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ABSTRACT

In the first part of the thesis, the electron spin properties of Ge-based semicon-
ductor heterostructures are studied by means of Spin Polarized Photoemission and
Spin Polarized Photo-Luminescence techniques. The in-plane compressive strain
and confinement effect, which act on pure Ge grown on Si1−xGex alloy, drastically
modifies the band structure so that a very high electron spin polarization can
be found in the conduction band of Ge layer, when electrons are excited with
circularly-polarized light. This allows the direct detection of optically spin-
oriented electron population in the conduction band, which results higher than the
bulk one. Furthermore it also possible to obtain an experimental determination of
the orbital mixing between Light Hole (LH) and Split Off (SO) bands, away from
the Γ point by symmetry analysis based on spin polarization spectra.

In the second part of this thesis, theoretical arguments related to spin
transport and dynamics are studied. The common transport operator cannot be
properly used, when dealing with Hamiltonian where Spin-Orbit Interaction terms
are involved so that a novel definition of probability-current and spin-current
operators is given, which satisfies the continuity equation for a general effective
Hamiltonian up to the nth order. A reformulation of the boundary conditions at
the semiconductor heterostructure interfaces allows the correct determination of
the envelope function for tunneling problems and these new findings are applied
to the paradigmatic case of an interface, composed of a free-electron-like material
and [110]-oriented GaAs barrier.
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INTRODUCTION

One of the most exciting field of nowadays condensed matter physics concerns
the study of spin-related phenomena: the importance of this topic is basically
linked to the possibility of handling the particle spin degrees of freedom that can
be eventually employed for a new generation of electronic devices. In this sense, a
new branch of solid state physics, known as spintronics, is devoted to the analysis
of this subject with particular attention to systems where spin-related effects
drastically modify energy and transport properties. Among the huge number
of systems that can be considered matter of spintronics study, semiconductors
and their heterostructures play a key role, basically because they provide a clear
illustration of quantum mechanics and the different interactions can be interpreted
closely to atomic physics.

If we wanted to give a definition of this multidisciplinary branch of physics,
we could say that spintronics involves the study of active control and manipulation

of spin degrees of freedom in solid state physics [1]: as a consequence, we can
provide two fundamental conceptual steps in the understanding of spin-related
phenomena. The first one is the generation of spin polarized carriers and their
interaction through the spin relaxation mechanisms and the second one is the study
of spin dynamics and transport, which generally differ from the conservation laws
of particle transport due to its non-conservative nature [1].

During my PhD activity I had the opportunity to tackle this broad matter both
from experimental and theoretical points of view. In the first two years, I have
studied the generation and recombination of spin polarized carriers in Ge-based
heterostructures with different experimental techniques. At Physics Department
of Politecnico di Milano under the supervision of my PhD tutor Prof. Franco
Ciccacci, I have set up a dedicated UHV-system for Spin Polarized Photoemission,
which has been employed to measure the electron spin polarization in bulk Ge
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samples with different doping levels, strained Ge samples and Ge/SiGe Multiple
Quantum Wells (MQWs). At the same time, I have developed an experimental
set-up for Spin Polarized Photo-Luminescence. This has allowed the study of
Ge based- heterostructures, in particular MQWs samples, from a complementary
point of view with respect to the photoemission technique. The third year of PhD
has been characterized by a six month experience in the research group of Prof.
Henri-Jean Drouhin, at Laboratoire des Solides Irradiés in Palaiseau (FR), where
I worked on a novel definition of probability and spin current in semiconductors
in presence of Spin-Orbit Interaction.

As a consequence of the different activities that I followed, this work
is basically divided in two main parts: the first one is devoted to all the
results obtained by Spin Polarized Photoemission and Spin Polarized Photo-
Luminescence experiments and their interpretation, while the second part
is focussed on the theoretical work, concerning particle and spin transport,
especially in III-V semiconductor compounds.



Part I

SPIN POLARIZED ELECTRONS IN GE-BASED

HETEROSTRUCTURES
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Introduction

It is well known that near gap optical pumping with circularly polarized light
in III-V semiconductors produces conduction electrons with a degree of electron
spin polarization P=

(
n↑−n↓

)
/
(
n↑+n↓

)
where n↑ and n↓ are the number of

excited electrons with spin parallel (s=+1/2) or antiparallel (s=−1/2) to the light
wavevector [2]. Selection rules for σ+ (σ−) circularly polarized light excitation
impose a ∆m j = +1

(
∆m j =−1

)
variation of the total angular momentum

projection m j. Since in bulk materials optical transitions to the conduction band
minimum at Γ

(
m j = ms =±1/2

)
can be excited from the degenerate Heavy

Hole (HH) and Light Hole (LH) states (m j =±3/2 and m j =±1/2 respectively)
with a relative intensity of 3:1, an upper limit of P= 50% can be obtained.
Electrons excited to the Conduction Band (CB) can be extracted into vacuum
by lowering the semiconductor vacuum level by means of cesium and oxygen
deposition, a procedure known as photocathode activation, thus achieving the
so called Negative Electron Affinity (NEA) conditions [3]. The combination of
the two phenomena, excitation with circularly polarized light and photocathode
activation, gives rise to intense spin polarized photoemission from such materials
[4], which is currently being used to produce high efficiency spin polarized
electron sources [5]. In order to considerably improve the performance of such
sources, materials with higher spin polarization of CB electrons are needed.
From the above analysis it appears that a splitting of the degenerate HH and
LH bands, as achievable in samples with reduced symmetry such as strained
and/or nanostructured semiconductors, including quantum wells, superlattices,
and heterojunctions, should give polarization values close to 100%. Pioneering
studies of electron spin polarization in nanostructured systems based on III-
V semiconductors date back to the eighties [6–10] and more recently the goal
of almost completely polarized sources has been essentially achieved, using
thin strained layers [11, 12] and strained superlattices [13]. Such sources are
currently widely used in electron spectroscopy from solids [14] and in high
energy physics as well [15]. Optical orientation attracted a renewed interest
in the fields of semiconductor-based spintronics and quantum computation [1],
also taking advantage of quantum confinement effects in III-V semiconductor
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heterostructures and quantum wells (QWs) [16–18]. In this context it seems
very appealing to implement spin functionalities, i.e. the control of the spin
degree of freedom, in group IV semiconductors, which can be integrated
on the well established Si-based electronics platform. However, apart from
early investigations [19–21], spin properties in group IV semiconductors have
attracted considerable attention only quite recently, when theoretical [22–24]
and experimental [25, 26] studies have been carried out. In bulk Ge the energy
difference between direct (Ed = 0.80 eV) and indirect (Ei = 0.66 eV) transitions
is only 140 meV at room temperature (RT) and selection rules for circularly
polarized light for direct transitions at the Γ point are identical to those applied
in the GaAs case. Therefore optical excitation and detection of electron spin
polarization is achievable also at the direct band gap of Ge. Due to technological
issues related to the 4% misfit between the lattice parameter of Si and Ge, until
very recently it has not been possible to exploit such a similarity between the
bandstructures of Ge and GaAs. It was only in 2005 that the quantum confined
Stark effect, demonstrated more than 20 years ago in GaAs/AlGaAs QWs, has
been observed also in Ge/SiGe QWs, nicely evidencing the likeness between the
two material systems [27]. Further confirmations of the “quasi direct” nature
of Ge QWs are reported in a series of articles recently published by some of
us surveying the band alignment type [28], optical absorption selection rules,
photo- and electro-luminescence [29] in Ge/SiGe QWs. These last studies rely
on the availability of epitaxial samples with high structural quality, grown in
our laboratories by Low Energy Plasma Enhanced Chemical Vapour Deposition
(LEPECVD) [30]. In this chapter we report on spin polarized photoemission
from such high quality Ge based heterostructures, namely thin strained Ge films
grown on relaxed Si1−xGex substrates and multiple quantum well (MQW) systems
formed by Ge wells surrounded by Si1−xGex barriers. The layout of this chapter
is the following: Sec. 1 is devoted to the analysis of the electron spin polarization
through the group theory, either in bulk structures, either in strained and confined
IV group heterostructures. In Sec. 2 the Spin Polarized Photoemission technique
is presented and all the experimental measurements on IV group semiconductor
heterostructures are analyzed, while Sec. 3 is focussed on the experimental set-up
and results of Spin Polarized Photo-Luminescence measurements.



1. ELECTRON SPIN POLARIZATION AND SYMMETRY

1.1 Bulk Germanium

The possibility to optically generate in the conduction band of a solid a
population of spin polarized electrons, where the electron spin polarization is
defined as P= (〈Sx〉,〈Sy〉,〈Sz〉), can be basically exploited in a wide number of
systems. This is the consequence of the fact that the only two experimental
requirements are the excitation of the electrons with circularly-polarized light
of convenient energy and the choice of at least one state of a band, involved
in the transition, where Spin-Orbit Interaction (SOI) has removed the orbital
degeneration [2, p. 297].

In this context it is relevant the notion of group of the wave-vector Gk, by
which it is possible to classify the Bloch states (for the moment the spin-dependent
part of the wave-function is not taken into account) with respect to the symmetry
operations that make the wave-vector k invariant. Indeed Gk is always a subgroup
of a symmorphic space group G so that when applied to symmetry points or
lines of the Brillouin zone, it can be considered as one of the 32 point groups.
Then all the Bloch functions with a general wave-vector k can be associated to a
set of symmetry transformations, according to an irreducible representation of
Gk, which can be conveniently called Γα. Considering the particular column
of this matrix representation, all the properties of the different wave-functions
can be known. When SOI is introduced, the Bloch states have to be written
as spin-dependent wave-functions. Then, beside the irreducible representation
Γα of Gk, also the irreducible representation D 1

2
of the Full Rotation Group has

to be added, consisting in the spin-basis functions | ↑〉 and | ↓〉. In this case,
the final representation of the spin dependent Bloch states is given by the direct
product Γα×D 1

2
. This direct product is generally reducible and it is the sum of
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one or more representations, irreducible with respect to the correspondent double
group. This means that a generic Bloch state will be written as linear combination
of functions belonging to different double group representations, of which the
coefficients are called Coupling Coefficients (CC). This procedure enlights the
fact that the introduction of SOI terms can remove the orbital degeneracy because
it can provide a symmetry reduction of the system.

Once evaluated the symmetry of the Bloch states, the further fundamental
point to be taken into account is the symmetry of the dipole operator in the
matrix elements, which describes the transition of an electron from an initial
to a final state under excitation with circularly-polarized light. Indeed in dipole
approximation the expression of the electromagnetic perturbation O(r, t), limited
to vertical transitions only, is O(r, t)≈ a0 ·p [31]. By taking the z-axis along the k-
direction of the electrons involved in the transition, it is straightforward to obtain
the explicit expression of the operator which represents the incident circularly-
polarized light with O(r, t) ≈ px− (+)ipy, where the sign - (+) applies to right
(left) polarization of the incident light. At this point, we introduce the convenient
representation of the momentum operator Γp and the matrix element of the
considered transition can be evaluated through the well-known Wigner-Eckhart
Theorem [32], in the generalized form proposed by Koster, which properly applies
to point and space symmetry groups [33]. Following the conceptual scheme
above, it is easy to show, for example, that the polarization at the Γ point for
all the III-V zincoblende semiconductors is the same [2, p. 298].

Evidently, a higher electron spin polarization can be found at high symmetry
points of the Brillouin zone, because there the influence of SOI is strongest
while generally the polarization is zero when considered on a general point of
the Brillouin zone without particular symmetry properties.

Due to the fact that all the experimental measurements, presented in this part,
are related to Ge-based heterostructures, in the following we will focus on the
application of group theory to systems with diamond-like structure, which have
the Brillouin zone of Fig. 1.1. Among them, clearly bulk Ge plays a key role:
in particular the Γ point and the ∆ line of the Brillouin zone of bulk Ge will
be taken into account. Indeed we consider the Γ point of coordinates (0,0,0)
of the face centered cubic lattice (fcc) and we take into account the O7

h space
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Fig. 1.1: Brillouin zone for fcc lattices, where all the relevant symmetry (blue and red)
points and (green) lines are considered.

group. Care has to be taken because O7
h is not symmorphic: in fact there are 24

elements, associated to the inversion, that are not at (0,0,0) but at (1
8a, 1

8a, 1
8a,),

a being the lattice constant. However, except for particular symmetry points as
X, W, Z [34], the common tables for the corresponding symmorphic space groups
can be employed [2, p. 334]. In the following all the different representations
Γα will be written according to the Bouckaert, Smoluchowski and Wigner (BSW)
notation: if the reader is more familiar with the Koster (K) notation, a useful table
of conversion between the two notations is provided by Yu and Cardona [35, p. 40,
Table 2.7]. Then we consider the Oh point group which corresponds to the wave-
vector group G(0,0,0): for sake of clarity, we refer to the bulk Ge band structure
scheme of Fig. 1.2, as calculated by Yu and Cardona [35]. At the bottom of
the conduction band the orbital part of the wave-function has Γ2′-symmetry. This
is a one-dimensional representation for the Oh group, which must be properly
changed in the presence of SOI: the inspection of the Character Table for the Oh

group suggests that D 1
2

transforms as Γ
+
6 [36, p.103, Table 87]. Consequently the

functions belonging to this representation provide a good basis to write the spin
dependent part of the wave-function and the direct product Γ2′×Γ

+
6 = Γ

−
7 directly

gives the double group representation of the corresponding Bloch state. At the top
of the valence band the situation is a little more involved: in absence of SOI,
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64 2. Electronic Band Structures

and always larger than Va
3 in magnitude. Nevertheless, as the ionicity increases

in going from the III–V semiconductors to the II–VI semiconductors, the anti-
symmetric pseudopotential form factors become larger. Some band structures
of diamond- and zinc-blende-type semiconductors calculated by the pseudopo-
tential method are shown in Figs. 2.13–15. These band structure calculations
include the effect of spin–orbit coupling, which will be discussed in Sect. 2.6.
As a result of this coupling, the irreducible representations of the electron
wave functions must include the effects of symmetry operations on the spin
wave function. (For example, a rotation by 2 will change the sign of the
wave function of a spin-1/2 particle). The notations used in Figs. 2.13–15, in-
cluding this feature, are known as the double group notations and will be dis-
cussed in Sect. 2.6.

The effect of ionicity on the band structures of the compound semicon-
ductors can be seen by comparing the band structure of Ge with those of
GaAs and ZnSe as shown in Figs. 2.13–15. Some of the differences in the three
band structures result from spin–orbit coupling. Otherwise most of these dif-
ferences can be explained by the increase in the antisymmetric components of
the pseudopotential form factors as the ionicity increases along the sequence
Ge, GaAs, ZnSe. One consequence of this increase in ionicity is that the en-
ergy gap between the top of the valence band and the bottom of the conduc-
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Fig. 2.13. Electronic band structure of Ge calculated by the pseudopotential technique.
The energy at the top of the filled valence bands has been taken to be zero. Note that,
unlike in Fig. 2.10, the double group symmetry notation is used [Ref. 2.8, p. 92]

Fig. 1.2: Band structure of bulk Ge [35].

we have 6-fold degenerate states with Γ25′-symmetry. Again, being Γ
+
6 the good

representation for the spin wave-functions, we have to evaluate the direct product
Γ25′ ×Γ

+
6 = Γ

+
8 +Γ

+
7 . We can see that in this case the presence of SOI partially

removes the degeneration at the top of the valence band, lowering the symmetry
of the system and providing the so called Heavy Hole (HH) and Light Hole (LH)
band of Γ

+
8 -symmetry, lifted from the Split-Off (SO) band of Γ

+
7 -symmetry [37].

