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Chapter 1

Introduction

In several domains, like material sciences, chemistry and even biology, the evolution of

multi-particle systems is often governed by thermally activated processes having a dra-

matic effect on the structure. These physical events consists of passages between different

stable configurations of the system, separated by energetic or entropic barriers. As they

usually occur with a very low probability, they are indicated as rare events; their frequency,

described by the reaction rates, fully determines the global kinetics of the system via its

master equations. Examples of physical phenomena controlled by such rare events are pro-

tein folding in biology, defect diffusion and crystal nucleation in condensed matter physics

and cluster rearrangement in chemistry.

Rare events are characterized by the fact that the typical time needed for them to start

is very large, while their duration is rather short, e.g. of the order of the picoseconds in

dense molecular systems. This separation of time-scale is the very definition of metasta-

bility; its origin may be energetic or, more likely in high dimensional systems, at least

partly entropic, when it is related to pathways hard to find. Both features (energetic and

entropic) are investigated once one resorts to a free energy description of the activation

barrier, able to take into account temperature effects. There are two main issues in the

study of rare events: the determination of reactive paths and the computation of reaction

rates.

First, reactive paths linking the initial state to the final one have to be found. This

problem is intimately related to the exploration of the free energy landscape of a multi-

particle system. The determination of reactive paths is connected to the topology of the

energy landscape underlying the system dynamics, and requires the localization of tran-

sition regions separating stable states. These regions have often a complex conformation,

being constituted not only by simple barriers, but by a sequence of saddle point and in-

termediate metastable basins. This implies, in turn, the problem of the construction in

many body systems of reaction coordinates able to accurately discriminate different sta-

ble and unstable configurations. Indeed, handling and visualizing systems with a large

number of degrees of freedom requires the elaboration of collective coordinates, i.e. a few

variable given by functions of the total number of configurational degrees of freedom. Very

well-known examples of collective variables are the bond-orientational order parameters,
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that are a function of the distances between all particles composing the system. However,

the degree of coarse-graining (i.e. the reduction of the number of configurational variables

used to describe the system) related to these reaction coordinates needs to be not too

strong, in order to avoid a loss of information on the system structure, and subsequently

a wrong representation of the energy landscape: in some cases, for example in the study

of crystalline symmetries, order parameters take values that do not correspond one-to-one

to the different states of the system. This problem worsens when a precise description of

the position of transition states in phase space is needed in order to compute quantities

like reaction rate (see below), as using inadequate reaction coordinates can induce poor

numerical estimations.

The exploration of energy landscapes of complex systems is, for these reasons, a very

broad research field, and several exploration techniques have been proposed in the past.

The main distinction can be made between zero and finite temperature methods, implying

the exploration of the potential energy surface the first, and of the free energy surface the

second. Obviously, the latter is more indicated to a proper study of thermally activated

events. The first category contains for instance several eigenvector-following methods:

in these techniques, saddle points are searched following the unstable direction of the

potential energy surface indicated by its negative curvature. In other words, this requires

the determination of the matrix of second derivatives of the potential energy - the hessian

matrix - that presents a spectra with (some) negative eigenvalues corresponding to unstable

directions on saddle points. Thus, a preliminary step prior to calculating finite-temperature

reaction paths using these sampling techniques may consist in locating the saddle points

of the energy and the corresponding energy minima using one of the eigenvector following

methods described in the literature (e.g. the activation-relaxation technique, [9] Optim [11]

or the dimer method [12]). A limitation of these methods is that energy saddles only

correspond directly to the actual barriers for the dynamics if the temperature is very low,

otherwise the entropic contribution to the dynamics becomes relevant.

Conversely, finite temperature methods consist in a large variety of free energy exploring

algorithms [2, 71], like histogram methods, biased sampling, umbrella sampling, Wang-

Landau, adiabatic switch, or metadynamics [6], that are also very often used to study

nonequilibrium problems.

A different approach is followed by methods involving the direct sampling of path

ensembles, rather than phase space configurations, and has been developed during the

last decade. [2] The strategy is to restrict paths to the subset of reactive paths, those that

interpolate between reactant and product basins. Examples of such methods are transition

path sampling, [3, 4] transition interface sampling [5]. Another family of methods such as

forward flux sampling [7] simulate the evolution in time of the system, and include some

form of bias that guarantees that the reaction is observed.
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Another approach that may be used to explore the free-energy barriers between basins

[14, 13] is inspired by Supersymmetric Quantum Mechanics, which has been used in the

context of field theory to derive and generalize Morse Theory, precisely the analysis of

the saddle points of a function. Transposing this formalism to statistical physics yields

a family of generalized Langevin dynamics, converging to barriers and reaction paths of

different kinds, rather than to the equilibrium basins. The resulting method involves the

evolution in phase space of a population of independent trajectories that are replicated or

eliminated according to the value of their Lyapunov exponent.[14]

Indeed, the relation between reactive paths, diverging trajectories and instability in dy-

namical systems is deeply exploited in this work for the determination of the first ones. The

theoretical basis of this relationship is given by the Lyapunov instability theory, that pro-

vides observables, called Lyapunov exponents, enabling to quantify the degree of chaoticity

on a dynamic system. Chaoticity can be indeed related to the potential energy surface

conformation via the spectra of the hessian matrix (this point will be explained in detail

in Chapter 3) and transition regions are indeed regions of unstable dynamics. Hence, the

determination of diverging trajectories helps in finding barriers separating stable states.

The second issue in rare events studies concerns the determination of the frequency at

which these events happen. This frequency is usually indicated as reaction rate, and is

indeed a way to quantify "how rare" these events are. A large variety of approaches have

been proposed in the past in order to obtain a theoretical description of reaction rates,

the most important being the transition state theory elaborated by Eyring, Kramers and

others, as well as the "mean first passage time" approach [17]. The fundamental hypothesis

for reaction rate theories is again the presence of a well defined separation of time scales:

the time that one has to wait in order to see a rare event happening is much larger than

the time needed to the system to relax in a given state. The computation of reaction rates

is usually related to intermediate time scales between these two times.

Even though physical times of activated events can be achieved in computer simulation

using molecular dynamics, monitoring rare fluctuations is computationally expensive and

still remains a challenge because of the long waiting time for the event to occur. Therefore,

evaluating the frequency of rare events from numerical simulations can also be very time

consuming, as the probability of observing one of these passages is very low: for instance,

the migration of a vacancy in α-Iron at 500K typically happens every microsecond, while

the usual time steps for molecular dynamics is of the order of a few femtoseconds.

To overcome this problem, several alternative strategies have been developed over the

past years in order to accelerate the dynamics, and enhance the probability of observing

infrequent events during a short simulation, based on importance sampling (see for general

reference [71]). A common idea behind these techniques is to bias the dynamics of the

system in order to enhance the occurrence of reactions, or to use previous knowledge of the
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outcome of the reaction and to fix the endpoint of the trajectory. In order to implement

this, in many cases one needs again to know an order parameter able to discriminate

between the reactant basin, the saddle regions and the product basin.

Transition path sampling [4] (TPS), already mentioned above, allows to estimate the

frequency of rare events by means of path ensemble averages: reaction rates for appropriate

time scales are indeed evaluated from the ratio of the number of reactive trajectories on

the total amount of paths sampled. However, a sufficient number of reactive paths has to

be observed, in order to obtain reliable statistics.

In this PhD thesis, both problems of characterizing reactive paths and evaluating asso-

ciated reaction constants have been addressed. The first study, focused on the characteriza-

tion of reactive paths, is presented in details in Chapter 2, and consists of a method called

transition current sampling (TCS), derived from a reformulation of the Lyapunov-weighted

dynamics of Tailleur and Kurchan [15]. This method is based on the numerical simulation

of the probability currents flowing between stable and metastable states, and derives from

the SuperSymmetric Langevin dynamics mentioned above. The theory guarantees that by

selecting trajectories having larger Lyapunov exponents, the bias is just what is needed

so that the population describes the evolution of the transition current, rather than the

evolution of configurations,[15] as it would in an unbiased case. The advantage is that

the convergence of the current distribution is much faster than the typical passage time.

The method and its validation have been published as "Simulating structural transitions

in transition current sampling: the example of LJ 38", in Journal of Chemical Physics.

The second study is motivated by the necessity of computing reaction constants. This

was difficult to achieve within the transition current sampling approach, as TCS is based

on the numerical simulation of probability currents, rather than probability distribution.

Therefore we elaborated a new approach connected to TCS, that consists in exploiting the

advantageous features of a transition path sampling in terms of the computation of reaction

constant, but introducing at the same time a bias based again on Lyapunov exponents.

This bias can subsequently be removed in the evaluation of reaction rates resorting to an

adequate unbiasing statistical tool, the MBAR method. This second work, named local

Lyapunov biased transition path sampling (LyTPS) is presented in Chapter 3, and has

been submitted to the Journal of Chemical Physics as "Calculation of reaction constants

using transition path sampling with a local Lyapunov bias".

This last method is finally applied to the study of thermally activated events occur-

ring in materials of nuclear interest. In particular, the focus was set on post-irradiation

point defect migration in crystals, namely vacancies and divacancies, where the migration

mechanism and the involved time scales allow a description based on rare events theory.

We employed the method developed in Chapter 3 to compute migration rates and give

an estimate of migration entropies. The results obtained are reported in Chapter 4, and
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have been presented in a proceedings of the conference MRS fall meeting 2011. Migration

rates computed are subsequently employed in order to simulate resistivity recovery, and

numerical results are furthermore compared with experiments.





Chapter 2

Transition current sampling

Contents

2.1 Probability currents and reaction paths . . . . . . . . . . . . . . . . 8

2.1.1 Probability distributions for stochastic systems . . . . . . . . . . . . 8

2.1.2 Transition probability currents . . . . . . . . . . . . . . . . . . . . . 10

2.2 Probability currents as vectorial averages . . . . . . . . . . . . . . . 15

2.3 A numerical strategy for sampling transition currents . . . . . . . 18

2.3.1 Diffusion Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Algorithm for Transition Current Sampling . . . . . . . . . . . . . . 21

2.4 Numerical applications . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Underdumped Langevin dynamics for 1-d potential . . . . . . . . . . 23

2.4.2 LJ38 cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Rare events as described in the introduction are intimately connected to the deter-

mination of reactive paths in phase space. These reactive paths indicate, indeed, the

transformation undergone by the system to pass from the initial to the final state, cross-

ing the transition region. Reaction paths and probabilities are inferred, in a usual Monte

Carlo or Molecular Dynamic simulation, directly from the evolution of the positions of the

particles. The process becomes time-consuming in many interesting cases in which the

transition probabilities are small.

A radically different approach consists of setting up a computation scheme where

the object whose time evolution is simulated is the probability current linking stable or

metastable states, the transition current, that passes through saddles or transition regions

of the system. The relevant timescale for such a computation is the one needed for the

transition probability rate to reach a stationary level, and this is usually substantially

shorter than the passage time of an individual system.

This method has been first developed by Tailleur and Kurchan [15] a few years ago,

resorting to the quantum mechanics theory of SuperSymmetry. In this PhD thesis, their

work has been rederived in a completely classical way, and further applied to a complex

many body system in order to validate it.
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In this chapter we present a derivation of the probability current dynamics without

resorting to quantum theory (section 2.1.2). Extending the more concise demonstration of

Ref. [16], we will show how to reproduce the evolution in the phase space of the ‘transi-

tion’ probability current between equilibrium basins, thus achieving a probability current

sampling of the system dynamics. As the transition current evolves in time, it explores

the different barriers, indicating which states are reached after different passage times.

Starting from an initial equilibrium configuration, far from equilibrium phenomena are

easily sampled, as the simulated current is an intrinsically out of equilibrium quantity [14].

In Sec. 2.3.2, we discuss the actual population dynamic algorithm that may be used to

simulate the probability current.

Finally, in order to assess the performances of transition current sampling, we present in

section 2.4 the ‘benchmark’ case of 38 particles interacting via the Lennard-Jones potential

(‘LJ38’ cluster), and we show how this method may be used to explore the reactions that

take place between different phases, recovering efficiently known results and uncovering

new ones with small computational effort.

The main achievements of this first work are presented in the article published in J.

Chem. Phys. 135 034108 (2011). Herein, we also give in more details explanations that

were omitted in [88] for brevity reasons.

2.1 Probability currents and reaction paths

2.1.1 Probability distributions for stochastic systems

Let us consider a many-body 3-dimensional system, whose N identical particles of positions

{qi}i=1,...,3N in phase space interact via a configurational potential V
(
{qi}i=1,...,3N

)
. The

system is coupled to a thermal bath at temperature T, and evolves in a 6N -dimensional

phases space - accounting for both positions qi and momenta pi - according to the Langevin

dynamics described by the following equations:

q̇i = mi
−1pi (2.1a)

ṗi = −∂V
∂qi

− γpi +
√

2miγkBTηi (2.1b)

where mi are the masses related to the i -th particle, γ is the friction parameter and the

ηi are independent gaussian white noises of unit variance and zero average.

We briefly sketch here passages from the Langevin equation of motion to a probabilistic

description of a stochastic process. The probability distribution of the positions q ≡
(q1, · · · q3N ) and momenta p ≡ (p1, · · · p3N ) of the system particles at time t is defined as

P (q,p, t) = 〈δ(p − q̇(t))δ(q − q(t))〉 (2.2)
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where the average 〈...〉 is taken over the equilibrium ensemble. As the Langevin dynamics

is a Markovian process, P obeys a (Smoluchowski) equation [51]

P (q,p, t) =

∫
dp′dq′P (q′,p′, t− dt)T (q′,p′|q,p; dt) (2.3)

where T (q′,p′|q,p; dt) is the transition probability to go from state (q′,p′) at time t to

(q,p) in a time interval dt is such that γdt << 1

For concision, we indicate a state in phase space as x = (q,p). The transition proba-

bility can be written with the Kramers-Moyal expansion [1] as

T (x′|x; dt) = [1 +
∑

n

∑

i

1

n!

−∂n
∂xi1 · · · ∂xi1

M
(n)
i1,··· ,in

(x; dt)]δ(x′ − x) (2.4)

where we introduced n-th order momenta

M
(n)
i1,··· ,in

(x; dt) =

∫
dy(yi1 − xi1) · · · (yin − xin)T (y|x; dt). (2.5)

Eq. (2.4) This is indeed an expansion in Taylor series of δq = q− q′ and δp = p− p′, for

a small dt. Inserting Eq. (2.4) in Eq. (2.3) and taking the limit dt→ 0, Eq. (2.3) becomes

∂P (x, t)

∂t
=
∑

i

∑

n

−∂n
∂xi1 · · · ∂xi1

D
(n)
i1,··· ,in

(x, t)P (x, t) (2.6)

where coefficients D are related to moments M as

M
(n)
i1,··· ,in

(x; dt)/n! = D
(n)
i1,··· ,in

(x, t)dt +O(dt2). (2.7)

Coefficients D(n) can be explicitly computed by taking for the transition probability T

in the computation of moments M the expression

T (q′,p′|q,p; dt) =δ
(
q− q′ − pdt

)
·

δ

(
p− p′ +

∂V

∂qi
dt+ γpdt−

∫ √
2miγkBTηi(τ)dτ

) (2.8)

and D(n) vanish for n ≥ 3.

Computing coefficients D(n) in Eq. (2.6) leads to the Kramers-Klein equation [1]

∂P

∂t
=
∑

i

[
∂

∂pi

(
miγkBT

∂

∂pi
+ γpi +

∂V

∂qi

)
− ∂

∂qi
pi

]
P (2.9)

that is widely used to describe the time evolution of the probability distribution P for

systems in weak or intermediate friction regime.

In the limit of large friction γ → ∞, where inertia can be neglected, the system

dynamics in Eq. (2.1) reduces to a standard overdamped Langevin dynamics

γq̇i = − 1

mi

∂V

∂qi
+

√
2γkBT

mi
ηi , (2.10)
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The system state is now described only by positions q, and the probability P (q, t) of

being at position q ≡ (q1, · · · q3N ) then evolves with the Fokker-Planck equation [1]

∂P

∂t
=
∑

i

1

miγ

∂

∂qi

(
kBT

∂

∂qi
+
∂V

∂qi

)
P ≡ −ĤFPP , (2.11)

where we have introduced the Fokker-Planck operator ĤFP .

2.1.2 Transition probability currents

Reading P as a probability density naturally leads to interpret Eqns. (2.11) and (2.9) as

continuity equations: it is therefore possible to define a probability current J as a flux of

probability flowing between configurations of the system. This current has the outstand-

ing property of being significantly nonzero on transition regions like saddles, or metastable

basins located along the transition path between stable configurations. Probability cur-

rents are then suitable to indicate the conformation of reactive paths in phase-space. We

present herein first the expression of the probability current for a system with overdumped

Langevin dynamics, i.e. whose probability distribution evolves accordingly to the Fokker-

Planck equation (Eq. (2.11)); then we express J in the case of a Langevin dynamics with

inertia, using Kramers equation (Eq. (2.9)).

Extending further the work of Ref. [14], we derive herein the evolution equation for the

associated probability currents, starting from the evolution equation for the corresponding

probability density.

2.1.2.1 Overdamped Langevin dynamics

We define the probability current for the Fokker-Planck equation as

Ji ≡ − 1

γmi

(
kBT

∂

∂qi
+
∂V

∂qi

)
P (2.12)

in order to write Eq. (2.11) as a continuity equation for the probability density:

∂P

∂t
+
∑

i

∂Ji
∂qi

= 0 . (2.13)

For systems with separation of time scales, the dynamics can be split into two regimes.

Starting from an arbitrary probability distribution, P (q; t) relaxes rapidly into a sum of

contributions centered on the metastable states. At much longer times, the rare transitions

between the metastable states make P (q; t) relax to the equilibrium distribution. Two time

scales can also be identified for the dynamics of the probability current. While the proba-

bility density rapidly relaxes into the metastable states, the probability current converges

on the same time scale to the most probable transition paths between the metastable
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states. Then, the late time relaxation towards equilibrium corresponds to a progressive

vanishing of the current, when forward and backward flux between each metastable state

balance [14]. Note that the same line of reasoning holds for non-equilibrium systems in

which the forces do not derive from a global potential. In such systems, the probability

current never vanishes and converges instead to its steady-state value.

If one were able to simulate the evolution of the probability current, one would thus

have all the knowledge relevant for the transitions between metastable states, while only

having to simulate the system for relatively short time-scales (similar to the equilibration

time within a metastable state). As mentioned in the introduction, simulating directly the

transition current is the goal of this paper and we now derive a self-consistent evolution

equation for Ji.

Let us define the current operator Ĵi:

Ĵi ≡
1

γmi

(
kBT

∂

∂qi
+
∂V

∂qi

)
, (2.14)

so that the probability current and the Fokker-Planck operator becomes

Ji = ĴiP (2.15a)

ĤFP = −
∑

j

∂

∂qj
Ĵj . (2.15b)

The evolution of the probability current is then given by

J̇i = ĴiṖ = −ĴiĤFPP = −
∑

j

Ĵi
∂

∂qj
ĴjP . (2.16)

where we have assumed that HFP does not depend explicitly on time. Straightforward

algebra shows that Ĵi ∂
∂qj

= ∂
∂qj
Ĵi− ∂2V

∂qi∂qj
and ĴiĴj = ĴjĴi which turns equation (2.16) into

J̇i = −
∑

j

(
∂

∂qj
Ĵj Ĵi −

∂2V

∂qi∂qj
Ĵj

)
P . (2.17)

Using the expressions (2.15a) and (2.15b) for the currents and the Fokker-Planck operator

we obtain

J̇i = −HFPJi −
∑

j

∂2V

∂qi∂qj
Jj . (2.18)

Note that the equations (2.15a) and (2.17) are not self-contained: the knowledge of P (r)

is required to compute Ji. On the contrary, (2.18) depends exclusively on the current,

and can readily be used to simulate Ji, without having to compute P (r) beforehand. The

only condition is that the current distribution at the initial time J0
i indeed derives from a

probability distribution, i.e. is of the form:

J0
i ≡ − 1

γmi

(
kBT

∂

∂qi
+
∂V

∂qi

)
P 0 = −kBT

γmi
e
− 1

kBT
V ∂

∂qi

[
e

1
kBT

V
P 0
]

(2.19)
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This means that the initial current distribution should be such that the quantity Ai

Ai = mie
1

kBT
V
J0
i (2.20)

is a gradient, ∂Ai

∂qj
=

∂Aj

∂qi
. A particularly simple initial condition is obtained if one assumes

that P 0 is Gibbsean P 0 ∝ e
− 1

kBT
V

in a region Ω, and zero elsewhere. Then, from Eq.

(2.19), J0
i is zero everywhere except on the surface of Ω, where it takes the form of a

vector normal to the surface of Ω, and with amplitude proportional to the Gibbs weight.

The evolution of current distribution given by Equation (2.18), starting from an ap-

propriate initial current J0 converges to the stationary distribution of currents between

metastable states on the same time scale as the usual Langevin equation converges to

metastable-state. It is thus not necessary to wait for rare events to identify the transition

path between the metastable states, an important improvement over standard MD meth-

ods. If there are several metastable states and transitions with different rates, the current

distribution at longer times concentrates on the paths between regions that have not yet

mutually equilibrated, and vanishes in transitions between states that have had the time

to mutually equilibrate.

2.1.2.2 Langevin dynamics with inertia

In many physical situations inertia plays an important role and one cannot rely on over-

damped Langevin equations [17]. Taking also into account degrees of freedom related

to momenta is therefore necessary: we derive therefore an expression for the probability

current starting from the Kramers equation.

As in the overdamped case, this can be written as a conservation equation where the

probability current in phase space is given by

Jqi =
pi
mi

P (q,p; t) (2.21a)

Jpi = −
(
miγkBT

∂

∂pi
+ γpi +

∂V

∂qi

)
P (q,p; t) (2.21b)

Once again, the current contains all the information about transitions between metastable

states. There is however a conceptual difference: the presence of inertia makes it inherently

difficult (and indeed, useless), to compute (2.21) as it stands. The reason is that the phase-

space current

Jqi =
pi
mi
Peq Jpi = −∂V

∂qi
Peq . (2.22)

is non-zero even in canonical equilibrium. For example, in a harmonic oscillator H =
1
2

[
p2

m + q2
]

, the phase-space current in equilibrium reads

Jqi =
pi
mi
Peq Jpi = −qiPeq . (2.23)
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and turns clockwise in circles around the origin.

For this reason, the part of the current that corresponds to transitions between

metastable states is screened by the large contributions of the currents within metastable

states. The probability current (2.21a) and (2.21b) does not really represent the transition

paths between metastable states.

We can however define a transition current [13]

J t
qi = Jqi + kBT

∂P

∂pi
(2.24a)

J t
pi = Jpi − kBT

∂P

∂qi
, (2.24b)

which has two interesting properties. Firstly, this current differs from the probability

current by a divergenceless term and thus also satisfies the continuity equation Ṗ+∇·Jt =

0. Fluxes out of a closed surface surrounding a metastable state are then the same for

the probability and transition currents. The latter current thus contains the relevant

information about, for instance, transition rates. Secondly, the transition current vanishes

in equilibrium, as can be checked by comparing (2.22) and (2.24). This current thus

contains only the information relevant for the transitions between metastable states and

is not screened by the large ‘equilibrium’ currents within them.

Using algebra similar to that of the overdamped case, we show that the reduced current

evolves with
∂Jt

∂t
= −HKJt −M · Jt with Jt =

(
J t
qi

J t
vi

)
(2.25)

where the 6N × 6N matrix M is given by

M =

(
0 −δij

1
mi

∂2V
∂qi∂qj

γδij

)
. (2.26)

Again, (2.25) is a self-consistent equation for the transition current and we shall now show

how it can be simulated.

The derivation of the time evolution equation (2.25) for the transition current in the

underdamped (i.e., Kramers) case of section is the following.

The classical Kramers probability current J, presented in equations (2.24) , can indeed

be written, as in the Fokker-Planck case (Eq. (2.15a)), in the operatorial form J(r,p, t) =

ĴP (r,p, t), where the components of the current Kramers operator are

Ĵqi =
pi
mi

(2.27a)

Ĵpi =−
(
miβ

−1γ
∂

∂pi
+ γpi +

∂V

∂qi

)
(2.27b)
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In equations (2.24), a transition current Jt has been introduced, which can be expressed

in turn with operators as

Jt = ĴtP =
(
Ĵ+ T̂

)
P (2.28)

where Ĵ is the Kramers current operator reported above, giving the usual phase-space

current J, and the ‘transition’ operator

T̂ri =
1

β

∂

∂pi

T̂vi = − 1

β

∂

∂qi
(2.29)

T̂P is a divergenceless term. As already remarked in section 2.1.2.2, the transition current

still satisfies the continuity equation

∂P

∂t
= −∇q,p · Jt (2.30)

thanks to the divergenceless of T̂P . We have introduced here the phase-space divergence

∇q,p ≡ (∇q,∇p)

As in section 2.1.2.1, we proceed now in deriving explicitly the time evolution equation

of Jt. Multiplying both sides of the continuity equation above (indeed identical to the

Kramers equation (2.9)) by the transition current operator leads to

Ĵt
∂P

∂t
= −Ĵt∇q,p · ĴtP (2.31)

On the l.h.s. the transition current operator can be commuted with the time derivative.

The r.h.s. of (2.31) can be rewritten with commutators as

Ĵt∇q,p · Ĵt = ∇q,p · Ĵ
(
Ĵ+ T̂

)
+
[
Ĵ,∇q,p · Ĵ

]
+
[
T̂,∇q,p · Ĵ

]
(2.32)

using (2.31) and the zero divergence property of T̂.

Resorting to definitions of the current operator Ĵ and the transition operator T̂ given

in (2.27a), (2.27b) and (2.29), explicit expressions for commutators in (2.32) can be

recovered with straightforward algebra: the term
[
Ĵ,∇q,p · Ĵ

]
gives

[
Ĵqa ,∇q,p · Ĵ

]
P = −

∑

i

δia

(
Jpi −

γ

β
∂pi

)
P (2.33a)

[
Ĵpa ,∇q,p · Ĵ

]
P =

∑

i

δia

(
γJpi −

γ

βmi
∂qi

)
P −

∑

i

1

mi

∂2V

∂qi∂qa
piP (2.33b)

while
[
T̂,∇q,p · Ĵ

]
can be expressed as
[
T̂qa,∇q,p · Ĵ

]
P =

∑

i

β−1δia (∂qi + γ∂pi)P (2.34a)

[
T̂pa,∇q,p · Ĵ

]
P =

∑

i

β−1 ∂2V

∂qi∂qa
∂piP (2.34b)
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Inserting now (2.33) and (2.34) in the r.h.s. of Eq. (2.31) yields

(Ĵqa + T̂qa)(∇q,p · Ĵ)P = (∇q,p · Ĵ)J t
qa −

∑

i

δia(Jpa − γ(β)−1∂piP )

+
∑

i

β−1δia(∂qi + γ∂pi)P (2.35a)

(Ĵpa + T̂pa)(∇q,p · Ĵ)P = (∇q,p · Ĵ)J t
pa +

∑

i

δia(γJpa −
γ

β
∂qiP +

∂2V

∂qi∂qa
Jqi)

+
1

β

∂2V

∂qi∂qa
∂piP (2.35b)

that can be recasted as

Ĵt(∇q,p · Ĵ)P = (∇q,p · Ĵ)ĴtP +

(
0 − δia

mi

∂2V
∂qi∂qa

γδia

)(
Jqa + β−1∂paP

Jpa − β−1∂qaP

)
(2.36)

leading to equation (2.25).

2.2 Probability currents as vectorial averages

The probability densities P (q, t) (for overdumped Langevin) and P (q,p, t) (for under-

dumped Langevin) are scalar fields, usually obtained numerically by simulating many

copies of the system, evolving their positions and velocities with the corresponding

Langevin equations (2.1) and (2.10), and constructing histograms. On the contrary, the

probability currents are vector fields, hence cannot be obtained in the same way: they also

require vectorial degrees of freedom. We herein present a population dynamics that can be

used to construct the evolution of the transition current in section 2.2; the corresponding

numerical algorithm will be detailed in section 2.3.2.

In order to proceed further for a numerical strategy to sample the probability current,

we note that Tanase-Nicola and Kurchan have shown in [16] that the probability current

for an overdumped stochastic dynamics in Eq. (2.12) can be written as a vectorial average

J =

∫ 3N∏

i=1

dui u F (q,u, t). (2.37)

over some vectors u that are introduced with the aim of expressing the vectorial degrees

of freedom of J. Vectors u are indeed additional degrees of freedom that will be used to

embed the probability current in a larger phase space, and then traced away by integration

in Eq. (2.37) to recover J. The joint probability function F (q,u, t) couples the distribution

of the positions of the system particles with the corresponding vectors u.

