changes inversely with right atrial pressure. This bolus-increased venous return
during inhalation may be transmitted to the pulmonary artery on subsequent beats,
resulting in a matched increase in both pulmonary capillary blood flow and alveolar
ventilation. This thoracic pump effect, which is distinct from RSA, may be greater
during slower breathing and may confound the apparent relationship between RSA
and pulmonary gas exchange efficiency [246].

1.3 Methodological aspects

In this section we give a short and non exhaustive description of different methodologies
currently used to analyze the time-varying spectral content of time series. In the last
decades, a vast number of time-varying/time-frequency techniques has been applied to
biomedical signals, mainly related to cardiovascular or neural systems [165, 31, 46, 255].
Broadly speaking, most of these techniques can be divided in two categories, which
include parametric and non-parametric analysis. In the following, we briefly introduce
these techniques.

1.3.1 Parametric autoregressive approaches

A time-series y1(n) can be seen as a realization of a stochastic process of type:

y1(n) = −
p

∑

k=1

a11(n, k)y1(n−k)+

p
∑

k=1

a12(n, k)y2(n−k)+. . .+

p
∑

k=1

a1M(n, k)yM(n−k)+ξ1(n)

(1.2)
In this expression, y1(n) is seen as the results of a linear combination of its own previous
values, trough coefficients a11(n, k); a linear combination of previous values of other
stochastic processes yj(n), with j ∈ {2, . . . ,M}, through coefficients a1j(n, k); a white
noise noise ξ1(n), which confers to the time series its stochastic behavior and accounts
for the phenomena that cannot be explained by the model. Indices n and k are time
instant, that can be both evenly and unevenly spaced on the temporal axis. Uneven
regressions are sometimes used to describe discrete events as heart rate or systolic and
diastolic arterial pressure [27, 31, 4].
Writing the relationships of type (1.2) for the rest of time-series yj(n), we can describe
a linear multivariate system as [168]:

Y(n) =

p
∑

k=1

A(n, k)Y(n− k) +Ξ(n) (1.3)

where A(n, k) is a M ×M matrix which contains coefficients aij(n, k). In this formu-
lation, time-varying properties of the system are captured by time-varying coefficients
aij(n, k), which account for the influence that, at a given time instant n0 − k0, the
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signal yj(n) execrts over the signal yi(n) at time n0.
The maximum number of samples considered in the regression, i.e. p, is the order of
the model, and it plays an important role in the fitting capability of the model.
Once that the coefficients of the model have been estimated, owing to the Z transform,
it is possible to obtain the transfer functions that characterize the response of each
part of the system in the frequency domain. From the transfer functions, it is then
straightforward to obtain spectral and cross spectral densities of time series yi(n).
Thus, the primary reasons of the great success of autoregressive modeling of time-series
are: (i) The possibility of estimating the (time-varying) power spectral densities of the
analyzed signals; (ii) The possibility of automatically decomposing the spectra in dif-
ferent components, which describe the separate contributions that underlying sources
has on the global system; (iii) The possibility of assessing mutual relationships between
the spectral components of the system, even when closed loop are present in the system
[255, 261, 84, 46]. In the presence of closed loop, multivariate autoregressive analysis
can provide an assessment of direct and indirect causal interactions. Interest in causal
analysis has been the objective of many recent studies [14, 87, 83, 85, 194, 193, 217].
Autoregressive parametric analysis should include two main steps: identification and
validation. The coefficients of the model are usually identified by minimizing the
estimation error. The most used procedures for time-varying identification include re-
cursive least square algorithm, Kalman filters and local maximum likelihood [165, 29].
An alternative option, which is supposed to reduce the great variance of recursive least
square algorithms, consists in performing an (off-line) expansion of the coefficients onto
a set of predetermined basis functions [89, 186]. The set up of a multivariate model
requires some information about the system being described. Prior information about
the input/output relationships between the different signals of the systems should be
included in the model. The order of the model is a very important parameter. Al-
though sometimes the selection of the order of the model is based on physiological
assumptions [4], the most of the time it is selected following the optimization of some
ad-hoc criteria. The most used one is probably the Akaike information criterion, which
measures the trade off between accuracy and complexity of the model. The identifi-
cation procedure provides an approximation of the true coefficients. The goodness of
this approximation depends on practical factors, such as the length of the data, and
on the parameters used in the identification procedure itself. Thus, it is of primary
importance to quantify the goodness of fit of the model to demonstrate its validity.
Common validation procedures aim at verifying the whiteness and uncorrelation of
the residuals of the model [85, 255].
The model described in (1.3) is often reduced to a monovariate one, with M = 1, to
perform time-varying spectral analysis of a single time-series. Although multivariate
autoregressive models can be used to described complex systems, they are not the
most general ones. For instance, one can include a dependence of yj(n) on past values
of the white noises that enter in the model as input. When a regression on past values
of ξj(n) is included, the model is called autoregressive moving average (ARMA) model
[204]. A monovariate time-varying ARMA model is used in §2 to generate real-like
HRV signals with predetermined spectral properties. Exogenous inputs with a colored
spectrum can also be added to the model, thus providing the so called ARX or AR-
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MAX models. Although more and more complex models can be appealing since they
may be used to explain more and more detailed interactions, caution should be used
in increasing their complexity, since the more complex the model is, the less reliable
their estimated coefficients can be.
Multivariate autoregressive models are linear in their coefficients. Although non-linear
models may better describe systems in which non-linear behaviors as hysteresis and
saturation have been observed, linear models may be preferable, because they are much
more intuitive and may therefore be more useful in gaining insight into neural regula-
tory functioning [255]. Recently, some approach for time-frequency identification that
include both time and frequency shift have been proposed [129].

1.3.2 Non-parametric approach

Non-parametric methodologies have been mainly used to give a joint time-frequency
representation of a signal. Although these methodologies usually assume a determin-
istic structure for the signals being analyzed, they can also be used to infer second
order properties of non-stationary random processes [182].
Non-parametric multivariate analysis is usually limited to the simultaneous process-
ing of couples of signals, in which a signal is seen as the input and the other as
the output of an implicit open loop model. Cross time-frequency analysis, which al-
lows assessing these input/output interactions, is a very recent domain of research
[252, 181, 110, 144]. Much of the work presented in this dissertation aims at extending
cross time-frequency analysis to the study of cardiovascular interactions, by means of
time-frequency coherence (see §4) and phase difference spectrum (see §5) based on a
particular representation called smoothed pseudo Wigner-Ville distribution.
Time-frequency representations can be grouped in linear and quadratic (or bilinear)
distributions [123, 92, 8].

Linear time-frequency distributions: Linear time-frequency distributions in-
clude very popular techniques, such as the spectrogram and the continuous wavelet
transform. Spectrogram is defined as the squared magnitude of the short-time Fourier
transform:

SS(t, f) =

∣

∣

∣

∣

∫

+∞

−∞

x(τ)h(τ − t)ej2πfτdτ

∣

∣

∣

∣

2

(1.4)

where h(t) is a sliding window. Spectrogram provides uniform resolution in the
time-frequency domain, and it is characterized by a severe trade-off between time
and frequency resolution. That is, the better the signal is described in time direction,
the worse it is described in frequency direction. The multitaper spectrogram, which
is obtained by averaging different spectrograms estimated by using orthogonal sliding
windows, will be used in §4.4. Please refer to §4.4 for a more detailed discussion of
advantages an drawbacks of the spectrogram.

Continuous wavelet transform is obtained by projecting a signal on a family of
zero-mean functions (the wavelets) deduced from an elementary function (the mother
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wavelet) by translations and dilations [10]:

W(t, a) =

∫

+∞

−∞

x(τ)Ψt,a(τ)dτ (1.5)

Ψt,a(τ) =
1

√

|a|
Ψ(

τ − t

a
) (1.6)

The variable a is a scale factor, in the sense that |a| > 1 dilates and |a| < 1 compresses
Ψt,a(t). By definition, the wavelet transform is more a time-scale than a time-frequency
representation. However, for wavelets which are well localized around a non-zero fre-
quency f0 at scale a = 1, a time-frequency interpretation is possible thanks to the
formal identification f = f0

a
. The squared magnitude of the continuous wavelet trans-

form, |W(t, a)|2, also called scalogram, can be used to estimate the time varying spec-
tral density of a signal. Since when the scale factor a changes both the bandwidth
and the duration of the wavelets Ψt,a(t) change, the continuous wavelet transform uses
short windows at high frequencies and long windows at low frequencies [10]. Therefore,
contrary to the spectrogram that uses a fixed window h(t), W(t, a) is characterized by
a non uniform time-frequency resolution. A better time resolution is used to represent
high frequency components, while a better frequency resolution is used to represent
low frequency components.
Continuous wavelet transform has been used in heart rate variability analysis [245],
and more recently it has been applied to characterize cardiovascular and cardiorespi-
ratory interactions [144, 145, 97, 66]. Note that in §4.6 a comparison between wavelet
coherence and a new time-frequency coherence function proposed in this dissertation
is carried out.

Quadratic time-frequency distributions: Quadratic, or bilinear, distribution are
used in §3–§5. Please, refer to §3.1 for an introduction of these particular class of rep-
resentation.
Here, we just would like to stress that both linear and quadratic time-frequency dis-
tributions can be obtained as a convolution of a time-frequency kernel function with
a particular distribution called Wigner-Ville distribution (see (3.7)) [92]. Therefore,
wavelets, spectrograms and quadratic time-frequency representations should not be
seen as independent analytical tools, and their performance is mainly due to the shape
of the kernel functions.

Other non-stationary approaches: Empirical mode decomposition (EMD) is a
recent tool, proposed for analyzing non-stationary signals. As suggested by its name,
EMD is more like an algorithm (an empirical approach), rather than a theoretical tool.
The EMD reduces any given time-series into a collection of intrinsic mode functions
(IMF). An IMF is defined as a function that satisfies the following requirements: (i) In
the whole time series, the number of extrema and the number of zero-crossings must
either be equal or differ at most by one. (ii) At any point, the mean value of the
envelope defined by the local maxima and the envelope defined by the local minima
is zero. Therefore, contrary to Fourier analysis, which is based on harmonic functions
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that are constant both in amplitude and frequency, EMD provides a decomposition
of the signal on simple oscillatory modes, which can have variable amplitude and
frequency along the time axis.
After having decomposed a signal into its IMF, one can apply Hilbert spectral analysis
to obtain instantaneous frequency and amplitude of the IMF, thus characterizing the
time-frequency structure of the signal. This combination of EMD and Hilbert spectral
analysis is called Hilbert-Huang transform [127]. Alternatively, one can also analyze
the IMF by means of time-frequency distributions and subsequently reconstruct the
entire time-frequency spectrum of the signal.
Applications of empirical mode decomposition to cardiovascular analysis can be find
in [191, 239, 97, 163].
Recently, a bivariate extension of EMD has been proposed [224]. In this framework,
a simultaneous decomposition of two signals is realized by first considering the two
signals as the real and imaginary part of a complex signal, and then by extracting
zero-mean rotating intrinsic components. This methodology could be applied to the
simultaneous analysis of cardiovascular signals.

1.4 Objectives and outline of the manuscript

The main global objective of this thesis is to propose a time-frequency framework to
characterize the dynamic interactions between cardiovascular signals and to demon-
strate it usefulness in physiological applications. The methodologies should be both
accurate and robust, and should include the possibility of performing multi-signal
analysis.
As described in the previous sections, the cardiovascular system includes many differ-
ent mechanisms of regulation which allows responding to continuously time-varying
conditions and stimuli. Therefore, the functioning of the system is itself intrinsically
non-stationary, and both the structure of the cardiovascular signals and the relations
between them are expected to change during time. In the analysis of the system, these
temporal variations should be taken into account and properly characterized.
In the first part of the dissertation, the methodological aspects of the thesis are treated.
This part is divided in four chapters, each one reflecting different objectives.

Chapter §2: In this chapter, we address the problem of generating non-stationary
random processes that mimic cardiovascular signals such as heart rate variability or
systolic arterial pressure. The aim of this study is to generate stochastic processes
with predetermined and controlled time-frequency structure to be used to evaluate
our methods of analysis. The use of stochastic processes to evaluate Cohen’s class
distributions is of interest since they are known to perform very well when applied to
the study of deterministic signals. We present two methodologies to generate real-like
heart rate variability signals by means of time-varying ARMA models.
Part of the work presented in this chapter has been published in:

[204] Orini, M., Bailón, R., Mainardi, L., Laguna, P.: Synthesis of HRV signals char-
acterized by predetermined time-frequency structure by means of time-varying ARMA
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models. Biomedical Signal Processing and Control, In Press, – (2011)
[203] Orini, M., Bailón, R., Laguna, P., Mainardi, L.T.: Modeling and estimation of
time-varying heart rate variability during stress test by parametric and non parametric
analysis. In: Proc. Computers in Cardiology, pp. 29–32 (2007)

Chapter §3: In this chapter, we address the problem of reliably characterizing the
time-frequency structure of the heart rate variability signal. This chapter includes
an introduction to the distributions belonging to the Cohen’s class and a description
of the interference terms geometry. The smoothed pseudo Wigner-Ville distribution
is evaluated by using signals generated with a framework presented in §2. Finally, a
method that performs a parametric decomposition of the Wigner-Ville distribution is
presented.

Chapter §4: In this chapter, we address the problem of quantifying the local cou-
pling between the spectral components of non-stationary cardiovascular signals. The
aim of the work presented in this chapter is to propose some advanced time-frequency
techniques to perform non-stationary coherence analysis. The tracking of the coher-
ence level between cardiovascular oscillations gives valuable insight into the dynamic
interactions between different signals of the system.
The chapter includes: Two methodology to estimate time-frequency coherence by
smoothed pseudo Wigner-Ville distribution and error analysis by means of a simu-
lation study; a methodology to estimate time-frequency coherence based on multita-
per spectrogram; two methods to estimate a threshold function to assess the sta-
tistical significance of the local coupling; a comparative study between coherence
by smoothed pseudo Wigner-Ville distribution, multitaper spectrogram and wavelet
transform, which also includes the analysis of physiological signals.
Part of the methodologies presented in this chapter has been published in:

[205] Orini, M., Bailón, R., Mainardi, L., Laguna, P., Flandrin, P.: Characterization of
the dynamic interactions between cardiovascular signals by time-frequency coherence.
IEEE Trans. Biomed. Eng., In Press (2011)
[206] Orini, M., Bailón, R., Mainardi, L.T., Mincholé, A., Laguna, P.: Continuous
quantification of spectral coherence using quadratic time-frequency distributions: er-
ror analysis and application. Proc. Computers in Cardiology (2009)
[202] Orini, M., Bailón, R., Gil, E., Minardi, L.T., Laguna, P.: Framework for continu-
ous quantification of spectral coherence using quadratic time-frequency distributions:
exploring cardiovascular coupling. International Journal of Bioelectromagnetism 12,
177–182 (2010)

Chapter §5: In this chapter, we address the problem of estimating phase difference
and time delay between the spectral components of two non-stationary cardiovascular
signals. This represent an extension of the cross time-frequency analysis presented
in §4. The phase difference spectrum is estimated by means of smoothed pseudo
Wigner-Ville distribution and the time course of cross spectral indices is estimated
in specific signal-dependent time-frequency regions. Different simulation studies are

31



Chapter 1. Introduction

carried out to assess the performance of the presented estimators. Part of the work
presented in this chapter has been published in:

[207] Orini, M., Bailón, R., Mainardi, L.T., Laguna, P.: Time-frequency phase differ-
ences and phase locking to characterize dynamic interactions between cardiovascular
signals.Conf Proc IEEE Eng Med Biol Soc (2011)
[208] Orini, M. and Laguna, P. and Mainardi, L.T. and Bailón, R.: Characterization
of the dynamic interactions between cardiovascular signals by cross time-frequency
analysis: phase differences, time delay and phase locking. Proc. Conf. on numerical
method in engineering (2011)

In the second part of the manuscript, three applications of cross time-frequency
analysis are described.

Chapter §6: In this chapter, we characterize the pattern of response of the auto-
nomic modulation of heart rate to musical stimuli characterized by different emotional
valence but same arousal. Additionally, we also explore music-induced changes in the
respiratory rate and in the cardio-respiratory coupling. The aim of this work is to
assess whether the emotional valence of music may provoke specific responses in the
autonomic modulation.
Part of the work presented in this chapter has been published in:

[201] Orini, M., Bailón, R., Enk, R., Koelsch, S., Mainardi, L.T., Laguna, P.: A
method for continuously assessing the autonomic response to music-induced emotions
through HRV analysis. Med. Biol. Eng. Comput. 48(5), 423–433 (2010)

Chapter §7: In this chapter, we compare the time-frequency structure of heart rate
variability and pulse rate variability derived from photoplethysmography signal, dur-
ing tilt table test. The goal is to assess whether the pulse rate can be used as an
alternative measurement of heart rate variability in non-stationary conditions. Time-
frequency and time-frequency coherence analysis are used. Part of the work presented
in this chapter has been published in:

[100] Gil, E., Orini, M., Bailón, R., Vergara, J.M., Mainardi, L.T., Laguna, P.: Pho-
toplethysmography pulse rate variability as a surrogate measurement of heart rate
variability during non-stationary conditions. Physiol. Meas. 31(9), 1271 (2010)
[101] Gil, E., Orini, M., Bailón, R., Vergara, J.M., Mainardi, L.T., Laguna, P.: Time-
varying spectral analysis for comparison of HRV and PPG variability during tilt table
test. Conf Proc IEEE Eng Med Biol Soc 2010, 3579–3582 (2010)

Chapter §8: In this chapter, we use the methodology of cross time-frequency
analysis presented throughout chapters §4–§5 to study the dynamic interactions
between R–R variability and arterial pressure variability during tilt table test and
during rest. The goals of the study are: characterize the temporal evolution of
the coupling and phase difference between the two signals; track the changes of
the baroreflex sensitivity during tilt; assess the usefulness of time-varying signal
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processing to analyze signals recorded in conditions usually supposed to be stationary.
Part of the work presented in this chapter has been published in:

Orini, M., Laguna, P., Mainardi, L.T., Bailón, R.: Assessment of the dynamic
interactions between heart rate and arterial pressure by cross timefrequency analysis.
Physiol. Meas. In Press (2011)
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Chapter 2. Time-frequency synthesis

2.1 Introduction

As already mention in the previous chapter, spectral analysis of heart rate variability
(HRV) is a non invasive tool widely used to assess the regulation of the autonomous
nervous system over the heart [1]. The spectrum of HRV is characterized by two main
spectral components: the low frequency (LF) component, defined in [0.04, 0.15] Hz,
and the high frequency (HF) component, defined in [0.15, 0.4] Hz. The power in the
HF band is considered a measure of parasympathetic activity. The power in the LF
band is considered a measure of sympathetic and parasympathetic activity, being its
interpretation controversial when, e.g. the respiratory frequency lies in the LF band.
For a more in depth description of the physiological mechanisms determining HRV,
please refer to §1.2.3.
Traditional spectral analysis requires stationarity and can not be applied in a wide
range of clinical and physiological studies, such as exercise stress testing, tilt table
test, experiments of induced emotions, etc., in which time-frequency (TF) techniques
should be preferred. Given that the number of HRV studies which involve TF anal-
ysis is increasing [165] and non-stationary signal processing is becoming the rule in
cardiovascular analysis, there is a need of evaluation procedures to assess the per-
formance of TF techniques on each specific application. This can be done by ana-
lyzing simulated HRV signals characterized by predetermined real-like time-varying
(TV) spectral patterns. In simulation studies, signals related to the autonomic mod-
ulation are often modeled as the sum of two deterministic tones embedded in noise
[164, 58, 146, 19, 216]. Nevertheless, the nature of biological signals is not completely
deterministic [104], and TV autoregressive models are widely used to estimate HRV
spectral indices as well as to describe the interactions between cardiovascular signals
[33, 42, 46, 71, 88, 87, 156, 165, 166, 187, 261].
In this chapter, we propose to use TV autoregressive models to create HRV signals
with known and controlled TF structure with the purpose of providing a useful tool for
the assessment of different TF methodologies before being used in clinical applications.
In the validation of these techniques, the use of non-stationary stochastic processes is
complementary to the use of synthetic signals created by using deterministic models.
Our attention is focused on the modeling of exercise stress testing and experiments
of music-induced emotions. Exercise stress testing [19, 187] is a common test during
which cardiovascular parameters vary quickly within a wide range of values. Re-
cently, indices of HRV during this test have been used in the diagnosis of coronary
artery diseases [21, 22, 248]. The validation of TF techniques used in HRV analy-
sis during experiments of music-induced emotions deserves attention since in recent
years the interest in therapeutic applications of music has increased, as well as the ef-
fort to understand the relationship between music features and physiological patterns
[39, 40, 106, 107, 201].
In §3, this framework will be used to evaluate the performance of the smoothed pseudo
Wigner-Ville distribution in non-stationary HRV analysis.
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2.2 Methods for the synthesis of non-stationary

HRV signals by TV-ARMA models

2.2.1 General framework

A time-varying autoregressive moving average (TV-ARMA) model can be used to
describe non stationary signals:

x(n) = −
p̃

∑

k=1

ak(n)x(n− k) +

q̃
∑

k=0

bk(n)ξ(n− k) (2.1)

where ak(n) and bk(n) are TV coefficients, p̃ and q̃ are the orders of the AR and MA
part of the model, respectively, and ξ(n) is a zero-mean unit-variance white Gaussian
noise. The TV transfer function of (2.1), H(n, z), and the TF model function of the
random process x(n), S(n, f), can be derived from the coefficients of the model as:

H(n, z)=

∑q̃
k=0 bk(n)z

-k

1 +
∑p̃

k=1 ak(n)z
-k
=

∏q̃
k=1

(

z − zk(n)

)

∏p̃
k=1

(

z − pk(n)

)b0(n)z
(p̃-q̃) (2.2)

S(n, f)=|H(n, f)|2=
[

b20(n)
∏q̃

k=1 |z − zk(n)|2
∏p̃

k=1 |z − pk(n)|2

]

z=ej2πf

(2.3)

where f ∈ [−0.5, 0.5] is the normalized frequency; zk(n)=|zk(n)|ej∠zk(n) and
pk(n)=|pk(n)|ej∠pk(n) are the zeros and poles of H(n, z), whose magnitude and phase
are denoted as | · | and ∠·, respectively. Poles and zeros are numbered in increasing
order according to their phase (i.e., as 0, ...,∠p1(n),∠p2(n), ..., 2π).
When a complex pole is sufficiently close to the unit circle and far from other poles,
its power is given by the pole residue [134, 33]:

Pi(n)=ℜ







∏q̃
k=1

(

pi(n)− zk(n)
)
∏q̃

k=1

(

p-1
i (n)− z∗k(n)

)

b20(n)

pi(n)
(

p-1
i (n)− p*

i(n)
)
∏p̃

k=1
k 6=i

(

pi − pk(n)
)(

p-1
i (n)− p*

k(n)
)






(2.4)

Given a predetermined S(n, f), one of the goal of this chapter is to obtain simple closed-
form expressions that allow to estimate the polar configuration of the corresponding
transfer function H(n, z). The rational for searching these closed-form expressions is
to easily design any suitable spectral pattern for the stochastic processes being used
in simulation studies.
The simulation process involves three steps: (a) Choice of the desired TF structure
of signal x(n), which is defined by a set of design parameters; (b) Estimation of the
corresponding H(n, z) and (c) Synthesis of the desired signals, by regressing the model
coefficients with the white noise ξ(n) as in (2.1).
Two general frameworks, which differ in the choice of the parameters that characterize
the TF structure of the signals, are proposed. The first framework (I-FS) is proposed
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to reproduce signals characterized by a desired TF model function S(n, f), while the
second one (II-FP) is proposed to generate signals characterized by predetermined
instantaneous frequencies and powers. Since in TF analysis HRV usually presents at
least two well defined spectral peaks, corresponding to the LF and HF components,
we only considered zero-pole configurations yielding S(n, f) with two well resolved
narrow-band spectral peaks.

2.2.2 Framework I-FS

In framework I-FS, TV-ARMA models are used to reproduce a predetermined
TF model function S(n, f) composed by spectral peaks of instantaneous amplitude
S(n, fi(n)) and normalized frequency fi(n), with i ∈ {1, . . . , p̃}. The desired shape of
S(n, f) is approximated by fi(n), S(n, fi(n)) and by appropriately positioning the zeros
zk(n) in the polar plane (see §2.2.4 for details). To estimate H(n, z), (2.3) should
be solved with respect to pk(n). This is done by considering that the amplitude of a
spectral peak centered on fi(n) is:

S(n, fi(n)) =

[

∏q̃
k=1 |z − zk(n)|2

∏p̃
k=1 |z − pk(n)|2

b20(n)

]

z=ej2πfi(n)

(2.5)

where |z − pk(n)| represents the distance between the point z = ej2πfi(n), located on the
unit circle at phase 2πfi(n), and the pole pk(n). Every pole is assumed to correspond
to a spectral peak. Given that zk(n) are design parameters, the numerator of (2.5) is
a known quantity Ni(n), while the terms in the denominator are estimated by means
of the cosine formula:

∣

∣ej2πfi(n) − pk(n)
∣

∣

2

= |pk(n)|2 + Ai,k(n)|pk(n)|+ 1 (2.6)

Ai,k(n) = −2cos
(

2πfi(n)− ∠pk(n)
)

; i, k ∈ {1, . . . , p̃} (2.7)

Inserting (2.6) in (2.5), we obtain a set of equations Ei:

Ei :

p̃
∏

k=1

(

|pk(n)|2 + Ai,k(n)|pk(n)|+ 1

)

=
Ni(n)

S(n, fi(n))
b20(n), (2.8)

with i ∈ {1, . . . , p̃}. The solution of the system (2.8) provides the value of the parame-
ters |pk(n)| and b0(n) which define the pole configuration of H(n, z) and consequently
the coefficients ak(n) and bk(n).
To model the HRV, which in short-term analysis is characterized by the simulta-
neous presence of two main spectral components, four poles are used (p̃ = 4). In
Fig. 2.1, the graphic representation of (2.5) for a model of order (p̃, q̃) = (4, 2)
evaluated at fi(n0) = fLF(n0) is shown. Black and gray arrows represent the fac-
tors that appear in the denominator and in the numerator of (2.5), respectively. The
model includes two complex conjugate poles associated to the LF component, namely
pLF(n) = p1(n) = p*

4(n), and two complex conjugate poles associated to the HF compo-
nent, namely pHF(n) = p2(n) = p*

3(n). Thus, in this example z1(n) and z2(n) are placed
on the unit circle and constrain the spectrum to vanish at frequency ± 1

2π
∠z1(n). The
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pLF(n0)

pHF(n0)

p*
HF(n0)

p*
LF(n0)

z1(n0)

z2(n0)

ej2πfLF(n0)

2πfLF(n0)

2πfHF(n0)

0 ≡ 2π

Figure 2.1: Configuration of a TV-ARMA model of order (4,2) for a given time instant
n = n0. Crosses and circles represent poles and zeros, respectively, while black and gray
arrows correspond to the term in the denominator and numerator of (2.5), respectively.
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design parameters are: fLF(n), fHF(n), S(n, fLF(n)), S(n, fHF(n)) and zk(n), while the
unknown quantities are |pk(n)| and b0(n). After rearrangement, system (2.8) can be
written:















∏4
k=1 (|pk(n)|2 + ALF,k(n)|pk(n)|+ 1)

∏4
k=1 (|pk(n)|2 + AHF,k(n)pk(n)|+ 1)

=
NLF(n)S(n, fHF(n))
NHF(n)S(n, fLF(n))

b20(n) =
S(n, fHF(n))
NHF(n)

∏4
k=1 (|pk(n)|2 + AHF,k(n)|pk(n)|+ 1)

(2.9)

A restriction should be introduced to match the number of equations with the number
of unknowns. To this end, the magnitude of two complex conjugate poles is fixed
to a constant value. As shown in the following, this restriction gives the possibility
to further increase the control of S(n, f). Fixing the magnitude of the LF poles to a
constant value |p1(n)| = |p4(n)| = |pLF| the first equation of system (2.9) takes the
closed-form of a quartic equation:

|pHF(n)|4+C1(n)|pHF(n)|3+C2(n)|pHF(n)|2+C1(n)|pHF(n)|+1=0 (2.10)

where:

C1(n) =
(ALF,2(n) + ALF,3(n))− α(n)(AHF,2(n) + AHF,3(n))

1− α(n)
(2.11)

C2(n) =
(2 + ALF,2(n)ALF,3(n))− α(n)(2 + AHF,2(n)AHF,3(n))

1− α(n)
(2.12)

α(n)=
S(n, fHF(n))NLF(n)

∏

k={1,4}(|pLF|2 + AHF,k(n)|pLF|+ 1)

S(n, fLF(n))NHF(n)
∏

k={1,4}(|pLF|2 + ALF,k(n)|pLF|+ 1)
(2.13)

Properties of equation (2.10) are studied in the following.
Once that the magnitude of the HF poles, |pHF(n)|, has been estimated from (2.10),
the parameter b0(n) is obtained by replacing |pHF(n)| in the second equation of (2.9).
In the case in which the magnitude of the HF poles |p2(n)| = |p3(n)| = |pHF| was
used as design parameter, |p1(n)| = |p4(n)| would be obtained using (2.10)–(2.13) and
replacing Ai,2 with Ai,1, and Ai,3 with Ai,4, with i ∈ {LF,HF}, respectively.

Solutions of equation (2.10):
By omitting the temporal index and by replacing y = |pHF|, eq. (2.10) reads as:

y4 + C1y
3 + C2y

2 + C1y + 1 = 0 (2.14)

where parameters C1 and C2 are defined in (2.11)-(2.12).
Equation (2.10) is a quasi-symmetric quartic equation, and it can be solved by following
a procedure which consists of:
Divide (2.14) by y2:

(

y2 +
1

y2

)

+ C1

(

y +
1

y

)

+ C2 = 0 (2.15)
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2.2 Synthesis of non-stationary HRV signals by TV-ARMA models

Use the variable change s = y + 1
y
to obtain:

s2 + C1s+ C2 − 2 = 0 (2.16)

whose roots are:

s1,2 =

[

−C1 ±
√

C2
1 − 4(C2 − 2)

]

2(C2 − 2)
; with s1 < s2 (2.17)

The four roots of (2.14) are then given solving:

y2 − sy + 1 = 0 (2.18)

y1,2 =
1

2

(

s1 ±
√

s2
1 − 4

)

(2.19)

y3,4 =
1

2

(

s2 ±
√

s2
2 − 4

)

(2.20)

From (2.19)–(2.20) follows that y1y2 = y3y4 = 1, which implies that if |y1| > 1,
0 < |y2| < 1.
Three situations may occur:

• a) All y ∈ C.
In this case no real solution exist and no pole-zero configuration can be found
to reproduce the desired spectral properties. Equation (2.14) do not have real
solutions for:

(s2

2 − 4) =

[

1

2

(

−C1 +
√

C2
1 − 4(C2 − 2)

)

]2

− 4 < 0 (2.21)

Nevertheless, a real solution for (2.14) can still be found by changing zk and
|pLF|.

• b) y1 =
1
y2

∈ C and y3 =
1
y4

∈ R+.

In this case (2.14) has 2 equivalent solutions. We will use y = |pHF| < 1. Case
(b) occurs when:







(s2
1 − 4) =

[

1
2

(

−C1 −
√

C2
1 − 4(C2 − 2)

)]2

− 4 < 0

(s2
2 − 4) =

[

1
2

(

−C1 +
√

C2
1 − 4(C2 − 2)

)]2

− 4 > 0
(2.22)

• c) y1, y2, y3, y4 ∈ R.
This is the case in which (2.14) has 4 equivalent real solutions. We will use the
solution which satisfies y ∈ [0, 1]. In the case in which this condition is satisfied
by 2 roots, we will choose the higher one. Case (c) occurs when:

(s2

1 − 4) =

[

1

2

(

−C1 −
√

C2
1 − 4(C2 − 2)

)

]2

− 4 > 0 (2.23)
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Chapter 2. Time-frequency synthesis

2.2.3 Framework II-FP

In this framework, the TF structure of the signals is predetermined by fixing instan-
taneous frequencies fi(n) and powers Pi(n), rather than fi(n) and S(n, fi(n)), as in
I-FS. The pole-zero configuration associated to fi(n) and Pi(n) can be estimated by
using the formula of the pole residue given in (2.4). At every time instant n, the
power associated to the pole pi(n) depends on the whole pole-zero configuration, i.e.
on the whole set of complex numbers pi(n)− pk(n), p

-1
i (n)− p*

k(n), pi(n)− zk(n) and
p-1
i (n)−z*

k(n), and the explicit form of (2.4) is highly non-linear in |pi(n)|ei∠pi(n). Nev-
ertheless, as shown in [134], under certain conditions described in the following, the
residue formula (2.4) can be approximated as:

Pi(n) ≈
b20(n)

(

|pi(n)| − 1
|pi(n)|

)

∏p̃
k=1
k 6=i

|pi(n)− pk(n)|2
; i = {1, . . . , p̃}; (2.24)

To obtain this expression from (2.4) one should: (i) reduce the ARMA model to an
AR one: if zeros zk(n) are not considered the numerator of (2.4) is just b20(n); (ii)
assume that poles are placed very close to the unit circle (1 − |pi(n)| << 1), so that
p-1
i (n) ≈ p∗i (n). This allows to approximate the factors in the denominator of (2.4) as:
(

pi(n)− pk(n)
)(

p-1

i (n)− p*

k(n)
)

≈ |pi(n)− pk(n)|2 ; (2.25)

pi(n)
(

pi(n)
-1 − p*

i (n)
)

= |pi(n)|
(

1/|pi(n)| − |pi(n)|
)

≈ (1/|pi(n)| − |pi(n)|) (2.26)

To generate signals with a LF and HF components, the order of the model is p̃ = 4.
In this case (2.24) represents a system of 2 equations in |pLF(n)|, |pHF(n)| and |b0(n)|:











































PLF(n) =
b20(n)σ

2

∣

∣pLF(n)− pHF(n)
∣

∣

2
∣

∣pLF(n)− p∗HF(n)
∣

∣

2×

× 1
∣

∣pLF(n)− p∗LF(n)
∣

∣

2
(1/|pLF(n)| − |pLF(n)|)

PHF(n) =
b20(n)σ

2

∣

∣pHF(n)− pLF(n)
∣

∣

2
∣

∣pHF(n)− p∗HF(n)
∣

∣

2×

× 1
∣

∣pHF(n)− p∗LF(n)
∣

∣

2
(1/|pHF(n)| − |pHF(n)|)

(2.27)

Dividing PLF(n) by PHF(n) we get:

PLF(n)

PHF(n)
=

|pHF(n)− p∗HF(n)|2(1/|pHF(n)| − |pHF(n)|)
|pLF(n)− p∗LF(n)|2(1/|pLF(n)| − |pLF(n)|)

(2.28)

and rearranging:

PLF(n)

PHF(n)

(∣

∣pLF(n)− p∗LF(n)
∣

∣

2(

1/|pLF(n)| − |pLF(n)|
))

= (2.29)

=
∣

∣pHF(n)− p∗HF(n)
∣

∣

2(

1/|pHF(n)| − |pHF(n)|
)

By using the cosine formula:
∣

∣pLF(n)− p∗LF(n)
∣

∣

2
=

[

2|pLF(n)| sin(∠pLF(n))
]2

=
[

2|pLF(n)| sin(2πfLF(n))
]2

(2.30)
∣

∣pHF(n)− p∗HF(n)
∣

∣

2
=

[

2|pHF(n)| sin(∠pHF(n))
]2

=
[

2|pHF(n)| sin(2πfHF(n))
]2

(2.31)
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2.2 Synthesis of non-stationary HRV signals by TV-ARMA models

it is possible to rewrite (2.29) as:

PLF(n)

PHF(n)
sin2(∠ pLF(n))

(

|pLF(n)| − |pLF(n)|3
)

− sin2(∠pLF(n))
(

|pHF(n)| − |pHF(n)|3
)

= 0;

(2.32)
Finally, by fixing the magnitude of one of the two couple of complex conjugate poles,
which are used as design parameters, it is then possible to find the magnitude of the
other couple of complex conjugate poles. For example, if |pLF(n)| = |pLF|, |pHF(n)| is
find by solving the following incomplete cubic equation:

|pHF(n)|3 − |pHF(n)|+ C(n) = 0; (2.33)

where

C(n) =
PLF(n)

PHF(n)

(

sin(∠pLF(n))

sin(∠pHF(n))

)2

(|pLF| − |pLF|3) = (2.34)

=
PLF(n)

PHF(n)

(

sin(2πfLF(n))

sin(2πfHF(n))

)2

(|pLF| − |pLF|3)

The incomplete cubic equation (2.33) has a solution with physiological meaning for
those n for which C(n) ∈ (−2/

√
27, 2/

√
27).

In the case in which |p2(n)| = |p3(n)| = |pHF| was used as design parameter, |p1(n)| =
|p4(n)| = |pLF(n)| would be obtained using (2.33)–(2.34) and replacing subscript LF
with HF and subscript HF with LF.

2.2.4 Design parameters

The design parameters necessary to define the desired TF structure of the signals are:

- In I-FS framework : fi(n), S(n, fi(n)) and zk(n);
- In II-FS framework: fi(n), Pi(n).

with i={LF,HF}. In both cases, the magnitude of one of the two complex-conjugate
poles is fixed and the other one is estimated. The positioning of the poles used as de-
sign parameters can be used to improve the control of the shape of the model function
S(n, f): by moving the poles closer to the unit circle the spectral peaks get sharper
and their bandwidth is reduced.
In the case of framework I-FS, zeros are used to predetermine desirable spectral fea-
tures. As shown in Fig. 2.2, they can be used to control the degree of overlapping
of the spectral peaks. In these graphics, the model functions shown on the same line
(on the left and on the right side of the graphic) share the same peak frequency fi(n0),
and peak amplitude S(n0, fi(n0)) as well as the magnitude of the poles used as design
parameters. Those on the left are obtained by means of AR models, while those on
the right by means of an ARMA model of order (4,10). In these graphics, circles
represent the frequency associated to the phase of zeros zk(n0), with k={1, 2, 3}. It
is shown that without changing the magnitude of the pole used as design parameter,
and by moving zk(n) closer to the unit circle, S(n0, f) takes lower values at frequency
1
2π
∠zk(n) and the spectral peaks are better resolved.
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Figure 2.2: Influence of zk(n) on the model function. S(n0, f) are modeled by means
of AR models (left) and ARMA models of order (4,10) (right). In the right-side
panels, circles represent the phase of zk(n0), with k={1, 2, 3}. The magnitude of the
zeros |zk(n0)| is reported in the legend. Zeros zk(n0), with k >3, are associated to a
frequency f >0.4 Hz and are not shown.

2.2.5 Measures for the evaluation of the models

Due to the stochastic nature of the signals and to the limited number of realizations
of the model, the estimated TF distribution of the stochastic process, obtained by
averaging among realizations, is always characterized by an estimation error. always
presents a fluctuation around S(n, f). This fluctuation represents a sort of intrinsic
uncertainty of the simulated signals and is quantified by means of two measures.
The first one is a spectral distance, defined as the normalized L1–norm of the difference
between S(n, f) and the estimated TF distribution of the stochastic process W x(n, f):

dW =
||W x(n, f)− S(n, f)||l1

||S(n, f)||l1
(2.35)

W x(n, f) =
1

R

R
∑

r=1

Wx(n, f; r) (2.36)

where Wx(n, f; r) is the Wigner-Ville distribution (see §3.1) of one realization of the
processa x(n; r) [175, 92]. Distance dW is specially sensitive to the correct TF local-
ization of the spectral components.
The second measure is obtained by comparing the total power PTOT(n), obtained by
integrating S(n, f) with respect to f, with the instantaneous powers of the simulated
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signals:

e(n) =

1
R

∑R
r=1 x

2(n; r)− PTOT(n)

PTOT(n)
(2.37)

The temporal mean and standard deviation of e(n), denoted as µe and σe, is used
to assess the capability of the model to generate signals characterized by the desired
instantaneous power.
For a given number of realizations R, measures dW and e(n) depend on the pole-zero
configuration given by pk(n), zk(n), b0(n) and will be used in the following sections to
assess the effect of the design parameters as well as to compare the frameworks.

2.3 Applications & Validations

In this section, the dynamics observed in HRV during exercise stress testing (EST)
and experiments of music-induced emotions (MIE) are modeled. In both situations,
the evaluation of frameworks I-FS and II-FP is done as follow:

(i) Framework I-FS is used: signals are modeled by fixing fi(n), S(n, fi(n)) and by
choosing zk(n) and |pLF| as to obtain the desired model function S(n, f), which
will be used in the evaluation;

(ii) The instantaneous power of LF and HF components, PLF(n) and PHF(n), are
estimated from this model function;

(iii) They are used as design parameters of framework II-FP, whose model function
will be estimated and used to assess the uncertainty of the simulated signals
generated by framework II-FP.

The TF structure of the simulated signals is shown in Fig. 2.3-2.4, where fi(n) =
fi(n)fs, being fs the sampling rate. In both cases, signals are characterized by epochs
of mild and abrupt variations (indicated as T1 and T2, respectively), which correspond
to different degrees of non-stationarity. The degree of non-stationarity, reported in
Table 2.1, is quantified by:

F̄ ′
i =

fs

NT

nb+NT−1
∑

n=nb

|fi(n)− fi(n− 1)|, [Hz s-1] (2.38)

S̄ ′
i =

fs

NT

nb+NT−1
∑

n=nb

|S(n, fi(n))− S(n− 1, fi(n− 1))|
S(n0, fi(n0))

, [% s-1] (2.39)

where NT is the number of time samples of intervals T1 or T2, nb is the first time
sample of each interval, i ∈ {LF, HF} and n0 = 1.

