
Politecnico di Milano

Dipartimento di Elettronica e Informazione

Dottorato di Ricerca in Ingegneria dell'Informazione

Bounded Approaches for

Veri�cation of In�nite-State

Systems

Doctoral Dissertation of:

Marcello M. Bersani

Advisor:
Prof. Pierluigi San Pietro

Tutor:
Prof. Gianpaolo Cugola

Supervisor of the Doctoral Program:
Prof. Carlo Fiorini

2011 � XXIV

Politecnico di Milano

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32 I-20133 � Milano

Acknowledgements

I would like to thanks my mother, my father, my brother and my sister-
in-law; I am grateful for the support they gave me during all these years
which allows me to reach this important achievement. Their help was
fundamental to face with di�cult moments. I give thanks to all my
friends who help me and make all my hours more funny. A special
thanks to Luca Cavallaro and Achille Frigeri who shared with me joys
and sorrows.
I am grateful to all collaborators who worked along with me. I thanks

my advisor, Pierluigi San Pietro, who takes care of my work during these
years and supported me in di�culties. I thanks Stéphane Demri as well
as Arnaud Sangnier for their con�dence and precious collaboration we
had during my visiting period at LSV in the �rst semester of 2011.

V

Abstract. Many veri�cation problems involve checking and synthesis
of in�nite state systems. In this thesis we study how to solve general
veri�cation problems by means of instances of, possibly di�erent, prob-
lems of bounded size. Informally, we say that a problem is of bounded
size when the object (or solution) which we take into consideration while
solving the problem can be de�ned by a bounded representation with
respect to the dimension of the initial problem. In particular, we will
face with the satis�ability problem of qualitative speci�cation de�ned by
formulae of linear temporal logic and model-checking problem de�ned
for a speci�c class of counter systems.
We de�ne the problem of k-bounded satis�ability for formulae of LTL(FO),

which is a language obtained by adding to linear temporal logic (LTL)
a �rst-order language, and we give an encoding in the decidable the-
ory of equality and uninterpreted functions. Moreover, we consider a
fragment of this general logic and we show that the satis�ability prob-
lem for LTL (with past operators) over arithmetical constraints can be
answered by solving a �nite amount of instances of bounded satis�abil-
ity problems when atomic formulae belong to certain suitable fragments
of Presburger arithmetic. A formula is boundedly satis�able when it
admits an ultimately periodic model of the form uvω, where u and v
are �nite sequences of symbolic valuations. Therefore, for every formula
there exists a completeness bound c, such that, if there is no ultimately
periodic model with |uv| ≤ c, then the formula is unsatis�able. In this
case, we say that the language has the completeness property. When-
ever a fragment of LTL(FO) bene�ts of such a completeness property
then k-bounded satis�ability can be exploited to solve the satis�ability
problem for the language.
Most veri�cation problems on counter systems are known to be unde-

cidable in general; decidability can be retained by considering a more
speci�c problem than the general one which is de�ned with respect
to runs with bounded features. We study model-checking problems
on counter systems when the speci�cation languages are LTL-like di-
alects with arithmetical constraints. Guards characterizing transitions of
counter systems are Presburger de�nable formulae and runs are restricted
to reversal-bounded ones. We introduce a generalization of reversal-
boundedness that captures both original Ibarra's notion as well as more
recent ones. We show the NexpTIME-completeness of the reversal-
bounded model-checking problem and the reversal-bounded reachability
problem. We show the e�ective Presburger de�nability for reachability
sets and for sets of con�gurations for which there is a reversal-bounded
run verifying a given temporal formula. Moreover, we show that reversal-
bounded model-checking problem can be solved by looking for ultimately

VI

periodic runs with bounded length satisfying a given property. There-
fore, since we are restricting the analysis to bounded runs, we can exploit
a reduction to k-bounded satis�ability of a temporal formula encoding
the transition relation of a counter systems and the semantics of a given
temporal speci�cation over ultimately periodic runs.

VII

Abstract. Molti problemi di veri�ca consistono nell'analisi e sintesi
di sistemi a stati in�niti. In questa tesi viene presentato un metodo di
risoluzione di una classe di questi problemi che utilizza istanze di prob-
lemi di dimensione bounded. Informalmente, diciamo che un problema
ha dimensione bounded quando la sua soluzione può essere rappresen-
tata in modo �nito rispetto alla dimensione del problema iniziale. In
dettaglio, i due principali problemi studiati sono il problema di soddis-
facibilità di formule de�nite mediante formule di logiche temporali ed il
problema di model-checking de�nito rispetto ad una classe speci�ca di
counter systems.
In prima istanza, de�niremo il problema di k-bounded satis�ability

per formule di LTL(FO), che è il linguaggio ottenuto estendendo Lin-
ear Temporal Logic (LTL) mediante un linguaggio del primo ordine, e
proporremo un encoding nella teoria (decidibile) dell'uguaglianza com-
binata alla teoria delle funzioni non interpretate. Inoltre, considereremo
un frammento di questa logica generale e mostreremo che il problema di
soddisfacibilità di LTL (con operatori al passato) con vincoli aritmetici
può essere risolto mediante un numero �nito di istanze di problemi di
k-bounded satis�ability quando le formule atomiche di tale logica ap-
partengono ad uno speci�co frammento della logica di Presburger. Dire-
mo che una formula è bounded satis�able quando ammette un modello
ultimamente periodico della forma uvω, dove u e v sono sequenze �nite
di symbolic valuations. Per ogni formula esiste un bound di completez-
za c tale che, se non esiste alcun modello ultimamemente periodico con
|uv| ≤ c, allora la formula è insoddifacibile. In questo caso, diremo che il
linguaggio gode della proprietà di completezza. Quando un frammento
di LTL(FO) gode della proprietà di completezza allora il problema di
k-bounded satis�ability può essere utilizzato per risolvere il problema di
soddisfacibilità generale.
Molti problemi de�niti su counter systems sono dimostrati essere inde-

cidibili in generale; tuttavia, è possibile preservarne la decidibilità con-
siderando un problema più speci�co de�nito rispetto ad un sottinsieme
dei run del sistema soddisfacenti speci�che caratteristiche. Studieremo il
problema di model-checking per una classe di counter systems quando il
linguaggio di speci�ca è un frammento di LTL con vincoli aritmetici. Le
formule caratterizzanti le transizioni dei counter systems di questa classe
sono formule de�nibili nell'aritmetica di Presburger ed i run sono ristretti
a quelli soddisfacenti la proprietà di reversal-boundedness. Introdurremo
una generalizzazione della nozione di reversal-boundedness, che include
sia l'originale proposta da Ibarra, che altre di più recente de�nizione.
Dimostreremo che il problema di reversal-bounded model-checking e il
problema di reversal-bounded reachability risultanoNexpTIME-completi.

VIII

Inoltre, dimostreremo che il reachability set e l'insieme di con�gurazioni
raggiungibili da un run reversal-bounded che soddisfa una proprietà
de�nita da una formula temporale nel linguaggio considerato sono de�ni-
bile nell'aritmetica di Presburger. Il problema di reversal-bounded model-
checking può essere risolto ricercando i run ultimamente periodici del
counter system in analisi soddisfacenti la proprietà. Pertanto, restrin-
gendo l'analisi ai run di lunghezza bounded ed ultimamente periodici, è
possibile ridurre il problema di reversal-bounded model-checking al prob-
lema di k-bounded satis�ability di una formula temporale che codi�ca la
relazione di transizione del counter system e la semantica della formula
de�nita per run ultimamente periodici.

IX

Contents

1. Introduction 1

2. Preliminaries 9

2.1. First Order Language . 9
2.2. Presburger Arithmetic . 11

2.2.1. Fragments of Presburger Arithmetic 12
2.2.2. Semilinear Sets . 13

2.3. Theory combination . 15
2.4. Büchi automata and ω-regular languages 17
2.5. An historical model: Minksy machines 19
2.6. Counter Systems . 20

2.6.1. Problems on counter systems 22
2.6.2. Reversal bounded counter systems 23

2.7. Temporal logic over arithmetic constraints 32
2.7.1. Linear temporal logic - LTL 33
2.7.2. Satis�ability problem for LTL and LTLModel Check-

ing . 35
2.7.3. Bounded LTL model-checking 37
2.7.4. Linear Encoding of LTL for SAT 41
2.7.5. Encoding periodicity 41
2.7.6. Encoding the Propositional Terms 41
2.7.7. Encoding Temporal Operators 42

3. Bounded Satis�ability Problem 51

3.1. Satis�ability problem for CLTL and CLTL Model Checking 56
3.2. Bounded satis�ability for LTL(FO) over uninterpreted

functions . 64
3.3. Encoding for LTL(FO) . 66

3.3.1. Linear Encoding of LTL for SMT 67
3.3.2. Encoding periodicity 67
3.3.3. Encoding the Propositional Terms 68
3.3.4. Encoding Temporal Operators 68
3.3.5. Linear Encoding of LTL(FO) for SMT 70

3.4. Extending CLTL language 73

XI

Contents

3.5. Removing the �past� and initial equivalence 74
3.5.1. Initial equivalence 74
3.5.2. Removing the past operator Y 75
3.5.3. Removing the language AP 77
3.5.4. General equivalence result 79

3.6. Completeness of the Bounded Satis�ability Problem for
CLTL . 80
3.6.1. Bounded Satis�ability Problem for CLTL 80
3.6.2. Completeness for IPC∗ and (D,=, <) 80

4. Bounded Model Checking Problem 93
4.1. Bounded CLTL model-checking 93
4.2. Decidability of Reversal Bounded Model Checking Problem 97

4.2.1. New de�nition of Reversal Boundedness 97
4.3. From reversal-bounded model-checking to reachability . . 99

4.3.1. Towards control state repeated reachability 100
4.3.2. Removing periodicity constraints 104
4.3.3. From Repeated Reachability to Reachability 106
4.3.4. Ultimately periodic runs 111

4.4. Complexity and e�ective Presburger-de�nability 112

5. Case Studies 125
5.1. Case Study I: hysteresis phenomena 125
5.2. Case Study I: Veri�cation of Service Substitutability . . . 128

5.2.1. Substitutability Checking of Conversational Services129
5.2.2. Case Study . 132
5.2.3. Evaluation and Experimental Results 137
5.2.4. Related Work . 138

6. Related works 141
6.1. Related tools . 154

7. ae2zot - a Tool for In�nite State Veri�cation 159
7.1. Tool structure . 159

8. Conclusions and future works 165

A. Appendix 167
A.1. Case study SOA: experimental results 167
A.2. Lisp code of hysteresis: case study from Section 5.1 168
A.3. Periodicity . 171

Bibliography 172

XII

List of Figures

4.1. Two variables counter system - d ∈ {+1,−1} 94
4.2. Structure of system S ′ . 110
4.3. Ultimately periodic runs and conditions 112
4.4. Structure of the path π . 118

5.1. LTS of the ChartLyrics service of Section 5.2.2 (⊗ denotes
that the operations are on di�erent transitions). 130

5.2. LTS of the LyricWiki service discussed in Section 5.2.2. . 131
5.3. The adaptation runtime infrastructure. 133

A.1. Substitutability experimental Results 167

XIII

List of Tables

3.1. Decidability results of model-checking over in�nite models. 51

5.1. Mapping script generated for the case study in Section 5.2.2140

XV

1. Introduction

In this thesis we study in�nite-state veri�cation of reactive systems. The
class of in�nite-state systems consists of many subclasses which are usu-
ally de�ned by speci�c formalisms. A �rst rough partition can be done
by considering the nature of the formalism used to represent a class, al-
though very often, strict equivalences subsist between them. Descriptive
formalisms represent systems by using sentences, or formulae, which are
de�ned according to a precise language with a formally de�ned syntax
and semantics. Operational formalisms rely on graph-based structure
where edges represent transitions of systems, i.e. they de�ne atomic oper-
ations, and sequences of transitions are �nite, or in�nite, representations
of their computations. The (existential) L model-checking problem for
an element M of a class of system C is the problem of checking whether
there is a computation ofM satisfying a property expressed by a formula
in the language L. Various methods are known to solve model-checking
problems. They are speci�c to the class of systems considered and often
they depends on the language used to specify properties. On the other
hand, given a formula φ of a logical language, and a notion of satis�a-
bility with respect to the semantics of the language, the satis�ability is
the problem of �nding an assignment (model) of values of the domain
to each object de�ning φ which satis�es the formula. In this thesis, we
consider both the approaches. The undecidability of the halting prob-
lem of Turing machines establishes the theoretical barrier to automated
veri�cation. Even the simplest class of automata with two nonnega-
tive integer variables and a zero-test instruction (Minsky machine) can
simulate Turing machines. Therefore, since the state space is poten-
tially in�nite, answering the problem whether such a system will reach
any particular state, is not possible to determine. Two main problems
which are explored both in �nite and in�nite state veri�cation are the
equivalence-checking and model-checking problems. The former aims at
establishing whether two systems are equivalent with respect to a given
notion of semantic equivalence. Whereas, the latter amounts to check
whether a system satis�es some property which is typically presented in
some modal or temporal logic. Di�erent approaches can be adopted to
handle in�nite state veri�cation. A way to investigate properties of sys-
tems is modeling the (symbolic) language that they generate. When a

1

1. Introduction

system has a �nite-state space, it can typically be represented by a �nite
state automaton. In this case, equivalence-checking and model-checking
are almost of immediate resolution. However, when the class of lan-
guage become more expressive insomuch as they are not regular, some
decidable problems for �nite state systems results to be undecidable.
For instance, general equivalence problem for Context-Free languages is
proved to be undecidable by Bar-Hillel et al. in [1] but when we re-
duce the set to deterministic context-free languages, then decidability
can be retained [2]. However, extending expressiveness does not lead
immediately to undecidable results. Process Algebras and Petri Nets are
two di�erent formalisms which are used to model in�nite state systems
which generates languages that are proved to be contained in the set
of context-sensitive languages. However, some of their subclasses bene�t
of decidable model-checking problem with respect to temporal languages
like linear temporal logic LTL (see Section 3). A di�erent point of view in
in�nite state veri�cation consists in representing con�gurations of sys-
tems as tuples of values from a speci�c domain. A tuple is a speci�c
assignment of values to variables involved in a systems and formulae
belonging to a given formal language L over the set of variables are a
symbolic description of the state space. Decidability of Presburger arith-
metic plays a fundamental role in this context since it bene�ts of closures
with respect to set-theoretical operations, like intersection and comple-
mentation, and decidable satis�ability problem. Whenever we are able
to represent (the transition relation of) systems in form of Presburger
formulae, we can answer veri�cation problem by reducing them to satis-
�ability of an arithmetical formula. For instance, this is the case of Petri
nets, and the equivalent class of VAS(S), or of some classes of counter
systems. A counter system is a �nite state automaton equipped with
variables ranging over an in�nite domains where transitions are labeled
with formulae of a language over the set of variables. For these classes,
model-checking problem can often be reduced to a reachability problem,
which is the problem of checking whether a given system reaches a spe-
ci�c con�guration, starting from an initial one. A common way to de�ne
formalisms which bene�t of decidable properties is to reduce their ex-
pressiveness in various way; for instance, one can restrict the structure
of the graph de�ning automata or the semantic behavior of object which
transitions manipulate. For instance, reversal-bounded counter systems
of Ibarra [3] enforce a semantic restriction over runs by imposing that
counters do not change monotonicity more than a given number of times
or �at counter system of Finkel and Leroux [4] for which the underlying
graph are �at. In these cases, veri�cation questions can be answered
by exploiting Presburger de�nability of transition relation. Beside the

2

representation of the system (model), an instance of a model-checking
problem is given in terms of temporal speci�cation, i.e., a formula of a
temporal language. Decidability of model-checking problem is function
both of expressiveness of models and of languages used to de�ne speci�-
cations. Beside descriptive approaches like Process Algebras, veri�cation
problems over in�nite state systems can be de�ned in terms of qualita-
tive speci�cation by means of (temporal) languages enriched with object
taking values from in�nite set. Qualitative veri�cation is, therefore, per-
formed by checking satis�ability of formulae. Satis�ability problem is,
in general, undecidable for temporal languages enriched with variables
over in�nite domains, since they can encode increments and decrements
of Minsky machines, as shown by Comon and Cortier in [5]. The main
source of undecidability is hided behind the possibility of de�ning com-
parisons among variables at di�erent position of time which allows one
to encode runs of Minsky machines. In order to regain decidability, the
expressiveness of the language have to be reduced either by restricting
the set of relations and functions which de�ne atoms of formulae or by
syntactically/semantically reducing the expressiveness of temporal oper-
ators. For instance, it can be shown (see Demri and D'Souza [6]) that
any relation between two variables which can be represented by a direct
acyclic graph, over elements of the domain, leads to undecidability.

In Chapter 3, we consider richer variants of the well known Linear
Temporal Logic (LTL) which are fragments of �rst-order linear temporal
logic, denoted LTL(FO). The language LTL(FO) is a linear temporal
logic endowed with �rst-order objects over in�nite (or �nite) domains
where atoms of formulae belong to a �rst-order language. Temporal
modalities are the same as LTL along with a special modality Xτ which
can be used over terms τ to represent the value of τ at the next po-
sition of time. It is already known that the satis�ability problem for
temporal languages with such a rich alphabet is, in general, undecidable
since comparing values of objects at di�erent position along the time al-
lows one to encode computation of (Turing-complete) Minsky machines.
However, by reducing the expressiveness of the �rst-order language of
atomic formulae or by imposing suitable syntactic restrictions on the
language, decidability of satis�ability problem can be retained. Decid-
ability is obtained, in some case, by reducing the problem to satis�ability
of (equisatis�able) formulae of other formalism, for which there already
exists a prove for decidability, or by means of automata-based reduc-
tion. In the latter case, the satis�ability problem is solved by means of a
reduction to an instance of a di�erent problem, typically a reachability
problem, with respect to an automaton representing the formula.

3

1. Introduction

� In Section 3.2 we give a di�erent notion of satis�ability which we
call k-bounded satis�ability. Informally, the problem amounts to
check whether a formula admits a �nite model ρ of the form u or
uv which represents an in�nite symbolic model uΣω or uvω, where
Σ is the symbolic alphabet of the symbolic part of the model which
consists of atomic formulae disregarding the information from the
�rst-order interpretation. Moreover, we require that ρ admits a �-
nite �rst-order model of length k, i.e., a �nite sequence of k assign-
ment to non-logical objects involved in symbols of Σ. k-bounded
satis�ability problem for (existential) LTL(FO) is decidable since
it can be reduced in polynomial time to satis�ability of (decidable)
theory of quanti�ers-free uninterpreted functions with equality.

� We present the encoding of LTL(FO) over k-bounded models in
Chapter 5 which is implemented in the tool ae2zot, presented in
Chapter 7. The encoding for LTL(FO) revises, in some part, the
already known linear encoding for LTL and generalize it to the
more expressive LTL(FO) language. It results intuitive and more
concise than the encoding for LTL and it is well-suited to be im-
plemented on SMT-solvers.

Whenever the logical language admits ultimately periodic models in the
underlying �rst-order language, then a bounded symbolic model still
represents exactly the in�nite �rst-order model. In other words, a k-
bounded symbolic model is representative of an in�nite model, even for
the �rst-order part, by iterating v in�nitely many times towards the
future. However, in full generality, since we adopt a bounded repre-
sentation of �rst-order models, k-bounded satis�ability may results not
enough to check whether a formula is not satis�able. In fact, there does
not exist, a priori, a bound limiting the length of k of models which
one has to check for satis�ability, i.e., a bound on the number of k-
bounded satis�ability problem to solve. Nonetheless, we give an example
of a fragment of LTL(FO) with past-time temporal modalities, denoted
CLTLB(L), such that the language of atomic formulae is a fragment
of quanti�er-free Presburger arithmetic (QFP), for which satis�ability
problem can be solved with k-bounded satis�ability. For this language,
a proof of decidability, which is based on the automata construction,
already exists.

� However, we prove in Section 3.6 that the fragment bene�ts of the
completeness property which states that a formula is satis�able if,
and only if, it is k-bounded satis�able for some k ≤ K, where K
is a �nite nonnegative integer called completeness bound. In gen-

4

eral, k-bounded satis�ability problem for CLTLB(L) is decidable,
provided that the theory of quanti�ers-free uninterpreted function
with equality combined with L is decidable. Consequently, we ob-
tain that whenever model-checking can be reduced to satis�ability
of formulae in CLTLB(L) then k-bounded model-checking problem
is complete.

� We study the extension of CLTLB(L) with past-time temporal
modalities Y over terms. We prove that formulae of CLTLB(L)
using Y can be rewritten to equivalent formulae of CLTLB(L) with-
out Y and that formulae of CLTLB(L∪AP), where AP denotes the
propositional language, are equivalent to formulae in CLTLB(L)
(see Section 3.5). Moreover, we show that formulae of CLTLB(L)
are initially equivalent to formulae of CLTL(L), which is the frag-
ment of CLTLB(L) without past-time temporal modalities.

k-bounded satis�ability problem is suitable when we are solving reacha-
bility problems, since it deals with k-bounded models.

� We exploit k-bounded satis�ability in synthesis of adapters be-
tween services in the contest of Service Oriented Applications.
CLTLB descriptive speci�cation are exploited to model the be-
havior of adapters and to constraint the parameters interchange
between two services; while services are represented by means of
operational models whose transition relation is unwound for a �nite
number of steps (see Section 5.2).

Verifying a reachability problem on a generic in�nite-state system by
checking only �nite pre�xes of length k is, in general, semi-decidable.
In fact, the procedure is successful when the con�guration is actually
reached within k steps.

� However, k-bounded satis�ability becomes e�ective, i.e. complete,
to solve general model-checking problems over in�nite runs, for
a class C of in�nite-state systems, when two conditions are satis-
�ed: (i) the model-checking problem for the class C can be reduced
to a k-bounded satis�ability problem for decidable fragments of
LTL(FO) and (i) the length of runs of systems in C, satisfying a
given property, have bounded length.

This is the case of the operational formalism which we introduce in Chap-
ter 4, and also other formalisms like, for instance, one-counter automata
which we do not consider in this thesis. We focus the analysis on op-
erational formalisms, called counter systems, having �nite control state

5

1. Introduction

set and transitions labeled with formulae belonging to the quanti�er-
free fragment of Presburger arithmetic. In particular, operational mod-
els studied in the Chapter 4 form a generalization of Minsky machines:
each transition is equipped with a guard from quanti�er-free Presburger
arithmetic (QFP) and with an update vector in Zn. Runs are restricted
to reversal-bounded runs in which each counter witnesses a bounded
number of reversals.

� We introduce a new concept for reversal-boundedness that makes
explicit the role of arithmetical terms and it captures previous no-
tions on reversal-boundedness (see Section 2.6).

Model-checking problems are then considered on such counter systems
by considering only r-reversal-bounded runs (r ≥ 0 is part of the in-
put) and a version of linear-time temporal logic with future and past-
time operators, and arithmetical constraints at the atomic level. Our
main contributions concern new decidability results for richer classes of
counter systems and speci�cation languages. The linear-time temporal
logic is a fragment of LTL(FO) with past-time temporal modalities and
the modality X over terms, where control states are atomic formulae as
well as arithmetical constraints from fragments of QFP. Moreover, we
are able obtain optimal complexity results by translation into Presburger
arithmetic. We reduce model-checking problems to reachability problems
(�rst, by synchronization of the counter system and the automaton rep-
resenting the temporal formula and, then, we reduce the model-checking
problems to reachability problems).

� We show that the reversal-bounded model-checking problem for
counter systems with guards in QFP (quanti�er-free fragment of
Presburger arithmetic) and temporal formulae with atomic for-
mulae in QFP is decidable and NexpTIME-complete (see Theo-
rem 4.4). The same complexity applies to reversal-bounded control
state repeated reachability problem and reversal-bounded reacha-
bility problem (see Corollary 89).

We prove a fundamental result which justi�es the bounded approach of
Chapter 3 when we are solving model-checking problems over reversal-
bounded counter systems with respect to CLTL speci�cation.

� We show that the existence of reversal-bounded runs satisfying a
temporal property implies the existence of reversal-bounded runs
of bounded length that are ultimately periodic, i.e. the sequences
of transitions are of the form uvω where u and v are �nite sequences
(see Section 4.3.4).

6

Besides, our complexity results provide as by-products that reachability
sets for reversal-bounded counter systems are e�ectively Presburger de-
�nable (see Corollary 85) and sets of con�gurations for which there is
a reversal-bounded run verifying a temporal formula are also e�ectively
Presburger de�nable (Theorem 90).
Part of the work presented in Chapter 3 is argument of the paper [7]

(TIME 2010) and [8] (RP 2011). In particular, Sections 3.5.1, and the
encoding presented in Sections 3.3.1 and 3.3.5 (partially) are presented
in [7]. Completeness problem for CLTL, which is argument of Section
3.6, is given in [8]. Chapter 4 is based on the work [9] (FroCoS 2011)
which can be found in [10] as technical report.

7

2. Preliminaries

2.1. First Order Language

In this section we remind main concepts related to �rst order language
FO which is essential to de�ne Presburger aritmetic in Section 2.2 and
extensions of Linear Temporal Logic LTL in Section 3. A �rst-order
language is de�ned with respect to an alphabet which consists of:

� a set of individual constant symbols C = {c0, c1, . . .},

� a set of function symbols F = {f, g, . . .},

� a set of predicate symbols R = {P,Q, . . .},

� boolean connectives ¬,∧,

� the existential quanti�ers symbols ∃.

The non-logical symbols represent predicates (relations), functions and
constants on the domain of discourse. They are the signature of the
language which distinguishes �rst-order languages. Usually, the set C is
understood since it is de�ned by elements of the domain when a structure
M = (D, I) is de�ned as we will explain later. Then, the signature of a
language is simply Σ = (F ,R). Each symbol is associated with a non-
negative integer, called �arity�, by means of a function arity : F∪R → N.
When arity(f) = 0, with f ∈ F , then f is a variable symbols and, sim-
ilarly, arity(R) = 0, with R ∈ R, denotes a propositional variable. We
will assume that F 6= ∅ or R 6= ∅. Let V be the set of variables. A term
τ is de�ned by the following language:

τ := c | f(τ1, . . . , τn)

where c ∈ C and f ∈ F such that arity(f) = n. Atomic formulae, of the
language are relations over terms:

α := R(τ1, . . . , τn)

where R ∈ R is a n-ary predicate symbol. Well-formed formulae are
de�ned by the following grammar:

φ := α | ¬φ | φ ∧ φ | ∃y φ

9

2. Preliminaries

where y ∈ V is a free variable occurring in φ. A variable is free when it
is not in the scope of quanti�er ∃. The set of all free variables occurring
in a formula φ is denoted by free(φ). A formula φ is closed when there
are no occurrences of free variables, i.e., free(φ) = ∅.
Semantic of a �rst-order language is de�ned with respect to a structure
M = (D, I) where D is a nonempty domain and I is an interpretation
of symbols of the signature such that:

� I(c) ∈ D for every c ∈ C

� I(f) : Darity(f) → D for every f ∈ F

� I(R) : Darity(f) → {true, false} for every R ∈ R

To correctly interpret a �rst-order formula φ such that free(φ) 6= ∅, the
environment ε : V → D �xes a value of the domain for every element of
free(φ). Let T be the set of terms τ occurring in a formula φ. Values
of terms with respect to the structure (M, ε) are recursively de�ned by
means of the function []ε : T → D as follows:

[τ]ε = ε(x) if τ is a variable (0-arity function)

[τ]ε = f([τ1]ε, . . . , [τn]ε) if τ ∈ F such that arity(f) = n

The logic value of a �rst-order formula is de�ned in terms of a structure
(M, ε). The truth relation |=ε, between a structure (M, ε) and a �rst-
order formula φ, is inductively de�ned as:

M |=ε R(τ1, . . . , τn)
def⇔ R([τ1]ε, . . . , [τn]ε)

M |=ε ¬φ
def⇔ M 6|=ε ¬φ

M |=ε φ ∧ ψ
def⇔ M |=ε φ andM |=ε ψ

M |=ε ∃y φ
def⇔ M |=ε(y)←d φ for some d ∈ D

where ε(y)← d means that ε(y) is the same as ε except for y which has
value d. Given a structureM, we say that a formula φ is satis�able with
respect to M when there exists an environment ε such that M |=ε φ.
When a structure is not provided, we say that a formula φ is satis�able
when there exists a structureM such that ψ is satis�able with respect
to M. We say that a formula φ holds with respect to M when for
all environment ε, M |=ε φ. In this case, the logical value of a closed
formula do not depend on the environment ε; then, in this case, we
simply write M |= φ when φ holds in M. Given a structure M, we
de�ne (�rst-order) theory TM the set of all closed formulae φ such that
M |= φ. Satis�ability problem for a theory TM consists in de�ning an
environment ε such that, given a formula φ,M |=ε φ.

10

2.2. Presburger Arithmetic

2.2. Presburger Arithmetic

In this thesis we use the following notation. The set de�ning natural
(respectively integer) numbers is denoted as usual by N (respectively Z).
Given a vector x ∈ Zn, we write x(i), with 1 ≤ i ≤ n to denote the i-th
value of x.
The following section in mainly inspired to Section 1.3.2 of [11] by

Demri and some notation are shared with [9] by Bersani and Demri. Let
VAR = {x0, x1, . . .} be a set of variables. Presburger arithmetic [12]
(PA) is the �rst-order theory of (N,+, <) (respectively (Z,+, <)) where
predicate < for the order relation and the symbols + for binary function
sum, for N (and Z). Let x be a variables in VAR and 0, 1 two symbols.
Terms t of the language are de�ned from the grammar below:

t := 0 | 1 | x | t+ t

where x ∈ VAR, a ∈ Z. A valuation val is a map val : VAR → N; it
can be extended naturally to the set of all terms as follows: val(0) = 0,
val(1) = 1, val(t+ t′) = val(t) + val(t′).
Formulae ξ of PA are de�ned from the grammar below:

ξ := > | t < t | t ≡c t | ¬ξ | ξ ∧ ξ | ∃x ξ | ∀x ξ

where > is the truth constant, c ∈ N \ {0, 1}. A variable x is free when
it does not occur in the scope of quanti�ers. The satisfaction relation
|=PA for PA formulae is de�ned according to the valuation val and it is
brie�y recalled below:

� val |=PA t ≡c t′
def⇔ there is n ∈ Z such that nc+ val(t) = val(t′),

� val |=PA t ≤ t
def⇔ val(t) ≤ val(t′),

� val |=PA ¬φ
def⇔ val 6|= φ,

� val |=PA ξ ∧ ξ′
def⇔ val |=PA ξ and val |=PA ξ

′,

� val |=PA ∃x ξ
def⇔ there is n ∈ N such that valx→n |=PA ξ where

valx→n is equal to val except that x is mapped to n.

� val |=PA ∀x ξ
def⇔ for everyn ∈ N valx→n |=PA ξ

A valuation val restricted to variables in V = {x1, . . . , xn} ⊆ VAR
can be also represented by a vector x ∈ Nn, where val(xj) = x(j) for
j ∈ [1, n]. The satisfaction relation can equivalently be written with
respect to a vector of values x |=PA φ.
Symbols 0, 1 and the relations < and ≡c are �rst order de�nable.

They are introduced as primitive symbols in the grammar but they can

11

2. Preliminaries

be removed from the language preserving the same expressiveness. In
fact, the value 0 can be de�ned by the formula 0 = 0 + 0 which holds
if, and only if, val(0) = 0 and 1 by the formula ¬∃y 0 < 1 ∧ 1 < y
which holds if, and only if, val(1) = 1. We consider also symbols < and
≡c to represent the total order relation among naturals and the modulo
relation. The formula t < t′ is an abbreviation of ∃x t+x = t′∧¬(x = 0),
where ξ ∨ ξ′ is, again, ¬(¬ξ ∧ ¬ξ′).
A formula ξ is satis�able when there is a valuation val such that

val |=PA ξ. A formula ξ is valid when for all valuations val, val |=PA ξ
holds.
Given a Presburger formula ξ, we write free(ξ) to denote the set of

free variables of ξ. Any formula with u ≥ 0 free variables x1, . . . , xu
de�nes a set of u-tuples:

SPA(ξ)
def≡ {(val(x1), . . . ,val(xu)) ∈ Nn | val |=PA ξ}.

Presburger arithmetic has been shown decidable by Presburger in [12].
The satis�ability problem for PA can be solved in triple exponential
upper bound [13] in the length of the formula. The lower bound for
the problem is studied in [14] by Fischer and Rabin: they provided a
decision procedure for satis�ability of PA formulae which is 2expTIME-
hard and 2expSPACE-hard. Moreover, the previous results applies also
in the case of nondeterministic algorithms. In [15], Ferrante and Racko�
provided a decision procedure for the �rst order theory of the structure
(R,+, <) based on quanti�ers elimination. Results for (R,+, <) can be
extended to PA, which is proved to be in 2expSPACE.
It is worth noticing that in the work of Presburger [12] the �rst-order

theory of (Z,+) with equality which extends the one over (N,+) is shown
to be decidable. The complexity of the satis�ability problem for the
existential fragment of PA is shown NP-complete in [16] by Scarpellini.

2.2.1. Fragments of Presburger Arithmetic

First, we consider is the quanti�er-free fragment QFP of PA. Essentially,
the grammar for QFP is:

ξ := > | t < t | t ≡c t | ¬ξ | ξ ∧ ξ.

The satisfaction relation is the same as |=PA. In [12] the fragment QFP
is shown to be equivalent to PA. In fact, there exists a quanti�er elim-
ination procedure which transform a PA formula ξ into a QFP formula
ξ′ such that ξ is satis�able/valid if, and only if, ξ′ is satis�able/valid.

12

2.2. Presburger Arithmetic

Though the two languages have the same expressiveness, the satis�abil-
ity problem for QFP is known to be NP-complete, see e.g. Papadim-
itriou [17]. Moreover, the quanti�er elimination procedure yields formu-
lae which are exponentially greater than the original quanti�ed formula.
The second fragment we consider limits the number of variables occur-

ring in the order relation. Formulae of Di�erence Logic DL are de�ned
by the following grammar:

ξ := > | x < y + d | ¬ξ | ξ ∧ ξ.

with d ∈ Z. Periodicity constraints of the form x ≡c y + d and x ≡c d
with d ∈ N, d ∈ N ∈ {0, 1}, can be added to DL. This fragment is
denoted by DL+ (the following notation is used also in [11] by Demri).
The Integer Periodic Constraints (IPC∗) or its fragments (e.g., (Z, <

,=) or (N, <,=)) is de�ned by the following grammar:

ξ := θ | x < y | ξ ∧ ξ | ¬ξ
θ := x ≡c d | x ≡c y + d | x = y | x < d | x = d | θ ∧ θ | ¬θ

where x, y ∈ V , c ∈ N+ and d ∈ Z. The �rst de�nition of IPC∗ can be
found in [18] by Demri and Gascon; it is di�erent from ours since it allows
the existentially quanti�ed formulae (i.e., θ := ∃x θ) to be part of the
language. However, since IPC∗ is a fragment of Presburger arithmetic, it
has the same expressivity of the above quanti�er-free version (but with
an exponential blow-up to remove quanti�ers). The restriction IPC++,
which is introduced in [18], is the language de�ned by considering θ,
rather than ξ, as the axiom in the above grammar.
Presburger formulae can be equivalently written with a more concise

representation by allowing constant over Z:

ξ :=

n∑
1

aixi ∼ d | ¬ξ | ξ ∧ ξ

where ∼= {<,>,=,≡c} with c ∈ N and ai ∈ Z.

2.2.2. Semilinear Sets

The class of semilinear sets was �rst considered in [19] (later reprinted
in [20]) and extensively studied in connection with languages. Given a
subset B and P of Nn, the set L(B,P) is de�ned by all the element
x ∈ S can be represented by the form

x = b+ p1 + · · ·+ pm
where b ∈ B and p1 . . .pm is a (possibly) �nite sequence of m vectors
belonging to P .

13

2. Preliminaries

De�nition 1. A set S ⊆ Nn is linear if there exist an element b and a
�nite subset P ⊂ Nn such that S = L(b, P).

Equivalently, a linear set S can be de�ned as

S = {b+

m∑
i=1

nip1 | n1, . . . , nm ∈ N}.

De�nition 2. A set S ⊆ Nn is semilinear if it is a �nite union of linear
sets.

Two fundamental results for the theory of semilinear sets were shown
by Ginsburg and Spanier in [21].

Theorem 3 (theorem 1.1, [21]). The family of semilinear sets of Nn is
closed with respect to union, intersection and complementation.

The next result draws the connection between Presburger de�nable
sets of tuples and semilinear sets.

Theorem 4 (theorem 1.3, [21]). The family of Presburger sets on Nn
is identical with the family of semilinear sets of Nn. Moreover, each
description is e�ectively de�nable from the other.

In other words, for every semilinear set S ⊆ Nn there is a Presburger
formula ξ such that S = SPA(ξ) and, conversely, for every Presburger
formula ξ, with at least one free variable, the set SPA(ξ) is a semilinear
subset of Nn.

Proof. The proof is a summary of the proof of theorem 1.3 in [21]. By
de�nition of linear set, it easy to see that every linear set is a Presburger
set. Since Presburger arithmetic is closed by union then every semilinear
set is a Presburger set.
Conversely, in order to prove that each Presburger formula de�nes

a semilinear set, it is possible to show that given a quanti�er-free PA
formula ξ over Nn of the form

ξ :=

n∑
1

pixi = b

the set of its nonnegative solutions is semilinear. Let

� C be the set of minimal solutions of ξ,

� and P be the set of minimal solution over Nn\{0}n of
∑n

1 pixi = 0.

By Lemma 6.1 of [22] both the set C and P are �nite and e�ectively
calculable. Then, the linear set de�ned by ξ is given by the �nite union⋃

c∈C L(c, P).

14

2.3. Theory combination

2.3. Theory combination

Most of the work presented in this thesis makes use of Satis�ability Mod-
ulo Theories solvers (SMT-solvers) which give a concrete resolution of
problems over in�nite-state systems de�ned in Chapter 3. An instance of
SMT problem is a generalization of SAT problem over booleans, where
atoms are formulae of an underlying (possibly decidable) theory. In gen-
eral, a �rst-order formula is de�ned by logical symbols, like connectives,
quanti�ers and parenthesis, and non-logical symbols which are functions
and predicates symbols. As explained in Section 2.1, the logical value of
formulae is interpreted with respect to a model. Satis�ability problem
amounts to check whether there exists a model, i.e. an assignment to
variables, functions and predicates, such that the interpretation of for-
mula is true. When objects de�ning formulae are interpreted with respect
to a background theory, we are solving a satis�ability problem modulo
theory. Satis�ability of Presburger arithmetic is an example. Veri�-
cation problems over non trivial systems aim at checking properties of
behaviors usually de�ned by objects with a di�erent nature, interacting
with one another. For instance, we would like to represent the behavior
of a program which manipulates arrays where updates of indexes are
de�ned by arithmetic formulae or we are interested in describing a soft-
ware component by means of the function which it realizes in terms of
its input. In other words, we are motivated to combine di�erent special-
ized theories to obtain a richer language representing di�erent aspects
of system. McCarthy in [23] was probably the �rst who propose a �rst
attempt to model recursive programs by de�ning an uninterpreted func-
tion representing their behavior. We have to mention Burch and Dill [24]
who de�ne and implement a decision procedure to verify combinational
ALUs by means of uninterpreted function and equality. Core problem
of Satis�ability Modulo Theories is combining separate solvers for the
theories T1 and T2 into one for the union T1 ∪ T2. Nelson-Oppen combi-
nation method identi�es su�cient conditions for combining two theories
over disjoint signatures. We say that two theories T1 and T2 have disjoint
signatures when Σ1 ∩ Σ2 = {=} where = is the symbol for the binary
equality relation. A theory T is stably in�nite when every satis�able
quanti�er-free formula is satis�able in an in�nite model. For instance,
if a theory T ′ includes only the formula ∃x x = 0 then T ′ is not stably
in�nite since the formula x = 0 is satis�able only for ε(x) = 0. Con-
versely, the theory T ′′ de�ned by ∃x x > 0 is stably in�nite. Let H be a
set of �rst-order formulae. Then, we write H |= φ when for all structure
(M, ε) such that M |=ε H then M |=ε φ. A literal is an atomic formula
α or its negation ¬α. A conjunction of literals H is convex when for all

15

2. Preliminaries

non empty disjunctions of variables
∨
i∈I x = y then H |=

∨
x,y∈V x = y

if, and only if, H |= z = w for some pair z, w ∈ V . A theory T is convex
when all the conjunctions of literals are convex. Intuitively, a theory is
convex when for every satis�able set of literals there is a model where
variables which are not implied to be equal have a distinct assignment
ε(x). Nelson and Oppen provide [25] a method for combining theories
which are stably in�nite and have disjoint signatures. In particular, let
T1 and T2 be two consistent, stably in�nite theories over disjoint theories.
Let T1(n) and T2(n) be the time complexity of satis�ability problem of
conjunctions of literals. Then, the combined theory T1 ∪ T2 is consistent
and stably in�nite and:

� satis�ability of conjunction of literals of T1 ∪ T2 can be decided in
O(2n

2
(T1(n) + T2(n)));

� when both T1(n) and T2(n) are convex then

� T1 ∪ T2 is convex and

� satis�ability of conjunction of literals of T1∪T2 can be decided
in O(n4(T1(n) + T2(n))).

Relevant theories which have concrete decision procedure in most SMT-
solvers are the theory of equality and uninterpreted functions (EUF), the
theory of quanti�er-free linear arithmetic over {Z,Q} (LIA, LRA) and
the di�erence logic over {Z,Q} (IDL,RDL), the theory of arrays, bit-
vectors and non-linear arithmetic (which is, in general, undecidable). In
Sections 3.3.1 and 3.3.5 we will use the theory of equality and uninter-
preted functions combined with IDL, RDL or LIA to encode satis�ability
problem for an extension of linear temporal logic. Algorithms which solve
satis�ability of formulae in EUF are usually based on the congruence clo-
sure of graphs. Terms of a formula are encoded by nodes of a directed
graph G. Equalities between terms and dependency relation between
composed functions (for instance, in f(a, g(b)) the function f depends
on a and g(b)) are encoded with edges between nodes of G. Satis�ability
reduces to checking whether the congruence closure is compatible with
the structure of the formula. Let G be a graph of n vertices and m edges;
the congruence closure for G can be computed in time O(m logm) and
space O(nm), in the worst case. Details about congruence closure algo-
rithms and implementations using di�erent data structures can be found
in [26] by Downey et al.. Negative cycle detection problem is exploited
by Lahiri and Musuvathi [27] to solve satis�ability of conjunctions of IDL
or RDL constraints of the form ax + by ≤ d where a, b ∈ {−1, 0,+1}.
Constraints are represented by a direct graph G. Nodes of G represent

16

2.4. Büchi automata and ω-regular languages

variables and DL constraints de�ne edges between nodes. A conjunction
of constraints is satis�able if the graph G does not contain negative cy-
cles. Complexity, in the worst case, is O(nm) where n is the number
of variables involved in conjunction of m constraints. Algorithms for
negative cycles detections are deeply studied in literature; for instance,
we can cite Cherkassky and Goldberg [28]. Although conjunctions of
IDL constraints is solved in polynomial time, the theory of IDL is not
convex. Therefore, the combination with EUF still leads to a decidable
theory but, by Nelson-Oppen theorem, it is solved in exponential time.
NP-completeness for the decision procedure of satis�ability of formulae
in the theory of equality with uninterpreted functions combined with the
theory of conjunctions of di�erence logic constraints over (Z, <) is given
by Pratt in [29]. RDL has the property of convexity. Therefore, satis�-
ability for the combined theory EUF with RDL is solved in polynomial
time.

2.4. Büchi automata and ω-regular languages

This subsection recalls main results and de�nitions concerning automata
theory and languages. An alphabet is a nonempty �nite set of distinct
symbols. A �nite word of length n over an alphabet Σ is a �nite sequence
of symbols of Σ, i.e., mapping w : {0, . . . , n − 1} → Σ. Naturally, this
de�nition extends to words of in�nite length: an in�nite word over an
alphabet Σ is a mapping w : N → Σ. The length of a word w (or of a
sequence s of element) is denoted by |w|. A �nite word of length n is
often represented by its sequence w = w(0) . . . w(n− 1) where w(i) ∈ Σ
is the element of w in position i. The set of �nite (respectively in�nite)
words over the alphabet Σ is denoted by Σ∗ (respectively Σω).
A �nite-state automaton over Σ is a tuple A = (Σ, Q,Q0, δ, F) where:

� Q is a �nite set of control states,

� Q0 ⊆ Q is set of initial control state,

� δ ⊆ Q× Σ×Q is a �nite transition relation and

� F ⊆ Q is the set (possibly empty) of accepting states.

A �nite run on a (�nite) word w is a �nite sequence of control states
q0q1 . . . , i.e., a labeling ρ : {0, . . . , n − 1} → Q such that ρ(0) ∈ Q0

and ρ(i)w(i)ρ(i + 1) ∈ δ, also written ρ(i)
w(i)−−→ ρ(i + 1) ∈ δ. A �-

nite run of length n is accepting when ρ(n) ∈ F . A in�nite run on a
(in�nite) word w is a in�nite sequence of control states q0q1 . . . , i.e.,

17

2. Preliminaries

a labeling ρ : N → Q such that ρ(0) ∈ Q0 and ρ(i)w(i)ρ(i + 1) ∈ δ,

also written ρ(i)
w(i)−−→ ρ(i + 1) ∈ δ. While the acceptance condition

of automata over �nite word is canonical, there are di�erent possibili-
ties of de�ning acceptance over in�nite words. Acceptance conditions
are usually de�ned with respect to a set of control states which are re-
peated in�nitely often along runs. We de�ne inf(ρ) ⊆ Q to be the set
{q ∈ Q | ρ(i) = q and |{i ∈ N}| is in�nite}. One can de�ne di�erent
acceptance conditions. The most frequently used ones are acceptance
according to Büchi, Muller, Street and Rabin conditions. According to
the respective accepting condition, one can de�ne Büchi, Muller, Street
and Rabin automata. In the thesis we will use the Büchi acceptance
condition which is de�ned as inf(ρ)∩F 6= ∅. Given an automaton A we
write L (A) to denote the language accepted by A.
An automaton may behave nondeterministically on an input word,

since it may have many initial states and the transition relation may
specify many possible transitions for each state and symbol. In particu-
lar, of |Q0| = 1 and there is at most one q′ ∈ Q such that (q, a, q′) ∈ δ
then the automaton is deterministic. In the sequel, we focus on Büchi
automata.
The class of languages accepted by Büchi automata forms the class of

(Büchi recognizable) ω-regular languages. It admits various character-
ization: ω-regular expressions, monadic second order logic over (N, <)
[30] and LTL with �xed-point quanti�cation [31] or automata-based tem-
poral operators [32].
Although every regular language can be accepted by a deterministic

�nite-state automaton, this is not true for ω-regular language. In fact,
given Σ = {a, b} the alphabet, the language (a+b)∗aω is not recognizable
by any deterministic Büchi automaton.

Theorem 5. There exists an ω-regular language which is not accepted
by any deterministic Büchi automaton. Then, the class of languages
recognized by deterministic Büchi automata is strictly contained in the
class of languages recognized by nondeterministic Büchi automata.

Nonetheless, ω-regular languages bene�t of nice closures properties.

Theorem 6 ([30]). The family of ω-regular languages is closed under
intersection, union and complementation.

Nonemptiness problem for Büchi automata is decidable and the prob-
lem is shown to be nlogSPACE-complete in the work of [33]. A funda-
mental property related to results in Section 3.6 and 5, is related to the
notion of ultimately periodicity of a word. A word w ∈ Σω is ultimately-
periodic if it is of the form w = uvω where u, v ∈ Σ∗.

18

2.5. An historical model: Minksy machines

Theorem 7 ([30]). Every nonempty ω-regular language contains an ul-
timately periodic word.

Büchi accepting condition can be extended to set of accepting sets
instead of one set. A generalized Büchi automaton is a tuple A =
(Σ, Q,Q0, δ, {F1, . . . , Fk}) such that Fi ⊆ Q. A run ρ is accepting when
inf(ρ)∩Fi 6= ∅ for every Fi. Generalized Büchi automata are as expres-
sive as Büchi automata, i.e, the class of languages accepted by generalized
Büchi automata is the same as the class of languages accepted by Büchi
automata.

Theorem 8 ([30]). Let A = (Σ, Q,Q0, δ, {F1, . . . , Fk}) be a generalized
Büchi automaton. There exists a (standard) Büchi automaton A′ =
(Σ, Q′, Q′0, δ

′, F) such that L (A) = L (A′).

Proof. The automaton A′ consists of k copies of A which are used to
simulate the generalized accepting condition by passing from one copy
to another.

� Q′ = Q× {1, . . . , k}

� Q′0 = Q0 × {1}

� F ′ = F1 × {1}

� (q, i)
a−→ β ∈ δ:

� β ∈ {(q′, i) : (q, a, q′) ∈ δ and q 6∈ Fi}
� β ∈ {(q′, (i+ 1) mod k) : (q, a, q′) ∈ δ and q ∈ Fi}

The automaton A′ can be computed in logarithmic space in the di-
mension of A.

2.5. An historical model: Minksy machines

In this section, we give a shallow intuition of the source of undecidabil-
ity which is inherently embedded within formalisms which are enough
expressive to represent two unbounded positive integer variables, incre-
ment/decrement and zero tests. This is strongly related to problems
that we consider in Chapter 3 and 4 since the extension of LTL and the
class of counter systems we consider in the thesis are enough expressive
to encode runs of such machines. Therefore, their fundamental decision
problems become immediately undecidable.

19

2. Preliminaries

The same notion of computability de�ned by Turing can be realized
within a restricted class of Turing machines constituted by machines hav-
ing only two tapes which can neither write on nor erase the tapes. In his
work [34] Minsky proposed a two tapes non-writing machine composed of
(i) a �nite automaton and (ii) two semi-in�nite tapes, each of which has a
single special character denoting the end. These machines can move each
tape in both directions and test when a tape reaches the end. Intuitively,
the two tapes represent two nonnegative integer counters. A move, on
the right or on the left, of heads over the tapes represents arithmetic
operations +1 and −1, respectively, and testing if the head reaches the
end of the tape realizes a test against zero for the counter representing
the tape. By de�ning a suitable encoding representing con�gurations of
a generic Turing machine it is possible to prove the equivalence between
the class of machine introduced in [34] and the one of Turing machines.
The main result concerning the equivalence is given by the next theorem:

Theorem 9 (theorem 1a, [34]). Any partial recursive function T (n) can
be represented by a program operating on two positive integers c1 and c2
using only instructions of the form:

(i): ci + 1; goto I.

(ii): ci − 1; if (ci = 0) goto Ii else goto Ij.

The program is de�ned by a set of instructions such that if it starts at
Istart with c1 = 2n and c2 = 0 the program will eventually terminates at
Iend with c1 = 2T (n) and c2 = 0.

Undecidability of the halting problem for the class of two-tape non-
writing machines is a direct consequence of the theorem. Actually, Turing
machines can be thought as programmed computer and programs as a
sequence of instructions each of which speci�es (i) an operation to be
performed and (ii) the next instruction to be executed. Therefore, any
formalism which is able to simulate such class of machine inherits full
expressiveness and undecidability from Turing machines.

2.6. Counter Systems

Counter systems are �nite-state automata endowed with a �nite set
of counters V = {x1, . . . , xn} over a speci�c domain D where D ∈
{N,Z,R}. Some notations of this section are inspired to Section 1.4
in [11] by Demri and sometimes taken from [9] by Bersani and Demri.
The list of problems in next Section 2.6.1 shares similarities from Section
1.4.2 in [11] by Demri.

