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Abstract

Given the growing complexity of electronic devices and sys-
tems, diagnosis is becoming a complex task concerning both the
fault modeling and the computational effort of algorithms for auto-
matic fault identification. The challenge for developing an effective
methodology impacts the efficiency of the manufacturing process,
and this is particularly true for the digital system field: the sooner
a failure root cause is correctly understood, the more important is
the reduction of diagnosis time, and the higher is the yield can be
achieved.

In this thesis we present a methodology, called incremental Au-
tomatic Functional Fault Detective (AF2D), aiming at the general
problem of system diagnosis. We propose a framework where a sys-
tem under inspection is described at an high level of abrastraction,
using Bayesian Belief Network (BBN) formalism. The adoption
of a model at coarse granularity allows the description of com-
plex, deeply interconnected systems. At the same time, AF2D
provides both system and test engineers with modeling primitives
to describe of relationships between system components, potential
candidates for fault localization, and outcomes of diagnostic tests.

BBN probabilities are set with qualitative labels (high, medium,
low) and not as quantitative values: this choice simplifies and ac-
celerates the system and fault modeling process. Underneath, pro-
vided with the outcomes of executed diagnosis tests (syndrome),
an inference engine computes the probability of each candidate to
be the cause root of the observable symptoms.

This work covers three main directions of research for the ap-
plication of the AF2D diagnostic methodology: the initial scouting
of a system for fault detection, the exploration of the solution space
for a fast identification of the failure cause, and the quantitative
analysis of robustness for the generated models with respect to di-
agnostic precision and fault isolation resolution.

Concerning the first question, cost-effective policies to identify
a good subset of tests providing good coverage of the system un-
der inspection are proposed. Applying standard optimization tech-
niques (Integer Linear Programming (ILP)) on the BBN model,
a subset of tests within a complete test suite is selected, aiming
at minimizing the effort required for fault scouting. The sets of
tests obtained with this method are compared with other test sets,
calculated with more fine-grained modeling on the same system, in
order to justify the validity of adopting model at an higher level of
abstraction. Also, an hill-climbing technique is proposed for sort-
ing the initially executed tests, in order to further reduce the time
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spent on detection and, consequently, to increase the amount of
time available for the real diagnosis process. Efficiency improve-
ment is expected in manufacturing lines since the probability of
some specific failures with respect to others happens to be specific
in different timing window of production.

A considerable effort is devoted to the adaptive part of the
methodology, targeting the minimization of costs of each tests ses-
sion without recurring to a static test sequencing approach. We
propose a geometrical interpretation of BBN parameters and a
quantitative evaluation through a metric distance within a vector
space. This is used for an optimal step-by-step selection of tests
to be executed, exploiting the information contained in the diag-
nosis history, represented by test outcomes collected during the
diagnosis of the system. Optimal selection aims at maximizing the
relative information that a non-executed-yet test outcome would
apport to diagnostic conclusions, reducing the amount of redun-
dancy with respect to previously executed tests, while minimizing
the cost of executing of such test itself. A metric for the identifica-
tion of a stop condition is also proposed, to interrupt the diagnosis
when no further information from remaining tests would refine the
diagnostic conclusion any longer.

The last part of this work investigates the correctness of the
model based on BBN used for system diagnosis. Such validation
is a complex task, and a statistical oriented approach is proposed
for developing a quantitative comparison of the BBN model of
a system with a fine-grained model counterpart, based on a well
established and mature methodology. In particular, we target a
stuck-at fault model on combinational circuits: a BBN-compatible
model is extracted for benchmark circuits used for fault detection
and diagnosis problems, and the results of AF2D methodology
are compared with the results provided by an ATPG tool. The
correlation found support the claims that high-level models can be
adopted used for diagnosis and that the detailed information about
the internal behavior of the system is not critical for the obtention
of valid system diagnosis. Furthermore, we suggest an method
to improve the diagnostic resolution of existing test suites, with a
minimal modification both of number of tests (impacting diagnosis
time) and of their specific coverage of components (impacting test
development effort).

Both simulated synthetic systems and industrial case studies
have been used to validate the robustness and the efficiency of the
proposed methodology.
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Introduction 1

Troubleshooting is described in [HMDPJ08] as the explanation or inter-
pretation of initial failure symptom, where a sequence of diagnostic tests
is selected efficiently to locate the root causes of failures. Any diagnosis
strategy has to tackle some fundamental issues [SS91b] :

• Detection, as the capability of a combination of tests to identify
the presence of a failure in a system.

• Localization, as the capability of a test to restrict a fault to a
subset of pre-identified possible causes.

• Isolation, as the capability of a diagnostic strategy to restrict
localization in order to allow the repair of a single unit (at main-
tenance level).

Diagnosis and unexpected faulty states in large and complex sys-
tems, usually based on the interaction of several heterogeneous com-
ponents, is performed making inferences and conclusions from results
of various tests, measurements, observations of the parameters of the
system under investigation. Besides digital devices, diagnosis method-
ologies are designed to operate also in different fields, including medical
diagnosis, airplane and automotive failure isolation, but also specific
domains are error-correcting coding or speech recognition [Mac03]. Al-
though methodologies are rather generic, as they find application in a
wide variety of problem areas, we focus in their specific implementation
on the area of digital systems management.
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1. Introduction

Greater system complexity, lower production costs, adoption of new
technologies and shorter life-cycles have made the need for automatic
tools with diagnostic purposes for electronic systems important [FMM01].
In an ideal scenario, failed products are diagnosed as a whole in a testing
session during manufacturing, and field returns diagnosed and repaired
in a cost effective manner.

However, as components, boards and systems become more and more
complex, troubleshooting cost increases exponentially. Then test poli-
cies aiming at detecting and diagnosing failures early (locally) on in
the test process (component or structural tests) [ME02], are more effec-
tive and therefore more accepted in industry; inevitably specific defects
might escape those stages and cannot be detected until the system is
completely integrated. The identification and characterization of these
defects usually requires an expert (engineering skills), which depending
on the specific architecture of the system might take long time to de-
velop. And during the initial product stage, such expertise is needed but
often unavailable. Therefore, tasks as fault diagnosis - detecting system
problems and isolating their root causes - are increasingly important but
at the same time an intrinsically difficult task.

Design of efficient diagnosis techniques plays an important role from
an economic perspective, especially to improve product yield and accel-
erate time-to-market for manufacturing [Tur97]. Furthermore, diagnosis
techniques are required to describe systems at level of abstraction which
is more and more high, as they are required to deal with complexity
both in terms of systems architecture and interactions. Divide-et-impera
strategies, focusing at detecting faults independently on specific parts
of the system, are deemed to fail in specific fields, where system hier-
archy is deep and complex and there is an elevated level of integrations
of heterogeneous cooperating elements (e.g., digital devices manufactur-
ing [ZWGC10a]).

A good definition of the procedure of fault diagnosis is present in
[FMM05] as the isolation of a fault is a system, obtained from analysis of
the information collected during system observation and tests. Authors
describe the diagnosis process as a three-step procedure:

1. generation of system information, the collection and analysis of the
system parameters (through observable symptoms, measurements,
diagnostic tests);

2. generation of fault hypothesis, the analysis of all potential locations
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of failures, and the identification of system information which is
consistent with each one of such failures;

3. hypothesis discrimination, taking place when multiple fault hypoth-
esis are consistent with the system information; this step consists
in the application of further testing, the comparison with previous
diagnosis (historical), expertise or trial and error.

A capital achievement of any diagnosis procedure is high accuracy
for localization and isolation, excluding all non-consistent failure expla-
nations and focusing on valid possible failure cause(s). This achievement
requires the knowledge of the outcome of a large number of tests, in the
extreme case the execution of the whole set (test suite) of available tests.
This might be an expensive cost so that even a methodology, proven to
be valid from failure localization perspective, results to be unaffordable
from an industrial perspective. An essential key-point for the develop-
ment of new solutions for automatic fault diagnosis is the improvement
provided in terms of scalability and cost-efficiency, by using only the
most relevant measurements at any time point, i.e., by exploiting an
adaptive (context- or instance-specific) inference policy to the current
system state and observations.

1.1 Research and document organization
This Section presents the organization of the different contributions to
fault diagnosis, throughout the Chapter of this document. We introduce
in Section 1.3 an overview of the recent advancements in the field of
fault diagnosis, after we provide a common background (Sections 1.2) to
present and compare different methodologies, derived from digital device
diagnosis area but also from other research sectors. The introduction of
the different works retrieved in literature is connected to our research
underlining the contributions to specific aspects of the diagnosis process
(e.g., information modeling, adaptive test selection, …).

In Chapter 2, we present our incremental Automatic Functional Fault
Detective (AF2D) reference framework. The methodology, based on
Bayesian Belief Networks (BBNs), aims at providing test engineers with
a unified procedure to describe the system under inspection with an
high-level abstraction model, with the definition of primitives (nodes
connections, coverage coefficients) to describe even complex relations
between the system constituting elements and diagnostic test results
(outcomes). The framework is provided also with an efficient inference
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engine to evaluate diagnosis from a partial or complete set of outcomes
retrieved from an instance of a system under diagnosis.

In the following Chapters we develop three main aspects of the method-
ology, namely the fault scouting phase, the optimal test sequencing and
the model robustness analysis. In Chapter 3, we tackle the identification
of a metric for evaluating the cost of a test session. Given the cost model,
test suites are evaluated with respect to their capability of detecting the
manifestation of a fault within a system, exploiting the abstract model
information only. Two main problems are analyzed and a solution is
proposed: the stimulation of all elements of system (to avoid misdetec-
tion) in a cost effective policy, and the correct execution order of a test
sequence in order to minimize cost stimulating the most frequent failure
causes first.

Chapter 4 is devoted to the adaptive part of the methodology, aiming
at the cost minimization of each test section thought the incremental test
execution policy of AF2D. In particular, the complexity of the direct
analysis of the BBN model is overcome through a geometrical interpre-
tation of its parameters, making it possible a quantitative evaluation
of each test session using distance metrics within a vector space. The
problem of test selection and test session completion (stop condition) are
formulated in such a context and proven to be efficient; later a validation
is proposed on synthetic and industrial case studies.

Chapter 5 targets problems related to the robustness of diagnostic
information obtained with a system model, designed at an high level of
abstraction, dealing with complex and highly inter-correlated systems as
modern digital devices. In particular, an analysis of the accuracy of the
diagnostic conclusions obtained with the BBN model is carried out, and
its statistical validation is proposed through comparison against highly
detailed fault models; therefore, it is indicated the potential benefit of
adopting AF2D where the detailed knowledge of the system is not avail-
able, or it could be obtained at unaffordable cost of time and resources.
Accuracy is also tackled from the test suite designer point of view, and
an approach is developed to evaluate quantitatively the quality of a set
of tests for the diagnosis of the system, while underline is weaknesses
from the failure discrimination perspective, and to propose an incremen-
tal test suite extension to improve its diagnosis capability at a minimum
cost.

Chapter 6, eventually, summarizes the contribution of the research
activities and it proposes an outlook of future extensions an research
directions.

8
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Contributions Some publications have been produced during the de-
velopment of the research activity.

• Luca Amati, Cristiana Bolchini, Fabio Salice, F. Franzoso, and
al. A incremental approach for functional diagnosis. In IEEE
Intl. Symp. Defect and Fault Tolerance of VLSI Systems., pages
392–400, 2009

In this paper, we introduced the AF2D methodology, providing the
theoretical basis of the BBN modeling and an initial proposal for the
incremental (adaptive) exploration of tests.

• Luca Amati, Cristiana Bolchini, and Fabio Salice. Optimal test-set
selection for fault diagnosis improvement. In Proc. IEEE Intl Symp
on Defect and Fault Tolerance in VLSI Systems, DFT, 2011

This paper provides an ILP-based optimization approach to identify an
efficient test set, targeting a fast scouting of a failure in a system. The
test set is retrieved by the high-level abstraction model but its perfor-
mance are compared with the results of a more detailed model (of the
same system).

• Luca Amati. Optimal Test-Suite Sequencing for Bayesian-Network
Based Diagnosis. Technical Report 2011.3, Politecnico di Milano,
2011

This contribution tackles an optimal sequencing of the test suite. aiming
at the minimization of the time to first fail. The method exploits the
information of the BBN model and explores the solution space using an
hill-climbing approach.

• Luca Amati, Cristiana Bolchini, and Fabio Salice. Test selection
policies for faster incremental fault detection. In Proc. IEEE Intl
Symp on Defect and Fault Tolerance in VLSI Systems, DFT, pages
310–318, 2010

In this paper, we introduce a geometrical interpretation of the BBN
evolution in order to establish and evaluate a quantitative metric to lead
the adaptive selection of the next test.

• Luca Amati, Cristiana Bolchini, Fabio Salice, and Federico Fran-
zoso. A formal condition to stop an incremental automatic func-
tional diagnosis. In Proc. 13th EUROMICRO Conf. on Digital
System Design - Architectures, Methods and Tools, pages 637–643,
2010
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This paper defines a stop condition for the incremental approach of
AF2D, within the same geometrical interpretation.

• Luca Amati, Cristiana Bolchini, Fabio Salice, and F. Franzoso.
Improving fault diagnosis accuracy by automatic test set modifi-
cation. In Proc. IEEE Int. Test Conference, 2010

In this paper, we tackle the definition of a metric for evaluating the diag-
nosis accuracy provided by a given test suite. This is based on a distance
metric based on the geometrical framework for the BBN analysis, and it
is used to create an incremental approach for the extension of a diagnosis
test suite for a system under analysis.

• Luca Amati. Parameters Sensitivity Analysis in Bayesian Network-
Based Diagnosis. Technical Report 2011.3, Politecnico di Milano,
2011

This contribution is devoted to the sensitivity analysis of the BBN model
of a system, obtained from a correlation analysis of the diagnostic con-
clusions of an alternative model of the same systems, containing an ex-
ahustive (golden) description of the fault-test relations. A validation is
produced against combinational circuits, using the stuck-at fault model
and the test suite obtained from an ATPG tool.

10
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1.2 Systems
In this section we present some simple definitions to introduce the prob-
lem of failure diagnosis. Such definitions will be useful also for the anal-
ysis of the previous works, where terminology is quite inhomogeneous
because of the different fields where methodologies have been conceived
and implemented. This will provide both a uniform overview of the
literature and a unique context to locate our contributions.

Definition 1. We define a system S as a heterogeneous collection of co-
operating entities, designed to realize a specified group of functionalities.

While Definition 1 is quite generalist, it can be easily adopted to
cover a set of different types of systems that can be encountered in the
fields of engineering: from digital combinational systems to computer
networks, to nuclear or chemical plants.

Definition 2. We define a fault f as a source of misbehavior of a system.
The presence of a fault puts the system in a state where the execution
of one or more of its functionalities is partially or completely different
from the expected execution.

We denote also with FS = {f1, . . . , fn} the set of all faults potentially
affecting system S.

In reliability literature [Ise06], there is a clear distinction among de-
fects, which correspond to locations of a system instance containing a dif-
ference between specification design and implementation; faults, defined
as the actual causes of a system misbehavior; and failures, representing
the external observable effects of a fault, producing a misalignment of a
functionality from its specifications. In some occasions, we will introduce
an ambiguity using the terms faults and failures, where the difference of
definitions is not essential.

The definition of a diagnosis process requires some additional defi-
nitions, covering both the target of the process (components) and the
information required to be collected to execute it (tests).

Definition 3. A component c represents a location of a system under
analysis which can be affected by a fault.

We denote also with CS = {c1, . . . , cn} the set of all faults potentially
affecting system S.

11



1. Introduction

We refer to a component containing (at least) one fault as a faulty
component, and we use fault-free component definition otherwise.

Definition 3 requires that the location is to be identified in unequiv-
ocally within the system, in a such a way that a “fault f is found in
component c” is a consistent statement of logic. As a corollary, we ex-
tend Definition 2 requiring that a fault can affect only one component,
and two components of a system cannot overlap. This is equivalent to
consider that a system is the set of possible faults FS and components
are a partition of such a set.

According to the proposed definition, a component could correspond
to a physical device of the system, as for instance a memory chip in a
digital system. However, this condition is not strictly required: a com-
ponent could be also represent a group of physically connected elements
within the system, or even a set of non-interconnected entities contained
in a system (virtual component). Indeed, it is the capability of a system
expert to describe and isolate the location of a fault to determine the
subdivision of a system in components; this level of isolation corresponds
also to the maximum accuracy (or level of detail) that could be attained
by any fault localization algorithm, since no further subdivision can be
obtained.

The probability of a component to contain a fault is an important
concept.

Definition 4. We define the a-priori (component) fault probability P(c)
as the probability that component c contains (at least) one fault, given
no other information but the decomposition of the system in components.

This definition makes the a-priori probability value intrinsically re-
lated to the particular decomposition adopted to describe the system.
Depending on the context, the interpretation of this value can be twofold.

Dealing with scenarios where both fault-free and faulty systems are
present, the a-priori probability represents the absolute probability to
discover a fault in the component of the system. This assumption is
general, and a good estimation of such probabilities could be obtained
considering, for instance, the failure rates of the devices used to imple-
ment the system under inspection [ME02].

Otherwise, the analysis could target a system which have been proven
to contain at least one fault, for instance, a device which have been taken
out of the production line [VWE+06] after failing some verification check.
In this case, it is necessary to take into account the information of such

12



1.2. Systems

a fault to be present. Then, the a-priori probability of a component rep-
resents the relative probability the cause of the failure is located exactly
in that component.

Different distributions can be used to extract the values for a-priori
probabilities for all components. When no other assumption is done, the
normalization of the failure rates of the devices contained in the system
can be used. On the other hand, if a statistically significant number of
past cases is available, it is possible to take into account this information
as a correction of the original probability distribution [BS07b].

A common assumption adopted in diagnosis is the so-called single
fault hypothesis, in order to reduce the complexity of considering an
exponential number of fault combinations to describe all system failures.
According to this assumption, any instance of the system can contain
at most one faulty component. This particular scenario is described in
terms of a-priori probabilities imposing a normalization of the values,
to sum to the unity.

∑
ci∈CS

P(ci) = 1 (1.1)

Typically, at design time, a system is defined following a hierarchical
decomposition. Several independent and interoperating elements are de-
veloped to cooperate in order to implement the required functionalities
while keeping design, development and maintenance simple enough.

Definition 5. A subcomponent sc represents a location within a com-
ponent c of a system S which can be affected by a fault.

It is worth noticing that the relation between components and sub-
components is similar to the relation between system and components,
since it introduces a partition of the faults set of each component. This
definition is depicted in the schema of Figure 1.1.

We denote also with SCc = {sc1, . . . , scn} the set of all subcompo-
nents belonging to component c.

Given the hierarchical subdivision, it is possible to associate a value
for the a-priori probability of a subcomponent to contain a fault (P(sc)).
In order to be consistent with the single-fault assumption, it is required
that a relationship exists with the probability defined at component level;
in particular:

13



1. Introduction

Figure 1.1: Relationship between system, components and subcompo-
nents, faults.

∑
scj∈SCc

P(scj) = P(c) (1.2)

Usually, it is not possible to obtain directly the value of the a-priori
probability at the subcomponent level; for instance, this occurs when the
decomposition in subcomponents is introduced to encapsulate different
functionalities of an ASIC chip (as in [ME02]) in order to provide a
clearer description of the behavior of system itself.

In other scenarios, a subcomponent disposes of its reliability infor-
mation derived from historical data, and the component level represen-
tation is used to describe entities of the system under analysis which
are intrinsically related from a reparability (or replacement) perspec-
tive [BdJV+08a].

1.2.1 Tests
In general, testing a system can be described as the operation of perform-
ing a measurement of a particular system property, in order to compare
the result of the measurement with an expected value, usually derived
from the specifications of the system [SS94]. In a diagnostic enviroment,
measurements are designed specifically to identify a potential symptom
of a failure, in order to make observable the presence of a fault within
the system.

Being a measurement, a test is characterized by an outcome; this can
be a detailed information about a system parameters (i.e. the value of
a sensor measure [Ise05]) or the output values of a combinational circuit
[ABF90]. In some cases, the information can be compacted in some
form, in order to keep only its most significant part, the correspondence
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between the observed value of the parameter and its expected one. When
compacted at most, a test outcome is a binary variable assuming value
pass or fail.

Definition 6. A (diagnostic) test t represents a measurement of a prop-
erty of a system S, targeting at revealing symptoms of the presence of a
fault.

We denote also with TS = {t1, t2, t3, . . . , tn} the set of all tests
defined for system S, also dubbed as Test Suite. We generalize the
possible outcomes o(t) for a test t using four qualitative labels:

• o(t) = PASS, when the expected value of the measurement involved
in test t corresponds to the value obtained from the actual system
under analysis;

• o(t) = FAIL, when the expected value of the measurement involved
in test t is different from the value obtained from the actual system
under analysis;

• o(t) = UK, when test t has not been executed yet on the system;
• o(t) = SKIP, covering all scenarios where test t cannot be executed.

Note For what concerns SKIP tests, this condition can depend on differ-
ent reasons. In some cases, this outcome is due to the fact that some
preliminary configuration of the system in order to run the test was not
completed: for instance, the presence of a failure in the power system
could prevent the execution of any operation in a digital device. In other
contexts, the outcome of a test is completely deterministic given the re-
sult of a previously executed test: in a computer network scenarios, the
absence of a link (path) between two hosts will produce a FAIL for each
traffic test between them; while a ping command would be correctly
described by a PASS or FAIL outcome, all traffic tests would be better de-
scribed with a SKIP outcome, since the operations involved in the test are
not usually executed because of the absence of the link itself.

⋄
As for components, each test outcome can be associated with a prob-

ability value.

Definition 7. The conditional probability P(o(t) = ō|f) represents the
probability of obtaining outcome ō after executing test t, given that fault
f is present in system S.

This probability value associated with tests is used to describe, in a
unified framework, the coverage of a test with respect to a component
it stimulates in order to retrieve a failure; such coverage indicates the
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proportion of the component which is used carrying on the test and, at
an high level of abstraction, this corresponds to the probability that the
presence of a generic failure in a component results in a FAIL outcome
when the test is executed.

The conditional probability described in Definition 7 is not to be
strictly interpreted in a dynamic or temporal fashion: the outcome of
a test is not produced out of a stochastic process for the same system
under analysis S; also, the execution of the same test t on S usually
results in the same outcome ō. Rather, the conditional probability is to
be considered with respect to the entire population of all instances of
the same system S, and it could be better interpreted as a proportion of
instances containing a fault in a specific component c characterized with
a FAIL outcome of a test t because of the presence of the fault in c.

Determining the correct probability values for describing the behav-
ior of a system, especially in presence of faults whose understanding is
not deep and complete even for a system expert, is a non trivial task.
Furthermore, when it comes to the definition of the probability values
from test coverages, it is even harder to ensure that the overall coverage
and the conditional probability values of a group of tests are correlated,
i.e., that the probability of detection of a fault in a component is in-
creased by the correct amount, following the increased coverage provided
to the system under analysis. The main difficulty of this process is due
to the presence of subtle or implicit correlations within the components
(or subcomponents) of the system under analysis during the execution
of different tests.

Example 1. Let us consider the simplified system described in Fig-
ure 1.2 (a). Component c1 is decomposed in 3 subcomponents sc1,sc2
and sc3, containing respectively 50%, 25% and 25% of faults potentially
affecting c1.

c1 is tested using two generic tests t1 and t2. Making the hypothesis
that any fault in c1 produces a FAIL outcome in t1 or t2, we obtain a 75%
coverage for both tests.

The following table lists the probability of all possible outcome pairs
(t1, t2) when faults are uniformly distributed in c1; the first column
indicates the probability of each pair considering only the coverage (con-
ditional probability) of t1 and t2, while the second column takes into
account the overlapping subcomponent (sc1) for t1 and t2.
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component C

subcomponent 1
(50%)

subcomponent 2
(25%)

subcomponent 3 
(25%)

T1

T2

component C

subcomponent 1
(50%)

subcomponent 2
(25%)

subcomponent 3 
(25%)

O0
O1

O2

Figure 1.2: Description of coverage using tests and operations.

(t1, t2) Prob. Real
FAIL,FAIL 62.5% 75%
FAIL,PASS 12.5% 25%
PASS,FAIL 12.5% 25%
PASS,PASS 12.5% -

⋄
Such a task can be simplified a lot when a divide-et-impera approach

can be adopted: when the effects of the faults can be decoupled for all
tests in order to make them independent.

Definition 8. An operation op represents an atomic task executed on a
specific location of a component, aiming at the computation of a result.
Such result can be univocally defined as correct or wrong, accordingly to
the system specification.

We denote also with OPS = {op1,op2,op3, . . . ,opn} the set of all
operations defined within system S.
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Through Definition 8, it is possible to specify a test as a composition
of atomic operation. Given the fact that each operation can either com-
plete correctly or exit producing unexpected results, a test would likely
FAIL if at least one of its atomic tasks has introduced an error, and PASS

otherwise. The introduction of the concept of operations allows a better
resolution in the goal of evaluating how each test stimulate a component
functionalities, and, more in general, taking into account correctly subtle
components-tests correlations, as in the previous Example.

Any diagnostic methodology has the goal to execute some tests on
the system, collecting their outcome and producing an explanation of
the test outcomes.

Definition 9. A (diagnostic) conclusion dc referred to a system S is
a statement, produced on the basis of the outcomes observed for some
or for all tests in TS , specifying the causes of misbehaviors S, of which
components of CS contain a fault.

We will refer sometimes to diagnostic conclusions specifying directly
its nature of being a subset of faulty components. This will be dubbed
Faulty Candidate Components (FCC) set.
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Knowledge (Sec.) Source Robustness Scalability Novelty

Surface 1.3.1: Expertise Medium Poor Poor
Deep 1.3.2: Structure High Medium Difficult

Implicit 1.3.3: Expertise, History High Medium Automatic

Table 1.1: AI-based diagnostic methods.

1.3 State of the art

Artificial Intelligence (AI) has been widely applied to the problem of
automating fault diagnosis. In literature, broad classifications of ap-
proaches using AI methodologies for fault diagnosis are proposed. Across
different fields (as for instance electronic systems [FMM05], chemical sys-
tems [VRYK03], computer networks [SS04b]) we encounter minor differ-
ences in the accepted classification in Rule-Based methods, Model-Based
methods, Case-Based methods.

AI-techniques have used to implement Expert Systems (ES), which
try to replicate actions and decisions that a human expert would perform
when solving problems related to a particular domain. In [Abr05] author
recalls the advantages of ES-based diagnosis approaches:

• to capture human experience in a systematic, introducing a more
structured consistency than human experts;

• to minimize and/or to remove the need human expertise, making
it replicable and displacable;

• to find and to develop solutions faster than human experts.
A diagnosis ES is based on two entities: knowledge base, storing all

relevant information (data, rules, cases) and inference engine, to seek
information and relationships from the knowledge base and to provide
answers and predictions, mimicking as close as possible a human expert
task. The level of knowledge of an ES reflects the human expertise:
it could be either a surface-knowledge, obtained from experience, or a
detailed and deep-knowledge of the system behavior in presence of a fault
or not. In some cases, the expertise is not directly, rather new diagnosis
are produced classifying new instances on the basis of previous diagnosis,
performed on similar systems and collected (implicit-knowledge).

Table 1.1 presents a taxonomy of AI-techniques, classified according
to most significant key-features:

• Source: refers the behavior of the system, whether a failure is
present or not, and its relation with the diagnostic tests, is depen-
dent on engineering experience (direct system inspection, previous
systems, qualitative analysis) or from structural properties of the
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system.
• Robustness: refers to the capability of the system to produce the

correct response during diagnosis, with an appreciable accuracy
(from a statistical point of view), rejecting noise and uncertainties.

• Scalability: refers to the possibility to extend the analysis to
larger systems, or the capability of the methodology increase the
level of detail at which the system under investigation is described
without affecting the quality of diagnosis response;

• Maintenance: refers on one hand to the ease to introduce changes
in the system description and to re-use previous description, or to
re-tune the diagnostic responses adaptively to take into account
past observations (e.g, erroneous diagnosis).

1.3.1 Surface-knowledge methods

In this section we present an overview of methodologies for diagnosis
based on a surface-knowledge of the behavior of the system under di-
agnosis. The main exponents of such methodologies are also known
as rule-based approaches, defined using both deterministic and fuzzy
logic [KY95].

Relying on description based on surface information only, those meth-
ods do not require systematic understanding of the underlying system
architectural or operational principles. Those description are easy to de-
velop for small systems, where they provide a powerful tool for filtering
out quickly least likely hypotheses.

However, surface-knowledge ES systems possess a number of disad-
vantages that limit their usability for diagnosis in more complex systems:
they include a poor adaptive learning from experience and inability to
deal with unseen problems; this is correlated to the inability to up-
date the system knowledge. Furthermore, surface-knowledge methods
are inefficient in dealing with inaccurate information. In hierarchical
systems, the lack of a reference with the system structure (especially
for rule-based approaches) makes it very complicated the reusability of
descriptions produced for similar or previous systems. Also, rules inter-
actions may result in unwanted side-effects, difficult to verify and change.

Nevertheless, those approaches are important for historical reasons,
since they are the first attempt to appear to solve diagnostic problems;
furthermore, rules are the most immediate instrument to describe failure-
symptoms cause-effect relationship, to produce a systematic description
of engineering expertise. For instance in Abraham [Abr05] the knowl-
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edge of the proposed rule-based system is a set of if-then rules, connecting
together different facts relating observations (tests) and diagnostic con-
clusions (fault candidates). The inference is performed by a sequential
rule interpreter, which activates rules consistent with observations, until
a unique conclusions is reached.

In [SB06], authors reformulates the problem using rule based infer-
ence, which is done by reversing the information contained in a matrix
connection model, in the form of logic implication: diagnosis conclusion
implies a set of failures, and failing test requires at least on diagnosis
conclusion to be true.

Deterministic set partition methods, which divide the components
among faulty-candidates and fault free components on the basis of each
test outcome and intersecting the resulting tests. Such approach is close
to combinatorial group testing techniques, as in [DH00]. The limitation
of this approach is related to the fact that single fault hypothesis is re-
quired to avoid and exponential growth of computational effort. This
method is equivalent to decision tree construction, which is more com-
mon in when dealing with test sequencing optimization. Group testing
is also analyzed in [NSL08], which covers some heuristics related to the
group testing approaches.

In Dexter et al [DB97], some model-based schemes are used quantita-
tive models to estimate the parameters of the system under investigation
(a cooling module of an air-conditioning plant). Authors claim that a
major problem associated with diagnosis of such system is the definition
of a model that exactly matches the process behavior is hard to be de-
fined. Because of this, mismatches between the behavior of the model
and the system are unavoidable and they may lead to large differences
lowering diagnosis accuracy.

In order to overcome the issue, the proposed approach builds a group
of fuzzy relationships are used to define a surface model, in order to de-
scribe the fault-free system. Later, a list of all possible faults to be
considered for diagnosis is defined by system expert, and an alternative
fuzzy model is built for each fault. Fuzzy relationships are under the
form of if-then rule, which may apply or not according to the working
operating state. Rules are extracted from the system filtering measure-
ments obtained from observations of both working systems and simula-
tions. Since multiple models could be considered to be valid at the same
time, a weighetening of rules in order to reduce ambiguity among differ-
ent models is proposed, when no further measurements (new sensors or
probe points) can be inserted due to cost constraints. Demptser’s rule
is applied also in this methodology to support adaptive strategies and
integrating new evidences during testing.
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In the approach described in [HN84], Hakimi proposes the idea of
adaptive fault diagnosis at system level. The methodology is inspired
from microprocessor grids testing, but it could be easily adopted in any
simmetric scenario characterized by identical components and all dis-
posing of the capability able to test each other functionalities. A test
is modeled as the collection of stimuli operations from each entity; an
interesting aspect of this work is the possibility that the test outcome
can be affected by presence of a failure both on the tested and on the
testing units. The work propose adaptive testing since tests to be run
during diagnosis are not pre-determined, but they are progressively se-
lected to discriminate fault-free elements only, which are capable of de-
termining faulty ones with no uncertainty. The selection metric is based
on an optimization on the system elements graph. While proven to be
close to optimality in symmetric scenarios, the methodology cannot be
extended to systems characterized by the presence of non-homogenous
components.

1.3.2 Deep-knowledge methods

In this section we present an overview of methodologies for diagnosis
based on a deep knowledge of the behavior of the system under diag-
nosis. Exponents of such methodologies are also known as model-based
approaches. Table 1.2 presents a taxonomy of those methodologies.

The system model may describe the system structure (static knowl-
edge, as in fault-dictionaries for digital circuits) and its functional behav-
ior (dynamic knowledge, as in Bayesian networks). Thanks to represent-
ing a deep-knowledge of the system behavior, those approaches do not
possess the disadvantages that characterize surface-knowledge systems.
They have the potential to solve novel problems and their knowledge
may be organized in an expandable, upgradeable and modular fashion.

However, the models may be difficult to obtain and keep up-to-date.
One of the problems that the approach in with complex topologies with
deep-hierarchy, as in [BRdJ+09], which points out a difficulty of develop-
ing efficient testing for complex systems: the knowledge about the system
is spread over different engineers, then integrating and testing these sys-
tems is a time consuming, tedious and error-prone process. Considering
also IEEE standards for testing hierarchical embedded (silicon) systems,
there is no help in reducing the test complexity. Also, the modeling of
hierarchical large embedded manufacturing systems is an aspect which
is not covered. One solution proposed solution is to connect events be-
tween layers gradually increasing their level of abstraction, but reducing
the robustness of the diagnosis.
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1. Introduction

1.3.2.1 Fault signatures

In fault dictionary based diagnosis we recognize two main approaches:
cause-effect diagnosis and effect-cause diagnosis. For cause-effect diag-
nosis, all potential faults in a circuit are pre-computed; then, a codebook
is build with all faulty responses generated in presence of each fault. Di-
agnosis is performed by looking up, in the codebook, for the response
which is closer to the response of the circuit under analysis. This method
saves computational time, since simulation is executed once and offline,
but it requires large memory for storing the dictionary.

Methodologies to reduce memory requirements usually lead to diag-
nosis with weaker resolution and localization power.

Effect-cause analysis reverses the flow, by searching for the minimum
size set of fault locations explaining the faulty response of specific test
patterns: generally speaking, in a first step a set-covering problem is
solved to find an explanation, for each pattern, of the faulty response;
then the solutions of each set-covering are aggregated to identify the set
of faults explaining both all faulty and fault-free responses. While mem-
ory requirements are lower, simulation time is a bottleneck especially for
large circuits.

Pous et al. [PCM05] indicate the advantages of faulty dictionary:
simplicity for generation (fault signatures) and ease of maintenance; for
drawbacks, the fact that only previously defined faults can be detected
and located. Shorter dictionaries (from dictionary compression or un-
modeled faults) can reduce applicability.

The methdology proposed in [ZCRT07] adopts a compression of the
dictionary used in cause-effect analysis, disregarding the resolution loss.
The compression is done through a hash-key combining the indices of
faulty response outputs. Instead of back-tracing simulation, a search in
the dictionary is performed.

Holst et al. [HW09] analyze also fault dictionaries appraoches, point-
ing out the limitation of cause-effect diagnosis schema (its dependency
on a fault model) the limitations resides on the fact that the fault model
potentially reflects only a small subset of faults which actually can be
found at debug phase.

In [DKW87], the model for diagnosis is proposed in form of properties
of the system to be maintained: an example is proposed using an analog
circuit, and properties as Kirchoff’s or Ohm’s laws. The testing strategy
is defined as the measurement of a difference of an instance of the system
with respect to the expected behavior. All potential faults are pre-listed
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under the form of discrepancy of the system able to explain the difference
of measurement. Faulty candidates are determined as the minumum-size
intersections of the components of the system which are involved in each
measurements, in such a way that a minimalist explanation can be found
for all discrepancies.

The definition of a faulty candidate set for each set of measurements
corresponds to the diagnosis. Faulty candidates set research is based on
an incremental test selection taking into account a diagnosis monotonic-
ity property. This requires that, once a component has left the faulty
candidates set, because it cannot explain the observed set of measure-
ments, it cannot be inserted again in a later stage of diagnosis.