2.3.1 Exercise stress testing (EST)

As shown in Fig. 2.3, in this simulation, HRV spectral components are assumed to vary
linearly [19]. The central frequency of the LF spectral component, fLF(n), is constant
over time, while fHF(n) increases and decreases during effort (T1) and recovery (T2),
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Chapter 2. Time-frequency synthesis

Table 2.1: Simulation setup

Parameters of I-FS framework
EST MIE

T1 T2 T1 T2

Length [s] 360 150 38 42
F̄ ′

LF [mHz s-1] 0 0 0.9 1.6
F̄ ′

HF [mHz s-1] 1.1 2.2 0.3 3.2
S̄ ′

LF [% s-1] 0.14 0.28 1.14 2.3
S̄ ′

HF [% s-1] 0.25 0.28 0.8 1.4

respectively. The changes in the amplitude S(n, fHF(n)) simulates the withdrawal of the
parasympathetic modulation (-70% in the first 3 min) and the restoration of baseline
values during recovery (+50% in 3 min). From 3 min before the peak stress until
reaching it, S(n, fHF(n)) slightly increases, simulating the effect of the stretch of the
sinus node due to respiration [44, 19]. The order of the model used in this application
was (p̃, q̃) = (4, 8), while the design parameter |pLF| varied in {0.880,0.885,...,0.980}.
Zeros are placed on the unit circle and have TV phase. The configuration of the poles
and zeros at time n0 = 0 is given in Fig. 2.5. In this graphic, it is shown that z1(n),
fixed at DC, cancels the contribution around 0 Hz, which in TF analysis is usually
filtered out; z2(n) = z∗8(n), with phase π(fLF(n) + fHF(n)), lies in between LF and HF
poles, to separate the spectral peaks, which otherwise would overlap; z3(n) = z∗7(n),
with phase π(3fHF (n)− fLF (n)), is symmetric to z2(n) with respect to fHF(n) and makes
the HF peak symmetric; zero z4(n) = z∗6(n), with phase π

2
(3fHF(n) − fLF(n) + 1) and

z5(n) = π, cancel undesired contributions introduced by the other ones in f > fHF(n).

2.3.2 Experiments of music-induced emotions (MIE)

Parameters fi(n) and S(n, fi(n)) were derived from the time-course of the LF and HF
components of an original HRV signal recorded during an experiment of music-induced
emotions [201]. In that experiment, participants listened to different kinds of musical
stimuli, each one of a duration of about 90 s, and characterized by different emotional
valence. The pattern of response of HRV, shown in Fig. 2.4, is characterized by two
phases: an early fast epoch in which abrupt changes occur (T2), and a later epoch
of adaptation in which spectral parameters changed gradually (T1). The time-course
of spectral indices of Fig. 2.4 is derived by low-pass filtering the time-course of the
parameters obtained by TF analysis of the HRV of a subject listening to an excerpt
of pleasant music [201]. As also reported in Table 2.1, changes in T2 are particularly
abrupt: S(n, fLF(n)) and S(n, fHF(n)) decreases by about 70% and 40% in the first
13 s. The order of the model used to simulate these variations was (p̃, q̃) = (4, 10),
while the design parameter |pLF| varied in {0.880,0.885,...,0.980}. Zeros are placed on
the unit circle and have TV phase. Zeros z1(n), z2(n) = z∗10(n) and z3(n) = z∗9(n) are
located as in simulation EST (see also Fig. 2.5), while, in order to cancel contributions
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Figure 2.3: HRV during: Exercise stress testing (EST). (A) A simulated HRV signal
x(n); (B) Instantaneous frequency and (C) spectral amplitude of the LF (in gray) and
HF (in black) components. T0, T1 and T2 represent epochs of stationarity, slow and
fast variations, respectively. Note that temporal axes are different from Fig. 2.4.

in f > fHF(n), z4(n) = z∗8(n), z5(n) = z∗7(n) and z6(n) are evenly distributed between
z3(n) and π, i.e. with phases equal to π

3
(6fHF (n)−2fLF (n)+1), π

3
(3fHF (n)−fLF (n)+2)

and π, respectively.

2.3.3 Evaluation of the models

In Figure 2.6, the intrinsic uncertainty of signals obtained by means of frameworks I-FS
and II-FP is shown for both simulations EST and MIE. The uncertainty was assessed
by measures dW and e(n), estimated from (2.35)–(2.37), where, for each framework,
the corresponding model function S(n, f) was used.
As shown in Fig. 2.6, the intrinsic uncertainty of the simulated signals always decreased
with decreasing |pLF|, i.e. the magnitude of the pole used as design parameter. This
indicates that signals characterized by wide spectral peaks are generated more reliably
than signals characterized by narrow spectral peaks. As a rule of thumb, to minimize
the intrinsic uncertainty of the signals, one should give to the poles used as design
parameters the lowest magnitude which at the same time allows the generation of
a model function that complies with the specifications. This heuristic method was
used to select the values of |pLF| used in simulation EST and MIE. Comparison of
results reported in column (A) and (B) of Fig. 2.6 shows that the spectral distance
dW as well as the mean and the standard deviation of e(n) were lower for signals
obtained by using framework I-FS than II-FP. As shown in Fig. 2.6, by increasing
the number of realizations of the model, R, the intrinsic uncertainty decreased. The
comparison between PTOT(n) and the power estimated directly from the signal as in
(2.37) is reported in the lower graphic of Fig. 2.6 and shows that the simulated signals
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Figure 2.4: Modeling HRV during: Experiment of music-induced emotions (MIE). (A)
A simulated HRV signal x(n); (B) Instantaneous frequency and (C) spectral amplitude
of the LF (in gray) and HF (in black) components. T0, T1 and T2 represent epochs of
stationarity, slow and fast variations. Note that temporal axes are different from Fig.
2.3
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Figure 2.6: Model evaluation: (A)–(B) exercise stress testing; (C)–(D) experiment of
music-induced emotions; (A) and (C) I-FS framework; (B) and (D) II-FS framework;
The intrinsic uncertainty of the simulated signals is evaluated by means of the spectral
distance dW (top graphic) and the mean and the standard deviation of e(n) (second
and third lines of graphics). Vertical dotted lines marked the value of the design
parameter |pLF| which will be used in the following chapter to generate signals for
the evaluation of the smoothed pseudo Wigner-Ville distribution. Lower graphics:
PTOT(n) estimated from S(n, f) and power estimated form the signals with R = 1000.
See §2.2.5 for details.
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followed on average the desired dynamics, even in epoch T2 of simulation MIE, during
which the instantaneous power dramatically decreased while fHF(n) increased almost
stepwise.

Assessment of the robustness
To assess whether the presented methodology can reproduce a much wider range

of spectral configurations than those considered here, and to assess how the use of
zeros affects the intrinsic uncertainty of the models, simulations EST and MIE were
modified and different configurations were tested. In the description of the following
results, index n is omitted. Spectral parameters were chosen as : fLF=0.09 Hz, fHF =
{0.15, 0.16, ..., 0.5} Hz and log10 (S(fLF)/S(fHF)) = {−2,−1.8, ..., 2}. The magnitude
of one couple of complex-conjugate poles was fixed at {0.850, 0.855, ..., 0.995} and the
magnitude of the other poles was estimated by using the closed-form expressions of
framework I-FS (2.10). Models with the following configurations were tested: AR
model, ARMA (4,8) as in simulation EST, and ARMA (4,10) as in simulation MIE.
To accept |pHF| (or |pLF|) as a possible solution, the corresponding model function
should verify the following conditions:

– Very LF component is low S(0) ≤ 0.15min[S(fLF), S(fHF)];
– LF and HF spectral peaks are well resolved: S((fLF + fHF)/2) ≤
0.25min{S(fLF), S(fHF)};

– Components with central frequency higher than HF are low S(f > fHF) ≤
0.15min{S(fLF), S(fHF)}.

Figure 2.6 shows that, whenever possible, solutions characterized by a polar configu-
ration with poles of low magnitude should be preferred to configurations with poles of
high magnitude, since the lower the magnitude of the poles, the better the simulated
signals will reproduce the desired spectral patterns. Results reported in Fig. 2.7 give,
for the whole set of configurations, the lowest magnitude of the poles used as design
parameter for which a suitable solution existed. Results reported on the left (right)
correspond to the case in which |pLF| (|pHF|) was used as design parameter and |pHF|
(|pLF|) was estimated. In the clack regions no suitable solution was found, either be-
cause (2.10) had no solution or because S(n, f) did not complies with the specifications.
Figure 2.7 shows that:

(i) Framework I-FS is robust: the only few cases in which a suitable solution was
not found corresponded to extreme configurations for which HRV may be better
modeled as monocomponent;

(ii) For a same configuration, ARMA models allowed to use poles with lower magni-
tude than AR models, which in turn allows one to generate signals characterized
by lower uncertainty;

(iii) Solutions for low fHF are possible only with poles of high magnitude;
(iv) To model HRV signals in which S(fLF)>>S(fHF), it is preferable to use as design

parameter |pHF| and estimate |pLF|, since, as shown in the right-side panels, in
this way it is possible to find appropriate polar configurations by using poles
with lower magnitude than if |pLF| was used as design parameter and |pHF| was
estimated (as in the left-side panels).
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Figure 2.7: Robustness and contribution of zk for the I-FS framework. The lowest
design parameter |pLF| (on left panels) and the lowest design parameter |pHF| (on
right panels) that allowed to reproduce real-like HRV signals are color coded. Black
color means that no suitable solution is available. Upper, middle and lower graphics
refer to models of order (4,0), (4,8) and (4,10). In y-label log(LF/HF ) stands for
log10(S(fLF)/S(fHF))

2.4 Discussion

Applications of TF methods of analysis in biomedical signal processing have increased
in the last years [165]. Nevertheless, the problem of how to generate signals with a
given TF model function has been less studied. Only a small number of methods for
the synthesis of non stationary processes whose TF representation was closest, in a
least squares sense, to a given model function S(n, f) were presented in the literature
[52, 126]. The importance of these studies lies in that models that allow to reproduce
real-like signals with predetermined TF characteristics can be used to validate and
compare different non-stationary signal processing techniques. Another application of
the presented framework may concern the generation of controlled TV surrogate data
to assess non linearity in non stationary time series or the significance of TV coherence
function [261, 86, 89].
In this chapter, two robust and flexible frameworks for generating non-stationary HRV
signals following predetermined spectral patterns have been presented. Signals are
modeled as time-varying stochastic processes characterized either by spectral com-
ponents with controlled instantaneous powers and frequencies or by a given time-
frequency model function, whose shape can be controlled by tuning several design
parameters. Using these methods we were able to simulate stochastic signals whose
spectral components changed both linearly and non-linearly during time, with differ-
ent rates of variation, going from slow variations to sudden and very sharp transitions.
We modeled HRV dynamics during exercise stress testing and experiments of music-
induced emotions. These frameworks can be used in all those studies which require
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Chapter 2. Time-frequency synthesis

the generation of simulated HRV signals. Moreover, even if in this study we only
considered HRV dynamics, they could also be used to simulate any of those cardio-
vascular signals which present at least a LF or a HF component, e.g. arterial pressure
variability, pulse transit time, respiratory signal etc.
A traditional approach to generate synthetic signals consists in using a sum of sinusoids
with time-varying amplitude and frequency and adding noise. Despite its simplicity,
this deterministic method, which will be widely used also within this dissertation, is
still a valid approach. However, we believe that to fully evaluate time-frequency meth-
ods of analysis, this deterministic method and the proposed stochastic framework,
should be both considered because they are complementary. A stochastic approach is
particularly important in the validation of those time-frequency techniques which are
known to be optimal for the estimation of chirps (as the Wigner-Ville distribution)
or of those techniques which assume a deterministic model for the signals (as the one
proposed in [19]). In these cases, a validation based on a deterministic model is likely
to provide positively biased results. Conversely, a validation based on deterministic
signals can be used to assess techniques of analysis based on autoregressive methods.
In §3.2.1 stochastic signals generated by means of the presented framework will be
used to evaluate the smoothed pseudo Wigner-Ville distribution.

2.4.1 Models for non-stationary HRV generation

The presented methodologies are based on the identification of the polar configuration
associated to a model function whose geometry can be controlled by the design pa-
rameters introduced in §2.2.4. The identification problem has a closed-form solution
which is exact in the case of I-FS and approximate in the case of II-FP framework.
Therefore, once that the design parameters have been chosen, the solution of (2.10),
or (2.33), directly provides the parameters of the model used to generate signals char-
acterized by the desired properties. Framework II-FP has the advantage of allowing to
directly control the instantaneous power of LF and HF components, but, being based
on a TV-AR model, it can not provide much control on the shape of S(n, f) which is
constrained to be a sum of Lorentzian functions. The capability of tuning the shape
of the model function S(n, f) by properly choosing parameters zk(n), gives a great
flexibility to the I-FS framework, which additionally was observed to generate signals
whose spectral patterns followed more reliably the desired ones. The quantification of
the intrinsic uncertainty of the simulated signals through the estimation of dW and e(n)
allows one to evaluate the signals before using them to assess a method of analysis. It
was shown that the uncertainty increases with the magnitude of the poles. Thus, one
should give to the magnitude of the poles used as design parameter the lowest value
which at the same time provides a S(n, f) which complies with the specifications.
A correct positioning of zeros zk(n) increases the number of possible S(n, f) which can
be modeled. For example, as shown in Fig. 2.2, zk(n) can be used to control the
degree of overlapping of LF and HF spectral peaks when their central frequencies are
close. To separate the LF and HF spectral peaks without using zk(n), one could move
|pLF| toward the unit circle which, in turn, has the undesirable effect of increasing the
uncertainty of the signals. Thus, the use of TV-ARMA models instead of the simpler
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TV-AR models is crucial not only to improve the control of S(n, f) but also to reduce
the intrinsic uncertainty of the simulated signals. In some configurations, additional
zk(n) should be used to compensate for the introduction of undesirable components in
S(n, f). Indeed, zeros zk(n), with k ∈ {4, 5, 6} in EST and with k ∈ {4, . . . , 8} in MIE
were used to eliminate undesirable spectral components introduced for f > 0.5 Hz by
the other zk(n). In the applications presented in this chapter, zk(n) were placed on the
unit circle. In those applications where this constrain is too restrictive, S(n, f) could
be forced to a non-zero value by placing the zk(n) inside the unit circle, as shown in
Fig. 2.2.
The model sampling rate fs is another important parameter. It should be high enough
to ensure a good time resolution but not too high, in order to spend the degrees of
freedom of the model to describe relevant signal components and not modeling noise
presents in high frequency band.
Finally, the presented framework have been shown to be robust: as shown in Fig.
2.7 it was possible to find a pole-zero configuration for almost any kind of possible
combination of HRV spectral indices.
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Chapter 3. Time-frequency analysis

3.1 Time-frequency representations: the Cohen’s

Class

The time-frequency (TF) representations which belong to the Cohen’s class [67, 92]
are covariant under time and frequency translations. The property of covariance under
time and frequency translations states that:

y(t) = x(t− t0 )e
j2πf0 ⇒ Cy(t, f) = Cx(t− t0 , f − f0 ) (3.1)

where Cx(t, f) and Cy(t, f) are TF representation of x(t) and y(t), respectively.
The Cohen’s class admits at least three equivalent definitions [8, 92]:

• Time-delay parametrization, via φt-d(t, τ):

C(t, f) =

−∞x

−∞

φt-d(t− v, τ)x
(

v +
τ

2

)

x∗
(

v − τ

2

)

e−j2πfτdvdτ (3.2)

In this expression, the Cohen’s class is seen as the Fourier transform of a non-
stationary smoothed autocorrelation function:

sx(t, τ) =

∫

−∞

−∞

φt-d(t− v, τ)x
(

v +
τ

2

)

x∗
(

v − τ

2

)

dv (3.3)

where φt-d(t, τ) is a kernel (subscripts t-d stand for time-delay) whose function
is explained in the following.

• Delay–Doppler parametrization, via φd-D(τ, ν):

C(t, f) =

−∞x

−∞

φd-D(τ, ν)Ax(τ, ν)e
j2π(tν−fτ)dνdτ (3.4)

In this expression, the Cohen’s class is seen as the two-dimensional Fourier trans-
form of a weighted version of the narrowband symmetric ambiguity function,
Ax(τ, ν), [93, 124, 68], defined as:

Ax(τ, ν) =

∫

−∞

−∞

x
(

t+
τ

2

)

x∗
(

t− τ

2

)

e−j2πνtdt (3.5)

• Time-frequency parametrization, via φt-f(t, f):

C(t, f) =

−∞x

−∞

φt-f(t− v, f − u)Wx(v, u)dvdu = φt-f(t, f)⊗Wx(t, f) (3.6)

In this expression, the Cohen’s class is obtained by low-pass filtering (symbol
⊗ stands for convolution) in time and frequency the Wigner-Ville distribution
(WVD), defined as the Fourier transform of the non-stationary autocorrelation
function:

Wx(t, f) =

∫

−∞

−∞

x
(

t+
τ

2

)

x∗
(

t− τ

2

)

e−j2πfτdτ (3.7)
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3.1 Time-frequency representations: the Cohen’s Class

Expression (3.6) shows that the WVD can be considered as the central element of the
Cohen’s class, i.e. the distribution from which all the other ones can be derived. The
WVD (3.7) and the narrowband symmetric ambiguity function (3.5) are related by
two dimensional Fourier transform [8]:

Ax(τ, ν) =

−∞x

−∞

Wx(t, f)e
−j2π(νt−fτ)dtdf (3.8)

This implies that the WVD is itself a member of the Cohen’s class, characterized by
φd-D(τ, ν)=1 and consequently φt-f(t, f) = δ(0, 0).
Every representation belonging to the Cohen’s class is perfectly characterized by one
of the three functions φt-d(t, τ), φd-D(τ, ν) or φt-f(t, f), which are usually called kernels.
These kernels completely define the properties of the TF distributions and are mutually
related by the Fourier transform [8]:

φd-D(τ, ν) =

∫

∞

−∞

φt-d(t, τ)e
−j2πνtdt =

+∞x

−∞

φt-f(t, f)e
j2π(τf−νt)dtdf (3.9)

φt-f(t, f) =

∫

∞

−∞

φt-d(t, τ)e
−j2πfτdτ =

+∞x

−∞

φd-D(τ, ν)e
j2π(tν−τf)dτdν (3.10)

The main function of the kernels is to reduce the interference terms that affect the
WVD and they have been extensively studied since the early Nineties [133, 25, 26, 73,
72, 7, 13, 249].

3.1.1 Interference terms

Interferences are oscillatory terms inherent to the quadratic structure of the WVD,
which are not due to spectral components of the signal but are due to their mutual
interactions [122, 125]. Therefore, they are usually considered as noise which should be
eliminated, or at least reduced, in order to improve the readability of the distribution.
Ideally, the distribution should only be composed of autoterms, i.e. terms due to
the signal components taken independently. Given that the interference terms are
oscillatory, they can be attenuated by filtering the WVD with kernels which acts as
low-pass filters. In turn, the interpretation of these kernels as low-pass filters imposes
geometrical constraints on their design [13, 25, 26, 72, 73].

Interference terms of the WVD are a consequence of the WVD’s bilinear (or
quadratic) structure; they occur in the case of multicomponent signals and can be
identified mathematically with quadratic cross terms [90, 122]. They appear whenever
a signal can be described as the sum of different spectral components. For example,
the WVD of the signal x(t) = x1(t) + x2(t), is:

Wx(t, f) = W (S)

1 (t, f) +W (S)

2 (t, f) + 2ℜ[W (I)

12 (t, f)] (3.11)

whereW (S)
1 (t, f) andW (S)

2 (t, f) are the autoterms that refer to signal components, while
W (I)

12 (t, f) is an interference term which oscillates with a frequency and in a direction
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Chapter 3. Time-frequency analysis

which depend on the relative position of the autoterms in the TF plane [122, 125, 124].
As shown in Fig. 3.1, the interference geometry can be explained considering 2 points
in the TF plane (t1,f1) and (t2,f2), which represent 2 signal components perfectly
localized in time and frequency. They give rise to an outer interference located at
(t12, f12) = ( t2+t1

2
, f2+f1

2
) which oscillate in time direction with an oscillation frequency

ν12 = (f2 − f1) and in frequency direction with oscillation frequency τ12 = (t2 − t1)
[124, 125]. This implies that a large distance between the signal terms in the time
(frequency) direction entails a faster interference oscillation in the frequency (time)
direction and that, on the other hand, if the signal components occupy essentially the
same time-frequency region, the interference terms will not oscillate.

Interference terms are sometimes divided in two groups: outer and inner interfer-
ences.

Outer interferences appear in multicomponent signals, as the result of the interac-
tions between two different spectral component which are simultaneously present at
the same time. Outer interferences are usually located at midway between the two
components and mainly oscillate in time direction. An example of outer interference
is shown in Fig. 3.2.

Inner interferences are due to non linearities in the law of instantaneous frequency
of each spectral component and they also appear in monocomponent signals. Their
structure obeys the same geometric laws of outer interferences. An example of inner
interference is shown in Fig. 3.3.

Quadratic time-frequency distributions, such as the WVD, of signals related to the
autonomic modulation of the heart are expected to present both outer and inner in-
terferences [125]. The classification of the interference terms in inner and outer is
useful for their description but is somehow arbitrary, since a strict definition of a non-
stationary spectral component does not exist and mono component signals can always
be split in several components.

The geometrical properties of the interference terms will be used in §4.3.2 to design
a signal-dependent kernel.

Beside the use of particular kernel functions φt-d(t, τ), φd-D(τ, ν) or φt-f(t, f), the
complex analytic representation of the signal is often used instead of the original
signal to further reduce the interference terms. Indeed, the power spectral density of
the analytic representation of a signal vanishes for f < 0. Thus, the use of the complex
analytic signal assures that positive and negative spectral components do not produce
any interference term, thus improving the readability of the TF distribution.

3.1.2 Time-frequency resolution

Why it matters

A general scheme for the time-frequency analysis of biomedical signals can be divided
in three major tasks:
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3.1 Time-frequency representations: the Cohen’s Class

Figure 3.1: Geometry of interferences. Interferences created by the interactions be-
tween 2 atomic structures in the TF plane. x1(t) and x2(t) are located at (t1,f1) and
(t2,f2). They generate an interference term centered at (t12, f12) = ( t2+t1

2
, f2+f1

2
) which

oscillate in time direction with an oscillation frequency ν12 = (f2−f1) and in frequency
direction with oscillation frequency τ12 = (t2 − t1) (Figure from [124, 125]).

Figure 3.2: Geometry of outer interferences. Note that the interference terms are gen-
erated owing to the presence of 2 different spectral component and it mainly oscillate
in time direction (Figure from [125])

Figure 3.3: Geometry of inner interferences. Note that the interference terms are
generated owing to non linearities in the instantaneous frequency of a monocomponent
signal. The interference terms mainly oscillate in frequency direction (Figure from
[125])
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(i) Representation of the signal in the joint time-frequency domain.
(ii) Localization of relevant patterns in the joint time-frequency domain.
(iii) Quantification of the information, usually by reducing it to the time-course of a

physiological index or to a scalar value.

As it appears from this scheme, the final result of the analysis is strictly related to
the capability of the time-frequency distribution to represent the signal with a fine
resolution. In the analysis of the signals related to the autonomic modulation, such
as heart rate variability and systolic arterial pressure variability, frequency resolution
should be fine enough to separate the LF and the HF components, even when low
respiratory rate makes them closer. At the same time, time resolution should be fine
enough to follow quick variations, typically of the order of few seconds.
The time-frequency resolution of a distribution belonging to the Cohen’s class depends
on the degree of filtering provided by the kernel function, which, in turn, depends
on its geometrical properties. The Wigner-Ville distribution, with kernel function
φt-f(t, f) = δ(0, 0), has the best TF resolution.
Due to the Heisenberg principle, when a given TF distribution is used to estimate a
non-stationary spectral density function, the time and frequency resolutions cannot be
jointly arbitrarily low, but they are inversely related. This kind of trade-off affects the
spectrogram and in general the positive distributions. The amount of smoothing also
depend on the signals, being higher for those signals which present more interference
terms [125, 182].

The quantification of the resolution is important in two aspects:

– It allows to compare the performance of different possible distributions and to
chose the most appropriate for a given application.

– The quantification of the resolution can help to correctly interpret the results.

Indeed, before claiming that, for example, a given stimulus provokes a pattern of re-
sponse characterized by a given latency, or that it provokes a change in a given spectral
band, it is necessary to know the effect of the smoothing kernel on the localization of
the time-frequency observed features.

How the time-frequency resolution is estimated

The resolution of the time-frequency distribution is given by the shape of the kernel
function, which should be quantified by some relevant parameters.
Within this manuscript, we propose to quantify time resolution by the full width at
half maximum of φt-f(t, 0), ∆

m
t , or alternatively by the full width at a% of the total

area of φt-f(t, 0), ∆
(a%)
t . Dually, frequency resolution is quantified by the full width at

half maximum of φt-f(0, f), ∆
m
f , or alternatively by the full width at a% of the total

area of φt-f(0, f), ∆
(a%)

f .
These quantities measure the degree of spreading of a line in the TF domain: ∆m

t

and ∆m
f are equal to the full width at half maximum of the given time-frequency

distribution of a Dirac impulse, evaluated along t, and of a sinusoid, evaluated
along f , whose ideal TF representations would be straight lines. Parameters ∆m
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Figure 3.4: Quantification of the
time-frequency resolution by the
full width at half maximum (∆m

x ),
or by the full width at a% (∆(a%)

x ),
with a = 95%, of the total area of
φ(x). Here x is a variable which can
represent both time and frequency,
as well as φ(x) can represent both
φt-f(t, 0) and φt-f(0, f).

and ∆(a%), with a = 95%, obtained from a general kernel function are shown in Fig. 3.4.

Time resolution: Let’s consider the smoothed pseudo Winer-Ville distribution of
a temporal impulse, such as a delta function x(t) = δ(t− t0). From (3.6), we get:

S(t, f) = Wx(t, f)⊗ φt-f(t, f) = δ(t− t0)⊗ φt-u(t, f) =

∫

∞

−∞

φt-f(t− t0, f − u)du (3.12)

If φt-f(t, f) is a separable function, such that φt-f(t, f) = φt(t)φf(f) then, evaluating
S(t, f) along t we get S(t, f) = kφt(t− t0), where k is a scale factor.

Frequency resolution: Let’s consider the smoothed pseudo Winer-Ville distribution
of a complex exponential x(t) = exp(j2πf0t). From (3.6), we get:

S(t, f) = Wx(t, f)⊗ φt-f(t, f) = δ(f − f0)⊗ φt-f(t, f) =

∫

∞

−∞

φt-f(t− v, f − f0)dv (3.13)

If φt-f(t, f) is a separable function, such that φt-f(t, f) = φt(t)φf(f) then, evaluating
S(t, f) along f we get S(t, f) = kφf(f − f0), where k is a scale factor.

Note that ∆m mainly depends on the sharpness of φt-f(t, f) around its maximum,
while it is slightly affected by its tails. On the other hand, a measure such as ∆(a%), is
more affected by the values that φt-f(t, f) takes far from its maximum. Thus, the ratio
∆m/∆(a%) can be used to quantify and compare the capability of the distribution of
concentrating the energy of the signal in the time-frequency domain. For ∆m/∆(a%) ≤ 1
the kernel localizes the energy of the signal in very limited TF regions, since the kernel
has almost no tails.
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3.2 The smoothed-pseudo Wigner-Ville distribu-

tion (SPWVD)

The WVD (3.7) provides an excellent localization of spectral components in TF do-
main, but its applicability is limited by the unavoidable presence of interference terms,
which are not inherent to the signal and which oscillate in the TF plane [92, 124, 125].
Several filtered versions of the WVD have been proposed to reduce the interference
terms while maintaining a good TF resolution. Among those that have been ap-
plied to the study of the cardiovascular variability [166, 165, 216], the smoothed
pseudo Wigner-Ville distribution (SPWVD) is one of the most interesting, since it
provides an independent control over the time and frequency resolution. The SPWVD
is the only member of the Cohen’s class which makes use of separable kernels, i.e.
φt-f(t, f) = φt(t)φf(f), and gives the possibility to independently control the amount
of time and frequency filtering [175, 92, 67]. Given its great potentiality [216], the
assessment of the performance of the SPWVD in non-stationary HRV analysis is of
interest.
The SPWVD of a signal x(t) can be estimated in the time-lag domain (t, τ) by means
of (3.2) and by using the separable kernel φt-d(t, τ) = φt(t)φd(τ):

C(t, f) =

∫

−∞

−∞

φd(τ)

[
∫

−∞

−∞

φt(t− v)x
(

v +
τ

2

)

x∗
(

v − τ

2

)

dv

]

e−j2πfτdτ (3.14)

In this expression, the term in the brackets, represent a smoothed version of the
deterministic autocorrelation function. From what pointed out in the previous section,
the time and the frequency resolution of the SPWVD will be separately given by the
shape of φt(t) and by the shape of (the Fourier transform of) φd(τ), respectively.
In Fig. 3.5, an illustrative example of the effect of the smoothing is given. Panels

(a)–(b) represent a signal composed of 4 Gaussian atoms, i.e. 4 complex exponentials
modulated by Gaussian functions. Graphics (c)–(f) show 4 different TF distributions
of this signal. The centers of the TF atoms are localized by black crosses. In panel (c),
the Wigner-Ville distribution is shown. The 4 TF atoms are well localized both in time
and frequency. However, several interference terms also appear in the TF distributions.
Importantly, these interference terms have an amplitude higher than the autoterms.
In panel (d) and (e) the Wigner-Ville distribution is only filtered in frequency and
time, respectively. It is shown that the filtering in frequency cancels the interference
terms owing to the interaction of TF atoms with the same frequency and that oscillate
in frequency directions (see panel (d)), while filtering in time cancels the interferences
terms owing to the interactions of TF atoms that appear at the same time instant and
that oscillate in time direction ((see panel (e))). If we compare the distributions in
(d)–(e) with the Wigner-Ville distribution in (c), we observe that the filtering makes
the TF representations less localized in frequency and time, respectively. Finally, in
panel (f), the smoothed pseudo Wigner-Ville distribution obtained by combining the
time and frequency filtering used in (d) and (e) is shown. All the interference terms
have been eliminated. Furthermore, the smoothing applied to the distribution shown
in (f) was sufficient to make the smoothed pseudo Wigner-Ville positive, so that it can
now be considered as an estimate of the non-stationary spectrum of signal x(t).
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Figure 3.5: Effect of TF smoothing. (a)–(b): A signal composed of 4 Gaussian
atoms. (c): Wigner-Ville distribution. (d): Pseudo Wigner-Ville distribution (fre-
quency smoothing only). Note that interference terms oscillating in frequency have
been removed. (e): Smoothed Wigner-Ville distribution (time smoothing only). Note
that interference terms oscillating in time have been removed. (f): Smoothed pseudo
Wigner-Ville distribution (both time and frequency smoothing). Black cross localize
the center of the Gaussian atoms in the TF domain. TF distributions are normalized
to the total energy of the signal. Iso-contours of graphics in (d)–(f) represent the same
values.
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Chapter 3. Time-frequency analysis

3.2.1 Evaluation by a simulation study

Materials
To assess the performance of the SPWVD in the analysis of non-stationary signals

related to the autonomic modulation, we generated stochastic signals that mimic real
heart rate variability (HRV) patterns by means of the methodology described in the
previous chapter. More in detail, signals were obtained by means of the I-FS framework
(see §2.2.2) and reproduced possible dynamics of HRV during exercise stress test (EST,
§2.3.1) and during experiments of music-induced emotions (MIE, §2.3.2). The time-
course of the instantaneous frequencies and powers of the spectral components during
EST and MIE are reported in Fig. 2.3–2.4, and the parameters which quantifies the
degree of non-stationarity of these signals are given in Table 2.1.
Signals were generated with a sampling rate, Fs, equal to 2 Hz and global results were
obtained by using R=1000 realizations of the models. For simulation EST, the model
includes 4 poles and 8 zeros, i.e. the order of the TV-ARMA model was (4,8), and
the magnitude of the LF pole used as design parameter, |pLF|, was equal to 0.905. For
simulation MIE, the model order was (4,10) and |pLF| = 0.870. These values of |pLF|
were chosen based on the results shown in Fig. 2.6.

Time-frequency analysis
The non-stationary spectral density function, Ŝ(t, f), was estimated by means of the

smoothed pseudo Wigner-Ville distribution (3.14). The time and frequency smoothing
were provided by a rectangular window φt(t) of length 2N − 1 and an exponential
function φd(τ) with damping factor δ|. The width of φt(t) gave a time resolution
of about {20.5, 35.5, 50.5} and {5.5, 15.5, 25.5} seconds for simulation EST and MIE,
respectively, while in both simulations φd(τ) gave a frequency resolution of {0, 7, 13}
mHz. Time and frequency resolutions are given as the full-width at half maximum of
φt(t) (∆

m
t ) and of the Fourier transform of φd(τ) (∆

m
f ), respectively.

To estimate the time-course of the HRV spectral indices the traditional LF band,
BLF = [0.04, 0.15] Hz and a TV respiration-dependent HF band1, centered on the
respiratory rate Fresp(t), BHF(t) = Fresp(t)+ [−0.125, 0.125] Hz, are used [16]. Here, the
respiratory rate Fresp(t) is assumed to be equal to FHF(t). However, in real data analysis
a direct or ECG-derived estimation of respiratory rate could be used to dynamically
adjust the HF band [24].
Instantaneous frequencies from the model, FLF(t) and FHF(t), and from TF analysis,
F̂LF(t) and F̂HF(t), are obtained as the peak frequency of the TF model function, defined
in (2.3), and of the SPWVD, defined in (3.14), in BLF, BHF(t), respectively.
Instantaneous powers, PLF(t), PHF(t), PTOT(t) and P̂LF(t), P̂HF(t), P̂TOT(t) are obtained
by integrating the model function and the estimated SPWVD in BLF, BHF(t) and on
the entire spectrum, respectively.
The estimation error between the time-course of a general HRV index I(t) and its

1The use of dynamic boundaries for the HF components will be discussed in §6.3.4, where it is
used in a physiological study.
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estimate Î(t) is calculated as:

EI(t) =

1
R

(

∑

R

r=1
Îr(t)

)

− I(t)
I(t) (3.15)

where I(t) ∈ {FLF(t), FHF(t), PLF(t), PHF(t), PTOT(t)} and R = 1000 is the number of
realizations of the model.

Results & Discussion:

Representative examples of TF estimates and estimation errors are given in Fig. 3.6.
A comparison between the TF model functions, reported in the first column, and the
SPWVD obtained by averaging the distributions of each realization of the model, re-
ported in the second column, shows that the SPWVD provides a representation of
the TF structure of the simulated signals which is well localized both in time and in
frequency. This is confirmed by the quantification of the instantaneous frequencies
and powers reported in the last two columns of Fig. 3.6. It is shown that in simu-
lation EST the estimated parameters perfectly followed the transitory, with a mean
estimation error |ĒI| < 2.8% in T1 and |ĒI| < 3.6% in T2. In simulation MIE, which
is characterized by much stronger rates of variation, the indices estimated using the
SPWVD followed the theoretical changes, even if with a higher percentual error.
Global results, obtained by using all the 9 different kernels, are detailed in Table 3.1
and summarized in Fig. 3.7. During both simulations EST and MIE, the SPWVD
estimated the dynamics of the simulated signals with a median error which, in the
worst case, did not exceed the 10%. Results should be compared to the intrinsic un-
certainty of the simulated signals (see §2.2.5), whose distribution is reported in the
last column of Fig. 3.7. The estimation error EI(t) increased by increasing the rate of
variation of the spectral components. For simulation EST, the estimation error was
always very low, both for epochs T1 and T2. The time-course of FLF(t), FHF(t) and
PLF(t) was estimated with an estimation error whose median and interquartile range
were bounded between 0.78% and 5.52% and between 0.29% and 5.16%, respectively.
During T2, the interquartile range of the estimation error of P̂HF(t) was higher, but still
comparable with that of e(t), which measures the intrinsic uncertainty. The temporal
evolution of the total power was estimated with an error whose median and interquar-
tile range were bounded between 0.11% and 0.65% and between 2.11% and 4.55%,
respectevely. For simulation MIE, the estimation error was higher, especially during
T2. Nevertheless, in Fig. 3.6, it is shown that P̂LF(t) and P̂HF(t) correctly followed
the temporal evolution of PLF(t) and PHF(t) even during T2. In this simulation, the
estimation of PLF(t) worsened by increasing the degree of the time smoothing. To cor-
rectly track the changes of the HRV spectral indices, one should always pay attention
to the TF resolution fixed by the kernels. Concerning the effect of the TF filtering, it
is shown that the estimation error of PTOT(t) only depended on the filtering in time,
and that for a given time resolution, EI(t) decreased by increasing the degree of the
frequency filtering. This was particularly evident for the estimation of HF instanta-
neous power and frequency, where misestimations due to residual interference terms
are more frequent. The use of a time-varying respiration-dependent boundaries [16]
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was very effective to improve the estimation of the HF component, which otherwise
would have required a much higher degree of filtering.
In this study we used a rather basic TF analysis, which involves a TF filtering of the
WVD by means of time-invariant kernels that were arbitrary chosen, and an estima-
tion of spectral indices by integrating Ŝ(t, f) in BLF and BHF(t). More sophisticated
techniques have been presented in the literature to improve the spectral characteriza-
tion of non-stationary signals. An interesting possibility is to make the TF filtering
of the WVD time-varying or signal-dependent [25]. Another possibility, described in
the following section §3.3, is to perform a parametric decomposition of the generalized
autocorrelation function [164]. A method, which combines parametric decomposition
of the autocorrelation function with a dynamic adjustment of the TF filtering which
depends to the rate of variation of the spectral components of the signal, has been
recently proposed [19]. All these methodologies were assessed by means of determin-
istic signals embedded in noise and the frameworks presented in §2 could be used, in
further studies, to compare their performance.

3.3 Combining parametric and non-parametric

methods

To improve the capability of the SPWVD to localize and quantify the temporal evo-
lution of the spectral components of a signal, the parametric decomposition of the
non-stationary autocorrelation function (ACF), sx(t, τ), whose expression is given in
(3.3), was proposed in [164]. This method allows to separate information that is con-
sidered inherent to the signal from noise. In this section, it is combined with the
estimation of the respiratory information to improve the tracking of the HF compo-
nent [20].
This methodology will be used in §6 to characterize the changes that different kinds
of music provoked on the autonomic modulation of heart rate [201].