20

2.6. Counter Systems

De�nition 10. A counter system is a tuple (Q,n, δ) such that:

� Q is a �nite set of control states;

� n ≥ 1 is the dimension of the system, i.e., the number of counters
involved in the system;

� δ is the transition relation de�ned as a �nite set of triples of the
form (q, ξ, q′) where q, q′ ∈ Q are two control state and ξ is a
Presburger formula with free variables in the set {x1, . . . , xn} ∪
{x′1, . . . , x′n}.

Elements (q, ξ, q′) ∈ δ are called transitions. A con�guration of (Q,n, δ)
is de�ned as a pair (q,x) ∈ Q × Dn, where x is the vector of counters
values. The one-step transition relation −→⊆ Q×Dn×Q×Dn is de�ned
between a pair of con�gurations such that ((q,x), (q′,x′)) ∈−→ when all
the following conditions hold:

� there is a transition t = q
ξ−→ q′ in δ,

� there exists a valuation val such that val |=PA ξ and

� for all 1 ≤ i ≤ n, val(xi) = xi and val(x′i) = x′i.

The (binary) reachability relation , written −→∗ is the re�exive and tran-
sitive closure of −→. A run ρ is a (possibly in�nite) sequence of con�gu-
rations (q0,x0), (q1,x1) . . . such that two successive con�gurations agree

with δ, i.e. for i ≥ 0, we have (qi,xi)
t−→ (qi+1,xi+1), for some t ∈ δ.

When D = N, runs are �nite or in�nite sequences of con�gurations such
that xi ≥ 0 for all positions in the run. We write ρ(i) to denote the
con�guration (qi,xi) in position i and length(ρ) ∈ N ∪∞ to denote the
length of ρ. An initialized counter system is a pair (S, (q,x)) such that
S is a counter system and (q,x) is an initial con�guration (with x ≥ 0).
Given a subset L of PA, we write CS(L) to denote the class of counter

systems for which transitions are restricted to guards in L and D agree
with the de�nition of L.
A fundamental notion for studying counter systems is the reachability

set of control states and reachability relation between pair of control
states. Informally, given a control state q ∈ Q, it consists of the minimal
set of all vectors x′ which the system can reach by means of runs starting
from a con�guration (q,x).

De�nition 11. Let (S, (q,x)) be an initialized counter system. The
reachability set for the control state q′ ∈ Q is the set:

Rq = {x′ ∈ Dn | (q,x)
∗−→ (q′,x′)}

21

2. Preliminaries

De�nition 12. Let (S, (q,x)), where S = (Q,n, δ). The reachability
relation between two control states q, q′ ∈ Q is the set of pairs:

R(q,q′) = {(x,x′) ∈ Dn ×Dn | (q,x)
∗−→ (q′,x′)}

As we will see later, some subclasses of CS(PA) are characterized by
semilinear reachability sets and reachability relations. When we pro-
vide e�ective procedure de�ning exactly the sets, e�ective veri�cation
can be performed by taking advantage of tool manipulating Presburger
arithmetic.

2.6.1. Problems on counter systems

In this section, we brie�y list some interesting problems concerning ver-
i�cation of counter systems which are involved in Chapter 4.

reachability problem:

Input
- a counter system S = (Q,n, δ)
- two con�gurations (q,x), (q′,x′)

Problem does there exist a �nite run ρ of S of length
length(ρ) = l such that ρ(0) = (q,x) and ρ(l) =
(q′,x′)?

control state reachability problem:

Input
- a counter system S = (Q,n, δ),
- a con�gurations (q,x) and a control state q′ ∈ Q

Problem does there exist a �nite run ρ of S of length
length(ρ) = l such that ρ(0) = (q,x) and ρ(l) =
(q′,x′)?

L model-checking problem:

Input

- a counter system S = (Q,n, δ)
- a con�gurations (q,x)
- a formula ϕ in a logical formalism L

Problem

Existential problem: does there exist a run ρ of S
such that ρ(0) = (q,x) and satifying ϕ, written
ρ |= ϕ?

Universal problem: is the case that all runs ρ of S
such that ρ(0) = (q,x) and satifying ϕ, written
ρ |= ϕ?

22

2.6. Counter Systems

The de�nition of counter systems provided above can be extended by
adding a �nite alphabet Σ whose symbols are involved in the de�nition
of the transition relation δ. A counter system is, then, a tuple (Q,n, δ,Σ)
where Q,n, δ are the control states set, the dimension of the system and
the transition relation and Σ = {a1, . . . , am} a �nite set of symbols.
It is worth noticing that the class of Minsky machines constitutes a

fragment of the class of counter systems are included in CS(QFP). There-
fore, most interesting problems on counter systems are undecidable. For
this reason, in order to get decidability, some restrictions have to be
imposed on the nature of the systems. Brie�y, additional requirements
which are used to regain decidability are of the form:

� syntactic restrictions on formulae,

� restrictions on control graph de�ning the �nite-state automata,

� semantic restrictions on runs.

Various classes are de�ned by combining previous restrictions on au-
tomata. The following section Section 2.6.2 considers reversal-bounded
counter systems along with some fundamental known results concerning
decidability and complexity issues involved in veri�cation. Speci�c re-
sults concerning the work presented in the thesis will be shown in Section
4.

2.6.2. Reversal bounded counter systems

A careful analysis of the undecidability of the halting problem for two-
tapes (i.e., two-counters) machines explained in Section 2.5 reveals that
during computations, counters operates by incrementing/decrementing
phases which start from a nonnegative value and ends to 0 and viceversa.
Counters alternate nonincreasing to nondecreasing phases which are de-
limited by zero tests. The notion of reversal-boundedness introduced in
[3] is based on a semantical restriction, that entails the decidability of
reachability problems, imposing a limit on the number of changes be-
tween consecutive nonincreasing and nondecreasing phases. Informally,
a reversal for a counter occurs in a run when there is an alternation
from nonincreasing to nondecreasing mode. For instance, the sequence
of values

000112222332212233344443333

is characterized by three reversals. We now de�ne formally the notion of
reversal-boundedness and we draw some main related results.

23

2. Preliminaries

Following notations are taken from [9] by Bersani and Demri. Let
S = (Q,n, δ) be a counter system and {x1, . . . , xn} be the set of coun-
ters. From a run ρ = (q0,x0), (q1,x1), . . . of S, in order to describe the
behavior of counters and terms varying along ρ, we de�ne a sequence
of mode vectors m0,m1, . . . (of the same length as ρ) such that each
mi belongs to {↗,↘}n. Intuitively, each value in a mode vector records
whether a counter is currently in an increasing phases or in an decreasing
phases.
We are now ready to de�ne the sequence m0,m1, . . .

� By convention, m0 is the unique vector in {↗}n.
� For j ≥ 0 and i ∈ [1, n] we have:

1. mj+1(i)
def

= mj(i) when xj(i) = xj+1(i),

2. mj+1(i)
def

=↗ when xj+1(i)− xj(i) > 0,

3. mj+1(i)
def

=↘ when xj+1(i)− xj(i) < 0.

Let Revi = {j ∈ N : mj(i) 6= mj+1(i)}.

De�nition 13. A ρ is r-reversal-bounded for some r ≥ 0
def⇔ for all

i ∈ [1, n], card(Revi) ≤ r.

The de�nition of reversal-boundedness over runs can be naturally ex-
tended to a counter systems by considering the set of all initialized runs
from an initial con�guration.

De�nition 14. Let (q,x) ⊆ Q × Nn be a con�guration. An initialized
counter system (S, (q,x)) is reversal-bounded when there is r ≥ 0 such
that every run from (q,x) is r-reversal-bounded. A counter system S
is globally reversal-bounded when it is reversal-bounded for all initial
con�gurations.

Reversal-boundedness is a semantic criterion restricting the set of runs
of a counter system. Therefore, the reversal-boundedness detection prob-
lem is undecidable.

reversal-boundedness detection problem

Input an initialized counter system (S, (q,x)) where S =
(Q,n, δ)

Problem Is (S, (q,x)) reversal-bounded?

Theorem 15 ([35]). Reversal-boundedness detection problem is undecid-
able.

24

2.6. Counter Systems

In [3], Ibarra shows a fundamental result of decidability which exploits
reversal-boundedness of runs. The fragment of CS(PA) considered is
de�ned by counter systems (Q,n, δ) such that the transition relation δ is
de�ned by tuples of the form (q, (zero(b),d), q′) which are a shorthand
for (q, ξ, q′) where:

ξ :=
∧

i∈[1,n]:~b(i)=1

xi = 0 ∧
∧

i∈[1,n]:~b(i)=0

xi 6= 0 ∧
∧

i∈[1,n]

x′i = x+ d(i).

Vector d is called update vector.

Theorem 16 ([3]). Let (S, (q,x)) be an initialized counter system which
is of the form de�ned above and r-reversal-bounded for some r ≥ 0.
Then, for every q′ ∈ Q, the set Rq′ is semilinear. When S is globally r-
reversal-bounded then, for any pair (q, q′) where q, q′ ∈ Q, the set R(q,q′)

is semilinear.

The immediate consequence of the theorem is that one can compute
a Presburger formula ϕq with free(ϕq) = {x1 . . . , xn} which de�nes
exactly the reachable con�gurations characterizing q.

Corollary 17 ([3]). Let S = (Q,n, δ) be a counter system, q, q′ ∈ Q two
control states, x ∈ Nn and r ≥ 0.

� if S is globally reversal-bounded, then it is possible to compute
a Presburger formula ϕ(q,q′) with free(ϕ(q,q′)) = {x1 . . . , xn} ∪
{x′1 . . . , x′n} such that for every valuation (x,x′)

(x,x′) |=PA ϕ(q,q′) ⇔ (x,x′) ∈ R(q,q′)

� if (S, (q,x)) is r-reversal-bounded, then it is possible to compute a
Presburger formula ϕq′ with free(ϕq′) = {x′1 . . . , x′n} such that for
every valuation x′

x′ |=PA ϕq′ ⇔ x′ ∈ Rq′

As immediate consequence of previous corollary we have that reach-
ability problem for r-reversal-bounded counter systems is decidable. In
Chapter 4 we present an analogous result for a richer reversal-boundedness
property.
The model presented so far can be enriched with a free counter for

which no restrictions on the number of reversal are imposed. The same
semilinearity results hold also for the augmented class of systems. In
fact, given a r-reversal-bounded counter system S which has one free

25

2. Preliminaries

counter, we can build a 1-reversal-bounded counter system S ′ such that
the free counter behaves in the same way of S. One free counter can
be simulated by a single stack with unary alphabet. Actually, Parikh's
theorem can be applied also for pushdown automaton with unary stack
alphabet. Then, semilinearity (and e�ective Presburger de�nability) can
be derived in the same way as Theorem 16.
We provide now some results concerning complexity analysis for reach-

ability problem which are related to the analysis presented in Chapter
4. The analysis of Ibarra's original procedure in [3] reveals that the al-
gorithm to decide reachability problem for a reversal-bounded counter
system is not optimal. In fact, construction of Parikh image for a (nonde-
terministic) �nite-state automaton runs in exponential time for general
cases, in the size of the alphabet considered and the dimension of the
automaton, and may yield results which are union of exponentially many
linear sets, in the worst case. Let n and r be the number of counters
and the number of reversal of a counter system; let p be the cardinal
of control state set. Parikh's construction is applied in [3] to a (non-
deterministic) �nite-state automaton of size exponential in r and n and
polynomial in the number p; the cardinal of the set of control states of
A in Theorem 16 is p · rn · 33(1+

r
2
). Then, the exponential construction

of Parikh's image results in double exponential complexity in r and n
and exponential in n. Observe that, if the number r is given in binary,
then the complexity is triple exponential in r. In [36], To provides an
algorithm which, given a nondeterministic �nite-state automaton with
n states over an alphabet of size k ≥ 1, computes a union of linear sets
with at most k periods and total size 2O(k

2logn). When the alphabet
is unary, i.e., k = 1, as in the case of counter systems considered in
the thesis, the algorithm runs in polynomial time in the size of the au-
tomaton. Consequently, Ibarra's method deciding reachability results in
exponential complexity in r and n and polynomial in n (for r in binary,
complexity is double exponential in r). Gurari and Ibarra, who �rstly
observed the non-optimality of procedure in [3], proposed a technique to
derive the upper and lower bound for nonemptiness problem (and, then,
for reachability) for the class of reversal-bounded counter systems. The
main result claims that if a 1-reversal-bounded counter systems accepts
an input word then there exists a shorter accepting run of bounded length
(which does not depend on the length of the input word). The shorter
accepting run can be constructed as a sequence of subcomputation, each
corresponding to a sequence of transition rules compatible with a vector
mode. The analysis of the length of accepting runs is done by exploiting
the property of small solutions for systems of equations which de�ne the
arithmetic behavior of counters in each subcomputation.

26

2.6. Counter Systems

Lemma 18 (Theorem 3, [37]; Lemma 2, [38]). Let S = (Q,n, δ) be a
1-reversal-bounded counter system with alphabet Σ. There exists a �xed
positive constant c such that L (S) 6= ∅ if, and only if, S accepts some
input word within time n|δ|cn.

The lemma can be used to prove the theorem:

Theorem 19 (Theorem 1, [38]). Let n and r be �xed positive integer.
Then, the nonemptiness problem for r-reversal-bounded n-counter sys-
tems is decidable in pTIME.

The algorithm uses a Turing machine which simulates computation of
the counter system given in input which accepts some words if, and only
if, all its computation are of bounded length (then bounded time).

Theorem 20 (Theorem 3, [38]). The nonemptiness problem for deter-
ministic r-reversal-bounded 2-counter systems is NP-hard, even for sys-
tem with unary alphabet. The result holds also for 1-reversal-bounded
n-counter systems.

Theorem 21 (Theorem 4, [38]). The nonemptiness problem for deter-
ministic r-reversal-bounded n-counter system is pSPACE-hard, even for
system with unary alphabet.

Later, these results were re�ned by Howell and Rosier [37] who pre-
sented an algorithm for deciding nonemptiness problem for nondetermin-
istic r-reversal-bounded n-counter system. The algorithm exploits non-
deterministic guesses to determine the accepting run of bounded length.
For each subcomputation corresponding to a vector mode, the algorithm
guesses in parallel a bounded number of loops of the system, i.e., by
guessing how many loops each transition takes. Moreover, the algorithm
requires the construction of a 1-reversal-bounded counter system with
the same dimension of the original S which is done in polynomial time
in the description of S. The algorithm runs in NP if r is �xed or is
given in unary. For binary encoding, it is polynomial in the description
of S and expTIME in r. Lower bound for nonemptiness problem is
given by constructing a deterministic counter systems with 3 counters
which is 2O(l)-reversal-bounded, where l is the size of the input word.
The intuition of the theorem is to build a deterministic system which
tries a di�erent con�guration of reversal for each symbol of the input
word. Since the input is of length l then there are at most 2O(l) possible
permutations of mode vectors, one for each symbol. When the number
of reversal r is given in binary, we have the following result:

27

2. Preliminaries

Theorem 22 (Theorem 3, [37]). Nonemptiness problem for r-reversal-
bounded n-counter systems is NexpTIME-complete. The result holds
also when systems are enriched with a free counter.

The class of counter systems considered so far can be extended to a
more general class of systems which use a richer language of constraints
over transitions. In [39], authors proposed the following extensions:

a. counters are variables over Z. By storing the signs of each counter in
the control states, it is possible to simulate a counter system over
Integers S by means of a counter system S ′ whose counters assume
values over N. If S is r-reversal-bounded then S ′ is r-reversal-
bounded.

b. formulae ξ on transitions q
ξ−→ q′ belong to language QFP(<) of linear

constraints or QFP(<1) of linear constraints in which only one free
variable occurs, i.e., cardinal of free(ξ) is one.

c. formulae ξ on transition are no longer conditional relations on coun-
ters but they can also de�ne assignment of the form x := y or
x := 0 (reset) where x, y are two counters of the system (provided
that free counter do not appear in any instruction of this form).
Both the assignments can be simulated by constructing a counter
system S ′ from S which preserves reversal-boundedness.

Extension b. requires a more detailed analysis. In order to preserve de-
cidability of reachability problem (i.e., e�ective Presburger de�nability
of the reachability relation) some restrictions on formulae over transi-
tions are imposed. In fact, the unrestricted use of zero tests leads to
undecidability since Minsky machines can be simulated by 0-reversal-
bounded 4-counter systems in CS(QFP<) allowing conditionals of the
form x − y < 0, since a zero test x − y = 0 can be rewritten into
x − y − 1 < 0 ∧ ¬(x − y < 0). Moreover, undecidability for halting
problem holds even for three 0-reversal-bounded counters.

Theorem 23 (Theorem 4.2, [39]). Let S ∈ CS(QFP<) be a determinis-
tic 3-counter systems which uses only formulae of the form x1 = x3 and
x2 = x3 and d(i) = {−1, 0,+1}. Then, the halting problem is undecid-
able.

Reachability problem for initialized r-reversal-bounded counter sys-
tems becomes decidable when transitions formulae belong to QFP(<1),
since zero tests can not be represented. Note that this restriction do not
a�ect formulae de�ning update vectors d. Decidability (of nonemptiness)

28

2.6. Counter Systems

in the case of CS(QFP(<1)) is provided in [39] by constructing a counter
system S ′ from the given initial one S in which no formulae over transi-
tions occur. Therefore, S ′ is a standard counter systems which simulates
phases of S by guessing the truth value of constraints on transitions.
Moreover, authors prove that formulae in CS(QFP(<)) can be retained
when the set of runs satisfy a stronger property characterizing reversals
named strong reversal-boundedness. From a run ρ = (q0,x0), (q1,x1), . . .
of S, letm0,m1, . . . be the sequence of mode vectors such that eachmi

belongs to {↗,↘,→}n. According to the new de�nition, each value in
a mode vector now records whether a counter is currently in increasing,
decreasing or no-change phase. The sequence m0,m1, . . . is de�ned by
the following updated rules:

� By convention, m0 is the unique vector in {↗}n.
� For j ≥ 0 and i ∈ [1, n] we have:

1. mj+1(i)
def

=→ when xj(i) = xj+1(i),

2. mj+1(i)
def

=↗ when xj+1(i)− xj(i) > 0,

3. mj+1(i)
def

=↘ when xj+1(i)− xj(i) < 0.

De�nition 24. A run ρ is strongly r-reversal-bounded for some r ≥ 0
def⇔ , for all i ∈ [1, n], card(Revi) ≤ r.

The de�nition of reversal-boundedness over runs naturally extends to
counter systems by considering the set of all initialized runs from an ini-
tial con�guration. By assuming strong reversal-boundedness of a counter
systems S using update vectors d = (−1, 0,+1)n, we have:

Theorem 25 ([39]). Let (S, (q,x)), be an initialized r-strong-reversal-
bounded counter system using QFP(<) formulae on transitions. Then,
for any q ∈ Q, the set Rq is semilinear. Let S, be an initialized r-strong-
reversal-bounded counter system using QFP(<) formulae on transitions.
Then, for any q, q′ ∈ Q, the set R(q,q′) is semilinear.

When the assumption of strong-reversal-boundedness is relaxed, de-
cidability is regained provided that systems involve QFP(<1) formulae
but more general update vectors d ∈ Zn.

Theorem 26 ([39]). Let (S, (q,x)), be an initialized r-reversal-bounded
counter system using QFP(<1) formulae on transitions. Then, for any
q ∈ Q, the set Rq is semilinear. Let S, be an initialized r-reversal-
bounded counter system using QFP(<1) formulae on transitions. Then,
for any q, q′ ∈ Q, the set R(q,q′) is semilinear.

29

2. Preliminaries

The reachability problem is naturally related to study of safety prop-
erties. Veri�cation of safety properties is reduced to instances of reach-
ability problem enriched by constraints which restrict values of counters
at �nal con�guration. Given a Presburger formula ϕ and an initialized
system (S, (q,x)), an instance of safety problem consists of determining
whether there exists a run of (S, (q,x)) such that values of counters at
�nal con�guration (q′,x′) satis�es P ; i.e., x′ |=PA ϕ. Liveness proper-
ties are investigated on in�nite runs; given a Presburger formula ϕ, an
in�nite run ρ of a system S is ϕ-in�nitely-often when there are in�nitely
many position i such that xi |=PA ϕ, where ρ(i) = (qi,xi). An in�nite
run ρ is ϕ-almost-always when there is a position j such that xi |=PA ϕ,
for all position i ≥ j.

Repeated reachability problem plays a particular and fundamental role
for the decidability of model-checking problem when liveness properties
are considered.

control state repeated reachability problem

Input

- counter system S = (Q,n, δ)
- a con�gurations (q,x)
- a control state q′ ∈ Q

Problem does there exist a in�nite run ρ of S such that ρ(0) =
(q,x) and q′ is visited in�nitely often?

∃-Presburger infinitely often problem:

Input

- a counter system S = (Q,n, δ)
- a con�gurations (q,x)
- a Presburger formula ϕ

Problem does there exist an in�nite run ρ of S such that ρ(0) =
(q,x) and ϕ is satis�ed in�nitely often; i.e., there are
in�nitely many position i such that xi |=PA ϕ, where
ρ(i) = (qi,xi)?

The complement problem of a ∃-Presburger in�nitely often problem is:

30

2.6. Counter Systems

∀-Presburger almost always problem

Input

- a counter system S = (Q,n, δ)
- a con�gurations (q,x)
- a Presburger formula ϕ

Problem does there exist an in�nite run ρ of S such that ρ(0) =
(q,x) and ϕ is satis�ed almost always; i.e., there is a
position j > 0 such that xi |=PA ϕ for all i ≥ j, where
ρ(i) = (qi,xi)?

Dang, Ibarra and San Pietro investigate these problems and show their
decidability [40].

Theorem 27 (Lemma 8, [41]). Let S be a r-reversal-bounded n-counter
system and one free counter. Then, ∃-Presburger in�nitely often problem
and ∀-Presburger almost always problem are decidable.

The technique suggested to prove decidability exploits reduction of
∃-Presburger in�nitely often problem (∀-Presburger almost always prob-
lem) to a �nite amount of reachability problem on 0-reversal-bounded
counter systems built from the original system. A similar construction
will be used in Chapter 4 to solve our version of reversal bounded model-
checking problem. It exploits a simple but essential property character-
izing the class of reversal-bounded counter systems: for each in�nite run
there exists a position h ≥ 0 such that all con�gurations at position
i ≥ h are compatible with a unique mode vector mh. Then, all in�-
nite computations of S, whose counters agree with the mode mh after
position h, can be represented by a 0-reversal-bounded counter system
Smh . Transition relation of Smh consists of only transitions compatible
with mh. Moreover, transitions are re�ned since they are enriched by
formulae which guarantee suitable value for counters throughout in�nite
runs. Repeated reachability and ∃-Presburger in�nitely often problem
(∀-Presburger almost always problem) are solved by investigating ex-
istence of runs of Smh starting from a con�guration (q,x) reaching a
con�guration (q,x+ ∆) at the same control state q.

Lemma 28 (Lemma 8, [41]). Let S = (Q,n, δ) be a r-reversal-bounded
counter system, q ∈ Q be a control state, ϕ a Presburger formula and I be
a Presburger formula de�ning initial con�guration for S. There exists a
ϕ-in�nitely-often (-almost-always) run of S starting from a con�guration
(q,x) if, and only if, for some mode vectorm, there exists a ϕ-in�nitely-
often (-almost-always) run ρ′ in Sm.

By the lemma we have:

31

2. Preliminaries

Theorem 29 (Theorems 2,3; [41]). The ∃-Presburger in�nitely often, ∀-
Presburger almost-always and control state repeated reachability problems
are decidable for the class of r-reversal-bounded counter system. The
result holds also when one free counter is added to the system.

Let consider the problem (∃-Presburger-always) of checking whether
there exists a in�nite run ρ of S such that ρ(0) = (q,x) and for all
position i we have xi |=PA ϕ, where ρ(i) = (qi,xi). In this case, Dang et
al. in [40] prove that the reachability set is not recursive. This result is
worth to be noticed if it is compared with decidability results which we
have obtained in Section 4.

2.7. Temporal logic over arithmetic constraints

Modal Logics [42] were introduced by philosophers to reason about �modes�
of truth of elements characterizing the universe of reasoning. In par-
ticular, when we establish a language to reason about elements in the
universe, the truth value of assertions in that language is modi�ed by
the use of modalities. A modality is de�ned to be a syntactic element
belonging to the language which characterizes the truth of a predicate;
for instance, if P is a predicate which can be true or false, the sentence
�possibly� P is true if it is possible to make P true. Temporal logic is
a special class of Modal Logic which provides a formal system to rea-
son about how truth of assertions changes over time. Amir Pnueli [43]
was been the pioneer of temporal logic in computer science; he argued
that temporal logic can be used to reason about processes and com-
putations. In particular, this formal system is particularly appropriate
when nonterminating, continuously operating systems are considered:
they maintain an �in�nite� computation representing interactions with
the environment. This peculiarity makes temporal logic successful and
e�ective if it is compared with formalisms like Hoare logic which are
based on transformations describing semantics of programs.
A fundamental question concerns the nature of time. Various distinct

alternatives exist; here, we list the main ones:

� linear time, branching time;

� instant-based or interval-based;

� discrete time or dense time.

When the course of time is linear, at each moment, there exists only
one possible future instant after the current one. This nature of time is

32

2.7. Temporal logic over arithmetic constraints

useful when we want to reason about properties of all possible behaviors
the system can execute from the current instant. On the other side,
branching time allows alternative courses, representing di�erent possi-
ble futures, to be realized from the current instant. Next section recall
the de�nition of Linear Temporal Logic which is the temporal language
adopted throughout this thesis. Some fundamental results are also sum-
marized.

2.7.1. Linear temporal logic - LTL

Sentences, or formulae, of the language LTL are de�ned by the grammar:

φ := p | ¬φ | φ ∧ ψ | Xφ | φUψ

We assume > is the symbol representing true value, p is a symbol of the
set AP of atomic propositions, ¬ and ∧ are the usual boolean connectives
for negation and conjunction and , are the temporal modalities for �next-
time� and �until�. Other formulae are introduced as abbreviation: φ∨ψ
instead of ¬(¬φ ∧ ¬ψ); p⇒ q abbreviates ¬p ∨ q and p⇔ q abbreviates
(p ⇒ q) ∧ (q ⇒ p). The boolean constant > is a shorthand for p ∨ ¬p
and ⊥ for ¬>.
Semantics of LTL formulae is de�ned with respect to a structure

(S, π, L) where:

� S be a set of states.

� π is an in�nite sequence of states π ∈ Sω; the structure of time is
a totally ordered set which we assume to be isomorphic to (N, <).

� L : S → 2AP is a labeling function which de�nes the set of true
atoms for each state.

A satisfaction relation can be equivalently de�ned from π and w; we
prefer the �rst one:

π, i |= p
def⇔ p ∈ L(si) for p ∈ AP

π, i |= ¬φ def⇔ π, i 6|= φ

π, i |= φ ∧ ψ def⇔ π, i |= φ and π, i |= ψ

π, i |= Xφ
def⇔ π, i+ 1 |= φ

π, i |= φUψ
def⇔ ∃ j ≥ i : π, j |= ψ and ∀i ≤ n < j π, n |= φ

A formula φ ∈ LTL is (initially) satis�able if there exists a linear time
structure (S, π, L) such that π, 0 |= φ. In this case, we say that (S, π, L),

33

2. Preliminaries

or simply π, is a model for φ. Equivalently, a model for a LTL formula is
an in�nite sequence of states w ∈ (2AP)ω. φ ∈ LTL is satis�able if there
exists a word w ∈ (2AP)ω such that w, 0 |= φ. In this case, the de�nition
of |= is the same as the one presented above except for the case of atomic
proposition:

w, i |= p
def⇔ p ∈ w(i) for p ∈ AP.

Two LTL formulae φ and ψ are (initially) equivalent, written φ ≡i ψ
when for all linear time strucure (S, π, L), (π, 0) |= φ if, and only if,
(π, 0) |= ψ.
Past-time operators , �yesterday�, and �since� can be added to the

LTL language. Though they do not augment expressiveness, they make
formulae exponentially more succinct than an equivalent formula using
only future modalities: this result is proved by Markey in [44]. The
extension of LTL with past-time modalities will be denoted as LTLB.

π, i |= Yφ
def⇔ π, i− 1 |= φ and i > 0

π, i |= φSψ
def⇔ ∃ 0 ≤ j ≤ i : π, j |= ψ and ∀j < n ≤ i π, n |= φ

When past-time modalities are included in the language, the position
of instant at which a formula is evaluated with respect to the sequence π
yields di�erent notions of equivalence and satis�ability. A LTL formula
φ is globally satis�able when there exists a linear time structure (S, π, L)
such that π, i |= φ for some i ≥ 0. Two LTL formulae φ and ψ are
globally equivalent, written φ ≡g ψ, when for all linear time strucure
(S, π, L) and for all i ≥ 0, π, i |= φ if, and only if, π, i |= ψ.

Theorem 30 (Theorem 3.1, [45]). LTLB is strictly more expressive than
LTL with respect to global equivalence ≡g. The two logic are equi expres-
sive when initial equivalence ≡i is considered.

Proof. The proof is a summary of the proof of Theorem 3.1 in [45].
Let q be an atomic proposition belonging to AP and π = q(AP)ω,
π′ = ¬q(AP)ω be two sequences over AP . The two sequences π and
π′ are identical except for the �rst position at 0 instant. While LTLB
formula Yp distinguishes the two model at instant 1, i.e., π, 1 |= Yp and
π′, 1 6|= Yp, LTL formulae can not distinguish π, 1 from π′, 1. In its PhD
work [46], Kamp proved that the �rst-order theory of linear order with
equality, order relation < and monadic predicates, written FOm(<,=)
is equivalent to LTLB. Gabbay et al. provides in [47] the justi�cation for
the second part of the proposition. They show that for every FOm(<,=)
formula χ there exists a LTL formula φ such that φ ≡i χ.

Given a LTL formulae φ we write cl(φ) to denote the smallest set
containing all subformulae of φ that is also closed under negation.

34

2.7. Temporal logic over arithmetic constraints

2.7.2. Satis�ability problem for LTL and LTL Model
Checking

Informally, satis�ability problem for a logic language is the problem of
�nding a model satisfying a given formula, i.e., an assignment for the
element of the language de�ning the formula which makes the evalua-
tion of the formula true. Along with the validity problem, satis�ability
(and validity) is of fundamental interest when a logic language is de-
�ned. Various approaches can be used to show their decidability, while
undecidability is typically obtained by reducing an undecidable prob-
lem to an instance of them. Hereafter, we remind some fundamental
techniques to prove decidability for satis�ability problem. Techniques
using tableaux build a graph which represents true elements of a for-
mula encoding potential models for it. A formula is satis�able when its
correspondent tableau satis�es a suitable consistency property. Consis-
tency can then be tested to check if the tableau contains proper models
for the formula. Tableaux-based approaches can be distinguished be-
tween declarative and incremental methods. Declarative methods [48]
[49] �rst generate all possible sets of subformulae of a given formula and
then they eliminate some (possibly all) of them. Incremental methods
[50] generate only �meaningful� sets of subformulae. A di�erent approach
based on automata is proposed by Wolper and Vardi [51] for which Büchi
automata are built to recognize the language of models of LTL formulae.
Satis�ability problem is then reduced to reachability of control states on
automata which is decidable in nlogSPACE in the dimension of the
graph representing the automata. Main results presented in Chapters 3
and 4 are based on this construction.

Satisfiability of LTL formula:

Input a LTL formula φ
Problem does there exists a model w ∈ (2AP)ω such that w, 0 |=

φ?

LTL model-checking problem is the problem of verifying the existence
of an execution of an automata-based model which satis�es a given for-
mula of the logic language, i.e., the execution is a model for the formula.
Satis�ability and model-checking problems are often strictly related since
they are reciprocally reducible to each other. Though model-checking can
be de�ned with respect to di�erent formalisms de�ning models for formu-
lae (automata, transitions systems, automatic transitions systems), we
give main results when transitions systems are considered and, in par-
ticular, we focus on the class of Kripke structures. A Kripke structure

35

2. Preliminaries

is a triple M = (S,R,L) where:

� S is a non-empty set of states,

� R ⊆ S × S is a binary relation between states

� L : S → 2AP is a labeling function which characterizes true element
on states.

A path inM is a sequence s0s1, �nite or in�nite, such that (si, si+1) ∈ R;
i.e., a path is a word of the language (2AP)ω. We write P (M, s) to denote
the set of in�nite paths of M starting from s.
The existential LTL model-checking problem for LTL is de�ned as:

LTL model-checking problem:

Input

- a Kripke structure M = (S,R,L)
- a state s0 ∈ S
- a LTL formula φ

Problem does there exist an in�nite path π ∈ s0Sω of M such
that π, 0 |= φ, written M, s0 |= φ?

We remind main results concerning complexity of the two problems.
Most of them can be found in the work of Sistla and Clarke [52] where
complexity analysis is presented also for fragments of LTL language.

Theorem 31 (Lemma 4.3, [52]; [53]). The satis�ability problem for LTL
is pSPACE-hard.

An immediate reduction demonstrating pSPACE-hardness of LTL
model-checking is de�ned by reducing satis�ability problem of LTL for-
mulae to LTL model-checking with respect to a Kripke structure de�ned
byM = ({s}, R, L) with (s, s) ∈ R and L : {s} → >. Then, given a LTL
formula φ, φ is satis�able if, and only if, M, 0 |= φ. pSPACE-hardness
of LTL model-checking problem is also proved by reducing satis�ability
of Quanti�ed Boolean Formulae to LTL model-checking. The satis�a-
bility problem for Quanti�ed Boolean Formulae is known to pSPACE-
complete by Stockmeyer and Meyer in [54].

Theorem 32 (Lemma 4.4, [52]). LTL model-checking problem is pSPACE-
hard.

Sistla and Clarke proved the same results with a di�erent approach.
LTL model-checking is �rst shown to be polynomial reducible to LTL
satis�ability problem. pSPACE-hardness is derived from a determinis-
tic Turing machine which is S(n)-space bounded by a polynomial in the

36

2.7. Temporal logic over arithmetic constraints

dimension n of the LTL model-checking problem. pSPACE upper bound
results from constructing a nondeterministic Turing machine solving sat-
is�ability problem in polynomial space in the dimension of the formula.
Using Savitch's theorem [55], it follows that there is a polynomial space
bounded deterministic Turing machine that decides satis�ability.

Theorem 33 (Theorem 4.1, [52]). The satis�ability problem for LTL
formulae is pSPACE-complete.

The most popular method for solving satis�ability and model-checking
problem for LTL consists of reducing the problems to problems on Büchi
automata representing formulae. A fundamental result is established by
Vardi and Wolper in [51] for which, for a given LTL formula φ, one can
de�ne a Büchi automaton Aφ recognizing models of φ, i.e., the language
L (Aφ) is the set of models satisfying φ. Essentially, the automaton keeps
track of the set of subformulae which are currently satis�ed. The struc-
ture of the automaton is such that all the subformulae are, eventually,
satis�ed.

Theorem 34 (Theorem 2.1, [51]). For every LTL formula φ there exists
a Büchi automaton Aφ such that ρ |= φ if, and only if, ρ ∈ L (Aφ).

The automaton Aφ for a given formula φ can be e�ectively computed
in polynomial space in the dimension of the formula. By combining
lower and upper bound results we get the pSPACE-completeness for
the satis�ability and LTL model-checking problem.

Theorem 35. Satis�ability problem for LTL formulae and LTL model-
checking problems are pSPACE-complete.

2.7.3. Bounded LTL model-checking

First model-checking algorithms implement explicitly enumeration of
reachable states of systems in order to represent their legal executions.
When non trivial systems are considered, the number of explored states
is often exponential in the number of variables de�ning the system. Con-
sequently, the state space exploration process becomes rapidly unfeasible
and proves to be inappropriate for handling examples of real complexity.
Various techniques was developed during past decades to reduce the com-
putational demand of resources. Symbolic model checking [56] is a tech-
nique introduced by Burch, Clarke and McMillan which exploits an e�-
cient symbolic representation of states using boolean functions. Rather
than enumerating explicitly all states of the system they are implicitly
represented by a boolean formula. Bryant showed that boolean formulae

37

2. Preliminaries

can be e�ciently represented by Binary Decision Diagrams (BDD) [57]
and manipulating BDDs can be done e�ciently since boolean operations
reduces to simple operations on graphs. In [56] authors show a model-
checking algorithm for µ-calculus [58] and for Computational Tree Logic
(CTL) [59]. Since theoretical complexity of LTL model-checking is not
appealing, the e�ort involved in the past research for de�ning e�cient
algorithm leading to practical veri�cation was limited. A �rst attempt
to make LTL model-checking feasible in terms of practical implementa-
tion was proposed by Clarke, Grumberg and Hamaguchi in [60]. They
showed LTL model-checking problem is reducible to CTL model-checking
problem provided that suitable fairness constraints are enforced. A fair-
ness constraint is a CTL formula; a run is fair with respect to a set
of fairness constraints when each fairness constraint holds in�nitely of-
ten along the run. The proposed algorithm builds �rst a tableau Tφ for
the LTL formula φ which is, actually, a Kriple structure whose control
states represents all satis�ed subformulae of φ. The structure M × Tφ,
representing runs of M satisfying φ, is built by composing the Kripke
structureM and the tableau Tφ . CTL model-checking algorithm is then
invoked on M × Tφ with suitable fairness constraints requiring that all
until formulae of the form ψUζ are in�nitely often satis�ed. All runs
satisfying fairness constraints have the property that no subformula ψUζ
holds almost always in the run while ζ remains false.

Bounded model-checking is an alternative technique which was �rst
proposed by Biere et al. in [61]. Clearly, it does not solve the theo-
retical complexity of LTL model-checking but the practice has shown
that it can solve many cases which can not be handled by BDD-based
techniques. Bounded model-checking amounts to search counterexam-
ple in executions whose length is bounded by some nonnegative integer
k. If no counterexample is found, then k is increased until either a
counterexample is detected or the SAT problem becomes intractable or
a special upper bound, called completeness threshold is reached. The
model-checking problem is e�ciently reduced to SAT since �nite runs of
a systems can be �nitely represented.

38

2.7. Temporal logic over arithmetic constraints

bounded LTL model-checking problem

Input
- a Kripke structure M = (S,R,L); a state s0 ∈ S
- a LTL formula φ a nonnegative integer k

Problem does there exist a �nite path π ∈ Sk of M such that:

� if π = uv, where u ∈ s0S
∗, v ∈ S+, then

uvω, 0 |= φ; or,

� if π = u, where u ∈ s0Sk−1, then uSω, 0 |= φ.

written M, s0 |= φ

Although runs p of M are of �nite length, they still represent in�-
nite paths. However, the satis�ability relation of LTL no longer can be
applied in the case of �nite paths. Therefore, a new relation |=k of sat-
isfaction will be later de�ned in order to deal with �nite representation
of in�nite models. When p = uv, the �nite path is interpreted as an
ultimately periodic run p = uvω. The satisfaction relation |=k adopted
to evaluate satis�ability of φ with respect to p is the same as |= of stan-
dard LTL. In the case of runs of the form p = u, the pre�x u represents
all possible in�nite set of in�nite runs p = uSω and all the information
needed to evaluate the satis�ability of φ is contained in u. When p = u,
analogously to the notion of bad pre�x de�ned by Kupferman and Vardi
in [62], we say that a �nite path is a good pre�x, i.e., a �nite word which
can be always extended to an in�nite word de�ned by uSω. Intuitively,
this means that the pre�x u is enough to evaluate correctly the formula
and uSω, 0 |= φ reduces to evaluate u, 0 |=k φ. The satisfaction relation
|= de�ned for LTL is not de�ned over �nite sequences and the path p = u
can not be used to evaluate u, 0 |= φ. Finite runs of M entail a new se-
mantics for LTL, called bounded semantics as de�ned in [61], which is an
approximation of the standard LTL semantics de�ned in Section 2.7.1.
Bounded semantics of LTL formulae is given with respect to a �bounded�
structure (S, π, L) where π = s0 . . . sk−1 is now a �nite sequence of states
si ∈ S. Equivalently, a model for a LTL formula is a �nite sequence of
states w ∈ (2AP)k.

π, i |=k p
def⇔ p ∈ L(si) for p ∈ AP

π, i |= ¬φ def⇔ π, i 6|=k φ

π, i |=k φ ∧ ψ
def⇔ π, i |=k φ andπ, i |=k ψ

π, i |=k Xφ
def⇔ π, i+ 1 |=k φ and i < k

π, i |=k φUψ
def⇔ ∃ i ≤ j ≤ k : π, j |=k ψ and π, n |=k φ ∀ i ≤ n < j

39

2. Preliminaries

A formula φ ∈ LTL is bounded satis�able if there exists a linear time
structure (S, π, L) such that π, 0 |=k φ (in which case (S, π, L), or sim-
ply π, is a model of φ). Equivalently, a LTL formula φ is satis�able if
there exists a word w ∈ (2AP)k such that w, 0 |=k φ. The de�nition of
�release� temporal operators introduced in Section 2.7.1 and de�ned as
¬(φRψ) ⇔ ¬φU¬ψ is no longer admissible. In fact, according to the
standard semantics for LTL, given a structure (S, π, L) where π = s0S

ω

is an in�nite sequence of states in S, the satisfaction relation for φRψ is
de�ned as:

π, i |= φRψ
def⇔ ∀j ≥ i (π, j |= ψ or ∃n > i π, n |= φ)

When we consider bounded models of �nite length, the case for φRψ
where ψ always holds and φ is never satis�ed has to be excluded. There-
fore, the bounded semantics for φRψ is de�ned equivalently to the se-
mantics for the until operator:

π, i |=k φRψ
def⇔ ∃ i ≤ j ≤ k : π, j |=k ψ and π, n |=k φ ∀ i ≤ n < j.

Bounded semantics and standard semantics for LTL can be proved to be
equivalent.

Lemma 36 ([61]). Let φ be a LTL formula and (S, π, L) be a Kripke
structure where π ∈ S+ a �nite sequence of states. Then, π, 0 |=k φ ⇔
π, 0 |= φ.

Lemma 37 (Lemma 8, [61]). Let φ be a LTL formula and (S, π, L) be a
Kripke structure where π ∈ Sω. If π, 0 |= φ then there exists k ∈ N such
that π, 0 |=k φ.

Finally, we can claim the equivalence between LTL model-checking
problem and bounded LTL model-checking problem.

Theorem 38 (Theorem 9, [61]). Let φ be a LTL formula and (S,R,L)
be a Kripke structure and s0 ∈ S. Then, M, s0 |= φ if, and only if, there
exists k ∈ N such that M, s0 |=k φ

Next subsection provides the encoding of bounded semantics of LTL.
Given a LTL formula φ and a positive integer k, the encoded bounded
semantics is a propositional formula [φ]k representing in�nite ultimately
periodic models uvω of φ such that |uv| = k. A detailed analysis of
e�cient encodings requiring quadratic number of variables in the size of
LTL formulae can be found in [63].

40

2.7. Temporal logic over arithmetic constraints

2.7.4. Linear Encoding of LTL for SAT

The ultimately periodic semantics of LTL formulae is encoded by a
boolean formula representing ultimately periodic models. The proposed
encoding is based on the �eventuality encoding� de�ned in thw work of
Biere et al. [63] which is an improved version of the one de�ned by Biere
et al. in the seminal work [61] introducing bounded model checking.
Let φ be a LTLB formula, AP be the set of atomic propositions and

[φ]k be the boolean formula representing models π ∈ Sω of φ such that
[φ]k is satis�able if, and only if, π |=k φ. Let S be the set of states and
s ∈ S be an element an in�nite sequence in Sω as de�ned in Section
2.7.1.

2.7.5. Encoding periodicity

When formula φ has an ultimately periodic models a(sb)ω, i.e. a(sb)ω |=k

φ where a, b ∈ S∗, the encoding enforce the presence of a repeating state
s such that �nite models asbs of length k + 1 can e�ectively represent
in�nite models of the form a(sb)ω. Therefore, the word sb is the loop of
the ultimately periodic model. In order to represent loop of ultimately
periodic models, the encoding exploits k+1 fresh loop selectors variables
l0, . . . , lk which determine where the model has loop. If lj then sj−1 = sk.
When ¬li for all i ∈ [0, k] then the encoding represents �nite pre�xes in
Sk+1. Loop constraints non-deterministically select the loop position
and guarantee that at most one loop selector li is true. Moreover, k + 1
variables inLoopi determine which position of the model between 0 and
k are part of the loop. The base case de�ning loop constraint is:

¬l0 and ¬inLoop0

For all 1 ≤ i ≤ k, loop constraints de�ne position of the loop and the
loop part:

li ⇒ π(i− 1) = π(k)

inLoopi ⇔ inLoopi−1 ∨ li
inLoopi−1 ⇒ ¬li
loopEx⇔ inLoopk

Formula π(i − 1) = π(k) enforces equivalence between two position of
the model de�ning the loop; i.e., si−1 = sk.

2.7.6. Encoding the Propositional Terms

Boolean encoding associates to each propositional subformula ϕ a pred-
icate ϕ ∈ {true, false}.

41

2. Preliminaries

As the length of models is �xed to k + 1, and all models start from
0, formula predicates are subsets of {0, . . . , k + 1}. The predicate asso-
ciated with ϕ (denoted by the same name but written in bold face), is
recursively de�ned for all positions in {0, . . . , k + 1} as:

ϕ 0 ≤ i ≤ k + 1

p ϕi ⇔ p ∈ L(si)
¬ψ ϕi ⇔ ¬ψi
ζ ∧ ψ ϕi ⇔ ζi ∧ψi

The conjunction of all the constraints for all the subformulae ϕ of φ
constitutes the formula |PropConstraints|k.

2.7.7. Encoding Temporal Operators

Temporal subformulae constraints (|TempConstraints|k) de�ne the ba-
sic temporal behavior of future and past operators, by using their tra-
ditional �xpoint characterizations. Let ζ and ψ be propositional subfor-
mulae of φ, then:

ϕ 0 ≤ i ≤ k
Xψ ϕi ⇔ ψi+1

ζUψ ϕi ⇔ ψi ∨ (ζi ∧ϕi+1)
ζRψ ϕi ⇔ ψi ∧ (ζi ∨ϕi+1)

To correctly de�ne the semantics of past operators, the initial instant
i = 0 has to be treated separately.

ϕ 0 < i ≤ k + 1 i = 0

Yψ ϕi ⇔ ψi−1 ¬(ϕ)0
Zψ ϕi ⇔ ψi−1 ϕ0

ζSψ ϕi ⇔ ψi ∨ (ζi ∧ϕi−1) ϕ0 ⇔ ψ0

ζTψ ϕi ⇔ ψi ∧ (ζi ∨ϕi−1) ϕ0 ⇔ ψ0

Last state constraints (|LastStateConstraints|k) de�ne an equivalence
between (sub)formulae in k+ 1 and (sub)formulae at position of loop li,
because the instant k + 1 is representative of the instant de�ned by li
along periodic paths. Otherwise, truth values in k+ 1 are trivially false.

loopExists⇐ ζk+1

li ⇒ (ζk+1 ⇔ ζi)

for all subformulae ζ of φ.
Let us observe that if a loop does not exists then the �xpoint semantics

of R is exactly the bounded semantics de�ned over �nite acyclic path

42

2.7. Temporal logic over arithmetic constraints

in Section 2.7.3. Finally, to correctly de�ne the semantic of U and R,
their eventuality have to be enforced. Brie�y, if ζUψ holds at i, then
ψ eventually holds in j ≥ i. When ζRψ does not hold at i, then ψ
must eventually does not hold in j ≥ i, i.e., no formula ζRψ holds
almost always while ψ remains false. However, according to the temporal
encoding of until and release, this may happen. Formula ϕ = ζUψ
may hold even if ψ is never satis�ed: in fact, ϕi ⇔ (ζi ∧ ϕi+1) for all
i ∈ [0, k]. Also, formula ϕ = ζRψ may not hold even if ¬ψ is never
satis�ed since ϕi ⇔ (ζi ∨ ϕi+1) for all i ∈ [0, k]. Formula ψ holds at
all indices of loop but ζRψ does not hold at any position. Along �nite
models, eventualities must hold between 0 and k. If a loop exists, an
eventuality may holds within the loop. Boolean encoding introduces k
propositional variables for each ζUψ and ζRψ subformula of φ, for all
1 ≤ i ≤ k, which represent the eventuality of ψ implicit in the formula.
To enforce assignments described above such that eventualities of until
and release always occur, we introduce new auxiliary formulae 〈Fψ〉 and
〈Gψ〉 for each position i ∈ [0, k]. When 〈Fψ〉 holds at position i, then
all formulae in [i, k] requiring eventuality for ψ may be satis�ed because
ψ occurs inside the loop. When 〈Gψ〉 does not hold at position i, then
all formulae in [j, k], such that lj holds, requiring eventuality for ψ can
not be satis�ed because ¬ψ occurs inside the loop. When loop can be
realized, i.e., loopExists holds, then:

� if ζUψ holds at position k then we have to force the eventuality
for ψ by imposing that 〈Fψ〉 holds at k.

� if ¬(ζRψ) holds at position k then we have to force the eventuality
for ¬ψ by imposing that 〈Gψ〉 does not hold at k.

ϕ

ζUψ loopExists⇒ (ϕk ⇒ 〈Fψ〉k)
ζRψ loopExists⇒ (ϕk ⇐ 〈Gψ〉k)

Semantics for 〈Fψ〉 and for 〈Gψ〉 are de�ned recursively along the �nite
model. Let us consider the auxiliary formula 〈Fψ〉i. If ψ holds at position
i inside the loop, then the eventuality of ψ occurs and 〈Fψ〉i holds. When
〈Fψ〉i holds, then from i to k eventuality of ψ is enforced, recursively.
Since loop index can not be at 0, i.e., ¬l0, then formula 〈Fψ〉0 is always
false and ψ must occur in [1, k]. When ¬ψ holds at position i inside
the loop, then formula 〈Gψ〉i is falsi�ed. Analogously with U, if 〈Gψ〉i
does not hold, then from i to k eventuality of ¬ψ is enforced. Since loop
index can not be at 0, i.e., ¬l0, then formula 〈Gψ〉0 is always true and

43

2. Preliminaries

¬ψ must occur in [1, k].

ϕ 1 ≤ i ≤ k
ζUψ 〈Fψ〉i ⇔ 〈Fψ〉i−1 ∨ (inLoopi ∧ψi) ¬〈Fψ〉0
ζRψ 〈Gψ〉i ⇔ 〈Gψ〉i−1 ∧ (¬inLoopi ∨ψi) 〈Gψ〉0

The conjunction of all the constraints for all the subformulae ϕ of φ
constitutes the formula |Eventually|k.
The complete encoding [φ]k consists of the logical conjunction of all

above components, together with φ evaluated at the �rst instant along
the time structure.

Complexity analysis

Let φ be the PLTLB formula and |φ| be its dimension. If m = O(|φ|) is
the total number of subformulae and n is the total number of temporal
operators U and R occurring in φ, then the boolean encoding requires
(2k+3)+(k+2)m+(k+1)n = O(k(m+n)) fresh propositional variables.

