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1 Introduction

Write breifly about
evolution of Web Search.
need and importance of ranking in Web search and databases
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1 Introduction

1.1 Motivation

Briefly discuss the Web Search solutions involving ranking..
Put forth the short comings in the existing solutions..
Main focus shall be that almost all the existing solutions focus on
reducing the I/O cost which effectively reduces the overall time to
fetch the data as well. However, they do not consider the cases
when the data sources are remote and hence the time to process the
data is negligible as compared to the time to acquire the data.
Apart from this, in threshold based rank join algorithms, it is com-
monly observed that we find a join result in the early stages of the
process but we are unable to report it till the threshold allows us to
do so. This invites us to come up with an approach to report the
join results to the user with certain probabilistic guarantees.
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1.2 Contribution of this Thesis

1.2 Contribution of this Thesis

contribution This thesis provides time and I/O efficient rank join
algorithms for the data sources which have a non negligible time as-
sociated for the data acquisition, and furthermore these data source
suffice the requirements of applying rank join algorithms.

It provides efficient rank join strategies for different join topolo-
gies e.g. Multi-way Rank Join and Pipe Rank Join.
It also presents an approach to provisionally report the join results
obtained in a rank join, to the user, with certain probabilistic guar-
antees. This further helps reducing the time to produce the join
results, while compromising on the quality of the join results as
compared to the deterministic approaches.
We also present the usefulness of this work while using these rank
join algorithms in an application. We choose Search Computing
application for this purpose and see how our defined algorithms can
be utilized in different components in different settings.
We also analyze the effectiveness of our proposed algorithms over
the existing algorithms while testing them in various different para-
metric settings and environments. This helps us in understanding
the main operating parameters which affect the performance of the
proposed algorithms.

17



1 Introduction

1.3 Thesis Overview

The next chapter introduces the rank joins and we discuss the ma-
jor rank join algorithms which are related to our context. We also
introduce the Web search and its evolution, where we emphasize on
the need of ranking in the Web search applications.
In chapter 3, we present two main rank join topologies for com-
puting the top-K joins efficiently in the context of Web based data
sources e.g. Web services.
Chapter 4, provides a probabilistic technique to report the join re-
sults to the user with certain confidence.
In chapter 5, we investigate the ways in which we can integrate our
proposed rank join techniques with in a Web search application.
We use Search Computing application for this purpose. This helps
us in assessing the effectiveness of our approach with in real Web
searching systems.
Lastly, chapter 6 provides the final discussion and future outlook of
the work done in this thesis.

18
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2 Ranking and Web Search

2.1 Rank Joins or Top-K Queries in
Databases

The information systems process data in different ways in order to
produce and rank the query answers. In many application domains,
end-users are mainly interested in getting most relevant query an-
swers, instead of exploring large number of weakly related answers.
These queries are known as top-K queries, as the user is interested
in getting ’K’ best answers. Different emerging applications warrant
the support of top-K queries in an efficient manner. For instance,
many applications in the context of information retrieval [Salton
and McGill 1983] involve top-K queries; similarly, in these types
of queries are desired in the domain of data mining [Getoor and
Diehl 2005]; furthermore, in the Web search applications, the per-
formance and effectiveness of meta-search engines heavily depends
upon the ways in which they process and combine rankings from dif-
ferent search engines. Above all, most of these applications process
the queries which involve joining and aggregating multiple inputs to
compute top-K results which are most relevant to the user’s query.

A common and simple way to compute the top-K objects or tu-
ples is to assign scores to all objects using some scoring function.
The score of an object demonstrates its significance according to
its properties (e.g., rent and area of an apartment object in a real
estate database, or color and texture of an image in a multimedia
database). The objects are evaluated and ranked by computing their
total scores based on multiple scoring predicates. Furthermore, top-
K processing is involved in various areas of database research which
include query optimization, indexing methods, and query languages.
Therefore, the impact of efficient top-K processing is becoming im-
perative in an various data processing applications. We present
some example scenarios from the real-world where efficient process-
ing of top-K queries is required. These examples also highlight the
importance of adopting efficient top-k processing techniques in tra-
ditional database environments.

20



2.1 Rank Joins or Top-K Queries in Databases

Example 2.1: Consider a user is interested in finding 5 least expen-
sive places in a city where the combined cost of renting an apartment
and tuition fee for school for a year is minimum. Let us assume
there there are two data sources, Apartments and Schools from
where we can get the information about apartments and schools,
respectively. The Apartments data source provides an ordered list
of apartments based on their respective rents and their locations.
Whereas, Schools data source provides an ordered list of schools
based on the tuition fee.
A naïve way to answer the query presented in Example 2.1 is

to retrieve all apartments from the data source Apartments and
schools from the data source Schools. Then join the objects from
both lists which are located in the same location. Compute the to-
tal expenses for each join result by adding the rent and school fee
together. Now, the five cheapest pairs (join results) constitute the
final answer to this query. The important consideration is that un-
less we process the data from both data sources completely, the top
five results cannot be returned to the user. So, for large numbers
of apartments and schools, such a query involves a lot of processing
while using this traditional method, since it requires expensive join
and sort operations for large amounts of data.

Example 2.2: A top-K query from a video system database is
that a user wants to find 10 most similar video frames to a given
image with respect to some visual features, e.g. on the basis of
colour and texture similarity. Consider a database of video sys-
tem which stores many visual features which are extracted from
each video object (frame or segment). These features may include
color histograms, color layout, texture, and edge orientation. These
features are stored in separate relations and are indexed using high-
dimensional indexes which support similarity queries.

The above mentioned query highlights the importance of efficient
processing for top-K similarity queries. Here the user can provide a
function that combines similarity scores in given features to formu-
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2 Ranking and Web Search

late an overall similarity score. For example, the overall similarity
score of a frame f with respect to a query image q can be computed
using a given score aggregation function, such as,
0.5 ×ColorSimilarity( f , q)+0.5× TextureSimilarity ( f , q).

Again, a simple way to address such a multi-feature query is by se-
quentially scanning all database objects, while computing the score
of each object according to the features under consideration, and
computing the total score for each object by using the score ag-
gregation function. However, this approach suffers from scalability
problems with respect to database size and the number of features.
As an alternative, we can map the query into a join query that
joins the output of multiple single-feature queries, and then sorts
the joined results based on combined score. But, this approach also
does not scale with respect to both number of features and database
size since all join results have to be computed then sorted.

The main problem with sort-based approaches is that sorting is
a blocking operation which requires computation of all the join re-
sults. Although the input to the join operation is sorted on indi-
vidual features, yet this order is not exploited by conventional join
algorithms. Hence, sorting the join results becomes necessary to
produce the top-K answers. Therefore, it requires embedding rank-
awareness in query processing techniques to provide a more efficient
and scalable solution.

Figure 2.1 shows alternative plans for processing the query to get
top-K join results from two data sources A and B. One plan uses
nested loop join to compute the joins and then uses sorting to ex-
tract top-K join results. The other plan sorts the base relations and
then uses rank join which incorporates ranking in the join operation,
to produce top-K join results. At the same time, below each of the
plans we show the amount of data that needs to be processed in or-
der to get the top-K join results while using the respective plan. We
also see that in the case of nested loop join complete data needs to
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2.2 Taxonomy of Top-K Queries

be processed, whereas, the rank join exploits the sorting to produce
the desired number of top-K join results while accessing a subset of
the whole data.

Figure 2.1: Rank join vs nested loop join.

2.2 Taxonomy of Top-K Queries

In this section, we discuss the state-of-the-art top-k query process-
ing techniques in relational database systems. We give a detailed
coverage for most of the recently presented techniques focusing pri-
marily on their integration into relational database environments.
We also introduce a taxonomy to classify top-k query processing
techniques based on multiple design dimensions, described in the
following:
Query Model Dimension

Firstly, we present the classification of top-k query processing tech-
niques based on the query model they assume. There are three

23



2 Ranking and Web Search

Figure 2.2: Taxonomy of Top-K Joins

different subcategories in the query model dimension:
i) Top-K Selection Query Model:
Some techniques assume a selection query model, where scores are
attached directly to base tuples. As an example consider a user
wants to find the top 5 images which are most similar to a given
image based on certain features e.g. colour and texture. NRA al-
gorithm [6] presented by Fagin et. al. is an example of this type of
techniques. We briefly discuss it in Section 2.3.
ii) Top-K Join Query Model:
This branch of the taxonomy involves the rank join techniques which
assume a query model, where scores are computed over join results
based on some scoring function. As an example, finding five places
in a city based on lowest tuition fee and prices of the apartments, re-
quires joining two different data sources of Apartments and Schools.
There are many top-K join techniques which fall in this category e.g.
NRA-RJ [] by Ilyas works well when the join condition is equi-join.
Other techniques under this category are J∗ algorithm [1] by Nastev
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2.2 Taxonomy of Top-K Queries

et. al, Rank Join [10] by Ilyas et. al, and PREFER []. We discuss
Rank Join by Ilyas et. al. in Section 2.3.
iii) Top-K Aggregation Query Model:
As the names suggests in this third query model category the scores
are computed based on groups of tuples. As an example, we may
find top 10 employees averaging on their age and salary combined.
Li et. al [] (2006) have presented an algorithm for dealing with the
challenges in aggregation based rank join algorithms.

Data Access Dimension
The data access dimension classifies the top-K join queries is based
on ways in which we can access the data from the underlying data
sources. The main data access techniques involve the availability
of: only sorted access; both sorted and random accesses and lastly,
sorted access with controlled random access. Here we need to under-
stand the meaning of sorted and random accesses. A sorted access
is the one which accesses the ranked list in a sequential order, i.e.
a high scoring object has to be traversed before the low scoring ob-
ject. On the other hand if the score of an object is required directly
without traversing the objects with higher or lower scores then we
call it random or direct access. Based on these access methods rank
joins can be categorized into three sub categories. i) Both Sorted
and Random Access:
This category ensures that all the data sources involved in a query
offer both methods to access the data objects. The examples of such
algorithms are Threshold Algorithm (TA) by Fagin et. al. [6] and
Quick Combined algorithm [9] by Guntzer et. al. We have discussed
the TA algorithm briefly in Section 2.3.
ii) No Random Access:
In this category, as the name suggests the data can only be accessed
in sequential order from all the data sources. No Random Access al-
gorithm (NRA) [6] by Fagin et. al. and Stream Combine algorithm
[8] by Guntzer et. al. are the two such algorithms in the literature.
We discuss NRA algorithm in Section 2.3.
iii) Sorted Access with Controlled Random Probes:
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2 Ranking and Web Search

In this category the top-K queries involve at least one data source
which offers sorted access, though it may offer random access as
well. Here the assumption is based on practical observations that
random access is expensive as compared to the sorted access. There-
fore, in the approaches which fall under this category try to reduce
the number of random probes in order to produce top-K join re-
sults. Examples of such algorithms are Rank Join algorithm [] by
Ilyas et. al., MPro algorithm by Chang et. al. and Upper and Pick
algorithms [] [] by Bruno et. al. We have discussed few of them in
the coming section.
Implementation Level Dimension
In this category of the taxonomy we present as to how the top-K
join algorithm is going to be integrated with the system. There are
two sub categories for this purpose. One is application level and the
other is query engine level.
i)Application Level:
One way is to embed the top-K join algorithm at the top of the
query engine. This way the query engine works in its own way and
the rank join algorithm can leverage from internal database objects
like indexes and materialization etc. to perform more efficiently.
Furthermore, new data access methods and specialized data struc-
tures can also be used. However, the main processing for the top-K
queries is conducted outside the query engine. The examples of such
algorithms include algorithms presented by Chang et. al. [], and
Hristidis et. al. [].
ii)Query Engine Level:
The algorithms of this category involve changes at the database en-
gine level, which helps executing the query in a rank join perspec-
tive. Thus, ranking plays a role in the optimization and processing
of the query. Some of such techniques have introduced new join
operators which support ranking and are called rank join operators.
As an example, in rank join algorithm [] presented by Ilyas et. al.
introduces a rank join operators. Whereas, following the same lines
Li et. al. [] have presented the extensions to the existing query
algebra for incorporating rank awareness.
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2.2 Taxonomy of Top-K Queries

Query and Data Uncertainty Dimension
This category depends upon the query environment and nature of
data involved in the query processing. As an example, in data
warehouse environment we have to process a huge amount of data
in order to get exact query answer. So, in such applications we
may sacrifice the accuracy of query answers in order to scale up the
performance of the system. Therefore, we may report approximate
answers for top-K queries. On the other hand, the uncertainty may
appear in the data itself, e.g. the data collected from streams and
sensor networks is not accurate data and it needs to be cleaned.
Therefore, in such cases the queries are formulated and processed
while taking the data uncertainly into consideration. From the top-
K queries we have defined the following sub-categories from the
query and data uncertainty dimension:
i) Exact Methods over Certain Data:
Here we have exact data and we process so as to get the answers
with deterministic guarantees. Most of the rank join algorithms fall
in this category, where deterministic data is processed by determin-
istic algorithms.
ii) Approximate Methods over Certain Data:
This sub-category involves the processing of top-K queries over de-
terministic data, but here the algorithms use approximations to
produce the nearly optimal results and this way they compute the
results in an efficient way. These kind of algorithms are generally
used in Decision Supports Systems and data warehouses. These ap-
proximate answers are generally associated with probabilistic guar-
antees. The examples of such algorithms are Theobald et. al. [] and
Amato et. al. []. We have discussed such algorithms in Chapter 4
where we present our algorithm which works on certain data and
produces top-K join results with probabilistic guarantees.
iii) Uncertain Data:
This sub-category involves query processing of the data which is
obtained from streams or sensor networks, i.e. the data needs to
be cleaned before it is processed. Some algorithms which belong
to this category use probability as the only score model, whereas,
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2 Ranking and Web Search

others methods exploit both score and probability dimensions. The
examples of such algorithms are Re et. al [] and Solaiman et. al
[]. The work presented in this thesis is based on deterministic data
therefore we do not discuss any such algorithms further.