Following [14], we first show that the expression (2.37) for the probability current

satisfies the probability current evolution equation (2.25) and gives the evolution equation
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for F . Indeed, plugging Eq. (2.37) into Eq. (2.25), the lhs of Eq. (2.25) reads

∂Ja
∂t

=

∫ 3N∏

i=1

dui ua
∂F (q,u, t)

∂t
(2.38)

and for the rhs

−HFPJa−
∑

j

∂2V

∂qi∂qa
Jj = −

∫ 3N∏

i=1

duiuaHFPF−
∑

j

∂2V

∂qi∂qa

∫ 3N∏

i=1

duiujF (q,u, t) (2.39)

We bring the sum over the hessian elements inside the integration on u writing the last

term of Eq. (2.39) as

∑

j

∂2V

∂qi∂qa

∫ 3N∏

i=1

dui ujF (q,u, t) =

∫ 3N∏

i=1

duiua
∑

ij

∂

∂ui

∂2V

∂qi∂qi
ujF (q,u, t) (2.40)

This last passage can be verified by integrating by parts the rhs of Eq. (2.40) with respect

to ua.

From Eqs. (2.38) and (2.39) we thus obtain an evolution equation for the joint proba-

bility function

∂F (q,u, t)

∂t
= −HFPF (q,u, t) +

∑

ij

∂

∂ui

(
∂2V

∂qi∂qi
ujF (q,u, t)

)
(2.41)

Note that the time evolution of F has to take into account the evolution dynamics of both

distributions of q and u. Eq. (2.41) could therefore be derived as well using the following

euristic considerations [21].

Whenever the dynamics of a given system is due to two processes acting simultane-

ously, and determining each one a small effect over a sufficiently small time interval (let

say of the order of the time step for a molecular dynamics simulation), the joint proba-

bility distribution tanking account for these two processes can be recovered in numerical

simulations by alternating their effects: if the corresponding time evolutions are identified

by two operators Ĥ1 and Ĥ2, the time evolution of the joint probability distribution F can

be written for each process as dF
dt = −H1F and dF

dt = −H2F , and then recomposed adding

the two effects as dF
dt = − (H1 +H2)F .

Going back to the Eq. (2.48) , as already mentioned the joint probability function F

represents indeed two distinct processes: the stochastic dynamics of the system particles in

phase space, that follows Langevin dynamics of Eq. (2.1) , and the evolution of the small

vectors u, that act indeed subsequently as a two-step processes.

The Langevin dynamics gives a partial contribution to the joint probability function

F exactly deriving from the Fokker-Planck equation:

∂F

∂t
= −ĤFPF (2.42)
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while the dependence on the current vectorial degrees of freedom, represented by the vectors

u, depends on the evolution dynamic of these vectors, that we impose to be

u̇i = −
N∑

j=1

∂2V

∂qi∂qj
uj (2.43)

Eq. (2.43) directly links the time evolution of the u vectors with the local conformation of

the potential energy surface. We recall now that a generic distribution P (x, t) carried by a

flow ẋi = gi(x) evolves as the advective derivative Ṗ =
∑

i
∂
∂xi

(giP ). The dynamics of the

vectors in Eq. (2.43) gives therefore a contribution to the total joint probability function

F (q,u, t) of the type

∂F

∂t
=

N∑

i,j

∂

∂ui

(
∂2V

∂qi∂qj
ujF

)
(2.44)

Thus, summing up this contribution (2.44) to the Fokker-Planck contribution of

Eq.(2.42), one gets the full expression for the evolution of F :

∂F

∂t
= −HFPF +

N∑

i,j

∂

∂ui

(
∂2V

∂qi∂qj
ujF

)
(2.45)

that is exactly Eq. (2.41), and therefore satisfies the evolution equation of the probability

current (2.25).

Finally, note that vectors u can be replaced by the normalized vectors v = u
|u| such

that the diffusion dynamics becomes

v̇i = −
N∑

j

∂2V

∂qi∂qj
vj + vi

N∑

k,l

vkvl
∂2V

∂qk∂ql
(2.46)

that recasts the evolution equation for the joint probability function as

∂F

∂t
= −HFPF +

N∑

i,j

∂

∂vi


 ∂2V

∂qi∂qj
vj − vi

N∑

k,l

vkvl
∂2V

∂qk∂ql


F −

N∑

k,l

vkvl
∂2V

∂qk∂ql
F (2.47)

where the third term in the rhs of Eq. (2.47) is a reaction term, that can be read as a

’cloning’ step of copying and destroying particle, see below.

The very same derivation can be applied to transition currents Jt in the case of un-

derdamped Langevin dynamics, where the probability distribution P follows the Kramers

equation (2.9). The explicit construction of the dynamics has been already presented in

a previous paper of Tailleur, Tanase and Kurchan [13]. The derivation proceeds in the

same way as for the overdumped case: the ’reduced’ probability current of Eq. (2.25) is

now expressed as

Jt =

∫ 6N∏

i=1

dui u F (q,p,u). (2.48)
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where momenta are explicitly taken into account. Using Eq. (2.48) in Eq. (2.25) one finds

for the joint probability function F (q,p,u) the evolution equation

∂F

∂t
= −HKF −

6N∑

i=1

∂

∂ui


−

∑

j

Mijuj + ui(u
†Mu)


F − u†MuF (2.49)

The first term of the r.h.s. comes from the Langevin dynamics (2.1), the second one

from the evolution of the vector (2.50) and the last one from the birth-death events.

The transition current is then given by (2.48). On can indeed check that taking the time

derivative of the r.h.s of (2.48) and using (2.49), one recovers the evolution of the transition

current (2.25) (see also [14, 13] for a description resorting to quantum SuperSymmetry).

As in the Fokker-Planck case, Eq. (2.49) implies for the additional vectors u a dynamics

u̇ = −M · u+ u(u†Mu) (2.50)

Finally, note that the use of vectors u to sample transition currents has lead to call this

phase space sampling as Lyapunov Weighted Dynamics [15]. We explain in Appendix C

the reasons of such a denomination.

2.3 A numerical strategy for sampling transition currents

For systems with many degrees of freedom, the direct resolution of the partial differential

equation (2.25) yielding the evolution of Jt is not achievable numerically. In the same

way as the Langevin dynamics (2.1) represents an alternative to the resolution of the

Kramers equation, we can use a stochastic dynamics that simulates numerically the current

evolution (2.25).

The probability currents presented in Eqs. (2.16) and (2.25) are simulated by imple-

menting a Diffusion Monte Carlo algorithm [15]. We here explain why this algorithm is

used, giving a short introduction to its basis and meaning, and give a general description of

how Diffusion Monte Carlo algorithms work for a phase space sampling of many-body sys-

tem [19]. A precise description of how this method is practically implemented to simulate

the evolution of the probability currents of sections 2.1.2.1 and 2.1.2.2 follows.

2.3.1 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) belongs to the wider class of the Quantum Monte Carlo

sampling methods. These algorithms were initally devoted to the computation of elec-

tronic ground-state energies of molecules or other quantum systems. The idea of using a

random walk process to simulate a probability distribution for a quantum system was first

proposed by Anderson [50], that stressed the similarities of the Schrödinger equation with
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a diffusion-reaction process, once imaginary time was considered. The formal analogies

between the classical probability density distributions satisfying Fokker-Planck/Kramers

of Eqns. (2.11)-(2.9) and quantum mechanics wave functions (see Appendix B) are indeed

useful to understand the main reasons that led to the use of DMC in a purely classical

statistical mechanics framework, as the transition probability current one. Indeed, the

evolution equation of the probability currents (2.25), as well as the joint probability dis-

tribution F (2.41), are diffusion-reaction equations, and therefore can be simulated with a

DMC scheme.

Let us now give some basic informations on Quantum Monte Carlo sampling schemes.

The exact ground energy state |ψg〉 for a quantum system can be determined starting from

a known trial state |ψT 〉, having energy ET , by successive applications, say L times, of an

hamiltonian-derived operator G(H) such that

lim
L→∞

G(H)L |ψT 〉 ∼ |ψg〉 . (2.51)

Taking for G the form

G(H) = e−t(H−Et) (2.52)

defines a Diffusion Monte Carlo scheme: as it can be seen, this choice for the hamiltonian-

derived operator recalls the same time evolution dynamics for the probability reported in

Appendix B (see Eq. (B.5)).

In a Monte Carlo approach, the L successive applications of G are achieved using

probabilistic rules: different states are generated using a transition probability Pi→j; at

each step, a quantity wij is associated to the generated states. The probability of find

a given configuration iL after L steps, i.e. at a time t = Lτ , starting from an initial

configuration i0 is in fact

PiL = lim
L→∞

∑

i0,...,iL

P [i0 → · · · → iL]

L−1∏

k=0

wikik+1
(2.53)

Expression (2.53) has been shown to be a generalized version of Feynman-Kac formu-

lae [20]. This mechanism is achieved using Nc copies of the system, also called clones,

that act as Nc walkers exploring the phase space. The m-th clone is denoted at time t

by a corresponding set of coordinates Xm
t . A control parameter κ is used to divide the

simulation in time intervals of length ∆t = κδt. First, a walkers displacement is achieved

letting the clones propagate with a common molecular dynamics algorithm, for instance

using a leap-frog discretized Langevin dynamics [23], with time steps δt, for a duration

κδt: this is the propagation step.

Subsequently, a branching or “birth-death” process, associated to the quantities wij is

introduced: the current configuration is destroyed or copied a number of times proportional

to its own local weight, depending on wij. To this aim, at times n∆t, clones undergo a
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selection step: a stochastic procedure decides whether a particular clone is duplicated or

deleted [93] based on its probability weight. The normalized probability weight ρmn , related

to the m-th clone at time n∆t, are computed from the quantities w(Xm
n∆t) for each walker

as

ρmn =
w(Xm

n∆t)∑Nc

m=1 w(X
m
n∆t)

In practice, it amounts to either keeping the clone coordinates unchanged before the

subsequent propagation or replacing them with coordinates of another clone. Note that

even though the clone evolve independently during the propagation step, their dynamics

are intercorrelated because the deleted clones are replaced by the duplicated ones at the

selection steps.

With this approach, the number of configuration would be no longer constant, but

would diverge or vanish as the simulation has led towards phase space regions with re-

spectively too large or too small weights: a purely diffusive MC scheme has indeed be

shown to be divergent [10]. For these reason, a further step to control the total amount

of configurations is required, consisting in a random deletion/duplication step, in order to

keep the total number of configurations approximately constant and ensure the numerical

stability of the method.

A stratified resampling scheme [25] is used to decide whether to duplicate or delete each

clone, while keeping the total clones population constant. At time (n − 1)∆t + κδt, the

stratified resampling reallocate the coordinates of all the clones
{
Xm

(n−1)∆t+κδt

}

1≤m≤Nc
as

follows [93]

X̃m
n∆t =

Nc∑

j=1

1{Nc
∑j−1

l=1 ρln+Um
n <m<Nc

∑j
l=1 ρ

l
n+Um

n }X
j
(n−1)∆t+κδt

where 1 denotes a uniform distribution on the interval indicated in the subscript, and the

Um
n denote N c independent random variables distributed according to the uniform law on

(0, 1] generated at time n∆t.

When the probability weights are all equal, we have ρmn = 1/N c and j − 1 can be

substituted for N c
∑j−1

l=1 ρ
l
n in (2.3.1). As a result, the clones are left unchanged through

stratified resampling. Conversely, when the clone weights take distinct values in Eq. (2.3.1),

clones with small weights are likely to be replaced by those with large weights. The

parameter κ which controls the coupling between propagation and selection is tuned in

practice to ensure ergodicity in phase space.

Note that this stochastic reconfiguration step introduces a finite bias, and has to be

accurately performed. However, this resampling strategy is advantageous in computer sim-

ulations: indeed, for numerical purposes, it is evident that this last step avoids spending

large simulation times in phase space regions having small weights, thus increases the sam-

pling efficiency, and focusing the sampling mainly on interesting configurations. Finally,
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there exists other selection schemes in the literature, like multinomial resampling or resid-

ual resampling. Their numerical efficiency were assessed on a simple benchmark study and

were found to be better than the one of the simple stratified resampling scheme herein

considered [93]. These more elaborated schemes have not been tested in this study.

2.3.2 Algorithm for Transition Current Sampling

We here present the implementation of the population dynamics of the clones and then

discuss the construction of the transition current. In practice, the coupling between the

vectorial and phase space degrees of freedom is obtained by the following population dy-

namics. The N copies of the system (called ‘clones’), identified by positions and velocities

q and p, all carry a 6N dimensional unitary vector u. The dynamics of each clone is then

as follows: [13]

• q and p evolve with the standard Langevin dynamics with inertia (2.1)

• vectors u evolve with Eq. (2.50)

• each clone has a birth-death rate α = −u†Mu. This is the only way the vector u

influences the dynamics.

The distribution of clones in phase space then correctly samples F (q,p,u), reproducing

Eq. (2.49) [18].

The DMC scheme presented above is readily applied to the specific case of transition

currents, once the m− th clone is identified by Xm
t = {qm(t),pm(t),um(t)} and quantities

w(Xm
n∆t) are taken to be

w(Xm
n∆t) = ||Xm

t || (2.54)

where the seminorm ||Xm
t || =

(∑6N
i=1 u

2
i (t)
)1/2

indeed corresponds to the norm of the u

vector, associated to each clone at a given time step. The probability weight hence reads

ρmn =
||Xm

n∆t||∑Nc

m=1 ||Xm
n∆t||

(2.55)

Moreover, after the selection and before the new propagation, each vector u(t) is renor-

malized to one, in order to follow Eq. (2.50) The coordinates {Xm
n∆t}1≤m≤Nc of the clones

passing the selection step are then rescaled as
{
X̃m

n∆t

}
1≤m≤Nc

Xm
n∆t = {q̃m(n∆t), p̃m(n∆t), ũm(n∆t)/||ũm(n∆t)||} . (2.56)

The algorithm deriving from all these considerations in the following: we start with Nc

clones whose positions and vectors are arbitrarily chosen. At every time step, the dynamics

is:
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1. All the vectors um are rescaled to have a unitary norm.

2. The positions and velocities of the clones are propagated using a leap-frog discretized

Langevin dynamics. [23, 24]

3. The vectors um evolve with the (leap-frog discretized version of) the following dy-

namics:

u̇mi = −Miju
m
j (2.57)

Note that at after this step, the vectors are no more of unitary norm.

4. For each clone one records wm = ||um(t+ δt)||.

5. We associate to each clone m a probability weight ρm = Ncwm/
∑

iwi and a random

number εm chosen uniformly in [0, 1). The clone is then replaced by ym copies, with

ym = ⌊ρm + εm⌋ (2.58)

where ⌊x⌋ is the integer part of x: if ym > 1, ym − 1 new copies of the m-th clone

are made. If ym = 0, the clone is deleted and if ym = 1, nothing happens. The

population size is thus increased by ym − 1 if ym > 1 or decreased by 1 if ym = 0.

6. After the step 5, the population is rescaled from its current size N e
c =

∑Nc

m=1 ym to

its initial size Nc, by uniformly pruning/replicating the clones.

Steps 1 to 3 correspond to the propagation step of independent clones, whereas steps

4 to 6 correspond to selection steps. In particular, the steps 4 and 5 correctly represents

the cloning rate α = −u†Mu of the previous subsection since d
dt ||um(t)|| = −um†Mum,

so that ||um(t+ δt)|| ≃ exp(−δtum†Mum).

The rescaling of the population at the step 6 can be done in many ways. For instance,

one can pick a new clone at random Nc times among the N e
c clones obtained at the end

of the step 5. We used an alternative approach that is less costly in terms of data manip-

ulations: if N e
c > Nc, we kill N e

c −Nc clones chosen uniformly at random among the N e
c

obtained at the end of the step 5. Conversely, if N e
c < Nc, we choose uniformly at random

Nc−N e
c clones and duplicate them. Note that even though the clones evolve independently

during the propagation step, their dynamics are correlated because the deleted clones are

replaced by the duplicated ones at the selection steps. When the probability weights of

the clones are all equal, we have ρm = 1 and ym = 1. As a result, the population is

left unchanged. Conversely, when the clone weights take distinct values, clones with small

weights are likely to be replaced by those with large weights.

There are many ways of implementing the resampling of the population (steps 5-6),

well documented in the literature on Diffusion Monte Carlo. [93, 25] In particular, it could

be advantageous to do the resampling only every n time steps, where n is tuned to ensure
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ergodicity in phase space, i.e. to achieve enhanced sampling towards the unstable regions

where saddles are located.

Since the clones move in phase space with a Langevin dynamics, it can be surprising

that they converge rapidly to the reaction paths, i.e. that they explore efficiently the

transition states. This can however be understood by noting that their dynamics (without

taking the averages (2.48)) is the so-called Lyapunov Weighted Dynamics [15] which is used

to bias the Langevin dynamics in favor of chaotic trajectories. The clones will then tend

to ‘reproduce’ favorably in the neighborhood of saddles, which are particularly chaotic

regions of phase space, and to die in wells. This generates an ‘evolutionary pressure’ that

helps the clone escape from metastable states and find the reaction paths.

As mentioned before, this dynamics does not provide directly the transition current

and one still has to construct the averages (2.48). This can be difficult and clever methods

to do so were discussed in the literature, for instance by Mossa and Clementi who studied

the folding of chain of aminoacids. [28] The difficulty is connected to the well-known sign

problem: large population of clones with arrows pointing in opposite directions cancel

in the average but can numerically screen smaller asymmetric distribution that contains

the information relevant for the transition current. One can however show that if one

starts from a population of clones uniformly spread over a reaction path separating two

metastable states and pointing in the same direction, the time taken for the sign problem

to occur is of the order of the tunneling time through the barrier (see below Section 2.4.1).

In the following we will always simulate much shorter times and omit the averaging steps

to simply look at the distribution of clones. This distribution often suffices to locate the

reaction paths. To extract further information, for instance regarding the reaction rates,

we would need to do the averages, as was done in [28].

2.4 Numerical applications

2.4.1 Underdumped Langevin dynamics for 1-d potential

We first present an application of transition current sampling in a simple one dimensional

system. The aim of this first study is to allow us to discuss several aspects of the clone

dynamics, namely the metastability, the finiteness of the clone population and the role

of the initial condition. Moreover, this one dimensional model shows that it is possible

to characterize reaction paths doing simulations of the stochastic dynamics of the clones

without explicitly making the averages (2.48) that would yield the transition current, as

argued in section 2.3.2.
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Figure 2.1: Plot of the potential V (x) = x(−39 + 240x + 15x2 − 138x3 + 20x5)/120.

We consider a system undergoing an underdamped Langevin dynamics

ẋ = p/m (2.59)

ṗ = −γp− V ′(x) +
√

2γkTmη (2.60)

where V (x) is a potential with two barriers, plotted in figure 2.1. We ran the clone

dynamics for 2000 clones starting in the left well and carried out the averages (2.48).

To do so, we constructed an approximate density from the positions and vectors

(xi, pi, uix, u
i
v) of each of the Nc = 2000 clones:

Fnum(x, p, ux, uv) =
1

Nc

Nc∑

i=1

δ(x − xi)δ(p − pi)δ(ux − uix)δ(up − uip) (2.61)

In principle, the δ should be Dirac functions but for practical purposes we replaced the

one acting on the phase space coordinate by the bell-shaped function

δn(x, p) =
1

Z
exp

(
− 1

1− x2+p2

w2

)
(2.62)

if x2 + p2 < w2 and

δn(x, p) = 0 (2.63)

otherwise, where w = 0.1 and Z is a normalization constant. Finally, using (2.61) and

(2.62) in (2.48), we construct the transition current from the numerical data by computing

JT(x, p) =
1

Nc

Nc∑

i=1

ui δn(x− xi, p − pi) (2.64)

on a grid every dx = dy = 0.15 and plot the resulting vector if its norm is larger than

10−3. For visualization purposes, we plot in the figures the vectors 5 times longer than

they really are.
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Figure 2.2: The green crosses are the position of the 2000 clones after a time t = 400.

The black arrows correspond to the averages (2.64) and indeed point tangentially to the

reaction path. The color code and contour lines corresponds to the value of the Hamiltonian

H(x, v) = p2/2m+ V (x)

We started a simulation with 2000 clones in the left well, around x = m1 ≃ −1.9, with

unitary vectors (ux, uy) pointing at random. The temperature is set to kT = 0.09 and the

friction to γ = 1.5 so that the mean first passage time τe across the barrier is (see [17]

and Appendix F)

τ−1
e = kL→C ≃ 2π√

γ2/4 + |V ′′(M1)| − γ/2

√
|V ′′(M1)|
V ′′(m1)

e
V (M1)−V (m1)

kT ≃ 107 (2.65)

where M1 is the first maximum of the potential M1 ≃ −1. The results of the simulation

after a time t = 400 are plotted in figure 2.2. The clones have already populated the

barrier. Note that with standard Langevin MD simulations of the same duration, the

probability that none of the 2000 clones has crossed the barrier is more than 90%. As

can be seen, the averages (2.64) along the reaction path are non-zero and result in vectors

tangent to the reaction path, pointing toward the left well.

At later times, two processes take place, roughly on the same time scale. Firstly, more

and more clones come back from the central well to the left one. Their vectors u are always

tangent to their trajectories, but can be pointing toward the left or the central well with

equal probability. Indeed, if (q(t), p(t),u(t)) is a possible trajectory of the system, then so

is (q(t), p(t),−u(t)). As a result, the averages (2.64) may cancel out at large times, when

the subpopulations of clones whose vectors u point toward the central and the left wells

balance. This is how numerically the transition current is supposed to vanish at large time
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Figure 2.3: t = 997 the clones populate both barriers. The arrows average out along

the reaction path between the left and central wells which have equilibrated, whereas the

transition current is still present between the central and right wells

(another possibility being that all the clones leave a region of phase-space, because of finite

population-size effects).

Secondly, some clones reach the barrier leading to the right well and duplicate, which

results in populating the second reaction path. Since the clones did not have time to fall in

the right well and cross back the barrier towards the central well with vectors u pointing

in the opposite direction, the average (2.64) does not cancel along this reaction path.

Both effects can be seen in Fig. 2.3 and 2.4 : the clones populate both barriers; the

average (2.64) cancels out over the first barrier but not yet over the second one. This

shows that the clone dynamics do locate the barriers and remain on the reaction paths

even though the transition current may average out when the two wells separating a barrier

equilibrate. This enables us to follow the same approach to more complex systems.

Note that if one wishes to study quantitatively the transition current, two modifications

would need to be done to our algorithm. First, the initial condition should not be taken

at random but constructed as proposed in section 2.1.2.1. Second, rather than simulating

all the clones in parallel while maintaining their population constant, it may be advanta-

geous to run them sequentially, starting one run for every offspring of every clones, as is

done for instance with the ‘Go with the winner’ methods. [49] The constrain on the total

population being fixed indeed affects the metastability of the clone dynamics and increases

finite size effects. For instance, if there are N1 and N2 clones on the same reaction path,

with vectors pointing in opposite directions, both populations grow exponentially with the
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Figure 2.4: At t = 1590 the clones only populate the reaction path between the central

and right wells. Since the simulation had enough time to equilibrate the involved wells,

the average (2.48) cancels out.

same rate. Now, if the total population is kept constant, then the smallest sub-population

disappears on average exponentially fast. Using a ‘Go with the winner’ method would pal-

liate this drawback but would result in additional computational costs difficult to estimate

beforehand.

2.4.2 LJ38 cluster

We now turn to the study of transitions between metastable states in the 38-atom Lennard-

Jones cluster, a benchmark model system that has been extensively investigated in the

past. [26, 27, 30, 31, 23] This system has a complex potential energy landscape orga-

nized around two main basins: a deep and narrow funnel contains the global energy min-

imum, a face-centered-cubic truncated octahedron configuration (FCC), while a separate,

wider, funnel leads to a large number of incomplete Mackay icosahedral structures (ICO)

of slightly higher energies.

Although the lowest potential energy minimum corresponds to the FCC structure, the

greater configurational entropy associated to the large number of local minima in the icosa-

hedral funnel make this second configuration much more stable at higher temperatures.

As temperature increases, this system thus undergoes the finite-size counterpart of several

phase transitions. First, a solid-solid transition occurs at Tss = 0.12 ε
kB

when the octahe-

dral FCC structure gives place to the icosahedral ones. At a slightly higher temperature,

Tsl = 0.18 ε
kB

, the outer layer of the cluster melts, while the core remains of icosahedral
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structure. [32] This ‘liquid-like’ structure, also referred to as anti-Mackay in the literature,

then completely melts around Tsl = 0.35 ε
kB

[32].

The numerical study of this system is challenging: global optimization algorithms have

failed to find its global energy minimum for a long time [2] and direct Monte Carlo sampling

fails to equilibrate the two funnels. The study of the equilibrium thermodynamics of this

system required more elaborate algorithms such as parallel tempering, [30, 31, 32] basin-

sampling techniques, [33] Wang-Landau approaches [34] or path-sampling methods [23, 35,

36].

More recently, the dynamical transitions between the two basins has been studied fol-

lowing various approaches. The interconversion rates between the FCC and ICO structures

have been computed using Discrete Path Sampling. [37, 38, 39] This elaborate algorithm

relies on the localization of minima and saddles of the potential energy landscape, us-

ing eigenvector following, and then on graph transformation [41] to compute the overall

transition rate between two regions of phase space. To the best of our knowledge, this is

the most successful approach as far as computing reaction rates in LJ38 is concerned. [41]

However, the numerical methods involved are quite elaborate, require considerable exper-

tise and have a number of drawbacks, all deriving from the fact that it is based on the

harmonic superposition approximation and the theory of thermally activated processes.

It thus requires any intermediate minima between the two basins to be equilibrated and

this is only possible for small enough systems at low temperatures. [37] More importantly,

when the difficulty in going from one basin to the other is due to entropic problems, as

is the case for instance in hourglass shaped billiards, then the knowledge of minima and

saddles of the potential energy landscape is not sufficient.

Another attempt to study the transitions between the two funnels of LJ38 relies on the

use of transition path sampling. [35] Because of the number of metastable states separating

the two main basins, the traditional shooting and shifting algorithm failed here, despite

previous success for smaller LJ clusters. [42] The authors thus developed a two-ended ap-

proach which manages to successfully locate reaction paths between the two basins: they

started from a straight trial trajectory linking the two minima, and obtained convergence

towards trajectories of energies similar to those obtained in the Discrete Path Sampling

approach. [35] Although the authors point out the lack of ergodicity in the sampling within

their approach and the sensitivity on the ‘discretization’ of the trajectories, this is never-

theless a progress and the main drawback remains the high computational cost (the work

needed 105 hours of cpu time) to obtain such converged trajectories. In contrast, the

simulations we present below required less than 102 hours of cpu time.
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2.4.2.1 The LJ38 cluster and bond-orientational order parameters

Before presenting our simulations results, we give some technical details on the LJ38 system

and on the visualization of the different metastable states. The Lennard-Jones potential

is given by the expression

V
({

qj
}
j=1,...,N

)
= 4ε

∑

j<k

[(
σ

rjk

)12

−
(
σ

rjk

)6
]

(2.66)

where qj = (qjx, q
j
y, q

j
z) is the position of the j-th atom, rjk =

∣∣qj − qk
∣∣ is the distance

between atoms j and k, ε is the pair well depth and 21/6σ is the equilibrium pair separation.

In addition, all the particles are confined by a trapping potential that prevents evaporation

of the clusters at finite temperature (i.e. particles going to infinity). If the distance between

the position q of a particle and the center of the trap qc exceeds 2.25σ, then the particle

feels a potential |q−qc|3. LJ reduced units of length, energy and mass (σ = 1, ε = 1,m = 1)

will be used in the sequel so that the time unit t = σ
√
m/ε is set to 1.

Rather than listing the 228 degrees of freedom of the atomic cluster, configurations

are traditionally described using the Ql bond-orientational order parameters [43, 44] that

allow to differentiate between various crystalline orders

Ql =


 4π

2l + 1

1

N2
b

l∑

m=−l

∣∣∣∣∣∣

∑

Nb

Ylm (θjk, φjk)

∣∣∣∣∣∣

2


1/2

, (2.67)

where the Ylm(θ, φ) are spherical harmonics and θjk, φjk are the polar and azimuthal angles

of a vector pointing from the cluster center of mass to the center of the (j,k) bond which

connects one of the Nb pairs of atoms. Note that whereas some authors restrict the sum

over bonds connecting atoms of the inner core [32, 45], we include all the bonds in our

definition. The parameter Q4 is often used to distinguish between the icosahedral and

cubic structures, for which it has values around 0.02 and 0.18 respectively. [30] Q4 however

does not distinguish between the icosahedral and the liquid-like phase and one thus often

uses Q6, for which FCC, icosahedral and the liquid-like phase take values around 0.5, 0.13

and 0.05, [27] respectively. To show the spread of the various basins in the (Q4, Q6) plane,

we ran several molecular dynamic simulations, long enough to equilibrate within each basin

but short enough so that one does not see tunneling (see figure 2.5).