Given an LTL formula φ a Kripke structureM = (S,R,L) and a bound
k ≥ 0 bounded model-checking is performed by solving the propositional
formula:

s0 ∧
k−1∧
i=0

R(si, si+1) ∧ [φ]k

where si are propositional variables representing states belonging to S.
The formula

∧k
i=0R(si, si+1) represents �nite paths of M of length k

and [φ]k is the encoding of ultimately periodic runs of Aφ recognizing
models for φ (see Section 2.7.4 for details).
Clarke et al. [64] show an alternative method to perform bounded

model-checking. It exploits the Vardi-Wolper LTL model checking method
testing the emptiness of the product M ×Aφ of the given Kripke struc-
ture M and the Büchi automaton Aφ (in this case, ¬φ is the property
to be veri�ed). Nonemptiness for a Büchi automaton can be shown by
exhibiting a path from an initial state which de�nes a fair loop, i.e., a
loop involving a �nal control state. LTL model-checking is then reduced
to �nding fair loops of M × Aφ whose length is bounded by the size of
the automatonM×Aφ. The translation adopted is inspired by the work
of deMoura et al. [65] who suggested an analogous translation in the
context of bounded model-checking of in�nite state systems. Let F be
the set of �nal states of the product automatonM×Aφ; �nding paths of
length k with fair loops on states of F is reduced to satis�ability of the
following formula. Let M × Aφ be a tuple (Q, δ,Q0, F) where Q is the

44

2.7. Temporal logic over arithmetic constraints

set of control states δ be the transition relation Q0 be the set of initial
states and F be the set of accepting states:

q0 ∧
k−1∧
i=0

δ(qi, qi+1) ∧
k−1∧
l=0

ql = qk ∧
k∨
j=l

∨
q∈F

qj

 (2.1)

where qi represents instances of boolean variables corresponding to con-
trol state q ∈ Q at position i along the path q0, . . . , qk−1. Formula 2.1 is
satis�able if there exists a path of M of length k satisfying the formula
φ. The construction of Aφ, which is known to be pSPACE in the size
of the formulae φ, represents the major limitation of this approach.

Completeness for bounded LTL model-checking

A typical application of bounded model-checking starts at k = 1 and
increments the value for k until M, s0 |=k φ. This represents a partial
decision procedure since termination is not guaranteed. In fact, when
M, s0 6|= φ, there does not exist a value k ∈ N such that M, s0 |=k φ.
Still, the existence of a �nite completeness threshold on length of runs
satisfying a LTL formula makes the procedure complete since it bounds
the number of testsM, s0 |=k φ which shall be performed. Given a Kripke
structure M and a LTL formula φ, if M, s0 6|=k φ does not hold for all
between 0 and the completeness threshold then there does not exist any
�nite sequences p = uv or p = u such that uvω |= φ or uSω |= φ. In this
case, we claim that M, s0 6|= φ and we conclude that φ does not hold in
M .
We brie�y recall some main results on completeness for LTL model-

checking. The �rst result can be found in the work of Biere et al. [61]
which provides a fundamental results about completeness for full LTL
formulae.

Theorem 39 (Theorem 25, [61]). Given an LTL formula φ and a Kripke
structure M = (S,R,L). Then, M |= φ if, and only if, there exists k in
|S| · 2O(|φ|) such that M |=k φ.

The upper bound is obtained from the dimension of automaton de-
rived by synchronizing the Kripke structure M and Büchi automaton
Aφ which is of exponential size in the dimension of the formula φ. It
is worth noticing that given a set of n boolean variables, the number of
di�erent states, de�ning the set S of a Kripke structure M = (S,R,L),
is bounded by 2n; i.e., |S| ≤ 2n. From Theorem 39, the value for the
completeness threshold is still exponential in the number of variables and
in the dimension of the LTL formula. Although the bound is often too

45

2. Preliminaries

large for practical model-checking problems, Theorem 39 establishes the
completeness property of the procedure when full LTL is considered.

De�nition 40. Let M = (S,R,L) be a Kripke structure. Let si, qi be
propositional variables representing states of S at instant i. The reacha-
bility diameter d(M) is the minimal d satisfying:

∀s0 . . . sd+1 ∃q0 . . . qd
d∧
i=0

R(si, si+1)⇒ (q0 = s0 ∧
d−1∧
i=0

R(qi, qi+1) ∧
d−1∨
i=0

qi = sd+1).

Intuitively, the value d is the longest shortest path starting from any
initial state s0 to any reachable state. The diameter problem can be
reduced to the �all pair shortest path� problem and therefore be solved
in time polynomial in the size of the graph representingM . The result of
Theorem 39 can be re�ned when formulae de�ning invariant properties
Gp are considered, where p ∈ AP . However, solving quanti�ed boolean
formulae is hard, since the problem is known to be NP-complete. Hard-
ness of computation can be eased by removing alternation of quanti�ers
in the formula provided we admit an approximation of the value d(M).

De�nition 41. Let M = (S,R,L) be a Kripke structure. Let si, qi be
propositional variables representing states of S at instant i. The recur-
rence diameter r(M) is the minimal r satisfying:

∀s0 . . . sr+1 ∈ S
d∧
i=0

R(si, si+1)⇒ (q0 = s0 ∧
r−1∧
i=0

R(qi, qi+1)).

Recurrence diameter r(M) is the longest loop-free path between two
states. Since every shortest-path is a loop-free path, then d(M) ≤ r(M).
The recurrence diameter can be computed by solving a series of SAT
instances, rather than QBF instances which computation is typically
harder. The recurrence diameter is important because r(M) character-
izes the completeness threshold for Fp properties. Both de�nitions can
be re�ned by specifying explicitly the initial states: d(M, I) and r(M, I)
denote reachability diameter forM when paths are required to start from
an initial states belonging to I ⊆ S.
For reachability formulae of the form Fp, where p ∈ AP is an atomic

proposition, Biere et al. proved:

Theorem 42 (Theorem 23, [61]). Given a LTL formula φ = Fp, a
Kripke structure M = (S,R,L) and s0 ∈ S, M, s0 |= φ if, and only if,
there exists k ≤ d(M, I) such that M, s0 |=k φ.

46

2.7. Temporal logic over arithmetic constraints

When invariant constraints of the form Gp are considered, Kroening
and Strichman re�ne the result of Biere et al. in [61] and show that the
completeness bound is r(M, I):

Theorem 43 ([66]). Given a LTL formula φ = Gp, a Kripke structure
M = (S,R,L) and s0 ∈ S, M, s0 |= φ if, and only if, there exists
k ≤ r(M, I) such that M, s0 |=k φ.

Reachability diameter is su�cient for Gp formulas. In fact, a coun-
terexample to Gp is a path of M leading to a state which contradicts
p. Since all states can be reached through paths of length r(M) or less,
checking paths whose length is bounded by r(M) is su�cient for �nding
all reachable states that contradict p. Reachability diameter is not su�-
cient for �nding all counterexamples to Fp formulas. A counterexample
for such a formula is a path ending in a back-loop, where all the states
on the path satisfy ¬p. However, in the Kripke structure may exists a
unique path of length greater that r(M) which is the only counterexam-
ple to Fp. Since the bound is r(M) it can not be discovered.
When Formula (2.1) is adopted to solve BMC, Clarke et al. showed

that the completeness threshold is derived by the product automaton
M ×Aφ.

Theorem 44 (Theorem 1, [64]). Given a LTL formula φ, a Kripke
structure M = (S,R,L) and s0 ∈ S. Let A be the product M × Aφ.
M, s0 |= φ if, and only if, there exists k ≤ min(r(A,Q0) + 1, d(A,Q0) +
d(A)) such that M, s0 |=k φ.

The reduction of BMC problem to SAT proposed by Clarke et al.
in [64] uses an explicit representation of Büchi automata which can be
de�ned by an exponential number of control states in the dimension of
the LTL formula. Moreover, the product automaton is de�ned when Aφ
is a non-generalized Büchi automaton which is derived from the Vardi-
Wolper automaton representing the LTL formulae. Since the conversion
of generalized Büchi automaton to a non-generalized one expands the
size of the automaton by a factor related to the number of fair sets, the
length of path satisfying the LTL formula φ is not minimal.
Completeness for full LTL is considered also in [63], where authors

adapt the ideas of Sheeran et al. [67] to incremental bounded model-
checking. Sheeran et al. proposed a SAT-based method [67] to check
safety properties in �nite-state systems which is later re�ned and ex-
tended to in�nite-state systems by de Moura et al. in [68]. Techniques
based on induction can be used to to prove invariant property on sys-
tems, i.e., a property which hold in all reachable states of the system.

47

2. Preliminaries

In general, proving an invariant property typically involves �nding an
inductive invariant. In this context, we slightly simplify the satisfaction
relation |= of LTL formulae since we will deal only with formulae which
do not involve temporal operators.

s[p]
def⇔ p ∈ L(s) for p ∈ AP

s[¬φ]
def⇔ ¬s[φ]

s[φ ∧ ψ]
def⇔ s[φ] and s[ψ]

A property υ is an inductive invariant for a property φ when it satis�es
some suitable requirements. First, υ does not involve temporal operators;
therefore, it is only de�ned by means of atomic proposition p ∈ AP and
boolean connectives. Other requirements are the following:

1. υ strengthens φ, i.e., υ implies φ in all states:

∀s ∈ S s[υ]⇒ s[φ]

2. υ is invariant over all paths of length n, i.e., the following formula is
unsatis�able:

∃s0 . . . sn s0 ∧
n−1∧
i=0

R(sisi+1) ∧
n∨
i=0

¬si[υ]

where each si is a propositional variable representing s ∈ S occur-
ring in the sequence s0, . . . sn at position i. Informally, the unsat-
is�ability of this formula guarantees that for all paths of length n
the invariant υ holds.

3. υ is inductive, i.e., validity is preserved under each transition of the
system. The property υ is inductive when the following formula is
unsatis�able:

∃s0 . . . sn+1

loopfree(s0, . . . , sn+1) ∧
n∧
i=0

(si[υ] ∧ R(sisi+1)) ∧ ¬sn+1[υ]

where each si is a propositional variable representing s ∈ S occur-
ring in the sequence s0, . . . sn at position i. The unsatis�ability of
this formula guarantees that for all loop-free paths of length n+ 1
the invariant υ can not be falsi�ed.

48

2.7. Temporal logic over arithmetic constraints

Completeness of the induction rule is proved by Sheeran in [67] and
results by imposing that sequences s0 . . . sn satisfying formulae are loop-
free. In fact, let (S,R,L) be a Kripke structure satisfying the invariant
φ, i.e., ∀s ∈ S s[φ]. In this case, there are no �nite paths leading to a
state violating the invariant from an initial one; i.e., there are no loop-
free paths reaching a state s ∈ S such that s[¬φ]. Otherwise, the system
is not φ invariant and there exists a �nite loop-free path starting from an
initial state which ends in s[¬φ]. By induction, every loop-free path (of
any length) starting from an initial state contains only states satisfying
the property φ. In practice, steps 1. and 2. are iterated from n = 0
until the value n reaches the length of the longest loop-free path starting
from an initial state or the length of the longest loop-free path consisting
in all states satisfying φ followed by a state in which φ does not hold (2.
falsi�ed). In the �rst case, if both the formulae are unsatis�able then
the property φ holds; otherwise, φ is not an invariant for the system. In
this second case, if the �rst state s0 is an initial state then 1. will be
unsatis�able at next step for path of n + 1. The induction rule can be
re�ned in order to reduce the length of paths between pairs of states. In
fact, the longest loop-free path between two states can be longer than
the shortest path between them which is su�cient to detect a violation
if one of the two states does not satisfy the invariant, i.e., s[¬φ]. Still,
soundness and completeness of induction schema is guaranteed [67].
de Moura et al. re�ne in [68] the previous de�nition of induction rule

and extend it to in�nite-state systems. Induction rule is parameterized
with respect to a suitable notion of simulation � on states. It is tailored
to in�nite-state systems for which equality relation between states is no
longer e�ective as for �nite-state systems. In fact, simulation relation
over states can be used to restrict the set of paths of transition systems
on which properties are veri�ed. As in the case of �nite-state induction,
runs which do not contain �similar� states, called compressed path, are
considered when invariant properties are veri�ed. Compressed path are
used to prove the invariance of a property by induction with respect
to �. Completeness of the induction schema results from de�nition of
suitable simulation �. For instance, induction for in�nite-state system
is not complete when the simulation relation is the equality. In order to
handle �nite runs of length n, authors show that the simulation relation
which they adopt (direct/inverse simulation) is closed with respect to
transitive closure �n for n ∈ N. Therefore, when � is a direct/inverse
simulation, they are allowed to consider the �nite transitive closure �n
to abstract computation of the systems when they prove invariant over
�nite runs of length n. Moreover, whenever formula 2. of the induction
schema does not hold, the sequence s0 . . . sn+1 is a counterexample such

49

2. Preliminaries

that the �rst n states satisfy φ and the last state does not. If the �rst
state is reachable, then φ is refuted. Otherwise, the sequence is labeled
spurious and it is used to strengthen the invariant φ.

50

3. Bounded Satis�ability

Problem

The family of linear-time logics, such as LTL, are quite attractive since
they have a natural connection to automata on in�nite words. Decid-
ability of most of the model-checking algorithms for linear-time logics is
proved by the automata-based approach proposed by Vardi and Wolper
[51]. Formulae are translated into Büchi automata and Model-checking
problem is then reduced to emptiness problem. Although satis�abil-
ity and LTL model-checking problem for �nite-state systems are decid-
able and their complexity is known to be pSPACE-complete, even the
most basic properties such as safety properties, in the general case, be-
come undecidable over in�nite-state systems. Therefore, various sym-
bolic representations regaining decidability have been proposed to deal
with model-checking problem over in�nite-state system. Examples of
formalisms admitting decidable LTL model-checking are pushdown au-
tomata, Petri Nets (equivalently VASS), Process Algebra and Parallel
Process [69]:

Table 3.1.: Decidability results of model-checking over in�nite models.
Finite-state automata pSPACE-complete
Basic Process Algebra expTIME-complete
Pushdown automata expTIME-complete
Basic Parallel Process expSPACE-complete

Petri Nets expSPACE-complete

Timed automata and some classes of counter systems, like reversal-
bounded counter systems, presented in Section 2.6, are other examples.
Propositional variables involved in LTL language can represent proper-

ties on current con�gurations of the systems. In particular, when counter
systems are considered, propositional atoms can abstract Presburger for-
mulae like, for instance, p := x > y+ 1. Extending LTL with Presburger
constraints allow us to specify quantitative properties over counter sys-
tems which go beyond reachability. Rather than de�ning a syntactic
replacement of propositional variables, Presburger formulae can be in-
cluded in the logical language. If the language admits quanti�ers, values

51

3. Bounded Satis�ability Problem

of variables at distinct positions over time can be compared: for instance,
let x be a variable representing a counter of the system and y be a fresh
variable of the logic language. A formula like ∃yx > y ∧XXX(y = x)
de�nes a comparison between the value of the counter x three positions
away in the future. A �rst attempt to de�ne a temporal logic with Pres-
burger constraints is proposed by Bouajjani et al. in [70]. Constrained
LTL is an extension of LTL which is able to de�ne constraints on pat-
tern of computations (order of appearance of states) or constraining the
number of occurrences of states in computations. Constraints on pat-
tern are de�ned by means of automata whereas constraints on numbers
of occurrences are expressed by Presburger formulae. If AP is the set
of propositional atoms, Constrained LTL formulae are interpreted over
in�nite sequences (2AP)ω. Although di�erent versions of LTL with Pres-
burger formuale can be de�ned, see Comon and Cortier [5] for instance,
we will adopt fragment of Presburger LTL de�ned in [11]. In the original
de�nition, Presburger LTL is dedicated to reason about computations of
counter systems. Therefore, models of formulae are in�nite sequences
of con�guration of counter systems of the form (Q × Dn)ω where Q is
the set of control states, D is the domain de�ning values for counters
and n is the dimension of the counter system. Formulae of Presburger
LTL de�ne a fragment of a more general extension of LTL where atoms
belong to �rst-order language. First-order LTL, denoted LTL(FO), is
the extension of LTL where, in addition to atomic propositions, boolean
connectives and temporal modalities, there are also predicates, functions,
constants and individual variables, each interpreted over an appropriate
domain. Following de�nition are taken from [45].
Let (F ,R) be the signature of the language de�ning symbols functions

and symbols predicate. A term (or Arithmetic Temporal Term, a.t.t.) of
LTL(FO) is de�ned by the grammar:

τ := c | x | f(τ1, . . . , τn) | Xτ

where c ∈ D, x ∈ F is a 0-ary function and f ∈ F is a n-ary function
symbol and X is a temporal modalities over terms. Equality = between
terms is understood. Let V be the set of 0-ary functions which de�nes
the set of variables occurring in a formula. The depth |τ | of an a.t.t. is
the total amount of temporal shift needed in evaluating τ . The depth
|τ | of the term τ is recursively de�ned as:

|x| = 0, |τ | = |τ |+ 1

and |f(τ1, . . . , τn)| = max{|τ1|, . . . , |τn|}. Atomic formulae, or atoms, of
LTL(FO) are atomic propositions or predicates over terms according to

52

the following grammar:

α := p | R(τ1, . . . , τn)

where p ∈ R is a 0-ary predicate symbol and R ∈ R is a n-ary predicate
symbol. We denote the set of atomic proposition AP to be the set of 0-
ary predicate symbol. Formulae of LTL(FO) are de�ned by the following
grammar:

φ := α | ¬φ | φ ∧ φ | Xφ | φUφ | ∃y φ

where y ∈ V ′ is a free variable occurring in φ, and X and U are classical
LTL temporal modalities for �next�-time and �until�.
To correctly de�ne semantics of quanti�ed formulae we will assume

that the set of atomic propositions and �rst-order variables are divided
into two subset: AP = APl ∪ APg is the set of atomic propositions and
V = Vl ∪ Vg is the set of variables. This distinction is useful when we
want to distinguish variables in Vl taking values from the underlying
linear-time structure and auxiliary variable Vg from the language (quan-
ti�ed variables), as adopted, for instance, by Thomas in [71] and Demri
et al. in [72]. We call Vl the set of local variable and Vg the set of global
variables. This choice is motivated by the need of interpreting local vari-
ables with the values of counters on con�gurations when the language is
used in model-checking of counter systems. On the other hand, global
variables can be seen as parameters of the systems or quantitative values
whose values are determined within the context encompassing the sys-
tem. Therefore, in this case, we are interested in dealing with LTL(FO)
formulae where all occurrence of each variable in Vg is in the scope of
some quanti�ers, i.e., there are no free variables belonging to Vg; whereas
all local variables are free.
When all function symbols in F and predicates symbols in R have

the same interpretation over all states of S, interpretation of symbols
of LTL(FO) language is inherited by the underlying interpretation I of
symbols of the �rst-order language FO. Semantics of LTL(FO) is de�ned
with respect to an interpretation (model) (M, σ) for each position of
time, whereM is a structureM = (D, I), and an environment ε : Vg →
D which de�nes the value of free global variables belonging to Vg. The
structure (S, π, L) determines the interpretation of every local object,
i.e., free local variables of Vl and local atomic propositions.

� S be a set of states;

� π ∈ Sω is an in�nite sequence of states.

� L : S → (M, σ).

53

3. Bounded Satis�ability Problem

Variables of Vl, which occurs free, as well as values for terms are de�ned
from σ with respect to the structureM = (D, I). In particular, we have:
σ = (σ′, σ′′) such that:

� σ′ : Vl → D is a function associating a value for each free local
variable;

� σ′′ : APl → {true, false} is a function associating a value for each
free local atomic proposition.

When the set of atomic proposition is empty, we will use simply σ instead
of σ′. If non-logical symbols are interpreted locally, the de�nition of
elements of F and R may vary at di�erent position. Therefore, the
interpretation I at position si may di�er with respect to others. Global
semantics is realized when Ii = I for all i ≥ 0.
Value of terms is de�ned by the function [](π,i) with respect to the

�rst-order structure (M, σ) at each position π(i) = si, such that L(si) =
(M, σ), and the environment ε for global variables:

[x](π,i) =

{
σ′(x) for x ∈ Vl
ε(x) for x ∈ Vg

[Xτ](π,i) = [τ](π,i+1)

[f(τ1, . . . τn)](π,i) = fIi
(
[τ1](π,i), . . . , [τn](π,i)

)
where fIi is the n-ary function f with respect to the interpretation Ii.
The satisfaction relation |=ε, extending the semantic relation of LTL, is
de�ned recursively with respect to the assignment ε of global elements:

π, i |=ε p
def⇔ σ′′(p) for p ∈ AP

π, i |=ε R(τ1, . . . , τn)
def⇔ ([τ1](π,i), . . . , [τn](π,i)) ∈ RIi

π, i |=ε ¬φ
def⇔ π, i 6|=ε φ

π, i |=ε φ ∧ ψ
def⇔ π, i |=ε φ andπ, i |=ε ψ

π, i |=ε Xφ
def⇔ π, i+ 1 |=ε φ

π, i |=ε φUψ
def⇔ ∃j ≥ i π, j |=ε ψ and ∀i ≤ n < j π, n |=ε φ

π, i |=ε ∃yφ
def⇔ there is m ∈ D π, i |=ε(y)=m φ such that y ∈ Vg is free in φ.

It is worth noticing that, whenever the set of local variables is empty
Vl = ∅, the language is the similar to the language of Hodkinson et al. in
[73], but enriched with temporal modality X over terms. A formula φ ∈
LTL(FO) is satis�able with respect to a linear time structure (S, π, L) if
there exists an environment ε such that π, 0 |=ε φ. In this case, we say

54

that (S, π, L), or simply π, is a model for φ. Equivalently, a model for a
φ ∈ LTL(FO) formula is an in�nite sequence of propositional atoms and
valuations of local variables w ∈ (2AP ×D|Vl|)ω and an environment ε for
quanti�ed global variables. When no local variable occurs, as in the case
of the language adopted by Hodkinson et al. in [73], then, φ ∈ LTL(FO)
is satis�able if there exists a word w ∈ (2AP)ω, such that w, 0 |= φ,
and an environment ε. When a linear time structure is not provided,
i.e., we are not solving a model-checking problem, we say that a formula
φ ∈ LTL(FO) is satis�able if there exists a linear time structure (S, π, L)
such that φ is satis�able with respect to (S, π, L).
Past-time temporal modalities Y and S, with the same semantics of

LTL, can be added to the language LTL(FO) de�ned so far.

Fragments of LTL(FO)

The �rst fragment we consider is the existential fragment of LTL(FO)
which is the set of LTL(FO) formulae with no occurrences of subformulae
of the form ¬∃x¬φ. No restriction is required at the level of atomic
formulae α when the underlying �rst-order language admits quanti�ers
elimination procedure. In this case, atomic formulae α ∈ L can always
be replaced be equivalent formulae α′ ∈ L without quanti�ers.
Presburger LTL (LTL(PA ∪AP)) is the fragment of LTL(FO) where

the signature of the �rst-order language is F = {+} where + is the usual
sum operation and R = {<,=} (or, simply, R = {<} if the equality is
understood) withD = {N,Z}. The temporal modality X is usually repre-
sented by using quanti�ers and auxiliary global variables. All constants,
function and predicate symbols (<,=,+) have global interpretation, i.e.,
they do not vary over time. Models of formulae are structure (S, π, L)
such that L : S → σ where structureM is understood. Therefore, they
can be represented as in�nite sequences of valuation of local variables
and atomic propositions (2AP ×D|Vl|)ω. When the context is clear, we
will represent models of LTL(PA∪AP) as a pair σ = (σ′, σ′′) such that
σ′ : S × V → D maps the set of variables to elements of the domain and
σ′′ : S → 2AP . Valuation of terms is adapted to sequences σ′:

[x](σ,i) =

{
σ′(i, x) for x ∈ Vl
ε(x) for x ∈ Vg

Satisfaction relation |=ε naturally extends to σ.
CLTL(L) is the quanti�er-free fragment of LTL(FO) where arithmetic

modality X is applied (possibly recursively) only on atomic variables
x ∈ V and non-logical symbols are globally interpreted according to the
language L. Since quanti�ers are no longer included in the language,

55

3. Bounded Satis�ability Problem

satisfaction relation |=ε is always de�ned with respect to an empty en-
vironment ε = ∅. For this reason, we write simply |= instead of |=ε.
Depending on which fragments L of Presburger arithmetic is considered,
CLTL(L) represents the restriction of CLTL when atomic formulae α
belong to L. Languages considered are quanti�er-free Presburger arith-
metic, Di�erence Logic and Integer periodic constraints as they are de-
�ned in Section 2.2. Also, L can include propositional language AP;
in this case, terms α can be also propositional atoms belonging to the
set AP (as already de�ned for LTL(FO)). We write CLTLb

a to denote
the class of CLTL formulae such that the cardinal of V is a and depth
of terms is bounded by b. Symbol ω denotes an unbound number of
variables or terms.

3.1. Satis�ability problem for CLTL and CLTL

Model Checking

Analogously to LTL, the satis�ability problem for CLTL formula φ con-
sists in determining whether there exists a model σ for φ which is an
assignment of values to all of its atomic elements satisfying the formula.
The satis�ability and model-checking problem for structure (D,<,=)
with D ∈ {N,Z,Q,R} are analyzed in depth in [6], for IPC∗ in [74] and
[75] and for DL (or DL+) in [74]. Decidability of the satis�ability prob-
lem for the above cases is shown by means of automata-based approach
similar to the standard case for LTL. Given a CLTL formula φ, it is
possible to de�ne an automaton Aφ such that φ is satis�able if, and only
if, L (Aφ) is not empty. Since the emptiness of L (Aφ) in the considered
structures is decidable with pSPACE upper bound (polynomial space
in the dimension of φ), then the satis�ability problem is also decidable
with the same complexity.
Satis�ability and model-checking problem are de�ned hereafter.

Satisfiability of CLTL(L) formula:

Input a CLTL formula φ
Problem does there exist a model such that w ∈ (2AP ×Dn)ω

such that w, 0 |= φ?

As for LTL model-checking problem, CLTL(L) model-checking prob-
lem can be de�ned with respect to di�erent formalisms de�ning models
for formulae. Demri and Gascon in [74] deal with CLTL model-checking
for class of counter systems in CS(DL) and CS(QFP) counter systems
and CLTL formulae are restricted to CLTL(DL) and CLTL(QFP). Au-

56

3.1. Satis�ability problem for CLTL and CLTL Model Checking

thors consider also a class of counter systems (Q,n, δ) in CS(PA) which
is the same as the class considered by Ibarra in [3] such that transition
relation is de�ned by tuples of the form (q, (zero(b),d), q′) which are a
shorthand for (q, ξ, q′) where:

ξ :=
∧

i∈[1,n]:~b(i)=1

xi = 0 ∧
∧

i∈[1,n]:~b(i)=0

xi 6= 0 ∧
∧

i∈[1,n]

x′i = x+ d(i).

Such automata constitute the class of n-D counter automata (n-D-CA).
CLTL model-checking problem is usually de�ned with respect to runs

of counter systems which are in�nite sequences of the form (Q × Dn)ω

where n is the dimension of counter system and D is the domain of in-
terpretation of variables.

CLTL model-checking problem:

Input

- a counter systems S = (Q,n, δ) ∈ CS(L), with L ⊆
PA
- a CLTL(QFP) formula φ

Problem does there exists a in�nite run ρ ∈ (Q × Dn)ω such
that ρ, 0 |= φ, written S |= φ

Initial con�guration can be included in the formula φ.

The �rst undecidability result for satis�ability of CLTL1
3(DL) is given

by Comon and Cortier [5] by showing that halting runs of a Minsky
machine can be encoded into a CLTL formula. One auxiliary counter
encodes the control state of the system.

Theorem 45 (Theorem 3, [5]). The satis�ability problem for CLTL1
3(DL)

is Σ1
1-hard.

Authors of [5] suggest a way to regain decidability by means of a syn-
tactic restriction on formulae including U temporal operator. The ��at�
fragment of CLTL1

ω(DL) consists of CLTL formulae such that subformula
φ of φUψ is >, ⊥ or a conjunction ζ1∧· · ·∧ζm where ζi ∈ DL. The frag-
ment of ��at� CLTL1

ω(DL) bene�ts of nice correspondence with a special
class of counter system (�at relational counter system) with Büchi ac-
ceptance condition for which nonemptiness problem is decidable. Comon
and Jurski analyze this class of counter system in [76].
Analogously to CLTL1

ω(DL) the language CLTL2
1(DL) is enough ex-

pressive to encode accepting runs of Minsky machines. In fact, even
though CLTL language has less than three variables expressiveness of
the logic does not necessarily decrease. The existence of accepting runs
for counter systems (Q, 2, δ) in CS(DL) can be reduced to satis�ability

57

3. Bounded Satis�ability Problem

problem for CLTL2
1(DL) formulae. Moreover, since CS(DL) with counter

over N can simulate nondeterministic Minsky machines whose recurrence
problem is known to be Σ1

1-hard by Alur and Henzinger [77], the same
reduction can be used also to prove Σ1

1-hardness of satis�ability problem
for CLTL2

1(DL).

Theorem 46 (Theorem 1, [74]). The satis�ability problem for CLTL2
1(DL)

is Σ1
1-complete.

From previous undecidability result, satis�ability problem for CLTL1
2(DL)

can be proved to be Σ1
1-complete.

Theorem 47 (Theorem 2, [74]). The satis�ability problem for CLTL1
2(DL)

is Σ1
1-complete.

Satis�ability problem for CLTL(DL) can be reduced to CLTL(DL)
model-checking problem by considering S = ({q}, n, (q,>, q)) as model.
Then, a CLTL(DL) formula φ is satis�able if, and only if, S |= φ.

Corollary 48 (Corollary 1, [74]). The model-checking problem for CLTL2
1(DL)

and for CLTL1
1(DL) are Σ1

1-complete.

When CLTL admits atomic formulae in QFP, undecidability of sat-
is�ability problem for CLTL1

1(QFP) and CLTL1
1(QFP) model-checking

follows directly from undecidability results for halting and recurrence
problem of one counter machines with multiplication and division by
constants [78].

Theorem 49 (Lemma 6, [74]). The satis�ability problem for CLTL1
1(QFP)

and CLTL1
1(QFP) model-checking over 1-QFP counter system are Σ1

1-
complete.

Satis�ability for CLTLωω(IPC∗) and CLTLωω(<,=) over N,Z,Q,R is ob-
tained by Demri and Gascon in [18] by reducing the problem to emptiness
problem for Büchi automata. Notions presented hereafter are taken from
[74] and [6] and they are presented as fundamental background for next
chapters. We consider L to be the structure de�ned by {IPC∗, (D,<
,=)}, where D = {N,Z,Q,R}, until a new signature will be speci�ed.
Moreover, we will simply write CLTL to denote CLTLωω. In order to
represent models of a CLTL(L) formula φ by means of automata, au-
thors represent symbolically all sequences σ such that (σ, 0) |= φ. It is
worth noticing that the considered language does not include explicit set
of atomic proposition, which can be represented by binary variables of
domain {0, 1}. Let φ be a CLTL(L) formula, terms(φ) be the set of
arithmetic terms of the form Xix for all 0 ≤ i ≤ dφe and for all x ∈ V

58

3.1. Satis�ability problem for CLTL and CLTL Model Checking

and c(φ) be the set of constants occurring in φ. A set of atomic formulae
over terms(φ) is maximally consistent if, for every atomic formula θ over
terms(φ) and c(φ), either θ or ¬θ is in the set. Symbolic models are
used by Demri et al. [6], [74], [18] to represent non arithmetic model of
formulae.

De�nition 50. A symbolic valuation sv for φ is a maximally consistent
set of atomic formulae over terms(φ) and c(φ); the set of all symbolic
valuations for φ is denoted by SV (φ).

A valuation val : V → D naturally extends to a valuation val′ :
terms(φ)→ D, such that val′ |=D R(α1, α2) if, and only if, R(val′(α1),
val′(α2)). Then, a symbolic valuation sv for φ is satis�able if there
exists a valuation val′ : terms(φ) → D such that val′ |=PA ξ, for all
ξ belonging to sv. We write val′ |=PA sv when sv is satis�ed by val′.
Given a symbolic valuation sv and an atomic formula ξ (over a.t.t.'s),
we write sv |=s ξ if for every valuation val′ such that val′ |=PA sv then
val′ |= ξ. Observe that in the considered constraint systems, the problem
of checking whether sv |=s ξ is decidable, since both the language in L
are subset of Presburger arithmetic. All symbolic valuations may be
de�ned by means of a syntactic construction on formula φ by using the
procedure in [6]. In order to correctly represent the arithmetic model
of formulae, authors introduce the notion of local consistency de�ning
a rule to determine which pair of symbolic valuations can be adjacent,
i.e. their relations do not contradict themselves. A pair of symbolic
valuations (sv1, sv2) is locally consistent if, for all R in L:

R(Xi1x1,X
i2x2) ∈ sv1 implies R(Xi1−1x1,X

i2−1x2) ∈ sv2.

A sequence of symbolic valuations sv0, sv1, . . . is locally consistent if
all pairs (svi, svi+1), i ≥ 0, are locally consistent. A locally consistent
in�nite sequence ρ = (SV (φ))ω of symbolic valuations admits a model,
written σ |= ρ, if there exists a model σ : N × V → D of φ such that
for every i ≥ 0, σ, i |= ρ(i). In this case, ρ is called a symbolic model
for φ. The satisfaction relation |=s can also be extended to sequences
of symbolic valuations; it is the same as |= for all temporal operators
except for atomic formulae:

ρ, i |=s ξ ⇔ ρ(i) |=s ξ.

The following fundamental proposition draws a link between the satis�a-
bility by sequences of symbolic valuations and by sequences of valuations.

Proposition 51 (Lemma 3.1, [6]). A CLTL(L) formula φ is satis�able
i� there exists a symbolic model for φ.

59

3. Bounded Satis�ability Problem

Given a CLTL(L) formula φ, it is possible [6] to de�ne an automa-
ton Aφ recognizing symbolic models of φ, which reduces satis�ability of
CLTL(L) to emptiness of Buchi automata. The idea is that automaton
Aφ should accept the intersection of the following languages:

(i) the language of LTL models ρ;

(ii) the language of sequences of locally consistent symbolic valuations;

(iii) the language of sequences of symbolic valuations for φ which admit
an arithmetic model.

Languages (i) and (ii) can be accepted by Büchi automata, called re-
spectively As and A`. In general, however, the language (iii) may not
be ω-regular. Nonetheless, automaton Aφ can be de�ned to accept a
superset of the language of the sequences of locally consistent symbolic
valuations that are models for φ, such that the ultimately periodic mod-
els of Aφ are all ultimately periodic models of φ. Then, from Lemma
(52) below, it follows that φ is satis�able i� Aφ recognizes an ultimately
periodic word.
Aφ is de�ned as the product of automata A`, As, and AC , where AC

de�nes a condition C guaranteeing the existence of a sequence σ such
that σ |= ρ. In particular, for IPC∗ and the structure (D,<,=) over
{N,Z}, AC can e�ectively be built. Condition C is given by considering
the graph representation Gρ of sequences of symbolic valuations ρ. It
enforces the absence of in�nite <-strict paths in graph Gρ, i.e., that
between any two nodes of Gρ there are no paths of in�nite length in
which relation < occurs (see details in [6]). When the condition C is
su�cient and necessary for the existence of models σ such that σ |= ρ,
then automaton Aφ represents all the sequences of symbolic valuations
which admit a model. A fundamental lemma, on which Proposition
53 below relies on, draws a su�cient and necessary condition for the
existence of models of sequences of symbolic valuations.

Lemma 52 (Lemma 6.2, [6]). Let ρ be an ω-periodic sequence of symbolic
valuations of the form ρ = α(β)ω that is locally consistent. Then ρ admits
a model σ i� ρ satis�es C.

Proposition 53 (Lemma 11, [18]; Lemma 6.3, [74]). A CLTL(L) for-
mula, where IPC∗ and (Z, <,=) over {N,Z}, is satis�able i� the language
L (Aφ) is not empty.

Theorem 54 (Theorem 1, [18]; Theorem 6.6, 7.3, [74]). The satis�abil-
ity problem for CLTL(IPC∗) and CLTL(<,=) over {N,Z} is pSPACE-
complete.

60

3.1. Satis�ability problem for CLTL and CLTL Model Checking

Hardness can be proved by reducing satis�ability problem for LTL to
satis�ability of CLTL for both language IPC∗ and (<,=) considered.
Upper bound derives form construction of Büchi automaton As. It is
worth noticing that this complexity result is valid when the complexity
of the problem of checking whether sv |=s ξ is decidable in pSPACE.
The construction of Aφ can be made simpler when L bene�ts of a

property of completion which is introduced by Balbiani and Condotta in
[79].

Completion property

Each automaton involved in the de�nition of Aφ has the function of ��l-
tering� sequences of symbolic valuations so that 1) they are locally con-
sistent, 2) they satisfy an LTL property and 3) they admit a (arithmetic)
model. For some constraint systems, admitting a model is a consequence
of local consistency. A set of relation over D has the completion property
if, given:

(i) a symbolic valuation sv over a �nite set of variables H ⊆ V ,

(ii) a subset H ′ ⊆ H,

(iii) a valuation val′ overH ′ such that val′ |= sv′, where sv′ is the subset
of atomic formulae in sv which uses only variables in H ′

then there exists a valuation val over V extending val′ such that val |=
sv. An example of such a relational structure is (R, <,=).

Lemma 55 (Lemma 5.3, [6]). Let (D,<,=) a relational structure where
D is in�nite and < is a total order. Then, it satis�es the completion
property i� D is dense and open.

The following result relies on the fact that every locally consistent
sequence of symbolic valuations, with respect to the relational structure
D which have completion, admits a model.

Proposition 56. Let D be a relational structure satisfying the com-
pletion property and φ be a CLTL(D) formula. Then, the language of
sequences of symbolic valuations which admit a model is ω-regular.

In this case, automaton Aφ recognizing the sequence of symbolic val-
uations may be de�ned by Aφ = As ×A`.
Finally, automata-based approach is exploited by Demri and Gascon in

[74] to obtain decidability of satis�ability problem for CLTL1
1(DL+∪AP)

where AP is a language of atomic proposition. Models of CLTL1
1(DL+∪

61

3. Bounded Satis�ability Problem

AP) formulae are pair (σ′, σ′′) as de�ned for LTL(FO). In this case, the
automaton Aφ can be e�ectively built in polynomial space and accepts
the intersection of the following two languages:

1. the language of symbolic models which symbolically satisfy the CLTL1
1(DL+∪

AP) formula φ, i.e. ρ |=s φ, and

2. the language of symbolic models such that ρ is satis�able.

The automaton for the language 1. is an extension of the Vardi-Wolper
automata recognizing model for LTL formulae similar to the one de�ned
also for CLTL(IPC∗) or CLTL(<,=). The construction of Asat which
recognize the language 2., is quite involved and its de�nition can be
found in [74]. Asat is a 1-Z counter system of alphabet 2AP × SV (φ)
which can perform ε-transitions. Intuitively, the automaton consists of
a set of components which has the function either to check a formulae
over the counter or to update the value of the counter. A component
Aα,sv is a 1-Z counter system which checks if the formulae α belonging
to the symbolic valuation sv is satis�ed. For instance, the component
Ax=d,sv, where d is a constant de�ned in the formula φ, decrements x by
1, d times and then it checks if x = 0; after it restore the original value
of x by performing d increment by 1. Each component Aα,sv contribute
to enforce that the next symbolic valuation is exactly sv.

Proposition 57 (Theorem 3, [74]). A CLTL1
1(DL+ ∪AP) formulae is

satis�able if, and only if, L (Aφ) is not empty. The satis�ability problem
for CLTL1

1(DL+ ∪AP) is pSPACE-complete.

The presence of propositional variables in CLTL(DL+ ∪ AP) makes
the reduction from CLTL(DL+) model-checking problem for for CS(DL)
counter system to satis�ability of CLTL(DL+ ∪AP) straightforward. It
is similar to the reduction from LTL model-checking problem to satis�a-
bility of LTL which is proposed by Sistla and Clarke in [52]. CLTLω1 (QFP)
model-checking problem for 1-Z counter systems A is solved by di-
rectly constructing a 1-Z counter systems Asat over the alphabet 2AP ×
SV (A, φ) where the set SV (A, φ) is the set of symbolic valuation ob-
tained from both A and φ. Therefore, L (Asat) is the language of sym-
bolic models ρ such that ρ, 0 |=s φ and A |= φ.

Proposition 58 (Lemma 9, [74]). Let φ be a CLTLω1 (QFP) formula and
A be a 1-Z counter systems. Then it is possible to build the automaton
Aφ from the intersection of As and Asat such that L (Aφ) is empty if,
and only if, A |= φ.

62

3.1. Satis�ability problem for CLTL and CLTL Model Checking

Both Propositions 57 and 58 rely on the decidability of nonemptiness
problem for 1-Z counter systems:

Theorem 59 (Theorem 6, [74]). Let A be a 1-Z counter systems. Check-
ing whether L (A) is nonempty is nlogSPACE-complete.

Decidability of nonemptiness for 1-Z counter systems allow us to ob-
tain decidability of satis�ability and model-checking problem for some
CLTL fragment considered.

Theorem 60 (Theorem 3, Corollary 3, Theorem 4, [74]). Following
problems are pSPACE-complete.

� satis�ability of CLTL1
1(DL+ ∪AP).

� CLTL1
1(DL) model-checking problem for CS(DL) counter system

and 1-Z counter systems.

� CLTLω1 (QFP) model-checking problem for 1-Z counter systems.

Given a logical formalism, di�erent notions of satis�ability can be de-
�ned. Bounded satis�ability is weaker than standard satis�ability since
it looks for bounded models of formulae which may be not enough to
deduce immediately satis�ability (or unsatis�ability) with respect to the
standard notion. However, in some cases, bounded satis�ability can
still be used to solve satis�ability and model-checking problems. For
instance, this is the case of bounded LTL model-checking and satis�a-
bility. Informally, let P be a problem and Pb the bounded version of
P . Whenever there exists a �nite bound on the number of bounded in-
stances Pb which one have to solve to answer to a P problem, we say that
the bounded approach is complete. In this chapter, we extend the notion
of bounded satis�ability of LTL to logical formalisms involving variables
over in�nite domains. In particular, when fragments of Presburger arith-
metic like IPC∗ or (D,<,=) characterizes language CLTLB (CLTL with
past-time modalities), we prove that bounded satis�ability problem is
complete with respect to satis�ability for CLTLB. The strict relation be-
tween model-checking and satis�ability allow us to solve model-checking
by reducing an instance of model-checking problem to satis�ability over
bounded models. Completeness for bounded model-checking problem is
a direct consequence of completeness of bounded satis�ability.
Beside symbolic valuations as de�ned in Section 3.1, we will use a

weaker de�nition of symbolic valuation than the one introduced by Demri
et al. [6], [74], [18]. Let φ be a CLTLB(L) and atoms(φ) be the set of
atomic formulae of L in the formula φ. A weak symbolic valuation sv

63

3. Bounded Satis�ability Problem

for φ is a maximally consistent set of formulae belonging to atoms(φ)
and the set of all weak symbolic valuations for φ is denoted by SVw(φ).
The notion of local consistency is re�ned and it is adapted to weak
symbolic valuations. A pair of symbolic valuations (sv1, sv2) is weak
locally consistent if do not happen:

R(Xi1x1, . . . ,X
inxn) ∈ sv1 and ¬R(Xi1−1x1, . . . ,X

in−1xn) ∈ sv2.

where R ∈ R is an n-ary relation inR. A sequence of symbolic valuations
sv0, sv1, . . . is weak locally consistent if all pairs (svi, svi+1), i ≥ 0, are
weak locally consistent.

3.2. Bounded satis�ability for LTL(FO) over
uninterpreted functions

Bounded Satis�ability Problem for LTL(FO) with uninterpreted func-
tions and predicates is de�ned by considering bounded symbolic models
of LTL(FO) formulae. Let φ be a LTL(FO) and V = Vl ∪ Vg be the
�nite set of local and global variables in φ. Then, a bounded symbolic
model is, informally, a �nite representation of

� a possibly in�nite LTL(FO) model (S, π, L)

� an in�nite LTL(FO) symbolic models over the alphabet of (weak)
symbolic valuations SV (φ) (or SVw(φ)).

Bounded satis�ability is de�ned with respect to a k-bounded sequences
of assignment to variables and atomic propositions:

� σ̂′k : {0, . . . , k + dφex} × {x} → D, for every x ∈ Vl,

� σ̂′′k : {0, . . . , k} × p→ {true, false}, for every p ∈ AP .

Moreover, we consider a �nite sequence ρ, |ρ| = k, of weak symbolic
valuations and a bounded satisfaction relation |=k de�ned as follows:

σ̂k |=k ρ
def⇔ σ̂k, i |=D ρ(i) for all 0 ≤ i ≤ k.

In this case, we say that ρ admits a k-bounded model σ̂k. A k-bounded
model for a LTL(FO) is a structure (S, π, L) such that π is a �nite
sequence of states of of length π ∈ Sk and:

� σ′(x) = σ̂′k(x), for every x ∈ Vl and 0 ≤ i ≤ k,

� σ′′(p) = σ̂′′k(p), for every p ∈ AP and 0 ≤ i ≤ k.

64

3.2. Bounded satis�ability for LTL(FO) over uninterpreted functions

Value of terms is de�ned by the function [](π,i) with respect to the �rst-
order structure (M, σ) at each position π(i) = si, such that L(si) =
(M, σ), and the environment ε for global variables:

[x](π,i) =


σ′(x) for x ∈ Vl for 0 ≤ i ≤ k
σ̂k(x) for x ∈ Vl for i ≥ k
ε(x) for x ∈ Vg

[f(τ1, . . . τn)](π,i) =

{
fIi
(
[τ1](π,i), . . . , [τn](π,i)

)
for 0 ≤ i ≤ k

c ∈ D for i > k

[Xτ](π,i) = [τ](π,i+1)

where fIi is the n-ary function f with respect to the interpretation Ii.
Bounded symbolic models for a formula are introduced similarly as

for satis�ability of CLTLB. Let β be the conjunction of R(τ1, . . . , τn)
and all atomic formulae belonging to sv. Let v be an assignment which
maps terms(β) to element of D. Given a symbolic valuation sv, when
R ∈ F then sv |=s R(τ1, . . . , τn) amounts to check whether v |=T sv
then v |=T R(τ1, . . . , τn) for all v. We suppose that the satis�ability
problem for the theory T of uninterpreted function combined with the
�rst-order theory is decidable. Let β be the conjunction of all atomic
formulae belonging to sv and R(τ1, . . . , τn). Then, symbolic satisfaction
relation for R ∈ R is:

ρ, i |=s R(τ1, . . . , τn)
def⇔ ρ(i) |=s R(τ1, . . . , τn)

When ρ is an ultimately periodic model of the form uvω, where u ∈
SVw(φ)∗ and v ∈ SV (φ)+ then symbolic satisfaction relation |=k

s is the
same as |=s. In the case of �nite pre�xes ρ = u ∈ SV (φ)k, we adapt |=k

s

to �nite sequences of symbolic valuations:

ρ, i |=k
s p

def⇔ p ∈ L(π(i))

ρ, i |=k
s R(τ1, . . . , τn)

def⇔ ρ(i) |=s R(τ1, . . . , τn)

ρ, i |=k
s Xφ

def⇔ ρ, i+ 1 |=k
s φ and 0 ≤ i+ 1 ≤ k

ρ, i |=k
s φUψ

def⇔ ∃i ≤ j ≤ k ρ, j |=k
s ψ and ∀i ≤ n < j ρ, n |=k

s φ

Finally, we say that a LTL(FO) formula φ is k-bounded satis�able there
exists k-bounded model (S, π, L), such that π ∈ Sk, an environment ε
and σ̂k such that, for a �nite (locally consistent) sequence of symbolic
valuations ρ ∈ SV (φ)k:

π, 0 |=σ̂k
ε φ

def⇔ σ̂k |=k ρ and ρ, 0 |=k
s φ.

65

3. Bounded Satis�ability Problem

According to de�nition given so far, satis�ability problem over k-
bounded arithmetic models σ̂k is:

k-bounded satisfiability problem with UFε

Input a CLTLB(L) formula φ, a constant k ∈ N
Problem there exist a k-bounded model (S, π, L), an environ-

ment ε, a sequence σ̂k and a bounded symbolic model
ρ ∈ SV (φ)k (or SVw(φ)k) such that:

� if ρ = uv, then uvω, 0 |=k
s φ; or,

� if ρ = u, then u(SVw(φ))ω, 0 |=k
s φ

and σ̂k |=k ρ.

Theorem 61. k-bounded Satis�ability for LTL(FO) with uninterpreted
functions and predicates is decidable.

Proof. The problem can be reduced in polynomial time to the satis�a-
bility of a formula in the combined theory of equality and uninterpreted
functions. The reduction is de�ned in Section 3.3.5. In particular, let φ
be a LTL(FO) formula. Then we check satis�ability of

[φ ∧G(
m∨
i=1

sv)]k

where [ζ]k denotes the encoding of ζ which is provided in next Section
3.3.

It is worth noticing that weak symbolic valuations are implicitely rep-
resented in the encoding of Section 3.3.5. In fact, a formula ¬α ∈ sv
holds when its negated form α holds, and viceversa.
An example of k-bounded satis�ability with uninterpreted functions

and free variables is proposed in Section 5.1.

3.3. Encoding for LTL(FO)

In this section, the SAT-based encoding for LTLB proposed by Biere et
al. in [63] is compared with a new version which exploits satis�ability
of the theory QF-EUD where D = (N, <). QF-EUD encoding is proved
to be more concise than the propositional encoding of the same formula
and it is tailored to be implemented on SMT-solvers. After, we de�ne

66

3.3. Encoding for LTL(FO)

encodings for CLTLB(L) and for LTL(FO) by enriching the encoding
of LTLB formulae. Satis�ability of formulae of the theory QF-EUL,
provided that the union of theories of equality and uninterpreted func-
tions with L is consistent, is used to reduce (k-bounded) satis�ability
problem for CLTLB(L) and for LTL(FO) and to solve bounded CLTLB
model-checking. The extension is quite natural since temporal structure
of CLTLB and LTL(FO) formulae is the same as LTL.
When the satis�ability problem for QF-EUL or EUL is decidable and

has e�ective implemented decision procedure, then k-bounded satis�a-
bility problem for LTL(L), where L is a �rst-order de�nable language,
can be decided. In particular, the same problem for LTL(FO) with un-
interpreted function and CLTLB(L) where L = {PA,DL+, IPC∗} and
for structure like (D,<,=) over N,Z,R, is decidable.

3.3.1. Linear Encoding of LTL for SMT

Alternatively to encoding presented in Section 2.7.4, the ultimately peri-
odic semantics of LTL formulae is encoded as a quanti�er-free formula in
the theory EUF∪D (QF-EUD), where EUF is the theory of Equality and
Uninterpreted Functions, and D = (N, <). The resulting union of theo-
ries EUF ∪ D is consistent because EUF ∪ D is union of two consistent,
disjoint, stably in�nite theories (as is the case for EUF and arithmetic).
The proposed encoding is based on the �eventuality encoding� explained
in Section 3.3.1. Not all the parts of SAT encoding are modi�ed but
formulae de�ning loop constraints, last state formulae and eventuality
are strongly revised and adapted to be encoded as QF-EUD formulae.
Let φ be a LTLB formula, AP be the set of atomic propositions and

[φ]k be the QF-EUL formula representing models π ∈ Sω of φ such that
[φ]k is satis�able if, and only if, π |=k φ. Following set of QF-EUD
formulae constitutes the encoding [φ]k representing in�nite ultimately
periodic models of φ of the form uvω such that |uv| = k or uSω such
that |u| = k.

3.3.2. Encoding periodicity

Di�erently from Boolean encoding, ultimately periodic models of the
form a(sb)ω are represented by a QF-EUD formula involving one non-
negative integer loop-selecting variable ` ∈ N:

k∧
i=1

(` = i⇒ L(π(i− 1)) = L(π(k))) .