Ranking Functions
The rank joins can be further classified based on the type of ranking
or scoring function. There is a vital property of rank joins which is
to define the upper bound on the object’s scores. These ranking or
scoring functions help computing these values. We classify the rank
joins based on the ranking functions in the following sub-categories:
i) Monotone Ranking Function:
A monotone ranking function easily computes upper bounds for the
objects. A function F , which is defined over predicates p1, ..., pn,
is a monotone scoring function if F (p1, ..., pn) le F (q1, ..., qn) when-
ever pi le qi for every i. Most of the rank join algorithms involve
monotonic scoring functions as they widely cover many practical
scenarios and are enriched with the efficient processing abilities. As
an example the Threshold Algorithm (TA) [6] by Fagin et. al. uses
monotone scoring function. All the algorithms proposed as a con-
tribution for this thesis involve monotone ranking functions.
ii) Generic Ranking Function:
Some times ranking functions are expressed in the form of numer-
ical expressions. In order to process such ranking functions effi-
ciently, numerical optimizations and indexes are used. As an exam-
ple, Zhang et. al. [] address the issues of top-K query processing
for such generic ranking functions.
iii) No Ranking Function:
In this category we can see rank query processing which is conducted
without any ranking function. As an example, skyline queries are
processed without a ranking function. These queries produce the
best objects which cannot be dominated by other objects based on
certain attributes. Borzsonyi et. al. [] and Yuan et. al. [] present
such algorithms. However, in the context of our thesis we do not
discuss such algorithms.
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2.3 State of the Art Rank Join Algorithms

In this Section we present some classical rank join algorithms which
are the basis for many recent rank join algorithms. Firstly, we
will present Threshold Algorithm [6] which was presented by Fa-
gin. Then we present a variant of threshold algorithm which only
involves sorted data access and is called No Random Access (NRA)
algorithm [6]. Thirdly, we present another algorithm HRJN [10]
which only allows sorted data access to the data sources. Lastly, we
present [13] Upper and Pick [?] algorithms which present relatively
similar work to our approach. All these approaches use monotonic
scoring function, and the query model is top-K join query model,
and in terms of data they deal with certain data, and can be imple-
mented at any level. However, in terms of data access some assume
both sorted and random access methods, whereas others assume
only sorted access method.

Threshold Algorithm
Threshold algorithm (TA) [] was presented by Fagin et. al. in 2001.
It assumes that the data sources exhibit both sorted and random
data accesses. This algorithm scans multiple lists comprising of
different rankings of same data objects. An upper bound τ is main-
tained to compute the maximum score of unseen objects. The score
function computes the upper bound using the scores of the last seen
objects in each list. This values of upper bound is updated every
time a new object is observed from any of the lists. As soon as an
object is observed in one list, the algorithms looks up this object
in the rest of the lists and then computes the score of this object
using the score function. An object is reported to the user if its
score is greater than the upper bound τ . Figure 3.1 illustrates the
processing of TA.
Consider two data sources L1 and L2 which contain same set of

objects with two different scoring predicates. The range of scores for
these objects in both data sources is [0,50]. Assume both sources
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2 Ranking and Web Search

Figure 2.3: Threshold Algorithm (TA)

support sorted and random access to the data objects. Consider
that simple linear addition is the score aggregation function. Fig-
ure 2.3 shows the execution of first two steps of TA. In the first step,
the algorithm retrieves the top object from each data source, and
then looks it up in the other data source. Then it uses the score
aggregation function to compute the exact score of these objects.
These seen objects are stored in a buffer in descending order of their
exact scores. The upper bound or threshold value, τ , is computed
by applying the score aggregation function to the last seen scores
in both lists, which after the first step results in 50+50=100. Now,
at this stage, both seen objects have scores less than τ , therefore,
no results can be reported. After the the second step, the threshold
τ drops to 75, which allows object 3 to be safely reported since its
score is above τ . The algorithm continues like this until it manages
to report K objects or the data from the sources is finished.

No Random Access Algorithm
NRA algorithm [] assumes that the data sources allow only sequen-
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2.3 State of the Art Rank Join Algorithms

tial access to the data objects and random access is not supported.
This algorithm may not report the exact scores of an object, since
it computes the upper and lower bound of the score of an object.
The lower bound score of an object t is computed by providing the
score aggregation function the know score value for t and the least
possible score value for t in the other data source. Whereas, the
score upper bound of t is computed by providing the known score
of t and the maximum possible score of t in the other data source,
which is the same as the last seen scores in the corresponding data
source. This allows the algorithm to report a top-k object even if its
score is not precisely known. Specifically, if the score lower bound of
an object t is not below the score upper bounds of all other objects
(including unseen objects), then t can be safely reported as the next
top-k object.

Figure 2.4: No Random Access Algorithm (NRA)

NRA Example: Consider two data sources L1 and L2, and each
data source contains a different ranking of the same set of objects
based on different scoring predicates. The scores of the objects in
both data sources fall in the range [0, 50]. Consider both data
sources only support sorted data access to the ranked data objects,
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2 Ranking and Web Search

and the score aggregation function is simple linear addition. Figure
2.4 shows the first three steps of the NRA algorithm. In every step
one object is retrieved from all data sources or lists. After the first
step, the algorithm retrieves the first object from each data source.
The algorithm then computes lower and upper bounds for the scores
of the objects. For example, object 5 has a score range of [50, 100],
as its known values is 50 and unknown value cannot exceed 50 and
cannot be less than 0. The seen objects are stored in a buffer in
the descending order of their score lower bounds. No object can
be reported at this stage as the score lower bound of object 5, the
top buffered object, does not exceed the score upper bounds of all
other objects. Similarly, after the second step two more objects are
added to the buffer, and score bounds are updated for score the
other buffered objects. After the third step, the scores of objects 1
and 3 are completely known. Here, we can observe that the score
lower bound of object 3 is greater than or equal to the score upper
bound of any other object (including the unseen ones), so object 3
can be safely reported as the top-1 object. It is pertinent to note
that at the same stage we cannot report object 1, becauses the score
upper bound of object 5 is 80, which is larger than the score lower
bound of object 1.

Hash Rank Join Algorithm
One example of rank-aware query operators that support pipelining
is the Rank Join operator []. This algorithm, integrates the joining
and ranking tasks in one efficient operator. There are commonalities
between rank join and the NRA algorithm []. Both these algorithms
perform sorted access to get tuples from each data source. There
are two main differences between rank join and NRA algorithm.
Firstly, NRA joins the lists of same objects, which is not the case
in rank join. Therefore, unlike NRA where one object in one list
has exactly one object in the other lists with which it can be joined,
in case of rank join one object in one list can be joined with many
others in the other list. That is why the rank join only stores the
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2.3 State of the Art Rank Join Algorithms

completly seen join results in the buffer. Consequently, the Rank-
Join algorithm provides exact scores of the join results, while the
NRA algorithm reports bounds on scores. The other difference is
that the NRA algorithm fetches one object from each list or data
source in each iteration. The Rank-Join algorithm has adaptive
strategy to extract object or tuples from a data source, and the al-
gorithm adaptively chooses the data source from which more data
needs to be fetched. The algorithm maintains a threshold τ which
bounds the scores of the undiscovered join results. All join results
with score greater than or equal to the threshold value are reported
to the user. The algorithm continues to work unless K join results
are reported. A two-way hash join implementation of the Rank-Join
algorithm, which is called Hash Rank Join Operator (HRJN), was
presented in Ilyas et al. []. HRJN is based on symmetrical hash
join. This operator maintains a hash table to store and process
the objects retrieved from each relation, and it maintains an output
buffer as a priority queue to store the join results in the order of
their scores.

Upper and Pick Algorithms
The Upper [?] and Pick [?] top-K algorithms assume that at least
one of the data sources provides sorted access, while random ac-
cesses are scheduled to be performed only when needed. Both these
algorithms are proposed in the context of Web-accessible sources.
The main emphasis of these algorithms is that in the context of
Web data sources random access is expensive as compared to the
sorted access. Therefore, these algorithms minimize the number of
random accesses in order to obtain top-K join results. The main
purpose of having at least one data source with sorted-access is to
obtain an initial set of candidate objects. These algorithms control
the random accesses by selecting the best candidates, based on score
upper bounds, to complete their scores.

The Upper algorithm, probes objects which have considerable
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chances to be among the top-K objects. Firstly, a sorted access is
made to get some candidate objects which are inserted into a pri-
ority queue based on their score upper bounds. After every data
extraction from the sorted data source the score upper bound of
unseen objects is updated. An object is reported and is removed
from the queue if its score lower bound is higher than the score up-
per bound of any unseen object. The algorithm adaptively chooses
the best source that should be probed next to obtain additional in-
formation for candidate objects.

In the Pick algorithm, the next data object to be probed into is
chosen so as to minimizes a distance function, which is defined as
the sum of the differences between the upper and lower bounds of
all objects. The source to be probed next is selected at random
from all sources that need to be probed to complete the score of the
selected object.

Major Components of a Rank Join Algorithms

If we analyse the above mentioned rank join algorithms, the we can
figure out that there are two main components of all rank join al-
gorithms.
i) Bounding Scheme
ii) Data Pulling Strategy

We explain the main features of these components as follows:
Consider a query Q whose answer requires accessing the data from
two tables S1 and S2 in a relational database. Each tuple ti ∈ Si
is composed of an identifier, a join attribute, a score attribute and
other named attributes. The tuples in both tables are sorted in the
descending order of the score associated to them, where the score
reflects the relevance with respect to the query. This sorting of
data objects in the respective relations fulfils the qualification for
the data so as to apply a rank join algorithm. Let ti denote a tuple,
t
(d)
i tuple at depth d and t(d+1)

i tuple at depth d + 1 for Si. Then
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σ(t
(d)
i ) ≥σ(t(d+1)

i ), where σ(ti) is the score of the tuple ti.
Bounding Schemes

Let t = t1 1t2 denote a join result formed by combining the tuples
retrieved from two relations, where ti is a tuple that belongs to the
relation Si. This join result is assigned an aggregated score based
on a monotone score aggregation function, σ(t) = f(σ(t1), σ(t2)).
Let τ denotes the threshold value, which is the maximum score of
a join result that can be computed by joining the unseen tuples of
the relations with the seen or unseen tuples of the rest of the tables.
This calculation of threshold helps in formulating a bound. Thus,
it helps in reporting the identified join results to the user. Let K
denote the number of join results for which σ(t) ≥ τ , then these can
be guaranteed to be the top-K. The computation of threshold value
depends upon the join predicate and data access methods. As an
example, if the data from two relations is joined based on the tuple
or object id and the data access method is sequential data access,
then we can compute a upper and lower bound scores of each join
result. We report that join results whose lower bound exceeds the
upper bound of the rest of the join results, as discusssed in NRA
algorithm above. Whereas, if we are allowed random data access
in the same scenario, then the threshold is computed as a single
score value, as we can observe in the TA algorithm discussed above.
Similarly, if the objects or tuples in the tables are joined based on
a join attribute value other than the object id, and data access
method is sequential, then the threshold is computed as a number.
Data Pulling Strategy:

Data pulling strategy provides a mechanism to choose the most
suitable data source to fetch the data [10]. Certainly, there is an
objective behind the mechanism of the pulling strategy, e.g. Hash
Rank Join (HRJN*) operator has the objective of optimizing the
I/O cost i.e. total number of tuples to get the top-K join results.
The data pulling strategy used in HRJN* chooses that relation for
data extraction whose τi = τ , the ties are broken by total number
of tuples which have been retrieved. Whereas, in case of Threshold
Algorithm (TA), data pulling strategy is round robin strategy, which
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extracts next sequential tuple from each relation in a round robin
fashion, and then finds its corresponding matches from the other
relations using random data access.
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2.4 Adaptation of Rank Joins for Web Based
Data Sources

The search systems over the internet have been evolving continu-
ously. There are some generic search engines like Google, Yahoo and
Bing etc. However, there exist a large number of domain specific
web searching services which provide the user with the answers to
certain specific questions: e.g. finding the movies by the IMDB and
finding books by Amazon etc. These large number of web search-
ing services have triggered the Web search community to design
multi-domain searching systems while using the existing searching
services. We can already see some examples of such systems e.g.
Yahoo Pipes and Expedia. These systems entertain multipurpose
user queries and serve the user requests by means of many existing
services and respond back to the user by aggregating and ranking
the results obtained by each service. A very important aspect of this
search is that the user is interested in most relevant and appropriate
results instead of large number of partially relevant results.