Parameter extraction

The time course of the HRV spectral parameters, such as instantaneous central fre-
quencies, FLF(t) and FHF(t), and instantaneous powers, PLF(t) and PHF(t), can be
obtained by combining the parametric decomposition of the non-stationary ACF [164]
with the estimation of the respiratory rate, which is use to estimate the HF compo-
nent [20]. The method of decomposition described here is an extension of the Prony
modeling [174], designed to estimate the parameters of damped sinusoids embedded
in noise [148]. Briefly, the non-stationary ACF (3.3), sx(t, τ), is modeled, for every
time-instant t0, as the sum of q damped sinusoids which are in strict relation with the
instantaneous LF and HF components:

sx(t0, τ) ≈
q

∑

i=1

Ai(t0)e
j2πfi(t0)τ+di(t0)|τ | + ξ(t0, τ) (3.16)

where τ is the time lag. In (3.16), ξ(t0, τ) is a white gaussian noise, which takes into
account both background noise and model inaccuracies, Ai(t0), di(t0) and fi(t0) are the
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Table 3.1: Simulation EST and MIE - Estimation error EI(t) in mean±standard
deviation

– Exercise stress testing T1 – Uncertainty µe ± σe = 0.31± 4.81 [%]

2N ∆m
t δ ∆m

f FLF(t) FHF(t) PLF(t) PHF(t) PTOT(t)
samp s samp-1 Hz % % % % %

0 0 1.19 ± 1.62 -4.48 ± 4.04 0.90 ± 1.72 -0.89 ± 5.36
42 20.5 1/64 0.007 2.77 ± 2.72 -1.32 ± 0.72 -1.03 ± 1.66 -1.11 ± 5.29 0.05 ± 2.09

1/32 0.013 3.15 ± 3.02 -1.07 ± 0.52 -2.92 ± 1.62 -1.33 ± 5.24
0 0 1.11 ± 1.60 -4.62 ± 3.95 0.95 ± 1.41 -0.79 ± 5.40

72 35.5 1/64 0.007 2.75 ± 2.76 -1.49 ± 0.72 -0.97 ± 1.35 -1.02 ± 5.33 0.13 ± 1.91
1/32 0.013 3.07 ± 2.95 -1.18 ± 0.57 -2.87 ± 1.32 -1.25 ± 5.28
0 0 1.06 ± 1.55 -4.82 ± 3.75 1.00 ± 1.23 -0.62 ± 5.69

102 55.5 1/64 0.007 2.70 ± 2.77 -1.67 ± 0.78 -0.93 ± 1.17 -0.87 ± 5.63 0.21 ± 1.87
1/32 0.013 2.98 ± 2.89 -1.35 ± 0.66 -2.82 ± 1.14 -1.11 ± 5.57

– Exercise stress testing T2 – Uncertainty µe ± σe = 1.29± 5.82 [%]

2N ∆m
t δ ∆m

f FLF(t) FHF(t) PLF(t) PHF(t) PTOT(t)
samp s samp-1 Hz % % % % %

0 0 2.30 ± 1.16 -4.12 ± 2.56 -1.33 ± 1.44 2.49 ± 9.55
42 20.5 1/64 0.007 3.59 ± 2.02 -2.44 ± 0.31 -3.24 ± 1.43 1.95 ± 9.48 0.50 ± 3.31

1/32 0.013 4.07 ± 2.22 -2.11 ± 0.29 -5.12 ± 1.41 1.41 ± 9.41
0 0 2.36 ± 1.04 -4.59 ± 1.99 -1.31 ± 1.16 3.01 ± 8.67

72 35.5 1/64 0.007 3.61 ± 1.83 -3.03 ± 0.32 -3.21 ± 1.13 2.42 ± 8.63 0.63 ± 2.92
1/32 0.013 4.06 ± 2.02 -2.65 ± 0.37 -5.08 ± 1.11 1.84 ± 8.60
0 0 2.35 ± 1.12 -5.29 ± 1.64 -1.25 ± 1.38 3.75 ± 8.00

102 55.5 1/64 0.007 3.54 ± 1.88 -3.91 ± 0.57 -3.15 ± 1.32 3.10 ± 8.00 0.84 ± 2.77
1/32 0.013 3.95 ± 2.02 -3.54 ± 0.57 -5.02 ± 1.28 2.45 ± 8.01

Music-induced emotions T1 – Uncertainty µe ± σe = −9.80± 8.98 [%]
2N ∆m

t δ ∆m
f FLF(t) FHF(t) PLF(t) PHF(t) PTOT(t)

samp s samp-1 Hz % % % % %
0 0 1.34 ± 3.30 -1.11 ± 0.98 6.09 ± 10.33 -16.27 ± 8.46

12 5.5 1/64 0.007 1.54 ± 3.03 -0.77 ± 0.32 4.58 ± 10.28 -16.95 ± 8.33 -8.90 ± 8.32
1/32 0.013 1.84 ± 2.71 -0.71 ± 0.12 3.09 ± 10.24 -17.63 ± 8.20
0 0 1.58 ± 3.31 -0.58 ± 0.21 5.86 ± 11.95 -16.43 ± 8.20

32 5.5 1/64 0.007 1.55 ± 3.07 -0.43 ± 0.06 4.35 ± 11.88 -17.11 ± 8.07 -9.09 ± 8.70
1/32 0.013 1.67 ± 2.73 -0.39 ± 0.07 2.87 ± 11.81 -17.78 ± 7.95
0 0 2.09 ± 4.05 -0.60 ± 0.19 10.35± 35.67 -15.81 ± 10.72

52 5.5 1/64 0.007 2.01 ± 3.66 -0.47 ± 0.26 8.80 ± 35.28 -16.48 ± 10.63 -6.47 ± 20.26
1/32 0.013 2.06 ± 3.42 -0.43 ± 0.31 7.27 ± 34.91 -17.15 ± 10.55

Music-induced emotions T2 – Uncertainty µe ± σe = 9.61± 15.42 [%]
2N ∆m

t δ ∆m
f FLF(t) FHF(t) PLF(t) PHF(t) PTOT(t)

samp s samp-1 Hz % % % % %
0 0 -6.38 ± 0.67 -4.41 ± 8.56 21.19 ± 18.03 -2.69 ± 25.23

12 5.5 1/64 0.007 -4.80 ± 0.61 -3.12 ± 5.66 19.54 ± 17.50 -3.23 ± 24.85 10.90 ± 17.28
1/32 0.013 -3.72 ± 0.65 -2.43 ± 4.35 17.84 ± 17.02 -3.74 ± 24.48
0 0 -8.85 ± 1.42 3.05 ± 5.22 28.52 ± 29.44 -0.30 ± 22.12

32 15.5 1/64 0.007 -6.91 ± 1.48 0.21 ± 2.58 26.83 ± 28.75 -0.89 ± 22.13 15.22 ± 22.95
1/32 0.013 -5.40 ± 1.52 -0.99± 2.56 25.04 ± 28.04 -1.45 ± 22.14
0 0 -8.83 ± 1.62 2.85 ± 4.21 42.59 ± 49.87 4.74 ± 21.50

52 25.5 1/64 0.007 -6.90 ± 1.94 -0.66 ± 3.27 40.77 ± 48.80 4.01 ± 21.98 23.84 ± 33.52
1/32 0.013 -5.50 ± 1.96 -2.08 ± 3.93 38.85 ± 47.70 3.34 ± 22.40
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Figure 3.8: Combining TF analysis with parametric decomposition: in continuous line
the SPWVD, S(t0, f), computed at time n0. In bold line: the spectrum components,
S̃LF(t0, f) and S̃HF(t0, f), reconstructed using the parametric decomposition. (a): The
interference term, in dashed bold line, lies in between the LF and the HF components
and can be discarded. (b): The importance of including the respiratory information in
the definition of HF spectral band: traditional HF frequency band, in dotted vertical
lines; TV respiration-dependent HF band, in dashed vertical lines.

amplitude, damping factor and frequency of the i-th damped complex sinusoid. The
parameters Ai(t0), di(t0) and fi(t0) are obtained from sx(t0, τ) with τ > 0, using the
least square method described in [148], which provides accurate estimation of expo-
nentially damped sinusoidal signals in noise. The method combines linear backward
prediction and singular value decomposition to separate signal components from noise.
If we take the Fourier transform of the instantaneous ACF described in (3.16), ignoring
the noise term, we get a denoised estimate of the TV spectrum of signal x(t):

S̃(t, f) =

q
∑

i=1

S̃i(t, f) (3.17)

where S̃i(t, f) denotes the Fourier transform of each damped sinusoid in (3.16). In
the following, it is shown that the power associated to a signal component whose
instantaneous ACF is a complex damped sinusoid can be analytically obtained from
coefficients Ai(t).

Consider a signal component y(t), whose ACF is the damped complex sinusoid
s(τ):

s(τ) = Ae−d|τ |+j2πf0τ (3.18)

with d > 0, τ and A ∈ R. The Fourier Transform of s(τ) is equal to:

S(f) =

∫ ∞

−∞

Ae−d|τ |+j2π(f0−f)τdτ =
2Ad

4π2(f − f0)2 + d2
(3.19)

Note that s(τ) is an hermitian function and S(f) is real. The function S(f) is the
power spectral density of y(t) and has a Lorentian shape with a peak centered on
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frequency f0. The power of the signal component y(t), Py, is then closely related to
coefficient A and it can be analytically obtained as the total area of S(f):

Py =

∫ ∞

−∞

S(f)df =

∫ ∞

−∞

[

2Ad

4π2(f − f0)2 + d2

]

df = (3.20)

=
2Ad

4π2

∫ ∞

−∞

[

1

(f − f0)2 +
(

d
2π

)2

]

df =
2Ad

4π2

2π

d

[

arctan

(

(f − f0)2π

d

)]∞

−∞

= A

After the decomposition, the LF component is selected as the sinusoid with highest
power in LF range, while the HF component is selected as the sinusoid whose central
frequency lies in the HF range and is closer to the respiratory rate. The use of these
specific selection criteria for LF and HF components is particularly useful when the
TF filtering is not sufficient to completely remove the interference terms. Indeed,
in such a situation, the sinusoid that corresponds to the interference term, whose
instantaneous central frequency lies in between the LF and the HF components [124],
is automatically discarded from the instantaneous power and frequency estimation.
This is shown in Fig. 3.8a, where we observe that the parametric decomposition of a
highly noisy instantaneous spectrum S(t0, f) (in continuous line) allows to estimate
LF and HF component (in bold line) and to discard the interference term (in dashed
bold line).
Figure 3.8b shows an example in which a subject is breathing at Fresp = 0.465 Hz. In
this case, the use of a respiratory-dependent range (plotted in dashed vertical lines)
allows to include the HF component, while the use of traditional HF range (dotted
vertical lines) misses the HF component. This methodology will be used in §6 to
analyze real non-stationary HRV signals. Further considerations about the results
obtained by using this method, as well as time-varying respiratory boundaries, are
given in §6.3.4.
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Chapter 4. Time-frequency coherence

4.1 Introduction

Spectral coherence measures the degree of correlation between the spectral compo-
nents of two signals [57]. This measure, which requires signals to be stationary, is
inappropriate for studying non-stationary signals. In the analysis of cardiovascular
signals, the estimation of spectral coherence in the joint time-frequency (TF) domain
has many potential fields of application. For example, the localization of TF regions
in which two signals are coupled can be applied in the time-varying characterization of
baroreflex [76, 209, 145], or in the assessment of the degree of similarity between dif-
ferent signals, to validate the use of one signal, and its derived measures, as surrogates
of original ones [100]. These applications will be the subject of the studies described
in §7–8.
In recent years, different methods to estimate time-varying spectral coherence have
been proposed. Most of them are based on parametric autoregressive modeling
[168, 262, 261, 63]. The performance of these methods is related to the capability
of fitting the appropriate underlying model and, in extremely non-stationary condi-
tions, they have been observed to perform less accurately than non-parametric methods
[216, 203].
Time-varying spectral coherence estimators based on non-parametric methods have
the advantage of not requiring any assumption on the TF structure of the signals and
are relatively easy to estimate. Among them, in biomedical applications, measures
of time-scale coherence [110], based on the continuous wavelet transform, have been
recently proposed to study cardiovascular dynamics [97, 144, 145] as well as neural con-
nectivity [153, 260, 43, 54]. These methods are characterized by a non-homogeneous
TF resolution and are suited for signals presenting high frequency components of short
duration and low frequency components of long duration. In the late Nineties, estima-
tors of time-frequency coherence based on multitaper spectrogram [254, 244] have been
proposed to study the coupling between neuronal signals [256] and atrial fibrillation
[158], but, to the extent of our knowledge, they have never been used in the analysis
of cardiovascular variability.
In this chapter, two methods of time-frequency coherence analysis are described (see
§4.3–4.4), with the purpose of showing their usefulness in the characterization of dy-
namic cardiovascular interactions. One is based on the smoothed pseudo Wigner-Ville
distribution, while the other one on the multitaper spectrogram.
These methods include the possibility of automatic localizing TF regions in which
spectral coherence is statistically significant. A methodology to numerically test the
statistical significance of the time-frequency coherence estimates is described in §4.5.
The accuracy in the localization of these regions is then assessed in a comparative
study (see §4.6) based on simulated non-stationary signals. The comparison also in-
clude the assessment of wavelet coherence [110, 144].
To highlight the potentiality of the presented methods, time-frequency coherence anal-
ysis is used to characterize the changes which tilt table test provokes in the dynamic
interactions between R–R variability (RRV) and systolic arterial pressure variability
(SAPV), between RRV and respiration (RESP) and between RRV and pulse interval
variability (PIV).
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4.2 Time-frequency coherence

Spectral coherence function between two stationary zero-mean random processes x(t)
and y(t) is a normalized version of the cross power spectral density, Sxy(f). Its mag-
nitude is defined as [57]:

γ(f) =
|Sxy(f)|

√

Sxx(f)Syy(f)
, γ(f) ∈ [0, 1] (4.1)

Sxy(f) = Fτ → f

{

E [x(t)y∗(t− τ)]
}

(4.2)

where F{ · } and E[ · ] stand for the Fourier transform and the expectation operator,
respectively. The magnitude of spectral coherence is one for those frequencies for
which x(t) and y(t) are related by a linear time-invariant system and zero for those
frequencies for which x(t) and y(t) are uncorrelated, i.e. when Sxy(f) = 0 [57, 181].
By analogy with the stationary case, the magnitude of time-frequency coherence (TFC)
can be defined in non-stationary conditions as [252, 181]:

γ(t, f) =
|Sxy(t, f)|

√

Sxx(t, f)Syy(t, f)
, γ(t, f) ∈ [0, 1] (4.3)

where Sxy(t, f) stands for some non-stationary cross spectrum.
Time-frequency coherence quantifies the strength of the local coupling between two
non-stationary processes. The non-stationary spectrum used in (4.3) has not a unique
definition. Nevertheless, the Wigner-Ville spectrum (WVS), defined as the Fourier
transform of a non-stationary cross-correlation function [92]:

Sxy(t, f) = Fτ → f

{

E

[

x
(

t+
τ

2

)

y∗
(

t− τ

2

)]}

(4.4)

can be seen as a natural extension of the cross power spectral density in a non-
stationary context. It can be shown that, under mild conditions, the Wigner-Ville
spectrum (4.4) is equal to the ensemble average of the Wigner-Ville distributions
(WVD), Wxy (t, f), of the realizations of the processes [92]:

Sxy(t, f) = E [Wxy(t, f)] ; (4.5)

Wxy(t, f) = Fτ → f

{

x
(

t+
τ

2

)

y∗
(

t− τ

2

)}

; (4.6)

When only one observed realization is available, as in single-trial analysis, Sxy(t, f)
should be estimated by means of some estimator that replaces the expectation
E[Wxy(t, f)] with local averaging:

Ŝxy(t, f ;φ) = Wxy(t, f)⊗ φt-f(t, f) (4.7)

where ⊗ represents the 2D convolution on t and f , and φt-f(t, f) is the smoothing func-
tion, which, given (4.3), should guarantee the positiveness of the estimated spectra.
In this chapter, we always implicitly refer to single-trial coherence, since we are inter-
ested in characterizing cardiovascular interactions for a given subject. This contrasts
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Chapter 4. Time-frequency coherence

to inter-trial coherence, which is used to estimate the correlation throughout a given
study population, by analyzing a batch of signals [260, 43].
Two different estimators of the Wigner-Ville spectrum are considered in this chap-
ter to estimate the time-frequency coherence function, namely, the smoothed pseudo
Wigner-Ville distribution (SPWVD) and the multitaper spectrogram (MTSP).

4.3 Time-frequency coherence by smoothed

pseudo Wigner-Ville distribution (SPWV-

TFC)

As also mentioned in §3.2, the SPWVD is a member of Cohen’s class and corresponds
to the particular case in which the kernel φt-f(t, f) is a separable function. It is defined
as:

ŜW

xy(t, f) = Wxy(t, f)⊗ φt-f(t, f) = F(ν, τ) → (t, f) {Axy(τ, ν)φd-D(τ, ν)}
Axy(τ, ν) = Ft → ν

{

x
(

t+
τ

2

)

y∗
(

t− τ

2

)}

(4.8)

φd-D(τ, ν) = F -1

(t, f) → (τ, ν) {φt-f(t, f)}

where F(ν, τ) → (t, f) is the 2D Fourier transform operator, used to pass from the ambiguity
function domain to the TF domain, and Axy(τ, ν) is the cross ambiguity function of x(t)
and y(t). The smoothing function can be seen as a 2D low pass filter which should
be tuned in order to achieve a degree of smoothing sufficient to obtain meaningful
estimates (i.e. γ̂(t, f) ∈ [0, 1]), while maintaining at the same time a satisfactory TF
resolution.
The SPWVD, ŜW

xy(t, f), is not always positive and negative values are related to the
presence of residual interference terms. These terms may cause the TFC to take values
outside the range [0, 1], thus losing its physical interpretation. This is shown by the
Janssen’s formula (also known as outer interference formula) [125, 92]:

|Wxy(t, f)|2 =
∞x

−∞

Wxx

(

t+
τ

2
, f +

ν

2

)

Wyy

(

t− τ

2
, f − ν

2

)

dτdν (4.9)

This expression shows that for given TF point (t0, f0), it is possible to have
|Wxy(t0, f0)| 6= 0 while Wxx(t0, f0) = Wyy(t0, f0) ≈ 0, and consequently γ̂(t0, f0) > 1.
To obtain meaningful TFC estimates, φt-f(t, f) should completely suppress the inter-
ference terms [181]. A necessary, but not sufficient, condition to have TFC estimates
bounded between zero and one is the positiveness of the auto spectra. As long as the
degree of TF filtering is strong enough, TF coherence by SPWVD (SPWV-TFC) is
obtained as:

γ̂W(t, f) =

∣

∣

∣
ŜW

xy(t, f)
∣

∣

∣

√

ŜW
xx(t, f)Ŝ

W
yy(t, f)

(4.10)
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In previous works which we published in [206, 100], a simplified version of the
multiform–tiltable exponential kernel [72]:

φd-D(τ, ν) = exp

{

−π

[(

ν

ν0

)2

+

(

τ

τ0

)2]2λ
}

(4.11)

was shown to provide reliable TFC estimates between cardiovascular signals. In the
ambiguity function domain, the iso-contours of (4.11) are ellipses whose eccentricity
depends on parameters ν0 and τ0. Parameters ν0 and τ0 are used to change the length
of the ellipse axes aligned along ν (i.e. the degree of time filtering) and τ (i.e. the
degree of frequency filtering), respectively. The parameter λ sets the roll off of the
filter as well as the size of the tails of the kernel. This kernel function was used to
obtain the TF distributions shown in the example of Fig. 3.5.
As described in §3.1.2, the time (frequency) resolution is given by the full width at
half maximum ∆m

t (∆m
f ) and the full width at a% of the total area ∆(a%)

t (∆(a%)

f ) of
φt-f(t, 0) (φt-f(0, f)).

Two signal-dependent approaches, described in the following paragraphs, were pro-
posed to determine an appropriate smoothing function φd-D(τ, ν).

4.3.1 Straightforward scheme for signal-dependent smooth-
ing

According to this scheme, a signal-dependent kernel for time-frequency coherence anal-
ysis is obtained as follows.
First, the desired TF resolution (∆m

t ,∆
m
f ), corresponding to the minimum amount of

TF smoothing, is decided based on a-priori information about the signals and the
experimental settings. The set of parameters {τ0, ν0, λ} of the kernel in (4.11) that
gives this TF resolution are used as starting point.
If using this set of parameters γ̂WV(t, f) /∈ [0, 1], the degree of time (or frequency)
smoothing is maintained constant, while the frequency (or time) smoothing is in-
creased until reaching meaningful estimates over the entire TF domain.
If at the end of the process, the frequency (or time) resolution is not satisfactory,
the time (or frequency) resolution is decreased, i.e. the corresponding ν0 (or τ0 ) is
increased, and the process iterates.
This process allows adjusting the TF filtering to the specific needs of analysis.
Despite the fact that in the SPWVD the degree of time and frequency filtering can
be tuned independently, the resulting time and frequency resolution can not be set
arbitrarily, since the condition of having γ̂WV(t, f) ∈ [0, 1] imposes a sort of trade of
on the minimum joint TF filtering.
This straightforward scheme was used in the applications described in §7 and §8. In
particular, in §8, an illustrative example of how this procedure can be used to analyzed
recorded physiological data will be given (see discussion of Fig. 8.1).
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4.3.2 Geometrical scheme for signal-dependent smoothing

This second approach, which we proposed in [206, 202], is particularly suitable when
no a-priori information about the signal is available. It makes use of geometrical
relations between the TF structure of the signals and the interference terms to
determine geometrical properties of φt-f(t, f). It also includes the restriction of the TF
support of γ̂WV(t, f) into regions of interest, defined as those TF regions where auto
spectra are higher than a predetermined threshold. The use of TF regions of interest
reduces the required degree of filtering, and it has been also used in a recent work [189].

Although in this section we apply this method to signals characterized by two
non-stationary spectral components, it can be easily extended to the case of signals
characterized by more spectral components. We denote the central frequencies of these
components fB(t), with B ∈ {LF,HF}. As already described in §3.1.1, if we consider
these spectral components as two time-frequency atoms, (tLF,fLF) and (tHF,fHF), we
will observe an outer interference located at ( tHF+tLF

2
,fHF+fLF

2
) which oscillates in time

direction with oscillation frequency equal to the frequency lag (fHF − fLF), and in fre-
quency direction with an oscillation frequency equal to the time lag (tHF − tLF) [124].
Due to Fourier transformation, an interference term that oscillates in time (or in fre-
quency) direction is associated to a component located on the ν (or on the τ) axis of
the ambiguity function. Furthermore, interference terms characterized by slow (fast)
oscillations in the time-frequency domain, correspond to interference terms close to
(far from) the origin of the ambiguity function.
Generalizing these local interactions, the outer interferences result to be located at
midway between the 2 spectral components and they mainly oscillate in time direction
with a time-varying frequency which is lower bounded by νmin = min [fHF(t)− fLF(t)]
(see 3.2). The closer two signal components are, the slower the interference will os-
cillate in the time direction, and the closest the cross-component will be to the origin
of the ambiguity plane. Therefore, in order to suppress outer interferences, the kernel
should be able to filter out all ν > νmin, where νmin corresponds to the slowest outer
interference term. To obtain νmin, the estimation of fLF(t) and fHF(t) is required.
A direct or indirect estimation of respiratory rate can be used to approximate the
instantaneous frequency of the HF component, fHF(t) [23, 24].
The central frequency of the LF component, fLF(t), is usually quite stable and can
be therefore modeled as a straight line in the TF plane (as a sinusoid with constant
frequency). To estimate fLF(t) = fLF, we use the Hough transform [65]. The Hough
transform is a technique commonly used to detect line in an image. In the case in
which the image domain is the ambiguity domain (τ, ν) and the Hough domain is
characterized by parameters (a, b), the Hough transform parametrizes a line as:

τ cos(a) + ν sin(a) = b (4.12)

So, the Hough transform associates all the points (τ, ν) with a pencil of sinusoids
which intersect themselves in the plane (a, b). It is therefore possible to associate
with each line of the ambiguity domain (τ, ν) a point (a, b) which is unique. If in
the ambiguity function domain there is some structure concentrated along a straight
line, we will observe in the domain of parameters (a, b) a peak whose coordinates are
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4.3 Time-frequency coherence by smoothed pseudo WVD

directly related to the parameters of the line.
Given that the dual of a linear chirp δ(f − ct) in the ambiguity plane is perfectly
concentrated along the line δ(ν − cτ), the Hough transform can be applied to the
ambiguity function, |A(τ, ν)|, to detect the presence of this chirp. This has the
advantage that, given that the ambiguity function is highly redundant, just a small
part of the ambiguity plane, as for example the region (τ, ν) > 0, can be used, thus
reducing the calculation time.

Once that νmin = min [fHF(t)− fLF(t)] has been estimated, to find the value of ν0

which assures the elimination of all the outer interferences, one should rewrite the
kernel function (4.11) as:

(

ν

ν0

)2

+

(

τ

τ0

)2

=

(

− log(φd-D(τ, ν))

π

)
1
2λ

(4.13)

The parameter ν0 is then fixed by imposing that φd-D(0, νmin) = k << 1. This condi-
tions results in:

ν0 = νmin

(−log(k)

π

)- 1
4λ

= min [fHF(t)− fLF(t)]

(−log(k)

π

)- 1
4λ

(4.14)

In the validation of this method, we used a value for λ = 0.25. With respect to a
Gaussian kernel (λ = 0.5), this value gives a kernel which is sharper around the origin
and with higher tails.
In Fig. 4.1, an example of the use of this kernel is shown. In panel (a), φd-D(0, ν) is
plotted superimposed to the ambiguity function, Axx(0, ν), of a non-stationary simu-
lated signal that mimics heart rate variability patterns. In the ambiguity function, the
auto terms are concentrated around the origin of the axes, while the outer interference
terms are located at |ν| > νmin. The kernel completely suppresses the outer interfer-
ence, being φd-D(0, νmin ) = k = 2 · 10-3. In this case, the cross components located
at |ν| > νmin are completely removed. If a kernel function provides an insufficient
smoothing, the outer interferences located around ±νmin are not attenuated and will
appear in the TF map. In panel (b), both the ambiguity function and the kernel are
shown in the ambiguity domain. The most outer iso-contour of the kernel correspond
to φd-D(τ, ν) = k = 2 · 10-3. Therefore the interference terms outside this iso-contour
are suppressed and do not appear in the TF distribution.

As described in §3.1.1 and shown in Fig. 3.3, inner interferences appear in mono-
component signals and they obey the same geometrical laws as outer interferences.
They appear in TF maps of signals whose instantaneous frequency varies non-linearly.
Even if in signals related to the autonomic modulation inner interferences are usually
smaller than outer ones, their suppression can be difficult due to their vicinity with
the signal components. Given that the instantaneous frequency laws usually change
gradually, they are observed to oscillate mainly in frequency direction (see Fig. 3.3)
and the frequency smoothing (attenuation in τ direction via correct selection of pa-
rameter τ0) is the main responsible of their attenuation.
The same scheme previously used to adjust the smoothing in time (i.e. in ν) can be
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applied to adjust the smoothing in frequency (i.e. in τ). To do that, it is necessary
to perform a previous analysis to estimate the value of τmin, i.e. the minimal tempo-
ral distance between oscillations characterized by the same frequency. This is a very
difficult task, since it requires to make the distinction between stationary or almost
stationary oscillations, which are characterized by a null or almost null τmin, and spec-
tral components that vary non-linearly during time, which are those that generate the
interference terms. Given that we are interested in a robust method, i.e. a method
that always yields a kernel for which γ̂WV(t, f) ∈ [0, 1], we opted for an other solution.
In order to find a value for τ0 that provides a good compromise between interferences
suppression and TF resolution, an iterative process, similar to that described in the
previous paragraph, is used. The parameter τ0 is gradually reduced (increasing the
frequency smoothing) until γ̂WV(t, f) ∈ [0, 1] in the TF region of interest.
Examples of the use of a signal-dependent kernel obtained by following this geometri-
cal scheme are shown in Fig. 4.1–4.2.
In Fig. 4.2, the effect of three different kernels on the SPWVD of two simulated sig-
nals is shown. These signals are simulated as the sum of two complex exponentials
embedded in noise. The first exponential mimics an AM LF component, and the sec-
ond one mimics an AM-FM HF component. In these figures, panels (a)–(b) represent
the case of insufficient TF smoothing, provided by a kernel as that shown in Fig. 4.1
and reported in dotted line. Outer interferences are clearly visible at midway between
the two components and, as expected, they are higher where the two signal spectral
components are closer. In panels (c)–(d), the SPWVD estimated by using in the ker-
nel the value ν0 obtained by (4.14) is shown. It is free from outer interferences but
not from inner ones, which are still well visible in panel (d), close to the HF spectral
component. Finally, the SPWVD shown in panels (e)–(f) was obtained by using the
same ν0 as before and the value of parameter τ0 associated to the lowest frequency
smoothing which at the same time makes γ̂WV(t, f) ∈ [0, 1] in the TF region of inter-
est. As expected, this SPWVD is free from interference terms.

Time-frequency region of interest

The restriction of the TF support of γ̂WV(t, f) to a region of interest is justified by the
desire of reducing the TF filtering necessary to obtain γ̂WV(t, f) ∈ [0, 1]. The idea is
to estimate time-frequency coherence only in those regions where it really matters, i.e.
where both signals have spectral components. This reduces the chance of having to
increase the filtering since γ̂WV(t, f) /∈ [0, 1] in regions where there is only noise. The
TF region of interest is defined as the region Ω(t, f) = Ωx(t, f) ∩ Ωy(t, f), where each
Ωi(t, f) is defined as:

Ωi(t, f) ≡
{

(t, f) ∈ (R+,R+) | ŜWV

i (t, f) > a ·max
f

[

ŜWV

i (t, f)
]}

(4.15)

with a <1 and i ∈ {x, y}.
An alternative and less restrictive definition for the TF region of interest is Ω(t, f) =
Ωx(t, f) ∪ Ωy(t, f).
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Figure 4.1: (a) kernel φd-D(0, ν) for outer interferences attenuation. The kernel elimi-
nates interference terms at ν > νmin; (b) The iso-contours of the kernel and the ambi-
guity function reported in the ambiguity domain. The first 4 iso-contours of φd-D(τ, ν)
correspond to 80%, 60%, 40% and 20%, while the most outer one corresponds to 0.2%
of the maximum of φd-D(τ, ν).

4.3.3 Simulation study

In this section, we assess the estimation error of the band coherence. Band coherence
is a time-varying index, obtained by averaging time-frequency coherence in a given
time-frequency region. Its general expression reads as:

γB(t) =

∫

B

γ(t, f)df

/
∫

B

df (4.16)

where B represent a spectral band, which can be time-varying.
The bias, standard deviation and tracking capability of band coherence estimation have
been assessed by means of synthetic signals characterized by known and controlled
theoretical coupling. Pairs of signals [x1(t), x2(t)] are created adding uncorrelated
noises to an original signal x(t):

x1(t) =x(t) + ξ1(t); ξ1(t) = σ1(t)η1(t) (4.17)

x2(t) =x(t) + ξ2(t); ξ2(t) = σ2(t)η2(t) (4.18)

where ηi(t), with i ∈ {1, 2}, are zero-mean unit-variance white Gaussian noises.
The Wigner-Ville distributions of these signals are:

W11(t, f) =Wxx(t, f) +Wξ1ξ1(t, f) + 2ℜ{Wxξ1(t, f)} (4.19)

W22(t, f) =Wxx(t, f) +Wξ2ξ2(t, f) + 2ℜ{Wxξ2(t, f)} (4.20)

W12(t, f) =Wxx(t, f) +Wxξ1(t, f) +Wξ2x(t, f) +Wξ2ξ1(t, f) (4.21)

where Wxξ1(t, f) is the cross WVD of the original signal x(t) and ξ1(t). Considering
that ξ1(t) and ξ2(t) are orthogonal and supposing that the smoothing function φt-f(t, f)
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Ŝ
W

V
x

(t
0
,f

)
Ŝ
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Figure 4.2: Two example of elimination of the interference terms of the SPWVD by
adjusting the geometry of the kernel to the time-frequency structure of the signals.
Left: auto TF spectra ŜWV

x (t, f); SNR=10dB; Right: ŜWV
x (t0, f), with t0 marked by

a dotted line in the left panels. (a)–(b): insufficient smoothing. (c)–(d): smoothing
performed with a kernel optimized for outer interferences suppression, as in (4.14).
(e)–(f): smoothing performed with a kernel optimized for both outer and inner inter-
ferences attenuation. Outer interferences clearly appear in (a) between LF and HF
components, while inner interferences clearly appear in (a)–(d) close to the HF peak.
Note that y-axis in right side panels are different.
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based on the SPWVD

completely suppress the cross terms, it is possible to approximate the precedent rela-
tions as:

ŜW

11(t, f) =ŜW

xx(t, f) + ŜW

ξ1ξ1
(t, f) (4.22)

ŜW

22(t, f) =ŜW

xx(t, f) + ŜW

ξ2ξ2
(t, f) (4.23)

ŜW

12(t, f) =ŜW

xx(t, f) (4.24)

Imposing σ1(t) = σ2(t) = σ(t), we have that ŜWV
ξ1ξ1

(t, f) = ŜWV
ξ2ξ2

(t, f) = σ2(t), and the
theoretical time-frequency coherence is derived from (4.10):

γWV(t, f) =

∣

∣

∣
ŜWV

xx (t, f)
∣

∣

∣

√

(

ŜWV
xx (t, f)

)2

+ 2ŜWV
xx (t, f)σ2(t) + σ4(t)

(4.25)

where ŜWV
xx (t, f) is the SPWVD of x(t). Expression (4.25) is used to assess the esti-

mation error for different levels of coherence. In the following, the error in the band
coherence estimation is evaluated. Theoretical band coherence, γWV

B (t), and estimated
band coherence, γ̂WV

B (t), are obtained by averaging γWV(t, f) and γ̂WV(t, f) in a prede-
termined spectral band B(t). The width of the spectral band B(t), reported for each
case in Table 4.1, is chosen requiring that up to 95% of the theoretical energy content
of the spectral components of interest was concentrated in B(t).
Specific situations, aiming at evaluating the performance of the time-frequency co-
herence estimator based on the signal-dependent filtering of the SPWVD, in different
physiological contexts, have been modeled by means of signals of type (4.33):

• I. Band coherence γWV
B (t) is constant over time:

(a) The original signal x(t) is a white noise.
(b) The original signal x(t) mimics a respiratory signal during stress testing,
whose spectral component is described in Fig. 4.3 by continuous lines.
(c) The original signal x(t) mimics an AM-FM HRV signal during stress testing,
whose spectral components are described in Fig. 4.3.
Two hundred pairs of signals [x1(t), x2(t)] have been created, for each theoretical
coherence level, from 0.1 to 0.95 in steps of 0.05.
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Table 4.1: simulation parameters

I(a) I(b) I(c) II
Type T-inv T-inv T-inv TV

x(t) η(t) RESP HRV HRV

B(t) [Hz] [0,2] fHF(t)± 0.075 fHF(t)± 0.05 fHF(t)± 0.05

• II. Band coherence γWV
B (t) is time-varying. Signal x(t) is of type I(c) (see Fig.

4.3) and three different time courses of band coherence γWV
B (t) are modeled and

described by gray line in Fig. 4.6:
(a) γWV

B (t) linearly decreases.
(b) γWV

B (t) decreases stepwise.
(c) γWV

B (t) is high except during short and abrupt decorrelating events.
In these cases, 1000 pairs of signals [x1(t), x2(t)] have been created and γ̂WV

B (t)
is estimated in mean and standard deviation over all realizations. Simulation
parameters are summarized in Table 4.1.

Note that when x(t) is a white noise (case I(a)), γWV
B (t) represents a global (not

localized in time and frequency) estimation, while in the other cases a localized band
coherence estimation is performed. The knowledge of fHF(t) is included in the kernel
design to estimate ν0 as in (4.14). This is not a strong assumption, given that it can
be easily approximated by a direct or indirect estimation of respiratory rate. In the
calculation, parameters a, λ and k were equal to 0.01, 0.25 and 0.002 respectively.
Results of case I are shown in Fig. 4.4–4.5 and results of case II are shown in Fig.

4.6.
In the simulations of case I, in which band coherence was constant over time, the bias
was very low (< 0.05) for γWV

B (t) > 0.5, and the standard deviation was always small.
In the simulations of case II, in which both the time-frequency structure of the signals
and the band coherence were time-varying, the estimator performed very well for
gradual and slow coherence changes (Fig. 4.6a). In case of abrupt changes (Fig. 4.6b)
the estimator took few seconds to properly adjust to the new values, while when short
decorrelating events appear (Fig 4.6c) the estimator was able to correctly localized
them, even if with a higher bias.

4.4 Time-frequency coherence by multitaper spec-

trogram (MTSP-TFC)

The spectrogram is another estimator of the Wigner-Ville spectrum (4.4), defined as
[124, 92]:

ŜS

xy(t, f) =

[

Fτ → f {x(τ)h(τ − t)}
][

Fτ → f {y(τ)h(τ − t)}
]∗

(4.26)

where h(t) is used to window the signal before taking its Fourier transform. As the
SPWVD, the spectrogram can also be seen as a member of the Cohen’s class, esti-
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mated by using (4.7) and replacing φt-f(t, f) with the WVD of h(t), Whh(t, f).
The advantages of the spectrogram are the reduced level of interference terms and
that it is non-negative. Shortcomings are related to the poor joint TF resolution given
by h(t): the impossibility of independently adjusting the smoothing in time and fre-
quency leads to the well known trade-off for which the better a signal component is
localized in time (or frequency), the worse it is localized in frequency (or time).
Moreover, spectrograms as defined in (4.26) can not be used in single-trial coherence

analysis, since from (4.26) follows that
∣

∣

∣
ŜS

xy(t, f)
∣

∣

∣

2

= ŜS
xx(t, f)Ŝ

S
yy(t, f) and the time-

frequency coherence estimates given by the spectrogram are equal to one over the
entire TF domain.
In a statistical sense, the spectrogram is an inconsistent estimator of the Wigner-Ville
spectrum (4.4), with a variance of the order of the squared Wigner-Ville spectrum
[92].
The multitaper spectrogram (MTSP) is a TF estimator introduced to improve the
bias-variance trade-off of the traditional spectrogram [37, 36, 244]. It is based on a
multitaper approach, originally proposed to improve the estimation of the power spec-
tral density of a stationary process [242, 243]. The MTSP is computed by averaging
different spectrograms, estimated by using a set of orthogonal windows hk(t), and is
defined as [37]:

ŜS

xy(t, f ;K) =
1

K

K
∑

k=1

[

Fτ → f {x(τ)hk(τ − t)}
][

Fτ → f {y(τ)hk(τ − t)}
]∗

(4.27)

where hk(t) are Hermite functions, which are used since they are optimally concen-
trated in a circular TF region [256, 37]. They are estimated as [254]:

hk(t) = e−
t2

2 Hk(t)/
√

π
1
22kk! (4.28)

where Hk(t), with k ∈ N, stands for Hermite polynomials, which obey the recursion:

Hk(t) = 2tHk-1(t)− 2(k − 2)Hk-2(t), k ≥ 2 (4.29)

with the initialization H0(t)=1, H1(t)=2t.
Time and frequency resolutions are quantified by indices ∆m and ∆(a%) estimated from
the MTSP of a Dirac impulse δ(t − t0), Ŝ

S
δδ
(t, f0) = 1

K

∑

K

k=1
h2

k(t − t0), and that of

a complex exponential ej2πf0t, ŜS
ee(t0, f) = 1

K

∑

K

k=1
|Hk(f − f0)|2, where Hk(f) is the

Fourier transform of hk(t).
It is worth noting that the kernel function φt-f(t, f) of a spectrogram in which the
sliding window hk(t) is a Hermite function is a Laguerre function [94, 37]:

Whkhk
(t, f) = exp

(

−π

2
(t2 + f 2)

)

k
∑

m=0

k!

(k −m)!m!

[−π(t2 + f 2)]m

m!
(4.30)

The kernel obtained by using only four Hermite functions, the sum of four Laguerre
functions, well approximates the “top hat” function [37]. The representation of the
kernel in the ambiguity function domain is also related to the Laguerre functions
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[94, 103].
An illustrative example of how the multitaper spectrogram is estimated is shown in
Fig. 4.7. In this example, synthetic signals obtained as the sum of two non-stationary
complex exponentials embedded in noise are used. In the upper graphics, (a)–(c), the
first, second and third Hermite functions are shown. In the lower graphics, (d)–(f),
the spectrograms which correspond to the Hermite functions plotted above are shown.
Finally, the multitaper spectrogram, ŜS

xx(t, f) is shown in panel (g). This distribution
is estimated by averaging K = 4 spectrograms (the three spectrograms shown in (d)–
(f) and another one which is not shown).
Time-frequency coherence by multitaper spectrogram (MTSP-TFC) is obtained as:

γ̂S(t, f) =

∣

∣

∣
ŜS

xy(t, f ;K)
∣

∣

∣

√

ŜS
xx(t, f ;K)ŜS

yy(t, f ;K)
(4.31)

4.5 Statistical analysis

As in stationary contest, time-frequency coherence estimates are not meaningful per se,
but they strongly depend on the parameters used in its calculation [57, 86]. The local
averaging provided by the smoothing function φt-f(t, f), causes the time-frequency co-
herence estimates of two uncorrelated signals to be higher than zero. This dependence
introduces an uncertainty in the interpretation of the coherence level. The problem
is that a given coherence estimate, although high, could be lower than that estimated
between uncoupled processes. To reduce this uncertainty and to localize TF regions
characterized by a significant coherence level, a hypothesis test is used. The test
is based on the point-by-point comparison of the time-frequency coherence estimates,
γ̂(t, f), with a threshold function, γTH(t, f), obtained by estimating the time-frequency
coherence between several realizations of locally uncoupled signals.
In the statistical procedure, the null hypothesis H0 to be rejected states that two sig-
nals x(t) and y(t), with time-frequency coherence γ(t, f), are uncorrelated around a
point (t0,f0).
The procedure consists of the following steps:

(i) Generate uncorrelated test signals x̃j(t) and ỹj(t).
(ii) Compute the statistical distribution Γ(t, f) = {γ̂1(t, f), ..., γ̂j(t, f), ...}, where

γ̂j(t, f) is the TFC between the j-th realization of test signals x̃j(t) and ỹj(t);
(iii) Estimate the threshold γTH(t, f ;α), corresponding to the desired significance level

α. According to this framework, α is the probability of wrongly rejecting the
null hypothesis, and γTH(t, f ;α) is estimated point-by-point as the (1 − α)-th
percentile of Γ(t, f);

(iv) Determine a TF mask M(t, f ;α) that identifies those regions in which the null
hypothesis can be rejected:

{

M(t, f ;α) = 1, if γ̂(t, f) > γTH(t, f ;α) coupling

M(t, f ;α) = 0, if γ̂(t, f) ≤ γTH(t, f ;α) no coupling
(4.32)
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A priori, the threshold function γTH(t, f ;α) should depend on the geometry of the
kernel used in the calculation of time-frequency coherence and on the time-frequency
structure of the analyzed signals.
In this study, a signal dependent and a signal independent threshold functions are
used.
The approach proposed in this secction is based on surrogate data analysis [230].
This kind of techniques have been recently used in many aspects of spectral analysis
[50, 51, 86, 89, 87].

Signal independent threshold (SITH)

Test signals x̃j(t) and ỹj(t) are white noises. In this case, the threshold γSI
TH(t, f ;α) will

only depend on the kernel and is expected to be constant over the entire time-frequency
domain. This can be seen both as an inconvenience, since SITH is not specific for the
signals being analyzed, and as an advantage, since it can be used to statistically assess
the statistical level of any time-frequency coherence function obtained by using the
same kernel. In a population study, this greatly reduces the computational cost of the
analysis.

Signal dependent threshold (SDTH)

The estimation of SDTH involves three steps:

– (i) Estimate γX
TH(t, f) from distribution Γx(t, f) = {γ̂x,1(t, f), . . . , γ̂x,j(t, f), . . .},

where γ̂x,j(t, f) is the TFC between signal x(t) and the j-th realization of a white
noise.

– (ii) Estimate γY
TH(t, f) from distribution Γy(t, f) = {γ̂y,1(t, f), . . . , γ̂y,j(t, f), . . .},

where γ̂y,j(t, f) is the TFC between signal y(t) and the j-th realization of a white
noise.

– (iii) Signal dependent threshold is obtained as γSD
TH(t, f ;α) =

max{γX
TH(t, f ;α), γ

Y
TH(t, f ;α)}.