67

3. Bounded Satis�ability Problem

There is an immediate equivalence between the above formula and propo-
sitional representation in Section 2.7.5. Subformula ` = i holds if, and
only if, li is satis�ed and all positions ` ≤ i ≤ k are such that inLoopi
holds. Since indeces i ∈ [1, k] then ¬l0 and ¬inLoop0 are satis�ed. It
is worth noticing that subformula

∨k
i=1 (` = i), which is used later, is

equivalent to loopEx.
Previous formula is extended to LTL(FO) by considering periodicity

over relations R ∈ R occurring into φ, both for interpreted (like <) and
uninterpreted relations.

k∧
i=1

(loop = i)⇒
∧
θ∈R

∧
α1,...,αn∈terms(φ)

θi−1 ⇔ θk

 .

3.3.3. Encoding the Propositional Terms

The QF-EUL encoding associates to each propositional subformula a
formula predicate that is a unary uninterpreted predicate ϕ : N →
{true, false}.
Variables de�ning the QF-EUL formula are written in boldface. Im-

properly, in order to be consistent with the notation of pedices used in
proof of Theorem 68, and for reasons of ease of writing, we shall write
φi instead of φ(i). When the subformula ϕ holds at instant i then ϕ(i)
holds (written ϕi).
As the length of paths is �xed to k + 1, and all paths start from 0,

formula predicates are subsets of {0, . . . , k+1}. Let ϕ be a propositional
subformula of φ. The formula predicate associated with ϕ (denoted by
the same name but written in bold face), is recursively de�ned in the
same way as 2.7.6:

ϕ 0 ≤ i ≤ k + 1

p ϕi ⇔ p ∈ L(si)
¬ψ ϕi ⇔ ¬ψi
ζ ∧ ψ ϕi ⇔ ζi ∧ψi

The conjunction of all the constraints for all the subformulae ϕ of φ
constitutes the formula |PropConstraints|k.

3.3.4. Encoding Temporal Operators

Temporal subformulae constraints (|TempConstraints|k) de�ne the ba-
sic temporal behavior of future and past operators, by using their tra-
ditional �xpoint characterizations. Encoding for subformulae Xψ, ζUψ
and ζRψ is the same as Boolean encoding but de�ned over formula pred-
icates.

68

3.3. Encoding for LTL(FO)

Analogously to Boolean encoding, last state constraints de�ne the
equivalence between truth in k + 1 and those one indicated by `. Con-
straints have a similar structure to the corresponding Boolean ones, but
here they are de�ned by one QF-EUD formula, for each subformula ϕ of
φ, with respect to the variable `:(∨k

i=1 ` = i
)
⇐ ϕk+1(∨k

i=1 ` = i
)
⇒ (ϕk+1 ⇔ ϕi)

Note that if a loop does not exists then the �xpoint semantics of R is
exactly the bounded semantics de�ned over �nite acyclic path in Sec-
tion 2.7.3. Finally, to correctly de�ne the semantic of U and R, their
eventuality have to be enforced. As explained in Section 2.7.7, if ζUψ
holds at i, then ψ eventually holds in j ≥ i. When ζRψ does not hold
at i, then ψ eventually does not hold in j ≥ i. Along �nite models of
length k, eventualities must hold between 0 and k. If a loop exists, an
eventuality may holds within the loop. In the QF-EUD encoding, one
variable jψ ∈ N is introduced for each ψ occurring in a subformula ζUψ
or ζRψ.

ϕ Base

ζUψ
(∨k

i=1 ` = i
)
⇒ (ϕk ⇒ ` ≤ jψ ≤ k ∧ψjψ)

ζRψ
(∨k

i=1 ` = i
)
⇒ (¬ϕk ⇒ ` ≤ jψ ≤ k ∧ ¬ψjψ)

The conjunction of all the constraints for all the subformulae ζ of φ con-
stitutes the formula |Eventually|k. The equivalence of previous formulae
and the ones in Section 2.7.7 is easy to be shown.

� Let us suppose that loopEx holds and ζUψ holds at position k.
Then, the auxiliary formula 〈Fψ〉 holds at position k, and, recur-
sively, 〈Fψ〉i ⇔ 〈Fψ〉i−1 ∨ (inLoopi ∧ψi) with ¬〈Fψ〉0. If li holds,
then ` = i is the position of the loop. By recursive de�nition of
〈Fψ〉, there exists a position ` ≤ j ≤ k such that ψj holds satisfy-
ing the base case inLoopi ∧ ψi. This entails the QF-EUD formula
for ζUψ. Conversely, if ` ≤ j ≤ k and ϕk holds, with ϕ = ζUψ,
then ψj holds such that ` ≤ j ≤ k. Then, in the propositional
encoding, inLoopj is satis�ed, all auxiliary formulae 〈Fψ〉i, such
that j ≤ i ≤ k, hold because of the recursive de�nition. Finally,
the formula loopEx⇒ ((ζUψ)k ⇒ 〈Fψ〉k) is satis�ed.

� Let us suppose that ζRψ does not hold at position k. Then,
the auxiliary formula 〈Gψ〉 is false at position k, and, recursively,

69

3. Bounded Satis�ability Problem

〈Gψ〉i ⇔ 〈Gψ〉i−1 ∧ (¬inLoopi ∨ ψi) with 〈Fψ〉0. If li holds, then
` = i is the position of the loop. By recursive de�nition of 〈Gψ〉,
there exists a position ` ≤ j ≤ k such that ¬ψj holds satisfying
the base case ¬inLoopi∨ψi. This entails the QF-EUD formula for
ζRψ. Conversely, if ` ≤ j ≤ k and ¬ϕk holds, with ϕ = ζUψ,
then ¬ψj holds such that ` ≤ j ≤ k. Then, in the propositional
encoding, inLoopj is satis�ed, all auxiliary formulae 〈Gψ〉i, such
that j ≤ i ≤ k, do not hold because of the recursive de�nition.
Finally, the formula loopEx⇒ ((ζRψ)k ⇐ 〈Gψ〉k) is satis�ed.

Complexity analysis

Let us compare the Boolean encoding with the QF-EUD. Let φ be the
PLTLB formula and |φ| be its dimension. If m = O(|φ|) is the total
number of subformulae and n is the total number of temporal operators
U and R occurring in φ, then the Boolean encoding requires (2k+ 3) +
(k+2)m+(k+1)n fresh propositional variables. The QF-EUD encoding
requires only n+1 nonnegative integer variables (` and jψ) and m unary
predicates (one for each subformula).
As already explained in Section 2.3, Nelson-Oppen theorem [25] pro-

vides the upper bound of satis�ability problem when di�erent theories
are combined. Since D = (Z, <) is a consistent, stably in�nite theory,
non convex theory then, by the Nelson-Oppen Theorem, the bounded
satis�ability of a LTLB formula φ can be solved in exponential time.
However, the NP-completeness for satis�ability problem of the combined
theory QF-EU and IDL, which is enough to encode the bounded satis�-
ability, is the same as for SAT.

3.3.5. Linear Encoding of LTL(FO) for SMT

LTL(FO) temporal encoding is de�ned by the linear encoding for LTLB
of Section 3.3.1 except for the encoding of semantics of terms, uninter-
preted functions and relations.
An arithmetic formula function, i.e. an uninterpreted function τ :

N → D, is associated with each term of φ. Let τ be such a subterm,
then the arithmetic formula function associated with it (denoted by the
same name but in written in bold face), is recursively de�ned with respect
to the sequence of valuations σ̂k.
Also in this case we shall write improperly xi instead of x(i).

τ 0 ≤ i ≤ k
x xi = σ̂k(i, x)

Xβ τi = βi+1

70

3.3. Encoding for LTL(FO)

The conjunction of all the arithmetic constraints for all the subterms α
of φ constitutes the formula |ArithConstraints|k.
As de�ned in Section 3, semantics of LTL(FO) is de�ned with respect

to an interpretation (model) (M, ε), whereM is a structureM = (D, I)
and ε an environment. When the interpretation I is partial, i.e., some
of symbols of (F ,R) are not de�ned, we can exploit the theory of Un-
interpreted Function to encode the bounded satis�ability of LTL(FO).
When functions and relations in (F ,R) have global semantics they are
simply instantiated in the formula. We introduce an arithmetic formula
function τ : N → D for all uninterpreted function f ∈ F in φ with
global interpretation such that f : Dn → D. Values for τ are recursively
de�ned as:

τ 0 ≤ i ≤ k
f(τ1, . . . , τn) τi = f(τ 1

i , . . . , τ
n
i)

Analogously, we introduce an uninterpreted predicate α : N→ {true, false}
for all uninterpreted relation R ∈ R in φ, with global interpretation, such
that R : Dn → D.

α 0 ≤ i ≤ k + 1

R(τ1, . . . , τn) αi ⇔ R(τ 1
i , . . . , τ

n
i)

When local semantics is adopted, functions and relations may have dif-
ferent value when evaluated at di�erent position in [0, k]. We introduce
an arithmetic formula function τ : N→ D for all uninterpreted function
f ∈ F occurring in φ such that f : Dn × N → D, where the n + 1-th
value represents the instant of evaluation of f . Values for τ are recur-
sively de�ned as:

τ 0 ≤ i ≤ k
f(τ1, . . . , τn) τi = f(τ 1

i , . . . , τ
n
i , i)

where f is an n-function over D. Analogously, we introduce an unin-
terpreted predicate α : N → {true, false} for all uninterpreted relation
R ∈ R occurring in φ such that R : Dn × N → D, where the n + 1-th
value represents the instant of evaluation of f . Values for α are recur-
sively de�ned as:

α 0 ≤ i ≤ k + 1

R(τ1, . . . , τn) αi ⇔ R(τ 1
i , . . . , τ

n
i , i)

where R is an n-relation over D.
Bounded satis�ability for the existential fragment of LTL(FO) can

be reduced to satis�ability of formulae of EUF∪L, provided that the
union of the two theories is still decidable. Let φ be a LTL(FO) formula

71

3. Bounded Satis�ability Problem

and Vg be the set of global variables occurring in φ such that V ∃g , V
free
g

partition Vg. In particular, the set V ∃g contains global variables which

are existentially quanti�ed in φ and V free
g is the set of global variables

which do not have quanti�cation, i.e., V free
g ⊆ free(φ). For each variable

in y ∈ V free
g we introduce an uninterpreted (0-arity) function y ∈ D

such that y = ε(y). Quanti�ed formulae are encoded by introducing for
each subformula ∃y φ such that y ∈ V ∃g a formula predicate ϕ : N →
{true, false} and a variable y : N→ D:

ϕ 0 ≤ i ≤ k
∃y φ ϕi ⇔ φi|y←yi

where φi|y←yi represents variable φ of subformula φ where the occur-
rence of y is substituted with variable y at the same position i.

Complexity analysis

Let φ be a LTL(FO) formula, h be the number of variables and m
be the total number of temporal operators occurring in φ. Complexity
analysis for temporal operators is the same as the one of LTL; we need
n + 1 nonnegative integer variables and m unary predicates to encode
all temporal subformulae occurring into φ and periodicity constraints.
Complexity of the �rst order part is de�ned with respect to:

� number Nf of functions f(τ1, . . . , τn) occurring in φ,

� number NR of relations R(τ1, . . . , τn) occurring in φ and

� number N∃ of quanti�ed variables of the form ∃x φ′.

The total number T of arithmetic formula functions required to en-
code all terms involved in formula φ is determined by the number of
functions f(τ1, . . . , τn) and terms Xix for 0 ≤ i ≤ dφe. Therefore,
T ≤ k(Nf + hdφe). Relations R(τ1, . . . , τn) require kNR predicate func-
tions and quanti�ed subformulae are ≤ kN∃m. Therefore, the total
number of predicate formulae is P ≤ k(NR +N∃m).

CLTLB(L) temporal encoding is de�ned by the linear encoding for
LTL(FO) of Section 3.3.1. In particular, languages considered in the
forthcoming sections and in Chapter 4 satisfy conditions needed to com-
bine correctly the theories of equality and uninterpreted functions. PA,
IPC∗ and all its fragments and structure (D,<,=) make the union EUF∪
D consistent. The k-bounded satis�ability problem for a CLTLB(L) for-
mula isNP-complete when L is DL and quanti�er-free PA, pTIME when
L is RDL. The NP-hardness of CLTLB(DL) follows by reducing SAT to
the satis�ability of a QF-UFIDL formula.

72

3.4. Extending CLTL language

3.4. Extending CLTL language

In this section, we provide an extension of CLTL language. Language
CLTL is enriched with past-time temporal modalities over CLTL formu-
lae (Y, S) and over a.t.t.'s (Y). Although both Y, S are already con-
sidered by Demri and D'Souza in [6] (Section 9.3) there are no results
concerning initial and global equivalence between the two languages. It
is not immediate, in fact, to prove the equivalence since it is not a direct
consequence of results shown in [6]. Moreover, authors of [6] do not con-
sider past-time modalities over a.t.t.'s like, for instance, Yx = 0. Even
though a formula like Yx = 0 can be intuitively replaced by an equiva-
lent formula Y(x = 0), this equivalence may no longer hold at instant 0.
The e�ect of the modality Y acting on the variable x represents an action
of initialization of values de�ning the model before the origin. Similarly
to LTL, we will prove the equivalence between CLTL and CLTL with
past-time modalities, which we denote CLTLB hereafter.
Semantics of CLTLB formulae is de�ned recursively in a similar way

to semantics of LTL(FO). Given a structure (S, π, L), the sequence π ∈
Sω is now sbφcsbφc+1 . . . s−1s0s1 . . . where the pre�x sbφcsbφc+1 . . . s−1 is
needed to correctly evaluate formulae using terms referring to positions
before the origin. Values for terms are de�ned in the same way as for
LTL(FO) at beginning Section 3 by σ; the de�nition now includes the
semantics for the operator Y over terms.

[Yτ](π,i) = [τ](π,i−1)

Past-time temporal modalities �yesterday� Y and �since� S are de�end
in the standard way:

π, i |= Yφ⇔ π, i− 1 |= φ ∧ i > 0

π, i |= φSψ
def⇔ ∃0 ≤ j ≤ i π, j |= ψ and ∀j < n ≤ i π, n |= φ

The use of temporal modality Y requires π to be isomorphic to (Z, <).
In particular, given a structure (S, π, L), the map L is a total function
for all i ≥ bφc. It is worth noticing that values of propositional atoms
in the pre�x sbφcsbφc−1 . . . s−1 does not a�ect valuation of formulae from
the origin 0. In fact, valuation of future formulae, involving temporal
modalities X and U, at position i is de�ned only by the su�x of π from
i onward, for all i ≥ 0. Past formulae, involving temporal modalities
X and U, are evaluated at position i by considering only truth value of
subformulae in the segment [0, i], for all i ≥ 0.

73

3. Bounded Satis�ability Problem

3.5. Removing the �past� and initial equivalence

3.5.1. Initial equivalence

Let D = 〈D,R,F〉 be a strucutre where D is a speci�c domain of in-
terpretation for variables and constants, R is a family of relations on
elements of D which is closed under complement and F is a family of
functions on elements of D (the interpretetion I is understood). Let L
be the �rst-order language de�ed by D. By exploiting well-known prop-
erties of PLTLB, we prove the equivalence of CLTLB(D) to CLTL(D) for
a quanti�er-free constraint system D, with respect to initial equivalence.
In [47], Gabbay et al. show that any PLTLB formula is initially equiv-

alent to a PLTL formula, while the two logics are not globally equivalent
(see also Schnoebelen [80] for details); the de�nition of these two notions
are given in Section 2.7.1. In order to extend this result to the con-
strained case, we need to introduce new temporal operators. CLTL(L)
and CLTLB(L), as we de�ned in Section 3 and 3.4, includes the �non-
strict� until (respespectively since) operator, in which formula φUψ (re-
spectively φSψ) holds at instant i when ψ holds at i, and only if φ holds
starting from i. The �strict� version of until U>, instead, does not require
this:

π, i |= φU>ψ
def⇔ ∃j > i π, j |= ψ and ∀i < n < j π, n |= φ

and similarly for the strict since S>:

π, i |= φS>ψ
def⇔ ∃0 ≤ j < i π, j |= ψ and ∀j < n < i π, n |= φ.

It is well known that the following global equivalences hold for any φ,ψ:

Xφ ≡g⊥ U>φ, φUψ ≡g ψ ∨ (φ ∧ φU>ψ);
Yφ ≡g⊥ S>φ, φSψ ≡g ψ ∨ (φ ∧ φS>ψ).

Using the previous equivalences, Gabbay [81] proved that any PLTLB
formula is globally equivalent to a separated PLTLB formula, i.e., a
Boolean combination of formulae containing either U> (U>-formulae)
or S> (S>-formulae), but not both. Since this theorem preserves all se-
mantic properties, i.e., it is actually a rewriting syntactic procedure over
formulae, it extends also to the case of CLTLB(L), provided that each
arithmetic constraint is represented by a propositional letter. In partic-
ular, a.t.t.'s Xx/Yx are not rewritten using strict-until/-since operators,
but are considered as is, since their semantics depends on the underlying
sequence σ as de�ned before. Then, we need to show that S>-formulae
can be translated into initially equivalent U>-formulae. More precisely,
we prove the following:

74

3.5. Removing the �past� and initial equivalence

Theorem 62. Any CLTLB(L) formula is initially equivalent to a CLTL(L)
formula, while the two logics are not globally equivalent.

Proof sketch. We �rst prove that CLTL(L) is not globally equivalent
to CLTLB(L) by providing a counterexample. Formula >SA, where
A ∈ AP , was shown in [45] to have no globally equivalent PLTL formula.
Now, suppose φ is a CLTL(L) formula globally equivalent to CLTLB(L)
formula >SA. Then, for the above reason, it should constrain at least
one of its arithmetic variables, by a non-trivial arithmetic formula. Since
>SA does not constrain any arithmetic variables, some of its models
cannot be models of φ.
To prove the initial equivalence we suppose each formula is written

using only U> and S> operators, using the equivalences above. From
Gabbay's Separation Theorem such a formula can be rewritten to a sep-
arated CLTLB(L) formula which is a Boolean combination of S>- and
U>-formulae. The proof is concluded by noticing that any S>-formula
is trivially initially equivalent to false.

3.5.2. Removing the past operator Y

The CLTLB(L) language de�ned so far admits the use of the �previous�
operator Y on arithmetic terms. In this section we focus on CLTLB
language whose atomic formulae are only de�ned by the language L and
which does not involve atomic propositions. We prove that CLTLB using
only the future fragment of the language de�ning the a.t.t.'s is equivalent
CLTLB using both the modalities X and Y. In particular, we de�ne a
syntactic translation function p such that σ, 0 |= φ⇔ σ, bφc |= p(φ).
Let Xi (resp. Yi) represent the nesting of X (resp. Y) i times and let p :

CLTLB(L) → CLTLB(L) be the rewriting function de�ned recursively
as:

� p(Xix)
def≡ Xi−bφcx

� p(Yix)
def≡ Yi+bφcx

� p(R(τ1, . . . , τn))
def≡ R(p(τ1), . . . , p(τn))

� p(¬φ)
def≡ ¬p(φ)

� p(φ ∧ ψ)
def≡ p(φ) ∧ p(φ)

� p(Xφ)
def≡ Xp(φ)

� p(Yφ)
def≡ Yp(φ)

75

3. Bounded Satis�ability Problem

� p(φUψ)
def≡ p(φ)Up(ψ)

� p(φSψ)
def≡ p(φ)Sp(ψ)

Given a CLTLB(L) formula φ it is easy to see that Y does not occur in
p(φ) since the following equivalences hold Xi = Y−i and X−i = Yi (e.g.,
X−3 = Y3). The equisatis�ability of formulae is guaranteed by moving
the origin of φ by −bφc instants in the past. By shifting the sequence
π = sbφcsbφc+1 . . . s−1s0s1 · · · ∈ Sω we obtain a new model of the form
π′ = s′0s

′
1 . . . s

′
−1−bφcs

′
−bφcs

′
1 · · · ∈ Sω which is the same sequence as π

over a new ordering; i.e., si = s′i−bφc. Since only X occurs in p(φ), then
models π for CLTLB(L) formulae without Y are isomorphic to (N, <).

Theorem 63. Let φ be a CLTLB(L) formula, then σ, 0 |= φ⇔ σ, bφc |=
p(φ).

Proof. Let s = bφc. We show that for all i ≥ 0, σ, i |= φ⇔ σ, i+s |= p(φ)
by induction on the structure of the formula φ.
The base case of the induction is given on the atomic formulae

φ = R(τ1 . . . τn). Since σ, i |=D φ ⇔ R([xτ1](σ,i+|τ1|), . . . , [xτn](σ,i+|τn|)),
by shifting the instant i of s the satisfaction relation is σ, i |=D φ ⇔
R([xτ1](σ,i+s+|τ1|−s), . . . , [xτn](σ,i+s+|τn|−s)). Then, we can equivalently
write σ, i |=D φ ⇔ R([xτ1](σ,i+s+|p(τ1)|), . . . , [xτn](σ,i+s+|p(τn)|)) that is
σ, i + s |= R(p(τ1), . . . , p(τn)) and σ, i + s |= p(R(τ1, . . . , τn)). In fact,
if τ = Xix then p(τ) = Xi−sx and |p(τ)| = |τ | − s. If τ = Yix then
p(τ) = Yi+sx and |p(τ)| = −(i+ s) = |τ | − s, since |τ | = −i.
Inductive step.

� If φ = ¬ψ then σ, i |= φ⇔ σ, i 6|= ψ. By inductive hypothesis, this
is equivalent to σ, i+s 6|= p(ψ), i.e. σ, i+s |= p(φ), as p(φ) = ¬p(ψ).

� If φ = ψ1 ∧ ψ2 then σ, i |= φ ⇔ σ, i |= ψ1 and σ, i |= ψ2. By
inductive hypothesis, this is equivalent to σ, i+s |= p(ψ1) and σ, i+
s |= p(ψ2), i.e. σ, i+ s |= p(ψ1) ∧ p(ψ2), and σ, i+ s |= p(φ).

� If φ = Xψ then σ, i |= φ⇔ σ, i+ 1 |= ψ. By inductive hypothesis,
this is equivalent to σ, i + 1 + s |= p(ψ), i.e., σ, i + s |= Xp(ψ),
which corresponds to σ, i+ s |= p(φ).

� If φ = Yψ then σ, i |= φ⇔ σ, i− 1 |= ψ. By inductive hypothesis,
this is the same as σ, i− 1 + s |= p(ψ), i.e., σ, i+ s |= Yp(ψ), and
σ, i+ s |= p(φ), as p(φ) = Yp(ψ).

� If φ = ψ1Uψ2 then σ, i |= φ i� there exists j ≥ i s.t. σ, j |=
ψ2 and σ, n |= ψ1 forall i ≤ n < j, that is, by inductive hypothesis,

76

3.5. Removing the �past� and initial equivalence

σ, j + s |= p(ψ2) and σ, n |= p(ψ1) forall i + s ≤ n < j + s, which
in turn is equivalent to σ, i+s |= p(ψ1)Up(ψ2) and σ, i+s |= p(φ).

� If φ = ψ1Sψ2 then σ, i |= φ i� there exists 0 ≤ j ≤ i s.t. σ, j |=
ψ2 and σ, n |= ψ1 forall j < n ≤ i, that is, by inductive hypothesis
σ, j + s |= p(ψ2) and σ, n |= p(ψ1) forall j + s < n ≤ i + s, which
is equivalent to σ, i+ s |= p(ψ1)Sp(ψ2) and σ, i+ s |= p(φ).

Finally, σ, 0 |= φ⇔ σ, s |= p(φ) by taking i = 0.

3.5.3. Removing the language AP

According to the de�nition given in Section 3, CLTL(L) is the language
CLTL where atomic formulae belong to the language L. When L con-
tains also a set AP of atomic propositions, atomic formulae α are propo-
sitional atoms or relations over terms R(τ1, . . . , τn). If we are dealing
with the CLTL without past-time modalities Y over variables we can
encode propositional atoms to variables ranging over {0, 1}. Any posi-
tive occurrence of an atomic proposition p ∈ AP in a CLTL formula can
be replaced by an equality relation of the form xp = 1. Then, a formula
of CLTL(L ∪ AP) can be easily rewritten into a formula of CLTL(L)
preseving the equivalence between them. In this section, we prove that
the language AP can be removed also in case of generic CLTLB(L∪AP)
formulae. We will de�ne a rewriting function r such that σ, 0 |= φ if,
and only if, θ, 0 |= r(φ) ∧ ψ where θ is the same as σ′ except for new
fresh variables representing atomic proposition before the origin and ψ
is a formula restricting values of the new fresh variables in {0, 1}.
Let us suppose AP = {p1, . . . , pn} to be an ordered set of �nite propo-

sitional atoms, φ be a CLTLB(L ∪ AP) formula and V be the set of
variables occurring in φ. Let us de�ne the set VAP = {xp1 , . . . , xpn} be
the set of variables representing propositional atoms of AP such that
V ∩ VAP = ∅. Let r : CLTLB(L ∪AP) → CLTLB(L) be the rewriting
function de�ned recursively as:

� r(pi)
def≡ (xpi = 1)

� r(R(τ1, . . . , τn))
def≡ R(r(τ1), . . . , r(τn))

� r(¬φ)
def≡ ¬r(φ)

� r(φ ∧ ψ)
def≡ r(φ) ∧ r(φ)

� r(Xφ)
def≡ Xr(φ)

77

3. Bounded Satis�ability Problem

� r(Yφ)
def≡ Yr(φ)

� r(φUψ)
def≡ r(φ)Ur(ψ)

� r(φSψ)
def≡ r(φ)Sr(ψ)

Removing propositional atoms is a syntactic rewriting which acts on
formulae. Therefore, we can provide a syntactic rewriting function rmodel
which acts on models σ of CLTLB(L∪AP) formulae. Let θ = rmodel(σ)
be a sequence (D|V |+n)ω of valuation over for variables in V ∪ VAP ; i.e.,
θ : Z× V ∪ {xp1 , . . . , xpn} → D is the rewriting of σ de�ned as follows:

θ(i, x) = σ′(i, x) for all x ∈ V, for all bφc ≤ i

θ(i, xpj) =

{
1 pj ∈ σ′′(i)
0 pj 6∈ σ′′(i)

for all j ∈ [1, n] and for all i ≥ 0

Theorem 64. Let φ be a CLTLB(L∪AP) formula where AP = {p1, . . . , pn}.
Then, σ, 0 |= φ if, and only if,

rmodel(σ), 0 |=

(
r(φ) ∧G(

n∧
i=1

(xpi = 1) ∨ (xpi = 0))

)
.

Proof. We show that for all i ≥ 0, σ, i |= φ ⇔ rmodel(σ), i |= (r(φ)∧
G(
∧n
i=1(xpi = 1) ∨ (xpi = 0))). It follows immediately σ, i |= φ ⇔

rmodel(σ), i |= r(φ) and rmodel(σ), i |= G(
∧n
i=1(xpi = 1) ∨ (xpi = 0)).

Hereafter, we write θ instead of rmodel(σ).
First, we prove by induction the left subformula σ, i |= φ⇔ θ, i |= r(φ).

The base case of is given on propositional atoms. Since σ, i |= pj ⇔
pj ∈ σ′′(i) and by de�nition of θ = rmodel(σ), we can conclude that
θ(i, xpj) = 1. By de�nition θ, i |= (xpj = 1) ⇔ θ(i, xpj) = 1; hence,
θ, i |= r(pj).
Inductive step.

� If φ = ¬ψ then σ, i |= φ⇔ σ, i 6|= ψ. By inductive hypothesis, this
is equivalent to θ, i 6|= r(ψ), i.e. θ, i |= r(φ), as r(φ) = ¬r(ψ).

� If φ = ψ1 ∧ ψ2 then σ, i |= φ ⇔ σ, i |= ψ1 and σ, i |= ψ2. By
inductive hypothesis, this is equivalent to θ, i |= r(ψ1) and θ, i |=
r(ψ2), i.e. θ, i |= r(ψ1) ∧ r(ψ2), and θ, i |= r(φ).

� If φ = Xψ then σ, i |= φ⇔ σ, i+ 1 |= ψ. By inductive hypothesis,
this is equivalent to θ, i + 1 |= r(ψ), i.e., θ, i |= Xr(ψ), which
corresponds to θ, i |= r(φ).

78

3.5. Removing the �past� and initial equivalence

� If φ = Yψ then σ, i |= φ ⇔ σ, i − 1 |= ψ and i ≥ 0. By inductive
hypothesis, this is the same as θ, i − 1 |= r(ψ) and i ≥ 0, i.e.,
θ, i |= Yr(ψ), and θ, i |= r(φ), as r(φ) = Yr(ψ).

� If φ = ψ1Uψ2 then σ, i |= φ ⇔ there exists j ≥ i s.t. σ, j |=
ψ2 and σ, n |= ψ1 forall i ≤ n < j, that is, by inductive hypothesis,
there exists j ≥ i s.t. θ, j |= r(ψ2) and θ, n |= r(ψ1) forall i ≤ n <
j, which in turn is equivalent to θ, i |= r(ψ1)Ur(ψ2) and θ, i |=
r(φ).

� If φ = ψ1Sψ2 then σ, i |= φ ⇔ there exists 0 ≤ j ≤ i s.t. σ, j |=
ψ2 and σ, n |= ψ1 forall j < n ≤ i, that is, by inductive hypothesis
there exists 0 ≤ j ≤ i s.t. θ, j |= r(ψ2) and θ, n |= r(ψ1) forall j <
n ≤ i, which is equivalent to θ, i |= r(ψ1)Sr(ψ2) and σ, i |= r(φ).

Finally, we prove the �rst part σ, 0 |= φ⇔ θ, 0 |= r(φ), by taking i = 0.
Let us prove by induction the second part is θ, i |= G(

∧n
i=1(xpi =

1) ∨ (xpi = 0)). The base case is θ, i |=
∧n
i=1(xpi = 1) ∨ (xpi = 0)

which holds for all i ≥ bφc by de�nition of rmodel(σ). The inductive
hypothesis is G(

∧n
i=1 xpi = 1) ∨ (xpi = 0) holds at i for all i ≥ bφc,

i.e. θ, i |= G(
∧n
i=1(xpi = 1) ∨ (xpi = 0)). Then, θ, i |=

∧n
i=1(xpi =

1) ∨ (xpi = 0) ∧XG(
∧n
i=1(xpi = 1) ∨ (xpi = 0)) is equivalent to θ, i |=

(
∧n
i=1(xpi = 1) ∨ (xpi = 0)) and θ, i |= XG(

∧n
i=1(xpi = 1) ∨ (xpi = 0)).

The �rst conjunct follows from the base case. The second one θ, i |=
XG(

∧n
i=1(xpi = 1) ∨ (xpi = 0)) is equivalent θ, i + 1 |= G(

∧n
i=1(xpi =

1)∨(xpi = 0)) and it holds by inductive hypothesis. Therefore, by taking
i = 0 we conclude that θ, 0 |= G(

∧n
i=1(xpi = 1) ∨ (xpi = 0)).

3.5.4. General equivalence result

Results proved in previous Sections help us to conclude the equivalence
between the language CLTLB(L ∪AP) and CLTL(L) with only X.

Theorem 65. Let φ be a CLTLB(L ∪AP) formula. Then, there exists
an initial equivalent CLTL(L) formula φ′ without Y.

Proof. From Theorems 63, 64 we can de�ne φ′ to be the composition
of translation functions r, p, i.e., φ′ = p(r(φ)). Formula φ′ belongs to
CLTLB(L) and its temporal modalities are only X, Y, U, S and X.
Then, from Theorem 62, formula φ′ is initially equivalent to a CLTL(L)
formula (with only X).

79

3. Bounded Satis�ability Problem

3.6. Completeness of the Bounded Satis�ability

Problem for CLTL

In this section, we study the existence of a completeness threshold for
the satis�ability problem of CLTLB(L) formulae when the language L
of atomic formulae is IPC∗ or de�ned by fragments like (D,=, <) where
D = {N,Z,Q,R}. When previous languages are considered, partial mod-
els σ̂k su�ces to deduce satis�ability of formulae over complete models.
Therefore, bounded satis�ability problem becomes an alternative method
to automata-based approach for solving satis�ability problem of CLTLB.

3.6.1. Bounded Satis�ability Problem for CLTL

Bounded Satis�ability Problem is de�ned by considering bounded sym-
bolic models of CLTLB(L) formulae (Y and the language AP can always
be removed). The de�nition of the problem given in Section 3.2 special-
izes in the case of CLTLB since all functions have global interpretation
inherited from the language L.
Since the length k is �xed, the satis�ability of CLTLB(L) formulae over

bounded models is, in general, not complete. Even if the automaton Aφ
has no accepting runs of length k, it might have one of length k′ > k.
The completeness property is de�ned as follows:

De�nition 66. A CLTLB(L) formula φ has the completeness property
if there is a constant K ∈ N, depending on φ, such that φ is satis�able
if, and only if, φ is K-bounded satis�able.

Hence, if φ has the completeness property for a value K and there is
no �nite model σK of φ, then φ is unsatis�able. A language CLTLB(L)
has the completeness property when all formulae φ ∈ CLTLB(L) have
completeness property. Later, in Section 3.6, we will show that for some
fragments of CLTLB which have completeness property, unsatis�ability
over complete models is consequence of unsatis�ability over k-bounded
models.

3.6.2. Completeness for IPC∗ and (D,=, <)

Informally, the idea for �nding a completeness threshold for a CLTLB(L)
formula is based on the fact that ultimately periodic symbolic models ρ
of CLTLB(L) formulae admit an arithmetic model σ if condition C holds
(see Proposition 53). Also, if a CLTLB(L) formula φ is satis�able, then
all ultimately periodic symbolic models ρ, such that ρ, 0 |=s φ, admit a
model σ such that σ |= ρ. Completeness is a consequence of the existence

80

3.6. Completeness of the Bounded Satis�ability Problem for CLTL

of a �nite value c for which all initialized runs of Aφ, representing models
for φ, of length greater than c visit at least one control state twice.
Consequently, if a CLTLB(L) formula is not (boundedly) satis�able by
any ultimately periodic model of length less than or equal to the value
c + 1, then the formula is unsatis�able. Let c be the length of the
longest loop-free path of automaton Aφ, i.e., the recurrence diameter of
Aφ. De�nition of the automaton Aφ is similar to de�nition adopted by
Demri et al. in [6] but slightly di�erent in de�nition of automaton As
which is adapted to the encoding of the problem.

Automaton Aφ for CLTLB(L) formulae

Let φ be a CLTL(D) formula, let A ⊆ D be the closure under nega-
tion of the set of arithmetic constraints occurring in φ, and let As =
(Σ, Q′, Q0, η, F) be the symbolic Büchi automaton of φ. Alphabet Σ is
the subset valid(A) ⊆ ℘(A) such that for every atomic formula ξ of φ,
β ∈ valid(A) i� either ξ or ¬ξ belongs to β. The closure of φ, denoted
cl(φ), is the smallest set containing all subformulae of φ that is also closed
under negation. An atom Γ ⊆ cl(φ) is a subset of formulae of cl(φ) that
is maximally consistent, i.e., such that, for each formula ξ in φ, either
ξ ∈ Γ or ¬ξ ∈ Γ. It is worth noticing that an atom so de�ned might
be unsatis�able, i.e., there does not exist a valuation v′ over a.t.t.'s such
that v′ |=D ξ, for all ξ in Γ, since cl(φ) is closed under negation. A pair
(Γ1,Γ2) of atoms is one-step temporally consistent when Γ1 and Γ2 agree
on the structure of temporal operators, that is:

� for every Xψ ∈ cl(φ), then Xψ ∈ Γ1 ⇔ ψ ∈ Γ2,

� for every Yψ ∈ cl(φ), then Yψ ∈ Γ2 ⇔ ψ ∈ Γ1,

� if ψ1Uψ2 ∈ Γ1, then ψ2 ∈ Γ1 or (ψ1 ∈ Γ1 and ψ1Uψ2 ∈ Γ2),

� if ψ1Sψ2 ∈ Γ2, then ψ2 ∈ Γ2 or (ψ1 ∈ Γ2 and ψ1Sψ2 ∈ Γ1).

The automaton As = (Σ, Q,Q0, η, F) is then de�ned as follows:

� Q is the set of atoms;

� Q0 = {Γ ∈ Q : φ ∈ Γ,Yψ /∈ Γ for all ψ ∈ cl(φ), ψ1Sψ2 ∈
Γ i� ψ2 ∈ Γ};

� Γ1
β−→ Γ2 ∈ η i�

� β = Γ1 ∩A,
� (Γ1,Γ2) is one-step consistent;

81

3. Bounded Satis�ability Problem

� F = {F1, . . . , Fm}, where Fi = {Γ ∈ Q | φiUψi /∈ Γ or ψi ∈ Γ}
and {φ1Uψ1, . . . , φmUψm} is the set of Until formulae occurring
in cl(φ).

The automaton As is a generalized Büchi automaton. In order to pro-
vide the automaton Aφ, we shall translate As into a classical Büchi
automaton, still preserving the language of accepted ω−words. For ease
of writing, we also denote this automaton with As.
Let A = (SV (φ), Q′, Q′0, δ

′, F ′) be the automaton over the alphabet of
symbolic valuations given by the intersection of automata A` and A¬C ,
as shown in [6]. Automaton Aφ = (SV (φ), Q′′, Q′′0, η, F

′′) is de�ned as
the product of As and A, according to the standard intersection of Büchi
automata but adapted in the de�nition of η:

� Q′′ = Q×Q′ × {0, 1, 2};

� Q′′0 = {(Γ, q′, 0) : Γ ∈ Q0 and q′ ∈ Q′0};

� (Γ1, q
′, i)

sv−→, (Γ2, p
′, j) ∈ η i� Γ1

β−→ Γ2 ∈ δ, q′ sv−→ p′ ∈ δ′ and
sv |=s ξ, for all ξ ∈ Γ1, and:

� if i = 0 then j = 1;

� if i = 1 and Γ1 ∈ F , then j = 2;

� if i = 2 and q′ ∈ F ′, then j = 0;

� otherwise i = j;

� F ′′ = Q×Q′ × {0}.

We are ready to prove completeness of k-bounded satis�ability when
the logic admits reduction of satis�ability to emptiness problem for Büchi
automata. In order to de�ne a procedure to decide the satis�ability for
φ we reduce the problem to a �nite amount of bounded satis�ability
problem. Instead of de�ning the automaton Aφ we de�ne a CLTLB(L∪
AP) formula φ′ such that if it is bounded satis�able for some k ∈ N
then the formula φ is satis�able. In particular, we �rst de�ne formulae
φ` and φAC for automata A` and AC whose models are exactly words of
the language recognized by the automata. Finally, φ′ is the conjunction
of the two formulae above, φ` and φAC , with φ which is, then, checked
for bounded satis�ability. It is worth noticing that atomic proposition
encode only control states of automata. They are involved in φ′ since we
are looking for ultimately periodic runs of automata and they are not
part of the original formula φ ∈ CLTLB(L) for which Theorem 53 holds.
Both automata A` and AC involved in the construction of Aφ do not

depend on the LTL temporal modalities appearing in φ, but only on the

82

3.6. Completeness of the Bounded Satis�ability Problem for CLTL

language L, on the set of variables V and constants and, �nally, on the
length dφe of symbolic valuations. The Büchi automaton automaton A`
is a tuple (SV (φ), QA` , Q0, δA` , FA`) such that Q = Q0 = F = SV (φ)

and its transition relation is such that sv sv′−−→ sv′ ∈ δ i� (sv, sv′) are
locally consistent. Its de�nition is exactly the same as [74]. Sequences of
locally consistent symbolic valuations recognized by automaton A` are
also models of the formula

φ` := G(
m∨
1

svi).

where m = |SV (φ)| is the cardinal of the set of symbolic valuations. In
fact, since

(i) the encoding provided in Section 5 is such that the representation
of formulae is not contradictory, i.e. two consecutive symbolic val-
uations are satis�able if, and only if, they are locally consistent,
and

(ii) the symbolic valuation sv satis�ed in a position i is unique (because
of the maximal consistency of symbolic valuations, Lemma 4 of
[74]),

then G(
∨m

1 svi) represents exactly words of L (A`). According to Demri
and D'Souza [6], the automaton AC is not directly built from condition
C. Instead, an automaton A¬C , recognizing the complement language
of L (AC), is built �rst. Then, the automaton AC is obtained through
Safra's method [82] for complementing Büchi automata. In general, AC
is de�ned by AC = (SV (φ), QAC , Q0, δAC , FAC). We use the reduction
of the model-checking problem to the satis�ability problem, given in [52],
to represent the automaton AC by a CLTLB(L) formula. Let φAC be
the formula representing AC :

φAC :=
∨

qi∈Q0

qi ∧ GF(
∨
qi∈F

qi)

G

 ∨
i∈{1,...|Q|}

(qi ∧
∧

j∈{1,...|Q|}\{i}

¬qj) ∧
∧

i∈{1,...|Q|}

(qi ⇒
∨

(qi,sv,qj)∈δ

(sv ∧Xqj))


where Gψ and Fψ are shorthands for ¬(TU¬ψ) and >Uψ.
We verify if the following formula is bounded satis�able with respect to
k ∈ N:

I(x0) ∧ φ ∧ φAC ∧ φ` (3.1)

83

3. Bounded Satis�ability Problem

where I(x0) is a formula of L de�ning an initialization for variables and
φ` = G(

∨m
1 svi) with m = |SV (φ)|. If the formula (3.1) is unsatis�able

for all k ∈ [1, c + 1] then there does not exist any ultimately periodic
symbolic model ρ ∈ SV (φ)ω such that ρ, 0 |=s φ and such that there
exists an arithmetic model σ with σ |= ρ. Hence, formula φ is unsatis�-
able. Otherwise, there exists an ultimately periodic symbolic model ρ of
length k > 0 which admits a model σ. From the bounded solution, we
know exactly the model ρ = δ(π)ω and the bounded model σk. Then,
the in�nite model σ is de�ned from σk by iterating in�nitely many times
the sequence of symbolic valuations in π.
Before entering in details of proofs, we de�ne some useful notations.

Because IPC∗ involves binary relation, in order to simplify notation, we
use in�x notation and we write τ1 ∼ τ2 instead of R(τ1, τ2). Let us
denote the formula (3.1) to be f . Let V be the set of variables of φ and
terms(φ) be the set of all the arithmetic term Xix such that 0 ≤ i ≤ dφe
for all x ∈ V . Let P = cl(f) the closure of f (here extended also to
temporal operator R,T) and let Q ⊆ P the set of propositional atoms
of P . Let us suppose the formula (3.1) to be satis�able. A model for the
encoded formula [f]k of f is a pair (π, σ̂k) de�ned by the following two
functions:

� a function σ̂k : {0, . . . , k + |τ |} × {τ} → D for all τ in terms(φ);

� a function π : {0, . . . , k + 1} × {P ∪ SV (φ)} → {0, 1}.

It is worth noticing that we consider π a function de�ned over {P ∪
SV (φ)} because the encoding [f]k is such that every atomic formula τ
has a precise truth value for all position {P ∪ SV (φ)}. This means that
if [f]k the sequence of symbolic valuation ρ such that σ̂k |=s ρ is known.
In the following, we shall say that the subformula ϕ holds in i, written
ϕi, when

(π, σ̂k), i |=k ϕ

The value of the a.t.t. τ at position i, written τi, is σ̂k(i, τ).

Lemma 67. The projection of π of [φAC]k models are possible initialized
ultimately periodic run of automaton AC .

Proof. If [φAC]k is satis�able, there exists an ultimately periodic model
of symbolic valuations which is accepted by the automaton AC . The
subformula GF() in [φAC]k is satis�ed when at least one accepting state
of FAC is repeated in�nitely often, witnessing the Büchi acceptance con-
dition for AC . Moreover, only one state qi is visited at each step because

84

3.6. Completeness of the Bounded Satis�ability Problem for CLTL

the sequence of q0, . . . , qk satis�es

G

 ∨
i∈{1,...|Q|}

(qi ∧
∧

j∈{1,...|Q|}\{i}

¬qj)

 .

When moving from a state qi to qi+1 the satis�ed symbolic valuation sv
witnessing

G

 ∧
i∈{1,...|Q|}

(qi ⇒
∨

(qi,sv,qj)∈δ

(sv ∧Xqj))

 .

is unique, because of the maximal consistence of symbolic valuations.
A symbolic valuation sv is de�ned at position i to be the set of all the
atomic formulae τ1 ∼ τ2 between elements τ1 ∈ terms(φ) and τ2 ∈
terms(φ). The truth value of atomic formulae ξ = τ1 ∼ τ2 is de�ned by:
ξi ⇔ τ1i ∼ τ2i, i.e., σ̂k, i |= ξ ⇔ σ̂k(i, τ1) ∼ σ̂k(i, τ2). Now, let us consider
the conjunct θ = GF

(∨
qi∈F qi

)
, denoted GF(γ) with γ =

∨
qi∈F qi.

By using duality of temporal operator, we shall exploit the following
equivalence: θ = GF(γ) = ¬(>U¬(>Uγ)) =⊥ R(>Uγ). Now, let us
denote ψ to be the subformula >Uγ. The �xpoint representation for θ
and ψ is de�ned by the |TempConstraints|k for 1 ≤ i ≤ k:

θi ⇔ ψi ∧ θi+1

ψi ⇔ γi ∨ ψi+1.

Let us denote
∨k
i=1(` = i) to be loop; the eventuality constraints are:

loop⇒ ¬θk ⇒ ` ≤ jψ ≤ k ∧ ψjψ
loop⇒ ψk ⇒ ` ≤ jγ ≤ k ∧ γjγ .

Since θ is satis�able, i.e., θ0 holds, ψi∧θi+1 holds for all 1 ≤ i ≤ k. Then,
we have ` ≤ jγ ≤ k ∧ γjγ , since ψk holds. Consequently, ` must be true
and the formula

∨k
i=1(` = i) de�nes the position of the loop. According

to the |LastStateConstraints|k all the subformulae θ ∈ P are satis�ed in
k+1 i� they are satis�ed at position `: θk+1 ⇔ θ` for all θ ∈ P . Moreover,
|LoopConstraint|k enforce qk ⇔ q`−1 for some q ∈ Q. Therefore, the
projection of π on the alphabet over Q is the sequence q0 . . . q` . . . qkq` of
control state q ∈ Q which is an ultimately periodic run of AC of the form
q0, . . . , q`−1(q`, . . . , qk)

ω. The projection of π on the alphabet SV (φ) is
an ultimately periodic word ρ = sv0, . . . , sv`−1(sv`, . . . , svk)

ω of symbolic
valuations such that σ̂k |=k ρ. Finally, the satis�ability of the formula γ

85

3. Bounded Satis�ability Problem

at position jγ witnesses the repetition of at least one accepting state of
AC in�nitely often. Hence, the sequence q0, . . . , q`−1(q`, . . . , qk)ω is an
accepting run of AC and the sequence sv0, . . . , sv`−1(sv`, . . . , svk)ω is a
word belonging to L (AC). Conversely, if the language of the automaton
is not empty, then there exists an ultimately periodic word which belongs
to L (AC). Since the number of control state of AC is �nite, the longest
pre�x which can be aperiodic is of length at most |Q|. This su�ces to
guarantee the existence of a maximal length for k. In other words, if the
language of AC is not empty, then there exists at least one ultimately
periodic word of length bounded by |Q|. The formula φAC is satis�able
by a model given by the sequence of control state of AC and the sequence
of symbolic valuations constituting the word recognized by AC .

Next lemma requires the de�nition of graph of models which can be
found in [6] by Demri and D'Souza. We recall this de�nition as intro-
duced by the authors. For structure of the form (D,<,=) (which is
part of IPC∗) a symbolic valuation sv is represented by a directed graph
Gsv = (terms(φ), E). Nodes are terms of the CLTLB formula and edges
are between (two) elements (terms). By construction, Gsv has an edge
between every pair of elements of N and does not have direct cycles
containing a strict relation <. The notion of graph of symbolic valua-
tions naturally extends to sequences of symbolic valuations which can be
represented as in�nite directed graph Gρ. Gρ is the superimposition of
graphs corresponding to symbolic valuations of ρ.

Lemma 68. Formula (3.1) is satis�able, for some k ∈ [1, c + 1], if
and only if there exists an ultimately periodic model which is accepted by
automaton Aφ.

Proof. Given the initial assignment I(x0) the encoding [φ]k of the for-
mula φ, [φ`]k of the formula φ` and [φAC]k of the formula φAC de�ne
exactly the semantics for f such that (π, σ̂k) |=k [f]k. i.e., (π, σ̂k) is
such that all the constraints |LoopConstraint|k, |ArithConstraints|k,
|TempConstraints|k |LastStateConstraints|k, |Eventually|k (see de�-
nition Section 3.3) of [φ]k, [φA`]k and [φAC]k are satis�able.
Since (π, σ̂k) |=k [f]k then (π, σ̂k) |=k [φAC]k. Lemma 67 guarantees

that the projection of π of [φφ]k models are possible initialized ultimately
periodic run of automaton AC . Now, we demonstrate that, given a
subformula ϕ ∈ cl(φ), if ϕi holds then there exists a control state of Aφ,
de�ned by an atom W such that ϕ ∈ W and which is visited by some
initialized run. Observe that the encoding of [φ]k de�nes precisely the
truth value of all the subformulae of φ. Then, if [φ]k is satis�able, the

86

3.6. Completeness of the Bounded Satis�ability Problem for CLTL

set of all subformulae

Wi = {ϕ | ϕ ∈ cl(φ), ϕ 6= q for q ∈ Q, if θi holds then ϕ = θ else ϕ = ¬θ}

de�nes an atom of the automaton As. We do not take into consideration
atomic propositions p ∈ Q representing control states of the automaton
Aφ. The sequence W0 . . .W` . . .WkW` of sets Wi for 0 ≤ i ≤ k + 1
is an ultimately periodic sequence of atoms W0 . . .W`−1(W` . . .Wk)

ω of
As due to the satis�ability of formulae |LastStateConstraints|k and
|LoopContraint|k. By induction on the structure of the formula φ we
prove that for each position 1 ≤ i ≤ k+ 1, if ϕi holds in the �nite model
(π, σk), then there exists a control state (W, q, a) in the automaton Aφ
accepting ϕ such that ϕ ∈W and there is a symbolic valuation sv which
holds at i for which q

sv−→ p for some q, p ∈ Q. Consequently, if the
encoding [f]k of f is satis�able with a �nite model (π, σk) then there
exists an accepting run for φ of the automaton Aφ of the form

(W0, q0, 0) . . . (W`−1, q`−1, a`−1) ((W`, q`, a`) . . . , (Wk, qk, ak))
ω

which recognize the sequence of symbolic valuations

ρ = sv0 . . . sv`−1(sv` . . . svk)
ω.

such that φ ∈W0, ρ |=s φ and σk |=k ρ.
It is worth remarking that the encoding enforce the following equiva-

lence:

� (W`, q`) = (Wk+1, qk+1) because if there exists a loop then for all
the subformulae ϕk+1 ⇔ ϕ`.

� (sv`−1, q`−1) = (svk, qk).

� No constraints are de�ned for the arithmetic model σk.