Now, in order to evaluate the electron spin polarization obtained through
transitions across the direct energy gap, we have to express these states as linear
combination of functions belonging to the proper representations, of which the
coefficients are the CC ones. However, following the procedure of Ref. 20, under
spherical approximation we can still use the unique irreducible representation of
the Full Rotation Group, of which the basis functions are the spherical harmonics
Y m

l . Thus the wave-functions are written in terms of Y m
l and spin functions | ↑〉,

| ↓〉, where the correct symmetry is provided by the Clebsh-Gordon coefficients
[38, p. 123, Table 5-2]. Under the same approximations, the operator O(r, t) can
be represented through the spherical harmonics Y−1

1 and Y 1
1 , depending on the left

or right circular polarization of the exciting light. The transition scheme is shown
in Fig. 1.3. If we take the z-axis of the system along the direction of the incident
light and we suppose to resonantly excite electrons across the Ge direct gap, we
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Fig. 1.3: Scheme of the direct transitions at the Γ point of bulk Ge. According to the
spherical approximation, the wave-functions can be expressed in terms of linear
combination of products between spherical harmonics and spin functions, while
the relative intensity of every transition is given in circles. The symmetry of
the different states is written on the left of the scheme, with a notation where
the superscript denotes the single group representation, while the subscript the
double group one. Only transitions with left-circularly polarized light are shown,
i.e. where O(r, t) has Y−1

1 symmetry.

can calculate the electron spin polarization at the bottom of the conduction band as
P= (0,0,〈Sz〉) =

(
n↑−n↓

)
/
(
n↑+n↓

)
, where n↑(↓) is the number of electrons with

up (down) spin. Thus theoretical and experimental results prove that P= 50% [20].
In order to better explain the crucial concept of this section, i.e. the fact that

P depends only on the symmetry of the states involved in the transitions, we now
consider direct transitions that are not exactly at the Γ point of the Brillouin zone,
but along the ∆ line. The reason to analyze this interesting situation is that an
experimental limit in photoemission experiments does not allow to detect P at the
Γ point [39]: neverthless, Allenspach et al. have shown that a polarization equal
to 50% can be measured at T= 40 K in the proximity of the Γ point, but involving
Bloch states along the ∆ line of bulk Ge [20]. The situation is shown in Fig.
1.4: taking into account the C4v point group, the final state has ∆2′

7 -symmetry,
whereas the valence initial states have respectively ∆5

6, ∆5
7 and ∆2′

7 -symmetry.
Considering transitions in the proximity of the Γ point, which retain the symmetry
labels of the ∆ direction, we can argue that the two direct transitions ∆5

6 → ∆2′
7

and ∆5
7 → ∆2′

7 are not sufficient to explain a net spin polarization, being their
intensity Iu and Id equal. This is why it is necessary to introduce the hybridization
between Bloch states along the ∆ line. At the Γ point all the wave-functions
of the topmost valence band have the same orbital symmetry, i.e. Γ25′ , so that
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Fig. 1.4: Symmetry and scheme of the direct transitions along ∆ line of bulk Ge (C4v point
group). a) symmetry of initial and final states without taking into account the
hybridization of ∆5

7 state: in this case the two transitions ∆5
6→ ∆2′

7 and ∆5
7→ ∆2′

7
have the same intensity Iu and Id so that the polarization P is zero. b) symmetry
of initial and final states with hybridization of ∆5

7: the two transitions ∆5
6→ ∆2′

7

and ∆
5,2′
7 → ∆2′

7 do not have the same intensity, because the forbidden transition
∆2′

7 → ∆2′
7 removes intensity from Id , then P results equal to 50% [20].

all the symmetrized functions are automatically combined through the Coupling
Coefficients by the same point group table, in this case Oh in order to give HH,
LH and SO states. Consequently SOI removes the degeneration between such
states. Along the ∆ line, due to the different orbital symmetry of the involved
states, we have to combine symmetrized functions that belong to different single
group representations in order to generate a wave-function with a mixed character.
The coefficients of this linear combination cannot be the Coupling Coefficients;
thus they must be determined experimentally. With this procedure, it is possible
to build up wave-functions of mixed symmetry for ∆

5,2′
7 states, as shown in Fig.

1.4. At this purpose we consider the C4v point group and the symmetrized product
functions uα

i vβ
ms . Here uα

i is the orbital function, belonging to the α-representation
with i = x,y, while vβ

ms is the spin function, belonging to the β-representation
with ms = ±1/2. Inspection of the Full Rotation Group compatibility table for
C4v shows again that the spin-dependent part of the wave-functions transform as
Γ6 [36, p. 48, Table 38], then final states of ∆2′

7 (Γ4) symmetry can be written
as [36, p. 46, table 35]:
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ψ
7
1
2
=−iu4v6

1
2
;

ψ
7
− 1

2
= iu4v6

− 1
2
. (1.1)

For sake of clarity, it is useful to remark that the unidimensional representation
Γ4 of Eq. 1.1 is obtained considering the Compatibility Table for Oh [36, p. 104,
Table 88]. Let us also note that the initial representation Γ2′ transforms as Γ4

when applied to the C4v group. Since their orbital symmetry does not allow any
hybridization with the other states, initial states of ∆5

6 (Γ5) symmetry can be simply
expressed as [2, p.339]:

ψ
6
1
2
=

i√
2

u5
xv6

1
2
+

1√
2

u5
yv6

1
2
,

ψ
6
− 1

2
=− i√

2
u5

xv6
− 1

2
+

1√
2

u5
yv6
− 1

2
, (1.2)

where u5
x,y correspond to the p-like orbital wave-functions. On the contrary,

∆
5,2′
7 symmetry states are written as linear combination of symmetrized functions

of ∆5
7 (Γ5) and ∆2′

7 (Γ4) symmetry in order to take into account the hybridization
with the SO band of Fig. 1.4, with coefficients which are directly derived from
the fact that the measured P is equal to 50% and this value must approach
with continuity the P value at the Γ point. Introducing also the condition of
normalization between the two coefficients we get [2, p.339]:

ψ
7
1
2
=

1√
3

·ψ5
− 1

2
+

√
2
3

·ψ2′
1
2
=

1√
3

[
− i√

2
u5

xv6
− 1

2
− 1√

2
u5

yv6
− 1

2

]
+

√
2
3

[
u4v6

1
2

]
,

ψ
7
− 1

2
=

1√
3

·ψ5
1
2
−
√

2
3

·ψ2′
− 1

2
=

1√
3

[
i√
2

u5
xv6

1
2
− 1√

2
u5

yv6
1
2

]
−
√

2
3

[
u4v6
− 1

2

]
.

(1.3)

The explicit expression of the states with ∆
2′,5
7 symmetry is not shown, because

at this point we are interested in optical processes involving only the lowest
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conduction states and HH-LH (nearly degenerate) valence states. Regarding
this appealing case, where the experimental results are applied to obtain the
hybridization coefficients, we develop the calculations to show that under the
assumptions above, the experimental P value can be obtained. At this purpose, we
consider the operator O(r, t) that represents the incident left-circularly polarized
light along the z-direction, again considered parallel to the wave-vector of excited
electrons. We can write:

O(r, t)≈ px− ipy, (1.4)

which belongs to ∆5 (Γ5) representation, transforming as (Sx, Sy) [36, p. 45,
Table 33]. At this point we show the expressions of the two only transitions which
are possible with the left-polarized incident light of Eq. 1.4:

Iu = |〈−iu4v6
1
2
|p5

x− ip5
y |

i√
2

u5
xv6

1
2
+

1√
2

u5
yv6

1
2
〉|2,

Id = |〈iu4v6
− 1

2
|p5

x− ip5
y |

1√
3

[
− i√

2
u5

xv6
− 1

2
− 1√

2
u5

yv6
− 1

2

]
+

√
2
3

[
u4v6

1
2

]
〉|2. (1.5)

Without performing any calculation, it is possible to see that the matrix
elements between states with opposite spin dependent wave-functions vanish due
to the fact that 〈v6

− 1
2
|v6

1
2
〉= 0: then looking at the expression of Id , the component

of the matrix element that concerns the transition ∆2′
7 → ∆2′

7 removes intensity
from Id . Finally, we derive the intensity of the transitions above:

Iu = |ic5
4,5|

2,

Id =
1
3

· |c5
4,5|

2, (1.6)

where c5
4,5 is the unknown factor which comes from the product of the different

functions involved in the matrix elements of Eqs. 1.5. Then we can calculate the
electron spin polarization P along the z-direction:
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Fig. 1.5: Brillouin zone of pure Ge grown on (001) Si substrate [41]. kz is the growth
direction.

P = (0,0,〈Sz〉) =
−|c5

4,5|
2 + 1

3 · |c5
4,5|

2

−|c5
4,5|2−

1
3 · |c5

4,5|2
= 50%. (1.7)

1.2 Compressively Strained Germanium

The symmetry arguments that have been exploited in Sec. 1.1 to obtain
coherent expressions of the Bloch wave-functions in bulk Ge, can be evidently
applied when considering strained Ge layers. In the following we will refer only
to the paradigmatic heterostructure, composed of pure Ge grown on (001) Si,
basically for two reasons. First, all the samples of Sec. 2 have such a growth
direction, second the theoretical treatment of this heterostructure is quite simple
with respect to more complicated higher quality heterostructures, which present
a virtual substrate (buffer layer) of Si1−xGex alloy [30, 40]. The lattice mismatch
between Ge and Si is 4%, so that a layer of pure Ge grown on a (001) substrate of
pure Si undergoes a biaxial compressive strain in the growth plane.

The present discussion will be focussed on the Γ point, on the ∆ line and on
the Λ line (growth direction) of the distorted Brillouin zone of Fig. 1.5, according
to the experimental data that shall be presented in Sec. 2. The space group that
has to be taken into account in this case is D19

4h: then at the Γ point the group
of the wave-vector G(0,0,0) is identified as the D4h point group. The inspection
of the compatibility table between Oh and D4h [36, p. 104, Table 88] shows
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Fig. 1.6: Band structure of compressively strained Ge grown on (001) Si substrate, where
all the symmetry points and lines of the tetragonally distorted Brillouin zone are
represented [41]. [001] is the growth direction while [100] represent the two
equivalent in-plane directions.

that the bottom of the conduction band of Γ
−
7 -symmetry, is unaffected by the

presence of the compressive strain, while the Γ
+
8 representation, related to the HH-

LH bands, is reducible and decomposes in the two irreducible representations Γ
+
6

and Γ
+
7 . This basically means that the degeneration between HH and LH bands,

present in bulk Ge, is completely lifted due to the distortion of the Brillouin zone.
Finally, being the SO band of Γ

+
7 symmetry, its representation is unchanged after

the introduction of a strain component. Evidently group theory cannot estimate
the energy difference which arises between states of Γ

+
6 and Γ

+
7 -symmetry:

nevertheless, calculations based on the deformation potential theory [42] and
tight-binding approach [41] provide values of the HH-LH splitting of the order
of tens meV and a higher energy difference between LH and SO states is also
expected [43–48].

Indeed, the importance of this kind of heterostructure is given by the fact that
a process of optical orientation like the ones discussed in Sec. 1.1, can lead
to a 100% spin polarized electron population at the bottom of the conduction
band, provided that the energy of the incident light is chosen resonant (or quasi-
resonant) to the direct energy gap. In fact, under spherical approximation, the
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Fig. 1.7: Valence and conduction band-edge variation with Ge content of the Si1−xGex

alloy, grown on a (001) Si substrate [41].

conceptual scheme of Fig. 1.3 can be exploited also in this case: it is not an
abrupt aproximation, due to the fact that the perturbation induced by the strain
term provides an energy difference between HH and LH states which is small with
respect to the direct energy band of the system. Then the spherical harmonics
are still good basis functions to represent Bloch states at the Γ point. The only
difference with respect to the transition scheme of Fig. 1.3 is the removal of the
degeneration between HH and LH states, which allows the excitation of a fully
spin polarized electron population from HH state only. We now move to analyze
the crystallographic direction [100], or the ∆ line: as a consequence of the in-plane
biaxial strain, the symmetry group is reduced so that all the representations ∆2′

7 ,
∆5

6 and ∆5
7 reduce to the ∆5 representation [36, p. 47, Table 36], then providing

the same basis functions for all the Bloch states. Finally, we analyze the effect of
the compressive biaxial strain along the growth direction, which is an interesting
direction for direct transitions and photoemission experiments, when the wave-
vector k of the excited electrons is considered parallel to this direction. The
symmetry of the crystal is not reduced by the strain and all the symmetry labels,
which describe the irreducible representations along the [001] direction of bulk
Ge still hold. In the present case, along the crystallographic direction Γ→ Z,
conduction states have Λ7 symmetry, while HH and LH states have respectively
Λ6 and Λ7-symmetry, where only the irreducible double group representations are
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shown, being the single group ones always the same. In order to complete the
discussion, Fig. 1.7 shows the valence and conduction band-edge variations when
a heterostructure Si1−xGex grown on Si(001) is considered: for the extreme case
that we are discussing, namely pure Ge grown on Si(001), we can see that both
the direct and indirect energy gap increase linearly with the strain degree, i.e. the
percentage of Ge in the Si1−xGex alloy. If we assume that a thin layer of pure
Ge is grown on a virtual substrate composed of a Si1−xGex alloy with a given Ge
percentage and we neglect the plastic relaxation of the layer, Fig. 1.7 can help us
to evaluate the band structure at the Γ point of such an heterostructure.



2. SPIN POLARIZED PHOTOEMISSION

This section is devoted to the activity developed at Physics Department of
Politecnico di Milano: in the following we shall briefly discuss the growth of
the Ge-based heterostructure samples that have been employed for Quantum
Yield (QY) and Spin Polarized Photoemission (SPP), the fundamentals of SPP
technique, the experimental set up and the measurement results that have been
obtained.

2.1 Sample growth

LEPECVD is a versatile growth technique which has been used to obtain
high quality group IV heterostructures [30]. In order to study the main Ge-based
nanostructures, suitable for spintronics applications, three fundamental sample
structures have been employed: Ge-on-Si epilayers, strained Ge epilayers, and
Ge/SiGe MQWs. The gradual reduction of the symmetry of the systems involved
provides insight into the properties of group IV heterostructures as emitters of
polarized electrons. The Ge-on-Si sample (Fig. 2.1a) is a 1 µm thick heavily
B-doped Ge layer, directly grown on a Si(001) wafer. This can actually be
considered as bulk-like Ge film, in fact the layer thickness is well above the critical
thickness for pure Ge directly grown onto Si, resulting in the complete relaxation
of the lattice mismatch strain. The bulk-like behavior of this heterostructure was
confirmed by comparing its photoemission spectra with that of a p-type Ge wafer.
The strained Ge epilayer structure is shown in Fig. 2.1b: a high quality relaxed
virtual substrate (VS) is graded from pure Si to Si1−xGex , with a grading rate
of 0.07/µm; when the desired Ge content in the alloy is achieved, a constant
composition Si1−xGex buffer layer is grown. Finally a compressively strained
Ge layer is deposited. By varying the VS final Ge content from 0.5 to 0.8,
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Fig. 2.1: Scheme of the sample structure: (a) Ge-on-Si epilayer; for a thickness of 1 µm
the pure Ge layer is fully relaxed and has been used as a bulk-like reference
in our work. (b) Strained Ge/SiGe; samples with a final Ge content x in
final virtual substrate varying between 0.50 to 0.80 have been investigated. (c)
(Si0.3Ge0.7/Ge)× 50/Si0.2Ge0.8 Multiple Quantum Wells.

we induced different levels of biaxial compressive strain ε =
(
a||−aGe

)
/aGe in

the Ge layers being a|| and aGe the in-plane lattice parameters of the strained
Ge epilayer and of bulk Ge, respectively. The Ge fraction x also determines
the critical thickness above which the Ge layer relaxes: the higher the final Ge
content x of the relaxed VS, the lower is the lattice mismatch between pure Ge
and Si1−xGex and the greater is the critical thickness. The critical thickness
for the Ge layers investigated have been calculated using the Matthews force
balance model [49] and are reported in Table 2.1. Finally, Fig. 2.1c shows the
growth scheme of the (Si0.3Ge0.7/Ge)× 50/Si0.2Ge0.8 MQW sample comprising
50 periods of 5 nm thick Ge wells and 10 nm Si0.3Ge0.7 barriers grown on a
x = 0.80 VS. The structure is terminated by a 6 nm thick Ge layer.