Although the whole temperature scale is interesting, the challenging part from a com-

putational point of view is the low-temperature regime where ergodicity is difficult to

achieve. Below, we show the results of our algorithm for three temperatures: T = 0.12ε/kB ,

T = 0.15ε/kB and T = 0.19ε/kB that span the ranges around the solid-solid and partial

melting transitions.
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Figure 2.5: Short MD simulations were run to give an impression of the spread in the

(Q6,Q4,E) space of each ‘phase’. The simulation time was short enough that no tunneling

between the phases was observed. The temperature was set to T = 0.15. The positions

of the phases barely move in the (Q4, Q6) plane when the temperature changes, although

their spreading does. The kinetic energy however shifts when the temperature changes,

and is roughly proportional to NkT where N is the number of degrees of freedom.
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2.4.2.2 Simulations

Given the high dimensionality of the system, it is difficult to follow the evolution of all

the coordinates of the clones in order to know if they have localized interesting structures.

Instead, we proceed as follows: we plot the evolution of the average over the clone popu-

lation of Q4, Q6 and E as a function of the simulation time and we frequently store the

positions and velocities of all the clones.

If we see a plateau in Q4(t), Q6(t) and E(t), two cases are possible: either the clones

have converged to a reaction path, or they are stuck in a metastable basin. In order to

distinguish the two situations, we run an auxiliary short molecular dynamic simulation

(without cloning) starting from the positions and velocities of the clones. The duration of

this auxiliary simulation is long enough to observe relaxation into the metastable basins,

but much shorter than the transition times. If the clones evolve away from the region they

had populated in phase-space, we know they had found a reaction path and the auxiliary

MD simulation converges to the metastable basins connected by this reaction path. If on

the other hand the clones do not evolve away, we know that they had been stuck in some

local basin. In such a case we can change two parameters to enhance the sampling of the

phase space: the number of clones and the friction γ (see below for more details). The

time step is always δt = 0.01. Note that this procedure could be automated, but the way

to do so is let for future work.

In principle, any observable that can measure whether the population of clones splits

in two separate sub-populations after a short Langevin dynamics would be suitable. If the

clone population splits in two subpopulations with the same Q4, Q6 and E, we may fail to

detect the corresponding barrier. However, this coincidence would be extremely unlikely.

Last, in addition to help us localize barriers, these short Langevin simulations allows

us to explore the true dynamics close to a particular transition states.

2.4.2.3 T = 0.15

We first ran several simulations at T = 0.15, where the most stable state is the MacKay

icosahedral minimum (ICOm) while the liquid-like phase (ICOam) and the FCC basin are

metastable.

Starting from the ICOm basin with N = 200 clones and a low friction γδt = 10−3, the

clones rapidly find (t ∼ 1500) a transition path to the liquid-like phase ICOam. Later on

(t ∼ 3500) an activated event bring the clones to another reaction path that points towards

the FCC funnel. These times have to be compared with the transition time between the

ICOm and FCC basins that was previously evaluated in the literature at roughly 107. [37]

Note that each barrier or path act as a metastable state for the cloned dynamics and it is

by activation that the population jumps from one barrier to another. Running the same
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dynamics with a larger number of clones (N = 600) tends to stabilize the first barrier so

that one has to wait longer to see the transition to the second one.

Starting from the FCC minimum with the same number of clones and at the same fric-

tion results in the clones rapidly going out of the FCC funnel and falling in the amorphous

zone at the entrance of the icosahedral funnel. [30] A reaction path is followed by the clones

but not maintained. To stabilize this reaction path, we increased the number of clones and

the friction. The effect of the former is mostly to slow down the dynamics while the latter

allow the clones to populate the reaction path more uniformly. For N = 600 clones and

γδt = 1, the population of clones indeed stabilizes the reaction path leading from the FCC

basins to the entrance of the icosahedral funnel. The reason why we need more clones to

stabilize this barrier than the ones in the icosahedral funnel is probably that the former is

more flat and spread than the latter ones [27] and thus requires a larger number of clones

to be sampled uniformly.

All these results are plotted on figure 2.6, in which we show the three basins ICOm,

FCC and ICOam obtained from the initial MD simulations (see figure 2.5) and the positions

of the clones in the (Q4, Q6) and (Q6, E) plans at different simulation times.

To identify the various metastable basins connected by the clones, we ran several short

MD simulations starting from the two long-lived plateaux (blue and green arrows in the

right panel of figure 2.6). Histograms made from these MD runs are shown in figure 2.7.

They show that the clones going out of the ICO basin find barriers toward the amorphous

region at the entrance of the ICO funnel while the ones starting from the FCC minimum

find a reaction path between the FCC basin and the icosahedral funnel. Interestingly, this

path goes through a faulty FCC basin located around (Q4, Q6) = (0.12, 0.45) that has

been previously reported in the literature. [30, 23]

The clones have thus found reaction paths pointing out of their starting funnels. The

clones starting from the FCC basins find a reaction path that leads into the icosahedral

funnel while the one started from the ICOm basin still remain in the icosahedral funnel.

This could be explained by the fact that at this temperature ICOm is the stable state while

FCC is only metastable so that the barrier ICO→FCC has to be harder to access than

the one from the FCC side. Running short MD starting from the clones positions reveal

intermediate metastable basins, either a faulty FCC or amorphous structures.

2.4.2.4 T = 0.12

This is the coexistence temperature between the ICOm and FCC minima. At such a low

temperature, more and more secondary barriers play a role so that the transition between

ICO and FCC becomes more and more complex. From the point of view of the time
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Figure 2.6: Top and Center: Positions of the clones starting from the ICOm and FCC

minima in the (Q4, Q6) and (Q6, E) plans at T = 0.15. The clones starting from the

icosahedral basin first find the barrier between ICOm and ICOam (black symbols, t =

1850). They then fall back in the ICO basin before finding a path that points towards the

FCC funnel (blue symbols, t = 3500). Starting from FCC, the 600 clones find a path that

leads toward the icosahedral funnel (green symbols, t = 1500). Bottom: We plot Q6 as a

function of time for the clones starting from the ICOm basins (red symbols) and the FCC

basin (magenta symbols). Arrows indicates the time at which the snapshots shown in the

left and center panel are taken.
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Figure 2.7: Histograms made at the end of short MD simulations at T = 0.15 started

from the clones positions at the times indicated by the green and blue arrows in figure 2.6.

The gray-dotted regions correspond to the equilibrium MD simulations of the three basins

ICOm, ICOam and FCC. Top: MD simulations started from the stationary structures

found by the clones in the ICO funnel fall either back into the ICO basin or in a metastable

basin around (Q4, Q6) = (0.05, 0.3) that corresponds to an amorphous structure at the

entrance of the ICO funnel. Bottom: The clones starting from the stable structure found

in the FCC funnel fall either back in the FCC basin, or in a faulty FCC metastable state

(blue rectangle) or in the ICO funnel. Both structures thus correspond to reaction paths.
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Figure 2.8: Position of the surface atoms of a clone that has fallen in the faulty FCC

configuration after the short MD. This figure was made using a Mathematica Spreadsheet

that can be downloaded at http : //www − wales.ch.cam.ac.uk/ wales/makeframes.nb.

evolution of the transition current, this means that there are more and more metastable

states for the clone dynamics.

Starting from the ICOm basin with 600 clones and γδt = 10−3, we once again locate

the barrier between ICOm and liquid-like phase ICOam. At this temperature this barrier

is long-lived and we do not locate the one previously found at T = 0.15 that points toward

the entrance of the icosahedral funnel.

Starting from the FCC basin with γδt = 0.02, the 600 clones find several barriers that

constitute a multi-step reaction path toward the icosahedral funnel. Once again, the larger

the friction the longer the clones spend on intermediate barriers. Note however that the

width of the clones distribution in the configuration space is of order
√
γT [13], so that for

very large friction these clouds start to cover several barriers at the same time and their

dynamics can be affected by this effect. The position of the clones corresponding to the

successive metastable barriers are shown in figure 2.9. Note that the typical times needed

for locating the barriers are of the order of 103, that is seven orders of magnitude smaller

than the reaction times between ICOm and FCC, which is of the order of 1010. [37]

Running short MD simulations starting from the clone positions on the barriers and

constructing the corresponding histograms reveals various intermediate metastable basins

in the ICO and FCC funnels (see figure 2.10). The fact that Q4 and Q6 are not good re-

action coordinates is confirmed in this figure: the first plateau (green points on figure 2.9)

seems to be after the faulty configuration when going from the FCC funnel to the icosa-

hedral one but the MD starting from this barrier falls into the faulty configuration and

the FCC basin, which seems to indicate that this barrier is a reaction state between the

FCC and the faulty configuration. There is then a second barrier between the faulty FCC

and the ICO funnel (blue dots in figure 2.9). A last barrier leads to the amorphous region

that separates the liquid-like phase and ICOm minimum. Note that in these regions the
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Figure 2.9: Top and Center: Positions of the clones starting from the ICOm and FCC

minima in the (Q4, Q6) and (Q6, E) plans at T = 0.12. The clones starting from ICO find

the barrier between ICOm and ICOam (black symbols, t = 8000). Starting from FCC, the

clones find a succession of barriers that leads toward the icosahedral funnel (green symbols

at t = 650, blue symbols at t = 1300 and cyan symbols at t = 2650). Bottom: We plot

Q6 as a function of time for the clones starting from the ICOm basins (red symbols) and

the FCC basin (magenta symbols).
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MD simulations are not very helpful because the transition between ICOm and ICOam

has an entropic nature so that it is difficult to relax into the basins. The clones, however,

successfully identify the barrier between these two states.

2.4.2.5 T = 0.19

This temperature is very close to the transition between ICO and liquid-like phase. As

shown by free-energy studies, the barrier between the FCC and the ICO funnels is very

low and the FCC basin is rather unstable. [27] Clones starting from the FCC basin do not

stabilize on any structure because there is no proper ‘rare barrier’ and MD simulations

starting from FCC immediately falls into the icosahedral funnel. [27]

Starting 100 clones from the ICO basin at γδt = 0.01, they rapidly find a barrier

connecting to the liquid-like phase. Later on, activated events lead the clones to locate a

reaction path leading towards the FCC funnel. Starting MD from this barrier show that

the clones relax into the FCC and ICO funnel.

As mentioned above, it is hard for the clones to stabilize because the FCC funnel is

barely metastable and the barrier crossed while going from FCC to ICO is rather flat

at this temperature. It is thus quite surprising that they nevertheless manage to do so

while starting from the ICO basin. If one starts from the FCC funnel, the clones almost

immediately fall into the ICO funnel and then from there can locate the barrier again,

but we were not able to stabilize the barrier when coming from the FCC basin. This

might be due to the fact that clones stabilize reactions that take place on long time-scale

(ICO→FCC), but not short-time relaxations (FCC→ICO).

2.4.2.6 T = 0.05: annealing the cloned system

If one starts at such a low temperature from one of the various metastable basins, the

clones remain trapped for a time longer than the simulation time. One can however

use a temperature annealing to locate the barriers. If one starts the cloning simulation

at T = 0.12 or higher, it is quite easy, as we saw above, to localize the barriers. The

temperature can then be decreased to T = 0.05 and the clones remains on the structure

that were localized at a higher temperature (see figure 2.12).

2.5 Conclusions

The algorithm we have discussed in this paper may be characterized as one that simulates

the evolution in time of the current distribution, rather than that of the configuration.

Because the time for the escape current to be established is often much smaller than the

passage time itself, the method is able to find the transition paths very efficiently.
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Figure 2.10: The color codes correspond to MD simulations at T = 0.12 started on the

green (left), blue (center) and black (right) arrows in figure 2.9. Top: Starting from the

first stationary structure found in the FCC funnel, the clones relaxes mostly in the FCC

basin and in the faulty FCC configuration shown in 2.7. Center The second barrier is

close to the commitor between the ICO and the FCC funnel: the clone population relaxes

almost equally in both funnel (57% of the clones fall back in the icosahedral funnel while

43% enter the fcc funnel). Bottom Clones started from the barrier between ICOm and

ICOam populate both basins. Note that the relaxation is much slower than for the other

barrier because of the entropic nature of this barrier.
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Figure 2.11: Top: 100 Clones are started at T = 0.19 in the ICOm basin where they

spend some time (first first time steps after t = 200, green dots) before locating the barrier

toward the FCC funnel (first five time steps after t = 1700, blue crosses). Center: When

the clones have found the barrier (t = 2000) a standard MD starts and relaxes as it should

into the two funnels (black dots, five first snapshots after t = 2050). Bottom: Evolution

of Q6(t). The cloning is stopped at t = 2000 and a normal MD follows.
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Figure 2.12: Left: Result of a simulation run at T=0.12 with 600 clones, starting from the

FCC minimum, with γδt = 0.6 Right: Starting from the end point of the simulations at

T=0.12, we run a standard cloning simulation at T = 0.05. After a time t = 1790 the 600

clones are still on the structure that had localized at T = 0.12, which is thus very stable.

The method has several attractive features:

i) It does not require any previous knowledge of the relevant reaction coordinates. On

the other hand, if an approximation of the reaction path is known a priori, one may always

start the clones along this path, and they will populate the true current distribution in a

shorter time.

ii) Because the target of the dynamics is the reaction path distribution itself, one may

perform simulated annealing in path space: first populating the reaction path correspond-

ing to relatively high temperature, and then refining it to the lower, target temperature.

Repeated annealing can also be used to locate several competing barriers in system with

multiple reaction mechanisms.

iii) The reaction current vanishes between mutually thermalized regions. [?] This is why

at longer times, the system converges to the barriers that take longer to cross, irrespective

of whether they are of entropic or energetic nature. This may be an advantage in cases in

which the energy landscape is not in itself dominant, but rather the multiplicity of paths

dominates.

iv) The construction of the transition current and the cloning algorithm also applies for

non-equilibrium systems where the forces derive locally, but not globally from a potential,

such as a system with leads at the edges having a potential difference. Reaction paths

between non-equilibrium metastable states, which cannot be described in term of a free

energy, may be studied in the same way. The only difference is that the average (2.48)

does not vanish in the long time limit and converges instead to the steady-state transition

current.

Note that since the method does not require the knowledge of the reaction coordi-

nate, it could be used efficiently in systems with competing reactions where one does not
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know a priori the end points of the reaction paths. This would for instance be partic-

ularly interesting when studying the crystallization of suspensions of oppositely charged

colloids. [46, 47]

In principle, the reaction time may be expressed directly in terms of the (unnormalized)

reaction current. It may also be recovered from the weights carried by the clones, which

may possibly be achieved from importance sampling in a Lyapunov-weighted ensemble of

trajectories. [48] However, the method, as it stands does not allow one to calculate the

reaction time with great precision, due to the exponential nature of the timescale.

Further work is required in this direction, and we will therefore approach the problem

of reaction constants determination in the next chapter.
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3.1 Introduction

We propose in this chapter an efficient method to compute reaction rate constants of

thermally activated processes occurring in many-body systems at finite temperature. The
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method consists in two steps: first, trajectories are sampled using a transition path sam-

pling (TPS) algorithm supplemented with a Lyapunov bias favoring diverging trajectories.

This enhances the probability of observing rare reactive trajectories between stable states

during relatively short simulations. Secondly, reaction constants are eventually estimated

from the unbiased fraction of reactive trajectories, yielded by an appropriate statistical

data analysis tool, the multistate Bennett acceptance ratio (MBAR) package.

In more details, we propose a transition path sampling algorithm where the fraction of

reactive paths sampled is enhanced using an adequate bias that favours diverging trajec-

tories. It is indeed possible to show [15, 48] that reactive paths we want to sample share

important features with diverging trajectories observed in chaotic systems. Therefore, a

suitable parameter that quantifies chaoticity properties of diverging trajectories can be

exploited also to bias a path sampling algorithm aimed to reproduce reactive paths.

The main instrument proposed in the literature to quantify chaotic properties of dy-

namical systems is the evaluation of Lyapunov exponents, [52] that are usually employed

to estimate the sensitivity of deterministic systems to small changes in initial conditions.

For this feature, they have been widely studied, [68] both analytically and numerically,

in hamiltonian as well as in nonlinear systems of small dimensions. Moreover, the use of

Lyapunov exponents to characterize numerically phase transitions in finite size systems

has been extensively explored in the past years, and many noticeable results have been

obtained in the early 90’s. [58, 59, 57, 78]

Resorting to Lyapunov exponents in order to achieve numerical ergodicity and localize

saddles and transition paths has been done recently with the Lyapunov-weighted dynamics

method proposed by Tailleur and Kurchan: [15] in this sampling scheme, a set of clones

are copied or deleted depending on a probability weight computed from quantities related

to Lyapunov exponents. After this work, the paper of Geiger and Dellago [48] has showed

how to couple the chaoticity features of a dynamical system to a TPS technique for sam-

pling deterministic trajectories, using an indicator for diverging trajectories borrowed from

studies on planetary systems [61], the relative Lyapunov indicator (RLI).

Here, we present a chaoticity indicator different from RLI, and based on local Lyapunov

numbers, that are quantities closely related to Lyapunov exponents. This indicator is

used to introduce a bias in the path sampling scheme, thus obtaining a Lyapunov biased

TPS method that will be in the sequel applied to complex many-body systems, like the

well known optimization benchmark model LJ38. Furthermore, we show how reaction

rate constants can be recovered from biased TPS quantities, resorting to an appropriate

statistical analysis to unbias reaction rate values computed in a Lyapunov biased TPS

framework.

This chapter is organized as follows. In Sec. 3.2, we first recall the basic concepts

of Lyapunov exponents for dynamical systems. We will then briefly review the use that
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has been made of them in numerical algorithms to characterize phase transitions, or in

importance sampling contexts. We then expose how to use local Lyapunov numbers in

the context of a Transition Path Sampling to determine saddle points and reactive paths

(Sec. 3.3). Reaction constants are computed from the fraction of reactive paths using

the Bennett-Chandler approach [70] of population correlation functions and the standard

TPS technique [3]; we also explain how unbiased reaction constants are recovered from a

Lyapunov biased algorithm thanks to the multistate Bennett acceptance ratio [66] (MBAR)

method (Sec. 3.4). Finally, numerical results concerning the application of our method to

solid-solid structural transition in LJ38 and vacancy migration in α-Iron are presented

(Sec. 3.5).

3.2 Lyapunov Exponents in dynamical systems

We briefly recap the theory of Lyapunov exponents, mainly following Ott [52]; then we

propose a formulation allowing the use of these exponents in importance sampling tech-

niques.

3.2.1 Continuous time dynamics

Let us consider a dynamical system with continuous dynamics, whose time evolution is

given by a set of first order ordinary differential equations ẋ = F(x). The state vector

x(t) indicates the coordinates of the system in its complete phase-space representation at

a given instant.

Let the system be at time t = 0 in an initial position x0, and let δx0 be a small

perturbation applied to this initial state. The dynamics of such a perturbed system can

then be denoted using a new state vector x̃ = x+ δx, whose time evolution will be

˙̃x = ẋ+ ˙δx = F(x̃) = F(x+ δx) (3.1)

For a sufficiently small perturbation, it is possible to linearize the function F as

F(x̃) = F(x+ δx) = F(x) +DF(x) · δx+O(δx2) (3.2)

Inserting Eq. (3.2) into Eq. (3.1), the time evolution of the perturbation at first order is

˙δx = DF(x) · δx (3.3)

where DF(x) is the Jacobian matrix of F.

The continuous time evolution of the perturbation δx, given by Eq. (3.3), has particular

solutions of the kind δx(t) = e · exp(Λt), that transform Eq. (3.3) into an eigenvalue

equation

DF(x) · e = Λe (3.4)
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where Λ is a scalar satisfying the characteristic polynomial det {DF(x)− ΛI} = 0 and e is

an eigenvector of the Jacobian matrix DF(x). For N -body hamiltonian systems, having 3N

degrees of freedom, x(t) is a 6N -dimensional state vector accounting for both the positions

and momenta of the N particles, thus the Jacobian matrix DF(x) has 6N eigenvectors ek,

each one corresponding to an eigenvalue Λk: the complete solution of Eq. (3.3) is then of

the form

δx(t) =
∑

k

Akek exp(Λkt) (3.5)

with coefficients Ak defined by δx(0) =
∑

k Akek and where the eigenvalues Λk are the

Lyapunov exponents of our system. Such eigenvalues can be real, or pairs of complex

conjugate numbers. In the case of complex conjugate pairs of eigenvalues Λj = Λ∗
j+1 =

σj − iωj, with σj and ωj real numbers, one can replace the two corresponding eigenvectors

ej, ej+1 with two linear combinations of them, gj , gj+1. In this way, Eq. (3.5) can be

rewritten [52] as δx(t) =
∑

k Ãkgk exp(Λkt), where coefficients Ãk are all reals.

The stability properties of the system, expressed as its response to an initial small

perturbation, are fully determined by the sign of the real part of the Lyapunov exponents.

Indeed, the imaginary part of the Lyapunov exponents ℑ{Λk} does not affect the stability

of the system, but only indicates if the dynamics is spiraling clockwise or counterclockwise.

By contrast, for ℜ{Λk} > 0 the perturbation in Eq. (3.5) diverges exponentially in time

at a rate given by ℜ{Λk}, so that the system is said to be unstable: this means that two

trajectories initially separated by a small distance δx(0) evolve exponentially far away from

each other. Otherwise, for ℜ{Λk} ≤ 0 the system is said to be stable and the distance

between the reference and the perturbed trajectories vanishes (or remains constant) for

long times.

3.2.2 Discrete dynamics and numerical applications: state of the art

In numerical applications, dynamics are discrete: the evolution of state vector x at time

step n is described by a mapping xn+1 = M(xn), where M is a matrix expressing the

system evolution from one time step to the following. We give below the expression of

Lyapunov exponents that will be evaluated numerically.

As for the continuous dynamics reported above, the time evolution of a small pertur-

bation to the initial state vector (see Eqns. (3.1) - (3.3)) reads

δxn+1 = DM(xn) · δxn (3.6)

where DM(xn) is the Jacobian matrix of the map. Inserting in Eq. (3.6) particular solu-

tions δxn = e[Λ]n, we again find an eigenvalue equation

DM(xn) · e = Λ · e. (3.7)
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In the discrete case, the 6N eigenvalues Λk of DM(xn), solutions of Eq. (3.7), are called

Lyapunov numbers rather the Lyapunov exponents, and trajectories are unstable for |Λk| >
1, and stable otherwise. We introduce the matricial product

DMn(x0) = DM(xn−1) · · ·DM(x0) (3.8)

between the Jacobian matrices of the hamiltonian map at successive time steps, and we

express the perturbation at time step n with respect to the initial perturbation δx0 as

δxn = DMn(x0) · δx0

Defining with ‖δx0‖ the Euclidean norm of δx0 in phase space, we introduce the Lyapunov

exponents h, given the initial condition x0 and the initial perturbation orientation u0 =

δx0/ ‖δx0‖, as

h(x0,u0) = lim
n→∞

1

n
ln

(‖δxn‖
‖δx0‖

)
= lim

n→∞

1

n
ln ‖DMn(x0) · u0‖ (3.9)

For a 6N -dimensional hamiltonian map, there will be 6N Lyapunov exponents, usually

ordered in literature from the largest to the smallest (h1 ≥ · · · ≥ h6N ). The term

‖DMn(x0) · u0‖ in Eq. (3.9) can be recasted in the form |u†
0[DMn(x0)]

†DMn(x0) ·u0|1/2,
where † denotes transpose and [DMn(x0)]

†DMn(x0) is a real nonnegative hermitian ma-

trix having real and nonnegative eigenvalues. Moreover, as stated in [52], the Oseledec

multiplicative ergodic theorem [67] guarantees the existence of the limits used in the defi-

nition of the Lyapunov exponents under very general circumstances.

The Lyapunov exponents are related to the aforementioned Lyapunov numbers as

Λk = exp [hk] . (3.10)

From Eq. (3.9), we can also define finite-time Lyapunov exponents:

h̄n(x0,u0) =
1

n
ln

(‖δxn‖
‖δx0‖

)
=

1

n
ln ‖DMn(x0) · u0‖ (3.11)

For long enough times, the greatest Lyapunov number Λ1 will give the dominant contribu-

tion to the perturbation evolution, and the associated eigenvector e1 indicates the direction

of maximum growth of the perturbation δx.

We stress here that finite-time Lyapunov exponents are calculated for a given x0 and

that, strictly speaking, their values do depend on the initial orientation u0. It is however

shown that the largest exponent h1(x0,u0) is approximately independent of the choice

of u0 in Hamiltonian ergodic systems[52, 40], while the complete spectra of finite-time

exponents can be determined using specific numerical techniques. [65]

In numerical simulations, only finite-time Lyapunov exponents can be estimated, due

to limited CPU time. To evaluate h̄n from Eq. (3.11) we should compute the matricial



48 Chapter 3. Lyapunov-biased Transition Path Sampling

product of Eq. (3.8). For systems with many degrees of freedom, a calculation of this

matrix product is not possible neither analytically nor numerically affordable, due to its

computational cost. The solution most followed in literature consists of directly evaluating

the quantity

h̄n(x0,u0) =
1

n
ln

(‖δxn‖
‖δx0‖

)
(3.12)

given by the distance ‖δxn‖ between two nearby dynamical trajectories, the first one

started from the initial state x0 and the second one from the perturbed configuration

x̃0 = x0 + δx0 after n time steps.

The use of Eq. (3.12) as a mean to evaluate finite-time Lyapunov exponents has two

main drawbacks: the need of computing two trajectories to evaluate a single Lyapunov

exponent, thus doubling computational cost, and the fact that values obtained for h̄ can

be sensitive to initial conditions, because of the dependence of the computed finite-time

Lyapunov exponents from the choice of the orientation of initial perturbation, as recalled

above.

Several numerical strategies have been proposed to bypass these problems. The tangent

space method [65, 29] assigns to each state xt of the trajectory started in x0 a vector u(xt).

These vectors are computed from the local hessian matrix of the hamiltonian mapping,

and their norms indicate the distance between the current trajectory and the perturbed

one, i.e. u(t) ∼ δx(t). As these distances evolve exponentially (see Eq. (3.5)), the lengths

of the vectors u can quickly diverge or vanish: a reorthonormalization of the set of the

u is therefore required, for instance with a Gram-Smith algorithm. This method has

been implemented in the literature [68], for instance in the context of Lyapunov weighted

dynamics. [14, 13, 15] To make this algorithm independent of the choice of the first vector

u(x0), one could integrate the equations of motion backward in time from x0 for a duration

τ , and then reintegrate the evolution of u(xt) forward until t = 0 [69]. In this way,

u(x0) would be automatically oriented in the direction of maximum growth. However, the

duration τ should be long enough to ensure the loss of correlation between the orientation

of u(x−τ ) and u(x0), thus requiring the computation of long trajectories at sustained

computational cost. [48, 69]

Another solution proposed in the definition of finite-time Lyapunov exponents is the

Relative Lyapunov Indicator (RLI), elaborated by Sàndor et al. [61] in the context of

planetary trajectories, and further used in a Lyapunov weighted path sampling scheme [48].

The main idea is to compare finite-time Lyapunov exponents h̄ for trajectories starting very

close, say in x0 and x0 +∆x0. The difference between finite-time exponents at time step

n can be written as

∆h̄n(x0,u0) =
∣∣h̄n(x0 +∆x0,u0)− h̄n(x0,u0)

∣∣ (3.13)

and will in general undergo strong fluctuation, [61] which can be smoothed by an average
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over N trajectory steps: in this way one defines the RLI as the quantity

R(x0,u0) =
1

N
N∑

i=1

∆h̄i(x0,u0) =
1

N
N∑

i=1

∣∣h̄i(x0 +∆x0,u0)− h̄i(x0,u0)
∣∣ (3.14)

This average over the entire trajectory length reduces [61] the dependence of the computed

finite-time Lyapunov exponents on the orientation of initial perturbation, but introduces

an additional dependence on ∆x0. Both finite-time Lyapunov exponents are calculated

evaluating the distance between two trajectories evolving close to each other (instead of

the matricial product of Eq. (3.8)): in terms of computational cost, four trajectories are

computed to obtain a single RLI. Finally, its implementation in a TPS algorithm with

shifting procedure (see below) can be rather complicated.

In the following, we propose a faster and orientation-independent way to evaluate the

chaotic properties of hamiltonian systems, alternative to tangent space method and RLI,

to be used in the path-sampling scheme described in Sec. 3.3.