Now, we are shall prove by structural induction that for 0 ≤ i ≤ k, ϕi
holds i� there exists a sequence of atomWi, . . . ,Wm such that ϕ ∈Wi, a
sequence of control states qi, . . . , qm and a sequence of values ai, . . . , am
de�ning and accepting subrun of Aφ for the formula ϕ.
The base case is given on atomic formulae ϕ = α ∼ β. If ϕi with
1 ≤ i ≤ k then there exists a symbolic valuation sv such that svi is
satis�able at the position i and also svi ∧ ϕi; i.e., sv |=s ϕ, as required
in the rule de�ning the transition relation η of the automaton Aφ. Also,
there are two control state q and q′ such that q ⇒ sv ∧Xq′, and then
q

sv−→ q′, and such that both qi and q′i+1 hold. If qk then q′i+1 as well as
q′` hold (due to the |LastStateConstraints|k). The set of subformulae

87

3. Bounded Satis�ability Problem

Wi de�ne an atom constituting a control state of the automaton As such
that sv = Wi ∩ cl(A(φ)). Hence, control states (W, q, a) is a control
state accepting ϕ such that (Wi, q, a)

sv−→ (U, q′, b), for some atoms U . It
remains to complete the run with values for a and b. If a = 0 then b = 1.
If a = 1 then we proceed according to the rules given for the subformula
ϕ = ψUψ. If a = 2 then we check if q ∈ F ; if it is the case than a = 2
and b = 0; otherwise, a = 2.
Then, we proceed by considering all the subformulae in cl(φ); for each
ϕ ∈ cl(φ) it is possible to build an accepting subrun of Aφ.
Inductive step.

� If ϕ = Xψ then for 1 ≤ i ≤ k, ϕi ⇔ ψi+1 and for i = k then
ϕi ⇔ ψ`. If ϕi holds then ϕ ∈ Wi and, by hypothesis, Wi+1 is
an accepting state for ψ such that ψ ∈ Wi+1. Moreover, there are
two control state of Aφ, q, p ∈ Q′ for which qi, pi+1 and a symbolic
valuation sv ∈ SV (φ) such that svi. It follows that Wi

sv−→ Wi+1

such that sv ∈ Wi ∩ cl(A(φ)) is a subrun of As for which Xψ ∈
Wi if, and only if, ψ ∈ Wi+1 according to the de�nition of one-
step consistent atoms. Also, q sv−→ p is a subrun of AC . Hence,
(Wi, q, a)

sv−→ (Wi+1, p, b) is an accepting subrun of Aφ for the
formula ϕ, no matter what the value of a, b is considered.

� If ϕ = Yψ then for 1 ≤ i ≤ k, ϕi ⇔ ψi−1 and for i = 0 then
ϕi ⇔⊥. The same ideas for subformulae Xψ applies also in this
case. The only di�erence to be considered is the characterization
of the atom W of the sequence when ¬ϕ0 holds; in this particular
case, the atom W do not contain the subformula ϕ in order to be
considered an initial state.

� If ϕ = ψUζ then for 1 ≤ i ≤ k, ϕi ⇔ ψi ∨ (ψi ∧ (ψiUζ)i+1). If ϕi
holds two cases have to be considered.

� ζj holds for i ≤ j ≤ k; then ϕk does not hold and, according
to the �xpoint representation for the formula, ϕz and ψz are
satis�ed in all the states i ≤ z ≤ j. Then ϕ ∈ Wi and the
sequence of atoms Wi, . . . ,Wj denoting control states of As
is such that ϕ ∈Wh and ψ ∈Wh, for i ≤ h ≤ j, and ζ ∈Wj ;
by induction hypothesis, atoms Wh are accepting states for
formulae ϕ and ψ and Wj for the formula ζ. Moreover, there
is a sequence of control states qi, . . . , qj for which qz

svz−−→ qz+1,

i ≤ z ≤ j. It follows that Wi
svi−−→ . . .

svj−1−−−→ Wj for svz ∈
SV (φ) such that svz = Wz ∩ cl(A(φ)) and i ≤ z ≤ j is a
subrun of As for which if ψ1Uψ2 ∈ X then ψ2 ∈ X or (ψ1 ∈

88

3.6. Completeness of the Bounded Satis�ability Problem for CLTL

X and ψ1Uψ2 ∈ Y) according to the de�nitions of one-step

consistent atoms; also, qi
svi−−→ . . .

svj−1−−−→ qj is a subrun of AC .
Hence, (Wi, qi, ai)

svi−−→, . . . , (Wj , qj , aj) is an accepting subrun
of Aφ for the formula ϕ. Let us provide how to complete the
run so far de�ned. Let U = {φ1Uψ1, . . . , φmUψm} be the set
of Until formulae occurring in φ. Then ϕ ∈ U . Let U ′ be the
set of Until formulae occurred in the model; U ′ = ∅ when we
start to read the model (π, σk) from W0. If ai = 0, or ai = 1,
then, since Wj is an accepting state for ϕ we add ϕ to the
set of occurred Until, U ′ = U ′ ∪ {ϕ}. If U = U ′ then all the
eventuality for all the formulae in U are occurred; then, we
�x aj = 2. Otherwise, if ai = 2 we check if a �nal control
state q ∈ F occurs between i an j. If it is not the case, than
aj = 2. Otherwise, let i ≤ h ≤ j the position such that qh
holds; then, ah = 0, at = 1 for h+ 1 ≤ t ≤ j − 1 and aj = 2.

� Otherwise, ϕk holds and ζj holds for ` ≤ j ≤ i; ϕz is satis�ed
in all the positions ` ≤ z ≤ j and i ≤ z ≤ k + 1. This
follows from the formula ϕk ⇒ ` ≤ j ≤ k∧ζj of the encoding.
Similarly for the previous case, we can build the accepting
sequence for ϕ by considering the positions in the �nite model
where ϕz is satis�ed.

� If ϕ = ψSζ then for 1 ≤ i ≤ k + 1, ϕi ⇔ ψi ∨ (ψi ∧ (ψiSζ)i−1)
and (ψiSζ)0 ⇔ ζ0. If ϕi holds for 1 ≤ i ≤ k + 1 there exists
0 ≤ j ≤ i such that ζj , then the sequence of atoms Wj . . .Wi

denoting control states of As is such that ϕ ∈Wh and ψ ∈Wh for
j ≤ h ≤ i; by induction hypothesis, atoms Wh are accepting states
for the formulae ϕ and ψ and Wj for the formula ζ. The sequence
of control states qj . . . qi, de�ned similarly to the Until case, is a
subrun of AC . Then, we can de�ne the subrun of Aφ accepting ϕ

as (Wj , qj , aj)
svj−−→ . . . (Wi, qi, ai). The rules de�ning the values ah

are the same as for Until subformulae.

� If ϕ = ψRζ then for 1 ≤ i ≤ k, ϕi ⇔ ζi ∧ (ψi ∨ (ψRζ)i+1). This
case can be reduced to the analysis of a subformula containing U
since the automaton As do not involve dual temporal modalities.
Indeed, let us consider a sequence of positions z, i ≤ z ≤ j, such
that ψj and ϕz hold. Now, from this fact we know that the formula
¬ϕ⇔ ¬(ψRζ) is not satis�able in the same sequence. By duality
of U and R, ¬ϕ = ¬(ψRζ) = ¬ψU¬ζ. Then, each atomWz of the
sequence Wj . . .Wi does not contain the subformula ¬ψU¬ζ but
they may contain ψU¬ζ, ¬ψUζ or ψUζ. Indeed, the sequence

89

3. Bounded Satis�ability Problem

recognizing ϕ visits, �rst, atoms which contains ¬ψUζ or ψUζ
(but not ψUζ), for i ≤ z ≤ j, and atoms containing ψUζ, in the
position j. Moreover, each of these subformulae are satis�ed in the
position in which they occurs, by de�nition of the encoding for ϕ.

� If ϕ = ψTζ then for 1 ≤ i ≤ k + 1, ϕi ⇔ ψi ∧ (ψi ∨ (ψiTζ)i−1)
and (ψiTζ)0 ⇔ ζ0. Similarly for the case of Release, we can build
the accepting run of Aφ for ϕ by considering the dual relation
¬(ψiTζ) ⇔ ¬S¬ζ. Let us consider a sequence of positions z,
j ≤ z ≤ i, such that ψj and ϕz hold. Now, from this fact we
know that the formula ¬ϕ = ¬(ψRζ) is not satis�able in the same
sequence. Therefore, each atomWz of the sequenceWj . . .Wi does
not contain the subformula ¬ψS¬ζ but they may contain ψS¬ζ,
¬ψSζ or ψSζ. Hence, it is an accepting subrun of As for the for-
mula ϕ. The sequence of control states q is de�ne as in the previous
cases as well as the values for az.

Finally, since [f]k holds then φ ∈ W0 and the sequence of length k of
triple (Wi, qi, ai), de�ned starting from (W0, q0, 0), is a periodic accepting
run of Aφ for φ.
Conversely, let us suppose there exists an ultimately periodic model

which is accepted by Aφ. It is a sequence of symbolic valuations ρ = uvω

which can be represented by a �nite word uvω of �nite length k and
recognized by a periodic run of Aφ which is de�ned in the following way:

υ = (W0, q0, 0)(W1, q1, 1) . . . (W`−1, q`−1, a`−1)((W`, q`, a`), . . . , (Wk, qk, ak))
ω

where the sequence of W0W1 . . .W`−1(W` . . .Wk)
ω is a run of the au-

tomaton As and q0 . . . , q`−1(q` . . . qk)
ω is a run of the automaton AC .

In particular, ρ is de�ned by the projection on the alphabet of SV (φ)
of the subformulae occurring in every Wi, for 0 ≤, i ≤ k. Since υ is
an accepting run then there exists at least one control state (Wj , qj , aj)
such that aj = 0. The sequence of control states q0 . . . q`−1(q` . . . qk)ω is
an accepting run of the automaton AC and, by construction, along with
the sequence of symbolic valuations, is a model for the formula φAC ;
analogously, the sequence of control state W0 . . .W`−1(W`, . . . ,Wk)

ω is
an accepting run of the automaton As. Now, we shall give a justi�cation
explaining this. A model for [φ]k and [φAC]k is given by the union of (the
truth value of) all the subformulae in Wi, qi and the values of variables
occurring in φ. In particular, we de�ne model π in this way: given a
position 0 ≤ i ≤ k + 1, for all subformulae ϕ ∈ cl(φ) we de�ne

� τk(i, ϕ) = 1 when ϕ ∈Wi,

90

3.6. Completeness of the Bounded Satis�ability Problem for CLTL

� τk(i, ϕ) = 0 when ¬ϕ ∈Wi.

Moreover, π(i, q) = 1 when q = qi, else π(i, q) = 0. The encoding of
boolean connectives in |PropConstraints|k agrees with the de�nition of
consistency of atoms. All the pair (Wi,Wi+1) in the sequence are one-
step consistent by de�nition of |TempConstraints|k; then, the encoding
of subformulae ϕ = Xψ and ϕ = ψUζ follows naturally. The truth value
for subformulae ψRζ is derived by the dual relation: ¬ψRζ = ¬ψU¬ζ.
The sequence of symbolic valuations is consistent and all the a.t.t.'s
in the encoding of [φ] can be uniquely de�ned by considering at each
position i a symbolic valuation svi. Now, let us consider the sequence
ρ′ = sv0 . . . sv`−1(sv` . . . svk) of symbolic valuations such that I(x0) |=
sv0. The model σk(i, x) for each variable x ∈ V and for 0 ≤ i ≤ k + dφe
is de�ned by an edge respecting assignment of value in D for the graph
Gρ′ according to Demri and D'Souza [6] (Lemma 5.2) from the initial
con�guration I(x0). All the variable xi and all the a.t.t.'s τi are uniquely
de�ned by considering the values of variables in svi. Since the model is
periodic, there exists a control state (W`, q`, a) which is visited in the
position k + 1 of the run υ. It witnesses the satisfaction of the formulae
in |LastStateConstraints|k for which ϕk+1 ⇔ ϕl for all the subformulae
of φ. Finally, let us consider the set of formulae of |Eventually|k. If
the subformula ϕ = ψUζ belongs to the atom Wk then there exists a
position j ≥ k such that ζj holds. Since the model is periodic then this
position occurs in k ≤ j ≤ 2k, i.e., a position in ` ≤ jζ ≤ k. Moreover,
if ¬(ψRζ) = ¬ψU¬ζ belongs to Wk then there exists a position j ≥ k
such that ¬ζj holds. As in the previous case ` ≤ j ≤ k. Hence, the
|LastStateConstraints|k are satis�ed. The initial atom W0 is such that
Yϕ 6∈ W0 and if ψSζ ∈ W0 then ζ ∈ W0 which witnesses the encoding
of subformulae ϕ = Yψ and ϕ = ψSζ in the �rst position, i.e., ϕ0 ⇔⊥
and ϕ0 ⇔ ζ0.

The completeness bound for BSP of CLTLB(L) formulae is de�ned
by the recurrence diameter of Aφ. Next theorem requires notions of
denseness and openness of sets. Let (D,<,=) be the structure de�ning
the language of atomic formulae of CLTL. We say that D is dense, with
respect to the order <, if for each d, d′ ∈ D such that d < d′, there exists
d′′ ∈ D such that d < d′′ < d′. We say that D is open when for each
d ∈ D, there exist two elements d′, d′′ ∈ D such that d′ < d < d′′.

Theorem 69. For constraint systems IPC∗, (N, <,=), (Z, <,=), (D,<
,=), where D is dense and open, and their extensions with constants,
there exists a �nite completeness threshold for BSP.

91

3. Bounded Satis�ability Problem

Proof. The statement is a consequence of Proposition 53. In particular, if
Aφ accepts a word ρ then it must accept also ultimately periodic words
(by the nature of the acceptance condition of the automaton) which
admit arithmetic models since they respect condition C. By Lemma 68,
if there does not exist a value of k which makes the formula satis�able,
then language L (Aφ) is empty; otherwise, there exists a model σ and
an ultimately periodic sequence of symbolic valuations ρ such that σ |=
ρ.

In practice, when the domain of L is N or Z, formula (3.1) can be sim-
pli�ed. In fact, if it is satis�able, the sequence accepted by the automaton
AC is already locally consistent, as two consecutive symbolic valuations
are satis�able when they are locally consistent, due to the consistency of
the encoding of φ′. Then, formula φ` can be removed and formula (3.1)
becomes I(x0) ∧ φ ∧ φAC . When the domain of L has the comple-
tion property, instead, formula (3.1) becomes I(x0) ∧ φ ∧ φ`. In this
case, formula φ` is necessary to de�ne the sequence of locally consistent
symbolic valuations, since the automaton AC is not needed anymore.
Moreover, we can estimate the value of the completeness bound without
building automaton Aφ. Since the size of the set of control states of Aφ is
O(2|φ|), we can consider a rough estimation for the completeness bound
de�ned by the value d× |SV (φ)| × 2|φ|, where d is the cardinality of the
control state set of AC and |SV (φ)| is representative of the dimension of
φ` (which is again exponential in the size of the formula).

92

4. Bounded Model Checking

Problem

4.1. Bounded CLTL model-checking

Results of previous chapter allows us to obtain a complete procedure
for CLTLB(L) model-checking. Since model checking and satis�ability
problems are reducible to each other, from the traditional transformation
proposed by Sistla and Clarke in [52], then a completeness threshold for
CLTLB(L) model checking problem is derived from the one of satis�abil-
ity. In particular, if we consider counter systems in CS(L) or L-automata
(Büchi automata where transitions are labeled by formulae belonging to
CLTLB(L)) where L is one of fragments considered in previous chapter,
the completeness result for model-checking is immediate.
Following theorem is based on completeness results of Section 3.6

and reduction from model-checking to satis�ability. Let 〈M,φ〉 be the
CLTLB(L) formula de�ning the model-checking problem for M and φ
be the CLTLB(L) formula.

Theorem 70. Let φ be a CLTLB(L) formula andM be a counter system
in CS(L) or L-automata where L is a language such that satis�ability
for CLTLB(L) is complete. Then, M, q0 |= φ if, and only if, there exists
k ≥ 0 such that M, q0 |=k φ.

Proof. The theorem is proved by reducing the model-checking M, q0 |=k

φ to satis�ability problem for a CLTLB(L) formula 〈M,φ〉. Then, for-
mula 〈M,φ〉 is checked for k-bounded satis�ability. If 〈M,φ〉 is satis�-
able over k-bounded models then M, q0 |=k φ holds and, consequently,
M, q0 |= φ. Otherwise, the bound k is increased. The existence of un
upper bound for the value k guarantees that the procedure eventually
terminates. If there does not exists a value k such that M, q0 |=k φ then
M, q0 6|= φ.

When we are dealing with generic counter systems in CS(QFP), Model-
checking problem over k-bounded models becomes an e�ective semi-
decision for �extended� reachability property. Transition relation of a

93

4. Bounded Model Checking Problem

p q

x 6= y

Xx = x+ d

x = y

Xy = x+ d

Figure 4.1.: Two variables counter system - d ∈ {+1,−1}

counter system (Q,n, δ) ∈ CS(QFP) can be translated into a CLTLB(QFP)
formula which represents all initialized �nite runs of length k:

µk :=
k−1∧
i=0

qi ⇒ Xq′i+1 ∧ ξ

for all (q, ξ, q′) ∈ δ. The language for properties is CLTLB(L) with
L ⊆ QFP and formulae involving counters are of the form >Uφ and
φ is a Boolean combination of atomic formulae over atomic terms. For
instance, we would like to verify whether the system in Figure 4.1 satis�es
the formula GF(p ⇒ Fq) ∧ F(x < y). By verifying satis�ability of the
conjunction of µk and φ over bounded models, i.e., we check satis�ability
of [µ∧ φ]k, we may answer to a reachability problem only when formula
[µ ∧ φ]k is satis�able. Since reachability problem for generic counter
systems is undecidable, there does not exists a valueK such that checking
satis�ability of formulae [µ∧φ]k, with 1 ≤ k ≤ K, always allow us to give
an answer to a model-checking problem. In fact, being a semi-procedure,
when [µ∧φ]k is unsatis�able we can not deduce non validity of property
φ.

Nonetheless, k-bounded model-checking problem is complete if we re-
strict models to the class of reversal-bounded counter systems. We pro-
vide a simple practical example to make the bridge between arguments of
the previous chapter and forthcoming results. Let us build the r-reversal
bounded counter system S ′ from the system in Figure 4.1 by using the fol-
lowing standard construction. We de�ne Q′ = {p, q}× {↘,↗}2× [0, r]2

and δ such that the system (S, (q, {↗}2, {0}2),x) is r-reversal-bounded
by construction. Relation δ′ is de�ned as follows according to vectors
mode ∈ {↘,↗}n, representing modes for each counter, and rev ∈
[0, r]n which stores the number of reversal performed by S during a com-

putation; (q,mode, rev)
ξ−→ (q′,mode′, rev′) ∈ δ′ when q ξ−→ q′ and

94

4.1. Bounded CLTL model-checking

ξ mode(i) mode′(i) rev′(i)

1. d(i) ≥ 0 ↗ ↗ rev(i)
2. d(i) > 0 ↘ ↗ rev(i) + 1
3. d(i) ≤ 0 ↘ ↘ rev(i)
4. d(i) < 0 ↗ ↘ rev(i) + 1

In the case 2. and 4. the transition is de�ned if rev(i) < r. It is worth
noting that the following two proposition are equivalent:

(a) there is a run ρ in S such that (q,x)
∗−→ (q′,x′) and each counter has

at most r reversal.

(b) there is a run ρ′ in S ′ such that ((q, {i}n, {0}n),x)
∗−→ ((q′,m, r),x′)

and each counter has at most r reversal, for some pair (m, r)

Let us suppose we would verify whether there exists an in�nite run of
the r-reversal bounded counter system S ′ such that the control state q is
visited in�nitely often and the counter y is strictly monotonic. Let µS′
be the formula encoding the transition relation of S ′. Then, we simply
check for k-bounded satis�ability the following formula:∨

j∈[0,r]

∨
m∈{↗,↘}2

µS′ ∧GF(q,m, j)⇒ FG(Xy > y)

The construction of the system S ′ can be avoided provided that the
CLTLB formula restricts the set of runs to the only r-reversal bounded
ones. To this end, we introduce auxiliary variables rx, ry ∈ [0, r] which
count the number of reversal occurring along runs and such that:

� rx, ry will eventually stabilize; i.e., no reversal will occur after some
position and their value will remain constant: FG(Xrα = rα∧rα <
r)

� keep track of reversals occurred: G(Xrα = rα+1⇔ Yα < α∧α >
Xα)

where α ∈ {x, y}.
In its simplicity, this example represents a basic form of reversal-

bounded model-checking which will be argument presented hereafter and
which can be found in [9] by Bersani and Demri. Practical applications
of reversal-bounded model-checking rely on Bounded CLTLB model-
checking. In fact, we will prove that reversal-bounded model-checking
can be reduced to checking whether there exists ultimately periodic runs

95

4. Bounded Model Checking Problem

of bounded length satisfying a given CLTLB formula and some auxiliary
constraints restricting the monotonicity of counters.
Previous example shows that existential model-checking, i.e., the prob-

lem of �nding a run of a counter system S satisfying a given formula φ
(written S |= φ), is, in general, undecidable. In order to regain decidabil-
ity some restrictions must be imposed because in�nite runs of counter
systems are not, in general, e�ectively representable in Presburger arith-
metic. As immediate consequence, analyzing all the set of runs is unman-
ageable since they do not bene�ts of a useful decidable representation.
Therefore, the problem we are going to study is the model-checking prob-
lem over counter system S restricted to r-reversal-bounded runs. As we
explained in Section 2.7.3, bounded model-checking for �nite systems
bene�ts from nice properties on runs that allow the existence of an up-
per bound on the length of runs to be checked (completeness threshold).
Reversal-bounded counter systems can be adopted to perform bounded
model-checking by exploiting a technique handling temporal languages
with arithmetic given in Chapter 3. In fact, we prove that the length of
runs satisfying a temporal formula is bounded by a double exponential
in the size of the problem. Therefore, given a positive integer r ≥ 0,
checking whether a counter systems admits a r reversal-bounded in�-
nite run, which can be model of a temporal formula, can be done be
checking a �nite amount of bounded model-checking problem. In case
of positive answer, the process terminates, otherwise the value of r can
be incremented. It is worthy to be noticed that the notion of reversal-
boundedness we propose is di�erent with respect to the standard one.
In fact, we introduce the use of terms instead of restricting the prop-
erty of reversal-boundedness only to counters. This allow us to encom-
pass the standard notion given by Ibarra and also to focus precisely the
source of undecidability of counter systems which are enriched by non
trivial arithmetical constraints (i.e., involving more than one variable like
x+2y−z < 4). In particular, we are able to explain why strong reversal-
boundedness is required to retain decidability in such class of counter
systems. Although terms can be simulated by new fresh variables, we
avoid this construction and we focus on the theoretical aspect of terms of
guards. Also, the introduction of new fresh variables a�ects directly the
(practical) complexity cost of the problem. Moreover, counter systems
we consider are more general than Minsky machines: their guards are
de�nable in quanti�er-free fragment of Presburger arithmetic and update
vectors in Zn. Finally, we characterize the computational complexity of
the existence of r-reversal-bounded runs but also we e�ectively express
the set of con�gurations admitting such runs in Presburger arithmetic.
Decidability results obtained by our approach re�nes results by Dang

96

4.2. Decidability of Reversal Bounded Model Checking Problem

et al. in [40] and it is closed to decidability results for reversal-bounded
counter systems augmented with data structures such as stacks or queues.
Counter systems enriched by a stack is considered by Hague and Lin
[83] of which we give more details in Chapter 6. Di�erently from this
work, our temporal language is reacher because it contains control states,
past operators and also arithmetical constraints belonging to QFP. It
allows us to specify non trivial arithmetic properties on systems like
fairness contraint over counters, e.g., GF(Xx = x + y), which are un-
decidable in the general case (see undecidability results of ∃-Presburger-
always problem in Chapter 2.6). Finally, to compare complexity results
with respect ot other works, Kopczynski and To in [84, Theorem 22]
showed expTIME upper bound for LTL model-checking over reversal-
bounded counter automata but the logical language has no arithmetical
constraints and the number of reversals r is encoded in unary. Complex-
ity results given in Section 4.4 are built for instances where all integers
values (k and constants) are encoded in binary and the proof technique
relies on existence of small solutions for equation systems while the proof
of [83, Theorem 1] exploits Parikh's Theorem.

4.2. Decidability of Reversal Bounded Model

Checking Problem

4.2.1. New de�nition of Reversal Boundedness

In this section, we generalize the notion of reversal-boundedness and the
notion of strong reversal-boundedness introduced in Chapter 2.6.2
Let S = (Q,n, δ) be a counter system and T be a �nite set of terms in-

cluding {x1, . . . , xn}. We order the terms in T with x1, . . . , xn, t1, . . . , tn′
(then card(T) = n + n′, where n′ can possibly be equal to 0). From a
run ρ = (q0,x0), (q1,x1), . . . of S, in order to describe the behavior of
counters and terms varying along ρ, we de�ne a sequence of mode vec-
tors m0,m1, . . . (of the same length as ρ) such that each mi belongs
to {↗,↘}n+n′ . Given a term t =

∑
k akxk and a counter vector x, we

write t(x) to denote the integer
∑
akx(k). The sequence m0,m1, . . .

is similarly de�ned to the sequence of modes in Section 2.6.2 but here
extended to the set of terms T.

� m0 is the unique vector in {↗}n+n
′
.

� For j ≥ 0 and i ∈ [1, n+ n′] with the ith term in T equal to t, we
have

1. mj+1(i)
def

= mj(i) when t(xj) = t(xj+1),

97

4. Bounded Model Checking Problem

2. mj+1(i)
def

=↗ when t(xj+1)− t(xj) > 0,

3. mj+1(i)
def

=↘ when t(xj+1)− t(xj) < 0.

As we did for general reversal-boundedness in Section 2.6 we de�ne the
set Revi = {j ∈ N : mj(i) 6= mj+1(i)}; then, we say that

De�nition 71. ρ is r-T-reversal-bounded for some r ≥ 0 when for all
i ∈ [1, n+ n′], card(Revi) ≤ r.

Given a counter system S, we write TS to denote the �nite set of
terms t occurring in atomic guards of the form t ∼ k with ∼∈ {≤,≥}
and k ∈ Z. Now, we can give the notion of r-T-reversal-bounded counter
systems.

De�nition 72. An initialized counter system (S, (q,x)) is r−TS-reversal-
bounded when there is r ≥ 0 such that every run from (q,x) is r-TS-
reversal-bounded.

When T is reduced to {x1, . . . , xn}, T-reversal-boundedness is equiva-
lent to reversal-boundedness of Ibarra [3]. When a sequence of transitions
has a unique update vector, the mode vector remains constant. In this
case, when an initialized counter system in CS(QFP), involving guards
with terms in T′, is strongly reversal-bounded, as de�ned in Section 2.6.2,
then it is (T′ ∪ {x1, . . . , xn})-reversal-bounded.
Terms involved in the temporal formula φ ∈ CLTL(QFP) are treated

in a speci�c way since they may contains temporal modalities X over
terms (counters). In particular, let us consider to adiacent con�guration
(qi,xi) and (qi+1,xi+1) such that xi+1 − xi = v. The next value of the
u-th counter, denoted by Xxu, is equal to the current value of xu plus
some integer v(u) and the value of the term (

∑
u auXxu)+(

∑
u buxu) (in

φ), at the current position i, is equal to the value of
∑

u(au + bu)xu plus
some constant v(u) depending on the transition between positions i and
i + 1. Given an φ ∈ CLTL(QFP), we write Tφ to denote the �nite set
of terms of the form

∑
k(ak + bk)xk when t = (

∑
k akXxk) + (

∑
k bkxk)

is a term t ∼ k occurring in φ, with ∼∈ {≤,≥, <,>,=} and k ∈ Z.
Strong reversal-boundedness of runs is easy to obtain directly by adding
an LTL(QFP) formula to the property we desire; from a an arbitrary
position along the runs, counters are strictly monotonic:∨

q
(ξ,v)−−−→q′∈δ

FG(
∧

i∈[1,n]

((Xxi − xi) = v(i)))

The main problem we want to face with is the following:

98

4.3. From reversal-bounded model-checking to reachability

reversal-bounded model-checking

Input a counter system S ∈ CS(QFP), a con�guration (q,x),
a formula φ ∈ CLTL(QFP) and bound r ∈ N

Problem is there an in�nite run ρ from (q,x) such that ρ, 0 |= φ
and ρ is r-T-reversal-bounded with T = TS ∪ Tφ?

The restriction of RBMC to counter systems in the class CS(L1) and
to formulae in CLTL(L2) is denoted by RBMC(CS(L1),CLTL(L2)) with
L1,L2 ⊆ QFP.
In the next section, we give our decidability result for RBMC by pro-

viding a reduction to repeated reachability problem and after to a reach-
ability problem for CS(QFP) systems. Given a class C of counter systems
the RB-REACH(C) for the class is de�ned as follows:

reversal-bounded reachability problem for C

Input

- a counter system S ∈ C,
- two con�gurations (q0,x0) and (qf ,xf),
- r ≥ 0

Problem Is there an r-TS-reversal-bounded run from (q0,x0) to
(qf ,xf)?

Similarly, the reversal-bounded control state repeated reachability prob-
lem for C, written RB-REP-REACH(C), is de�ned as follows:

reversal-bounded control state r.r. problem for C

Input

- a counter system S ∈ C,
- a con�guration (q0,x0), a control state qf ,
- r ≥ 0

Problem Is there an in�nite r-TS-reversal-bounded run from
(q0,x0) such that qf is repeated in�nitely often?

When (S, (q0,x0)) is reversal-bounded, then reversal-bounded reach-
ability corresponds to the standard notion of reachability.

4.3. From reversal-bounded model-checking to

reachability

In this section, we show how to reduce

1. RBMC into RB-REP-REACH(CS(QFP)),

99

4. Bounded Model Checking Problem

2. RB-REP-REACH(CS(QFP)) into RB-REP-REACH(CS(QFP(<))),

3. RB-REP-REACH(CS(QFP(<))) into RB-REACH(CS(QFP(<))).

The �rst reduction is de�ned by synchronizing counter systems with
Büchi automata for temporal formulae according to the standard Vardi-
Wolper method in [51] for model-checking. The second one is easier
and it is realized by storing information on modulo classes of counters
within control states of a new counter system derived from the original
one. Finally, reduction of repeated reachability to reachability follows a
method similar to the one proposed by Dang et al. in [40].

4.3.1. Towards control state repeated reachability

In this section, we show how to reduce RBMC to RB-REP-REACH(QFP)
by synchronizing counter systems with Büchi automata for temporal for-
mulae, as done for LTL model-checking by Vardi and Wolper in [33],
and also for Petri nets by Esparza [85]. The result of synchronizing
counter system and a Büchi automaton is a new counter system which
realizes the transition relation of the original one and which embeds the
acceptance condition over in�nite runs from the Büchi automaton for the
formula. Therefore, runs of the new counter system are restricted only
to runs satisfying the LTL(QFP) property.
Let S = (Q,n, δ) ∈ CS(QFP), (q,x), φ ∈ CLTL(QFP) and r ∈ N

be an instance of RBMC. Let Aφ be the Büchi automaton for φ. Then,
counter system S ′ resulting from synchronizing Aφ with S embeds all
the terms form S and φ and it is such that TS′ = TS ∪ Tφ. We provide
now details about how to build the Büchi automaton Aφ by adapting the
standard Vardi-Wolper construction to our goals. Let A be the set closed
under negation of atomic formulae of the form q (representing control
states of S), t ∼ k and t ≡c k′ in φ. As usual, cl(φ) denotes the closure
of φ which is the smallest set of formulae closed under subformulae,
closed under negations (double negations are eliminated) and containing
φ. The set atoms(φ), of atoms of φ contains all the subsets of cl(φ) that
are maximally consistent and such that for every formula ξ ∈ A then
either ξ or ¬ξ belongs to the set.
A pair (X,Y) of atoms is one-step consistent when

� for every Xξ ∈ cl(φ), Xξ ∈ X ⇔ ξ ∈ Y ,

� for every Yξ ∈ cl(φ), Yξ ∈ Y ⇔ ξ ∈ X,

� for every ξ1Uξ2 ∈ cl(φ), ξ1Uξ2 ∈ X i� ξ2 ∈ X or (ξ1 ∈ X and
ξ1Uξ2 ∈ Y),

100

4.3. From reversal-bounded model-checking to reachability

� for every ξ1Sξ2 ∈ cl(φ), ξ1Sξ2 ∈ Y i� ξ2 ∈ Y or (ξ1 ∈ Y and
ξ1Sξ2 ∈ X).

It is worth noting that the set A contains subset which are trivially
false. Then, we have to restrict A to the set of valid(A) which is such
that valid(A) ⊆ P(A) and X ∈ valid(A) if, an only if, X ⊆ A and
for each atomic formula ξ in φ either ξ ∈ X or ¬ξ ∈ X but not both.
However, a set P ∈ valid(A) may be not satis�able, i.e., there does not
exists an assignment to all variables of arithmetical constraints of P such
that all formulae ξ ∈ P evaluates true.
The generalized Büchi automaton A′φ = (Σ, Q′, Q0, η, F) is de�ned as

follows:

� Σ
def

= Q× valid(A).

� Q′ is the set of atoms.

� Q0 is the set of atomsX such that φ ∈ X, X∩{Yξ : Yξ ∈ cl(φ)} =
∅ and for each S-formula ξ1Sξ2 ∈ cl(φ), ξ1Sξ2 ∈ X i� ξ2 ∈ X.

� X
(q,β)−−−→ Y ∈ η def⇔ {q} = X∩Q, β = X∩A and (X,Y) is one-step

consistent.

� let {φ1Uψ1, . . . φmUψm} be the set of Until formulae occurring in
cl(φ), de�ne F = {F1, . . . , Fm} with Fi = {X ∈ Q | φiUψi /∈
X or ψi ∈ X}.

The non-generalized version Aφ of the automaton A′φ can be built in
logarithmic space in the size of Aφ. In Aφ, the states are in Q′ × [0,m].
The construction is given in preliminaries of the thesis in Section 2.4.
The synchronized counter system S ′ = (Q×, n, δ×) is de�ned as follows

(de�nition considers the non generalized automaton Aφ for φ):

� Q× = Q×Q′ × [0,m],

� (q,X, a)
(ξ∧X(b),b)−−−−−−−→ (q′, X ′, a′) ∈ δ× def⇔

� (X, a)
(q,β)−−−→ (X ′, a′) ∈ η and q

(ξ,b)−−−→ q′ ∈ δ,
� X(b) is the conjunction of all QFP atomic formulae obtained
from X ∩A where each subterm Xxi is replaced by xi + b(i),
(constants are moved to obtain formulae of the form t ∼ k).

It is worth noting that ξ ∧X(b) may be unsatis�able; in that case, the
transition is never �red. Observe also that TS′ = TS ∪ Tφ.
Whenever the repeated reachability problem, for the class of systems

which S × Aφ belongs to, is e�ectively decidable, the RBMC problem

101

4. Bounded Model Checking Problem

for such a class is consequently decidable. An instance of RBMC can
be reduced to several instances of RB-REP-REACH(QFP) for S ′. In
particular, RBMC can be solved by checking a �nite number of instances
of RB-REP-REACH(QFP) depending which initial states and accepting
states are considered.
The following lemma states precisely the relation between the existence

of r-(TS ∪ Tφ)-reversal-bounded run of S and the existence of a run in
the synchronized product S ′ which visits in�nitely often a control state
witnessing the Büchi acceptance condition de�ned by the automaton Aφ.

Lemma 73 (Lemma 1, [9]). Let S = (Q,n, δ) ∈ CS(QFP), (q,x),
φ ∈ CLTL(QFP) and r ∈ N be an instance of RBMC and S ′ be the
counter system in CS(QFP) obtained by synchronizing S with Aφ. The
propositions below are equivalent:

(I) there is an in�nite r-(TS∪Tφ)-reversal-bounded run ρ of S from (q,x)
such that ρ, 0 |= φ;

(II) there is an in�nite r-TS′-reversal-bounded run from ((q,X0, 0),x)
such that (qf , Xf , 0) is repeated in�nitely often for some initial
atom X0 ∈ Atoms(φ) and for some (qf , Xf) ∈ Q×Atoms(φ).

Proof. Let ρ be an in�nite r-(TS ∪ Tφ)-reversal-bounded run ρ of S from
(q,x) such that ρ, 0 |= φ. Suppose that ρ is of the form (q0,x0), (q1,x1), . . .
and it is induced by the sequence of transitions t0t1t2 · · · and each tran-

sition ti is of the form qi
(ξi,bi)−−−−→ qi+1. We de�ne a function projA(ρ) :

N → Q × valid(A) which associates, to each position of the time, the
control state of the generalized automaton (accepting the run) satis-
fying the current con�guration of ρ de�ned by counter system S. In
particular, projA(ρ) is such that, for any position i ≥ 0, the element
projA(ρ)(i) = (qi, B), we have ξ ∈ B if, and only if, ρ, i |= ξ for all
formulae ξ ∈ A. By de�nition of Aφ, we have projA(ρ) ∈ L(Aφ).
By means of projA we can associate to ρ a synchronized run ρAφ of

the automaton Aφ which is, by construction, such that projA(ρ), 0 |= φ.

ρ = (q0,x0)
(ξ0,b0)−−−−→ (q1,x1)

(ξ1,b1)−−−−→ . . . (qi,xi)
(ξi,bi)−−−−→

ρAφ = (X0, 0)
(q0,β0)−−−−→ (X1, a1)

(q1,β1)−−−−→ . . . (qi, ai)
(Xi,βi)−−−−→ . . .

where q0 = q, x0 = x, X0 is an initial atom and for all i ≥ 0, xi |=PA ξi
and xi |=PA Xi(bi). Moreover, since projA(ρ), 0 |= φ, i.e., projA(ρ) is
an accepting run of Aφ, there is an atom Xf ∈ atoms(φ) such that the
control state (Xf , 0) in Aφ is repeated in�nitely often. By merging these

102

4.3. From reversal-bounded model-checking to reachability

two ω-sequences, we have an r-TS′-reversal-bounded run for S ′:

((q0, X0, 0),x0)
ξ0∧X0(b0)−−−−−−→ ((q1, X1, 1),x1)

ξ1∧X1(b1)−−−−−−→ . . .

. . . ((qi, Xi, ai),xi)
ξi∧Xi(bi)−−−−−−→ . . .

where (qf , Xf , 0) is repeated in�nitely for some qf ∈ Q. All terms oc-
curing in guards of the form ξi ∧Xi(bi) belong to TS′ (ξi are formulae of
S and Xi(bi) are sets of terms involved in φ).
Conversely, let us suppose that there is an in�nite r-TS′-reversal-

bounded run from ((q,X0, 0),x) such that (qf , Xf , 0) is repeated in-
�nitely often for some initial atomX0 ∈ atoms(φ) and for some (qf , Xf) ∈
Q× atoms(φ). The run ρ is of the form:

((q0, X0, 0),x0), ((q1, X1, a1),x1), . . .

and it is induced by a sequence of transitions t0t1t2 · · · such that each ti
is of the form

(qi, Xi, ai)
(ξi∧Xi(bi),bi)−−−−−−−−−→ (qi+1, Xi+1, ai+1).

Now, we can �lter the information concerning

� counter system, by projecting con�gurations of the form (q,x)

� the automaton for φ, by projecting atoms and values in [0,m].

By projecting onQ, the run (q0,x0), (q1,x1), . . . is an r-(TS∪Tφ)-reversal-
bounded run of S. By projecting on Atoms(φ) × [0,m], we obtain a
ω-word

(q0, β0)(q1, β1) . . . (qi, βi) . . .

which belongs to L (Aφ). By de�nition of S×, each con�guration is such
that xi |=PA ξi ∧Xi(bi). Therefore, the projected run over con�guration
is a model for φ, i.e., (q0,x0), (q1,x1), . . . , 0 |= φ.

As for propositional LTL, the construction de�ned to obtain Aφ is
done by considering at most an exponential number of control states
with respect to the size of the formulae.

Corollary 74 (Corollary 2, [9]). There is a polynomial-space reduction
from RBMC into RB-REP-REACH(CS(QFP)).

103

4. Bounded Model Checking Problem

4.3.2. Removing periodicity constraints

In this section, we show that given L ⊆ QFP using periodicity constraints
of the form t ≡c k, the reversal-bounded reachability problem for counter
systems in CS(L) can be reduced to the corresponding problem restricted
to counter systems in CS(L′), where L′ is the restriction of L without
periodicity constraints.
Let us consider the class of counter systems CS(L). The underlying

idea to remove periodicity constraints consists in de�ning a new counter
system S ′ ∈ CS(L′) from a given S ∈ CS(L), whose control states store
counter values modulo C, where C is the least common multiple of all the
constants c appearing in atomic formulae of the form t ≡c k in guards of
S. The number of control states in S ′ is equal to the number of control
states in S multiplied by C, which is in O(2N

2
). Hence, this construction

entails an exponential blow-up of the number of control states of the
new counter system S ′. Transitions of S ′ are de�ned accordingly to the
update operations on them in order to correctly represent the classes of
modulo for each counter. The justi�cation for using value C is given in
Appendix A.3. Here, we give an example of the notion we require. Let
2x + 5y ≡b a be a periodic constraint over a transition starting from q.
It is easy to see that, 2x + 5y ≡b a can be replaced by > if the new
control state q′ derived from q in S ′ is representative of the class x ≡C c
and y ≡ c′ such that 2c + 5c′ ≡b a. Intuitively, periodicity constraints
can be removed only by looking at the class of modulo ≡c stored within
control states of S ′.
Let S ′ = (Q′, n, δ′) be the counter system where Q′ = Q× [0, C − 1]n.

Given x ∈ Nn, we write x̃ to denote the unique tuple in [0, C − 1]n

such that for i ∈ [1, n], we have x(i) ≡C x̃(i). The set configok of valid
con�guration of S ′ are pair of the form ((q, x̃),y) such that ỹ = x̃. In
order to correctly map con�guration (q,x) to con�guration of the new
system ((q, x̃),y) we use a function f : (Q × Nn) → configok such that
f((q,x)) = ((q, x̃),x). f and f−1 extend naturally to sequences (either
�nite or in�nite ones). Transition relation δ′ is de�ned as follows: if

q
(φ,b)−−−→ q′ ∈ δ then (q, x̃)

(φ′,b)−−−→ (q′, ỹ) ∈ δ′ for all tuples x̃, ỹ, such that
for i ∈ [1, n], ỹ(i) ≡C x̃(i)+b(i) and φ′ is de�ned from φ by substituting
its subformulae of the form

∑
j ajxj ≡c k by:

>, when
∑
j

ajx(j) ≡c k

⊥, otherwise.
(4.1)

Removing periodicity constraints preserves runs of systems, i.e, there
exists a map between runs of S and S ′.

104

4.3. From reversal-bounded model-checking to reachability

Lemma 75 (Lemma 2, [9]). Let S = (Q,n, δ) be a counter system in
CS(QFP) and S ′ = (Q′, n, δ′) be the counter system in CS(QFP(<))
de�ned as above.

(I) For every run ρ of S, f(ρ) is also a run of S ′.
(II) For every run ρ of S ′ such that the �rst con�guration belongs to

configok, then all con�gurations in ρ belong to configok and f
−1(ρ)

is also a run of S.

Proof. (I) Let ρ be a run S of the form (q0,x0), (q1,x1), · · · and it is
induced by the sequence of transitions t1t2t3 . . . and each transition

ti is of the form qi−1
(ξi,bi)−−−−→ qi. From ρ we can build a run for S ′,

f(ρ) = ((q0, x̃0),x0), ((q1, x̃1),x1), . . . which is is induced by the se-

quence t′1t
′
2t
′
3 · · · where t′i is of the form (qi−1, ˜xi−1)

(ξ′i,bi)−−−−→ (qi, x̃i) and
ξ′i is de�ned according to the rule (4.1). f(ρ) is a run of S by the
property (PER) in Appendix (A.3) because in f(ρ), x(i) ≡C x̃(i) holds
for i ∈ [1, n] by construction and, therefore, t(x) ≡C k if, and only if,
t(x̃) ≡C k.
(II) Similarly, let ρ = ((q0, x̃0),x0), ((q1, x̃1),x1), · · · be a run such

that the con�guration ((q0, x̃0),x0) belongs to con�gok. By de�nition,
all the con�gurations in ρ belong to con�gok and f−1(ρ) is the se-
quence (q0,x0), (q1,x1), · · · . The sequence ρ is induced by the sequence

t1t2t3 . . . where each transition ti is of the form (qi−1, ˜xi−1)
(ξ′i,bi)−−−−→

(qi, x̃i) and ξ′i is de�ned by the rule (4.1). Let ti be a transition of the

form qi−1
(ξi,bi)−−−−→ qi. By construction, f−1(ρ) is a run of S by the property

(PER) which is induced by the sequence of transitions t1t2t3 · · · .

Therefore, previous lemma allow us to determine that removing peri-
odicity from formulae of transitions can be done in polynomial space in
the dimension of systems. The following corollary states this complexity
issue which is useful for �nal analysis of complexity in Section 4.4.

Corollary 76 (Corollary 2, [9]). Let L = QFP [resp. L = QFP(<1,≡)]
and L′ = QFP(<) [resp. L′ = QFP(<1)].

(I) There is a polynomial-space reduction from RB-REACH(CS(L)) to
RB-REACH(CS(L′)).

(II) There is a polynomial-space reduction from RB-REP-REACH(CS(L))
to RB-REP-REACH(CS(L′)).

Proof. Let S = (Q,n, δ) be a counter system in CS(L) and S ′ = (Q′, n, δ′)
be the counter system in CS(L′) derived from S by using the procedure

105

4. Bounded Model Checking Problem

explained above. Given ρ = (q0,x0), (q1,x1) . . . a run of S, then there
exists in S ′ an equivalent run ρ′ such that ρ′ = f(ρ) and f−1(ρ′) = ρ, by
from Lemma 75. If (q,x) is a con�guration such that (q0,x0)

∗−→ (q,x)
then there exists an equivalent con�guration f((q,x)) = ((q, x̃),x) in S ′

such that ((q0, x̃0),x0)
∗−→ ((q, x̃),x). Then, an instance (S, r, (q0,x0),

(q,x)) of a RB-REACH(CS(L)) can be reduced to (S ′, r, f((q0,x0)),
f((q,x))).
The control state repeated reachability is reduced in the same way. Let

ρ = (q0,x0), (q1,x1), . . . (q,x), . . . (q,x′) . . . be an in�nite run of S such
that q is repeated in�nitely often. Then, there exists in S ′ an run ρ′ such
that f(ρ) = ρ′ and ((q, x̃),x), ((q, x̃′),x′), . . . are con�gurations such
that q is repeated in�nitely often. Since the number of vectors x̃ is �nite
(i.e. (C − 1)n where n is the number of counters of S) then there exists
at least one con�guration (q, x̃) of S ′ which is repeated in�nitely often.
Then, an instance (S, k, (q0,x0), q) of RB-REP-REACH(CS(L)) can be
reduced to a �nite amount of instances of RB-REP-REACH(CS(L′)),
(S ′, k, f((q0,x0)), (q, x̃)) for all (q, x̃) where x̃ ∈ {0 . . . C − 1}n.

After removing periodicity constraints we have to provide the reduc-
tion from a repeated reachability problem to a reachability problem over
the class of counter systems in CS(QFP(<)). By exploiting the reversal-
boundedness property it is possible to show that in�nite runs which visit
a control state q in�nitely often can be discovered by looking at �nite
runs witnessing the repetition of q.

4.3.3. From Repeated Reachability to Reachability

The existence of an in�nite run can be decided by means of the existence
of a �nite run satisfying additional properties. It is worthy to be noticed
that such a reduction is not possible with nondeterministic Minksy ma-
chines without the reversal-boundedness assumption on terms. The in-
tuition behind the need of additional properties comes from the fact that
�nite runs become witness of an in�nite computation. After r reversals,
formulae of S occurring in transitions over an r-T-reversal-bounded run,
stabilize their logical value. In particular, counters are either constant or
monotonic increasing whereas terms can be either increasing or decreas-
ing. This de�nes a partition of the set of counters and terms distinguish-
ing constant or monotonic increasing counters and constant or monotonic
increasing/decreasing terms. Beside this condition, we have to verify
whether there exists a control state qf which is visited in�nitely often
witnessing the Büchi acceptance condition. Since we are looking for a �-
nite run, we have to check whether qf is repeated twice, similarly to what

106

4.3. From reversal-bounded model-checking to reachability

we do for bounded model-checking: the projection of the �nite run over
control states of S has the form q0q1 . . . qloop−1qloopvqloop which witnesses
an in�nite ultimately periodic run of the form q0q1 . . . qloop−1(qloopv)ω.
Periodicity of �nite runs is fundamental in our approach because, as
anticipated in Section 4.1 at the beginning of the chapter, ultimately pe-
riodic runs can be easily discovered by encoding the transition relation
of counter systems beside some additional constraints over SMT-solver,
by taking advantage of technique presented in Chapter 3. Now, we are
ready to give details on the equivalence between r-T-reversal-bounded
runs and their �nite ultimately periodic representation. Let us observe
that the additional constraints we are going to de�ne are an immediate
consequence of the reversal-boundedness property of runs. Let S be a
counter system in CS(QFP(<)) (then, without periodicity constraints),
qf be a control state and r ≥ 0. We de�ne Kmax (respectively Kmin) be
the maximum (respectively the minimum) constant value k occurring in
formulae t ∼ k over transitions. The set of counters and terms is par-
titioned as follows: the set of constant counters by the set Z→ ⊆ [1, n].
The set of constant terms is T→ and the set of monotonic increasing/de-
creasing terms by T↗/T↘.

(?) There is an in�nite r-TS-reversal-bounded run from (q0,x0) such
that qf is repeated in�nitely often.

(??) There exist a �nite run

(q0,x0), . . . , (ql′ ,xl′) . . . (ql,xl)

where l′ < l, j ∈ [l′ + 1, l], Z→ ⊆ [1, n] and T→, T↘, T↗ partitions
(TS \ {x1, . . . , xn}) such that:

1. ql′ = ql = qf and (q0,x0), . . . , (ql,xl).

2. xj(i)− xj−1(i) = 0, for i ∈ Z→,

3. xj(i)− xj−1(i) ≥ 0, for i ∈ [1, n] \ Z→,
4. xl′(i) ≥ Kmax, for i ∈ [1, n] \ Z→,
5. t(xj)− t(xj−1) = 0, fort ∈ T→,

6. t(xj)− t(xj−1) ≤ 0, for t ∈ T↘,

7. t(xj)− t(xj−1) ≥ 0, for t ∈ T↗,

8. For t ∈ T↘, t(xl′) ≤ Kmin.

9. For t ∈ T↗, t(xl′) ≥ Kmax.

Lemma 77 (Lemma 3, [9]). (?) is equivalent to (??)

107

4. Bounded Model Checking Problem

Proof. (?) implies (??). Let (q0,x0), (q1,x1), . . . be an in�nite r-TS-
reversal-bounded run from (q0,x0) such that qf is repeated in�nitely
often (with TS = {x1, . . . , xn} ∪ {t1, . . . , tn′}). All the atomic guards in
S are of the form t ∼ k with t ∈ TS and k ∈ [Kmin,Kmax].

� Let i ∈ [1, n] be an index belonging to the set of counters. From
some position, the value of counter i either remains constant or it
diverges to +∞ and the update values (on counter i) are always
greater than 0. In the �rst case, condition 2 of ?? is witnessed. In
the second case, monotonic counters are such that xj(i)−xj+1(i) ≥
0 (condition 3) and there is a position j1 such that for j ≥ j1,
xj(i) ≥ Kmax, for all i ∈ [1, n] \ Z→.