Authors propose also an interesting function for the evaluation of the
next test to be executed, based on information entropy of the compo-
nent to be part of the candidates set and, indirectly, to determine the
outcomes for the non executed-yet tests. The minimization of the en-
tropy leads to minimum-length test sequences for real circuits. However,
authors do not take into account test time as part of the minimization
process, nor they consider the case where the execution some tests could
be not feasible.

In [PR87a], a causal-effect scenario is designed for the definition of a
consistent Bayesian two-level models which can be used for system diag-
nosis. In particular, it redefines the concept of parsimoniuous covering
for failure explanations on the basis of the principles of minimality (the
diagnosis should contain the minimum number of candidates to explain
the outcomes of the tests), irredundancy (no candidate can be removed
from the candidates set without making the diagnosis inconsistent) and
relevancy (all candidates are expected to produce the observed misbe-
havior in the system).

Also, this work proposes a proof about the feasability of incremen-
tal diagnosis, supporting the claim of monotonic diagnosability for new
outcomes insertion, excluding candidates which are not able to explain
new findings.

This methodology is extended in [PR87b], with the goal to reduce
the number of candidates evaluation for selecting a minimum number of
hypothesis to be considered in a multi-fault scenario. In particular, the
strategy is based on the construction of a graph of minimum-size explain-
ing syndromes of test outcomes, based on the conservative methodology
presented in [PR87a]. This method organizes the search using a greedy
approach using only the most-likely explanation first, in order to build
the tree of possible diagnosis for each syndrome.

Wang et al. [WWZP09] propose a methodology for fault localization
in wireless sensor networks: in particular, they target a fault identifica-
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tion methodology based on end-to-end message exchange, to be preferred
to local, device-wise testing (because of energy constraint). The goal of
the methodology is to minimize the expected cost of single-link test in
terms of end-to-end message exchange and repair time. Authors focus on
the identification of all faulty links/devices in a multi-sources / single-
sink scenario. Methodology can be applied to both static routing and
dynamic routing scenarios. In the case of dynamic routing, each node is
associated with a probability to be part of the end-to-end communication,
according to the routing policy.

Authors assume the binary non-lossy/lossy link as fault model. A
diagnostic test is associated with the rate of received packets on a path;
the test fails when the rate is below a given threshold. End-to-end infor-
mation is equivalent to a faulty signature/faulty dictionary model, since
a failure in a link is propagated outside the network as a failure of the
entire path. Intermediate loss (i.e., transient faults) is not covered. As a
consequence, the presence of a faulty link on a path is excluded whenever
an end-to-end test is passed on such a path.

Authors propose a methodology to build a decision tree based on
the network topology, including all links belongin to a lossy path and
excluding links from non-lossy paths. The decision tree ranks the links
to be tested locally selecting as first candidates the links which could
explain the larger number of lossy paths, weighted by the cost of locally
testing that link. Whenever a lossy link is identified, it is repaired and
testing is run again; cost minimization is obtained by selecting the most
stressed links first.

Neophytou et al [NM09] focus on the optimization of a fault-detection
diagnosis dictionary-based technique, targeting test vectors for combina-
tional and sequential circuits. Their approach tries to take into account
fault equivalence (or ambiguity) propoerties as a way to optimize the size
of the fault test-sets, exploiting the non-specified bits of test vectors.

An alternative to fault dictionaries is proposed in [ZWGC10c], along
with an optimal methodology for fault insertion. Fault insertion is per-
formed at hardware level by adding a particular circuit, selectively modi-
fying output pins of modules; errors to be injected are selected in order to
be the most representative of internal faults. While independent with re-
spect to diagnosis strategy, paper uses a previous work of authors based
on error-flow dictionary. Error - flow dictionary is a methodology ex-
tending the fault dictionary approach: errors are reported from register
values, and also error order is taken into account.
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1.3.2.2 Bayesian Belief Networks

Bayesian networks enable modeling system behavior [SBKM06], in par-
ticular for what concerns tracking failures.

One first disadvantage to applying Bayesian techniques is the compu-
tational complexity associated with the algorithm inferring conclusions
from evidence; exact inference is complex even for bipartite networks,
such as those used in the Quick Medical Reference-Decision Theoretic
(QMR-DT) [SMH+91] system.

Sheppard et al. in [SBKM06] point out one limitation of approaches
relying on statistic or avarage properties of the system for diagnosis (sys-
tem model), obtained from populations of faulty systems. This occurs
because, while it can be expected that average behavior to conform to
these general statistics of the failures population, indidual instances of
a faulty system can exhibit a significant variation from the expected
average value.

In this paper, a bipartite bayesian network for diagnosis is used.
First, the structure of the network is extracted from human expertise,
which determines which fault is detected by which test. Then, the prob-
abilities of such detection relationship are derived from a set of training
data corresponding to actual test results, each of them associated with
a valid diagnosis.

While the inference problem is not covered in the detail, the paper
underlines that a 2-layered structure is simple to be built from human
experts, but when it comes to learning probabilities from data such a
structure is a non-realistic case to be encountered in real diagnosis. The
model is built on the assumption that that test results are conditionally
independent given the diagnosis. In fact, in many cases, we find that
tests are highly dependent given the diagnosis they are intended to de-
tect. In this paper, the the Tree-Augmented Bayesian network (TAN) is
proposed.

The properties of the diagnosis using BBN with respect to the statis-
tical parameters of the population are presented in [SK05]. In particular,
this paper redefines the concept of PASS, FAIL test outcomes with reference
of a general statistical test. Also, the probabilities of false alarms, and
misdetections, are redefined with respect to a Bayesian context. Simi-
larly, authors in [BS07a] propose a methodology for learning BBN-like
models in order to produce a diagnosis of systems, along with descrip-
tions described with dependency matrix models and a-apriori informa-
tion about failures. In particular, the system model designed from an
expert is used to create random data about test outcomes in a determin-
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istic fashion, while noise is later added onto the synthetic data, in order
to train the classifier correctly avoiding overfitting. A Bayesian network
is used as a pure classifier, the analysis is performed on a dataset of
synthetic data mimicking populations of real systems. Besides such sim-
plifications, authors stress the importance of strategies to overcome bias
introduced by low-probability fault outcomes.

In Sahin et al. [SYAU07] the construction of the BBN for a diagno-
sis methodology the scenario of airplane engines is made from a large
dataset, and a strategy to exploit the model for fault diagnosis. Instead
of using domain knowledge from experts to describe the system, the ap-
proach creates the model from sensor data readings. The methodology
tries to learn both the bayesian network structure and the components
to diagnostic nodes relationship from the dataset, using a particle swarm
optimization as the heuristic search methodologies [Nik00].

Stainder et al. [SS04a] introduce a model-based methodology for the
the computer network domain, relying on a fault propagation model rep-
resenting causal relationships from faults to observable symptoms (tests).
A symptom-fault map equivalent to a Bayesian bipartite directed graph
is used to model, for every fault, a direct causal relationships between
the fault and a set of observation related to it.

The method tackles in particular fault localization,the identification
of the most likely set of failure explaining the syndromes, taking into
account the multi-fault scenario. Such assumption is necessary since
a single-fault constraint would be limitative with respect to scalability
from medium-size to large systems.

While relationships between faults and symptoms are usually more
complex than bipartite graphs capability, it is to be considered an ex-
treme simplification (for instance, it cannot describe indirect effects, or
chains of unobservable events). At the same time, the advantage to
adopt a bipartite graph is the reducted computational effort for such
context; also, the derivation of the model from external observation of
the system is feasible, while a more complex structure requires a requires
a profound knowledge of the underlying system.

Diagnosis is performed evaluating the belief (or likelihood) for each
diagnosis hypothesis; hypothesis are groups of candidates containing at
least one explanation (fault) for each observed symptom (failure). The
approach is incremental in nature because, whenever a new observation
becomes available, it verifies the quality of all previous explanations, and
extends them of the minimum number of faults, according to the assump-
tion that the minimum number of faults is the most effective explanation
in most scenarions. The work presents the requirement of minimality for
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the explanation extensions and it proposes a greedy heuristic solving the
problem in a polynomial time.

The approach considers in the first place only symptoms associated
with misbehaviors (tests with FAIL outcomes), but it is also extented to
take into account also PASS tests and, in the network scenario, random
loss of observations (SKIP tests).

Zheng et al. [ZRB05] underline that probabilistic quantities as con-
ditional entropy and information gain have not been extensively covered
in literature for what concern BBN. Some attempts have been done
towards most-informative test selection, but disregarding computational
complexity. Probability inference is done through belief propagation, an
algorithm proven to be an heuristic non-exact inference on BBN.

Paper suggests to evaluate the information-significativity of each test
using an entropy measure. The approach proposes to greedy select a test
locally minimizing its conditional entropy, given the evidence of pre-
viously executed tests. The belief propagation algorithm is modified to
compute the entropy at the same time while updating the Bayes Network
nodes probabilities.

Methodology is applied on computer networks using information ob-
tained from a simulation framework. Authors propose a condition to stop
the selection of new tests based also on entropy; they do not presents
their results in terms of savings for what concerns testing time, rather
as computational effort saving of their algorithm in the computation of
probabilities and entropy cost function.

In [RBM+05] and [Ris06] another approach based on two-layered
BBN is proposed, with the explicit goal to formalize using information-
theory concepts the analysis of adaptive testing. Also in this case, the
system under analysis is a computer network scenario (where compo-
nents are network hosts); it is modeled using a codebook approach,
where a failure on each component of the system is related determin-
istically with each test. Authors underline that while the proposed ap-
proach targets multi-level hierarchical systems and multi-failure case, the
proposed case-study is focused on a flat single-level component-to-test
relation codebook, and the limitation to single fault is introduced for
computational effort reasons. For what concerns the description of the
system through BBN, authors adopt the noisy-OR approach [DD01] to
decompose the impact of failures to each test in an independent fashion.
Also, test outcomes are considered to be affected by noise, whenever
misdetection or fault alarm outcomes occur. A parameter pair is used to
describe the probability of such noise to occur in both events, and this
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results in a unique probability values for all components and tests.
In [HMDPJ08] the focus on fault isolation produces a two step ap-

proach to diagnosis. A minimum number of tests is executed periodically
in a system, in order to verify wheter a failure is present in the system
or not. In the former case, two greedy approaches based on entropy
are considered, namely incremental and subtractive search, respectively
focusing on isolation of the faulty component first the former, and the
identification of the larger number of non-candidate components first the
latter.

In this paper, authors underlines difficulties in building models for
systems:

1. with a large number of components and subsystems, whose inter-
actions are potentially complicated;

2. where possible root causes are numerous, and the observations uni-
voquely associating a syndrome with a direct cause limited, which
leads to hard interpretation of fault symptom.

Methodology is based on a BBN, whose structure is mult-layered: 3
levels of nodes (from root causes to observations -tests, probes- to in-
termediate nodes describing common causes). Approach is interesting
for the extraction of the model: the structure of the network is derived
from a FMEA, while the coefficients of the a-priori are tuned by system
experts. In order to create a systematic extraction of conditional prob-
abilities, they are taken from a dataset of previously analyzed systems,
obtaining probabilities from normalized frequencies of known past cases
corresponding to each failures.

Zhang et al. use bayesian inference in [ZWGC10a] for failure classi-
fication and propose to create a model of the system of fault syndromes
from fault insertion. In a second phase, a Bayesian framework is used
to diagnose results for failing boards. The methodology propose a two
step approach: in the first, the misbehavior of a faulty system is learned,
and it creates a model for the different faulty scenarios. The model is
as much accurate as the range of faults simulated at learning phase. A
Fault Injection Technique (FIT) operating at pin level is used to create
this knowledge. During fault simulation, observable measures on system
are taken, in particular register values are extracted. Then, a fault syn-
drome is created under the form of a binary vector, where each position
represents wheter there is match or a mismatch between the measured
value and the expected one.

Concerning FIT, [ZWGC09] describes the revisited approach to Fault
Insertion targeting high-density ICs and boards. Applicability is limited
both by the huge dimensions of potential fault space and the practical
difficulties of inserting faults in the system. Authors target a selection
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of an effective group of faults in place of the complete set of faults, in
order to fully exercise the system. In particular, faults are inserted at
pin level: pins are selected so that a fault on them is able to represent
the largest number of physical defects. To extend the generality of the
approach, pins are selected both at chip and at sub-module (i.e., inside
ASICs) level. The methodology exploits circuit simulation tool (RTL
description) to simulate the injection of faults (stuck-at faults and flip).
For each fault simulated (circuit defect), a correspondency table is built
associating each output-pin fault to the defects potentially causing it.
An Integer Linear Programming (ILP)-optimization methodology is in-
troduced to obtain a minimum number of pin-level faults which covering
the maximum number of interal circuit defects. The approach has as a
secondary target the implementation of hardware fault-injection struc-
tures within the circuit for reliability purposes, so the ILP model take
into account both the maximization of internal faults described repre-
sented though a pin-fault and the cost of implementation of an hardware
fault injection on the target pin.

In [KDBK10], Krishnan et al. extends test methodologies for analog
circuits are relatively firm bases in industrial scenarios, but diagnostic
methdologies not have yet, while in presence of a large (academic) liter-
ature. Among the main reasons, the lack of a structured procedure for
collecting appropriate information from diagnostic engineer, to develop
a diagnosis tool for investigating the defective analogue products.

The model of the system is defined from a sufficient number of fail
scenarios, representing the intrinsic relationship between the different
functional blocks of the circuit, i.e., the reaction of the circuit during the
application of test stimuli. This information is mediated by engineering
expertise, in order to refine the real relationship at block-level, or at
circuit level.

Diagnosis is derived from a BBN multi-layes structure, containing
a node for each block of the system. Network blocks and connections
identification is done from structural circuits. A-priori probability for
each block, and conditional relationships are optimized from a large data-
set of previous cases.

1.3.2.3 Information Flow methods

Simpson et al. in [SS91b] present an adaptive methodology diagnosis,
known as Information Flow method. In this method, tests represent
observable measurements performed on the system under analysis. Their
outcome is reduced to the binary information, PASS or FAIL. The model is
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not defined in terms of components but in terms of diagnosis conclusions
or faulty states, in terms of sets of potential faulty candidates.

The name of information flow depends on the fact that human ex-
perts first have to define which test outcomes lead to direct conclusions,
characterized with a specific component failure. Such information is
organized in the form of an oriented graph structure where each node
represents either a test or a conclusion, and direct relationships are edges
connecting the corresponding nodes. Also, indirect conclusions can be
drawn from the structure, making an inference on the transitive property
of the oriented graph. The graph structure takes into accounts the fact
that, in presence of a specific test outcomes, the execution of some other
tests can be inhibited, or their outcome can be inferred in a deterministic
fashion, making their execution redundant.

The methodology is designed for single faults scenarios, but it can
handle also multiple fault scenarios if sufficient information is inserted
into the graph in the form of multi-failure conclusions. The complexity
of this extension depends on the capability of a test engineer to handle
the modeling of diagnostic conclusions in multi-scenarios. Robustness of
diagnosis with respect to imperfect testing, where a fault is not detected
by a test designed to target it, as false alarms, where a test produces
a FAIL outcomes is produced even if no fault is present in the system, is
obtained through multiple redundant testing strategies. In this method-
ology, the order of execution of tests is subject to the constraint of fol-
lowing the arcs of the graph in order to diagnose an instance of a system.
Fuhermore, the sequence of tests must begin from a root node for each
instance. However, with the exception of direct conclusions, it is possible
to re-order the test connections in order to modify test sequences, for in-
stance, with the goal of minimizing the number of tests to reach specific
conclusions. Regarding this aspect, authors introduce an information
metric function, based on conclusions still valid derived from executed
tests and test execution time, used to evaluate the quality of diagnosis
test sequences.

Huang et al. [HMDPJ08] analyze the potential drawbacks of man-
taining a strategy based on Information Flow diagram:

• a graph built from expert is usually derived from if-then reason-
ing, allowing only sharp PASS,FAIL conclusions; in real systems, such
judgment about root cause should be driven using probabilistic
assumptions.

• the sequence of testing is strictly defined, and usually there is no
possibility to skip one of the tests of the sequence without loosing
effectiveness of diagnosis;

• insertion of new knowledge is difficult, as graph maintenance;
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• single fault scenarios are common defining the graph, making the
method inefficient on multi-fault systems.

Sheppard et al. formalize diagnosis in [SB07] as pure pattern clas-
sification, and prove that the dependency matrix methodology is based
on a model related to a linearly separable classification problem. They
underline where such linearity property limits the diagnostic resolution
of well-known inference algorithms. A test is a generic source of informa-
tion showing a property of the state of the system (an specifically, failure
symptoms). A conclusion is a statement about the element found to be
faulty in the system, including no fault found. Also, they also propose a
method for deriving optimal diagnostic strategies, proving the feasibility
of the construction of a fault-tree in polynomial time.

Approach described in [She92] uses a model of the system to be di-
agnosed equivalent to information-flow diagnosis, which allows human
experts to create a dependency between diagnostic test outcomes and
diagnosis conclusions. In particular, authors focus on the potential lack
of dependencies into the description of the system defined by test engi-
neers which could be due to poor system behaviors understanding. The
approach targets single-fault scenario. Diagnosis is performed through
a set of inference rules which propagate the information available from
tests, discarding inconsistent conclusions and leaving only valid diagno-
sis.

Instead of focusing on further analysis in order to improve the quality
of the model, the methodology guides the execution of additional testing
to discover what is correct diagnosis of the failure. The missing cause-
effect relationships are extracted modifying the information-flow graph
adding the minimum number of missing dependencies.

The explanation of misdiagnosis is taken into account in the diagnosis
methodology, and it is used as a correction factor for future analysis
and for defining a more accurate model of the system itself. Another
assumption of the approach, it is required that the information carried
by the test cannot be ambiguous, in the sense that a test is always able to
detect whether a fault is present on a component by presenting a fail or a
pass outcome. Simpson [SS91a] adopts this methodology on a standard
Automatic Test Equipment (ATE). Fuzzy logic is used to identify the
correct sequence of tests to be executed, and the approach is proven to
correctly diagnose industry devices.

Method proposed in Butcher et al. [SS96a] adopts the information
flow model but it relies on modeling of a system using fault dictionaries,
specifically fault dictionaries designed for detection. Authors limit the
scope to combinational circuits, and analyze scenarios of single (stuck-
at) faults, while focusing their contribution on the analysis of potential
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sources of error introduced by fault dictionaries, in particular for what
concerns non-modeled faults. Test outcomes are analyzed incremen-
tally, according to a set propositional logic rules derived according to
Dempster-Shafer theory that combines information from multiple tests
using Dempster’s rule of combinations. Conclusions are evaluated using
the credibility level obtained with Dempster inference theory, an differ-
ent fault isolation conclusions are accepted or refused.

Alternatively, same authors in [SS96b] tackle the problem of perform-
ing fault diagnosis using imprecise models of a system under analysis,
and on how to deal with circuit misbehaviors not listed in the dictionary.
The algorithm proposed uses the test outcomes obtained from system
under analysis and executes a nearest neighbor analysis on the fault dic-
tionary entries. Furthermore, in [SS98] when new tests are introduced
for system diagnosis the model is upgraded. Paper establish statistical
bases for inferring new conditional probabilities consistent keeping co-
herency with existing model and minimally affecting the model itself.
Conflict are handled through Dempfer-Shaffer inference theory, which
degenerates to set covering for deterministic relationships.

In the work proposed by Beygelzimer et al in [BBMR05], they cre-
ate a matrix based equivalent representation for the information flow
model. Authors propose it to allow improved maintenance and more
efficient exploration of optimal test sequencing. Their goal is to design a
diagnostic strategy which perform fault isolation at minimum cost, using
as cost metric the number of tests. The translation strategy from graphs
to matrix is formalized; paper underlines that the flow representation
is efficient when dealing with adaptive strategies evaluation, while the
codebook representation is usually more efficient while describing the
system behavior with respect to syndromes (model maintainance and
correction).

A greedy approach for the simplification of a generic information flow
graph into a tree structure, where the root represents the beginning of
each test session, and each conclusion (fault isolation) can be reached
with a unique path. This transformation creates an acceptable solution
for adaptive diagnosis, and makes the computation of the expected test
session cost straghtforward. Reversely, the translation from codebooks to
tree representation allows author to extract important observation about
the quality of the optimal adaptive strategy; in particular, authors claim
that the minimum size tree can be built from a codebook by selecting at
each step the test minimizing the entropy of the conclusions, i.e., the test
that maximizes the separation between correct and incorrect conclusions.

In Boumen et al. [BDJV+08b], authors focus the definition of testing
and diagnosis approach, focused on maintenance phase (and not opera-
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tional phase). In the first, some additional aspects are present as the fact
that a fix operation can take place at any time (requiring a new execu-
tion of test session) and that the probabilities of faults are significantly
different than operational scenarios.

The method is based on a dependency-matrix model, similar to fault
dictionary / fault-signatures. Probability affects only the presence of a
faulty state, but it cannot affect the outcome of the test (deterministic
tests).

Authors in [BRdJ+09] propose a method to model and solve a test se-
quencing problem, based on a dependency matrix, relating faulty states
to test outcomes. This approach is defined a hierarchical test sequenc-
ing problem, where individual test sequencing subproblems are resolved
locally. Positive side-effects of hierarchy-based testing:
(a) the reduced complexity to build a local model (since not all test-

components relations are to be designed) and
(b) a reduced computational effort (can produce suboptimal solutions).

Test outcomes are binary (PASS, FAIL). Deterministic relations are con-
sidered only; also, test suites are designed to have maximum resolution
for fault isolation. A virtual test outcome (repair) is introduce to de-
scribe the situation where the faulty component is isolated after a test
execution. Additional information are a-priori probability of faulty states
and recurrent/non recurrent test costs.

The hierachical description of the system implicitly introduces the
definition of a test at different level of abstraction: in other words, an
atomic testing probe at an high level of the hierarchy can be seen as a
sequence of independent test operations at a lower level. An innovation
of this paper is the proposal of describing test-components relations at
all levels at the same time, introducing detailed information local to
a sub-component only when such information is available. The cost
function is designed to minimize the expected cost test, given any faulty
scenarios. The heuristic proposed for test selection, at each step of the
test sequence, is an information gain, which is the tradeoff between cost
test and the capability of the test to discriminate faulty components.

Other methodologies In [ETB07] authors propose a model-based
diagnosis technique for wind-turbine. Interesting aspect is the derivation
of the model of the system from reliability techniques as FMEA, Fault
Tree Analysis.

The work proposed by Ruan et al. in [RZY+09] introduces a distinc-
tion between static and dynamic fault diagnosis, depending on the fact
that diagnosis is executed after a whole set of test outcomes, or if new
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evidences is added during time. Also, the non deterministic relationship
between test outcomes and component failures are described in terms of
imperfect testing, taking into account misdetection or false alarms.

The methodology naturally focuses on multi-fault scenarios, with a
low rate of innovation about the information of diagnosis tests. An
Hidden Markov Model is designed to model the dynamic time evolution
of the system; this model contains a specified set of possible faults, and
in each state a fault can be present or not. Information update is done at
regular rate, and they are considered only in a limited time window. The
Markov model requires all probabilities for test outcomes (considering
also false alarms and misdetection) from each faulty state. Diagnosis
is solved with a modified form of approximate belief inference. The
methodology is based on a simulated annealing optimization problem
solving. Results are generated and evalueted with respect to synthetic
models of real devices.

1.3.3 Implicit-knowledge methods
In this section we present an overview of methodologies for diagnosis
based on a surface knowledge of the behavior of the system under di-
agnosis. Main exponents of such methodologies are also known as case-
based approaches. Regardless of the type of knowledge used by ES, the
fault localization process is driven by an inference engine according to
failure-symptoms correlation rules, expressed in the form of labeling. In
particular, case-based systems are a special class of ES that base their
decisions on experience and past situations. They try to acquire relevant
knowledge from past cases and previously used solutions to propose so-
lutions for new problems; through the learning of correlation patterns.
When a problem is successfully solved, the solution may be used in deal-
ing with subsequent problems.

However, case-based systems require an application specific model for
the resolution process, and of a large-dataset of previous cases to avoid
mislearning; furthermore, a broad set of different failure manifestations
is necessary to avoid overfitting [HTFF05]. From a computational point
of view, time inefficiency may make them unusable in real-time diag-
nosis scenarios. As observed by authors in [SB06], implicit knowledge
approaches only are able to take into account extremely complex inde-
pendency properties among faulty scenarios.

Chen et al. in [CZL+04] propose to adopt decision trees for failure
diagnosis, as they are used as a representation of an expert knowledge to
guide a user observing symptoms of failure toward locating the root cause
of the problem. While presenting the drawback of poor prediction for
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specific faults, the methodology opposes the yield to human-interpretable
results, in order to make it more useful in a specific scenarios, as on-field
maintenance. The structure of the tree is built from a large database of
previous cases. The decision tree to produce a set of rules is designed to
maximize the separation between causes: tests which creates a clearer
separation of fault candidates are selected first, in order to create a
balanced tree. The separation of candidates is evaluated through the
information gain of the test, computed as conditional entropy. These
transformations do not change the quality of the final diagnosis, but
simply reduces the number of tests required to reach it. Recall and
precision functions are used for the evaluation of results.

Artificial Neural Networks (ANN) are mainly adopted in scenarios
targeting multiple faults diagnosis, especially in digital systems. For in-
stance, in [AJA98] authors analyze combinational circuits; specifically,
their methodology is based on training of a network on a pre-computed
database of identified potential faults. ANN, as in general automatic
pattern recognition approaches, require training data to define their co-
efficients; such data are generated by inserting one fault in the circuit
followed by simulation. This leads to the construction of the learning
database labeled with each possible single-fault scenario. Authors pro-
pose results for single and double fault scenarios.

Also authors in [OMCE05] propose a methodology based on ANN;
meanwhile, they focus on the insertion of local corrections that could po-
tentially occur while training the network coefficients using information
from model-based simulations. Correction are related to case-based in-
tegration of misdiagnosis into the model-based diagnosis inference. Cor-
rections are introducing a neural network intermediate layer into the
diagnosis infrastructure: the training set for the neural network is built
from a set of simulation from a model-based representation of the system,
and a fault-dictionary containing only non correctly-diagnosed records.

Silva et al. [SSB06] propose a methodology for fault detection in
localization transmission lines. Fault detection is done using a particular
wavelet-transform, producing a signature for the event to be classified
as a fault or not. This signature is used to decide whether to store or
not the failure record in a case dataset. Such decision follows an if-then
rules, designed by experts from a physical model of the transmission line.
Once a case is classified as fault (signature), it is recorded in a previous
case database. Fault diagnosis is performed using an ANN, trained on
the case dataset. ANN are used also in [LHZQ09], combined with Rough
Sets theory.

In [CF02] authors propose two diagnosis techniques based on a faulty
dictionary, built collecting fault signatures in presence of failures. Dictio-
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naries are used to train classifiers designed to infer diagnosis conclusions
from system measurements; one classifier is designed as a fuzzy system
to extract a set of if-then rules, while the second works on a radial basis
function system.

In [PCMdlR03], Pous et al. propose an approach targeting at solv-
ing a limitation of fault dictionaries approach. In fact, given that the
measurements are taken from a subset of all possible faults, diagnosis is
performed by the neighborhood criterion, combined with a distance met-
ric. Such flexibility is a drawback when there is an important difference
between the population of faulty systems used to build the dictionary
and the actual system under analysis population, producing problems
due to non-previously recognized or mis-recognized faults. Dictionaries
post-processing are necessary in order to solve ambiguity groups prob-
lem, and this computation can come at an high cost.

A Case-Based Reasoning (CBR) engine is proposed as an extension of
dictionary-based approach, and it is applied for the diagnosis of an analog
filter circuit. In particular, each faulty case is considered as a record
containing a fault-class and a set of measurements (faulty component,
test outcomes). CBR systems quality relies on a good case base, with
significant and consistent case scenarios. In this work, the database
of fault cases is built from circuit schematic, describing the system in
a hierarchical way (from components to sub-components different sub-
levels). This description is then simulated, along with the injection of
faults at any level of the hierarchy. A Monte-Carlo based sampler is then
used to generate a uniform and continuous set of cases, which allows an
explicit control of the parameters of the population.

During diagnosis of new instances of the system, the closest case re-
trieval strategy is based on a euclidean-like distance function; along with
this metric, a weightening is proposed using standard filter kernels (gaus-
sian, linear, exponential) in order to smooth the nearest neighborhood
classification problems along boundaries. When the real diagnosis of a
new instance of the system results in introducing an inconsistency for
fault diagnosis produced from previously stored cases, case retaining is
performed. Indeed this is the only scenario when a new case is carrying
significant information with respect to the correctness of the classifier.
Authors underline that the new case insertion could or could not have
an impact on previously classified cases: authors propose to handle this
scenario using two different case databases, a general purpose database
(where new cases not affecting previous classifications are retained) and
special purpose database (to held the remaining cases).

A similar approach is extended in [PCM05], introducing a fuzzy ap-
proach. Authors’ target is an analog filter circuit. Fault data are ob-
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tained from Matlab/SPICE simulation of the circuit, and also from a
real circuit with fault injection. The measurements from the system are
classified in a fuzzy classification; fuzzy-set ranges are extracted from
Monte-Carlo simulation of the circuit. Then, a set of fuzzy rules for sys-
tem modeling are proposed associating measurements with parameter
values of the circuit under analysis (possible parameter values contain
also faults).

In [Ise05], a model-based diagnosis approach is proposed for the auto-
motive field. The model of the system is realized according to a block dia-
gram describing dynamic systems. Tests are performed as measurements,
and transformed into PASS, FAIL outcomes thresholding the measurement
value into acceptable ranges. Diagnosis is applied as classification, on
a large simulation dataset information, integrated with historical data
where available. In particular, in this work diagnosis is based on the
extraction of a set of diagnosis rules from a Fault Tree.

Case-based approach are indicated in [SB06], where the dataset of
previously classified faulty system is used as the source of information for
building the Information Flow model. In this work, authors formalize the
translation of the diagnosis problem into a classification problem. Au-
thors focus on the classification concept of linear separability of a model,
which is redefined in terms of diagnostic resolution of the methodology,
as indicator of the capability to discriminate faulty candidates according
to test outcomes.

Butcher et al. in [BS09] present how bayesian networks for diagnosis
can be either derived from domain knowledge or learned from actual test,
extracting results from debugging or and maintenance data. In partic-
ular, for the latter, a stastically significant data-set can be used as an
approximation of probability distributions of faults and test outcomes.
However, heterogeneity can arise during the aggregation of all data, be-
cause of the fact that different components (with non-uniform failure
rates) can be used in different production lines, or equipments used for
testing slightly different. The process of aggregation itself result in aver-
aging or lost of this information. Potentially, this loss of information can
be a cause of inconsistency for the built model; being a Bayesian-based
diagnostic engine similar to a classifier, it is as much accurate as there is
a correlation between the learning population and future systems to be
diagnosed on the field. In diagnostic terms, the learning dataset used to
build the model have to reflect one one hand the statistical failure rates,
and on the other hand the component to test test diagnosis relationships.
The approach proposes to use the information-flow as diagnostic model,
whose inferences are to be computed from a dataset of available obser-
vation. Conditional probabilities are modified to take into account the
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corruption of data (misdetection, or false alarm). The learner to create
the model is a naive Bayesian classifier.

Methodology described in [CSK+09] proposes a fault isolation tech-
nique on a case-based approach. In particular, a set of classifiers are
learned using different pattern-recognition techniques, namely SVM, prin-
cipal components analysis, nearest-neighbors.

1.3.4 Industrial techniques

1.3.4.1 Product cycle

Dependability, reliability and risk analysis methodologies cover a broad
range of techniques implemented during the analysis of a life-cycle of a
product, or applied in larger scale over an industrial process or a sys-
tem [ALR04]. High quality and performance requirements, low level of
failure and risk are always associated with the system functional life.
Certification of standard specification conformance and compliance is
required, and it can be obtained by applying several methodologies that
converge towards this goal. Dependability methodologies are character-
ized by different features (approaches, strategies) but in particular for
the output they provide, either quantitative or qualitative results.

It is always possible to identify three main steps in the life-cycle of
a product [NASb,Pub11]: the Conception and Design phase, the Devel-
opment and Prototyping phase and the Production-Manufacturing and
Maintenance phase. This coarse classification is depicted schematically
in Figure 1.3.

For what concerns dependability, when moving away on a timeline
schedule from the conception phase (and successive phases are reached),
the intrinsic cost for problem resolution is an increasing function. This
has an impact on process or product diagnosability, for they do often
require a deeper understanding of interactions among operations and
their identification is not straightforward at any step of the development.
On the other hand, as a counter part of the cost function, the designer
degrees of freedom for correction choices is a decreasing function. This
is also known as the rule of ten [ZWGC10a]. Most of those techniques
are conceived to approach fault detectability as earlier as possible.

Conception At this level of evolution, available data covers informa-
tion derived from similar projects; it is the case for the most of the new
products, often targeting the same domain of another system that is
already operative, from which it differs for new functionalities or im-
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Figure 1.3: Simplified development process flow and dependability
methodologies implementation.
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proved performances. At this stage, it is impossible to apply quanti-
tative techniques (risk estimation or reliability performances), because
only generic data about components or subsystems that could be used in
current project are available. On the other hand, functional analysis and
preliminary hazards analysis [Eri05] can be applied in order to quantify
in a coarse fashion the efforts for risk prevention and criticality issues.
Those analysis follow an inductive, check-list approach. [PRO07].

Design In this phase, functional requirements and certification re-
quirements converge together with system specification. As a conse-
quence, organization level of detail regarding the new system increases.
Two main strategies can be applied, and they provide complementary
results: i) model-based metrics: techniques as Reliability Block Diagram
are used to identify critical paths and critical items, both in qualitative
way, as a tool to underline a potential dependability bottle-neck, and
with analysis refinements in a quantitative way, since modular decompo-
sition allows increased details; this latter kind of analysis is often com-
bined with the use of ii) statistical metrics, where probabilistic behavior
of elementary modules builds the overall performance estimation of the
system. Simulation methodology, with Montecarlo simulation methods
among the most known, are usually applied to quantify evaluation pa-
rameters.The detection of possible faults in the systems appears as a
complementary issue but is not yet well defined, because in this phase
and in its immediate successors, potential failures can be mere hypoth-
esis and their analysis can be inferred only by injection in the system
model.

Development and Prototyping Two orthogonal principles charac-
terize [Pub11] this phases: i) functional, subsystem and component anal-
ysis become progressively more and more accurate, along with system
development. At the same time, ii) precision required increases and
cost associated with full analysis have to be contained to match bud-
get requirements.Main focus is on failure modes, that are convention-
ally identified as misalignment with respect to nominal desired behav-
ior. Causes of misalignments can be unpredictable events, for design
mistakes are excluded. Those events are localized and mitigated, in or-
der to quantify criticality (risks, performance loss) and unsafe events
(hazards). Two main philosophies are commonly identified in this field,
representing causal relationships from a different perspective, inductive
and deductive. In the first family, mainly the Hazard Analysis fam-
ily, focus on potential risks, by decomposing them in potential domino
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effects and inducing a sequence of hazardous conditions requiring mit-
igation strategies. Besides, FMEA/FMECA approaches [MR04a] can
be built to describe system misbehaviors, by creating an overview of
possible effects induced from specific, a priori known, failures. Both
techniques aim at reduction of subsystem complexity to small sets of
information, that are propagates to higher levels, inducing this way pos-
sible sequencing of failure conditions. In the second family, Fault Tree
Analysis is commonly considered as the reference methodology. This is
because of its large application in industry, its wide acceptancy as an
efficient tool and its multiple purpose approach, emerging in interesting
results throughout several phases of product life. Main aspects in de-
ductive approach cover logical sequencing of causes, with a strict direct
influence approach in probabilistic sense. This approach reduces com-
plexity for large and highly interconnected systems. Because of this, it
makes it possible to perform repeatable quantitative measurements (es-
pecially for probabilistic assessment) and diagnosis analysis in terms of
minimal explanation identification. Temporal and conditional sequenc-
ing are not directly covered by this technique. Some attempts exist to
force the model to represent this kind of situations, but the application
is not straightforward. Because of this, Event Analysis is preferred for
it shares conditional causality but it does not focus on single event but
on success/failure paths, or sequencing; this allows a better and deeper
handling of failure development in a top-down decomposition approach,
even if causality relationship for events is not elicited. In any case, for
deductive techniques allow decomposition of the system faults in basilar
causal elements (and theit ranking in importance order), those are the
most probable candidates for implementation for testing strategies (as
it is the case for BIST).