4.6 A comparative study between time-frequency

coherence by SPWVD and MTSP

A comparative study is carried on to assess the capability of the SPWVD (see §4.3) and
MTSP (see §4.4) to provide coherence estimates that correctly localize time-frequency
regions characterized by local coupling and/or characterized by the lack of local cou-
pling. The overall aim of this comparison is to highlight advantages and drawbacks
of both time-frequency estimators, in order to give to the users useful information to
decide which methodology is more appropriate to analyze a given data set.
The comparison includes a simulation study as well as recorded physiological data anal-
ysis. Particular attention is paid to the quantification of the time-frequency resolution
of both estimators. The wavelet coherence will be also considered in the comparison.
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4.6.1 Simulation study

Signals affected by the autonomic nervous modulation, such as heart rate variability,
blood pressure variability, respiratory signal, pulse transit time variability etc., may be
modeled as the sum of complex exponentials showing both amplitude and frequency
modulation, embedded in noise:

x(t) =Ax,LF(t)e
iθx,LF(t) + Ax,HF(t)e

iθx,HF(t) + ξx(t) (4.33)

y(t) =Ay,LF(t)e
iθy,LF(t) + Ay,HF(t)e

iθy,HF(t) + ξy(t)

where ξx(t) and ξy(t) are two independent white Gaussian noises and subscripts LF
and HF stay for low frequency and high frequency range. Instantaneous phases and
frequencies are related by f(t) = (dθ(t)/dt)/(2π).
The time-course of the signal components used in this simulation are shown in Fig.
4.8a–d. Signals x(t) and y(t) can be seen as locally coupled, since their spectral
components share the same instantaneous frequencies and their amplitudes vary slowly.
They are expected to be coupled over all the time-frequency domain except in three
localized regions.

- During T1, which lasts 15 s, both LF and HF components are uncoupled, since
Ay,LF(T1) = Ay,HF(T1) = 0.

- During T2, which lasts 85 s, signals are uncoupled in LF, since Ay,LF(T2) = 0.
- During T3, which lasts 50 s, signals are uncoupled in HF, since Ay,HF(T3) = 0.

The correct identification of the TF regions where signals are coupled/uncoupled is
challenging since both instantaneous frequencies and amplitudes of the signals are
time-varying. From a physiological viewpoint, the time-course of the instantaneous
frequency of the HF components, fx,HF(t) and fy,HF(t), cover the range of possible res-
piratory frequencies observed in many autonomic tests, and it may correspond to a
pattern observed during some respiratory disorders, such as periodic breathing. From
a theoretic viewpoint, the tracking of time-varying spectral components characterized
by sinusoidal frequency modulation is challenging, due to the high level of inner in-
terference terms which characterizes signals with such a modulation [125]. Moreover,
fx,HF(t) and fy,HF(t) reach values as low as 0.18 Hz (10.8 breaths/min), mimicking slow
breathing. In such a situation, the localization of the LF and HF components is even
more challenging and requires high TF resolution.
The capability of the time-frequency coherence estimators to track the changes de-
scribed above is quantified in terms of accuracy. Gold standards are represented by
functions cLF(t) and cHF(t), which by definition are equal to 1 when signals are coupled
and to 0 when signals are uncoupled at f = fLF(t) and f = fHF(t), respectively (see
Fig. 4.8e–f).
At each TF point (t0, fB(t0)) outcomes are classified as true or false positive or negative
according to the scheme shown in Table 4.2, in which B = {LF,HF} and M(t, f ;α)
is defined in (4.32).
According to this scheme, a low sensitivity (or specificity) corresponds to the identi-
fication of intervals of local coupling (or uncoupling) shorter than the true ones.
Accuracy is given by AC=(TP+TN)/(TP+TN+FP+FN).
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Golden standard
Test outcome cB(t0) = 1 cB(t0) = 0

M(t0, fB(t0);α) = 1 True positive (TP) False positive (FP)

M(t0, fB(t0);α) = 0 False negative (FN) True negative (TN)

Table 4.2: Detection scheme. B = {LF,HF} and M(t, f ;α) is defined in (4.32)
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Figure 4.8: Simulation study. (a)–(d): Instantaneous frequencies, fk,B(t), and ampli-
tudes, Ak,B(t), of LF and HF components of signal x(t) and y(t) (4.33). (e)–(f) The-
oretical coherence patterns cB(t) in LF and HF bands. Shadowed areas correspond to
interval of uncoupling in both LF and HF (T1), in LF (T2) and in HF (T3).
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The effect of the kernel on coherence estimates

Signal independent threshold: The relation between the mean value of the signal
independent threshold function, γSI

TH, and the TF resolution is shown in Fig. 4.9. γSI
TH

was obtained by collecting the TFC of 250 couples of white noise, and with α = 5%.
This figure reveals the strong dependence of the coherence estimates on the geometry
of the kernel, thus confirming the need of a statistical test to assess the local coupling.
Depending on the kernel, γSI

TH can take values as high as 0.9, and it is higher for lower
degree of smoothing. This implies that, without an appropriate statistical test, it is
easy to wrongly detect local coupling.
For each combination of time and frequency resolution, the coefficient of variation
of γSI

TH(t, f) never exceeded 3%, and γSI
TH stabilized after processing about 75 noise

realizations. This shows that the threshold is uniform over the TF domain and suggests
that only few pairs of white noises are necessary to reliably estimate the threshold
value.
Figure 4.9a shows that for the time-frequency coherence obtained by MTSP, signal
independent threshold, γSI

TH, decreased by increasing the number of tapers K, while, for
a given number of tapers, γSI

TH was almost independent from the different combinations
of time and frequency resolution. This is likely due to the fact that, for a given taper
k, the TF support of the kernel associated to different hk(t) is approximately the same
(when the width of hk(t) increases, the width of |Hk(f)| decreases).
Figure 4.9b shows that for the time-frequency coherence obtained by SPWVD, the
signal independent threshold, γSI

TH, was inversely related to the degree of TF smoothing.
It is worth noting that not all the combinations of time and frequency smoothing
provided a degree of filtering sufficient to get γ̂W(t, f) ∈ [0, 1]. For instance, when
frequency resolution ∆m

f = 0.031 Hz (symbol ∗) was combined with a time resolution
∆m

t < 18 s, γ̂W(t, f) /∈ [0, 1]. In this example, the finest resolution of the SPWVD were:
(∆m

t ,∆
m
f ) ≈ (18s,0.031Hz),(12s,0.047Hz),(9s,0.086Hz). For the same ∆m

t , the MTSP
with K = 4 gave much lower ∆m

f , being (∆m
t ,∆

m
f ) ≈(18s,0.203Hz), (12s,0.305Hz),

(9s,0.402Hz).

Signal dependent threshold. Figure 4.10 represents the signal dependent thresh-
old, γSD

TH(t, f), corresponding to signals described in Fig. 4.8, characterized by SNR
equal to 20, 5 and −10 dB. Thresholds were obtained by using, for both Γx(t, f) and
Γy(t, f), 250 realizations of test signals, and α = 5%. Threshold γSD

TH(t,f) estimated by
SPWVD reflects the narrow band structure of the signals, at least for high SNR level,
while γSD

TH(t,f) estimated by MTSP is constant over the TF domain. In the following,
given that for MTSP γSD

TH(t,f) ≈ γSI
TH(t,f), the statistical test for MTSP-TFC will be

performed by SITH only.

Results of the simulation study

The choice of the parameters for the kernel φt-f(t, f) and tapers hk(t) should be based
on some a priori assumptions or on previous analysis about the time-frequency struc-
ture of the signals [206, 100]. Taking into account the time-course of the spectral
components of signals x(t) and y(t) shown in Fig. 4.8, one could require to use a TF
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Table 4.3: Simulation study – TF resolution.

Time Resolution (s) Freq Resolution (Hz)

∆m
t ∆(90%)

t ∆m
f ∆(90%)

f

SPWVD 11.1 39.5 0.051 0.185
MTSP (K=4) 25.6 25.1 0.129 0.127
WT (0.1Hz) 89.0 124.2 0.041 0.042
WT (0.2Hz) 44.5 64.2 0.083 0.082
WT (0.3Hz) 29.6 42.8 0.124 0.122
WT (0.4Hz) 22.2 32.1 0.166 0.162

smoothing which gives ∆m
t = 7.5 s and ∆m

f = 0.04 Hz. These values correspond to
half the duration of the shortest decorrelating interval, and half the minimal spectral
distance between LF and HF component.
The parameters of the MTSP and the SPWVD that gave resolutions close to these
values were chosen. The TF spectra of a Dirac impulse, x(t) = δ(t − t0), and of a
complex exponential, x(t) = ej2πf0t, estimated by SPWVD and MTSP used in the
simulation study, are shown in Fig. 4.11. For comparison, TF spectra estimated by
wavelet transform are also shown. Wavelet spectra were obtained by using a specific
toolbox for the estimation of wavelet coherence [110]. As suggested in [144], Morlet
wavelet with ω0 = 20 is used, and a further smoothing is applied to obtain spectra that
can be used in the estimation of wavelet coherence [144, 110]. Given that the resolu-
tion of the wavelet transform depends on frequency, the spectra of the Dirac impulse
and of complex exponentials x(t) = ej2πfit were estimated for fi ∈ {0.1, 0.2, 0.3, 0.4}
Hz. From the spectra shown in Fig. 4.11, indices ∆m and ∆(a%) were estimated, and
are reported in Table 4.3. The SPWVD was characterized by much better resolu-
tion than the MTSP: ∆m

t and ∆m
f of the SPWVD were about half ∆m

t and ∆m
f of the

MTSP. Nevertheless, the Hermite functions, being ∆(90%)/∆m <1 (i.e. 1
4

∑4
1 |hk(t)|2

and 1
4

∑4
1 |Hk(f)|2 had practically no tails), made the smoothing of the MTSP well

concentrated in the TF domain. The kernel used in the calculation of the SPWVD, was
characterized by ∆(90%)/∆m ≈ 3. The presence of tails in the kernel used to estimate
the SPWVD (4.11) is necessary to find a good compromise between the elimination of
the interference terms and the TF resolution. The SPWVD was also characterized by
much better resolution than the wavelet transform, except for frequency resolution at
f = 0.1 Hz, for which ∆m

f of wavelet transform was slightly lower than ∆m
f of SPWVD.

Figure 4.12 depicts the TF spectra, estimated by SPWVD, MTSP and wavelet trans-
form, of a signal used in the simulation study, characterized by SNR=10dB. The kernels
used in this example were the same as those used in Fig. 4.11. It is shown that the
SPWVD gave a more accurate localization of the time-varying spectral components of
the signals. For f ≈ 0.1 Hz, the SPWVD and wavelet transform were characterized
by similar frequency resolution. However, around this frequency, the SPWVD offered
a fine temporal resolution (see also Fig. 4.11 and Table 4.3), while the wavelet trans-
form gave a very poor representation of the temporal changes of the LF component,
which did not vanish during T1 and T2. Furthermore, in the wavelet transform, the
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Figure 4.13: Simulation study: single-trial analysis for SNR=10 dB. (a) SPWV-TFC,
γ̂W(t, f); (b) MTSP-TFC, γ̂S(t, f); White contours include the TF regions for which
γ̂(t, f) > γSI

TH. In (a), gray contours include the TF regions for which γ̂(t, f) > γSD
TH(t, f);

Thresholds are estimated at a significance level α=0.1%. (c) Accuracy in the local-
ization of coupled/uncoupled TF regions. In panels (a)–(b) black and white lines
represent TF regions where signals are uncoupled and coupled, respectively.

bandwidth of the HF component is much wider than the bandwidth of the LF one.
However, this does not reflect the “real” structure of the signals, but it is due to the
frequency-dependent resolution of wavelet transform.
In Fig. 4.13, results from a representative example of single-trial coherence analy-

sis by SPWV and MTSP are shown. In this example, SNR=10 dB and α = 0.1%.
Regions where γ̂(t, f) > γSI

TH(t, f) and γ̂(t, f) > γSD
TH(t, f) are encircled by white and

gray contours, respectively. White and black lines represent the regions where signals
are coupled, i.e. cB(t)=1, and uncoupled, i.e. cB(t)=0, respectively. By using both
methods it was possible to identify regions characterized by local coupling. Intervals
T1 (decorrelation in both LF and HF), T2 (decorrelation only in LF) and T3 (decorre-
lation only in HF) were better localized by SPWV-TFC. As shown in the bar chart
of Fig. 4.13c, MTSP-TFC was characterized by lower accuracy than the SPWV-TFC.
The lower performance in the correct localization of the different TF regions was due
to the lower resolution both in time, which led to overestimate the duration of T1, T2

and T3, and in frequency, which led to incorrectly consider not significant the coupling
in those TF regions where the LF and HF components were closer (see HF at about
120 s and LF at about 250 s). The SPWV-TFC was characterized by better detection
rates also for α = 1% and α = 5% (not shown), even if the differences between the
accuracy of γ̂W(t, f) and γ̂S(t, f) decreased by increasing α.
In Fig. 4.14, the maps of the significance level of the local coupling are shown for differ-
ent SNRs. This kind of map provides a useful alternative representation of the results
of single-trial coherence analysis. Regions in which the coupling is not significant are
reported in white, while those regions in which the coupling is significant are reported
in gray scale, with intensity which depend on the significance level. White and black
lines represent the regions where signals are coupled, i.e. cB(t)=1, and uncoupled, i.e.
cB(t)=0, respectively. Maps which correspond to the results shown in Fig. 4.13 are
reported in the middle graphics.

The SPWVD localized coherence changes better, due to higher resolution both in
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Figure 4.14: Simulation study: single-trial analysis. TF maps of the statistical signif-
icance level. First column: TFC by MTSP with signal independent threshold; Second
column: TFC by SPWVD and signal independent threshold; Third column: TFC
by SPWVD and signal dependent threshold; Upper (a)–(c), middle (d)–(f) and lower
(g)–(i) graphics represent cases of SNR of 20 dB, 10 dB and 0 dB, respectively. Black
and white lines represent regions characterized by presence and lack of coupling.
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time and frequency. This led to the correct estimation of the duration of T1, T2 and
T3, and to separate the LF and HF components even when they were close. Results
shown in Fig. 4.14c, obtained by comparing γ̂W(t, f) to the SDTH, matched the ideal
TFC distribution characterized by a coherence level that is not significant only in well-
localized TF regions: during T1 in both LF and HF bands, during T2 in LF band, and
during T3 in HF band. In Fig. 4.14g, it is shown that for a SNR as low as 0 dB, the
MTSP identifies larger regions characterized by local coupling.
Global results, given in terms of accuracy, are shown in Fig. 4.15. In these graphics,
the influence of noise, type of threshold and significance level is assessed. For each
combination of these parameters, 50 pairs of signals were processed.
The results depicted in the graphics of Fig. 4.15 shown that:

(i) Time-frequency coherence by SPWVD is characterized by higher accuracy than
that obtained by MTSP; for example, for SNR≥0 and α = 0.1%, the global
accuracy of the SPWV-TFC, estimated by averaging results obtained in LF and
HF bands, was more than 11.8% higher than the accuracy of the MTSP-TFC.

(ii) Accuracy of the time-frequency coherence obtained by SPWVD was very high
for SNR≥ 5 dB (AC>96.7%, averaging results in LF and HF ranges).

(iii) The differences between the accuracy of γ̂W(t, f) and γ̂S(t, f) decreased by in-
creasing α.

(iv) The use of signal dependent threshold, instead of signal independent threshold,
improved the accuracy of the localization of locally coupled/uncoupled regions
given by SPWVD, but only for high SNR.

4.6.2 Physiological study

Fourteen subjects (aged 29 ± 3 years) underwent a tilt table test with the following
protocol: 4 minutes in early supine position (Tes), 5 minutes head-up tilted to an angle
of 70o (Tht) and 4 minutes back to later supine position (Tls).
These recordings are part of the data base described in the Appendix and more in-
formation about the signals can be find in §A. Beats from ECG and pulses from the
pressure signal were detected to generate RR, pulse interval and systolic arterial pres-
sure time series. All the time series were subsequently resampled at 4 Hz and R–R
variability (RRV), pulse interval variability (PIV) from the finger pressure signal, and
systolic arterial pressure variability (SAPV) signals were obtained by high-pass filter-
ing the corresponding series with a cut-off frequency of 0.03 Hz. The degree of coupling
between RRV and RESP, between RRV and SAPV, and between RRV and PIV was
assessed.
These examples are interesting since:

- RRV-RESP: the HF component of RRV is known to mainly reflect the respiratory
activity. The change in RRV due to the respiration is called respiratory sinus
arrhythmia [112, 258]. Despite the fact that this phenomenon is known since
long time, it is not completely understood and it is currently matter of interest,
both form the physiological [81] and methodological [62, 66] viewpoints.
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Figure 4.15: Simulation study: global results. Accuracy in the localization of TF
regions where signal components are locally coupled/uncoupled. Fifty pairs of signals
x(t) and y(t), characterized by different SNRs are processed and results are given as the
25th, 50th and 75th percentiles. Right and left panels concern LF and HF component.
From top to bottom: thresholds used in the statistical analysis are associated to a
significance level α of 0.1%, 1% and 5%.
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- RRV-SAPV: the interactions between heart rate and arterial pressure are of
crucial importance in the cardiovascular control and have been largely studied.
We specifically approach this argument in §8.

- RRV-PIV: the pulse interval variability estimated in the finger has been pro-
posed to be used as a surrogate for R–R variability estimated in the ECG. The
estimation of time-frequency coherence which characterizes these two signals in
non-stationary conditions can help to assess whether PIV can be considered as
a reliable indirect measure of RRV. An analogous study is described in §7.

Results of the physiological study

In Fig. 4.16, the TF distributions of the RRV, PIV, SAPV and RESP signals, from
a healthy subject (male, 27 years old) undergoing a tilt table test are shown. From
visual inspection, it is already possible to detect some correlations between the non-
stationary structure of the signals. Time-frequency spectral estimated by SPWVD
are shown on the left, while those estimated by MTSP, with K = 4, are reported
on the right. The resolution of the distributions was (∆m

t ,∆
m
f )=(12s, 0.041Hz) for

the SPWVD and (26.5s, 0.12Hz) for the MTSP obtained with K = 4. Note that
the use of only the first Hermite function (K = 1) gave a TF resolution of (9.5s,
0.055Hz), close to that of the SPWVD. However, as already explained, spectrograms
estimated without multitapering cannot be used in single-trial coherence analysis.
At the beginning of the head-up tilt (epoch Tht), the instantaneous power of the LF
component of the RRV, PIV and SAPV signals quickly increased and maintained
high value for about one minute. During the remaining part of Tht, the instantaneous
LF power first decreased and then increased again until supine position was restored.
In all the signals, a component related to the respiration was present. During Tht,
the respiratory frequency was higher than the traditional upper limit of HF band
(0.4 Hz), indicating that in non-stationary conditions spectral boundaries should be
time-varying and respiratory-dependent [19]. The oscillation related to the respiration
was more clearly represented in the PIV than in the RRV signal, probably due to the
fact that the PIV signal is also affected by pulse transit time variability [100].
Time-frequency coherence analysis was performed between RRV–PIV, RRV–SAPV
and RRV–RESP by both SPWV and MTSP. In Fig. 4.17, the maps of the significance
level of the coupling, obtained by comparing the TFC to the corresponding signal
independent threshold, are shown. The statistical significance of the coupling between
the RRV and the SAPV signals increased during the head-up tilt, specially in the LF
band. In this band, the proportional part of the TF plane in which time-frequency
coherence by SPWVD was significant, was 64%, 88% and 69% during Tes, Tht and Tls,
respectively. During Tht, and around the respiratory rate (reported in red line), the
significance of γ̂W(t, f) was higher than that of γ̂S(t, f). This is likely due to the finer
resolution of the SPWVD, which better characterized the rapid changes of the HF
components in both signals.
Finally, for this subject, the TFC between the RRV and the PIV signals was always
very high, being only slightly less significant in HF.

To characterize the temporal evolution of the local coupling between the spectra
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components of the signals, the index CB(t) was defined as:

CB(t) =

∫

B

γ̂(t, f)M(t, f)df

/
∫

B

df ; B∈ {LF,HF} (4.34)

where M(t, f) is defined in (4.32). This index takes into account both the spread and
the magnitude of the local coupling, averaged in LF and HF spectral bands.

The ability to localize changes in the temporal evolution of the coherence between
cardiovascular signals was assessed in the example shown in Fig. 4.18. This graphic
shows the LF oscillations of the RRV and SAPV signals, whose TF spectra are shown
in Fig. 4.16. These oscillations were obtained by low-pass filtering with a cut-off
frequency of 0.16 Hz (see the box of Fig. 4.17). The LF oscillations of the RRV
and SAPV signals were highly correlated, except during the interval bounded by two
consecutive local minima of the SAPV oscillation, marked by a shadowed area. The
interval corresponding to this shadowed area was determined empirically. The intervals
during which the coherence, evaluated in the LF range by SPWVD and MTSP, were
not statistically significant are bounded by vertical lines. These intervals are those
for which CLF(t) = 0. As shown in this representative example, SPWVD localized the
change in the strength of the local coupling more accurately than MTSP.
The median trend and the interquartile range of CB(t), estimated among the entire
study population, is shown in Fig. 4.19. Concerning the coupling between RRV-
SAPV signals, the head-up tilt provoked a change in CLF(t) composed of the following
phases:

– (i) Instantaneous decrease during the upright movement of the automatic bed
(interval in between vertical lines);

– (ii) Fast increase, up to values that are significantly higher than baseline ones
(Wilcoxon rank-sum test, p <0.05);

– (iii) Stabilization around baseline values.

In Tls, the restoration of the supine position provoked a similar pattern, but charac-
terized by lower CLF(t). In panel (b), it is shown that, after head-up tilt, CHF(t) first
abruptly decreased and then quickly increased toward baseline values. The increase in
the median CB(t), observed in LF during Tht and Tls, and in HF during Tht, had similar
slopes (4.63, 4.86 and 4.17 10-3s-1, respectively).
The coupling between RRV-RESP signals (panels (c)–(d)) was not significantly af-
fected by the head-up tilt.
The coupling between RRV-PIV signals was affected by the postural changes only in
HF, while in LF, it was always close to one.

4.7 Discussion

In this chapter, the use of SPWVD and MTSP to reliably estimate the TF coherence
between cardiovascular signals was assessed for the first time. It was shown that the
combination of these methods with statistical analysis allows to accurately localize TF
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Figure 4.17: Recorded physiological data analysis. Maps of the significance level of
the coupling. On the left: SPWVD-TFC; on the right: MTSP-TFC (K=4 tapers).
From top to bottom: RRV–SAPV, RRV–RESP and RRV–PIV. Vertical lines mark
the supine (Tes and Tls) and the head-up tilt (Tht) positions. The box reported in the
upper graphics delimited the TF support of oscillations shown in Fig. 4.18.

regions where the coupling is significant.
It is worth noting that, in contrast with stationary spectral coherence, which quantifies
the degree of global linearity, TF coherence quantifies the degree of local coupling.
This is shown in the simulation study, where TF coherence was significant in a large
part of the TF domain, although the signals were not globally linearly related (their
amplitudes were not linearly related). This was due to the presence, in both signals,
of locally synchronized oscillations. That is, TF coherence is significant whenever two
signals share approximately the same instantaneous frequency.
In the study of cardiovascular control, TF coherence has many fields of application.
For example, it can be used to reveal an impairment of the baroreflex, which results
in a low degree of coupling between RRV and SAPV. Time-frequency coherence can
be used as a measure of similarity to validate the use of one signal, and its derived
measures, as surrogates of the original ones [100]. It can also be used to assess the
pertinence of linear (or nonlinear) models to describe the relationship between different
signals in the modeling of the cardiovascular system.

4.7.1 Statistical assessment

As for the stationary spectral coherence [57], TF coherence depends on the parame-
ters used in its calculation. This dependence makes the use of some statistical analysis
necessary to assess whether the TF coherence estimates are significant or not. The
problem of interpreting the level of coherence correctly is especially important in non-
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stationary analysis, since, as shown in Fig. 4.9, the finer the TF resolution, the higher
should be the coherence estimates to be considered as statistically significant. Statis-
tical analysis is based on the point-by-point comparison between coherence estimates
and a threshold function. Two thresholds are defined: SITH, which only depends on
the resolution of the TF spectra, and SDTH, which depends on both the resolution of
the TF spectra and the TF structure of the signals. These thresholds have both pros
and cons: on one hand, the use of a specific threshold that takes into account the TF
structure of the signals is appealing, but on the other, in a population study, its use
implies an increase in the computational cost of the analysis. As shown in Fig. 4.10,
only the SPWVD gives the possibility of using a signal-dependent threshold. This is
an advantage over the MTSP. Nevertheless, the results of the simulation study (Fig.
4.15) show that the use of SDTH improved the accuracy of localization only for signals
characterized by high SNR.

4.7.2 Comparison between the methodologies

Although the theoretical properties of an estimator of coherence based on SPWVD
were first discussed in [181, 252], it was never used in biomedical applications. In the
SPWVD, the reduction of the interference terms [125] is crucial since they may cause
the coherence estimates to lose their physical meaning. In this study, the appropriate
degree of smoothing was determined by using the technique presented in §4.3.1, i.e.
by first fixing a desired TF resolution, and then by iteratively increasing the degree
of smoothing, until γ̂W(t, f) ∈ [0, 1]. Another approach, presented in §4.3.2 [206],
makes use of geometrical relations between the TF structure of the signals and the
interference terms to determine the parameter of the kernel (4.11). In this approach,
as in [189], the support of the TF coherence is limited to regions of interest to reduce
the required degree of smoothing.
A first simulation study, described and commented in §4.3.3, showed that the SP-
WVD provides reliable estimates of the time-course of the coupling between synthetic
real-like cardiovascular signals. The comparative study performed in §4.6 showed that
by using both computer-generated and recorded physiological data, changes in the
local coupling were better localized by SPWVD than MTSP. This is due to the same
structural reason which makes the SPWVD more suitable than the spectrogram for
the localization of TF features, namely, the possibility of independently setting the
time and frequency filtering [92, 124]. Indeed, although the constraint of having a
TF coherence bounded between zero and one imposes a sort of trade-off between time
and frequency resolution, this option allows reducing the global amount of smoothing,
thus yielding more accurate estimates. Nevertheless, the MTSP has some important
features that could make it useful in coherence analysis. First, being based on spec-
trograms, which are non-negative, coherence estimates are always bounded between
0 and 1. Secondly, the use of Hermite functions, which are optimally concentrated
in a circular TF region, offer a good trade-off between time and frequency resolution
[91, 74]. Finally, as shown in Fig. 4.14, it is also possible to detect local coupling
between signals characterized by a low SNR via MTSP.
Both SPWVD and MTSP are characterized by a constant resolution over the entire
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TF domain. This is in contrast with other methodologies such as wavelet transform,
in which the resolution depends on frequency. A uniform resolution makes the inter-
pretation of the coherence function estimated by SPWVD and MTSP easier than the
interpretation of wavelet coherence since the uncertainty due to smoothing does not
change with frequency. Moreover, as shown in Fig. 4.11, the SPWVD used in the
simulation study was characterized by a finer resolution than the Morlet wavelets used
previously in coherence analysis [144]. A comprehensive comparison between wavelet
coherence and the methodologies presented in this study is beyond the scope of this
chapter. However, it is worth noting that although the resolution of the wavelet trans-
form shown in Fig. 4.11 may be improved by choosing ad hoc parameters or other
smoothing kernels [153], an improvement is likely to concern either time or frequency,
since wavelet transform offers the same trade-off between time and frequency as meth-
ods based on Fourier analysis [56].
Given that the main goal of time-frequency coherence analysis is to provide accurate
estimates of local coupling, and given that the correct localization in both time and
frequency accounts for most of the accuracy of the estimates, indices ∆m and ∆(a%) are
used to quantify and compare the resolutions.
One of the differences between the SPWV-TFC and the TF coherence estimators
based on spectrogram and continuous wavelet transform [144, 153, 260, 110], is that
to estimate the SPWV-TFC, there is no need for further processing of the TF spec-
tra. Indeed, by construction, the squared magnitude of the cross spectrogram (or
scalogram) is equal to the product between the auto spectrograms (or scalograms).
In single-trial coherence analysis, this implies that a further TF smoothing (a further
decrease in TF resolution) than that used to estimate the spectra is required.
Spectrogram, wavelet and SPWVD provide a spectral analysis that is formally equiv-
alent [56], and they can be obtained by processing the Wigner-Ville distribution [92].
As previously mentioned, the advantage of SPWVD is that it offers the possibility of
determining the shape of the smoothing function both in time and frequency, which
in turn allows for more accurate localization of cardiovascular dynamics.
Recently, time-varying autoregressive methods were also proposed to estimate the
coherence function [262, 261]. Time-frequency and autoregressive analysis are very
different and it is difficult to fairly compare them. However, TF analysis offers some
advantages over autoregressive methods, which may deserve attention. In TF meth-
ods, the structure of the signals is characterized without imposing any assumption or
model to the signals. No coefficient identification neither parameter initialization is
needed. However, given that non-parametric TF methods are not based on a model,
they do not allow disentangling feedback and feedforward mechanisms when systems
interact in closed-loop [262, 261].
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Physiological data analysis 1

The analysis of recorded physiological data showed that the methodologies described in
this study can be used to characterize the dynamic interactions between cardiovascular
signals. Generally, these signals have a non-stationary structure, even during intervals
of supine position. This confirms that stationarity is an exception rather than the
rule, and highlights the importance of TF analysis which, unless stationarity is proved
[51], should be preferred to traditional time-invariant analysis. For a statistically
assessment of the degree of non-stationarity of this data set, see §8.
In this study population, time-frequency coherence analysis shows that, during tilt
table test, cardiovascular rhythms, such as heart rate, systolic pressure and respiratory
rate, were dynamically coupled. Head-up tilt provoked an increase of the TF coherence
between RRV and SAPV. Moreover, it has been shown that the increase which followed
the loss of coherence due to the postural changes (back and forth from supine position
to head-up tilt), was characterized by similar slope. This may imply the presence of a
common mechanism of resynchronization between RRV and SAPV.
The presence of some artefacts due to the recalibration of the finger pressure signal
may also be responsible for the decrease of the coupling observed at the beginning
of Tht and Tls. The RRV and SAPV signals were also coupled in HF band, around
respiratory rate. The strength of this coupling was similar to that between the RRV
and RESP signals. This coupling, which is due to respiratory sinus arrhythmia [112],
was maintained even during head-up tilt. Finally, it is shown that the PIV signal
can be used as a surrogate for the RRV signal, even if caution should be used in HF
band, where a decrease of the coherence during the postural changes was observed.
This may be due to a change in the vascular tone, which affects the pulse transit
time and introduces a difference in the TF structure of the two signals [100]. The
study of the degree of similarity between heart rate from ECG and pulse rate from
the photoplethysmographic in non-stationary conditions is the subject of §7.

1In this chapter, the analysis of recorded physiological signals is performed to compare the es-
timators based on SPWVD and MTSP. For a more physiological discussion about the interactions
between SAPV and RRV, please refer to §8.
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Figure 4.18: Low frequency oscillations of the SAPV and RRV signals, obtained by
low–pass filtering (see the box in Fig. 4.17). Shadowed area: interval of decorrelation.
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and MTSP, respectively.
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Figure 4.19: Global results: Strength and spread of the coupling, CB(t), between RRV–
SAPV (above), RRV–RESP (middle) and RRV–PIV (below), estimated in LF (left)
and HF ranges (right). Shadowed area: [25–75]th percentile of CB(t), estimated among
subjects. Gray lines: median values.
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Chapter 5. Time-frequency phase differences

5.1 Introduction

In this chapter, a methodology to dynamically quantify the degree of synchronization
between signals related to the autonomic modulation is presented [207, 208]. This
methodology provides estimates of phase difference, time delay and phase locking be-
tween the spectral components of two non-stationary signals. The estimation of these
indices adds new valuable information to the time-frequency coherence presented in §4,
and complements the assessment of the dynamic interactions between cardiovascular
signals provided by cross time-frequency analysis.
As mentioned in the introduction (see §1.2), the short-term cardiovascular control in-
volves several mechanisms which make arterial pressure, heart period and respiration
dynamically coupled. These mechanisms are principally mediated by the autonomic
nervous system [241, 173, 59]. A complex coordination exists between all the indices
that characterize the cardiovascular system. This coordination involves a sequence of
causal events which occur with a specific delay. Therefore, an impairment of the car-
diovascular regulation may be reveled by an alteration of the degree of synchronization
of these events.
From the phase difference estimate it is possible to obtain the time delay, the laten-
cies, between the changes of the spectral features of two signals. The estimation of
these latencies is relevant since they can help to gain some insight into the sequence
of phenomena involved in the cardiovascular regulation. Although the quantification
and the physiological interpretation of these latencies has been the subject of many
physiological studies [240, 71, 231, 34, 78], the underlying mechanisms are still not
completely understood. The method described in this chapter, which specifically aims
at giving accurate estimates of the phase differences and temporal latencies between
non-stationary signals, may help to clarify this debate. In recent years, some interest-
ing reviews concerning the characterization of these interactions, and which specially
focus on methodological issues, have also been published [31, 217, 255, 193, 76].
To the extent of our knowledge, in the literature, the estimation of the phase differ-
ences between non-stationary signals in the joint time-frequency domain was assessed
and used in few studies. Among them, no one focuses on the characterization and
description of cardiovascular dynamics. Phase differences have been estimated by
wavelet transform [154, 152, 222, 227], by Rihaczek transform [11, 12] and by reduced
interference distributions [235, 133]. In the comparative study presented in §4.6, it
was shown that the SPWVD provided time-frequency coherence estimates which are
well localized both in time and frequency. This paved the road for the study of the
phase difference between cardiovascular signals by means of the SPWVD.
Note that the measures that are described and validated in this chapter will be then
used in §8 to give a dynamic characterization of cardiovascular interactions.
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Figure 5.1: Two phase-shifted signals x(t) and y(t) which oscillate at typical Mayer
wave frequency and characterized by a time-varying phase difference. Note that when
θ(t) = 0, x(t) and y(t) are in phase, while when θ(t) > 0, x(t) precedes y(t).

5.2 Methods

5.2.1 Phase difference

To introduce the time-frequency phase difference and its estimation, let’s rewrite the
model for autonomic signals already used in the previous section, consisting in time-
varying LF and HF components plus noise:

x(t) = Ax,LF(t)e
jθx,LF(t) + Ax,HF(t)e

jθx,HF(t) + ξx(t) (5.1)

y(t) = Ay,LF(t)e
jθy,LF(t) + Ay,HF(t)e

jθy,HF(t) + ξy(t)

In these expressions, LF and HF indicate the low frequency component, traditionally
inside [0.04, 0.15 Hz], and the high frequency component, traditionally inside [0.15,
0.4 Hz], respectively [1]; θk,B(t), with B ∈ [LF,HF ] and k ∈ [x, y], is the instantaneous
phase, related to the instantaneous frequency by fk,B(t) = (dθk,B(t)/dt)/(2π); ξk(t) is
a white Gaussian noise (WGN).
Given that cardiovascular signals are usually non-stationary, the phase difference be-
tween each spectral component, θB(t) = θx,B(t) − θy,B(t), is also expected to be time-
varying.
Given the expressions reported in (5.1), the time-course of the phase difference be-

tween two signals x(t) and y(t), evaluated for a specific spectral component B, can be
estimated as:

θB(t) = 2π

∫ t

0

[fx,B(τ)− fy,B(τ)]dτ (5.2)

An illustrative example of two oscillations that share similar instantaneous frequen-
cies and are characterized by time-varying phase difference, is shown in Fig. 5.1. In
this example, signals are: x(t) = exp(j2π0.9t) (in black) and y(t) = x(t)exp(−jθ(t))
(in red). Phase difference, plotted in bold line, is θ(t) = 2π(0.1+ sin(2π 4

T
t)) rad, with

T = 300 s. It is shown that at the beginning the signals are in phase, but they quickly
lose their synchronization, with a phase difference θ(t) that increases and decreases

111



Chapter 5. Time-frequency phase differences

during time. This example may represent LF oscillations of R–R variability (RRV)
and systolic arterial pressure variability (SAPV) during non-stationary conditions.
The sign of the phase difference estimates reveals which signal leads (or precedes)
which, and can be used to study the causality of an interaction [193], by assessing the
prevalent direction of the coupling [71, 219]. For example, in Fig. 5.1, it is shown
that when the oscillation x(t) lags behind (is delayed with respect to) y(t), the phase
difference is negative (θ(t) < 0), while when x(t) leads y(t), the phase difference is
positive (θ(t) > 0). When θ(t) = 0, the oscillations are perfectly synchronous, while
when θ(t) = ±π the oscillations have locally opposite phase.

5.2.2 Time-frequency representations

The estimation of the phase difference from the instantaneous frequencies of the spec-
tral components of two signals, reported in (5.2), has two main drawbacks: it is
very sensitive to estimation errors in fk,B(t), since an estimation error at t0 affects all
θB(t > t0 ), and gives a quantification of the phase differences only at fk,B(t).
In the analysis of cardiovascular signals, these inconveniences are particularly serious,
since biomedical signals are never perfectly narrow-band and an accurate estimation of
the instantaneous frequencies is not always possible. Therefore, a simultaneous charac-
terization of the phase differences in time and frequency may reveal important features
which can be used to better describe the dynamic interactions between signals x(t)
and y(t). This joint time-frequency characterization is given by cross time-frequency
analysis.
Before defining the time-frequency phase difference distribution, let’s rewrite the gen-
eral expression of a cross time-frequency distribution belonging to the Cohen’s class1,
as for example the SPWVD, equivalently defined in (3.14) or (4.8):

Sxy(t, f) =

∞x

−∞

φd-D(τ, ν)Axy(τ, ν)e
j2π(tν−fτ)dνdτ (5.3)

where Axy(τ, ν) is the narrow-band symmetric ambiguity function [93, 124] of signals
x(t) and y(t), defined in (3.5).
The time-frequency phase difference (TFPD) spectrum is defined as:

Θ(t, f) = arg [Sxy(t, f)] = arctan

[

ℑ
[

Sxy(t, f)
]

ℜ
[

Sxy(t, f)
]

]

(5.4)

This expression provides a quantification of the phase difference between the spectral
components of two signals in the time-frequency domain and is bounded Θ(t, f) ∈
[−π, π].

1In all the expressions reported in the following, superscripts WV and S, used in §4 to indicate
estimates derived from the SPWVD and the spectrogram, respectively, are not longer used. Even if
the methodology applies for any kind of distribution, in this chapter we focus on the SPWVD. Given
that all the expressions of this chapter are estimated, the symbolˆis omitted.
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Phase-locking

The time-frequency phase difference spectrum gives the possibility of estimating the
degree of phase-locking between different signals [11, 12, 154, 152, 153]. In population
studies, the phase locking is used to assess whether a determined stimulus provokes,
among the subjects, similar changes in the time-frequency phase difference spectrum.
Its time-frequency representation is:

Ψ(t, f) =

∣

∣

∣

∣

∣

1

L

L
∑

i=1

ej2πΘi(t,f)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

L

L
∑

i=1

Sxy,i(t, f)

|Sxy,i(t, f)|

∣

∣

∣

∣

∣

(5.5)

By construction, Ψ(t, f) is bounded between 0 and 1, Ψ(t, f) ∈ [0, 1], being Ψ(t, f) = 1
if Θi(t, f) does not vary across subjects i, and being Ψ(t, f) = 0 if Θi(t, f) is char-
acterized by a zero mean random distribution across i. Indeed, if for a given point
(t0,f0), the complex terms in the summation in (5.5) maintain similar phase for all i,
Ψ(t0, f0) ≈ 1.
Therefore, the phase locking measures the degree of similarity of the time-frequency
structure of a group of signals, by pairwise comparing their time-frequency phase dif-
ferences Θi(t, f).

5.2.3 Extraction of time-varying indices

The time-varying index describing the temporal evolution of the phase difference be-
tween a given spectral component B of two signals is estimated by averaging the time-
frequency phase difference spectrum in a specific time-frequency region Ω(θ)

B . Among
a wide range of different possibilities, in this study we define Ω(θ)

B as a time-frequency
region centered around the instantaneous frequency of the spectral component, f (xy)

B (t)
(estimated as the maximum of the instantaneous spectral peak), and in which coher-
ence is statistically significant. These conditions are necessary to obtain robust and
accurate estimates since, in this context, the estimation of a phase difference is rele-
vant only in those time intervals in which the two signals are approximately sharing
the same instantaneous frequency.
First, the region where the time-frequency coherence estimates, γ(t, f) (4.3), is signif-
icant is localized. This region is called ΩB and is defined as:

ΩB ≡
{

(t, f) ∈ (R+ ×B)
∣

∣ γ(t, f) > γTH(t, f)

}

; with B ∈ {LF,HF} (5.6)

where γTH(t, f) is a threshold function which depends on the time-frequency resolution
of the distributions used to estimate time-frequency coherence (see §4.5).
The instantaneous frequency of the spectral component B, around which Ω(θ)

B is de-
fined, can be estimated as the maximum of the magnitude of the cross time-frequency
spectrum:

f (xy)

B (t) = arg max
f∈B

|Sxy(t, f)| (5.7)

In some cases, it happens that the time-course of f (xy)

B (t) is characterized by the
presence of abrupt changes, such as stepwise increases (decreases) quickly followed
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by stepwise decreases (increases). This is likely due to artifacts, noises or spurious
components, rather than to actual instantaneous frequency variations. In this case,
the following procedures can improve the estimation:

- Instantaneous frequency f (xy)

B (t) is estimated as the global maximum of Sxy(t, f),
within f ∈ B, as in (5.7).

- Intervals Tj during which an abrupt change of f (xy)

B (t),
∣

∣f (xy)

B (tn-1)− f (xy)

B (tn)
∣

∣ >
∆f , is followed in less than ∆t by another abrupt change (> ∆f) of opposite
sign, are detected. Typically ∆f = 0.03 Hz and ∆t = 10 s.