2.2 High-Resolution X-ray Diffraction

HRXRD measurements were performed using a PANalytical X’Pert PRO
MRD diffractometer. A hybrid 2-bounce asymmetric Ge(220) monochromator,
which includes an x-ray mirror, was used on the primary beam in order to select
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sample schematic structure critical thickness thickness nominal ε|| measured ε||
[nm] [nm] [%] [%]

56455 Ge/Si 1 1000 0 +0.05
8492 Ge/Si0.5Ge0.5 4 10 -2 -0.86
8491 Ge/Si0.38Ge0.62 5 10 -1.60 -1.13
8493 Ge/Si0.31Ge0.69 8 10 -1.20 -0.96
7949 Ge/Si0.28Ge0.72 8 10 -1.20 -0.89
8509 Ge/Si0.2Ge0.8 13 10 -0.82 -0.71
8422 (Si0.3Ge0.7/Ge)× 50/Si0.2Ge0.8 - - -0.82 -0.74

Tab. 2.1: The structural properties of the collection of analyzed samples is shown for every
configuration in terms of critical thickness, nominal Ge layer thickness, and
nominal and measured in-plane strain. A maximum strain of−1.13% is reached
for the Ge/Si0.4Ge0.6 structure #8491; most structures (apart from #8509) show
some degree of strain relaxation of the Ge layer. In the case of the thick Ge/Si
structure #56455, a small degree of tensile strain is present due to the mismatch
of thermal expansion coefficients of Ge and Si.

the intense Kα 1 line from the Cu x-ray tube. The monochromator was fitted with
a programmable attenuator, in order to prevent the brightest peaks from saturating
the detector. A 3-bounce symmetric analyzer crystal was mounted in front of
the detector for high-resolution mapping. Reciprocal space maps (RSM), in the
(004) and (224) grazing-incidence geometries, were typically acquired with a 0.5
s step-time and angular steps of 0.01° or 0.02°, with a 5.0 s step-time used to
map the Ge peak in more detail. In all cases, the positions of diffraction peaks
from epitaxially grown layers was considered with respect to the Si substrate
peak, which provides an absolute calibration reference. The (004) geometry
probes only the lattice planes parallel to the Si(001) substrate surface. It is
therefore sensitive to the out-of-plane lattice parameter and the tilt of these planes
(induced by the strain relaxation process in the virtual substrate) with respect to
the substrate. Information on the in-plane lattice parameter can be obtained from
the (224) reflections. The Ge content and strain ε in the epitaxial layers were then
calculated using the lattice parameter data in Ref. 50 and linear interpolation of
the lattice constants of Si and Ge given in Ref. 51. Spin polarized photoemission
experiments require an high temperature annealing step which might modify the
strain state of the Ge epilayers. In order to take this into account, all HRXRD
measurements here have been performed after photoemission ones.
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2.3 Fundamentals of SPP technique

After growth the samples were inserted in an ultra high vacuum chamber
(pressure below 3× 10−10 torr) where spin polarized photoemission (SPP) was
performed: the experimental apparatus is schematically shown in Fig. 2.2a.
According to standard methods, the samples were heat-cleaned at 600 °C and
then activated by alternate exposure to Cs and O2 following the so called yo-yo
procedure [3, 5, 52]. The activation was routinely monitored by measuring the
photocurrent while illuminating the sample with a few mW He-Ne laser. In the
final steps the He-Ne laser was replaced by near infrared irradiation (1.4 eV) in
order to optimize the photosignal at threshold. The minimum photon energy for
which a photocurrent signal clearly emerged from noise was always larger than
1.2 eV, well above the Ge energy gap, indicating a non-NEA condition, as usual
in Ge based photocathodes [20, 39]. The photoelectron spin polarization P and
quantum yield Y were measured as a function of the photon energy without any
energy filtering on the emitted electrons. All measurements reported here were
performed at 120 K. Activated samples were illuminated by an optical system
producing circularly polarized light (Fig. 2.2a). A quartz halogen lamp was used
as a light source; after monochromatization and collimation, circularly polarized
light was produced by means of a wide range λ/4 retarder. The optical system
was calibrated in terms of light intensity and circular polarization, the latter being
larger than 95% over the full photon energy range investigated. The photon energy
resolution is around 5 meV, smaller than the HH-LH energy splitting expected
in our samples [28, 53]. Photoemitted electrons were collected by an electron
optics system including a 90° rotator [54], which transforms the beam polarization
from longitudinal to transverse, as required for Mott polarimetry [55]. The beam
is then sent into a medium-energy spherical retarding field Mott detector [55],
where it impinges on a Au target with scattering energy in the 10-20 keV range
(Fig. 2.2b). The Mott detector efficiency has been calibrated according to
standard methods [55], yielding a Sherman function S = 0.09± 0.01 at 20 keV,
in agreement with reported values in similar conditions [55]. The uncertainties
on S give a 10% systematic relative error on the measured polarization values.
However this does not influence relative measurements. The overall calibration
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(a) (b)

Fig. 2.2: (a) Sketch of the experimental apparatus for spin polarized photoemission
measurements. The optical system includes a CM 110 Compact 1/8 Meter
Monochromator with a Czerny-Turner design and an Achromatic Quartz and
MgF2 λ/4 retarder. The photoelectron spin polarization is along the y-axis
(the quantization axis is given by the light propagation direction): the initially
longitudinally polarized beam is transformed into a transversally polarized one
by the 90° rotator before being accelerated into the Mott detector. (b) Schematic
diagram of the spherical retarding field Mott polarimeter, note that the plane of
this figure is rotated by 90° with respect to that of Fig. 2.2a.
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Fig. 2.3: Spin polarization and quantum yield spectra from the St. Petersburg optimized
photocathode based on a strained AlInGaAs/AlGaAs superlattice: for near
threshold excitation P values around 90% are achieved, i.e. the photoelectrons
are almost completely polarized. The spectral shape of both polarization
and quantum yield are identical to those reported in the original work [13].
Regarding the polarization, even the absolute value is identical.

was independently checked by measuring reference spectra from III-V based
photocathodes, including bulk GaAs and an AlInGaAs/AlGaAs superlattice [13].
The P(hν) spectrum from the latter photocathode, shown in Fig. 2.3, is indeed in
very good agreement with the reported one [13].

2.4 Experimental results and discussion

2.4.1 High-Resolution X-ray Diffraction

Table 2.1 summarizes the results of HRXRD measurements. As an example,
RSMs are shown for sample 8509 in Fig. 2.4. The Si substrate peak is seen at
q⊥ = 4/aSi = 7.37 nm−1. In the (004) RSM the main features are centred on the
line q|| = 0 nm−1, indicating a lack of a net tilt in the epitaxial layers. The graded
part of the VS gives rise to the diffuse scattering between the Si peak and the 2µm
Si0.2Ge0.8 layer peak at q⊥ = 7.13 nm−1. This strong peak is broadened in the q||
direction due to mosaicity. The 10 nm strained Ge layer can be seen as a weak
peak, broadened in q⊥ by about ∆q≈ 1/(10 nm) = 0.1 nm−1, at q⊥ = 7.04 nm−1.
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Fig. 2.4: RSMs about the (004) (a) and (224) (b) Bragg peaks of the sample 8509. q⊥
is along the [001] direction and q|| is along the [110] direction. The Si substrate
peak is at q⊥ = 7.37 nm−1. The VS can be seen down to about 7.13 nm−1, and
the thin strained Ge layer itself is visible at 7.04 nm−1. The logarithmic intensity
scale is in detector counts per second.

In the (224) RSM, the VS signal lies along the line joining the Si(224) peak to the
origin, indicating that this material is cubic rather than tetragonal (i.e. that it is
fully relaxed) while the Ge peak is found with the same q|| as the Si0.2Ge0.8 layer,
indicating that the Ge QW is lattice-matched to the VS.

2.4.2 Quantum Yield

In bulk Ge, due to the large density of states in the CB, the Fermi level
lays very close to the VB even for moderate p-type doping levels (p ≈ 1016−
1017 cm−3) like those found in the samples under investigation. Moreover, in
metal/Ge(001) contacts the Fermi level is pinned very close to the VB band
edge [56]. As a consequence, assuming from Ref. 39 a work function Φ ≈ 1 eV
for the CsOx layer, the band profile shown by the continuous lines in Fig. 2.6a
is obtained for the CsOx/Ge interface. We notice that, due to the small indirect
bandgap of Ge, the bottom of the CB lies always below the vacuum level EV and
NEA conditions cannot be achieved, at variance with larger gap semiconductors,
where the CB minima lies above the vacuum level (dashed line in Fig. 2.6a).
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Fig. 2.5: Quantum yield as a function of the exciting photon energy from activated
epitaxial Ge/SiGe heterostructures. The spectrum from the 1 µm thick sample
(Ge/Si) is in agreement with reported data from bulk Ge photocathodes [39].
The inset shows near threshold derivative spectra from ultrathin films and MQW
samples: no structures are detected.

Such dissimilar band profiles are consistent with the two different quantum yield
spectra Y (hν) observed in III-V compounds and Ge-based photocathodes. Indeed,
the photothreshold response for the activated bulk-like sample (#56455), two
representative strained thin films (#8491 and #8493), and the MQW sample
(#8422) shown in Fig. 2.5 are neither band-gap limited nor proportional to the
optical absorption coefficient, as it is instead the case for the NEA photocathodes
[3] (see also Fig. 2.3). The positive photoemission barrier present in Ge-based
photocathodes acts as an energy filter, so that electrons thermalized in the CB
minima are not emitted. This allows to consider for the photoemission process
only ballistic electrons originated a few nanometers away from the surface. Note
that for NEA photocathodes most of the signal comes instead from electrons
thermalized to the bottom of the CB, so that the escape depth is essentially given
by the electron diffusion length, which can be of the order of microns [3, 5].
The measured Y values for the Ge-based samples are therefore much smaller
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than those achievable in III-V photocathodes [39, 53]. Strained layers are seen
to exhibit lower thresholds when compared to the bulk-like epilayer (see Fig.
2.5). Actually for photon energies around 1.3 eV the photoemitted current is
seen to monotonically increase with increasing compressive strain. This trend
is consistent with a progressive reduction of the photoemission barrier resulting
from the bandgap increase induced by compressive strain. The slope change seen
in the thin films spectra at photon energies larger than 1.6 eV can be attributed
to the onset of substrate emission. Due to its larger direct gap, however, the
VS gives no contribution close to threshold. This was experimentally confirmed
by performing photoemission experiments on a bare VS with x = 80, showing
negligible photocurrent for photon energies smaller than 1.8 eV. No clearly
resolved structures are present in the Y (hν) curves near threshold, as put in better
evidence by the very smooth behavior of the derivative curves shown in the inset
of Fig. 2.5. The spectrum from the MQW sample #8422 is very similar to the ones
from strained films, since, at least in the near threshold region which is the most
interesting one when dealing with the electron polarization, most of the signal
comes from the 6 nm thick Ge top layer. Therefore no structures are detected, as
shown by the derivative curve reported in the inset of Fig. 2.5, differently from
the case of III-V based MQW photocathodes, where evident peaks corresponding
to transitions between quantum confined states have been observed in the Y(hν)

and derivative spectra [10, 57].

2.4.3 Electron Spin Polarization

The relevant energy levels involved in the photoemission process are shown
in Fig 2.6b for the case of unstrained and compressively strained ( ε =−1%) Ge.
The bandstructure has been obtained by tight-binding calculation [58] and the
vacuum-level set at EV ≈ 1.0±0.1 eV above the VB maximum assuming a Fermi
level pinning≈ 0.1 eV above the VB maximum and using the accurately measured
photocurrent data for the CsOx/Ge(100) surface obtained in Ref. 39. The VB
maximum has been chosen as a common reference for a direct comparison of the
unstrained and strained case since, neglecting strain-effects on the CsOx/Ge(100)
interface formation, this allows drawing a single EV level valid for both cases.
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Fig. 2.6: (a) Schematization of the photoemission process. Electrons are excited from
VB to CB. In the GaAs case (dot-dashed CB profile) the work function Φ of
the cesiated surface is small enough to allow the emission of electrons from the
botton of the bulk CB. In case of Ge (continuous CB profile) this is not possible
due to its smaller gap. (b) Band structure of Ge around Γ for compressively
strained epilayer with strain ε = −1%. Biaxial compressive strain increases the
direct energy gap and removes the degeneracy between HH and LH states at Γ.
Arrows indicate transitions for hν = 1.26 eV.

The two arrows indicate allowed transitions from the HH and LH bands for
hν = 1.26 eV, the minimum photon energy giving reliable spin polarization
measurements. From Fig 2.6b it is clear that only VB to CB transitions away from
Γ can be probed by photoemission. Optical transitions at Γ have been probed
in similar Ge/SiGe MQW samples by absorption [28] and photoluminescence
[29] spectroscopy. Electron spin polarization spectra P(hν) from most of the
samples of Table 2.1 are collected in Fig. 2.7. All spectra present a maximum
at threshold and then decrease to zero for larger photon energies, as usual in
spin polarized photoemission from semiconductor photocathodes [4,7–13,20,59].
The polarization values from the strained layers are consistently larger than those
from the (unstrained) bulk-like sample for excitation energies below ≈ 1.6 eV
and above the 50% limit attainable in bulk semiconductors. This can be explained
considering that biaxial compressive strain lifts the degeneracy between HH-LH
states (see Fig. 2.6b) so that HH-CB transitions, populating only a given spin
channel, can be selectively excited without contribution from LH-CB transitions
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Fig. 2.7: Electron spin polarization as a function of the exciting photon energy from
activated epitaxial Ge thin films. The spectrum from the 1µm thick sample
(Ge/Si) is in good agreement with reported data from bulk Ge photocathodes
[20]. The maximum measured value, P= 62± 3%, is well above the 50% limit
of bulk systems. Typical statistical error is indicated by the vertical bar. Data
taken at T=120 K. Maximum RT values are P= 40±3% and P= 28±3% for the
strained and bulk-like samples, respectively.
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populating the opposite spin channel. In principle this should lead to a complete
polarization of CB electrons, i.e. P= 100%: polarizations approaching such
value have actually been observed in III-V strained heterostructures under NEA
conditions [11, 13]. In our case, even at the lowest photon energy (hν = 1.26 eV)
where Y is sufficiently high (> 5× 10−5) to assure reliable P measurements,
contributions from both HH and LH states are to be expected, as shown by the
arrows in Fig. 2.6b, resulting in a reduced P. A similar behavior has been reported
also in III-V strained films, where a polarization reduction from values above
80% at threshold to around 60% for photon energies ≈ 100 meV larger than the
gap have been observed [11, 13]. A polarization of the order of 30− 40%, much
smaller than the band-gap excitation value, has been predicted in strained/quantum
confined Ge structures for non resonant excitation involving both HH-CB and
LH-CB transitions [22]. Our results, with polarization values exceeding 60%,
well above the 50% limit attainable in bulk semiconductors, indicate that HH-CB
transitions predominantly contribute to the photoemitted signal. This suggests
that extremely highly polarized electrons can be produced in the CB minimum at
Γ also in strained Ge films by using resonant excitation. These electrons cannot
however exit the crystal, so that their spin polarization, possibly very high, is not
detectable by photoemission but could be revealed by different techniques, such as
polarized luminescence [1,2]. Polarized luminescence experiments from quantum
confined Ge nanostructures are presently being performed in our laboratories [60].
The effect of compressive strain on the photoelectron polarization is shown in Fig.
2.8, where P values at two different excitation energies, hν = 1.26 eV and 1.6
eV, are reported as a function of the strain ε present in our films, as measured
by HRXRD. The polarization at hν = 1.26 eV increases starting from the bulk
value measured in the 1µm thick film (ε = 0) to a maximum at around ε = 1%
and then saturates. In a naïve picture, a higher strain should lead to a higher
HH-LH splitting and in turn to a higher electron spin polarization. On the other
hand, it is known [61] that strain causes a strong intermixing between LH and
split-off (SO) states increasing the density of excited electrons with spin opposite
to those originating from the HH band and, as consequence, reducing P. Our
findings for the dependence of P on ε can then be explained as the results of the
competition between the above two mechanisms giving rise to opposite effects.
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Fig. 2.8: (Colour online) Evolution of the electron spin polarization as a function of
compressive strain at hν = 1.26 eV and 1.6 eV. The two dashed lines indicate
the corresponding P measured for the bulk-like Ge.