Manufacturing and Maintenance Product certification is required
using both formal methods and process validation. In the first case,
logical assessment of properties requires logical decomposition that is
closer to Fault Analysis than other approaches. However, being this
analysis highly dependent on analyst choices, it is also applied in order
to diagnose the system to assess misbehavior that could arise in systems
after the production phase is committed. As a difference with respect
to the same analysis that (could) have been performed, in this case the
model is used both for localization and analysis it-self checking, being
the situation of Design phase reversed: the failure is an actual condition
and its arising cause is to be detected and verified.
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1.3.4.2 FMEA/FMECA

FMEA [Sta03] was first systematic techniques for failure analysis and
nowadays one of the most widely used analysis technique. This is par-
ticularly true for initial assessments the development of a new system
(product) [MR04a]. Failure Modes, Effects, and Criticality Analysis
(FMECA), is derived from FMEA. It is used indeed to identify and an-
alyze:

• All potential failure modes of the various parts of a system, both
products and processes;

• The effects these failures may have on the system and its perfor-
mance. Figuring out and understand root causes for system fail-
ures, it is particularly useful in order to get a better understanding
the weakest location in design and realization.

• How to avoid the failures, and/or mitigate the effects of the failures
on the system, in order to take by time necessary precautions.

• Possibly yield numerical values for risks evaluation.
As a corollary, FMECA helps organizing design efforts and develop-

ment priorities. Moreover, the numerical estimation of the risk associ-
ated with the introduction and the use of the new system can be used to
prove quantitatively the level of availablility or safey it can provide; this
information can be communicated to a final user of the application and,
in some fields, to a certification agency. Proposals for joint Bayesian and
FMEA analysis have been done, as in [Lee01].

Standards Several standard were defined in order to organize FMECA
procedures in industrial and production contexts. Among the most im-
portant ones [MR04a]:

• IEC 60812 “Procedures for failure mode and effect analysis (FMEA)”
• BS 5760-5 “Guide to failure modes, effects and criticality analysis

(FMEA and FMECA)”
• SAE J1739 “Potential Failure Mode and Effects Analysis in Design

(Design FMEA) and Potential Failure Mode and Effects Analysis
in Manufacturing and Assembly Processes (Process FMEA) and
Effects Analysis for Machinery (Machinery FMEA)”

Procedure FMEA-FMECA analysis is put into action by filling up a
worksheet-like document. Main information collected regard:
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1. A unique reference to each element (subsystem or component).
This has to be consistent with respect to design documents, schemat-
ics, labels or tags.

2. An exhaustive list of functionalities provided by each item is elab-
orated. The completeness of the list is fundamental to ensure the
validity of the entire FMEA/FMECA approach; usually, ad-hoc
check-lists are available, to guarantee this property, especially with
short-experienced analysts or large projects analysis, where several
team-works has to be combined together.

3. Functional requirements must be fullfilled for the system to be
considered ok, in case they are discriminated among all possible
operational modes. If not, any exceptional event is listed into the
item row as a potential failure mode.

For any failure mode identified with the procedure indicated, an
analysis is performed, by covering both causes and failure generating
processes (for instance, corrosion, fatigue, hostile environments). It is
of critical importance to list, for any failure mode identified for a spe-
cific components, both local effects (effects for neighbor components or
subsystems) and global effects (system failure, unnecessary system op-
erational model switch).

1.3.4.3 Fault Tree Analysis (FTA)

FTA [LGTL85] is an important tool, largely recognized and adopted
in industry [PRO07] and implemented in different development phases
[NASa]. It involves a set of activities in reliability analysis, namely:

• visualizing logic dependencies between (undesired) Top Event, in-
termediate events or component(s) and initiating cause(s). So, it
is self-evident with respect to the propagation of failures into the
system.

• extracting priorities about the contributing cause toward the (un-
desired) top event; this is useful both with respect to vulnerable
areas identification at early development steps (when the method-
ology covers the entire system), and towards cost and ressources
minimization, when a mitigation or failure avoid strategy has to
be put in place. Because of this, a quantitative performance eval-
uation can be extracted.

• evaluating design strategies, taking care of perfomances, even when
specific data are not available; in this case, it is used as comparative
tool been its approach general and system-independent enough; in
particular, this tool can focus on sensitivity, thanks to its decom-
position property (importance assessment for compoents towards
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system performances). Finally, redundancy policies can be directly
evaluated.

• diagnosing a failure cause when the system is in operation, when its
localization results hard to detect; in this case, the well-designed
FTA can validate all possible sequence of events leading to the
system mis-behavior, and detection is performed using its implicit
priority imposed on initiating events.

Information and results, and standards The methodology is based
on a three-phased process: identification/definition, implementation,
evaluation. In the former, a failure event is retrieved, both with its
scope (contributors that can be included or not, system boundaries) and
resolution, the level of details to which the analysis must be concluded).
Critical aspects of the design of the FT are the correctness of the selection
of a Top Event with respect to the problem that is to be solved. Correct
definition of boundaries defines the roles that other interacting subsys-
tems can have in presence of a failure. Moreover, it is important that
events are considered as simpler as possible, to allow a correct and rigor-
ous decomposition in the following (deductive) steps. During the second
step, the tree is constructed by decomposing any node (event) into its
possible immediate causal factors. Logic deduction is fundamental, and
can be assisted by the system description (component, functionalities)
and by complementary informations the actual development phase at
which the analysis is performed can provide. Latter step covers a tree
evaluation and interpretation. For evaluation, most common form is the
minimal cut sets, i.e., the combination of events that could arise into
top event failure. This evaluation is both in terms of dimensionality
(minimal explanation) and probability (most likely event); this informa-
tion is as most numerically fiable as far as the analysis was performed.
FTA methodology is define in international standards (DIN 25424, IEC
61025 [IEC90]) and other literature as [NUR].

Comparing FTA with FMEA FT and FMEA differ mainly on the
direction of the analysis flow [BPG05]. FTA begins from undesired
events, and trace them backwards to their causes. Once the primary
ones among them are identified (and quantified in terms of probability),
the analysis can be considered over. Inductive methods, on the other
hand, requires the identification of initiating causes, by applying the
path of possible consequences. FMEA however does not define a logical
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sequencing model regarding every step is perfomed. Thus, even if both
analysis can converge towards a common level (functional failure, subsys-
tem failure) presented in their results, there is no specific and repeatable
way to match information from both approaches. However, there is no
theoretical reason preventing mutual validation: an inductive approach
can be used to verify that in a given system it is possible to reach an
initiating cause that has been retrieved in a top-down FT decomposi-
tion. On the other hand, even if it is not possible to directly patch
together multiple FMECA to obtain a FT, results from the first could
be reanalyzed by a FT, verifying by this the likelihood of the inductive
process.

1.3.4.4 AI-ESTATE

Sheppard et al. describe in [SW06] some advancements of the AI-
ESTATE standard. This is the only standard explicitly aiming at pro-
viding a formal model for applications exploiting AI methodologies fault
diagnostic domain, in order to guarantee a non-ambiguous exchange of
information and a consistent cross-applications interface. In the stan-
dard, two elements play an essential role.

• the Common Element Model: it specifies common elements which
are found in all reasoning approaches;

• the Fault Tree Model, Diagnostic Inference Model, and Enhanced
Diagnostic Inference Model, which are designed to contain infor-
mation of specific approaches to diagnosis.

They present also an overview of the insertion of BBN information
model into the standard. In particular, authors underline the binary
form of test outcomes (PASS, FAIL), the labeling of possible diagnosis con-
clusion for each component (good or fault-free, suspect, candidate). Fi-
nally, a subset of the standard is dedicated to improve the definition of
’test session’ concept. In particular, the standard provides an organized
approach to archive of past diagnostic sessions This is to be done for
both online interaction of diagnosis tool and offline data analysis.
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We recall the preliminary elements related to the scenario of functional
diagnosis of boards as well as some basic information on Bayesian Belief
Networks (BBNs). Diagram representations of probability distributions
offer different advantages for the analysis of complex scenarios, and they
are widely used in AI applications in machine learning [Mit97], or sta-
tistical learning and pattern recognition [TK08].

As pointed out in [Bel06], those properties are summarized in the
following categories:

1. Visualization: graphical models provide a simple while useful
way to visualize the structure of a probabilistic distributions;

2. Modeling: inspection of the graph shows more directly the prop-
erties of the distributions (e.g., conditional independence), and it
allows a more efficient handling of the impacts of its update (model
maintenance);

3. Inference: graphical manipulations, associated with underlying
mathematical expressions, often provide a more efficient way to
carry along complex computations (inference, learning) in an im-
plicit way.

When graphs are used to describe a probability distribution, nodes
(or vertices) represent random variables, and edges (or arcs) represent
probabilistic relations between variables (e.g. conditional dependency).
Graphs are adopted as tools since they provide a compact representation
of complex Joint Probability Distributions (JPDs) [Mur98]. This occurs
because clusters of connected nodes represent the joint probability distri-
bution of all random variables at it can be decomposed into a product of
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independent factors, each relying the subset of the variables contained
in the cluster).

Two main classes of graphical models exist:
• Undirected graphical models, also known as Markov random fields,

which are models where links have no orientation and the rela-
tionship between connected nodes express soft constraints among
random variables;

• Directed graphical models, also known as Bayesian networks, which
are models where links in which the links have a particular direc-
tionality and they express causal relationships between random
variables.

2.1 Overview of BBNs

According to the proposed classification of graphical models, BBNs are
represented as Direct Acyclic Graphs (DAGs). A BBN containing n
nodes can be transleted univocally with a JPD P() containing n random
variables.

BBN ⇐⇒ P(X ) = P(X1, X2, . . . , Xn)

While the theory is general and regards both continuous- and discrete-
valued variables, we will refer only to discrete-valued variables. Then a
generic random variable X can only assume a finite set of K possible val-
ues {x̃1, x̃2, . . . , x̃K}; we will implicitly consider the binary true/false case
(K = 2, and X = 0 (false) or X = 1 (true)). Furthermore, for the sake
of simplicity of notation, we will indicate with the expressions P(X1, X2)
or P(X1, X̄2) respectively the probability values P(X1 = 1, X2 = 1) and
P(X1 = 1, X2 = 0).

2.1.1 Factorization

In set of variables X = {X1, X2, . . . , Xi, . . . , Xj , . . . , Xn} it is possible to
establish an order. Such order must respect the property that, if there
is an arc from node Xi to node Xj , it has to be j ≥ i for the indices pair
(i, j). Given those nodes Xi and Xj , Xi is generically defined a parent
of Xj , and dually, Xj is a child of Xi. Furthermore, the set of parent
nodes of Xj is denoted by the notation parents(Xj).
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X1 X2

X3

X6
X4

X5 X7

Figure 2.1: Example of BBN.

An example of a valid order is depicted in Figure 2.1. Any order,
respecting this property, can be used to decompose (factorize) the JPD
P(X ) using conditional probabilities:

P(X1, X2, . . . , Xn−1, Xn) = P(Xn|X1, X2, . . . , Xn−1) ·
P(Xn−1|X1, X2, . . . ) · · · · ·
P(X2|X1) ·P(X1)

Such factorization can be further simplified. According to proba-
bility theory, a conditional probability of three variables (A,B,C), e.g.
P(A|B,C) can be simplified as P(A|B) when variables A and C are
independent (or A ⊥ C).

A ⊥ C =⇒ P(A|B,C) ≡ P(A|B)

A BBN of n nodes is a valid representation of a JPD of n variables if,
and only if, can be factorized in a set of n conditional probabilities; fur-
thermore, if the conditional probabilities of each variable depends only
on a subset of variables corresponding to the direct parents of the node
on the graph. Variables having no parents in the graph, i.e. variables
which are not dependent to any other one, are characterized by a prob-
ability expression in the form P(Xk|) = P(Xk), indicated as a-priori
probability.

Thus, the BBN allows the representation of the JPD of all variables
as a product of a-priori and conditional terms, each depending only on
their parents’ variable. Those functions can be interpreted as the set of
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parameters defining univocally the BBN model.

P(X1, · · · , Xn) =

n∏
n=1

P(Xi|parents(Xi)) (2.1)

Example 2. Let us consider the BBN depicted in Figure 2.1, containing
7 nodes X = {X1, . . . , X7}. Trivial, non-simplified factorization of the
JPD is the product of seven contributions P(Xk|Xk−1, . . . ).

According to the graph, we can obtain the simplification of these
terms due to variables’ independence: for instance, variables X1 and X2

are independent from all other variables, then are characterized by an
a-priori probability. Or variable X7 and X4 depend only, respectively,
on X6 and X3. Then

7 : P(X7|X6, X5, . . . , X1)→ P(X7|X6)

6 : P(X6|X5, X4, . . . , X1)→ P(X6|X3, X2)

5 : P(X5|X4, X3, X2, X1)→ P(X5|X4, X3)

4 : P(X4|X3, X2, X1)→ P(X4|X3)

3 : P(X3|X2, X1)

2 : P(X2|X1)→ P(X2)

1 : P(X1)

And the JPD in the form of Equation 2.1 is a function of seven
contributions (BBN parameters):

P(X ) = P(X7|X6)P(X6|X3, X2)

P(X5|X4, X3)P(X4|X3)P(X3|X2, X1)P(X2)P(X1)

⋄

2.1.2 Inference
Thus, BBNs are important as visual tools, allowing the identification of
variables dependency and independency at a glance of the graph. This
is usually more efficient than tedious equations inspection, especially for
JPD of hundreds or even thousands of nodes, and the maintenance of
the probabilistic model they describe is an easier task. Other properties
of the JPD underlying the BBN can be extrapolated from the topology
of the graph (e.g. conditional independence or D-separation), and a
reference can be found in [Jen96].
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Besides of this, BBNs are also important because they support a
more efficient probability inference (or update), which is necessary when
one or more observations are available about the true value of some
variables (also indicated as findings or evidences). A well-known example
in BBN literature regarding probability inference is the rain-sprinkler-
wet grass example, in [Mur98].

Bayes’ Theorem states that, for a pair ⟨Xi, Xj⟩ of random variables:

P(Xi|Xj) =
P(Xj , Xi)

P(Xj)
=

P(Xj |Xi) ·P(Xi)

P(Xj)
(2.2)

In the context of BBNs, P(Xi) and P(Xj) are the a-priori probabil-
ities of variables Xi and Xj , while P(Xj , Xi) and P(Xj |Xi) are respec-
tively the JPD of those variables and the conditional probability defined
by the BBN structure.

The conditional probability P (Xi|Xj) of having Xi, given the obser-
vation of the true value of Xj is also referred to as a-posteriori proba-
bility of Xi. If we consider the variable order (i ≤ j), Equation 2.2 can
be reformulated as a function of known a-priori (P(Xi)) and conditional
probabilities (P(Xj |Xi)):

P(Xi|Xj) =
P(Xj |Xi) ·P(Xi)

P(Xj |Xi) ·P(Xi) +P(Xj |X̄i) ·P(X̄i)
(2.3)

Equation 2.3 can be extended to take into account any set of condi-
tioning variables. The task of inference on BBN is then the computation
of all a-posteriori probabilities, given the set of true value for a subset of
observed variables Xobs ∈ X . Probability inference is also the methodol-
ogy allowing the adoption of BBN as a diagnostic tool [Agr96], as it is
explained in the next Section.

2.2 Two-layer BBNs for system diagnosis
BBN models are merely an alternative representation of generic JPD
of a set of random variables. Although, when a semantic is added the
model and its parameters, a BBN represent also the notion of causality
among the correlations of occurring events [Pea00] (causal networks).

In a diagnosis framework, each variable Xi is associated with an
event. Each event may happen or not, and the corresponding random
variable Xi reflect this condition, respectively with Xi = 1 or Xi = 0.
Events are connected in causality chains (or in trees). The events at the
root of a chain may happen according to their a-priori probability; fur-
thermore, parentless nodes represent by construction events which are
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completely uncorrelated (probability independence). All other events
probability can be computed based on the occurrence of their parents
parents(Xi), through conditional probability values.

In our scenario, each variable Xi can be associated with either a
component cx event (with probability P(cx)) or to a test tz event (with
probability P(tz)). A component cx binary event indicates if component
cx is either fault-free or faulty. A test tz binary event indicates if test tz
outcome is PASS or FAIL.

Given a system S under investigation, and the suite of functional
tests for performing the diagnosis process, the BBN model of the sys-
tem provides all conditional probabilities P(tz|cx1, . . . , cxn), expressing
the relation between the PASS (or FAIL) outcome of test tz depending on the
state of the components. According to BBN formalism, the conditional
probability of a specific test depends exclusively on the fault-free/faulty
status of the components it involves ({cx1, . . . , cxn}).

In the diagnosis context, two further assumptions are usually intro-
duced

• the set of components is complete;
• all components are mutually exclusive.
The former assumption guarantees that the model includes all possi-

ble causes of failure potentially affecting the system under investigation:
at least one component must be faulty, in order to the BBN to repre-
sent a meaningful diagnosis process. This can be also reformulated as
the consideration that there is no failure, among the all possible ones
potentially affecting the system, that cannot be described with a faulty
state on one or more components of the system itself. The latter assump-
tion, instead, determines that failures affecting different components are
independent, and they could occur concurrently. The diagnosis might
end up identifing two faulty components, even though such a situation is
unlikely to occur on real systems. Given those assumptions, the BBN is
known in machine learning literature as Naive BBN [Mac03]. In general,
the hypothesis of a single failing component is commonly adopted, nev-
ertheless there are syndromes that cannot be explained with the failure
of a unique component; it is important thus that used reasoning engine
considers this less probable situation, should it occur.

2.2.1 Components-Tests Matrixs (CTMs)
Figure 2.2 depicts a generic BBN for system diagnosis. The model is a
bipartite graph, composed of two groups of nodes:
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Pass
Fail
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Fail
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Figure 2.2: A BBN model for diagnosis.

• parent-less nodes, representing components; a unique parameter
describe the node, its a-priori probability function;

• child-less nodes, representing tests; each node is requires a set of
parameters to be described, contained in its conditional probability
function;.

Components are described with an a-priori probability value in the
range [0, 1], representing the absolute likelihood of the component to
be in a faulty state. In some cases, there is a close correspondency be-
tween components and actual physical devices instantiated in the system
under analysis: therefore, a-priori values are derived from reliability in-
formation, failure rate indices from data-sheets, or other similar sources.
Otherwise, if no precise information can be obtained, e.g. when compo-
nents nodes in the network are used to represent either devices’ blocks
or a group of devices, then uniform or context-specific probability dis-
tributions can be adopted to tune a-priori probability values. In both
cases, experience and previous diagnosis feedbacks are used as a source
to improve the model over time, establishing a better correspondency
between a-priori parameters for all components and the specific rate of
occurrence of failures in the actual system.

Tests are described by conditional probability functions. Dealing with
binary random variables, this function for each generic test tz is univo-
cally defined with a set of 2nc values in the range [0, 1], where nc rep-
resents the number of component nodes in the BBN. An alternative
representation of this function is a probability table with 2nc entries.
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Such function is oversized to univocally describe the causal relation
between faulty components possible configurations and the outcome of
test tz. The first simplification concerns in general the independence
property underlying the BBN: components nodes which are not part of
the test tz node fan-in (components nodes not having an arc to tz) have
no contribution for the definition of the conditional probability table of
node tz. The second simplification regards the assumption that each
component node of the fan-in of the test node contributes independently
to the causal relation, following a conditional table decomposition ap-
proach which is known in bayesian literature as canonical model [DD01],
and in particular the Noisy-OR (nOR) decomposition [Sri93].

Let us consider a component-test pair ⟨cx, tz⟩; their causal relation-
ship is described by a pair of conditional probabilities:

1. P(tz = FAIL|cx), or the probability that the outcome of tz is PASS,
when cx is fault-free;

2. P(tz = FAIL|c̄x), or the probability that the outcome of tz is PASS,
when cx is faulty.

Dealing with binary variables, the probability of PASS outcomes can
be obtained by difference. The former parameter is used to represent
the probability of component cx of being the cause of a false alarm, pro-
ducing a FAIL outcome without any failure to be present in the system.
The latter term, instead, is used to represent the probability of test tz
to reveal the presence of a failure on component cx, whatever the nature
of the failure is. For this reason, this term is strictly correlated with the
concept of test coverage.

We describe the composition rule of the nOR approach in the follow-
ing Example 3. According to the nOR approach, only two parameters
are sufficient to represent exhaustively each component-test pair relation;
therefore, the number of parameters required to describe the overall con-
ditional table of each test is linear (and not exponential) in the number
of components the test involves.

Example 3. Figure 2.3 depicts a trivial BBN composed of two compo-
nents c1 and c2 and a single test t1. The causal relationships within the
pairs ⟨c1, t1⟩ and ⟨c2, t1⟩ are described independently in the tables on
the right. NF and F labels on components represent respectively the
non-faulty or faulty states, while the P and F indicate respectively the
PASS and FAIL outcomes. Even if there are four entries per table, only two
parameters describe completely each table: the false-alarm probability
and the fault-detection probability.
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Figure 2.3: nOR decomposition example.

nOR decomposition is based on the assumption that the FAIL event
can be caused independently from the two sources c1 and c2. Therefore,
for a PASS outcome to occur, it is necessary that both, independent failure
sources do not produce a FAIL event; the probability of this composed
event can be computed as the product of single-event probabilities, be-
cause of independence, for each possible permutation of faulty states
(NF,NF), (NF,F), ….

One of the two rows of each table can be obtained by difference.

P(t1 = PASS|c1, c2) = P(t1 = PASS|c1)P(t1 = PASS|c2)
P(t1 = FAIL|c1, c2) = 1−P(t1 = PASS|c1, c2)

For instance, the probability that execution of t1 results in a PASS

outcome when only c1 is faulty while c2 is fault-free can be computed
as the probability of two independents events: no false-alarm due to c2,
and mis-detection of failure on c1. Then:
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P(t1 = PASS|c1 = F, c2 = NF ) = P(t1 = PASS|c1 = F ) ·
P(t1 = PASS|c2 = NF )

= 0.5 · 0.5 = 0.25

P(t1 = FAIL|c1 = F, c2 = NF ) = 1−P(t1 = PASS|c1 = F, c2 = NF )

= 1− 0.25 = 0.75

⋄
In our framework, we focus on diagnosis scenarios where false alarms

probability is null; we consider that a test tx can be repeated, producing
the same outcome, therefore removing this potential source of ambigu-
ity. Because of this, a single parameter (fault-detection rate or coverage)
is sufficient to describe each pair component-test.

Summarizing the entire BBN model containing nc component nodes
and nt test nodes can be represented using (nc + 1)× nt parameters, or
formally with:

1. a vector of size nc× 1, containing a [0, 1] a-priori probability value
Pap(cx) for each component cx of the BBN;

2. a matrix of size nc×nt containing a [0, 1] coverage value cov(cx, tz)
for each component-test pair ⟨cx, tz⟩ of the BBN; this matrix is
dubbed Components-Tests Matrix (CTM).

It is worth noting that the model extraction activity requires strong a
test engineers’ team activity. The component set can be derived from the
specification of the system: for instance, in the case of a digital circuit,
it results from a combination of a netlist inspection and the knowledge
about the use of the system.

The test selection requires the intervention of the test engineers’ team
whose role is to identify the used test set, a subset of all possible tests,
for system diagnosis; then, for each test, to specify the coverage level for
all test-component. In order to face with the difficulty of computing an
accurate value for each coverage probability, a simplified qualitative scale
for the coverage is used: causal relations between each ⟨cx, tz⟩ pair are
described through a coverage label covL, belonging to the coverage label
set CL = {H,M,L}, indicating a high, medium and low coverage level for
a test with respect to a specific component. Qualitatively, the coverage
can be also considered as the amount (proportion) of functionalities of
the component involved during the execution of the test; the smaller the
portion of the component stimulated, the lower the probability that any
failure results.
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Table 2.1: CTM excerpt of system in Figure 2.4.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
t1 L - - L - - H - H M M
t2 L - - L H H - - - - -

Another symbol (–) should be used to model the condition where a
faulty condition of the component is not able to cause a failure of the
corresponding test, since none of its functionalities are used during test
execution.

The decision to express each component-test relation by means of a
label derives from the need to simplify the work of the team modeling the
behavior of each available test and its impact of the components; in fact
each label expresses the qualitative relation between components and
tests, moving the management of uncertainty to the adopted resolution
strategy.

The modeling of test behavior and the impact on component through
qualitative labels provide also a strategy to take into account bad fault
modeling. A test engineer can exploit this flexibility, based on experience
or expertise, and adapt the coverage of specific test-component pairs,
in order to improve the model where diagnosis from test outcomes is
unclear.

CTM and virtual components Two components cx1 and cx2 are
different from the model point of view if and only if they differ for, at
least, one element of the CTM. Motivations for this requirement are
twofold: qualitative and quantitative.

From a qualitative perspective, the system analyst specifying the
CTM can define the system model with multiple different tests cover-
ing the same subset of components with the same coverage labels. This
situation corresponds to a replicated column in the matrix, and it is not
a problem for the consistency of the model; for instance, two tests could
stimulate a set of components with the same coverage levels, although
interacting with different component functionalities. On the other hand,
a row replication in the CTM is quite improbable, since it would model
two (or more) components with identical partial and complete syndromes
(for all tests the outcomes are identical). Such a pair (or set) of com-
ponents, even if from an architectural perspective they can be identified
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Figure 2.4: Sample board and component-test coverages.
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with specific and separated elements of the system, should be considered
as a unique logical component. Consequently, the responsibility of the
failure would be assigned to this new virtual logical component rather
than being distributed over the pair of components, with a lower and
uniform degree.

From the quantitative perspective, the replication of a row in the
CTM causes a duplication of a component node used for probability
inference. Because of the independence property of the nodes of a BBN,
two component nodes characterized by the same faulty signature will
match their faulty probability value whenever the outcome a newly ex-
ecuted test is inserted, during the incremental test phase. This duplica-
tion is misleading from both a modeling and a computational point of
view, because of the redundancy of the numerical processing (identical
equations are solved twice at each step).

Therefore, without lack of generality but rather referring to a rea-
sonable model, we require the CTM not to have two identical rows to
avoid an increase in complexity and computational time.

Furthermore, it is worth noting that this assumption is not preventing
the analyst to model intermittent failures, since this concept can be
considered orthogonal to the coverage label ranking. In fact, it is possible
to modify the coverage level in order to consider both pass and fail
outcomes of a test to agree with the faulty component diagnosis obtained
with the BBN.

2.2.2 Inference for two-layer BBNs
In literature [Mur98], several specific algorithms have been developed
to extract node probabilities in efficient ways. They are broadly classi-
fied in terms of either exact or approximate inference methods, on the
basis of exhaustive or heuristic resolution of marginalization of Condi-
tional Probability Density (CPD) functions. By marginalization, it is
indicated the operation of manipulation of the JPD in order to eliminate
the dependence on one or more variables, in order to obtain a probability
function of a subset of variables. The manipulation consist in a sum of
all probabilities values of the JPD, for each possible value of the variable
to be kept.

Example 4. Let us consider a JPD P⟨X1,X2⟩ of two variables binary X1

and X2. In particular, let be PX1,X2(X1, X2) = 0.45, PX1,X2(X1, X̄2) =
0.15, PX1,X2(X̄1, X2) = 0.35 and PX1,X2(X̄1, X̄2) = 0.05.
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Marginalization on X1 produces the PX2 : PX2(X2) = 0.45 + 0.35 =
0.8 and PX2(X̄2) = 0.15 + 0.05 = 0.2; marginalization on X2 produces
the PX1 : PX1(X1) = 0.45+0.15 = 0.6 and PX1(X̄1) = 0.35+0.05 = 0.4.

It is worth noting that all P functions sum to the unity, before and
after marginalization.

⋄
One of the first algorithm for exact inference was proposed in the

1980s, known as polytree algorithm [KP83], is based on the concept of
message propagation. A message is a local marginalization of the prob-
ability distribution, starting from parent-less nodes, and progressively
propagated to children. While begin exact and having with a complexity
polynomial in the number of nodes, this algorithm cannot be applied for
networks having at least one node with multiple parents. Same author
extended this exact inference algorithm for multiple-connected networks,
dubbed loop cutset conditioning [Pea86]. This approach requires to in-
stantiate a family of transformed single-parent networks, derived from
the original one, for each multi-parent node contained in the graph.
Each instance is resolved with the polytree algorithm and inference of
the multi-parent network is computed by weighting. The complexity of
this approach grows with the number of multiple-connection present in
the graph. A similar approach, variable elimination, infers the proba-
bility value by the elimination other variables one by one by summing
them out. The complexity of this algorithm depends on the number of
multiplications and summations performed, depending on the the elimi-
nation order. Unfortunately, identification of minimum cost elimination
order has been proven to be NP-hard.

Another popular exact inference algorithm is clique-tree propagation
algorithm [LS88], also known as clustering or Junction Tree algorithm. It
is a two-steps approach, which first transforms a multiply connected net-
work into a clique tree (by clustering the triangulated moral graph [LS98]
obtained from the BBN), then it performs message propagation over the
clique tree. Efficient for sparse networks, the Joint Tree algorithm still
can be extremely slow in dense graphs, since its complexity is exponen-
tial in the size of the largest clique of the transformed undirected graph.
Many similar approaches to solve inference on clustering structures exist,
and the most known in [SS08,JLO90,MJ98].

For our purposes, we require a light algorithm in terms of both:
i) reduced execution time, for a group of network updates needs to be

performed whenever new evidence is available, and
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ii) storage space, for our two-level structure is characterized by an high
fan-in in test nodes inducing an exponential growth for CPD tables
size.

An interesting approach, matching these requirements and fitting our
fault causal relationship modeling is the quickscore algorithm, for nOR
networks, described in [HL90]. The algorithm handles explicitly the in-
dependent concurrency of a test FAIL condition that is induced by compo-
nent faults; this reduces the overall redundancy into inference propaga-
tion equations and it is possible to extract shared terms among different
variables evaluations. As it is detailed in the referenced paper (nota-
tion is adapted to our case), we briefly recall probabilities equations for
component and test nodes.

Given the set C of all components, and T P and T F respectively the
sets of observed tests with PASS and FAIL outcomes, it computes:

P(T P ) =
∏

cx∈C
((

∏
tzp∈T P

P(tzp|cx))(1−Pcx) + (Pcx)) (2.4)

P(T F ) =
∑

T ′∈2T F

(−1)T ′ ∏
cx∈C

((
∏

tzf∈T ′

P(tzf |cx))(1−Pcx)+(Pcx)) (2.5)

which combines in a unique equation:

P(T P , T F ) =
∑

T ′∈2T F

(−1)T ′ ∏
cx∈C

((
∏

tz∈(T ′ ∪ T F )

P(tz|cx))(1−Pcx)+(Pcx))

(2.6)
as the probability of observed test outcomes; then, for each compo-

nent, it computes it probability to be fault-free as:

P(cx = F|T P , T F ) =
P(cx, T P , T F )

P(T P , T F )
(2.7)

where P(cx, T P , T F is obtained from Equation 2.6 replacing all terms
P(tz|cx) with 1.

We adapted this approach, characterized by strongly reduced storage
requirements, without the need for an explicit CPD representation. In-
deed, in Equation 2.6 and 2.7 all contributions can be found either in the
CTM or among a-priori components probability. Algorithm complexity
is constant with respect to negative evidences (test with PASS outcomes),
while exponential with the number nF = |T F | of positive evidences (tests
with FAIL outcome), i.e. o(2nF ).
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Implementation For a CTM containing nc components and nt tests,
two data structures are to kept all contributions required for the quick-
score algorithm [HL90]: a nc × 1 vector, cumulating contributions for
PASS test outcomes and a nc × 2|T

F | matrix cumulating contributions for
FAIL test outcomes.

Both structures are initialized setting all entries to 1. Two distinct
operations are applied for new PASS and FAIL observations. Whenever a
PASS outcome is observed, each entry of the PASS-vector is updated mul-
tiplying with the P(tz = PASS|cx = faulty) referred to the correspond-
ing component cx. For instance, Table 2.2 shows the evolution of the
vector, from initialization, for the sequence of observations tz1 = PASS,
tz2 = PASS, tz3 = PASS. Whenever a FAIL outcome is observed, the entire
content of the FAIL-matrix is duplicated; each new row is multiplied with
the P(tz = PASS|cx = faulty) referred to the corresponding component
cx. For instance, Table 2.2 shows the evolution of the matrix, from ini-
tialization, for the sequence of observations tz4 = FAIL, tz5 = PASS. Terms
P(tz|cx) in Table 2.2 and 2.3 are skipped for component-test pair ⟨cx, tz⟩
with null coverage.

The data structures presented contain all partial contributions neces-
sary to compute inference through Equation 2.6. In particular, the equa-
tion denominator is calculated traversing all rows of Table 2.3; for each
component, the FAIL-matrix entry is multiplied with corresponding entry
in the PASS-vector (depicted in Table 2.2), and it is weighted with the
a-priori probabilities. Row contributions, relative to each component,
are multiplied together, and they are added or subtracted according to
the number of FAIL observed in current Table 2.3 row. Inference for a
specific component cx, according to Equation 2.7, is computed with the
same algorithm skipping the column corresponding to cx.

2.2.3 Reinforcing single-fault hypothesis

In a BBN containing nc component nodes, their a-posteriori probabil-
ities evolve independently as long as new observations (test outcomes)
are available after test execution. Therefore, the number of components
identified as faulty by the BBN ranges potentially from 0 to nc, span-
ning all 2nc possible diagnostic conclusions regarding components faulty
states (NF: non faulty, F: faulty). If necessary, it is possible to set an ex-
plicit constraint on the BBN diagnosis conclusions introducing another
topology of nodes in the network.
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Table 2.2: Quickscore algorithm: PASS contributions vector.

c1 c2 … cnc

(a) ∅ 1 1 1

(b) tz1 = P P(tz1|c1) P(tz1|c2) P(tz1|cn)

(c) tz1 = P, P(tz1|c1) · P(tz1|c2) · P(tz1|cn) ·
tz2 = P P(tz2|c1) P(tz2|c2) P(tz2|cn)

(d) tz1 = P, P(tz1|c1)· P(tz1|c2)· P(tz1|cn)·
tz2 = P, P(tz2|c1) · P(tz2|c2) · P(tz2|cn) ·
tz3 = P P(tz3|c1) P(tz3|c2) P(tz3|cn)

…

C1 C2

T1 T2

C3

T3

C4

VCN

Figure 2.5: Sample BBN with VCN.

Let xV be a node of a BBN containing nc component nodes. Let all
component nodes to be part of the fan-in of node xV. Let PxV be the
conditional probability distribution of xV, having an entry for each one
of the possible 2nc configurations K of faulty states (NF: non faulty, F:
faulty) of component nodes.

We define xV a Valid Conclusion Node (VCN) when PxV contains
only binary entries; in particular, PxV(K) = 1 if faulty configuration K
contains exactly one faulty component, and PxV(K) = 0 otherwise. A
VCN is introduced into the BBN as depicted in Fig. 2.5.

VCNs can be considered to represent either an observer or a con-
troller variables. In the former case, no information about the true
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Table 2.3: Quickscore algorithm: FAIL contributions vector.

c1 c2 … cnc

(a) 1: ∅ 1 1 1

(b) 1: ∅ 1 1 1
2: tz4 = F P(tz4|c1) P(tz4|c2) P(tz4|cn)

(c) 1: ∅ 1 1 1
2: tz4 = F P(tz4|c1) P(tz4|c2) P(tz4|cn)
3: tz5 = F P(tz5|c1) P(tz5|c2) P(tz5|cn)
4: tz4 = F, P(tz4|c1) · P(tz4|c2) · P(tz4|cn) ·

tz5 = F P(tz5|c1) P(tz5|c2) P(tz5|cn)…

value of the binary value represented by the node is available, therefore
the probability value of xV can be computed as for any other variable
of the BBN. Because of the nature of its distribution PxV, accepting
only single-fault configurations, such probability computes a credibility
measure of a single-fault diagnosis to be a correct diagnostic conclusion
given the set of observed test outcomes.

