PoLIiTECNICO DI MILANO
Dipartimento di Elettronica e Informazione
RESEARCH DOCTORAL PROGRAM IN INFORMATION
TECHNOLOGY

Rank Joins for Web Based
Data Sources

Doctoral Dissertation of:
Adnan Abid

Advisor:
Prof. Stefano Ceri

Tutor:
Prof. Barbara Pernici

The Chair of the Doctoral Program:
Prof.

2011 - XXIV



PoLITECNICO DI MILANO

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32 [-20133 — Milano









To my whole family.






Acknowledgements

Adnan

Milano,
January 2012

VII






Abstract

Abstract in english

IX






Contents

1 Introduction 15
1.1 Motivation. . . . . .. ... ..o 16
1.2 Contribution of this Thesis . . . .. ... ... ... 17
1.3 Thesis Overview . . . . . . . ... .. ... ..... 18

2 Ranking and Web Search 19
2.1 Rank Joins or Top-K Queries in Databases . . . . . . 20
2.2 Taxonomy of Top-K Queries . . . . . ... ... ... 23
2.3 State of the Art Rank Join Algorithms . . . . . . .. 29
2.4 Adaptation of Rank Joins for Web Based Data Sources 37

2.4.1 Classification of Web Services . . . . . .. .. 37
2.4.2 Hypothesis . .. .. ... ... ... ..... 41

3 Rank Joins for Web Data Sources 45

3.1 Parallel Rank Join for Web Data Sources. . . . . . . 47
3.1.1 Methodology . . ... .. ... ... ..... 48
3.1.2  Concurrent Prefetching with cPRJ: A Variant

of the Algorithm . . . . ... ... ... ... 55
3.1.3 Experiments and Results . . .. ... .. .. 56

3.2 Pipe Rank Join for Web Data Sources . . ... . .. 64

3.2.1 Methodology . . ... ... ... ... .... 65

3.2.2 Limiting Number of Concurrent Accesses for
Right Web Service: A Variant of the Algorithm 70
3.2.3 Experiments and Results . . . . ... .. .. 71
3.3 Discussion . . . ... ... oo 78

4 Provisional Reporting for Rank Joins using Probability 81
4.1 Problem Definition . . . . . ... ... ... ... .. 82

XI



Contents

XII

4.2 Related Work . . . ... .. ... ... ... ... .. 83
4.3 Methodology . . . . ... ... ... . 86

4.3.1 Preliminaries . ... ... ... ... ..... 86

4.3.2 Algorithm . . . . ... ... ... ... 88

433 AnExample. .. ... ... ... .. ..... 90
4.4 Experiments and Results . . . . . . . ... ... ... 92
45 Discussion . . . . ... 93
Case Study: Applications in Search Computing 95
5.1 Search Computing . . . ... ... ... ... .... 96
5.2 Integration with Query Planner and Query Engine . 100
5.3 Usage in Liquid Query Processing . . . . . . . .. .. 101
54 Discussion . . . . . .. .. o 102
Conclusion 103
6.1 Discussion . . . . . .. ... ... 104
6.2 Outlook . . .. ... ... . 105



List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2

3.3
3.4

3.5

3.6

3.7

3.8

Rank join vs nested loop join. . . . . . . .. ... ..
Taxonomy of Top-K Joins . . . . .. ... ... ...
Threshold Algorithm (TA) . . . ... ... ... ...
No Random Access Algorithm (NRA) . .. ... ..
Example of parallel rank join. . . . . ... ... ...
Possibilities for pipe rank join. . . . ... ... ...

Serial Data Access of HRIJN* vs Parallel Data Access
The state machine according to which each Web ser-
vice is manipulated . . . . . ..o oL
The setState algorithm . . . . . . ... ... ... ..
Execution of cPRJ with 3 Web services, over timeline
against local thresholds. . . . . .. .. ... ... ..
Performance comparison of the algorithms on syn-
thetic data sources for the parameters shown in Table
0
Performance of the algorithms with real services. Fig-

23
24
30
31
40
41

48

52
95

o6

60

ures (a) and (b) are for the experiments with venere. com

and eatinparis.com. Figures (c) and (d) are experi-
ments with different number of sources using Yahoo!
Local and yelp.com . . . . . .. .. .. .. .....
Figures (a) and (b) show the comparison of time and
I/O for K=20, where cPRJ and PRJ perform dif-
ferent number of concurrent fetches on real Web ser-
VICES. . .. e
Comparison of the algorithms using synthetic data
sources for cs, rt and SD parameters. . . . .. ...



List of Figures

3.9

3.10

4.1
4.2
4.3

5.1

XIV

Performance of the algorithms with real services, Ya-
hoo! Local. Figures (a) and (b) are for the exper-
iments with different values of K. Figures (c) and
(d) show results for experiments with different values
of J in sr. Figures (e) and (f) show the comparison
of average time and average I/O costs respectively,
based on the results of the experiments for 10 differ-
ent cities using Yahoo! Local. . . . . . ... ... .. 76
Performance comparison of the algorithms on syn-
thetic data sources for different values of p, the num-
ber of maximum allowed concurrent data fetches on

- 7
Snapshot of HRJN* execution. . . . ... ... ... 83
Snapshot of Join Space During the Execution of HRIJN* 90
Computation of Probability . . . . .. .. ... ... 91
Search Computing Architecture. . . . . . . . . .. .. 99



List of Tables

3.1 Real Web services used for experiments
3.2 Operating Parameters (defaults in bold)

3.3 Operating Parameters . . . . .. .. ..

14



1 Introduction

Write breifly about
evolution of Web Search.
need and importance of ranking in Web search and databases
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1 Introduction

1.1 Motivation

Briefly discuss the Web Search solutions involving ranking..