3.2.3 Hamiltonian dynamics

We restrict our focus to systems with deterministic dynamics governed by an hamiltonian

of the form H =
∑N

i=1
p2
i

2mi
+ V (q). The time evolution of the state vector x = (q,p) (also

indicated as “hamiltonian flow” [68]) directly follows from Hamilton equations,

ẋ =

(
0 I

−I 0

)(
∂H(q,p)

∂q
∂H(q,p)

∂p

)
(3.15)

The evolution of a small perturbation of positions and momenta for a standard hamiltonian

is given by

δẋ =

(
0 I

−∂2V(q)
∂q∂q 0

)
δx (3.16)

Let us discretize the hamiltonian dynamics in Eq. (3.15) with the velocity Verlet algo-

rithm:

pi,n+1/2 = pi,n − 1

2
dt · ∂V (qn)

∂qi,n

qi,n+1 = qi,n +
dt

mi
pi,n+1/2 (3.17)

pi,n+1 = pi,n+1/2 −
1

2
dt · ∂V (qn+1)

∂qi,n+1
.

This algorithm is accurate to second order and numerically stable [71]. It will be used to

generate dynamical trajectories in numerical applications.
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The jacobian matrix for the velocity Verlet discretization reads

DM(xn) =

[
I− dt2

2mH(xn) G

− dt
2m

{
H(xn) +H(xn+1)

[
I− dt2

2 H(xn)
]}

I− dt2m
2 H(xn+1)

]
. (3.18)

In the upper right and bottom left blocks we introduced the 3N × 3N inverse mass matrix

Gij = δij/mi and the hessian matrix of the potential energy H at states xn and xn+1,

respectively. Eq. (3.18) is derived recasting the velocity Verlet algorithm of Eq. (3.20) in

the three following steps:

1. from xn = (qn,pn) to (qn,pn+1/2)

qi,n = qi,n (3.19)

pi,n+1/2 = pi,n − 1

2
dt · ∂V (qn)

∂qi,n

2. from (qn,pn+1/2) to (qn+1,pn+1/2)

qi,n+1 = qi,n +
dt

mi
pi,n+1/2 (3.20)

pi,n+1/2 = pi,n+1/2

3. from (qn+1,pn+1/2) to (qn+1,pn+1)

qi,n+1 = qi,n+1 (3.21)

pi,n+1 = pi,n+1/2 −
1

2
dt · ∂V (qn+1)

∂qi,n+1

The jacobian matrices DM corresponding to steps 1, 2 and 3 are respectively

DM(1)(xn) =

[
I6N + dt

(
0 0

−1
2H(xn) 0

)]
(3.22)

DM(2)(qn,pn+1/2) =

[
I6N + dt

(
0 G

0 0

)]
(3.23)

DM(3)(qn+1,pn+1/2) =

[
I6N + dt

(
0 0

−1
2H(xn+1) 0

)]
(3.24)

and the product DM(xn) = DM(3)(qn+1,pn+1/2)DM(2)(qn,pn+1/2)DM(1)(qn,pn) gives

the jacobian matrix of Eq. (3.18). The perturbation δxn+1 can now be evaluated with

respect to δxn using Eq. (3.6).

The jacobian matrix of Eq. (3.18) obtained with the velocity Verlet scheme of Eq. (3.20)

contains the hessian matrices at steps n and n+ 1. Therefore, manipulations of DM(xn)
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results to be numerically expensive. A simpler expression for the jacobian matrix can be

obtained from the less accurate Euler discretization algorithm: Eq. (3.15) becomes a set

of 6N coupled equations of motion

qi,n+1 = qi,n + dt · pi,n
mi

pi,n+1 = pi,n − dt · ∂V
∂qi,n

(3.25)

where i = 1, ..., 3N , so that the jacobian matrix of the hamiltonian map reads

DM(xn) =

[
I6N + dt

(
0 G

−H(xn) 0

)]
. (3.26)

The perturbation δxn at each time step can be evaluated by inserting Eq. (3.26) in Eq. (3.6).

The difference between the jacobian matrix DM(xn) of Eq. (3.26) and the one of

Eq. (3.18) consists in second order terms. However, it is numerically less expensive to

manipulate the former then the latter, as DM(xn) of Eq. (3.26) requires to evaluate the

hessian only at time step n. In the following, we will be interested in computing the

eigenvalues of DM(xn), in order to obtain a bias favoring reactive trajectories (see below):

this bias will be removed at the end, so it would be useless to spend CPU time to accurately

evaluate the jacobian matrix. Therefore, accordingly to Ref. [58], we consider the Euler

scheme (Eq. (3.25)) precise enough for our purposes, and we use the first order Euler

discretization of Eq. (3.26) to compute DM(xn).

3.2.4 Maximum local Lyapunov numbers

Using the discretized hamiltonian dynamics given in Eq. (3.25), we proceed by computing

at each time step the maximum local Lyapunov number [86] that is given by the largest

eigenvalue of the Jacobian matrix DM(xn) (Eq. (3.26)).

The 6N eigenvalues Λn of DM(xn), computed at time step n, can be obtained from

the secular equation

P (Λn) = det {ΛnI−DM(xn)} = 0. (3.27)

whose solutions are 3N pairs of eigenvalues Λn of DM(xn) , because of the simplectic

properties of the hamiltonian mapping matrix M [52]. These eigenvalues are given by the

expression [58]

Λ±
j,n = 1± dt

√
−λj,n ∀j = 1, . . . , 3N (3.28)

where the λj,n correspond to the eigenvalues of the mass-weighted Hessian H′(xn) of com-

ponents

H′
ij(xn) =

1
√
mimj

∂2V (xn)

∂qi∂qj
. (3.29)
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The result of Eq. (3.28) is derived below. We first rewrite the secular equation (3.27) as

P (µn) = det
{
µnI−DM̃(xn)

}
= 0 (3.30)

where µn =
(
Λn−1
dt

)
and

DM̃(xn) =

[(
0 I

−D(xn) 0

)]
(3.31)

The lower-left block matrix D(xn) is a 3N × 3N diagonal matrix whose elements are the

eigenvalues λj,n of the mass-weighted hessian H′ just mentioned above, at time step n.

The solution to Eq. (3.30) is obtained by Laplace expansion of the matrix µnI−DM̃(xn)

with respect to the first row. Since this matrix is composed of four diagonal blocks of

3N × 3N elements, one finds the recursive expression

P3N (µ) = µ2(−1)6NP3N−1(µ) + λ3N (−1)6N+1P3N−1(µ)

= (µ2 − λ3N )P3N−1(µ) (3.32)

P3N−1(µ) are secular equations for the minors of matrix µnI−DM̃(xn), where each minor

is composed by four blocks of size (3N − 1) × (3N − 1). From Eq. (3.32) and the fact

that P1(µ) = (µ2 − λ1), we infer by induction

P3N (µ) =
3N∏

j=1

(
µ2 − λj

)
. (3.33)

Besides, using the definition of µn, one immediately recovers Eq. (3.28). Eq. (3.32) being

valid at every time step, subscript n has been omitted in λj,n.

Hence, Eq. (3.28) shows that at each time step n the jacobian eigenvalues Λj,n, i.e. the

local Lyapunov numbers, depend on the potential energy surface through the hessian eigen-

values λj,n: unstable configurations xn, such as saddle points are characterized by negative

λj,n, and correspond to real and positive local Lyapunov numbers Λj,n. Conversely, stable

states have positive λj,n and imaginary local Lyapunov numbers with unitary real part.

In the following path sampling scheme of Sec. 3.3 we neglect the imaginary part of Λj,n

given by stable states. This is not an issue because, as mentioned at the end of Sec. 3.2.1,

to characterize unstable dynamics which we are interested in it is sufficient to determine

real and positive (global) Lyapunov exponents, and the imaginary part of the jacobian

eigenvalues Λj,n can be neglected.

At each time step n, the most negative eigenvalue of the hessian matrix λmin
n indicates

the direction of greatest instability on the potential energy surface and gives the eigenvalue

of the Jacobian matrix DM(xn) with the largest real part. This maximum local Lyapunov

number at that time step reads

ΛMAX
n = 1 + dt

√
max(0,−λmin

n ) (3.34)
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Eq. (3.34) entails ΛMAX
n = 1 for stable configurations, where all λ are positive, and

ΛMAX
n > 1 for unstable configurations having a negative spectra. Hence, Eq. (3.34) can be

used to compute the maximum local Lyapunov number for each time step of an hamiltonian

dynamics.

The diagonalization of the hessian matrix H in order to find its eigenvalues λn can be

computationally very expensive for systems with a large number of degrees of freedom.

One efficient solution to evaluate ΛMAX
n consists in extracting only the lowest eigenvalue

λmin
n using the Lanczos algorithm [62]. This iterative algorithm finds extremal eigenvalues

of any matrix with a reduced computational cost, diagonalizing only a submatrix of the

initial one (see for example Appendix D or Ref. [53] for details). As pointed out in Ref. [?],

a 15 × 15 Lanczos submatrix is sufficient to detect negative eigenvalues. Moreover, it is

possible to decrease the submatrix size to as little as 4 × 4 by verifying at each iteration

that the Lanczos solution is stable; if not, repeat the calculation until a the solution

is converged. Hence, the most negative eigenvalue, corresponding to the most unstable

direction of the potential energy surface at a give system position in the phase-space,

instant can be extracted in a few iterations. This is the numerical method we will apply

in the following to evaluate ΛMAX
n .

3.2.5 Lyapunov indicator for dynamical trajectories

A dynamical trajectory is defined as an ordered sequence of states in phase space separated

by a small time increment δt, and denoted as z = {x0, ...,xτ }, i.e. a path of total length

τ composed by N = τ
δt + 1 state vectors. We introduce a Lyapunov indicator for path z

L(z) =
1

N ln

N∏

n=1

ΛMAX
n (3.35)

given by the average of the maximum Lyapunov number of Eq (3.34) over the whole

trajectory.

The verification of the difference between finite-time Lyapunov exponents estimated

by RLI or tangent space method and L(z) from Eq. (3.35) is not the scope of this work.

We stress instead that the maximum local Lyapunov number, being based on the hessian

spectra λ, is strictly related to the topological properties of the potential energy surface,

thus gives, through the indicator proposed in Eq. (3.35), local information on the stable

or unstable configurations sampled in phase space by a given trajectory. Hencefore, we

consider this Lyapunov indicator suitable for importance sampling techniques.

The idea of evaluating the largest local Lyapunov exponent has been proposed by Hinde

et al. [58] in the slightly different context of studying the dependence of the Kolmogorov

entropy on the potential energy surface of small Lennard-Jones clusters (see Appendix C).

In Ref. [58], the Lyapunov exponents derived from the eigenvalues of the jacobian matrix of
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the hamiltonian mapping are summed over trajectories of different lengths, thus obtaining

- using Pesin’s theorem [85] - an estimation of the Kolmogorov entropy. This approach

to compute finite-time Lyapunov exponents has been shown to be quite succesfull, as

it still furnishes enough information to quantify the degree of instability of phase space

trajectories, thus supporting that evaluating the global Lyapunov exponent from local

Lyapunov numbers allow to correctly reproduce the chaotic properties of the system.

3.3 Transition path sampling with a Lyapunov bias

The idea of sampling the phase space of a many-body system through paths generated by

molecular dynamics, using the Metropolis algorithm, was introduced first by Pratt [64],

and then further developed by Dellago and coworkers. [3, 63, 54] The approach was called

transition path sampling (TPS). Herein, we briefly describe the TPS method, prior to

explaining how to bias TPS with the Lyapunov indicator of Eq. (3.35).

3.3.1 General theory for deterministic TPS

Each path z is equipped with the probability density

P [z] = ρ(x0)

τ/δt−1∏

i=0

p
(
xiδt → x(i+1)δt

)
(3.36)

where ρ(x0) = Z−1 exp(−βH(x0)) is the canonical distribution at inverse temperature β

from which the initial configuration is selected, while the quantity p
(
xiδt → x(i+1)δt

)
is

the probability to transit from configuration xiδt to configuration x(i+1)δt using a given

propagation algorithm.

Let us define two main equilibrium basins on the free energy landscape, and indicating

them as A (reactants) and B (products). The probability of observing a path starting from

the A basin1 is

PA [z] =
hA(x0)P [z]

ZA
(3.37)

where the indicator function hΩ is defined for a generic state Ω as

hΩ(x) =




1 x ∈ Ω

0 x /∈ Ω

1The probability of observing reactive paths between basins A and B is written as

PAB [z] =
hA(x0)P [z]hB(xτ )

ZAB

with a partition function

ZAB =

∫

DzhA(x0)P [z]hB(xτ )

.



3.3. Transition path sampling with a Lyapunov bias 55

and the trajectory-space partition function is defined as

ZA =

∫
DzhA(x0)P [z] . (3.38)

Our approach in the following is based on deterministic dynamics associated with New-

ton’s equation of motion, whose evolution (Eq. (3.15)) corresponds to a set of differential

equations ẋ = Γ(x), see Appendix A. Resorting to a temporal propagator xt = φt(x0)

associated to this dynamics, the conditional probability of being in xt+δt, given the con-

figuration xt at the previuos time step, is

Pcond (xt → xt+δt) = δ [xt+δt − φδt(xt)] (3.39)

Taking Pcond for p in Eq. (3.36), the path probability expressed in Eq. (3.37) reads

PA [z(τ)] = exp(−βH(x0))
hA(x0)

ZA

τ/δt−1∏

i=0

δ
[
x(i+1)δt − φδt(xiδt)

]
(3.40)

The entire trajectory is therefore determined by the initial configuration x0, distributed

according to

ρA(x0) =
exp(−βH(x0))hA(x0)

ZA
. (3.41)

The distribution PA is approximated by a Markov chain of M steps constructed by

importance sampling, by means of the Metropolis algorithm. The sampling is done in the

following way: at Markov chain step m, starting from the current path zm, a trial path z̃

is generated with the probability distribution Pgen. Then, the trial path is accepted with

a probability Pacc and added to the Markov chain as zm+1 = z̃; otherwise, if the trial

path is rejected, zm+1 = zm. To ensure the convergence of the Markov chain towards the

equilibrium distribution PA, we impose that the probability π [z → z′] to transit from a

path z to a different path z′ satisfies the detailed balance equation

PA [z] π
[
z → z′

]
= PA

[
z′
]
π
[
z′ → z

]
(3.42)

Taking account of the generating and acceptance probabilities Pgen and Pacc, the transition

probability π reads

π
[
z → z′

]
=
∑

z̃

Pgen [z → z̃]
{
δ(z̃ − z′)Pacc [z → z̃] + δ(z̃ − z)(1− Pacc [z → z̃])

}
(3.43)

where δ is the delta distribution and we allow for the possibility that z′ is either the

old path z or the proposed path z̃. The acceptance probability can be constructed from

Eqs. (3.42) and (3.43) as the Metropolis acceptance

Pacc [z → z̃] = min

{
1,

PA [z̃]Pgen [z̃ → z]

PA [z]Pgen [z → z̃]

}
. (3.44)

that is widely used in numerical simulations, as it has the main advantage of maximizing

Pacc.
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3.3.2 Lyapunov biased TPS: shooting and shifting algorithms

We now introduce a bias in the TPS algorithm in order to favor the sampling of reac-

tive trajectories. The bias is proportional to the Lyapunov indicator L(z), obtained in

Eq. (3.35) by summing the values of the maximum local Lyapunov number computed at

each time step along path z:

L(z) =
1

N
N∑

n=1

log ΛMAX
n (3.45)

The ΛMAX
n are the eigenvalues of the jacobian matrix, and are calculated using the Lanczos

algorithm (see Sec. 3.2.4). We use this indicator to modify the probability weight of path

z by multiplying the path probabilities PA(z) by exp {αL(z)}: each path z constrained to

start in a reactant basin A is equipped with a probability density

Pα
A(z) =

1

Zα
A

exp {αL(z) − βH(z)}ϕα
A(x0) (3.46)

where Zα
A is the partition function on the biased trajectory ensemble, and function ϕα

A(x0)

is an additional term linking the initial state x0 of the path to state xA. Different choices

for ϕα
A are possible, for instance ϕα

A(x0) = hA(x0), where hA is an indicator function on

A, such that

hA(x) =




1 x ∈ A

0 x /∈ A
, (3.47)

or

ϕα
A(x0) = exp

{
−1

2
κα(x0 − xA)

2

}
hA(x0) (3.48)

that accounts for having a tunable spring of stiffness κα linking the origin of path z to

state A. In this last case, the stiffness parameter κα can be tuned to counterbalance the

strenght of the bias. We denoted in Eq. (3.46) for simplicity

exp {−βH(z)} = exp(−βH(x0))

τ/δt−1∏

i=0

δ
[
x(i+1)δt − φδt(xiδt)

]
(3.49)

as the unnormalized dynamical path probability arising from the deterministic propagation

of the trajectory.

In this biased ensemble, choosing positive α enhances the probability weights of tra-

jectories with a large Lyapunov indicator L(z), favoring via Eq. (3.28), to reactive paths

passing over saddles and unstable directions of the potential energy landscape. On the con-

trary, choosing negative α would mainly restrict the sampling of non reactive or regular

trajectories within stable basins.
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Shooting algorithm

The standard shooting algorithm for deterministic dynamic is obtained by (i) selecting

a state xt′ of the current trajectory, (ii) perturbing the momenta of each particle of this

state, and then generating from this selected state two segments, one backward of duration

t′ and the other one forward of duration τ − t′, in order to get a trial trajectory z̃ of same

duration, (iii) accepting or rejecting the new trajectory z̃. For deterministic dynamics, the

total energy is constant.

Figure 3.1: Representation of the shooting move: the trial trajectory z̃ (in green) is derived

from the current trajectory z by perturbing momenta at state xt′ .

The perturbation step (ii) is done with the algorithm proposed by Stoltz [74], where

momenta for the trial trajectory z̃ are obtained from old ones as

p̃ = εp+
√

1− ε2δp (3.50)

where ε is a tunable parameter and δp is drawn from a white Gaussian distribution of

variance kBT . Since we have
〈
δp2
〉
=
〈
|p|2

〉
= kBT and 〈δp · p〉 = 0, the variance of p̃ is

〈
|p̃|2

〉
=
〈
ε2 |p|2 + (1− ε2) |δp|2

〉
= kBT (3.51)

thus the distribution of the kinetic energy is preserved. Furthermore, the probability of

having trial momenta p̃ from p is written as [74]

p (p → p̃) =

(
1√

2π(1− ε2)

)3N

exp

{
−(p̃− εp)T (p̃− εp)

2(1− ε2)

}
. (3.52)

and ensures a detailed balance condition at the shooting point t′

exp {−βH(x̃t′)} p (p̃t′ → pt′)

exp {−βH(xt′)} p (pt′ → p̃t′)
= 1. (3.53)
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such that the probability flux between the current and perturbed momenta at the shooting

point is balanced, and the hamiltonian distribution is preserved.

If we neglect numerical approximations in the integration from x̃′
t to x̃0, that indeed

give in computations H(x̃′
t) 6= H(x̃0), due to finite time step discretizations, we finally

obtain
exp {−βH(x̃0)} p (p̃t′ → pt′)

exp {−βH(x0)} p (pt′ → p̃t′)
= 1. (3.54)

Using Eq. (3.52) the probability pgen[xt′ → x̃t′ ] of obtaining the shooting point x̃t′ for

the trial trajectory from state xt′ selected in the current trajectory reads

pgen[xt′ → x̃t′ ] = p (pt′ → p̃t′) (3.55)

as only momenta are perturbed at the shooting point, while positions are left unchanged.

The generating probability Pgen[z → z̃] appearing in Eq. (3.44) can now be determined

as follows. The probability to generate the segment of z̃ from time t′ to time τ forward is

P f
gen[z̃] =

τ/δt−1∏

i=t′/δt

δ
[
x̃(i+1)δt − φδt(x̃iδt)

]
. (3.56)

while the probability to generate the segment of z̃ from time t′ to time 0 backward is

P b
gen[z̃] =

t′/δt∏

i=1

δ
[
x̃(i−1)δt − φ−1

δt (x̃iδt)
]

(3.57)

where φ−1
δt is the time reversal of the temporal propagator φδt associated with the deter-

ministic dynamics, i.e. φ−1
δt = φ−δt.

Combining the generating probability for the forward and backward segments of the

trial trajectory z̃ with pgen[xt′ → x̃t′ ], we obtain the overall generating probability for the

trial trajectory

Pgen[z → z̃] = pgen[xt′ → x̃t′ ]

t′/δt∏

i=1

δ
[
x̃(i−1)δt − φ−1

δt (x̃iδt)
] τ/δt−1∏

i=t′/δt

δ
[
x̃(i+1)δt − φδt(x̃iδt)

]

(3.58)

Inserting Eq. (3.46) and Eq. (3.58) in Eq. (3.44) we have

Pacc [z → z̃] = min

{
1,

exp {αL(z̃)− βH(x̃0)}ϕα
A(x̃0)pgen[x̃t′ → xt′ ]

exp {αL(z) − βH(x0)}ϕα
A(x0)pgen[xt′ → x̃t′ ]

}
(3.59)

Note that in Eq. (3.59) terms deriving from the forward and backward generation of the

current and trial path cancel:

∏τ/δt−1
i=0 δ

[
x̃(i+1)δt − φδt(x̃iδt)

]
P f
gen[z]P b

gen[z]
∏τ/δt−1

i=0 δ
[
x(i+1)δt − φδt(xiδt)

]
P f
gen[z̃]P b

gen[z̃]
= 1. (3.60)
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This is a consequence of the unit phase space compressibility of the Newtonian dynamics [4],

that ensures the microscopic reversibility between forward and backward moves: indeed,

the deterministic move for each time step in Eq. (3.56) can be written as

δ
[
x(i+1)δt − φδt(xiδt)

]
= δ

[
φ−1
δt (x(i+1)δt)− xiδt

]
|∂φδt(xiδt)/∂xiδt|−1 (3.61)

where |∂φδt(xiδt)/∂xiδt| is the Jacobian associated with the time evolution of duration δt.

For Newtonian dynamics, the Liouville theorem guarantees that the phase space volume

is conserved (see Appendix A), hence this Jacobian is unity. Eq. (3.60) is then directly

obtained by using Eq. (3.61) in Eq. (3.56) to express the forward generation P f
gen: forward

and backward moves in Eq. (3.60) simplify, and the only remaining terms are due to

Jacobians, that are equal to one.

Using in Eq. (3.59) the property of the Stoltz proposal (Eq. (3.54)), the Metropolis

acceptance rule in Eq. (3.44) can be furthermore simplified as

Pacc [z → z̃] = min {1, exp {αL(z̃)− αL(z)} [ϕα
A(x̃0)/ϕ

α
A(x0)]} . (3.62)

Shifting algorithm

The second Monte Carlo move in trajectory space is based on the shifting algorithm,

supplemented with a waste-recycling estimator. [87] N trial trajectories z̃j are constructed

from z as follows: the duration of the trajectory z is doubled selecting a random duration

νδt and integrating two segments backward and forward, starting from x0 and xτ , along

ν and N − ν time steps, respectively. Adding these segments to the current trajectory,

one obtains a “buffer” trajectory ζ = {xnδt}−ν≤n≤2N−ν of total duration 2N δt, containing

N possible trial paths. The conditional probability of obtaining the “buffer” trajectory ζ

starting from the current trajectory z is indicated as Pcond(ζ|z).

Figure 3.2: Representation of the shifting move: the buffer path ζ is derived from the

current trajectory z (in red). One of the N trial trajectories z̃j is selected (in green).
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The probability weight of each trial path z̃j is then

Pα
A(z̃j) =

1

Zα
A

exp {αL(z̃j)− βH(z̃j)}ϕα
A(x̃0,j) (3.63)

if a constraining function ϕα
A(x̃0,j) linking the initial state x̃0,j of each trial path z̃j trajec-

tories to state A is used, as in Eq. (3.46). Index j runs over the N possible paths on the

“buffer” trajectory.

For the sake of concision, we introduce an action

− sα,j = αL(z̃j)− βH(z̃j) (3.64)

so as to rewrite the trajectory probability in the biased ensemble (Eq. (3.46)) as

Pα
A(zj) =

1

Zα
A

ϕα
A(x̃0,j) exp {−sα,j} . (3.65)

We now define the selecting probability Psel(z̃j |ζ) of selecting a trial trajectory z̃j from

the buffer trajectory ζ as

Psel(z̃j |ζ) =
ϕα
A(x̃0,j) exp {−sα,j}

Rα
(3.66)

where we introduced the Rosenbluth factor

Rα =

N∑

j=1

ϕα
A(x̃0,j) exp [−sα,j] . (3.67)

Resorting to Bayes theorem, Psel can be written as the posterior likelihood probability [36]

of having z̃j given the “buffer” trajectory ζ:

Psel(z̃j |ζ) =
Pcond(ζ|z̃j)Pα

A(z̃j)

Pmarg(ζ)
(3.68)

where Pcond(ζ|z̃j) is the conditional probability of constructing a “buffer” path ζ from the

trial path, as in Eq. (3.39), and because of the deterministic dynamics, Pcond(ζ|z̃j) = 1/N .

Pmarg(ζ) is the marginal probability associated with the buffer path: comparing Eq. (3.68)

with Eq. (3.66), we see that

Pmarg(ζ) = Rα
1

Zα
A

1

N . (3.69)

Let us now consider a Monte Carlo move between two paths both contained in the buffer

trajectory ζ , i.e. from the current path z to z̃j , whose associated transition probability

π[z → z̃j ], as in Eq. (3.42), obeys a detailed balance with respect to the prior distribution

Pα
A:

Pα
A [z]π [z → z̃j ] = Pα

A [z̃j ]π [z̃j → z] . (3.70)
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Defining the transition probability

π [z → z̃j ] = Psel(z̃j |ζ)Pcond(ζ|z) (3.71)

the detailed balance in Eq. (3.70) can be recasted as

Psel(z̃j |ζ)Pcond(ζ|z)Pα
A(z) = Psel(z̃ν |ζ)Pcond(ζ|z̃j)Pα

A(z̃j) (3.72)

where z = z̃ν and Psel(z̃ν |ζ) is the probability to transit from z̃j to z. Psel leaves then the

probability distribution Pα
A invariant. Moreover, recalling that the deterministic dynamics

entails Pcond(ζ|z) = Pcond(ζ|z̃j), the detailed balance in Eq. (3.72) simplifies into

Psel(z̃j |ζ)Pα
A(z) = Psel(z̃ν |ζ)Pα

A(z̃j). (3.73)

We conclude this section by extending the detailed balance of Eq. (3.70) for trajectories

z and z̃j belonging to two different buffer paths ζ and ζ̃ respectively. Writing as in

Eq. (3.68) expressions for Psel(z|ζ) and Psel(z̃j |ζ̃), and using these results in Eq. (3.70) we

obtain

Pmarg(ζ)Psel(z|ζ)π [z → z̃j ] = Pmarg(ζ̃)Psel(z̃j |ζ̃)π [z̃j → z] (3.74)

Eq. (3.74) is indeed a detailed balance condition for the alternate shooting and shifting

moves, and samples the buffer trajectory ζ. This implies that the distribution Pmarg is

invariant along the sampling algorithm. Pmarg is therefore suitable to be used as an input

path probability weight required by the unbiasing algorithm MBAR, presented in Section

3.4.3.

3.4 Reaction-rate constants calculation

3.4.1 Rate constants theory

Here we recall how to calculate reaction rates in the TPS framework. A more detailed

description is given in Appendix F. The reactivity of the sampled paths is given by the

time correlation function with respect to initial and final states of the paths: a trajectory

is said to be reactive if it starts in the reactants A basin and ends in the products B basin.

The time correlation function [54, 2] is

C(t) =
〈hA(x0)hB(xt)〉

〈hA(x0)〉
(3.75)

where again the indicator function hΩ is defined for a generic state Ω as

hΩ(x) =




1 x ∈ Ω

0 x /∈ Ω
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and brackets 〈·〉 indicate averages taken over the equilibrium trajectory ensemble. C(t)

can therefore be understood as the (conditional) probability of observing a trajectory of

duration t ending in state B, knowing that it started in state A: indeed, using a reactive flux

formalism and detailed balance conditions, [75, 54, 2] this probability p(xt ∈ B | x0 ∈ A)

equals C(t). The correlation function approach its asymptotic value exponentially as

C(t) ≈ ρeqB (1− exp {−t/τrxn}) (3.76)

where ρeqB is the equilibrium occupation probability of state B, and the parameter τrxn ≡
(kA→B + kB→A)

−1 is the characteristic reaction time of the system, given by the forward

and backward reaction constants kA→B and kB→A, respectively.

Note that the basic assumption required to compute reaction rate constants of rare

events from the correlation function C(t) is the presence of a well separated time scale for

processes occurring between ’fast’ intra-funnel relaxation, having a typical time constant

τmol, and activated processes indicating passages between funnels, needing a much longer

time scale, of the order of τrxn [75].

For times in the intermediate time regime τmol < t≪ τrxn, the correlation function in

Eq. (3.76) can indeed be expressed by means of its first order expansion

C(t) ≈ kA→Bt (3.77)

where the detailed balance condition kA→Bρ
eq
A = kB→Aρ

eq
B has been used to eliminate ρeqB .