Finally, we note that in sample #8492 (with a Ge content in the VS x = 0.5),
the strain relaxation process is more effective and the measured strain level is
comparable with that of sample #8509 (x = 0.8). In this case, the photoemission
yield at threshold is reduced by roughly two orders of magnitude, most probably
due to the large number of defects formed during relaxation. In this situation
the electron polarization is not detectable because of the unbearable statistical
error even though the polarization measured at higher photon energies, where the
photoemission signal is stronger, is larger than the corresponding value in bulk
Ge.

2.4.4 Valence orbital mixing

Photoemission experiments on strained Ge crystals, performed through
Mott polarimetry, have a unique feature that distinguishes them among all the
other experimental techniques: it is possible to quantitatively estimate, under
proper assumptions that will be explained in the following, the degree of
hybridization between valence band states. Referring to Fig. 1.6 and recalling
the crystallographic geometry of the analyzed samples, we can argue that the
photoemitted electrons have a wave-vector parallel to the [001]-growth direction.
In this case the symmetry of the states involved in the transitions, which provides
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Fig. 2.9: Polarization and Quantum Yield vs. exciting photon energy at T = 120 K for
the Ge/Si0.31Ge0.69 sample (red dots and line), compared to the P of the thick
Ge (001) sample (black dots). The compressive strain induces a net maximum
P= 62% which is well above the theoretical limit for bulk structures, i.e. P=
50%. Dots represent the experimental points, the red line is obtained through
polynomial fitting.
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a net P in the conduction band, are the same as in the bulk Ge, as one can see
in Fig. 1.6 along the Γ → Z direction. Thus along the Λ line the states at
the bottom of the conduction band will have Λ2′

7 -symmetry, whereas HH, LH
and SO states of valence band will belong to Λ5

6, Λ5
7 and Λ2′

7 representations
respectively. Due to the fact that the the uncertainty on the vacuum level EV

is greater than the calculated energy difference between HH and LH states at
the Γ point, it is reasonable to argue that, similarly to the case of bulk Ge, the
photoemission process at hν = 1.26 eV involves both the Λ5

6 (HH) and Λ5
7 (LH)

symmetry states. Moreover, we can neglect spin relaxation mechanisms during
the transport to the surface of the photoemitted electrons when the excitation
energy is hν = 1.26 eV; such a “ballistic” approximation is still reliable because
the time scale of depolarization mechanisms (τ = 10−11 s) is much greater than
the characteristic time scale of an excited electron in the conduction band before
being emitted in vacuum [2, p.342-343].

Unlike bulk Ge, the in-plane compressive strain increases the energy
difference out of the Γ point between HH and LH states. Thus the approximation
of quasi-degeneration between these two bands, which is reliable in the proximity
of the Γ point in bulk Ge case, cannot be applied in strained Ge layers so
that electrons from HH and LH states have considerably different energies
when promoted to the conduction band and, consequently, different trasmission
coefficients T (see Fig. 2.6b). At this purpose, we can approximate the conduction
band as a well, of which the potential V0 is set by the energy position of the
vacuum level EV . Due to the fact that the position of EV cannot be measured
precisely, we take into account the extreme case whithin our experimental error
and we set EV = 1.1 eV. Consequently the height of the well potential, from the
bottom of the conduction band, is V0 ≈ 90 meV. Then we calculate through
standard formula the trasmission coefficient T [62]: when excited with hν =

1.26 eV photon energy, electrons from HH and LH bands are promoted in the
conduction band with ≈ 90 meV and ≈ 20 meV respectively above EV and
the ratio between the two transmission coefficients is THH /TLH ≈ 1.15. Thus
the introduction of the mixing coefficient between LH and SO bands found by
Allenspach et al. for bulk Ge [20], allows a maximum electron spin polarization
P≈ 55%. Evidently the result of such a “barrier energy filtering” is not sufficient
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alone to explain the experimental result of Fig. 2.9: indeed we shall see that,
considering an enhanced strain-related LH-SO orbital mixing, it is possible to
obtain the experimental polarization.

Bearing in mind these fundamental assumptions, we focus our attention on
the Ge/Si0.31Ge0.69 sample of Fig. 2.9: in the proximity of the Γ point we can
introduce the treatment developed in Ref. 20 so that the hybridization between
valence band states with different orbital symmetry results:

Λ
5
6→ Λ

5
6

Λ
5
7→ Λ

5,2′
7

Λ
2′
7 → Λ

2′,5
7 . (2.1)

If we consider the non-hybridized state of Λ5
7 symmetry (in the following we

shall neglect transition at higher energy) the relative weight of the two different
characters in the hybridized wave-functions basically depends on the temperature
T, the effective strain degree ε|| of the system and the wave-vector k involved in
the transitions so that:

Λ
5,2′
7 = α

(
T,ε||,k

)
Λ

5
7 +β

(
T,ε||,k

)
Λ

2′
7 . (2.2)

Considering the experimental data of Fig. 2.9, the maximum P is obtained through
the simultaneous transitions from the initial states of Λ5

6 and Λ
5,2′
7 ; recalling that

transitions Λ2′
7 → Λ2′

7 are forbidden, the intensity related to this dipole transition
is removed so that:

P(Λ) =
1−1· |α

(
T,ε||,k

)
|2

1+ |α
(
T,ε||,k

)
|2

, (2.3)

|α
(
T,ε||,k

)
|2 + |β

(
T,ε||,k

)
|2 = 1. (2.4)

Thus, considering the experimental value P= 62%, the temperature T = 120
K, a strain coefficient ε|| =−0.96% and a wave-vector k in the proximity of the Γ

point we have:
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|α|= 0.48,

|β|= 0.88. (2.5)

In this case we have experimentally determined the orbital mixing coefficients
between states of Λ5

7 and Λ2′
7 -symmetry along the Λ line of compressively strained

Ge; hereby it is really interesting to note that the Λ2′
7 character is considerably

increased, compared to the case of ∆ line in bulk Ge, where |β| ≈ 0.82 [20]. This
result can be seemingly considered in contrast with the hybridization coefficient
at the Γ point of the Brillouin zone for the tetragonal D4h group: in fact, direct
transitions from Γ

+
6 (HH) and Γ

+
7 (LH) symmetry states to the bottom of the

conduction band provide in any case a P equal to 50% and mixing coefficient
between LH and SO states at k = 0 have to be necessarily equal to those found
by Allenspach et al. [20]; neverthless in compressively strained Ge the LH
band shows an anisotropic dispersion so that along the growth direction (Λ line
according to Fig. 1.6) the effective mass heavily decreases in the proximity of
the Γ point [63, p. 99], [44–48]. A pictorial behaviour of the strain effect on the
valence band around the Γ point can be also appreciated in Fig. 2.10. From
a symmetry point of view, it is reasonable to argue that in this case the Λ2′

7 -
character of the band increases, so that the hybridization coefficient is slightly
enhanced moving away from Γ, to diminish towards the Z point, where the two
bands must resemble the bulk-like behaviour. This non-monotonic behaviour of
the hybridization between Λ5

7 and Λ2′
7 symmetry states, reasonably provides the

polarization value, shown in Fig. 2.9.
Eventually, we can also take into account the effect due to the barrier filtering

in the conduction band: in this case Eq. 2.3 is slightly modified so that we obtain
α′ = 0.52 and β′ = 0.85, thus showing that the SO-character in LH states is still
greater than the one found for bulk Ge in Ref. 20.

We move now to analyze the behaviour of sample 8509 (see Table 2.1): the
maximum P is still consistently higher with respect to the bulk sample, but it
is lower than the one measured for sample 8493. Indeed the calculated energy
difference between HH and LH band at the Γ point is ∆E =EHH-ELH = 43 meV
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FIGURE 3.13. Effect nf strain on Ihe bands of a semiconductor, showing the splittins of the 
valence band; the band gap i s  much reduced. The active layer has a smaller lattice constant in ( a ) .  
is unstrained in (b) to show the usual band structure. and has a larger lattice constant in (c ) .  nl~ich 
applies, for example, to InGaAs on GaAs. The wave vector k is in the plane normal to si-owth. 
which takes place along z. [Redrawn from O'Reilly (1989).] 

The distortion of the strained layer in Figure 3.12(b) reduces its synlinetry to tetras- 
onal (fourfold rotational symmetry about the axis of growth). The most significant 
electronic effect of the strain is to change the energy of the y= orbital. aligned alonf 
the direction of growth, with respect to that of p,, and p,., which remain degenerate. 

The effect of compressiori of the lattice in the plane of the junction is illustrated 
in Figure 3.13(c). The energy of 11, l'rllls, so the top valence band arises ft'c11n I ) , .  and 
p,.. This is heavy along k ,  but has a light component for wave vectors k i l l  the .\- 1.- 

plane (recall that K = (k, k , ) ) .  The band i s  thet.efore ru~isotropio and tilotion it1 t l~c 
plane of the junction is governed by a light Inass, improving the n~obility uf holes. 
The band from p, lies farther from the band gap; it is light for k ,  and heavy for k. 
Unfortunately the picture is colnplicated by spin-orbit coupling but this explanatioti 
accounts for the main features of Figure 3.13. The opposite ordering of the bands IS 
seen in Figure 3.13(a), where the active layer has a smaller natural lattice constant. 
An example is Si on Si-Ge. 

The bands in a strained qrtantu~n well art. affected hotli by tlic strain iirid b!. tlic 

confinement. Thcy i.oducc tlic syni~iictry in tlic sanic way. i111~1 wc shall scc i r ~  Seek- 
tion 10.3 that confinement has mrtch the same effect as the strain in Figure 3 . 1 3 ~ ) .  
The two effects add cooperatively in a strained lnyei- of InGilAs between Ga.4~.  a t~d  
pull the top valence bands farther apart. This in turn extends the I-arise of k for \vhich 

Fig. 2.10: Effect of the strain on the bands of semiconductors around the Γ point for: (a)
tensile strain; (b) non strain and (c) compressive strain, which is the proper
case for thin Ge films grown on Si1−xGex VS. The compressive strain case
(c) shows that LH band has an increased dispersion in the growth direction kz,
which corresponds to Λ line in Fig. 1.6), with respect to the plane where biaxial
compressive strain acts (k|| or ∆ line according to Fig. 1.6) [63].

[61]. For Ge/Si0.2Ge0.8 structure, the correction given by the possible presence
of the barrier filtering in conduction band is negligible, due to the fact that the
direct energy gap Ed diminishes proportionally to the actual degree of the strain
but the position of the vacuum level EV can always be set at ≈ 1.1 eV. Then with
the same photon energy hν = 1.26 eV, we can promote electrons which are not
sensibly affected by the presence of a Positive Electron Affinity (PEA). Thus we
can try to correlate the hybridization coefficient between Λ5

7 and Λ2′
7 symmetry

states as function of the strain degree with the same calculation performed in Eqs.
2.4; then we obtain the following results:

|α|= 0.57,

|β|= 0.82. (2.6)

again for the temperature T = 120 K, an effective strain coefficient ε|| =−0.82%
and a wave-vector k in the proximity of the Γ point. Indeed, we can argue that the
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hybridization between Λ5
7 and Λ2′

7 -symmetry states out of the Γ point decreases
for a lower strain degree, as expected. Evidently, at this stage it is difficult to
correctly determine the behaviour of the orbital mixing coefficient as function of
the effective strain: in fact, plastic relaxations do not allow to arbitrarly enhance
the effect of the compressive strain and moreover the range of temperature of the
measurements above does not provide to directly link these results to those of
Ref. 20, being P curves as function of the temperature still lacking for IV group
semiconductors.

In conclusion, experimental data on the set of analyzed samples have shown
the role of the compressive strain on the Electron Spin Polarization: due to the
PEA conditions, the photoemission process takes place out of the Γ point, where
the orbital mixing between valence states of Λ5

7 and Λ2′
7 symmetry is strong.

The anisotropic dispersion of the LH band in the growth direction makes the
interaction between these states higher along the Λ line, even though still in
the proximity of Γ point, thus increasing the Λ2′

7 - character of Λ
5,2′
7 states: as a

consequence the electron spin polarization exceeds the value of 50% even if both
Λ5

6 and Λ
5,2′
7 states are taken into account.



3. SPIN POLARIZED PHOTO-LUMINESCENCE

The following section is devoted to the discussion and analysis of Spin
Polarized Photo-Luminescence (SPPL) measurements; indeed this experimental
technique can be considered complementary to SPP technique because it allows
to detect the electron spin polarization at some points of the Brillouin zone, which
are forbidden for Spin Polarized Photoemission. This is especially a crucial
advantage when taking into account Ge-based heterostructure where, for example,
transition from the valence band to the indirect gap minimum L and the direct gap
one Γ, cannot never be detected due to the persistent PEA condition (see Sec. 2.3).

Another important aspect is related to the nature of Photo-Luminescence,
which is a photon in-photon out process: as explained in Sec. 2, the photoemission
time scale is short enough to neglect possible spin relaxation mechanisms in IV
group heterostructures: a SPP spectrum detects only the spin polarization of the
electrons which are emitted into the vacuum, being excited at some distance
from the Γ point. All the electrons, promoted to the conduction band, which
undergo some spin relaxation processes, are eventually scattered to the direct or
indirect minimum of the conduction band, thus under the vacuum level. All these
information can be provided by SPPL measurements, which detects the P from
the recombination of the electrons with holes in the valence band, taking into
accout all the spin relaxation mechanisms which involve polarized electrons and
also polarized holes. Indeed the knowledge of these phenomena is essential in
order to engine IV group-based spintronics devices [64–68]

3.1 Fundamentals of SPPL technique

Spin Polarized Photo-Luminescence relies on the fact that the light, emitted
during the recombination between excited electrons in conduction band and holes
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Fig. 3.1: Optical set-up for Spin Polarized Photo-Luminescence measurements: the
exciting light of energy hν0 is first circularly polarized by λ

4 retarder and then
reflected towards the sample by a beam splitter (BS); three mirrors (M) collect
the Luminescence light towards the second λ

4 retarder, then to the polarized (P)
and finally to the InGaAs detector (D).

in the valence band, has a circular polarization degree, which is proportional to
the spin polarization of the carriers inside the solid [69]. This basically means that
it is possible to deduce the spin-polarization of the carriers through the analysis of
the circular polarization of the Luminescence light.

Photoluminescence (PL) measurements has been performed in a back-
scattering geometry at 15 K in a closed cycle cryostat. Fig. 3.1 shows the optical
set-up which has been employed: a continuous wave (cw) QD laser operating at
hν0 = 1 eV or a cw Nd-YVO4 laser, operating at hν0 = 1.16 eV, were coupled
to an optical retarder and used as circularly polarized excitation sources. On the
sample, the laser beam has been focused to a spot size of about 100 µm, resulting
in an excitation density in the range of 9 ·102−3·103 W/cm2. The luminescence
polarization has been then probed by a quarter-wave plate followed by a linear
polarizer, a long pass filter for the laser line rejection and a spectrometer having
a linear dispersion of about 32 nm/mm and equipped with a thermoelectrically-
cooled InGaAs array detector. As a check, no circular polarization of the
luminescence signal has been detected when exciting with linearly polarized light.

3.2 Experimental results

Two types of samples have been investigated: a Ga doped (p-type) Ge(001)
wafer, with doping concentration of N= 3.6·1018 cm−3 and a Ge/Si0.15Ge0.85

Multiple Quantum Well (MQW) heterostructure deposited on Si(100). The
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deposition of the Ge/Si0.15Ge0.85 MQWs has been performed by low-energy
plasma-enhanced CVD (LEPECVD). The composition and thickness of the QW
and barrier layers have been chosen in such a way that the compressive force
acting on the Ge QW is perfectly balanced by the tensile force acting on the
Si0.15Ge0.85 barriers. In this way, it is possible to deposit several Ge QWs all
featuring the same level of compressive strain, which in this case is ε|| = −0.4,
without inducing any plastic relaxation. Despite the different compressive strain
degree, the morphological features of this sample are the same as the MQW
sample investigated by SPP, so that for further details the reader can refer to Sec.
2.1.