Put forth the short comings in the existing solutions..

Main focus shall be that almost all the existing solutions focus on
reducing the I/O cost which effectively reduces the overall time to
fetch the data as well. However, they do not consider the cases
when the data sources are remote and hence the time to process the
data is negligible as compared to the time to acquire the data.
Apart from this, in threshold based rank join algorithms, it is com-
monly observed that we find a join result in the early stages of the
process but we are unable to report it till the threshold allows us to
do so. This invites us to come up with an approach to report the
join results to the user with certain probabilistic guarantees.

16



1.2 Contribution of this Thesis

1.2 Contribution of this Thesis

contribution This thesis provides time and I/O efficient rank join
algorithms for the data sources which have a non negligible time as-
sociated for the data acquisition, and furthermore these data source
suffice the requirements of applying rank join algorithms.

It provides efficient rank join strategies for different join topolo-
gies e.g. Multi-way Rank Join and Pipe Rank Join.

It also presents an approach to provisionally report the join results
obtained in a rank join, to the user, with certain probabilistic guar-
antees. This further helps reducing the time to produce the join
results, while compromising on the quality of the join results as
compared to the deterministic approaches.

We also present the usefulness of this work while using these rank
join algorithms in an application. We choose Search Computing
application for this purpose and see how our defined algorithms can
be utilized in different components in different settings.

We also analyze the effectiveness of our proposed algorithms over
the existing algorithms while testing them in various different para-
metric settings and environments. This helps us in understanding
the main operating parameters which affect the performance of the
proposed algorithms.

17



1 Introduction

1.3 Thesis Overview

The next chapter introduces the rank joins and we discuss the ma-
jor rank join algorithms which are related to our context. We also
introduce the Web search and its evolution, where we emphasize on
the need of ranking in the Web search applications.

In chapter 3, we present two main rank join topologies for com-
puting the top-K joins efficiently in the context of Web based data
sources e.g. Web services.

Chapter 4, provides a probabilistic technique to report the join re-
sults to the user with certain confidence.

In chapter 5, we investigate the ways in which we can integrate our
proposed rank join techniques with in a Web search application.
We use Search Computing application for this purpose. This helps
us in assessing the effectiveness of our approach with in real Web
searching systems.

Lastly, chapter 6 provides the final discussion and future outlook of
the work done in this thesis.

18
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2 Ranking and Web Search

2.1 Rank Joins or Top-K Queries in
Databases

The information systems process data in different ways in order to
produce and rank the query answers. In many application domains,
end-users are mainly interested in getting most relevant query an-
swers, instead of exploring large number of weakly related answers.
These queries are known as top-K queries, as the user is interested
in getting 'K’ best answers. Different emerging applications warrant
the support of top-K queries in an efficient manner. For instance,
many applications in the context of information retrieval [Salton
and McGill 1983] involve top-K queries; similarly, in these types
of queries are desired in the domain of data mining [Getoor and
Diehl 2005]; furthermore, in the Web search applications, the per-
formance and effectiveness of meta-search engines heavily depends
upon the ways in which they process and combine rankings from dif-
ferent search engines. Above all, most of these applications process
the queries which involve joining and aggregating multiple inputs to
compute top-K results which are most relevant to the user’s query.

A common and simple way to compute the top-K objects or tu-
ples is to assign scores to all objects using some scoring function.
The score of an object demonstrates its significance according to
its properties (e.g., rent and area of an apartment object in a real
estate database, or color and texture of an image in a multimedia
database). The objects are evaluated and ranked by computing their
total scores based on multiple scoring predicates. Furthermore, top-
K processing is involved in various areas of database research which
include query optimization, indexing methods, and query languages.
Therefore, the impact of efficient top-K processing is becoming im-
perative in an various data processing applications. We present
some example scenarios from the real-world where efficient process-
ing of top-K queries is required. These examples also highlight the
importance of adopting efficient top-k processing techniques in tra-
ditional database environments.

20



2.1 Rank Joins or Top-K Queries in Databases

Ezxample 2.1: Consider a user is interested in finding 5 least expen-
sive places in a city where the combined cost of renting an apartment
and tuition fee for school for a year is minimum. Let us assume
there there are two data sources, Apartments and Schools from
where we can get the information about apartments and schools,
respectively. The Apartments data source provides an ordered list
of apartments based on their respective rents and their locations.
Whereas, Schools data source provides an ordered list of schools
based on the tuition fee.

A naive way to answer the query presented in Example 2.1 is
to retrieve all apartments from the data source Apartments and
schools from the data source Schools. Then join the objects from
both lists which are located in the same location. Compute the to-
tal expenses for each join result by adding the rent and school fee
together. Now, the five cheapest pairs (join results) constitute the
final answer to this query. The important consideration is that un-
less we process the data from both data sources completely, the top
five results cannot be returned to the user. So, for large numbers
of apartments and schools, such a query involves a lot of processing
while using this traditional method, since it requires expensive join
and sort operations for large amounts of data.

Example 2.2: A top-K query from a video system database is
that a user wants to find 10 most similar video frames to a given
image with respect to some visual features, e.g. on the basis of
colour and texture similarity. Consider a database of video sys-
tem which stores many visual features which are extracted from
each video object (frame or segment). These features may include
color histograms, color layout, texture, and edge orientation. These
features are stored in separate relations and are indexed using high-
dimensional indexes which support similarity queries.