Hence, the slope of C(t) for this intermediate time regime gives direct access to reaction

rates. The reactive probability flux flowing from state A towards B per unit time, defined

by k(t) ≡ dC(t)
dt , displays a plateau corresponding to the forward phenomenological reaction

constant kA→B . [70]

Let us point out that these results, obtained with a macroscopic ’flux over popula-

tion’ probability approach, can be recovered by a Bennett-Chandler formalism [70], based

on microscopic quantities (positions and momenta, see Appendix F). Moreover, this sec-

ond framework gives important information on the relation between the phenomenological

forward rate constant kA→B and its Transition State Theory value kTST , defined as [17]

kTST =

(
kBT

h

)
exp (−β∆FA→B) (3.78)

where ∆FA→B is the height of the free energy barrier separating states A and B, h is the

Planck constant and β = 1
kBT the inverse temperature. The reactive flux can indeed be

expressed as [70]

k(t) = κ(t)kTST (3.79)

where κ(t) is the transmission factor. This factor is always lower than one, and is intro-

duced to take into account trajectories started in basin A that reach the saddle point but
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fall back to state A, instead of ending in state B: these occurrences are called recrossing

events. The transmission coefficient usually reaches a steady value, depending on the tem-

perature and the reaction coordinate chosen to localize the barrier. At this plateau value

of κ = κ̄ < 1, the reactive flux corresponds to

kA→B = κ̄kTST . (3.80)

thus showing that phenomenological rates are always lower than TST rates.

3.4.2 Rate constants with biased sampling and waste-recycling

In numerical experiments, the computation of reaction constants by direct evaluation of

C(t) at times longer than the intrafunnel relaxation time τmol means performing very

long molecular dynamics trajectories. To estimate C(t) in the TPS framework computing

relatively short trajectories, one resorts to a factorisation of the correlation function in a

static quantity related to kTST , thus dependent on the free-energy barrier and calculated

through an umbrella-sampling technique, and a dynamic factor related to κ(t) given by

the time derivative of the probability of reaching basin B at times shorter than the whole

trajectory length. [63, 3]

We propose herein a variant strategy: reaction constants will be calculated directly

by averaging indicator functions on short trajectories, as in Eq. (3.75), once the fraction

of reactive paths is significantly enhanced by introducing an appropriate bias favoring

reactions between basins A and B.

The correlation function in Eq. (3.75) can be intended as an average over all performed

trajectories - i.e. over all successive steps m of the Markov chain - of the reactivity A(zm),

defined as

A(zm) = hA(x
m
0 )hB(x

m
τ ) (3.81)

For an unbiased TPS algorithm sampling the probability of Eq. (3.46), C(t) = 〈A〉0, where

brackets 〈·〉0 correspond to averages over a canonical trajectory ensemble and the trajectory

distribution ensures 〈hA(x0)〉 = 1 because of ϕα
A.

In a context of biased TPS, averages on Markov chains are taken on the biased

trajectory distribution, hence we denote biased averages of the correlation function as

Cα(t) = 〈A〉α, where index α accounts for the current bias. Herein, index α will indicate

all observables obtained from a biased distribution, where α = 0 stands for the equilibrium

canonical ensemble average. We estimate the correlation function Cα(t) = 〈A〉α using an

estimator denoted by IMα , which consists in taking the average over the Markov chain of

lenght M as

I
M
α [A] =

1

M

M∑

m=1

Am
α (3.82)
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A(zmα ) = Am
α denotes a reactivity value coming from a biased trajectory zα distributed

according to Pα
A. Estimates given by IMα are however not optimal [94].

A waste-recycling (WR) estimator [94, 95] is associated to the multiple proposal sam-

pler for the shifting move of Sec. 3.3.2 to obtain more accurate estimates. Waste recycling

consists in including information about all possible paths contained in the buffer trajectory

ζ. The reactivity at Markov chain step m in a given ensemble α has to be first averaged

over the N trajectories contained in the buffer path ζmα as

Am
α =

N∑

j=1

Am
α,j

ϕα
A(x

m
j ) exp

[
−smα,j

]

Rm
α

=

N∑

j=1

Am
α,jϕ

α
A(x

m
j ) exp

[
−smα,j + Sm

α

]
(3.83)

where we write Am
α = A(ζmα ) and define the Rosenbluth factor

Rm
α ≡ exp [−Sm

α ] (3.84)

as proportional to the marginal probability Pmarg(ζ
m
α ) of Eq. (3.67) associated to the

“buffer” trajectory ζmα corresponding to Markov chain step m. Correlation functions for

reactive paths are therefore estimated in a way similar to Eq. (3.82), with the WR estimator

J
M
α [A] =

∑M
m=1

∑N
j=1Am

α,jϕ
α
A(x

m
j ) exp

[
−smα,j + Sm

α

]

∑M
m=1

∑N
j=1 ϕ

α
A(x

m
j ) exp

[
−smα,j + Sm

α

] =
1

M

M∑

n=1

Am
α (3.85)

and again Cα(t) ≈ Jα [A]. The calculation of rate constants kαA→B for the given α-ensemble

follows from Eq. (3.77). We discuss in Section 3.5.3 the effect of WR in the evaluation of

reaction constants.

3.4.3 Unbiasing rate constants: the MBAR algorithm

A suitable unbiasing algorithm is needed in order to recover canonical ensemble correla-

tion functions from reactivity values witnessed in a Lyapunov biased path ensemble. The

canonical equilibrium values of C0(t) can in principle be obtained by estimating reactiv-

ities Am
α , computed in any α-biased path ensemble, resorting to an adequate unbiasing

algorithm. We define an unbiasing WR estimator Jθ,α, where the left subscript θ indicates

the ensembles in which we are interested in measuring averages, while the right subscript α

refers to the ensemble that our Lyapunov biased TPS will effectively sample. Equilibrium

values for C0(t) (θ = 0) are retrieved from reactivities computed in any α-biased ensemble

as

C0(t) ≈ J
M
0,α [A] =

∑M
n=1

∑N
j=1Am

α ϕ
α
A(x

m
0,j)ϕ

α
A
−1(xm

0,j) exp
[
−smα,j + Sm

α + smα,j

]

∑M
n=1

∑N
j=1 ϕ

α
A(x

m
0,j)ϕ

α
A
−1(xm

0,j) exp
[
−smα,j + Sm

α + smα,j

] (3.86)
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Unbiasing the sampling consists of correcting for the bias ϕα
A(x

m
j ) exp

[
−smα,j

]
. However,

the variance associated to the unbiasing estimator in Eq. (3.86) would be too large to con-

sider estimates reliable [66]. This well-known fact results from the lack of overlap between

the sampled and measured distributions. We therefore carry out a series of simulations for

a set of α values ranging from 0 to a maximum value αmax so to ensure overlap between

successive sampled distributions.

Our choice is then to use the multistate Bennett acceptance ratio (MBAR) instead of

the estimator of Eq. (3.86). MBAR is a method elaborated by Shirt and Chodera [66, 76],

which aims at minimizing the statistical variance associated to the estimates. Following

these authors, we briefly expose the principles of this procedure in a context of biased path

ensembles in Appendix E.

To use the MBAR method in the waste-recycling framework of Sec. 3.4.2, we take as

probability weights corresponding to a given α ensemble at each Markov chain step m

the marginal probability Pα
marg(ζ

m
α ) of Eq. (3.84). This is possible because, thanks to the

detailed balance of Eq. (3.74), Pα
marg is preserved.

Once one knows weights exp [−Sα] related (via Eqs. (E.3)-(E.5)) to Pα
marg(ζα) for each

α-ensemble, reactivity averages 〈A〉α′ for every ensemble α′ 6= α can be computed resorting

to the importance sampling identity

〈A exp [−Sα′ ]〉α
〈A exp [−Sα]〉α′

=
Zα′

Zα
(3.87)

where we used the partition functions Zα =
∫
Dζ exp [−Sα(ζ)]. For a set of K different

values of the bias α, a set (namely, a Markov chain) of Mα buffer trajectories are sampled

for each bias value. An estimate of Cα(t) is given by the MBAR estimator K for the

waste-recycling averaged reactivity Aα of Eq. (3.83) as

K
Mα
α [A] =

Mα∑

m=1

Wm,αAm
α (3.88)

where weights Wm,α are given by the expression

Wm,α = Ẑ−1
α

exp [−Sm
α ]

∑K
k=1MkẐ

−1
k exp [−Sm

α ]
. (3.89)

and Ẑα are estimators for the partition functions Zα with minimal asymptotic covariance

(see Eq. (E.5) and Ref. [76]). Note that the denominator in Eq. (3.89) indicates that each

weight Wm,α takes into account contributions from all other ensembles k = 0, ..., α, ...,K.

Introducing also partition functions ZAα ≡
∫
DζA exp [−Sα(ζ)], the uncertainty can

be estimated as

var(Kα[A]) ≈ Kα[A]2(var(ẐAα) + var(Ẑα)− 2cov(ẐAα , Ẑα)). (3.90)
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Canonical equilibrium values of the correlation function C0(t) and corresponding values

of the reaction rate constants can be recovered once we consider estimates in Eq. (3.90)

with α = 0. We emphasize that this is by now the first application of the MBAR unbiasing

method based on marginal probabilities, able to estimate observables computed with a path

sampling algorithm supplemented by waste-recycling. Numerical recipes to obtain these

estimations have been furnished by J. Chodera [91].

3.5 Numerical results: LJ38

3.5.1 LJ38 cluster

In order to test the Lyapunov biased TPS algorithm (LyTPS), we consider again a Lennard-

Jones 38 cluster. We recall briefly his main properties.

LJ38 is a well-known benchmark system aimed at assessing the efficiency of sampling

algorithms, and has been widely explored in literature for its rich thermodynamic proper-

ties. The LJ38 potential energy landscape presents two main basins: a deep and narrow

funnel containing the global energy minimum, a face-centered cubic truncated octahedron

structure (FCC), and a separate, wider, funnel leading to a large number of icosahedral

structures (ICO) of slightly higher energies. Although the configuration with the lowest po-

tential energy corresponds to the FCC one, the greater configurational entropy associated

with a large number of local minima in the icosahedral funnel make this second configu-

ration much more stable at higher temperatures. As temperature increases, LJ38 under-

goes several structural transitions. First, a solid-solid transition occurs at Tss = 0.12 ε
kB

when the octahedral FCC structure gives place to the icosahedral ones. Secondly, above

Tsl = 0.18 ε
kB

, the outer layer of the cluster melts, while the core remains of icosahedral

structure. [32]

The Lennard-Jones potential and the bond-orientational order parameter Q4 are the

same as described in Sec. 2.4.2 of Chapter 2.

We recall (see Chapter 2) that Monte Carlo sampling fails to equilibrate the two fun-

nels, and global optimization methods are unable to find its global energy minimum [2].

Hence, several elaborated algorithm have been employed in the past to study the thermo-

dynamic equilibrium of this system, such as parallel tempering, [30, 31, 32] basin-sampling

techniques, [33] Wang-Landau approaches [34] or path-sampling methods. [23, 35, 36]

Standard transition path sampling [35] and discrete path sampling [37] (DPS) have

been already used to study transitions between the two funnels of LJ38. However, in

the case of TPS the large number of metastable states separating the two main basins

prevented the traditional shooting and shifting algorithm to identify reactive paths, despite

previous success for smaller LJ clusters. [42] Authors had to resort to a two-ended approach

linking the two minima to find trajectories with the same energy of those found by DPS
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approach. [35] The main drawbacks of this TPS method were a lack of ergodicity and a

very large computational cost.

Conversely, DPS has been more successfull in this task. This method uses eigenvector

following and graph transformation [41] to compute the overall transition rate between

two regions of phase space. To the best of our knowledge, this is by now the most successful

approach to computing reaction rates in LJ38. [41] In particular, reaction rate constants

for transitions between the two solid structures have been computed using DPS [37, 38, 39]

at different temperatures.

We use here the Lyapunov biased TPS algorithm to investigate structural transitions in

LJ38 for temperatures above and below the solid-solid transition temperature Tss = 0.12,

spanning a temperature range from T = 0.10 to T = 0.15. Our simulations required

about 102 hours of cpu time to observe reactive trajectories between the two main funnels.

Reaction constants, computed with the method exposed in Sec. F, can be compared to

values obtained with the discrete path sampling approach. [35]

3.5.2 FCC-ICO reactive paths

In order to thermalize the system at a given temperature, Langevin dynamics are run for

1000 time steps, using a friction parameter γδt = 1. The last configuration is used as the

starting point of the first deterministic trajectory of the TPS simulations. At each new

temperature, a new preliminary Langevin dynamics is performed.

In the simulations, trajectories consist of N = 700 time steps, each step of duration

δt = 10−2. Deterministic trajectories are obtained with the Verlet algorithm [74], and

then selected following the Lyapunov biased TPS algorithm described in Sec. 3.3. For each

temperature, 25 different biased path distributions are sampled, for values of the control

parameter α ranging from α = 1 to α = 2500, in order to obtain reactive paths and have

a sufficient overlap between distributions sampled for different α values. The unbiased

distribution corresponding to α = 0 has been simulated with TPS as well.

Values for the control parameters are chosen after observing the magnitude of the Lya-

punov indicators L(z) for few trajectories, and the difference between Lyapunov indicators

L(z) for current and trial trajectories in the shooting step (Eq. (3.62)), in order to have

an acceptance ratio for the shooting move not below 20%, see Fig. 3.3. The choice of the

trajectory length τ depends not on the Lyapunov bias, but on the necessity of having long

enough trajectories to link the two funnels, and recover an appropriate statistics for the

calculations of reaction contants (see below). The use of the Stoltz algorithm (Eq. (3.50))

in the shooting moves ensures that the energy distribution imposed by the preliminary

MD is maintained along the simulation. The value for ε in Eq. (3.50) is taken as 0.95, so

to control the decorrelation of sampled paths and ensure a sufficient acceptance ratio, see

Fig. 3.4. A Markov sequence of 5000 biased TPS shooting and shifting moves is performed,
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in order to ensure an ergodic sampling. For the diagonalization of the hessian matrix via

the Lanczos algorithm (see Appendix D) we used a submatrix of size l = 15 and a Lanczos

step of δL = 10−6.

We focus on the octahedral to icosahedral (FCC-ICO) transition: observing this passage

using a direct MD or a standard TPS would require a considerable amount of CPU time

(about 105h, see [35]) as the FCC configuration is at low temperatures the most stable

one, so that the system rarely escapes from the FCC basin. In contrast, with our biased

TPS technique we were able to observe the first FCC-ICO reactive trajectories after about

300 Markov chain steps.

To ensure that reactive paths start in the stable FCC state, we include in the path

probability weight the constraining function (see Eq. (3.48))

ϕFCC(x0) = exp
{
−κ
2

(
Q4(x0)−QFCC

4

)2}
(3.91)

assigned to the starting state x0 of the path, function of the bond order parameter Q4 and

centered on the value QFCC
4 = 0.18. We set κ = 500, a sufficiently small stiffness that

lets the trajectory starting point span the whole FCC basin. The function ϕFCC keeps

the beginning of the trajectories inside the FCC funnel, thus counterbalancing the effect

of the local Lyapunov bias, that would pull trajectories on barriers.

We present in Fig. 3.5 histograms for the first and the last point of the trajectories,

for different values of the control parameter α at the FCC-ICO cohexistence temperature

T = 0.12. As α values increase, trajectories explore regions that are increasingly distant

from the initial FCC basin, and some of them eventually cross the transition region and

reach the ICO basin.

Once reaction paths have been identified, the computation of the inter-funnel reaction

constant by the correlation function of Sec. 3.4 via Eq. (3.77) is possible if reactants and

products basins are adjacent, i.e. if there is no intermediate state between them. [75, 63]

However, this hypothesis is not valid for the FCC-ICO transition: several results reported

in the literature [26, 30] show that reactive paths linking FCC and ICO states pass through

many short-lived metastable basins, separated by barriers of different heights, not belonging

to the two main funnels. These metastable states and transition regions have also been

observed in a previous work using the transition current sampling method. [88] Such a

feature has been confirmed as well by an attentive analysis of our trajectories.

Among all the intermediate metastable states, we emphasize the presence of a basin

related to a faulted FCC configuration, having a bond order parameter value around Q4 =

0.12, indicated in the following with D and already acknowledged in precedent studies [24,

30, 88]. This basin has a rather important occupation probability if compared to other

metastable configurations, and is visited by every reaction path linking FCC to ICO state.

Moreover, this metastable state is indeed configurationally related to the FCC basin, and
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Figure 3.3: Top: Average value of the Lyapunov indicator L(z) over a Markov chain of 1000

trajectories, starting from the FCC basin at T = 0.12, as function of the control parameter

α used in the simulations, for different trajectory lengths τ . Increasing α increases the

mean Lyapunov indicator and enables trajectories to explore barriers and transition states.

Average Lyapunov indicators are almost independent of the trajectory length τ . Bottom:

Acceptance ratio, given by Eq. (3.62) for the same simulations.
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Figure 3.4: Acceptance ratio (Eq. (3.62)) as a function of the parameter ε in the Stoltz

algorithm, Eq. (3.50), for a Markov chain of 1000 trajectories, starting from the FCC basin

at T = 0.12, with trajectory lengths τ = 500 and a control parameter set to α = 2000.
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Figure 3.5: Top: Histogram of the initial point position x0 for trajectories starting from

the FCC basin at T = 0.12 for different values of the control parameter α, averaged on

a Markov chain of 5000 steps. The restraining function of Eq. (3.91) mantains the initial

states of the trajectories in the FCC funnel for all α values. Bottom: Same histogram,

for the final position xτ . Trajectories sampled with large α values escape the FCC funnel

more often. Their final states are distributed over the whole FCC-ICO range.
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the barrier separating the D structure from FCC is lower than the one separating the

former from ICO state. As a result, several recrossing events of trajectories starting in

FCC, visiting the D state and then going back to FCC, can be observed.

Hence, in order to correctly reconstruct the FCC to ICO transition paths, we have to

take into account this intermediate metabasin. We therefore split the FCC-ICO passage

in two steps: the first part is given by the passage from the FCC basin to the D basin

corresponding to Q4 = 0.12. The second part is then given by trajectories starting from

the D configuration, and ending up in the ICO funnel.

To obtain this second part of FCC-ICO reactive paths, we constrain the first point of

the trajectories to start in the D metabasin, using as in Eq. (3.47) a constraining function

given by an indicator on the bond-order parameter value Q4(x0):

hd(Q4) =




1 0.10 ≤ Q4 ≤ 0.13

0 elsewhere
(3.92)

In Fig. 3.6 we present histograms for the distribution of the beginning and the end point

of trajectories constrained with the indicator function of Eq. (3.92), at a temperature

T = 0.13 slightly above the solid-solid cohexistence. Paths sampled with the unbiased

distribution α = 0 completely remain in the “window” given by hd(Q4(x0)). On the

contrary, trajectories weighted with a Lyapunov bias tend to leave the metabasin: their

starting points x0 tend to accumulate on the borders of the region defined by the indicator

function in Eq. (3.92), while the end points xτ are lead to explore both the FCC and the

ICO funnels.

In simulations performed at lower temperatures, this reconstruction of the second part

of the FCC-ICO reactive path with trajectories starting from the D state is more difficult.

Indeed, histograms for trajectories of the same length at temperatures lower than the solid-

solid transition T = 0.12 show that an important fraction of the sampled trajectories fall

from the D state directly to the FCC basin, while a few trajectories end in the ICO state.

This is attributed to the heights of the barriers separating the metastable D structure

from either the stable ICO or stable FCC structures, the latter barrier being lower than

the former one.

3.5.3 FCC-ICO reaction constants

The total reaction constants for the two-step FCC-ICO transition, assuming a steady

occupation probability for the intermediate D state, is derived in Appendix F.1.1 and

reads

kF→I =
kF→dkd→I

(kd→F + kd→I)
(3.93)
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Figure 3.6: Top: Histogram of the initial configuration x0 for trajectories starting from the

D configuration metabasin located at T = 0.13 for different values of the control parameter

α, averaged over a Markov chain of 5000 steps. Bottom: Same histogram, for the final

position xτ . Trajectories end up in both the FCC or the ICO funnel.
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where subscripts F , d and I refers to FCC, D and ICO states respectively. The same

steady approximation is assumed for all intermediate metastable states in discrete path

sampling studies. [2, 37, 41]

Reaction rates kF→d and kd→I involve transitions between states separated by high free

energy barriers, [88] thus the hypothesis of time scale separation required by the reaction

rate theory is still valid, and reaction constants can be computed using the method exposed

in Sec. F. Reactive paths between FCC and D configuration, and from this last one and

ICO, are computed as reported above (Sec. 3.5.2).

On the contrary, the D to FCC reaction rate kd→F cannot be computed by Ly-TPS,

because the requirement of a time scale separation is no longer valid, the barrier separating

this two states being too low. It is therefore computed by direct MD simulation.

The reactivity A (Eq. (3.81)) for each trajectory is evaluated in simulations distinguish-

ing the three basins FCC, ICO and D whose ranges of bond-order parameter Q4 value, that

is 0.13 < Q4 < 0.18, 0 < Q4 < 0.04 and 0.1 < Q4 < 0.13, respectively. Data harvested

during LyTPS runs are unbiased using MBAR.

In Fig. 3.7 and 3.8, two examples of population correlation functions for the computa-

tion of reaction rate constants, unbiased with MBAR, are reported. Note that reactivity

values computed at short times are nearly zero, and do not contribute significatively to the

correlation functions: in fact, these values are obtained from segments of trajectories too

short to witness a complete transition between two states. In Table 3.1, we report reaction

rate values for the FCC to D structure (kF→d) and D structure to ICO (kd→I) reaction

constants, that give, through Eq. (3.93), a total FCC to ICO (kF→I) rate in good agree-

ment with values given by DPS calculations [37, 41]. Finally, an Arrhenius plot comparing

our results with the reaction constants proposed in Ref. [37, 2] is presented in Fig. 3.10.

We conclude this section pointing out the importance of WR in the correct estimation of

reaction constants. As recalled, WR allows to take into account the information contained

in the whole buffer trajectory ζ: hence, it is possible to compute also contributions given

by reactivity values of trajectories that will be rejected at the shifting move. We present in

Fig. 3.9 the time correlation function for LyTPS simulations of the passage from the FCC

to the D state at T = 0.13, already presented in Fig. 3.7 (top), computed with and without

resorting to WR. Both simulations are based on the same Markov chain, and are derived

using MBAR method. In this last case, input weights and reactivities for MBAR are given

only by the probability weights of the trajectory selected after the shifting move. The

difference between the two correlation functions amounts to a factor 3, hence contribution

of the selected trajectory to the WR correlation function amounts to a third of the total (we

recall that the buffer trajectory ζ contains N trajectories). However, they strongly differ

qualitatively, as the trend of C(t) computed without resorting to WR clearly indicates a

poor statistic on the reactivity values given only by the selected trajectory. This can be
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Figure 3.7: Top: Correlation function for the transition from FCC to D basin, at T = 0.13.

Bottom: Reaction constant for this same passage, obtained at times shorter than the first

mean passage time. The reactive flux k(t) reaches a plateau value, corresponding to kF→d,

as explained in Sec. F. Note that we have no statistics for times below t = 1, as trajectories

of this duration are too short to join the D state.
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T kF→d kd→I kF→I kF→I (Ref. [2])

0.10 1.2 10−7 1.4 10−7 8.1 10−14 2.5 10−13

0.11 1.3 10−5 2.5 10−7 1.08 10−11 1.15 10−11

0.12 8.1 10−5 4.0 10−7 1.2 10−10 2.82 10−10

0.13 3.3 10−4 2.0 10−5 6.6 10−9 4.2 10−9

0.14 9.3 10−4 4.5 10−5 4.3 10−8 4.3 10−8

0.15 2.4 10−3 2.4 10−4 5.7 10−7 3.2 10−7

Table 3.1: Table of reaction constants for the transitions FCC to D structure, D to ICO,

and the total FCC to ICO transition, indicated as kF→d, kd→I and kF→I respectively, at

different temperatures. Values of kF→I are obtained using Eq. (3.93) and assuming the

reaction constants kd→F as 10−2, 3 · 10−2, 10−1 for T = 0.10, T = 0.11 and T = 0.12

respectively (values obtained by Langevin MD), and unitary for T ≥ 0.12. In the last

column on the right, we report Discrete Path Sampling data from Ref. [2], computed in

the harmonic approximation.

explained considering that the length of ζ is double of the selected trajectory, therefore

in ζ can be contained trajectories that are reactive, but are partly lying in one of the

two basins, thus having however a Lyapunov indicator lower than the selected path. This

amounts to say that, for a given duration t, the selected trajectory is the one settling for

the most of his length in the transition region, where the Lyapunov indicator his larger,

while there can be reactive trajectories just partially crossing the barrier, and then falling

down in one of the two states, thus recovering a lower L(z). These trajectories are then

rejected, but their reactivity contribution should be taken as well into account: this is

successfully done within a WR framework. Moreover, we show in Fig. 3.7 (bottom) that

the difference between standard deviation values for C(t) computed with and without WR:

in agreement with Ref. [94], WR values are lower of about 30%.
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3.6 Conclusion

The method presented in this chapter allows to compute reaction rate constants for inter

funnel transitions in many-body systems. The reaction rate values are evaluated using a

path sampling algorithm biased with local Lyapunov numbers. This bias is introduced

with the aim of accelerating the sampling of reactive paths, thus requiring shorter Markov

chains and a limited amount of CPU time to observe activated processes.

We tested these features by observing reaction paths and evaluating equilibrium rates

for structural transitions in the LJ38 system and for vacancy migration in an α-Iron crystal.

For both systems, we were able to predict phenomenological rate constants, in very good

agreement with data already given in the litterature in the case of LJ38.

The Lyapunov biased TPS method presents several advantages, and incorporates fea-

tures of different rare events simulation methods.

Firstly, with respect to other importance sampling methods based on Lyapunov

weighted sampling [15, 48], Lyapunov biased TPS has the main advantage of a simpler

implementation. This is due to the Lyapunov indicator L(z) we propose in Eq. (3.35),

that allows to quantify the chaoticity properties of the hamiltonian trajectories by re-
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sorting to local Lyapunov numbers. These quantities can be easily calculated with an

appropriate and fast method to compute the eigenvalues of the Jacobian matrix of the

hamiltonian mapping, like the Lanczos algorithm, that demands a limited computational

cost. As recalled in Sec. (3.2.2), resorting to local Lyapunov numbers to evaluate chaotic-

ity of phase space trajectories doesn’t suffer from the computational drawbacks of other

algorithms aimed at the same purpose, as RLI or the tangent space method. [48] The imple-

mentation of shooting and shifting Monte Carlo moves in a Lyapunov biased TPS results

therefore much less complicated, and computationally less expensive, than the way pro-

posed in Ref. [48] with the use of RLI, because we do not need to compute four trajectories

to evaluate the chaoticity of a single path [61, 48].

Secondly, this formulation for the Lyapunov indicator is such that the bias applied

to each path in order to enhance the fraction of reactive trajectories is clearly identified,

differently from bias depending on rather complex cloning algorithms like the one proposed

in Lyapunov weighted dynamics [15] and transition current sampling [88]. Hence, the use

of standard unbiasing statistical tools to recover unbiased observables is possible with a

small theoretical and computational effort.

Furthermore, we consider the access to the evaluation of equilibrium transition rates as

the most important aspect of Lyapunov biased TPS. On the computational point of view,

the direct access to reaction rates without resorting to a distinct evaluation of the reaction

barriers and the transmission factor, as usually done in standard TPS technique [3], is

a very advantageous feature. To unbias reaction constants computed in Lyapunov biased

ensembles we chose among other unbiasing algorithm, like WHAM [99] or Extended Bridge

Sampling [100] techniques, the MBAR method [66]. MBAR has proven to be computation-

ally efficient and to give an adequate numerical precision in estimating reaction constants.

Moreover, this work is the first in which MBAR is implemented exploiting the marginal

probability derived from a waste recycling method.

Finally, this biased path sampling is performed at a finite temperature, imposed to

trajectories by the canonical distribution from which the path starting point is selected

and maintained along the path thanks to the Stoltz proposal for the shooting algorithm,

see Sec. 3.3.2. In parallel, the Lyapunov indicator used as a bias to select reactive paths

directly links the path sampling to the local conformation of the potential energy surface

via the hessian matrix, thus giving to our method an intrinsic dependence on the potential

energy landscape. The coupling between a finite-temperature sampling and potential en-

ergy surface conformation is a noticeable improvement if compared to eigenvector-following

methods, that are based on the shape of the potential energy surface, but usually operate

at zero temperature. Lyapunov biased TPS can be acknowledged as a finite, nonzero tem-

perature version of the well-known eigenvector-following techniques, such as Dimer, Optim

or ART. [55, 56]
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The advantages related to a finite temperature technique do not concern only the

exploration of the energy landscape, but also the fact that the evaluation of physical

observables like reaction rates takes into account temperature and anharmonicity effects.