In the latter case, the actual value of xN is known, and it is set to be
true: such an observation on xN affects the probabilities of all compo-
nent nodes. The presence of this observation introduces also a semantic
change of the meaning of the probability associated with component
nodes: for a given component node cx, P(cx) expresses the probability
that the single-faulty component diagnosis, having cx as faulty candi-
date, is true.

While interesting from a modeling point of view, the introduction of
VCN suffers of the drawback of not being compatible with the inference
algorithm proposed previously. In fact, such nodes fulfill the indepen-
dence hypothesis for nOR decomposition. Therefore, to compute their
probability values, or to solve the BBN when they are used as controller
variables, it is necessary to use a more complex inference algorithm such
as, for instance, a Junction Tree based algorithm [LS98], which we did
not adopt in our framework for computational complexity reasons.
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2.3 Four-layer BBNs
The BBN structure proposed in the previous Section 2.2 applies to a
broad category of systems, while keeping a low complexity regarding the
type and the amount of information required to test engineers to develop
the model.

On one hand, model developers have a limited number of critical
choices to make, namely the decomposition of the system under investi-
gation in components and the definition of the a-priori failure rates; this
limitation reduces the risk the model complexity to go out of control.
On the other hand, test engineers are offered a large spectrum of possi-
bility to describe interactions between components and diagnostic tests,
and by exploiting the robustness of the BBN inference engine to toler-
ate non-recurrent or local mistakes potentially occurring during model
development, they dispose of a detailed while simple tool to support
automatic diagnostic investigations. Furthermore, the simplicity of the
model is reflected in the possibility to implement an efficient inference
engine, giving the opportunity of the BBN tool to be used in a quasi-real
time fashion and making it suitable for industrial scenarios.

Unfortunately, the simplicity of the architecture proposed for the
BBN carries a subtle side-effect, which is an intrinsic difficulty of de-
scribing specific correlations between events. In our diagnosis context
this translates in the unfeasibility of forcing the model to consider as
impossible some particular outcomes configurations (Example 5).

Example 5. Let us consider an excerpt of a system, as depicted in Fig-
ure 2.6 (a). The system is composed of a micro-processor c1, a memory
composed of two banks (bank A c2, bank B c3), and a pair of bus in-
terfaces c4 and c5 for each module. In the test-suite, two tests t1 and
c2 are used to test respectively banks A and B, with a set of write-read
loops. The BBN depicted in Figure 2.6(b) reports the CTM non-null
coefficients, on the corresponding graph arc.

The failure is localized on a component (c4), which is stimulated by
both tests; furthermore, the coverage is indicated as low because the
functionalities of the bus interface involved in this specific read-write
test are marginal, or in other words, the test is not designed to detect
a large spectrum of possible failures affecting this specific component,
being its target the verification of memory banks (A or B).
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Figure 2.6: Microprocessor-memory system excerpt and BBN.

However, if we consider at the possible configurations of outcomes re-
vealing a failure, we can observe that combinations ⟨t1 = FAIL, t2 = PASS⟩
and ⟨t1 = PASS, t2 = FAIL⟩ are valid manifestations of failures on banks A
and B, but they reveal a bad modeling policy for failure in Figure 2.6 (a)
because the functionality stimulated by the test is likely to be the same:
the BBN proposed considers as valid outcomes those configurations, and
this affects the valid estimation of probability through inference.

⋄
According to definitions proposed in Section 1.2, we extend the model

structure of BBN introducing a 4-layer structure, renaming the nodes
of the network according to the following:

• Component nodes: as in 2-layer BBN, they represent logic lo-
cations on the system under investigation; furthermore, partitions
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of the system that are strictly and univocally related with a-priori
probability of failure occurrence;

• Subcomponent nodes: each component of the BBN is linked
with one or more subcomponents nodes; those are introduced in
the BBN architecture to provide a better semantic to the model
developer. With this nodes, it is possible to describe a hierarchical
decomposition of each component in logic subblocks; furthermore
subcomponents increases the resolution of the model developer to
associate particular functionalities of each component to the tests
of the test-suite, improving the quality of coverage and overcoming
outcome constraints, e.g. the problems underlined in Example 5;

• Operation nodes: each subcomponents of the BBN support
the computation of one or more operations, during the execution
of tests; each operation is characterized by locality, in the sense that
it receives information from and send information to other compo-
nents. This family of nodes is introduced to decouple the concept
of operation to the outbound visibility, wheter its execution result
correspond or not to the expected-specified one;

• Test nodes: they are defined as collections of operations, provid-
ing a cumulative information about the success or failure of their
execution, with the binary outcome PASS-FAIL.

All nodes of the 4-layer BBN represent binary random variables. In
particular, subcomponent nodes possible values are F (faulty), NF (non-
faulty), whether the node contains system failure or not. Operation
variable assume the same values of test nodes (PASS, FAIL), representing
respectively the condition where the operation produces correct or wrong
results. Figure 2.7 depicts the element of a generic 4-layer BBN, indi-
cating correspondences with the 2-layer model described in Section 2.2.

A-priori probability in 4-layer networks A-priori probability val-
ues are attributed to subcomponents, instead of components as in 2-layer
BBN. Component nodes variables are computed according to a deter-
ministic conditional distributions: a component is considered faulty if at
least one of its subcomponents is faulty, and it is considered non-faulty
otherwise. For instance, component c1 in 2.7 conditional probability
distribution P(c1|sc11, sc12) is depicted in the following table:

c1 NF,NF NF,F F,NF F,F
NF 1 0 0 0
F 0 1 1 1
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Figure 2.7: Example of 4-layer BBN.
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When a component has exactly one subcomponent, they represent a
pair of variable whose value will be always equivalent. Maintaining the
redundancy increases the regularity of the network, which is an impor-
tant property for both modeling and inference.

Being P(c1|sc11, sc12) a deterministic function, the marginalization
of components probabilities at the beginning of each test session, when
no test outcome is available, correspond to the sum of all a-priori prob-
abilities of its subcomponents. The procedure to be followed by test
engineer to attribute subcomponents a-priori probabilities, once the fail-
ure rate of all components has been established by data-sheet inspection,
is to distribute the probability to be faulty of each subcomponents pro-
portionally to an evaluation of failure likelihood within each component.

Example 6. Let us consider the BBN shown in Figure 2.7. From data-
sheets inspection, failure probabilities of components c1, c2 and c3 are
respectively 50%, 40%, 10%. The probability of localization of a failure,
within each component, is uniform for all subcomponents.

Then, the a-priori probability of subcomponents is 25% for subcom-
ponents sc11 and sc12, 20% for subcomponents sc21 and sc22, and 10%
for subcomponent sc31. In this example, c3 and sc31 are redundant.

⋄

Test outcomes Test nodes have the role to collect the status of the sin-
gle operation involved in their execution and to combine it in a cumula-
tive, binary value (PASS, FAIL), representing the only observation available
for system diagnosis. In order to avoid an excessive number of param-
eters to describe the BBN model, we adopt a deterministic function to
describe the relation between a test and the operations it is composed
of.

We derive from Fault-Tree Analysis [MR04b, NUR] formalism the
concepts of OR gates, AND gates and k-of-n gates and we trans-
late them in conditional probability distribution to associate them with
BBN nodes. Fault-Trees are graphical tools, especially used in Reliabil-
ity contexts, designed to provide a visual representation of cause-effects
relations between events. Basically, a Fault-Tree structure describes re-
lations between events following an extended boolean fashion. Let us
consider a set of N binary events E = ⟨e1, e2, e3, . . . , eN ⟩ and a target
event eT. An OR relation is used to describe a scenario where, when at
least one event in E occur, it causes target event eT to occur also (Fig-
ure 2.8(a)). An AND relation, instead, is used to describe the opposite
scenario, where all events must have occurred simultaneously in order
to cause the target event eT to occur (Figure 2.8(b)). K-of-N relations
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describe the intermediate scenario where K < N events are sufficient to
trigger target event eT (Figure 2.9).

e1

e2

e3

eN

eTAND

...

e1

e2

e3

eN

eTOR

...

(a) (b)

Figure 2.8: OR (a) and AND (b) gates.
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eN

eT2-of-N

...

(a) (b)

Figure 2.9: Activated (a) and not-activated (b) K-of-N gate (K = 2).

In 4-layer BBN, we translate the occurrence of causing events with
the failure of an operation to compute correctly its results, and the trig-
gered event as the FAIL outcome of a test. Conditional probability func-
tions P(tz|ok1,ok2,ok3) of a test tz involving 3 operations ok1,ok2,ok3
are reported in Table 2.4 respectively for the OR, AND and 2-of-3
cases. The choice adopted to represent operation-test relations in our
diagnostic framework is the OR relation.

CTM During the definition of the system model, the coverage relation
is transferred from component-test pairs in 2-layer BBN to subcompo-
nent - operation pairs in 4-layer BBN. In fact, 2-layer graphs can be
considered as the extreme case of 4-layer ones, where each component
has exactly one subcomponent and each test requires exactly one opera-
tion to complete. However, the latter structure provide enough seman-
tic to discriminate between situation where the execution of two tests is
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Table 2.4: OR, AND and 2-of-3 conditional probability.

P(tz|ok1,ok2,ok3) PPP PPF PFP PFF FPP FPF FFP FFF
PASS 1 0 0 0 0 0 0 0
FAIL 0 1 1 1 1 1 1 1

P(tz|ok1,ok2,ok3) PPP PPF PFP PFF FPP FPF FFP FFF
PASS 1 1 1 1 1 1 1 0
FAIL 0 0 0 0 0 0 0 1

P(tz|ok1,ok2,ok3) PPP PPF PFP PFF FPP FPF FFP FFF
PASS 1 1 1 0 1 0 0 0
FAIL 0 0 0 1 0 1 1 1

characterized by full independence, and a scenario where shared opera-
tions would introduce an incoherence of a system description relying on
component-test pair-based model only.

2.3.1 Inference for four-layer BBNs
The structure of 4-layer BBNs proposed in this section is even more
complex than 2-layer structures proposed in Section 2.2; exact inference
on this network result is solution which is not practicable. We imple-
mented an approximate (stochastic) approach for inference evaluation on
a 4-layer BBN.

Stochastic simulation algorithms, also called stochastic sampling or
Monte Carlo algorithms, are the most well known approach for approxi-
mate inference. Those methods generate a set of samples of the network,
attributing a true random value to each variable according to the JPD
of the model. Then, they approximate probabilities of required variables
computing the relative frequencies of appearances in the samples. The
accuracy (and the complexity) of probabilities evaluation is as high as
the number of generated samples, while it is independent of the structure
of the network. Stochastic algorithms can be divided into two broad cat-
egories: importance sampling algorithms and Markov Chain Monte Carlo
(MCMC) methods.

The simplest sampling algorithm is probabilistic sampling, described
in [Hen88]. This is also known as forward sampling because it casts
a random value for each variable only when all its preceding variables
(in the DAG) have been sampled, exploiting the conditional probability
function. Frequencies are evaluating through counters instantiated at
each variables. The approach discards all samples which are inconsistent
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with observed true values; therefore, as the number of potentially valid
samples decreases exponentially with the number of observed nodes, the
accuracy of the approach drops when the set of available observations is
large.

Likelihood Weighting (LW) [DC93] has been conceived to tackle this
limitation, which is prohibitive when dealing with large networks. In-
stead of counting/discarding a sample whenever is consistent/incosistent
with the values of the observed nodes, the counter is updated weighting
the sample with the likelihood of observation, conditional on the samples.

From accuracy point of view, Likelihood Weighting converges faster
then logic sampling, but, as all stochastic sampling algorithms, it shows
an extreme long converges time when unlikely events are observed. Im-
provements to this algorithm have been proposed, for instance in [DL97]
to tackle specific topologies of networks or reduce computational efforts.

Even if more efficient techniques were reported in recent literature
[Hec08,GH02], we focused our effort on an implementation based on Like-
lihood Weighting, as a good tradeoff between accuracy, computational
effort, real-time constraints for the adaptive methodology (Section 2.4)
and implementation complexity.

2.4 incremental Automatic Functional Fault
Detective (AF2D)

2.4.1 Adaptive diagnosis

incremental Automatic Functional Fault Detective (AF2D) is a method-
ology we proposed in [ABS+09]. The flow of AF2D is summarized in
Figure 2.10.

Offline operations The entry point of the methodology consists of
two main pieces of information: i) the structure of the board under
investigation (in terms of components or/and functionalities, which we
will refer to as simply components) and ii) the set of tests and their
relation with the components.

While the former can be directly derived from the specification of the
system, the latter requires the intervention of the test engineers’ team,
whose role is twofold: they have to select, among all possible tests, the
subset they deem representative to verify the functionality of the board,
and they have to specify the qualitative indication of the relation between
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Figure 2.10: AF2D flow.
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components and tests (the observability of the component’s behavior on
the test output), using the coverage labels presented in Section 2.2. The
output of the test engineers’ team activity is the model of the board for
the diagnosis, the CTM.

Figure 2.4 (a) represents an hypothetic board, indicating the coverage
of a test t1 involving components c1, c4, c7, c9, c10 and c11.

The first stage of the methodology is composed of two parallel activi-
ties: the transformation of the CTM into the corresponding BBN model,
deriving the conditional probabilities (e.g., P(t1|c1, c4, c7, c9, c10, c11)
with reference to the example of Figure 2.4) and the identification of
the subset of tests to be used initially.

This second element represents the initial test subset, initTS, that
verifies all components; this first block of tests is used to collect enough
information about the system under test, avoiding a situation where a
component never gets verified. Chapter 3 discuss the problem of the
identification of optimal initTSs: this set is identified by considering
both test-priority and level of coverage; in general, since the level of
coverage and the covered components are different from test to test, an
optimal initTS constitutes a trade-off between the cost of tests included
in the set and the global quality of the coverage.

Online operations Operations described in previous paragraph are
executed once, using exclusively the information contained in the system
model CTM.

In the second step, information collected after the initial test se-
quence is analyzed and further tests are executed if no tests have failed.
In fact, if no test fails, no information can be used to identify a set of
faulty candidates and it is necessary to improve the covering of the board
adding further tests (one at time). Since the absence of possible candi-
dates is the driver of this step, tests are chosen to increase the coverage
factor associated with the initTS.

Once at least an executed test fails, the core of adaptive test selection
starts. In this step, the effects of the execution of each remaining test
are simulated ahead, one step at a time using the BBN engine. Tab. 2.5
depicts the following scenario: tests t02, t03, t04, t06, t08 and t09 have
been executed, with partial syndrome -PFP-P-PP; t01, t05 and t07 have not
been executed yet, and an evaluation of the information they would
provided is computed in the matrix of simulation results.

The reported information includes the absolute probability for each
component of being faulty with respect to each test ti and its possible
outcome (PASS- P or FAIL- F), completed by the probability of the test
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2.4. incremental Automatic Functional Fault Detective (AF2D)

to have such an outcome; all this values are computed by the BBN
engine based on the availabele outcomes and the model. For example,
the execution of test t01 with a PASS outcome, would indict component
c10, with a 97% probability of being faulty (3% of being fault-free), c11, with
a 93%, c8, with a 2%, etc. Furthermore, the probability of the test to
PASS is 84%, 16% it FAILs, giving the available information on the already
executed tests. Do note that P(ti=PASS) + P(ti=FAIL) = 100%, while all
the other terms are not normalized.

All components appearing in one of the tests that have failed con-
stitute the Faulty Candidate Components (FCC) set, that is used in
conjunction with the derived matrix of simulation results to determine
what to do in the next step. Chapter 4 discuss the cost functions that
have been defined to compute a final value associated with each not-yet
executed test, with the aim to reduce the cardinality of the FCC set, also
preferring those tests that better differentiate the candidates’ probability
of being faulty.

A detailed description of the steps of AF2D are summarized as a
pseudo-code in Figure 2.11, where the flow of the methodology is out-
lined.

Some considerations are worth discussing on the preliminary scalar
function introduced in [ABS+09] to select the next test. First of all,
the FCC set includes only components with a probability of being faulty
greater than 0, a value used to rank them. The second consideration
concerns the fact that the function has been defined to provide a rank-
ing for each single test, aggregating information from both outcomes,
PASS and FAIL. Another important issue concerns the distribution of the
probabilities of being faulty among the components in the PFC set. More
precisely, given two situations FCC_1 = {(ch : 43%); (ci : 10%); (cj :
30%); (ck : 43%); (cl : 5%)} and FCC_2 = {(ch : 10%); (ci : 90%); (ck :
25%); (cl : 5%)}, the latter is more interesting since it focuses the at-
tention on a single component (ci) rather than two (ch and ck). To
model this preference, the standard deviation of the probability values is
used, able to express the pursued situation of small cardinality of FCC
sets, with differentiated probabilities. The last contribution to the scalar
function is the probability of the outcome of each test, used to weight
the results provided by each possible future syndrome.

Since the incremental approach aims at limiting the number of tests
to be executed to make a diagnosis, the methodology needs to include a
strategy to determine whether to proceed with the next test or not. Be-
fore executing the selected next test, the matrix of the simulation results
is analyzed to evaluate the benefits of the potential future syndrome in
computing the final ranking of the possible faulty candidates against the
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Input: System Model CTM, Test Suite T
Output: FCC (Possible Faulty Candidates).
Procedure FindCandidates(CTM ,T )
{
1 initTS = Select_Initial_Tests(T )
2 T = T – initTS

3 PartialSyndrome = Execute_Tests(initTS)
4 PFC = Compute_Possible_Faulty_Candidates(partialSyndrome)
5 while (PFC = ∅))
6 T0 = Select_Add_Initial_Tests(T )
7 initTS = initTS + T0

8 T = T – initTS

9 PartialSyndrome = Execute_Tests(initTS)
10 PFC = Compute_Possible_Faulty_Candidates(PartialSyndrome)
11 end while

12 while ((T ̸= ∅) and (not STOP )))
13 Matrix = Simulate_Tests(T ,PartialSyndrome)
14 Ti = Select_Next_Test(Matrix)
15 STOP = Analize_STOP_Condition(Matrix)
16 if(not STOP)
17 T = T – T0

18 PartialSyndrome = PartialSyndrome + Execute_Tests(Ti)
19 PFC = Compute_Possible_Faulty_Candidates(PartialSyndrome)
20 end if

21 end while

22 output PFC
}

Figure 2.11: The incremental diagnosis methodology flow.
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confidence of the current results. For a preliminary assessment of the
methodology, the stop condition in [ABS+09] has been associated with
a situation where the additional tests would only modify the relative
probability of the FCC elements while maintaining the same order.

2.4.2 Framework and implementation

A framework has been designed to implement the proposed approach,
to cope with both algorithm complexity and computation efficiency. A
multi-layered architecture has been adopted; this is based on a bottom-
up partitioning into an inference engine, a network state manager and
an intelligent explorer, as it is shown in Figure 2.12. Each layer targets
a specific task implementing, in turn, a set of optimal strategies focusing
on overall execution time reduction.

At the lowest level, the Inference Engine provides a uniform API
exposing methods to receive a set of test outcomes, to compute the prob-
ability of all component nodes, as long as the probability of non-executed
tests nodes. Furthermore, the API is designed to discriminate real exe-
cuted test outcomes, ideally retrieved from an ATE running a diagnostic
process of a real system, and virtual test outcomes, which are simply
generated by the framework to explore different strategies to continue
the test session; this distinction is important to improve the efficiency
of the engine because the simulation of remaining tests is an extremely
regular exploration, and the code can be suggested to take into account
intermediate results and save computational time. The engine interface
and inference core has been coded in plain C language for performance
reasons; two cores have been implemented, an exact inference algorithm
(based on quickscore described in Section 2.2) and a stochastic inference
engine, designed to tackle the inference on 4-layer BBN (Section 2.3).

The intermediate layer is introduced for BBN state management,
to decouple the superior adaptive test sequencer logic from the inference
engine, for some reasons. On one hand, this is necessary to provide the
transparency with respect to the specific algorithm used for probabil-
ity evaluation, especially for what concerns the translation of the CTM
model in a valid BBN structure; on the other hand, it is not strictly
necessary to recompute the probabilities values for components and tests
more than once, when a syndrome containing a specific set of test out-
comes first appear; for later reference, the probability set can be prefer-
ably loaded from an ad-hoc syndrome database. For instance, for at any
step of the diagnosis, the AF2D Tool explores all possible next test exe-
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2. Bayesian Belief Networks for Diagnosis

cution scenarios, the actual probabilities after a new test outcome inser-
tion are already available within such dataset, and another computation
would be unnecessary and inefficient; furthermore, database query are
faster than inference engine execution, and this makes the AF2D Tool
more suitable for real-time test sequencing. Same considerations apply
for optimal strategy identification: given an unchanged BBN model, the
best test selection is the same for any occurrence of a given syndrome.
The intermediate layer is implemented in Python [Pyta] and it interacts
with the lower inference engine API through a Python C/API [Pytb]
encapsulating the C code. Syndromes and strategies databases imple-
mentation is currently based on SQLite [SQL], not requiring advanced
DBMS features as user authentication or concurrent query execution,
and they are accessed by the BBN state management through a specific
Python library.

The highest layer, AFD Engine, is in charge of implementing AI
logic, by functionality integration of Python modules. In this layer, the
language is chosen to be used as a glue logic, coordinating several task-
specific problems (e.g., the initial test set definition, the stop condition
evaluation); while some simpler tasks are performed directly (stop condi-
tion, Chapter 4), others are integrated in C/C++ libraries, opportunely
wrapped (as ILP optimization, in Section 3.2). Other support modules,
while not directly involved in the adaptive methodology, are integrated
at this level: for instance, this is the case of the approach for test-set
suite diagnosis resolution evaluation (and extension) described in Sec-
tion 5.3. Finally, the layer is also in charge of interaction with other
external modules designed for the Tool users. In Figure 2.10 depicts an
spreadsheet module (implemented in MS Excel, for compatibility with
Agilent Fault Detective Tool [Agi04]) for the completion of new CTM
modules (Figure 2.14), a telnet-like console for user interaction during
the adaptive test sessions (Figure 2.13), and a Web-oriented interface,
conceived for remote deployment (Figure 2.15).
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Figure 2.12: AF2D framework architecture.
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Figure 2.13: Console interface for AF2D Tool.
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Figure 2.14: Spreadsheet interface for CTM editing.

Figure 2.15: Web-based interface for AF2D Tool.
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Initial Test Set Analysis 3

Introducing the process of system diagnosis in Section 1.2, we explained
that one of the mot important goal of a diagnostic process is the local-
ization of the cause of a misbehavior, failure, or fault, detected though
its external manifestation (syndrome).

Policies taking place after the failure localization can be as different as
the nature or the possible configurations of the system. In some scenar-
ios, a system could be recovered from the last known fault-free state: this
is the case when the localization of the misbehaving (faulty) component
is precise enough to allow in-place heal by maintenance [BDJV+08b].

For other systems, instead, the nature of the device identified as
the cause of the failure allows its substitution with another identical
units [SS91a], in a process similar to system debug [ME02].

When the complexity of the system or its particular architecture
prevent any kind of fix operations, the localization of the failure is im-
portant at least in order to implement a mitigation strategy through
re-configuration (for instance, re-scheduling operations assigned to the
faulty component to other units, or to spare ones). This last option, not
strictly dependent on diagnosis, is to be supported by the system from
design time.

In such contexts, diagnosis is conceived to take place off-line: mon-
itoring the evolution of a system, an initial assumption of diagnosis is
that at least one error has been recognized among the observable pa-
rameters, in order to start fault localization. For this purpose, specific
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3. Initial Test Set Analysis

test suites should be designed aiming explicitly at diagnosis.
On one hand, at a detection level, a test is considered to be efficient

if, in presence of a large number of potential failures, it shows output
values which are different with respect to a fault-free response of the
system. On the other hand, a good diagnosis test not only makes the
presence of the fault observable, but it also supports a discrimination of
the effects of a fault from those caused by others.

Clearly, test suites aiming at solving those two problems (respec-
tively, detection versus localization) are inspired by different principles
and they are consequently characterized by different properties. One of
the most important properties is test suite size. In [PR10], author pro-
poses a comparison of test suites sizes for combinational and sequential
circuits of the ISCAS-89 benchmark suite: in general, diagnostic test
suites are one order of magnitude larger for what concerns the number
of involved test vectors. This is a problem both for storage space in
BIST contexts [LC05], where the entire test suite needs to be archived
within the chip under analysis, and for test selection in adaptive testing
scenarios [Shu09], where the number of available options impacts on the
complexity of the search algorithms. Furthermore, it has been observed
that test suites designed for detection are capable to distinguish a large
number of fault pairs, but larger suites are necessary to extend such ca-
pability to all faults [PR10].

Rather than fault coverage [ABF90], different metrics are used to
evaluate the quality of a diagnostic test suite. In literature, several ap-
proaches have been proposed especially in the field of circuit testing,
for several motivations. A large amount of work has been devoted to
the detection problems in the last decades [SS94, Ise06, FMM05], fault
models are precisely defined and understood, as well as tools [Too03].
In [KPFS92] authors adopt a metric they named diagnostic resolution,
taking into account parameters as the number of undistinguished pairs
of faults and the number of completely distinguished faults. This infor-
mation consider only the size of the groups of faults producing similar
(or different) output values.

From another perspective it is also possible to integrate other pieces
of information about the structure of the system under inspection. For
instance, in [Pom11], the author proposes to consider the physical dis-
tance on the chip of two undistinguishable pair of faults, in the case of a
combinational circuit. This is motivated considering that an ambiguity
of diagnosis among two or more points located in distinct areas on the
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circuit are more likely to be resolved by other inspection techniques for
failure analysis, than closer or overlapped areas. In another work [PR97]
authors propose a mixed automatic approach for the definition of the
test suite: while the fault coverage is considered for computing the el-
ements of a detection suite, the final suite is defined as the tradeoff of
the number of selected tests and the number of inspection points, which
provide additional test information observing the value of a digital signal
on a specific line of the circuit.

Analysis based on a detailed model of the system suffer of a draw-
back [ABF90] whose manifestation is twofold: on one hand, the fault
model used to describe the behavior of the system in presence of a fault
might be inaccurate; on the other hand, the fault models considered (as
the stuck-at fault models) might not cover faults discovered into the sys-
tem, and this limitation has to be overcome through the introduction of
more complex fault models as for instance in [SBB+98]. In the case this
complexity cannot be handled, it is still possible to rely on the empirical
observation that test suites designed to account only for the presence of
simple fault-models (single stuck-at model), are statistically proven to
be able to detect the presence of other type of failures (multiple stuck-
at faults, bridge faults) [Pom11]. In this scenario, the correct diagnosis
of the failure has to be left for later investigations, when necessary. A
close assumption about the fault detection capability of a test suite is
done by authors in [LCLH98], where they further extend their analysis
proposing an AI post-processing of the outcomes of diagnostic tests; in
particular, they designed a bayesian classifier to learn the probability
of occurrence of some non-modeled faults from a large dataset of faulty
integrated circuits.

Finally, also in [ZWGC09], authors propose to consider simple fault
models only (single stuck-at model) to build a diagnosis approach, rather
than relying on a blind simplification, they propose to describe the pres-
ence of a fault within a portion of the system (subcomponent) as a com-
bination of simple faults located on its external interface (output pins).
With this approach, fault coverage rates are claimed to be a more reli-
able indicator of the real fault coverage provided by a specific test suite.
In this Chapter, we adopt a similar approach: describing the system
through the BBN model described in Chapter 2, we define a test suite
using the information contained in the system description only; and in
order to prove the effectiveness of the obtained test suite, we later corre-
late its expected coverage with respect to an indicator based on a more
detailed fault model.
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Because of the twofold aim of test vectors in the diagnosis test suite,
an incremental approach is beneficial to reduce costs and efforts, thus
applying only a subset of all tests to identify the faulty component (or
device, depending on the abstraction level the diagnosis works at). In
such a scenario, rather than executing all tests and using the obtained
complete syndrome, a two-phase process can be adopted:

1. a preliminary scouting phase, to make the fault observable as soon
as possible;

2. a main steady phase, aimed at discriminating between possible can-
didates causing the tests to FAIL.

In this perspective, in the first phase, the value of a FAIL outcome is
very significant, whereas in the second one, both PASS and FAIL tests add
relevant information. The approach proposed in this chapter aims at
the identification of group of tests Initial Test Set (initTS), making at
least a test FAIL, by applying focused on being as small as possible and
offering the highest possible coverage. Therefore, in an ideal situation,
tests belonging to the initTS should provide a good fault coverage in
a reduced number of vectors, whereas other tests executed in the latter
phase should offer a high diagnostic accuracy. The same two-phase pro-
cess models a scenario (Figure 3.1) where a failure detection test suite is
adopted for all systems at a later stage of a manufacturing line; whenever
a FAIL is outcome is present for this suite, the faulty instance is taken out
redirected for deeper diagnosis, possibly finalized at repair; otherwise,
the instance is classified as fault-free and can leave the manufacturing
line.

Several works have been devoted to the selection of minimum-size
test sets for diagnosis purposes, as in [PR02] or [PRR02]. In [SA09], the
problem is modeled as an optimization problem and it is solved using
a general purpose Integer Linear Programming solver. Also in [DM03]
and [HST+06], similar methodologies are proposed for combinational
and sequential circuits, minimizing the number of test vectors of the
diagnostic test-sets. The focus of such methods is on guaranteeing the
highest possible diagnostic resolution of the obtained test-set. All these
techniques are based on a low abstraction-level fault model, suitable only
for digital circuits of limited size.

In general, diagnosis can be applied at higher abstraction levels,
where a system consists of components of relevant complexity, using
a less accurate fault model, and without the opportunity to easily apply
suites of tests produced with Automatic Test Pattern Generator (ATPG)
tools, due to the modules’ complexity and the interconnections among
them, that limits accessibility. Therefore, although an ATPG-generated
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System Test(1): PASSED
Test(2): PASSED
Test(3): PASSED

....
Test(N): PASSED

(COMPLETED)

Manifacturing 
line

System OK

System Test(1): PASSED
Test(2): PASSED

...
Test(k): FAILED

(ABORT)

Manifacturing 
line to diagnosis/

repair

(a)

(b)

Figure 3.1: Manufacturing line test-suite and diagnosis line.

test suite could be used as the ideal model, it cannot be realistically
applied and a different approach is necessary.

Considering the scenario depitected in Figure 3.1, another problem
arises: not only the selection of an efficient group of tests to be part
of the initTS is critical for testing strategy, but also the order of ex-
ecution is important for the strategy to be efficient. Not all sequences
are equivalent in such context. On one hand, every test has to produce
a PASS outcome before the instance of the system under test can leave
the line (Figure 3.1(a)): being all tests associated with a cost (typically,
execution time), the group of tests providing the higher coverage at the
lowest cost are preferred as better choices for the initTS.

The ordering or sequencing problem has been faced in the past in
diagnosis literature, and the proposed algorithms are relatively differ-
ent as the models used to describe both the system and the faults are
not homogeneous. However, all problems are formulated as optimization
problems and they are later solved relying on well known optimization
techniques. For instance, in several works as [TP03,RTPPH04,KSC+08,
BRdJ+09, BdJV+08a], the system under inspection is described using
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the faulty signatures methodology (Section 1.3.2).

A problem similar to optimal sequencing of a test suite is described
under the regression test problem paradigm [RH93], related to the soft-
ware testing. In particular, this problem is usually formulated as the
search for an optimal testing strategy of software modules, aimed at
preventing local modifications on the module during development to be
cause of future misbehaviors. In this contexts, tests are extracted from
large and pre-defined test suites [RUCH01]; for this reason, exahustive
testing or random testing are not suitable for both efficiency and cov-
erage reasons. Adaptive techniques have been developed, for instance,
in [RUCH01, WSKR06, LHH07, BMSS09, CPU07]; those techniques are
defined taking into account the coverage of each item of the test suite
with respect to the different portion of codes modified. In particular, au-
thors in [RUCH01] introduce a particular metric (Average Percentage of
Faults Detected (APFD)), to be used as a benefit function for comparing
the efficiency of a given order of execution for a group of tests of the suite.

The contribution of the work proposed in this Chapter is twofold:
i) to tackle the problem of identifying an optimal initTS capable of

providing the highest coverage of the system under diagnosis, while
keeping the dimension of the test set small.
The approach is applied using the methodology described in Sec-
tion 2.3, in order to contain test costs by reducing the impact of the
preliminary scouting phase, and to maintain most of the test effort on
fault identification; it is worth noting that it is suitable for other di-
agnosis techniques at the functional level, where a generic fault model
relating faults and test outcomes (syndromes) is adopted, information
on the tests’ fault coverage is not accurate, and probabilistic proba-
bilistic relations between the presence of a fault in a system and the
capability of each test of the test suites to detect it is available, as
in [OMCE05].

i) to tackle the optimal execution sequence of tests contained in the
initTS. For several reasons, i.e. an a-priori probability distribution
leading to a bias towards specific components to be more likely faulty
candidates, an execution order focusing on some target components
first can have an expected time to first FAIL lower then another se-
quencing policy of the same test of initTS. All tests of the initTS
scheduled after the first FAIL are not necessarily the best choice for
diagnosis and fault isolation, and they do constitute an potential over-
head cost if executed. Such saved testing time, even if representing
a minor percentage of the overall cost associated with the optimal
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initTS, offers a significant impact of optimization in large volume
lines.
The rest of Chapter is organized as follows: Section 3.1 introduces

some definitions for establishing a methodology background. The main
contribution is presented in Sections 3.2 and 3.3; in the former, the
methodology for initTS cardinality minimization is proposed, supported
a numerical assessment of the consistency of the minimal solutions at a
lower abstraction level, using an ATPG-based approach; in the latter,
we cover the problem of the test-set ordering, describing an optimization
approach based on an hill-climbing technique. At the end of each Section
some experimental results and considerations are presented.

3.1 Definitions and problems formulation
We introduce few preliminary definitions to formalize the identification
and sequencing of the initTS in the form of optimization problems. In
particular, it is necessary to formulate the concepts of system coverage
and test set cost in order to provide quantitative metrics, to be used
with general algorithms for optimization.

Definition 10. Let S be the system under analysis and T a suite of
tests. Let us define Ty ⊂ T as a test-set. We define Gcov : Ty → (0, 1) a
coverage function representing the portion of faults, among all possible
ones, covered by applying all tests contained in the test-set Ty.

Definition 11. Let S be the system under analysis and T a suite of
tests. Let us define Ty ⊂ T as a test-set. We define Gcost : Ty → R a
real-valued cost function representing its cost of execution of the test-set
Ty.

Functions proposed in Definition 10 and 11 cannot be considered as
uncorrelated. Intuition suggests that the larger the effort in testing, the
lower is the likelihood that a failure might be undetected. For this reason,
it is useful to represent both function using a unique representation, as
proposed in Figure 3.2. In the plot, each possible group of test appears
as a dot whose coordinates are computed through coverage Gcov and
test-set cost Gcost functions.

Such functions can be defined as simple as linear relations (the cost
of a test-set can be computed as its cardinality), or more complex non-
functions, combining other parameters (for instance, execution time for
the tests). However, independently from the choice of a specific relation,
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Figure 3.2: Test-set on cost-coverage plane.

coverage Gcov and test-set cost Gcost define a multi-objective optimiza-
tion that can be constrained to formulate the problem of the identifica-
tion of an initTS.

Problem 1. Let S be the system under analysis and ^Gcov the required
minimum coverage parameter. We define the minimum cost, coverage
constraint test-set optimization problem as:

minimize Gcost(Ty)
subject to Gcov(Ty) ≥ ^Gcov

where optimal Ty depends on the choice of ^Gcov.

The solution of Problem 1 is a minimum-cost test-set that is more
likely to cover the largest part of the system, minimizing the probability
not to obtain at least one FAIL from initTS. In particular, the constraint
can be formulated to provide a minimum coverage not only to the system
S as a whole, rather it can be defined to guarantee a minimum coverage
for all its components. We propose an approach to identify a solution
for this problem in Section 3.2.