The above mentioned query highlights the importance of efficient
processing for top-K similarity queries. Here the user can provide a
function that combines similarity scores in given features to formu-
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2 Ranking and Web Search

late an overall similarity score. For example, the overall similarity
score of a frame f with respect to a query image ¢ can be computed
using a given score aggregation function, such as,

0.5 xColorSimilarity( f, q)+0.5x TextureSimilarity ( f, q).

Again, a simple way to address such a multi-feature query is by se-
quentially scanning all database objects, while computing the score
of each object according to the features under consideration, and
computing the total score for each object by using the score ag-
gregation function. However, this approach suffers from scalability
problems with respect to database size and the number of features.
As an alternative, we can map the query into a join query that
joins the output of multiple single-feature queries, and then sorts
the joined results based on combined score. But, this approach also
does not scale with respect to both number of features and database
size since all join results have to be computed then sorted.

The main problem with sort-based approaches is that sorting is
a blocking operation which requires computation of all the join re-
sults. Although the input to the join operation is sorted on indi-
vidual features, yet this order is not exploited by conventional join
algorithms. Hence, sorting the join results becomes necessary to
produce the top-K answers. Therefore, it requires embedding rank-
awareness in query processing techniques to provide a more efficient
and scalable solution.

Figure 2.1 shows alternative plans for processing the query to get
top-K join results from two data sources A and B. One plan uses
nested loop join to compute the joins and then uses sorting to ex-
tract top-K join results. The other plan sorts the base relations and
then uses rank join which incorporates ranking in the join operation,
to produce top-K join results. At the same time, below each of the
plans we show the amount of data that needs to be processed in or-
der to get the top-K join results while using the respective plan. We
also see that in the case of nested loop join complete data needs to

22



2.2 Taxonomy of Top-K Queries

be processed, whereas, the rank join exploits the sorting to produce
the desired number of top-K join results while accessing a subset of
the whole data.

Top (k)
| Top (k)
SORT |
Al+B.2 RANK-JOIN
| A.1+B.2
NLJIN -
SORT SORT
/ ™~ Bl.l Al
|
A B = A
‘ Nested Loop Join ‘ Rank Join
Processed Data | [
Unprocessed Data]| |
a0 al [z

Figure 2.1: Rank join vs nested loop join.

2.2 Taxonomy of Top-K Queries

In this section, we discuss the state-of-the-art top-k query process-
ing techniques in relational database systems. We give a detailed
coverage for most of the recently presented techniques focusing pri-
marily on their integration into relational database environments.
We also introduce a taxonomy to classify top-k query processing
techniques based on multiple design dimensions, described in the
following:
Query Model Dimension

Firstly, we present the classification of top-k query processing tech-
niques based on the query model they assume. There are three

23



2 Ranking and Web Search

Top-k Processing Techniques

Query Model Data & Query Data Access Implementation Level Ranking Function
Certainty

Top-k

Top-k
Selection P

No Random | Sorted + Controlled
Aggregate

Random Probes Monotone |Unspecified

Top-k Join Both Sorted and Random Goneri
eneric

Certain Data,
Exact Methods J Uncertain Data Query Engine  Application Level

Certain Data,
Approximate Methods

Indexes / Materialized Views Filter-Restart

Figure 2.2: Taxonomy of Top-K Joins

different subcategories in the query model dimension:

i) Top-K Selection Query Model:

Some techniques assume a selection query model, where scores are
attached directly to base tuples. As an example consider a user
wants to find the top 5 images which are most similar to a given
image based on certain features e.g. colour and texture. NRA al-
gorithm [6] presented by Fagin et. al. is an example of this type of
techniques. We briefly discuss it in Section 2.3.

i1) Top-K Join Query Model:

This branch of the taxonomy involves the rank join techniques which
assume a query model, where scores are computed over join results
based on some scoring function. As an example, finding five places
in a city based on lowest tuition fee and prices of the apartments, re-
quires joining two different data sources of Apartments and Schools.
There are many top-K join techniques which fall in this category e.g.
NRA-RJ || by Ilyas works well when the join condition is equi-join.
Other techniques under this category are J* algorithm [1] by Nastev
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2.2 Taxonomy of Top-K Queries

et. al, Rank Join [10] by Ilyas et. al, and PREFER [|. We discuss
Rank Join by Ilyas et. al. in Section 2.3.

ii1) Top-K Aggregation Query Model:

As the names suggests in this third query model category the scores
are computed based on groups of tuples. As an example, we may
find top 10 employees averaging on their age and salary combined.
Li et. al [] (2006) have presented an algorithm for dealing with the
challenges in aggregation based rank join algorithms.