- ∀tn ∈ Tj, if another local maximum, or inflection point, exists and it is closer to
the instantaneous frequency estimated at the previous time instant, f (xy)

B (tn-1),
its frequency,f (xy)

B(2)(tn), is selected.
- The new estimate replaces the older one, f (xy)

B (tn) = f (xy)

B(2)(tn), if:










|f (xy)

B(2)(tn)− f (xy)

B (tn-1)| < ∆f

|Sxy(tn-1, f
(xy)

B (tn-1))− Sxy(tn, f
(xy)

B(2)(tn))|
Sxy(tn-1, f

(xy)

B (tn-1))
< 0.1

otherwise, one can decide to maintain previous f (xy)

B (tn-1) or, alternatively, can take
the more conservative decision of not providing any estimate for the instantaneous
frequency at tn.

Once that the instantaneous frequency has been estimated, the time-varying spec-
tral bands centered around f (xy)

B (t) are defined as:

Ω(γ)

B ≡
{

(t, f) ∈ (R+ ×B)
∣

∣ f = f (xy)

B (t)± ∆m
f

2

}

(5.8)

where ∆m
f is a term related to the frequency resolution of the TF distributions (see

3.1.2), which determines the maximum width of Ω(θ)

B .
Finally, the region Ω(θ)

B is defined as:

Ω(θ)

B ≡
{

Ω(γ)

B ∩ ΩB

}

◦R(t, f); B ∈ {LF,HF} (5.9)

where ◦ denotes the opening (processing technique which involves erosion and dilation)
and R(t, f) is a rectangle which defines the minimum length and width of the subset
which compose Ω(θ)

B . The opening is used because it excludes from {Ω(γ)

B ∩ ΩB

}

the
portions of TF domain which are smaller than R(t, f), thus adding robustness to the
final estimates.
The index that quantifies the phase difference, θB(t), is estimated (in radians) by
averaging the time-frequency phase difference spectrum in Ω(θ)

B :

θB(t) =

[

∫

Ω
(θ)
B

Θ(t, f)df

]

/

[

∫

Ω
(θ)
B

df

]

; B ∈ {LF,HF} (5.10)

The time delay associated to θB(t) can be estimated (in seconds) by the index DB(t),
defined as:

DB(t) =
θB(t)

2πf (xy)

B (t)
(5.11)
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5.2.4 Analytical expressions of some case studies

Let’s consider two linear chirps:

x(t) = exp
(

j2π(αxt+ βxt
2)
)

y(t) = exp
(

j2π(αyt+ βyt
2)− jθ(t)

)

characterized by instantaneous frequencies fx(t) = 2βxt + αx, and fy(t) =
2βyt+ αy − (dθ(t)/dt)/(2π).

The cross SPWVD distribution is:

Sxy(t, f) = Wxy(t, f)⊗ φt-f(t, f)

where Wxy(t, f) is the cross Wigner-Ville distribution and φt-f(t, f) a separable TF
smoothing function. The cross Wigner-Ville distribution is:

Wxy(t, f) =

∫

∞

−∞

x
(

t+
τ

2

)

y*
(

t− τ

2

)

exp(−j2πτf)dτ = (5.12)

=

∫

∞

−∞

exp

(

j2π

(

(βx − βy)(t
2 +

τ 2

4
) + (αx − αy)t+

+(βx + βy)tτ + (αx + αy)
τ

2
+

1

2π
θ
(

t− τ

2

)

− fτ

))

dτ

Phase differences

Let’s now consider the case in which the linear chirps are sharing approximately the
same instantaneous frequency and the phase difference varies linearly with time:

αx = αy = α; and βx = βy = β;

θ(t) = 2π(θ1t+ θ0)

From expression (5.12), we get:

Wxy(t, f) =|Wxy(t, f)|exp(jΘxy(t, f)) = (5.13)

=exp(j2π(θ1t+ θ0))

∫

∞

−∞

exp

(

j2πτ

(

2βt+ α− θ1

2
− f

))

dτ

=exp(j2π(θ1t+ θ0)) · δ
(

f −
(

2βt+ α− θ1

2

))

The phase of the cross-WVD is equal to Θxy(t, f) = 2π(θ1t+ θ0) = θ(t).
In the case in which x(t) leads y(t), i.e. y(t) lags behind x(t), θ(t) > 0 and the phase
of the cross Wigner-Ville distribution is positive.
The magnitude of the cross-WVD is centered around f (xy)(t) = 2βt + α − θ1

2
, in

between f (xx)(t) = 2βt+ α and f (yy)(t) = 2βt+ α − θ1. The same considerations hold
for the spectral peaks of the SPWVD Sxx(t, f), Syy(t, f), and Sxy(t, f), since φt-f(t, f)
is symmetric. It is then clear then the higher θ1 is, the lower the coherence between
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x1(t) and x2(t) would be.
The phase of the cross SPWVD would be affected by the smoothing function φt-f(t, f).
It is worth noting that the estimation of the phase difference only in specific time-
frequency regions in which the local coupling is significant is important in two aspects:
(i) if for a given time instant fx,B(t) ≈ fy,B(t) does not hold (in this example if β1 ≈ β2

does not hold), phase difference between spectral components B of signals x(t) and
y(t), θB(t), is not estimated, since coherence is not statistically significant; (ii) The
dependence of θB(t) on the degree of TF smoothing is reduced by using TV spectral
bands Ω(θ)

B whose width is related to the frequency resolution, i.e. to ∆m
f .

Another important issue to give a correct interpretation of the estimates concerns the
effect which the inversion of a signal has on the phase differences. Note that, given
complex exponentials x(t), y(t) and z(t), we get:

If z(t) = −y(t) ⇒ Θxz(t, f) = Θxy(t, f)± π (5.14)

Therefore, if x(t) leads y(t) with a phase difference θ(t) < π, the reciprocal and the
opposite of y(t) may lead x(t). This is important when assessing cardiovascular and
cardiorespiratory interactions that involve heart rate or heart period variability. Using
one or another of the many existing representations of heart rate or heart period [238]
may lead to completely different results.

Time-delay

We consider the case in which two linear chirps are related by a constant time-delay
T > 0:

x(t) = exp(j2π(αt+ βt2)) (5.15)

y(t) = x(t− T ) = exp(j2π(α(t− T ) + β(t− T )2)) (5.16)

In this case x(t) leads y(t). The cross WVD distribution is:

Wxy(t, f) = |Wxy(t, f)|exp(jΘxy(t, f)) =

= exp

(

j2π
[

(2βt+ α− βT )T
]

)

· δ (f − (2βt+ α− βT ))

If we take the definition of time-delay given in (5.11) we get:

D =
Θxy(t, f)

2πf (xy)(t)
=

2π(2βt+ α− βT )T
2π(2βt+ α− βT )

= T (5.17)

Phase differences are estimated only in time-frequency regions in which the coherence
level is statistically significant. This imply that the instantaneous frequencies of x(t)
and y(t) should be approximately the same. Being f (xx)(t) = 2βt + α and f (yy)(t) =
2βt+ α− 2βT , we get that f (xx)(t) ≈ f (yy)(t) if βT << βt+ α

2
.
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Figure 5.2: Time-frequency structure of signals of type (5.1) used in the simulation
studies. (a)–(b): Instantaneous frequencies, (c)–(d): instantaneous amplitudes of the
signals. (a) and (c): components of x(t); (b) and (d): components of y(t). Time-course
of LF and HF spectral indices are in black and red, respectively.

5.3 Validations

5.3.1 Time course of the phase differences

Two simulation studies were carried on with the purpose of evaluating the estimator of
the phase differences proposed in (5.10). The results obtained by cross time-frequency
analysis are then compared to that obtained by the straightforward estimator given
in (5.2).

Simulation 1 (SIM1) – Synthetic signals.

The first simulation study (SIM1) is based on synthetic signals. Simulated signals
x(t) and y(t) are of type (5.1) and are characterized by the highly non-stationary
TF structure reported in Fig. 5.2. These signals can be seen as locally coupled, since
their spectral components share similar instantaneous frequencies and their amplitudes
vary slowly. The phase difference between LF spectral components, θLF(t), varies
sinusoidally, while the phase difference between HF spectral components, θHF(t), vary
quadratically. Their mathematical expressions are:

θLF(t) = θy,LF(t)− θx,LF(t) = 2π

(

0.1 + 0.35
t

T

)

sin

(

2π
3

T
t

)

[radians] (5.18)

θHF(t) = θy,HF(t)− θx,HF(t) = 0.9π

(

0.9
t

T
+ 0.1

)2

[radians] (5.19)
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where T = 300 s is the length of the signals. In this non-stationary context, these
phase differences cause the instantaneous frequencies of the signals to slightly differ.
The time-frequency structure of the signals used in this simulation is similar to that
used in the comparative study described in §4.6 (see Fig. 4.8). The same physiological
and mathematical considerations apply in this case. In this simulation, the tracking
of the phase differences is particularly challenging since all the parameters which de-
termine the TF structure of the signals, i.e. Ak,B(t), fk,B(t) and θB(t), vary quickly and
simultaneously. The most prominent changes occur in LF, where the rate of variation
of θLF(t) gives, for t ≈ 260 s, |fx,LF(t)− fy,LF(t)| ≈ 0.025 Hz.
The performance of the estimator of phase differences based on cross TF analysis, de-
scribed through (5.3)–(5.10), is compared to the performance of the estimator based
on the integration of the instantaneous frequencies, described in (5.2).
To assess whether the estimators of the phase differences are robust against noise,
white Gaussian noise was added to signals x(t) and y(t) and the estimation was re-
peated for different levels of SNR, ranging from 0 to 20 dB. For every SNR level, 100
couples of signals were processed. Time-frequency spectra were estimated by using the
kernel (4.11), which gave a time and frequency resolution of ∆m

t ≈ 12 s and ∆m
f ≈ 0.04

Hz.

Results: An illustrative example of a single-trial cross TF analysis of two signals
x(t) and y(t) is given in Fig. 5.3. In panel (a) the signals as appear before adding the
noises are shown. By visual inspection, it is already possible to recognize intervals
during which the LF oscillation of x(t) leads the LF oscillation of y(t) and intervals
in which the LF oscillation of x(t) lags behind the LF oscillation of y(t). In panel (b)
the white Gaussian noises that give a SNR equal to 5 dB are shown. Time-frequency
coherence and phase differences are reported in panels (c)–(d). Black contours encircle
Ω(θ)

B , the time-frequency region centered around f (xy)

B (t) in which phase differences are
estimated. A narrowing of Ω(θ)

LF is observed around 200 and 260 s. This reflects a
decrease of the local coupling due to the increasing of the difference between fx,LF(t)
and fy,LF(t), which occurs for high values of |dθLF(t)/dt|. In this particular study, we
do not perform opening, i.e. R(t, f) = δ(0, 0) in (5.9), and no minimum size for the
region Ω(θ)

B is required.
Finally, the time-course of estimates θ̂B(t), obtained by averaging in Ω(θ)

B , is depicted
in panels (e). It is shown that, despite the low SNR level and the non-stationary
framework, the estimates accurately followed the time-course of the phase differences.
The global results of the first simulation are summarized in Fig. 5.4, where panels

(a)–(d) and (e)–(h) show the results obtained by cross time-frequency analysis, as in
(5.4)–(5.10), and by integration of the differences of the instantaneous frequencies,
as in (5.2), respectively. In (5.2), the instantaneous frequencies of the spectral
components of x(t) and y(t) were estimated as the frequencies corresponding to the
maximum of the instantaneous auto TF spectra in both LF and HF bands. The
time-course of the estimated phase differences between each component, θ̂B(t), is
shown in panels (a)–(b) and (e)–(f), where results are given as the range between the
lower and upper quartiles of the estimates. As shown, the estimator based on cross
TF analysis gave a better characterization of the changes of the phase differences
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than the estimator based on the estimation of the instantaneous frequencies.
To quantify the goodness of the estimation, the median, and the lower and upper
quartiles of the estimation errors, θB(t) − θ̂B(t), were calculated for every iteration.
The results of error analysis are given in panels (c)–(d) and (g)–(h), where circles
and bars represent the average of the median and of the interquartile ranges of the
estimation errors.
Numerical results are given in Table 5.1. Concerning the results obtained by cross TF
analysis, it is shown that the median errors were always lower than 0.013 rad, even
for SNR as low as 0 dB. The variability of the estimation depended on the SNR and
on the rate of variation of θB(t). For SNR=20 dB and for θ(t) varying quadratically,
as in θHF(t), the interquartile ranges were lower than 0.05 rad, less than 2% of the
total range of variation of θ(t). For SNR=0 dB and for θ(t) varying sinusoidally, as
in θLF(t), the interquartile range was about 0.42 rad, about 8% of the total range of
variation of θ(t).
The estimation of the phase differences by integration of the differences between
the instantaneous frequencies gave results characterized by much lower accuracy.
The estimation errors were characterized by interquartile ranges at least 34% higher
than those obtained by cross TF analysis. For SNR equal to 0 dB, the interquartile
ranges of the errors given by (5.2) were, in LF and HF bands, more than 200% and
800% higher than those obtained by the proposed method. The lower accuracy in
estimating the phase differences by (5.2) with respect to (5.10), was mainly due to the
difficulty of perfectly tracking the instantaneous frequencies of the signals, specially
in presence of noise.

Simulation 2 (SIM2) – Real signals.

The second simulation study (SIM2) is based on recorded physiological signals. In
this simulation, heart rate variability signals derived from ECGs acquired during a
tilt table test (see the Appendix §A for details) are used. The signals used in the
simulation are obtained as:

x(t) = aRRV(t) + ξx (t) and y(t) = aRRV(t) exp(−jθ(t)) + ξy(t) (5.20)

where aRRV(t) is the complex analytic signal representation of the RRV signal, and
ξK(t) are complex white Gaussian noises. Complex analytic signals are obtained by
using the Hilbert transform.
Two cases are simulated:

(i) In the first one, θ(t) changes sinusoidally (see Fig. 5.5a and 5.5e), as in (5.18).
(ii) In the second case θ(t) changes quadratically (see Fig. 5.5b and 5.5f) as in (5.19).

In this simulation, signals were longer than in the previous one, being T ≈ 800 s.
The estimation of θB(t) was performed via cross time-frequency analysis as well as
directly via the instantaneous frequency estimates as in (5.2), and it was repeated for
different level of SNR, going from 20 to 0 dB. As in SIM1, time-frequency spectra were
estimated by using the kernel (4.11), giving ∆m

t ≈ 12 s and ∆m
f ≈ 0.04 Hz.
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Results: In these simulations, from each one of the 14 RRV signals, 50 couples of
modified signals were generated for every SNR level. Given that θLF(t) = θHF(t), the
time course of θ̂(t) was obtained by averaging between θ̂LF(t) and θ̂HF(t).
The results are summarized in Fig. 5.5, where panels (a)–(d) and (e)–(h) show the
results obtained by cross TF analysis as in (5.10) and by integration of the differences
of the instantaneous frequencies, as in (5.2), respectively.
The time-courses of the estimated phase differences, θ(t), are shown in panels (a)–
(b) and (e)–(f), where results are given as the range between the lower and upper
quartiles of the estimates. As shown, the estimator based on cross TF analysis was
able to accurately track the changes of the phase differences in both the considered
cases, while the estimator based on the estimation of the instantaneous frequencies did
not provide a reliable characterization of these changes. The median, and the lower
and upper quartiles of the estimation errors, θB(t) − θ̂B(t), were calculated for every
iteration. The results of error analysis are given in panels (c)–(d) and (g)–(h), where
circles and bars represent the average of the median and of the interquartile ranges of
the estimation errors.
Numerical results are given in Table 5.1. It is shown that the median errors were always
lower than 0.01 rad, even for SNR as low as 0 dB. As for SIM1, the variability of the
estimation depended on the SNR and on the rate of variation of θ(t). For SNR=20 dB
and for θ(t) varying quadratically, the interquartile ranges were lower than 0.05 rad,
less than 2% of the total range of variation of θ(t). While for SNR=0 dB and for θ(t)
varying sinusoidally, the interquartile range was about 0.4 rad, less than 10% of the
total range of variation of θ(t). The estimation of the phase differences by integration
of the differences between the instantaneous frequencies gave results characterized by
much lower accuracy. The estimation errors were characterized by interquartile ranges
at least 20 times higher than those obtained by cross TF analysis (scales of panels
(g)-(h) are 10 times higher than those of panels (c)-(d)).
The comparison between the results of SIM1 and SIM2 show that cross time-frequency
analysis gave comparable results both on real and synthetic signals, while the methods
based on the integration of the instantaneous frequencies gave much worse results
when applied on recorded physiological signals. This was mainly due to the difficulty
of reliably tracking the instantaneous frequencies of recorded physiological signals,
specially in HF band.

5.3.2 Time delay

To assess the capability of the estimator (5.11) to correctly follow changes in the time
delay of non-stationary signals, a simulation study is carried on. In this simulation,
signals are synthetic and are obtained by the model described in (5.1). In particular:

– Signal x(t) has the same time-frequency structure as x(t) in SIM1 (see Fig.
5.2a–b).

– Signal y(t) is obtained from x(t), as y(t) = x (t−D(t)).

The time delay D(t) increased stepwise as shown in Fig. 5.6.
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Table 5.1: Simulation results. Results are reported as the average of the median ± the
interquartile range of the estimation errors obtained at each iteration. Results concern
the estimation errors shown in Fig. 5.4, Fig. 5.5 and Fig. 5.6.

Param (eq.) [unit] 20 dB 10 dB 5 dB 0 dB

Phase differences – SIM1 – Synthetic signals

θLF(t)
(5.10) [Hz] 0.000 ± 0.200 0.000 ± 0.220 0.013 ± 0.274 -0.004 ± 0.426

(5.2) [Hz] -0.180 ± 0.268 -0.131 ± 0.300 -0.113 ± 0.331 -0.201 ± 0.886

θHF(t)
(5.10) [Hz] -0.001 ± 0.049 -0.006 ± 0.153 -0.007 ± 0.264 0.005 ± 0.468

(5.2) [Hz] -0.254 ± 0.126 -0.23 ± 0.253 -0.309 ± 0.551 -1.719 ± 3.923

Phase differences – SIM2 – Real signals

θLF(t)
(5.10) [Hz] -0.002 ± 0.171 -0.001 ± 0.217 0.000 ± 0.298 0.001 ± 0.463

(5.2) [Hz] -0.591 ± 6.618 -1.150 ± 8.440 -1.412 ± 9.548 -1.536 ± 12.165

θLF(t)
(5.10) [Hz] 0.000± 0.048 0.000 ± 0.129 -0.002 ± 0.226 -0.014 ± 0.402

(5.2) [Hz] -0.439 ± 3.579 -1.664 ± 6.431 -2.017 ± 8.598 -2.112 ± 11.636

Time delay – Synthetic signals

DLF(t) (5.11) [sec] 0.008 ± 0.084 0.011 ± 0.218 0.017 ± 0.376 0.006 ± 0.571
DHF(t) (5.11) [sec] 0.000 ± 0.036 -0.002 ± 0.093 0.003 ± 0.151 -0.006 ± 0.256

Results: Time-frequency spectra were estimated by using the same kernel as that
used in the previous simulations, which gave a time and frequency resolution of about
12 s and 0.04 Hz.
Results of this simulation are reported in Fig. 5.6 and Table 5.1.
The time delay DB(t) was estimated only by cross time-frequency analysis, as in (5.11).
The time delay between the spectral components of x(t) and y(t) is the same in both
LF and HF ranges. However, in contrast to what we did for SIM2, here we separately
estimated DLF(t) and DHF(t), since the estimator DB(t) (5.11) also depends on the
instantaneous frequency of the spectral components.
The results concerning DLF(t) are shown in panels (a) and (c), while the results con-
cerning DHF(t) are shown in panels (b) and (d).
In panels (a)–(b) of Fig. 5.6, it is shown that the median trend of the estimates
correctly tracked the abrupt changes of DB(t), with a time of adaptation, from the
stepwise increase of DB(t) to the stabilization of the estimates, of about 10 s. As
shown in Table 5.1, the variability of the estimates is greatly affected by the level of
noise. The interquartile range of the error was higher in LF than in HF. This is likely
due to the fact that the LF oscillation has a period of about 11 sec, about twice the
minimum period of the HF component. This implies that an error in the estimation
of the instantaneous frequency of the LF component causes DLF(t) estimates to vary
greatly.
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5.4 Discussion

In this chapter, a new methodology for the quantification of phase differences in non-
stationary signals related to the cardiovascular and cardiorespiratory systems, based
on cross TF analysis, is proposed. This methodology includes the estimation of the
time-course of the phase differences, time delay and phase locking.
These estimates are relevant in the study of the cardiovascular interactions since they
allow to infer which changes can be considered the cause and which the effect. Once
that the prevalent direction of the coupling is determined, the characteristic latency
of these changes is continuously quantified by the time delay.
A limitation of using the phase difference estimate to characterize the causal inter-
actions between two spectral components is the intrinsic periodicity of the phase.
Mathematically, the estimation of the phase difference θ(t) and the time delay D(t)
are associated to the sets {θ(t) ± k(2π)} and {D(t) ± kT (t)}, with k ∈ N, and be-
ing T (t) the time-varying period of the oscillations. However, the assessment of the
strength of the local coupling and time delay of the observed interactions reduces this
uncertainty. The fact that in the calculation only those time-frequency regions char-
acterized by a significant level of coherence are considered implies that latencies much
higher than the time resolution, D(t) >> ∆m

t , should be discarded since they are not
consistent with a high level of local coupling. Once that values of D(t) consistent with
the local temporal scale of coherence analysis ∆m

t has been determined, they should be
compared with the range of latencies which are consistent with the physiological phe-
nomenon under observation. An example of this kind of analysis is given in §8, where
the time delay of the baroreflex is determined by considering those values consistent
with a ∆t ≈ 11 s and the range of latencies [0.24, 3.00 s] which were experimentally
estimated as typical of the baroreflex [71].
Among the different members of the Cohen’s class, the SPWVD has been chosen since
it provides auto and cross spectra characterized by high joint TF resolution [206],
which can be independently adjusted in time and frequency. The localization of spe-
cific time-frequency regions in which the time-course of the indices is estimated is of
crucial importance to obtain reliably estimates. This represents an improvement with
respect to methodologies that make use of rigid time invariant spectral boundaries
for extracting the time course of the indices. In practice, the use of rigid boundaries
reduces the time-frequency analysis to a technique composed of a previous band-pass
filtering followed by some traditional time invariant analysis. While the simultaneous
localization of specific spectral ranges and time intervals from which indices are ex-
tracted allows to make the most of the joint time-frequency analysis.
In non-stationary contexts, this methodology was shown to provide accurate estimates
also in presence of noise, and it outperformed straightforward techniques based on in-
stantaneous frequency estimates.
Another widely used technique to assess phase differences is based on the estimation
of the phase of the analytical representation of signals obtained by Hilbert transform
[198]. This technique has the advantage to be rather simple and computationally fast.
However, it is not appropriate to study multicomponent signals since it does not pro-
vide specific estimates of phase differences for different spectral components.
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5.4 Discussion

For a more in depth discussion about the use of the time-frequency phase difference
spectrum and its derived measures in the analysis of dynamic interactions between the
R–R variability and the systolic arterial pressure variability signal, please refer to §8.
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Chapter 6. Autonomic response to music-induced emotions

6.1 Introduction

Almost everyone loves music because, among other reasons, it evokes particular emo-
tional states. These emotional states are related to brain and autonomic nervous
system activity, but the relationship between musical and autonomic features is
far from being completely understood. The use of music for therapeutic purposes
or, more generally, for improving our well-being, is a matter of increasing interest
[39, 40, 106, 107, 128, 197, 228], but only little is known about how music can modu-
late physiological indices such as heart and breathing rate.
To continuously quantify and characterize the autonomic response to sound stimuli, an
appropriate methodology is needed. In particular, this methodology should be able to
track music-induced dynamics in the autonomic nervous system, and it should include
an appropriate statistical study to assess whether different musical stimuli induce sig-
nificantly different autonomic responses.
In this chapter, HRV is studied by TF analysis to characterize the autonomic response
to musical stimuli. Time-frequency analysis has been performed since it provides a
representation of a signal in both time and frequency domain simultaneously. The
characterization of the dynamics induced by musical stimuli with different emotional
valence on the autonomic modulation of heart rate is based on the methodology pre-
sented in §3.3.
The spectral analysis of HRV is a well established technique to assess autonomic ac-
tivity [1] (see §1.2.3) and it was already proposed, in a stationary context, as a critical
index for the assessment of autonomic effects elicited by music [128]. In non-stationary
conditions, the tracking of the HRV spectral components (namely, the LF [0.04, 0.15]
Hz and HF [0.15, 0.4] Hz components) provides the assessment of the autonomic
dynamics, and different methods have been proposed for the TF analysis of HRV
[166, 165]. In this section, we employ a TF approach based on the smoothed pseudo
Wigner-Ville distribution (SPWVD) combined with a parametric decomposition (see
§3.3) which allows to obtain a denoised spectrum and a robust estimation of HRV
indices. To characterize the dynamic autonomic response to a given musical stimulus,
individual response patterns for each subject are estimated and a sample-by-sample
statistical analysis is performed.
After having characterized the time-course of the HRV indices, we study the effect
that different musical stimuli have on the cardiorespiratory coupling. To this end, we
apply time-frequency coherence and cross time-frequency analysis described in §4-§5.

6.2 Experimental procedure

Seventy five subjects without any formal musical education (age range: 18 – 35 years,
mean age: 24.5 ± 3.2 years, 36 female) participated in an experiment designed to
characterize the effects of acoustic stimuli with different emotional valence. All sub-
jects were right-handed with an handedness quotient >90 according to the ‘Edinburgh
Handedness Inventory 9’ [199], and reported to have normal hearing.
During the experiment, four conditions were employed:

(i) Pleasant condition (P ): six excerpts of joyful instrumental dance-tunes from the
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last four centuries were used as pleasant stimuli (all major-minor tonal music,
each had a duration of 90 s). The tempo of the excerpts, measured in beats per
minute was 73, 105, 117, 124, 128, 169, mean = 119.33±31.37 bpm.

(ii) Unpleasant condition (U): six unpleasant stimuli were electronically manipulated
counterparts of six musical pieces from the last four centuries (all major-minor
tonal music with rather minor scales and slow tempo). For any of these stimuli,
a new soundfile was created in which the original excerpt was recorded simulta-
neously with two pitch-shifted versions (one being one semitone above and the
other a tritone below the original pitch), and subsequently recorded backwards
in order to introduce many dissonant structures. To match the metre of these
stimuli with the metre of the original pleasant ones, series of Shepard tones [234]
were overlaid over the manipulated (unpleasant) musical excerpts. The Shepard
tone had a stationary pitch and a duration of 100 ms, and each Shepard tone
was one semitone higher than the previous Shepard tone (i.e., tones were per-
ceived as a rising chromatic scale). Shepard tones were used to guarantee that
the frequency spectrum of the stimuli was comparable, between the beginning
and the end of the stimuli. The time interval between Shepard tones was chosen
to match the tempo of the pleasant excerpts.

(iii) Sequence of Shepard Tones (X): Shepard tones were presented separately, i.e.
without music, as control for the unpleasant stimuli. The purpose was to assess
whether Shepard tones alone provoked the same effect as the more complex and
dissonant unpleasant excerpts. The particular structure of the sequence creates
the auditory illusion of a tone that continually ascends or descends in pitch, yet
which ultimately seems to get no higher or lower. The time interval between
tones was chosen to match the tempo of pleasant and unpleasant excerpts and
six sequences were used.

(iv) Resting condition (R): in addition to these three stimulus categories, there were
also six resting intervals of 90 s duration in which no acoustic stimulus was
presented.

All stimuli (pleasant, unpleasant and Shepard tones) were matched for volume (average
root mean square power = -21.12 ± 0.94 dB) and were presented as illustrated in Fig.
6.1. Each stimulus began with a start-signal-tone (four short ascending sine wave
tones), and ended with an end-signal-tone (a high, short single sine wave tone). For
the resting condition, after the start-signal-tone, trials were indicated by a new 100
ms, 400 Hz sine wave tone. Stimuli were presented to every subject in the same
pseudo-randomized sequence, designed so that each experimental condition followed
all other conditions with equal probability1. After the end-signal-tone of each trial,
participants had to indicate how pleasant or unpleasant they felt at the end of the trial
by pressing response buttons. The rating task was followed by a 10 s pause until the
next start-signal-tone appeared. Participants were instructed to listen carefully to the
auditory stimuli with eyes closed, and to tap the metre of the stimuli with their right

1More in detail, the entire sequence was: X,U,P,X,U,R,X,P,R,U,X,P,U,X,R,P,U,R,P,X,R,U,P,R.
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index finger. This task was employed to control whether listeners paid attention not
only to the pleasant but also to the unpleasant music and to the single tones sequence.
No tapping was required during the resting condition.

6.2.1 Signal acquisition and preprocessing

Standard 12 lead electrocardiograms were measured using a 32 MREFA amplifier
(Twente Medical Systems, Enschede, Netherlands) and digitized with a sampling rate
of 1000 Hz. The recorded ECG signal was processed to derive the HRV signal and
to estimate the respiratory frequency. After the detection of the QRS complexes, the
instantaneous heart rate dHR(t) was derived by integral pulse frequency modulation
(IPFM) model, which also accounts for the presence of ectopic beats [180], and then
evenly resampled at 4 Hz, using spline interpolation. The HRV signal x(t) was then
obtained by filtering dHR(t) with a high-pass filter with a cut-off frequency of 0.03 Hz.
By using the methodology explained in §3.3, the HRV signal was processed to estimate
the HRV spectral indices, i.e. the instantaneous central frequencies fLF(t) and fHF(t)
and powers PLF(t) and PHF(t) as well as the total instantaneous power, PTOT(t) =

PLF(t) + PHF(t) and a measure of the sympatho-vagal balance PLFn(t) =
PLF(t)
PTOT(t)

[1].

The respiratory rate fresp(t), necessary to make the HF band respiration-dependent,
was indirectly estimated from the ECG derived respiratory signal, by using the method
presented in [24].

6.3 Time-frequency analysis of the HRV signal

6.3.1 Dynamic adjustment of HF band

It is generally accepted that the HF component of HRV mainly reflects respiratory
sinus arrhythmia [112] and therefore fHF(t) can be considered an indirect estimation of
the respiratory frequency fresp(t). Thus, the knowledge of fresp(t) is used to adjust the
range of HF band and to improve the estimation of both LF and HF contributions.
In traditional spectral analysis the HF range is usually fixed at [0.15, 0.4] Hz. Never-
theless, there are situations in which the use of this range leads to misestimation of
the HF component, i.e. when respiratory rate decreases below 0.15 Hz (9 breaths per
minute) or increases above 0.4 Hz (24 breaths per minute). In order to avoid these
errors, the HF band is made time-varying and respiration-dependent [17].
The spectral boundaries are defined as:

{

BLF(t) ∈ [0.04, 0.15] Hz

BHF(t) ∈ fresp(t)± [−0.125, 0.125] Hz
(6.1)

where BLF(t) and BHF(t) identify the LF and HF bands. In such a way, the HF
band is dynamically adjusted around fresp(t) and thus a correct quantification of HF
component is obtained even when the respiratory rate lies outside the traditional HF
range. An example is shown in Fig. 3.8b (in §3.3), where fresp = 0.465 Hz. In this
case the use of a respiration-dependent range (plotted in dashed vertical lines) allows
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Figure 6.1: Experimental design - The trial begins (B) after a start-signal-tone. Mu-
sical pieces and silent period were followed by short signal tones that prompted par-
ticipants to rate (E) their current emotional state. A 10 s pause was added before
presentation of the next auditory cue.
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to include the HF component, while the use of traditional HF range (dotted vertical
lines) misses the HF component. When using the above rule, one has to pay attention
to the fact that BLF(t) and BHF(t) partially overlap when fresp(t) < 0.275 Hz (16.5
breaths per minute). In this case, if in the spectrum there are two peaks, and at least
one is in BLF(t) and the other in BHF(t), the one centered around the lower frequencies
is considered the LF component and the one centered around the higher frequencies
is considered the HF component. In those cases where fresp(t) is much lower, the
overlap between the two ranges increases and just one peak is usually observed. In
such a situation, the separation of LF and HF components is not straightforward due
to non-linear interactions between sympathetic and parasympathetic modulation [32].

6.3.2 Statistical Analysis

Statistical analysis was designed and performed to assess whether significant differ-
ences exist between the time-course of each physiological index in the four experimen-
tal conditions. Given that particular attention is paid to quantify the differences of
the dynamic pattern of responses provoked by each musical stimulus, the statistical
differences are quantified on a sample-by-sample basis.
The following notation is used: subjects are indexed with i ∈ [1 : L], conditions with
E ∈ [P,U,X,R], stimuli which belong to the same condition with j ∈ [1:6]. A general
physiological index is indicated with I(t). According to this notation, Ii,E,j(t) repre-
sents the time-course of a physiological index during the j-th repetition of condition
E for subject i.
We firstly assume that, for each subject, the median time-course over the six rep-
etitions of the same musical condition is representative of the individual autonomic
response pattern to that stimulus. This is defined as:

Ic,m

i,E (t) = median
{

Ic

i,E,j(t)
}6

j=1
(6.2)

where Ic
i,E,j(t) is the baseline-corrected index computed as:

Ic

i,E,j(t) = Ii,E,j(t)−
1

Tfs

−1
∑

n=−Tfs

Ii,E,j(t)
∣

∣

t=n/fs
(6.3)

In this expression fs = 4 Hz is the sampling rate and T = 12 s is the duration of an
interval preceding the onset of each j-th trial.

This particular normalization subtracts the mean values of the index, computed
before the onset of each stimulus, from each index and it is used to highlight only the
transient phenomena produced by the actual condition and not by the past history or
by the different subject reference.
At every instant t0, the value of Ic,m

i,E (t0) for the subject i represents the i-th realization
of a statistical population ΓE,t0

= {Ic,m
1,E (t0), Ic,m

2,E (t0), ..., Ic,m
L,E(t0)}, obtained by collect-

ing, from all the subjects, the same index, at the same time t0.
By iteratively performing a pairwise comparison between the four statistical popula-
tions ΓP,t, ΓU,t, ΓX,t and ΓR,t (i.e. 6 pairwise comparisons), and repeating the test at
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Figure 6.2: (a) Mean trend of P c,m
HF (t) during pleasant (P ) and unpleasant (U) con-

ditions. (b) Time course of the p-value quantifying the differences between P c,m
HF,P(t)

and P c,m
HF,U(t). Vertical dashed lines mark the epoch (from about 6 to 38 s) in which

response patterns are significantly different (p < 0.05).

any time instant t, the time-course of six p-values pEk,El
(t), (Ek, El) ∈ [P,U,X,R] with

Ek 6= El, is estimated. Given that the ΓE,t are not normally distributed, the Man
Whitney test is used. The continuous estimation of p-value pEk,El

(t) allows to assess
the time after which the autonomic response to the different conditions differs, and
for how long these differences are significant.
An example of this procedure is shown in Fig. 6.2, where the mean time-course of
P c,m

HF,i(t), denoted P̄ c,m
HF (t), during pleasant and unpleasant conditions are reported. The

resulting time-course of the p-value pP,U(t), shown in Fig. 6.2b, allows one to identify
the time epochs in which physiological responses are different.

6.3.3 Results

Time-frequency analysis that combines the SPWVD with parametric decomposition,
as explained in §3.3, was used to track the dynamic response to music-induced emo-
tion. The kernel of the SPWVD distribution was composed of functions φt(t) and
φd(τ) reported in §3.2.1. These kernels gave a resolution ∆m

t = 25 s and ∆m
f = 7 mHz.

The traditional LF spectral range and a time-varying HF spectral range whose bound-
aries depended on the respiratory rate (6.1) were used.
A representative HRV signal segment and its TF representations are plotted in Fig.
6.3. The SPWVD and the TF distribution, S̃(t, f), obtained through the parametric
decomposition (3.17), are reported in Fig. 6.3b and 6.3c, respectively. The parametric
decomposition of the autocorrelation function allows to discard the interference terms
which were still present in the original SPWVD, S(t, f). This improves the localiza-
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S̃(t, f): TF distribution reconstructed after the parametric decomposition illustrated
in §3.3. In dotted line: the respiratory rate. Conditions: pleasant (P ); unpleasant
(U); sequence of Shepard tones (X); rest (R).

tion in the TF plane of the LF and HF components. From visual inspection of this
representation is already possible to qualitatively characterize the patterns related to
every particular condition. Low frequency component modulation, centered around
0.1 Hz, increased during the short intervals in between two conditions. As expected,
the HF component followed the quick variation of the respiratory rate (reported in
dotted line), with a time-course which appears to be highly condition-dependent: the
instantaneous frequency of HF was higher during pleasant condition P and lower dur-
ing rest R.
Differences in the dynamic response to the musical stimuli were continuously quanti-
fied through the statistical analysis illustrated in §6.3.2. An example is shown in Fig.
6.2, where the induced response patterns in PHF(t) during pleasant and unpleasant con-
ditions are shown. During pleasant condition, P c,m

HF (t) first decreased and, after about
20 s, it slowly increased toward baseline values, while during unpleasant condition it
first slightly decreased for about 6 s, then it increased and it maintained higher values
from 20 to 50 s from the beginning of the excerpt. The time course of the p-value,
reported in Fig. 6.2b, shows that the response patterns were significantly different in
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the temporal window 6–38 s after the onset of the stimuli (interval marked by vertical
dashed lines). It is worth noting that, even if during pleasant and unpleasant con-
ditions the mean trends were separated, differences were statistically significant only
during the first part of the response. This shows the importance of the tracking of the
p-value for a correct interpretation of the results.
The mean time course of the physiological indices are shown in Fig. 6.4 and described
in the following section, while the results of the statistical analysis are summarized in
Fig. 6.5.
In Fig. 6.5, the response patterns of the physiological indices to the experimental con-
ditions are compared pairwise. Every column represents a physiological index I(t),
and the column length represents the duration (% of stimuli duration) during which
IEk

(t) > IEl
(t), with E∈[P,U,X,R] and for a significance level p < 0.05. A negative

value for the column length indicates inverse relationship (i.e., IEk
(t) < IEl

(t)). For
example, in the sixth column is reported that PHF(t) is significantly lower during pleas-
ant than during unpleasant condition, and this difference is maintained for 71% of the
duration of the stimulus. Notably, some stimuli provoked index changes which were
different for the entire duration of the stimulus. The strength of these differences
is quantified by the median p-values estimated in the intervals of statistical signifi-
cance. Symbols ∗ and ◦ indicate that median p(t) < 0.005 and median p(t) < 5 · 10-5,
respectively.

Time course of physiological indices

Significant differences in the autonomic response patterns to pleasant music, unpleas-
ant stimuli, sequence of tones and resting condition were observed. In the following,
the changes observed for every physiological indices are described:

– dHR(t): As shown in Fig. 6.4a, during the first 10 s the heart rate, dHR(t), de-
creased for all the conditions, and after a transient of about 20 s it stabilized
around values dHR,R(t) < dHR,X(t) ≈ dHR,U(t) < dHR,P(t). All the differences be-
tween the conditions were statistically significant (at least during more than 80%
of their duration, as reported in Fig. 6.5), except between U and X. Between
P and U the significance was reached after about 16 s, while between P and R
and between U and R differences were significant from the first instants until
the end of the conditions.

– fLF(t): The mean trend of fLF(t), reported in Fig. 6.4b, slightly increased from
baseline for about 20-30 s, regardless of the kind of stimulus and no relevant
difference was detected between the conditions.

– fHF(t): This index, which is closely related to the respiratory rate fresp(t), ex-
perienced the most marked differences among different musical stimuli. The
time-course of the instantaneous frequency of the HF component and of the res-
piratory rate are shown in Fig. 6.4c and 6.4d, respectively. Their mean trend
highly differed from a condition to another with little variability. Difference
between fHF,P(t) and fHF,U(t) was significant after only 8 s, indicating that the
response of fHF(t) was faster than the one of dHR(t). After 10–15 s, fHF(t) reached
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a stable state characterized by fHF,R(t) < fHF,X(t) ≈ fHF,U(t) < fHF,P(t). Between
P and R and between U and R, differences were statistically significant during
all the 90 s (with median p-value< 10-10), mainly due to the fact that acoustic
stimuli provoked an increase in fHF(t), while the silence during resting condition
was observed to provoke the opposite effect.

– PLF(t): After the beginning of the trials, the power of the LF component, PLF(t),
was observed to decrease for any condition for about 15–20 s, before reaching
a quasi stationary state (see Fig. 6.4e). Its decrease, which was statistically
significant from the first seconds of the trials onset (p <0.001), had approximately
the same rate for every condition. After the transients, it was observed that
PLF,P(t) < PLF,U(t) < PLF,X(t) ≈ PLF,R(t). Even if the mean trend during pleasant
condition was lower than during unpleasant, their great variability made this
difference not statistically significant.

– PHF(t): Fig. 6.4f depicts the pattern of response of the power of the HF compo-
nents. It is shown that PHF,X(t) and PHF,U(t) fluctuated around baseline values,
while PHF,R(t) and PHF,P(t) evidenced opposite trends, by increasing (PHF,R(t))
and decreasing (PHF,P(t)) in the first 20 s from the beginning of the stimulus.
Almost immediately we observe that PHF,P(t) < PHF,X(t) ≈ PHF,U(t) < PHF,R(t).
The differences between P and R and between unpleasant and resting conditions
were almost instantaneously significant, while between pleasant and unpleasant
conditions significance was reached after about 6 s and it was maintained for
about 30 s (see also the example shown in Fig. 6.2).