� Let i ∈ [1, n′] be an index belonging to the set of terms. Because
the term ti has a bounded number of reversals, one of the following
conditions holds:

� From some position, the value of the term ti remains constant,
i.e. there is j0 ∈ N, such that for j ≥ j0, ti(xj+1)−ti(xj) = 0.

� From some position, the value of the term ti diverges to −∞
and there is j0 ∈ N, such that for j ≥ j0, ti(xj+1)− ti(xj) ≤ 0
and there is a position j1 ≥ j0 such that ti(xj1) ≤ Kmin.

� From some position, the value of the term ti diverges to +∞
and there is j0 ∈ N, such that for j ≥ j0, ti(xj+1)− ti(xj) ≥ 0
there is a position j1 ≥ j0 such that ti(xj1) ≥ Kmax.

� There is a control state qf which is repeated in�nitely often.

Let j a position such that all previous conditions hold, i.e., all coun-
ters and terms stabilize their behavior. After this position, the parti-
tion T→, T↘, T↗ is de�ned. Therefore, we can identify two occurrences
of qf , after position j, which delimit the sequence of con�gurations
(ql′ ,x) . . . (ql,x

′) such that qf = ql′ = ql witnessing condition 1 and such
that xl′ ≥ Kmax, and t(xl′) ≥ Kmax, for terms t ∈ T↗, t(xl′) ≤ Kmin,
for terms t ∈ T↘ (witnessing conditions 4− 9).
(??) implies (?). Let ρ be a �nite run

(q0,x0)
t1−→ (q1,x1) · · ·

tl′−→ (ql′ ,xl′) · · ·
tl−→ (ql,xl)

satisfying conditions 1 − 9. For each transition ti, we assume that the
guard is φi and the update vector is bi. The �nite sequence of transitions
t1t2, . . . , tl′ . . . , tl is a witness of an in�nite sequence t1t2, . . . , tl′(tl′+1 . . . , tl)

ω

by repeating in�nitely many time the su�x tl′+1 . . . , tl. We show that

108

4.3. From reversal-bounded model-checking to reachability

we still obtain an in�nite r-T-reversal-bounded run. Let us consider the
in�nite sequence of con�gurations below

ρ′ = (q0,x0)
t1−→ (q1,x1) · · ·

tl′−→ (ql′ ,xl′) · · ·
tl−→ (ql,xl) = (ql,yl)

tl′+1−−−→ · · ·
tl′+1−−−→ (ql′+1,yl+1) · · ·

tl−→ (ql,yl+(l−l′)) · · ·

Now, we give a rule to de�ne values for counters. The rule exploits
reversal-boundeness property guaranteeing that the behavior of counters
is in�nitely stable from a position onwards and which can be realized
by iterating in�nitely many times the updates of sequence tl′+1 . . . , tl.
It is worth noting that guards t ∼ k over transitions have constant
logical value. For instance, let t ∈ T↗ and t < k be a formula of guard
φ at position l. Let us suppose that t(xl) < k does not holds, by 8.
Therefore, since all the updates are �xed between l′ and l, we have that
t(xl+(l−l′)) < k does not hold because xl+(l−l′) = xl + (xl − xl′), where
the di�erence (xl − xl′) is constant. The rule is de�ned as follows:

yl+u(l−l′)+u′ = xl+u′ + u(xl − xl′)

for k ≥ 0 and k′ ∈ [0, l− l′−1]. From previous considerations, we can see
that ρ′ is a run such that qf is repeated in�nitely often and the sequence
of transitions is an ultimately periodic word. Moreover, yl+u(l−l′)+u′ |=
φl′+1+u′ since xl+u′ |= φl′+1+u′ , for u ≥ 0 and u′ ∈ [0, l − l′ − 1]; and it
is r-TS-reversal-bounded since, after position l′, all terms can not have
reversals.

By means of the reduction given in the following theorem, we are able
to capture condition ??. The intuition behind it is to build a new counter
system S ′ from the original one S which reaches a �nal control state if,
and only if, condition ?? is satis�ed. The new system consists of as many
copy of S as the number of partitions of T such that each copy enforces
the realization of one partition.

Theorem 78 (Theorem 1, [9]). There is a polynomial-space many-one
reduction from RB-REP-REACH(CS(L)) into RB-REACH(CS(L)), where
L is QFP(<).

Proof. Let S be in CS(QFP(<)), (q0,x0) be an initial con�guration,
qf be a control state and r ≥ 0. The proof consists in the follow-
ing reduction: given an instance of repeated reachability, we de�ne an
instance of RB-REACH(CS(QFP(<))) over a new counter automaton
S ′ = (Q′, n, δ′) in CS(QFP(<)) enforcing condition (??). The new sys-
tem S ′ is made of the original version of S endowed with an exponential

109

4. Bounded Model Checking Problem

number (in the number of counters and terms) of modi�ed copies of S
each corresponding to a partition C = (Z→, T→, T↘, T↗), over counters
and terms, plus a new fresh control state qnew. The structure of counter
system S ′ is provided by the next �gure:

Figure 4.2.: Structure of system S ′

S

SC1

SCm

qnew

Condition (??) holds if, and only if, there is an (r + 1)-TS′-reversal-
bounded run of S ′ from (q0,x0) to (qnew,0). A SC system is obtained
from S by keeping only transitions with update vector b satisfying the
following conditions which are de�ned in function of partition C. In-
formally, after r reversals, if the i-th counter is constant, i.e., i ∈ Z→
within C, then only transitions of S such that b(i) = 0 are retained in
the transition relation of SC . Otherwise, all transitions with b(i) ≥ 0
are preserved.

condition C:

1. for i ∈ Z→, b(i) = 0;

2. for i 6∈ Z→, b(i) ≥ 0.

Similarly, the same applies to terms. The condition is captured by the
following condition T.

condition T:

1. for t ∈ T→, t(b) = 0;

2. for t ∈ T↘, t(b) ≤ 0;

3. for t ∈ T↗, t(b) ≥ 0.

For instance, let t = ax(i) + cx(j) be a term in T↗ and x, x′ be the
instance of x at current and next position. Because of the increasing
monotonicity of t, then a(x′(i)−x(i))+c(x′(j)−x(j)) ≥ 0 where x′(i)−
x(i) equals to the increment b(i). Therefore, a(x′(i)− x(i)) + c(x′(j)−
x(j)) ≥ 0 that is ab(i) + cb(j) ≥ 0 therefore t(b) ≥ 0. Analogously, we
derive t(b) = 0 and t(b) ≤ 0 for the other two cases. Previous conditions
enforce condition 2, 3 on counters and 5, 6, 7 on terms of ??. Now, we
have to give other condition on S ′ to realize periodicity of qf (condition 1)

110

4.3. From reversal-bounded model-checking to reachability

and to check absolute values of counters and terms. In order to simulate
the subrun (ql′ ,xl′) · · · (ql,xl), such that qf = ql = ql′ , from the original
copy, the system moves nondeterministically from qf of the original copy
to a control state q belonging to some SC system in S ′ such that there

exists qf
φ,b−−→ q in S. The move chooses which partition C is enforced

and it is realized by means of a transitions qf
φ′,b−−→ q such that b satis�es

previous conditions on counters and terms where φ′ is endowed with the
following guards:

condition G:

1. x(i) ≥ Kmax for i ∈ [1, n] \ Z→ (condition 4);

2. ti ≤ Kmin for i ∈ T↘ (condition 8);

3. ti ≥ Kmax for i ∈ T↗ (condition 9).

To enforce repetition of qf we de�ne an empty transition qf
>,0−−→ qnew

from every qf in each C-copy which nondeterministically jumps to the

new accepting control state qnew. Self-loops of the form qnew
φ′′,bi−−−→ qnew

such that φ′′ is x(i) > 0 and b(i) = −1 and b(j) = 0, with i 6= j for all
i, j ∈ [1, n], are needed to decrement all counters. Observe that:

� all previous additional formulae required to guarantee conditions
1 − 9 still belong to QFP(<). They do not involve new terms,
i.e., TS′ = TS , both the systems, S and S ′, have the same set of
constants k.

� The numbers of states of S ′ is bounded by card(Q) × (1 + 2n ×
(2n

′ × 2n
′
)) + 1 (with card(TS) = n+ n′).

4.3.4. Ultimately periodic runs

The reduction de�ned by Theorem (78) is fundamental to provide the
next theorem. By construction, we are able to characterize the existence
of a run satisfying a property φ by means of the existence of an ultimately
periodic run which is still a model for φ. This fact is a direct consequence
of the Büchi acceptance condition requiring repetition of an accepting
state and of reversal-boundedness of terms. The �gure below shows
the structure of �nite pre�xes representing the ultimately periodic runs
obtained by construction from S ′ de�ned in the proof of Theorem (78).
Conditions C, T, G restricting the set of runs only to the ultimately
periodic ones are placed over positions where they hold.

111

4. Bounded Model Checking Problem

Figure 4.3.: Ultimately periodic runs and conditions

q0 ql′ = qf ql = qf

G C, T

Corollary 79 (Corollary 3, [9]). Let S be in CS(QFP), (q,x) be an
initial con�guration, φ be in CLTL(QFP) and r ∈ N. The propositions
below are equivalent:

(I) there is an in�nite run ρ from (q,x) such that ρ, 0 |= φ and ρ is
r-T-reversal-bounded with T = TS ∪ Tφ.

(II) There exists an ultimately periodic run ρ satisfying the same prop-
erties as in (I).

Corollary 79 provides the theoretic foundation which allow us to jus-
tify the use of bounded approaches like k-bounded satis�ability to solve
RBMC. k-bounded satis�ability is e�ective in solving RBCM because it
cap capture ultimately periodic runs and conditions C, T and G.

4.4. Complexity and e�ective

Presburger-de�nability

In this section we provide complexity analysis of relevant problems we
consider so far. We prove that

� RB-REACH(QFP), RB-REP-REACH(QFP) and RBMC areNex-
pTIME-complete and

� the sets of initial con�gurations satisfying the properties related to
these problems (witness run properties) are e�ectively de�nable in
Presburger arithmetic.

It is worth to be noticed that the foundation of proof forNexpTIME up-
per bound of RB-REACH is based on a proof technique analyzing runs
used by Racko� in [86]. Runs of counter systems are partitioned into sub-
runs satisfying suitable conditions on the behavior of terms and counters
which are de�ned with respect to the number of reversal already per-
formed and the absolute value compared with constants involved into
formulae over transitions. By partitioning a run we obtain a symbolic
representation that we use to build a system of equations de�ning each

112

4.4. Complexity and e�ective Presburger-de�nability

phase and, therefore, the whole run, where variables of equations count
the number of iteration performed by loops of transitions within each
phase. The existence of small solutions for integer (inequality) sys-
tems [87] by Borosh and Treybig allow us to de�ne exactly the smallest
instance of legal runs satisfying the partition used to de�ne phases. The
length of such runs is proved to be of double exponential magnitude with
respect to the size of the RB-REACH problem, where all constants are
encoded in binary. Small run property can be used to de�ne a nonde-
terministic algorithm which guesses such small (r-T-reversal-bounded)
runs in (nondeterministic) exponential time. The existence of small run
solutions characterizing small runs makes k-bounded approach complete
with respect to RBMC. Complexity analysis for RB-REP-REACH and
RBMC is derived as consequence from NexpTIME-completeness of RB-
REACH. In fact, reductions from Corollary 74 of RBMC to RB-REP-
REACH and from Theorem 78 of RB-REP-REACH to RB-REACH, as
well as Corollary 76, concerning periodicity constraints, preserve the dou-
ble exponential length of small runs. Proofs of next theorems are taken
from [9] but here we present a summarized version. Before stating the
theorem we provide some essential de�nitions. Let S = (Q,n, δ) be a
counter system in CS(QFP(<)).

� Let AG be the set, closed under negation, of (conjunctions of)
atomic arithmetical formulae occurring in S.

� Given Y ⊆ AG and q
(φ,b)−−−→ q′, we write Y |= φ whenever

1. Y |= ξ1 ∨ ξ2 if, and only if, Y |= ξ1 or Y |= ξ2,

2. Y |= ξ1 ∧ ξ2 if, and only if, Y |= ξ1 and Y |= ξ2,

3. Y |= ξ where ξ is an atomic formulae or its negation, when
ξ ∈ Y .

De�nition 80. Let V be the set P(AG)× {+,−}n+n′ . A counter mode
v is a pair (X,h) ∈ V.

A counter mode de�nes exactly the set of (atomic) formulae of the
counter system which are true and the behavior (increasing/decreasing
mode) of all terms and counters. Counter modes are involved in the
de�nition of partition of runs. It is worth noting that the number of
counter modes is �nite and bounded by 2O(N). Given a counter mode,
we de�ne the notion of transition compatibility with respect to a counter
mode. Intuitively, a transition is compatible with respect to a counter
mode (X,h) when it can be �red when counter systems behaves accord-
ing to (X,h), i.e., its guards are consequence of the set X and updates
are compatible with behavior {+,−}n+n′ into h.

113

4. Bounded Model Checking Problem

De�nition 81. A transition t = q
(φ,b)−−−→ q′ is compatible with counter

mode v = (X,h) when

� X |= φ,

� if h(j) = + then tj(b) ≥ 0, otherwise tj(b) ≤ 0, for j ∈ [1, n+ n′].

Given a counter mode v, a sequence of transition compatible with v
de�nes a phase.

De�nition 82. A global strict phase in a �nite run is a �nite sequence
of consecutive transitions compatible with a counter mode.

Loops of runs play a fundamental role in the analysis provided in the
proof. Variables involved into the system of equation providing small
solution de�ne exactly the smallest number of times loops are needed to
determine the small run.

De�nition 83. A simple loop sl with respect to v is a sequence sl =
t1 · · · tγ verifying the conditions below.

1. The sequence t1 · · · tγ corresponds to a path in the control graph
of S starting and ending by the same control state and the other
control states occur only once.

2. Each transition of the sequence is compatible with v.

Length of simple loops is bounded by the structure of the graph de�n-
ing S, i.e., γ ≤ card(Q).
We provide now two fundamental measures needed to de�ne the length

of small runs. Let nbk be the number of constants occurring in atomic
formulae t ∼ k. Given a r-T-reversal-bounded run, there are (n+ n′) · r
distinct successive phases for the (n + n′) terms. During each phase,
all terms do not have reversals, i.e., have a �xed mode, according to
{+,−}n+n′ , and they can be compared with at most nbk constants. Each
term can verify at most nbk+ 2 distinct sets of arithmetical constraints,
t < k0, k0 ≤ t < k1, . . . , knbk−1 ≤ t < knbk, knbk ≤ t. Therefore, within
each phase, we have (n+n′) ·(nbk+2) di�erent ways of comparing terms
with constants of S. So, by considering the (n+n′) ·r distinct successive
phases, a r-TS-reversal-bounded run admits at most L ≤ ((n + n′)2 ×
r× (nbk+ 2)) global strict phases. It is worth noting that L is in 2O(N).
Let us consider a simple loop sl = t1 · · · tγ . Given a counter system
S, we show that there are a bounded number of ways of composing
loops. Let scale(S) be the maximum update value in S. Then, the
e�ect of sl is a vector z ∈ [−card(Q)scale(S), card(Q)scale(S)]n such

114

4.4. Complexity and e�ective Presburger-de�nability

that z = b1+ · · ·+bγ , where bi is the update vector of ti. The witness of
sl is de�ned as the �rst control state in the sequence of transitions and
its loop structure is a pair (q, z) where q is and z are the witness and the
e�ect of sl. Because the e�ects of simple loops are bounded, the number
of distinct e�ects is bounded by (2card(Q)scale(S) + 1)n. Hence, the
number α of potential loop structure is bounded by

card(Q) · (2card(Q)scale(S) + 1)n.

Now, we are ready to give the sketch of the proof of NexpTIME-
completeness for RB-REACH.

Theorem 84 (Theorem 2, [9]). RB-REACH(CS(QFP(<))) is NexpTIME-
complete.

sketch of proof. Let S = (Q,n, δ) be a counter system in CS(QFP(<)),
(q0,x0) and (qf ,xf) be con�gurations, r ≥ 0 and TS = {x1, . . . , xn} ∪
{t1, . . . , tn′}.
NexpTIME-hardness is a direct consequence of [37, Corollary 5(1.)]

by considering the set of counter systems S in CS(QFP(<1)) and TS =
{x1, . . . , xn}.
Now, we provide the proof de�ning the NexpTIMEupper bound.

Given an r-TS-reversal-bounded run ρ from (q0,x0) to the con�guration
(qf ,xf), we construct the shortest r-TS-reversal bounded run ρ′ from
(q0,x0) to (qf ,xf) such that simple loops are �red a number of times
that is at most double exponential in N . In fact, it is possible to prove
that the short run ρ′ is induced by a sequence of transitions π′ in δ∗ of
the form

π0 · (q0 −→ q1) · π1 · (q1 −→ q2) · π2 · (q2 −→ q3) · · ·πα−1 · (qα−1 −→ qα) · πα

where

� the subpath π = q0 −→ q1 −→ q2 −→ q3 · · · −→ qα is such that α is at
most exponential in N

� each sequence of transitions πi ∈ δ∗ is a sequence of simple loops
with witness qi, compatible with the same counter mode and which
are performed a number of times at most double exponential in N .

The NexpTIME algorithm guesses the �simple� path π and, for each
control state along this path, it guesses the number of times each simple
loop is taken. The small solution of the system of equation representing
the rearrangement of run ρ bounds each simple loop which is repeated
at most a double exponential number of times in N . Then, despite the

115

4. Bounded Model Checking Problem

fact that ρ′ is of length at most double exponential, the sequence of
transitions π′ can be guessed and tested in exponential time. In fact,
because the length of π is at most exponential in N and each simple
loop is visited a number of times at most double exponential in N , then,
the e�ect of this repetition on counters can be computed (guessed) in
exponential time.
By the �rst step, we partition run ρ into subruns each corresponding

to a global strict phase and we obtain the following partition:

(ql0 ,yl0) · · · (ql1−1,yl1−1)
t0−→ (ql1 ,yl1) · · · (ql2−1,yl2−1)

t1−→ · · ·

· · · (qlL−1
,ylL−1

) · · · (qlL−1,ylL−1)
tL−1−−−→ (qlL ,ylL)

such that

� for I ∈ [0, L − 1], (qlI ,ylI) · · · (qlI+1−1,ylI+1−1) is induced by a
sequence of transitions compatible with vI ,

� for I ∈ [0, L− 2], vI 6= vI+1,

� for I ∈ [0, L− 1], J ∈ [lI , lI+1 − 1], if vI = (X,h), then yJ |= X.

The second step of the proof allow us to write the system of equation,
given the previous partitioning of run ρ. This step is here simpli�ed
and details can be found in [10]. It consists in identifying which simple
loops are involved into the run and de�ning π by preserving only one
instance of each simple loop occurring in ρ. Each instance witnesses
the position of the simple loop and its type. At the end of this step
we have a shorter run which visits exactly the same control states of ρ
and which contains the same simple control loops involved within ρ. For
each phase I ∈ [0, L− 1] and for all counters iC ∈ [1, n] we can write an
equation de�ning exactly the relation between the starting and ending
values delimiting the subrun (qlI ,ylI)

∗−→ (qlI+1−1,ylI+1−1) corresponding

to I. The subrun (qlI ,ylI)
∗−→ (qlI+1−1,ylI+1−1) is induced by the smaller

sequence of transitions (where duplicated loops are removed):

qI0
tI1−→ qI1 −→ . . .

tIKI−−→ qIKI

such that qI0 = qlI and qKI = qlI−1. It is worth noting that the length KI

of subruns de�ning a phase can be proved to be bounded by (1 + |Q|)2
and the length of each loop is bounded by (1 + |Q|). Then, the system
of equation de�ning the phase is:

((Σ
j∈[1,αI] s.t. sI(j)>0

sI(j)zj) + ΣKI
j=1t

I
j) = ylI+1−1 − ylI

116

4.4. Complexity and e�ective Presburger-de�nability

where αI is the number of simple loops compatible with the I-th phase.
In particular, (Σ

j∈[1,αI] s.t. sI(j)>0
sI(j)zj) is the contribute of loops within

the I-th phase whereas ΣKI
j=1t

I
j is the contribute of transitions in q

I
0

tI1−→

qI1 −→ . . .
tIKI−−→ qIKI which are not involved in loops. Moreover, to complete

arithmetical constraints de�ning the phase we have:

ylI+1−1 |= XI ∧ ylI |= XI

if the counter mode of phase I is (XI ,hI). Vectors de�ning the number
of iterations of each simple loops s0, . . . , sL−1 and vectors of counters
value between two consecutive phases yl1−1,yl1 , . . . ,ylL−1−1,ylL−1

are
solution of the system of equations. Then, by small property of solution
for systems of equations, if the system has a solution, then it has a
solution such that each value is bounded by 22

p1(N)
, for some polynomial

p1. Therefore, each simple loop of the original run ρ is performed at
most a double exponential number of times. In order to de�ne a formula
which measures the length of small runs we consider:

� ((n+ n′)2 × r × (nbk + 2)) number of strict phases,

� containing at most (1 + |Q|)2 control states,

� where each control state iterate loops of length at most 1 + |Q|,

� where each loop can be iterated at most a double exponential num-
ber of times.

Then, the length of the small run from is still bounded by a double
exponential 22

p(N)
for some polynomial p.

Finally, after having computed the length of small runs we are able
to provide a nondeterministic algorithm which guesses on-the-�y a small
r-T-reversal-bounded run from (q0,x0) to (qf ,xf). If ρ′ is a small r-TS-
reversal-bounded from (q0,x0) to (qf ,xf) then, the sequence of transi-
tions can be decomposed as

1. a path π (sequence of transitions) of length at most

((n+ n′)2 × r × (nbk + 2))× [1 + (1 + card(Q))2]

2. where each control state on the path is a the witness of a simple
loops and each simple loop is visited at most 22

p1(N)
times,

3. each term in TS performs at most r reversals.

117

4. Bounded Model Checking Problem

q11 q12 q1l1 q21 q22 q2l2 q31 qL1 qL2 qLl2

= Phase change

k1

≤ (1 + card(Q))2

k2

≤ (1 + card(Q))2

kS−1 kS = K

≤ (1 + card(Q))2

L ≤ ((n + n
′
)
2 × r × (nbk + 2))

|π| ≤
(
1 + (1 + card(Q))

2
)
× ((n + n

′
)
2 × r × (nbk + 2))

ti

t0

≤ 22
p1(N)

≤ 22
p1(N)

≤ 22
p1(N)

t1

Figure 4.4.: Structure of the path π

The structure of the small run is drawn in the next �gure:
So, there are −1 = k0 < k1 < · · · kS = K with S ≤ ((n + n′)2 × r ×

(nbk+ 2)) such that for J ∈ [0, S− 1], (qkJ+1,ykJ+1)
∗−→ (qkJ+1

,ykJ+1
) is

only made of simple loops and each simple loop is applied at most 22
p1(N)

times. The number of simple loops is only exponential in N , because
it is bounded by (card(δ) + 1)card(Q) (≤ 2N

2
) from the control graph

of S. Hence, a nondeterministic exponential-time algorithm consists
in guessing successively on-the-�y each segment starting in (qk1 ,yk1),
. . . , (qkS ,ykS) by applying simple loops on each control state qk0+1, . . . ,
qkS−1+1, a number of times bounded by 22

p1(N)
. The e�ect of applying a

simple loop a number of times bounded by 22
p1(N)

can be computed in
exponential time in N at once. Therefore, we get the NexpTIME upper
bound because we perform previous guess for an exponential number of
control states.

By proof of previous Theorem 84 we can derive system of equations
de�ning small runs of systems. In particular, given the two con�gurations
(q0,x0) and (qf ,xf), if there exists a run given (q0,x0)

∗−→ (qf ,xf) then
there exists a small one between the same con�gurations with no more
than r reversals per term, which is compatible with σ = v0, · · · ,vL−1 of
counter modes, and realized by a sequence of transitions π. The small
run is represented by the equality Sπ,σ in which there are variables for

118

4.4. Complexity and e�ective Presburger-de�nability

the values

� s0, . . . , sL−1 representing the number of iteration of simple loops
along π

� and yl0 ,yl1−1,yl1 , . . . , ylL−1,ylL representing counters value among
phases (starting and ending vector for each phase).

Corollary 85. Given S in CS(QFP), r ≥ 0 and control states q, q′, one
can e�ectively compute a Presburger formula φq,q′(x1, . . . , xn, y1, . . . , yn)
such that for all valuations val, val |=PA φ i� there is an r-TS-reversal-
bounded run from (q, (val(x1), . . . ,val(xn))) to (q′, (val(y1), . . . ,val(yn))).

Sketch of proof. Let Sπ,σ be the system of equation representing small
runs from con�guration (q,x) to (q′,x′) where

� π is the sequence of transitions realizing a path from q to q′ of
length at most exponential

� and σ be the sequence of counter modes.

We only need to consider variables for simple loops such that all its con-
trol states belong to π. In order to provide a formula φq,q′(x1, . . . , xn, y1, . . . , yn)
we consider the set Xσ of variables yl1−1,yl1 , . . . , ylL−1 (we make yl0 and
ylL free vectors of variables). Presburger formula φq,q′(x1, . . . , xn, y1, . . . , yn)
is de�ned by considering all possible path π realizing q −→ q′ and all se-
quences σ of counter modes. Set Xσ representing intermediate vectors of
counters value is existentially quanti�ed.∨

π,σ=v0,··· ,vL

∃ Xσ Sπ,σ

Next theorems proves that NexpTIME-completeness can be pushed
to RBMC following the (three) reductions previously de�ned.

Theorem 86. RB-REP-REACH(CS(QFP(<))) is NexpTIME-complete.

Sketch of proof. We prove �rst the NexpTIMEupper bound. By The-
orem 78, given an instance of RB-REP-REACH problem S, (q0,x0)
and qf , we can build an (r + 1)-S ′-reversal-bounded counter system
S ′ = (Q′, n, δ′) such that (q0,x0)

∗−→ (qnew,0) in S ′ if, and only if,
there is an in�nite r-TS-reversal-bounded run from (q0,x0) such that
qf is repeated in�nitely often. In particular, S ′ restricts behaviours of S

119

4. Bounded Model Checking Problem

only by guessing a partition C = (Z→, T→, T↘, T↗) and enforces (r+ 1)-
TS′-reversal-boundedness by construction. Moreover, the dimension of
S ′ does modify the double exponential length of �nite run needed to
witness the existence of an in�nite r-reversal-bounded run where qf is
repeated in�nitely often. Then, small run property of Theorem 84 still
holds.
NexpTIME-hardness is proved by reducing RB-REACH(CS(QFP(<1

))) to REP-RB-REACH(CS(QFP(<1))). Let S be a counter system in
CS(QFP(<1)), (q,x), (q′,x′) and r ≥ 0. We de�ne S ′ from S such that
the following two conditions are equivalent:

(I): there is an r-TS-reversal-bounded run from (q,x) to (q′,x′)

(II): there is an (r+ 1)-S ′-reversal-bounded in�nite run from (q,x) such
that q2new is repeated in�nitely often.

q′ q1new q2new
(>,−x′) (x = 0,0)

(>,0)

Similarly to Corollary 85 we can provide an exact characterization of
the set of initial con�gurations allowing control state qf to be repeated
in�nitely often.

Corollary 87. Given S in CS(QFP), r ≥ 0 and control states q, qf ,
one can e�ectively compute a Presburger formula φq,qf (x1, . . . , xn) such
that for all valuations val, val |=PA φ if, and only if, there is an in�nite
r-TS-reversal-bounded run from (q, (val(x1), . . . ,val(xn))) such that qf
is repeated in�nitely often.

Sketch of proof. Let us consider a counter system S in CS(QFP(<)) (pe-
riodicity constraints can be removed). From S we build S ′ = (Q′, n, δ′)
as in the proof of Theorem 78. Formula φq,qf (x1, . . . , xn) is de�ned by
reversal-bounded reachability φ′ of S ′. In particular, we have to force
reachability from the initial con�guration (q,x) to con�guration (qnew,0)
where x is a vector of free variables.

φq,qnew(x1, . . . , xn,0)

By previous results we are able to provide the complexity analysis
of RBMC problem. This result is proved by estimating the size of the

120

4.4. Complexity and e�ective Presburger-de�nability

instanced of problems de�ned to reduce RBMC to RB-REACH. It is
possible to show that the instance of RB-REACH problem, obtained
from an instance of a RBMC problem, bene�ts of the small property of
runs which are still bounded by a double exponential with respect to the
size of the RBMC instance.

Theorem 88. RBMC is NexpTIME-complete.

Sketch of proof. Let S = (Q,n, δ) be a counter system in CS(QFP),
(q,x) be an initial con�guration, φ be a formula in CLTL(QFP) and
r ≥ 0. First, we prove the NexpTIMEupper bound. By using previous
reductions, we are able to reduce an instance of a RBMC problem to an
instance of RB-REACH(CS(QFP(<))) such that reachability can still
be checked in NexpTIME with respect to the size of the instance of
RBMC.

1. Reduce RBMC into RB-REP-REACH(CS(QFP(<,≡))) (see Corol-
lary 74).

2. Eliminate the periodicity constraints (see Corollary 76).

3. Reduce into RB-REACH(CS(QFP(<))) (see Theorem 78).

All previous reductions are performed in plynomial space. For each step,
it is possible to show that values of parameters required to evaluate the
�nal length of the witness run of the RB-REACH problem, preserve
double exponential length property of witness runs. This can be done
by using the exact expressions evaluating length of runs from the proof
of Theorem 84 which can be found in [10].
To evaluate the instance of RBMC we introduce the following param-

eters:

� N is the size of the instance.

� C is the lcm of all the constants c occuring in arithmetical expres-
sions of the form t ≡c k either in S or in φ (C ≤ 2N

2
).

� nbupdate(S) ≤ N is the number of update vectors occurring in S.

� nbk is the number of constants k in atomic formulae of the form
t ∼ k occurring in S or φ.

� Max: maximal value in {|ai|, |k| :
∑

i aixi ∼ k in S or in φ}.

� n′ = card((TS ∪ Tφ) \ {x1, . . . , xn}).

� S = scale(S) (S ≤ 2N).

121

4. Bounded Model Checking Problem

The �nal instance of RB-REACH is de�ned by a counter system S3 =
(Q3, n, δ3) ∈ CS(QFP(<1)) (q3,x3), and two con�gurations (q′3,x

′
3).

Measures related to the �nal instance of RB-REACH problem are:

� card(Q3) ≤ card(Q)× 2|φ| × Cn × 2n22n
′
.

� Max3 ≤ 2N × 22N .

� S3 = scale(S3) = scale(S) = S.

� Size of (q3,x3) is bounded by some polynom in N .

� Size of (q′3,x
′
3) is linear in N .

� n′3 = n′.

� nbk3 ≤ nbk + n′ × nbupdates(S) ≤ 2N2.

By Theorem 84, the witness run from (q3,x3) to (q′3,x
′
3), considering

the above bounds, is of length bounded by 22
p′(N)

for some polynomial
p′(·). In order to guess this run in NexpTIME, one can design a non-
deterministic decision procedure as in the proof of Theorem 84. It is
worth noting that the exponential growth, which a�ects some measures,
like card(Q3) and nbk3, does not modify the overall evaluation of length
of runs witnessing reachability at �nal step. In fact, control states in
Q3 can still be encoded in polynomial space, because the cardinal of Q3

is only exponential in N , and checking whether two con�gurations per-
form one step in S3 can be checked in exponential time when guessing a

run of length at most 22
p′(N)

. In particular, since counter values are at
most double exponential from Theorem 84, then previous checking can
be performed e�ectively in exponential time.
NexpTIME-hardness is proved by reducing RB-REACH(CS(QFP(<1

))) to RBMC. Let S be a counter system in CS(QFP(<1)), (q,x) and
(q′,x′) be con�gurations and r ≥ 0. As in proof of Theorem 86 we de�ne
S ′ from S such that the following two conditions are equivalent:

(I): there is an r-TS-reversal-bounded run from (q,x) to (q′,x′)

(II): there is an (r + 1)-S ′-reversal-bounded in�nite run ρ from (q,x)
such that ρ, 0 |= F q2new.

q′ q1new q2new
(>,−x′) (x = 0,0)

(>,0)

122

4.4. Complexity and e�ective Presburger-de�nability

As consequence of reduction provided in Theorem 88to show Nexp-

TIME-hardness of RBMC we obtain the following corollary since RB-
REACH(QFP) and RB-REP-REACH(QFP) can be reduced directly in
logarithmic space to RBMC.

Corollary 89. RB-REACH(QFP) and RB-REP-REACH(QFP) prob-
lems are NexpTIME-complete.

The last part of our analysis concerns properties of ultimately pe-
riodic runs. In particular, previous Corollary 79 states a connection
between the existence of r-T-reversal-bounded runs and ultimately peri-
odic r-T-reversal-bounded runs satisfying the same CLTL property. This
fact is fundamental to develop bounded veri�cation for reversal-bounded
counter systems because it allows us to restrict the analysis only to ul-
timately periodic runs and to take advantage of bounded approach pre-
sented in Chapter 3. Developing bounded veri�cation approach for r-T-
reversal-bounded counter is supported by a stronger property such that
r-T-reversal-bounded runs (satisfying a CLTL property) have bounded
length. This fact is essential to prove completeness of r-T-reversal-
bounded model-checking of counter systems. Informally, given a counter
system in CS(QFP) and a CLTL(QFP) property φ we de�ne �bounded�
r-T-reversal-bounded model-checking as the problem of checking whether
there exists an ultimately periodic run ρ of S satisfying φ such that
ρ is induced by an ultimately periodic sequence t1 . . . tl−1(tl . . . tk)ω of
transitions of S satisfying some suitable properties. An instance of r-T-
reversal-bounded model-checking can be solved by checking only a �nite
amount of �bounded� r-T-reversal-bounded model-checking. Following
theorems generalize bounded model-checking over �nite counter systems
and open the way to bounded approaches in solving model-checking prob-
lems over counter systems.

Theorem 90 (Theorem 5, [9]). Let S be in CS(QFP), φ be in CLTL(QFP)
r ≥ 0 and q be a control state. One can e�ectively build a Presburger for-
mula φq(x1, . . . , xn) such that for all valuations val, val |=PA φq i� there
is an in�nite run ρ from (q, (val(x1), . . . ,val(xn))) such that ρ, 0 |= φ
and ρ is r-T-reversal-bounded with T = TS ∪ Tφ.

Proof. Let atoms(φ) be the set of atoms of φ and let us assume that
φ has m until subformulae. We use Lemma 73 which states that we
can build a counter system S ′ in CS(QFP) such that the two following
conditions are equivalent:

1. there is an in�nite r-(TS ∪ Tφ)-reversal-bounded run ρ of S from
(q,x) such that ρ, 0 |= φ;

123

4. Bounded Model Checking Problem

2. there is an in�nite r-TS′-reversal-bounded run from ((q,X0, 0),x)
such that (qf , Xf , 0) is repeated in�nitely often for some initial
atom X0 ∈ atoms(φ) and for some (qf , Xf) ∈ Q× atoms(φ).

Let φ′α,β(x1, . . . , xn) be the reversal-bounded repeated reachability S ′
which is de�ned as in proof of Corollary 87. Then, formula φq(x1, . . . , xn)
is de�ned as disjunction of formulae φ′ where α is the initial state
(q,X0, 0), for some initial atom X0 ∈ atoms(φ), and β is a �nal state
involving qf : ∨

X0, (qf ,Xf)∈Q×atoms(φ)

φ′(q,X0,0),(qf ,Xf ,0)
(x1, . . . , xn)

We are also able to improve Corollary 91 since we also have bounds
on the length of reversal-bounded runs (see the proof of Theorem 88).

Corollary 91 (Corollary 7, [9]). Let S be in CS(QFP), (q,x) be an
initial con�guration, φ be in CLTL(QFP) and r ∈ N. The propositions
below are equivalent:

(I) there is an in�nite run ρ from (q,x) such that ρ, 0 |= φ and ρ is
r-T-reversal-bounded with T = TS ∪ Tφ.

(II) There exists an ultimately periodic run ρ satisfying the same proper-
ties as in (I), and the corresponding sequence of transitions π1(π2)ω

veri�es that the length of π1π2 is bounded by 22
p0(N)

, for some poly-
nomial p0(·) and N is the size of the instance of RBMC.

As previously anticipated, previous two results are essential for practi-
cal veri�cation of r-T-reversal-bounded counter systems. By Theorem 90,
given the formula φq(x1, . . . , xn), we can check if an initial con�guration
veri�es the existence of an in�nite run satisfying a temporal formula
by means of tool handling Presburger arithmetic. Hence, Theorem 90
states that veri�cation problems over r-T-reversal-bounded counter sys-
tems are reduced e�ectively to satis�ability in Presburger arithmetic.
Moreover, results on the computational complexity guarantee that the
studied method is optimal. Bounded veri�cation approaches naturally
come from Corollary 91 and can e�ectively take advantage of k-bounded
satis�ability of CLTLB(QFP) formulae as we developed in Chapter 3.
Since an instance of RBMC can be transformed into an instance of RB-
REACH(QFP) and by Theorem 84, one could solve the reversal-bounded
model checking problem by looking for �nite runs of length at most dou-
bly exponential.

124

5. Case Studies

This chapter provides two (implemented) examples of application where
bounded approach, that we have presented in Chapter 3, can be used in
veri�cation and synthesis. The �rst one is presented in Section 5.1; it is
a pure descriptive speci�cation of the behavior of an hysteresis variable.
Though its nature makes the example a proof-of-concept, we believe that
it is meaningful in its own since it provides a clear instance of veri�cation
and synthesis of parameters. The second case study is a real application
of services substitution in the context of Service Oriented Applications.
Informally, services are providers either of information or of concrete
operations which can be used or invoked by actors of the environment.
Whenever a service changes some of its peculiarity or failures break the
regular behavior of the system, �nding the best candidate replacing the
service and interconnecting new instances of service providers with the
rest of users become two essential challenges. In Section 5.2 we study the
problem and we provide a method to replace a service A with a service
B by means of adaptors which are synthesized over models of CLTLB
speci�cation formulae representing their behavior.

5.1. Case Study I: hysteresis phenomena

In this section, we show an example requiring the full expressiveness of
CLTLB(DL) over a domain D = {Z,R}. It represents an hysteresis time
varying variable y ranging over two possible values {0, 1} which is led
by an independent variable x ∈ D. A con�guration of the system is a
pair (x, y) of values in D2. The hysteresis of variable y is de�ned with
respect to two parameters x0 and x1. When x0 ≤ x ≤ x1 variable y is
low or high and its value depends on previous values of x. Otherwise,
if x < xL then variable y has high value equal to 1; when x > xH then
variable y has low value equal to 0.
Behavior of y is de�ned by a set of CLTLB(DL) formulae H(xL, xH)

and it is not represented by a transition system. Satis�ability ofH(xL, xH)
over k-bounded models is used to solve reachability and synthesis prob-
lem. When thresholds are de�ned we verify if the system can reach a
�bad� con�guration in k instant of time. �Bad� con�gurations are pairs

125

5. Case Studies

of
B = {(x, y) ∈ N2 | (x > xH , y = 1) or (x < xL, y = 0)}.

Let H(xL, xH) be the formula de�ning the hysteresis and (xL, xH) be two
value in D2, and (x0, y0) be the initial con�guration for the system.
Reachability problem amounts to verify if there exists a behavior of (x, y)
such that (xk, yk) is reached from (x0, y0), i.e. (x0, y0)→k (xk, yk).
When thresholds are unde�ned, one parameter xL, xh, or both, are

free variables of formula H(xL, xH). Synthesis problem for parameters
xL and xH amounts to identify suitable values for xL and xH such
that behavior of the hysteresis satis�es a property φ. Synthesis problem
can be reduced to k-bounded satis�ability of the CLTLB(DL) formula
H(xL, xH). Formula H(xL, xH), where (xL, xH) are free variables, is
k-bounded satis�able if there exists a model σ̂k and an environment ε,
de�ning a value for xL and xH , such that σ̂k |=k H(xL, xH).
We de�ne predicates which represent the behavior of variables x and

y, in order to have a coincise description of formulae H(xL, xH).

� updown(z)
def⇔ (z = 0) ∧ (Yz = 1) represents a change from high-

level value to low-level value.

� downup(z)
def⇔ (z = 1) ∧ (Yz = 0) symmetrically represents a

change from low-level value to high-level value.

� low(z)
def⇔ (z = 0) and high(z)

def⇔ z = 1 represent low and high
level, respectively.

Behavior of variables is de�ned by the following formulae.

tr-up-down: G(Y((x < xH)∧high(y))∧(x ≥ xH)⇒ updown(y)) de�nes
su�cient condition to have a movement from high-level to low-level.

tr-down-up: G(Y((x > xL) ∧ low(y)) ∧ (x ≤ xL)⇒ downup(y)) de�nes
su�cient condition to have a transition from low-level to high-level.

s-up-down: G(updown(y)⇒ Y(x < xH)∧ (x ≥ xH)) enforces necessary
condition on x to have movement from high-level to low-level.

s-down-up: G(downup(y)⇒ Y(x > xH)∧ (x ≤ xH)) enforces necessary
condition on x to have movement from low-level to high-level.

low-state: G(low(y)⇒ (low(y) U downup(y)) S updown(y)) de�nes nec-
essary condition for verifying low state of y.

high-state: G(high(y) ⇒ (high(y) U updown(y)) S downup(y)) de�nes
necessary condition for verifying high state of y.

126

5.1. Case Study I: hysteresis phenomena

The invariant property de�ning values for high and low-level of y is
G(low(y)∨ ∨high(y)). Threshold values are such that xH > xL; the
formula does not require temporal modalities since xH and xL are pa-
rameters which do not vary over time. Both variables xH and xL are
not quanti�ed. When they are considered as parameters, we use an ini-
tialization formula which de�nes their values; i.e. xL = xL and xH = xH
where xH, xL ∈ D. Otherwise, if xH and xL are free variables they will
be given a value by means of the environment ε.

The behavior of the indipendent variables x can be constrained to be
�discretely continuous" or not by imposing one of the two formulae:

continuosX: G((Xx = x+ 1) ∨ (Xx = x− 1))

NcontinuosX: G(∃d (Xx = x+ d) ∨ (Xx = x− d))

where d ∈ D is a quanti�ed variable.

Formula H(xL, xH) de�ning the hysteresis phenomenon between vari-
ables x and y is de�ned by the conjunction of all previous formulae.

Given two values (xL, xH) ∈ D2, verifying that hysteresis behavior is
�safe� amounts to check property like G((high(y)⇒ x ≤ xH)∧(low(y)⇒
(x ≥ xL))). This reduces to a reachability problem for H(xL, xH) with
respect to �bad� con�guration belonging to the set B. Formula φbad =
F((x > xH∧high(y))∨((x < xL∧low(y))) is conjuncted toH(xL, xH) and,
then, the resulting formula is checked for satis�ability. When an initial
con�guration is not speci�ed, unsatis�ability means that bad con�gu-
ration can not be reached by any initial con�guration, over k-bounded
models. It is worth noticing that k-bounded satis�ability de�nes only
a �partial� representation of the arithmetic behavior by means of the
model σ̂k. Nonetheless, atomic formulae are represented over in�nite
models according to the bounded semantics given in Section 3.2.

Synthesis problem for the hysteresis H(xL, xH) amounts to de�ne
two values (xL, xH) ∈ D2 such that H(xL, xH) is feasible. Being xL, xH
two free variables, the environment ε de�nes their values xL = xL and
xH = xH if (π, σ̂k) |=k H(xL, xH). A deeper analysis can be realized
by verifying if �bad� systems can be synthesized. This can be done by
checking if H(xL, xH)∧ φbad is satis�able, i.e., there exists a pair of val-
ues for parameters (xL, xH) ∈ D2 such that a bad con�guration can be
reached from an initial one.

In Appendix A.2 we give the Lisp code de�ning the hysteresis which
can be veri�ed by the tool presented in Section 7.

127

5. Case Studies

5.2. Case Study I: Veri�cation of Service

Substitutability

Service Oriented Architectures (SOAs) are a �exible set of design prin-
ciples that promote interoperability among loosely coupled services that
can be used across multiple business domains. In this context applica-
tions are typically composed of services made available by third-party
vendors. Thus, an organization does not have total control of every part
of the application, hence failures and service unavailability should be
taken into account at runtime. On the other hand, during the applica-
tion execution new services might become available, that enable new fea-
tures or provide equivalent functionalities with better quality. Therefore
the ability to support the evolution of service compositions, for exam-
ple by allowing applications to substitute existing services with others
discovered at runtime, becomes crucial.
Most of the frameworks proposed in recent years for the runtime man-

agement of service compositions make the assumption that all semanti-
cally equivalent services agree on their interface, as proposed by Antonel-
lis et al. in [88] or by Verma in [89]. In the practice this assumption
turns out to be unfounded. The picture is further complicated when one
considers conversational services, i.e., services that expose operations
with input/output data dependencies among them. In fact, in this case
the composition must deal with sequences of operation invocations, i.e.,
the behavior protocol, instead of single, independent, ones.
The substitutability problem is the problem of deciding when a service

can be dynamically substituted by another one discovered at runtime.
Cavallaro et al. in [90] [91] propose an approach based on Bounded
Model Checking (BMC) techniques. Even if the approach proves to
be quite e�ective, the Propositional Satis�ability (SAT) problem, on
which the standard encoding of BMC relies, requires to deal with lengthy
constraints, which typically limits the e�ciency of the analysis phase. In
the setting of the runtime management of service compositions this is
not acceptable, as delays incurred when deciding whether services are
substitutable or not can hamper the operativeness of the application.
We introduce a veri�cation technique, based on Satis�ability Modulo

Theories (SMT) and we use CLTLB(DL) and its associated veri�cation
technique to model and e�ciently analyze service-based applications.
SMT-based veri�cation technique has two main advantages:

� unlike in the standard SAT-based approach, arithmetic domains
are not approximated by means of a �nite representation, which
proves to be particularly useful in the service substitutability prob-

128

5.2. Case Study I: Veri�cation of Service Substitutability

lem;

� the implemented prototype is shown to be considerably faster and
with smaller memory footprint than existing ones based on the
propositional encoding, due to the conciseness of our solution.

The technique exploits decidable arithmetic theories supported by
many SMT solvers to natively deal with integer variables (hence, with
an in�nite domain). For instance, we can refer to Microsoft Z3 [92] or
SRI yices [93]. This allows us to decide larger substitutability prob-
lems than before, in signi�cantly less time: the response times of our
prototype tool make it usable also in a runtime checking setting.

5.2.1. Substitutability Checking of Conversational Services

In an open world setting, as for service oriented systems, application
components are usually owned by third parties and may unexpectedly
fail and need to be substituted with other previously unforeseen. When
this occurs at runtime, the composition (or the framework where the
composition is running) should be able to perform the replacement re-
quiring as little human intervention as possible.
The approach presented by Cavallaro et al. in [90] enables service sub-

stitution through the automatic de�nition of suitable mapping scripts.
These map the sequences of operations that the client is assuming to
invoke on the expected service into the corresponding sequences made
available by the actual service (i.e., the service that will be actually
used). Mapping scripts are automatically derived given:

� a description of service interfaces in which input and output pa-
rameters are associated with each service operation,

� the behavioral protocol associated with each service, described
through an automaton.

The mapping between an expected and an actual service assumes that
the compatibility between data has been previously de�ned. This relation
allows us to map data of di�erent services to the same label. For the
sake of simplicity, here we assume that data are compatible if they are
called the same way (more sophisticated compatibility relationships are
explored by Cavallaro et al. in [94]).
Given this compatibility de�nition, we say that a sequence of oper-

ations seqexp in the automaton of the expected service is substitutable
by another sequence of operations seqact in the automaton of the actual
service if a client designed to use the expected service sequence can use

129

5. Case Studies

start

SearchLyric_start

end

SearchLyric(song;artist;):SongRank;song;artist;ArtistUrl;
SongUrl;lyricsId;lyricCheckSum

⊗
SearchLyricText(lyricText;):SongRank;song;artist;ArtistUrl;
SongUrl;lyricsId;lyricCheckSum

SearchLyric(song;artist;):SongRank;song;artist;
ArtistUrl;SongUrl;lyricsId;lyricCheckSum

⊗
SearchLyricText(lyricText;):SongRank;song;artist;
ArtistUrl;SongUrl;lyricsId;lyricCheckSum

GetLyric(lyricCheckSum;lyricsId;):Lyric;LyricCorrectUrl;LyricRank;
LyricCovertArtUrl;LyricCorrectUrl;artist;song

Figure 5.1.: LTS of the ChartLyrics service of Section 5.2.2 (⊗ denotes
that the operations are on di�erent transitions).

the actual service sequence without noticing the di�erence. This hap-
pens when the actual operations require as input at most all of the data
provided as input to the expected operations and return at least all the
data the expected sequence provides as output.

The rationale of this de�nition can be understood by considering the
service substitution process. In this process a client is designed to in-
teract with an expected service and, therefore, it assumes to invoke the
expected service operations, providing for each invocation the data re-
quired by the operation and awaiting as output the data provided by
the operation. When the expected service is substituted by an actual
service, in order for the client to be unaware of the change, the actual
service should be able to work with the data provided by the client as if
to the expected service and should return the data the client is awaiting
from the expected service.

The formal model of substitutability allows us to build a reasoning
mechanism based on temporal logic that, given an expected service se-
quence, returns a corresponding actual service sequence. It includes the
behavioral protocols of both the expected and the actual services repre-
sented as Labeled Transition Systems (LTS) and formalized in temporal
logic, in which each transition is labeled with the associated operation.
Input and output parameters of each operation are also part of the model
(Figures 5.1 and 5.2 show the LTSs of two services discussed in Section
5.2.2).

In order to model the substitution process and to keep track of the

130

5.2. Case Study I: Veri�cation of Service Substitutability

s4 s1

s2

s3

s5

s6

start

cSE(1;0):2;4sS(0;1):1;0

sA(10):0
sS(0;1):1;0

cSE(1;0):2;4

gA(0):0;3;5;6;7
sA(10):0 ⊗
gS(2;4;0;1):8;9;1;0

sS(0;1):1;0

sS(0;1):1;0

cSE(1;0):2;4

sA(10):0 ⊗
cSE(1;0):2;4

sA(10):0 ⊗
cSE(1;0):2;4

sS(1;0):2;4

sS(0;1):1;0 ⊗
cSE(1;0):2;4

sA(10):0 ⊗
sS(0;1):1;0 ⊗
cSE(1;0):2;4 ⊗
gS(2;4;1):8;9;1;0 ⊗
gA(0):0;3;5;6;7

Figure 5.2.: LTS of the LyricWiki service discussed in Section 5.2.2.

data exchanged we maintain two kinds of counters:

� seen, which is used to check that the actual service can work using
a subset of the input data provided by the client to the expected
service,

� needed, which is used to check that the actual service can provide
a superset of the data the client expects to receive as output of the
expected service.