Data Access Dimension

The data access dimension classifies the top-K join queries is based
on ways in which we can access the data from the underlying data
sources. The main data access techniques involve the availability
of: only sorted access; both sorted and random accesses and lastly,
sorted access with controlled random access. Here we need to under-
stand the meaning of sorted and random accesses. A sorted access
is the one which accesses the ranked list in a sequential order, i.e.
a high scoring object has to be traversed before the low scoring ob-
ject. On the other hand if the score of an object is required directly
without traversing the objects with higher or lower scores then we
call it random or direct access. Based on these access methods rank
joins can be categorized into three sub categories. i) Both Sorted
and Random Access:

This category ensures that all the data sources involved in a query
offer both methods to access the data objects. The examples of such
algorithms are Threshold Algorithm (TA) by Fagin et. al. [6] and
Quick Combined algorithm [9] by Guntzer et. al. We have discussed
the TA algorithm briefly in Section 2.3.

i) No Random Access:

In this category, as the name suggests the data can only be accessed
in sequential order from all the data sources. No Random Access al-
gorithm (NRA) [6] by Fagin et. al. and Stream Combine algorithm
[8] by Guntzer et. al. are the two such algorithms in the literature.
We discuss NRA algorithm in Section 2.3.

ii1) Sorted Access with Controlled Random Probes:

25



2 Ranking and Web Search

In this category the top-K queries involve at least one data source
which offers sorted access, though it may offer random access as
well. Here the assumption is based on practical observations that
random access is expensive as compared to the sorted access. There-
fore, in the approaches which fall under this category try to reduce
the number of random probes in order to produce top-K join re-
sults. Examples of such algorithms are Rank Join algorithm [| by
Ilyas et. al., MPro algorithm by Chang et. al. and Upper and Pick
algorithms [| [] by Bruno et. al. We have discussed few of them in
the coming section.

Implementation Level Dimension

In this category of the taxonomy we present as to how the top-K
join algorithm is going to be integrated with the system. There are
two sub categories for this purpose. One is application level and the
other is query engine level.

i)Application Level:

One way is to embed the top-K join algorithm at the top of the
query engine. This way the query engine works in its own way and
the rank join algorithm can leverage from internal database objects
like indexes and materialization etc. to perform more efficiently.
Furthermore, new data access methods and specialized data struc-
tures can also be used. However, the main processing for the top-K
queries is conducted outside the query engine. The examples of such
algorithms include algorithms presented by Chang et. al. ||, and
Hristidis et. al. [|.

i1)Query Engine Level:

The algorithms of this category involve changes at the database en-
gine level, which helps executing the query in a rank join perspec-
tive. Thus, ranking plays a role in the optimization and processing
of the query. Some of such techniques have introduced new join
operators which support ranking and are called rank join operators.
As an example, in rank join algorithm [| presented by Ilyas et. al.
introduces a rank join operators. Whereas, following the same lines
Li et. al. [| have presented the extensions to the existing query
algebra for incorporating rank awareness.
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2.2 Taxonomy of Top-K Queries

Query and Data Uncertainty Dimension
This category depends upon the query environment and nature of
data involved in the query processing. As an example, in data
warehouse environment we have to process a huge amount of data
in order to get exact query answer. So, in such applications we
may sacrifice the accuracy of query answers in order to scale up the
performance of the system. Therefore, we may report approximate
answers for top-K queries. On the other hand, the uncertainty may
appear in the data itself, e.g. the data collected from streams and
sensor networks is not accurate data and it needs to be cleaned.
Therefore, in such cases the queries are formulated and processed
while taking the data uncertainly into consideration. From the top-
K queries we have defined the following sub-categories from the
query and data uncertainty dimension:
i) Exact Methods over Certain Data:
Here we have exact data and we process so as to get the answers
with deterministic guarantees. Most of the rank join algorithms fall
in this category, where deterministic data is processed by determin-
istic algorithms.
i1) Approximate Methods over Certain Data:
This sub-category involves the processing of top-K queries over de-
terministic data, but here the algorithms use approximations to
produce the nearly optimal results and this way they compute the
results in an efficient way. These kind of algorithms are generally
used in Decision Supports Systems and data warehouses. These ap-
proximate answers are generally associated with probabilistic guar-
antees. The examples of such algorithms are Theobald et. al. || and
Amato et. al. [|]. We have discussed such algorithms in Chapter 4
where we present our algorithm which works on certain data and
produces top-K join results with probabilistic guarantees.
i71) Uncertain Data:
This sub-category involves query processing of the data which is
obtained from streams or sensor networks, i.e. the data needs to
be cleaned before it is processed. Some algorithms which belong
to this category use probability as the only score model, whereas,

27



2 Ranking and Web Search

others methods exploit both score and probability dimensions. The
examples of such algorithms are Re et. al [] and Solaiman et. al
[|. The work presented in this thesis is based on deterministic data
therefore we do not discuss any such algorithms further.

Ranking Functions
The rank joins can be further classified based on the type of ranking
or scoring function. There is a vital property of rank joins which is
to define the upper bound on the object’s scores. These ranking or
scoring functions help computing these values. We classify the rank
joins based on the ranking functions in the following sub-categories:
i) Monotone Ranking Function:
A monotone ranking function easily computes upper bounds for the
objects. A function F', which is defined over predicates p1, ..., pn,
is a monotone scoring function if F(py,...,pn) le F(q1,...,qn) when-
ever p; le g; for every i. Most of the rank join algorithms involve
monotonic scoring functions as they widely cover many practical
scenarios and are enriched with the efficient processing abilities. As
an example the Threshold Algorithm (TA) [6] by Fagin et. al. uses
monotone scoring function. All the algorithms proposed as a con-
tribution for this thesis involve monotone ranking functions.
i1) Generic Ranking Function:
Some times ranking functions are expressed in the form of numer-
ical expressions. In order to process such ranking functions effi-
ciently, numerical optimizations and indexes are used. As an exam-
ple, Zhang et. al. || address the issues of top-K query processing
for such generic ranking functions.
i71) No Ranking Function:
In this category we can see rank query processing which is conducted
without any ranking function. As an example, skyline queries are
processed without a ranking function. These queries produce the
best objects which cannot be dominated by other objects based on
certain attributes. Borzsonyi et. al. [| and Yuan et. al. [] present
such algorithms. However, in the context of our thesis we do not
discuss such algorithms.
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2.3 State of the Art Rank Join Algorithms