– PTOT(t): The total power was also estimated and its mean time-course is shown
in Fig. 6.4g. During all the conditions PTOT(t) tended to decrease from baseline
values. During pleasant condition both PLF(t) and PHF(t) decreased and this is
reflected on the strong reduction of PTOT,P(t), while the increasing of PHF(t) dur-
ing resting condition made PTOT,R(t) higher than during all the other conditions.
The significance of the differences observed in PTOT(t) were larger than for PLF(t)
but smaller than for PHF(t).

– PLFn(t): In Fig. 6.4h the mean baseline-corrected time-course of the sympatho–
vagal balance PLFn(t) is shown. It was observed that PLFn(t) decreased during
about 15 s, regardless of the specific condition and no significant differences were
detected between its response patterns.

6.3.4 Discussion

In this section, we presented the results of a methodology designed to continuously
quantify music-induced changes in HRV. This approach consists of three steps:

(i) The smoothed pseudo Wigner-Ville distribution is used to obtain a time-
frequency representation of the HRV signal.
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Figure 6.4: Mean trend, averaged over the entire population, of the changes provoked
by pleasant (P ), unpleasant (U), sequence of tones (X) and rest (R) conditions. Phys-
iological indices from (a) to (h), as detailed in §6.2.1, are: (a) the mean heart rate
d̄c,m

HR(t); (b)-(c) the instantaneous frequency of LF and HF, f̄ c,m
LF (t) and f̄ c,m

HF (t); (d)
the respiratory rate f̄ c,m

resp(t); (e)-(f) the instantaneous power of LF and HF, P̄ c,m
LF (t)

and P̄ c,m
HF (t); (g) instantaneous total power P̄ c,m

TOT(t); (h) the sympatho–vagal balance
P̄ c,m

LFn(t). Results are detailed in §6.3.3
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Figure 6.5: Results of the pairwise comparison between the conditions (see §6.3.2).
Bar length represents the time duration (% of stimuli duration) in which P > U ,
P > X, P > R etc. (p(t) < 0.05). Negative values denote inverse relationship. ∗ and
◦: median p-values < 0.005 and < 5 · 10-5, respectively.

(ii) The time-course of physiological indices is estimated through a parametric de-
composition which makes use of dynamical adjustment of HF range based on
respiratory frequency.

(iii) A statistical population analysis is performed to continuously assess whether the
dynamics involved in the autonomic response to different musical stimuli are
significant or not.

The time-frequency framework

The response patterns of the autonomic nervous system are dynamic, and there is the
need for an appropriate methodology capable of tracking these changes. Compared
to other possibilities, such as continuous wavelet transform, spectrogram and time-
varying autoregressive methods [165], the SPWVD has the advantage of an excellent
joint TF resolution [124, 232]. In addition, the SPWVD was used, in a recent study
[39], to estimate the changes in the instantaneous power spectrum of the respiratory
signal induced by the listening to classical music excerpts.
In the TF analysis of HRV based on the WVD, the simultaneous presence of time-
varying LF and HF components gives rise to interference terms [125] (see §3.1.1) which
should be reduced using an appropriate kernel. In simulation studies, the smoothing
function used in this study was shown to provide a reliable estimation of LF and HF
dynamics, also in high non-stationary conditions [204, 203] (see also results shown
in §3.2.1). Other kinds of kernels, capable of achieving a wide range of different
shapes [72], or of automatically adjusting to the signal structure [25, 26, 19], have
been proposed in the literature. However, a fixed kernel is used in this study to
maintain the same time-frequency resolution for all subjects.
The parametric decomposition used to estimate the time-course of the spectral indices
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allows to separate the information which is considered inherent to the signal from
both noise and interference terms. This methodology was firstly proposed in [164]
and here it was combined with the respiratory rate to improve the tracking of the HF
component [20].

Dynamic HF band

The use of time-varying bands for a reliable estimation of HRV spectral components
has been proposed in different applications. Most of these techniques make use of
respiratory information to determine the spectral boundaries [130, 17, 19]. The inclu-
sion of the respiratory rate in the definition of the HF range is specially important in
time-frequency analysis.
In our results we observed marked variations in the respiratory rate due to the musical
stimuli, which bring respiratory rate to frequencies higher than 0.4 Hz, as for example
observed in Fig. 6.3 during pleasant condition. Thus, a dynamic adjustment is needed
to correctly estimate these changes. The respiratory rate was obtained from the ECG-
derived respiration estimated using [24]. This method exploits the oscillatory pattern
of the rotation angles of the heart’s electrical axis as induced by respiration, and it is
particularly suitable when dealing with highly non-stationary and noisy ECG record-
ings. To corroborate the use of the technique described in [24] in this kind of studies,
we compared our estimation of fresp(t) with the respiratory frequency obtained from
a direct measurement of respiration (performed through respiratory belt), which was
only available in 58 subjects. The mean error was low (0.0001 ± 0.0045 Hz, equal to
−0.4± 2.1%) and was in agreement with results reported in [24] for simulated signals.
In this study the respiratory rate was always available. In those cases where respi-
ratory frequency is not available (neither from respiratory signal nor from the ECG
[23]), BHF(t) may be automatically adjusted to the instantaneous spectral properties
of the HRV signal [108].

Physiological index changes during music stimuli

The purpose of the experimental procedure was to characterize the effect of stimuli
with different emotional valence on the heart rate modulation. There was agreement
between the assumed valence of the stimuli and the emotional state as reported by the
participants. All conditions were rated significantly differently. The pleasant condition
was rated as the more pleasant and unpleasant condition as the more unpleasant. The
results showed significant differences in the time-course of the HRV indices during the
different conditions.
The mean trend of most of these indices, shown in Fig. 6.4, was characterized by two
different phases: a first early short phase of about 15–20 s during which indices changed
quickly, and a second longer phase during which indices approximatively maintained
the same values or varied slowly. These considerations should be taken into account in
the design of analogous experiments and should warn against the use of time-invariant
methods in this kind of studies. Given that the autonomic response to music-induced
emotions was observed to be transient and not instantaneous, too short stimuli could
be insufficient to elicit significant differences. In addition, a pause between the end
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of a trial and the beginning of the next one is strongly recommended to assure the
restoration of appropriate baseline values.
The largest differences in autonomic responses were observed between pleasant and
rest conditions: significantly different patterns were observed in all indices but fLF(t)
(see column P > R in Fig. 6.5).
More importantly, even the effects induced by pleasant and unpleasant excerpts, that
is by two acoustic stimuli comparable in loudness and tempo, could be discriminated
by tracking dHR(t), fresp(t), fHF(t), PHF(t) and, partially, by PTOT(t). This difference is
likely to be due to the different emotional valence of the two types of stimuli (pleasant
vs. unpleasant).
By contrast, unpleasant stimuli and the sequence of Shepard tones were observed to
elicit rather comparable effects, and no physiological index could clearly discriminate
between them. This similarity may be due to the absence of harmonic and melodic
structures in both kinds of stimuli, or due to a predominant effect of the Shepard tones,
which were present in both conditions, on the dissonant structures of the unpleasant
excerpts.
Respiratory rate and fHF(t) showed the greatest sensitivity to music-induced stimuli:
any kind of acoustic stimulus provoked almost instantaneous differences with respect
to resting condition, and differences between pleasant and unpleasant conditions were
reached in only 4–8 s after the stimulus onset. A fast response in HF component is in
agreement with previous studies on the autonomic nervous system stimulation, such
as response to tilt test [195, 168].
While the respiratory rate has been shown to be strongly affected by music [39, 40,
106, 107, 197], the role of heart rate is more controversial. In several works, heart
rate was observed to be significantly affected by acoustic stimuli with different valence
[40, 197, 228], while in others this influence was not observed [106, 128]. Here, un-
pleasant stimuli were observed to induce a stronger decrease in the heart rate, dHR(t),
than pleasant music (see Fig. 6.4a). The triphasic waveform described in [53] and in
[228] was also observed, even if here it appeared much smoother and longer: during
pleasant condition dHR(t) initially decreased for about 10 s, then it slightly increased
for about 10 s, before decreasing again.
Heart rate variability was already proposed as a critical index for the assessment of
the music effect in [128], where the physiological response to exciting and sedative
music was compared in a stationary context. That study reported that exciting mu-
sic decreased the activation of the parasympathetic nervous system. Here, both LF
and HF modulation, assessed by the instantaneous powers PLF(t) and PHF(t), were
observed to be higher during resting condition than during acoustic stimuli listening,
regardless of the internal structure of the excerpts. The power content in HF was
higher during unpleasant than during pleasant condition, suggesting that the listening
of pleasant music provoked a reduction of parasympathetic modulation. The pleasant
excerpts elicited the opposite effect than resting condition, during which the vagal
activity increased. The simultaneous decreasing of the heart and respiratory rates and
the increasing of the power of HF modulation highlight the strong relaxing effect of
silence, as already observed in [40].
As shown in Fig. 6.4e, when a condition began, the activation in LF band dramatically
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decreased within about 15 s with respect to baseline values. The difference between
PLF(t) values before and after each start–signal–tone are significant already after the
first seconds of the trials. This pattern may be related to the expectation of a new
coming stimulus (participants did not receive any previous information about the ex-
cerpts) and to the task of evaluation assigned to the participants, which may increase
the sympathetic activity.
The decrease observed in the sympatho-vagal balance, which passed from a first LF
predominance (PLFn(t) ≈ 0.6) to an equilibrium in which the modulation in HF was
slightly higher (PLFn(t) ≈ 0.4), took about 20 s. This change was common to all the
different conditions and no statistical differences were observed, among the subjects,
in PLFn(t), suggesting that the sympatho-vagal balance is higher during attention.
Finally, it is worth noting that we focused our attention to HRV modification only.
Nevertheless, the listening of music provokes changes also in other signals related to
the autonomic nervous system [39, 40, 106, 107, 197, 228] and further studies should
be therefore considered to achieve a comprehensive characterization of music-induced
effects on the autonomic modulation. The statistical analysis performed in this study
may also be applied in bivariate time-frequency analysis [144, 206] to assess whether
different conditions provoke different dynamic interactions in cardiovascular or car-
diorespiratory control, or to explore the relationship between physiological rhythm
and musical profile as in [39].

6.4 Cross time-frequency analysis for the assess-

ment of cardiorespiratory coupling

Cross time-frequency analysis was performed between the HRV signal and the respi-
ratory signal in order to assess the effect of musical stimuli with different emotional
valence on indices of synchronizations, such as band coherence, phase differences and
time delay.

6.4.1 Methods

The time course of the indices of synchronization between the HRV and the respira-
tory signals was estimated by means of the methodology proposed in §4 and §5. We
analyzed HRV dHRV(t) and respiratory signals from a sub-group of 58 subjects. In
these subjects, the respiratory signal was acquired by means of a respiratory belt.
Briefly, the smoothed pseudo Wigner-Ville distribution was estimated by using a
kernel function of type (4.11) which gave a time-frequency resolution (∆m

t ,∆
m
f ) =

(10.9 s, 39mHz). The choice of this kernel, which is different from that used in the
previous part of this chapter, is motivated by the need of estimating non-negative TF
spectra and TF coherence bounded between 0 and 1.
After having estimated the time-frequency spectra S(t, f), time-frequency coherence
γ(t, f) and phase difference Θ(t, f), indices I(t) were estimated by averaging in specific
time-frequency regions Ω(I)

HF, with HF ∈ [0.15, 0.5]. Indices I(t) were:
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– The instantaneous frequency of the HF spectral component of the cross time-
frequency spectrum, f (xy)

HF (t), was estimated as in (5.7).
– The time-course of the band coherence, γHF(t) was estimated by averaging γ(t, f)
in Ω(γ), as defined in (5.8).

– The time-course of the phase difference around the respiratory rate, θHF(t), was
estimated by averaging Θ(t, f) in Ω(θ), as defined in (5.9).

– The temporal evolution of the time delay between the HF spectral components
of the two signals, DHF(t), was obtained by using (5.11).

6.4.2 Results

The graphics of Fig. 6.6 represent the median trend and the interquartile range of the
indices of synchronization, estimated along all the realizations of the stimulus and for
all subjects (as described in §6.2, for each condition we have 6 stimuli × 58 subjects
= 348 realizations). In Fig. 6.7, the median trends that characterized the response to
each conditions are directly compared.
From the inspection of these two figures, we can make several considerations:

• Instantaneous frequency of the cross spectrum: the time-course of index f (xy)

HF (t)
is very close to that of the respiratory rate estimated in Fig. 6.4d. Musical
stimuli provoked an increase of the respiratory rate, which was more evident
during the listening to pleasant music, while the silence provoked a decrease of
the respiratory rate. The median trends are well separated.

• Band coherence: the time-course of γHF(t) is similar during all the conditions.
As shown in Fig. 6.7b, the median trends of the coherence are almost equal.
Index γHF(t) is lower during the interval in between two consecutive stimuli and it
increased afterwards, regardless the kind of condition. As for most of the spectral
indices of the HRV, shown in Fig. 6.4, this increase is characterized by a short
epochs of about 15–20 s in which the coherence estimates rapidly increased,
followed by a longer epoch in which coherence estimates were almost stable.
This behavior is observed also during the resting condition (R) and it should
be related to the increase of the power of the LF component observed in the
interval in between two consecutive stimuli (see Fig. 6.4e). The fact that, during
the first seconds of musical stimulation the coherence between the two spectral
components increased, while these spectral components were rapidly changing
their instantaneous frequency, confirms that the methodology is perfectly suited
for tracking non-stationary patterns.

• Phase difference: the time-course of indices θHF(t) fluctuated around -0.2 rad re-
gardless of the emotional valence of the condition. As shown in Fig. 6.7c, during
pleasant conditions, the median trend of the phase differences were slightly lower
(less negative) than during the rest of conditions. As shown in Fig. 6.6c, the
inter-stimuli variability was characterized by an interquartile range lower than
0.6 rad (over a range of 6.28 rad). This suggests that the phase difference be-
tween the HF component of the HRV and the respiratory signals was not due to
random fluctuations, but due to physiological mechanisms.
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Figure 6.6: Results of the cross time-frequency analysis performed between the HRV
signal and the respiratory signal. Time courses are estimated in specific TF regions
defined in the respiratory band. Red lines and gray shadows represent the median
trends and the interquartile ranges of the estimates. (a): Instantaneous frequency of
the cross SPWVD, fHF(t). (b): Band coherence γHF(t). (c): Phase differences θHF(t).
Time delay DHF(t). Conditions are: pleasant (P ), unpleasant (U), sequence of tones
(X) and rest (R).
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Figure 6.7: Median trends of the indices of synchronizations reported in Fig. 6.6. (a):
Instantaneous frequency of the cross SPWVD, fHF(t). (b): Band coherence γHF(t). (c):
Phase differences θHF(t). Time delay DHF(t). Conditions are: pleasant (P ), unpleasant
(U), sequence of tones (X) and rest (R).

• Time delay: the time-course of indices DHF(t) increased immediately after the
begin of pleasant condition, while DHF(t) during unpleasant, resting and control
conditions were characterized by very similar median trends. The differences
observed between phase differences (see Fig. 6.7c) and time delay (see Fig.
6.7d) were mainly due to the variation in the instantaneous frequency f (xy)

HF (t).

subsectionDiscussion It is well known that an oscillation synchronous with the respi-
ratory rate is present in the heart rate. As mentioned in §1.2.4, this phenomenon is
called respiratory sinus arrhythmia [112, 258, 246], and it has both clinical and phys-
iological relevance. In this study, we characterized the dynamic interactions between
the heart rate variability and the respiratory signal by cross time-frequency analysis.
The results show that the HF component of the HRV signal was highly coupled to
the respiration. The local coupling, quantified by coherence estimates, was high even
when the respiratory rate quickly changed. Moreover, it was high also during the lis-
tening to pleasant music, which reduced the power of the HF component of the HRV
signal (see Fig. 6.4f). Concerning the time-course of the coherence estimates, two
issues deserve attention: the lower values of coherence during the interval in between
two consecutive stimuli and the biphasic trends already observed in the spectral in-
dices of the HRV signal. The lower coherence level during the interval in between two
consecutive stimuli cannot be explained as an effect of the music, since also during
resting condition we observe the same pattern. For the same reason, it cannot be due
to the time-course of the instantaneous frequency and power of the HF component
of the HRV signal. A decrease of the strength of the local coupling after and before
musical stimulation is more likely due to the increase of the power of the LF compo-
nent observed during these transitions. One can speculate that during the interval in
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6.4 Cross time-frequency analysis for the assessment of cardiorespiratory coupling

between two consecutive stimuli, the task of rating the previous musical stimulus and
the expectation of the next one, could both increase the sympathetic and reducing
the parasympathetic modulation. This may imply a slightly reduction of the coupling
around the respiratory rate. Another possibility is that the sudden increase of the
power of LF spectral component observed after and before the musical stimulation
was simply due to movement artifact.
The differences in the median trends of θHF(t) observed in Fig. 6.7c, was enhanced af-
ter having normalized them by the corresponding instantaneous frequencies, as shown
in Fig. 6.7d. This highlight the importance of studying the degree of synchronization
between two components both in radians, by θ(t), and in seconds, by D(t). Given
that in Fig. 6.6c the phase difference estimates were negative, and given that the
respiration and the heart rate are in phase (an increase of the respiratory signal, i.e.
an inspiration, is associated to an increase in the heart rate), the results confirmed
that respiration leads (and in this open-loop relationship, causes) the HF component
of the HRV signal. However, as pointed out in §8.5.4, phase differences and time delay
estimates strongly depend on the specific representation used to estimate the HRV
signal. We may conclude that the respiration was persistently reflected in the heart
rate with a very short delay, likely about 0.1 seconds.
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Chapter 7. Time-frequency comparison between HRV and PRV from the PPG signal

7.1 Introduction

Pulse photoplethysmography (PPG), introduced by Hertzman [121], is a simple and
useful method for measuring the relative blood volume changes in the microvascular
bed of peripheral tissues and it can be used to evaluate peripheral circulation. This
signal is obtained through non-invasive pulse oximetry systems and is based on blood
light absorption [259, 183].
The PPG waveform contains both a DC and an AC component. The first one is
due to the non-pulsatile blood volume component and the attenuation at the tissues
surrounding the arteries, which produces a signal that changes slowly. The second
one is attributable to the pulsatile component of the vessels, i.e. the arterial pulse,
which is caused by the heart beat pumping.
Pulse photoplethysmography has been applied in many different clinical settings,
including the monitoring of blood oxygen saturation, heart rate, blood pressure,
cardiac output and respiration [5, 64]. Given its simplicity, low cost and that it is
widely used in the clinical routine, it is desirable to maximize PPG potential by
exploring additional measurements which can be derived from it. It is worth noting
that oximetry systems have the potentiality of providing multiple information using
only one sensor, making its use simpler, more comfortable and cheaper than multiple
sensor devices.
It is generally accepted that photoplethysmography can provide valuable information
about the cardiovascular system. The autonomic influences on the PPG signal have
been analyzed in several studies [41, 192, 147] and recently pulse rate variability
(PRV) extracted from the PPG signal has been studied as a potential surrogate
of HRV [161, 160, 116, 233, 60]. The analysis of heart rate variability is one of
the most widely used non-invasive techniques for the evaluation of the autonomic
nervous system (ANS). The use of PRV as a surrogate of HRV could be useful in
applications where ECG is not available or when it is beset with electrical artefacts
[176]. Moreover, since PPG also allows to derive physiological parameters such as
blood oxygenation and ventilatory rate, the use of the PRV instead of the HRV signal
could be particularly suitable in those applications where the simultaneous acquisition
of many signals is required, such as in sleep disorders studies, mainly for ambulatory
sleep studies.
The main difference between HRV and PRV is the time it takes the pulse wave to
travel from the heart to the finger. This time is called pulse transit time (PTT) and
is typically measured as the difference between the occurrence of the peak of the
R–wave on the ECG and the peak value of the corresponding pulse in the finger pad
measured by PPG. Pulse transit time, which is tie-related to arterial compliance and
blood pressure, changes beat to beat [61, 162, 190, 95, 98]. Thus, PRV is also affected
by the variability in the PTT, i.e. the beat-to-beat changes in pulse wave velocity.
All the studies exploring the possibility of using PRV as an alternative measurement
of HRV have been performed in stationary conditions using time-invariant analysis
and generally showed that PRV is a good surrogate of HRV. However, there are many
situations where significant changes in autonomic balance occur, as during orthostatic
test, Valsalva maneuver, exercise stress testing and after pharmacologic interventions,
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TlsThtTes

T (s)
lsT (s)

htT (s)
es

T (s)
bl

Figure 7.1: head up tilt test protocol. The automatic table takes 18 s to move from
early supine position, during Tes, to head up tilt, during Tht, as well as from Tht to later
supine position, during Tls. This interval is marked as lined area. Windows T (s)

es , T
(s)

ht

and T (s)

ls define the intervals where stationarity is assumed and time-invariant analysis
was performed; T (s)

bl defines the interval where baseline was estimated for time-invariant
physiological analysis.

which involve non-stationary processes. In such situations, the use of PRV as an
alternative measurement of HRV could be of great interest.
In this chapter, we compare these signals during tilt table test. In tilt table test, after
head up tilt, subjects undergo a progressive orthostatic stress and blood pressure is
maintained thanks to cardiovascular regulation [137], which involves an increase in
heart rate and a constriction of the blood vessels in the legs. This slight tachycardia
and vasoconstriction are the result of sympathetic activation and vagal withdrawal
[188]. When the supine position is restored, heart rate and vasoconstriction returns
to previous basal values together with sympathetic tone.

The aim of the study presented in this chapter is to evaluate the usefulness of PRV
as a surrogate of HRV analysis during non-stationary conditions, in particular during
tilt table test. Time-frequency (TF) and TF coherence analysis were performed to
asses whether PRV can be used in the analysis of the autonomic modulation of heart
rate in non-stationary conditions [100, 101].

7.2 Material and methods

7.2.1 Data acquisition and signal preprocessing

Seventeen volunteers (aged 28.5± 2.8 years, 11 males) without any previous cardiovas-
cular history underwent a head up tilt table test according to the following protocol:
4 minutes in early supine position (Tes), 5 minutes tilted head up to an angle of 70
degrees (Tht) and 4 minutes back to later supine position (Tls). The experimental pro-
tocol is illustrated in Fig. 7.1, where Tes, Tht and Tls mark the three epochs of early
supine, head up tilt and later supine positions, respectively; T (s)

es , T
(s)

ht and T (s)

ls mark the
interval in which time invariant analysis is applied; T (s)

bl marks the temporal window
used as baseline in the statistical analysis. Table 7.1 shows database information. In
this table, values of blood pressure were estimated from the finger during early supine
position, Tes.
For more information about the protocol and the data acquisition, refer to Appendix
§A. Briefly, the PPG signal was recorded from index finger with a sampling frequency
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Table 7.1: Database information

Subject1 SAP2 DAP3 Subject1 SAP2 DAP3

s1 [28] ♀ 113.5±5.4 64.2±3.1 s10 [29]♂ 130.4±6.5 86.9±2.6
s2 [26]♂ 125.2±6.6 82.3±4.1 s11 [26] ♀ 95±2.7 48.5±2.7
s3 [27]♂ 69.1±4.7 34.7±3.7 s12 [24]♂ 105.5±7.1 67.5±3.1
s4 [27]♂ 120.1±5.5 69.5±2.6 s13 [30]♂ 104.9±7.6 56.2±3.2
s5 [27]♂ 122.6±6.9 61.1±4.3 s14 [31]♂ 104.9±4.1 54±3.2
s6 [34] ♀ 124.5±6.4 64.5±2.9 s15 [34]♂ 124.5±3.9 78.2±2.6
s7 [27] ♀ 118.1±5.7 43.2±3.1 s16 [29]♂ - -
s8 [31] ♀ 104.6±5.3 59.2±2.3 s17 [30]♂ 137.9±3.6 74.7±2.1
s9 [26] ♀ 117.1±2.8 60.5±2.2

MEAN [28.5±2.8] 113.6±16.4 62.8±14.0

1 Number, [years], gender
2,3 Systolic and Diastolic arterial pressure in the finger (mmHg) during Tes. mean±SD

of 250 Hz, whereas standard lead V4 ECG signal was recorded with a sampling fre-
quency of 1000 Hz. Beats from ECG and pulses from PPG were detected to generate
heart and pulse rate time series. The temporal location of each R wave in the ECG
(tEj

) was automatically determined using the algorithm described in [177]. The PPG
signal was interpolated using cubic splines increasing the resolution in time up to an
equivalent sampling rate of 1000 Hz to match the temporal resolution of both signals.
Then, the temporal location of each pulse wave in the PPG (tPj

) was detected as the
maximum of the PPG signal within the interval [tEj

+150 ms, tEj+1
], see Fig. 7.2. In

addition, a PPG artefact detector [102] was applied to suppress pulses from PPG corre-
sponding to artefacts and beat and pulse detections were manually supervised. Then,
the effect of abnormal beats in both heart and pulse rate was corrected by applying
a methodology based on the integral pulse frequency modulation model [180]. Heart
rate and pulse rate signals, dHR(t) and dPR(t) respectively, were obtained by using a
5th order spline interpolation at 4 Hz of the inverse interval functions1 (IIF) diif(tj):

dECG

iif (tEj
) =

1

(tEj
− tEj−1

)
(7.1)

dPPG

iif (tPj
) =

1

(tPj
− tPj−1

)
. (7.2)

Finally, the HRV and PRV signals, dHRV(t) and dPRV(t), were calculated by suppressing
the time-varying mean heart (pulse) rate from dHR(t) and dPR(t), respectively. Mean
heart (pulse) rate were estimated by low-pass filtering dHR(t) and dPR(t), respectively,
with a cut-off frequency of 0.03 Hz in order to suppress the DC and very low frequency

1In this chapter, we use this representation for heart rate variability to be consistent with the
definition of the pulse rate variability. Please, note that in §6 signal dHR(t) was estimated by means
of IPFM model.
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7.2.2 Time-invariant analysis

Time-invariant analysis includes the quantification of the linear correlations between
the indices derived from the HRV and PRV signals as well as spectral analysis.
The Pearson’s correlation coefficient, defined as:

ρ =
C(χX(j), χY(j))

√

C(χX(j), χX(j))C(χY(j), χY(j))
, X,Y ∈ {HRV,PRV} (7.3)

was used to quantify the linear strength between the HRV and PRV signals, as well
as between several indices derived from HRV and PRV. In (7.3), C(·, ·) represents the
covariance operator, while χ(j) is a general function of the independent variable j
(which can represent subjects, time instants or frequency). The Pearson’s correlation
coefficient, ρd(k), between the variability signals, χX(t) = dHRV(t) and χY(t) = dPRV(t)
was calculated for each subject k to evaluate their linear relationship.
Classical time-invariant spectral analysis was performed in three windows (T (s)

es , T
(s)

ht

and T (s)

ls ) where stationarity is assumed [1]. As shown in Fig. 7.1, these windows had a
length of 2 minutes and finished 30 seconds before any transition during the tilt test.
Classical time domain and frequency domain indices were estimated in each window
from both HRV and PRV [1, 211, 171]:

– Time domain: Mean normal to normal interval (NN), standard deviation of NN
intervals (SDNN), root mean square of successive differences of adjacent NN
intervals (RMSSD) and percentage of pairs of adjacent NN intervals differing by
more than 50 ms (pNN50) were estimated.

– Frequency domain: fast Fourier transform algorithm with a frequency resolu-
tion of 0.0019 Hz was applied to dHRV(t) and dPRV(t) and the power in low fre-
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quency band (PLF), traditional high frequency band (PHF) and the LF to HF
ratio (RLF/HF) were estimated.

Each index from PRV (IPRV(k)) was compared to the same index from HRV (IHRV(k))
for each subject k, with I ∈ {NN, SDNN, RMSSD, pNN50, PLF, PHF, RLF/HF}.
Three additional indices were then estimated as:

(i) The difference between indices from HRV and PRV, δI(k) = IPRV(k)− IHRV(k).

(ii) The p-value of the Student’s t–test, used to assess whether indices IPRV(k) and
IHRV(k) were statistically different. Before analysis, values of all variables were
examined for deviations from normality by Kolmogorov-Smirnov test, founding
in all cases that the hypothesis of normality could not be rejected (p > 0.05).

(iii) The Pearson’s correlation coefficient, ρI, between indices χX(k) = IHRV(k) and
χY(k) = IPRV(k) was used to measure their linear relationship.

7.2.3 Time-varying analysis

The SPWVD was used to estimate the time-varying spectral properties of the HRV
and PRV signals, as well as to perform TF coherence analysis. A detailed explanation
of time-frequency and time-frequency coherence analysis is given in §3 and §4, respec-
tively.
Briefly, the cross-SPWVD of signals x(t) = aHRV(t) and y(t) = aPRV(t), where aHRV(t)
and aPRV(t) are the complex analytic representations of the original real signals dHRV(t)
and dPRV(t), was estimated as in (3.4):

SWV

xy (t, f) =

∞x

−∞

φd-D(τ, ν)Axy(τ, ν)e
j2π(tν−fτ)dνdτ (7.4)

The elliptical exponential kernel was the same as that defined in (4.11), with λ = 0.25:

φd-D(τ, ν) = exp

{

−π

[(

ν

ν0

)2

+

(

τ

τ0

)2]
1
2

}

(7.5)

Parameters τ0 and ν0 were selected to give a frequency resolution ∆m
f = 0.0313 Hz and

a time resolution ∆m
f = 15 s (see §3.1.2).

For each subject k, the temporal evolution of the power content of HRV and PRV
within each frequency band, P X

B (k, t), with X ∈ {HRV, PRV}, was obtained integrating
SWV

xx (t, f) in the frequency bands B ∈ {LF, HF}.
The similarity between the temporal evolution of dHRV(t) and dPRV(t) was assessed by
means of four indices:

(i) The Pearson’s correlation coefficient, ρI(k), between χX(t) = P HRV
B (k, t) and

χY(t) = P PRV
B (k, t) and between χX(t) = RHRV

LF/HF(k, t) and χY(t) = RPRV
LF/HF(k, t).

(ii) The difference between the instantaneous power of the two signals within each
frequency band, δB(k, t) = P PRV

B (k, t)−P HRV
B (k, t). This index is used to compare

the temporal evolution of the spectral content of the signals.
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(iii) The Pearson’s correlation coefficient, ρS(k, t), between instantaneous spectra of
the two signals is estimated at every time instant t = t0 as in (7.3) with χX(f) =
SWV
aHRV

(t0, f) and χY(f) = SWV
aPRV

(t0, f). This index is used to assess whether the
signals are characterized by a similar distribution of energy with frequency.

(iv) Time-frequency coherence was obtained by the SPWVD as in (4.10):

γ(t, f) =

∣

∣SWV
xy (t, f)

∣

∣

√

SWV
xx (t, f)SWV

yy (t, f)
; x, y ∈ {aHRV(t), aPRV(t)}. (7.6)

As explained in §4.3, time-frequency coherence gives a continuous quantification
of spectral coherence over time, being one in epochs characterized by perfect
linear coupling and zero when the two signals are completely uncorrelated.
From γ2(t, f), we obtained the band coherence γ2

B(k, t), with B ∈ {LF,HF}, by
averaging γ2(t, f) in each spectral band for each subject k.

7.2.4 Physiological analysis

The tilt table test provokes changes in the autonomic modulation of heart rate and is
used to study cardiovascular control [137, 188]. In this section, we assess the effect of
replacing HRV estimation from the ECG with PRV estimation from the PPG, when
the tilt table test is used to evaluate changes in the autonomic modulation of heart
rate.

In time-invariant analysis, Student’s t–test was performed to compare variations
of spectral indices, P X

B (k), among windows T (s)
es , T

(s)

ht and T (s)

ls , estimated from both
HRV and PRV signals. In time-varying analysis, we are interested in continuously
monitoring the changes produced in the autonomic modulation of the heart rate during
the tilt test. To this end, we quantified the statistical differences between the baseline
power content P X

B (k) and the power content at t0, P
X
B (k, t0), by iteratively performing

the Student’s t–test. The baseline power content P X
B (k) was estimated by averaging

P X
B (k, t) in a reference window T (s)

bl , selected at Tes from 15 to 45 s (see Fig. 7.1).
As result of the test we obtained a time-varying p-value, pX

B(t), for both HRV and
PRV signals. Normality of the distributions was tested by Kolmogorov-Smirnov test,
founding that the hypothesis of normality could not be rejected (p > 0.05) in 93% of
the time.

7.3 Results

7.3.1 Time-invariant analysis

The correlation between dHRV(t) and dPRV(t), ρd(k), was 0.964±0.030 (mean ± S.D.).
The mean delay of dPRV(t) with respect to dHRV(t), introduced by the pulse wave travel
to the periphery, was taken into account in the estimation of parameter ρd(k), to align
dHRV(t) and dPRV(t).
Table 7.2 and Fig. 7.3 show the comparison of time and frequency indices derived from
time-invariant analysis of HRV and PRV within each analysis window. All the indices
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Table 7.2: Time-invariant analysis results

Condition Index HRV PRV difference (δI(k)) p (T-test) Correlation (ρI)
Supine (T (s)

es ) NN (s) 0.988±0.195 0.988±0.195 -0.00038±0.00133 0.995 1.000
SDNN (s) 0.056±0.022 0.057±0.022 0.00064±0.00187 0.933 0.997
RMSSD (s) 0.049±0.028 0.05±0.027 0.00026±0.00186 0.978 0.998
pNN50 (%) 24.509±19.151 23.819±18.067 -0.68969±2.31389 0.915 0.994
LF (s-2) 0.002±0.001 0.002±0.002 0.00009±0.00015 0.859 0.997
HF (s-2) 0.001±0.001 0.001±0.001 0.00008±0.00013 0.840 0.996
LF (n.u) 0.657±0.164 0.653±0.159 -0.00467±0.01586 0.933 0.996
HF (n.u.) 0.343±0.164 0.347±0.159 0.00467±0.01586 0.933 0.996
LF/HF (n.u.) 2.652±1.834 2.531±1.718 -0.12034±0.19607 0.845 0.996

Upright (T (s)
ht ) NN (s) 0.787±0.151 0.788±0.151 0.00116±0.00281 0.982 1.000

SDNN (s) 0.056±0.031 0.058±0.031 0.00153±0.00256 0.886 0.997
RMSSD (s) 0.036±0.025 0.038±0.024 0.00253±0.00195 0.765 0.998
pNN50 (%) 13.72±15.429 15.307±16.572 1.58688±2.32206 0.774 0.992
LF (s-2) 0.006±0.007 0.006±0.008 0.00033±0.00044 0.899 1.000
HF (s-2) 0.001±0.001 0.002±0.002 0.0003±0.00038 0.565 0.981
LF (n.u) 0.765±0.194 0.719±0.206 -0.04522±0.05137 0.515 0.969
HF (n.u.) 0.235±0.194 0.281±0.206 0.04522±0.05137 0.515 0.969
LF/HF (n.u.) 6.593±5.438 5.073±4.355 -1.51994±2.18202 0.375 0.924

Supine (T (s)
ls ) NN (s) 1.008±0.193 1.01±0.195 0.00147±0.0041 0.983 1.000

SDNN (s) 0.057±0.025 0.057±0.024 -0.00029±0.00458 0.972 0.984
RMSSD (s) 0.049±0.03 0.049±0.025 -0.00042±0.00841 0.965 0.970
pNN50 (%) 23.949±18.521 25.506±18.399 1.55752±2.02452 0.807 0.994
LF (s-2) 0.001±0.001 0.001±0.001 0.00004±0.00009 0.932 0.998
HF (s-2) 0.001±0.001 0.001±0.001 0.00006±0.00011 0.864 0.996
LF (n.u) 0.568±0.201 0.558±0.201 -0.01014±0.01899 0.884 0.996
HF (n.u.) 0.432±0.201 0.442±0.201 0.01014±0.01899 0.884 0.996
LF/HF (n.u.) 1.843±1.324 1.739±1.215 -0.10394±0.24364 0.813 0.985

Table 7.3: Pearson’s correlation ρI(k) between time-varying indices,
P X

LF(k, t), P
X
HF(k, t), R

X
LF/HF(k, t) for each subject k.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 MEAN
ρLF(k) 0.84 0.95 0.99 1 1 0.99 1 1 1 1 0.99 0.99 1 1 1 1 1 0.98±0.04
ρHF(k) 0.95 0.86 0.99 0.98 0.93 0.95 0.98 0.99 0.95 0.99 0.99 0.95 0.91 0.95 0.98 1 0.77 0.95±0.06
ρLF/HF(k) 0.89 0.99 0.96 0.99 0.98 0.97 0.99 1 0.97 0.99 0.97 0.98 0.99 0.98 0.99 1 0.91 0.97±0.03

derived from PRV presented similar values to the indices derived from HRV. This
was confirmed by the statistical test, which showed no significant differences between
indices from HRV and PRV (p> 0.05). As shown in table 7.2, correlation coefficients
indicated a strong correlation (ρI > 0.97) for all indices but one (RLF/HF in T (s)

ht ).

7.3.2 Time-varying analysis

An illustrative example of the results obtained by performing time-frequency and
time-frequency coherence analysis for a subject (subject k=17, male, 30 years old) are
reported in Fig. 7.4. Heart and pulse rates are reported in panel (a). The TF distribu-
tion of the HRV and PRV signals are shown in panels (b)–(c). The temporal evolution
of the instantaneous power within the LF and HF bands, P X

B (k=17, t), is reported in
panel (d). It is shown that the spectral properties of the HRV and PRV signals did
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Figure 7.3: Time-invariant analysis to compare indices derived from HRV and PRV.
Mean±SD of: normal to normal interval (NN), standard deviation of NN intervals
(SDNN), root mean square of successive differences of adjacent NN intervals (RMSSD),
percentage of pairs of adjacent NN intervals differing by more than 50 ms (pNN50);
Power contents PLF and PHF. In intervals T (s)

es , T
(s)

ht and T (s)

ls (see Fig. 7.1) stationarity
was assumed.

follow the same trend. The main difference lies in the slight increase of the instan-
taneous power of the HF component estimated from the PRV signal, P PRV

HF (k=17, t),
with respect to that estimated from the HRV signal, P HRV

HF (k=17, t). This difference
was more pronounced during head up tilt. Panel (e) shows the correlation coefficient
between instantaneous spectra of the two signals, ρS(k=17, t). Results of TF coherence
analysis are reported in panels (f)–(g). The quadratic TF coherence γ2(t, f), reported
in panel (f), shows that during supine position Tes and Tls the two signals presented
almost a perfect correlation for all frequencies. Around 320 s, TF coherence decreased
due to artefacts on the PPG signal (marked as black crosses). The temporal evolution
of the band coherence γ2

B(k=17, t), shown in panel (g), confirm the previous observa-
tions: HRV and PRV had an almost identical TF structure, at least in LF band.
It is worth noting that the example shown in Fig. 7.4 is a borderline case: subject
k=17 had one of the highest δHF(k, t) and the lowest γ2

HF(k, t) in Tht.
Table 7.3 shows that the index ρI(k), with I ∈ {P X

LF(k, t), P
X
HF(k, t), R

X
LF/HF(k, t)}, was

close to one for almost all subjects.
Global results, obtained by averaging among subjects the indices presented in §7.2.3,
are reported in Fig. 7.5. In panels (a)–(b), the instantaneous power within each
frequency band from HRV and PRV and the corresponding instantaneous difference
are shown, respectively. Note that the mean trend of the instantaneous power of LF
and HF spectral components, obtained by averaged P HRV

B (k, t) and P PRV
B (k, t) among

subjects k, presented the same temporal patterns, even if with a bias that increased
during head up position. Panel (c) shows the mean trend of the instantaneous corre-
lation ρS(k, t) between the power spectral density functions, estimated at each t0 as
SWV
aHRV

(t0, f) and SWV
aPRV

(t0, f). In the same panel we reported ρS(k=1, t) for the subject
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Figure 7.4: Results of TF and TF coherence analysis for one subject, k = 17. (a) Heart
rate and pulse rate; (b) TF distribution of aHRV(t); (c) TF distribution of aPRV(t); (d)
Temporal evolution of instantaneous power content P X

B (k=17, t) within spectral band
B ∈ {LF, HF} for X ∈ {HRV, PRV}; (e) Correlation coefficient between instantaneous
spectra of the two signals, ρS(k=17, t). (f) Time-frequency coherence γ2(t, f). (g) Band
coherence γ2

B(k=17, t). Artefacts in PPG signal are marked as black crosses.
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Figure 7.5: Global results of TF and TF coherence analysis. Mean trend estimated
by averaging among subjects. (a) Time-course of the instantaneous power in each
frequency band from HRV (continuous line) and PRV (dash-dotted line); (b) Instan-
taneous actual error in LF band (red line) and HF band (blue line); (c) Mean trend
of the instantaneous correlation ρS(k, t) between the power spectral density functions
derived from HRV and from PRV (solid line). Index ρS(k=1, t) and artefacts in PPG
for subject 1 are reported in dashed line and cross marks, respectively; (d) Band
coherence.
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bl .

who presented the highest number of artefacts in the PPG signal, i.e. subject k=1. It
is shown that artefacts provoked an abrupt decrease in ρS(k, t). Panel (d) shows the
band coherence γ2

B(k, t) in each spectral band.

7.3.3 Physiological analysis results

Results of the time-invariant analysis are reported in table 7.4. It is shown that PLF(k)
significantly increased as response to the orthostatic stress provoked by the head up
tilt. Student’s t–test presented similar results for both PRV and HRV signals.
Figure 7.6 shows the results of the time-varying analysis. It is shown that the time-
course of the p-value estimated from HRV and PRV followed the same trend, being
pHRV
LF (t) and pPRV

LF (t) almost equal. The variations observed in P X
LF(k, t) during the tilt

table test, see Fig. 7.5a, caused pX
LF(t) to change. First, immediately after the head

up tilt, pX
LF(t) dramatically decreased; then, during Tht, pX

LF(t) continued gradually
diminishing, reaching the threshold for statistical significance about 2 minutes later;
finally, when the supine position was restored pX

LF(t) abruptly increased to previous
values.
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Table 7.4: Time-invariant physiological analysis results (p-values). Results of Student’s
t–test for time-invariant analysis comparing each pair of windows T (s).