2.4.1 Classification of Web Services

We can categorize the Web services available on the Internet under
different categories. These categories are described as follows:
Ranking Dimension
The Web services can be classified based on the way they order the
data objects with their relevance to the query. They can be catego-
rized into Exact and Search services []. An Exact Web service is the
one which provides the results without computing any relevance of
these objects to the given query. A Search Web service provides the
output after scoring and sorting the resulting objects based on their
relevance to the given query e.g. if we have a service for finding the
hotels in a city, it may respond with the hotels sorted with its stars,
or this ranking and sorting can be on the price as well, based on the
given query.
Selectivity Dimension
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The Web services can be categorized into Selective or Proliferative
[], based on a factor called selectivity. The selectivity of a data
source is the average number of tuples a service outputs in response
to an invocation. So, if the maximum selectivity of a Web search
service is 1 then it is selective and proliferative, otherwise.
Data Provision
The services can also be categorized based on how the data objects
are reported in response to an invocation. The Web services can
be categorized as chunked or bulk []. The former provides the data
objects in pieces i.e. not all the results in one call and we have to
call the Web service again to fetch the next set of results unless we
are satisfied or the result set is finished. This phenomenon is gen-
erally known as pagination, where few data objects are reported
on one page and then we have to request for the other page to get
more data. Whereas, the latter approach gives all the results in one
call. This phenomenon of chunking gives rise to some optimization
dimensions as it allows to process the data before actually getting
the complete data set in response to a query.

Apart from this, there are some general characteristics which are
associated with the Web services, which are the following: in case
of a chunked Web service, one chunk or page of information is pro-
vided in a specified amount of time which is generally called average
response time of the Web service. Similarly, for a chunkedWeb ser-
vice, the number of objects which are retrieved in each chunk or
page are considered as chunk size for the Web service. Whereas,
in case of a bulk Web service, there is an average response time as-
sociated with it, i.e. the average time that it takes to respond to a
given query. There is not chunk size associated with the bulk Web
services.
Data Access
Another very important consideration about these services is that
there can be different data access methods for retrieving the infor-
mation from the Web services, namely, sorted access, random/direct
access or both sorted and random accesses. While using sorted ac-
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cess we can only access the data in a sequence and cannot find any
information randomly; in random/direct access we can find a certain
record directly, e.g. by using the object Id. Random or direct access
is rather expensive than sorted access. Note, that this is similar to
the data access dimension discussed in Section ??.
Another dimension to observe the data aquisition from the Web
services is whether to invoke them in parallel or in a pipe line.
This decision can be made by asssessing the precedence constraints
enforced by the input/output bindings. Since, the overall results
obtained by processing the data of Web services returns a single
sequence of results, i.e. in both cases we say that the two services
are joined. In case of parallel configuration data from the services
is extracted simultaneously. Independent services can be invoked
in parallel, and their results are processed as they are retrieved. In
case of input/output dependencies, independent service is invoked
first and then based on its output the dependent service is invoked.
However, even when service calls have precedence dependencies, de-
termined by the input/output bindings, it is not necessary to wait
for the complete execution of the first service (in a blocking style),
as its results can be fed as input to the second service as soon as
they are available, so as to "pipeline" the join execution.

As an illustrative example, consider a person who wants to plan
his visit to Paris by searching for a good quality hotel and a restau-
rant, which are situated close to each other and are highly recom-
mended by their customers. This can be accomplished by extracting
information from suitable data sources available on the Web and
merging the information to get the top rated resultant combina-
tions, as contemplated in Search Computing [5]. The Web services,
e.g. Yahoo! Local or yelp.com, can be used to find the places of
interest in a city. The data can be processed to produce the top-K
scoring join results of hotels and restaurants. A sample rank query
based on the above example is the following:

SELECT h.name, r.name, 0.6*h.rating+0.4*r.rating as score
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FROM Hotels h, Restaurants r
WHERE h.zip = r.zip AND h.city= ‘Paris’ AND r.city = ‘Paris’

In order to execute the above mentioned query let us assume
that there are two Web services hotel and restaurant. These Web
services can be invoked in parallel and we assume that there is no
dependency for the invocation of these services. Figure 2.5 shows
the execution plan for parallel join of this example query.

Figure 2.5: Example of parallel rank join.

Pipe rank joins extract data from data sources which may not be
invoked for data extraction in parallel, e.g. the output of one data
source is needed to invoke the other data source. Let us assume
that for the example query in Section ?? the restaurantWeb service
provides the information about restaurants in a given city which are
located in a given zip code. This exposition of restaurants allows to
choose pipe join topology in which we extract data from the hotel
Web service and then for all the objects observed from the hotel
Web service we find the newly encountered zip code values. Then
we pass on this zip code value to the restaurant Web service to
extract the information about the restaurants located in the given
zip code. Similarly, if hotel Web service also allows random access
based on zip code information for a city, then we can swap the Web
services in pipe line sequence. Figure 2.6 presents the execution
possibilities of pipe rank join for the example query given in Section
??.
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Figure 2.6: Possibilities for pipe rank join.

2.4.2 Hypothesis

There are existing approaches for parallel rank join topology [1][6][8][11][12].
Furthermore, recent solutions to rank join problem [7][10][15] focus
on providing instance optimal algorithms regarding the I/O cost.
The I/O cost is a quantity proportional to the overall number of
fetched tuples. So these algorithms minimize the total number of
tuples to be accessed in order to find the top-K join results. HRJN*
[10] is an instance optimal algorithm in terms of I/O cost and it in-
troduces a physical rank join operator. This algorithm has been
further improved in [7] and [15].
Similarly, in [14] the authors provide a way of computing top-K join
results using pipe join, with minimum I/O cost. We refer to it as
serial Pipe Rank Join (sPRJ). Indeed, this optimization of the I/O
cost in all these parallel and pipe join algorithms helps reducing the
total time to compute the top-K join results as well, yet total time
can be further reduced for the following reason: these I/O optimal
algorithms access data from the data sources in a serial manner, i.e.
they access data from one source, process it and then fetch the data
from the next most suitable source. The latter is selected based on
a pulling strategy, which determines the source to be accessed to, in
order to minimize the I/O cost. However, in the context of using
Web services as data sources, data processing time is found to be
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negligible as compared to data fetching time. So, most of the time
is spent in waiting for retrieving the data. Therefore, an alterna-
tive approach that extracts data from all data sources in parallel
should be used in order to reduce the data extraction time from all
sources by overlapping the waiting times. This calls for a parallel
data access strategy. In the next part of this chapter we present the
parallel and pipe topologies for rank join algorithms which exploit
parallel data access.

Apart from the above mentioned parallel data extraction methods
to improve the query answering time in the context of query exe-
cution with Web services as data sources, we also address the issue
of query processing time from another dimension. While analysing
the state of the art rank join algorithms we observed that most of
the time the real top-K join results are obtained much earlier as
compared to the time when they are reported. The reason for this
delay is the bounding scheme or the threshold value. As we dis-
cussed above, no join result can be reported unless its aggregated
score is above or equal to the threshold value. So, in most of the
cases, the join results are obtained and then the algorithms keep on
extracting more data so as to bring the threshold value down and
produce more join results. Finally, when the threshold falls below
the score of an observed join results then it is reported to the user.
This phenomenon triggers the need of reporting the already ob-
tained join results with certain probabilistic guarantees with which
they will appear among the top-K join results. This improvement is
imperative in two cases, firstly, when the computation of top-K join
involves huge amount of data and it is associated with a very high
I/O and time costs. Secondly, when the data sources are Web ser-
vices, which have non-negligible response time associated to them.
In the latter case, the time to fetch the data is a bottle neck and
it may delay the reporting of already observed join result which
may be one among the final top-K join results. There are existing
techniques for probabilistic measures for processing the top-K join
results but most of them [] [] focus on discarding the partial join re-
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sults which have a very low probability to be among the final top-K
join results. We look forward to a probabilistic method which com-
putes the probabilities of the currently observed top-K join results
with which they may appear among the final top-K join results. A
similar work has been conducted in [] and has been further improved
in []. However, this computes the overall probability of having top-
K join results at one particular stage. Another difference is that it
is based on the TA and NRA algorithms. Whereas, we focus our
work on rank join operator, which has different joining methodology
as it does not join the objects based on object ids.

Therefore, we have two main research questions which we address
in this thesis.

i) Exploit parallel data extraction for both parallel and pipe join
topologies for processing the rank join algorithms in the context of
Web based data sources e.g. Web services. The intuition is that the
parallel data extraction surely reduces the time to compute the top-
K join, however it may result into extra I/O cost. The objectives
are to keep the I/O cost near to the optimal cost, while reducing
the time to compute the top-K joins as much as possible.
ii)Minimize the time to compute the top-K join results by reporting
the observed join results as the top-K join results with probabilis-
tic guarantees instead of deterministic guarantees. Intuitively, we
can say that this probabilistic reporting of the join results will help
reducing the time to compute the join results as well as the I/O
cost to compute the top join results. However, at the same time the
quality of the results may suffer, as this method is prone to report
the join results which actually are not top join results. Therefore,
in this research question the objective is to avoid reporting these
unwanted join results while using probabilistic guarantees.
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In this chapter we present the rank join algorithms for parallel and
then pipe join topologies. We exploit the possibilities with which
parallel data access can be used to improve the overall time to com-
pute the top-K join results using these join topologies.

Firstly, we present a rank join algorithm which uses parallel join
topology with two or more Web services. We assume that the Web
services involved in these joins are equipped with only seqential data
access and provide the results in descending order of the scores of
their objects with respect to the given query. So these Web services
are search Web services. We also assume that the data can be
obtained from these Web services in the form of chunks, therefore,
these are chunkedWeb services. Lastly, the selectivity of these Web
services is higher and they are proliferative Web services i.e. they
provide multiple objects with each invocation. Above all, in the
first part we present top-K join algorithm with parallel data access
which involves two or more search,chunked and proliferativeWeb
services which are only equipped with sorted data access. We dis-
cuss different possible ways to use parallel data access and then see
which approach is most suitable. We also present variants of this
baseline approach which can be used under different situations and
needs. Lastly, we analyse the proposed rank join algorithm with
various operating parameters.

Secondly, we present a rank join algorithm which uses pipe join
topology involving two Web services, left and right. Here the output
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of left Web service is used as input to the right Web service. We as-
sume that left Web service is a search, chunked and proliferative
Web service. Whereas, the right Web service provides incremental
random access to its data, which means that it takes input from
the left Web service and then it provides the data objects which
match the input in the form of chunks and in the descending order
of scores. That is, it performs selection and ranking over its com-
plete data to provides results related to the input given by the right
service. In this scenario, we see how parallel data extraction can be
helpful to reduce the total amount of time to compute the top-K
join results. We analyse the proposed approach by performing vari-
ous experiments with different settings of the operating parameters.

In the end we present an analysis of the proposed approaches in
the light of the research objectives set for this purpose. We assess if
the proposed methodologies meet the objectives set for this research.
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3.1 Parallel Rank Join for Web Data Sources

Rank join operators perform a relational join among two or more re-
lations, assign numeric scores to the join results based on the given
scoring function and return K join results with the highest scores.
The top-K join results are obtained by accessing a subset of data
from the input relations. Here we address the problem of getting
top-K join results from two or more search services which can be ac-
cessed in parallel, and are characterized by non negligible response
times and sorted access to the data.
A simple parallel strategy keeps on extracting data from each Web
service in parallel until top-K join results can be reported. We
call this strategy Naïve Parallel Rank Join (PRJ). As an illustra-
tive example, assume that we can extract top 10 join results from
2 different Web services after fetching 3 data pages from each Web
service. Figure 3.1 shows the behaviour of both HRJN* and PRJ. It
can be observed that both HRJN* and PRJ approaches have short-
comings: HRJN* takes a large amount of time to complete, whereas,
PRJ costs more in terms of I/O as it may retrieve unnecessary data
(e.g. C4 and C5). This requires the design of a rank join operator
that is specifically conceived to meet the objectives of getting top-K
join results quickly and restricting access to unwanted data, when
using Web services or similar data sources. Therefore, we propose
a Controlled Parallel Rank Join (cPRJ) algorithm that computes
the top-K join results from multiple Web services with a controlled
parallel data access which minimizes both total time, and the I/O
cost, to report top-K join results.
The objectives are the following: i) to minimize overall data ac-

cess time. ii) to avoid the access to the data that does not contribute
to the top-K join results.
Therefore we proposes a parallel rank join operator cPRJ that achieves
the above mentioned objectives by using a score guided data pulling
strategy. This strategy minimizes the access time by extracting data
in parallel from all Web services, while at the same time avoiding the
access to data that is not useful to compute top-K join results. This
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Figure 3.1: Serial Data Access of HRJN* vs Parallel Data Access

is accomplished by pausing and resuming the data access from dif-
ferent Web services adaptively, based on the observed score values of
the retrieved tuples. An extensive experimental study evaluates the
performance of the proposed approach and shows that it minimizes
the overall access time, while incurring few extra data accesses, as
compared to the state of the art rank join operators.