2.3 State of the Art Rank Join Algorithms

In this Section we present some classical rank join algorithms which
are the basis for many recent rank join algorithms. Firstly, we
will present Threshold Algorithm [6] which was presented by Fa-
gin. Then we present a variant of threshold algorithm which only
involves sorted data access and is called No Random Access (NRA)
algorithm [6]. Thirdly, we present another algorithm HRJN [10]
which only allows sorted data access to the data sources. Lastly, we
present [13] Upper and Pick [?] algorithms which present relatively
similar work to our approach. All these approaches use monotonic
scoring function, and the query model is top-K join query model,
and in terms of data they deal with certain data, and can be imple-
mented at any level. However, in terms of data access some assume
both sorted and random access methods, whereas others assume
only sorted access method.

Threshold Algorithm

Threshold algorithm (TA) || was presented by Fagin et. al. in 2001.
It assumes that the data sources exhibit both sorted and random
data accesses. This algorithm scans multiple lists comprising of
different rankings of same data objects. An upper bound 7 is main-
tained to compute the maximum score of unseen objects. The score
function computes the upper bound using the scores of the last seen
objects in each list. This values of upper bound is updated every
time a new object is observed from any of the lists. As soon as an
object is observed in one list, the algorithms looks up this object
in the rest of the lists and then computes the score of this object
using the score function. An object is reported to the user if its
score is greater than the upper bound 7. Figure 3.1 illustrates the
processing of TA.

Consider two data sources L1 and Lo which contain same set of
objects with two different scoring predicates. The range of scores for
these objects in both data sources is [0,50]. Assume both sources
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2 Ranking and Web Search

First Step
OID | P1 oD | P2 T = 100
s 50 A 3 50 J
1 35 2 40 3: (80)
3 30 1 30 5 ()
2 20 N ¢ 20
4 10 5 10
Second Step
T=175
OID | P1 oD | P2
5 50 3 50 3: (80)
[ 1 35 2 40 ] 1: (65)
3 30 | 30 5: (60)
2 20 4 20 2: (60)
4 10 5 10
L2 L,1 Buffer

Figure 2.3: Threshold Algorithm (TA)

support sorted and random access to the data objects. Consider
that simple linear addition is the score aggregation function. Fig-
ure 2.3 shows the execution of first two steps of TA. In the first step,
the algorithm retrieves the top object from each data source, and
then looks it up in the other data source. Then it uses the score
aggregation function to compute the exact score of these objects.
These seen objects are stored in a buffer in descending order of their
exact scores. The upper bound or threshold value, 7, is computed
by applying the score aggregation function to the last seen scores
in both lists, which after the first step results in 50-+50=100. Now,
at this stage, both seen objects have scores less than 7, therefore,
no results can be reported. After the the second step, the threshold
7 drops to 75, which allows object 3 to be safely reported since its
score is above 7. The algorithm continues like this until it manages
to report K objects or the data from the sources is finished.

No Random Access Algorithm
NRA algorithm [| assumes that the data sources allow only sequen-
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2.3 State of the Art Rank Join Algorithms

tial access to the data objects and random access is not supported.
This algorithm may not report the exact scores of an object, since
it computes the upper and lower bound of the score of an object.
The lower bound score of an object t is computed by providing the
score aggregation function the know score value for t and the least
possible score value for t in the other data source. Whereas, the
score upper bound of t is computed by providing the known score
of t and the maximum possible score of t in the other data source,
which is the same as the last seen scores in the corresponding data
source. This allows the algorithm to report a top-k object even if its
score is not precisely known. Specifically, if the score lower bound of
an object t is not below the score upper bounds of all other objects
(including unseen objects), then t can be safely reported as the next
top-k object.

Firit Step oD | P1 QID | P2
5: (50— 100)
[ 5 50 ks, T 3: (50— 100)
1 30 2 30
3 30 1 30
2 20 4 20
4 10 5 0|
Second Step[_oip | py oID | P2
51 (50 —90)
5 50 3 | 50 3: (50 - 90)
[ T (] 2 |40 \ 1: (40 — 80)
3 30 1 30 2: (40 - 80)
] 20 4 20
4 10 5 0|
Third Step |_0ID |_p1 QID | P2 3: (80— 80)
5 50 3 50 1: (70 - 70)
1 40 2 40 5: (50 — 80)
[ 3 30 1 30 ] 2: (40— 70)
2 20 4 20
4 10 5 10 |
]’_‘1 ]_‘2 Buffer

Figure 2.4: No Random Access Algorithm (NRA)

NRA Example: Consider two data sources Ly and Lo, and each
data source contains a different ranking of the same set of objects
based on different scoring predicates. The scores of the objects in
both data sources fall in the range [0, 50|. Consider both data
sources only support sorted data access to the ranked data objects,
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2 Ranking and Web Search

and the score aggregation function is simple linear addition. Figure
2.4 shows the first three steps of the NRA algorithm. In every step
one object is retrieved from all data sources or lists. After the first
step, the algorithm retrieves the first object from each data source.
The algorithm then computes lower and upper bounds for the scores
of the objects. For example, object 5 has a score range of [50, 100],
as its known values is 50 and unknown value cannot exceed 50 and
cannot be less than 0. The seen objects are stored in a buffer in
the descending order of their score lower bounds. No object can
be reported at this stage as the score lower bound of object 5, the
top buffered object, does not exceed the score upper bounds of all
other objects. Similarly, after the second step two more objects are
added to the buffer, and score bounds are updated for score the
other buffered objects. After the third step, the scores of objects 1
and 3 are completely known. Here, we can observe that the score
lower bound of object 3 is greater than or equal to the score upper
bound of any other object (including the unseen ones), so object 3
can be safely reported as the top-1 object. It is pertinent to note
that at the same stage we cannot report object 1, becauses the score
upper bound of object 5 is 80, which is larger than the score lower
bound of object 1.