The model includes an instance of seen (resp. needed) for each type of
data that can be used as input (resp. output) parameter for an oper-
ation. Each time an operation of the expected service is invoked, the
instances of seen for its input parameters and those of needed for its
output parameter are all incremented by one.
To illustrate this mechanism, consider the services depicted in Figures

5.1 and 5.21, which represent, respectively, the expected and the actual
service (the two services are presented in more detail in Section 5.2.2; in

1Operations: searchSongs (sS), checkSongExists (cSE), searchArtists (sA),
getArtist (gA), getSong (gS). Parameters: artist (0), song (1), lyricsId (2), item

131

5. Case Studies

this Section we focus only on the aspects that are relevant to the exam-
ple at hand). Operation SearchLyric of the expected service of Fig. 5.1
has two input parameters, song and artist, and �ve output parameters,
SongRank, song, artist, ArtistUrl, SongUrl, lyricsId and lyricCheckSum.
After its invocation, seen(song) and seen(artist) are incremented by 1.
The same increment takes place for needed(SongRank), needed(song),
needed(artist), needed(ArtistUrl), needed(SongUrl), needed(lyricsId) and
needed(lyricCheckSum). Conversely, when an operation of the actual
service is invoked, the instances of the seen counter for each input pa-
rameter and those of the needed counter for each output parameter are
all decremented by one. For example, when operation checkSongExists
of the actual service of Fig. 5.2 is invoked, seen(song), seen(artist),
needed(lyricsId) and needed(lyricCheckSum) are decremented by 1 (and
consequently run to 0).
To conform to the notion of substitutability of expected and actual

sequences of operations presented above, an actual service operation can
be invoked only if the seen counter for each of its input parameters is
≥ 0 (i.e. the input parameters have been provided by a client assuming
to invoke some operations on the expected service). When the value of
a needed counter is 0 it means that the actual service provided enough
instances of a certain type of data to ful�ll client requests. If, on the
other hand, the actual service provides more instances of a type of data
than those requested, then the corresponding needed counter is < 0.
In case the expected service operation sequence analyzed is substi-

tutable by one in the actual service, a mapping script is generated and
then interpreted by an adapter that intercepts all service requests issued
by the client and transforms them into some requests the actual ser-
vice can understand. Fig. 5.3 shows the placement of adapters into the
infrastructure architecture and highlights their nature of intermediaries
(see Cavallaro et al. in[90] for more details).

5.2.2. Case Study

To demonstrate our methodology, we use an example concerning two
existing conversational services available on the Internet. These two
services realize two lyric search engines. One is called ChartLyrics2, the
other LyricWiki3.

(3), lyricCheckSum (4), SongUrl (5), year (6), album (7), LyricCorrectUrl (8),
Lyrics (9), lyricText (10) (⊗ denotes that the operations are on di�erent transi-
tions).

2http://www.chartlyrics.com/api.aspx
3http://lyrics.wikia.com/Main_Page

132

5.2. Case Study I: Veri�cation of Service Substitutability

Service Composition

1) Request for o1 on S1

Proxy

3) Requests for
o1 and 02 on S1

4)Adapted Request for S2

Mapping
Script
S1 to S2: map
o1 and o2 on S1
to o1 on S2

Service
S2

Service
S1

5)Response from S2

6)Adapted Response
from S2

7)Adapted
Response
from S2

Operations: o1, o22) Request for o2 on S1

Adapter Operation: o1

Input

Figure 5.3.: The adaptation runtime infrastructure.

ChartLyrics is a lyrics database sorted by artists or songs; the WSDL4

of ChartLyrics provides three operations:

� SearchLyric to search available lyrics,

� SearchLyricText to search a song by means of some text within an
available lyric text,

� GetLyric to retrieve the searched lyric.

LyricWiki is a free site where anyone can go to get reliable lyrics for
any song from any artist. The WSDL of LyricWiki5 provides several
operations. Five of them are of interest for our purposes:

� searchSongs to search for a possible song on LyricWiki and get up
to ten close matches,

� checkSongExists to check if a song exists in the LyricWiki database,

� getSong to get the lyrics for a searched LyricWiki song with the
exact artist and song match,

� searchArtists to search for a possible artist by name and return up
to ten close matches,

4http://api.chartlyrics.com/apiv1.asmx?WSDL
5http://lyrics.wikia.com/server.php?wsdl

133

5. Case Studies

� getArtist to get the entire discography for a searched artist.

To get a lyric through ChartLyrics, a client can exploit the following
sequence of operation invocations: SearchLyric, GetLyric. Conversely,
to get a lyric through LyricWiki, a possible sequence of operation in-
vocations is the following: checkSongExists, searchSongs, getSong (see
the representation of the conversational protocols of ChartLyrics and
LyricWiki, respectively, in Fig. 5.1 and Fig. 5.2).
If LyricWiki were part of a web application realized through a service

composition, it could happen that, in certain circumstances, it would
need to be replaced by ChartLyrics or by any other specialized search
engine. This could happen, for instance, to accommodate the prefer-
ences of users having their preferred engine, or to handle the cases when
LyricWiki is unavailable for any reason. The developer could code, by
hand, the instructions to deal with any possible engine and its replace-
ment. However, this approach does not allow the application to deal with
search engines unknown at design time. A better solution, which would
overcome this problem, is to build a mapping mechanism that dynami-
cally handles the mismatches by automatically synthesizing a behavior
protocol mapping script. The adaptation realized by the synthesized
mapping script could state, e.g., that the sequence of LyricWiki oper-
ations checkSongExists, searchSongs, getSong maps to the sequence of
ChartLyrics operations SearchLyric, GetLyric.
Let us consider as an example the expected service operation sequence

checkSongExists, searchSongs, getSong, which brings the LyricsWiki be-
havior protocol automaton from state start to state s6 (see Fig. 5.2).
We assume to have established a compatibility relation between services'
data. Also, for the sake of brevity, the automata of Figures 5.1 and 5.2
are represented with this relation already established, though in practice
this requires an additional mapping step (for more details see [94, 91]).
The automata describing service protocols and the expected service op-

eration sequence are all formalized through suitable CLTLB(DL) formu-
lae expectedService, actualService and expectedOperationSequence,
simply describing the transition relation between states. Then, we for-
mulate the problem of checking if the expected service can be substituted
by the actual service in terms of a reachability problem over the automata
describing the protocols of the expected and actual services. The prob-
lem consists of searching for a �nite operation sequence on the actual
service automaton which is substitutable to the expected operation se-
quence given as input. We check this condition by verifying that the
actual service operation sequence should require no more input parame-
ters than those provided to the expected service sequence, and it should

134

5.2. Case Study I: Veri�cation of Service Substitutability

provide at least the same parameters provided by the expected service
sequence. To ensure this property we keep track, through instances of
counters seen and needed (see Section 5.2.1), of how many parameters of
any given kind are provided as input to the expected service operations
and of how many parameters of any given kind are returned by each
actual service operation. In particular, we de�ne:

� Waiting : N → {true, false} and Response : N → {true, false}
to be two uninterpreted predicates

� seen : N→ N and seen : N→ N to be two uninterpreted functions.

The behavior of counter needed is formalized by the CLTLB(DL) formula

∀x
(
RetData(x)⇒

(Waiting(x) ∧ seen(x) ≥ 0⇒ >UResponse(x))∧
(¬Waiting(x) ∧ ¬Response(x)⇒ needed(x) = Xneeded(x))∧
(¬Waiting(x) ∧Response(x)⇒

needed(x) = Xneeded(x) + 1)∧
(Waiting(x)⇔ needed(x) = Xneeded(x)− 1)

)
where RetData(x) holds if x is the type of an output parameter of a ser-
vice (either expected or actual); Waiting(x) (resp. Response(x)) holds
when the expected (resp. actual) service is invoked and x is the type of
one of the output parameters of the invoked service. For instance, when
operation checkSongExists of LyricWiki is invoked, wait(lyricsId) holds
and when operation SearchLyric of ChartLyrics is invoked resp(SongRank)
holds. To completely state the reachability problem, an initial and a �nal
condition over counters and states of automata are de�ned. The initial
condition sets all counters to 0 and the states of the two LTSs to start.
The �nal condition imposes ∀x(RetData(x)⇒ needed(x) ≤ 0).
Finally, a solution for the reachability problem can be obtained by

checking the satis�ability of the conjunction of the CLTLB(DL) formulae
mentioned above.
Considering the example sequence on LyricsWiki, a client expecting to

invoke this sequence is assuming to provide as input to the �rst operation
of the sequence a song and an artist. This will set the seen counter to
1 for both provided inputs. Moreover, it expects the invoked operation
to return a lyricsId and a lyricCheckSum, which will increment the cor-
responding instances of the needed counter to 1. Considering the actual
service protocol, our approach searches for an operation accepting a sub-
set of the provided input data and providing a superset of the required
return data.

135

5. Case Studies

The operation to be selected should leave the start state as the state
compatibility relation provided as input for the approach mandates the
compatibility of state start of LyricsWiki with state start of ChartLyrics.
In our example the invocation of checkSongExists makes SearchLyric
the only suitable candidate. After the invocation of this actual service
operation all instances of seen and those instances of needed associated
to the output parameters of checkSongExists are reset to 0. The actual
service operation returns also some extra data that are not required
by the invoked expected service operation (i.e. song, artist, songRank,
artistUrl, songUrl). In this case the reasoning mechanism o�ers two
possible choices: extra data can be discarded (hence ignored also in the
future), or they can be initially ignored, but stored for an eventual later
use. The former strategy is more conservative, but it may also limit the
possibility of the reasoning mechanism to �nd an adapter. The latter
strategy may a�ect data consistency in some cases, as it allows using
as a reply for an operation some data that have been received before
the request has been actually issued, but it also opens the possibility
of �nding adapters in situations in which the former would fail. In this
case study we use the latter strategy, hence the needed counters for those
data that are not required as a response by the invoked expected service
operation are set to −1.

After the invocation of SearchLyric the actual service goes in Search-
Lyric_start state. The next operation on the expected sequence to be
invoked is searchSongs, which requires as input the names of the song
to be searched and of its author and provides as return parameters the
names of the artist and of the song, if they are found. Since the needed
counters for both the name of the artist and of the song are set to −1,
instances of those data have been previously stored, hence no operation
shall be invoked on the actual service, which remains in state Search-
Lyric_start.

The last operation in the expected sequence is getSong, which requires
as input artist and song names and the id and checkSum returned by
the previously invoked checkSongExists. The expected service has again
the same three operations of the previous step available, but this time
there are two available candidates for selection: searchSongs and Get-
Lyric. Given the data-�ow constraints elicited before, GetLyric is the
only available operation that can satisfy also the state compatibility re-
lation. After the invocation of GetLyric the expected and actual services
are in compatible states and the needed counter instances are all set to
0. Then, the actual service operation sequence found can be substituted
to the expected service sequence.

136

5.2. Case Study I: Veri�cation of Service Substitutability

A mapping script generated for the example sequence in this section
is reported in Table 5.1. Each step contains the state in which each one
of the analyzed automata is, the operations in seqexp and in seqact that
should be invoked in that step, and the exchanged data, if any. For each
operation in seqexp the adapter expects to receive an invocation for the
expected service, and for each operation in seqact the adapter performs
an invocation to the actual service. The table shows also the updates for
the seen and needed counters.

5.2.3. Evaluation and Experimental Results

In order to evaluate the encoding presented in this Section we use the
plug-in ae2Zot which is presented in Section 7 and we used it in three
sets of experiments.

� We created adapters for sequences of increasing length related to
the case study presented in Section 5.2.2. This set of experiments
was used as a qualitative evaluation of the approach on examples
taken from the real world.

� We ran the same set of experiments on Zot using three di�erent
encodings, namely: the SAT-based encoding of PLTL (PLTL/SAT,
see [95] for details); the SMT-based one of the same logic (PLTL/SMT,
which is the one described in Section 3.3.1 except that counters
are encoded only for �nite domains) and the SMT-based one of
CLTLB(DL), featuring the encoding of the a.t.t.'s presented in Sec-
tion 3.3.5. We measured elapsed time and occupied memory, and
we compared the results to get an estimate of how the introduction
of the SMT solver speeds up the adapter-building mechanism.

� We created some service interface models with growing number of
parameters and tried to solve them with both the original version
of the encoding and with the extensions. This set of experiments
has the purpose to compare how much the new encoding scales on
models larger than those found in common practice.

All experiments were run using the Common Lisp compiler SBCL
1.0.29.11 on a 2.50GHz Core2 Duo laptop with Linux and 4 GB RAM.
The SMT solvers used in our tests are: Microsoft Z3 2.4 (http://research.
microsoft.com/en-us/um/redmond/projects/z3/) and SRI Yices 2.0 pro-
totype (http://yices.csl.sri.com/). For the SAT-based PLTL encoding we
used MiniSat 2.0 beta (http://minisat.se/).

137

5. Case Studies

The �rst set of experiments was carried out selecting some operation
sequences on the expected service presented in Section 5.2.2. The se-
lected sequences set comprises the simple sequence analyzed in the case
study plus sequences of growing length obtained trying to execute up to
5 consecutive searchSongs and checkSongExists operations. We set the
time bounds for the experiments using a simple heuristic, based on the
sum of the states of the automata of the input services. In those cases in
which the abstract sequence featured repeated invocations of the same
operation, the time bound was augmented with the number of repetitions
of each operation. This set of experiments produced a set of mapping
scripts that we checked by inspection. Fig. A.1(a) and Fig. A.1(b) report
the overall results. Fig. A.1(b) shows that the CLTLB(DL) encoding
has lower memory occupation than the SAT-based PLTL encoding for
the same problem. Fig. A.1(a) shows that the CLTLB(DL) encoding on
Z3 performs much better than the others.
Lastly, we tried to push the limits of our technique to check its ro-

bustness. To do so, we generated simple service protocols featuring op-
erations with a growing number of parameters. We chose this setting for
our experiments based on our experience in the common practice, which
suggests that services usually exhibit very simple protocols, while oper-
ations have sometimes a considerable number of parameters. Note that
the models used in these experiments are much bigger than those com-
monly found in practice. The experiments are based on expected and
actual services with 10 states, and a trace bound of 21 time instants. The
results are shown in appendix A.1 Figure A.1(c) and in Figure A.1(d).
The number of parameters used in experiments ranges from 10 (i.e. each
operation has 10 input and 10 output parameters) to 90. As shown in the
�gures, the CLTLB(DL) encoding on Z3 was the only one we managed to
push up to 90 parameters, while we stopped experimenting much earlier
with the PLTL encoding on Yices, Z3 and MiniSat. It is worth notic-
ing that in Figures A.1(c)-A.1(d) the combination CLTLB(DL)/Yices is
missing because of its poor performance on this set of experiments (the
simplest case was solved in more than 500 seconds).

5.2.4. Related Work

Our approach is closely related both to works supporting substitution
of services and to works about veri�cation using model checking. Many
approaches that support the automatic generation of adapters (or equiv-
alent mechanisms) are based on the use of ontologies and focus on non-
conversational services (see for instance [94, 96]). They all assume that
the usual WSDL de�nition of a service interface is enriched with some

138

5.2. Case Study I: Veri�cation of Service Substitutability

kinds of ontological annotations. At run-time, when a service bound
to a composition needs to be substituted, a software agent generates
a mapping by parsing such ontological annotations. SCIROCO [97]
o�ers similar features but focuses on stateful services. It requires all
services to be annotated with both a SAWSDL description and a WS-
ResourceProperties [98] document, which represents the state of the ser-
vice. When an invoked service becomes unavailable, SCIROCO exploits
the SAWSDL annotations to �nd a set of candidates that expose a se-
mantically matching interface. Then, the WS-ResourceProperties docu-
ment associated with each candidate service is analyzed to �nd out if it
is possible to bring the candidate in a state that is compatible with the
state of the unavailable service. If this is possible, then this service is
selected for replacement of the one that is unavailable. All these three
approaches o�er full run-time automation for service substitution, but
as the services they consider are not conversational, they perform the
mapping on a per-operation basis. An approach that generates adapters
covering the case of interaction protocols mismatches is presented in [99].
It assumes to start from a service composition and a service behav-
ioral description both written in the BPEL language [100]. These are
then translated in the YAWL formal language [101] and matched in or-
der to identify an invocation trace in the service behavioral description
that matches the one expected by the service composition. The match-
ing algorithm is based on graph exploration and considers both control
�ow and data �ow requirements. The approach presented in [102] of-
fers similar features and has been implemented in the open source tool
Dinapter (http://sourceforge.net/projects/dinapter). While both these
approaches appear to ful�ll our need for supporting interaction protocol
mapping, they present some shortcoming in terms of performances, as
shown in [90].

139

5. Case Studies

S
te
p

E
x
ec
u
ti
o
n
tr
a
ce

C
o
n
te
n
t

C
o
u
n
te
rs

va
lu
e

1
L
y
ri
c
W
ik
iS
ta
te
:s
ta
rt

;
L
y
ri
c
W
ik
iO
p
er
a
ti
o
n
:c
h
ec
k
S
o
n
g
E
x
is
ts

A
ll
co
u
n
te
rs

se
t
to

0
L
y
ri
c
W
ik
iI
n
p
u
t:

so
n
g
,
a
rt
is
t;
L
y
ri
c
W
ik
iO
u
tp
u
t:
ly
ri
cI
d
,
ly
ri
cC

h
ec
k
S
u
m

c
h
a
rt
L
y
ri
c
sS
ta
te
:s
ta
rt
;
L
y
ri
c
W
ik
iO
p
er
a
ti
o
n
:c
h
ec
k
S
o
n
g
E
x
is
ts

2

L
y
ri
c
W
ik
iS
ta
te
:s

1
se
en
(s
o
n
g
)
=

se
en
(a
rt
is
t)

=
1

c
h
a
rt
L
y
ri
c
sI
n
p
u
t:

so
n
g
,
a
rt
is
t

n
ee
d
ed
(l
y
ri
cI
d
)
=

n
ee
d
ed
(l
y
ri
cC

h
ec
k
S
u
m
)
=

1
c
h
a
rt
L
y
ri
c
sO

u
tp
u
t:
so
n
g
,
a
rt
is
t,
a
rt
is
tU

rl
,
so
n
g
R
a
n
k
,
ly
ri
cs
Id
,
ly
ri
cC

h
ec
k
su
m

c
h
a
rt
L
y
ri
c
sS
ta
te
:s
ta
rt
;
c
h
a
rt
L
y
ri
c
sO

p
er
a
ti
o
n
:s
ea
rc
h
L
y
ri
c

3

L
y
ri
c
W
ik
iS
ta
te
:s

1
;
L
y
ri
c
W
ik
iO
p
er
a
ti
o
n
:s
ea
rc
h
S
o
n
g
s

se
en
(s
o
n
g
)
=

se
en
(a
rt
is
t)

=
0

L
y
ri
c
W
ik
iI
n
p
u
t:
so
n
g
,
a
rt
is
t;
L
y
ri
c
W
ik
iO
u
tp
u
t:
so
n
g
,
a
rt
is
t

n
ee
d
ed
(l
y
ri
cs
Id
)
=

n
ee
d
ed
(l
y
ri
cC

h
ec
k
S
u
m
)
=

0
c
h
a
rt
L
y
ri
c
sS
ta
te
:s
ea
rc
h
L
y
ri
c_

st
a
rt

n
ee
d
ed
(a
rt
is
t)

=
n
ee
d
ed
(a
rt
is
tU

rl
)
=

-1
n
ee
d
ed
(s
o
n
g
)
=

n
ee
d
ed
(s
o
n
g
R
a
n
k
)=

-1

4
L
y
ri
c
W
ik
iS
ta
te
:s

5
se
en
(s
o
n
g
)
=

se
en
(a
rt
is
t)

=
1

c
h
a
rt
L
y
ri
c
sS
ta
te
:s
ea
rc
h
L
y
ri
c_

st
a
rt

n
ee
d
ed
(s
o
n
g
)
=

n
ee
d
ed
(a
rt
is
t)

=
0

c
h
a
rt
L
y
ri
c
sO

p
er
a
ti
o
n
:
N
o
n
e

5

L
y
ri
c
W
ik
iS
ta
te
:s

5
;
L
y
ri
c
W
ik
iO
p
er
a
ti
o
n
:
g
et
S
o
n
g

N
o
ch
a
n
g
es

L
y
ri
c
W
ik
iI
n
p
u
t:

ly
ri
cI
d
,
so
n
g
,
ly
ri
cC

h
ec
k
S
u
m
,
a
rt
is
t

L
y
ri
c
W
ik
iO
u
tp
u
t:
so
n
g
,
a
rt
is
t,
ly
ri
cC

o
rr
ec
tU

rl
,
L
y
ri
c

c
h
a
rt
L
y
ri
c
sS
ta
te
:s
ea
rc
h
L
y
ri
c_

st
a
rt

6

L
y
ri
c
W
ik
iS
ta
te
:s

6
se
en
(s
o
n
g
)
=

se
en
(a
rt
is
t)

=
2

c
h
a
rt
L
y
ri
c
sI
n
p
u
t:

ly
ri
cI
d
,
ly
ri
cC

h
ec
k
S
u
m

se
en
(l
y
ri
cC

h
ec
k
S
u
m
)
=

se
en
(l
y
ri
cI
d
)
=

1
c
h
a
rt
L
y
ri
c
sO

u
tp
u
t:

so
n
g
,
a
rt
is
t,
a
rt
is
tU

rl
,
ly
ri
cR

a
n
k
,
L
y
ri
c,
ly
ri
cC

o
rr
ec
tU

rl
,
..
.

n
ee
d
ed
(s
o
n
g
)
=

n
ee
d
ed
(a
rt
is
t)

=
1

c
h
a
rt
L
y
ri
c
sS
ta
te
:s
ea
rc
h
L
y
ri
c_

st
a
rt

c
h
a
rt
L
y
ri
c
sO

p
er
a
ti
o
n
:g
et
L
y
ri
c

n
ee
d
ed
(l
y
ri
cC

o
rr
ec
tU

rl
)
=

n
ee
d
ed
(L
y
ri
c)

=
1

7

L
y
ri
c
W
ik
iS
ta
te
:s

6
se
en
(l
y
ri
cC

h
ec
k
S
u
m
)
=

se
en
(l
y
ri
cI
d
)
=

0
L
y
ri
c
W
ik
iO
p
er
a
ti
o
n
:
N
o
n
e

n
ee
d
ed
(s
o
n
g
)
=

n
ee
d
ed
(a
rt
is
t)

=
0

c
h
a
rt
L
y
ri
c
sS
ta
te
:e
n
d

n
ee
d
ed
(l
y
ri
cC

o
rr
ec
tU

rl
)
=

n
ee
d
ed
(L
y
ri
c)

=
0

c
h
a
rt
L
y
ri
c
sO

p
er
a
ti
o
n
:
N
o
n
e

n
ee
d
ed
(a
rt
is
tU

rl
)
=

n
ee
d
ed
(l
y
ri
cR

a
n
k
)
=

-1

Table 5.1.: Mapping script generated for the case study in Section 5.2.2140

6. Related works

Bultan at al. present in [103] a symbolic model checker for analyzing
programs with unbounded integer domains. Programs are de�ned by an
event-action language where atomic events are expressed by Presburger
formulae over programs variables V . Semantics of programs is de�ned
in terms of in�nite transition systems where states are determined by
values of variables. Events are atomic and they are represented with
an enabling condition and an action where the condition constraints
the states in which they occur and the action de�nes a transformation
on variables of the program. The language for speci�cation is a CTL-
like temporal logic enriched with Presburger de�nable constraints over
V . Solving CTL model-checking problem involves computation of least
�xpoints over sets of programs states: the abstract interpretation of
Cousot and Cousot [104] provides an approximation method to compute
approximation of �xpoints. Model-checking is done conservatively: ap-
proximation technique admits false negatives, i.e., it allows the solver
to indicate that a property does not hold when it really does. Three
phases de�ne the deciding procedure. In translation phase, the model-
checker accepts as input a program which is de�ned by the event-action
language. Programs are analyzed symbolically by means of symbolic
execution techniques and they are represented by means of Presburger
de�nable transition systems where Presburger formulae represents sym-
bolically the transition relation and the set of program states. Then, the
state space is partitioned in order to reduce the complexity of veri�ca-
tion and regain decidability for some temporal property, like reachability.
Finally, the analysis phase realizes procedures to solve conservatively ver-
i�cation problems. Backward and forward state exploration is performed
during model-checking computation. The backward version starts with
the set of states satisfying the property and performs, recursively, trans-
formations of the current set by means of a predecessor function; if the
computed set is contained in the set of initial states of the program then
the property is satis�ed. Conversely, the forward version starts from the
initial con�guration and try to reach set of states satisfying the property.
Since the adopted language representing programs is Turing-complete,
the process of computing sets of states may not terminates. Therefore,
authors suggest a way to compute approximations of set representing

141

6. Related works

exact �xpoints for desired formulae such that the computing algorithms
always terminate. In particular, if φ is a property and Sφ is the set of
states satisfying φ, a lower (upper) approximation Slφ (Suφ) for φ is a set
such that Slφ ⊆ Sφ (Suφ ⊇ Sφ). It is worth noticing that Slφ ⊆ Suφ . If
I is the set of initial con�guration for the program, then verifying that
I ⊆ Slφ entails I ⊆ Sφ; conversely, if I ⊇ Suφ then I ⊇ Sφ. However,
if I 6⊆ Slφ we can not conclude anything because it can be a false nega-
tive; and symmetrically, when I 6⊇ Suφ . In this case, we can compute a
lower bound Sl¬φ of ¬φ such that if I ∩ Sl¬φ 6= ∅ and then we can yield
a counterexample. Symmetrically, we can compute an upper bound Su¬φ
such that if I ∩ Su¬φ = ∅ and then we can prove φ. To compute lower
(upper) approximation for a formula, we may have to compute an upper
(lower) approximation; for instance, in the case of negated formulae like
φ = ¬ψ, for which S/Suφ ⊆ S¬φ ⊆ S/Slφ. Then, it holds that Slφ = S/Su¬φ
and Suφ = S/Sl¬φ where S is the universe set of states. From abstract
interpretation, the widening technique is used to obtain procedures to
approximate �xpoints which always terminate. In particular, to compute
upper approximation authors generalizes the convex region widening op-
erator which is proposed by Cousot and Halbwachs in [105]. Let V be
the set of variables occurring in the program and (S, I, η, L) be the tran-
sition system de�ning the program where S is the set of states, I the set
of initial states, η ∈ S × S is the transition relation and L is a labeling
function which de�nes for every state a Presburger formula over V . The
transition relation η ∈ S × S is de�ned by program events which are
represented by Presburger formulae over the set V ∪ V ′, where V and
V ′ is the set of current and next state variables. If X is a set of states,
pred(X) = {s ∈ S mod s′ ∈ X and (s, s′) ∈ η} is the predecessor set of
X by means of the predecessor function pred. For instance, computing
the set of states satisfying the CTL formula EFφ amounts to compute
a least �xpoint of the formula fEFφ = σZ(φ∨EXZ). The least �xpoint
µZ(φ ∨ EXZ) of fEFφ is, exactly, the set SEFφ of states satisfying the
formula EFφ, by monotonicity of f and by the Tarski theorem [106].
Given a �xpoint formula σZ.f , where σ ∈ {µ, ν}, its k-th approximant
σkZ.f is a formula recursively de�ned as follows:

µ0Z.f = false µi+1Z.f = fX←µiX.f

ν0Z.f = true νi+1Z.f = fX←νiX.f

where fZ←α is a formula obtained by replacing all occurrence of Z in f
by α. It is worth noticing that Sfalse = ∅ and Strue = S. All the formulae
σiZ.f are such that variable Z does not occur, i.e., Z is replaced i times;
for this reason, we write f i(false) instead of σiZ.f . Each element of the

142

sequence false, fEFφ(false), f2EFφ(false), . . . f iEFφ(false)

� corresponds to a subset of the least �xpoint SEFφ of EFφ,

� and is such that f iEFφ(∅) ⊆ f i+1
EFφ(∅).

Then, since each iteration provides a lower bound of the exact �xpoint,
authors suggest various method to decide a suitable number of iteration
to obtain a conservative lower bound of a desired formula. Comput-
ing the sequence ∅, f, f2, . . . can be done iteratively. Given a symbolic
representation for φ, the set SEXφ of states satisfying EXφ equals to
pred(Sφ) where Sφ is the set of states satisfying φ. Then, starting from
S0 = Sφ each iteration Si = Si−1 ∪ pred(Si) is the i-th element f iEFφ(∅)
of the sequence. When Si = Si−1, for some i, then Si = SEFφ is the least
�xpoint. De�ning an upper approximation of the least �xpoint for EFφ
amounts to �nd a sequence ∅, f̂(∅), f̂2(∅), . . . such that f̂ i(∅) ⊇ f i(∅) for
all i. To generate f̂ i(∅) authors adopt a modi�ed widening operator 5̂
such that if A,B are two sets then A ∪B ⊆ A5̂B. The operator 5̂ is a
generalization of the widening operator de�ned by Cousot and Halbwachs
in [105] which handles convex polyhedra, i.e., conjunction of Presburger
constraints. Experimental results, based on the standard Bakery algo-
rithm and Ticket mutual-exclusion algorithm, show the e�ectiveness of
the method when veri�cation involves a mutual exclusion requirement
¬EF(pc1 = C1 ∧ pc2 = C2), where pci, Ci is the program counter and
the label identifying the critical section of the process i, and a starvation-
free property AG(pc1 = W1 → AG(pc2 = W2)). Both the property are
veri�ed exactly, since the �xpoint computation converges. In the case of
Ticket mutual-exclusion algorithm approximation technique is needed to
have convergent �xpoint computation.
Schuele and Schneider provide in [107] a general algorithm to decide

bounded LTL(L) model-checking of in�nite state systems where the lan-
guage L is a general underlying logic. The approach is quite di�erent
from previous by Bultan et al. since the system is explored only for a
bounded number of times but it shares similarity in the fact they reduce
model-checking problem to �xpoints veri�cation. Di�erently to bounded
model-checking of Biere et al. in [61], a LTL(L) formula φ is translated to
an equivalent Büchi automaton Aφ which is symbolically represented by
means of a structure de�ning its transition relation and acceptance con-
dition. Then, LTL(L) model-checking problem is reduced to µ-calculus
model-checking problem modulo L, i.e., a veri�cation of �xpoint prob-
lem for a given Kripke structure with respect to symbolic representations
of Aφ and the underlying language L. Whenever properties are not be
proved or disproved over �nite computation, their truth value can not

143

6. Related works

be de�ned. For this reason, authors adopt three-valued logic to evalu-
ate the value of formulae whose components may have unde�ned value.
Global and local model-checking of µ-calculus formulae are investigated
and adapted to bounded model-checking. Bounded local model-checking
follows an inductive style of reasoning. Proof forM |= φ are obtained by
building a tableau by means of syntax-directed rules which use prede-
cessor and successor functions on structure M . Bounded global model-
checking is performed essentially by computing approximate �xpoint sets
of a formula and by checking whether the initial condition I is a subset
of the set of states fk de�ned by the approximant. In particular, let
V be the set of variables de�ning the systems; models which authors
consider are Kripke structure of the form (S, I,R) where S is the set
of states, I a Presburger de�nable set of initial states, R ∈ S × S is
the transition relation which can be represented by Presburger formulae
over the set V ∪V ′ of current and next state variables. Bounded model-
checking problem M, s0 |= φ is reduced to checking whether there exists
q ∈ Q0 such that M × A, (s0, q) |= F where A = (Q,Q0, δ, F) is the
symbolic Büchi automaton of φ. Most of the work of [107] and the use
of symbolic representation of Büchi automaton are already introduced in
[108], by the same authors, whose contribute is the de�nition of a hier-
archy of Büchi automata (and, therefore, temporal formulae) for which
in�nite state bounded model-checking is complete. The language for
speci�cation of [108] is the quanti�er-free fragment of Presburger LTL,
LTL(PA), with past-time temporal modalities. Bounded model-checking
problem is de�ned with respect to Kripke structures (S, I,R) and it is
solved by means of reduction to satis�ability of Presburger formulae. In
general, acceptance conditions of Büchi automata, requiring that some
states are visited in�nitely often, can not be handled immediately by
bounded approaches which do not consider ultimately periodic models,
like, for instance, bounded model-checking approach of Biere et al. [61]
or the encoding of Büchi automata of deMoura in [109]. Therefore,
Schule and Schneider follow a di�erent approach, tailored to bounded
veri�cation, and focus on the analysis of some classes of LTL formulae,
denoted TLF and TLG, such that the corresponding Büchi automaton
has a simpler accepting condition which does not involve condition on
in�nite models. TLF and TLG are the sets of LTL formulae such that
each occurrence of a weak/strong temporal operator is negative/posi-
tive and positive/negative, respectively. As anticipated, LTL formulae
are represented symbolically by an automaton which is built using the
method proposed by Clarke et al. in [60] instead of Vardi-Wolper [51]
construction. Formulae belonging to TLF and TLG can be represented
by deterministic Büchi automata whose symbolic acceptance condition is

144

of the form Fψ and Gψ, where ψ is a propositional formula. Informally,
a symbolic automaton for LTL formula is a graph enriched with fairness
constraints which recognizes its in�nite models. Atomic propositions
are introduced to represent symbolically control states of the graph and
the structure is translated into a formula. For instance, a LTL formula
φUψ, with φ, ψ ∈ PA, is represented by means of a symbolic automa-
ton of one states q and one fairness accepting condition of the form:
A = ({q}, true, p ⇔ φ ∨ ψ ∧Xp,GF(φ ⇒ p)) where true is the initial
condition. According to the analysis in [110], condition GF(φ ⇒ p)
can be simpli�ed to F(φ⇒ p). Unwinding these automata for bounded
number of times k is straightforward and does not require a product
with the Kripke structure. In order to reduce model-checking problem
to satis�ability problem of Presburger formulae, control states are repre-
sented by new fresh integer variables and transition relation of automata
is represented symbolically. Computation of the symbolic automaton is
represented at each step by the set of formulae de�ning its transition
relation. In the previous example, pi ⇔ φi ∨ ψi ∧ pi+1 for i ∈ [0, k] and
the acceptance condition is F(φi ⇒ pi). Let M be a Kripke structure
and s ∈ I; LTL(PA) bounded model-checking is considered in both ex-
istential and universal version: M, s |= Aφ, i.e., all runs of M starting
from s satisfy φ, and M, s |= Eφ, i.e., there exists a runs of M starting
from s which satis�es φ. Let φ be a TLF formula such that Fζ is the
accepting condition of Aφ:

� M, s |= Eφ if, and only if, x0 ∧
∧k
i=0R(xi,xi+1) ∧

∨k
i=0 ζi is satis-

�able.

� M, s |= Aφ if x0 ∧
∧k
i=0R(xi,xi+1)⇒

∨k
i=0 ζi is satis�able.

for some k > 0. Let φ be a TLG formula such that Fζ is the accepting
condition of Aφ:

� M, s 6|= Eφ if x0 ∧
∧k
i=0R(xi,xi+1) ∧

∨k
i=0 ζi is satis�able.

� M, s 6|= Aφ if, and only if, x0 ∧
∧k
i=0R(xi,xi+1) ⇒

∨k
i=0 ζi is

satis�able.

for some k > 0.
Reducing model-checking problem to Presburger satis�ability is quite

standard approach when dealing with in�nite state systems. Finkel and
Leroux in [4] study reachability and Demri et al. in [72] LTL(PA) model-
checking problem for the class of admissible counter systems. We say that
a partial function f : Nn → Nn is a�ne when, given Presburger formula
ϕ(x1, . . . , xn) there exists a matrix A ∈ Zn×n and a vector b such that

145

6. Related works

f(x) = Ax + b for every x |=PA ϕ. A counter system (Q,n, δ) is a�ne

when every transition q
ξ−→ q′ of δ is such that ξ is a�ne. Admissible

counter systems are a�ne counter systems such that:

1. there is at most one transition between two control states,

2. the control graph is �at, i.e., every control states belong to at most
one elementary cycle,

3. each cycle has the �nite monoid property.

These condition are required to symbolically represent the e�ect of cy-
cle of the system by means of a Presburger formula. Since a�ne re-
lations are closed under composition, it is then possible to symboli-
cally represent �nite (and in�nite) computations of systems. Flatness
guarantees that the language of transitions, called path schema of a
�at counter system is a �nite union of bounded language of the form:
` = u1(v1)

∗u2(v2)
∗ . . . (vn)∗un+1, where Σ is the set of symbols rep-

resenting transitions of the systems and ui ∈ Σ∗ and vi ∈ Σ+. Al-
though each cycle vi of the system can be represented by an a�ne rela-
tion T ⊆ Nn × Nn between counters, which is the result of composition
of relations labeling cycle transitions, this does not immediately entail
that its transitive and re�exive closure T ∗ is Presburger de�nable. Fi-
nite monoid property is a su�cient condition guaranteeing that relation
cT ⊆ Nn × Nn × N such that (x,y, i) ∈ cT if, and only if, (x,y) ∈ T i,
is Presburger de�nable; i.e., the e�ect of cycles at the i-the iteration is
e�ectively de�nable. A relation T = {(x,y) ⊆ Nn × Nn | y = Ax + b}
has �nite monoid property when the set A∗ = {Ai | i ∈ N} is �nite.
When T has the �nite monoid property then T ∗ is Presburger de�n-
able. It is worth noticing that, given a matrix A ∈ Zn×n, the prob-
lem of checking whether the set A∗ is �nite is decidable [111]. Authors
prove a foundamental theorem for admissible counter systems charac-
terizing the reachability set. Let (Q,n, δ) be a admissible counter sys-
tem and q, q′ ∈ Q two control states. Then R(q,q′) is e�ectively semi-
linear, i.e., it is possible to compute a Presburger formula ϕ(q,q′) such
that for every valuation (x,x′), (x,x′) |=PA ϕ(q,q′) ⇔ (x,x′) ∈ R(q,q′).
Reachability is proved by Cortier [112] to be undecidable when �nite
monoid property is relaxed for �at a�ne counter systems. Demri et
al. in [72] study decidability of model-checking problem for admis-
sible counter systems with respect to �rst-order CTL∗ language over
Presburger predicates. Decidability of �rst-order CTL∗ model-checking
problem (which entails decidability of LTL(PA)) is proved by exploit-
ing Presburger de�nability of the reachability set when models are re-

146

stricted to the class of admissible counter systems. Flatness guaran-
tees that path schema are extended to in�nite runs of the form: ` =
u1(v1)

∗u2(v2)
∗ . . . (vz)

ω, where Σ is the set of symbols representing tran-
sitions of the systems and ui ∈ Σ∗ and vi ∈ Σ+. The pair (`,h),
called path description, where h = h1, . . . , hz−1 is a sequence of nat-
urals and a ` = u1(v1)

∗u2(v2)
∗ . . . (vz)

ω is a path schema, corresponds to
a unique computation `h = u1(v1)

h1u2(v2)
h2 . . . (vz)

ω. Given an admis-
sible counter system, the set L of all path schema is �nite and each path
schema in L can be e�ectively computed. Decidability of model-checking
is obtained by reduction to satis�ability of a Presburger formula. Clo-
sure under composition of a�ne relations and Presburger de�nability
of reachability set are used to obtain for every q ∈ Q, two formulae
ϕ`q(h1, . . . , hz−1, x1, . . . , xn) and ϕ`i(h1, . . . , hz−1, x1, . . . , xn, y1, . . . , yn, i),
with ` = u1(v1)

∗u2(v2)
∗ . . . (vz)

ω, such that:

� (h,x) |=PA ϕ`q if, and only if, there is an in�nite run from (q,x)

obtained from `h.

� (h,x,x′, t) |=PA ϕ
`
i if, and only if,

1. (h,x) |=PA ϕ
`
q

2. t-th tuple of counters' values is x′.

for all valuation (h,x,x′, t). Intuitively, the second formula ϕ`i is used
to represent semantics of CTL∗ formulae with respect to the in�nite
run such that ϕ`q holds. Therefore, let S = (Q,n, δ) be an admissible
counter system, (q,x) be a con�guration of S and φ be a CTL∗ formula
over Presburger predicates; CTL∗ model-checking S |= φ is reduced to
satis�ability of the formula∨

`∈L
(∃h ϕ`q(h,x) ∧ t(0, φ))

where t is a map which translates CTL∗ formulae to an equivalent �rst-
order formula. Let R(x,y) ⊆ Nn×Nm be a relation where y are variables
for quanti�cation not occurring in the system. The map t, restricted to
the LTL fragment, is de�ned as follows (full de�nition is detailed in [72]):

t(i, R(x,y))
def⇔ ∀x′ ϕ`i(h,x,x′, i)⇒ R(x′,y)

t(i,Xφ)
def⇔ ∃j t(j, φ) ∧ j = i+ 1

t(i, ζUψ)
def⇔ ∃j (t(j, ψ) ∧ ∀z(i ≤ z < j) ∧ t(z, ζ))

t(i,∃yφ)
def⇔ ∃y t(i, φ)

Complexity for CTL∗ model-checking problem is not investigated.

147

6. Related works

Reducing problems to Presburger arithmetic is exploited by Hague
and Lin in [83] to compute the reachability set of pushdown systems en-
riched with reversal-bounded counters (PCo) and, possibly, extended
with discrete clocks (PCC). Transitions are labeled by DL formulae
whose variables are taken from the set of counters and clocks. De-
cidability and complexity analysis of reachability problem and control
state LTL model checking problem for both the class PCo and PCC is
based on reduction to Presburger formulae. Authors prove that reach-
ability for PCo is NP-complete while LTL model-checking problem is
coNexpTIME-complete. When discrete clocks are considered reacha-
bility is NexpTIME-complete and complexity of LTL model-checking
problem is the same as PCo. All the complexity results are obtained by
considering a unary encoding for the number of reversal r, while all nu-
meric constants and counter increments are encoded in binary. Nonethe-
less, a careful reading of reduction shows that a binary encoding of r does
not a�ect complexity result obtained for model-checking problem but it
involves an exponential grow up for reachability problem. Complexity
upper bounds result from the polynomial time reduction of problems to
satis�ability of a Presburger formula. Given a PCo P, authors build
�rst a pushdown automaton P ′, with the same set of control states as
P, which over approximates P and simulates P by disregarding counter
information. P ′ represents transitions of P by means of a symbolic al-
phabet Σ′ which specify:

� how counters change, by storing n quadruple of the form (counteri, u, j, l)
where i ∈ [1, n] is a counter index, u ∈ Z is the update value, j de-
�nes the current mode and l ∈ {0, 1} represents whether the action
changes the mode;

� which constraint ξ is valid at mode i.

Being P ′ a pushdown system, its Parikh image χq(y), where q is a control
state of P and y represents symbols in Σ′, is semilinear and it can be
e�ectively computed. Since P ′ only guesses the sequence of mode vectors
characterizing runs of P, there are runs of P ′ which are not valid in P.
In order to correctly represent runs of P, authors provide a formula
which �lters invalid run and asserts the existence of a valid sequence of
modes respecting counter tests and updates which are guessed by P ′. It
is worth noticing that constants de�ning the system de�ne a partition of
N for each counter. In particular, let m be the number of constants and
c1, . . . , cm be the sequence of ordered constants; then, the domain N of
each counter is partitioned into 2m distinct regions. Vector modes are
de�ned analogously to Section 2.6.2 and they also contain information

148

on regions. Legal runs of P are represented by the following formula:

∃y∃m0 . . .mN−1

 initial(m0) ∧ goodSeq(m0, . . . ,mN−1) ∧
∧ respect(y,m0 . . .mN−1) ∧ endConfig(y) ∧

∧ χq(y)


where:

� initial(m0) enforces the initial mode m0 to be compatible with
the initial con�guration, i.e., counters region and update vector.

� goodSeq(m0, . . . ,mN−1) forces m0, . . . ,mN−1 to be a valid se-
quence of mode vectors, i.e., the number of reversal is bounded for
all counter and a reversal occurs for counter x when the sign of the
update of x changes.

� respect(y,m0 . . .mN−1) de�nes behavior of counters. If a counter
is non-incrementing (non-decrementing) then only non-negative
(non-positive) increments are allowed. Secondly, the value of each
counter at the beginning and at the end of each mode must respect
the region de�ned by the current mode vector. Finally, if a transi-
tion is �red then its labeling constraint is satis�ed by the current
con�guration.

� endConfig(y) asserts that the �nal con�guration (q,y) is reach-
able, i.e., the value of counters is y and it is equal to the e�ect of
the run reaching q.

The previous formula has cubic size in the size of P, (unary) r and
the number of counter n. Model-checking problem is solved with the
standard automata-theoretic approach of Vardi-Wolper [51] and in par-
ticular, it is reduced to control-state repeated reachability on the product
system P ×A¬φ, where A¬φ is the Büchi automaton of ¬φ. By reversal-
boundedness of counters, all in�nite runs of P ×A¬φ stabilize, i.e., some
counters are always non-decreasing and some others are constant. Then,
all in�nite runs of P × A¬φ can be represented by a �rst �nite subrun
de�ned by P ×A¬φ as PCo and a second subsequent in�nite run where
P×A¬φ is treated as pushdown system with no counters. The pushdown
systems is de�ned from the original PCo by allowing only transitions
which do not decrement counters whose value does not stabilize. There-
fore, it is possible to build a PCo P ′′ which simulates P × A¬φ for the
initial subrun and then, nondeterministically, stops simulating P ×A¬φ
as PCo and starts simulation of the second subrun where P × A¬φ is
treated as pushdown system. Repeated reachability problem is reduced

149

6. Related works

to a reachability problem over P ′′ with respect to a special control state
final which is reached if, and only if, P ′′ simulates both the phase of
P×A¬φ. Beside the representation of runs reaching final, as it is de�ned
by the previous formula, auxiliary Presburger formulae are used to �lter
runs of P ′′ such that some control states, visited when P×A¬φ is treated
as pushdown system, are repeated in�nitely often. Lower bound for LTL
model-checking and reachability are obtained by reducing the Knapsack
problem, which is known to be NP-complete: given a1, . . . , ak, b ∈ N
with binary encoding, the problem is to decide whether

∑k
i=1 aixi = b

for some x1, . . . , xk ∈ {0, 1}. Authors propose a reduction which builds
a PCo P with one 1-reversal bounded counter. P initializes the counter
to 0 and repeats for each i ∈ [1, k] the following action: guess the values
for xi then add aixi to the counter. At the end, the PCo checks whether
the counter is equal to b by subtracting b and checking if the result is
null. This operation involves only one reversal. If the result is 0 then P
execute a special action ok. The LTL formula which is veri�ed over P is
Fok. The lower bound can be proved for PCo where counters can only
be compared against zero and incremented by {−1, 0,+1}. Therefore, in
order to perform the sum aixi and the subtraction of b the stack is used
to store their binary representation and to compute weighted sum with
increments in {−1, 0,+1}.
Lin and Libkin [113] provide a general result about in�nite state model-

checking problem. They de�ne algorithmic meta theorem for LTL model-
checking which can be used to infer decidability (and complexity) of
the problem for a large class of in�nite state systems. Authors identify
semantic conditions on word/tree automatic transition systems which
guarantee decidability of LTL model-checking problem:

c1: reachability relation is e�ectively computable and de�ned by special
non deterministic automata, called synchronized transducers;

c2: the class of systems is closed under product with �nite systems.

Although many systems satisfy condition c1, many classes do not bene-
�t of closure as required by c2. Therefore, in order to regain decidabil-
ity, authors consider various fragments of LTL, along with restriction
of condition c2 to dag-like �nite state systems. Removing condition c2

is possible but at the cost of worse complexity bound. Fundamental
notion which authors use in their work is the automatic presentation of
transition systems, i.e., in�nite transition system that can be �nitely rep-
resented by means of automata and (synchronized) transducers. Given
an alphabet Σ, a (synchronized) transducer T is a non deterministic au-
tomaton de�ning a relation R ⊆ Σ∗ ×Σ∗ which reads words of the form

150

w⊕w′. Alphabet of T is de�ned by symbols of Σε×Σε where Σε = Σ∪{ε}
is the alphabet Σ enriched with a special character ε which �lls blank po-
sitions when two words of di�erent length are considered. For instance,

if w = abb and w′ = bbabb then w ⊕ w′ =

[
abbεεε
bbaabb

]
. The relation R

recognized by T is the set of pair {(w,w′) ∈ Σ∗ ×Σ∗ | w⊕w′ ∈ L (T)}.
Let A be a �nite set of action symbols and S = (S,→a∈A) be a transition
system over the actions A where S is a set of states and →a∈A⊆ S × S
be a relation on S. An in�nite transition system S can be �nitely rep-
resented by a structure, called presentation, θ = (A, {Ta}a∈A) where A
is a �nite state automaton over Σ and each Ta is a transducer over Σ.
The induced �automatic� transition system S(θ) is such that S = L (A)
and →a∈A= L (Ta), for each a ∈ A; i.e., s →a∈A s′ if, and only if,
s ⊕ s′ ∈ L (Ta), where s, s′ ∈ S. Condition c1 guarantees the e�ec-
tive computability of the control state repeated reachability set which
can be computed in polynomial time. Formally, condition c1 is satis�ed
when, given a presentation θ, there exists an algorithm which computes
a transducer T+ recognizing the transitive closure (

⋃
a∈A →a)

+. Given
an automatic transition system S(θ) and a �nite state automaton A′
over the same alphabet Σ, the set S∞ of states, from which there ex-
ists an in�nite path of S(θ) visiting states of L (A′) in�nitely often, is
regular and a �nite state automaton A∞, such that S∞ = L (A∞), is
computable in polynomial time. Second condition c2 requires that the
class of in�nte-state systems is closed under product with �nite system.
Then, if θ ∈ C and F is a �nite system then F × S(θ) ∈ C. Given
a LTL formula, when both conditions c1 and c2 are realized, check-
ing whether (S(θ), s0) |= φ is polynomial in the size of the presenta-
tion θ and exponential in the size of the formula φ. In particular, the
set of states of S(θ) satisfying ¬φ is regular and recognized by a �nite
state automaton which can be computed with the previous complexity
bound. Although certain classes satisfy condition c1, many of them do
not bene�t of a regular reachability set when they are combined with
�nite systems. Therefore, authors analyze some fragments of LTL and
a subclass of Presburger de�nable systems in order to regain decidabil-
ity. The �rst LTL fragments which authors consider is denoted LTLdet.
It is proposed by Maidl in [114] and its syntax is de�ned as follows:
φ := p | Xp | φ∧φ | (p∧φ)∨ (¬p∧φ) | (p∧φ)U(¬pφ) | (p∧φ)U>(¬pφ),
where p is an atomic proposition. The second fragment LTL(Fs,Gs) is
de�ned by LTL formulae in which temporal operators U and X are sub-
stituted by the derived operator Fsφ ≡ XFφ and Gsφ ≡ ¬Fs¬φ. When
extra assumption on presentation θ is given such that states and relations
→a are Presburger de�nable, decidability of model-checking for full LTL

151

6. Related works

is retained. In this case, presentations are of the form θ = (ξ, ηa) where
ξ, η are existential Presburger formulae with k free variables, for some
k ≥ 1. Decidability of LTL model-checking problem for S(θ) requires an
additional monotonicity condition between states of S(θ): let s, s′ ∈ Nk
two tuples of naturals representing two states of S(θ) then s →a s + b
implies s′ →a s

′ + b for some b ∈ Nk and some action a ∈ A, where
→a= {(x,y) ∈ Nk×Nk | (x,y) |=PA ηa}. Authors apply meta theorems
to obtain decidability and complexity results over various classes of in-
�nite state systems. Although some of them are already known, meta
theorems can be applied to the following classes: pushdown and concur-
rent pushdown systems, pre�x-recognizable systems, communication-free
Petri nets, some classes of process algebra and rewriting systems.
Decidable fragments of �rst-order temporal logic are considered in [73]

by Hodkinson et al. Although some axiomatizations of �rst-order tem-
poral logic are known, various incompleteness results induce authors to
study useful fragments between propositional and �rst-order temporal
logic. The language is di�erent from the one de�ned by Thomas in [71]
where the temporal modality X can be applied on �rst-order objects (i.e.,
terms). Moreover, Hodkinson et al. are interested in satis�ability and
they do not consider model-checking problem which requires a formalism
de�ning the interpretation of �rst-order variables. In other words, vari-
ables do not vary over time and their temporal behavior is not relevant.
Informally, languages which authors investigate are obtained by restrict-
ing both the �rst-order part and the temporal part. The �rst restriction
is needed to select suitable �rst-order fragments which bene�ts of classi-
cal already known decidability properties. On the other hand, temporal
operators which are used to describe behaviors of objects manipulated
by the �rst order part, are restricted to monodic formulae. In partic-
ular, a formula is monodic when its subformulae, involving a temporal
operator, have at most one free variable. The two conditions result in
decidable temporal fragments of �rst-order temporal logic over various
structure of time: (N, <), (Z, <), (Q, <) and, when �nite domain of vari-
ables are considered, also (R, <). Authors focus on satis�ability problem
of temporal formulae without equality or function symbols which are in-
terpreted in models with constant domain for the �rst-order part and
with strict linear order of time. The two classes TL and TS of languages
di�er in the access of time: while TL has only implicit access to time by
means of the standard temporal operator U (until) and S (since), TS is
a two-sorted �rst-order language such that one sort refers to positions
of time and the other is dedicated to �rst-order domain. The grammar
of the two language is analogous to the grammar de�ned in Section 3.
For instance, the formula ∃x∀y(P (x)UQ(y)) belongs to TL but it is not

152

monadic because the formula P (x)UQ(y) has two di�erent free variables;
while ∃t1∃t2(t1 < t2∧∃x(P (t1, x)⇒ Q(t2, x))) belong to TS. Beside the
notion of monodic formulae, also the number of parameters of a formula
can be restricted. In particular, a formula of is said to be monadic when
it only contains unary predicates and propositional variables. Authors
prove �rst a result de�ning the undecidability edge for the satis�ability
problem of TL. They show that the monadic fragments of TL, such that
formulae have at most two free variable, is enough to encode undecidable
problems like recurrent tiling problem for N×N, when (N, <) and (Z, <)
structures the time, and the halting problem for Turing machines, when
he time (N, <) and (Z, <) and the class of linear order even in the case of
�nite �rst-order domains. Both the undecidability proofs use temporal
formulae involving subformulae of the form φUψ with two free variables.
This motivates the analysis of monodic fragment of TL which bene�ts of
decidable satis�ability problem. In particular, authors use a speci�c rep-
resentation of models called quasimodel which synthetically de�nes, for
a given TL formula, which subformulae hold at each position of time.
Then, decidability of satis�ability problem for monodic TL is reduced to
satis�ability of monadic second-order logic. Given a TL formula φ we can
write a monadic second-order logic which assert the existence of a quasi-
model which satis�es φ. Motivated by the non-elementary complexity of
satis�ability of monadic second-order logic, authors provide a di�erent
proof of decidability for the monodic fragment of �rst-order temporal
logic. Decidability is obtained by an algorithm which checks whether
there exists an ultimately periodic model for the formula. Since the
number of ultimately periodic model is �nite and bounded by a double
exponential in the number of subformulae de�ning the original formula,
then it is possible to decide the problem of satis�ability in elementary
time provided that satis�ability of �rst-order fragment adopted to de-
�ne TL is elementary. Authors investigate also relationship between the
language TL and TS. They provide a translation of TL formulae into TS

formulae which is used to show that TL and the monodic fragment of
TL are expressive complete, i.e., equivalent, with respect to the fragment
of TS1t and TS1. The fragment of TS1t (TS1x) is the set of TS formulae
without subformulae of the form ∀xφ (∀tφ) such that φ contains more
than one free temporal (domain) variable; the language TS1 is the union
TS1t ∪ TS1x. Moreover, the fragments of monodic TL and TS formulae
involving at most two variable are decidable when the structure of the
time is one of the following: (N, <), (Z, <), (Z, <), (R, <) (only for �-
nite �rst-order domain), the class of all �nite strict linear orders and any
�rst-order de�nable class of strict linear orders. Finally, the monadic
fragment of both monodic TL and monodic TS (predicate symbols have

153

6. Related works

domain t × D or t, where t is the temporal explicit variable) have de-
cidable satis�ability problem. It is worth noticing that the monadic
fragment of TS such that predicates have only one variable for the sort
referring to the time is proved to have the same expressiveness as the
LTL in the Kamp's thesis [46].