PHRV
LF T (s)

es T (s)
ht T (s)

ls PHRV
HF T (s)

es T (s)
ht T (s)

ls

T (s)
es 1 0.047 0.207 T (s)

es 1 0.569 0.7

T (s)
ht - 1 0.021 T (s)

ht - 1 0.352

T (s)
ls - - 1 T (s)

ls - - 1

P PRV
LF T (s)

es T (s)
ht T (s)

ls P PRV
HF T (s)

es T (s)
ht T (s)

ls

T (s)
es 1 0.046 0.194 T (s)

es 1 0.342 0.677

T (s)
ht - 1 0.02 T (s)

ht - 1 0.184

T (s)
ls - - 1 T (s)

ls - - 1

7.4 Relationship between HRV and PRV: the in-

fluence of PTTV

Using equations (7.1) and (7.2), it is possible to describe the relationship between HRV
from ECG and PRV from PPG as:

dPPG

iif (tPj
) =

1

(tPj
− tPj−1

)
=

1

(tEj
+ τPTTj

+ ξj)− (tEj−1
+ τPTTj−1

+ ξj−1)
= (7.7)

=
1

(tEj
− tEj−1

)
· 1

1 +
τPTTj

−τPTTj−1
+ξj−ξj−1

tEj
−tEj−1

≈

≈ 1

(tEj
− tEj−1

)

[

1− τPTTj
− τPTTj−1

+ ξj − ξj−1

tEj
− tEj−1

]

=

=dECG

iif (tEj
)
[

1−
(

∆PTTj
(tEj

) + ∆ξj(tEj
)
)

· dECG

iif (tEj
)
]

In this expression τPTTj
is the PTT which corresponds to the jth beat; ξj is a stochastic

variable which accounts for errors in location of tPj
; this stochastic variable takes into

account the fact that the fiducial point on the PPG signal is much less definite than
the R peak of the ECG; ∆PTTj

(tEj
) = τPTTj

− τPTTj−1
and ∆ξj(tEj

) = ξj − ξj−1 are the
PTT and the location error variabilities, respectively.
Note that in (7.7) it has been assumed that (∆PTTj

(tEj
)+∆ξj(tEj

)) << tEj
− tEj−1

and
tEj

has no temporal jitter.
The beat–to–beat difference between HRV and PRV can be then written as:

dPPG

iif (tPj
)− dECG

iif (tEj
) = −

(

∆PTTj
(tEj

) + ∆ξj(tEj
)
)

·
(

dECG

iif (tEj
)
)2

. (7.8)

7.4.1 Simulation to test the effect of the PTTV

To test the isolated effect of ξj and to indirectly assess the role played by PPT in
equation (7.8), a simulation study was carried out. In this simulation study, it was
assumed that the difference between the HRV signal and the simulated PRV (PRVs)
signal was only due to the jitter in the PPG fiducial point. This is equivalent to
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write tPSj
= tEj

+ ξj. The stochastic variable ξj was modeled by zero-mean discrete
uniform distributions and varying standard deviation. The inverse interval function
for simulated PPG signals, dPPGs

iif (tPsj
), were computed for all patients,

dPPGs
iif (tPsj

) =
1

(tPsj
− tPsj−1

)
=

1

(tEj
+ ξj)− (tEj−1

+ ξj−1)
. (7.9)

Simulated pulse rate variability signals dPRVs(t), were obtained after interpolation and
DC suppression as previously described for obtaining the HRV and PRV signals.
In the simulation study, when the error in the location of the pulse in the PPG

signal, ξj, was uniformly distributed between ± 8 ms (std = 4.9 ms), HF coherence

toke similar values as those reported for real data, i.e. γ2
HF(k, t)=0.89. The results for

simulation study with this level of noise, obtained by averaging among subjects are
shown in Fig. 7.7. As shown in panels (a)–(b), in this case, the isolated effect of the
simulated jitter in the PPG fiducial point did not introduce a bias in the instantaneous
power of the HF spectral components.

7.5 Discussion

The purpose of the study presented in this section was to evaluate the possibility
of using PRV as an alternative measurement of HRV in non-stationary conditions.
Similar results in the analysis performed on indices derived from dHRV(t) and on indices
derived from dPRV(t) support the usefulness of the PRV signal as surrogate of the HRV
signal.
The study is based on the analysis of the changes observed in the heart rate modulation
of 17 young subjects during tilt table test. The analysis consists of three different parts:

(i) Classical indices of HRV analysis were estimated in three different time epochs
during which stationarity was assumed.

(ii) Time-frequency and time-frequency coherence analysis were used to assess and
compare the time-varying spectral properties of both signals.

(iii) A statistically analysis of the changes provoked by head up tilt with respect to
baseline condition was performed by using both the HRV and PRV signals.

7.5.1 Time invariant analysis

A comparison between classical HRV and PRV analysis during tilt table test was
presented. Table 7.2 and Fig. 7.3 show that classical time and frequency indices de-
rived from PRV and HRV. No statistically significant differences between these indices
(p > 0.05) was observed, whereas strong linear correlation (ρI > 0.9) was measured.
Generally, during early and later supine position we observed a higher similarity be-
tween these indices than during head up position. Additionally, a positive bias in the
estimation of the power content from PRV is always present.
As already pointed out in [60, 70], this bias increases during head up tilt. This can be
due to the effect of pulse transit time, and this point will be discussed in the following
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Figure 7.7: Simulation study: mean trend estimated by averaging among subjects.
(a) Temporal evolution of the instantaneous power in each frequency band from HRV
(continuous line) and PRVs (dash-dotted line); (b) Instantaneous actual error in LF
band (red line) and HF band (blue line); (c) Mean trend of the instantaneous correla-
tion ρS(k, t) between the power spectral density functions derived from HRV and from
PRVs (solid line). Index ρS(k=1, t) for subject 1 is reported in dashed line; (d) Band
coherence.
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section. The results of time-invariant analysis are in agreement with previous works
[161, 160, 116, 233, 49, 60], which suggested that PRV could be used as an alternative
measurement of HRV during stationary conditions, at least in a resting position [60].
However, in a study with children [70] it was pointed out that the differences observed
in HF band should be carefully considered.

7.5.2 Time-varying analysis

Different time-frequency and time-varying approaches have been proposed in the
literature to quantify the dynamics of HRV in non-stationary conditions [165]. In this
study we used the smoothed pseudo Wigner-Ville distribution since it is characterized
by a high TF resolution and gives the possibility of performing an independent
filtering in both time and frequency. The SPWVD has been used for the assessment of
the time-varying spectral properties of HRV during different non-stationary conditions
[131, 3, 19, 184, 99, 201] and has been considered as the best option for analysis of
non-stationary HRV signals in a comparative study [216]. The choice of the kernel
proposed in equation (7.5) was motivated by the results of [206], in which it was
used to robustly estimate TF coherence. In our work, the degree of TF filtering (and
interference terms reduction) was sufficient to provide a consistent estimation of TF
coherence, i.e. γ2(t, f) ∈ [0, 1] ∀(t, f), for all subjects.
During tilt table test we observed high similarity between the patterns of response of
HRV and PRV. The global results reported in Fig. 7.5 show that the instantaneous
power content of the PRV was slightly higher (δB(k, t) < 10−3 s-2) than the instanta-
neous power content of the HRV signal. The temporal evolution of the index δB(k, t)
was almost the same in both frequency bands: during early and later supine position
δB(k, t) < 0.25 10-3 s-2, whereas during head up position δB(k, t) increased up to a
value of about 0.7 10-3 s-2. It is worth noting that during the highest non-stationary
intervals (i.e. the transitions during which the table was tilted), δB(k, t) did not
increase. As reported in table 7.3, the time-course of the instantaneous power in LF
and HF spectral bands, obtained from HRV and from PRV, was highly correlated,
i.e. P HRV

B (k, t) and P PRV
B (k, t) followed the same trend.

The correlation between the instantaneous spectral densities of the two signals,
ρS(k, t), was also very high, being the temporal average of the mean and standard
deviation among subjects 0.99 ± 0.01. The small decreases of ρS(k, t) were due to the
presence of some artefacts in the PRV signal.
The band coherence γ2

B(k, t), showed that, despite of non-stationary conditions, the
degree of linear coupling between the two signals was constant during time, and
no relevant variations were observed even during upward and downward tilting.
Band coherence in LF fluctuated around 0.97±0.04 during the entire experimental
procedure, while band coherence in HF fluctuated around 0.92±0.06 and 0.87±0.10
during supine (Tes and Tls) and head up tilt (Tht) position, respectively, being
0.89±0.08 during the entire experimental procedure.

In both time-invariant and time-varying analysis we observed a positive bias in the
measurement of spectral indices from PRV. This bias was observed to increase during
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head up tilt. As modeled in equation (7.8), differences between PRV and HRV are due
to PTT variability and to the variability of the error in location of PPG fiducial point.
Since there is no reason to expect an increase of the error committed in locating the
PPG fiducial point during head up tilt, our hypothesis is that this bias observed in
HF band could be due to the variability introduced by the PTT; this variability could
increase during head up tilt. The observation of lower values in γ2

HF(k, t) with respect
to γ2

LF(k, t) suggests that, due to PTT variability, respiration is slightly differently
represented in PRV than in HRV. This is in agreement with [70]. Time-varying spectral
indices estimated from PRV and HRV analysis did follow the same temporal patterns.
Nevertheless, small differences exist between their values, mainly in the respiratory
band. Thus, when a study aims at accurately estimating these time-varying spectral
indices, caution should be used in replacing HRV by PRV. Equation (7.8) describes the
relationship between HRV and PRV and shows that the difference between HRV and
PRV is mainly due to PTT variability and to the variability of the jitter in the PPG
fiducial point. To better understand the results presented in this work, a simulation
study was carried out. We simulated the case in which the differences between HRV
and PRV are only due to the jitter in the PPG fiducial point ξj. Similar values of
HF band coherence as those observed in the analysis of real data could be obtained
for ξj uniformly distributed between ± 8 ms (std = 4.9 ms). This simulation study
showed that the jitter in the PPG fiducial point alone can not introduce a bias in
the instantaneous error δB(k, t). This observation corroborates the hypothesis that
suggests that the difference between PRV and HRV showed in Fig. 7.5b is mainly due
to PTT variability. The TF description of PTT variability goes beyond the purposes
of this work, but further studies on this subject are needed.

7.5.3 Physiological analysis

From both time-invariant and time-varying analysis we observed a statistically signif-
icant increase of the power content in LF band of HRV and PRV during head up tilt.
Results of table 7.4 show that differences in P X

LF(k) during T (s)

ht and T (s)

ls were statisti-
cally higher than differences during T (s)

ht and T (s)
es . Simultaneous inspection of Fig. 7.5a

and 7.6a reveals the transient nature of the autonomic response to orthostatic stress.
It is shown that the variations in P X

LF(k, t) provoke changes in the temporal pattern
of p-values. First, immediately after the head up tilt, the p-value pX

LF(t) dramatically
decreased; then, during Tht, p

X
LF(t) continued gradually diminishing, reaching statisti-

cal significance about 2 minutes later; finally, when the supine position was restored
pX
LF(t) abruptly increased to previous values. Moreover, as also shown in Fig. 7.6a the
power content within LF band during early and later supine positions did not present
any relevant difference, pointing out that recovery was fast. The power content in
HF band did not present any significant change during the test. Finally, it is worth
noting that there was agreement between the physiological analysis based on HRV
and PRV. This suggests that, in this particular test, PRV could be used as a surrogate
measurement of HRV to evaluate the autonomic modulation changes of the heart rate
for both stationary and non-stationary analysis.
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7.5.4 Limitations

It is well established that PPG measurements are quite sensitive to patient and/or
probe-tissue movement artefact [5]. The presence of motion artefacts is one of the most
important limitations of the use of the PRV signal as surrogate of the HRV signal [159].
Thus, automatic artefact detection [102, 257, 119] and replacement of correspondent
corrupted signal segments are of crucial importance in PPG signal processing. In this
study, a PPG artefact detector based on Hjorth parameters was used and subsequently
PPG and ECG signals were manually supervised. The effect of errors in beat and pulse
detection was corrected following the algorithm presented in [180]. Artefacted PPG
pulses represented less than 1% of total pulses and, thanks to their detection and
correction, did not significantly affected our global results. Nevertheless, their effect
on the similarity indices of single subjects was still visible. In subject 17 an artefact
provoked the decrease observed in TF coherence around 320 s (see Fig. 7.4). The PPG
recording of subject 1 was that with the highest number of artefacts. In Fig. 7.5c,
it is shown that artefacts provoked a decrease in the index ρS(k, t), being the most
relevant decrease associated to artefacts during the downward motion of the automatic
table (around 570 s). As also reported in [60, 159] high PPG signal quality and robust
artefact removal are necessary for accurate PRV analysis.
The accuracy in detecting the fiducial point in PPG (tPj

) is also essential in PRV
analysis. It mainly depends on the sampling frequency and morphology of PPG pulse
wave. According to [185], a low sampling frequency produces an increase in the power
of the high frequency band, and generally at least a sampling frequency of 500 Hz is
required to avoid some serious errors. In this study, the PPG signal was sampled at
250 Hz and later it was interpolated using cubic splines up to an equivalent sampling
frequency of 1000 Hz in order to match the time resolution of HRV.
Photoplethysmographic pulse wave is less sharp than R wave in ECG. The rounded
shape of the PPG pulse wave could introduce some inaccuracy in tPj

detection. The
effect of this error has been introduced in equation (7.7) by means of the stochastic
variable ξj. The simulation study, which aimed at assessing the isolated effect of
these inaccuracies pointed out that this jitter was not able to reproduce the bias
observed in Fig. 7.5b. If the morphology of PPG pulse wave does not change along
the recording, as in our data, the main difference between PRV and HRV will be due to
PTT variability. If PPG pulse wave morphology changes other methods less sensitive
to morphology for detecting tPj

as for example methods based on mass center should
be considered. Taking into account the stability of the fiducial point on the PPG is
important for PRV analysis in each application.
An important point to stress is that during tilt, the ANS reacts in such a way to
keep blood pressure values as close as possible to the rest values. If some hypotensive
events occurs during tilt, they are related to pre-syncopal/syncopal events which did
not happen in our data. Thus changes in PRV could not be address to hypotensive
events in our work.
In this study, beat detections from ECG have been used for determining the temporal
location of each pulse wave in the PPG. A robust automatic detector of pulses from
PPG independent from ECG and adapted to different possible kind of pulse wave
morphology is needed for the application of PRV analysis in clinical routine. An
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extended study including more subjects and other physiological events associated to
non-stationary conditions would be desirable to confirm our results. In addition, a
study of the effect of aging as well as of changes in blood pressure on PRV would be
interesting. It is well known that older subjects have increasing arterial stiffness, which
results in increasingly faster pulse transmission to the periphery [6]. Thus, differences
between HRV and PRV, which are mainly produced by PTT, could be dependent on
aging.
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Chapter 8. Assessment of dynamic RRV–SAPV interactions by cross TF analysis

8.1 Introduction

Short-term cardiovascular control involves homeostatic mechanisms for the mainte-
nance of blood pressure, which make the blood pressure and heart rate to continuously
interact. A change in the blood pressure causes a change in the heart rate through the
feedback baroreceptor-cardiac reflex (baroreflex, see §1.2.2), while, in turn, a change
in the heart rate causes a change in the blood pressure through feedforward mechan-
ical effects. The assessment of baroreflex sensitivity (BRS), i.e. the change in the
RR interval following a unitary change in the blood pressure, from non-invasive mea-
surements is clinically relevant because a baroreflex impairment has been suggested to
have diagnostic and prognostic relevance [76, 151].
In the last 20 years, different techniques have been proposed to estimate the spon-
taneous BRS [155, 212, 247, 225, 30, 109]. Among them, there is the cross-spectral
analysis of systolic arterial pressure variability (SAPV) and RR variability (RRV)
[76, 151]. In particular, the parameter αB has been defined as the squared root of the
ratio between the power of the RRV and SAPV series, and it is usually defined in both
the LF and HF spectral bands, [212, 155]. Traditionally, this parameter is estimated
whenever spectral coherence [57] between RRV and SAPV is higher than an arbitrary
threshold. Although the first methodologies to estimate spontaneous BRS are not
recent [225, 212, 168], in the last few years, the interest in improved methods has in-
creased. Recently, much effort has been put into improving two issues: The capability
of following changes in non-stationary conditions and the assessment of the prevalent
direction of the coupling between RRV and SAPV. However, only few methodologies
that combine non-stationary analysis and the assessment of causality have been applied
in the study of cardiovascular interactions [63]. Non-stationary processing is impor-
tant because in the cardiovascular system, stationarity is a rare exception rather than
the rule.Recent non-stationary methods for the analysis of cardiovascular interactions
are based on time-varying autoregressive models [45, 255, 63], continuous and discrete
Wavelet transform [143, 145, 196, 253], and empirical mode decomposition [239, 97].
The assessment of the prevalent direction of the coupling is relevant because it can be
used to infer which mechanism is primarily responsible for the changes observed in the
signals and is necessary to assess spontaneous BRS [219]. To determine the prevalent
direction of the coupling between RRV and SAPV [193], cross-spectral analysis has
been traditionally used [71, 156]. Recently, parametric modeling [194, 35, 63] and
non-linear indices [219, 132] have also been proposed to assess causality [193].
The main purpose of this chapter is to present a methodology to characterize the dy-
namic interactions between RRV and SAPV, which includes the assessment of both
the strength and the prevalent direction of local coupling. This methodology is based
on the SPWVD and provides TF representations of the signal power spectra, spectral
coherence, and phase differences with fine joint TF resolution. It also allows estimat-
ing the time-course of the local coupling, phase differences, and time-delay between
the LF and HF spectral components of the two signals. Robust estimates of the BRS
are obtained owing to the localization of TF regions characterized by statistically sig-
nificant coherence and in which the SAPV leads the RRV signal.
The capability of reliably estimating fast changes in these dynamic interactions is as-
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sessed in a simulation study involving data recorded from healthy subjects.
A physiological study is carried out to characterize the cardiovascular dynamics during
head-up tilt table test [168, 71, 250, 219], and the Eurobavar data set [155, 251, 109]
is analyzed to assess whether the presented methodology can be considered as the
generalization of traditional time-invariant methods. To highlight the importance of
non-stationary signal processing in the assessment of short-term cardiovascular control,
a test of stationarity [51] is applied to the signals analyzed in this chapter.

8.2 Methods

8.2.1 Assessment of non-stationarity

Stationarity is usually assumed based on some arbitrary considerations. Recently,
Borgnat et al. proposed an operational framework for statistically testing stationarity
relatively to an observation scale [51]. The test is based on the comparison between
global and local time-frequency features. Stationarity happens if the local spectra at
all different time instants are statistically similar to the global spectrum obtained by
marginalization.
The procedure to statistically test stationarity [51], can be summarized as follows:

(i) A set of stationarized surrogate signals sj(t), with j = {1, ..., J}, is generated and
used as reference. Signals are derived from the original signal by randomizing
the phase of its Fourier transform and going back to the temporal domain.

(ii) The global frequency spectrum is obtained by averaging the multitaper spectro-
gram S(t, f) [37, 254] at some given time instant n:

S(f) =
1

N

N
∑

n=1

S(tn, f) (8.1)

In this study, the time in between two consecutive time samples depended on Th,
the width of the first Hermite function used in the calculation of the multitaper
spectrogram. Parameter Th varied in Th ∈ [ T

20
, T
2
], with T length of the signal.

(iii) Estimates of some spectral distance D(·, ·) are collected as:

csj(n) ≡ D
(

Ssj(tn, f), Ssj(f)
)

, n = {1, ..., N} (8.2)

cx(n) ≡ D
(

Sx(tn, f), Sx(f)
)

, n = {1, ..., N} (8.3)

In this study, as proposed in [51], we used as spectral distance D a combination
of the Kullback Leibler divergence (DKL) and the logspectral deviation (DLSD).
These measures are derived as [51]:

DKL(G1, G2) ≡
∫

A

(

G1(f)−G2(f)
)

log
G1(f)

G2(f)
df (8.4)

DLSD(G1, G2) ≡
∫

A

∣

∣

∣

∣

log
G1(f)

G2(f)

∣

∣

∣

∣

df (8.5)

D(G1, G2) = DKL(G1, G2)
(

1 +DLSD(G1, G2)
)

(8.6)
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In these expressions, the two distributions G1(f) and G2(f) are positive and nor-
malized to unity over the domain A. The KL measure (8.4) performs poorer than
the LSD (8.5) when signals are amplitude modulated, because of normalization.
However, it behaves better when signals are frequency modulated, because of its
recognized ability at discriminating distribution shapes [51]. Therefore, the use
of the spectral distance D(G1, G2) (8.6) is a good compromise for cardiovascular
signals, which are expected to present both AM and FM modulations.

(iv) The dispersion of these distances under the null hypothesis of stationarity is
given by:

Θ0(j) = var
(

csj(n)
)

, n = {1, ..., N}, j = {1, ..., J} (8.7)

This distribution allows for the determination of a threshold γ above which the
null hypothesis is rejected. This threshold is obtained by modeling Θ0(j) as a
Gamma distribution and fixing a false alarm rate of 0.05 [51]. The dispersion of
the distances (8.3), which characterizes the original signal x(n) is given by:

θ1 = var
(

cx(n)
)

, {n = 1, ..., N} (8.8)

(v) The one-sided test is performed:

d(x) =

{

1, if θ1 > γ non-stationarity

0, if θ1 ≤ γ stationarity
(8.9)

8.2.2 Cross time-frequency analysis

The methodology used in this study is detailed in §3–5. Here, we only provide a brief
description of the framework used to analyze the signals.

Time-frequency representations

Auto and cross TF spectra, Sxy(t, f), are estimated by SPWVD, as described in §3:

Sxy(t, f) =

+∞x

−∞

φd-D(τ, ν)Axy(τ, ν)e
j2π(tν−τf)dνdτ (8.10)

Axy(τ, ν) =

∫ ∞

−∞

x
(

t+
τ

2

)

y∗
(

t− τ

2

)

e−j2πνtdt (8.11)

The kernel used in this study was an elliptical exponential function of type (4.11):

φd-D(τ, ν) = exp

{

−π

[(

ν

ν0

)2

+

(

τ

τ0

)2]2λ
}

(8.12)

φt-f(t, f) =

+∞x

−∞

φd-D(τ, ν)e
j2π(tν−τf)dτdν (8.13)

time-frequency coherence was estimated as in (4.10):

γ(t, f) =
|Sxy(t, f)|

√

Sxx(t, f)Syy(t, f)
; γ(t, f) ∈ [0, 1] (8.14)
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In this study, the appropriate degree of time-frequency smoothing is determined by
a straightforward scheme as that described in §4.3. It consists in fixing a desired
TF resolution and by iteratively increasing the degree of smoothing, until reaching
meaningful estimates over the entire TF domain. Results of this numerical process
will be shown in the followings.
The statistical test to assess the significance of time-frequency coherence was based on
the point-by-point comparison of the coherence estimates with a threshold function
which depends on the geometrical properties of the kernel (the signal independent
threshold described in §4.5).
The region where γ(t, f) is significant, i.e. that where the two signals are sharing
approximately the same instantaneous frequencies, is defined as:

ΩB ≡
{

(t, f) ∈ (R+ ×B)
∣

∣ γ(t, f) > γTH(t, f)

}

; (8.15)

with B ∈ {LF,HF}.

The TF phase difference (TFPD) spectrum is given by (5.4):

Θ(t, f) = arctan

[

ℑ
[

Sxy(t, f)
]

ℜ
[

Sxy(t, f)
]

]

; Θ(t, f) ∈ [−π, π] (8.16)

Time-course of the physiological indices

As detailed in §5.2.3, the time-course of the indices characterizing the dynamic inter-
actions between cardiovascular signals is estimated in specific TF regions.
In the followings, the TF region from which the time-course of a general index IB(t)
is extracted, is called Ω(I)

B , with B ∈ {LF,HF} indicating a spectral component.
Time-varying spectral band centered around the instantaneous frequency of a spectral
peak in the cross time-frequency spectrum, f (xy)

B (t), is defined as:

Ω(γ)

B ≡
{

(t, f) ∈ (R+ ×B)
∣

∣ f = f (xy)

B (t)± ∆m
f

2

}

(8.17)

where ∆m
f is a term related to the frequency resolution (see §3.1.2).

The time-course of the band coherence is then obtained by averaging γ(t, f) in Ω(γ)

B :

γB(t) =
1

∆m
f

∫

ΩB
(γ)

γ(t, f)df (8.18)

Region Ω(θ)

B is defined as:

Ω(θ)

B ≡
{

Ω(γ)

B ∩ ΩB

}

◦R(t, f); (8.19)

where R(t, f) is a rectangle of sides 2s×∆m
f

2
Hz and ◦ denotes the opening (processing

technique which involves erosion and dilation). The opening excludes from {Ω(γ)

B ∩ΩB

}

the portions of TF domain which are smaller than R(t, f), thus adding robustness to
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the final estimates.
Index θB(t) is estimated (in radians) by averaging the TFPD spectrum in Ω(θ)

B (5.10):

θB(t) =

[

∫

Ω
(θ)
B

Θ(t, f)df

]

/

[

∫

Ω
(θ)
B

df

]

(8.20)

The time delay associated to θB(t) is estimated (in seconds) by the index DB(t), defined
as (5.11):

DB(t) =
θB(t)

2πf (xy)

B (t)
(8.21)

Baroreflex sensitivity

Index αB(t), which measures the changes in the spontaneous baroreflex sensitivity, is
estimated in a TF region Ω(α)

B centered around f (xy)

B (t), where coherence is statistically
significant and where a change in the SAPV precedes a correlated change in the RRV
signal:

Ω(α)

B =

{

(t, f) ∈ Ω(θ)

B

∣

∣ Θ(t, f) < 0

}

(8.22)

According to the described framework, if we associate x(t) and y(t) to the RRV and
SAPV signal, respectively, when the prevalent causal direction is that of the feedback
baroreceptive path, i.e. with a change in the arterial pressure preceding a correspond-
ing change in the heart period, the phase of Sxy(t, f) is negative, i.e Θ(t, f) < 0 (see
§5.2.4).
The time-course of the baroreflex sensitivity is estimated as:

αB(t) =

√

∫

Ω
(α)
B

Sxx(t, f)df

/
∫

Ω
(α)
B

Syy(t, f)df (8.23)

8.3 Material and study populations

The presented methodology is assessed in a simulation study and is used to analyze
cardiovascular interactions in two different data set.

8.3.1 Simulation study

A simulation study was carried out with the purpose of validating the proposed
methodology. The signals used in these simulations are modified versions of the RRV
signals recorded during the tilt table test described in the following section. They are
obtained as:

x(t) =aRRV(t) + ξx(t) (8.24)

y(t) =[γ0(t)α0(t)exp(jθ0(t))]aRRV(t) + ξy(t) (8.25)

where aRRV(t) is the complex analytic signal representation of the RRV signal, and
ξx(t) and ξy(t) are complex white Gaussian noises associate to a SNR = 10dB. Indices
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γ0(t) ∈ {0, 1}, θ0(t) ∈ [−2.2,−0.8] rad and α0(t) ∈ [5, 20] ms/mmHg represent the
reference time-course of the local coupling, phase difference and baroreflex sensitivity
(see Fig. 8.3). The reasons which make the estimation of these indices challenging are:
the TF structure of the signals reflects the complexity of real non-stationary biomed-
ical signals; the presence of epochs, the shortest lasting 30 s, during which signals
are not locally coupled and during which θB(t) and αB(t) should not be estimated;
phase difference varies non-linearly with time; the baroreflex sensitivity first under-
goes stepwise changes and then recovery toward higher values following a non-linear
time-course; noise is added; finally, all these patterns imply simultaneous amplitude
and frequency modulation of the signals.

8.3.2 Tilt table test analysis

Fourteen subjects (aged 29±3 years) underwent a tilt table test with the following
protocol: 4 min in early supine position (Tes), 5 min head-up tilted to an angle of 70o

(Tht) and 4 min back to later supine position (Tls) [100]. For a complete description
of the data base, please refer to the Appendix §A. The ECG signals were recorded
with a sampling frequency of 1 kHz. The temporal location of the nth QRS complex in
the ECG, tQRS

n , was automatically determined using the algorithm described in [177].
The RR series was estimated as xRR(n) = tQRS

n+1 − tQRS
n . The effect of abnormal RR

intervals was corrected by applying a methodology described in [179]. The pressure
signal was recorded in the finger by the FinometerR© system with a sampling frequency
of 250 Hz. The systolic arterial pressure series was obtained as the maximum of the
pressure signal within a short interval following tQRS

n . The time series were subsequently
interpolated by fifth-order spline with a sampling frequency of 4 Hz, and the RRV and
SAPV signals, namely xRRV(t) and xSAPV(t), were obtained by high-pass filtering with
a cut-off frequency of 0.03 Hz.

8.3.3 Eurobavar study

The experimental setting is described in details in [155]. Briefly, 21 subjects (age
38.4±3.3 years) were included in the study. Subjects included 4 healthy volunteers, 12
normotensive outpatients, 3 hypertensive patients (1 untreated), one diabetic patient
with cardiac autonomic neuropathy (DAN), and one subject who recently underwent
heart transplantation (HTR). ECG and pressure signals were acquired with a sampling
frequency of 500 Hz in supine and standing position (about 10 minutes).

8.4 Results

Although the SPWVD gives the possibility of using an independent filtering in time
and frequency, the constraint of having γ(t, f) bounded between zero and one imposes
a sort of trade-off between time and frequency resolution, which can not be simul-
taneously arbitrarily fine. For a given set of signals, different combinations of time
and frequency resolutions fulfill the condition γ(t, f) ∈ [0, 1]. This is shown in Fig.
8.1, where black circles represent the time and frequency resolution of the kernels of
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Figure 8.1: Circles represent the time-frequency resolution obtained by tuning the
parameters of the kernel (8.12). The kernels that gave γ(t, f) ∈ [0, 1] for the entire
data-set described in §8.3.2 are indicated in black, and those that gave γ(t, f) /∈ [0, 1]
for at least one subject are denoted in gray. The cross represents the resolution of the
kernel used in this study.

type (8.12) which, for the whole data-set described in sec. 8.3.2, gave γ(t, f) ∈ [0, 1];
gray circles represent kernels which gave γ(t, f) /∈ [0, 1] for at least one subject. The
closer a point is to the origin of the axes, the finer the TF resolution is. Thus, the
most interesting combinations of TF resolutions are those reported on the dashed line.
The results shown in the followings were obtained by using a kernel function φd-D(τ, ν)
which gave {∆m

t ,∆
m
f }={10.95 s,39 mHz} (see the cross mark in Fig. 8.1).

8.4.1 Assessment of non-stationarity

In both the data-sets, the hypothesis of stationarity was assessed via the statistical
framework described in §8.2.1. Figure 8.2 shows, for a given scale of observation, the
relative number of signals that were considered non-stationary by the test. The scale
of observation is given as Th/T ∈ [0.05, 0.5], where Th is the length of the window of
the spectrogram and T is the length of the signals. Depending on the signal, Th goes
from 30–40 s to 5–7 min.
All the SAPV signals recorded during the tilt table test were considered non-stationary
at every time scale, while one over 14 RRV signals was considered, for each Th/T ,
stationary.
Interestingly, more than 50% of the signals from Eurobavar data set were considered
non-stationary, despite the fact that they were recorded in resting conditions. In panel
(a), it is shown that for xRRV(t), the typical scale of non-stationarity [51], at which it
is more likely to reject the null hypothesis of stationarity, corresponds to Th/T =0.1–
0.2 (about 1–2 min). In addition, it is also shown that the number of non-stationary
RRV signals was higher in supine than in standing position. In supine position, for
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Figure 8.2: Outcomes of the non-stationary test. Results are given as the relative
number of signals which were considered non-stationary. Signals recorded during tilt
table test are reported by square marks. Signals from Eurobavar data set (EDS)
recorded in supine and standing position are represented by gray and black circles,
respectively.

Th/T < 0.4, the non-stationary testing was positive for more than 80% of the signals
and for Th/T = 0.2, stationarity was rejected in all the signals. In panel (b), it is
shown that at about the same scale of observation, about 80% of the SAPV signals
were considered non-stationary, regardless of the position of the subjects.
These results suggest that TF analysis may be preferred to traditional methodology
requiring the signals to be stationary even when they are recorded in conditions that
are supposed to be stationary.

8.4.2 Simulation study

In the simulation study, from each one of the 14 RRV signals, 50 couples of modi-
fied signals were generated. For every couple of signals, the general index IB(t) ∈
{γB(t), θB(t), αB(t)}, is estimated in TF regions Ω(I)

B , and the time-course is given as
I(t) = (ILF(t) + IHF(t))/2. Results are shown in Fig. 8.3. Panel (a) depicts the
results of coherence analysis. The mean threshold γTH ≈ 0.85 is reported in dashed
line. Epochs of decorrelation and correlation are localized with high temporal reso-
lution. As shown in this illustration, the difference t0 − t̂0 between the occurrence of
an abrupt change of γ0(t) (

d
dt
γ0(t0) = ±∞) and the time instant at which the median

time-course of γ(t) matches the threshold value (γm(t̂0) = γTH), is 0, 1.5, and 2.25 s,
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Figure 8.3: Simulation: Time-course of (a) Coherence, (b) Phase differences, (c)
Baroreflex sensitivity. Reference values γ0(t), θ0(t), α0(t) are represented in bold
red lines. Estimates are represented as median (black line) and interquartile range
(gray region). Vertical lines mark supine positions and head-up tilt. Light gray areas
represent the intervals during which signals are uncoupled.

respectively. The minimum level of coherence was higher than zero due to the effect
of the kernel, while the maximum level of coherence was lower than one due to the
time-varying phase difference between the spectral components and due to the noise.
The decrease of γ(t) observed around t=240 s, was due to the step-wise decrease of
α0(t) (see panel (c)). Panel (b) shows that the phase differences estimator (8.20) gives
an accurate tracking of the time-course of θ0(t). As Ω(θ)

B includes only regions where
γ(t, f) is significant, estimates are given only in TF regions where the signals were
locally coupled. In panel (c), it is shown that the time-course of α(t) is estimated
with high accuracy. The step-wise decrease in α(t) from 20 to 5 ms/mmHg was ap-
proximated by a sigmoid-like pattern. Again, the coherence analysis prevented from
including the interval where signals were uncoupled in the analysis.

8.4.3 Tilt table test

The TF representations obtained from the analysis of the RRV and SAPV of one
subject (male, 30 years old), are shown in Fig. 8.4. In the auto spectra, shown in
Fig. 8.4(a)–(b), the power of the HF modulation was higher than that of the LF
one. During head-up tilt, the power of xRRV(t) and xSAPV(t) decreased and increased,
respectively. The instantaneous frequencies of the HF component of both the signals,
as well as those of the cross-spectrum (see Ω(γ)

B in panel (c)), reflect the high variabil-
ity of the respiratory rate, which fluctuated between 0.15 and 0.25 Hz. Despite the
non-stationary structure of the signals, the regions in which the local coupling was
statistically significant were localized by TFC analysis (see Fig. 8.4(c)). The head-up
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tilt caused the TFPD spectrum Θ(t, f), shown in Fig 8.4(d), to change quickly, espe-
cially in the HF range. In Fig. 8.4(c)–(d), regions Ω(γ)

B and Ω(θ)

B are encircled by white
contours. By averaging in traditional spectral ranges, instead of using these specific
regions, one would have estimated a much lower coherence in the HF range and er-
roneously detected abrupt changes of phase difference in correspondence of those TF
regions in which the signals were not locally coupled (as in LF at t ≈ 240 s and t ≈ 600
s).
The time-course of the physiological indices derived from the spectra of Fig. 8.4, as
well as the global results, are given in Fig. 8.5. The temporal mean and the standard
deviation of the median trends depicted in Fig. 8.5 for each index IB(t), epoch, and
specific spectral band are given in Table 8.1. In the calculation of these values, the
first and last 2∆m

t s have been excluded from each of the three epochs. The Wilcoxon
rank sum test was applied to statistically compare the temporal mean values of the
indices estimated in each of the three conditions, i.e. {IB,1(t ∈ Tk), . . . , IB,L(t ∈ Tk)}
and {IB,1(t ∈ Tl), . . . , IB,L(t ∈ Tl)}, where Tk 6= Tl ∈ {Tes, Tht, Tls} is the index of the
epochs and L ≤ 14 are the subjects (subjects for which I(t) was not estimated for
more than half the duration of the tilt table test were excluded from the statistical
analysis).
In Fig. 8.5(b), it is shown that during the position changes, Tes → Tht and Tht → Tls,
the time-course of γLF(t) is characterized by two patterns, a first abrupt decrease and a
subsequently slower increase. During head-up tilt, restoration of baseline values took
about 2 min, and about 1 min later, median γLF(t) reached values as high as 0.99.
After coming back to supine position, γLF(t) maintained lower values than during the
early supine position. In HF, γHF(t) fluctuated around 0.93±0.02 and did not decrease
during the position change from Tht → Tls.
The time-course of θB(t) is extracted from Θ(t, f) by averaging in Ω(θ)

B , which includes
those part of Ω(γ)

B in which the local coupling is significant and whose minimum size is
imposed by the opening (8.19). In LF range, the phase differences θLF(t) were about
−0.60 ± 0.11 rad (DLF about 875±190 ms), thus revealing that a change in the LF
oscillation of xSAPV(t) preceded a correlated change in the LF oscillation of xRRV(t).
In the HF range, head-up tilt provoked a decrease in θHF(t) from positive to negative
values, thus showing a change in the prevalent direction of the local coupling between
the respiratory-related oscillations of xSAPV(t) and xRRV(t).
Index αB(t) was estimated only in regions centered around f (xy)

B (t) where the local
coupling was significant and the phase difference was negative. These conditions de-
termined, for the subject whose TF representations are shown in Fig. 8.4, the patterns
observed in Fig. 8.5(m) and 8.5(o). Globally, as shown in Fig. 8.5(n) and 8.5(p), αB(t)
decreased from about 20 ms/mmHg during Tes and Tls, to less than 9 ms/mmHg during
Tht. Interestingly, the decrease in both αLF(t) and αHF(t) due to head-up tilt took few
seconds, while the following increase due to the coming back to later supine position
was remarkably slower.
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Figure 8.5: Indices during tilt table test: (a)–(d) local coupling γB(t) as in (8.18); (e)–
(h) Phase differences θB(t) as in (8.20); (i)–(l) Time delay DB(t) as in (8.21); (m)–(p)
Baroreflex sensitivity αB(t) as in (8.23). First and third columns: results from the
subject whose TF representation are shown in Fig. 8.4; Second and fourth columns:
global results, median (black lines) and interquartile range (shadowed areas) of the
time-courses from all subjects. Vertical lines mark supine positions and head-up tilt.
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ΩLF ΩHF

Index Tes Tht Tls Tes Tht Tls

γB(t) 0.93±0.02 0.95±0.04 0.89±0.08† 0.95±0.02 0.93±0.03 0.94 ±0.01

θB(t) -0.59±0.16 -0.59±0.15 -0.61±0.23 0.37±0.23† -0.27±0.22 0.14±0.38

DB(t) -0.85±0.29 -0.86±0.22 -0.84±0.40 0.26±0.14† -0.16±0.16 0.08±0.24

αB(t) 19.77±4.51† 8.62±1.21 17.87±4.44† 23.72±7.66† 6.92±2.51 18.24±4.09†

Table 8.1: Global results of the tilt table test, reported as the average of the median
trends shown in Fig. 8.5, evaluated in epochs Tes, Tht and Tls (first and last 2∆m

t s have
been excluded from the analysis). †: median values of a given index are statistically
significant with respect to those estimated during head-up tilt, Tht (p < 0.05)

8.4.4 Eurobavar data set

To assess whether the presented framework can be considered as a generalization of
traditional analysis, the Eurobavar data set was processed by both stationary frame-
work (SF) and non-stationary framework (NS), and the results were compared to
those presented in [155]. In the SF, indices were obtained by temporal averaging of
the TF distributions described in §3, thus representing stationary analysis (marginal
spectra were used to obtain power and coherence estimates). In NF, for every subject,
the temporal mean of the non-stationary indices described in §8.2.2 were estimated.
The results of NF and SF are illustrated in the graphics on the left and right side
of Fig. 8.6, respectively. In panels (a)–(d), circles and bars represent the mean and
the standard deviation of local coupling and phase differences of the subjects without
baroreflex impairment; while in panels (e)–(f), circles and bars represent the mean and
the standard error of the BRS for the same subjecs (standard error was estimated for
comparison with [155]) . In these graphics, markers + and × represent the DAN and
the HTR patient, respectively. The presented methodology (NF) gave higher coher-
ence estimates than SF. Moreover, coherence estimates obtained by NF were higher in
HF than in LF. These differences were due to the use of Ω(γ)

B . In Ω(γ)

LF , the coupling of
the signals from the HTR and DAN patients was not significant for more than 95% of
the total length of the recording. Because of the absence of local coupling, in HTR and
DAN, phase differences θLF(t) and αLF(t) were not assessed. Without performing the
statistical analysis on the coherence estimates, one could erroneously conclude that in
the HTR patient θLF(t) > 0. For subjects without baroreflex impairment, estimates
of the baroreflex sensitivity obtained by both SF and NF frameworks were consis-
tent with those obtained by traditional time-invariant methodologies [155, 251]. In
SF framework, for subject without baroreflex impairment (see panel (f)), αLF(t) was
14.07±2.88 ms/mmHg (supine) and 7.58±0.96 (standing) ms/mmHg, while αHF(t)
was 18.66±3.23 ms/mmHg (supine) and 8.00±1.36 ms/mmHg (standing). The supine
to standing ratio was 1.86 and 2.33 in LF and HF ranges, respectively, which is in
line with that obtained in [155]: 1.70 (LF) and 2.63 (HF). By using the presented
framework, evidences of baroreflex impairment of DAN and HTR patients were given
by high θHF(t), by the persistent absence of coupling between the signals in LF, and
highlighted by the fact that no α(t) index could be estimated.
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Figure 8.6: Eurobavar data set. On the left, the results obtained by the presented
non-stationary framework (NF). On the right, the results obtained by the stationary
framework (SF). Markers + and × represent diabetic patient with cardiac autonomic
neuropathy (DAN) and heart transplanted patient (HTR), respectively. Circles repre-
sent the rest of patients (PAT). (a)–(b) mean ± standard deviation of coherence across
subjects; (c)–(d) mean ± standard deviation of phase difference across subjects; (e)–
(f) mean± standard error of BRS across subjects. Note that in NF, phase differences
were estimated only for subjects for which coherence estimates were significant for
more than 95% of the total length of the recording, while BRS was reported only if
phase difference estimates were negative.
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8.5 Discussion

8.5.1 The cross time-frequency framework

The main purpose of the presented framework is to propose a methodology for the
characterization of the dynamic interactions between RRV and SAPV, which accounts
for the intrinsic non-stationarity of the cardiovascular system, and which includes the
assessment of both the strength and the prevalent direction of the coupling.
The analysis is composed of the following steps:

(i) Choice of the parameters of the kernel of type (8.12) for the estimation of the
SPWVD. Among those kernels that can be used in coherence analysis, the one
that gives the more appropriate TF resolution should be used (see Fig. 8.1).