Problem 2. For a system under diagnosis S, let us define an allowed
maximum cost parameter ^Gcost. We define the maximum coverage, cost
constrained test-set optimization problem as:

maximize Gcov(Ty)
subject to Gcost(Ty) ≤ ^Gcost

whose the solution Ty depends on the choice of the parameter ^Gcost.
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The solution of Problem 2 is a maximum-coverage test-set, minimiz-
ing the probability not to obtain at least one FAIL from initTS, while
controlling the effort for the execution of the group of tests to be con-
tained within an assigned budget (threshold ^Gcost). We focus in up-
coming Section 3.3 on a methodology to solve the maximization of the
test-set coverage controlling, through the fitness function Gcov(Ty), both
the selection and the order of execution of tests.

3.1.1 Cost function
The execution each test is associated with a cost. The cost of a test-
set is the sum of the contribution of all tests belonging to it. Without
loss of generality, we could focus on the simplest form of cost function
Gcost(Ty), which is the cardinality of the test-set.

In general, the cost of a test should summarize the effort to produce
the test outcome in a quantitative index. Without loss of generality, we
could identify two main contributions:
(a) the set-up time of the test, taking into account the hardware/soft-

ware operations of a test-operator to prepare the system for testing;
(b) the test execution time, which depends on the operations performed

during the actual execution of the test.
A possibility to produce a valid estimation of the latter term is scrap-

ing the log data obtained of a test environment, which is usually config-
ured to take trace of all events occurring during each test sessions. In
particular, time-stamps relative to the beginning and conclusion of each
test can be used to determine at least the coarse statistics of the test
execution time, in particular for what concerns the average and worst
cases of execution time.

It is worth noting that such statistics are consistent only when con-
sidering PASS test time, since they do involve a deterministic number of
operations. Time to first FAIL does not have the same property, since
for the sake of performance tests are usually interrupted whenever an
error is detected. Such stop can occur at any point of the test execution,
depending on the location of the fault in each particular system under
analysis. However, considering only PASS time is not a significant limita-
tion when dealing with the cost minimization from the test session begin
until the detection of the first FAIL for a test. In this case, indeed, the
error in the timing estimation resides only in the very last executed test,
for which the average (or worst-case) PASS time is considered instead of
the FAIL time.

Furthermore, it is difficult to obtain a precise evaluation of the test
set-up time from log data, since time-stamps intervals depend in this case
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S t a r t i n g t e s t : / c a l l i s t a 5 / fpga / dmaStats / t e s t_a s i c_cpu_ i f [Thu Jan 14 19:15 :14 2010]

This command i s cur ren t l y supported only i n standa lone mode

*** PASSED *** / c a l l i s t a 5 / fpga / dmaStats / t e s t_a s i c_cpu_ i f [Thu Jan 14 19:15 :14 2010] :

s k i p s=0 warning=0 errors=0 loops=1

4510EUTP3( unlocked ) : / > / c a l l i s t a 5 / fpga / dmaStats / test_dma_stats_engine

S t a r t i n g t e s t : / c a l l i s t a 5 / fpga / dmaStats / test_dma_stats_engine [Thu Jan 14 19:15 :14

2010]

This command i s cur ren t l y supported only i n standa lone mode

*** PASSED *** / c a l l i s t a 5 / fpga / dmaStats / test_dma_stats_engine [Thu Jan 14 19:15 :14

2010] : s k i p s=0 warning=0 errors=0 loops=1

4510EUTP3( unlocked ) : / > / c a l l i s t a 5 / fpga / dmaStats / test_simultaneous_dma

S t a r t i n g t e s t : / c a l l i s t a 5 / fpga / dmaStats / test_simultaneous_dma [Thu Jan 14 19:15 :15

2010]

This command i s cur ren t l y supported only i n standa lone mode

*** PASSED *** / c a l l i s t a 5 / fpga / dmaStats / test_simultaneous_dma [Thu Jan 14 19:15 :15

2010] : s k i p s=0 warning=0 errors=0 loops=1

4510EUTP3( unlocked ) : / > / c a l l i s t a 5 / fpga / mokaVsi / te s t_regs

S t a r t i n g t e s t : / c a l l i s t a 5 / fpga / mokaVsi / te s t_regs [Thu Jan 14 19:15 :15 2010]

*** PASSED *** / c a l l i s t a 5 / fpga / mokaVsi / te s t_regs [Thu Jan 14 19:15 :15 2010] : s k i p s=0

warning=0 errors=0 loops=1

4510EUTP3( unlocked ) : / > / c a l l i s t a 5 / fpga / te s t_access_ fpgas

S t a r t i n g t e s t : / c a l l i s t a 5 / fpga / te s t_access_ fpgas [Thu Jan 14 19:15 :16 2010]

*** PASSED *** / c a l l i s t a 5 / fpga / te s t_access_ fpgas [Thu Jan 14 19:15 :16 2010] : s k i p s=0

warning=0 errors=0 loops=1

4510EUTP3( unlocked ) : / > / c a l l i s t a 5 / cpumodule / usb / test_usb

S t a r t i n g t e s t : / c a l l i s t a 5 / cpumodule / usb / test_usb - t 10 [Thu Jan 14 19:15 :16 2010]

26670 packets s u c c e s s f u l l y looped

*** PASSED *** / c a l l i s t a 5 / cpumodule / usb / test_usb - t 10 [Thu Jan 14 19:15 :26 2010] :

s k i p s=0 warning=0 errors=0 loops=1

4510EUTP3( unlocked ) : / > / c a l l i s t a 5 / cpumodule / configprom / test_prom

S t a r t i n g t e s t : / c a l l i s t a 5 / cpumodule / configprom / test_prom - a 0 - l eng th 1024 - save 1 [

Thu Jan 14 19:15 :27 2010]

*** PASSED *** / c a l l i s t a 5 / cpumodule / configprom / test_prom - a 0 - l eng th 1024 - save 1 [

Thu Jan 14 19:15 :28 2010] : s k i p s=0 warning=0 errors=0 loops=1

4510EUTP3( unlocked ) : / > / c a l l i s t a 5 / cpumodule / configprom / t e s t_da t a_va l i d

Figure 3.3: Example of log (console output) of a test session.

on external factors (offline system configuration, manual intervention on
the system, …). For our analysis, we make the assumption that set-up
contributions are non-recurrent and constant overheads, to be cumulated
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to the overall test cost. Therefore, we consider in the following that
all optimizations are based recurrent contributions, obtained from test
execution time.

3.1.2 Coverage function
The definition of the coverage function for group of tests is not straight-
forward, because it depends on the fault model underlying the diagnosis
methodology, and on the interdependecies of the different tests of the
test-set on the system under analysis.

In this work we consider that system under diagnosis S is described
through the CTM model (Section 2.3): for each component cx of S and
for each test ty of the test suite T a coverage coefficient cov(cx, ty) is
defined.

In a bayesian scenario, cov(cx, ty) represents the probability of ob-
taining a FAIL outcome when executing test ty and component cx con-
taining a fault; it actually represents the probability of the fault in cx
to be detected when executing ty.

This probability can be evaluated as a detection frequency, similarly
to the implemented methodology proposed in [ZWGC10b]. There are
several alternatives to compute the coverage function Gcov(Ty) for a test-
set using those probability values, as presented in Example 7.

Example 7. Let us consider a simplified system containing three com-
ponents (c1, c2, c3), and test t1, with cov(c1, t1) = cov(c2, t1) = 0.5 and
cov(c3, t1) = 0.8.

Using a frequency representation of probabilities, the coverage can
be interpreted as the ratio between the number of faults detected by t1
and the total number of faults contained in c1, c2 and c3. Thus, the
proportion of detected faults of the entire system is the weighted average
of the coverage coefficients:

Gcov(t1) =
∑

x∈(1,2,3)wxcov(cx, t1)∑
x∈(1,2,3)wx

= 0.4

This computation would require the knowledge of the weight wx,
which is the number of faults contained in each component, an infor-
mation not always available. A more conservative approach takes into
account the worst case coverage to estimate the coverage of the entire
system:

Gcov(t1) = min
x∈(1,2,3)

cov(cx, t1)
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⋄
Do note that the coverage function proposed in Example 7 refers only

to singleton test-sets. In general, at higher abstraction levels, we need
to deal with test-sets composed of two or more tests.

For this reason, we need to extend the coverage function to non-
singleton test-sets Tz = {tz1 , tz2 , . . . , tzn} composed of n tests. In this
case, for each component cx, several coverage coefficients (cov(cx, tz1),
…, cov(cx, tzn)) are available. Again, a worst-case assumption would be
the selection of the maximum coverage for each component, such as:

Gcov(Tz) = min
cx

(max
tz∈Tz

cov(cx, tz)) (3.1)

Example 8. Let us consider the example CTM of Figure 3.4, and in
particular the group composed of tests t1 and t2. Using the worst case
coverage function, we compute the coverage for all components as:

c1 : max(cov(c1, t1), cov(c1, t2)) = max(0.9, 0.0) = 0.9

c2 : max(cov(c2, t1), cov(c2, t2)) = max(0.5, 0.9) = 0.9

. . .

c6 : max(cov(c6, t1), cov(c6, t2)) = max(0.1, 0.0) = 0.1

Thus, the coverage for the entire system is: min(0.9, 0.9, . . . , 0.1) =
0.1

⋄
This assumption does not take into account exhaustively the fact

that coverage coefficients cov(c, t) represent also probability values of the
BBN, and it misses important pieces of information obtainable from the
properties of this model. This information can be exploited to obtain a
better formulation of the coverage function. More precisely, the coverage
value cov(cx, tz1) represents the probability to obtain a FAIL from test tz1
when component cx contains a fault.

t1 t2 t3 t4 t5 t6 t7 t8
c1 0.9 0.0 0.0 0.0 0.0 0.9 0.0 0.0
c2 0.5 0.9 0.0 0.9 0.0 0.9 0.9 0.0
c3 0.1 0.5 0.9 0.9 0.0 0.5 0.0 0.0
c4 0.0 0.5 0.0 0.5 0.9 0.0 0.0 0.5
c5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.9
c6 0.1 0.0 0.0 0.0 0.9 0.0 0.5 0.5

Figure 3.4: CTM for Examples 8 and 10.
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Definition 12. Let us consider a faulty component cx. Let us consider
also a test tz stimulating cx, with a coverage cov(cx, tz). We define un-
detection probability of tz the probability that the test result with a PASS

outcome:
P (tz = PASS|cx = faulty) = 1− cov(cx, tz) (3.2)

Coverage of components increases when several tests are executed,
and their outcome is made available. Therefore, for each component,
it is necessary to evaluate the un-detection probability, combining the
information coming from different tests.

Let us consider a simple scenario where two tests are executed. We
can make two opposite hypothesis:

• best-case: tests stimulate portions of a target component which
are completely non-overlapped; thus, the un-detection probability
of a fault within the component of the tests pair is the sum of
un-detection probabilities of the tests.

• worst-case: both tests stimulate portions of a target component
which are completely overlapped ; thus, the un-detection probabil-
ity of a fault within the component of the tests pair is equal to the
un-detection probability of each test, taken singularly.

In general, we consider an intermediate scenario (average-case),
with an equal proportion of overlapped and non-overlapping portions.
This corresponds to using as un-detection probability information of the
tests pair the product of un-detection probabilities of the tests. From a
probabilistic point of view, this is equivalent to stating an hypothesis of
independency for the probabilities of the tests of the entire test suite.

Example 9. Let us consider a single component and two tests from the
test suite, where each test has 50% of coverage. The execution of these
two tests could lead to two extreme cases:

• the final coverage is 100%; when tests analyze parts of the compo-
nent sharing no logic (best-case hypothesis), and

• the final coverage is 50%; when tests analyze exactly the same
parts of the component (worst-case hypothesis)

The more realistic situation (the scenario where tests analyze parts
of the component which are only partially overlapped), leads to the rea-
sonable hypothesis that the final coverage is 75%.

⋄
From a strictly probabilistic point of view, this could be extended to

form the hypothesis of probabilistic independency of un-detection:

P (tz1, tz2|cx) = P (tz1|cx) · P (tz2|cx) (3.3)
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and the coverage function for the test pair {ty1, ty2} is:

Gcov({ty1, ty2}) = 1− P (ty1, ty2|cx) (3.4)

Equation 3.4 can be generalized as follows:

Definition 13. Let S be the system under analysis, Tz = {tz1,tz2,. . . ,tzn}
a generic test-set composed of n tests from the test suite, and cov(cx, tz)
the set of coverage coefficients for all components cx in S, for all tests
tz ∈ Tz derived from the CTM. We define the multi test test-set coverage
function Gcov(Tz) as:

Gcov(Tz) = min
cx

(1−
∏

tz∈Tz

(1− cov(cx, tz))) (3.5)

Example 10. Consider the example CTM in Figure 3.4. We compute
the undetection probability of the test-set {t1, t2, t3} for each component
using Equation 3.3, as:

c1 : (1− cov(c1, t1))(1− cov(c1, t2))(1− cov(c1, t3)) =
(1− 0.9) · (1− 0) · (1− 0) = 0.1

c2 : (1− cov(c2, t1))(1− cov(c2, t2))(1− cov(c2, t3)) =
(1− 0.5) · (1− 0.9) · (1− 0) = 0.05

. . .

c6 : (1− cov(c6, t1))(1− cov(c6, t2))(1− cov(c6, t3)) =
(1− 0.1) · (1− 0) · (1− 0) = 0.9

Thus, the coverage for the system is: min(1−0.1, 1−0.05, . . . , 1−0.9) =
0.1

⋄

3.1.3 Test-set system coverage and test sequencing
The test-set coverage function introduced in Definition 13 combines, for
the selected test-set, coverages of components in an unique expression
Gcov, involving the system under analysis S as a whole.

While the approach is useful for what concerns the use of the coverage
function as a constraint (Problem 1), this is not necessary true when
it is adopted as an evaluation function, i.e., a fitness or cost function
(Problem 2). In this latter case, two key pieces of information are not
considered explicitly:

i) the weights, or more in general the composition function, used to
combine contributions from single components;
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ii) the impact of the order of execution of the tests of the test-sets on
the incremental degree of coverage of the system, and relationship
with test costs.

For the composition function i), a straightforward alternative to the
min operations introduced in Definition 13 is a linear combination of the
un-detection probabilities, evaluated independently for each component.
This choice introduces as a side effect a weighting factor among all com-
ponents, to be used for defining a priority for detecting faults contained
in a group of components first, with respect to all others.

Definition 14. Let S be the system under analysis, Tz = {tz1, tz2, . . . , tzn}
a generic test-set composed of n tests from the test suite, and cov(cx, tz)
the set of coverage coefficients for all components cx in S, for all tests
tz ∈ Tz derived from the CTM. Let wx a weight factor, for each cx,
such that

∑
cx

wx = 1.
We define a linear multi test test-set coverage function Gcov(Tz) as:

Gcov(Tz) = 1−
∑
cx

wx(1−
∏

tz∈Tz

(1− cov(cx, tz))) (3.6)

The simplest choice for the weight factor is wx = w̄ = 1
n , where n is

the number of components contained in S, and Equation 3.6 corresponds
to the average coverage of the components of the system.

Note Equation 3.6 can be also interpreted from a pure BBN perspec-
tive: it represents the probability to observe an all-PASS configuration at
all outcomes of tests the test-set. For this reason, it could be computed
directly through inference: in particular the quickscore inference algo-
rithm (Section 2.2) keeps this piece of information in a specific field to
obtain this information. However, on one hand the computational over-
head of the engine is larger than the direct evaluation of Equation 3.6,
and on the other hand, is is not possible to tune components’ weights in
BBNs inference since they are constraint, in the quick-score, to be the
a-priori probability values.

⋄
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Example 11. Consider the example CTM in Figure 3.4. Let us con-
sider a test-set Tz = {tz1, tz4}. The coverage for components is

c1 : (1− cov(c1, t1))(1− cov(c1, t4)) = (1− 0.9) · (1− 0) = 0.1

c2 : (1− cov(c2, t1))(1− cov(c2, t4)) = (1− 0.5) · (1− 0.9) = 0.05

c3 : (1− cov(c3, t1))(1− cov(c3, t4)) = (1− 0.1) · (1− 0.9) = 0.09

c4 : (1− cov(c4, t1))(1− cov(c4, t4)) = (1− 0.0) · (1− 0.5) = 0.5

c5 : (1− cov(c5, t1))(1− cov(c5, t4)) = (1− 0.5) · (1− 0) = 0.5

c6 : (1− cov(c6, t1))(1− cov(c6, t4)) = (1− 0.1) · (1− 0) = 0.1

Average coverage is obtained using wx = w̄ = 1
6 , and it is:

Gcov(Tz) = 1− 1

6
· (0.1 + 0.05 + 0.09 + 0.5 + 0.5 + 0.1) = · · · = 0.776

Otherwise, we can consider a scenario where components c1 and c2
require higher priority for detection; we can attribute an (arbitrary)
higher value for those components, for instance w1 = w2 = 2/8 and
w3 = · · · = w6 = 1/8.

Because of the fact that the un-detection probabilities of those com-
ponents, due to the selected test-set, is relatively low, we obtain an
increase of the system coverage:

Gcov(Tz) = 1− 2

8
· (0.1+0.05)− 1

8
· (0.09+0.5+0.5+0.1) = · · · = 0.813

⋄
System coverage and cost are correlated to the test execution order,

as we can visualize on a curve dubbed Cumulative Coverage (CC) curve
(for instance the one shown in Figure 3.5). This curve can be drawn
for each possible test-set sequence KT = {1 : tk1, 2 : tk2, 3 : tk3, . . . },
plotting on the coverage-cost space the list of points with coordinates
⟨Gcost({tk1}),Gcov({tk1})⟩, ⟨Gcost({tk1, tk2}),Gcov({tk1, tk2})⟩, ….

According to Equation 3.6, system coverage function Gcov is equiv-
alent to a cumulative probability distribution, and in particular to the
cumulative probability of the time to first FAIL event. From fundamen-
tal probability theory, the area under the CC curve is proportional to
the average cost of the test sequence KT , then the minimization can be
performed irrespectively with one or the other variable.

Example 12. Let us consider a test-set T composed of four tests: {t1,
t2,t3,t4}. The excerpt of the CTM containing the coverages of T for
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P(c t1 t2 t3 t4
c1 0.25 0.9 - 0.5 -
c2 0.25 0.9 - - 0.5
c3 0.25 - - 0.5 0.9
c4 0.25 - 0.5 - 0.9

a 4-component system is shown in the following table; for the sake of
simplicity, all components have an equal a-priori probability (0.25).

System coverage can be computed rather easily through Equation 3.6
for all combinations of tests: for instance, t2 has the minimum coverage
Gcov({t2}) = 0.125 (only component c2 is involved, with a 50% cover-
age), while the test pair {t1, t4} offers an high coverage Gcov({t1, t4}) =
0.912 (all components are covered at 90%). The maximum coverage is
attained by T and Gcov(T ) = 0.95.

Figure 3.6 compares the CC curve (a) for a good sequence {t4, t1, t3, t2}
and (b) for a bad sequence {t2, t3, t1, t4} (b), under the hypothesis that
all tests have unit cost.

Sequence {t4, t1, t3, t2} is no longer optimal if we set t4 to have a
cost which is 100 times bigger than other tests: Figure 3.7 compares this
sequence with another sequence, {t1, t3, t2, t4}, putting the highest cost
test in the last position.

⋄
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Figure 3.5: CC curve.
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Figure 3.6: CC curve for Example 12, uniform test costs.
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3.2 Minimum cost initTS

When the the cardinality is used as cost function Gcost(Ty), the problem
is also known in operations research literature as the set covering problem
[Cor01].

We introduce two optimization algorithms for the solution of the
defined test-set coverage problem, the former based on a greedy heuristic,
the latter exploiting the Integer Linear Programming (ILP) paradigm.
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Input: CTM (System Model), T (Test Suite), ^Gcov (Required cov.)
Output: initTS.
Procedure GreedyInitTS(CTM, T , ^Gcov)
{
1 initTS = ∅
2 availableTS = T
3 STOP = False
4 while ( (availableTS ̸= ∅) and (not STOP) )
5 tmax = argmax

tk∈availableTS
Gcov(initTS + {tk})

6 initTS = initTS + {tmax}
7 availableTS = availableTS - {tmax}
8 STOP = Gcov(initTS) > ^Gcov
9 end while

10 output initTS
}

Figure 3.8: A greedy algorithm for the initTS.

3.2.1 Greedy heuristic

An optimal initTS could be obtained by using a heuristic greedy ap-
proach given by the algorithm in Figure 3.8. From an empty test-set
(line 1) the algorithm adds new tests from the test suite, that maximize
the system coverage (line 5). The loop is executed until the required
coverage is reached or no other tests are available (line 4).

Algorithm in Figure 3.8 uses Equation 3.5 as both a stop criterium
(line 4) and a selection criterium, to identify which test is to be added
to the initTS. The approach suffers of the typical drawback of greedy
algorithms, tending to prefer tests with higher coverage coefficients first,
a potential pitfall possibly leading to local-minimum solutions.

Example 13. Let us consider again the CTM presented in Figure 3.4.
A minimum coverage ^Gcost = 0.75 is required. Let {t1, t2} be an initial
solution. The minimum coverage (0.1) is for component c6. Among all
possibilities, test t5 is selected because it produces an higher minimum
coverage (0.5), on component c3. Then, tests t3 and t8 are selected,
until all components are covered at the required minimum level. Final
solution of the greedy algorithm results initTS = {t1, t2, t5, t3, t8}.

⋄
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3.2.2 ILP optimization
We propose another method to solve the formulated problem of finding
the optimal test-set using Integer Linear Programming (ILP) [BV04].
ILP is an optimization technique where both the objective function and
all constraints are linear, and solutions are integer-valued.

Formally, we define an ILP problem as:

minimize cTy (3.7)
subject to aTxy ≤ bx ∀x ∈ [1, 2, . . . , nc]

where y is the the solution of the problem; c, a1, …, anc are real-valued
vectors of the same size of y, b1, b2, …, bnc are real-valued scalars, and
nc is the number of constraints to be satisfied by solution y.

In the given scenario, nc corresponds to the number of components
of the system, and y = (y1, . . . , ynt) is a binary vector of size nt (number
of tests in T ) defining test-set Ty, where each entry yi is equal to 1 if
and only if ti ∈ Ty.

Since the objective function is the cardinality of the test-set Ty, it is
obtained in Equation 3.7 by setting c = 1 (all 1’s vector).

The constraint functions are expressed, by using Equation 3.5, as:∏
tz∈Tz

(1− cov(cx, tz)) ≤ (1− ^Gcov) (3.8)

which, by using a logarithm transformation, reduce to:∑
tz∈Tz

log(1− cov(cx, tz)) ≤ log(1− ^Gcov) (3.9)

Thus, the elements ajx (j-th component of vector ax) and the scalar
bx of the ILP problem of Equation 3.7 are defined as:

ajx = log(1− cov(cx, tj)) (3.10)

bx = log(1− ^Gcov) (3.11)

3.2.3 Analysis and experimental results
The solution obtained by ILP is optimal, exploiting the information con-
tained in the CTM system model. Indeed, we want to validate the
adoption of the ILP problem formulation against i) the adopted hypoth-
esis for the coverage function in Equation 13, and ii) the fact that the
CTM actually specifies high abstraction-level information on the cover-
age, rather than accurate fault coverage per test data. In fact, dealing

104



3.2. Minimum cost initTS

with the diagnosis of large systems, the test engineers’ knowledge of
the capability of each test to detect the presence of a fault is intrinsi-
cally limited. therefore, to handle the complexity of the problem, a high
abstraction-level model is adopted and to simplify the definition of the
system CTM, the coverage coefficients of the matrix are selected from
a coarse, limited set.

However the coverage of the initTS identified with the methodology
reflects the actual coverage of the system under diagnosis if the coef-
ficients of the CTM represent the exact probabilities in Equation 3.2.
Only more precise information about the causal relationship between
the presence of a fault and the PASS/FAIL outcomes of tests would provide
better estimation of the coverage of the system provided by the initTS.

Therefore, to validate the approach, we apply it at a lower abstraction
level, where an accurate relation between faults and tests is available,
and coverage actually represents the probability of a vector to make the
fault observable. In particular, we use digital combinational circuits and
the single stuck-at fault. In this scenario, with a classical ATPG [Ha94]
we extracted the basic information to build the circuit CTM.

We give an example of the use of the ATPG starting from the c17
combinational circuit from ISCAS85 benchmarks. Figure 3.9 depicts the
circuit under analysis, partitioned arbitrarily in two logical components
c1 and c2: the first gathers gates G10 and G11 (plus input signals IN1,
IN3, IN6), while the second aggregates gates G16, G19, G22 and G23
(plus input signals IN2 and IN7)1. Furthermore, each partition gathers
one or more adjacent gates: this condition is not essential but it preserves
the physical nature of the logical component.

On the partitioned circuit, it is possible to identify both the set of
each possible stuck-at fault affecting each single logical component. For
instance, the stuck-at-0 fault on signal IN6 is potentially affecting c1,
while the stuck-at-1 fault on the output of gate G19 is potentially af-
fecting c2. It is possible that a fault is shared between the components.

By using the ATPG, two pieces of information can be obtained: a
set of test vectors and, for each of them, the set of faults that they
can detected. All tests of the test suite (Tc17 = {t1, t2, t3}) for the
system diagnosis are defined as groups of test vectors. This is shown in
Figure 3.10, where test vectors tv1 · · · tv7 are grouped to form tests t1, t2
and t3 defined as t1 = {tv1, tv2}, t2 = {tv3, tv4, tv5} and t3 = {tv6, tv7}.

The outcome of such tests is PASS if all output values correspond to

1Note that other partitions could be obtained, and a single circuit is a potential
source of a set of examples.
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Figure 3.9: c17 circuit partition.

t1 t2 t3
tv1 tv2 tv3 tv4 tv5 tv6 tv7

c1 f1 x x
f2 x x x x x
f3 x
f4 x x
f5 x

c2 f6 x x
f7 x x x
f8 x

Figure 3.10: Example of fault-vector binary matrix.

t1 t2 t3
c1 0.80 0.40 0.20
c2 0.00 0.66 1.00

Figure 3.11: Derived CTM.

the fault-free circuit response for all test vectors in the group. The use
of groups of test vectors instead of single test vectors guarantees higher
coverage for components. Thus, the coefficients of the obtained teCTM

are similar to those hand-designed by test engineers.
From the table in Figure 3.10, it is possible to compute the un-

detection probability of the tests referred to each component. For in-
stance, test t1 in Figure 3.10 covers faults {f1, f2, f4, f5} in c1, whereas
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3.2. Minimum cost initTS

t1 t2 t3
c1 0.90 0.50 0.10
c2 0.00 0.50 0.90

Figure 3.12: Corresponding teCTM.

t3 {f6, f7, f8} in c2. Thus the un-detection probabilities are 1
5 = 0.2 and

0
3 = 0 for c1 and c2, respectively. As a result, the corresponding CTM
can be computed (Figure 3.11), which is then used to derive the one that
uses the adopted coarse-grain set of values, teCTM in Figure 3.12.

In [ABSF10a], the AF2D methodology was used for the diagnosis
of a real telecom board, provided by Cisco Photonics (Cisco1). This
is a medium-size board, described with a CTM containing 55 compo-
nents, and whose diagnostic test suite is composed of 86 tests. The
initTSs identified using the greedy algorithm and the ILP optimization
are shown in Table 3.1. It presents three columns, for both approaches,
and minimum required coverage ^Gcov (Problem 1) is fixed respectively
to 90%, 95% and 99%.

Table 3.1: initTS size for Cisco1 board.

Greedy ILP
Circuit 90% 95% 99% 90% 95% 99%
Cisco1 15 15 17 10 11 12

As it can be observed, ILP method allows saving up to 5 tests, cor-
responding to an average 30% reduction of the fixed costs of AF2D due
to initTS size.

Experimental analyses have been executed then on ten combinational
circuits with different characteristics, obtained from the ISCAS85 bench-
mark suite. For each circuit, 10 arbitrary partitions have been computed
using the presented procedure. Each partition represents a different sys-
tem under analysis; thus, in total 100 matrices have been extracted defin-
ing the teCTM, computed using the same coarse set of possible coverage
coefficients introduced for manual creation of system models. Coeffi-
cients (H,M,L,-) have been mapped respectively to values (0.9, 0.5, 0.1
and 0.0). Tab. 3.2 reports the characteristics of the used circuits.

First, let us consider the results of initTS optimization using the ILP
approach. Tab. 3.3 reports, for each circuit, the average size (rounded
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Table 3.2: Summary of circuits properties.

Circuit # Comp. # Faults #Tests | T | # Vectors
c432 15 524 35 402
c499 15 758 36 358
c880 20 942 54 826
c1355 20 1574 52 703
c1908 50 1879 113 1512
c2670 50 2747 128 922
c3540 50 3428 103 2244
c5315 80 5350 204 1921
c6288 80 7744 120 340
c7552 80 7550 216 4217

Table 3.3: Optimal initTS size.

Circuit 90% 95% 99%
c432 8 (78) 8 (103) 9 (114)
c499 5 (80) 6 (87) 8 (96)
c880 8 (71) 10 (96) 12 (108)
c1355 6 (113) 7 (132) 9 (150)
c1908 11 (266) 16 (297) 21 (319)
c2670 12 (152) 14 (160) 17 (181)
c3540 14 (180) 18 (231) 19 (232)
c5315 7 (178) 11 (207) 13 (213)
c6288 6 (42) 8 (48) 10 (53)
c7552 11 (304) 15 (349) 18 (391)

at the nearest integer) of the initTS exploiting the system description
teCTM; the size specifies the number of tests and, in parenthesis, the total
number of test vectors constituting the tests. We computed the initTS
aiming at achieving diffetent fault coverages (namely 90%, 95%, and
99%), to analyze the growth of such test sets.

For instance, for circuit c432, when aiming at a 90% fault coverage
in the initial diagnostic phase, 8 tests are included in initTS for a total
of 78 test vectors, while for a 95% coverage, tests are 9, consisting of 103
test vectors.
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3.2. Minimum cost initTS

Table 3.4: Component coverage (from CTM and Stuck-at model).

90% 95% 99%
Circuit CTM Stuck-at CTM Stuck-at CTM Stuck-at
c432 98.58% 95.61% 99.17% 97.14% 99.58% 98.28%
c499 95.39% 81.79% 97.94% 89.18% 99.72% 95.91%
c880 95.93% 90.02% 98.46% 95.65% 99.74% 98.41%
c1355 95.55% 83.35% 97.92% 86.40% 99.56% 89.77%
c1908 93.81% 77.96% 97.35% 78.60% 99.52% 78.81%
c2670 93.67% 84.91% 97.42% 85.92% 99.67% 86.84%
c3540 94.44% 78.82% 96.83% 81.16% 99.41% 85.68%
c5315 94.93% 79.20% 97.36% 82.04% 99.51% 86.06%
c6288 94.90% 96.28% 98.86% 97.47% 99.74% 98.85%
c7552 94.31% 83.33% 96.99% 86.11% 99.23% 89.64%

Table 3.5: Comparison of ILP and ATPG solutions.

ILP ATPG
Circuit #TV Fault Cov. # TV Fault Cov.
c432 114 98.28% 49 99.23%
c499 97 95.91% 54 98.94%
c880 109 98.41% 62 100.00%
c1355 150 89.77% 86 99.49%
c1908 320 78.81% 188 99.52%
c2670 182 86.84% 98 95.74%
c3540 232 85.68% 148 96.04%
c5315 213 86.06% 117 98.89%
c6288 54 98.85% 34 99.56%
c7552 392 89.64% 204 98.25%

Table 3.4 proposes a comparison: on the first column, for each class
of circuits and for each required coverage, it presents the system cov-
erage computed with high level coefficients. This coverage is estimated
using all components of the system and not only the worst case (i.e. the
component with the minimum coverage), which constraints the ILP opti-
mization and it is closer to the required coverage threshold, but does not
take into account the overtesting of some components. On the second
column, the actual proportion of covered faults of the initTS identi-
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fied is computed using the stuck-at fault model, from the information
obtained from the ATPG.

Numerical results are interesting, because they indicate that even
if the coverage of the solution is overestimated, results are robust with
respect to the required minimum coverage parameter. We underline how
the meaningfulness of such numerical results is to be considered with
respect to the level of abstraction of the fault models used to compute
them.

Finally, in Table 3.5 we compare the optimal initTS derived using
the teCTM model against the results of the execution of the ATPG, in
terms of the number of test vectors and fault coverage, respectively. As
expected, the ATPG fault model better fits with the problem (since
more details are available with respect to the functional level of CTM).
However, the strong correlations between the obtained results highlight
how the proposed methodology well exploits the available information
and produces good results in terms of test-set cardinality minimization.
The advantage of the ILP methodology applied on teCTM models resides
on the fact that it can be applied to scenarios where low-level fault
models and fault/test coverage relation are not available or are only
partially accurate.

3.3 Maximum coverage ordered initTS

Method proposed in Section 3.2 is focused at guaranteeing a minimum
coverage for all components of the system under analysis. Scenario de-
picted in Figure 3.1 would benefit more, in some circumstances, of the
minimization of the expected time to (first) fail. In particular, an effort
of covering few components first would increase the throughput of the in-
stance of the system in the testing line, by reducing the amount of time
spent for discriminating faulty instances to be redirected to diagnosis.
Therefore, an optimization approach aims at maximizing the coverage
provided by the initTS, within the time-slot allocated for each system
instance on the manufacturing line (Problem 2).

3.3.1 Hill-climbing test selection

Hill-climbing is a metaheuristic optimization technique, often applied for
solving combinatorial optimization problems [PFT+07]. This technique
based on the analysis of the neighborhoods of a set of possible solutions.
New solutions are explored progressively changing a single element, ac-
cepting only configurations improving a specific cost function.
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Figure 3.13: Accept-discard regions for hill-climbing search.

In our problem, we explore neighborhood of each test-set by randomly
adding or removing a test; then, we compute both the cost and un-
detection probability for the newly generated test-set. This is either
accepted as a valid solution or refused according to the benefit criterium
depicted in Figure 3.13. It is worth noting that newly created test-set lie
in one of the three regions indicated. Therefore, a test-set that degrades
both time and un-detection probability is discarded. If it improves both
indicators, it discards the original solution. Otherwise, both original and
new test-sets are kept as potentially optimal solutions.

From a group of randomly generated initial test-sets we apply a se-
quence of iterations of hill-climbing; only, taking care of distributing
uniformly, among all possible test-sets sizes, the elements of the initial
solution.

At the completion of the required number of iterations, candidate
solutions are located on an optimal curve, over the un-detection-time
plot. Figure 3.14 presents, for instance, all test-sets explored by the hill-
climbing algorithm (red dots); also, it shows all test-sets which satisfy
the optimality condition (blue curve). This curve is an approximation
of the CC! curve introduce in the previous Section.

Even if test-sets located on the optimal curve provide an optimal
tradeoff between test cost and benefit, such curve alone does not pro-
vide directly a methodology for extracting an optimal sequence of tests
to be executed to minimize the cost of the scouting phase. Furthermore,
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Figure 3.14: Test-sets analyzed during hill-climbing and optimal curve.

test-sets located on the curve could be composed of completely different
tests, and this increases the complexity of the sorting problem.

To do this, we need to tackle some issues:
• the identification of a sequence of test-sets, all lying on the curve, so

that all test-sets are subsets of successive ones. If this is condition
does not hold, the execution of another test results in a test-set
outside the optimal region.

• the execution order of the tests within a test; optimality of the
curve takes into account the information obtained from executing
all tests contained in the test set, but it does not specify if some
order is more fit to scouting the first FAIL outcome.

It is worth underlining two properties:
• test-sets with a small number of tests are more likely to be located

on the left side of the curve (low execution time), while larger
test-sets on the right side;

• smaller test-sets are more likely to be included in larger test-sets
(subset).

From an algebraic point of view, subset-of is a partial order relation;
consequently, test-sets on the optimal curve can be represented using a
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Figure 3.15: Optimal test order execution (exaustive search, Sys2.
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Figure 3.16: Optimal test order execution (Equation 3.5 used for sys-
tem coverage).

Direct Acyclic Graph (DAG). Each node x of the graph represents a
test-set, while an arc from node x to node y indicates that x ⊂ y.