3.1.1 Methodology

Terminology

Consider a query Q whose answer requires accessing a set of Web
services S1, ..., Sm, that can be wrapped to map their data in the
form of tuples as in relational databases. Each tuple ti ∈ Si is com-
posed of an identifier, a join attribute, a score attribute and other
named attributes. The tuples in every Web service are sorted in de-
scending order of score, where the score reflects the relevance with
respect to the query. Let t(d)i denote a tuple at depth d of Si. Then
σ(t

(d)
i ) ≥σ(t(d+1)

i ), where σ(ti) is the score of the tuple ti. Without
loss of generality, we assume that the scores are normalized in the
[0,1] interval.
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Each invocation to a Web service Si retrieves a fixed number of
tuples, referred to as chunk. Let (CSi) denote the chunk size, i.e.
the number of tuples in a chunk. The chunks belonging to a Web
service are accessed in sequential order, i.e. the c − th chunk of
a Web service will be accessed before (c + 1) − th chunk. Each
chunk, in turn, contains tuples of Si sorted in descending order of
score. Furthermore, Si provides one chunk of tuples in a specified
time, which is referred to as its average response time (RTi). Let
t = t1 1t2 1 ...tm denote a join result formed by combining the
tuples retrieved from the Web services, where ti is a tuple that
belongs to the Web service Si. This join result is assigned an aggre-
gated score based on a monotone score aggregation function, σ(t)
= f(σ(t1), σ(t2), .., σ(tm)). The join results obtained by joining the
data from these Web services are stored in a buffer Sresult in de-
scending order of their aggregate score.
We propose a new rank join operator cPRJ which involves Web

services characterized by non-negligible response time. This opera-
tor fetches the data from all the Web services in parallel according
to an ad-hoc data pulling strategy and uses a tight bounding scheme
for the calculation of the local thresholds of the Web services.

Data Pulling Strategy

We stress on such a data pulling strategy which extracts data from
all Web services in parallel. A naïve parallel pulling strategy, PRJ,
keeps on extracting data from every data source till its respective
local threshold becomes lesser or equal to the score of the then
seen K-th join result. Figure 3.1 shows the comparison of different
data pulling strategies. It shows that the I/O optimized HRJN*
strategy has least I/O cost, but it takes more time to get top-K
join results. Whereas, PRJ is only concerned with reducing the
time to get top-K join results and it may result the extraction of
unwanted data. This extraction of unwanted data is possible if a
Web service stops well before the others, that is, its local threshold
has reached below the score of the then top-K-th join result in
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the output buffer Sresult. In this case, there is a possibility that
the other Web services having higher local thresholds produce join
results with better aggregate score values, and terminate with an
even higher local threshold. Resultantly, the Web service which
stops earlier incurs extra data fetches. Therefore, in case of m Web
services maximumm−1Web services may terminate earlier than the
m-th Web service. Our proposed data pulling strategy extracts data
from all the data sources in controlled parallel manner, the parallel
data access helps minimizing the time to get top-K join results.
Whereas, the I/O cost is minimized by pausing and resuming data
extraction from the Web services. The pausing and resuming of
data extraction from a Web service with lower local threshold, are
performed on the basis of estimating the time to bring the local
threshold of other Web services with higher local thresholds below
or equal to its local threshold. This is explained in the Section ??.
We use tight bounding scheme to compute the threshold values.

State Machine

In order to refrain from accessing the data that do not contribute
to the top-K join results every Web service is controlled by using a
state machine shown in Figure 3.2. The Web services are assigned
a particular state after the completion of the processing of data
fetched from any Web service. The Ready state means that the
data extraction call should be made for this Web service. It is also
the starting state for each Web service. A Web service Si is put into
Wait if we can fetch more data from any other Web service Sj and
still its local threshold τj , will remain greater than or equal to τi.
The Stop state means that further data extraction from this Web
service will not contribute to determining the top-K join results.
Lastly, the Finish state means that all the data from this Web
service has been retrieved. The Stop and Finish states are the
end states of the state machine. The difference between PRJ and
the proposed cPRJ is that PRJ does not have Wait state, whereas,
cPRJ controls the access to the unwanted data by putting the Web
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services into Wait state. On retrieving a chunk of tuples from Web
service Si the following operations are performed in order:

1. Its local threshold τi is updated and it is also checked if the
global threshold τ also needs to be updated.

2. New join results are computed by joining the recently retrieved
tuples from Si with the tuples already retrieved from all other
Web services.

3. All join results are stored in the buffer Sresult in descending
order of score. The size of the buffer Sresult is bound by the
value of K. All join results having aggregated score above τ
are reported to the user.

4. The state for Si is set using setState function shown in Figure
3.1.1. If Si has extracted all its data then it is put to Finish
state and τi is set to 0.

Apart from this the following operations are also performed:

1. Every Web service Si, which is not in Stop or Finish state,
is checked and is put into Stop state, if σ(t(K)

result) ≥τi.

2. A Web service Si that is in Wait state is put to Ready state,
if there is no other Web service Sj which is in Ready state
and τj is greater than τi, and Sj needs more than one chunk
to bring τj lower than τi, and the minimum time needed to
bring τj less than τi is greater than RTi.

The state transitions are exemplified below in Section 3.1.1.

Time to Reach (ttr)

Data pulling strategy issues the data extraction calls by analyzing
the local thresholds of the Web services. Particularly, the decisions
to put a service from Ready to Wait, and Wait to Ready state are
based on the computation of time to reach (ttr). Therefore, in order
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Figure 3.2: The state machine according to which each Web service
is manipulated

to clearly understand these state transitions we need to understand
the computation of ttr. On completion of a data fetch from Web
service Si we identify all the Web services which are in Ready state
and have higher local threshold value than τi, and put them in a
set J . For each Web service Sj , in set J , we compute time to reach,
(ttrj), which is the time that Sj will take to bring τj below τi. The
highest value of ttrj is considered as ttr for Web service Si. If ttr
is greater than RTi then Si is put into Wait state, otherwise, it
remains in Ready state.

The estimation of ttr involves the calculation of decay in score
for the Web service Sj . We use Autoregressive Moving Average
forecasting method [4] for the calculation of score decay. After es-
timating the unseen score values we can compute the total number
of tuples needed to bring the τj lower than the value of τi. This
number is then divided by the chunk size of Sj i.e. CSj , to get
the number of chunks to bring the threshold down. If number of
chunks are less than one, i.e. the after getting the data from the
currently extracted chunk τj will fall below τi, then ttrj is set to
0. Otherwise, number of chunks are multiplied by RTj , and the
elapsed time ETj , the time since the last data extraction call is
issued for Sj is subtracted i.e. ttrj = (chunks×RTj)− ETj .
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State Transitions in the State Machine

The state transitions shown in Figure 3.2 are exemplified below with
the help of Figure 3.1.1. There are 3 Web services S1, S2 and S3
with RT1 = 400ms,RT2 = 700ms and RT3 = 900ms, for simplicity,
score decay for all Web services is kept linear.
Ready to Finish: If a Web service has been completely exhausted,
i.e. all the data from it has been retrieved then its state is changed
from Ready to Finish. A Web service can be put to Finish state
only when it is in Ready state and makes a data extraction. Figure
3.1.1 shows that after 2800ms, S2 is put from Ready to Finish
state.
Ready to Stop and Wait to Stop: If a Web service is in Ready
or Wait states then it should be put into Stop state if the following
condition holds: if Sresult already holds K join results, then the
algorithm compares the local threshold τi with σ(t

(K)
result), the score

of K − th join result in Sresult. If τi is less than or equal to it
then it assigns Stop state to Si. This essentially means that further
extraction of data from this Web service will not produce any join
result whose score is greater than the join results already in Sresult.
Figure 3.1.1 shows that after 2100ms the Web service S3 is put from
Wait to Stop state as its τ3 is lower than σ(t(K)

result). Whereas, S1 is
put from Ready to Stop state at 2500ms.
Ready to Ready, Ready to Wait, Wait to Ready and Wait
to Wait: A Web service in Ready state is put to Wait state, or a
Web service in Wait state is put to Ready state by analyzing the
local thresholds of all other Web services which are in Ready state.
Figure 3.1.1 presents the algorithm for setState function. Below is
the explanation of the algorithm for a Web service Si:

• Consider a set J containing all the Web services having local
thresholds greater than that of τi and are in Ready state.
The algorithm estimates the time to reach (ttrj), for all Web
services Sj ∈ J to bring τj lower than τi as explained in Section
??.
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• Thus, ttrj is computed for all Web services in J and the max-
imum of these values is retained as ttr.

• If Si is in Ready orWait state and ttr is greater than or equal
to RTi then Si is assigned Wait state, otherwise, it is put to
Ready state.

Figure 3.1.1 shows that, after 800ms, S1 is put from Ready to
Wait state because of bootstrapping phase, as no more than 2 data
extraction calls are allowed during this phase from any Web service.
This is explained below in this section. However, even after finishing
the bootstrapping, at 900ms, it remains in Wait state as ttr2 is
1900ms which is greater than RT1. S1 continues to be inWait state
at 1400ms and at 1800ms, as ttr is greater than RT1. Similarly, at
1800ms, S3 is put toWait state from Ready state, as ttr2 is 1700ms.
After 2100ms S1 is put from Wait to Ready state as at this time

ttr2 is 0. Therefore, we need to resume data extraction from S1
as well. Lastly, S2 remains in Ready state during all the state
transitions, till it moves from Ready to Finish state at 2800ms
because it remains the Web service with highest local threshold i.e
τ2 = τ .
Bootstrapping: At the beginning data is extracted from all Web
services in parallel. The phase before extraction of at least one
chunk from all Web services is considered as bootstrapping phase.
The Web services with smaller response time may fetch too much
data in this phase. So, during bootstrapping, we limit maximum
two data fetches from a particular Web service. The rationale is
that these Web services have much shorter response time so they
can catch up the other Web services with higher response times. It
can be observed in Figure 3.1.1 that S1 is put to Wait state after
making two fetches, at 800ms. Similarly, at 400ms S1, and at 700ms
S2, are allowed to perform second fetch. The bootstrapping phase
ends after 900ms.
Adaptivity to the Change in RT : Sometimes it is possible
that a Web service Si does not demonstrate the same response time
as anticipated. To determine this, the proposed algorithm always
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computes the response time for every chunk and computes average
of the last 3 observed response times. If the deviation is within
10% of the existing response time value, then the latter is retained.
Otherwise, RTi is assigned the average of its last 3 observed RT
values.

Figure 3.3: The setState algorithm

3.1.2 Concurrent Prefetching with cPRJ: A Variant of
the Algorithm

It is possible to profile a Web service Si and identify the number
of concurrent calls Si(conc), it supports without any degradation in
QoS. Instead of fetching one chunk at a time, the algorithm might
issue as many concurrent calls as the Web service permits. This will
help in speeding up the data fetching even further, as we shall be
able to fetch the data from Si(conc) chunks in RTi, the time in which
we get one chunk with the baseline cPRJ.
In order to achieve this, the setState function needs to be changed
for the calculation of ttr, by incorporating the number of concurrent
chunks extracted by Si. Also, while issuing the data extraction calls,
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Figure 3.4: Execution of cPRJ with 3 Web services, over timeline
against local thresholds.

the algorithm has to check the number of chunks a Web service needs
to bring its local threshold down to σ(t(K)

result). If they are greater
than or equal to Si(conc) then all concurrent data extraction calls can
be issued. Otherwise, the number of calls is that suggested by the
calculation. As an example, if Si(conc) is three, and the calculation
of ttr shows that τi will fall below or equal to σ(t(K)

result) after two
fetches, then only two more data extraction calls shall be issued.
This variant reduces the time to find the top-K join as compared to
the baseline version of cPRJ. However, it incurs in some additional
I/O cost because of concurrent data extraction.