Indeed, the phenomenological reaction rate we computed (see Sec. 3.4) can be compared

with experimental measures: Lyapunov biased TPS turns out to be a powerful tool in

many condensed matter problems, like vacancy migration, where reaction rates are usually

estimated using only the potential energy barriers and harmonic approximations give poor

results with respect to experimental data obtained at nonzero temperatures.

We conclude observing that this method can be implemented for the computation of

reaction rates in more complex condensed matter systems, and can find interesting applica-

tions in a wide class of research fields, spanning from molecular biophysics to physical met-

allurgy, where the numerical determination of reaction rates has important consequences

for experimental applications.

For these reasons, we present in the next Chapter the use of LyTPS to evaluate vacancy

migration rates in bcc crystals, and show how these rates have important applications in

material science.
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The occurrence of rare events in physical systems of nuclear interest is the one of

main reason of this PhD thesis. Indeed, the methods developed and presented in the two

previous chapters can be applied in the study of physical processes concerning materials

post-irradiation. These processes, that we study here from an atomistic point of view, have

indeed important consequences on the structural behavior of nuclear plants components.

In order to clarify this point, we first present in these Chapter a description of thermally

activated events in nuclear materials. We then focus on the mechanism of vacancy migra-

tion, that is for his physical features by far the most significative example of such activated

processes.

Finally, we present an application of the LyTPS method exposed in Chapter 3 to the

computation of point defect migration rates: we calculate reaction rates for the migration

of vacancies and divacancies in an α-Iron crystal, for temperatures ranging from 300 K
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to 850 K. Vacancy and divacancy diffusion rates associated with activation barriers at

finite temperature are then evaluated, and shown to be substantially different from values

previously reported in the literature and obtained using zero-temperature and standard

harmonic approximations.

In Sec. 4.4 we present results for migration rates for vacancies and divacancies in α-

Fe obtained employing the transition path sampling method with a local Lyapunov bias

(LyTPS) exposed in Chapter 3. These rates are then employed as input parameters for

computational codes of Kinetic Monte Carlo type, aimed at the numerical simulation of

the microstructural evolution of materials after irradiation. In particular, we use these

migration rates for reproducing numerically resistivity recovery experiments.

4.1 Thermally activated processes in nuclear materials

Following the presentation of Was [104], we here recall the fundamentals of physical met-

allurgy. Changes in microstructure and mechanical properties of nuclear materials are

governed by the kinetics of defects produced by irradiation [101]. Indeed, the interaction

of an energetic incident particle - like electrons or neutrons in nuclear reactor vessels - with

a lattice atom determines an energy transfer to this atom, that is subsequently displaced

from its lattice site and, passing through the crystal, produces a displacement cascade, i.e.

a collection of point defects (vacancies and interstitials, i.e. isolated Frenkel pairs) and

clusters of these defects in the crystal lattice. The most simple model that approximates

the irradiation event is the collision of hard spheres with displacement occurring when the

transferred energy is high enough to hit atom off its lattice site. In addition to energy

transfer by hard-sphere collisions, the moving atom loses energy by several other physi-

cal mechanisms, like interactions with electrons, the Coulomb field of nearby atoms, the

periodicity of the crystalline lattice, etc.

The radiation damage event is defined as the transfer of energy from the incident pro-

jectile to the solid and the resulting distribution of target atoms after completion of the

event. This chain of events happens in about 10−11s. After the thermal spike due the

energetic particle interaction with the crystal lattice, the irradiated material recovers its

initial temperature, but presents a large amount of point defects caused by the cascade.

Subsequent events, involving the migration of the point defects and defect clusters and

the additional clustering or dissolution of the clusters, are classified as radiation damage

effects. The migration of these individual defects yields either to their recombination or

to the formation of vacancy or interstitial clusters, and is heavily responsible of the trans-

formation of mechanical properties of the crystal. The microstructural evolution induced

by irradiation in due to these mechanisms and it has marked effects on the mechanical

properties. These phenomena are of primary importance for the ageing of materials in the
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nuclear industry.

As these migration events occur at temperatures much lower than the thermal spike,

they involve crossing barriers that are larger that the actual thermal energy of the system:

hence, post-cascade defect migration can be considered as a thermally activated rare events,

then studied using the methods we introduced in the Chapters 2 and 3.

We first recall the properties of point defects and the mechanisms of migration, following

Ref. [104], before exposing the reaction rate theory for point defect migration [110]. We

then give some details on current simulation methods aimed to reproduce radiation damage.

4.1.1 Numerical methods for irradiated materials study

A precise analytical description of radiation damage can be only very limited, due to the

complexity of this phenomena. Computer simulations are therefore necessary to study

and predict results experimentally observed with techniques like transmission electron

microscopy, X-ray scattering, small angle neutron scattering and positron annihilation

spectroscopy. [104]

Two tipes of numerical methods are usually employed to simulate the complete radiation

damage process: molecular dynamics (MD) simulations and kinetic Monte Carlo (KMC).

MD is computationally intensive and adequate for modeling atomic systems on the

appropriate scale for the simulation of displacement cascades. It provides the most realistic

description of atomic interactions in cascades, once adequate interatomic potentials are

used, like the Embedded Atom Model potentials described in Appendix G. MD simulation

time steps are very small (5 to 10 fs), so MD simulations are generally run for no more

than 100ps. This demand of a large CPU time limits the predicting capabilities of MD

simulation. However, molecular dynamics provides a detailed view of the spatial extent of

the damage process on an atomic level that is not possible by other techniques.

To bypass this numerical time-scale problem in MD simulations, it is possible to use

kinetic Monte Carlo (KMC). KMC is the most powerful approach available for making

dynamical predictions at the mesoscale: it attempts to overcome the MD time limitation

by exploiting the fact that the long-time dynamics of this kind of system typically consists

of diffusive jumps from state to state (see Sec. 4.3). Rather than following particle trajec-

tories, KMC offers a way to propagate dynamically correct trajectories through the state

space. The result is that KMC can reach vastly longer time-scales, typically seconds and

often well beyond. However, this requires a set of rate constants connecting the states of

the system. These rates have to be accurate enough to coherently reproduce experimental

data with numerical simulations. For this reason, we will use in Sec. 4.4 LyTPS to compute

phenomenological reaction rates for vacancy migration.

Taken together, the MD and KMC methods cover the radiation damage time-scale.

MD simulations are practical up to the ns range, and KMC simulations extend the range
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to the seconds regime. Much occurs after this time- scale and this is generally modeled

using rate theory.

4.2 Vacancy and vacancy clusters migration mechanisms

Understanding the effects of irradiation on materials requires a description of the nature

of radiation damage on the atomic level. The recoiling lattice atom travels through the

crystal, colliding with its neighbors and displacing these ones from their sites. As recalled

cascade of atomic collisions created by the original particle ends in a number of vacant

lattice sites and an equal number of displaced atoms positioned in the interstices of the

lattice. These are called Frenkel pairs, and mainly recombine after irradiation. The basic

defects (vacancies and interstitials) that remain in the crystal form the foundation for all

observed effects of irradiation on the physical and mechanical properties of materials. We

focus here on vacancies.

The vacancy, or missing lattice atom, is the simplest point defect in metal lattices. All

calculations and computer simulations show that the single vacancy structure is a missing

lattice atom with the nearest neighbors relaxing inward toward the vacancy.

Vacancies have low formation energies (< 2eV ) and high migration energy (> 0.5eV )

and are therefore much less mobile than interstitials. Beside monovacancies are the vacan-

cies aggregates and cluster (such as divacancies, trivacancies etc.) that are often observed

in irradiated metals.The migration energy of divacancies is less than for single vacancies

but increases with increasing cluster size. It appears that since the tetra-vacancy can only

migrate by dissociation, it is the first stable nucleus for further clustering.

The vacancy diffusion mechanism is one of the most important. It is the simplest

mechanism of diffusion and occurs in metals and alloys. It is given by the jump of an

atom from its lattice site to a neighboring vacant site. Since movement of the vacancy is

opposite that of the atom, vacancy-type diffusion is regarded as either a movement of the

atom or the equivalent movement of the vacancy. The absence of an atom from its lattice

site (i.e., the vacancy) allow atoms to move rather easily with jumps to nearest neighbor

or next nearest neighbor.

4.3 Reaction rate theory for point defects migration

The motion of an atomic defect in a solid can be described as the motion of a particle

interacting with neighboring atoms via an effective potential (see Appendix G). The solid

in which this processes occur is assumed at thermal equilibrium at a given temperature T,

and atoms in the lattice are in a constant state of motion due to thermal vibration: this

means that point defects in the lattice are also in motion, i.e. the migrating particle is in



4.3. Reaction rate theory for point defects migration 87

principle submitted to lattice vibrations.

The mean amplitude of these vibrations is in general small if compared to the displace-

ment required to the particle to go from one the initial stable configuration, in a potential

energy minimum, to an unstable configuration corresponding to a saddle point separating

the initial configuration to the closest stable one. The simplest approximation is here to

suppose that jumping particle are isolated enough from each other, in order to make the

reasonable assumption of single particle jump.

The random nature of thermal vibration gives rise to random walk of the atoms via the

defects that are in thermal equilibrium with their surroundings, known as self-diffusion.

Self-diffusion arises when a local concentration gradient of defects appears in the crystal,

driving atoms to move in the direction that eliminates the gradient.

The behavior of point defects is usually described resorting to the formation and the

migration energies. The formation energy is defined as the energy difference between the

system with and without defect, at constant number of atoms. The migration energy is,

by definition, the difference between the energy of the system at the saddle point and in

a equilibrium minimum. Finally, the binding energy between two defects is the difference

between the formation energy of the system when the two involved defects are far apart

and close to each other, according to the specified configuration: positive binding energies

denote, therefore, attraction (the energy decreases by putting the defects together), while

negative binding energies denote repulsion (the energy increases by putting the the defects

together).

We recall in this section the basic ideas of defect migration in solids, focusing on vacan-

cies, both treating this subjet from the macroscopic (thermodynamics) and microscopic

points of view.

4.3.1 Thermodynamics of Point Defect Formation

Self diffusion requires, as a first condition, the presence of point defects, that allows crystal

atoms to move without large distortions of the crystal lattice. We therefore derive first the

concentration of point defects in a crystal at thermal equilibrium, i.e. after the thermal

spike due to irradiation is recovered, giving an expression for the formation energy.

Even in the absence of irradiation, indeed, a crystal presents a finite number of defects.

Statistically, there is a finite probability that sufficient energy will be concentrated, by

local fluctuations, to form a defect in the crystal lattice. The Gibbs free energy (or free

enthalpy) reads

G = E + pextV − TS = H − TS (4.1)

If we assume that the volume of the crystal is constant, this expression is equivalent to

the Helmholtz free energy function.
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In Eq. (4.1), E is the internal energy, H is the total enthalpy of the N atoms comprising

the system. The entropy S reads

S = kB lnw (4.2)

where w is the number of possible different configurations of atoms. For a crystal with n

defects and N available sites, the increase in free energy is

∆Gf = n∆Hf − T∆S (4.3)

where ∆Hf is the increase in enthalpy brought about by the formation of the defect and

∆S is the change in total entropy, determined as follows. For n defects, there are N for the

first, N − 1 for the second, up to N − n+1 for the n-th. Because these configurations are

not all distinct and defects are indistinguishable, the number above allows for n! ways of

distributing N defects among n sites. Hence, the number of possible different configurations

is

w =
N !

n!(N − n)!
. (4.4)

Using Stirling’s approximation lnx! ≈ x lnx, the mixing entropy is then

Smix = [N lnN − n lnn− (N − n) ln(N − n)] (4.5)

In addition to Smix there is a contribution to S from the vibrational disorder of the presence

of the defects.

We now use introduce an harmonic approximation to take into account the entropy con-

tribution due to lattice vibration. According to the Einstein model of lattice motion, the

atoms are represented as 3N independent linear harmonic oscillators (harmonic approxi-

mation, that works fairly well in most cases up to the melting point) and the associated

entropy is:

Sf ≈ 3kB ln

(
kBT

~ωE

)
(4.6)

where ωE is the natural frequency of the oscillator and ~ is Planck’s constant, and we

assumed ~ωE/kBT ≪ 1 If each defect changes the vibration frequency of z neighbors to

ωr, the entropy variation due to vibrational disorder of n defects is:

n(Sf − zSf ) = Sf = 3kBnz ln

(
ωE

ωr

)
(4.7)

Taking both contributions to the entropy change and inserting them into the free energy

equation gives

∆Gf = n∆Hf − kBT [N lnN − n lnn− (N − n) ln(N − n) + nz ln

(
ωE

ωr

)
] (4.8)
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In equilibrium, n will be such that it satisfies dGf

dn = 0 giving

∆Hf

kBT
= ln

[
N − n

n

(
ωE

ωr

)3z
]

(4.9)

For N >> n, the defect concentration cv = n/N reads

cv =

(
ωE

ωr

)3z

exp

[
−∆Hf

kBT

]
(4.10)

or, rewriting in Eq. (4.6) the prefactor given by the vibration frequencies in terms of

vibrational entropy, the vacancy concentration with respect to the non defective state

reads

cv = exp(−(Gv −G0)/kBT ) (4.11)

where G0 is the Gibbs free energy (or free enthalpy) of the perfect crystal.

Alternatively, following [110] we directly write, always in the quasi harmonic approxi-

mation the free enthalpy as

G = E + kT
3N∑

α=1

log

(
~ω

kT

)
+ pextV (4.12)

where again E is the potential energy of the system, the third term corresponds to the work

of the external pressure pext, and the logarithmic term indicates the vibrational entropy

obtained summing the non zero 3N normal eigenfrequencies ω, corresponding to normal

modes of vibration. The free enthalpy difference in Eq. (4.11) can be written as

∆G = Ev − E0 + kT
3N∑

α=1

log

(
ωv
α

ω0
α

)
+ pext(Vv − V0) (4.13)

in which indexes v and 0 indicate the system with or without the vacancy.

The work of Lucas and Schaublin [105] investigate the modes of vibration of the va-

cancy in bcc Iron and estimate how the vibrational properties can affect the stability of

these defects. The vibrational frequencies ω are given by the phonon density of states of

the vacancy, and are calculated using density functional theory calculations. The spectra

of phonons frequencies ωi is obtained by diagonalizing the hessian matrix of the pseu-

dopotential . From the phonon density of states, it is possible to estimate the vibration

contributions Fvib to the free energy at finite temperature T,

Fvib = Evib − TSvib (4.14)

where Evib represents the vibrational internal energy and Svib the vibrational entropy. In

the harmonic approximation, these contributions can be written as

Evib =

3N∑

i


 hωi

exp
[

hωi

kBT

]
− 1

+
1

2
hωi


 (4.15)
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and the exact expression for the vibrational entropy

Svib = kB

3N∑

i

{
hωi

kBT

(
exp

[
hωi

kBT

]
− 1

)−1

− ln

(
1− exp

[
− hωi

kBT

])}
(4.16)

The formation energy of the vacancy is found to be 2.16 eV. Calculations gave a vibra-

tional formation entropy of 4.08kB . This value is compared by the authors with the value

proposed by Seeger, who has estimated the sum of the formation entropy Sf and the

migration entropy Sm (see below) around 5kB using transition state theory [106]. Such

a large vibrational formation entropy decreases the formation free energy of the vacancy

from 2.11eV at 0 K to 1.98eV at 500K: it is then much easier to form vacancy when

temperature increases.

4.3.2 Microscopic description of diffusion

We now pass to the study of the pure diffusive process involved in the vacancy migration.

We sketch here a mathematical relation between the macroscopic parameters for diffusion

(i.e., the self-diffusion coefficient) and the microscopic process of the elementary acts of

defect jumps represented by the coefficients of diffusion for defects, following [110]. The

main assumption is that the self-diffusion process consists of a completely random walk of

defects.

Jumps of defects (hence, of atoms) are due to thermal vibrations of very high frequency.

The Einstein expression for diffusion coefficient of a random walk along the x direction

reads

D =
X2

2τ
(4.17)

where X2 is the mean square displacement along the x direction for a duration τ , and the

overbar denotes an average over a large number of atoms. If Xi is the displacement of the

i-th atom, we have

X2 =
1

N

N∑

i=1

X2
i (4.18)

where N is the number of diffusing atoms. It is possible to show that

X =

K∑

k=1

xk (4.19)

and

X2 =

n∑

k=1

x2k + 2
∑

k,j

xkxj (4.20)

where xk is the k-th displacement along x, and K is the number of atomic jumps during τ .

For a real random walk, the last term in Eq. (4.20) vanishes. However, even when X = 0,
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i.e. in absence of external forcing fields, 2
∑

k,j xixj can be nonzero, because successive

atomic jumps are not independent of each other. For the vacancy mechanism, for example,

the vacancy concentration is so low (10−4 at the melting point) that two consecutive jumps

are likely due to the same vacancy and it is obvious that after one jump an atom has a

greater probability of making a reverse jump than to move randomly: jumps are therefore

correlated. This correlation between the directions of two successive jumps initiated by

the same vacancy reduces the efficiency of the effective walk with respect to a true random

walk. Correlation occurs for all defect-assisted diffusion mechanism, it is related to the low

concentration of point defects and decreases when this concentration increases.

We can compute X2 by assuming X = 0 in the limit τ → 0. Neglecting correlation

effects, we have

X2 = τ
z∑

k=1

Γkx
2
k (4.21)

where z is the number of jumps directions, Γk the mean atomic jump frequency for the

kth direction and xk the displacement along x for a k-jump. Hence, for an uncorrelated

walk,

Drand =
1

2

z∑

k=1

Γkx
2
k (4.22)

For cubic lattices of celle size a, all frequencies Γk are equal, and

Drand =
Γl2

6
(4.23)

where Γ =
∑

k Γk is the total jump frequency and l is the jump distance (l = 1/2
√
3a for

a bcc crystal, 1/2
√
2a for a bcc). For a bcc crystal, having 8 nearest neighbor at distance

a/2, Eq. (4.22) gives

Drand = Γa2. (4.24)

Taking into account correlation effects for successive dependent jumps, we define a corre-

lation factor, called the Haven coefficient, as

f = 1 +
2
∑

i,j xixj∑n
i=1 x

2
i

(4.25)

such that we write the real diffusion coefficient in Eq. (4.17) as

D = fDrand. (4.26)

For vacancy migration in a crystal with cubic symmetry we have

xixj = x2i cosθij. (4.27)
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With a few algebraic passages it is possible to show by recurrence that, if the jump obeys

a two or three fold symmetry [110], the averages of cosines are

cosθij = (cosθ)j−i (4.28)

where θ is the angle between two subsequents jumps. Thus we have for the Haven coefficient

f =
1 + cosθ

1− cosθ
. (4.29)

An useful estimation of f yields

f = 1− 2

z
(4.30)

where z is again the coordination number of the lattice. Eq. (4.30) arises from the fact

that because at each jump, the vacancy has the probability 1/z to performa a backward

jump.

For self-diffusion, f is independent of temperature in isotropic materials, and has values

f = 0.727 for vacancies bcc crystals, 0.78 for fcc and hcp, and 0.475 for divacancies in fcc

and hcp.

4.3.3 Jump frequency

We pass now to the computation of the macroscopic diffusion coefficient for vacancy mi-

gration, i.e. the self diffusion coefficient for the atoms of the crystal.

The macroscopic diffusion coefficient is given as a function of the jumping rate of the

diffusion species. The jump is seen, as in the context of statistical mechanical theory

of fluctuations, as a passage of the system from one stable position to another, over an

energetic barrier. The nature of this saddle is defined by the kind of lattice and the

mechanism at work.

The probability of finding a vacancy in a neighboring atom is a static property, defined

above with the computation of the formation free energy, and is therefore rigorously de-

termined by the precedent statistical mechanics approach resorting to the definition of the

formation energy. By contrast, the jump has a dynamic character: the jump proceed as an

hamiltonian trajectory in phase space and the successive positions are strongly correlated.

The approximations that are done in the reaction rate theory (see Appendix F) neglect

these dynamical correlations, so that the different positions of the jump are viewed as

independent static positions with an occupancy given by the equilibrium statistical weight

all along the jump path, including the saddle position. The real diffusion coefficient can

however be recovered, via the correlation factor f in Eq. (4.26) from the random walk diffu-

sion coefficient. In this approach, the dynamical correlations between successive positions

are lost, and therefore jumping particle has "no memory". Moreover, the approximation

of a planar saddle hypersurface separating the initial and final states, and passing through
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the saddle point, as usually taken in the harmonic approximation approach is not always

valid.

The expression for the migration rate was obtained by Vineyard [107, 110]. As summa-

rized in [51], Vineyard assumes in his work that the jump rate between two nearest defect

positions A and B (corresponding to reactant and product states mentioned in Chapter 3)

in a solid of N atoms at a given temperature T and pression pext is such that once the par-

ticle has passed the saddle point S, remains stacked in configuration B. This is indeed an

assumption that neglects the aforementioned recrossing events; therefore, Vineyard theory

corresponds to the transition state theory approach described in Appendix F.

The defect particle is described by a classical Hamiltonian, function of the 6N positions

and momenta of the system. The transition state theory for reaction constants in many

body systems (Appendix F) directly applies in the context of point defects migration in

crystals, hence the absolute Vineyard transition rate is identical to transition state theory

or Eyring expression, and reads

Γ =

∏3N
i ωA

i∏3N−1
i ωs

i

exp {−∆H/kBT} (4.31)

with the enthalpy difference ∆H = Es − EA + pext(Vs − VA). In this expression, the ωA
i

are the frequencies of the normal modes for the vibrations of site A with potential energy

VA, while the ωs
i are the normal mode frequencies for the vibrations orthogonal to path X

at the saddle point S with potential energy Es. The corresponding volumes of the solids

are VA where defects is in A, and Vs when the defects is in S. It is customary to assume

that the total volume of the solid remains invariant before and after the jump, neglecting

distortions given by the atom at the saddle point.

The neglected dynamic correlation aspects traduce in two effects: first, the presence

of multiple jumps as a new diffusion mechanism (investigated for example in [108]), and

secondly the existence of unsuccessful jumps, in which the jumping particle turns back

once it reaches the saddle point (recrossing events). This second point recalls the necessity

of considering the transmission factor mentioned in Chapter 3 and in Appendix F, needed

in order to take account of the presence of failures in the jump attempts.

The main origin of these inefficiencies has been shown to lie in the anharmonicity of

actual interatomic interactions, allowing for a curved rather then a planar hypersurface, as

a curved hypersurface can be crossed twice [109]. Taking into account third order terms in

the expansion of the potential (i.e. the first non harmonic term) about 10% of recrossing

events can be avoided.

Always in the harmonic approximation, as in Eq. (4.6) we introduce an entropy differ-

ence between state A and the saddle S as the sum of logarithms of the number of available
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vibrational modes in a range kBT

∆S = kB

{
3N∑

α

ln

(
hω0

α

kBT

)
−

3N∑

α

ln

(
hωs

α

kBT

)}
. (4.32)

Recalling that the statistical weight corresponding to the saddle position is

Ps = P0 exp(−Gs/kBT ) (4.33)

we show in Appendix F that the migration frequency in Eq. (4.31) derived from the flux

over population method can be written as [110]

Γ =
kBT

h
exp (−(Gs −Gv)/kBT ) (4.34)

where Gv is the free enthalpy of the vacancy at the initial equilibrium position, Gs is the

free enthalpy of the vacancy at the saddle point, and using the harmonic approximation in

both free enthalpies their difference is written

Gs−Gv = Es−Ev+ kBT

3N−1∑

α=1

log

(
~ωs

α

kBT

)
− kBT

3N∑

α=1

log

(
~ω0

α

kBT

)
+ pext(Vs−V0). (4.35)

As mentioned also in Appendix F, notice that in Eq. (4.35) the eigenfrequencies ω corre-

sponding to motions restricted to the saddle point do not correspond one to one to the

frequencies in the stable position, and saddle vibrational modes are one less than stable

state vibrational modes: indeed, we require here to restrict the motion to a hypersurface,

of dimension 3N − 1, passing through the saddle point.

A more homogeneus formula is obtained writing the free enthalpy difference as

Gs −Gv = Es − E0 + kBT log

(
ν0

∏3N−1
α=1 ωs

α∏3N
α=1 ω

0
α

)
+ pext(Vs − V0) (4.36)

and the jump frequencies reads

Γ = ν0 exp

{
−Gs −Gv

kBT

}
. (4.37)

We introduced in Eq. (4.37) the so called ’attempt frequency’ ν0. This prefactor ν0 com-

pensates the difference of vibrational frequencies between saddle and stable point, and has

no physical meaning on its own. It can be interpreted as the frequency at which the moving

atom attempts to jump in the vacancy position, and assumed to be equal to the Debye

frequency νD. In the case of Fe, having a Debye temperature TD = 470K, νD = 1013s−1.

However, as can be seen from Eqs. (4.34) and (4.37), the assumption ν0 = νD can fail

both for temperature effects (the Debye frequency νD is obviously different from prefactor

kBT/h for temperatures different then the Debye temperature) or for anharmonicities of
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the vibrational entropy that are of course not taken into account in the quasi harmonic

approximation.

Very often, in condensed matter problems the only term in Eq. (4.35) known without

introducing any approximation is the height of the potential energy barrier Es − E0. Ne-

glecting volume changes for the system with the atom in the equilibrium position and at

the saddle, Eq. (4.37) is therefore rewritten in a Arrhenius way as

Γ = Γ0 exp(−βEbarr) (4.38)

where Ebarr = Es − E0 and the prefactor Γ0 contains ’unknown’ term, i.e. the attempt

frequency and the entropic contribution of Eq. (4.32) related to the free enthalpy G, the

migration entropy ∆Sm:

Γ0 = ν0 exp(∆Sm/kB). (4.39)

This formula is by far the most used in physical metallurgy. From Eq. (4.39) and (4.36),

we see that in the harmonic approximation the migration entropy has a close expression

to the vibrational entropy, both being given by vibrational modes.

4.3.4 Diffusion coefficient

The macroscopic diffusion coefficient of Eq. (4.26) can be written using Eq. (4.24) by con-

sidering also the contribution given by the point defect formation probability, cv , with those

connected to the jump frequency, taking into account also correlations between successive

jumps. We have

D = fDrandcv = fa2cvΓ (4.40)

and inserting Eq. (4.37) for the jump frequency, we arrive to the expression

D = DT
0 exp

{
−∆Hf −∆Hm

kBT

}
(4.41)

with

DT
0 = ν0a

2f exp

{
∆Sf +∆Sm

kB

}
(4.42)

where the migration and formation entropies and enthalpies appear. Note that in constant

volume system enthalpy differences reduce to potential energy barriers.

4.4 Migration rate estimates with LyTPS

In order to have reaction rate constants to use in KMC code, we apply LyTPS to the case

of vacancy and divacancy migration in α-Iron. We then compare the results obtained with

the values expected from the Vinayard transition state theory.
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4.4.1 Vacancy migration in α-Iron crystal with LyTPS

The first example of a thermally activated process studied using the Lyapunov biased

TPS method is the migration of a single vacancy in α-Iron crystal. Atomic interactions of

the model system are described by an embedded atom model (EAM) potential (see Ap-

pendix G). Simulations are done for two different EAM potentials , A04 [90] and M07 [96].

The crystal structure is body-centered cubic, and the initial unrelaxed cell contains 1023

atoms displayed on 1024 lattice sites, the vacant site corresponding to the vacancy. The

reaction coordinate used to represent the motion of the vacancy is the distance crossed by

the moving atom that replaces the vacancy.

The free energy landscape for this system for the potential A04 has been investigated

in [89]. It presents two stable states, the first corresponding to the initial configuration,

and the second one to the initial configuration modified by an atom displaced of a first

neighbour distance a = 2.47Å, switching its initial position with the vacancy site.

The potential energy barrier between these two states has been computed by several ab-

initio methods (see [96] for a detailed description) giving values in the range 0.65±0.02eV .

The EAM potential A04 used in these simulation estimates at 0K this barrier at 0.64 eV,

while potential M07 estimates it at 0.67 eV [96]. Note that some experimental results [103]

were interpreted in a way to give a potential energy barrier of 0.55eV [96]; this value

however was obtained by fitting experimental data with an Arrhenius plot and considering

a prefactor Γ0 in Eq. (4.39) as given only by the Debye frequency (see discussion below).

For potential A04, there is a single free energy barrier separating these two states for

temperatures above T = 450K, while for lower temperatures an intermediate metastable

state appears, corresponding to an intra-site position for the moving atom.

We performed Lyapunov biased TPS simulations with trajectories of different lengths

(see below), with time step δt = 4 · 10−15s. A preliminary MD simulation is done to

equilibrate the system to the required temperature, with a friction parameter γ = 2.5 ·
1012s−1. We explored temperatures ranging from 300K to 850K. The TPS shooting

and shifting moves are iterated along a Markov chain of 1500 steps. Parameters for the

diagonalization of the hessian matrix via the Lanczos algorithm (see Appendix D) were

taken as l = 4 and δL = 10−13Å. Finally, we precise that in this case of vacancy migration

we used a Lyapunov indicator Lvac given by the first order approximation of L(z) in

Eq. (3.35), i.e.