Representing test-sets inclusion through a DAG allows the applica-
tion of known algorithms from literature for the shortest-path identifica-
tion. For instance, the Floyd-Warshall algorithm [Cor01] can be used to
obtain, for each pair of nodes in the graph, the minimum cost path. In
this case, we are interested in the longest path of the graph: this is more
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Figure 3.17: Inclusion graph (a) and optimal test sequence (b).

likely to be spread all-over the optimal curve and, because of this, it is
more likely to provide the better execution order of tests minimizing the
overall test-effort. We exploit the Floyd-Warshall algorithm setting a
weight of -1 to each arc of the graph. Therefore, the minimum cost path
corresponds to the longest path on the graph. Figure 3.17 (a) presents
the inclusion relation among ten test-sets; also, it presents the minimum
cost path on the graph (from [0,1] to [0,1,2,6,7,8,9]). Figure 3.17 (b) de-
picts the optimal test sequence extracted from the minimum cost path.

When this procedure is applied using as graph nodes all test-sets of
the optimal curve, a sequence of test-sets is localized on the curve. Each
blue point on Figure 3.18 represents a test-set (a node of a minimum
cost path), and traversing the curve left to right is possible to increment
the number of executed tests at minimum cost. It is worth noting that
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Figure 3.18: Optimal test-sets sequence on optimal test-sets curve.

if any other test is selected, the blue curve drifts outside the optimal
region.

For sake of completeness, we need to define an execution order for
tests subgroups, as [0, 1] and [8, 9] in Figure 3.17 (b). We sort tests within
each group, executing first tests maximizing an un-detection probability
drop (Figure 3.19). Given the reduced size of such test groups exhaustive
exploration is sufficient to compute the optimal order in a reasonable
time.

3.3.2 Analysis and experimental results

Experimental analyses have been executed on six systems, described
through their CTM model.

Sys1 and Sys2 are two synthetic systems designed for research and
analysis purposes. CTMs from Cisco2 to Cisco5 are models designed
at Cisco for systems diagnosis, using the Automatic Fault Detective tool
from Agilent [Agi04]. System Cisco4, even if claimed to be inaccurate
for some components by test designer engineer, has been included in
the set of system under diagnosis for comparison purposes. A database
containing the information of all test sessions executed on each system
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Figure 3.19: Fine sorting criterium of tests within a group.

Table 3.6: Summary of systems properties.

Sys. # Comp. #Tests Test-suite time # Sessions
Sys1 10 18 249.99 3000
Sys2 16 24 617.04 3000
Cisco2 32 50 3720.16 500
Cisco3 58 103 6011.93 1700
Cisco4 40 83 3162.14 780
Cisco5 55 112 7033.96 1500

is available. Each test session record contains all PASS, FAIL outcomes
for all executed tests and tests execution; furthermore, it contains the
diagnosed faulty component in the system.

Tab. 3.6 reports the characteristics of the models: the first two
columns report the CTM size; column Test-suite time reports the exe-
cution time for all tests of the test suite (considering average execution
time for PASS case only); column # Sessions reports the number of records
of the test session database for each system under analysis.

First, let us consider the results of hill-climbing for the definition
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Table 3.7: Hill-climbing report for optimal test-sets curve.

100 150 200
Sys. #InitTS #opt #visit #opt #visit #opt #visit
Sys1 150 47 2228 50 3656 52 4830
Sys2 150 110 4540 121 8855 123 12466
Cisco2 400 177 10361 225 20087 242 29275
Cisco3 1000 189 15335 282 29863 300 46544
Cisco4 400 189 12861 212 18477 238 32821
Cisco5 1000 160 11383 193 22353 258 34216

of the optimal test-sets curve (Section 3.1). Tab. 3.7 reports, for each
system, the number of test-sets randomly generated as initial solution.
A larger number of test-sets has been chosen for systems with larger test
suites, to minimize the probability of the algorithm to be stuck in local
minimum. Also, the optimization has been repeated 10 times for each
system, then a unique optimal curve has been extracted from the final
results of each algorithm run.

Tab. 3.7 also reports the number of test-sets forming the optimal
curve and the overall number of candidate solutions considered during
optimization after 100, 150 and 200 iterations. Number of iterations but
not time required for optimization is reported for this first implemen-
tation of the methodology; improvements will be part of future inves-
tigations. It is worth noting that the identification of the optimal test
sequence is an offline process required to be performed only once when
the CTM model of the system is defined.

In order to validate the metric selected to evaluate the fault cover-
age of the system in Section 3.1, used as a criterium for hill-climbing, we
report in Tab. 3.8 a comparison between the value computed by our algo-
rithm for each test-set and the respective coverage estimated by Agilent
Fault Detective tool. Direct comparison can be done because Agilent
tool takes as input a model compatible with CTM. In Tab. 3.8, each
row reports the fault coverage of the test-sets composing the optimal
curve, sorted in ascendent order. We observe that the coverage is rela-
tively overestimated by our algorithm, especially for test-sets with low
coverage.

Table 3.9 and Table 3.10 provide a performance evaluation of the
proposed approach in terms of detection time for the first FAIL outcome,
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Table 3.8: Current method and Agilent Tool coverage comparison.

Cisco2 Cisco5
Step AF2D Agilent AF2D Agilent
0 57.0% 45.1% 72.4 61.1%
1 64.1% 53.4% 75.9 68.2%
2 67.4% 59.8% 84.0 77.5%
3 83.3% 75.4% 85.7 80.8%
4 89.2% 79.3% 88.9 81.1%

…
(Last) 97.6% 86.9% 98.7 93.4%

for each system under analysis. Column 7 indicates the rate of success
(hit-rate) of the initTS to detect (at least) one FAIL outcome; the test
set was defined for all systems following the methodology proposed in
Section 2.4, and requiring a 95% coverage for all components. The poor
performance obtained on Cisco5 provided a confirmation of the remarks
from test engineers, about the low quality of the system design. All other
metrics are evaluated for successful sessions only.

In Column 2 we report the average detection time computed on all
testing sessions. Same index is normalized over all systems in Column
5, where we report the saved test time with respect to the initTS, and
in Column 6, with respect to the cost of the entire test suite.

It is worth noting that, with the single exception of Cisco4, the aver-
age improvement of a test sequence extraction over the entire execution
of the initTS is appreciably in the range [55%, 75%]. Furthermore, the
adoption of the worst-case test execution time is over-conservative, since
some critical tests are not correctly taken into account during the identi-
fication of the optimal initTS: the performance gain drops, in average,
of a significant 10% with respect to the adoption of the average-case for
test execution time.

Columns 3 and 4 report, for both Tables 3.9 and 3.10, the 50− and
80− percentiles of the time to first FAIL distributions, since the average
time is characterized by an important variance, where a majority of
sessions has short detection time while remaining sessions reveal the
first FAIL outcome almost at initTS completion.

Finally, Table 3.11 shows how a difference between expected and
actual a-priori component probability distributions affects the perfor-
mance of the test-set ordering algorithm. The 50- (Columns 2-4) and 80-
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Table 3.9: First FAIL outcome detection time (using average-case test
execution time).

Percentile Improvement
Sys. Avg. 50pc 80pc Init Suite Hit-rate
Sys1 42.61 37.61 55.96 54.6% 85.0% 93.3%
Sys2 77.11 50.97 117.10 75.9% 87.5% 95.6%
Cisco2 167.10 144.15 284.59 55.1% 96.1% 89.8%
Cisco3 444.73 344.11 776.18 72.8% 94.3% 98.6%
Cisco4 171.42 152.26 289.85 47.5% 95.2% 72.9%
Cisco5 511.66 397.43 903.12 73.2% 94.3% 98.8%

Table 3.10: First FAIL outcome detection time (using worst-case test ex-
ecution time).

Percentile Improvement
Sys. Avg. 50pc 80pc Init Suite Hit-rate
Sys1 57.20 47.38 61.46 43.3% 81.0% 93,3%
Sys2 94.73 70.65 135.91 52.6% 88.5% 95.6%
Cisco2 209.65 187.42 311.20 43.6% 94.6% 89.8%
Cisco3 541.05 433.94 855.79 66.8% 92.7% 98.6%
Cisco4 212.24 195.79 324.27 35.0% 93.8% 72.9%
Cisco5 614.19 505.40 994.28 67.8% 92.8% 98.8%

percentiles Columns 3-5) are reported for two systems Sys2 and Cisco5.
In the first row, all components are set to have a uniform probability dis-
tribution. Rows 2 to 6 report the behavior of such percentiles when a
certain number of components (Column 1) is set to be 4 times more
likely to be the faulty component than others. We observe a signifi-
cant degradation of performance of the 80-percentile and an appreciable
degradation for 50-percentile, especially for Cisco5, while the irregular
behavior of the index on Sys2 can be explained by the reduced size of
the system under test. The adoption of a correct a-priori is proven to
be critical for the approach to produce an effective sequence of tests in
order to increase the margin for a cost saving.
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Table 3.11: First FAIL outcome detection time percentiles (non-uniform
fault probability for components).

Sys2 Cisco5
# Comp. 50pc 80pc 50pc 80pc
0 50.97 117.10 397.43 903.12
1 52.84 120.90 402.19 1086.05
2 49.01 125.40 406.14 1112.06
3 47.75 129.51 445.46 1148.39
5 53.43 132.55 458.06 1156.74
8 54.95 144.83 470.56 1157.99

3.4 Chapter summary
In this Chapter, we have presented a method for the identification of an
optimal initial test-set for diagnosis purposes, aimed at optimizing the
probability to detected a fault in the initial phase of the process. We
defined the optimality criteria for initial test-sets as minimum cardinal-
ity and maximum coverage. The problem has been solved as an Integer
Linear Programming optimization; to validate the proposed method, a
correlation was found with the properties of the solutions identified using
a detailed fault-model and a modified ATPG tool. Experimental anal-
ysis has confirmed the validity of the results obtained with the method
proposed.
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Once the presence of a failure in a system has been recognized, the reduc-
tion of the number of tests necessary for complete diagnosis is required
in different scenarios. In general terms, the aim is at a minimization of
the expected cost of test sessions involving each faulty instance of the
system.

The entire suite of available tests, proposed by test engineers, is de-
signed for covering the entire spectrum of expected failures, in order
to obtain an accurate localization of any potential fault. Therefore, we
propose to integrate an adaptive fault detective strategy, based on selec-
tive execution of a subset of available tests. The choice of such tests is
made through a quantitative metric, aiming at the maximization of the
diagnostic information inferred after the execution of each test.

In this chapter we describe the framework for an incremental ex-
ploration we proposed in [ABS+09], and we extend it with the analysis
proposed in successive works; respectively, we aim at:

• the selection metric for the next test to be executed, with the ob-
jective to limit the number of executed tests by selecting only those
actually adding non-redundant information for the identification of
the faulty component [ABS10]; in other words, it is necessary to
anticipate the execution of the significant tests, i.e. tests whose
outcome is able to underline a better separation between potential
faulty components in a system, and non-faulty ones.

• the definition of the stop criterion for identifying when to interrupt
the diagnosis process, determining the faulty component on the
basis of the collected information [ABSF10b]; the main idea is that,
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at a certain point, the exploitation of additional test results would
not contribute useful information to identify the faulty component,
and thus the final diagnosis can be expressed without any further
analysis.

The BBN model proposed in 2.2 is used to evaluate the actual benefit
of each one of the not executed tests in reaching the correct diagnosis, in
relation with the probability of their outcomes, to determine which test
to run next. These elements are used to analyze how the BBN evolves
when new test outcomes are available, after executing new tests, and if
the outcome of further tests (not executed yet) would substantially mod-
ify the current Faulty Candidate Components (FCC) set (and the best
faulty candidate identified in it).

The chapter is organized as follows: Section 4.1 introduces a con-
text for the problem of the test session lenght reduction encountered
in diagnosis methodology, presenting some significant related works. In
Section 4.1 an analysis of the evolution of the BBN during an incremen-
tal diagnostic process is presented, together with the formalization of the
problem in a vectorial space, leading to the introduction of the elements
necessary to define the selection heuristics. Section 4.3 and Section 4.4
are respectively devoted to the description of alternative metrics for the
next test selection and the stop condition. A set of experimental results
is reported in Section 4.5 for the evaluation of the proposed approaches.

4.1 Background

The ordering or sequencing problem has been faced in the past in di-
agnosis literature, and the proposed algorithms are relatively different
as the models used to describe both the system and the faults are not
homogeneous.

For instance, in several works as [TP03,RTPPH04,KSC+08,BRdJ+09,
BdJV+08a], the system under analysis is described using the faulty sig-
natures model (Section 1.3.2). Kodali et al. in [KSC+08] propose to solve
the problem formulating it as a dynamic set covering problem [Cor01],
using a Lagrangian relaxation technique. Another technique is proposed
in [RSP+99b], focusing on the minimization both of expected test time
diagnostic ambiguity. It is formulated as an optimization problem and a
solution through dynamic programming is found [RSP+99a]. Although
those approaches propose adaptive testing policies, using the informa-
tion of previously executed tests, their reliance on deterministic faulty
signatures limits the presence of a failure to be always retrieved by the
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execution of a specific test, and such constraint could limit the appli-
cability of the methodology. This is true especially when the system
description is available only at a high level of abstraction and determin-
istic relations between system faults and symptoms detected by testing
cannot be established and maintained by test engineers.

Other works as [TP03,BdJV+08a] propose the transformation of the
faulty signature representation graph structure (AND/OR graph). This
structure is in a directed acyclic graph where the root represents the
initial state of the diagnosis (where all components are potentially can-
didates for explaining the faults), while the leaves represents the diag-
nostic conclusions at the maximum resolution allowed by the test suite
(diagnostic conclusions, Section 1.2). Intermediate nodes are used to
represent either tests (associated with an execution cost) or intermediate
conclusions. Arcs in the graph associate either the root and intermediate
conclusion nodes to tests to be executed, or tests to the subsequent diag-
nostic conclusions depending on the test outcomes. A diagnosis strategy
is a path traversing the graph and its cost is the sum of test nodes en-
countered. On this graph structure, Tu et al. in [TP03] propose an
heuristic technique inspired on dynamic programming to identify the
strategy minimizing the average cost to reach a diagnostic conclusion.

Their contribution has been further extended, taking into account
hierarchical systems [BRdJ+09], to tackle problems where the relation-
ship between components and tests cannot be described in a flat manner
due to the complexity of the system under analisys; authors propose to
solve the general problem as a composition of local optimizations, on
portions of the system, where complexity can be handled. In this work,
alternative heuristics to optimization are proposed, in order to face with
the exponential complexity of the problem. Another extension is pro-
posed in [RTPPH04], where authors modify the cost function of the test
sessions in scenarios where the execution cost cannot be described as
a sum (or another linear relation) of execution cost of single tests, but
other contributions have to be taken into account (initial setup time,
re-configuration time, or intermediate repair operations costs).

A key aspect for the incremental approach is the definition of a quan-
titative cost function to decide whether or not the execution of further
tests is significant, i.e., whether the supplementary execution of a group
of tests could modify the diagnosis outcome, leading to a different faulty
candidate. We present such cost function and the associated stop condi-
tion, or criterion, to determine when the incremental diagnosis process
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can be suspended, having identified the most probable faulty candidate.
The bases for such a definition lie in the characteristics of the evolving
BBN as new tests are executed and their outcomes are made available
and introduced in the BBN. The next section introduces such aspects,
together with the innovative cost function.

The proposed framework is based on the BBN model with the pur-
pose of supporting the optimal next test selection, to minimize the over-
all test sequence length and, consequently, test execution costs. We
first introduce here a few preliminary definitions and assumption, before
introducing the formulation of the proposed metric.

We require few definitions to establish a mathematic framework, to
be used for the formulation of the test-selection metric. We refer to a
system model corresponding to a CTM (Section 2.2), composed of a set
C with nc components and with a test-suite T of nt tests.

As long as new tests are executed, the state of the current instance of
the system under analysis is described univocally through a vector, which
contains the whole information obtained after test execution, summa-
rized in test outcome, which is used to feed the BBN to perform system
diagnosis.

Definition 15. A partial syndrome is a vector of nt elements, oi,
such that oi ∈ OE = {PASS, FAIL,UK}, and ∃k|ok = UK, that is test k has
not been executed, the outcome UnKnown.

In this work, we do not consider explicitly the SKIP possible outcome;
rather, we exclude from the vector representation the tests that cannot
be executed, or we substitute it with their expected outcome (PASS or FAIL)
when it can be uniquely inferred by other tests. When the outcomes of all
tests are available, the instance status is described univocally by another
vector.

Definition 16. A syndrome is a vector of nt elements, oi, such that
oi ∈ O = {PASS, FAIL}.

Furthermore, an hypothesis is made to handle the complexity of the
diagnosis, of the system, the single fault assumption.
Assumption 1. We assume a single component can fail at a time, and
there is at least a test that fails.

In [ABF90], authors analyze the adoption of single fault hypothesis
in digital circuits; there, while observing that this assumption appears to
be limitative, they suggest that such hypothesis could be safely adopted
for at least to important reasons. First, because it corresponds to a likely
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real world scenario, at least from a statistical viewpoint. Second, because
the multi-faults conditions are handled correctly by most of test suites
designed to target single fault cases; this occurs because symptoms are
observed from different probe points (e.g. circuit outputs), or failures
are correlated and at least one of them appear in the final diagnosis.

We introduce this concept with the following Definition.

Definition 17. We define singleton faulty distribution a probability dis-
tribution of component nodes where a single component is a faulty can-
didate. The number of different possible singleton faulty distributions is
equal to the number of components, nc.

If Assumption 1 limits the valid probability distributions to respect
Definition 17, a corollary follows: when a component is faulty all tests
that do not cover it will PASS, whereas any one of the tests with a not
null coverage may FAIL.

Corollary 1. Let cx ∈ C be the faulty component in system S. Then
• ∀tz, if cov(cx, tz) ∈ {H,M,L} then tz may FAIL, and
• ∀tz∗, if cov(cx, tz∗) ∈ {–} then tz∗ must PASS.

We reinforce the capability of syndromes (Definition 16) to report
correctly the presence of a failure introducing an additional assumption:

Assumption 2. Given a ⟨cx, tz⟩ pair such that cov(cx, tz) = H, the
test is extremely unlikely to pass when the involved component is faulty.

Those assumptions, are required to avoid meaningless results from
the diagnosis: such condition could arise if a fault-free system is analyzed
with the methodology. In particular Assumptions 1 and 2 reinforce the
characterization of some tests of the test suite to target at particular
faulty components: this association is a leading factor during the def-
inition of the system model CTM by the design and test engineering
teams.

Furthermore, we observe also that, given the independence hypothe-
sis between components’ nodes implicitly provided by the nOR approach
(see [Hen87]), there is no a-priori impossibility to manage a multi-fault
diagnosis result, if a syndrome is compatible with two or several rows of
the CTM. A consequence of this fact is that the sum of the probabilities
of all components to be the faulty one, is not necessarily 1. Furthermore,
a normalization of probability values does not produce a significant prob-
ability distribution, in particular when applied to partial syndromes.
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4.1.1 Relations between syndromes and test selection

A deterministic relation exists between the information carried by a test
outcome and the consequent update of the nodes probabilities resulting
from probabilistic inference. This update depends only on the BBN
topology, i.e., the coefficients of the CTM. Given a generic BBN, an
exahustive exploration of all possible outcome combinations could be
approached to determine, before test execution, the optimal sequence of
leading to all possible diagnosis conclusions.

While deterministic, exhaustive explicit exploration is unaffordable
because of the number of possible outcome combinations to be analyzed.
Since the probability update depends only on the BBN topology, i.e., the
coefficients of the CTM, we could resolve an implicit problem not consid-
ering the outcomes combinations, rather all bayesian inference equations
in the form of a dynamic system. The optimization problem would be
similar to the formulation proposed for test sequencing in [RSP+99a],
while the stop condition would be formulated as a steady-state search.
Unfortunately, inference equations [KP83] are extremely complex even
for small 2-layers BBN, and the complexity grows exponentially with
the number of nodes.

Since such partitions in the search space are defined through the
conditional probabilities inference equations underlying the BBN, their
properties should be derived analyzing directly those equations [Dar03].
Unfortunately, this analysis is not trivial because of the large number of
equations involved in a usual BBN used for diagnosis, and, also, because
of the number of terms involved in each equations. The problem is even
harder if we consider that equations are dynamically changed in adaptive
diagnosis, when outcomes of newly executed tests become available.

Alternative solutions have been proposed to overcome the difficulty
of such analysis. A possible approach is based on the notion of mu-
tual information, used for instance in [NJ98]. Such metric, derived from
Information Theory and closely related to the concept of entropy, quan-
tifies the impact of the insertion of new outcomes (newly executed tests)
on a set of variables of the components’ nodes in BBN.

This metric is a strong and well-known mathematical tool, especially
for information compression; indeed, higher entropy values are associated
with random sources, or in other words with sources where the amount
of redundancy in the information is low. In a diagnostic scenario, lower
entropy indicates redundancy in faulty component(s) identification, sug-
gesting that further testing is little significant with respect to the quality
of diagnosis. Authors in [TP03] propose to mimic Huffman’s code prop-
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erty to identify the minimum cost test outcomes set associated with each
potential fault candidate. However, as it is explained in [RBM+05], en-
tropy evaluation is costly for what concerns computational effort, and it
results unaffordable for multi-valued coverage models as CTMs.

To overcome this limitation, a different approach is here proposed.
It focuses on the identification of a non-decreasing function expressing
the plausibility of a given component to be the faulty candidate. Such
function is proposed to guide the refinement of the faulty candidates list
at each step of the test sequence with a contained computational effort,
while the non-decreasing property provides a basis for the definition of
a stop condition.

4.2 Geometrical interpretation of the BBN
state

In our BBN framework, new observations on nodes occur for test nodes
only, corresponding to new test outcomes. An observation added on a
component node has no meaning from the operational perspective; it
would only be the final result of the diagnosis process. However, from a
strict mathematical point of view, this operation can be performed, and,
in particular, it is possible to insert observations describing a singleton
faulty distribution. Because of the topology of the network the compu-
tation of the a-posteriori probabilities of test nodes is straightforward.

By selecting a target component cx, and setting its specific singleton
distribution, the probability value of each test tz to PASS, FAIL corresponds
to the quantitative value of the coverage cov(cx, tz) defined in the CTM.
Figure 4.1 depicts the a-posteriori inference of test probabilities for a
sample BBN.

It is worth noting that this operation can be generalized by replacing
the singleton faulty distribution with a doubleton or a generic k faulty
components distribution. However, the number nk of diagnosis to be
considered increases (since each one has a different probability configu-
ration); for a BBN with nc components there are nk = nc!

(nc−k)!k! config-
urations for each k-faults acceptable diagnosis.

We propose a geometrical representation of the BBN status, provid-
ing a mathematical definition of the entities of our framework. We use as
reference vector space Rnt , being nt the number of test nodes contained
in the BBN.
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Figure 4.1: A-posteriori test probabilities inference (on singleton con-
figuration c1 (a), c2 (b), c1 (c)), using sample BBN.
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t1 t2 t3 t4 t5 t1 t2 t3 t4 t5
c1 – M – – – c1 – 0.5 – – –
c2 H – M L – c2 0.9 – 0.5 0.1 –
c3 – – – M H c3 – – – 0.5 0.9

(a) (b)

Figure 4.2: (a) Qualitative and (b) quantitative CTM for Example 14.

Definition 18. Let the Complete Syndrome Vector (Y) be a [s1 s2
. . . snt ] vector of nt elements, where si ∈ {1, 0}, representing that the
corresponding test outcome is PASS or FAIL, respectively.

Definition 19. Let the Partial Syndrome Vector (YP) be a [o1 o2
. . . ont ] vector of nt elements, where oi ∈ R, such that oi = 1 when the
test outcome is PASS, oi = 0 when the test outcome is FAIL, and 0 < oi < 1
when the test has not been executed yet, respectively.

Given the relation between Y, YP and their corresponding syn-
drome and partial syndrome, it is possible to give also a mathematical
definition of a test session.

Definition 20. Let G =
∪

k∈[0,K] gk be a partition of the test set T of
size nt, where tj ∈ gk if and only if test Tj has been executed at step
k. The value K depends on the partition G and it is always holds that
K ≤ nt. Let oj,s be the outcome of test tj at step s. It is always true
that oj,s is UK for s ∈ [0, k − 1], while oj,s is PASS or FAIL for s ∈ [k,K].

We can define a Test eXecution session T X as the succession
YP ,k, with k ∈ [0,K]. The beginning of the succession is the Partial
Syndrome Vector YP ,0 corresponding to initTS. The last element of
the succession YP ,K is equal to the Complete Syndrome Vector (Y).

Example 14. Consider the sample CTM of Figure 4.2, where T =
{t1, t2, t3, t4, t5}, with nt = 5. Let us consider a sample test set partition
G = {g0, g1, g2} with g0 = [t1, t5], g1 = [t3], g2 = [t2, t4], with K = 2.
A T X is the succession YP ,k, with k ∈ [0, 2], and a possible one is
represented by
YP ,0 = {FAIL,UK,UK,UK, FAIL},
YP ,1 = {FAIL,UK, FAIL,UK, FAIL},
YP ,2 = {FAIL, PASS, FAIL, PASS, FAIL}.

Figure 4.3 presents the evolution of the test session with the suc-
cession YP ,0, YP ,1 and YP ,2. For clarity, the graphical representation
considers only tests [t1, t2, t3].
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Figure 4.3: Test session evolution for Example 14.

⋄

Definition 21. Let v be a [v1v2 . . . vnt ] vector of nt elements, where
vj ∈ R. By recalling the notion of distance in Lp spaces, we can define
the distance d(vx,vy) ∈ R between the vector pair (vx, vy) as:

d(vx,vy) = (

nt∑
j=1

(∥vxj − vyj ∥)
p)1/p (4.1)

From this definition it is possible to derive the following weighted
distance definition:

Definition 22. Let v be a [v1v2 . . . vnt ] vector of nt elements, where
vj ∈ R. Let w be a weight vector [w1w2 . . . vnt ] of nt elements, where
wj ∈ R. We can define the weighted distance dw(vx,vy) ∈ R between
the vector pair (vx, vy) with respect to the weigth vector w as:

dw(vx,vy) = (

nt∑
j=1

wj(∥vxj − vyj ∥)
p)1/p

Weighted distance has a general formulation but in our scenario we
will define binary vectors for w.

4.2.1 Attraction and Rejection
Partial syndrome vectors have a geometrical counterpart defined in the
same vector space Rnt , defined in the following.
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Figure 4.4: AVs for components c1 and c2 (for sample CTM in Fig-
ure 4.2).

Definition 23. We define Attraction Vector (AV) of component cx (AVx)
as vector [s1s2 . . . snt ] of nt elements, where sz ∈ R, such that the
value of sz corresponds to the quantitative coverage of the CTM, i.e.
sz = cov(cx, tz).

Given Assumption 2, we can define a dual concept for AV, dubbed
Rejection Region (RR).

Definition 24. Let us consider coverage values cov(cx, tz) of the CTM,
relative to a specific component cx ∈ C. Let Uy be a [u1u2 . . . unt ] vec-
tor of nt elements, where uy ∈ R, such that the value of uy = 1 if
cov(cx, ty) =–, and uy = 0 otherwise. We can define the Rejection
Region (RR) of component cx (RRx) the subspace of vectors V =
[v1v2 . . . vnt ] such that V · Uy = 0 (operation · represents the standard
internal product).

4.3 Next test selection heuristics
We propose four possible heuristics for the selection of the next test.
Considering a generic test session T X , the number of tests available for
execution falls in range [nits, nt], where nits and nt represent the size of
the initTS and the size of the test set T . At each step k, we refer to
Tr(k) as the set of remaining tests not executed yet; the size of such set
is indicated with nTr,k.
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Figure 4.5: RRs for components c1 and c2 (for sample CTM in Fig-
ure 4.2).

4.3.1 Random Walk (RW)

As its name suggests, it is based on the random selection of the next test
to be executed.

Nrand(k) = rand(Tr(k)) (4.2)

This policy is not efficient because it discards completely the infor-
mation contained in the outcomes of previously executed tests. Further-
more, it corresponds (in the geometrical interpretation) to an irregular
path of Partial Syndrome Vector YP , and it does not guarantee any reg-
ular diagnosis in successive steps, and it limits the effectivness of the
stop condition.

However, RW disposes of two interesting properties allowing us to con-
sider it as a reference value for other heuristics. First of all, it represents
an average case, so any other test selection policy should outperform
the number of tests obtained using this approach. Second, it behaves
the same in all possible CTM: this is important because if the test-
component relationship is almost one-to-one, i.e. a fault on a compo-
nent can be detected by a limited number of tests, and such tests cannot
detect other faults in the system, information from previously executed
tests is not significative, and any next test selection policy would behave
exactly as the RW.

132



4.3. Next test selection heuristics

4.3.2 Variance (V)
The heuristic we proposed in work [ABS+09] is aimed at identification
of the test whose execution will result in a probability distribution of
the component nodes in BBN closer to a singleton distribution (Defini-
tion 17). The metric compares all possible 2 · nTr,k scenarios, obtained
inserting one at the time all possible outcomes (PASS, FAIL) for each test
in Tr(k).

Let us define vectors Ck(tPASS) and Ck(tFAIL), of size nc (number of
components), where item Ck(tx)(ci) contains the probability value of the
component ci obtained adding to the BBN respectively the PASS (or FAIL)
outcome for test tx. Different functions can be applied to vector Ck(tx)
to verify how similar it is to a singleton. We used the sample variance,
since higher values correspond to a flat distribution with a small number
of spikes, and as a consequence to a lower number of faulty candidates.

A priori, values of the metric evaluated for the same test t on Ck(tPASS)
and Ck(tFAIL) can be different. Since it is impossible know the outcome
of a test until its execution, it is necessary to associate the next test
selection metric to the expectation E[] of the variance.

Nvar(k) = argmin
t∈Tr(k)

E[Ck(t)] (4.3)

= argmin
t∈Tr(k)

E[Pk(t)var(Ck(tPASS)) + (1−Pk(t))var(Ck(tFAIL))](4.4)

The approach requires the simulation of all possible outcomes for each
test in Tr(k), and its complexity is linear with the number of remaining
tests nTr,k ((o(nTr,k))). The rationale behind this metric is to execute as
soon as possible tests moving the BBN to a singleton, corresponding to
a valid final diagnosis.

4.3.3 Failing Test First (FTF)
According to Assumption 2 and considerations set in Section 4.1, the
signature of a faulty component is characterized uniquely by failing tests.
Anticipated execution of such group of tests would shorten the overall
test session length, because the faulty component would be identified
sooner within the FCC set running all tests having coverage High.

Given Pk(tz) as the probability of the test tz to pass at step k, we
have:

Nfail(k) = argmin
tz∈Tr(k)

Pk(tz) (4.5)
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The algorithm to compute this metric has a lower complexity (o(1))
than V, because it is based only on information obtained from the BBN
with the update occurring after the insertion of each newly executed
test outcome. However, it suffers from the limitation that component
probabilities after the execution of the test are not taken into account,
and this could lead the BBN to fuzzy diagnosis, increasing the number
of tests required in successive steps for the fault detection. FTF heuris-
tic is extremely efficient when the faulty candidate is clearly identified
from the initTS or from the very first tests, especially if the number of
tests covering this component is small. Otherwise, the execution of the
selected test often results in a PASS outcome instead of a FAIL, producing
a degradation of the efficiency of FTF.

4.3.4 Minimum Distance (MD)
Variance approach is based on the research of a singleton distribution
on component probabilities, evaluated directly on an analysis of node
values. As an alternative, this research can be done using the geomet-
rical interpretation of BBNs, calculating the metric of test probabilities
instead.

Let us indicate with YPk(tPASS) and YPk(tFAIL) PSV obtained inserting
at step k into the BBN respectively the PASS (or FAIL) outcome for a test t
in Tr. As for V, the algorithm needs to evaluate 2 ·nTr,k different vectors.

Also, let us indicate with dck,t the most probable diagnosis conclusion
identified after the insertion of the outcome of test tz, according to

dck,t = argmin
cx∈C

Pk,tz(cx) (4.6)

This component is associated to an AV(dck,tz), according to Defini-
tion 23. The next test selection metric can be formulated as:

Ndist(k) = argmin
tz,PASS,tz,FAIL∈Tr(k)

d(YPk(tz), AV (dck,tz)) (4.7)

This heuristic is based on the minimization of the expected distance
between the PSV and the AV of the most likely faulty component. The
number of tests required to complete the diagnosis is reduced because
at each step the BBN is moved towards a diagnosis having the higher
probability to be the final one, being the distance between the PSV and
the AV minimal.

A drawback of this heuristic is an increased computational effort. In
fact, it requires both the simulation of all possible remaining tests (com-
plexity is linear with nTr,k, as for the variance approach) with the over-
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Figure 4.6: Geometric interpretation of heuristics FTF.

head of the estimation of the minimum distance d(YPk(t), AV (fck,t)),
which is o(n2

c) on the number of components nc.

Example 15. We here refer to Sys2, presented in the upcoming sec-
tion, to compare the evolution of the same test session using different
heuristics. After the execution of the initTS (k = 0), we obtain the PASS

outcomes for tests IDs t18,t5,t3,t2,t1 and t0. Also, tests IDs t17, t22,
t23 failed, giving the component c1 (Micro_Processor_S) as best faulty
candidate, with a probability 0.3208.

We compare in Table 4.1 the evolution of the four introduced heuris-
tics, presenting the best next test identified by computing the metric
at each step k. For each column, it is shown the ID of the selected
test and the outcome resulting from its execution on the system. Also,
the probability of the faulty candidate (Micro_Processor_S) is reported,
evaluated by the BBN after the insertion of the new test outcome. The
simulation is stopped at step k = 9, where the stop condition becomes
true (for the variance heuristic).

⋄
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Figure 4.7: Geometric interpretation of heuristics MD.

Example 16. In Figures 4.7 and 4.6 we compare in the geometrical
framework the different metrics minimized by FTF and MD. The selection
is perfomed at step k = 0, using CTM presented in Example 15 to
present BBN evolution. For clarity of representation, vectors are drawn
in the test set subspace [t2, t3, t4]. In this sample case, both metrics
select t3 as optimal next test.

⋄

4.4 Stop condition
The main goal of a stop condition metric is to identify the step k̂ in
a Test eXecution session T X such that the use of any further test
outcome during step k > k̂ can refine the component probabilities but
it does affect the identification of the best faulty candidate. A secondary
goal of such a metric is the definition of a non-decreasing function to
quantify the level of confidence on the diagnosis result obtained with the
identification of the faulty-candidate interrupting the execution of new
tests at step k̂. The former goal is simpler to achieve; the latter, instead,
requires further refinements of the numerical properties of the metric
function.
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Definitions presented in the previous section will be used to introduce
a metric function, to be applied at each step k of the Test eXecution
session T X of the diagnosis process. The function at step k is computed
by using the vector YP ,k, defined in T X , all Attraction Vectors AVx and
Rejection Regions RRx.

The stop condition metric function sc(k) is a scalar value (sc(k) ∈ R)
depending exclusively on step k. It can be evaluated for each component
cx through expression:

sc(k, i) = d(YP ,k,AVx) (4.8)

The distance is evaluated, from the PSV at each step k of T X for
all AVs. They act as attraction entities of the faulty candidate, and
if Assumption 1 holds, PSV converges towards AVx when the faulty
component is exactly cx.

By discriminating executed tests from remaining ones, an alterna-
tive stop condition metric sc∗ is presented in Equation 4.9. Two terms
contribute:

sc∗(k, i) = scUK(k, i) + scPASS,FAIL(k, i) (4.9)

where

scUK(k, x) = dw(YP ,k,AVx) (4.10)
scPASS,FAIL(k, x) = W(YP ,k,RRx) (4.11)

The rationale behind Equation 4.9 is that distance is not indepen-
dent of quantitative values associated with test outcomes (PASS, FAIL) and
coverage labels (H,M,L). In particular, considering Corollary 2, the use
of the FAIL outcome on a test tj might be a penalization term if the (nu-
merical) difference between FAIL and H is important. To overcome such
a problem, in Equation 4.9 a weight mechanism is proposed.