Let us begin the analysis from the p-doped bulk Ge sample, of which the
band structure has already been shown in Fig. 1.2 as well as all the relevant
transitions at the Γ point (see Fig. 1.3); in the frame of spherical approximation,
the subsystem of interest (with total angular momentum J = 3/2) is suitably
described by the effective Luttinger Hamiltonian whose good quantum numbers
are the elicity λ and J [70]; on the basis of the helicity operator λ̂, for every wave-
vector k, this kinetic Hamiltonian provides a Kramers doublet with λ = ±3/2
(HH) and λ = ±1/2 (LH) states, conveniently chosen along the propagation
direction of the exciting light beam. Conduction band (CB) states at the Γ

point are s-like and their total angular momentum is J = 1/2 with projection
Jz = ±1/2. As already explained in Sec. 1.1, the maximum theoretical electron
spin polarization right after excitation is Ps = P0

s = 50%. Here Ps is defined as
Ps = (N+−N−)/(N+−N−), where N+ (N−) is the number of electrons with
spin up (down).

Spin relaxation mechanisms tend to equalize spin up and spin down
populations; therefore a steady state condition is reached with Ps ≤ P0

s . It should
be noted that in our Ge bulk sample the overall hole concentration is not affected
by optical excitation of carriers, since, due to the high p-doping level, a Fermi
sea of holes with both spins is present no matter the helicity of the excitation.
Above all, spin relaxation of holes in bulk material is expected to be much more
rapid than for electrons, because of the strong mixing of the HH and LH valence
bands [1]. Therefore, even at low temperatures, the photo-created electrons will
recombine with non-polarized equilibrium holes.
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The degree of the circular polarization of the emitted light, Pc, is defined as
Pc = (I+− I−)/(I+− I−), where I± is the intensity of the Photo-Luminescence
signal having circular polarization σ±. Pc is related to the spin polarization
Ps through the same matrix elements valid for the absorption process (see Fig.
1.3). Therefore, if no electron spin relaxation occurs and assuming non-polarized
holes, the polarization degree of the emitted light is the square of the electron
spin polarization in the CB: P0

c =
(
P0

s
)2

= 25% [2, Ch. 2]. Lower values of
Pc will be observed when electron spin relaxation mechanism are not negligible.
For photoexcitation with circularly polarized light at hν0 ≈ 1 eV, i.e. with
energy between Ed and ESO where ESO is the topmost split-off band energy, the
luminescence spectrum in Fig. 3.2a, analyzed for σ+ (blue curve) and σ− (orange
curve) polarizations, reveals a significant polarization degree Pc ≈ 23%. This
result demonstrates an electron spin polarization close to its maximum, therefore
suggesting that the electron lifetime τ is much shorter than the spin relaxation
time, τe

s , being Pc = P0
c /(1+ τ/τe

s) [69]. These findings are in good agreement
with reports on direct gap semiconductors such as GaAs [2, Ch. 2] and GaSb [69].
Evidently the simple atomic-like model reported in Fig. 1.3 is not accurate for
excitation energies higher than Ed , since for k 6= 0 the identification between
HH (LH) and Jz = ±3/2 (Jz = ±1/2) states is no longer valid. In addition,
Split-Off states can also be excited for photon energies higher than Eg + ESO,
giving an initial spin polarization lower than 50%. As already demonstrated in
bulk GaAs [2, Ch. 2] and predicted in Ge [24], by increasing the excitation
energy above the Split-Off threshold, i.e. from hν0 = 1 eV to hν0 = 1.165 eV,
we observed a decrease of the luminescence polarization to ≈ 10%, as shown in
Fig. 3.2b, which can be explained in terms of the reduced initial spin polarization
and/or spin relaxation during electron thermalization [2, Ch. 2]. An accurate
determination of the spin-lifetime of electrons distributed within the Γ valley is not
straightforward for both the above excitations, due to the lack of data concerning
lifetimes for transitions across the direct band-gap of Ge. Nevertheless, we
can provide a lower-bound estimate for the spin depolarization time in p-Ge as
follows: the observed luminescence from the direct gap can be understood as
a result of the recombination of holes with electrons, directly photo-generated
within the Γ valley by the laser excitation. The lifetime of such non thermalized
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Fig. 3.2: Spin Polarized Photo-Luminescence spectra at T = 15 K of p-doped bulk Ge
with two different excitation energies: (a) hν0 = 1 eV and hν0 = 1.165 eV.
The incident exciting light is right-circularly polarized and ESO represents the
topmost split-off band energy.
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Fig. 3.3: 8-band k · p calculation of the conduction and valence band edge profiles for
a Ge well sandwiched in a larger gap barrier material, such as Si0.25Ge0.85.
Energy levels for the confined states at the Γ point in the conduction band (cΓn)
and in the valence band, i.e. heavy hole (HHn) and light hole (LHn) states,
are reported along with the wavefunction square amplitudes. Dipole allowed
transitions associated with the direct-gap electrons (Γ7c) and holes (Γ8v), and
their relative energies are also indicated by arrows.

electrons is dominated by the fast Γ− L scattering channel. Such mechanism
takes place on a 230 fs time scale [71], thus providing a lower-bound estimate
for the spin decoherence time. Now let us focus on the MQW sample: Fig. 3.3
summarizes the effects of compressive strain and quantum confinement on the
relevant energy levels of Ge as obtained by 8-bands k · p modelling [72]. As also
explained in Sec. 1.2, at the top of the valence band the degeneracy between
HH and LH states is lifted with the HH laying higher in energy than the LH. At
the Γ point the simplified atomic model of electric dipole transition CΓ1-HH1
with circularly polarized light (Fig. 1.3) predicts P = 100% and tight-binding
calculations [22] confirm this picture for Ge QWs, giving P0

S ≈ 96% for the CΓ1-
HH1 transition and values between 28% and 34% away from quantum confined
states resonances.

Fig. 3.4 shows the PL spectrum of a Ge MQW structure containing 100
quantum wells 5 nm wide, and 10 nm thick barriers made of Si0.15Ge0.85. It
should be noted that compared to the emission in bulk Ge, MQW luminescence
is blue-shifted because of the combined effect of strain and confinement. As
a consequence, due to the close proximity of emission and excitation energies,
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Fig. 3.4: PL emission bands of Ge/SiGe MWQs due to the cΓ1-HH1 (≈ 1.03 eV), cΓ1-
LH1 (≈ 1.06 eV), cL1-HH1 zero phonon (≈ 0.8 eV) and longitudinal acoustic
phonon mediated transitions (≈ 0.77 eV), measured at T = 15 K and under 1.165
eV excitation energy.

this sample was investigated only by means of the 1.165 eV laser line. The PL
spectrum features can be divided in two groups. The low-energy PL doublet,
at ≈ 0.8 eV, can be associated with transitions across the indirect band-gap. In
particular, the high energy line is ascribed to the cL1-HH1 recombination or no-
phonon emission (NP), while the low energy line of the doublet is the transition
mediated by longitudinal acoustic phonons (LA) [28]. It should be noted that,
in contrast to the Ge bulk sample, for the MQW sample we have access to the
indirect transitions, even though the LA phonon replica might still be affected
by the cut-off in sensitivity of the InGaAs detector. The emission band at high
energy, ≈ 1.03 eV, is due to the direct gap cΓ1-HH1 transition between the
first electron state in the CB and the first heavy-hole state in VB [28]. By
considering the energy level diagram (see Fig. 3.3) and the relative strength of
the matrix elements for HH and LH transitions, we can attribute the feature at
≈ 1.06 eV to the cΓ1-LH1 excitonic recombination, superimposed onto the broad
high energy tail of the main cΓ1-HH1 peak. Fig. 3.5 shows the σ+ and σ−

luminescence intensity under non-resonant σ− excitation at hν0 = 1.165 eV. The
associated polarization degree, Pc, of the cΓ1-HH1 emission is Pc = 32%± 5%,
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well above the maximum theoretical limit of Pc = 25% achievable in bulk Ge.
As already mentioned, with a photon energy of 1.165 eV we excite both the cΓ1-
HH1 and cΓ1-LH1 transitions. Under this condition and according to calculations
in Ref. 22, the initial spin polarization Ps, right after absorption is expected to
be comprised between Ps = 28−34%, while the subsequent circular polarization
for light emission at the cΓ1-HH1 transition is about 96% of Ps, finally yielding
an expected polarization degree of the luminescence in agreement with our
experimental results. Substantially higher values of Pc could be hence achieved
for the limiting case of cΓ1-HH1 resonant- excitation. Such finding demonstrates
the effectiveness of strain and quantum confinement effects for the optical control
of spin injection in SiGe heterostructures. Heteroepitaxial growth of Ge MQWs
therefore provides an effective means to engineer optical injection of spins even in
group IV materials, traditionally considered not suitable for optical studies of spin
phenomena. The consistency between our spin resolved PL data and calculations
concerning electron polarization on Ge/SiGe MQWs of Ref. 22 suggests that after
optical orientation electron depolarization mechanisms are negligible even for
non-resonant excitation and that heavy holes are equally distributed between their
m j sublevels, i.e. they are completely unpolarized. In particular, the mechanisms
leading to the same |3/2,−3/2〉 and |3/2,3/2〉 hole populations take place on
a time scale which is faster than the electron spin relaxation time despite the
decrease in the valence band mixing due to confinement effects. Remarkably, in
the cΓ1-LH1 recombination channel, a clear σ− contribution is reported, while
σ+ emission is found to be almost missing. By subtracting the broad high
energy tail of the HH1 transition we can estimate a polarization degree as high as
≈ 86%± 8%: this result strongly suggests that LH are still partially polarized at
the moment of electron-hole recombination. After σ− excitation only m j =+1/2
light holes are created, and since the weak cΓ1-LH1 −σ+ emission is related
to ms = +1/2-spin electrons recombining with m j = −1/2 light holes, we must
argue that the latter are not sizably present in the sample. Spin polarized PL
measurements therefore indicate that photo-generated |3/2,+1/2〉 holes do not
loose their spin orientation, but either recombine radiatively with |1/2,−1/2〉
electrons, or thermalize their momentum and energy to the HH levels, eventually
to the |3/2,−3/2〉 states via preserving parity scattering events [73]. In this
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Fig. 3.5: Spin Polarized Photo-Luminescence (SPPL) spectra of Ge/SiGe MQWs,

measured at T = 15 K and under 1.165 eV excitation energy having a right-hand
circular polarization (σ−). Direct and indirect gap features of the spectrum are
resolved for left-hand, σ− (blue), and right-hand σ+ (red) circular polarization.

way LH can indeed contribute to counterbalance the |3/2,3/2〉 hole population
produced during the absorption. It is noteworthy that due to the aforementioned
cooling process towards HH states at lower energy, which is mainly mediated by
acoustic phonon scattering, the lifetime of the LH exciton is expected to be shorter
than that of the HH exciton. The different polarization for the cΓ1-LH1 and cΓ1-
HH1 excitons suggests that the observed spin polarization is determined by the
single particle lifetime. Noticeably, in Ge the spin relaxation time of holes, τh

sh, has
to be compared with a mechanism completely absent in III-V compounds, namely
electron scattering to the side valleys, τe. This phenomenon may have a significant
impact on the spin dynamics, since it reduces the permanence of electrons in
the Γ region to hundreds of fs and therefore limits the exciton lifetimes [73, 74].
Experimental data for τh

sh are not yet available even for bulk Ge, but are expected
to be in the 0.1-10 ps range [26,75]. These results suggest that the time needed to
equalize the HH population on their m j sublevels is shorter than τe ≈ 500 fs [73],
whereas the spin relaxation time for LH is larger or at least comparable with the
Γ-electron lifetime.
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After direct gap excitation at hν0 = 1.165 eV, the decay of photo-generated
electrons towards the Γ-valley band edge competes with the Γ-L depopulation,
which leads to the NP and phonon replica LA emissions. Noticeably, also such
indirect transitions are polarized, in particular the NP band at≈ 792 meV, recorded
for both σ+ and σ− polarizations reveals a net light polarization degree of about
9% and the LA band displays a polarization degree of about 8%. This is a
clear indication that the electron-phonon interaction, responsible for L-valley
population, and the subsequent momentum-assisted recombination do not lead
to a complete lost of the spin orientation. In this case the evaluation of the
electron spin polarization from the measured Pcirc is much more complicated than
in the case of direct transitions, due to the mixed s-p-d nature of the L state [22]
and the required momentum transfer. Only very recently such problem has been
addressed from a theoretical point of view for phonon assisted transitions in bulk
Si [23]. Corresponding calculations are not available for Ge, and, in particular, are
missing for the zero-phonon line, which is allowed by small deviations from a non
cubic environment associated to interface roughness and strain. The comparison
of experimental circular polarization values with future theoretical studies of zero-
phonon optical transitions is therefore mandatory to gather access to the spin
physics of low dimensional structures based on indirect band-gap materials.



Part II

PROBABILITY-CURRENT AND SPIN-CURRENT IN

PRESENCE OF SPIN-ORBIT INTERACTION
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3.3 Introduction

The following work is focussed on transport phenomena in presence of
Spin- Orbit Interaction (SOI) [76]; evidently semiconductors play a key role
in this matter because in this case it is possible to use an approach, close
to atomic physics, which relies on the exact knowledge of the electron wave-
function. In particular III-V semiconductor compounds are paradigmatic systems
to study spin-related transport properties: in fact they do not have bulk inversion
asymmetry (Td-symmetry point group) so that the spin degeneracy is removed
by the well known D’yakonov-Perel (DP) field, which has a cubic dependence
versus the wave-vector k [77, 78]. Moreover, in 2D heterostructures, a linear
Rashba field [79, p. 178] arises, due to the structural inversion asymmetry
[80, 81]. Basically this means that in such compounds, when low dimensional
heterostructures are taken into account, the two main SOI terms can be studied so
that III-V semiconductor compounds, like GaAs, result really appealing to study
spin-related properties of charge particles.

Evidently the two relevant quantities for transport phenomena are the
probability- current and the spin-current; the probability current is a fundamental
concept in quantum mechanics, which connects the wave-like description of a
quasi-particle to the notion of transport current. When a general Schrödinger
problem is considered, the Hamiltonian is

Ĥ0 =
p̂2

2m
+U(r) , (3.1)

where the real potential U(r) is periodic in a crystalline solid and m is the free-
electron mass; in this case one is led to the usual definition of free-electron current
probability [82, p. 238]:

J f [ψ] = Re
[

ψ
∗ p̂

m
ψ

]
=

~
m

Im [ψ∗∇ψ] . (3.2)

However, in condensed-matter systems in the presence of Spin-Orbit Interaction
(SOI), the potential is no longer real so that a redefinition of this quantity is
mandatory. A debated example of this subtle point is provided by semiconductors-
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based systems, whose proper treatment requires consideration of the Hamiltonian

Ĥ = Ĥ0 + ĤSO (3.3)

with
ĤSO =

~
4m2c2 (∇U× p̂) · σ̂. (3.4)

Due to the fact that SOI terms in the Hamiltonian have a dependence with respect
to the power of the momentum operator p̂, it is reasonable to express the full
Hamiltonian, involving SOI terms, as an effective Hamiltonian which consists of
momentum-operator p̂-power series expansion, as already shown by Hoai Nguyen
et al. [83]: indeed, beside the kinetic energy, quadratic in p̂, the SOI provides
leading terms that are linear and cubic in p̂, known respectively as Rashba [79]
and D’yakonov-Perel (DP) [77, 78] terms. Then, since the SOI potential is non
real, a more general definition of the probability current J[ψ] has necessarily to be
taken into account. Considering interactions that include higher-order polynomial
terms in the Hamiltonian, we have to deal with an effective Hamiltonian of order
n.