Hash Rank Join Algorithm
One example of rank-aware query operators that support pipelining
is the Rank Join operator [|. This algorithm, integrates the joining
and ranking tasks in one efficient operator. There are commonalities
between rank join and the NRA algorithm [|. Both these algorithms
perform sorted access to get tuples from each data source. There
are two main differences between rank join and NRA algorithm.
Firstly, NRA joins the lists of same objects, which is not the case
in rank join. Therefore, unlike NRA where one object in one list
has exactly one object in the other lists with which it can be joined,
in case of rank join one object in one list can be joined with many
others in the other list. That is why the rank join only stores the
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completly seen join results in the buffer. Consequently, the Rank-
Join algorithm provides exact scores of the join results, while the
NRA algorithm reports bounds on scores. The other difference is
that the NRA algorithm fetches one object from each list or data
source in each iteration. The Rank-Join algorithm has adaptive
strategy to extract object or tuples from a data source, and the al-
gorithm adaptively chooses the data source from which more data
needs to be fetched. The algorithm maintains a threshold 7 which
bounds the scores of the undiscovered join results. All join results
with score greater than or equal to the threshold value are reported
to the user. The algorithm continues to work unless K join results
are reported. A two-way hash join implementation of the Rank-Join
algorithm, which is called Hash Rank Join Operator (HRJN), was
presented in Ilyas et al. [|. HRJN is based on symmetrical hash
join. This operator maintains a hash table to store and process
the objects retrieved from each relation, and it maintains an output
buffer as a priority queue to store the join results in the order of
their scores.

Upper and Pick Algorithms

The Upper |?| and Pick [?] top-K algorithms assume that at least
one of the data sources provides sorted access, while random ac-
cesses are scheduled to be performed only when needed. Both these
algorithms are proposed in the context of Web-accessible sources.
The main emphasis of these algorithms is that in the context of
Web data sources random access is expensive as compared to the
sorted access. Therefore, these algorithms minimize the number of
random accesses in order to obtain top-K join results. The main
purpose of having at least one data source with sorted-access is to
obtain an initial set of candidate objects. These algorithms control
the random accesses by selecting the best candidates, based on score
upper bounds, to complete their scores.

The Upper algorithm, probes objects which have considerable
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chances to be among the top-K objects. Firstly, a sorted access is
made to get some candidate objects which are inserted into a pri-
ority queue based on their score upper bounds. After every data
extraction from the sorted data source the score upper bound of
unseen objects is updated. An object is reported and is removed
from the queue if its score lower bound is higher than the score up-
per bound of any unseen object. The algorithm adaptively chooses
the best source that should be probed next to obtain additional in-
formation for candidate objects.

In the Pick algorithm, the next data object to be probed into is
chosen so as to minimizes a distance function, which is defined as
the sum of the differences between the upper and lower bounds of
all objects. The source to be probed next is selected at random
from all sources that need to be probed to complete the score of the
selected object.

Major Components of a Rank Join Algorithms

If we analyse the above mentioned rank join algorithms, the we can
figure out that there are two main components of all rank join al-
gorithms.

i) Bounding Scheme

i1) Data Pulling Strategy

We explain the main features of these components as follows:
Consider a query @@ whose answer requires accessing the data from
two tables S7 and Ss in a relational database. Each tuple ¢; € S;
is composed of an identifier, a join attribute, a score attribute and
other named attributes. The tuples in both tables are sorted in the
descending order of the score associated to them, where the score
reflects the relevance with respect to the query. This sorting of
data objects in the respective relations fulfils the qualification for
the data so as to apply a rank join algorithm. Let ¢; denote a tuple,

t,gd) tuple at depth d and tz(.dﬂ) tuple at depth d + 1 for S;. Then
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a(tz(d)) Za(tgdﬂ)), where o(t;) is the score of the tuple ¢;.
Bounding Schemes

Let t = t; Xto denote a join result formed by combining the tuples
retrieved from two relations, where t; is a tuple that belongs to the
relation S;. This join result is assigned an aggregated score based
on a monotone score aggregation function, o(t) = f(o(t1),0(t2)).
Let 7 denotes the threshold value, which is the maximum score of
a join result that can be computed by joining the unseen tuples of
the relations with the seen or unseen tuples of the rest of the tables.
This calculation of threshold helps in formulating a bound. Thus,
it helps in reporting the identified join results to the user. Let K
denote the number of join results for which o(¢) > 7, then these can
be guaranteed to be the top-K. The computation of threshold value
depends upon the join predicate and data access methods. As an
example, if the data from two relations is joined based on the tuple
or object id and the data access method is sequential data access,
then we can compute a upper and lower bound scores of each join
result. We report that join results whose lower bound exceeds the
upper bound of the rest of the join results, as discusssed in NRA
algorithm above. Whereas, if we are allowed random data access
in the same scenario, then the threshold is computed as a single
score value, as we can observe in the TA algorithm discussed above.
Similarly, if the objects or tuples in the tables are joined based on
a join attribute value other than the object id, and data access
method is sequential, then the threshold is computed as a number.