3.1.3 Experiments and Results

Methodology

Data Sets: We have conducted the experiments on both synthetic
data, and real Web services. The experiments are based on the
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query in Example 1 by generating many different synthetic data
sources with various parameter settings. The relevant parameters
are presented in Table 3.3. The real Web services used for the
experiments are presented in Table 3.1. These real services were
queried for finding the best combination of hotels and restaurants
in a city, for many different cities. For each city, we find the best
combination of hotels and restaurants located in the same zip code.
In order to consider more than two Web services, we have also ex-
tracted information about museums and parks from the real Web
services. The experiments with synthetic data are performed with
diverse and homogeneous settings of values for the parameters in
Table 3.3. Homogeneous settings help us understanding the be-
haviour of individual parameter whereas, diverse settings help us
simulating the real environment Web services, as we have observed
that most of them have diverse parameter settings. For fairness,
we compute these metrics over 10 different data sets and report the
average. The experiments with the real Web services are conducted
by fetching the data from real Web services for 5 different cities and
the averaged results are reported.

Table 3.1: Real Web services used for experiments
Web Services Type of Infor-

mation
Response
Time

Chunk
Size

1 venere.com Hotels 900 ms 15
2 eatinparis.com Restaurant (only

for Paris)
350 ms 6

3 Yahoo! Local Hotels, Restau-
rants, Museums,
Parks

800-1200
ms

10

4 www.yelp.com Hotels, Restau-
rants, Museums,
Parks

900-1100
ms

10

Approaches: We compare three algorithms, HRJN*, PRJ and the
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Table 3.2: Operating Parameters (defaults in bold)
Full Name Parameter Tested Values
Number of results K 1,20,50,100
Join Selectivity JS 0.005, 0.01, 0.015, 0.02
Score Distribution SD Uniform Distrib., Zip-

fian Distrib., Linear
Distrib., Mixed

Response Time RT 500/500, 500/1000,
500/1500

Chunk Size CS 5/5, 5/10, 5/15
Number of relations m 2,3,4

proposed cPRJ while using tight bounding scheme. An important
consideration is that HRJN* augmented with tight bounding can-
not be beaten in terms of I/O cost, whereas PRJ cannot be out-
performed in terms of time taken, provided the time taken for join-
ing the data is negligible. Therefore, the proposed algorithm, cPRJ
carves out a solution that deals in the trade off between I/O cost
and time taken. Indeed, the parallel approaches should be efficient
in terms of time taken than the serial data accessing HRJN* ap-
proach yet, the purpose of including HRJN* in the comparison is
to elaborate the gain in terms of I/O cost when using cPRJ instead
of PRJ.
Evaluation Metrics: The major objective of the proposed ap-
proach is to reduce the time taken to get the top-K results by mini-
mizing the data acquisition time with the help of parallelism. So, we
consider time taken as the primary metric for comparing different
algorithms. This is the wall clock time, that is, starting from the
first fetch till the K − th join result is reported. The reduction in
time is obtained by compromising on possibly some extra data ex-
traction as compared to HRJN*. Therefore, we consider sum depths
[7], total number of tuples retrieved from all Web services, as other
metric for comparing the different algorithms.
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Results

Experiments with Synthetic Data: In Figure 3.5 we show the
results of the experiments for CS, RT and SD parameters while
joining two Web services. In case of the homogeneous setting of the
parameters, i.e. keeping all the parameters to the default values and
setting different values for one of the three above mentioned param-
eters. This results into termination of data extraction from (m−1),
in this case, one data source earlier than the other data source, as
explained in section ??. The proposed cPRJ algorithm is also based
on these three parameters. Figure 3.8(b) shows that cPRJ incurs
1% more and PRJ incurs 8% more I/O cost than HRJN* in case
of different CS values. For different values of RT and SD both
HRJN* and cPRJ take the same I/O cost, and PRJ takes 8% more
and 10% more I/O cost than HRJN* for different values of RT and
SD, respectively. If we augment all these in one scenario then cPRJ
incurs 3% more I/O cost than HRJN* and PRJ costs 29% more I/O
cost than HRJN*. Whereas, Figure 3.8(a) shows that for all cases
the time taken by both parallel approaches is almost same and is
much lower than HRJN*. However, if CS, RT and SD are identical
for all data sources, then all three approaches have almost same I/O
cost and both parallel approaches take same time.

The overall performance of cPRJ is much better than PRJ in case
of diverse parameter settings, as it has almost same I/O cost as of
HRJN* whereas, it takes almost same time as of PRJ, whereas, PRJ
has higher I/O cost than HRJN*. Thus, in the diverse settings it
brings the best of both worlds.
Real Web Services: The experiments with the real Web services,
which in general, have diverse parameter settings, confirm the same
observations made on synthetic data, i.e. overall cPRJ performs
much better than PRJ. We performed experiments for the query
in Example 1 while interacting with the real Web services to get
top-K join results. We have used different Web services, presented
in Table 3.1. Figure 3.6(a) shows that both parallel approaches
take same amount of time which is 20-25% less than HRJN*. The
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(a)

(b)

Figure 3.5: Performance comparison of the algorithms on synthetic
data sources for the parameters shown in Table 3.3.

difference in time increase by increasing K. Figure 3.6(b) shows
that the I/O cost incurred by proposed cPRJ is 5% more than ideal
HRJN*, whereas, PRJ takes 8-10% extra data fetches. We have
also performed experiments by varying the number of Web services
involved in the search query. We add data for museums as third and
data for parks as fourth Web service in our search. We use Yahoo!
Local and yelp.com to fetch data for museums and parks. The
results shown in Figure 3.6(c) show that both parallel approaches
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take almost same time and this time is 14-35% less than HRJN*.
The difference in time taken by parallel approaches and HRJN*
increases by adding more data sources, i.e., by increasing the value
of m. The results presented in 3.6(d) demonstrate that cPRJ takes
4-11% more I/O cost than HRJN*, whereas, PRJ takes 13-38%
more I/O cost than HRJN*.
The experimental results also show that other three parameters

JS, m and K do not have any impact alone. They cannot be
responsible for the early termination of a single data source. How-
ever, if SD, RT and CS have heterogeneous values, and if the over-
all impact of these values is that they enforce one or more data
sources to terminate earlier than the others while using the parallel
approaches, then JS, m and K also come into play. The results
shown in Figures 3.6(a) and 3.6(b) show the role of K and Figures
3.6(c) and 3.6(d) show the behaviour of number of data sources m,
involved in a query.
The method used to compute ttr is supposed to provide accurate

estimates when the score decay is smooth. When this is not the case
(e.g. when ranking of hotels is induced by the number of stars), it
tends to underestimate the score decay. If it underestimates the
score decay then the state machine may pause a Web service unnec-
essarily, which may increase the overall time. Conversely, in case of
overestimation of the score decay, the state machine may not pause
a Web service at right time, hence, it may incur extra I/O cost.
Concurrent Pre-fetching: The results in Figure 3.7 are based
on an experiment which issues different number of concurrent calls
to the real Web services, venere.com having response time 900ms
and eatinparis.com having response time 350ms. We issue con-
current calls in two ways, firstly, based on the ratio between the
response times of the two sources, and secondly, we issue three con-
current calls for both data sources without any consideration. The
results show that in both cases the time decreases by almost 62%
of the baseline cPRJ approach. This implies that venere.com takes
most of the time to fetch the data to produce required number
of join results, whereas, eatinparis.com takes one third or lesser
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(a) (b)

(c) (d)

Figure 3.6: Performance of the algorithms with real services.
Figures (a) and (b) are for the experiments with
venere.com and eatinparis.com. Figures (c) and (d)
are experiments with different number of sources using
Yahoo! Local and yelp.com

time to fetch its data from the same purpose. Therefore, when we
fetch three concurrent chunks from verene.com and one chunk from
eatinparis.com, we get the best result. While observing the dif-
ference in the I/O cost, we find that first method of concurrent calls
has proven to be almost as effective as baseline cPRJ whereas the
second one has incurred 10% extra I/O cost than the baseline cPRJ.
More than one concurrent data fetches from a Web service certainly
minimize the time, however, using it in a smarter fashion can also
help avoiding possible extra I/O cost.

62



3.1 Parallel Rank Join for Web Data Sources

(a) (b)

Figure 3.7: Figures (a) and (b) show the comparison of time and
I/O for K=20, where cPRJ and PRJ perform different
number of concurrent fetches on real Web services.
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3.2 Pipe Rank Join for Web Data Sources

Consider a pipe join between two services sL (the ŞleftŤ service) and
sR (the ŞrightŤ service). The input for sR is (part of) the output of
sL. A motivating example is to query for the best K combinations
of events and restaurants in Paris, based on their ratings, by com-
bining an event with the restaurant in the same district. Service
sL might return all the events sorted by score, whereas sR needs to
receive as input a given district and outputs restaurants sorted by
score. These are the natural access modes that arise in the context
of search computing [5], where answering complex queries might re-
quire invoking heterogeneous services, each characterized by its own
access pattern.
Let us assume that both services have signature si(Ai, Bi, Si) i ∈
{L,R}, where Ai represents the set of attributes specific to service
si, Bi is the set of attributes used for the join between sL and sR, and
Si is an attribute carrying the score for the tuples output by service
si. The join results are stored in an output buffer sBUFF which
has signature sBUFF (ABUFF , BBUFF , SBUFF ). All the results in
sBUFF are sorted in descending order of score value, SBUFF . For
the sake of simplicity, w.l.o.g. we consider that both Ai and Bi

consist of a single attribute. We assume that sL enables sorted
access (i.e., tuples are output one by one in descending order of the
score SL), whereas sR enables incremental random access [14] on
every distinct join attribute BR. This means that, for a given value
of attribute BR, the corresponding tuples are output in descending
order of the score SR. Each invocation of a Web service si, retrieves
a fixed number of tuples, denoted by csi and is referred to as chunk
size for the Web service si. In case of sL, a chunk of data contains
the next tuples from it. Whereas, for sR a chunk retrieves the
next tuples for a specific join attribute value BR. Furthermore, si
provides a chunk of tuples in a specified time, which is referred to
as average response time (rti). We assume that time to retrieve
a chunk of data from sR i.e. rtR is same for every distinct join
attribute value BR. The data obtained from sL and sR are joined
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based on the join attribute values. For simplicity, we assume that
score of a join result is assigned by the sum of SL and SR, but any
other monotonic function would apply.

3.2.1 Methodology

Top-K pipe join provides an output with guaranteed K join re-
sults with highest aggregated score. Therefore, similar to the con-
ventional rank-join problem [15], where both services enable sorted
access, we need to devise a bounding scheme which provides an up-
per bound on the aggregated score of the unseen join results, and
a pulling strategy that controls the data extraction from the data
sources. In order to describe the join strategy for accessing the
tuples available at sL and sR we introduce the following notation.

nL: number of tuples fetched from sL.

J : number of distinct values for BL in sL.

bj : the jth value for the join attribute BL (j = 1. . .J).

sjR: we consider the invocation of a right source with a distinct join
value bj as a logically distinct source.

njR: number of tuples fetched from sjR.

J : is a set that contains all observed distinct join attribute values
bj from sL.

Bounding Scheme

The bounding scheme computes a threshold value τ which repre-
sents an upper bound on the scores of the join results that can be
obtained from the unseen data. The threshold value is computed as
[14]:

τ = max{τL, τR}, where
τL = SL(nL) + maxj=1,...,J{S

j
R(1)},

τR = max{τ1R, . . . , τJR},
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τ jR = SL(n
j
L) + Sj

R(n
j
R), for 1 ≤ j ≤ J.

Here, SL(i) represents the score of the i-th tuple extracted from sL,
Sj
R(i) the score of the i-th tuple extracted from sR, such that BR =
bj , and we consider it a logically distinct data source sjR. Here, njL
is defined as the position of the first tuple output by sL for which
BL = bj or nL if there is no such tuple among the first nL. The
underlined version Sj

R(1) is defined as Şif njR ≥ 1 then Sj
R(1) else

Smax
R Ť, where Smax

R is the maximum score possible for tuples in
sR. We also define Sj

R(0) = Smax
R . Apart from this, if the total

number of J is unknown then τL is always SL(nL)+Smax
R and τR is

max{τ1R, . . . , τ
J
R, τL}. Here, τ1R, . . . , τ

J
R are the thresholds for all the

sjR for which bj exists in J , that is, bj has already been observed
in sL. Whereas, τL corresponds to the local threshold for sjR for
which bj does not exist in J . τL is the local threshold of sL, and
τ jR is the local threshold for sjR, that is, the threshold of sR for the
join attribute value bj . A join result at position i in the buffer is
guaranteed to be in the set of top-K join results if its aggregated
score is greater than or equal to τ i.e. SBUFF (i) ≥ τ . The join
operator stops when sBUFF has K or more join results having score
greater than or equal to τ .