Lvac(z) =
1

N
N∑

n=1

dt
√

max(0,−λmin
n ) (4.43)

in order to avoid numerical precision problems given by the smallness of the time step dt.

As for LJ38, the trajectory length and the values for the control parameter α have been

chosen in order to ensure an acceptance ratio of 25% and an adequate ergodic sampling

of the phase space. For temperatures above 450K, the presence of a single "smooth"
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barrier for A04 separating the two metastable states makes this application simple enough:

sampling of reactive trajectories is achieved using 15 α values from the unbiased simulation

at α = 0 up to α = 150·1012 , with trajectories of 300 steps. For temperatures below 450K,

an ergodic sampling of trajectory space appears more difficult, also due to the double bump.

We therefore employed longer trajectories of 500 time steps, as well as larger values of the

control parameter, up to α = 500 · 1012 to allow the system to escape the initial basin.

Reaction constants for the passage between the two stable states above 450K are

estimated from correlation functions unbiased with the MBAR algorithm, via Eq. (3.77).

For T < 450K, the presence of an intermediate metastable basin has to be taken into

account in the evaluation of reaction constants. As recalled in Sec. 3.5.1, the reaction

rate expression obtained from Eq. (3.77) holds only for adjacent reactant and products

basins. At low temperatures, it is therefore more appropriate to use our algorithm to

evaluate the reaction constant for the passage from the initial state to the intermediate

basin. To recover afterwards reaction rates for the passage from one stable configuration

to the other, we observe that reaction constants for transitions from the intermediate

metastable state to either of the two stable states are equal, because of the symmetric

shape of the potential surface. [96] Hence, from Eq. (3.93), reaction rate for the passage

from one stable configuration to the other is simply one half of the reaction constant from

one stable configuration to the intermediate one.

In Fig. 4.1 we compare the reaction rates obtained with Lyapunov biased TPS, those

computed inserting in the transition state theory (TST) expression (Eq. (3.78)) the free

energy barriers reported in Ref. [89], and reaction constants obtained with a classical

Harmonic Approximation (HA). Above the Debye temperature (470K), rates obtained with

Lyapunov biased TPS fall between TST and harmonic approximation values. To explain

this point, we recall that reaction rates we estimate with the method exposed in Sec. 3.4

are derived from Eq. (3.77), hence correspond to the phenomenological rate constants.

These values are therefore bounded from above by TST values, that overestimate reaction

rates [75], as can be seen from Eq. (3.79). Conversely, values obtained with the harmonic

approximation neglect anharmonicity effects on the activation barrier, thus giving reaction

rates that are lower then the phenomenological rate constants we compute. Our results

are then in agreement with the theoretical predictions of the reaction rate theory recalled

in Appendix F.

These data can be used as well for the evaluation of the migration entropy mentioned

in Eq. (4.39). A fit for the phenomenological rates in Fig. 4.1 with Eq. (4.38), using the

ab-initio value for the migration potential energy barrier is presented in Figure 4.2: it gives

a prefactor Γ0 = 12 · 1013. Assuming an attempt frequency of ν0 = 1013, this amounts of

having a migration entropy for the monovacancy about 3kB .

This value can be compared to data available in literature: summed to the formation
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Figure 4.1: Arrhenius plot of reaction constants for migration of monovacancy in α-Iron

with EAM potential A04 obtained with LyTPS (red points), compared with rates obtained

using in Eq. (3.78) the free energy barriers proposed in Ref. [89] (black line) and using an

harmonic approximation (green line).
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Figure 4.2: Logaritmic plot of migration reaction constants for monovacancy in α-Iron

obtained with LyTPS (red points) using EAM potential A04, and fitted with the Arrhenius

Eq. (4.38) (black line), taking as potential energy barrier height the value given by the A04

potential. The blue line indicates the theoretical prediction for an Arrhenius plot, with

the same slope but neglecting in the prefactor Γ0 of Eq. (4.39) the migration entropy term:

this clearly shows that assuming Γ0 = ν0 severely underestimates migration rates values.

entropy of 4 kB computed by Lucas et Schaublin [105] with DFT and already mentioned,

this means a total entropy (formation and migration) of 7kB . Other calculations of the

formation entropy for the A04 and M07 potentials in the harmonic approximation have

given values between 3 and 4 kB . The experimental data for self-diffusion in bcc Iron by

Takaki [111] were fitted with Eq. (4.42) assuming a total enthalpy ∆H = 2.9 eV, thus

giving a prefactor DT
0 = 6 · 10−4m2s−1 that indicates (always for an attempt frequency of

ν0 = 1013s−1 an experimental estimate for the total entropy of 7kB , in perfect agreement

with our results. Note that Seeger [106] proposes a total entropy from the data of Takaki

of 5kB , but taking a value ν0 = 1014s−1.

We conclude this section on vacancy migration rates noting that using potential M07

instead of A04 introduce no significative difference in the estimation of reaction constants:
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this is shown in Fig. 4.3, where rates for the two potentials are compared, and fitted as in

Fig. 4.2.

Potentials A04 and M07 differs mainly on the shape of the potential energy barrier

separating the two stable configurations: potential A04 presents the metastable state men-

tioned above between the two stable states, while M07 has a ’flat’ barrier. This different

shape of the barriers could have implications in terms of a different migration entropy in

the harmonic approximation (due to different values for the vibration eigenfrequencies at

the saddle point, see Eq. (4.32)). However, this apparently do not affect significatively the

value of migration rates.
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Figure 4.3: Arrhenius plot for reaction constants for migration of monovacancy in α-Iron

obtained with LyTPS with potentials A04 (red points) and M07 (black points). The slope

is given by the height of the potential energy barrier of M07.

4.4.2 Divacancy migration in α-Iron crystal

The second example of activate processes in nuclear materials we study is the divacancy

migration from a first to second neighbour position (see Fig. 4.5). Simulations are done

using the EAM potential (see AppendixG), A04 [90]. This potential predicts a ’simple’
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Figure 4.4: Left: Divacancy in first-neighbor position Right: Divacancy in second-

neighbor position

barrier separating the two configuration, hence the study of this structural transition gives

again further information on an eventual dependence of LyTPS numerical results on the

shape of the potential energy barrier [96]. The crystal structure is body-centered cubic, and

the initial unrelaxed cell contains 1022 atoms displayed on 1024 lattice sites, the vacant

sites corresponding to the divacancy. The reaction coordinate is given by the distance

between the two vacancies, computed again from the distance crossed by the moving atom

replacing one of the two vacancies. The initial configuration is given by the two vacancies

positioned at a first neighbor distance a = 2.47Å, corresponding to a metastable state,

while the final state is the same configuration with the vacancies positioned at a second

neighbor distance of a = 2.87Å, corresponding to the stable state [101] (see Fig. 4.4).

The beginning positions for the two vacancies are as first neighbour: this in an unstable

configuration that is separated by a potential energy barrier of 0.62 eV from the second

neighbor configuration, that has been proven to be the most stable one [102].

There is a single free energy barrier separating these two states, and we assume that

a single vacancy jump happens during our simulations. We focused on this transition,

although transitions from the first-neighbour to third neighbour position have been ob-

served in our simulations, but very rarely, such that we did not get an sufficient statistics

to recover results with MBAR.

As in the Sec. 4.4.1, we performed Lyapunov biased TPS simulations with trajectories

of different lengths (see below), with time step δt = 4·10−15s. A preliminary MD simulation

is done to equilibrate the system to the required temperature, with a friction parameter

γ = 2.5 · 1012s−1. We explored temperatures ranging from 300K to 850K. The TPS

shooting and shifting moves are iterated along a Markov chain of 1500 steps.

The choice of the numerical values for the bias parameter α is the same for the vacancy

migration of the previous section; indeed, these values are chosen in function of the Lya-

punov indicator L of Eq. (4.43) that depends on the conformation of the potential energy

surface. As the EAM potentials used to study the vacancy and divacancy migration are

very close, the use the same numerical values for α. For temperatures above 450K, sam-
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pling of reactive trajectories is achieved using 15 α values from the unbiased simulation at

α = 0 up to α = 150 · 1012, with trajectories of 300 steps. For temperatures below 450K,

an ergodic sampling of trajectory space appears more difficult. We therefore employed

longer trajectories of 600 time steps, as well as larger values of the control parameter, up

to α = 500 · 1012 to allow the system to escape the initial basin. We neglect the presence

of intermediate metastable configurations between the first- and second-neighbor distance

configuration. Reaction constants for the passage between the two stable states are esti-

mated from correlation functions unbiased with the MBAR algorithm, via Eq. (3.77), as

in previous applications.

We compare these data in Fig. 4.5 with a fit as in Eq. (4.38) with ν0 the Debye frequency,

given by 1013s−1, and Ebarr is the potential energy barrier from the first to the second

neighbor configuration given by ab initio calculation, of 0.62 eV (this value is indeed the

same given by the A04 potential). The migration entropy can be inferred to be about

5, 7kB .

As it is possible to see, rates computed with LyTPS are much larger than those com-

puted if taking the approximation Γ0 = ν0, thus suggesting that using these data for

simulating resistivity recovery simulations, described in the next section, will yield results

in a better agreement with experimental data. Once again, we stress that these results are

more realistic thanks to the fact that we are directly computing phenomenological finite

temperature rate constants.

4.5 Resistivity recovery experiments

Important informations on the post-irradiation properties of vacancies and vacancy-type

defects can be obtained by resistivity recovery experiments, where an irradiated sample

recovers its defect-free resistivity as it is annealed at increasing temperatures.

The experimental protocol is the following: metals are first irradiated at very low tem-

peratures (around 4K) with high-energy electrons. Subsequently, the irradiated sample is

progressively heated: indeed, when the temperature is raised at a constant rate ("isochronal

annealing"), various migration mechanisms are enabled, thanks to the thermal energy that

becomes comparable with the height of activation barriers. In this way, observing tem-

peratures at which resistivity changes (or, equivalently, the variation of the population of

defects, given by emission peaks) happen, activation barriers can be estimated. The height

of this emissions peaks is related to the resistivity per defect, an aspect in which we are

not interested in this work.

In the work of Fu et al. [101], abrupt resistivity changes - so-called recovery stages

- has been reproduced in numerical simulations observed upon annealing at increasing

temperatures after electron irradiation in α-Fe by combining ab initio and event-based
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Figure 4.5: Arrhenius plot of reaction constants for migration of divacancy in bcc iron

obtained with Lyapunov biased TPS (red points), fitted with Eq. (4.38) taking a potential

energy barrier Ebarr = 0.62eV [96].
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kinetic Monte Carlo (KCM) methods.

Ab initio simulations are performed in order to to estimate potential energy migration

barriers. Calculations are done in the framework of density functional theory for electronic

structure computations, resorting to the SIESTA code. Once activation barriers are esti-

mated, migration rates can be inferred using Eq. (4.38), and then used as input parameters

for kinetic Monte Carlo simulations.

Event-based KMC is implemented in the JERK or FPKMC codes, in which defects are

considered as objects characterized by their space coordinates, their nature (i.e. distin-

guishing between interstitials, vacancies, divacancies...), shape (spherical for simple point

defects), mobility and dissociation rate. These last data are therefore provided resorting

to the aforementioned ab initio simulations. When mobile, these objects may migrate

and annihilate on their anti-defect (as in the case of recombination of Frenkel pairs) or

aggregate to form clusters. KMC allows then to reproduce numerically resistivity recovery

experiments.

Reference experiments were made in high-purity electron-irradiated Fe by Takaki et al.

[111] with irradiation doses in the range 2 ·10−6 to 200 ·10−6 displacement per atom (dpa).

The derivative of the resistivity recovery plots with respect to temperature shows peaks

referred to as recovery stages. For some stages, the change-of-slope technique allows one

then to deduce an effective activation energy related to the activation temperature.

We focus on the stage in (220-278 K) that, as reported in [101] is suggested to result

from vacancy migration, with an ab-initio potential energy migration value of Ev
mig =

0.67eV . Also small vacancy clusters, like divacancies, are found to have the well known

ground-state configurations [102]. They migrate by successive nearest-neighbor mono-

vacancy jumps. This motion may require passing through metastable intermediate states

corresponding to first or second neighbor distances, as mentioned in the previous section.

The derivative of the resistivity recovery and the evolution of the defect population with

respect to temperature at low (2·10−6 dpa) and high (200·10−6 dpa) dose are analyzed. As

in the experiment, four distinct stages are obtained, the first two connected to correlated

or uncorrelated recombination of Frenkel pairs (interstitials and vacancies), the third given

by interstitials migrations, and the last, indicated in the literature with (III), related to

vacancy and vacancy clusters migration, which may aggregate with other vacancies or

vacancy clusters, or annihilate on interstitials clusters. It is shown as well that divacancies

and vacancy clusters contribute to the stages attributed to mono-vacancy migration: they

not give rise to peaks disconnected from stage (III), in agreement with experiments, since

their migration energies are lower or equal to Ev
mig, and they are precisely formed at stage

(III) as a result of V migration.

For this stage, numerical results of Ref. [101] show the largest discrepancy with respect

to experimental data, as with a peak of vacancy emission for low irradiation doses at 335 K,
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Figure 4.6: Time derivative of the vacancy population in α-Fe as a function of temperature

at low irradiation doses (2 · 10−6 dpa). The experimental peak is observed at 278 K, and

the peak given by using reaction rates of Fig. 4.2 in a FPKMC code is at 289 K (yellow

line). The vacancy emission peak mentioned in [101] was at 334K (green line).
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Figure 4.7: Same figure as Fig.4.6 for high irradiation doses (200 · 10−6 dpa). The exper-

imental peak is observed at 220K, the peak given by migration rates of Fig. 4.2 at 236 K

(yellow line) while the in [101] it was at 256K (green line).
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57 K above the experimental position is found. Numerical results for high irradiation doses

give a peak at 256 K, while the experimental measures denoted an ’activation temperature’

of 220 K. These discrepancy were explained in [101] both by a shift of only 0.1 eV on the

values of the migration energies of vacancy-type defects or by to two orders of magnitude

in the pre-exponential factors.

Migration rates obtained with LyTPS and reported in Fig. 4.2 show indeed that the sec-

ond hypothesis is the correct one. The difference with [101] is indeed the use in Eq. (4.38)

an Arrhenius fit with a prefactor value Γ0 given only by the Debye frequency ν0, thus

neglecting entropic contributions contained in Eq. (4.39). This was due to the fact that

these computations with ab initio method did not estimate migration entropies. By con-

trast, we repeat that the LyTPS method presented in Chapter 3 gives direct access to

phenomenological rate constants, thus allows to correctly compute the value of Γ0 taking

into account entropic effects.

Numerical simulations of [101] were therefore done again, using LyTPS migration rates

as input values for a first passage kinetic Monte Carlo (FPKMC) code. Results are shown

in Fig. 4.6 and 4.7, and are in a really good agreement with experimental results of

Takaki [111].

4.6 Conclusion

In this chapter we have applied LyTPS to a condensed matter problem, the computation

of migration rates for vacancy type defects in Iron. The determination of the exact values

for physical terms giving these migration rates - namely, the energy (or enthalpy) barrier

and the entropy contribution in the prefactor - is a debate still open in the physical met-

allurgy field, as numerical results have been often interpreted using different formulations

of Eqs. (4.38) and (4.39), while experimental data give only access to quantities present in

Eq. (4.41). Therefore, the estimation of formation and migration enthalpies and entropies

is subjected to several variations in the literature, given by the difference in the choice of

the energy (or enthalpy) barrier in the exponential term of the Arrhenius fit, as well as the

choice of the prefactor. In particular, as mentioned above, the conventional choice for a

prefactor Γ0 = ν0 led to an attribution of values for the energy barrier that are lower than

those predicted by ab initio or free energy calculations (see for instance the value of 0.55

eV [103], extrapolated from experiments, compared to 0.67 obtained by ab initio)

Migration rates directly computed via LyTPS give indeed a clue to determine the

effective values for migration barriers in α-Iron, but do not give a definitive answer: further

work is indeed required to correctly establish these results. In particular, it is still necessary

to compute the vibrational entropy appearing in Eq. (4.39) with ab initio methods: this has

not been done in the past, due to the huge computational effort this work requires. These
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DFT calculations of the migration entropy will be executed in the harmonic approximation

- as it is by now the best method still numerically affordable - and will just have the role of

indicating if the reduction of the discrepancy between KMC and experimental resistivity

recovery is effectively due to entropy effects or not.

Finally, we believe that LyTPS would be applicable also to compute migration rates

of dislocation lines, as well as to study the migration of interstitials. The combination

of phenomenological rates computed by LyTPS and event-based KMC would indeed be a

powerful tool to predict the complete kinetics of irradiated materials.



Chapter 5

Conclusion and perspectives

This PhD thesis focused on the study of rare events, characterizing reactive paths and

computing reaction constants for thermally activated structural transitions in many-body

systems.

To this scope, two methods were elaborated; one of them has furthermore been applied

to the study of point defect migration in nuclear materials. Methods have been successful

in opening new perspectives in the field of importance sampling techniques, while the

application yielded important results for nuclear materials science.

These achievements can be described in details as it follows. Concerning the transition

current sampling method, presented in Chapter 2, we showed how to present this method -

previously elaborated as Lyapunov-weighted dynamics - in a purely classical approach, and

applied it to a benchmark system. This gave us a much better insight in transition current

sampling and in Lyapunov-weighted dynamics as well (both familiarly called the "clones"

method), as a simpler description of the underlying theory, coupled with an application to

a complex system like LJ38, made us accurately test its potentialities and its drawbacks.

In particular, we stress that in its application to LJ38, TCS enabled us not only to localize

well-known states and barriers, but even to characterize transition regions that were usually

very poorly sampled by other importance sampling methods. The full description of the

reaction path for the icosahedral to octahedral structural transition at finite temperature

has been obtained, stressing entropic effects beside those linked to the potential energy

surface conformation. However, the main drawback resides in the fact that unbiasing this

sampling scheme in order to recover reaction rates resulted to be quite difficult, so limiting

TCS to being an energy landscape exploration method, more than an algorithm suitable

to compute also reaction rates.

For these results, we strongly believe that TCS may be successfully employed in the

study of the structural transitions of even larger systems, like proteins - as done in the past

by Mossa and Clementi, or in general to systems with a very complex free energy surface,

also if not explored yet (i.e. where reaction paths have not been previously identified) as

TCS is able to find transition regions without requiring any kind of reaction coordinate.

Moreover, we believe that its application to the study of nonequilibrium systems - via an

attentive reformulation of some points of its theoretical basis - could give really interesting

results. Finally, as a perspective, we point out that an application of the Diffusion Monte
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Carlo algorithm exploited in the sampling of transition currents has been interestingly

done by J. Kurchan and myself in order to study large deviations connected to the glassy

transition in monodisperse Lennad-Jones systems.

The second method we developed, the Lyapunov biased transition path sampling

(LyTPS) consists in an important development of the transition path sampling technique:

indeed, the introduction of a bias based on local Lyapunov numbers enhances significantly

the fraction of reactive trajectories observed during simulations. We stress in fact that

the transition path sampling in canonical ensemble had been tested before on LJ38, lead-

ing to results only resorting to a huge employ of CPU time. By contrast, a TPS in our

biased ensemble gave reactive trajectories linking the basins corresponding to the two

main crystalline structures. This achievement acquires more importance once we consider

that, although this result of sampling reactive paths was obtained as well with TCS, we

are able with LyTPS - thanks to the Bennett-Chandler formalism - to compute reaction

rate constants. These reaction rates have furthermore the advantageous feature of being

phenomenological, i.e. they contains informations about finite temperature and anhar-

monicity of the activation barrier. Note, however, that in order to compute reaction rates

in LyTPS, reaction constant values discriminating the location of states and saddle points

in phase space are needed (see the indicator functions used in the transition state theory).

Therefore, we suggest a coupled use of TCS - in order to preliminary locate barriers and

assign for each barrier a given value to the reaction coordinate - and then of LyTPS, that

computes reaction constant once basins are correctly delimited.

Perspectives for future applications of LyTPS are given by all systems where an ac-

curate computation of reaction rates at finite temperature is needed, as in thermally ac-

tivated processes occurring in physical metallurgy (see below). We recalled in Chapter 3

that LyTPS can be seen as a finite temperature version of ART techniques. As in this

algorithm, the main problem we found was to start having reactive trajectories at very

low temperatures for smooth potential energy surfaces: in this situation, sampled paths

lie indeed at the bottom of the potential well, where hessian spectra are all positive, hence

don’t contribute to the Lyapunov bias and do not accelerate our sampling. Further work

could be spent in the direction of slightly modifying the analytical expression of the Lya-

punov indicator for the bias, in order to accelerate the activation of reactive trajectories,

by enabling them to find the inflection point on the potential energy surface where the

first negative hessian eigenvalues start to appear.

The third achievement of this PhD thesis has been given by the computation of migra-

tion rates of vacancy-type defects in α-Iron by using LyTPS. This computation has been

done with the aim of reproducing numerically, via a KMC code, some resistivity recovery

experiments, that were however not correctly simulated by previous works presented in

the literature, because reaction rate values given as input parameters to KMC completely
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neglected entropy contributions. By contrast, using LyTPS data we were able to estimate

the migration entropy related to vacancy type defects, and subsequently we obtained resis-

tivity recovery simulations in a very good agreement with experimental data. This results

shows how powerful LyTPS method can be.

We conclude by observing that LyTPS has then a wide range of applications, from the

migration of vacancy and interstitials clusters to the motion of dislocation lines, whose

evolution is really significant for the study of the structural behavior of nuclear materials.

The computation of finite temperature entropic effects on the atomic scale results than to

be essential for the understanding of phenomena at much larger scales.





Appendix A

Hamiltonian dynamics

In this Appendix we present some considerations on Hamiltonian dynamics and numerical

schemes aimed at simulating it. A concise description can be found for example in the

handout of W. Cai [92], that we follow here.

Hamilton equations read (as in Eq. (3.15))

q̇ =
∂H(q,p)

∂p

ṗ = −∂H(q,p)

∂q

(A.1)

For N particle systems, q is a 3N -dimensional vector specifying its position and p is a

3N-dimensional vector specifying its momentum. In terms of q and p, the equations of

motions Eq. A.1 is a set of (coupled) first-order differential equations. The equation can

be reduced to an even simpler form if we define a 6N-dimensional vector

η = (q,p) (A.2)

and the equation of motion becomes

η̇ = ω
∂H(η)

∂η
(A.3)

where

ω =

(
0 I

−I 0

)
(A.4)

and I is the 3N × 3N identity matrix. The 6N -dimensional space which η belongs to is

the phase space. The evolution of system in time can be regarded as the motion of a point

η in the 6N -dimensional phase space following the first-order differential equation.

Because Newton’s equations of motion conserves total energy, the motion of a point in

phase space must be confined to a subspace (or hyperplane) with constant energy. Let us

now consider the evolution of a small element in phase space over time: the area enclosed by

this element remains constant, even though the element inevitably experiences translation

and distortion. Let the element at time t be a hypercube around point η whose area is

|dη| = |dq| · |dp| (A.5)
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Let ξ ben the position at time t + δt of η. We can linearize, for δt → 0 its evolution at

first order as

ξ = η + η̇δt = η + ω
∂H(η)

∂η
δt (A.6)

Let DM be the Jacobian matrix of the transformation from η to ξ, i.e.

DM = 1 + ω
∂2H(η)

∂η∂η
δt (A.7)

The area of the element at time t+ δt is related to the determinant of the Jacobian matrix

as

|dξ| = |dη| · |detDM| = |dη| · (1 +O(δt2)) (A.8)

Because the first order term of δt in detDM vanishes, we can show that the area of the

element remains constant for an arbitrary period ∆t (see Liouville theorem): if we only

divide this time interval into M subintervals, each with δt = ∆t/M . The area change per

subinterval is of the order of 1/M2. The accumulated area change over time period ∆t is

then of the order of 1/M , which vanishes as M → ∞. Because the area of any element in

phase space always remains constant, the evolution of phase space points is analogous to

that in an incompressible fluid.

The Hamiltonian dynamics has even more symmetries. The transpose of DM is

DMT = 1− ω
∂2H(η)

∂η∂η
δt (A.9)

and we have

DMωDMT =

(
1 + ω

∂2H(η)

∂η∂η
δt

)
ω

(
1− ω

∂2H(η)

∂η∂η
δt

)
= (A.10)

= ω +O(δt2) (A.11)

This is the so called symplectic condition, valid up to second order. Again, the symplectic

condition is satisfied for an arbitrary period of time. This condition implies as well area

conservation, since asDMωDMT = ω, detω = det(DMωDMT ) = det(DM)2det(ω) hence

detDM = ±1.

The numerical integrators for simulating the Newton’s equation of motion are solvers

of ordinary differential equations (ODE). However, the Newton’s equation of motion that

can be derived from a Hamiltonian is a special type of ODE, as given physical quantities,

like energy, are conserved: therefore, ODE solver for Molecular Dynamics simulations

have to obeys the same conservation laws of a Hamiltonian system. Ideally the numerical

integration scheme should satisfy all the symmetries of the true dynamics of the system.

Hamiltonian dynamics is also time reversible: if η evolves to ξ after time t, another

phase space point η′ with the same q as ξ but with reversed momentum p will exactly come
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to point η after time t. To summarize, the dynamics of a hamiltonian system conserves

total energy, conserves phase space area (incompressible flow in phase space), satisfies

symplectic condition and is time reversible.

Ideally, the numerical integrator we choose to simulate Hamiltonian system should

satisfy all of these symmetries. For instance, the Verlet integrators (see Eq. (3.20)) are

symplectic, and guarantee area conservation and time reversibility.

Since every integration step using the Verlet algorithm is time reversible, then in prin-

ciple an entire trajectory of Molecular Dynamics simulation using the Verlet algorithm

should be time reversible. In practice, however, we never have perfect reversibility. This

is due to the combined effect of numerical round off error and the chaotic nature of trajec-

tories of many Hamiltonian systems.

The chaotic nature of many Hamiltonian system has been illustrated in Chapter 3,

by considering the evolution of two trajectories starting with very close initial conditions:

at large time t, they diverge exponentially at a rate given by the maximum Lyapunov

exponent, with a behavior called Lyapunov instability. Given that we can only represent

a real number on a computer with finite precision, we are in effect introducing a small

(random) perturbation at every step of the integration. Therefore, sooner or later, the

numerical trajectory will deviate from the analytical trajectory (if the computer had infinite

precision) significantly. While the analytical trajectory is reversible, the one generated by

a computer is not. This is why there exist a maximum number of iterations N, beyond

which the original state cannot be recovered by running the simulation backwards. This

by itself is not an issue, since we seldom have the need to recover the initial condition of

the simulation in this way. However, this behavior does mean that we will not be able to

follow the "true" trajectory of the original system forever on a computer. Sooner or later,

the "true" trajectory and the simulated one will diverge significantly.

We conclude noticing that there is no contradiction between Lyapunov instability and

area conservation of Hamiltonian systems. The area conservation property states that an

element in the phase space (containing points close to each other) will evolve while keeping

its area constant. But the Lyapunov instability says that any two points, no matter how

close they are, will eventually be separated into great distances. This implies that while

the element maintains its total area, its shape is continuously distorted, stretched and

folded, so that any two points in this element no matter how close they are initially will

be separated by great distances.
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Quantum Mechanic analogies

The first theoretical study of the properties of probability currents, on which this work is

based, was done resorting to a quantum mechanic formalism to describe probability cur-

rents, in order to couple those statistical mechanics concepts with the quantum formalism

of SuperSymmetry. This was done by Tanase-Nicola and Kurchan [14] for the Fokker-

Planck case, and then further developed by Tailleur et al. [13] for the Kramers equation, a

statistical mechanical description of Lyapunov exponents [14], and finally applied to some

interesting examples like the study of protein folding by Mossa and Clementi [28].

Although one of the main achievements of this PhD work consists in a purely classical

derivation of the probability currents theory, we briefly sketch here the main points of the

quantum description, in order to clarify the links between the theoretical derivation of the

probability current and the computational method of Diffusion Monte Carlo that has been

associated to it.

The scope of this section is giving only a short review, hence we restrict here to the

Fokker-Planck case. The main advantage of Quantum Mechanic formalism is that it allows,

with a very few concepts of quantum mechanics, to trace a clear descriptions of physical

phenomena involving a separation of time scales.