6.1. Related tools

Recent developments of in�nite-state veri�cation are often associated
with an intense activity of development of tools supporting the theory.
This section gives a brief overview of the main and most famous ones
related to this thesis. Nonetheless the vastness and rapid growth of
research makes the investigation a quite hard task, we can individuate
two main di�erent area of development: solvers for base theories and
high-level frameworks for veri�cation.
Decidability of Presburger arithmetic along with its relevance in reduc-

ing problem like reachability and model-checking over counter systems,
has led to development of e�cient tools for deciding satis�ability of the
full language PA or its fragments like quanti�er-free PA or DL. Omega
library [115] is one of the best known candidate for handling PA formu-
lae. The Omega project has two major components. One component is
a system for manipulating sets of a�ne constraints over integer variables
which was originally designed as a decision test for the existence of integer
solutions to a�ne constraints. Other than providing positive or nega-
tive answers to a satis�ability problem, the library constitutes of several
routines for elimination of existentially quanti�ed variables, elimination
of redundant constraints, simpli�cation of formulae involving negations
and for verifying implications between formulae. The extended version
of the Omega library is a complete system for simplifying and verify-
ing Presburger formulas. The class of solvers for base theory include
also Satis�ability Modulo Theory solvers. SMT-solvers implement dif-
ferent decision procedure for separated theories and provide algorithms
to solve satis�ability of combination of them. Nelson-Oppen schema is
one possible method for combining disjoint theories. However, many im-
plemented algorithms exploit interaction with an underlying SAT-solver:
SMT instances are translated to boolean SAT instances and �rst solved
by a SAT solver. This approach, which is referred to as the eager ap-
proach, has the advantage of discovering immediately unsatis�ability de-
rived from boolean semantics of formulae. On the other hand, the loss of
the semantics of the underlying theories may penalize resolution of triv-
ial facts. This led to the development of a number of SMT solvers which

154

6.1. Related tools

integrate Boolean reasoning of a DPLL-style search with theory-speci�c
solvers that handle conjunctions of predicates from a given theory (lazy
approach). Not all SMT-solvers support quanti�ers since they may lead
to undecidability. We list main SMT-solver and their main characteris-
tics which we can be used in our implemented tool presented in Chapter
7.

yices: it is developed by SRI International. Yices decides the satis�-
ability of propositional formulas that mix uninterpreted function
symbols and equality with interpreted symbols from the following
theories: linear real and integer arithmetic, arrays, �xed-size bit-
vectors, recursive datatypes, tuples, lambda expressions and quan-
ti�ers. It also provides algorithm to produce unsatis�able core and
maximal sat of formulae.

MathSat: is a DPLL-based SMT-solver which supports theories of equal-
ity and uninterpreted functions, linear real and integer arithmetic
and di�erence logic. It also supports unsatis�able core algorithm.

z3: equality over uninterpreted functions and predicate symbols, real
and integer arithmetic (with limited support for non-linear arith-
metic), bit-vectors, arrays, tuple, records, enumeration types and
algebraic (recursive) data-types. It also supports partial decision
procedure for universal quanti�er and non-linear arithmetic.

Barcelogic: it is a DPLL-based SMT-solver which uses congruence clo-
sure to solve EUF theory. It supports EUF and di�erence logic
theories.

OpenSMT: it is a DPLL-based SMT-solver which supports EUF, dif-
ference logic and linear arithmetic over Z and Q and bit-vectors.

CVC3: it works with several built-in theories: linear arithmetic over Z
and Q, arrays, tuples, records, inductive data types, bit vectors,
and equality over uninterpreted function symbols. It also supports
quanti�ers.

Solvers for theories are usually integrated within high-level veri�cation
tools which implement procedure for model-checking or higher form of
analysis like program analysis, secure programming development, auto-
matic systems synthesis, network protocols veri�cation and cryptogra-
phy.

FAST: [116] Fast is a tool for reachability/safety veri�cation of counter
systems. It relies on symbolic representation of both the systems

155

6. Related works

and the speci�cation which are de�ned by Presburger formulae.
The tool was �rst intended to handle �at counter systems, for
which symbolic representation of cycles (acceleration) makes the
procedure complete. Although many systems do not have a �at
representation, it is often possible to provide an equivalent �at
system with the same reachability set which can be correctly ver-
i�ed. When �atness can not be exploited and reachability set is
not recursive, termination of the procedure can be obtained by a
user-guided interaction. Counter systems are speci�ed by means
of a language de�ning control states and transitions. Veri�cation
is done by computing backward and forward analysis by means
of functions pre(t, S, k) and post(t, S, k), respectively, which com-
putes the set of reachable con�guration from S by using transi-
tions de�ned in t and by accelerating cycles of length longer than
k. For �at counter systems the two functions compute the exact
reachability set; when the system is not �attable, both are semi-
algorithms. Set theoretical functions ∪,∩,¬,⊆ are used to manip-
ulate set of con�gurations. For instance, reachability properties
are veri�ed with post(t, S, k) ⊆ GoodSet while safety is veri�ed by
checking whether pre(t, BadSet, k) ∩ InitSet = ∅, where GoodSet
and InitSet are two Presburger de�nable sets of con�gurations.

SAL: SAL [117] is a framework for speci�cation and analysis of con-
current systems. It provides �nite and in�nite model-checker and
other tools for checking deadlocks in �nite concurrent systems and
for generating random executions of �nite and in�nite state sys-
tems. The tool is aimed at veri�cation of concurrent systems which
are speci�ed by a language allowing synchronous and asynchronous
composition of interacting components. Finite model-checking is
performed symbolically and also by explicit state algorithms, while
in�nite state veri�cation is realized by k-inductive proof, which we
recall in Section 2.7.3. Veri�cation is tailored to clock-based au-
tomata, like Timed automata, endowed with in�nite domain vari-
ables. In order to avoid the use of continuous clock, whose Zeno
behavior (in�nite occurrence of transitions without time progress)
makes k-induction useless, timeout-based veri�cation is realized
by using time-progress transitions which update timeouts while
discrete transitions are instantaneous since they leave time un-
changed. Timeouts are temporal objects which store the time at
which future discrete transitions will be taken. When an action
occurs, since its timeout is elapsed, the action is realized and the
timeout is updated to a new value, which is strictly larger than

156

6.1. Related tools

the current time. The bene�t of timeouts is that they enforce a
deterministic progress of time. There are no states in which both
time-progress and discrete transitions are enabled. When a time-
progress transition is enabled, time is advanced to the point where
the next discrete transition is enabled. Therefore, all variables of
the systems evolve in discrete steps.

Averest: Averest (http://www.averest.org/) is aimed to development of
reactive systems. It consists of the various components: beside
auxiliary modules, it provides a symbolic model checker and a
tool for hardware/software synthesis. Speci�cation language for
systems is a synchronous languages (QUARTZ). Statements are
�executed� as micro steps in zero time and consumption of time
is explicitly enforced by partitioning the micro steps of compu-
tation into macro steps that all take the same amount of logical
time. Concurrent threads automatically synchronize at the end of
a macro step. Speci�cations given in linear temporal logic (LTL)
are translated to ω-automata and/or �xpoints in CTL and the µ-
calculus, as we describe before about [107]. Veri�cation is provided
by a symbolic model checker for �nite and in�nite state systems.
Finite sets are encoded by their characteristic propositional func-
tions which are represented by means of binary decision diagrams
(BDDs) [57] while in�nite states are represented by Presburger
arithmetic formulae. As the speci�cation language, Averest uses
the µ-calculus which subsumes CTL and LTL. It includes a trans-
lator from FairCTL, an extension of CTL with fairness constraints,
to the µ-calculus.

157

7. ae2zot - a Tool for In�nite

State Veri�cation

ae2zot implements k-bounded satis�ability for LTL(FO) and CLTLB(L).
Languages L are those supported by SMT-solver such that the theory of
EUL is decidable. ae2zot is a plugin of a bigger environment for veri�ca-
tion, called Zot, which is constituted by various dedicated plugins. The
tool supports di�erent logic languages through a multi-layered approach.
An interesting feature of Zot is its ability to support di�erent encodings
of temporal logic as SMT problems. Plug-ins approach encourages ex-
perimentation, as they are expected to be quite simple, compact and
extendible. At the moment, a variant of the eventuality encoding pre-
sented in [63] is supported, along with (approximated) dense-time MTL
[118], and a bi-in�nite encoding [119]. ae2zot plug-in further enriches the
available functionality.
Zot o�ers three basic usage modalities:

1. Bounded satis�ability checking (BSC): given as input a speci�ca-
tion formula, the tool returns a (possibly empty) history (i.e., an
execution trace of the speci�ed system) which satis�es the speci�-
cation. An empty history means that it is impossible to satisfy the
speci�cation.

2. Bounded model checking (BMC): given as input an operational
model of the system and a temporal formula φ, the tool returns
a (possibly empty) history (i.e., an execution trace of the system)
which satis�es it φ.

3. History checking and completion (HCC): The input can also con-
tain a partial (or complete) history H. In this case, if H complies
with the speci�cation, then a completed version of H is returned
as output, otherwise the output is empty.

7.1. Tool structure

Main modules around ae2zot plug-in are kripke.lisp, smt-interface.lisp
and trio-utils.lisp. We brie�y describes their main functionality.

159

7. ae2zot - a Tool for In�nite State Veri�cation

The �le kripke.lisp contains the basic data structure and the de�nition
of the generics. Their de�nition are quite intuitive and directly explained
by comments.

(defclass kripke ()

((the-k :accessor kripke-k :type fixnum)

(the-list :accessor kripke-list :type hash-table)

; formula -> integer (usually an hash-table)

(the-back :accessor kripke-back :type array)

; integer -> formula (idem)

(sf-prop :accessor kripke-prop :type list)

; list of propositions used in the formula

(sf-bool :accessor kripke-bool :type list)

; list of used boolean subformulae

(sf-futr :accessor kripke-futr :type list)

; list of used future-tense subformulae

(sf-past :accessor kripke-past :type list)

; list of used past-tense subformulae

(max-prop :accessor kripke-maximum :type fixnum)

; used propositions maximum

(the-formula :accessor kripke-formula :type list)))

; this should contain the resulting prop. formula

; for the SAT-solver

(defgeneric call (self obj the-time &rest other-stuff)

(:documentation

"Call translates a formula/proposition and a time

instant into a suitable representation for SAT/SMT solver"))

The smt-interface.lisp de�nes the module which provides the ab-
straction of the underlying SMT solver. Main functions are:

(defun to-smt-and-back (the-kripke smt-solver) ...)

(defun translate-smt-output (k) ...)

Function to-smt-and-back has two parameters:

the-kripke is the structure containing the internal representation of the
formula and the corresponding translation into a formula which is
processed by an SMT-solver. Then, it will comply with syntax of

160

7.1. Tool structure

the chosen solver and it will invoke the suitable decision procedure
for a supported logic.

smt-solver is a �ag de�ning which solver has to be used.

translate-smt-output (k) translates the output produced by an SMT-
solver to a human readable format. Moreover, it also �lter atomic propo-
sitions and variables occurring in the original formula.
The module trio-utils.lisp provides syntactic abstraction on the

languages; for instance, the temporal operator F is encoded as somf.
The core ae2zot realizes essentially three functionality:

� it extends the class kripke into eezot-kripke in order to handle
LTL(FO) and CLTLB(L) formulae;

� it implements a parser for input formulae which analyzes the syn-
tactic structure and �lls a data structure data of class eezot-kripke.

� it builds the QF-EUL formula which realizes the reduction from
k-bounded satis�ability or model-checking problem to satis�ability
for QF-EUL.

The class eezot-kripke has the following attributes

� ((the-arith :accessor kripke-arith :type list) is a list of
atomic formulae occurring in the input formula.

� (the-timed-arith :accessor kripke-timed-arith :type hash-table)

is a list of atomic formulae which take values from the model σ̂k.

� (the-timed-arith-terms :accessor kripke-timed-arith-terms

:type list) is a list of all a.t.t.'s occurring in the input formula.

� (the-arith-arith-futr :accessor kripke-arith-futr :type list)

is a list of all future a.t.t.'s of the form Xix occurring in the input
formula.

� (the-arith-arith-past :accessor kripke-arith-past :type list)

is a list of all past a.t.t.'s of the form Xix occurring in the input
formula.

� (the-arith-arith-ops :accessor kripke-timed-arith-ops :type

list) is a list of all atomic terms de�ned by arithmetic operators
in the set {+,−, ∗, /}

Main function de�ning the functionality of ae2zot is implemented in
function zot:

161

7. ae2zot - a Tool for In�nite State Veri�cation

(defun zot (the-time spec

&key

(loop-free nil)

(transitions nil)

(negate-transitions nil)

(declarations nil)

(smt-solver :z3)

(logic :QF_UFIDL)

(smt-assumptions nil)

(no-loop nil)

(with-time t)

(periodic-vars nil)

)

where the-time spec are the bound k and the input formula, respec-
tively. Function zot performs the following actions:

1. it pushes negation on atomic formulae by means of function deneg:
(setf (formula (deneg (trio-to-ltl spec)))) where function
trio-to-ltl performs a syntactic translation of operators.

2. It de�nes the data structure of class eezot-kripke by performing
(make-kripke the-time formula)) which parses the input for-
mula in fma and �lls the data structure data of class eezot-kripke
de�ning all the previous list of formulae.

3. It produces the �nal formula by implementing the encoding pre-
sented in Section 3.3.1 and 3.3.5. All the following functions read
the data structure de�ned by (make-kripke the-time formula)):

� Lisp function loopConstraints() produces formulae de�ning
|LoopConstrains|k.

� Lisp function gen-bool() produces formulae de�ning |PropConstraints|k.

� Lisp functions defun gen-futr(), defun gen-past1() and
defun gen-past2() produce formulae de�ning |TempConstraints|k.

� Lisp function lastStateFormula() produces formulae de�n-
ing |LastStateConstraints|k.

� Lisp function gen-evt-futr() produces formulae de�ning |Eventually|k.

� Lisp functions gen-arith-futr(), gen-arith-past() pro-
duces formulae de�ning semantics of terms and atomic for-
mulae.

162

7.1. Tool structure

� Lisp function gen-arith-constraints () produces formulae
de�ning arithmetic formulae when the linear integer arith-
metic is used as language L.

4. Finally, the QF-EUL formula is written into the �le output.smt.txt
which is input of an SMT solver. The solver is invoked and its
output output.1.txt is processed to produce output for the user
which is written into the �le output.hist.txt. This is done by the
module smt-interface.lisp by calling (to-smt-and-back data

smt-solver) where data and smt-solver are the data structure
containing the QF-EUL formula and the solver, respectively.

163

8. Conclusions and future works

We provide a novel approach to solve the satis�ability problem for the
existential fragment of LTL(FO) by reducing the problem to satis�abil-
ity over ultimately periodic (symbolic) models, which we call k-bounded
satis�ability. Although the �nite representation uv, of length k, cap-
tures only symbolic in�nite models of the form uvω, it is possible to
solve the general satis�ability problem when the language admits mod-
els with periodic representation (in this case models of the form uvω

are still representative of in�nite models) and when the number of in-
stances of k-bounded satis�ability to be solved is bounded. This is the
case of CLTLB(L), with L is a suitable fragments of Presburger arith-
metic. Given a CLTLB(L) formula φ and a natural k, our tool reduces
an instance of k-bounded satis�ability into an instance of satis�ability
of a formula in the decidable theory QF-EUFL (theories supported are
QF-UFLIA or QF-UFLRA). Since decision procedures for these theories
are implemented by many SMT-solvers, we are able to e�ectively solve
the k-bounded satis�ability problem for CLTLB(L), where L belongs
to QFP. Then, for some L, we prove that k-bounded satis�ability is
complete with respect to the satis�ability problem for CLTLB(L) for-
mulae. Given a CLTLB(L) formula φ, by checking a �nite number of
k-bounded satis�ability problem of formula φ, we can answer to the sat-
is�ability problem of φ. Our decision procedure is e�ective also when we
are dealing with model-checking problem: counter systems with transi-
tions labeled by IPC∗ formulae or Büchi automata where transitions are
labeled by CLTLB(L) formulae, provided that L is a suitable fragments
of Presburger arithmetic, can be easily represented by CLTLB formulae.
Moreover, k-bounded satis�ability can be used to solve reversal-bounded
model-checking problem for the class of reversal-bounded counter sys-
tems. In fact, we can exploit the property such that reversal-bounded
runs satisfying a CLTLB(L) property are ultimately periodic and their
length is bounded. This fact allow us to conclude that reversal-bounded
model-checking problem can be solved by means of k-bounded satis�abil-
ity. Bounded length of runs satisfying property along with the existence
of ultimately periodic runs guarantee that our bounded approach is com-
plete. We show the optimal NexpTIME-completeness of the reversal
bounded model-checking problem. In order to implement decision pro-

165

8. Conclusions and future works

cedures, we demonstrate that given a counter system, a temporal formula
φ and r ≥ 0, one can build e�ectively a Presburger formula encoding the
set of con�gurations (q,x) such that there is an r-reversal-bounded in-
�nite run ρ from (q,x) such that φ is satis�ed by ρ. Finally, we have
also characterized the complexity of some reversal-bounded reachability
problems involved in the solution of original problem.
Future works. Although we provided only one example of lan-

guage, i.e., CLTLB(L) where L is IPC∗ or structure (D,<,=) with
D ∈ {N,Z,Q,R}, for which k-bounded satis�ability is complete, and
a simple example of reversal bounded model-checking problem, we be-
lieve that k-bounded approach can be used to solve general satis�ability
and model-checking problems also for other formalisms. In particular, we
would like to investigate satis�ability of CLTL1

1(DL) and model-checking
problem of one-counter automata with DL constraints. It is already
known, in fact, that formulae of CLTL1

1(DL) can be translated to Büchi
automata whose accepting runs are ultimately periodic and of bounded
length. Moreover, ultimately periodicity can be exploited also for the
monodic fragment of LTL(FO) already presented in Section 6. Satis�-
able formulae of LTL(FO) admit, in fact, ultimately periodic model of
bounded length.

166

A. Appendix

A.1. Case study SOA: experimental results

Experimental results concerning service substitutability problem which
refer to Section 5.2.

 0

 100

 200

 300

 400

 500

0 CS-sequence

check2

check5

check2search2

check3search2

check3search3

check5search5

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

z3(CLTLB)
yices(CLTLB)

yices(PLTL/SMT)
z3(PLTL/SMT)

MiniSat(PLTL/SAT)

(a) Elapsed times on the second set of ex-
periments

 0

 100

 200

 300

 400

 500

 600

0 CS-sequence

check2

check5

check2search2

check3search2

check3search3

check5search5

O
cc

up
ie

d
M

em
or

y
(M

B
yt

es
)

z3(CLTLB)
yices(CLTLB)

yices(PLTL/SMT)
z3(PLTL/SMT)

MiniSat(PLTL/SAT)

(b) Memory occupations on the second set
of experiments

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Parameters Number

10 - 100 parameters, 10 states, HL = 21

z3 (CLTLB)
z3(PLTL/SMT)

yices(PLTL/SMT)
MiniSat(PLTL/SAT)

(c) Elapsed times on the third set of experi-
ments

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90

M
em

or
y

(M
B

yt
es

)

Parameters Number

10 - 100 parameters, 10 states, HL = 21

z3 (CLTLB)
z3 (PLTL/SMT)

yices (PLTL/SMT)
MiniSat(PLTL/SAT)

(d) Memory occupations on the third set of
experiments

Figure A.1.: Substitutability experimental Results

167

A. Appendix

A.2. Lisp code of hysteresis: case study from

Section 5.1

In this section, we provide the Lisp code de�ning the hysteresis system
of Section 5.1. Parts composing the code are commented in order to
explain their function.
The �rst two lines of code loads the plug-in ae2zot and de�nes the list

of used package.

(asdf:operate 'asdf:load-op 'ae2zot)

(use-package :trio-utils)

To de�ne variables occurring in the formula as well as their depen-
dency with the time, we use define-var and define-tvar which are
two macros de�ned in trio-utils.lisp. Macro define-var instanti-
ates variables with no time dependency, i.e., variables which do not vary
over time. The two parameters xL and xH do not have temporal behavior
and then they are de�ned by means of define-var. For de�ning vari-
ables, or in general, uninterpreted functions and predicates varying over
time, macro define-tvar includes time in the de�nition of the speci�ed
object. For instance, a time-variant object p with domain Z is de�ned
as p : N→ Z where N represents time.

(define-tvar 'x *int*)

(define-tvar 'y *int*)

(define-tvar 'd *int*)

(define-var 'x0 *int*)

(define-var 'x1 *int*)

De�nition of predicates given in Section 5.1 are Lisp functions with a
generic parameter z.

(defun up-down (z)

(&& ([=] z 0) ([=] (yesterday z) 1)))

(defun down-up (z)

(&& ([=] z 1) ([=] (yesterday z) 0)))

(defun low (z)

([=] z 0))

(defun high (z)

([=] z 1))

168

A.2. Lisp code of hysteresis: case study from Section 5.1

Following formulae de�ne the behavior of the hysteresis. Each formula
is instantiated as a Lisp variable.

(defvar tr-up-down

(alwf

(-> (and

(yesterday (&& ([<] (-V- x) (-V- x1)) (high (-V- y))))

([>=] (-V- x) (-V- x1)))

(up-down (-V- y)))))

(defvar tr-down-up

(alwf

(-> (and

(yesterday (&& ([>] (-V- x) (-V- x0)) (low (-V- y))))

([<=] (-V- x) (-V- x0)))

(down-up (-V- y)))))

(defvar s-up-down

(alwf

(-> (up-down (-V- y))

(and

(yesterday ([<] (-V- x) (-V- x1)))

([>=] (-V- x) (-V- x1))))))

(defvar s-down-up

(alwf

(-> (down-up (-V- y))

(and

(yesterday ([>] (-V- x) (-V- x0)))

([<=] (-V- x) (-V- x0))))))

(defvar low-state

(alwf

(-> (low (-V- y))

(since

(until (low (-V- y)) (down-up (-V- y)))

(up-down (-V- y))))))

169

A. Appendix

(defvar high-state

(alwf

(-> (high (-V- y))

(since

(until (high (-V- y)) (up-down (-V- y)))

(down-up (-V- y))))))

(defvar high-low-state-is

(alwf (|| (low (-V- y)) (high (-V- y)))))

(defvar init

(&&

([=] (-V- x) 3)

([=] (-V- y) 0)))

(defvar continuous-x

(alwf (||

([=] (next (-V- x)) ([+] (-V- x) 1))

([=] (next (-V- x)) ([-] (-V- x) 1)))))

(defvar Ncontinuous-x

(alwf ([=] (next (-V- x)) ([+] (-V- x) (-V- d)))))

(defvar safe-state

(alwf (&&

(-> ([=] (-V- y) 1) ([<=] (-V- x) (-V- x1)))

(-> ([=] (-V- y) 0) ([>=] (-V- x) (-V- x0))))))

(defvar thresholds

([>] (-V- x1) (-V- x0)))

The de�nition of the system is the conjunction of all the previous
formulae.

(defvar syst

(&&

170

A.3. Periodicity

init

high-low-state-is

high-state

low-state

tr-up-down

tr-down-up

s-up-down

s-down-up

continuous-x

thresholds))

The solver is invoked by the function zot requiring the bound k of
instant of time and the CLTLB formula. The key :logic speci�es which
type of theory the solver shall use. QF-UFLIA is the theory of quanti�er-
free linear integer arithmetic formulae with uninterpreted functions.

(ae2zot:zot

15

(&&

syst

(!! safe-state))

:logic :QF_UFLIA)

A.3. Periodicity

Let us consider the atomic formula φ of the form
∑

j ajxj ≡c k. We recall
below how φ is equivalent to a positive Boolean formula with atomic
formulae of the form xj ≡c′ k′ and c′ divides c. Hence, if C is the
lcm of all the constants c appearing in atomic formulae of the form
t ≡c k in guards of S, then the lcm C ′ of all constants c′ appearing
in atomic formulae of the form xj ≡c′ k′ after transformation, divides
C (hence the size of C ′ is smaller than the size of C). Let us now
explain how atomic formulae of the form xj ≡c′ k′ are obtained. Let
S = {c ∈ {0, . . . , c − 1}n : (

∑
j c(j)) ≡c k}. We have the following

logical equivalence

φ⇔
∨
c∈S

(
∧

j∈[1,n]

ajxj ≡c c(j))

It remains to explain how a linear congruence ajxj ≡c c(j) can be trans-
formed into an equivalence atomic formula of the form xj ≡c′ k′.
Let us consider the linear congruence ax ≡c b. If a < 0, then we

consider −ax ≡c −b + nc so that −b + nc ∈ [0, c − 1] (which can be

171

A. Appendix

computed in polynomial time). So, without any loss of generality, we
can assume that in ax ≡c b, a ≥ 0 and b ∈ [0, c − 1]. The formula
ax ≡c b reduces to ⊥ if gcd(a, c) does not divide b. Otherwise ax ≡c b
is equivalent to a

gcd(a,c)x ≡ c
gcda,c

b
gcd(a,c) , say a

′x ≡c′ b′ where a′ and c′

are coprime. Since a′ and c′ are coprime, with the Extended Euclidean
Algorithm, one can compute n1, n2 such that n1a′ + n2c

′ = 1 (this can
be done in polynomial time, see e.g. [120]). Consequently, x ≡c′ n1b′,
which can be transformed into x ≡c′ b′′ with b′′ ∈ [0, c′ − 1].
Let c1, . . . , cα be constants occurring in simpli�ed atomic formulae of

the form x ≡c k and C be their lcm. For n ∈ [0, c1−1]×· · ·× [0, cα−1],
there is a unique c ∈ [0, C − 1], such that for all u ∈ N, (u ≡c1 n(1) and
· · · and u ≡c1 n(α)) i� u ≡C c (Chinese Remainder Theorem). Hence,
in order to encode the truth value of x ≡ci k, it is su�cient to store the
unique c such that x ≡C c. That is the principle of the transformation
given in Section 4.3.2. It is worth noting that the value C obtained after
the transformation of atomic formulae of the form t ≡c k is in quadratic
size in N .
Hence, for all atomic formulae t ≡c k under consideration, for all

x ∈ Nn and x̃ ∈ [0, C−1]n such that for i ∈ [1, n], we have x(i) ≡C x̃(i),
we have

(PER) x(t) ≡c k i� x̃(t) ≡c k.

172

Bibliography

[1] Yehoshua Bar-Hillel, M. Perles, and E. Shamir. On formal proper-
ties of simple phrase structure grammars. Zeitschrift für Phonetik,
Sprachwissenschaft und Kommunikationsforschung, 14:143�172,
1961. Reprinted in Y. Bar-Hillel. (1964). Language and Informa-
tion: Selected Essays on their Theory and Application, Addison-
Wesley 1964, 116�150.

[2] Géraud Sénizergues. The equivalence problem for deterministic
pushdown automata is decidable. In Proceedings of the 24th Inter-
national Colloquium on Automata, Languages and Programming,
ICALP '97, pages 671�681, London, UK, 1997. Springer-Verlag.

[3] Oscar H. Ibarra. Reversal-bounded multicounter machines and
their decision problems. J. ACM, 25(1):116�133, 1978.

[4] Alain Finkel and Jérôme Leroux. How to compose presburger-
accelerations: Applications to broadcast protocols. In FSTTCS,
pages 145�156, 2002.

[5] Hubert Comon and Véronique Cortier. Flatness is not a weakness.
In Peter Clote and Helmut Schwichtenberg, editors, Computer Sci-
ence Logic, volume 1862 of LNCS, pages 262�276, Heidelberg, 2000.
Springer.

[6] Stéphane Demri and Deepak D'Souza. An automata-theoretic ap-
proach to constraint LTL. Inf. Comput., 205(3):380�415, 2007.

[7] Marcello M. Bersani, Achille Frigeri, Angelo Morzenti, Matteo
Pradella, Matteo Rossi, and Pierluigi San Pietro. Bounded reacha-
bility for temporal logic over constraint systems. In Nicolas Markey
and Jef Wijsen, editors, TIME, pages 43�50, Los Alamitos, 2010.
IEEE Computer Society.

[8] Marcello M. Bersani, Achille Frigeri, Matteo Rossi, and Pierluigi
San Pietro. Completeness of the bounded satis�ability problem for
constraint ltl. In RP, page to appear, 2011.

173

Bibliography

[9] Marcello Bersani and Stéphane Demri. The complexity of reversal-
bounded model checking. 2011.

[10] M. Bersani and S. Demri. The complexity of reversal-bounded
model checking. Technical Report LSV-11-10, LSV, ENS Cachan,
France, May 2011.

[11] StÃ©phane Demri. Decidable problems for counter systems. Tech-
nical report, ENS Cachan, 2010.

[12] M. Presburger. Über die Vollständigkeit eines gewissen Systems
der Arithmetik ganzer Zahlen, in welchem die Addition als einzige
Operation hervortritt. In Comptes Rendus du premier congrès de
mathématiciens des Pays Slaves, Warszawa, pages 92�101, 1929.

[13] Derek C. Oppen. A 22
2pn

upper bound on the complexity of pres-
burger arithmetic. Journal of Computer and System Sciences,
16(3):323 � 332, 1978.

[14] M. J. Fischer and M. O. Rabin. Super-exponential complexity of
presburger arithmetic. Technical report, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1974.

[15] Jeanne Ferrante and Charles Racko�. A decision procedure for the
�rst order theory of real addition with order. SIAM J. Comput.,
4(1):69�76, 1975.

[16] Bruno Scarpellini. Complexity of subcases of presburger arith-
metic. Transactions of The American Mathematical Society,
284:203�203, 1984.

[17] Chr. Papadimitriou. On the complexity of integer programming.
Journal of the Association for Computing Machinery, 28(4):765�
768, 1981.

[18] Stéphane Demri and Régis Gascon. Veri�cation of qualitative Z
constraints. In CONCUR, pages 518�532, 2005.

[19] R. J. Parikh. Language generating devices. Technical report, MIT
Res. Lab. Elect., Quart. Prog. Rept., 1961.

[20] Rohit J. Parikh. On context-free languages. J. ACM, 13:570�581,
October 1966.

[21] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Pres-
burger Formulas, and Languages. Paci�c Journal of Mathematics,
16(2):285�296, 1966.

174

Bibliography

[22] Seymour Ginsburg and Edwin H. Spanier. Bounded algol-like
languages. Transactions of The American Mathematical Society,
113:333�333, 1964.

[23] John McCarthy. Towards a mathematical science of computation.
In Cicely M. Popplewell, editor, Information Processing 62: Pro-
ceedings of IFIP Congress 1962, pages 21�28, Amsterdam, 1963.
North-Holland.

[24] Jerry R. Burch and David L. Dill. Automatic veri�cation of
pipelined microprocessor control. In Proceedings of the 6th In-
ternational Conference on Computer Aided Veri�cation, CAV '94,
pages 68�80, London, UK, 1994. Springer-Verlag.

[25] Greg Nelson and Derek C. Oppen. Simpli�cation by cooperating
decision procedures. ACM Trans. Program. Lang. Syst., 1:245�257,
October 1979.

[26] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations
on the common subexpression problem. J. ACM, 27:758�771, Oc-
tober 1980.

[27] Shuvendu K. Lahiri and Madanlal Musuvathi. An e�cient deci-
sion procedure for utvpi constraints. In Frontiers of Combining
Systems, pages 168�183, 2005.

[28] Boris Cherkassky and Andrew Goldberg. Negative-cycle detection
algorithms. In Josep Diaz and Maria Serna, editors, Algorithms
â�� ESA '96, volume 1136 of Lecture Notes in Computer Science,
pages 349�363. Springer Berlin / Heidelberg, 1996.

[29] V. R. Pratt. Two easy theories whose combination is hard. Tech-
nical report, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1977.

[30] Julius R. Buchi. On a Decision Method in Restricted Second-Order
Arithmetic. In International Congress on Logic, Methodology, and
Philosophy of Science, pages 1�11. Stanford University Press, 1962.

[31] M. Y. Vardi. A temporal �xpoint calculus. In Proceedings of the
15th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL '88, pages 250�259, New York, NY,
USA, 1988. ACM.

175

Bibliography

[32] Pierre Wolper. Temporal logic can be more expressive. In Proceed-
ings of the 22nd Annual Symposium on Foundations of Computer
Science, pages 340�348, Washington, DC, USA, 1981. IEEE Com-
puter Society.

[33] Moshe Y. Vardi and Pierre Wolper. Reasoning about in�nite com-
putations. Information and Computation, 115:1�37, 1994.

[34] Marvin L. Minsky. Recursive unsolvability of post's problem of
"tag" and other topics in theory of turing machines. Annals of
Mathematics, 74:437�453, 1961.

[35] Oscar H. Ibarra. Reversal-bounded multicounter machines and
their decision problems. J. ACM, 25(1):116�133, 1978.

[36] Anthony Widjaja To. Parikh images of regular languages: Com-
plexity and applications. CoRR, abs/1002.1464, 2010.

[37] R. Howell and L. Rosier. An analysis of the nonemptiness problem
for classes of reversal-bounded multicounter machines. J. Comput.
Syst. Sci., 34(1):55�74, 1987.

[38] E. Gurari and O. Ibarra. The complexity of decision problems for
�nite-turn multicounter machines. In ICALP'81, volume 115 of
LNCS, pages 495�505. Springer, 1981.

[39] Oscar H. Ibarra, Jianwen Su, Zhe Dang, Tev�k Bultan, and
Richard A. Kemmerer. Counter machines and veri�cation prob-
lems. Theor. Comput. Sci., 289(1):165�189, 2002.

[40] Z. Dang, O. Ibarra, and P. San Pietro. Liveness veri�cation of
reversal-bounded multicounter machines with a free counter. In
FSTTCS'01, volume 2245 of LNCS, pages 132�143. Springer, 2001.

[41] Zhe Dang, Oscar H. Ibarra, and Pierluigi San Pietro. Liveness
veri�cation of reversal-bounded multicounter machines with a free
counter. In FSTTCS, pages 132�143, 2001.

[42] Patrick Blackburn, Johan F. A. K. van Benthem, and Frank
Wolter. Handbook of Modal Logic, Volume 3 (Studies in Logic and
Practical Reasoning). Elsevier Science Inc., New York, NY, USA,
2006.

[43] Amir Pnueli. The temporal logic of programs. In Proceedings of
the 18th Annual Symposium on Foundations of Computer Science,
pages 46�57, Washington, DC, USA, 1977. IEEE Computer Soci-
ety.

176

Bibliography

[44] Nicolas Markey. Temporal logic with past is exponentially more
succinct, concurrency column. Bulletin of the EATCS, 79:122�128,
2003.

[45] E. Allen Emerson. Temporal and modal logic. In HANDBOOK OF
THEORETICAL COMPUTER SCIENCE, pages 995�1072. Else-
vier, 1995.

[46] Johan Anthony Willem Kamp. Tense Logic and the Theory of
Linear Order. PhD thesis, University of California at Los Angeles,
1968.

[47] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi.
On the temporal analysis of fairness. In Proceedings of the 7th
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL '80, pages 163�173, New York, NY, USA,
1980. ACM.

[48] P. Wolper. The tableau method for temporal logic: an overview.
Logique et Analyse, 28:119�136, 1985.

[49] Orna Lichtenstein and Amir Pnueli. Propositional temporal logics:
Decidability and completeness. Logic Journal of The Igpl / Bulletin
of The Igpl, 8:55�85, 2000.

[50] Y. Kesten, Z. Manna, H. Mcguire, and A. Pnueli. A decision al-
gorithm for full propositional temporal logic. In Lecture Notes
in Computer Science, volume 697, pages 97�109. Springer-Verlag,
1993.

[51] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic ap-
proach to automatic program veri�cation. In Proc. 1st Symposium
on Logic in Computer Science, pages 332�344, Cambridge, 1986.

[52] A. Prasad Sistla and Edmund M. Clarke. The complexity of propo-
sitional linear temporal logics. J. ACM, 32(3):733�749, 1985.

[53] D. Harel. Recurring dominoes: making the highly undecidable
highly un-derstandable. Theory of Computation, 102:51�71, 1985.

[54] L. J. Stockmeyer and A. R. Meyer. Word problems requiring expo-
nential time(preliminary report). In Proceedings of the �fth annual
ACM symposium on Theory of computing, STOC '73, pages 1�9,
New York, NY, USA, 1973. ACM.

177

Bibliography

[55] W. J. Savitch. Relationship between non-deterministic and deter-
ministic tape classes. Journal of Computer and System Sciences,
1970.

[56] Jerry R. Burch, Edmund Melson Clarke, Kenneth L. McMillan,
David L. Dill, and L. J. Hwang. Symbolic model checking: 1020

states and beyond. In Logic in Computer Science, pages 428�439,
1990.

[57] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Comput., 35:677�691, August 1986.

[58] Dexter Kozen. Results on the propositional µ-calculus. In
Proceedings of the 9th Colloquium on Automata, Languages and
Programming, pages 348�359, London, UK, 1982. Springer-Verlag.

[59] Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The tem-
poral logic of branching time. In Proceedings of the 8th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL '81, pages 164�176, New York, NY, USA, 1981.
ACM.

[60] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at
ltl model checking. In Formal Methods in System Design, pages
415�427. Springer-Verlag, 1994.

[61] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yun-
shan Zhu. Symbolic model checking without BDDs. In TACAS,
pages 193�207, 1999.

[62] Orna Kupferman and Moshe Y. Vardi. Model checking of safety
properties. Form. Methods Syst. Des., 19:291�314, October 2001.

[63] Armin Biere, Keijo Heljanko, Tommi A. Junttila, Timo Latvala,
and Viktor Schuppan. Linear encodings of bounded LTL model
checking. Logical Methods in Computer Science, 2(5), 2006.

[64] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer
Strichman. Completeness and complexity of bounded model check-
ing. In VMCAI, pages 85�96, 2004.

[65] Leonardo Mendonça de Moura, Carlos José Pereira de Lucena, and
Arndt von Staa. The spider environment. Softw., Pract. Exper.,
29(2):99�124, 1999.

178

Bibliography

[66] Daniel Kroening and Ofer Strichman. E�cient computation of
recurrence diameters. In VMCAI, pages 298�309, 2003.

[67] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Check-
ing safety properties using induction and a sat-solver. In Pro-
ceedings of the Third International Conference on Formal Methods
in Computer-Aided Design, FMCAD '00, pages 108�125, London,
UK, 2000. Springer-Verlag.

[68] Leonardo De Moura, Harald Ruess, and Maria Sorea. Bounded
model checking and induction: From refutation to veri�cation (ex-
tended abstract, category a. In Proceedings of the 15th Interna-
tional Conference on Computer Aided Veri�cation, CAV 2003, vol-
ume 2725 of Lecture Notes in Computer Science, CAV 2003, pages
14�26. Springer, 2003.

[69] Olaf Burkart, Didier Caucal, Faron Moller, and Bernhard Ste�en.
Veri�cation on in�nite structures, 2000.

[70] Ahmed Bouajjani, Rachid Echahed, and Peter Habermehl. On
the veri�cation problem of nonregular properties for nonregular
processes. In Proceedings of the 10th Annual IEEE Symposium on
Logic in Computer Science, pages 123�, Washington, DC, USA,
1995. IEEE Computer Society.

[71] Wolfgang Thomas. Languages, automata, and logic, pages 389�455.
Springer-Verlag New York, Inc., New York, NY, USA, 1997.

[72] Stéphane Demri, Alain Finkel, Valentin Goranko, and Govert van
Drimmelen. Model-checking ctl* over �at presburger counter sys-
tems. Journal of Applied Non-Classical Logics, 20(4):313�344,
2010.

[73] Ian M. Hodkinson, Frank Wolter, and Michael Zakharyaschev. De-
cidable fragment of �rst-order temporal logics. Ann. Pure Appl.
Logic, 106(1-3):85�134, 2000.

[74] Stéphane Demri and Régis Gascon. The e�ects of bounding syn-
tactic resources on Presburger LTL. In TIME, pages 94�104. IEEE
Computer Society, 2007.

[75] Stéphane Demri. Ltl over integer periodicity constraints: (ex-
tended abstract). In FoSSaCS, pages 121�135, 2004.

[76] Hubert Comon and Yan Jurski. Multiple counters automata, safety
analysis and presburger arithmetic. In CAV, pages 268�279, 1998.

179

Bibliography

[77] Rajeev Alur and Thomas A. Henzinger. A really temporal logic.
J. ACM, 41(1):181�204, 1994.

[78] Marvin L. Minsky. Computation: �nite and in�nite machines.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1967.

[79] Philippe Balbiani and Jean-François Condotta. Computational
complexity of propositional linear temporal logics based on qual-
itative spatial or temporal reasoning. In Proceedings of the 4th
International Workshop on Frontiers of Combining Systems, Fro-
CoS '02, pages 162�176, London, UK, 2002. Springer-Verlag.

[80] Ph. Schnoebelen. The complexity of temporal logic model checking.
In Advances in Modal Logic, pages 393�436, 2002.

[81] Dov M. Gabbay. The declarative past and imperative future: Exe-
cutable temporal logic for interactive systems. In Temporal Logic in
Speci�cation, pages 409�448, London, UK, 1987. Springer-Verlag.

[82] Shmuel Safra. On the complexity of omega-automata. In FOCS,
pages 319�327, 1988.

[83] Matthew Hague and Anthony Widjaja Lin. Model checking recur-
sive programs with numeric data types. In CAV, pages 743�759,
2011.

[84] E. Kopczynski and A. To. Parikh Images of Grammars: Complex-
ity and Applications. In LICS'10. IEEE, 2010.

[85] Javier Esparza. Decidability and complexity of petri net problems
- an introduction. In Petri Nets, pages 374�428, 1996.

[86] C. Racko�. The covering and boundedness problems for vector ad-
dition systems. Theoretical Computer Science, 6(2):223�231, 1978.

[87] I. Borosh and L. Treybig. Bounds on positive integral solutions of
linear diophantine equations. Proocedings of The American Math-
ematical Society, 55:299�304, 1976.

[88] V. De Antonellis, M. Melchiori, L. De Santis, M. Mecella, E. Mussi,
B. Pernici, and P. Plebani. A layered architecture for �exible web
service invocation. Softw. Pract. Exper., 36(2):191�223, 2006.

[89] K. Verma, K. Gomadam, A. Sheth, J. Miller, and Z. Wu. The
METEOR-S approach for con�guring and executing dynamic web
processes. Technical Report LSDIS 05-001, LSDIS Lab, University
of Georgia, Athens, Georgia, 2005.

180

Bibliography

[90] Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella. An au-
tomatic approach to enable replacement of conversational services.
In Proc. ICSOC/ServiceWave, pages 159�174, 2009.

[91] Luca Cavallaro, Elisabetta Di Nitto, Patrizio Pelliccione, Matteo
Pradella, and Massimo Tivoli. Synthesizing adapters for conversa-
tional web-services from their WSDL interface. In Proc. SEAMS,
2010.

[92] Microsof Research. Z3: An e�cient SMT solver.
http://research.microsoft.com/en-us/um/redmond/projects/z3/,
2009.

[93] Computer Science Lab, SRI international. Yices: An SMT solver.
http://yices.csl.sri.com/, 2009.

[94] L. Cavallaro, G. Ripa, and M. Zuccalà. Adapting service requests
to actual service interfaces through semantic annotations. In Proc.
PESOS, 2009.

[95] Matteo Pradella, Angelo Morzenti, and Pierluigi San Pietro. Re-
�ning real-time system speci�cations through bounded model- and
satis�ability-checking. In ASE, pages 119�127, 2008.

[96] C. Drumm. Improving Schema Mapping by Exploiting Domain
Knowledge. PhD thesis, Universitat Karlsruhe, Fakultat fur Infor-
matik, 2008.

[97] M. Fredj, N. Georgantas, V. Issarny, and A. Zarras. Dynamic ser-
vice substitution in service-oriented architectures. In Proc. SER-
VICES, pages 101�104, 2008.

[98] Thomas Schaeck and Richard Thompson. WS-ResourceProperties.
http://docs.oasis-open.org/wsrp/Misc/, 2003.

[99] A. Brogi and R. Popescu. Automated generation of BPEL
adapters. In Proceedings of ICSOC, pages 27�36, 2006.

[100] OASIS. Web Services Business Process Execution Lan-
guage Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/

wsbpel-v2.0.pdf, 2007.

[101] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL:
yet another work�ow language. Inf. Syst., 30(4):245�275, 2005.

[102] J. A. Martìn and E. Pimentel. Automatic generation of adaptation
contracts. In Proc. FOCLASA, 2008.

181

Bibliography

[103] Tev�k Bultan, Richard Gerber, andWilliam Pugh. Model-checking
concurrent systems with unbounded integer variables: symbolic
representations, approximations, and experimental results. ACM
Trans. Program. Lang. Syst., 21:747�789, July 1999.

[104] Patrick Cousot and Radhia Cousot. Abstract interpretation: A
uni�ed lattice model for static analysis of programs by construction
or approximation of �xpoints. In POPL, pages 238�252, 1977.

[105] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of
linear restraints among variables of a program. In POPL, pages
84�96, 1978.

[106] Alfred Tarski. A lattice-theoretical �xpoint theorem and its appli-
cations. Paci�c Journal of Mathematics, 5:285�309, 1955.

[107] Tobias Schuele and Klaus Schneider. Bounded model checking of
in�nite state systems. Formal Methods in System Design, 30:51�81,
2007. 10.1007/s10703-006-0019-9.

[108] Tobias Schüle and Klaus Schneider. Bounded model checking of
in�nite state systems: exploiting the automata hierarchy. InMEM-
OCODE, pages 17�26, 2004.

[109] Leonardo Mendonça de Moura, Harald Rueÿ, and Maria Sorea.
Lazy theorem proving for bounded model checking over in�nite
domains. In CADE, pages 438�455, 2002.

[110] Klaus Schneider. Improving automata generation for linear tempo-
ral logic by considering the automaton hierarchy. In LPAR, pages
39�54, 2001.

[111] Arnaldo Mandel and Imre Simon. On �nite semigroups of matrices.
Theoretical Computer Science, 5(2):101�111, 1977.

[112] Véronique Cortier. About the decision of reachability for register
machines. ITA, 36(4):341�358, 2002.

[113] Anthony Widjaja To and Leonid Libkin. Algorithmic metathe-
orems for decidable ltl model checking over in�nite systems. In
FOSSACS, pages 221�236, 2010.

[114] Monika Maidl. The common fragment of ctl and ltl. In FOCS,
pages 643�652, 2000.

182

Bibliography

[115] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana
Shpeisman, and David Wonnacott. The omega library interface
guide. Technical report, University of Maryland at College Park,
College Park, MD, USA, 1995.

[116] Sébastien Bardin, Jérôme Leroux, and Gérald Point. Fast extended
release. In CAV, pages 63�66, 2006.

[117] Leonardo Mendonça de Moura, Sam Owre, Harald Rueÿ, John M.
Rushby, Natarajan Shankar, Maria Sorea, and Ashish Tiwari. Sal
2. In CAV, pages 496�500, 2004.

[118] Carlo A. Furia, Matteo Pradella, and Matteo Rossi. Automated
veri�cation of dense-time mtl speci�cations via discrete-time ap-
proximation. In FM, pages 132�147, 2008.

[119] Matteo Pradella, Angelo Morzenti, and Pierluigi San Pietro. The
symmetry of the past and of the future: bi-in�nite time in the
veri�cation of temporal properties. In Proc. ESEC/SIGSOFT FSE,
pages 312�320, 2007.

[120] E. Bach and J. Shallit. Algorithmic Number Theory, Volume I:
E�cient Algorithms. MIT Press, 1996.

183