Data Pulling Strategy

The data pulling strategy provides a mechanism to choose the most
suitable data source to be invoked at a given time during the execu-
tion [10]. A naïve parallel pulling strategy keeps on extracting data
from sL and from sR for all sjR for which bj exists in J , in parallel. It
stops data extraction from a Web service sL or sjR, when its respec-
tive local threshold becomes equal or below the score of K-th seen
join result. This pulling strategy is employed by parallel Pipe Rank
Join (pPRJ). However, pPRJ may result extracting unwanted data
if a Web service sL or sjR stops before the others. E.g. when a Web
service stops as its local threshold has reached below the score of, the
then K-th top join result in the output buffer sBUFF then there is
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a possibility that the other Web services having higher local thresh-
olds produce join results with better score values and terminate with
an even higher local threshold. Resultantly, the Web service which
stops earlier incurs extra data fetches. Though pPRJ approach may
compute the join results very quickly yet, it may incur additional
I/O cost as compared to our proposed approach controlled Paral-
lel Pipe Rank Join (cpPRJ). Therefore, cpPRJ uses a data pulling
strategy which not only uses parallel data extraction to reduce the
time to fetch the data, but at the same time, controls the access to
the unwanted data by pausing and resuming data extraction from
the Web services. The services are paused and resumed using a state
machine which is the same state machine as used in parallel rank
join algorithm cPRJ. State Machine: In order to refrain from access-
ing the data that do not contribute to the top-K join results, every
Web service is controlled by using a state machine shown in Figure
3.2. We consider every sjR a logically distinct Web service. Thus,
we have J right Web services. Hence, we transform the problem of
pipe join to a parallel rank join problem [2]. However, in a parallel
rank join, the data extraction from all the data sources starts simul-
taneously. Conversely, pipe join begins with data extraction from
sL, and while processing each chunk of data obtained from sL, if it
observes a new join attribute value bj , then it starts data extraction
from sR for bj . In other words, it starts data extraction from sjR
when bj is observed for the first time in the data obtained from sL.
So, unlike parallel rank join, data extraction doest not start simul-
taneously from all data sources. These Web services are assigned
a particular state after processing the data extracted for a chunk.
The Ready state means that more data should be extracted from
this Web service. The Wait state means that the data extraction
from this Web service should be paused. The Stop state means that
further data extraction from this Web service will not contribute to
determining the top-K join results. Lastly, the Finish state means
that all the data from this Web service has been retrieved. Like
in cPRJ algorithm, mainly the state machine behaves in a similar
fashion. However, there is a need to customize the execution of this
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state machine to make it useful in the case of pipe join. We present
these customizations in the following text. On retrieving a chunk of
tuples from Web service si the following operations are performed
in order:

Its local threshold τi is updated and global threshold is updated
accordingly.

A snapshot of the system consisting of the tuples retrieved in the
current chunk, nL and njR which are the number of tuples extracted
from sL and all sjR, is captured and is added into a priority queue
for data processing. This priority queue is ordered based on the
observed local thresholds of the Web services.

If this is the last chunk then si is put to Finish state and τi is set
to 0.

If τi≤SBUFF (K), then Si is put to Stop state.

Otherwise, next data extraction call for si is issued if all previously
extracted chunks for this Web service have been processed.

However, if the data processing queue still holds a chunk for this
Web service then the next data extraction calls is issued if the as-
sessment of the state for this Web service suggests it to be in Ready
state, failing to which it is put to Wait state. Unlike the cPRJ
algorithm cpPRJ algorithm carefully captures the snapshot of the
current state of execution. Each snapshot is captured in a syn-
chronous way, which helps avoiding the duplicates in computing the
join results. Whereas, the ordering of the captured snapshots helps
in increasing the possibility of high scoring join results earlier [3].
Furthermore, the entries in the priority queue are processed asyn-
chronously, and every time the top element of the priority queue is
extracted for processing. The data processing time mainly depends
upon the number of tuples to be joined together, and number of
Web services for which the state needs to be assessed. If the total
time required to process the data of all the Web services in Ready
state is larger than the average response time of a Web service,
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then the queue will pile up and it may contain more than one snap-
shots for a particular Web service. Therefore, in this case, the next
data extraction call is issued after the assessment of the state of the
Web service as Ready. A particular snapshot entry in the queue is
processed as follows:

The computation of joins for the data in the chunk based on the
information captured in the snapshot for every Web service.

Each Web service si, that is in Ready or Wait state, is checked and
is put into Stop state, if SBUFF (K)≥τi.

All Web services in Wait state are checked if they should be kept
in the same state or should be put to Ready state for further data
extraction.

However, all the state transitions are conducted in similar way as
of cPRJ algorithm. In fact, as mentioned above, we consider the
data extraction for every distinct join attribute value from sR as a
logically distinct Web service. Hence, we set the state for each of
these Web services.
Initialization of Data Extraction: The other difference between
parallel rank join and pipe join is the initialization of data extraction
from the Web services. We strat extrating the data for a particular
join attribute values from the right Web servie sR, when this join
attribute value appears for the first time int sL. Therefore, data
extraction from any logical right Web service sjR is started and it
is put to Ready state when it is encountered for the first time in
any tuple of sL. However, before the start of data extraction the
respective local threshold τ jR is compared with the K-th highest
join result in sBUFF . If SBUFF (K)≥τ jR, then the data extraction is
not started from sjR. This is only possible while processing the last
chunk from sL, before it is put into Stop state. It certainly helps in
avoiding unnecessary data extraction calls and hence, reduces the
overall I/O cost.
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3.2.2 Limiting Number of Concurrent Accesses for Right
Web Service: A Variant of the Algorithm

In the baseline algorithm we assume that we can issue J concurrent
data extraction calls to sR, that is, we can extract data from sR
for all the distinct join attribute values simultaneously. However,
the number of concurrent calls depends upon many factors: i) total
number of distinct join attribute values; ii) number of concurrent
calls allowed to a particular client by the Web server hosting the
Web service. This can be identified by profiling of the hosting Web
server; iii) as a physical rank join operator in a database server,
the number of concurrent data extraction calls allowed on the same
data source or Web service by the database server; iv) number of
maximum concurrent data extraction calls allowed for a query being
processed.
Therefore, based on all these factors we identify number p, which

is the maximum allowed concurrent data fetching calls to the right
Web service sR, hence, we extract data from sR for only p distinct
join attribute values concurrently. If p≥J , then the baseline version
of the algorithm works as it is. Otherwise, we have to modify the
algorithm to ensure that no more than p concurrent data extrac-
tion calls should be issued to sR. In order to restrict the number
of concurrent data extraction calls to p, the baseline algorithm is
modified in the following manner:

A list lACT is created which stores all bj for which data is currently
being extracted from respective sjR.

When a new join attribute value bnew is encountered from sL and if
it is assigned Ready state after the initial threshold check, then the
algorithm checks if the total number of elements in lACT are less
than p, then it starts data extraction from sR for bnew and adds its
corresponding index to lACT . Otherwise, it is not added to lACT .

At the completion of data extraction for sjR, it is removed from lACT ,
and new local threshold τ jR is computed and chunk data along with
other snapshot information is pushed into the data processing queue
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for further processing.

Now, from all the sjR which are in Ready state and their respective
bj is not in lACT the algorithm chooses the one with the highest
local threshold and starts the data extraction for it from sR and
adds it to lACT . It continues to start new data fetches until lACT

contains p elements, or there is no sjR which is in Ready state and
is not in lACT .

Intuitively, the restriction that only p concurrent data extraction
calls can be issued to sR should result into decreasing the I/O cost
as compared to the baseline version of the algorithm. The reason
is that sPRJ also optimizes the I/O cost by extracting data from
only one data source at a time by choosing the most suitable data
source every time [14]. However, this restriction may increase the
total time if there are more than p candidates for data extraction
but they are not allowed to extract data concurrently due to this
limit.

3.2.3 Experiments and Results

Experimental Setup Data Sets: We have conducted the exper-
iments based on the motivational example provided in the intro-
duction using both synthetic data, and real Web services. Many
diverse synthetic data sets are generated using different values of
main operating parameters shown in Table 3.3. We have used uni-
form and Zipfian score distributions for generating the synthetic
data. We have also used both score distributions alternatively to
assign scores to the tuples for different bj to generate tuples for
respective sjR. We have used Yahoo! Local to conduct the exper-
iments on real Web services. We get the data for events in a city
and use it as sL and then we use each newly observed area code
as a distinct join attribute value j and start extracting restaurants
located in it, thus forming the respective sjR.
Approaches: We compare three algorithms: sPRJ, pPRJ and the
proposed cpPRJ. An important consideration is that sPRJ can-
not be beaten in terms of I/O cost, whereas pPRJ cannot be out-
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performed in terms of time taken, provided the time taken for join-
ing the data is negligible.

Table 3.3: Operating Parameters
Full Name Parameter Tested Values
Number of results K 50, 200, 500
Number of distinct
join attributes in sL

J 12,16,20,21,34,100

Score Distribution SD Uniform Distrib., Zipfian
Distrib., Mixed

Response Time rt
(rtL/rtR)

500/300, 600/500,
900/500

Chunk Size cs
(csL/csR)

10/10, 10/15

Evaluation Metrics: The major objective of the proposed ap-
proach is to reduce the time taken to get the top-k results by mini-
mizing the data acquisition time with the help of parallelism. So, we
consider time taken (wall clock time) as the primary metric. The
reduction in time is obtained by compromising on possibly some
unwanted data extraction. Therefore, we consider sum depths [7],
total number of tuples retrieved from all Web services, as an indi-
cator of the I/O cost. For fairness, we compute these metrics for
10 different cities in case of real Web services, and over 10 different
data sets for synthetic data, and report the average.
Results Experiments with Synthetic Data: In Figure 3.8 we

show the results of the experiments for main operating parameters
of cs, rt and score distribution (SD). Figure 3.8(a) shows that for
all three parameters time taken by both parallel approaches is very
close. More precisely, both the proposed cpPRJ and pPRJ take
almost 80% lesser time than sPRJ for the experiments conducted
with different SD and different cs values. Whereas, both cpPRJ
and pPRJ take 56% and 49% lesser time than sPRJ for the experi-
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(a)

(b)

Figure 3.8: Comparison of the algorithms using synthetic data
sources for cs, rt and SD parameters.

ments conducted with different values of rt and for the experiment
while using different values for all three parameters, respectively.
Figure 3.8(b) shows that for the experiments conducted with differ-
ent values for one of cs, rt and SD pPRJ incurs 50%,50%, and 72%
more I/O cost than sPRJ, respectively. Whereas the observations
for the corresponding parameters for the I/O costs show that the
proposed cpPRJ approach takes 27%,31%, and 34% more I/O cost
than sPRJ. However, If we take different values for all these differ-
ences in the parameter values in one scenario then pPRJ incurs 72%
more I/O cost than sPRJ and cpPRJ costs 33% more I/O cost than
sPRJ.
Thus, the proposed cpPRJ approach minimizes the access to the

unwanted data access while keeping the total time to compute top-K
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joins very close to pPRJ, which is optimal in terms of time. There-
fore, like [2] we observe that cs, rt and SD are the parameters whose
different values among different Web services result into early ter-
mination of a particular Web service. We also observed in [2] that
similar values of these parameters result into identical behaviour
of both parallel approaches and both of them not only take much
lesser time than sPRJ but also take the same I/O cost as of sPRJ.
However, Figure 3.8 shows that considering pipe join, the behaviour
with the similar values of cs, rt and SD among all Web services is
not as in [2]. The reason is that in the context of a parallel rank
join, the data extraction from all the data sources is started simul-
taneously, therefore, the decay in the respective local thresholds, in
this particular scenario, is ideally similar and all of them reach the
Stop state simultaneously. However, in the context of a pipe join,
the data extraction from sjR is subject to the appearance of bj in
sL, thus, the data extraction from all sjR does not start at the same
time. Therefore, even with the same cs, rt and SD values for all
data sources, their respective local thresholds have different values,
unlike in the parallel rank join. The proposed cpPRJ approach deals
with the different starting times in a smart way and it brings all the
local thresholds to the same value by putting some Web services in
Wait state. Thus, its I/O cost is very close to that of the sPRJ.
Whereas, the pPRJ approach is unable to bring the local thresholds
alike and hence results into extra I/O cost. But, the time taken by
both parallel approaches still remains the same.
Real Web Services: We performed experiments with real Web

services for different values of K, and different values of J , the
number of distinct join attribute values in sL. Figure 3.9(a) shows
that pPRJ takes 65-69% lesser time than sPRJ, whereas, cpPRJ
takes 53-62% lesser time than sPRJ for different values ofK. Figure
3.9(b) shows that for different values of K the I/O cost incurred by
proposed cpPRJ is 0-17% more than ideal sPRJ, whereas, pPRJ
extracts 18-48% more data than sPRJ. Figure 3.9(c) shows that for
pPRJ takes 62-70% lesser time than sPRJ, whereas, cpPRJ takes
47-55% lesser time than sPRJ for different values of J . In terms of
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the I/O cost, Figure 3.9(d) shows that cpPRJ extracts 0-7% more
data than sPRJ, whereas, pPRJ extracts 20-37% more data than
sPRJ, for different values of J .