Data Pulling Strategy:
Data pulling strategy provides a mechanism to choose the most
suitable data source to fetch the data [10]. Certainly, there is an
objective behind the mechanism of the pulling strategy, e.g. Hash
Rank Join (HRJN*) operator has the objective of optimizing the
I/O cost i.e. total number of tuples to get the top-K join results.
The data pulling strategy used in HRIJN* chooses that relation for
data extraction whose 7; = 7, the ties are broken by total number
of tuples which have been retrieved. Whereas, in case of Threshold
Algorithm (TA), data pulling strategy is round robin strategy, which
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extracts next sequential tuple from each relation in a round robin
fashion, and then finds its corresponding matches from the other
relations using random data access.
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2.4 Adaptation of Rank Joins for Web Based
Data Sources

The search systems over the internet have been evolving continu-
ously. There are some generic search engines like Google, Yahoo and
Bing etc. However, there exist a large number of domain specific
web searching services which provide the user with the answers to
certain specific questions: e.g. finding the movies by the IMDB and
finding books by Amazon etc. These large number of web search-
ing services have triggered the Web search community to design
multi-domain searching systems while using the existing searching
services. We can already see some examples of such systems e.g.
Yahoo Pipes and Expedia. These systems entertain multipurpose
user queries and serve the user requests by means of many existing
services and respond back to the user by aggregating and ranking
the results obtained by each service. A very important aspect of this
search is that the user is interested in most relevant and appropriate
results instead of large number of partially relevant results.

2.4.1 Classification of Web Services

We can categorize the Web services available on the Internet under
different categories. These categories are described as follows:
Ranking Dimension

The Web services can be classified based on the way they order the
data objects with their relevance to the query. They can be catego-
rized into Ezact and Search services [|. An Ezact Web service is the
one which provides the results without computing any relevance of
these objects to the given query. A Search Web service provides the
output after scoring and sorting the resulting objects based on their
relevance to the given query e.g. if we have a service for finding the
hotels in a city, it may respond with the hotels sorted with its stars,
or this ranking and sorting can be on the price as well, based on the
given query.

Selectivity Dimension
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The Web services can be categorized into Selective or Proliferative
[|, based on a factor called selectivity. The selectivity of a data
source is the average number of tuples a service outputs in response
to an invocation. So, if the maximum selectivity of a Web search
service is 1 then it is selective and proliferative, otherwise.

Data Provision

The services can also be categorized based on how the data objects
are reported in response to an invocation. The Web services can
be categorized as chunked or bulk [|. The former provides the data
objects in pieces i.e. not all the results in one call and we have to
call the Web service again to fetch the next set of results unless we
are satisfied or the result set is finished. This phenomenon is gen-
erally known as pagination, where few data objects are reported
on one page and then we have to request for the other page to get
more data. Whereas, the latter approach gives all the results in one
call. This phenomenon of chunking gives rise to some optimization
dimensions as it allows to process the data before actually getting
the complete data set in response to a query.

Apart from this, there are some general characteristics which are
associated with the Web services, which are the following: in case
of a chunked Web service, one chunk or page of information is pro-
vided in a specified amount of time which is generally called average
response time of the Web service. Similarly, for a chunked Web ser-
vice, the number of objects which are retrieved in each chunk or
page are considered as chunk size for the Web service. Whereas,
in case of a bulk Web service, there is an average response time as-
sociated with it, i.e. the average time that it takes to respond to a
given query. There is not chunk size associated with the bulk Web
services.

Data Access

Another very important consideration about these services is that
there can be different data access methods for retrieving the infor-
mation from the Web services, namely, sorted access, random/direct
access or both sorted and random accesses. While using sorted ac-
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cess we can only access the data in a sequence and cannot find any
information randomly; in random /direct access we can find a certain
record directly, e.g. by using the object Id. Random or direct access
is rather expensive than sorted access. Note, that this is similar to
the data access dimension discussed in Section 77.

Another dimension to observe the data aquisition from the Web
services is whether to invoke them in parallel or in a pipe line.
This decision can be made by asssessing the precedence constraints
enforced by the input/output bindings. Since, the overall results
obtained by processing the data of Web services returns a single
sequence of results, i.e. in both cases we say that the two services
are joined. In case of parallel configuration data from the services
is extracted simultaneously. Independent services can be invoked
in parallel, and their results are processed as they are retrieved. In
case of input/output dependencies, independent service is invoked
first and then based on its output the dependent service is invoked.
However, even when service calls have precedence dependencies, de-
termined by the input/output bindings, it is not necessary to wait
for the complete execution of the first service (in a blocking style),
as its results can be fed as input to the second service as soon as
they are available, so as to "pipeline" the join execution.

As an illustrative example, consider a person who wants to plan
his visit to Paris by searching for a good quality hotel and a restau-
rant, which are situated close to each other and are highly recom-
mended by their customers. This can be accomplished by extracting
information from suitable data sources available on the Web and
merging the information to get the top rated resultant combina-
tions, as contemplated in Search Computing [5]. The Web services,
e.g. Yahoo! Local or yelp.com, can be used to find the places of
interest in a city. The data can be processed to produce the top-K
scoring join results of hotels and restaurants. A sample rank query
based on the above example is the following:

SELECT h.name, r.name, 0.6xh.rating+0.4*r.rating as score
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FROM Hotels h, Restaurants r
WHEREh.zip = r.zip AND h.city= ‘Paris’ AND r.city = ‘Paris

In order to execute the above mentioned query let us assume
that there are two Web services hotel and restaurant. These Web
services can be invoked in parallel and we assume that there is no
dependency for the invocation of these services. Figure 2.5 shows
the execution plan for parallel join of this example query.