(ii) Estimation of the TF power, coherence, and phase difference spectra.
(iii) Localization of specific TF regions from which the indices that describe the

cardiovascular interactions are extracted.
(iv) Estimation of indices that quantify the strength of the local coupling, γB(t),

the degree of synchronization, θB(t), the latencies, DB(t), and the baroreflex
sensitivity, αB(t).

The advantage of the SPWVD over other TF distributions, such as wavelet and spec-
trogram, is that it offers the possibility of determining the shape of the smoothing
function both in time and frequency, which in turn allows for more accurate local-
ization of cardiovascular dynamics [205]. The quantification of the TF resolution of
the SPWVD by ∆m

t and ∆m
f , which is crucial to correctly interpret the results, can

also be used to compare the resolution of the SPWVD with that of other types of
distributions. However, a comparative analysis goes beyond the scope of this study.
The analysis of the phase differences between xRRV(t) and xSAPV(t) is used to infer the
prevalent causal direction of the coupling and the time delay, which characterize the
system. In turn, the assessment of the prevalent causal direction is necessary to accept
the hypothesis of the involvement of the baroreflex in the observed changes. Such a
sensitive issue requires robust and accurate estimates. In our framework, robustness
and accuracy are ensured by the fact that phase differences are estimated only in TF
regions where the local coupling is statistically significant. These regions have a rela-
tively small frequency width, ∆m

f , and a further control over their size is done by the
opening, which discards very small portions of the TF domain from Ω(θ)

B .
Despite the great number of methodologies proposed for the assessment of the barore-
flex, only a few combine non-stationary processing, statistical coherence analysis and
assessment of the prevalent causal direction of local coupling. In this methodology, the
interactions between the TF structure of the signals are characterized without imposing
any assumption or model to the signals. Furthermore, neither coefficient identification
nor parameter initialization is needed. Although the linear synchronization indices
used in this framework give a rather basic description of the interaction between com-
plex systems [255], they have a clear physical interpretation: γ(t, f) quantifies the
strength of the local coupling, thus allowing to localize TF regions where signals share
approximately the same instantaneous frequency, while Θ(t, f) quantifies the phase
differences, thus allowing to estimate the time delays between changes in the spectral
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components of two signals, and determine, in specific TF regions, which signal is lead-
ing which.
The SPWVD, whose main property is the independent TF filtering giving high reso-
lution, has never been used to estimate the baroreflex sensitivity as well as the phase
differences between cardiovascular signals. Recently, other methods for the estimation
of phase differences in the joint TF domain, based on Rihaczek [11], wavelet [66, 153],
and reduced interference [235] transforms have been proposed. Contrary to synchro-
nization indices based on the Hilbert transform [198], the presented methodology offers
the possibility of separately assessing the degree of synchronization between LF and
HF spectral components. Concerning the estimation of TF coherence by SPWVD,
the most important issue is the definition of a kernel that completely suppresses the
interference terms inherent to the Wigner-Ville distribution. A sufficient smoothing
would ensure both positivity of the spectra and boundness of the TF coherence [181].
Kernels of type (8.12) have been shown to provide such a smoothing and have been
recently used in cross TF analysis of cardiovascular signals [100, 209, 205].
The results of the simulation study show that this framework is robust and accurate,
and are consistent with those obtained in other studies that aimed at assessing the
use of the SPWVD in cross TF analysis [205, 206, 207].
To provide a more comprehensive characterization of the cardiovascular interactions,
other important physiological parameters, such as respiration, may be included in
further studies.

8.5.2 Response to head-up tilt

Mechanisms regulating the cardiovascular response to passive head-up tilt are pre-
dominantly studied [168, 71, 167, 194, 250, 219, 198]. Our results show that the local
coupling between RRV and SAPV is statistically significant both in LF and HF during
most part of the test, even at rest in supine position. During the position changes, the
level of coherence abruptly decreased. The time taken by the signals to resynchronize,
i.e. to restore significant level of coherence, characterizes the temporal pattern of re-
sponse of the short-term cardiovascular regulation to an external perturbation.
The results shown that in LF range, SAPV led RRV during the entire test. In HF
range, SAPV led RRV only during head-up tilt. These results are in line with those
observed in other studies [71, 194, 219].
Owing to the periodicity of the phase differences, it may be possible that instead of
occurring that in LF range, xSAPV(t) was leading xRRV(t) with |θLF(t)| ≈ 0.6 rad, xRRV(t)
was actually leading xSAPV(t) with |θLF(t)| ≈ 5.7 rad. However, this last possibility,
which would imply, for fLF = 0.09 Hz, a time delay of about 10 s, is unlikely, not only
because it largely exceeds the range of baroreflex latency ([0.24, 3] s) [71], but also
because in this non-stationary framework, such a time delay (close to ∆m

t ) would not
be consistent with the level of local coupling as high as γLF(t) ≈ 0.99.
The time-course of the baroreflex sensitivity, αB(t) followed similar patterns both in
Ω(α)

LF and Ω(α)

HF ranges. In supine position, the high variability of αHF(t) was due to the
fact that it was estimated in few subjects, because in most of them θHF(t) > 0. As
expected, the baroreflex sensitivity was higher during supine position and lower during
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head-up tilt. During the position changes, index αB(t) was characterized by two differ-
ent dynamics: When subjects were passively moved from supine to standing position,
αB(t) decreased in few seconds, while when subjects were moved from standing to
supine position αB(t) increased gradually. These different temporal patterns may re-
flect regulatory mechanisms that act faster in potentially more dangerous situations,
such as passive head-up tilt, and slower in less potentially dangerous situations, as
coming back to supine position. Similar to what observed in ECG analysis, where the
dynamics of the ventricular rate adaptation have been recently shown to have clinical
relevance [220], the characterization of these kinds of temporal patterns in a larger
study population could allow gaining some insight into cardiovascular dynamics.

8.5.3 Eurobavar data set

The study of the Eurobavar data set showed that:

(i) Non-stationary signal processing should be preferred to study the biomedical
signals even when they are acquired in conditions that are usually assumed as
stationary;

(ii) The proposed framework can be considered as an improved TF generalization of
traditional spectral methods of analysis.

It is widely accepted that biomedical signals are intrinsically non-stationary. The
outcomes of the test proposed in [51] confirm that the hypothesis of stationarity is
often rejected even for signals recorded during rest. Moreover, it was shown that
signals were more likely considered non-stationary for a temporal scale of about 1–2
min. This highlights the importance of methodology characterized by fine temporal
resolution.
To compare the results provided by the presented methodology with those obtained by
traditional time-invariant ones, we used the results obtained by marginalizing the TF
representations given by SPWVD as reference. The results given by this stationary
framework are within the variability of those obtained with different techniques of
time-invariant analysis [155]. Although the mean results obtained by the presented
non-stationary framework are different, they are in line with those obtained by the
stationary framework and with those observed in [155]. Our results show that in
the diabetic subject with neuropathy and in the short-term transplanted patient, the
baroreflex is not active. This implies a lack of coupling in LF range and a causal
direction from RRV to SAPV in HF range. These results are in agreement with
those observed in [219], and show that the presented methodology correctly detects
impairments of the baroreflex.

8.5.4 Further considerations on cross TF analysis of cardio-
vascular signals

In the cross TF analysis, the processing that leads to the estimation of the RRV and
SAPV signals, xRRV(t) and xSAPV(t), is of crucial importance because it affects the
estimation of the phase differences and latencies between them. For instance, it is
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worth noting that the results obtained by analyzing the RRV and SAPV cannot be
directly extended to the interactions between the heart rate variability and SAPV
signals, because the phase differences between x(t) and y(t) are not equal to those
between x(t) and 1/y(t) (see §5.2.4).
Furthermore, in the estimation of the RRV signal, two issues should be carefully taken
into account:

(i) The choice of the representations of the RRV signal, which can be based on the
interpolation of the RR intervals, as done in this study, or on some other model
[29, 63, 179, 238].

(ii) The arbitrary assignation of a given heart period interval to a given tem-
poral instant. The physiological phenomena that determine the duration of
tQRS
n+1 − tQRS

n do not occur at time tQRS
n neither at tQRS

n+1 , but they may be seen as
continuous phenomena that are characterized based on information sampled
at tQRS

n and tQRS
n+1 . In this study, we used a non-causal representation of the

heart period, i.e. we associated (tQRS
n+1 − tQRS

n ) with tQRS
n , to be in line with

analogous studies [155]. If we had used a causal representation of the heart
period [238], we would have obtained more negative phase differences between
the spectral components of the signals, which, in Tes and Tls of the tilt table test
may have allowed the estimation of αHF(t) for more subjects and longer intervals.

The estimation of the SAPV signal can also affect its degree of synchronization with
the RRV signal. The main issue is the place where the arterial pressure is measured
and the inclusion of the pulse transit time (PTT) in the estimation of the latencies
[100]. Even in the ideal case in which changes in the SAPV and RRV are simultaneous,
if the arterial pressure is measured in the finger and RR in correspondence of the heart
beat, we would observe a delay related to the PTT.
These technical issues, which neither affect the relative changes of the indices nor the
power estimates or the measures derived from them, should be carefully taken into
account in the physiological interpretation of the phase differences and latencies.
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Chapter 9

Conclusions

9.1 Methodologies

Synthesis of HRV signals characterized by predetermined time-
frequency structure by means of time-varying ARMA models
(Chapter §2)

In this chapter, we presented two methodologies to generate real-like HRV signals char-
acterized by controlled time-frequency structure to be used to assess different methods
of non-stationary HRV analysis.
In the frameworks, the synthesized signals are stochastic processes whose time-
frequency structure is predetermined by choosing either the time-course of the in-
stantaneous frequencies and powers or the shape of the time-frequency model func-
tion. The presented methodologies consist of three steps: (a) Choice of the desired
time-frequency structure of the signals by choosing a set of design parameters; (b)
Automatic identification of the parameters of the corresponding time-varying ARMA
models via simple closed-form expressions; (c) Synthesis of the desired stochastic sig-
nals.
Two measures to evaluate the goodness of the simulated signals are also given. Using
this framework we were able to model the wide range of non-stationarities observed in
heart rate modulation during exercise stress testing and experiments of music-induced
emotions.

Characterization of HRV signals by time-frequency analysis
(Chapter §3)

In this chapter, we first described the Cohen’s class, the central role of the Wigner-Ville
distribution and the kernel functions. We described three equivalent way to estimate
a distribution of the Cohen’s class: (i) as the convolution between the Wigner-Ville
distribution and a time-frequency kernel; (ii) as the Fourier transform of the non-
stationary autocorrelation function weighted by a time-lag kernel function; (iii) as
the double Fourier transform of the product between the ambiguity function and a
Doppler-lag kernel function.
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We described the geometry of the interference terms and we pointed out the impor-
tance of the kernel design to eliminate them. Importantly, we introduced two measures
to quantify the time-frequency resolution of any time-frequency representation. These
measures, i.e. ∆m and ∆a%, are necessary to give a correct interpretation of the results
of time-frequency analysis and are usefull to compare the performance of different dis-
tributions. Therefore, these measures are used trhroughout the entire manuscript.
We introduced the SPWVD and we carried out a simulation study, based on the
methodology proposed in §2, to assessed its capability to quantify heart rate variabil-
ity patterns. We observed that the SPWVD followed the temporal evolution of the
spectral components even when sudden and sharp transitions occur.
Then we described a method that performs a parametric decomposition of the
smoothed non-stationary autocorrelation function. This methodology can be con-
sidered as the combination of parametric and non-parametric analysis and is used in
§6 to estimate the time-course of spectral indices.

Characterization of dynamic interactions between cardiovas-
cular signals by time-frequency coherence analysis (Chapter
§4)

An assessment of the dynamic interactions between cardiovascular signals can pro-
vide valuable information to improve the understanding of cardiovascular control. In
this chapter, we described different methodologies for the characterization of time-
frequency coherence between cardiovascular signals. These methodologies are based
on the SPWVD and multitaper spectrogram (MTSP), and include the automatic as-
sessment of the significance level of coherence estimates.
Two methods were proposed to estimate coherence by SPWVD. In the first one, the
straightforward scheme described in §4.3.1, the most appropriate kernel function is
empirically chosen among those that provide meaningful coherence estimates over the
entire time-frequency domain. In the second one, the geometrical scheme described in
§4.3.2, the most appropriate kernel function is estimated based on geometrical relations
between the TF structure of the signals and the interference terms. In a simulation
study (see §4.3.3), we assessed the estimation error of coherence estimated obtained
by geometrical scheme, and we found that the bias was low (< 0.05) for coherence
level higher than 0.5, and the standard deviation was always lower than 0.025.
In a comparative study, which includes SPWVD, MTSP and also wavelet transform,
we assessed the capability to correctly localize TF regions where signals are locally
coupled (see §4.6). In the comparison, both computer-generated data and data from
healthy volunteers were used. The SPWVD allows for the localization of these regions
with higher accuracy (AC>96.9% for SNR≥5 dB) than the MTSP (AC>84.4% for
SNR≥5 dB). For comparison, in fourteen healthy subjects, time-frequecy coherence
analysis by SPWVD and MTSP was used to describe the changes that a tilt table test
provokes in the cardiovascular control.
By using both computer-generated and recorded physiological data, changes in the lo-
cal coupling were better localized by SPWVD than MTSP. Moreover, SPWVD used in
coherence analysis was shown to be characterized by a better resolution than wavelet
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transform previously used in coherence analysis. This is due to the same structural
reason which makes the SPWVD more suitable than the spectrogram and wavelet
transform for the localization of TF features, namely, the possibility of independently
setting the time and frequency filtering. However, in §4.7, some features of the MTSP
that could make it useful in coherence analysis were also pointed out.

Characterization of dynamic interactions between cardiovascu-
lar signals by time-frequency phase difference analysis (Chap-
ter §5)

In this chapter, cross time-frequency analysis was used to estimate the phase differ-
ences, the time delay and the phase locking between cardiovascular signals. Phase
differences and time delay give a measure of the changes in the synchronization be-
tween two oscillations, while phase locking measures the degree of similarity of these
changes across subjects. The presented methodology is based on the SPWVD and
includes time-frequency coherence analysis.
Analytical expressions of phase difference and time delay estimates are given for time-
varying chirps.
Different simulation studies was carried out to assess the performance of the esti-
mators described in this chapter. In a first simulation study involving highly non-
stationary synthetic signals, this methodology provided accurate estimates of the tem-
poral changes of the phase differences, with an error characterized by interquartile
ranges lower than 2% and 9% for SNR equal to 20 dB and 0 dB, respectively. A
comparative study showed that the proposed estimator outperformed an estimator
based on the integration of the difference between the instantaneous frequency of each
spectral component. In another simulation study, based on recorded physiological
data, similar estimation errors were estimated, while the comparison with the estima-
tor based on the integration of the difference between the instantaneous frequency of
each spectral component showed that the latter did not give reliable estimates, thus
pointing out the usefulness of our time-frequency framework to analyze physiological
data.
In the last simulation study, it was shown that in highly non-stationary signals the
presented methodology reliably followed abrupt time delay changes, with a time of
adaptation lower than 10 s.

9.2 Physiological studies

Dynamic assessment of the autonomic response to music-
induced emotions characterized by same valence (Chapter §6)

In this study we proposed a comprehensive methodology for the assessment of the
time-course of physiological indices related to musical stimuli. The method, which
includes the parametric decomposition of the Wigner-Ville distribution presented in
§3.3, is shown to provide a reliable characterization of the autonomic response, by

191



Chapter 9. Conclusions

identifying common trends and by assessing the different dynamics induced by listen-
ing to music. The experimental results revealed the transient nature of music-related
patterns and they highlighted the importance of an approach based on time-frequency
analysis.
All kinds of stimuli provoked significant changes compared to the resting (silent) con-
dition, while during listening to pleasant music the heart and respiratory rates were
higher (for more than 80% of stimulus duration, p < 10-5) and the power of HF mod-
ulation was lower (for more than 70% of stimulus duration, p < 0.05) than during
listening to unpleasant stimuli. The identification of common trends which depend
on specific stimuli suggests the need for further studies on the dynamic relationship
between musical and autonomic features to improve the potential use of music in ther-
apeutic applications.
In a subgroup of 58 subjects, cross time-frequency analysis described throughout §4–
§5, was used to assess the influence of music on the cardio-respiratory coupling. It
was shown that the coherence between respiration and heart rate variability increased
during every condition and decreased during the interval in between two conditions.
This could be due to a sympathetic activation during the auto-evaluation task or due
to the waiting of the next musical excerpt. The analysis of phase difference and time
delay showed that respiration drove the respiratory sinus arrhythmia with a latency of
about 100 ms. The median time course of the time delay was slightly lower during the
listening of pleasant music than during the other conditions, probably due to higher
respiratory rate.

Time-frequency comparison between HRV and PRV from the
PPG signal (Chapter §7)

In this chapter, we used the methodology presented in §3–4 to compare the time-
frequency structure of heart rate variability and pulse rate variability (PRV) derived
from the photoplethysmographic signal. The aim of the study was to assess whether
PRV could be used as a surrogate for HRV.
Classical indices of time-invariant analysis derived from PRV presented similar values
to the indices derived from HRV, with no statistically significant differences between
them, and strong linear correlation (ρI > 0.97). These results were in agreement with
previous works that suggested that PRV could be used as an alternative measurement
of HRV during stationary conditions.
A comparison of time-varying analysis based on the SPWVD was carried out in order
to evaluate the usefulness of PRV as a surrogate measurement of HRV during non-
stationary conditions. We observed that: (i) Instantaneous power content estimated
from HRV and PRV were highly correlated (0.98±0.04 and 0.95±0.06 for LF and HF
bands respectively); (ii) Differences between the power content estimated from HRV
and PRV were small (δB(k, t) < 10-3 s-2); (iii) The time-frequency spectra of both
signals were highly correlated (0.99 ± 0.01); (iv) Time-frequency coherence in LF and
HF bands was high (0.97±0.04 and 0.89±0.08, respectively); (v) The physiological
analysis to evaluate the autonomic modulation changes of heart rate during tilt table
test showed that the same conclusions could be inferred from HRV and PRV analysis.
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Our results indicated that there were some small differences in the time-varying spec-
tral indices extracted from HRV and PRV, mainly in the respiratory band. Neverthe-
less, these differences were sufficiently small to suggest the use of the PRV signal as
an alternative measurement of HRV signal during non-stationary conditions, at least
during tilt table test. Finally, we pointed out that these differences are related to the
PTT variability.

Characterization of the dynamic interactions between heart
rate and arterial pressure by cross time-frequency analysis
(Chapter §8)

In this chapter, we adjust the methodologies presented in §4–§5 to the analysis of the
dynamic interactions between the R–R variability (RRV) and the systolic arterial pres-
sure variability (SAPV). The methodology accounts for the intrinsic non-stationarity
of the cardiovascular system and includes the assessment of both strength and preva-
lent direction of the local coupling. The SPWVD distribution was used to estimate the
time-frequency power, coherence and phase difference spectra with fine time-frequency
resolution. The interactions between the low and high frequency (LF and HF) spectral
components of the signals are quantified by time-varying indices, including the local
coupling, phase differences, time delay and baroreflex sensitivity (BRS). Every index
is extracted from a specific time-frequency region, localized by combining information
from the different spectra.
In 14 healthy subjects, head up tilt provoked an abrupt decrease in the cardiovascular
coupling; a rapid change in the phase difference (from 0.37± 0.23 to −0.27± 0.22 rad)
and time delay (from 0.26± 0.14 to −0.16± 0.16 s) in the high frequency (HF) band;
and a decrease in the BRS (from 23.72 ± 7.66 to 6.92 ± 2.51 ms/mmHg). In the LF
range, during head up tilt, restoration of baseline level of cardiovascular coupling took
about 2 min, and SAPV preceded RRV of about 0.85 s during all the test.
The analysis of the Eurobavar data set showed that the presented methodology repre-
sents an improved TF generalization of traditional time-invariant methodologies and
can reveal baroreflex impairment.
Additionally, we applied a framework to statistically quantify the degree of non-
stationarity of the signals studied in this chapter, and the results suggested the use of
non-stationary signal processing techniques also to analyze signals recorded in condi-
tions that are usually supposed to be stationary.
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Chapter 10

Future extensions

In this manuscript, a relative large number of topics which may be used as starting
point for further analysis has been described. In the following, for each one of the
main topics of the thesis, a short list of possible future extensions is given.

10.1 Methodological studies

Time-frequency synthesis of real-like cardiovascular signals

In §2 we propose a procedure to generate non-stationary random processes with pre-
determined spectral features, such as instantaneous central frequencies, amplitudes
and powers. It would be interesting to extend this procedure to multivariate analysis.
In a bivariate model, pairs of non-stationary random processes with predetermined
cross-spectral features can be generated. This may allow one to test algorithms for
TF coherence and TF phase difference estimation in a controlled stochastic framework.
To this end, one can write the analytical expressions of cross transfer functions and
coherence in terms of poles and zeros, determine the relationship between pole loca-
tion and coherence level and modify the pole configuration of the system to generate
signals related by predetermined interactions. Another useful application of such a
procedure, is the validation of algorithms for causal analysis [87, 194, 14], which have
been often tested using very simple models.

Cross time-frequency analysis of cardiovascular signals

• Signal-dependent optimal kernel for coherence analysis: Time-frequency analy-
sis based on Cohen’s class offers the possibility of improving the methodology
described in §3–§5 in many different ways. For instance, the kernel used for TF
coherence estimation (4.11) is a simplified version of a more flexible one [72],
whose shape in the ambiguity function is not limited to ellipses. It would be
interesting to determine for any particular signal the kernel shape that better
represents its TF structure. In the Nineties, some interesting algorithms for
signal-dependent optimal kernel design were proposed [25, 26]. This algorithms
aim at adjusting the shape of a kernel by minimizing a cost function that rep-
resents the trade off between smoothing and given spectral properties of the
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signals. Following this idea, in §4.3.2 we proposed a signal-dependent scheme to
automatically determine the minimal degree of filtering which allows to obtain
coherence estimates bounded between zero and one [206]. The main limitation
of our algorithm was that the filtering in frequency direction was determined
through a time-consuming iteration process. The determination of a procedure
that, without need of an iteration process, automatically adjusts the degree of
smoothing to the TF structure of the signals and that provides reliable coherence
estimates, would represent a great improvement. Indeed, it would allow over-
coming the main disadvantage of SPWVD coherence with respect to wavelet or
MTSP, namely, that while wavelet and MTSP always provide reliable coherence
estimates, SPWVD does not. As pointed out in §4.3.2, the key of the problem is
the determination of geometrical relationships between the TF structure of the
signals and the geometry of the kernel, especially in the ambiguity domain.

• Comparison with TVAR models: In §4 we perform a comparative study between
TF coherence based on SPWVD, MTSP and continuous wavelet transform. Al-
though many substantial differences exist between these distributions, they can
all be seen as particular members of Cohen’s class. A comparison with other non
stationary methodologies widely used in cardiovascular analysis, such as recur-
sive least squares AR models [165], can help to better asses the performance of
the methodologies presented in this work.

• Reassignment of TF coherence: Another improvement in cross TF analysis may
be made by extending TF reassignment to TF coherence. Reassignment is a
technique that provides excellent localization of spectral components, by per-
forming an a-posteriori compensation for the smoothing [9, 254]. The main issue
is that reassignment is based on the assignment of the value of a TF function to
another point, localized as the center of gravity of a specific function. Therefore,
the extension of reassignment to cross spectra, which are complex functions, is
not straightforward since it is not clear how to define the center of gravity of a
complex function. Another problem is that reassignment yields noisy represen-
tations [254], that may reduce the reliability of coherence estimates.

• Multitaper SPWVD for coherence analysis: In §4.6, we showed that SPWVD
coherence estimates were more accurate than MTSP estimates. Nevertheless, we
also mentioned some interesting properties of MTSP. The application of a multi-
taper scheme on the SPWVD may results in a new TF coherence representation
characterized by good TF resolution, as the SPWVD, and robustness, as MTSP.
A possible way to design multitaper SPWVD would be to estimate the kernels
associated to Hermite spectrogram, which are Laguerre functions (4.30), and to
modify their shape in order to reduce their low-pass properties.

• Bivariate empirical mode decomposition: Bivariate empirical mode decomposi-
tion [224] is a recent technique that allows jointly decomposing a pair of signals
in their intrinsic modes. A procedure which combines EMD and time-frequency
analysis may offers the possibility of estimating TF representations which better
localize the spectral features of the signals. Main steps of this procedure should
comprise: estimation of intrinsic modes, TF analysis of the intrinsic modes of
interest, recomposition of the entire TF spectrum of the signal. The advantage

196



10.2 Physiological applications

of such a scheme is that intrinsic modes are monocomonent oscillations, and as
such they are expected to be free from outer interference terms. This scheme
could be also used in coherence analysis, where the issue of reducing interference
terms is crucial.

• TF partial coherence: In this work, cross TF analysis was limited to non-
stationary estimation of coherence and phase difference. In a multivariate
analysis based on at least three signals, partial coherence can be used to
estimate the coupling of two signals after having removed the influence that
a third signal exerts over them [38]. To the extent of our knowledge, partial
coherence has never been used in a TF framework. The definition of a TF partial
coherence can be used to simultaneously studying the dynamic interactions
between arterial pressure, heart rate and respiration, whose relationships are
still largely unclear.

Finally, it is worth mentioning that the main limitation of multivariate analysis based
on cross-spectral identification is the assumption of an implicit open loop model for
the system. This implies that, although causal information may be inferred, to a
certain degree, by phase difference estimation, cross TF analysis is not able to describe
feedback and feedforward pathways of closed loops separately, neither to discriminate
between direct and indirect interactions. The definition of a methodology to identify
TF transfer functions to perform non-parametric multivariate analysis would pave the
road to new methodology for assessing causality and directionality.

10.2 Physiological applications

• Further study RSA during music-induced emotions: In §6 we showed that mu-
sical stimuli characterized by different emotional valence provoked different pat-
terns of response in HRV and respiration. In particular, respiratory frequency
and RSA amplitude were the most sensitive physiological parameters to mu-
sic. Although we did not observe differences in coherence and phase difference
between the experimental conditions, it would be interesting to further study
cardio-respiratory interactions. Pattern analysis [236, 246] is a recent method-
ology used to explore the changes of RSA during the different phases of the
respiratory cycle. Main advantage of this technique is that it allows capturing
non-linear patterns contained in the morphology of RSA. The limitation is that
it requires stationarity and controlled breathing. Time-frequency analysis may
be used to extend this methodology to non-stationary conditions, thus allowing
the tracking of RSA changes in spontaneous breathing under music influence.
Additionally, it would be interesting to use cross TF analysis to characterize
changes also in other cardiovascular variables, such as blood pressure or skin
conductance, as well as to find dynamic correlations between the TF structure
of the musical excerpts and physiological rhythms [39, 40].

• Photoplethysmographic signal: In §7 we showed that a strict correlation exists
between HRV and pulse rate variability estimated from the photoplethysmo-
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graphic (PPG) signal. Given that HRV is known to contain an oscillation syn-
chronous with respiration, TF analysis could be used to estimate the respiratory
frequency from the PPG signal. Furthermore, it is known that respiration also
modulates the amplitude of the PPG signal. Thus, one can design an algorithm
that combines respiratory influences on pulse rate and pulse amplitude variabil-
ity to improve the estimation of the respiratory rate. In particular, coherence
analysis can be used to localize TF regions where both modulations are simul-
taneously present. From this regions, robust estimates of respiratory frequency
could be extracted.

• Pulse transit time: In §7, we introduced the pulse transit time (PTT) signal,
which measures the time it takes the pulse wave to travel from the heart to the
periphery. PTT was shown to provide valuable information about cardiovascular
control. The possibility of extracting from PTT variability indices correlated to
blood pressure variability is actually matter of debate. A characterization of
the dynamic interactions between PTT and the other principal cardiovascular
signals, such as HRV, systolic and diastolic blood pressure, and respiration can
help to determine how much PTT correlates with any of these important param-
eters. In particular, if strong correlations were observed, PTT variability may be
used as indirect measurement of its correlated signals. On the other hand, if no
correlations were found, then it can be speculated that PTT variability carries
new valuable information about cardiovascular dynamics.

• In §8, we described an example of application of cross TF analysis to the study
of cardiovascular regulation during tilt table test. Cross TF analysis was used
to characterize dynamic interactions between RRV and SAPV. Owing to the
primary influence that respiration has on cardiovascular variability, it should be
included in the analysis.

As a final consideration, it is important to note that the applications shown in
this study mostly aim at characterizing dynamic interactions. A characterization is
necessary since, as already said at the very beginning of this manuscript, it helps us
to elucidate how the system works, when it works, and what may go wrong when it
does not. As a next step, we should focus on the identification of those situations in
which the system does not work. In other words, indices extracted from TF analysis
should be applied to detect dysfunctions of the system. In the most part of the cases,
time-frequency and time-varying analysis is finally used as if it was stationary: the
time-course of given physiological indices is averaged and mean values from different
populations are compared. This is equivalent to discard much of the non-stationary in-
formation, which is coded in the “morphology” of the time-course, and that may have
clinical relevance. To fully exploit the potential of non-stationary analysis, further
studies should focus on the extraction of indices from the time course of physiological
indices, which should capture the information carried by transients, shapes, irregular-
ities, etc., of the time-courses. This kind of analysis of the time course of the indices
estimated by (cross) time-frequency representations may help one to move from the
characterization of the functioning of the system to the detection of its dysfunctions.
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Appendix A

The ANS-UZ data base

In different parts of this dissertation, we used physiological recorded data from a tilt
table test. In this Annex, we briefly describe the data base. Data were collected by
Dr. Ana Mincholé in 2009 at the Centro Politecnico Sueprior, in Zaragoza, Spain.
The data base consists of 17 healthy subjects aged 28.5 ± 2.8 years. Among the
participants, 11 were male and 6 female.
The tilt table protocol consisted in:

• Early supine position (Tes): 4 min.

• Head up tilt position (Tht): 5 min.

• Later supine position (Tls): 4 min.

The automatic table took about 18 s to move from the early supine position to head
up tilt and to move back from head up tilt to later supine position. This protocol is
also illustrated in the graphic of Fig. 7.1.
The recorded signals include:

• 12-lead ECG (sampling frequency 1000 Hz), acquired by means of Biopac MP150
system.

• Blood pressure measured in the finger (sampling frequency 250 Hz), acquired
by means of Finometer system. During the procedure, the FinometerR© was
recalibrated at the beginning of Tht and Tls. The recalibration took few seconds
and introduced artefacts which were detected and corrected by interpolation.
Arterial pressure from the finger was not corrected for the hydrostatic gradient
change during tilt.

• Respiratory signal (sampling frequency 125 Hz), acquared by TSD201 transducer
that measure thoracic expansion and contraction while breathing.

• Pulse photoplethysmography signal (sampling frequency 250 Hz), recorded from
the index finger using the Biopacs OXI100C amplifier with the TSD123 trans-
ducer.

In the following, we briefly describe the instruments used in the recording of the data
base.
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Figure A.1: Example of different repolarization intervals and an ECG lead during the
tilt test.
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Biopac MP150
In order to record and acquire several biomedical signals, we have used the Biopac

MP150 data acquisition and analysis system which consists of the following units:

• MP150 acquisition system: It connects up to sixteen analog input channels plus
two analog output channels, sixteen digital leads and a synchronization input.
It consists of a dual analog-digital converter (ADC) of 16 bits and maximum
sampling frequency of 400 kHz for each channel.

• Universal Interface module UIM100C: It is used to connect 100-series amplifier
modules and signal cables to the acquisition module MP150. The UIM100C also
provides a direct link to the analog and digital I/O lines of the MP device when
collecting or sending data to external equipment.

• Amplifiers: The amplifiers can be of general purpose as the DA100C to amplify
different type of signals or specific for an specific type of signal. In our case we
have use the specific amplifiers ECG100C (ECG signals), RSP100C (respiratory
signal) and OXI100C (photoplethysmographic (PPG) signal). Also, we have
used the transducer TSD160A to monitor differential pressure that is connected
to the amplifier DA100C.

• Sensors and transducers: we have used different sensors or transducers that mon-
itor biomedical signals, such as disposable Ag-AgCl to measure potential over
the body surface, TSD201 transducer to measure abdominal or thoracic expan-
sion and contraction while breathing, TSD160A to monitor differential pressure,
and photoelectric pulse transducer TSD123 to measure changes in infrared re-
flectance resulting from varying blood flow.

Biopac MP150 allows us to acquire standard 12-lead ECG using the Biopacs ECG100C
amplifier and disposable Ag-AgCl electrodes with a hardware amplification of 1000.
Besides, allows to synchronize external analog signals such as the blood pressure signal
acquired from the Finometer device.

Finometer
This device measures the blood pressure in a continuous way and non invasively

by the volume-clamp method, first introduced by Czech physiologist Peñaz in 1967.
With this method, finger arterial pressure is measured using a finger cuff and an
inflatable bladder in combination with an infrared plethysmograph, which consists of
an infrared light source and detector. The infrared light is absorbed by the blood, and
the pulsation of arterial diameter during a heart beat causes a pulsation in the light
detector signal.

The first step in this method is determining the proper unloaded diameter of the
finger arteries, the point at which finger cuff pressure and intra-arterial pressure are
equal and at which the transmural pressure across the finger arterial walls is zero. Then
the arteries are clamped (kept at this unloaded diameter) by varying the pressure of
the finger cuff inflatable bladder using the fast cuff pressure control system.
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A servo-controller system usually defines a target value or setpoint and a measured
value that is compared with this setpoint. In the servo-controller the setpoint is
the signal of the plethysmograph (unloaded diameter of the arteries) that must be
clamped. The measured value comes from the light detector. The amplified difference
between the setpoint and measured value, the error signal, is used to control a fast
pneumatic proportional valve in the frontend unit. This proportional valve modulates
the air pressure generated by the air compressor, thus causing changes in the finger
cuff pressure in parallel with intra-arterial pressure in the finger so as to dynamically
unload the arterial walls in the finger. The cuff pressure thus provides an indirect
measure of intra-arterial pressure. The device has also a height sensor to account
for the difference in pressure between the heart and the finger due to the different
altitudes. From these measurements, the device is able to reconstruct the arterial
blood pressure. The device is connected to a PC by a parallel port, or by four analog
inputs and four analog outputs to record the different signals in a synchronized way.

Finometer works with a sampling frequency of 200 Hz, quantification of 12 bits
and resolution of 0.25 mmHg/LSB. Digitalized signal is converted into an analog in
the device and gets into an analog input to the interface UIM100C to be resampled
and digitalized by the MP150 (with a sampling frequency of 250 Hz and 16 bits of
quantification). As a consequence, this blood pressure signal is delayed 5 seconds
(introduced by the DAC of the Finometer) with respect of the other signals acquired
directly in the Biopac MP150.
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Scientific contributions

The methodologies and results presented in this dissertation and elaborated during
my PhD studies have been partially published in the following works:

International Journals

(i) M. Orini, R. Bailón, R. Enk, S. Koelsch, L.T. Mainardi, P. Laguna: A method
for continuously assessing the autonomic response to music-induced emotions
through hrv analysis. Med Biol Eng Comput 48(5), 423–433 (2010)

(ii) M. Orini, R. Bailón, E. Gil, L.T. Minardi, P. Laguna: Framework for contin-
uous quantification of spectral coherence using quadratic time-frequency distri-
butions: exploring cardiovascular coupling. International Journal of Bioelectro-
magnetism1 12, 177–182 (2010)

(iii) M. Orini, R. Bailón, L.T. Mainardi, P. Laguna and P. Flandrin: Characterization
of the dynamic interactions between cardiovascular signals by time–frequency
coherence. IEEE Trans Biomed Eng. (In Press)

(iv) M. Orini, P. Laguna, L.T. Mainardi and R. Bailón: Assessment of the dynamic
interactions between heart rate and arterial pressure by cross time-frequency
analysis. Physiol. Meas. (In Press)

(v) M. Orini, R. Bailon, L.T. Mainardi, P. Laguna: Synthesis of non stationary
HRV signals following predetermined spectral patterns by means of time–varying
ARMA models. Biomedical Signal Processing & Control (In Press)

(vi) E. Gil, M. Orini, R. Bailón, J.M. Vergara, L.T. Mainardi, P. Laguna: Photo-
plethysmography pulse rate variability as a surrogate measurement of heart rate
variability during non-stationary conditions. Physiological Measurement 31(9),
1271 (2010).

(vii) R. Bailón, L.T. Mainardi, M. Orini, L. Srnmo, P. Laguna: Analysis of heart rate
variability during exercise stress testing using respiratory information. Biomed-
ical Signal Processing & Control 5(4), 299 – 310(2010)

1International Journal of Bioelectromagnetism is not in journal citation reports (JCR)
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(viii) R. Bailón, G. Laouini, C. Grao, M. Orini, P. Laguna, O. Meste: The integral
pulse frequency modulation model with time-varying threshold: Application to
heart rate variability analysis during exercise stress testing. IEEE Trans Biomed
Eng. 58(3), 642 – 652 (2011).

International conferences

(i) M. Orini, R. Bailón, P. Laguna, L.T. Mainardi: Modeling and estimation of time-
varying heart rate variability during stress test by parametric and non parametric
analysis. Computers in Cardiology, pp. 29–32 (2007)

(ii) M. Orini, B.F. Giraldo, R. Bailón, M. Vallverdu, L.T. Mainardi, S. Benito, I.
Diaz, P. Caminal: Time-frequency analysis of cardiac and respiratory parameters
for the prediction of ventilator weaning. 30nd Annual International Conference
of the IEEE EMBS. pp. 2793–2796 (2008)

(iii) M. Orini, R. Bailón, L.T. Mainardi, A. Mincholé, P. Laguna: Continuous quan-
tification of spectral coherence using quadratic time-frequency distributions: er-
ror analysis and application. Computers in Cardiology (2009)

(iv) M. Orini, R. Bailón, E. Gil, L.T. Mainardi, P. Laguna: Framework for continuous
quantification of spectral coherence using quadratic time-frequency distributions:
exploring cardiovascular coupling. Internat Conf Biosignal Interpretation (2009)

(v) M. Orini, L.T. Mainardi, E. Gil, P. Laguna, R. Bailón Luesma: Dynamic assess-
ment of spontaneous baroreflex sensitivity by means of time-frequency analysis
using either RR or pulse interval variability. 32nd Annual International Confer-
ence of the IEEE EMBS. pp. 1630–1633. (2010)

(vi) E. Gil, M. Orini, R. Bailón, J.M. Vergara, L.T. Mainardi, P. Laguna: Time-
varying spectral analysis for comparison of hrv and ppg variability during tilt
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3582 (2010)
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from heart rate variability signals in non-stationary conditions based on the
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List of acronyms

AF Ambiguity-function
ANS Autonomic nervous system
ARMA Autoregressive moving average
EST Exersice stress testing
HF High frequency
HRV Heart rate variability
LF Low frequency
MAP Mean arterial pressure
MIE Music induced emotions
PPG Photopletismography
PRV Pulse rate variability
PTT Pulse transit time
RESP Respiration
RRV R wave-R wave variability
RSA Respiratory sinus arrhythmya
SAPV Systolic arterial pressure variability
SPWVD Smoothed pseudo Wigner-Ville distribution
TF Time-ffrequency
TFC Time-frequency coherence
TFPD Time-frequency phase difference
TV Time-varying
WVD Wigner-Ville distribution
I-FS Framework based on frequency and spectral amplitude
II-FP Framework based on frequency and power
t-d Time-delay
d-D Delay-Doppler
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[130] Jasson, S., Médigue, C., Maison-Blanche, P., Montano, N., Meyer, L., Vermeiren, C.,
Mansier, P., Coumel, P., Malliani, A., Swynghedauw, B.: Instant power spectrum
analysis of heart rate variability during orthostatic tilt using a time-frequency-domain
method. Circulation 96(10), 3521–3526 (1997)
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