Figures 3.9(e) and 3.9(f) show the results of the experiment using
Yahoo! Local for execution of the example query for 10 different
US cities to get 50 top join results. The results reveal that pPRJ
takes 66% lesser time than sPRJ and the proposed cpPRJ takes
51% lesser time than sPRJ. Whereas, pPRJ takes 16% more I/O
cost than sPRJ and cpPRJ takes the same amount of I/O cost as
of sPRJ.
As a whole, the overall performance of cpPRJ is much better

than pPRJ as it has I/O cost close to that of sPRJ, and it takes
slightly more time than pPRJ, whereas, pPRJ has higher I/O cost
than both cpPRJ and sPRJ and the time taken by both parallel
approaches is very close, especially from the end user’s perspective.
Restricting the Concurrent Calls on sR: We have performed
experiments using the synthetic data sources while setting different
values for the parameter p, which is the maximum allowed concur-
rent data extraction calls on sR. The total number of distinct join
attributes values J , in the generated sL are 100. Figure 3.10 shows
the comparison of the I/O and time costs for cpPRJ with differ-
ent values of p, where p≤J . We also include in the comparison the
behaviours of sPRJ, and pPRJ with p=J . The results reveal the
fact that lower values of p result into more similar behaviour of the
proposed cpPRJ to that of sPRJ both in terms of time and I/O
costs. The other interesting observation is that the difference in
I/O cost and time are not significant for p≥20, which means that
during these experiments the maximum number of concurrent data
fetches for sjR is for nearly 20 distinct bj values while using cpPRJ.
Whereas, for the rest of Web services from which the data extrac-
tion has been started have either been paused, stopped or finished
by being put into Wait, Stop, or Finish state, respectively.

75



3 Rank Joins for Web Data Sources

(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Performance of the algorithms with real services, Yahoo!
Local. Figures (a) and (b) are for the experiments with
different values of K. Figures (c) and (d) show results
for experiments with different values of J in sL. Figures
(e) and (f) show the comparison of average time and av-
erage I/O costs respectively, based on the results of the
experiments for 10 different cities using Yahoo! Local.
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(a) (b)

Figure 3.10: Performance comparison of the algorithms on synthetic
data sources for different values of p, the number of
maximum allowed concurrent data fetches on sR.
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3.3 Discussion

In this chapter, we have presented parallel data access for parallel
and pipe rank join topologies. We presented that in the context
of Web services as data sources, it is imperative to come up with
parallel data access mechanism so as to reduce the time to fetch
the data, as the time to process the data is negligible as compared
to the time to fetch the data. Therefore, the data fetching is a
bottle neck in the context of Web based data sources. We also
highlighted existing approaches for parallel and pipe rank join work
in a serial manner. They fetch the data, process it and then choose
the next data source from where the data should be fetched. This
serial data access helps in getting the top-K join results in optimal
time. However, at the same time they overlook the bottle neck
in the context of Web services, which is the time to retrieve the
data. The main assumption of the existing serial topologies is that
time to fetch the data is negligible, which is totally opposite in the
context of Web services. We also highlight that care-free usage of
parallel data extraction may result into a high I/O cost, in almost
every case in pipe join topology and in most of the cases in the
parallel join topology, especially, when there are more than two Web
services involved in a parallel join. Therefore, we have presented
parallel and pipe join topologies for processing the rank joins while
using parallel data access, which keep compute the join results very
quickly and avoid accessing the data that does not contribute to
computing top-K join results. We have also presented a thorough
experimental analysis of both the approaches with main operating
parameters. The results of the experiments show that our proposed
parallel data extraction approaches for parallel join topologies help
in computing the top-K join results in quick time and in some cases
result into slight overhead in the I/O cost as compared to the I/O
optimal approaches. Whereas, in case of pipe rank join topology
with parallel data access, we compute the join results in quick time,
however, we incur slightly extra I/O cost in many cases. Thus, it
satisfies our objectives for computing the top-K join results using
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parallel and pipe topologies efficiently both in terms of time and in
terms of I/O cost.
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4 Provisional Reporting for
Rank Joins using Probability

One of the contributions of this thesis is to increase the efficiency of
reporting and computing top-K join results while using probability.
Here, we present a methodology to report the top-K join results
with probabilistic guarantees, during the execution of a top-K al-
gorithm. In particular, we use rank join algorithm [?] and we are
interested in studying its progress to compute top-K join results.
We adopt probabilistic measures so as to compute and report the
obtained join results with certain probibilistic guarantees instead of
reporting them with deterministic guarantees. Such a functionality
can be beneficial in terms of reducing the runtime and I/O costs of
top-K computations, and also helps in reporting the join results in
a quick time to the user.

It is important to note that the proposed approach addresses the
top-K queries which involve certain data and use approximation
methods to report the join results. The motivation of such top-K
join algorithms is to reduce the computational cost, I/O cost and
time to compute the top-K join results. In the next section we
define the problem settings. In section 4.2 we present the existing
approaches which are similar to our approach and discuss the need
of our approach. We present our proposed methodology in Section
4.3. We analyse our approach with the help of experimental study
in Section 4.4. Lastly, we conclude this chapter with a discussion,
presented in Section 4.5.
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4.1 Problem Definition

Several algorithms have been introduced in literature to process top-
K queries efficiently [?, ?, ?, ?, ?, ?, ?, ?, ?]. The majority of such
algorithms involve computations which are exhaustive, that is, the
algorithms stop when there is absolute certainty that the correct
top-K results have been identified. Among these algorithms is hash
rank join algorithm [] presented by Ilyas et. al. This algorithm
computes top-K joins from data sources containing different set of
objects, which are joined based on a join predicate, e.g. equiva-
lence of the join attribute value. The objects in both lists are in
descending order of the scores. The data access to these objects is
sequential, i.e. an object at depth d will be accessed before the ob-
ject at depth d+ 1. During the execution this algorithm computes
join results and stores the top-K join results in an output buffer. It
is important to note that this algorithm does not compute partial
join results. Like other rank join algorithms, this algorithm also
maintains a bound or threshold value, and reports the join results
which have aggregated score greater than the bound.

Figure 4.1 shows the a snapshot during the execution of HRJN*
algorithm, on two data sources s1 and s2, for K = 5. Let us assume
that the data in the dark text has been extracted from both data
sources. The join results formed with this data are stored in the
output buffer sbuff . The score aggregation function is this case is
linear addition, and we can see the aggregate score of the join results
in sbuff . Furthermore, based on the score aggregation function the
threshold or bound is 1.97. Hence, at this stage, the first two join
results in sbuff can be reported to the user as the top join results
with absolute certainty. However, at the same time we can observe
that in order to be sure that the join results in the output buffer
are the real top-K joins or not, we have to bring the threshold less
than or equal to 1.94, the score of K-th join result in the output
buffer. This is possible if we extract 2 more objects from s1 and 1
more object from s2. However, even after extracting these tuples
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we shall not be able to find any new join result having score greater
than the K-th join result in the buffer. Therefore, we argue that
there should be a method to compute the probability with which
an unreported join result in the output buffer will remain among
the final top-K join results. If this probability is high enough (e.g.
greater than 0.95) then we can report this join result to the user
even if its score is below the current threshold value.

Figure 4.1: Snapshot of HRJN* execution.

It is important to note that such situations arise in the top-K
queries which have long running time, e.g. the queries which involve
very large data sets and the value of K is also high. Similarly, while
using the Web services as data sources the run time of the queries
is long, as there is a non negligible time associated with each data
extraction from a Web service, and data extraction time overwhelms
the data processing time in such cases. Therefore, the joins results in
the buffer have to wait for these time taking next data extractions to
be reported. Hence, an approach which computes the probability of
the unreported join results to be among the final top-K join results
will help reporting every join result in a quick time.

4.2 Related Work

The description of the problem clearly suggests that it falls in the
certain data and approximate methods category in the taxonomy
of the top-K join joins, as presented in Chapter ??. There is some
existing research work in the same category with various different
settings. As an example Theobald et. al., [?] presented an approach
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for probabilistic top-K query evaluation. Their approach is specif-
ically targeted to the TA-Sorted algorithm, which maintains best
and worst possible scores of the objects based on partially com-
puted total score. The main idea is to compute the probability for
a newly seen object with which it may appear among the actual
top-K results. Now, if this probability is below a given threshold
probability, which is provided by the user, the object is discarded
and is not considered in future. This helps in reducing the number
of possible objects to be processed during top-K query evaluation.
Moreover, by carefully maintaining bounds for the scores of the
most promising objects that have been encountered the algorithm
may probabilistically decide to terminate earlier than the regular
TA-Sorted deterministic computation. The empirical evaluation of
the algorithm presented in [?] shows that this algorithm performs
well in practice.

The approach presented in [?] has some objective similarity to our
work, however there are many differences. Firstly, it focuses only
on discarding the candidate objects which are partically seen and
their score bounds suggest that they are unlikely to be among the
actual top-K results, therefore, it is not directly applicable to the
algorithm that only considers complete joins like HRJN* and the
TA. Furthermore, this approach discards or neglects the objects by
analysing probability value that a discarded/unseen object is not in
the top-K tuples, independent of the number of unseen objects in
the data sources. Therefore, the results are the same whether there
are 100 or 100,000 unseen objects.

Another similar approach which provides anytime behaviour to
compute top-K join results is presented in [?] and is futher improved
in [?]. An anytime algorithm is an algorithm whose quality of results
improves gradually as computation time increases [?]. In [?] the au-
thors present a probabilistic approach which seeks to report at any
point of operation of the algorithm the confidence that the top-K
result has been identified. Such a functionality can be a valuable
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asset when one is interested in reducing the runtime cost of top-K
computations. This approach covers TA and TA-sorted algorithms.
However, it is different from our defined problem for two main rea-
sons: firstly, it mainly computes the probability with which the
current complete result set is the actual top-K result set, whereas,
we want to compute the probability for each individual unreported
join result with which it may appear in the final top-K results. Sec-
ondly, both in TA and TA-sorted algorithms we deal with the lists
which contain same data objects, whereas, we focus our problem for
HRJN* algorithm which deals with two data sets having different
objects which are joined together based on the equivalence of a join
attribute value. Lastly, our objective is to report an unreported join
result as quickly as possible after its creation based on probabilistic
measures, instead of keeping it in the output buffer so as to report
it with deterministically.
Recent work [?, ?, ?, ?, ?, ?, ?, ?] on probabilistic ranking of data,

is orthogonal to the work presented here. The model assumed in
these works is that of incomplete data and the probabilistic frame-
work is based on possible worlds semantics. So, their problem set-
ting involve uncertain data and approximate results. In contrast,we
assume certain characteristics in the data, based on which, we are
interested in computing probability for each unreported join result
in the output buffer so as to report it with probabilistic guarantee
with which it may exist among the actual top-K results.

There are other approximate query processing methods which use
sampling to build a database summary synopsis, and using it to an-
swer queries approximately. The basic settings involve drawing a
sample from the underlying data, answering the incoming queries
based on the sample, and scaling the results to approximate the ex-
act answers. There are different methods for sampling e.g. uniform
or random sampling techniques are discussed in [?], histogram based
sampling is presented in [?] and wavelets are also used as presented
in [?]. These algorithms are generally used to create an optimized
query plan based on the synopsis, e.g. [?].
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4.3 Methodology

4.3.1 Preliminaries

Consider a query Q which needs two data sources which are Web
services s1 and s2. These Web services can be wrapped to map
their data in the form of tuples as in relational databases. Each
tuple ti ∈ si is composed of an identifier, a join attribute, a score
attribute and other named attributes. The tuples in every Web ser-
vice are sorted in descending order of score, where the score reflects
the relevance with respect to the query. Let t(d)i denote a tuple at
depth d of si. Then σ(t(d)i ) ≥σ(t(d+1)

i ), where σ(ti) is the score of
the tuple ti. Without loss of generality, we assume that the scores
are normalized in the [0,1] interval.
Each invocation to a Web service si retrieves a fixed number of tu-
ples, referred to as chunk. Let (CSi) denote the chunk size, i.e. the
number of tuples in a chunk. The chunks belonging to a Web service
are accessed in sequential order, i.e. the c− th chunk of a Web ser-
vice will be accessed before (c+1)− th chunk. Each chunk, in turn,
contains tuples of si sorted in descending order of score. Further-
more, si provides one chunk of tuples in a specified time, which is
referred to as its average response time (RTi). Let t = t1 1t2 1 ...tm
denote a join result formed by combining the tuples retrieved from
the Web services, where ti is a tuple that belongs to the Web ser-
vice si. This join result is assigned an aggregated score based on
a monotone score aggregation function, σ(t) = f(σ(t1), σ(t2)). The
join results obtained by joining the data from these Web services
are stored in a buffer sbuff in descending order of their aggregate
score. The size of this output buffer sbuff is bound by the value K,
i.e. the number of required top join results.