Let us consider a boolean weight vector w, as previously introduced,
with wj = 1 if test tj has not been executed yet, and wj = 0 otherwise.

Definition 25. Let W(YP ,k,RRx) be a penalty function proportional
to the number of YP ,k components intersecting hyperspace RRx.

The first contributions to the alternative sc∗ metric (Equation 4.10)
discards distance contributions for executed tests. The second term
(Equation 4.11) introduces a penalization term for non-faulty compo-
nents, that is suppressed from scUK due to the introduction of weight
w.
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4. Adaptive Test Selection

The metric is evaluated independently for each faulty candidate. It
is worth noting that lower values for sc∗(k, i) are associated with com-
ponents cx that are more likely to be among the best faulty candidates.

The stop condition can be formulated now as a logical predicate
(TRUE, FALSE):

SC : min
x

sc∗(k, x) < δ (4.12)

where the δ is a confidence interval, arbitrarily selected.
For the minimum step k verifying the stop condition SCk = TRUE,

the best diagnostic conclusion dc can be identified from the stop condi-
tion metric by using:

SCk =⇒ dc = arg min
x

sc∗(k, x) (4.13)

Example 17. We here refer to Sys2, presented in the upcoming section,
to show the contribution of the distances on the defined metric. After
the application of the initTS, four components constitute the FCC set,
namely c0, c1, c2, c8. For each one of them, at each step k of the di-
agnostic process we report in columns 3-6 the associated probability to
be the faulty candidate (P(cx)), and the distance metric between each
component’s AV (columns 7-10), where D(cx)k = d(YP ,k,AVx). At each
step k, we also report the suggested next test to be executed (column
2), and the evaluated stop condition SCk using δ = 2 (column 11). We
highlighted the highest probability values and the smallest distance val-
ues.

In the first three steps, probability values identify c8 as the best
faulty candidate, however its estimated distance is not the minimal one,
therefore the diagnosis is still uncertain. At step k = 4, c0 is identified,
but again the distance does not support such a hypothesis. Then, the
evidence introduced by t4 leads to a convergence toward c1, not only
from the probability point of view, but also on the distance metric, being
it the component with the smallest estimated distance w.r.t. the partial
syndrome. Nevertheless, the stop criterion is not met yet, and the overall
distance distribution has a value higher than the selected δ, condition
met at step k = 9, when the process is halted. c2 is listed as an example
of components never considered as faulty candidates.

⋄
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4. Adaptive Test Selection
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Figure 4.8: Sys2 block diagram.

4.5 Experimental results

4.5.1 Next test selection
Proposed heuristics have been coded as Python extension in the AF2D
framework (Section 2.4), and they have been evaluated on four case
studies. The properties of each system under analysis, named Sys1 to
Sys4, are summarized in Table 4.3: number of components, number of
available tests, number of tests of the initTS, and the ratio between the
size of initTS and the number of available tests. Sys2 in particular is a
sample system characterized by some hard-to-diagnose components, i.e.
components which require the execution of almost all tests in order to
obtain correct diagnosis.

System name # Comp. # Tests # initTS (%)
Sys1 10 18 6 (33%)
Sys2 18 24 9 (37%)
Sys3 27 80 9 (11%)
Sys4 49 100 17 (17%)

Table 4.3: System under analysis properties summary.
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4. Adaptive Test Selection

Comparison of the metrics in the framework have been executed com-
puting the number of tests required to reach the stop condition. For each
faulty component (of each system from Sys1 to Sys4), a list of Com-
plete Syndromes has been obtained. Such syndromes have been used to
feed our algorithm in a step-by-step fashion, simulating the incremental
approach to analyze different test sequences.

All available Complete Syndromes have been tested against our three
next test selection approaches (Failing Test First (FTF), Variance (V),
Minimum Distance (MD)), together with a realization of the Random
Walk (RW).

As an example, we report in Table 4.4 a comparison among the av-
erage number of tests required to reach the stop condition, grouped by
faulty components for a subset of components in Sys2. The number of
available Complete Syndromes is reported (# CSyn), together with the
average steps number for each heuristic, without considering the initTS
(columns 2-5) and considering it (columns 6-9).

The reduction of the expected length for a test session is reported in
Table 4.5. Two significative values are reported for each system under
test: in columns 2 to 5 the ratio between the number of executed tests
and available tests, considering only tests run after the initTS. Columns
6-9 report the same ratio, considering also the initTS cardinality in the
number of executed tests.

Finally, we compare in Figures 4.9 and 4.10 the average test sequence
length for Sys1 to Sys4, normalized to the length of RW, ignoring and
considering the initTS respectively. It is worth noting that all ap-
proaches produce a significative reduction of the number of tests required
for diagnosis, and that the impact of the sequence length reduction is
greater when considering larger systems, with an wider choice of possible
tests. Minimum Distance approach has better performance, on average,
on Sys 1, 3, 4, at the price of an higher computational cost.

Results for Sys2 are characterized by a better performance for the
Variance heuristic. This was expected because the test set for this
system was designed to contain hard-to-diagnose components, requiring
a larger number of test outcomes before correct final diagnosis. Since this
hard diagnosis implies a short distance between the AV, the Minimum
Distance approach suffers of such configuration.

4.5.2 Stop condition
The proposed metric has been evaluated on some case studies. Each
network describes a system, containing 10, 16 and 28 components, re-
spectively, with a test set of 18, 24 and 72 tests. Sys2 is a demo system,
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4.5. Experimental results

Figure 4.9: Test session length (normalized to RW, non considering
initTS).

Figure 4.10: Test session length (normalized to RW, considering
initTS).

and its model is used to tune algorithm parameters. Sys2 is a sample
microprocessor-based board, and Cisco1 is obtained from the analysis
of a industrial network routing device by Cisco Photonics. The cardinal-
ities of the Initial Test Set (initTS) are 2, 7 and 10, respectively. The
evaluation criteria of the metric is based on the comparison of the stop
condition (during the incremental insertion of test outcomes) against the
situation where the test set is integrally applied.

In particular, the evaluation has been done by comparing i) the final
faulty candidate identified by the stop condition (and its plausibility)
with respect to the real faulty component, and ii) the partial syndrome
diagnosis result against the result derived from the complete syndrome.

In Table 4.6, 4.7 and 4.8 (showing data on Sys 1, 2 and Cisco1, re-
spectively) the number of analyzed syndromes for each faulty component
are reported, together with the average sequence length before the stop
condition is reached, evaluated with respect to the complete test set size.
Number of components magnitude is significative: it represents the num-
ber circuit locations (containing several elementary components) where
a failure can be identified.
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4. Adaptive Test Selection

For instance, in Table 4.6, component c0 being the faulty one is
associated with 256 possible syndromes (column Seq.) and the average
number of test executed before the stop condition is reached is 10.42%
(column Avg.). It is worth noting that the number of possible syndromes
is proportional to the number of Medium labels in the row of the CTM
of the faulty component (in this case, 5 M labels generate 25 = 32
possible syndromes).

An unbiased average (column Unbias Avg.) is also reported, to com-
pare the real test sequence length considering also the tests in the initTS
(in the example, 2.94%).

The last two columns contain the information about the correctness
of the final answer, evaluated at the stop condition and at the complete
syndrome, for all simulated experiments.

Exhaustive analysis highlights that, by using the complete test set,
the faulty candidate identification is correct in all cases for Board 1,
14 times out of 16 for Sys2 and in 25 out of 29 cases for Cisco1. The
proposed stop condition fails in 2/15 situations for Sys2, and in 5/16 for
Cisco1. For Board 2 (holding also for Cisco1), the evaluation failures
(13.28% for c1, 25% for c2) are due to modeling problems; in particular,
the current model presents two attraction components that dominate
c1 and c2 in some particular conditions (limited isolation power of the
CTM). This modeling problem is analyzed in Section 5.3.
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4.5. Experimental results

Table 4.6: Experimental results for Sys1.

Comp Seq. Avg. Unbias Avg. Stop Cond. Complete
c0 256 10.42% 2.94% 100% 100%
c1 8 28.12% 27.94% 100% 100%
c2 8 12.50% 5.88% 100% 100%
c3 8 31.25% 32.35% 100% 100%
c4 8 37.50% 41.18% 100% 100%
c5 8 39.58% 44.12% 100% 100%
c6 8 33.34% 35.29% 100% 100%
c7 8 12.50% 58.82% 100% 100%
c8 8 22.91% 20.59% 100% 100%
c9 256 12.50% 5.88% 100% 100%

576 32.08% 23.59%

Table 4.7: Experimental results for Sys2.

Comp Seq. Avg. Unbias Avg. Stop Cond. Complete
c0 2 39.58% 14.71% 100.00% 100.00%
c1 256 56.97% 39.25% 86.72% 100.00%
c2 4 32.29% 4.41% 75.00% 100.00%
c3 64 66.54% 52.76% 92.19% 92.19%
c4 1 29.17% 0.00% 100.00% 100.00%
c5 256 72.05% 60.55% 82.03% 82.03%
c6 1 41.67% 17.65% 100.00% 100.00%
c7 8 52.08% 32.35% 87.50% 87.50%
c8 1 29.17% 0.00% 100.00% 100.00%
c9 4 37.50% 11.76% 100.00% 100.00%
c10 1 29.17% 0.00% 100.00% 100.00%
c11 2 41.67% 17.65% 100.00% 100.00%
c12 2 85.42% 79.41% 100.00% 100.00%
c13 2 33.33% 5.88% 100.00% 100.00%
c14 4 72.92% 61.76% 100.00% 100.00%
c15 1 33.33% 5.88% 100.00% 100.00%

609 47.05% 25.25%
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4. Adaptive Test Selection

Table 4.8: Experimental results for Cisco1.

Comp Seq. Avg. Unbias Avg. Stop Cond. Complete
c0 2 27.77% 16.12% 100.00% 100.00%
c1 256 52.77% 45.16% 89.06% 89.06%
c2 4 20.83% 8.06% 100.00% 100.00%
c5 256 51.38% 43.54% 94.92% 100.00%
c8 128 26.38% 14.52% 86.72% 86.72%
c9 4 26.38% 14.52% 100.00% 100.00%
c10 4 37.5% 27.42% 100.00% 100.00%
c11 2 40.27% 30.65% 100.00% 100.00%
c12 32 55.55% 48.38% 87.50% 100.00%
c13 2 48.61% 40.32% 100.00% 100.00%
c14 4 52.77% 45.16% 100.00% 100.00%
c15 2 50% 41.93% 100.00% 100.00%
c18 4 40.278% 30.64% 100.00% 100.00%
c19 8 55.56% 48.39% 87.50% 100.00%
c20 256 55.56% 48.39% 91.80% 91.80%
c21 32 15.28% 1.61% 96.87% 100.00%

1151 39.89% 30.20%
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4.6. Chapter summary

4.6 Chapter summary
In this Chapter, we have tackled a two-fold problem, the identification
of a quantitative function for the choice of the test to be executed for the
characterization of a stop condition for the AF2D diagnosis methodol-
ogy.

Because of the complexity of the analysis of the evolution of the un-
derlying BBN, a geometrical interpretation of the model is proposed,
aiming at identifying and defining the convergence points, dubbed At-
traction Vectors, characterizing the evolution of the syndromes in a
vector space; therefore, introducing a distance-based metric allows to
quantify the benefit of not-yet executed tests, at each step of a diagno-
sis process. Three different heuristics are proposed and compared with
random selection to resolve the next test selection problem. A supple-
mentary function is then introduced to characterize the triggering of the
condition where it is more significant to stop the adaptive investigation.

Analysis on some synthetic networks and industrial test cases has
been carried out, to gather results on the validity of the proposed func-
tions, with promising outcomes.
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Improving Diagnosis Model 5

All approaches targeting automatic fault diagnosis require a relevant
amount of knowledge about the relationship between faults, their symp-
toms and produced syndromes, irrespectively if they expressed in terms
of rules [Abr05], models [HCdK92], or cases [Der00]. This knowledge
is capital to identify and localize the occurrence of faults through the
application of test patterns.

Furthermore, difficulties arise from imperfections of both the model of
the device and the human experts’ knowledge about the model, leading
to incorrect and incomplete models, leading to inadequate diagnostic
performance.

From this perspective, Bayesian Belief Network (BBN) provide a
good resource to model the causes (components) and effects (test results)
and their relationship, also considering the accuracy of the information
that design and test engineers can provide, explaining how a failure in a
component affects the performed tests.

In fact, BBNs mitigate the impact of the imperfection of the model,
at least to a certain extent. Nevertheless, we deem it important to
evaluate the sensitiveness of the diagnostic process and success, to the
elements at the basis of the adopted model, that are:

i) the model consistency, derived from the understanding of the system
behavior by the test engineer and his ability to model the causal
relations from component failures to test outcomes,

ii) the robustness with respect to occasional, non-systematic mistakes
in the model definition, and

iii) the intrinsic diagnostic resolution of the adopted approach, i.e. the
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5. Improving Diagnosis Model

ability of the strategy to identify correctly the faulty component.
The aim of the contribution proposed in this Chapter is to present

an in-depth analysis of consistency and robustness of the causal model
at the basis of the diagnostic strategy based on BBNs.

Indeed, the correct specification of the relation between faults and
test coverage and test outcome is of capital importance to make the
causal model consistent with the syndromes collected during diagnosis.
This is so because of the deductive nature of the approach: diagnosis
can be interpreted as a search problem where the solution space is an
a-priori, defined, partition of all possible diagnoses. However, as we
observed during the development of an adaptive test selection policy in
Section 2.2, the relevant number of equations beneath the a BBN model
used for diagnosis makes such analysis not trivial; also, its adaptive
nature of an evolving BBN model poses an even harder problem.

We will analyze how deviations from the correct, golden causal model
affect the diagnosis, using a scenario of combinatorial circuits affected
by the classical stuck-at fault, and exploiting a classical ATPG to derive
the golden model. However, it is worth noting that we will abstract the
key-concepts of the diagnostic process such that both aspects could be
easily be generalized and extended to

• different causal models at the basis of a diagnostic approach ex-
ploiting BBNs (e.g., the one used in [Agi04]),

• different test suites, or even
• different fault models.
We target a sensitivity analysis of CTM model parameters, and

the robustness of diagnostic results, under the assumption that a non-
systematic mistake in coverage labels selection is committed by the test
engineer. This entails that we need a solid approach to obtain the real
values of probabilities of BBN (a golden model for BBN), and a method
to generate varied causal models representing impreciseness and local
mistakes. The golden model will then be used as a comparison against
with the varied CTM models, and with the one that designed by a test
engineer (Figure 5.1).

Concerning the intrinsic diagnostic resolution of a test suite, it can
be quantified as function of the relative coverage that a test can provide
with respect to each component. The simplification toward a test PASS,
FAIL outcome synthesis is commonly adopted to simplify the diagnostic
task, and it makes the diagnostic process harder for several reasons.
In fact, as discussed in [LCLH98], the faulty model must be flexibile
enough to embed all information extracted from the execution of the
tests, with respect to the failure occurring in the system under anaysis.
Furthermore, as in the case of PASS, FAIL faulty-dictionary methodologies
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Figure 5.1: Quality assessment of CTM models.

[RB85], causal approaches may suffer of poor accuracy in identifying the
faulty component, due to the extreme compression of the information
contained in the test outcome, reducing the description of the behavior
of the system to a boolean variable.

In particular, algorithms have been investigated to determine single-
fault set diagnosability with respect to the models the authors refer to
(e.g., [SR93]), which highlight the necessity to have a good test set in
order to achieve a significant accuracy in the diagnostic process.

Indeed, the increase of the resolution power of a test set has been
addressed in the past, in particular in the field of circuit diagnosis.
In this scenario, the compaction of a generalized test set is to be per-
formed by conserving the discrimination capability of the selected test
vector [SA09]. Adaptive diagnosis policies have been investigate in the
past, as in [HN84]. Also, adaptive diagnostic test generation has been in-
vestigated [AFT08], where the generation of new test patterns increases
the diagnostic resolution of the test set. However, the size of the test set
plays a key-role in a fault diagnosis methodology, because an optimal
trade-off between the search for the most significant test (requiring a
larger number of available tests) and the complexity of the search itself
(requiring a compact test set) is needed. This is especially true for incre-
mental approaches, as AF2D or as a different method proposed by Tang
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et al. [TCXAS09]), where only a subset of tests is executed to identify
the faulty candidate component.

In a typical (industrial) scenario, the test suite is identified by the
test analyst group with the contribution of system designer groups; one
of their goals is to identify, by applying a best effort policy, a reasonable
trade-off between the cardinality and the diagnostic efficiency of a test
set. In this perspective, they could benefit from a systematic analysis to
improve the selected test set, through a methodology able to highlight
deficiencies and shortcomings and to identify/evaluate/suggest tests to
be added or removed from the set. In this contribution we focus on the
evaluation of the resolution diagnostic power of a specific set of tests; it
proposes i) a metric for estimating the relative resolution capability of
tests in a test set, and ii) an algorithm for the construction of a minimal
extended test set, capable of removing ambiguities between components
pairs contained in the original test set. Applied to the AF2D methodol-
ogy, it could be adopted in similar scenarios to improve test set diagnostic
resolution capabilities.

This Chapter is organized as follows. Section 5.1 introduces the pre-
liminaries of the diagnostic strategy, and the reference model being in-
vestigated. The main contribution is presented in Section 5.2, where the
strategy to analyze parameters sensitivity is outlined. An approach for
deriving the golden model, based on ATPG is introduced, and experi-
mental results supporting the discussion are presented. In a second part,
Section 5.3 presents the test suites accuracy problem: a definition of the
metric for the evaluation of the resolution power of a test set is given in
Section 5.4, together with a proposal of an incremental algorithm used
to build a minimal extended test set increasing the diagnostic accuracy,
and experimental results to validate the approach.

5.1 Golden model for CTM

5.1.1 Definitions

Let us consider a general system under analysis S. An instance of S can
be affected by a fault with probability PS . From a statistical perspec-
tive, we can state that this probability is the ratio between the number
of instances of faulty S identified during diagnosis and the number of
systems considered.

In system S, a generic fault can occur in certain set of locations. We
consider the fault occurring at each location as a permanent fault.
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Definition 26. Let FS be the set {f1, f2, . . . , f|FS |} of size |FS |. Each
item fi represents a location of the system S where a (permanent) fault
can occur.

Definition 26 is very general, since it does not entail any specific fault
model. Because of this, we can consider that all locations can be affected
by a fault with equal probability:

Assumption 3. The probability distribution of faults occurring at each
location fi ∈ FS is the uniform distribution.

Usually, the resolution at which faults can be localized is much higher
than the resolution at which the system can be described in terms of
components (Section 2.2). Without lack of generality, we can consider
that each component of system S, regardless its implementation details,
is associated univocally with a set of possible fault locations.

Definition 27. Let FCS be the set {fc1, fc2, . . . , fc|FCS |} of size |FCS |.
The size of this set corresponds to the number of components (nc) con-
tained in S. Each item fcx is a proper subset of size |fcx| containing
the faults in FS producing a misbehavior in component cx: fcx ∈ FS .

From Definition 27 follows FS =
∪

x(fcx). The diagnosis of system S
can be performed using a certain number of tests, contained in test suite
T . Each test ty ∈ T provides a different stimulus to the system to detect
a certain number of faults. Such detection results in a FAIL outcome of
test ty.

Definition 28. We dub FT S the set {ft1, ft2, . . . , ft|FT S |} of size |FT S |.
The size of this set corresponds to the number of tests (nt) available for
the diagnosis of S. Each item ty is a proper subset of size |fty| containing
the faults in FS producing a FAIL outcome for test ty: ty ∈ FS .

We can use the above-presented definitions to specify the golden
model of CTM used to apply the AF2D methodology to system S.
We need to derive the elements of the BBN model.

5.1.2 A priori probability
From the uniform distribution hypothesis (Assumption 3), it follows that
the probability to find a fault in component cx in a generic instance of
system S is:

P ap
F(cx)

= PS ·
|fcx|
|FS |

(5.1)
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Equation 5.1 uses only the information on the partitioning of the sys-
tem into components. Thus, P ap

F(cx)
represents the a-priori probability

of component cx to contain a fault and is the value that should be used
in the BBN (of AF2D) to initialize the probability value at the corre-
sponding node.

5.1.3 Conditional probability
Let us focus on a component cx. Let use assume that, in a specific
instance of S, fault f occurred and its location is part of cx, i.e. f ∈ fcx.
Given the uniform distribution hypothesis (Assumption 3), f can be any
fi ∈ fcx, with equal probability. However, being the exact location fi
unknown, its detection by a generic test ty can be only associated with a
probabilistic value P cov

F(cx,ty) = P(ty|cx). This is a conditional probability
because of the (temporary) hypothesis that f belongs to cx. We obtain:

Pcov
F(cx,ty) = P(ty|cx) =

|fty
∩
fcx|

|fcx|
(5.2)

In system S, this value can be computed for all test-component pairs
(ty, cx). Such conditional probabilities represent the quantitative cov-
erage coefficients to be used in the BBN in order to establish the a-
posteriori components probabilities once the test outcomes become avail-
able.

5.2 Generation of varied diagnosis CTMs
Given a complex system, it is not possible to estimate a-priori and condi-
tional probabilities with an accuracy similar to that of the golden model
CTM (Figure 5.2). The lack of accuracy is due to the limited available
knowledge of the set of potential faults FS . This is true especially if the
expertise of the test engineers team depends on an high-abstraction level
in the description of the system. Also, the presence of a coarse label set
introduced to simplify the matrix building process limits the correlation
of CTM coefficients with numerical estimation of probabilities according
to Equation 5.1 and 5.2.

Therefore, since we expect the CTM to be, in general, manually
generated, we now want to estimate the impact of different values (with
respect to the golden model) on the final diagnostic result. In particular,
we propose three different transformations of the BBN golden coverage
values, to obtain alternative models that can be used for diagnosis. Such
transformations are conceived
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C1 C2 Cn

T1 T2 TnT3 T4

coverage
0.0 1.0

Real coverage
estimation

Figure 5.2: CTM (BBN) model containing real values for coverages.

• to describe an incremental modification of BBN to assess sensitiv-
ity to coefficients selection;

• to compare the results of the diagnosis based on a BBN which is
different from the golden model.

By the results of this analysis, we assess the feasibility and limitations
of diagnosis even with approximated CTM model estimated from test
expertise.

We do not consider Pap
F(cx)

values explicitly in transformations be-
cause of two reasons: on the one hand, they are associated with intrinsic
fault rates of the component used to implement system S; on the other
hand, they are almost irrelevant for final probability assessment from
BBN (mainly dependent on the conditional probabilities).

We first introduce a few concepts to define the transformations of
CTM.

For the building of a modified CTM, we consider that a finite set of
quantitative values is available.

Definition 29. Let us define L as the set {l1, l2, . . . , l|L|} of size |L|.
Each element li ∈ L represents a valid quantitative value to be associated
in a CTM with the coverage of all test-component pairs.

Assumption 4. Coverage label –must be used only for test-component
pairs ⟨cx, ty⟩ having P cov

F(cx,ty) = 0.
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It is worth noting that this assumption implies that if a fault f occurs
in cx (f ∈ fcx) but is not detected by Ty (f /∈ fty), the only possible
outcome of test ty is PASS. Any other choice would make the BBN in-
consistent with respect to the diagnosis of S. Let us introduce now the
CTM transformations.

5.2.1 BBN local transformation – LT
All non-zero coverage values from golden model BBN lie within the (0, 1]
range.

Let us consider a specific component cx. We can define a mapping
mcx associating, for all tests ty, each pair ⟨cx, ty⟩ to a given value in
the set L. The formal statement is that this mapping is an application
mcx : T → L.

According to this definition, the transformation of the CTM is for-
mulated as a k−means clustering [HTFF05], with k = |L|. The goals of
the clustering are both the classification of each probability Pcov

F(cx,ty) of
the golden model BBN in a class in levels’ set L, and the selection of
optimal values for all items (l1, l2, . . . , l|L|).

A generic Maximization-Expectation (ME) algorithm can be exploited
to compute the optimal classification. We define a cost function for a
quantitative evaluation of the quality of the classification of probabilities
and the selection of values for items in L. The solution of the ME is the
mapping m̂cx and set L̂, that minimizes for each component cx function
Jx:

argmin
m̂cx ,L̂

Jx =
∑

ty∈T
(Pcov

F(cx,ty) − lmcx(ty))
2 (5.3)

If we minimize independently all Jx functions (i.e., we independently
modify each row of the CTM), the distortion introduced on the condi-
tional probabilities is minimum.

5.2.2 BBN global transformation – GT
Let us relax the previous transformation assumption and define a unique
mapping mS . Such mapping is an application mS : (C × T ) → L.
Because of this, we need to combine all Jx functions, computed for each
component cx, in a unique cost function JS :

argmin
m̂S ,L̂

JS =
∑
T ,C

(P cov
F(cx,ty) − lmS(cx,ty))

2 (5.4)

In this case, we accept larger distortion to be introduced on the
conditional probabilities. The possibility of mis-diagnosis is higher in this
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case, because the difference between the real conditional probabilities
Pcov

F(cx,ty) and the quantitative coverage coefficient li is in general higher.
The global JS cost function, while optimizing the coefficient classification
in L, produces less precise class values in solution L̂

C1 C2 Cn

T1 T2 TnT3 T4

coverage
average average average

0.0 1.0

Figure 5.3: CTM (BBN) model after global transformation.

5.2.3 BBN global fixed transformation – FT

Let us consider again a global mapping mS . In this case, we remove
the selection of values in L, considering them as fixed parameters. For
instance, we can consider that L = L̄ = (l̄1, l̄2, . . . , l̄|L|) (Figure 5.4).
This scenario is exactly equivalent to the definition of the methodology
adopted in [ABSF10a]. The JS cost function, in this case, is minimized
only through the mapping mS :

argmin
m̂S

JS =
∑
T ,C

(P cov
F(cx,ty) − l̄mS(cx,ty))

2 (5.5)

We aim at using these transformation of the CTM to evaluate the
different results produced by the diagnostic procedure, compared against
the the results achieved when using the golden CTM model. The AF2D
methodology will be applied to the four different models and the differ-
ence in the results will be used to estimate the sensitivity of the diagnosis
to the casual model.
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C1 C2 Cn

T1 T2 TnT3 T4

coveragel1 l2 l3
0.0 1.0

Figure 5.4: CTM (BBN) model after global fixed transformation.

Example 18. Let us consider the matrix in Figure 5.5 as a golden model
for a system diagnosis. For the sake of simplicity, the label set L is
composed of four symbols {l0, l1, l2, l3}. According to Assumption 4, all
0’s values are kept unmodified in all trasformations, and they are mapped
to 0 (corresponding to –). All other values are mapped to l1, l2 or l3.

Figure 5.6 and 5.7 show the local (LT ) and global (GT ) transfor-
mations from the CTM in Figure 5.5, respectively. The 3-values scale
holds for LT within each row (e.g., for c3 L = {0, 0.351, 0.736, 1.000}),
and for GT for all rows with mapping L = {0, 0.273, 0.601, 0.974}. Fi-
nally, the fixed transformed CTM (FT ) is presented in Figure 5.8, using
the constant mapping L = {0, 0.1, 0.5, 0.9}.

⋄

t1 t2 t3 t4 t5 t6 …
c1 0.957 0.348 0.435 0.348 0.000 0.349 …
c2 0.000 1.000 0.000 0.000 0.000 0.370 …
c3 0.000 0.334 1.000 0.333 0.167 0.661 …
. . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.5: Partial golden model CTM for Example 18.
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t1 t2 t3 t4 t5 t6 …
c1 0.961 0.393 0.393 0.393 0.000 0.393 …
c2 0.000 0.933 0.000 0.000 0.000 0.382 …
c3 0.000 0.351 1.000 0.351 0.351 0.736 …
. . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.6: Partial CTM after local transformation (LT ) of CTM in
Figure 5.5.

t1 t2 t3 t4 t5 t6 …
c1 0.974 0.273 0.273 0.273 0.000 0.273 …
c2 0.000 0.974 0.000 0.000 0.000 0.273 …
c3 0.000 0.273 0.974 0.273 0.273 0.601 …
. . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.7: Partial CTM after global transformation (GT ) of CTM
in Figure 5.5.

t1 t2 t3 t4 t5 t6 …
c1 0.900 0.100 0.500 0.100 0.000 0.100 …
c2 0.000 0.900 0.000 0.000 0.000 0.100 …
c3 0.000 0.100 0.900 0.100 0.100 0.500 …
. . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.8: Partial CTM after fixed transformation (FT ) of CTM in
Figure 5.5.

5.2.4 Sensitivity analysis and results

We will compare the diagnosis results of the golden model BBN, with
those achieved using the modified versions of the same BBN, obtained
by applying the introduced systematic transformations. By using the
vocabulary of pattern recognition, we can define the concepts of true and
false positives (components considered to be faulty by diagnosis, with
and without actual failures, respectively) and true and false negatives
(components considered to be fault-free by diagnosis, without and with
actual failures, respectively).

Diagnostic classification performance is evaluated according to the
well-known metrics of accuracy AC, precision PR and recall RC (
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[HTFF05]), computed as:

AC =
tP + tN

tP + fP + tN + fN
(5.6)

PR =
tP

tP + fP
RC =

tP
tP + fN

(5.7)

The metrics combine the number of true and false positives (tP , fP ) and
true and false negatives (tN , fN ).

A golden model consists of any model extracted from a circuit rep-
resentation allowing for a quantitative and accurate description of the
relation between components, tests and test outcomes. In particular,
such quantitative value represents the probability of a test to sensitize a
fault in a component and make the effects observable at the output. To
derive such a golden model, we exploited the use of an Automatic Test
Pattern Generator (ATPG) [Ha94], in an unconventional way, to extract
the information. Here we focus on combinational logic circuits and refer
to the single permanent stuck-at fault model. The choice is motivated by
the need to derive a golden model which to apply the transformation, and
the selected scenario allows for the adoption of an immediately developed
strategy; however, the same approach can be extended to sequential and
complex circuits, and a broader fault model can be adopted.

We introduce the use of an ATPG to support the derivation of the
CTM golden model for diagnosis. The role of ATPG in our scenario is
not fault detection, but rather a tool to analyze circuit properties and,
in particular, to support the exact evaluation of Equation 5.2 (used for
AF2D diagnosis).

From this perspective, the focus on combinational circuits cannot be
considered a limiting or excessively conservative assumption, as it would
be true for a fault detection application, or if we aimed at implementing
the AF2D methodology to diagnose circuits at gate level. In such a case,
other more efficient approaches have been already proposed in literature,
as [PR00] or [SA09].

A fault can occur on each gate input/output. Therefore, accord-
ing to Definition 26, FS contains all possible gate inputs/outputs of
the circuit, that can be affected with a stuck-at fault. In other words,
FS = {sa01, sa11, . . . , sa0np

, sa1np
}, where np is the number of ports of the

circuit. However, we do not consider each logic gate as a stand-alone
component of the system S for two reasons. First, there would be very
little interest in knowing exactly what gate is actually broken. Also, it
would be impossible to implement such a BBN engine, because of the
exponential complexity of computations involved. Furthermore, degen-

162



5.2. Generation of varied diagnosis CTMs

erating FCS to singleton sets, Equation 5.2 would become meaningless,
since probabilities would be replaced with binary relations (0%, 100%).

Therefore, we need to define the concept of component on a network
of logic gates, such that the number of components is meaningful and
manageable.

5.2.5 Components

We consider a cluster of gates of the circuit to be a component, and
the entire system to be the set of defined clusters. Consequently, the
presence of a faulty gate within the cluster corresponds to the presence
of a fault on the components related to the cluster itself.

The partition of gates in clusters is an arbitrary choice, and random
allocation is a valid one. However, to make the components partition
similar to the one we usually witness in real systems (for instance, in
board level diagnosis), it is natural to consider only convex gates clusters;
in other words, we consider a cluster to be a valid if no path between
each pair of gates of the cluster contains a gate not belonging to the
cluster itself (see Figure 5.9 for an example).

It is worth noting that, whatever the selection of a clustering schema,
the partition of the circuit defines also the partition of faults FCS set
(Definition 27). The set of fault locations (FS) includes all gates’ inputs
and outputs, and no fault collapsing is considered.

5.2.6 Tests

The ATPG extracts a non-compressed test set of test vectors TV =
{tv1, tv2, . . . , tv|TV |}, since we interested in the diagnostic capabilities of
the TV set, and not in the smallest one. We do not compress the test
vector set obtained from the ATPG, thus all possible test vectors are
kept. Here we need not identify the smallest set of vectors detecting all
possible faults, rather we are interested in the diagnostic capabilities of
the test vector set. Therefore, the test set includes all 2ni configura-
tions, being ni the number of input signals. Therefore, TV includes all
2ni configurations, being ni the number of input signals. By exploiting
the ATPG fault simulation feature, it is possible to determine the sub-
set of faults each test vector detects, information used to derive FT S
(Definition 28).

From an AF2D perspective, we consider a test ty as the application
of a group of test vectors (ty = {tvz1, tvz2, . . . , tvzy}). Since Ty should
stimulate the system S producing a binary outcome, it is said to have a
FAIL outome if there is at least a difference on the outputs for a tv with
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Figure 5.9: Random and convex partitions of gates.

respect to the expected fault-free values (PASS otherwise). The choice to
form groups of test vectors is adopted because FT S sets defined for single
test vectors, even if not singleton sets, do not cover a large number of
faults per component. Providing CTM obtained from such probabilities
a reduced discrimination among components, they do not reflect CTM
we witness in AF2D analysis.

This notion of test is straightforward, but it needs a reformula-
tion: considering a one-to-one mapping from test vectors to diagno-
sis tests (∀y, ty = {tvy}), we create a implicit correspondency between
the faults detected by tvy and the faults detected by ty (fty ∈ FT S),
i.e., test ty would detect all stuck-at faults associated with test vec-
tor tvy. Because of the component partition, faults occurring in differ-
ent components c1, . . . , cnc could be detected by ty; however, the sets
fc1, . . . , fcnc ∈ FCS and the set fty are uncorrelated (due to compo-
nents boundaries) and, consequently, the portion of faults detected by
ty in each component cx is lower with respect to the total number of
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faults contained in it.
Thus, we propose an alternative definition of tests ty ∈ T to increase

such portion.

5.2.7 AND-grouped test vectors
Let us define a group of test vectors {tvz1,tvz2,. . . ,tvzn} forming a proper
subset of the set of all test vectors TV . If we apply each test vector to
the circuit and we collect the output values, we obtain a list of n binary
outcomes oi: {oz1,oz2,. . . ,ozn}. The outcome of this group of tests is FAIL

if there is at least a FAIL among the test vector outcomes {oz1,oz2,. . . ,ozn}.

Definition 30. Let each ty ∈ T be a group of test vectors {tvz1,tvz2,. . . ,tvzn}
obtained from the ATPG. We define the outcome of ty as the logic AND
of the outcomes of each {tvz1,tvz2,. . . ,tvzn} applied independently, where
the outcomes PASS and FAIL are respectively the logic values 1 and 0.

The grouping of test vectors introduces a fuzziness with respect to
the real fault causing the test to fail. The portion of covered faults
per component each test offers can be increased with the size of num-
ber of tvzs, and coverage depends on which test vectors are selected.
Random grouping would potentially result in useless tests, because the
lack of coverage per component is caused by the uncorrelation of com-
ponents boundaries. Thus, a systematic test vector grouping strategy is
proposed, aiming at maximizing a component cx coverage by ty, while
minimizing the number of test vectors contained in Ty itself.

As in Section 3.2, we adopt Integer Linear Programming (ILP) as
a mathematical optimization technique for linear objective functions,
subject to linear (both equality and inequality) constraints.

Let us consider a test ty. For each vector tvj ∈ TV , we introduce a
binary variable xj assuming value 1 only when tvj ∈ ty. Let us consider
also component cx: from fault simulation, we can determine a binary
relation M between each stuck-at fault fi ∈ fcx and each test vector
tvj . In a matrix form, m(fi, tvj) = 1 if fault fi is detected by test vector
tvj . Focusing on a certain subset of faults (constraint faults, fc*x ⊆ fcx)
belonging to cx. The size of this set of faults can range from the empty
set (0% coverage of cx) to the fcx set itself (100% coverage of cx).