Furthermore, an open question, strictly linked to the one above, concerns the
definition of spin current (SC). Indeed, in semiconductor physics, that provides
paradigmatic systems for spintronics, it is known that the SC standard definition,
used by many authors [84–89], can be suitably applied to two dimensional
(2D) systems with Rashba SOI, but fails to describe spin-dependent transport
phenomena in bulk cubic semiconductors, where SOI induces a DP term in the
conduction band. The existence of extra-current terms was also pointed out in
Ref. 90. Drouhin et al. [91] have shown that a redefinition of SC is mandatory
to obtain a unified treatment, enlightening the fact that a properly-symmetrized
spin-current operator Ĵ↑(↓)[ψ], where ↑ (↓) refers to up (down) spin channel, gives
unexpected results when applied to tunneling through evanescent states in GaAs
barriers.

As pointed out by Rashba in Ref. 85, there are still concerns relying on the
fact that a consistent theory of spin transport currents has not been formulated yet.
From a general point of view, it means that we cannot immediately approach such
a topic in terms of non equilibrium thermodynamics. In fact, a difficulty relies
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on the definition of system in order to formulate relevant balance equations and
also on the boundary terms which should possibly be included in the effective
Hamiltonian. Recently, Shi et al. [92] have proposed an alternative spin-current
operator, satisfying the continuity equation, that allegedly supports important
conclusions concerning conservation of spin currents [93–95], but which appears
to rely on non-explicit assumptions (see Sec. 4).

The inclusion of SOI in the Hamiltonian of a system has direct and practical
consequences in heterostructures, where a consistent analysis of the tunneling
phenomena is required. The pragmatic BenDaniel-Duke (BDD) approach [96],
that perfectly works when dealing with quadratic Hamiltonians under effective-
mass approximation, cannot be straightforwardly extended because it is not
always possible to ensure both the continuity of the envelope function and the
conservation of the probability current, which is mandatory under steady-state
conditions. Then it is necessary to revisit both the probability-current expression
and the boundary conditions. This is in line with the ideas of Harrison [97].

In this chapter, a systematic construction of the probability-current operator Ĵ
is presented, which is based on an effective Hamiltonian written as a p̂-power
series expansion. The relation between the velocity operator and the current
operator, evidencing the simple structure of the extra terms will be analyzed
to yield easy and compact calculations whereas explicit treatments in particular
cases resulted in lengthy calculations [90]. This novel current operator can be
subsequently used to build the SC operators according to the procedure described
in Ref. 91. Then, the proper of an hereostructure interface is studied, in order
to introduce proper matching conditions at the boundaries, which generalize
the BDD procedure, the simplest efficient way to deal with semiconductor
heterostructures. Finally, this method is applied on three examples: the case of
a quadratic Hamiltonian, where we recover the usual situation (continuity of the
envelope function and of the velocity), the case where a Rashba term is added as
a perturbation to the BDD Hamiltonian (there we find that the envelope function
is continuous, but its derivative is discontinuous), and the case where a cubic DP
term is added to the BDD Hamiltonian (where we prove that the envelope function
cannot be continuous).

The layout of the chapter is as follows: Sec. 4 is devoted to a general
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construction of current operators and a derivation of local properties. In Sec.
5, a general Hamiltonian Ĥ(n) is introduced as nth-degree homogenous function
of momentum-operator coordinates with the subsequent derivation of the velocity
operator; moreover it is shown that a proper symmetrization yields the Hermitian
current operator Ĵ. Sec. 5.4, boundary conditions which are suitable to deal
with heterostructures, are proposed and in Sec. 5.5, they are applied to electron
tunneling through a [110]-oriented GaAs barrier. Finally, in Sec. 5.6, the problem
of the spin-current definition will be taken into accout in order to show how
to extend the construction procedure to the spin current operators. For further
information the reader can refer to Ref. 76, 98.



4. GENERAL DEFINITION OF CURRENT OPERATORS

A difficulty, that arises when a current operator is taken into account, relies on
the correct definition of the system and of its boundaries: in fact, considering the
density ρ of a physical quantity, we need to satisfy the continuity equation of J,
defining a source term G, so that:

∂ρ

∂t
+∇ ·J = G. (4.1)

As pointed out in Ref. 92, the continuity of J can be ensured by introducing a
general source term G, as in Eq. 4.1, but the source term is not uniquely defined
and this leads to possible confusion when considering the conservation laws in
terms of non-equilibrium thermodynamic equations. In fact, a thermodynamic
model only based on the continuity equation Eq. 4.1 cannot take into account the
exchange of energy e with the environment introduced by the current generator
and the spin-orbit interaction. Indeed, the consequence of the Gibbs equation

de
dt

= T
∂s
∂t

+µ
∂ρ

∂t
(4.2)

where s is the entropy, T the temperature, and µ is the chemical potential, is
that the continuity equation of the density of carriers ρ is necessarily determined
by the power dissipated at the boundaries. At zero temperature, the source
term is equal to the power dissipated divided by the chemical potential ∂ρ/∂t =

(1/µ)de/dt. This is the reason why the decomposition between the divergence
term and the source term G cannot be unique without specifying the boundary
conditions. In any case, we first need to state clearly the local properties of
a current operator, postponing the analysis of its global properties. For this
purpose, we consider a linear operator Â that does not explicitly depend on
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time and acts over a generic state ψ. In the following we adopt the notation(
Â
)
=
(

ψ

∣∣∣Âψ

)
= ψ†Âψ used in Ref. 83. The general Schrödinger problem

reads:
i~

∂

∂t
ψ = Ĥ ψ (4.3)

where Ĥ may be any Hamiltonian. For example Ĥ may be equal to Ĥ (defined
in Eq. 3.3) or to Ĥe f f (defined below in Eq. 5.1). We explicitly develop the
derivative of Â with respect to time:

∂

∂t

(
Â
)
=

∂

∂t

(
ψ

†Âψ

)
=

∂

∂t

(
ψ

†
)

Âψ+ψ
†Â
(

∂

∂t
ψ

)
(4.4)

and with the help of Eq. 4.3 we obtain:

∂

∂t

(
Â
)
=− 1

i~

(
Ĥ ψ

)†
Âψ+

1
i~

ψ
†Â
(

Ĥ ψ

)
=

1
i~

[
ψ

† ÂĤ ψ−
(

Ĥ ψ

)†
Âψ

]
.

(4.5)
If Â is an Hermitian matrix (the elements of which are complex numbers, not
differential operators) (

Ĥ ψ

)†
Âψ =

(
ψ

† ÂĤ ψ

)∗
, (4.6)

so that we can rewrite Eq. 4.5 in a more suitable way that we refer to as the local
form of Ehrenfest theorem:

∂

∂t

(
Â
)
=

2
~

Im
(

ψ
† ÂĤ ψ

)
. (4.7)

The integration over the whole space leads to the well known Ehrenfest’s theorem,
whose global form is valid for any (possibly differential) Hermitian operator Â:

∂

∂t

〈
Â
〉
=

1
i~

[〈
ψ

∣∣∣ÂĤ
∣∣∣ψ〉−〈Ĥ ψ

∣∣∣Â∣∣∣ψ〉]= 1
i~

〈
ψ

∣∣∣[Â,Ĥ ]∣∣∣ψ〉 . (4.8)

We can write

∂

∂t

(
Â
)
=

1
~

Im
(

ψ
†
{

Â,Ĥ
}

ψ

)
+

1
~

Im
(

ψ
†
[
Â,Ĥ

]
ψ

)
(4.9)
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with
{

â, b̂
}
= â b̂+ b̂ â, and, by integration over the whole space, we get

∫
d3rIm

(
ψ

†
{

Â,Ĥ
}

ψ

)
= 0. (4.10)

The time derivative of
(

Â
)

is composed of two parts, concerning two different
physical processes: we respectively recognize in Eq. 4.9 the divergence of the
current and the source term G associated to Â

∇ ·JA =− 1
~

Im
(

ψ
†
{

Â,Ĥ
}

ψ

)
=− 1

~
Im
(

ψ
†
{

Â,Ĥ −U
}

ψ

)
, (4.11)

where any real potential U vanishes when taking the imaginary part of the
anticommutator, and

G =
1
~

Im
(

ψ
†
[
Â,Ĥ

]
ψ

)
. (4.12)

The above procedure has two advantages: first, we have expressed in a
general form all the quantities entering Eq. 4.1 through commutators and
anticommutators; then we have related the probability-current expression directly
to the local properties of its corresponding operator, without taking into account a
closed system (such a procedure does not automatically imply that the integral of
∇ ·JA over the crystal only is zero). The choice of considering open systems makes
the current operator involve Dirac distributions to deal properly with possible
discontinuities at the boundaries of a subsystem. It has to be noted that it is always
possible to include the source G term in the form of a current JG, G = ∇ ·JG so
that the conservation equation becomes

∂

∂t

(
Â
)
+∇ · (JA−JG) =

∂

∂t

(
Â
)
+∇ ·J=0 (4.13)

where J = JA − JG is divergence-free in steady-state regime. For instance, if
we look for JG = ∇UG, the potential UG is a solution of the Laplacian problem
∆UG = G. Moreover, adding to JG the term ∇×AG, where AG is an arbitrary
vector field, does not affect the conservation equation. At this stage, the boundary
conditions are not under control. In Ref. 92 the authors observe that it might often
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happen that ∫
V

d3r G = 0 (4.14)

where the integration is performed over the volume of the system (V). Then∫
V

d3r G =
∫
V

d3r ∇ ·JG =
∫
S

JG ·ds = 0 (4.15)

where the volume integral is changed into a surface integral through Ostrograd-
ski’s theorem (here S is the surface limiting V and ds is the surface element
along the normal to S). Such a relation is obviously satisfied provided that
JG ·ds = 0, i.e., provided that JG is a tangential vector to S, which is “physically”
reasonable. Moreover one can further assume, as reported in Ref. 92 that JG “is a
material property that should vanish outside the sample”: this is a more restrictive
and questionable hypothesis. For instance in the case of a magnetic field, the
effect of the associated vector potential cannot a priori be overlooked outside the
sample. Anyway, let us assume that JG = 0 at the surface S. In this case it is
straightforward to show, after partial integration where the boundary contribution
cancels, that ∫

dy dz dx x
(

∂JG,x

∂x
+

∂JG,y

∂y
+

∂JG,z

∂z

)
=−

∫
d3r JG,x (4.16)

where JG,x, JG,y, and JG,z are the Cartesian components of JG. Then∫
d3r JG =−

∫
d3r r∇ ·JG =−

∫
d3r rG

=−1
~

∫
d3r r Im

(
ψ

†
[
Â,Ĥ

]
ψ

)
=−1

~

∫
d3r Im

(
ψ

†r
[
Â,Ĥ

]
ψ

)
.

(4.17)

It is easy to check that, provided that
[
Â,r
]
= 0,

r
[
Â,Ĥ

]
=
[
Âr,Ĥ

]
− i~v̂Â, (4.18)
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where
[
r,Ĥ

]
= i~v̂. Thus

∫
d3r JG =−1

~

∫
d3r Im

(
ψ

†
[
Âr,Ĥ

]
ψ

)
+

∫
d3r Re

(
ψ

†v̂Âψ

)
=−1

~

∫
d3r Im

(
ψ

†
[
Âr,Ĥ

]
ψ

)
+

∫
d3r J̃A. (4.19)

Here, J̃A is the canonical current defined as

J̃A = Re
(

ψ
† v̂ Âψ

)
= ψ

† v̂ Â+ Â v̂
2

ψ. (4.20)

According to Eq. 4.5, we can write

∫
d3r JG =−

∫
d3r

d
(

Âr
)

dt
−J̃A

=
∫

d3r

J̃A−
d
(

Âr
)

dt

 . (4.21)

In Ref. 92 the effective current density is defined as JG

JG = J̃A−
d
(

Âr
)

dt
.

We have the two following relations which define respectively the total current J
and the effective total current J

J = JA−JG, (4.22a)

J = JA−JG =
d
(

Âr
)

dt
+
(

JA− J̃A

)
. (4.22b)

Provided JA− J̃A = 0, i.e. when making the confusion between the canonical and
the true currents (which is justified only for Hamiltonians up to second order in p̂,
see Sec. 5), the effective total current becomes J =d

(
Âr
)
/dt, which is Eq. 5 in

the papers by Shi et al. [92] and also by Zhang et al., [94] and is the cornerstone
of their further calculations. After a careful analysis, this relation appears to be
derived under very special conditions so that it cannot be general. Moreover, the
meaning of the so-called effective currents and their relationship with the true
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currents are not clear. Their use to tackle local transport equations is not justified.
In Eq. 4.7, we derived the local form of the Ehrenfest theorem for a general

operator Â and deduced the expression of the associated current JA. First, consider
the case where Â= Î, where Î is the identity and the quadratic Hamiltonian p̂2/2m.
We rewrite Eq. 4.7 as

∂

∂t
|ψ|2 =−∇ ·Re

(
ψ

† p̂
m

ψ

)
=−∇ ·J [ψ] (4.23)

We recover the usual expression for the free-electron probability current

J [ψ] = Re
(

ψ
† p̂

m
ψ

)
. (4.24)

Note that:

∂

∂t
|ψ|2 = 1

i~

[(
ψ

† p̂2

2m
ψ

)
−
(

ψ
† p̂2

2m
ψ

)∗]

=
1
i~

[(
ψ

† p̂2

2m
ψ

)
−
(

K̂0ψ

)† p̂2

2m

(
K̂0ψ

)]
(4.25)

where K̂0 is the time-reversal Kramers operator for a spinless particle, which
consists of taking the complex conjugate in the r-representation. Let us check the
expression of the current operators we defined under time inversion symmetry.
For this purpose we consider the term

−2i~∇ ·JA = 2iIm
(

ψ
†
{

Â, Ĥ
}

ψ

)
=
[
ψ

† Â Ĥ ψ−
(

ψ
† Â Ĥ ψ

)∗]
+
[
ψ

† Ĥ Âψ−
(

ψ
† Ĥ Âψ

)∗]
. (4.26)

First, look at the term ψ† Â Ĥ ψ(
K̂ψ

∣∣∣Â Ĥ K̂ ψ

)
=
(

K̂0ψ

∣∣∣R̂† Â Ĥ K̂ ψ

)
=
(

K̂0ψ

∣∣∣R̂† Â K̂ Ĥ ψ

)
=−εA

(
K̂0ψ

∣∣∣R̂† K̂ Â Ĥ ψ

)
=−εA

(
K̂0ψ

∣∣∣K̂0 Â Ĥ ψ

)
=−εA

(
ψ

∣∣∣Â Ĥ ψ

)∗
(4.27)
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Here, K̂ = R̂ K̂0 is the Kramers operator for a particle with spin 1/2, R̂ = −iσy(
R̂† = R̂−1

)
, and εA =±1 depending wether Â verifies [99, p. 675]

K̂ Â K̂ = εA Â or R̂† Â R̂ = εA Â∗. (4.28)

Similarly, for the term ψ† Ĥ Âψ(
K̂ψ

∣∣∣Ĥ Â K̂ ψ

)
=−εA

(
K̂0ψ

∣∣∣R̂† K̂ Ĥ Âψ

)
=−εA

(
K̂0ψ

∣∣∣K̂0 Ĥ Âψ

)
=−εA

(
ψ

∣∣∣Ĥ Âψ

)∗
. (4.29)

Thus, we obtain

2iIm
(

ψ
†
{

Â, Ĥ
}

ψ

)
= ψ

†
{

Â, Ĥ
}

ψ+ εA

(
K̂ψ

)†{
Â, Ĥ

}(
K̂ψ

)
. (4.30)

We conclude that the general expression for the current of Â is

∇ ·JA =− 1
2i~

[
ψ

†
{

Â, Ĥ
}

ψ+ εA

(
K̂ψ

)†{
Â, Ĥ

}(
K̂ψ

)]
. (4.31)



5. PROBABILITY CURRENT OF AN EFFECTIVE

HAMILTONIAN

5.1 Formulation of the general nth-order Hamiltonian

Considering effective Hamiltonians, we deal with general expressions given
by momentum series expansions, i.e., constructed from the energy expressed as
wave-vector-component series expansion after the substitution {k −→−i∇}. We
write the effective Hamiltonian Ĥe f f as follows:

Ĥe f f = Ĥp +V (r) (5.1)

where V (r) is a potential which may be the potential of a single barrier or the one
of a superlattice, for example, Ĥp is such that

Ĥp = ∑
n

∑
l(k)∈{x,y,z}
k=1,...,n

cl(1),l(2),...,l(n) p̂l(1)...p̂l(n) = ∑
n

Ĥ(n) (5.2)

where p̂l(k) is the momentum operator associated to the l(k) Cartesian coordinate
and where cl(1), ...,l(n) are Hermitian matrices which are invariant under permu-
tation of the subscripts. The abstract form of Eq. 5.2 allows us to perform easy
calculations. In Sec. 5.2 we show how to handle such a general expression to deal
with concrete situations.