H
(S1)
Parallel
Join
R
(S2)

Figure 2.5: Example of parallel rank join.

Pipe rank joins extract data from data sources which may not be
invoked for data extraction in parallel, e.g. the output of one data
source is needed to invoke the other data source. Let us assume
that for the example query in Section ?? the restaurant Web service
provides the information about restaurants in a given city which are
located in a given zip code. This exposition of restaurants allows to
choose pipe join topology in which we extract data from the hotel
Web service and then for all the objects observed from the hotel
Web service we find the newly encountered zip code values. Then
we pass on this zip code value to the restaurant Web service to
extract the information about the restaurants located in the given
zip code. Similarly, if hotel Web service also allows random access
based on zip code information for a city, then we can swap the Web
services in pipe line sequence. Figure 2.6 presents the execution

possibilities of pipe rank join for the example query given in Section
?7
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Figure 2.6: Possibilities for pipe rank join.

2.4.2 Hypothesis

There are existing approaches for parallel rank join topology [1][6][8][11][12].
Furthermore, recent solutions to rank join problem [7][10][15] focus
on providing instance optimal algorithms regarding the I/O cost.
The I/O cost is a quantity proportional to the overall number of
fetched tuples. So these algorithms minimize the total number of
tuples to be accessed in order to find the top-K join results. HRJN*
[10] is an instance optimal algorithm in terms of I/O cost and it in-
troduces a physical rank join operator. This algorithm has been
further improved in [7] and [15].

Similarly, in [14] the authors provide a way of computing top-K join
results using pipe join, with minimum I/O cost. We refer to it as
serial Pipe Rank Join (sPRJ). Indeed, this optimization of the I/O
cost in all these parallel and pipe join algorithms helps reducing the
total time to compute the top-K join results as well, yet total time
can be further reduced for the following reason: these I/O optimal
algorithms access data from the data sources in a serial manner, i.e.
they access data from one source, process it and then fetch the data
from the next most suitable source. The latter is selected based on
a pulling strategy, which determines the source to be accessed to, in
order to minimize the 1/O cost. However, in the context of using
Web services as data sources, data processing time is found to be
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negligible as compared to data fetching time. So, most of the time
is spent in waiting for retrieving the data. Therefore, an alterna-
tive approach that extracts data from all data sources in parallel
should be used in order to reduce the data extraction time from all
sources by overlapping the waiting times. This calls for a parallel
data access strategy. In the next part of this chapter we present the
parallel and pipe topologies for rank join algorithms which exploit
parallel data access.

Apart from the above mentioned parallel data extraction methods
to improve the query answering time in the context of query exe-
cution with Web services as data sources, we also address the issue
of query processing time from another dimension. While analysing
the state of the art rank join algorithms we observed that most of
the time the real top-K join results are obtained much earlier as
compared to the time when they are reported. The reason for this
delay is the bounding scheme or the threshold value. As we dis-
cussed above, no join result can be reported unless its aggregated
score is above or equal to the threshold value. So, in most of the
cases, the join results are obtained and then the algorithms keep on
extracting more data so as to bring the threshold value down and
produce more join results. Finally, when the threshold falls below
the score of an observed join results then it is reported to the user.
This phenomenon triggers the need of reporting the already ob-
tained join results with certain probabilistic guarantees with which
they will appear among the top-K join results. This improvement is
imperative in two cases, firstly, when the computation of top-K join
involves huge amount of data and it is associated with a very high
I/O and time costs. Secondly, when the data sources are Web ser-
vices, which have non-negligible response time associated to them.
In the latter case, the time to fetch the data is a bottle neck and
it may delay the reporting of already observed join result which
may be one among the final top-K join results. There are existing
techniques for probabilistic measures for processing the top-K join
results but most of them [| || focus on discarding the partial join re-
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sults which have a very low probability to be among the final top-K
join results. We look forward to a probabilistic method which com-
putes the probabilities of the currently observed top-K join results
with which they may appear among the final top-K join results. A
similar work has been conducted in || and has been further improved
in [|. However, this computes the overall probability of having top-
K join results at one particular stage. Another difference is that it
is based on the TA and NRA algorithms. Whereas, we focus our
work on rank join operator, which has different joining methodology
as it does not join the objects based on object ids.

Therefore, we have two main research questions which we address
in this thesis.

i) Exploit parallel data extraction for both parallel and pipe join
topologies for processing the rank join algorithms in the context of
Web based data sources e.g. Web services. The intuition is that the
parallel data extraction surely reduces the time to compute the top-
K join, however it may result into extra I/O cost. The objectives
are to keep the I/O cost near to the optimal cost, while reducing
the time to compute the top-K joins as much as possible.

i1) Minimize the time to compute the top-K join results by reporting
the observed join results as the top-K join results with probabilis-
tic guarantees instead of deterministic guarantees. Intuitively, we
can say that this probabilistic reporting of the join results will help
reducing the time to compute the join results as well as the 1/O
cost to compute the top join results. However, at the same time the
quality of the results may suffer, as this method is prone to report
the join results which actually are not top join results. Therefore,
in this research question the objective is to avoid reporting these
unwanted join results while