For each test vector tvj , let us consider a cost variable wj . By impos-
ing wj (∀j), we can use wj to define a naive cost function of the group of
test vectors (number of tvs). Alternatively, if we aim at maximizing the
focus of ty on component cx, we can define the cost term as the number
of faults covered by ty not included in fcx, i.e., w(cx)j = |Ftvj/fcx|.
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tv1 tv2 tv3 tv4 tv5 tv6
(cost) (2) (1) (2) (2) (1) (0)

f1 1 1 1 1 1 0 fc*1
c1 f2 1 0 0 1 1 0 fc*2

f3 0 1 1 0 1 1
f4 1 1 1 0 0 1 fc*3

c2 f5 1 0 0 0 1 0
f6 0 1 1 1 0 0

c3 f7 1 0 1 1 0 0

Figure 5.10: Faults and test vector coverage for ILP optimization (Ex-
ample 19).

The minimization problem can be formulated as in Equation 5.8:

minimize
∑
j

w(cx)j · xj (5.8)

subject to ∀fc*i
∑
j

m(fi, tvj) · xj ≥ 1 (5.9)

∀j xj binary (5.10)

Several tests can be generated by executing the optimization, by
changing the target component cx and the number of constraints faults
defined for cx.

Example 19. Let us consider the coverage described in Figure 5.10.
The group of test vectors to form T1 is defined by constraining the cov-
erage of faults (f1, f2, f4): the request is a coverage of c1 higher or equal
to 75%. The cost function w represents the number of faults not belong-
ing to c1 covered by each test vector.

The minimization of Equation 5.8 leads to t1 = {tv5, tv6}, with a
100% coverage of c1.

⋄
It is worth noting that the simple fault model proposed (stuck-at

faults) and the focus on combinatorial circuits only should not be con-
sidered as limiting or excessively conservative assumptions. In general,
this is true in a fault detection application or in an AF2D implemen-
tation for gate level fault diagnosis of digital systems. We have already
pointed out that, for this purpose, efficient approaches have been already
proposed in literature, as [PR00] or [SA09]. The same can be said to
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Table 5.1: Summary of circuits properties.

Circuit group # circuits # faults (avg) #Comp. #Tests
Group1 10 245 8 32
Group2 10 2602 40 110
Group3 5 980 10 44
Group4 5 3648 35 125

ATPG use, which is proposed as a support tool for quantitative coverage
analysis and fault simulation [HKO+09].

The experimental analysis is executed on a group of combinatorial
circuits with different characteristics. For each circuit, a partition has
been defined, determining the components as cluster of gates and ex-
ploiting the ATPG to extract the non-compressed set of test vectors,
used to define the diagnostic tests. Table 5.1 reports the characteristics
of the classes of used circuits, 30 in total.

Given the definitions of components and tests with respect to the
set of all faults identified through the ATPG, we computed the coef-
ficients for golden model CTM for each circuit under analysis, using
Equation 5.2. For each circuit, the derived golden CTM model has been
manipulated according to the transformations defined in Section 2.2,
generating three additional CTM matrices for the circuit. Then, each
matrix has been used as input in an independent session of the AF2D
methodology. Syndromes have been computed by injecting random sin-
gle faults in the circuit, and by applying the diagnostic tests.

To avoid bias introduced by model overfitting, a cross-validation
strategy has been adopted. The syndromes for each circuit have been
partitioned in about 10 subsets, and the metrics have been evaluated on
each subset independently. Finally, metrics results have been averaged
from all subsets.

Let us recall that the golden model of the CTM and its transformed
versions contains directly quantitative values. Since the manually cre-
ated CTM contains only three possible values (L, M, and H), the CTM
computed with the proposed transformations use a three-values scale as
well. They correspond to experiments labeled LT and GT, representing
the application of the local and global transformations, respectively. We
also analyzed the global transformation using a 5-values scale, mimicking
a CTM with possible values Low, Low/Medium, Medium, Medium/High
and High, having intermediate values. This experiment is labeled NT.
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Table 5.2: Accuracy: average value for each class of experiments.

Circuit group Golden LT GT NT FT
Group1 0.997 0.995 0.995 0.995 0.993
Group2 0.971 0.937 0.946 0.958 0.923
Group3 0.996 0.962 0.969 0.980 0.956
Group4 0.931 0.901 0.913 0.926 0.895

Finally, experiment FT corresponds to the transformed CTM using the
quantitative scale 0.1, 0.5 and 0.9 (as the one presented in Section 2.4).

The average accuracy of diagnosis is presented in Table 5.2. For all
families of circuits under analysis, we obtain a minimal number of erro-
neous diagnosis (faulty components indicated as fault-free or vice-versa).
This indicator supports the claim about the correctness of modeling the
system with coarser labeled CTM. Furthermore, since transformations
modify the coefficient value, the occasional insertion of a wrong coverage
label, i.e., a coverage which is different from the one in golden model
CTM, does not introduce a significant error in diagnosis.

From results, we observe that the number erroneous diagnosis in-
creases with the size of the circuits (Groups 2 and 4), from a 7% for the
golden model to an 11% for the fixed transformed CTM. This behavior
can be explained by the greater complexity of obtaining a CTM with
high diagnostic resolution in such systems.

The metrics precision and recall for the diagnosis quality evaluation
are reported in Table 5.3 and Table 5.4, respectively. The classification
of diagnosis results in true and false positives (and negatives) is done
by analyzing the probability of each component to be faulty when the
fault is actually injected in that component, using the following thresh-
olds. A diagnosis is considered as correct (positive) when the probability
of a component to be faulty is lower than 20% and the fault has been
injected elsewhere; on the other hand, false negatives are the diagnosis
for an actual faulty component when its probability to be faulty is lower
than 95%. These assumptions about diagnosis correctness are more con-
servative with respect to the AF2D criteria in [ABSF10a], but they are
here used to enforce the claim about coefficient sensitivity of the model.

We can confirm from results that the quality of diagnosis is not sig-
nificantly affected by the adoption of coarse coefficients instead of the
real coverage in the specification of the CTM. The AF2D method-
ology proves to be not sensible to the specific adopted coverage label
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Table 5.3: Precision: average value for each class of experiments.

Circuit group Golden LT GT NT FT
Group1 0.972 0.979 0.940 0.986 0.940
Group2 0.992 0.996 0.996 0.992 0.984
Group3 0.989 0.895 0.900 0.953 0.874
Group4 0.962 0.916 0.913 0.963 0.905

Table 5.4: Recall: average value for each class of experiments.

Circuit group Golden LT GT NT FT
Group1 0.993 0.981 0.983 0.990 0.979
Group2 0.984 0.964 0.960 0.968 0.957
Group3 0.975 0.909 0.911 0.937 0.889
Group4 0.968 0.901 0.922 0.937 0.881

system. From this, we support the claim on confidence about the ro-
bustness of the model with respect to diagnosis quality in presence of a
non-systematic mislabeling of some component-test coverage pairs.

As for the differences in the results, the analysis shows that the di-
mension of the circuit has an impact on the diagnosis. In particular,
the rate of mis-located faults is higher in circuits of a smaller size (lower
precision). This is motivated by the fact that, in small circuits, a test
often covers faults belonging to several different components and the
corresponding CTM has a low localization (diagnostic) power. On the
other hand, when the size of the circuit increases, there are more faults
that are difficult to cover, and therefore the number of false negatives
increases, leading to a lower value for the recall indicator.

5.3 Evaluating Diagnostic Accuracy
This section introduces the main concepts at the basis of the proposed
strategy to evaluate test effectiveness and to improve the test suite for
an increased accuracy in fault diagnosis.

The BBN model, and in particular the a-posteriori test probability
values computed for singleton fault distribution (Definition 17) offers
an insight of the capability of the test-suite to discriminate different
faulty components while analyzing syndromes. We focus on Complete
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Syndrome only, disregarding Partial Syndromes (Definitions 15 and 16),
because we are interested in evaluating the quality of the final diagnosis
produced by the BBN when the outcomes set of the entire test-suite is
available.

Let us consider a BBN, describing a system S containing nc com-
ponents and nt tests. Furthermore, let us consider a scenario where we
know that the location of a fault f in the S is component cx, and let f
be the only fault observed. It is was noting that i) from BBN indepen-
dence properties (Section 2.2), and ii) from the impossibility for some
tests tz1, tz2, . . . to FAIL if they do not involve the faulty component (As-
sumption 2),it is possible to prune the set {PASS, FAIL}nt of all possible
syndromes, excluding those syndromes containing a FAIL for those latter
tests.

Each syndrome is associated with a conditional probability computed
composing the conditional probabilities defined for all component-test
⟨cx, tz⟩ pairs. All pruned syndromes are incompatible with the hypoth-
esis of the fault f to be contained in cx, and they have a null probability
to occur. All remaining syndromes, on the other hand, can be ranked
according to their non-null probability from more to less likely.

Example 20. Figure 5.11 depicts a sample BBN. The observed faulty
component is c2, Because of BBN independence, the probability of a
generic syndrome [t1 = o1, t2 = o2, . . . , t5 = o5], where oz represents
the outcome of obtained after the execution of test tz, can be computed
as

P(t1 = o1, t2 = o2, . . . , t5 = o5|c2 = F) =
∏

P(tx = o1|c2 = F)

High, Medium, Low coverage labels are respectively to quantitative
values 0.9, 0.5, 0.1. Therefore, next to each syndrome the conditional
probability is reported, given that the observed faulty component is c2.
For instance, the probability of the first syndrome where only the first
test o1 =FAIL, while o2 =…= o5 =PASS, is equal to

P(o1 = FAIL,o2, . . . ,o5 = PASS|c2) = P(o1 = FAIL,o3 = o4 = PASS|c2)
= 0.9 · 0.5 · 0.9 = 0.405

⋄
The a-posteriori probability of each syndrome sy is computed multi-

plying its conditional probability P(sy|cx) with the a-priori probability
of the faulty component cx generating it. Given that the same syndrome
sy can be generated by several components of the BBN, it is possible to
obtain from marginalization:
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Figure 5.11: Syndromes ranking (decreasing conditional probabilities).

P(sy) =
∑
cx∈C

P(sy|cx) ·P(cx) (5.11)

We can observe in Example 20 that only two syndromes alone, FPPPP
and FPFPP, represent alone the 81% of the possible valid outcomes
configurations. However, it is necessary to consider 6 of 8 syndromes to
consider the 99% of valid configurations. This information is important
for evaluating the accuracy of test-suite T described in a BBN.

In fact, T if as much efficient in discriminating faulty components as
much the BBN diagnosis conclusion for a syndrome sx, produced by a
faulty component cx, excludes all other components from the FCC set.

Example 21. Figure 5.12 depicts the diagnosis conclusion of the BBN
for the two most likely syndromes generated by component c2 in Exam-
ple 20. In (a), diagnosis for FPFPP is unique, and it is correctly c2. In
(b), diagnosis for FPPPP is labeled as ambiguous, since the FCC set in-
clude, with c2, also c1. In fact, the same syndrome is one of the four pos-

171



5. Improving Diagnosis Model

sible syndromes, namely {FFPPP,FPPPP,PFPPP,PPPPP}, gen-
erated by component c1.

⋄

C1 C2 C3

T1 T2 T5T3 T4
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LowMedium Medium Low
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(a)

Figure 5.12: Unique (a) and Ambiguous (b) diagnosis for syndromes
of c2.

A possible framework for the solution of the diagnostic resolution
evaluation of the test-suite T associated with a BBN can be formu-
lated as the following. Let us consider a syndrome sy, generated by a
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component cx. Equation 5.11 can be used to compute the joint proba-
bility P(sy, cx) of observing the syndrome-faulty component pair ⟨sy, cx.
BBN inference (Section 2.2) computes the probability P(dcx|sy, cx) of
obtaining a diagnostic conclusion dcx (cx ∈ FCC).

P(dcx, sy, cx) =
∑
sy ,cx

P(dcx|sy, cx) ·P(sy, cx) (5.12)

Therefore, Equation 5.12 is a JPD evaluating the diagnostic resolu-
tion of the test suite T , which is as higher as the probability of pairs
dcx ̸= cx is low. Unfortunately, this JPD cannot be exploited directly
because of two problems:

• the direct valuation if computationally unaffordable, because the
number of possible syndrome-component ⟨sy, cx⟩ pairs grows ex-
ponentially with the size of the network;

• any modification at the BBN structure would require a complete
re-evaluation of the JPD, and it can be exploited to compare dif-
ferent test suites TS,1, TS,2, . . . for the diagnosis of system S.

5.3.1 Distance metric
Because of the drawbacks exposed, we need to exploit differently the a-
posteriori probability information of syndromes. We consider again the
geometrical interpretation of the BBN model adopted in Section 4.2.

Recalling the notion of distance in Lp spaces:

Definition 31. Let v be a [v1v2 . . . vnt ] vector of nt elements, where
vj ∈ R. By recalling the notion of distance in Lp spaces, we can define
the distance d(vx,vy) ∈ R between the vector pair (vx, vy) as:

d(vx,vy) = (

nt∑
j=1

(∥vxj − vyj ∥)
p)1/p (5.13)

In our scenario we are interested in computing the distance between
a syndrome and an Attraction Vector, or between each pair of Attraction
Vectors of the components. This is done to evaluate the efficiency of the
available/adopted test set in discriminating the faulty candidates, with
respect to the specified system model.

Since every element of the vector is defined in [0, 1], by increas-
ing p the importance of the terms that are very different from each
other increases. Furthermore, because the values belong to the finite
set CV = {0.1, 0.5, 0.9, 1.0}, the significant pairs contributing to the dis-
tance for high values of p are {0.1, 1.0} and {0.1, 0.9}, corresponding to
the coverage label pairs {H,–} and {H,L}, respectively.
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5.3.2 Overlapping and non-overlapping distances
Even if, from a theoretical point of view, Equation 5.13 might seem the
most appropriate one because of its generality, in the specific case of the
CTM analysis this is not true because of the requirement expressed in
Corollary 1. Therefore, we can proceed with the analysis of the CTM
model.

Let vx and vy be two AVs, obtained from the CTM for components
cx and cy, respectively. It is possible to evaluate the distance d(vx,vy)
between the vectors by Equation 5.14 (nt is the number of tests).

d(vx,vy) = (
∑

tz∈T
(∥cov(cx, tz)− cov(cy, tz)∥)p)1/p (5.14)

However, it is interesting to identify two contributions to such dis-
tance, to highlight the situations where only one of the two component
is covered by a test, which we call non-overlapping distance terms.
Do note that when both components are not covered by a test, the term
does not offer any contribution to the overall distance. Consequently,
we split the distance value into two contributions:

• dnov(vx,vy) for non-overlapping terms
(cov(cx, tz), cov(cy, tz), |cov(cx, tz) = – ∧ cov(cy, tz) ∈ {H,M,L}
and viceversa);

• dov(vx,vy) for all other terms
(cov(cx, tz), cov(cy, tz)|cov(cx, tz) ∈ {H,M,L}∧cov(cy, tz) ∈ {H,M,L}).

Therefore, the equivalence with the previous defined distance in the
Lp space is stated by the following equation:

d(vx,vy) = (dnov(vx,vy) + dov(vx,vy)) (5.15)

When analyzing the contribution of each term, it is possible to clas-
sify them using the property of Corollary 1.

dnov: this term is the most significant one for the diagnostic res-
olution of the CTM. In particular, by considering a generic pair of
components ⟨cx, cy⟩ the larger their distance the larger is the number
of options in selecting a test able to explain if the component is (or is
not) part of the possible faulty candidate set FCS , as defined in Assump-
tion 2. For instance, let cx be the covered component. The optimal case
for the isolation on a fault on cx is that the non-overlapping distance
value with respect to any component cy in the system under analysis.

A side-effect of such an isolation, from the incremental diagnosis
perspective, is the constraint for each testing sequence to contain this
discriminating test, imposing a lower bound to the reduction of the test
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sequence length. In fact, if this is not true, the diagnosis would depend
on tests having a weaker discrimination, and in general this would imply
in increased sensitivity of the model to the definition of CV.

dov: this term is less significant with respect to the isolation prop-
erty. In principle, every distribution of PASS and FAIL outcomes is pos-
sible in the subset of tests in the overlapping coverage for cx and cy.
However, the diagnosis of the the BBN would depend on the a-priori
probability of each pattern of outcomes, defined by the coverage values.
Thus, the faulty component would be the one maximizing such proba-
bility. Clearly, the sensitivity to the values in CV is even stronger than
the dnov case, especially when there are few different labels between cx
and cy. Furthermore, the removal of faulty candidate from the FCS is
weaker when inferred from a PASS outcome occurs in an overlapping test.

Indeed, the distance equation could be rewritten. The contributions
of the single distance terms appearing in the definition are grouped into
class values; for instance, α(H,M) = ∥High −Medium∥p is the class of
coverage level pair {H,M}. We use class cardinalities (the number of
occurrences of each pair to weight class values); for instance, n(H,M) is
the cardinality of {H,M}. Equation 5.15 can be reformulated as shown
in Equation 5.16:

dnov(vx,vy) = (n(H,–) · α(H,–) + n(M,–) · α(M,–) + . . . )1/p (5.16)

Equations can be further simplified looking at the first not null n_
term. For instance, when there is at least one {H, –} pair such term is
n(H,–) ≥ 1 and Equation 5.16 becomes:

dnov(vx,vy) ≈ (n(H,–) · α(H,–))
1/p (5.17)

If no {H, –} pair is present but there is at least one {M, –} pair, we
obtain:

dnov(vx,vy) ≈ (n(M,–) · α(M,–))
1/p (5.18)

Two considerations are worth making. First, the isolation property
evaluated in terms of the distance is a necessary condition for the separa-
bility of the faulty candidate among each pair of components. This must
occur at least when the outcomes of the entire test sequence are available
and are used for fault diagnosis. Partial syndromes, obtained looking at
test outcomes during intermediate steps of the test sequence, might not
respect this property, since it depends on the distribution coverage levels
in both overlapping and non-overlapping terms.

Second, the p term is a sensitivity parameter that can be used to
stress the relative weight of the most significative coverage pair {H, –}
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with respect to any other pair ({M, –}, {H,L}, …). Let us consider for
instance Equation 5.17 and 5.18. Given CV, all classes (α(H,–), α(M,–),
…) assume specific values. Let us consider also the case where α(H,–) = 1
(Equation 5.17). In order to obtain the same distance dnov in Equa-
tion 5.18, the value of n(M,–) depends on the choice of p. For instance,
when p = 1 the distance equivalence occurs for n(M,–) ≥ 2, while when
p = 4, it must be n(M,–) ≥ 10. This can be extended by considering
the overlapping part of the coverage (i.e., {H,L} pairs with respect to
{H,M} or {M,L} pairs), recalling Assumption 2.

Example 22. By referring to the elements of Example 14, it is possible
to evaluate the distance between all pairs of AVs. When p = 4, we
obtain:

d(v1,v2) = 1.106

d(v1,v3) = 0.402 and
d(v2,v3) = 1.166.

Considering independently overlapping and non-overlapping terms,
we have for pairs ⟨c1,c2⟩ and ⟨c2,c3⟩:

dnov(v1,v2) = d(v1,v2) = 1.106,

dnov(v2,v3) = d(v2,v3) = 1.166,

but for pair ⟨c1,c3⟩:

dnov(v1,v3) = 0.001 and
dov(v1,v3) = 0.400

Looking for the minimum of the distance function, component pair
⟨c1,c3⟩ appears to be critical.
On one hand, the reduced distance between vectors AV1 and AV3 pro-
duces a potential ambiguity in the diagnosis. Such ambiguity is evident
when considering, for instance, the complete syndrome [10110].

On the other hand, almost whole distance contribution comes from
the overlapping terms ⟨t2,t5⟩, and this introduces the sensitivity problem
on the selection of the numerical value in CV for coverage label Low (t4).

⋄
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5.4 Improving Test Suites’ Accuracy

In a testing framework, it is possible to classify the entire set of available
tests according to the definitions that follow.

Definition 32. The Available Test Set (ATS) is the set of all available
tests for the system under analysis.

Tests can be both adapted from previous or similar systems or designed
ad-hoc for the current system. The ATS can be seen as a general test
data-base, used by the analyst to define a possible testing strategy.

Definition 33. The Used Test Set (UTS) is the set of tests adopted
by the test designer to analyze the system.

The UTS usually contains all tests that are executed for generic system
verification (fault detection and a group of tests considered sufficient to
localize the component where a possible fault occurred in. This set is
defined to reduce the complexity of the search and selection of the tests
to be executed. It is a subset of the ATS.

With respect to the modeling framework proposed in the present
chapter, the CTM models the current testing policy thus it refers to the
UTS. The proposed algorithm is based on the incremental modification of
the UTS by adding new tests (eventually taken from the ATS) to obtain a
suitable set of tests leading to a CTM characterized by a good isolation
property (and a good discrimination capability). The process is based
on the evaluation of distance between each pair of AVs.

We propose a greedy and iterative algorithm (summarized in Fig-
ure 5.14), that attacks the ambiguity between each pair of components,
resolving the critical situations first.

5.4.1 Algorithm input

The entry point of the algorithm is constituted by the ATS and the CTM,
which is used to initialize UTS. The algorithm iteratively transforms the
CTM by increasing the size of the UTS. During the process, the original
CTM is preserved and no test is removed. This is required because the
diagnosis properties of the matrix (required by test designer) depend on
those tests, in terms of both initial test set minimality (detection) and
faulty component isolation capability (diagnosis).
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5.4.2 New test selection
A distance table (DT ) is computed (line 3) containing the distance be-
tween each pair of AVs. It is used to verify if there is any ambiguity
between components (line 4). If this is the case, the most critical pair
is found (line 5) and an update of UTS is required. The design of a com-
pletely new test, not included in any previous set cannot be inferred from
existing tests; this task would be up to the test or system designer.

Nevertheless, two alternative transformations of the UTS can be im-
plemented at such a high level, and they are described in the following.

Excluded ATS test insertion. The selection of a test contained in the
(ATS–UTS) difference set (i.e., an existing test not included in the CTM) is
possible (lines 6-9). The search of an optimal test is based exclusively on
the coverage of the ambiguous components pair. Such optimal test aims
at maximizing the distance (Equation 5.14) between the components of
the critical pair, should the test be included in the UTS. Such selection
induces a ranking, preferring non-overlapping coverages (e.g., {H, –})
to overlapping ones (e.g., {H,L}). It is possible that several tests are
necessary to solve ambiguity problems; they are added in successive steps
of the algorithm.

UTS test modification. Whenever there is no test in the ATS contain-
ing the desired coverage combination, the modification of a component
coverage in an existing test of the UTS is proposed (lines 10-12). It is
worth noting that the modification represents a proposal to both test
and system designers, since it requires a modification of components
observability with respect to the selected test. In particular, the modifi-
cation should affect the selected components pair only, and the original
test must not be removed from the UTS. There is no constraint to pre-
vent a modification of the coverages of other components in the system
to obtain the required observability. From the methodology perspec-
tive, the focus on the components pair only provides the designer with a
larger degree of freedom for the selection of the best implementation of
such a new test. As an example, consider the situation in Figure 5.13.
In a pipelined architecture, a test stimulates all components, leading to
an overlapping syndrome in the CTM. By modifying the observation
chain (loopback), a component (c3) is not covered by test (t∗(1)1 ), and
the coverage of the last component (c2) of the chain can be improved;
otherwise, if direct probe on the intermediate component (c2) can be
inserted (t∗(2)1 ), the ambiguity can be resolved with respect to the head
of the chain (c1) (see Table 5.5).
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Figure 5.13: Suggestion for a new UTS test.

Table 5.5: Test coverage after observability modifications - proposal (1)
and (2).

t1 t∗(1)1 t∗(2)1

c1 M M –
c2 M H H
c3 L – L

At each iteration, DT is updated with the distances computing using
current UTS (line 15).

5.4.3 Algorithm output

Since this approach is intended as a test designer’s aid, the proposed
solution needs be confirmed step by step as feasible. The algorithm
iteratively builds an Extended UTS (E_UTS) interpreted by a test/system
designer as a reference in two ways. First, it can be considered as the
minimal modification of the test set necessary to obtain a CTM with
an acceptable fault isolation level for all components. Then, since the
algorithm incrementally modifies the UTS by starting with covering the
most critical situations, the approach can be used as a priority schedule
for the design, modification and implementation of a new set of tests to
improve the quality and the accuracy of the fault diagnosis process.
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Input: System Model (CTM), Available Test Set (ATS).
Output: Modified System Model ˆCTM.
Procedure IncreaseFaultIsolation(CTM, ATS)
{
1 k ← 0
2 UTS(k) = extractTests(CTM)
3 DT ← distances(UTS(k))
4 while (not allComponentIsolated(DT ) )
5 (cx, cy)← criticalComponentsPair(DT )
6 tATS = searchATS_Test(cx, cy, ATS)
7 if ( tATS exists )

8 UTS(k + 1)← UTS(k)
∪

tATS

9 ATS ← ATS − tATS

10 else

11 tUTS ← modifyUTS_test(cx, cy, UTS(k), DT )
12 UTS(k + 1)← UTS(k)

∪
tUTS

13 end if

14 k ← k + 1
15 DT ← distances(UTS(k))
16 end while

17 ˆCTM = buildCTM(UTS(k))
18 output ˆCTM

}

Figure 5.14: The test set modification algorithm.

5.4.4 Application and results

The algorithm has been integrated in a framework for functional fault
diagnosis, and here we report the experimental results on six synthetic
CTM, extracted from sample systems, referred to as Board1, …, Board5.
Also a real telecom board has been used to validate the methodology,
provided by Cisco Photonics (Cisco1). Their characteristics are summa-
rized in Table 5.6.

Boards 1 to 3 are designed to verify the correct search of tests in the
ATS to discriminate the ambiguous components pair. Boards 4 and 5 con-
tain some critical components pairs that cannot be discriminated by any
test in the ATS. Cisco board has UTS = ATS allowing UTS test modification
only.

Table 5.7 presents the results of the execution of the algorithm. Col-
umn 1 reports the initial UTS, Column 2 the number of critical compo-
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Table 5.6: Case study boards properties.

Board #Components #Tests in UTS #Tests in ATS

Board1 20 20 40
Board2 20 25 50
Board3 50 33 100
Board4 50 36 100
Board5 50 30 100
Cisco1 55 86 86

nents pairs identified in the original CTM. Column 3 indicates the number
of tests in the ATS added to the UTS to remove ambiguities, Column 4 re-
ports the number of critical components pair remaining after test set
manipulation.

Columns 5 and 6 present the number of UTS tests to be modified to
remove all problems, and the size of the final test set, respectively.

Table 5.7: Result synthesis and comparison.

Init Crit. from Crit. mod Final
Board UTS Cs ATS Cs UTS UTS (%)
Board1 20 54 7 0 - 27 (+35.00%)
Board2 25 12 3 0 - 28 (+12.00%)
Board3 33 9 3 0 - 36 (+8.33%)
Board4 36 16 4 9 5 45 (+20.00%)
Board5 30 14 4 2 3 37 (+23.33%)
Cisco1 86 29 0 29 11 97 (+12.79%)

In Board1, Board2 and Board3, all critical components pairs are removed
by adding existing tests. The increase ratios between the initial and
final UTSes are quite different (35% to 8%) but this coefficient can be
easily explained considering that smaller boards have a limited degree of
freedom for the implementation of orthogonal tests policies, so a larger
number of tests is expected to be required to solve specific ambiguities
among components pairs. For Board4 and Board5, the number of critical
components pairs is quite independent of the required modification, be-
cause in the first case multiple ambiguities were solved by the same tests
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from UTS, while in the latter case several tests were required to achieve
an efficient component diagnosis discrimination.

By referring to the proposed algorithm, it is interesting to look at
the distance table (DT ), reporting all distances between pairs of com-
ponents, to get an immediate view of where ambiguity problems may
arise. For the last board of our experimental session, Cisco1, we show
in Figure 5.15 the computed table, where different colors characterize
the different distances, and their criticality. Red areas denote critical
distance values related to ambiguous components pairs, that the algo-
rithm will attack first; yellow areas are less critical whereas green ones
characterize good distance values.

The application to the real board Cisco1 provided a good validation
of the results gathered from the simulation boards.
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Figure 5.15: Distance table for example board Cisco1.
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5.5 Chapter summary
In this chapter we presented two possible approach aiming at improve
the quality of the AF2D method.

First, an in-depth analysis of the sensitivity of the parameters of
the causal model at the basis of BBN-based diagnosis approaches. The
approach is relative general and it can be applied to a discrete range
of diagnostic BBN-based methodologies. Specifically an evaluation of
sensitivity and robustness with respect to the fundamental model at the
basis of the AF2D method, focusing on the relations between executed
tests, outcomes and syndromes. Experimental analysis performed on
synthetic benchmarks have proved the methodology to be robust, able to
tolerate non-systematic mistakes the test expert might introduce during
the development of the system model.

Furthermore, we introduced a quantitative metric for the evaluation
of the diagnostic resolution of test set has been defined, to identify am-
biguities in the system model in relation to the selection of the test set,
which could affect the quality of a fault diagnosis strategy. The metric
have been proposed to overcome the complexity of a direct inspection of
the BBN properties, and to simplify an automatic search strategy for a
test suite accuracy improvement.

The metric has been defined on a vector space context and its math-
ematical properties have been exploited to provide a localization criteria
for critical ambiguous components pairs. Based on such concept, an
incremental algorithm has been proposed to support the user in the
definition of a new test set with improved efficiency and effectiveness.
Experimental results are reported, showing the correctness and relevance
of the approach.
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In this thesis a methodology called incremental Automatic Functional
Fault Detective (AF2D) has been presented to approach the problem of
system diagnosis, with a particular focus on the accurate identification
of a faulty candidate producing an observable misbehavior.

Given the growing complexity of electronic devices and systems, their
diagnosis is increasing in complexity from the point of view of both fault
modeling and computational complexity of algorithms designed for auto-
matic fault identification and isolation. The challenge of the design of an
effective methodology would impact the efficiency of the manufacturing
process, and this is particularly true for the digital system manufactur-
ing field. The sooner a failure root cause is correctly understood, the
more important is the reduction of diagnosis time, and the higher is the
yield can be achieved.

The proposed AF2D framework exploits a representation of system
at high level of abrastraction, using a modeling based on Bayesian Be-
lief Networks (BBNs). The adoption of a model with coarse granularity
allows the description of complex, deeply interconnected systems; at the
same time, the methodology provides systems and test engineers with
the primitives required for the description of relationships between sys-
tem components and the potential candidates for fault localization, as
well as between those latter and the outcomes of the tests of a target
diagnostic suite. Probabilities are provided as qualitative labels from a
coarse-grained scale and not as quantitative values from a fine-grained
scale, in order to simplify and accelerate the system and fault modeling

185



6. Conclusions

phase. Underneath the BBN, an inference engine is in charge of per-
forming the exact calculation of the probability of each candidate to be
charged as the cause root of the observable symptoms, for both complete
and partial syndromes.

Three main research directions within the application of the diagnos-
tic methodoly are tackled in this thesis: the initial scouting of a system
for fault detection, the exploration of the solution space for a fast identi-
fication of the failure cause, and the quantitative robustness analysis of
the models with respect to diagnostic precision and fault isolation reso-
lution.

For the first problem, cost-effective policies to identify a good sub-
set of tests providing good coverage of the system under inspection are
proposed, applying an Integer Linear Programming (ILP) optimization
approach to the BBN model. Test suites obtained with this method are
compared to other test suites generated using more fine-grained models
of the same system, in order to provide a reasonable justification for the
adoption of a model at an high level of abstraction. Furthermore, an hill-
climbing technique is proposed for sorting tests used to scout the system
searching a fault, with the aim to optimize the time spent for detection,
and to increase the amount of time available for the real diagnostic pro-
cess. This leads to an improvement of efficiency since the probability of
specific failures, with respect to others, happens to be higher in specific
time windows of the system manufacturing.

A considerable effort is devoted to the adaptive part of the methodol-
ogy, targeting the minimization of the cost of each tests session without
recurring to a static test sequencing approach. In particular, a geomet-
rical interpretation of BBN parameters is proposed, and a quantitative
evaluation through a metric distance within a vector space is used to ob-
tain an optimal step-by-step selection of tests to be executed. Optimiza-
tion exploits the history the diagnosis for the system under inspection,
represented by test outcomes collected during the session. The selection
aims at maximizing the relative information that a test outcome would
apport to diagnostic conclusions, reducing the amount of redundancy
with respect to previously executed tests while minimizing the cost of
executing it.

In the same geometrical context, a metric for the identification of a
stop condition is proposed, whose purpose is to interrupt the diagnosis
when no further information from remaining tests would refine the di-
agnostic conclusion any longer. Both simulated synthetic systems and
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industrial case studies have been used to validate the robustness and the
efficiency of the proposal.

In the last part, a sensitivity analysis of the robustness of the diag-
nostic conclusions is carried on, in order to investigate the claim of cor-
rectness of a fault model at an high level of abstraction like the BBN.
Given the complexity of such a task, a statistical oriented validation
is proposed, developing a quantitative comparison of the BBN model
of a system with a fine-grained modeled, well established and mature
methodology. Indeed, targeting a stuck-at fault model on combinational
circuits, a BBN-compatible model is extracted for benchmark circuits
used for fault detection and diagnosis problems, and the results of AF2D
methodology are compared with the results provided by an ATPG tool.
Statistical correlation underlines how the high-level model can be rea-
sonably used for diagnosis; furthermore, it points out how the amount
of detailed information about the internal behavior of the system that
cannot be investigated (being unaffordable because of complexity and/or
time or cost constraints) is not critical for the obtention of valid system
diagnosis.

Besides this problem, an approach is suggested to improve the diag-
nostic resolution of existing test suites, with a minimal modification both
of number of tests (impacting diagnosis time) and of their specific cover-
age of components (impacting test development effort). This algorithm
is verified on synthetic systems and in a real industrial scenario.

6.1 Future extensions
In the future, specific extensions could be proposed to adapt the AF2D
methodology in order to accept specific constraints appearing in indus-
trial scenarios. In particular, two main aspects of diagnostic testing have
been considering with simplification assumptions, to be relaxed for the
application of the methodology on a larger scale.

Test cost evaluation An approach usually implemented in the indus-
try is to consider the test cost as a function of test execution time. The
reason for this assumption is the fact that test execution time can be
easily extracted from previous diagnostic sessions, if an opportune in-
frastructure is in place, and its forecast for future instances its relatively
accurate.

Other recurrent or non-recurrent test costs (e.g., test set-up opera-
tions) are not usually modeled because they are hard to estimate accu-

187



6. Conclusions

rately, as for instance their execution time may be subject to a large
variability. However, some operation patterns exist that can be used to
evaluate the impact of the execution of a test in a specific condition.
This evolution of the methodology, has a side effect, would also improve
the adaptive test selection policy, taking into account a more reliable
estimation of test execution time (or in general, cost) while computing
the optimal tradeoff with the information carried by the test outcome.

Test execution constraints When dealing with real industrial con-
texts, the case where all tests of the test suite can be executed is relatively
rare. Rather, it is more likely that there are preconditions to be matched
before a particular test can be launched; a set-up or configuration op-
eration might be required, or simply the execution of a preliminary test
could be necessary in order to ensure that the system is in a consistent
state and the outcome of the targeted test is significant.

Because of this, the exploration for the search of the next test to
be executed among the potential candidates of the test suite is to be
organized using some model primitives (e.g, test order constraint, pre-
and post- conditions, mutual exclusive execution) to be implemented
alongside the BBN model, aiming at a more accurate selection of the
optimal test sequencing policy.

Application of AF2D in other scenarios The AF2D framework
has been used to target a particular family of digital systems, as the
experimental results have reported. However, the model is in principle
general enough to deal with different family of devices, or even non-
electronic systems. For instance, an approach under investigation is the
possibility to adopt the methodology in the domain of soft-verification on
microprocessors, where the components of the system are the constitu-
tive elements of the microprocessor itself, while tests are in this context
particular instruction or microinstruction, whose produced results cor-
respondency with expected values represents the PASS or FAIL outcome.
For this goal, given that the modeling complexity appears to be higher,
an opportune evolution of the 4-layers BBN fault model is required in
order to tune the methodology to target this particular diagnosis.
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