Formally, we perform the identification

cx...cx︸ ︷︷ ︸
α

cy...cy︸ ︷︷ ︸
β

cz...cz︸ ︷︷ ︸
γ

= cx...x︸︷︷︸
α

, y...y︸︷︷︸
β

, z...z︸︷︷︸
γ

(5.3)
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where α, β, and γ are integers. We obtain

Ĥ(n) = (cx p̂x + cy p̂y + cz p̂z)
n . (5.4)

Given Eqs. 5.2, 5.3, and 5.4, let us note that only terms such as cxx or cxy (for
n = 2) are meaningful, a term such as cx being only a trick in the calculation.

Alternatively, one can write

Ĥ(n) = ∑
α+β+γ=n

cαβγ p̂α
x p̂β

y p̂γ
z (5.5)

with
cαβγ =

n!
α!β!γ!

cα
x cβ

y cγ
z (5.6)

We are now in a position to tackle the problem of velocity, first when the
Hamiltonian Ĥ takes into account the SOI, and, second, when the Hamiltonian
Ĥe f f is an effective Hamiltonian.

5.2 Velocity operator in presence of SOI interaction

It is usually admitted that the velocity operator v̂ is equal to ∂Ĥ /∂p̂ whatever
the Hamiltonian Ĥ . However, to the best of our knowledge, the derivation can be
found only when Ĥ is quadratic in p̂. Therefore a general derivation, in particular
in the case of effective Hamiltonians, is mandatory. We start from Ehrenfest’s
theorem (valid whatever the Hamiltonian Ĥ )

〈v̂〉= d〈r̂〉
dt

=
i
~

〈[
Ĥ , r̂

]〉
(5.7)

If (i/~)
〈[

Ĥ , r̂
]〉

=
〈

∂Ĥ /∂p
〉

, then v̂ = ∂Ĥ /∂p̂ because two linear operators

which have the same mean values over all possible states are equal:
〈

Â
〉
=〈

B̂
〉

implies that Â = B̂ [99, p. 633] Practically, it is enough to show that

(i/~)
[
Ĥ , r̂

]
= ∂Ĥ /∂p̂ to prove that v̂ = ∂Ĥ /∂p̂.

First, considering the case Ĥ = Ĥ0 which contains a Ĥ(2) term (Eq. 3.1),
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(i/~)
[
Ĥ0, r̂

]
= (~/im) p̂= ∂Ĥ0/∂p̂, for a system described by an Hamiltonian

quadratic versus momentum components, and we obtain the velocity v̂0:

v̂0 =
∂Ĥ0

∂p̂
. (5.8)

Second, we have to check that this relation still holds in the presence of SOI where
the Hamiltonian is Ĥ = Ĥ = Ĥ0+ ĤSO (Eq. 3.3). In other words we want to show
that

v̂ =
∂Ĥ
∂p̂

. (5.9)

We know that v̂0 = (i/~)
[
Ĥ0, r̂

]
= ∂Ĥ0/∂p̂. To show that Eq. 5.9 is valid, it is

enough to show that v̂SO = ∂ĤSO/∂p̂, which will give v̂= ∂Ĥ/∂p̂ with v̂= v̂0 +

v̂SO. A straightforward calculation yields

v̂SO =
i
~
[ĤSO, r̂] =

~
4m2c2 (σ̂×∇U) =

∂ĤSO

∂p̂
(5.10)

which proves Eq. 5.9: the derivative of the Hamiltonian, with respect to the
momentum operator, still provides a suitable definition of the velocity when the
SOI term is taken into account.

5.3 Velocity operator with an effective Hamiltonian Ĥe f f

We generalize the results obtained in Sec. 5.2, to the case of a generic effective
Hamiltonian Ĥ = Ĥe f f . Again we exploit Ehrenfest’s theorem, as written in Eq.
5.7. Considering for instance the x component, we verify that

[
Ĥ(n), x

]
= ∑

α+β+γ=n
cαβγ

(
~
i

)
α p̂α−1

x p̂β
y p̂γ

z =
~
i

∂Ĥ(n)

∂ p̂x
(5.11)

or
i
~

[
Ĥp, r̂

]
=

i
~

[
Ĥeff, r̂

]
=

∂Ĥe f f

∂p̂
(5.12)
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which proves that

v̂ =
∂Ĥe f f

∂p̂
. (5.13)

Using Eqs. 5.3-5.6, it is then easy to calculate the j component v̂(n)j ( j = x, y, z)

of the velocity operator v̂(n) associated to Ĥ(n):

v̂(n)j =
∂Ĥ(n)

∂ p̂ j
= nc j (cx p̂x + cy p̂y + cz p̂z)

n−1 . (5.14)

We introduce the scalar product between the momentum p̂ and the velocity
operator v̂(n)

p̂xv̂(n)x + p̂yv̂(n)y + p̂zv̂
(n)
z = n(cx p̂x + cy p̂y + cz p̂z)

n = nĤ(n). (5.15)

With this notation, v̂0, introduced in the paragraph 5.2, is such that v̂0 = v̂(2). Eq.
5.15 means that

p̂ · v̂(n) = nĤ(n) (5.16)

and eventually

Ĥe f f ψ =

(
p̂ · ∑

n

1
n

v̂(n)
)

ψ+V ψ = Eψ. (5.17)

As pointed out in Sec. 4, we are allowed to define current operators
in open systems provided that we properly take into account their boundary
conditions. We are interested in finding the form of the current operator
Ĵ =

(
Ĵx, Ĵy, Ĵz

)
for an Hamiltonian Ĥ(n) +V (r) - the current operator being

Ĵ(n) - and more generally for the Hamiltonian Ĥe f f = Ĥp +V (r) = ∑n Ĥ(n) +

V (r) (Eqs. 5.1-5.2) - the current operator being Ĵ. For an Hamiltonian
p̂2/2m + V (r), it is known [99, p. 372] that the jth component of the
current operator ( j = x, y, or z) at the point r0 is of the shape Ĵ(2)j (r0) =

(1/2m)
[
δr0 p̂ j + p̂ j δr0

]
, where δr0 is the Dirac distribution, centered in r = r0;

with the notation of Eqs. 5.1-5.2, Ĥ(2) = ∑l(k)∈{x,y,z}
k=1,2

cl(1),l(2) p̂l(1) p̂l(2), Ĵ(2)j (r0) =

∑l(1)={x,y,z} c j,l(1)
[
δr0 p̂l(1)+ p̂l(1) δr0

]
, cl(1),l(2) = (1/2m)δl(1),l(2). The aim of

the following procedure is to show that, for an Hamiltonian H(n) +V (r), the
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following form of the jth component of the probability current operator

Ĵ(n)j (r0) = ∑
l(k)∈{x,y,z}

k=1,..,n−1

c j,l(1),...,l(n−1)
[
δr0 p̂l(1) p̂l(2)...p̂l(n−1)

+p̂l(1)δr0 p̂l(2)...p̂l(n−1)+ ...+ p̂l(1) p̂l(2)...p̂l(n−1)δr0

]
(5.18)

gives back Eq. 4.11, where δr0 = δ(r− r0) is again the Dirac distribution, which
interacts with the mixed powers of the current operator so that the symmetrization
procedure used in the construction of Ĵ(n)j (r0) provides (n−2) further summations

with respect to Ĵ(2)j (r0). The two definitions coincide only up to n = 2. The extra
terms are crucial in order to satisfy the continuity equation. We evaluate every
term over a generic state ψ; for example the second term is of the shape

〈
ψ
∣∣p̂l(1)δr0 p̂l(2)...p̂l(n−1)

∣∣ψ〉= ∫
d3r ψ

∗ p̂l(1)δr0 p̂l(2)...p̂l(n−1)ψ

=
∫

d3r
(

p̂l(1)ψ
)†

δr0 p̂l(2)...p̂l(n−1)ψ

=
[
p̂l(1)ψ(r0)

]† p̂l(2)...p̂l(n−1)ψ(r0) . (5.19)

Then the jth Cartesian component of probability current for a generic state J j [ψ]

can be written as:

J(n)j [ψ] =
〈

ψ

∣∣∣Ĵ(n)j (r0)
∣∣∣ψ〉= ∑c j,l(1),...,l(n)

l(k)∈{x,y,z}
k=1,..,n−1

[
ψ

† p̂l(1)...p̂l(n−1)ψ+ ...

+
(

p̂l(1)...p̂l(k−1)ψ
)† p̂l(k)...p̂l(n−1)ψ+ ...+

(
p̂l(1)...p̂l(n−1)ψ

)†
ψ

]
(5.20)

where ψ = ψ(r0). From Eq. 5.20, we can find the generic divergence term related
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to the derivative with respect to p̂ j:

p̂ jJ
(n)
j [ψ] = ∑

l(k)∈{x,y,z}
k=1,..n−1

c j,l(1),...,l(n)

[
ψ

† p̂ j p̂l(1)...p̂l(n−1)ψ−
(

p̂ jψ
)† p̂l(1)...p̂l(n−1)ψ

+
(

p̂l(1)...p̂l(k−1)ψ
)† p̂ j p̂l(k)...p̂l(n−1)ψ−

(
p̂ j p̂l(1)...p̂l(k−1)ψ

)† p̂l(k)...p̂l(n−1)ψ

+
(

p̂l(1)...p̂l(k)ψ
)† p̂ j p̂l(k+1)..p̂l(n−1)ψ−

(
p̂ j p̂l(1)...p̂l(k)ψ

)† p̂l(k+1)...p̂l(n−1)ψ

+...+
(

p̂l(1)...p̂l(n−1)ψ
)† p̂ jψ−

(
p̂ j p̂l(1)...p̂l(n−1)ψ

)†
ψ

]
. (5.21)

In Eq. 5.21 all the terms that have the same order in k (two consecutive terms but
the first one and the last one) vanish after summation over j:

∑
j={x,y,z}

∑
l(k)∈{x,y,z}
k=1,..n−1

c j,l(1),...,cl(n)

[
−
(

p̂ j p̂l(1)...p̂l(k−1)ψ
)† p̂l(k)...p̂l(n−1)ψ

+
(

p̂l(1)...p̂l(k)ψ
)† p̂ j p̂l(k+1)..p̂l(n−1)ψ

]
= 0 (5.22)

Then the only terms still remaining in the summation are:

∑
j={x,y,z}

p̂ jJ
(n)
j [ψ] = p̂ ·J(n) [ψ]

= ∑
j={x,y,z}

∑
l(k)∈{x,y,z}

k=1,..,n−1

c j,l(1),...,cl(n)

[
ψ

† p̂ j p̂l(1)...p̂l(n−1)ψ−
(

p̂ j p̂l(1)...p̂l(n−1)ψ
)†

ψ

]
= ∑

j={x,y,z}
∑

l(k)∈{x,y,z}
k=1,..,n−1

2i c j,l(1),...,cl(n)Imψ
† p̂ j p̂l(1)...p̂l(n−1)ψ. (5.23)

Now ∇ ·J(n) [ψ] = (i/~) p̂ ·J(n) [ψ] and Eq. 5.24 results in a collection of pure
imaginary terms and the final expression for the divergence of the probability
current reads:

∇ ·J(n) [ψ] =−2
~

Im ∑
j={x,y,z}

∑
l(k)∈{x,y,z}

k=1,..,n−1

c j,l(1),...,l(n)
(
ψ
∣∣p̂ j p̂l(1)...p̂l(n−1)

∣∣ψ) .

(5.24)
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Eventually
∇ ·J [ψ] = ∑

n
∇ ·J(n) [ψ] .

Thus we have shown that the hermitian symmetrized probability-current operator
of Eq. 5.18 satisfies the continuity equation for the effective Hamiltonian of Eq.
5.1.

Obviously, adding a term proportional to the curl of any vector field would
not affect the result. Such a definition of Ĵ provides an unambiguous and general
tool for evaluating the probability current. Provided the Hamiltonian of the whole
system is known, this probability-current operator guarantees the requirements of
the continuity equation.

Now it is useful to introduce the Hermitian symmetrized velocity operator

v̂
(n)
j (r0) =

n
2 ∑

l(k)∈{x,y,z}
k=1,..,n−1

c j,l(1),...,l(n−1)
[
δr0 p̂l(1)...p̂l(n−1)+ p̂l(1)...p̂l(n−1)δr0

]
(5.25)

For example for n≥ 2, the comparison between Eqs. 5.18 and 5.25 clearly shows
that Ĵ (n)

j (r0) contains n−2 extra terms, which are straightforwardly obtained from
∂Ĥe f f /∂p̂. For instance, with Ĥe f f ≡ p̂n, we have ∂Ĥe f f /∂p̂≡ np̂n−1, so that:

v̂(n)(r0)≡ (n/2)
(
δr0 p̂n−1 + p̂n−1

δr0

)
, (5.26)

whereas
Ĵ (n) (r0)≡

(
δr0 p̂n−1 + p̂δr0 p̂n−2 + ...+ p̂n−1

δr0

)
. (5.27)

As shown in Ref. 83, extra terms are specially important for evanescent waves.
Therefore, in the following we deal with tunneling problems.

5.4 BenDaniel-Duke-like formulation and boundary conditions

We stress that the central question when defining the current operators and
related quantities is the proper definition of the system and of its boundaries.
Dealing with heterojunctions, where each bulk medium is described by the
relevant Hamiltonian, requires defining proper matching conditions at the
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boundaries. In this sense, the BDD Hamiltonian [96] is the simplest smart
approach that allows solution of the Schrödinger equation over the whole space
while it guaranties the conservation of the probability current at the interface. The
principle is the following. Let us consider a one-dimensional problem and two
different media for x < 0 and x > 0. Each medium is characterized by its own
Hamiltonian. The question is to find a solution of the Schrödinger equation, made
of eigenfunctions of the relevant band of the two bulk materials, which ensures
the continuity of the probability current at the origin. In this sense, the problem
is analogous to a scattering problem, where the wave functions are determined
only at some distance of the scattering potential. Proper matching conditions
relevant to the extension of the bulk envelope functions at the origin will allow
one to determine the envelope function over the whole space. For that, BBD
propose writing an Hamiltonian over the whole space as p̂x [1/2m(x)] p̂x +V (x)

where m(x) is the effective mass in each medium. The integration of this BDD
Hamiltonian around the boundary automatically ensures the continuity of the
probability current of Eq. 3.2, provided that ψ(x) and [1/m(x)] [∂ψ/∂x] are
continuous.

Now, consider two regions (1) and (2) and assume that each region is made
of a given crystalline material. We look for the envelope function, solution of
the Schrödinger equation, which is made from plane waves which are eigenstates
of the crystal, inside each material. Observe that, near the interface, the crystal
periodicity is broken so that the true Hamiltonian and the true eigenfunctions will
become involved. The principle is then to define proper matching conditions
applying to the prolongation of the envelope function at the origin. For that
purpose, we consider a volume V, limited by a surface S, that surrounds an
interface portion. Similarly to the BDD technique, we start from Eq. 5.17 and
we integrate the Schrödinger equation over V. Using Ostrogradski’s theorem,
when V tends to zero, we obtain

lim
V−→0

∫
S

(
∑
n

1
n

v(n)ψ
)

·ds = 0 (5.28)

where ds is normal to the surface S.
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For a one dimensional case with the interface at the origin, Eq. 5.28 becomes:

lim
ε→0

[
∑
n

1
n

v(n)ψ
]+ε

−ε

= 0 (5.29)

Let us again emphasize that no information is obtained on the true wave
function near the origin. Eq. 5.29 does not ensure either the continuity of the
envelope function or the existence of derivatives at the interface.