Now, we briefly discuss the execution of HRJN* algorithm on the
above mentioned data sources. HRJN* algorithm, like other rank
join algorithms maintains a bound or a threshold τ , which is the
maximum possible score of a join result that can be formed by the
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unseen data objects. This threshold τ helps in deterministically re-
porting the observed join results to the user as a top-K join results
in correct order. The computation of the threshold depends upon
the score aggregation function. Let τi denotes the local threshold of
a Web service si which represents an upper bound on the possible
score of a join result that can be computed by joining any of the
unseen tuples of si to either seen or unseen data of the rest of the
Web services. The global threshold τ of all the Web services is the
maximum among the local thresholds i.e. τ = max{τ1, τ2}.
So, all the currently observed join results having greater value than
or equal to τ can be reported to the user, we call them reported
joins. Let K denote the number of join results for which σ(t) ≥ τ ,
then these can be guaranteed to be the top-K. Alternatively, the
algorithms stops when reported = K.

Observation1 All the join results in the output buffer are stored
in the descending order of their scores. Therefore, at a given point
in time, during the execution of the algorithm, a join result at posi-
tion x, which is not among the reported joins, can either retain at
position x or will be at a new position z, where z ge x.

On the other hand the data pulling strategy of HRJN* is that it
proceeds in iterations, where in each iteration it extracts the next
data object from the data source which has highest local threshold.
The ties are broken based on the basis of number of tuples retrieved
from the sources and it retrieves data from the data source from
which we have retrieved lesser number of tuples. If still there is
a tie, then it can be broken arbitrarily. The thresholds of all data
sources decreases monotonically because the tuples from the objects
are retrieved in the descending order of the score. Therefore, after
every iteration, extracting the data from the data source with high-
est local threshold value, helps in keeping all the local thresholds
closer to eachother, which in turn, helps in avoiding any possible
extra data fetches. Resultantly, HRJN* results in optimal I/O cost.
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Consider the execution of HRJN* algorithm over the data of two
Web services s1 and s2, which provide their data objects in desend-
ing order of scores and in the form of chunks or pages. We know
the total number of data objects in each Web service si. We also
know the join selectivity of these Web services. Therefore, we can
compute the total number of expected join results N , from these
Web services [?]. Consider a snapshot of HRJN* after d iterations.
We refer to the number of computed join results at a given stage
during the execution of the algorithm to be n, where n ≤N.

4.3.2 Algorithm

We know that the basic HRJN* algorithm process the data itera-
tively. In each iteration it fetches the data from a particular data
source, computes the join results based on this newly fetched data,
updates the local and global threshold values, and finally, reports
the join results to the user which having score greater of equal to
the threshold τ . At a given point in time, HRJN* algorithm con-
tains current top-K join results in sbuff , the output buffer. Some
of these are among the reported join results. We do not report the
rest of the join results in sbuff as they may or may not be among the
final top-K join results. We modify the basic HRJN* algorithm to
compute the probability for each unreported join result with which
it may exist among the final top-K joins. If this probability is higher
than a given threshold (e.g. 0.90) then we report it to the user. This
helps in reporting the identified join results to the user in quicker
time and with certain probabilistic guarantee.

In order to compute the probability for a join result to be among
the final top-K joins, we take certain assumptions. Firstly, we con-
sider that the score aggregation function is linear additive function,
i.e. we simply add the scores of the objects that form a join. Sec-
ondly, we also assume that score vectors are uniformly distributed
over the [0,1]2 square, i.e. the join results are uniformly distributed
among the join space. Figure 4.3 shows the join space for two Web
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services which satisfy the requirements for tha application of HRJN*
algorithm. It shows that we have extracted a certain amount of data
from both Web services, and we have computed the join results from
this data. All the join results lie in the region covered by the small
square. The diagonal line drawn in the small square depicts the cur-
rent threshold τ , provided the score aggregation function is linear
addition. Now, all the join results which are below this diagonal are
deterministically top-K joins. We can see in Figure 4.3 a join result
j which has score lower than τ . Let us assume that j is in the out-
put buffer at position y, we represent it as t(y)buff . In order to report
j with deterministic guarantees the threshold should become lower
or equal to the score of j, i.e. τ ≤ σ(t(y)buff ). We may or may not find

some new join results with score greater than σ(t
(y)
buff ). This way

the new position for j in the output buffer will be z, we know from
Observation1 that z ge y. Figure 4.3 shows a diagonal line passing
through j which defines the minimum threshold value to report j as
a certain top-K join result. Now, we can see two triangles outside
the small square, and all the join results which may exist in these
two triangular regions will have score greater than σ(t(y)buff ).

Let p denotes the probability that an unseen result will have an
aggregate score larger than that of σ(t(y)buff ). For aggregation func-
tions like linear aggregation, p will be the ratio between the area of
these two triangles to the area of L shaped region corresponding to
the unexplored region. This unexplored region is all the area except
the small square in Figure 4.3.

Now, we need to compute the probability of observing, respec-
tively, 0, 1, 2, ..., l, ..., Nn objects with score larger than σ(t

(y)
buff ).

We can use binomial probability computation to compute the prob-
ability of having a join result at each position.
p(l) = binomial(l, N − n, p)
Then
p(z) = p(l + y)
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Figure 4.2: Snapshot of Join Space During the Execution of HRJN*

We know from Observation1 that p(z) = 0, z < y.
If we set K be the number of top-K results, the probability that j
will be within the top-K join results is

∑K
z=1 p(z)

4.3.3 An Example

Consider the scenario shown in Figure 4.3. Let us assume that N
= 100, i.e. the total number of join results from the two sources are
100. We have explore the join space shown in the small square and
we managed to find 8 join results until this point. Out of them 4
join results had score greater than the threshold and were reported
to the user. We want to find 10 top results, i.e. K=10. Now, we
want to find the possiblity of the join results which are not among
the reported joins to be among the top-K. We consider the first un-
reported join result from sbuff which is t(5)buff . We compute the areas

of the triangles based on the difference between the τ and σ(t(5)buff ),
and thus, compute the probability p. Here p is the ratio between the
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total areas of the two triangles and the unexplored area, which is
the L shaped region outside the small square. Using this probability
value we compute the probabilities of t(5)buff to be at position 5 upto
10. Then we sum all these probabilities to compute the cumulative
probability, which is the probability of this join result to be among
the final top-K. We report the join result to the user, if this value is
greater than 0.90. We can see from Figure 4.3 that in this case the
probability that t(5)buff will be among 10 top join results is almost 1.

Figure 4.3: Computation of Probability
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4.4 Experiments and Results
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4.5 Discussion
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5 Case Study: Applications in
Search Computing

Introduce Search Computing Project.
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5.1 Search Computing

Throughout the last decade, Internet search has been primarily per-
formed by routing users towards the specific Web page that best
answered their information needs. Major search engines, such as
Google, Yahoo and Bing, crawl the Web and index Web pages, high-
lighting worldwide candidate "best" pages with excellent precision
and recall; such ability has proven adequate to fulfill users’ needs,
to the point that Web search is customarily performed by millions
of users, both for work and leisure. However, not all information
needs can be satisfied by individual pages on the surface Web. On
one hand, the so-called "deep Web" contains information which is
perhaps ten times more valuable than what can be crawled on the
surface Web; on another side, as the users get confident in the use
of search engines, their queries become more and more complex,
to the point that their formulation goes beyond what can be ex-
pressed with a few keywords, their answers require more than a list
of Web pages, and general-purpose search engines perform poorly
upon them. According to company’s experts, the number of com-
plex queries that are not answered well by major search engines
due to their intrinsic complexity is remarkably high and increasing.
Many search interactions can be considered as part of a more com-
plex process of expressing goals and achieving tasks, as discussed in
the vision paper by Ricardo Baeza Yates. When a query addresses
a specific domain (e.g., travels, music, shows, food, movies, health,
and genetic diseases), domain-specific search engines do a better
job than general-purpose ones; but their expertise is focused upon a
given domain. Thus, one can separately find best travel offers and
interesting music shows, or conduct genetic analysis and investigate
the related medical literature, but can hardly combine information
from diverse yet related domains. An expert user can perform sev-
eral independent searches and then manually combine the findings,
but such procedure is cumbersome and error prone. Search comput-
ing aims at responding to multi-domain queries, i.e., queries over
multiple semantic fields of interest by helping users (or by substi-
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tuting to them) in their ability to decompose queries and manually
reconstruct results; thus, search computing aims at filling the gap
between generalized search systems, which are unable to find in-
formation spanning multiple topics, and domain-specific search sys-
tems, which cannot go beyond their domain limits. Paradigmatic
examples of search computing queries are: "Where can I attend an
interesting scientific conference in my field and at the same time
relax on a beautiful beach nearby?", "Where is the theatre clos-
est to my hotel, offering a high rank action movie and a near-by
pizzeria?", "Who are the strongest candidates in Europe for com-
peting on software ideas?", "Who is the best doctor who can cure
insomnia in a nearby public hospital?", "Which are the highest risk
factors associated with the most prevalent diseases among the young
population?" These examples show that search computing aims at
covering a large and increasing spectrum of user’s queries, which
structurally go beyond the capabilities of general-purpose search en-
gines. These queries cannot be answered without capturing some of
their semantics, which at minimum consists in understanding their
underlying domains, in routing appropriate query subsets to each
domain expert, and in combining answers from each expert to build
a complete answer that is meaningful for the user.

Search Computing systems support their users in asking multi-
domain queries; for instance, "Where can I attend a DB scien-
tific conference close to a beautiful beach reachable with cheap
flights". A system decomposes the query into sub-queries (in this
case: "Where can I attend a DB scientific conference?"; "which
place is close to a beautiful beach?"; "which place is reachable from
my home location with cheap flights?") and maps each sub-query
to a domain-expert server (in this cases, calls to servers named
"Conference", "Tourism", "Low-Cost-Flights"); it then analyzes the
query and translates it into an internal format, which then is opti-
mized, thereby yielding to an optimal plan for query execution; plan
execution is supported by an execution engine, which submits ser-
vice calls to services through a service invocation framework, builds
the query results by combining the outputs produces by service calls,
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computes the global rankings of query results, and outputs query
results in an order that reflects, although with some approximation,
their global ranking. These transformation steps are shown in the
bottom-left side of Figure 5.1; they are performed by the query
mapper, query analyzer, query planner, and execution engine, un-
der the responsibility of a query orchestrator that starts query ex-
ecution and collects query results. The figure shows that each of
the four modules directly accepts user-provided input through suit-
able interfaces; in this way, prototype implementation in Search
Computing can take place bottom-up, by starting with the exe-
cution engine, which can execute a given plan, then adding the
query planner, which produces the optimal plan for a giver inter-
nal query, then adding the query analyzer, which reads an abstract
queries, checks that the query is legal, and produces an internal
query; and finally adding a query mapper, capable to decompose
a multi-domain query into several domain-specific queries. In this
book we do not address query mapping, while we address the other
steps. Services are made available to Search Computing though a
standard format, called service mart; by this term we mean an ab-
straction that masks the different implementation styles of services
and is tailored to the specific need of exposing search services - i.e.,
services whose primary purpose is to produce ranked lists of results.
Moreover, service marts offer a classification of service properties
(that represent either the call or the result of a service invocation;
given output results may represent the ranking values) and a defi-
nition of composition patterns allowing to combine service marts.
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Figure 5.1: Search Computing Architecture.
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5.2 Integration with Query Planner and
Query Engine

Present how the proposed join topologies can be integrated within
the SeCo architecture as join strategies.

100



5.3 Usage in Liquid Query Processing

5.3 Usage in Liquid Query Processing

This section will explain how the proposed algorithms can be used
to process the liquid queries.
Most of the liquid queries can be processed with the help of both
pipe and parallel (multi-way) rank join topologies. As an example, a
user initiates with finding the apartments for rent from a real estate
data source and then she wants to find schools near by. This new
data source of schools can be linked to the existing source using pipe
join topology, if there is a provision to extract schools by providing
the geo-coordinates or the postal code information. Similarly, the
same query can be processed using multi-way rank join topology if
we can only access the schools using the name of the city.
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5.4 Discussion

Summarize and discuss the usage of the proposed algorithms in
Search Computing and similar applications.
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6.1 Discussion

Discuss the main contributions of the thesis while keeping in view
the motivations for this work.
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6.2 Outlook

The future directions..
dealing with uncertain data.
provisional reporting with more than 2 data sources.
provisional reporting for pipe joins.
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