As an illustration, let us consider the case of a Rashba Hamiltonian

Ĥe f f = ap̂+bp̂2 (5.30)

where a and b are two Hermitian matrices. According to Eq. 5.29, we can write
down the first continuity condition as follows:

[aψ+bp̂ψ]+ε

−ε
= 0. (5.31)

Using this condition to solve the problem, and adding a priori the continuity
of the envelope function at the interface as a second condition, we verify that the
probability current is indeed continuous at the interface:

J [ψ] = 〈ψ | a+bp̂ | ψ〉+ c.c. (5.32)

Then, the jump of the derivative of the wave function at the interface is
determined by

[bp̂ψ]+ε

−ε
=− [a]+ε

−ε
ψ(0). (5.33)

It is clear then that the BDD approach, introduced to solve a problem with
a quadratic Hamiltonian, is also suitable to obtain a solution when a Rashba
contribution is added; then we can say that up to the second order in the
momentum-power series expansion of the Hamiltonian, the continuity of a
“generalized velocity” (see Eq. 5.29) and the continuity of the wave function
at the interface imply the conservation of the probability current at this point.
Remarkably, the boundary conditions that we need to solve the problem drastically
change when moving to the case of a DP Hamiltonian with cubic terms. The
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crucial point, that we address in the following, is that we cannot make any
hypothesis about the continuity of the wave function because, if we need to ensure
probability-current conservation at an interface, we must accept an envelope
function ψ which is no longer continuous.

To give an insight into the expression of the current operator and into the
conservation of the probability current, let us again come back to an interface
between two semi-infinite one-dimensional media (1) and (2). In each bulk
crystal, the relevant Hamiltonian is

Ĥr = ∑
n

Ĥ(n)
r +Vr (5.34)

with
Ĥ(n)

r = γ
(n)
r p̂n (5.35)

with r = 1 or r = 2 depending on wether x < 0 or x > 0. Ĥr admits the
eigenfunctions ϕr, associated to the fixed energy E which verify

Ĥrϕr = Eϕr. (5.36)

We consider the Hamiltonian extended over the whole space as

Ĥ= Θ(−x) Ĥ1 +Θ(x) Ĥ2 (5.37)

where Θ(x) is the Heaviside function.
However, strictly speaking, near the heterojunction the spatial periodicity is

broken, so that over a few Wigner-Seitz cells, the true Hamiltonian differs (it
possibly includes interface terms) and the electron states are no longer pure Bloch
states. We consider two coordinates, −w1 and w2, so that, in the bulk regions
]−∞,−w1] and [w2,+∞[ the electronic structure remains unaffected. Very close
to the heterojunction, the eigenfunctions are not assumed to be explicitly known.
We consider a wave function ψ which is an eigenstate of the Hamiltonian over
the whole space at energy E. We expect that, over the domain ]−∞,−w1] ∪
[w2,+∞[, ψ coincides with Ψ = Θ(−x−w1)ϕ1 +Θ(x−w2)ϕ2 (we assume that
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the matching is sufficiently regular). Thus, we have〈
Ψ

∣∣∣Ĥ∣∣∣ψ〉= E
[
〈ϕ1 | ϕ1〉(1)+ 〈ϕ2 | ϕ2〉(2)

]
(5.38)

where 〈|〉(r) means summation over the bulk part of region (r). Because the
total probability in the domain ]−∞,−w1] ∪ [w2,+∞[ has to be conserved, from
Ehrenfest’s theorem [Eq. 4.8 with Â = Θ(−x−w1)+Θ(x−w2)] we must have

〈ψ |[Θ(−x−w1)+Θ(x−w2) ,H]|ψ〉=
〈

ψ

∣∣∣Ĥ∣∣∣Ψ〉−〈Ψ

∣∣∣Ĥ∣∣∣ψ〉= 0, (5.39)

i. e., 〈
Ψ

∣∣∣Ĥ∣∣∣ψ〉=
〈

ψ

∣∣∣Ĥ∣∣∣Ψ〉= E 〈ψ |Ψ〉 . (5.40)

Observe that:

Ĥ(n)
1 [Θ(−x−w1)ϕ1] = γ

(n)
1 p̂n

Θ(−x−w1)ϕ1

= Θ(−x−w1)γ
(n)
1 p̂n

ϕ1

+ i~γ
(n)
1
[
δ(x+w1) p̂n−1 + p̂δ(x+w1) p̂n−2+

+...+ p̂n−1
δ(x+w1)

]
ϕ1

= Θ(−x−w1)γ
(n)
1 p̂n

ϕ1 + i~Ĵ(n)1 (−w1)ϕ1 (5.41)

So that
Ĥ1 [Θ(−x−w1)ϕ1] = EΘ(−x−w1)ϕ1 + i~Ĵ1 (−w1)ϕ1 (5.42)

and similarly

Ĥ2 [Θ(x+w2)ϕ2] = EΘ(x−w2)ϕ2− i~Ĵ2 (w2)ϕ2. (5.43)

Eventually
ĤΨ = EΨ+ i~

[
Ĵ1 (−w1)ϕ1− Ĵ2 (w2)ϕ2

]
(5.44)

Then, Eq. 5.40 is satisfied provided that

Ĵ2 [ϕ2 (w2)] = Ĵ1 [ϕ1 (−w1)] . (5.45)
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The important point is not the conservation relation, which might appear as
physically obvious, but that, in Eqs. 5.41 and 5.43, the symmetrized current
operator is automatically generated in the form derived in Eq. 5.18, providing
a physical insight into this mathematical expression. Because we only deal with
wave functions at some distance from the heterojunction, the continuity of the
true wave function at x = 0 does not implies the continuity of the envelope
function Ψ which may be discontinuous. This is in line with the considerations of
Harrison [97]. Eq. 5.29 and 5.45 generate a set of boundary conditions relevant
to the tunneling problem.

5.5 The [110]-oriented GaAs barrier

We analyze the case of electron tunneling under normal incidence through
a [110]-oriented GaAs barrier, which was shown to be non trivial and solved in
special cases in Ref. 83. The importance of this particular tunneling configuration
can be well explained by the following argument: if we consider the Γ6c

conduction band of a non-centrosymmetric III-V semiconductor compound, like
GaAs, in the small k approximation, we can give an analytical expression of
the level splitting due to the Dresselhaus term [100], which has a k3 dependence
versus wave-vector:

E± =
~

2m∗
(
k2

x + k2
y + k2

z
)
+ γ

√
k2

x
(
k2

y − k2
z
)2

+ k2
y
(
k2

z − k2
x
)2

+ k2
z
(
k2

x − k2
y
)2

(5.46)
where γ is the strength of the effective D’yakonov-Perel magnetic field [77, 78],
which removes the spin degeneracy. Indeed it is straightforward to see that along
the [110]-direction the spin-splitting is maximum so that this crystallographic
axes is really useful to study the effects of SOI term in GaAs. Concerning with
tunneling heterojunctions, we are interested in evanescent waves in the [110]-
oriented GaAs barrier. At this purpose, looking at the Hamiltonian of Eq. 5.46,
it is possible to see that the k3-dependence of the DP field does not allow pure
imaginary tunneling wave-vector so that, in order to deal with real energy lines,
we have to take into account the complex wave vector k = 1√

2
(Q± iK) [110]

[83]. For complete treatment of evanescent states in non-centrosymmetric III-V
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semiconductors, the reader is invited to refer to Ref. 101.
Hereafter, we apply the tools and boundary conditions presented in this paper

to solve it in a more simple and general manner. We confirm and generalize
the results derived in Ref. 83. In particular, we are able to solve the problem
of an heterojunction between a free-electron media and a semiconductor without
inversion center, where the DP field is a step function, which remained puzzling.
In the [110] direction, the one dimensional DP Hamiltonian is:

ĤDP =
γc

~2 p̂2± γ

2~3 p̂3 (5.47)

where + (−) refers to the up (down)- spin channel quantized along the DP field
direction. We consider as solution a general wavefunction written as follows:

ψ = α

(
ψ0 +

iβ
~γck2 γc p̂ψ0

)
eiχz (5.48)

where ψ0 is the zeroth order function that is a solution of the tunneling problem
with energy E and with the potential V when SOI is turned off. Here γck2 =E−V ,
α and β are complex parameters to be determined, and χ is a real (see below)
wavevector component which is added to k when SOI is turned on. We have the
relations

p̂ψ = α

(
p̂ψ0 + i

β

~γck2 γc p̂2
ψ0

)
eiχz +~χψ, (5.49)

p̂2
ψ = ~2

(
E−V

γc
−χ

2
)

ψ+2~χp̂ψ. (5.50)

We calculate the velocity operators from Eq. 5.14

1
2

v(2)+
1
3

v(3) =
γc

~2 p̂± γ

2~3 p̂2 (5.51)

and, according to Eq. 5.29, we find the matching condition[
γc

(
1± γ

γc
χ

)
p̂ψ

]+ε

−ε

=∓
[

1
2

γ~
(

E−V
γc
−χ

2
)

ψ

]+ε

−ε

(5.52)

which is a generalization of Eq. (3.50) of Ref. 83.
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Now, we have to satisfy the conservation of the probability current

J[ψ] =
γc

~2

(
1± γ

γc
χ

)[
ψ
∗ p̂ψ+ψ(p̂ψ)∗

]
± γ

~

(
E−V

γc
−χ

2
)
|ψ|2± γ

2~3 |p̂ψ|2 .

(5.53)
We obtain here an important result: The envelope function cannot be

continuous at the interface. Indeed, assume ψ to be continuous. Then,
after Eq. 5.52, we see that the last term in Eq. 5.53, that we rewrite as
±
(
1/2~3)(γ/γ2

c
)

γ2
c |p̂ψ|2 must be continuous. This is not possible since γc p̂ψ0

is continuous (unless γ/γ2
c is almost continuous, which would be fortuitous).

We have to determine ψ complying the boundary conditions, which is not
simple because the expression providing the current is not a linear function of
ψ. However, if we consider γ as a first-order quantity and look for a solution
to first order only, the result is surprisingly simple, as shown below. From the
Schrödinger equation - Eq. 5.47 -, we find that χ verifies

γc
(
2kχ+χ

2)± γ

2
(
k3 +3k2

χ+3kχ
2 +χ

3)= 0 (5.54)

then
χ'∓1

4
γ

γc
k2 =∓1

4
γ

γc

E−V
γc

. (5.55)

As stated above, χ is a real quantity. For each spin, there are two others
roots of the cubic equation (Eq. 5.54) which are much larger than the width of
the Brillouin zone ; These two roots are of the order of γc/γ which is about 2 Å
(two times the Brillouin zone width) in GaAs (see Fig. 4 of Ref. 83) and have
no physical meaning. Note that, the cubic DP term, obtained from perturbation
expansion, only holds for small wave vectors, a few percent of the Brillouin zone,
so that taking into account these two other roots would be meaningless. From
Eq. 5.48, we see that, upon tunneling, the up- and down- spin electrons undergo
opposite phase shifts, which is equivalent to a precession around the DP-field
direction. This would be quite intuitive if the field were not a complex quantity,
and constitutes a prediction which can be experimentally tested. Let us calculate
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the current at the interface (z = z0) to first order

J[ψ(z0)] = |α|2
γc

~2

[
ψ
∗
0 p̂ψ0 +ψ0 (p̂ψ0)

∗]
+

γc

2~

[
2 |α|2 (χ− Imβ)± γ

γc

E−V
γc

]
|ψ0|2 +

γc

~3

[
−|α|2 2γc

E−V
Imβ∓ γ

2γc

]
|p̂ψ0|2

(5.56)

where the values of ψ0 and of its derivative are taken at z = z0. Observe that with
the choice

|α|2 = 1 and Imβ =−χ (5.57)

the second and the last terms of Eq. 5.56 vanish so that

J[ψ(z0)] =
γc

~2

[
ψ
∗
0 p̂ψ0 +ψ0 (p̂ψ0)

∗]= J f [ψ(z0)] (5.58)

where J f [ψ(z0)] results from the application of the free-electron current operator.
Thus, we obtain another essential result: To first order, turning on the SOI does

not alter the value of the probability current. Consequently, to solve the problem
we have only to show that ψ, given by Eq. 5.48 and with the conditions defined
in Eq. 5.57, can match the boundary condition expressed by Eq. 5.52. We obtain

αeiχz0 (γc p̂+ i~γcReβ)ψ0 continuous. (5.59)

The continuity of Eq. 5.59 can always be ensured by taking αeiχz0 continuous and
Reβ = 0. Observe that the continuity of αeiχz0 propagates a phase shift throughout
the heterostructure.For instance, the first interface being taken at z0 = 0, we can
chose α = 1 for the incident/reflected wave and for the evanescent wave in the
barrier, whereas for the transmitted wave α= eiχ`, where ` is the barrier thickness.
Finally, we calculate ψ according to Eq. 5.48

ψ = αeiχz
(

ψ0∓
1

4~
γ

γ2
c

γc p̂ψ0

)
(5.60)
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and we deduce the jump of ψ at the interface

[ψ(0)]z0+
z0−

=

[
χ

~(E−V )

]z0+

z0−

(γc p̂ψ0) =∓
1

4~

[
γ

γ2
c

]z0+

z0−

(γc p̂ψ0) . (5.61)

When γ/γ2
c is a constant, ψ is continuous and we recover the result derived by

another technique in Ref. 83 (constant mass and constant γ).
Eq. 5.60 constitutes an important practical tool, which allows one to

deduce the envelope function for conduction states in any [110]-oriented III-V
semiconductors heterojunction when SOI is taken into account from the envelope
function calculated when SOI is neglected.

5.6 Spin Current

So far, we have considered the definition of a novel probability-current
operator, which can be widely used whatever the degree of the effective
hamiltonian is and which induces new boundary conditions for tunneling
heterostructure. As explained above, the key point of the subject relies on the
good symmetrization of the velocity operator: in this section, we will see that the
same argument can be applied also when considering the spin-current, which is
the second fundamental quantity to analyzed in transport phenomena in presence
of SOI.

The commonly accepted definition of the (6×6) spin current tensor is the
symmetrized dyadic product:

Ĵ↑↓ =
1
2
(
v̂σ̂

t + σ̂v̂t) (5.62)

where σ̂ is the spin operator and the velocity operator is ∂Ĥ/∂p̂ as usual,with the
relevant Hamiltonian of the system Ĥ. The difficulties of such a definition can be
appreciated through the continuity equation of Eq. 4.1: in fact the source term
G is not properly defined (this problem is not relvant for particle current due to
the fact that G = 0, as explained in Sec. 4) in the sense that it can be modified
and partially introduced in the expression of the current divergence, so that only
J and G together have physical meaning [91]. Concerning with spintronics, the
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source term is generally related to “spin-transfer torque ”. Then it is clear that the
problem of defining both the spin current and source term can lead to ambiguous
situations, ezpecially when the boundary conditions of the system are not properly
specified.

At this purpose, we have shown in Sec. 5.5 that Eq. 5.18 provides a general
and symmetrized definition of the probability-current operator. Following the
conceptual scheme developed in Ref. 91, we can define the spin currents in
the up- and down-spin channels by taking Â = π̂s, where π̂s is the orthogonal
projector on the spin basis (s = ±). Then the SC current δJu, j [ψ], that arises
from the difference between the up-spin and the down-spin current, is obtained by
taking Â = σ̂u, the Pauli operator along the u direction defining the quantization
axis. It is straightforward to see that, as in Ref. 91, the j-component of the
spin-current operator is obtained from the j-component of the probability-current
operator after the substitution

c′j,l(1),...,l(n) =
1
2
{σu,c j,l(1),...,l(n)}. (5.63)

Because the spin current may be not conserved, there exist source terms

G =
1
~

Im
(

ψ
†
[
σ̂u,Ĥ

]
ψ

)
. (5.64)
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