B.1 Schrödinger equation and random walk

We first note that the idea of using the formal analogies between quantum mechanics and

diffusion theory was attributed to Fermi and first presented by Andersen [50], that pro-

posed a random walk simulation of the Schrödinger equation needed to quantum chemistry

computations of electronic orbitals. This reads, for a single particle in one dimension, as

− i~
∂ψ

∂t
=

~2

2m

∂2ψ

∂x2
− V (x)ψ (B.1)

A transformation to imaginary time (Wick rotation) it/~ → τ transforms Eq. (B.1) in

∂ψ

∂τ
=

~2

2m

∂2ψ

∂x2
− V (x)ψ. (B.2)

that can be integrated in imaginary time to large values of τ yielding the spatial part of

the wavefunction ψ. Eq. (B.2) is formally identical to a diffusion-reaction equation for a
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density c(x) of the form
∂c

∂t
= D0

∂2c

∂x2
−D1c (B.3)

with D0 the diffusion coefficient and D1 the reaction rate. Therefore, usual numerical

methods aimed to simulate random walk, modeled with Eq. (B.3) can be used to compute

quantum mechanics wave functions.

B.2 Quantum mechanic formulation of Fokker Planck equa-

tion

Going back to a statistical mechanics framework of stochastic systems, a probability density

P can be written in a Dirac x-space representation, as P (x) = 〈x|ψ〉. The Fokker-Plack

equation (Eq. (2.11)) is then written as

d

dt
|ψ〉 = −HFP |ψ〉 (B.4)

whose solution at finite time reads |ψ(t)〉 = e−tHFP |ψ0〉, where |ψ0〉 is a given initial state.

Hence, the probability of being in x at time t is just rewritten as

P (x, t) =
〈
x
∣∣e−tHFP

∣∣ψ0

〉
(B.5)

As in quantum mechanics, the Fokker-Planck hamiltonian can be considered to have a

spectrum of eigenvalues λa corresponding to given energy states, such that

HFP |ψa〉 = λa |ψa〉 (B.6)

Expressing the initial probability function as a linear combination of (right) eigenstates of

the hamiltonian,

|ψ0〉 =
∑

a

ca |ψa〉 , (B.7)

the probability P (x, t) can be rewritten as

P (x, t) = 〈x|ψ(t)〉 =
∑

a

ca 〈x|ψa〉 e−tλa (B.8)

The Perron-Frobenius theorem ensures [21] that the real part of these eigenvalues is

always nonnegative, hence the system probability distribution is always converging, for

long times, to a given steady state.

The formal description of the probability P with a set of eigenvalues furnishes an

instructive description of the aforementioned separation of time scales. Indeed, in quantum

mechanics, due to Heisenberg indetermination principle, energy eigenvalues correspond to
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time constants related to the decay time from one state to another: it is possible to write

λa ∼ τ−1
a where τa is the escape time from state a.

The spectrum of the Fokker-Planck hamiltonian is composed by different eigenvalues:

the zero eigenvalues, corresponding to stable (i.e. ground energy) states, correspond to

local minima where the time one has to wait in order to see the system escaping from

this state is practically infinite. “Almost-zero” eigenvalues correspond to long (but finite)

escape rate: they express the passage time from one metastable basin to another. On

the other hand, high eigenvalues, corresponding to short times, represent the relaxation

or equilibration time inside the corresponding stable states. It is therefore possible to

group these eigenvalues in the following way: λ0 = 0 is the ground state, related to the

equilibrium Gibbs-Boltzmann distribution P ∼ e−βH ; the eigenvalues λ1, . . . , λp “almost

zero” express the passage times τe between the p metastable states of the system. The

higher eigenvalues λa, a > p , separated by the other eigenvalues by a ’gap’, give the

intra-basin relaxation times τrxn: the separation of time scales arise exactly from these

distinctions, such that the rare events theory is valid for times τrxn ≪ t < τe.

B.3 Instanton

We conclude this Appendix sketching here a way to compute the transition probability

using the aforementioned quantum mechanics analogies. The transition probability for a

quantum mechanical particle tunneling through a potential barrier of a double-well poten-

tial V (x)can be calculated using an "instanton". In contrast to a classical particle, there

is indeed a non-vanishing probability that the QM particle crosses a region of potential

energy higher than its own energy. The Schrödinger equation for the particle reads

d2ψ

dx2
=

2m(E − V (x))

~2
ψ (B.9)

Using path integrals gives a transition amplitude from one minimum of the double-well xA
to the other minimum xB

kA→B = 〈xA| exp (−
iHt

~
)|xB〉 =

∫
dx(t) exp (− iS[x(t)]

~
) (B.10)

where S[x(t)] is the action.

Notice now that with a Wick rotation it → τ , i.e. passing to imaginary times, we get

kA→B =

∫
dx(t) exp (−Se[x(t)]

~
) (B.11)

where we have the Euclidean action

Se[x(t)] =

∫ τB

τA

1

2

(
dx

dτ ′

)2

+ V (x)dτ ′ (B.12)
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The potential energy has changed sign under the Wick rotation and the minima trans-

form into maxima, thereby V (x) exhibits two "hills" of maximal energy. Results obtained

from the mathematically well-defined Euclidean path integral may be Wick-rotated back

and give the same physical results as would be obtained by using real time variable. As can

be seen from this example, calculating the transition probability for the particle to tunnel

through a classically forbidden region (the barrier of V (x)) corresponds to calculating the

transition probability to tunnel through a classically allowed region (with potential V (X))

in the Wick-rotated path integral: this transition corresponds to a particle rolling from one

hill of a well potential to the other hill. This classical solution of the Euclidean equations

of motion is often named "kink solution" and is an example of an instanton.
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Chaos and importance sampling

As briefly recalled in Chapter 3, several importance sampling methods developed in the

last years used the chaotic behavior of dynamical systems in order to achieve an accelerate

sampling of phase space, especially in order to have access to transition regions. The

main reason comes from the already cited analogies between reactive paths and chaotic

trajectories: we can say, in a somehow ’simplistic’ way, that both access to regions in phase

space characterized by negative eigenvalues of the hessian matrix of the potential energy.

We will not investigate further the relations between chaoticity and rare events; we juste

give in this appendix a short review of previous works that preceded the development of

transition current sampling and Lyapunov biased TPS.

C.1 The “Lyapunov-weighted dynamics”

Transition current sampling is based on the method presented by Tailleur and Kurchan [15]

under the name of Lyapunov-weighted dynamics. We herein clarify the meaning of this

expression, also with the aim of make clearer the link of the probability current sampling

with the following work presented in this PhD thesis.

The theory of Lyapunov exponents, as presented in Chapter 3, shows that these ex-

ponents can be evaluated by observing the distance at a given time between two nearby

trajectories in phase space, started sufficiently close enough and then evolving separately.

The distance between these two trajectories can be written as in Eq. (3.12).

Let us now consider vectors u mentioned in Chapter 2: we show here that their dy-

namics, given by Eq. (2.43), is indeed the very same dynamics of the distance between

the two trajectories for an hamiltonian system with overdumped Langevin dynamics. The

time evolution of the norm of vectors u reads

d|u(t)|2
dt

=
∑

i

2uiu̇i = −2
∑

i,j

uiAijuj (C.1)

where

Aij =
∂2V

∂qi∂qj
(C.2)

and we have used Eq. (2.43) for the dynamics of u̇i.
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Introducing the normalized vectors vi = ui

|ui|
, whose evolution is given by eq. (2.50),

one obtains that the stretch of the distance vectors between the two trajectories is

d|u(t)|2
dt

= 2
∑

i,j

viAijvj |u(t)|2 (C.3)

such that the distance at time t can be evaluated as

|u(t)| = |u(0)|e−
∑

ij

∫
viAijvjdt (C.4)

From Eq. (3.5) we see that the distance δx(t) between diverging trajectories will be

determined by the maximum Lyapunov exponent, predominant at long times:

δx(t) = δx(0) exp(Λmaxt) (C.5)

If we now consider that, as mentioned above, u = δx, looking at Eq. (C.4) we can define

the maximum Lyapunov exponent as

Λmax = −1

t

∑

ij

∫
viAijvjdt (C.6)

and the analogy between the evolution of the norm of vectors u and the distance between

diverging trajectories is evident. This explains why monitoring the evolution of vectors

having the aforementined dynamics give direct access to the Lyapunov exponents, and the

probability weights used in the Diffusion Monte Carlo algorithm to copy or delete clones

are related to Lyapunov exponents.

C.2 Lyapunov exponents and Kolmogorov entropy

Here we briefly acknowledge several works that have been made in the past in order to

show the underlying relations between Lyapunov exponents and physical properties of very

different systems, from phase transitions[81] to sheared fluid viscosity[80]. In particular,

a large attention has been reserved to the observation of relations between chaoticity and

local conformation of the potential energy landscape for small inert gas (i. e. Lennard-

Jones) clusters [58, 59], with the aim of relating Lyapunov exponents spectra to solid-liquid

phase transitions [57].

All these works, concerning systems with many degrees of freedom, start from the

determination of the eigenvalues spectrum of Lyapunov exponents[82] and then focus on

significant physical observables than can be used to explain the dependence of this spectrum

on the potential energy of the system. The most important observable for hamiltonian

systems is shown to be the Kolmogorov-Sinai entropy K [84, 52, 68], given by the Pesin

theorem as the sum of all positive Lyapunov exponents [85]:

K =
∑

Λi>0

Λi (C.7)
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thus indicating the degree of chaoticity of the system. Of course, as reported above, to

have a full determination of the Kolmogorov entropy the asymptotic value of Lyapunov

exponents is needed. However, Hinde et al. [58] have shown that is indeed possible to

estimate with a very good degree of accuracy the K entropy just using local Lyapunov

exponents, i.e. finite-time quantities computed from the position of the system at a given

time step on the potential energy landscape, really close to what we have presented in

Sec. 3.2.4. Starting from a computation of finite-time Lyapunov exponents based on the

eigenvalues jacobian matrix of the map, Hinde et al. define, for trajectories with a total

of L time steps, a Kolmogorov entropy 〈Ks〉 given by the average on the trajectory of

L/s quantites given by of the product of the s jacobian matrix of the hamiltonian map.

The main point is however that comparing the global K entropy, obtained computing

the positive Lyapunov over long trajectories, to the quantity
〈
K1
〉

(given simply by the

eigenvalues of the jacobian matrix at each time step) shows that the latter is indeed very

close to K entropy, especially in the case of large clusters. As the procedure followed is

actually the same we proposed in Eq. 3.35, we claim that the consistency checks for the

method exposed in [58] are a direct confirmation of the validity of our approach, hence we

should be allowed to define the method reported in Chapter 3 as a local Kolmogorov-entropy

bias.
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Lanczos diagonalization algorithm

In Chapter 3 we resorted to the eigenvalue of the hessian matrix λ in order to evaluate

the maximum Lyapunov number (Eq. (3.28)) needed to bias the transition path sampling

scheme. As recalled, the diagonalization of the hessian matrix can be computationally

very expensive for systems with a large number of degrees of freedom. The solution we

proposed is resorting to the diagonalization algorithm elaborated by Lanczos [62], that

gives the value of the lowest eigenvalue by diagonalizing only a submatrix of the whole

hessian matrix, thus saving CPU time. We present here the basis of this algorithm, as

reported in Appendix A of [53].

Let H [q0] be the Hessian matrix of the system at the phase-space point q0:

Hi,j[q0] =
∂2E[q0]

∂qi∂qj
(D.1)

where E[q0] is the energy of the system at point q0. H is a real and symmetric matrix.

For ARTn we need only the lowest eigenvalue, λ1, and its eigenvector, v1. The Lanczos

algorithm is an efficient way to extract a limited spectrum of eigenvalues and eigenvectors

and it doesn’t require evaluating the full 3N × 3N matrix H. The diagonalization of the

full Hessian matrix is replaced by that of a l × l trigonal matrix (l ≪ 3N) and the H

matrix needs to be known only in the l dimensional space of the Lanczos vectors.

In the following we describe how the Lanczos scheme is used to calculate λ1 and v1.

First of all we must build the Lanczos basis in which the H matrix is trigonal. Consider

u0 a random normalized vector in R3N space. The result of the application of H on u0

can be decomposed as a linear combination of this random vector and a second normalized

one, u1, orthogonal to u0:

Hu0 = a0u0 + b1u1 (D.2)

The application of the Hessian on u1 becomes:

Hu1 = a1u1 + b′1u0 + b2u2 (D.3)

where u2 is a normalized vector which is orthogonal to the first two. Since H is a symmetric

matrix:

u1 · (Hu0) = u0 · (Hu1) (D.4)
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and therefore b1 = b′1. The full recursion scheme becomes:

Huk = akuk + bkuk−1 + bk+1uk+1 (D.5)

for 0 < k < l − 1 and the closure of the recursion for k=l-1:

Hul−1 = al−1ul−1 + bl−1ul−2. (D.6)

In this l-dimensional basis (u0, u1, . . ., ul−1) the H matrix is trigonal:

Tl =




a0 b1 0 · · · 0

b1 a1 b2 · · · 0

0 b2 a2 · · · 0

0
. . . . . . · · · 0

0 bl−2 al−2 bl−1

0 0 bl−1 al−1




(D.7)

The central point of the Lanczos method is that it can be demonstrated that the lowest

eigenvalue of the H matrix, λ1[H], is the limit of the series λ1[Tl] with l → 3N . Finally

the eigenvector v1[H] corresponding to the lowest eigenvalue λ1[H] can be approximated

by the eigenvector associated to the lowest eigenvalue of the Tl, v1[Tl].

The vectors H [q0]u can be calculated by finite difference on the forces by performing

a Taylor expansion of the forces around q0 + δLu (δL ≪ 1), a point in the neighborhood

of q0 in the direction u:

H [q0]u = − f (q0 + δLu)− f (q0)

δL
+O

(
δ2L
)
. (D.8)

This expansion can also be made O(δ3L):

H [q0]u = − f (q0 + δLu)− f (q0 − δLu)

2δL
+O

(
δ3L
)
. (D.9)

It is important to note that using this O(δ3L) approximation requires two times more

force evaluations than Eq. D.8: both f (q0 + δLu) and f (q0 − δLu) must be evaluated

compared to only f (q0 + δLu) in the case of Eq. D.8, since f (q0) is computed anyway

at every step for the minimization in the hyperplane orthogonal to v1 and for the test of

convergence to the saddle point.

The parameters which must be optimized for the calculation of the Lanczos coefficients

(ak, bk) and vectors uk from Eqs. D.2, D.5 and D.6 are: the size of the Lanczos basis set,

l, and the step of the numerical derivative of forces for the Hessian, δL. In [53], authors

investigate self interstitials, and use l = 15 and δL = 10−3 Å with an O(δ2L) expansion.

This choice results from an analysis performed on a test system with 1025 atoms (one
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self-interstitial defect in a 8a0×8a0×8a0 bcc cell). A random deformation is applied to the

minimum energy configuration (〈110〉 orientation of the dumbbell) in order to induce an

imaginary frequency. Taking l = 15, we have calculated λ1 using an expansion of order

either 2, Eq. D.8, or 3, Eq. D.9, and three different values of δL = 10−2, 10−3, and 10−4

Å.

The numerical stability of the algorithm is tested by performing an iterative Lanczos

diagonalization. Successive iterations of l Lanczos steps are performed, where each new

iteration, i, is started by taking for u0 the last vector of the Lanczos basis set, ul−1, of the

previous Lanczos iteration, i− 1. In both cases δL = 10−4 Å shows numerical instabilities

as function of number of Lanczos iterations, in particular for the order 2 expansion. For

δL = 10−2 Å some numerical noise appears only in the case of O(δ2L) force derivatives. But

for δL = 10−3 Å the same accuracy is obtained in both cases. In conclusion, the maximum

efficiency can be obtained using Eq. D.8 and δL = 10−3 Å.

The very same procedure has been carried on to optimize parameters in the case of

LJ38 in Chapter 3, and vacancy and divacancy migration in Chapter 4.

In a method like ARTn, where successive Hessian matrices of systems which differ by

only small displacements must be evaluated, the efficiency of the Lanczos method can be

considerably improved by optimizing the choice of the first vector, u0 in Eq. D.2. As for an

iterative diagonalization, the idea is to take for u0 at every ARTn step, i, the last vector

of the Lanczos basis set, ul−1, of the previous ARTn step, i − 1. If the displacements

between ARTn steps are small, the convergence with the size of the Lanczos basis, l, after

i ARTn steps is close to that of a basis set of size i × l using a random u0 vector. The

convergence with the size of the Lanczos basis set is therefore not a problem. In practice

l = 15 provides a good accuracy after i ∼ 4 ARTn steps and excellent after 20 steps.
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Optimal estimators in MBAR

method

We present here the basis on the multistate Bennett acceptance ratio (MBAR) method,

used in Chapter 3 to unbias reaction rates obtained from LyTPS simulations.

MBAR is based on the principle of the extended bridge sampling [77]: given a set of

biased distribution associated with the canonical equilibrium ensemble, unbiased averages

of physical observables are recovered from biased ones, provided there is a sufficient overlap

between biased and the unbiased distributions. Given a path distribution

ρα(z) =
qα(z)

Zα
(E.1)

for path weights qα(z) corresponding to a precise α-ensemble (where Zα ≡
∫
Dzqα(z) is the

associated partition function taken over all possible paths), the average of a path-dependent

observable O(z) in that α-ensamble reads

〈O〉α ≡
∫

DzO(z)ρα(z) (E.2)

Averages computed in different path ensembles, say for two different bias α and α′, are,

however, related by the importance sampling identity

〈Oqα′〉α
〈Oqα〉α′

=
Zα′

Zα
(E.3)

as

Zα 〈Oqα′〉α =

[∫
Dzqα(z)

]
·
∫

DzO(z)ρα(z)qα′(z) =

=

[∫
Dzqα′(z)

]
·
∫

DzO(z)ρα′(z)qα(z) =

= Zα′ 〈Oqα〉α′

Once one knows the unnormalized probability weights qα for the each α-ensemble,

averages of 〈O〉α′ for every ensemble α′ 6= α can be computed. For a set of K different

values of the bias α, a set (namely, a Markov chain) of Mα trajectories are sampled for
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each bias value. Estimating the averages 〈O〉α as the sample mean

〈O〉α ≈ E
α
Mα

[O] =
1

Mα

Mα∑

m=1

O(zα) (E.4)

we rewrite Eq. (E.3) as a set of K importance sampling identities

K∑

α′=1

Ẑα

Mα

Mα∑

m=1

O(zα)qα′(z) =

K∑

α=1

Ẑα′

Nα′

Mα′∑

m=1

O(zα
′

)qα(z) (E.5)

whose unknowns are a family of estimators for the partition function Ẑα, parametrized by

the choice of O(zα), all asymptotically consistent, but with different statistical efficiencies.

The choice

O(zα) =
Mα′Ẑ−1

α′∑K
k=1MkẐ

−1
k qk(z)

(E.6)

makes the asymptotic covariance of the partition function ratio in Eq. (E.3) minimal. Using

Eq. (E.6), Eq. (E.5) simplifies to the optimal extended bridge sampling estimator,

Ẑα =
K∑

α′=1

Mα∑

m=1

[
K∑

k=1

Mk

Ẑk

qk(z
m
α′)

qα(z
m
α′)

]−1

(E.7)

In the large sample limit, the error in the ratios Ẑα/Ẑα′ is normally distributed, and the

asymptotic covariance matrix Θ̂ = cov(ln Ẑα, ln Ẑα′) for Eq. (E.7) is estimated by

Θ̂ = WT (I−WMWT )+W (E.8)

where I is the identity matrix of dimension M =
∑K

α=1 Mα equal to the total number of

paths sampled, and M = diag(Mα, ...,MK). The superscript + indicates a Moore-Penrose

pseudoinverse, see Ref. [66]. W is the M×K matrix of weights

Wm,α = Ẑ−1
α

qα(z
m)

∑K
k=1MkẐ

−1
k qk(zm)

(E.9)

In this matrix, the distribution in which path z are sampled is irrelevant, hence subscripts

α are omitted.

Expectation values of any path dependent observable Fα estimated in each α-biased

ensemble can be recovered in this framework defining additional path ensembles with un-

normalized densities

qFα(z) = Fαqα(z) (E.10)

such that ZFα ≡
∫
DzqFα(z) is the related path partition function. The matrix W in

Eq. (E.9) is augmented by one column with elements

Wm,Fα = Ẑ−1
Fα

Fαqα(z
m)

∑K
k=1MkẐ

−1
k qk(zm)

(E.11)
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and the estimator EMBAR
α [F ] = F̂α for the path ensemble average can be written in terms

of weight matrix elements

F̂α =

Mα∑

m=1

Wm,αF(zmα ) (E.12)

with an uncertainity estimated by

σ2(F̂α) = F̂2
α(Θ̂FαFα + Θ̂αα − 2Θ̂Fαα). (E.13)

In order to compute the expectation values of the observables Fα, a self consistent algorithm

can be set up. Numerical recipes to obtain these estimations have been furnished by J.

Chodera [91].





Appendix F

Reaction rate constants theory

Reaction rate constants are one of the most significative observables for many body sys-

tem exhibiting thermally activated structural transitions through energy barriers crossing.

Their computation is one of the main challenges in a wide range of research sectors belong-

ing to physics, chemistry or biology where rare transitions occur between different stable

or metastable states. Several theories have been elaborated in order to investigate analyt-

ically and numerically reaction rates, starting from the main work by Kramers in 1940. A

very useful and detailed review about Kramers reaction rate theory and its developments

has been written by Hänggi et al. [17].

The bottleneck of rate constants computation is that observing reactive trajectories

in a finite simulation time is very unusual for systems with high free energy barriers, so

that a correct estimation of reaction rates is seldom possible. Different approaches have

been developed in the past to bypass this problem, mainly based on the transition state

theory (TST), either following a “chemical” macroscopic approach (see for example [2])

or considering microscopic quantities, such as in the Bennett-Chandler method [71]. For

applications in physical metallurgy studies, such as the computation of reaction constants

to study diffusion coefficients [72], the first seminal result from transition state theory was

reelaborated by Vineyard [107], as presented for instance in [51].

We first present here the population correlation function ("macroscopic") approach

widely used in chemistry; we then recall the basis of reaction rate theory, mainly following

the review [17] presenting the Bennet-Chandler method [77, 75, 71]. Finally, we expose

the basis of the transition state theory for reaction constants [17].

F.1 Phenomenological approach

Reaction rates can be computed - from a chemical point of view - counting the number

of species of a given system that have undergone a transition from the reactant to the

products state. The number of systems components belonging to one of the two states

is usually called population, and evolves in time along the reaction. The time correlation

function of these populations indicates the time evolution of the system, and can be written

as

C(t) =
〈cA(0)cA(t)〉

〈cA(0)〉
(F.1)
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indicating the correlation between the population in the A state at time 0 and time t:

this traces the evolution of the system from the reactants towards the products. The

population correlation function can indeed be understood as a conditional probability of

having thesystem at a given time t in state B whereas it was in state A at time t = 0.

To this aim, we substitute, without any loss of generality, the probability of occupations

pA,B of states A and B to the real populations cA,B : the correlation function can then be

explicitly calculated from the expression of the occupation probabilityof states A (reactant)

and B (product). The master equations for such a system can be written as [54, 2]



ṗA(t) = −kA→BpA(t) + kB→ApB(t)

ṗB(t) = kA→BpA(t)− kB→ApB(t)
(F.2)

where pA,B are the occupation probabilities for the two states, and kAB,BA are the reaction

rate constants for passages between them. Given the occupation probabilities at time t = 0

and the equilibrium condition, through a detailed balance relation

kA→Bp
eq
A = kB→Ap

eq
B (F.3)

time dependent solutions are



pA(t) = peqA −e−(kA→B+kB→A)t

[
pB(0)p

eq
A − pA(0)p

eq
B

]

pB(t) = peqB −e−(kA→B+kB→A)t
[
pA(0)p

eq
B − pB(0)p

eq
A

] (F.4)

Thus, the conditional probability CAB(t) = pB(t) | pA(0) can be explicitly expressed using

the above solutions, giving 1

C(t) ≈ peqB (1− exp {−t/τrxn}) (F.6)

where the relaxation time is τrxn ≡ (kA→B + kB→A)
−1. In order to proceed further, it

has to be stressed that the basic assumption relying under this populations correlation

treatment is the presence of a well separated time scale for processes occurring between

1Indeed, as

pA(0) = p
eq
A

(

1− pB(0)

1− p
eq
B

)

(F.5)

the conditional probability gives

C(t) =
{

p
eq
B − e

−(kA→B+kB→A)t [pA(0)p
eq
B − pB(0)p

eq
A ]

}

=

=

{

p
eq
B − e

−(kA→B+kB→A)t

[

p
eq
A

(

1− pB(0)

1− p
eq
B

)

p
eq
B − pB(0)p

eq
A

]}

= p
eq
B

{

1− e
−(kA→B+kB→A)t

}

+ pB(0)e
−(kA→B+kB→A)t

If the system was originally set in the A configuration, pB(0) = 0 and one has simply C(t) =

p
eq
B

{

1− e−(kA→B+kB→A)t
}

.
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’fast’ intra-funnel relaxation of the system, having a typical time constant τmol, and pro-

cesses indicating passages between funnels, thus needing much longer times: however, at

such long times the dynamics can be described using the phenomenology of macroscopic

kinetics, thus the asymptotic behavior of this correlation function only depends on the

forward and backward reaction rate constants kA→B and kB→A.

The reactive flux of particles (or probability) flowing from state A towards B per unit

time is now defined as k(t) ≡ dC(t)
dt . When time scales between the intra-basin relaxation

dynamics, having a characteristic time τmol, and τrxn is well separated, i.e. τmol ≪ τrxn,

it is possible to further approximate in the intermediate time regime τmol < t ≪ τrxn the

correlation function developing the exponential at the first order, getting

k(t) ≡ dC(t)

dt
∼= (kA→B + kB→A)p

eq
B {1− (kA→B + kB→A)t} =

= kA→B {1− (kA→B + kB→A)t}

where in the last line the detailed balance condition kA→Bp
eq
A = kB→Ap

eq
B has been used to

eliminate peqB . Finally, in the regime (kA→B+kB→A)t≪ 1, one can linearize the correlation

function finding thus the slope of C(t) for this intermediate time regime is the reaction

rate we were looking for.

F.1.1 A simple model for systems with two stable basins and a

metastable transition state

In many systems the two main states (reactant and product) are not separated by a single

barrier, but by a set of intermediate metastable states. Some approximations are therefore

necessary to recover the reaction rate values, using the approach reported above. Here we

mainly follow the way this problem has been solved by Wales [38, 79].

The master equations for a system with one (or more) intermediate phase space region

I are written as




ṗA(t) = −kA→BpA(t) + kI→ApI(t)

ṗI(t) = kA→IpA(t)− (kI→A + kI→B)pI(t) + kB→IpB(t)

ṗB(t) = kI→BpI(t)− kB→IpB(t)

(F.7)

where reactions directly happening between the two main basins have been neglected. In

general, for I we can indicate one single basin as well as a set of intermediary metastable

states. This is the case for systems where the separating barrier between A and B is quite

large, or it contains a set of metastable "transition step” minima through which the system

passes in the transition from A to B.

Exact solutions to this ordinary derivative equation system are possible, but looks

indeed rather complicated. One possible solution is a steady-state approximation for the
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intermediate metastable state, as they are supposed having a low occupation probability,

i.e. ṗI ≃ 0. The above system therefore simplifies in



ṗA(t) = − kA→IkI→B

(kI→A+kI→B)pA(t) +
kB→IkI→A

(kI→A+kI→B)pB(t)

ṗB(t) =
kA→IkI→B

(kI→A+kI→B)pA(t)−
kB→IkI→A

(kI→A+kI→B)pB(t)
(F.8)

" and one can reconstruct the reaction constant between states A and B calculating, with

the previously exposed method for a two state system, first the reaction constants between

one of the main basin and the intermediate one, and then from the intermediate to the

second stable state:

kA→B =
kA→IkI→B

(kI→A + kI→B)
(F.9)

Once again, it has however to be stressed that the populations correlation function method

is valid under strict hypothesis of separation of the time regimes, for instance when the

passage from one basin to another can be described as a rare event. In the case of high-

energy metastable states, if the barriers between the metastable state and the stable states

are too low (such that the system spontaneously tend to fall from the I state to A or B),

this approximation is no more valid. One should then re-correct the reaction constants

obtained for the passage time from the metastable to the stable configurations.

F.2 Transition State Theory

The very beginning of the study of escape rates from metastable basins as a function of

the inverse temperature β = 1/kBT dates back to the Van’t Hoff - Arrhenius law,

k = ν exp (−βEbarr) (F.10)

where Ebarr is the energy barrier separating the departure metastable state to the closer

stable state, and ν is an unknown -but really important, see below - prefactor. The next

major development is due among others chemical physicists to Eyring, who expressed the

reaction rate in terms of properties of the underlying potential energy landscape, and

accounted for quantum and statistical mechanics concepts like the Planck’s constant h

and the partition functions Zbasin and Zsaddle, respectively related to the metastable state

and the activated complex (i.e. the system on the saddle point): he wrote the formula

k = κ

(
kBT

h

)
Zsaddle

Zbasin
exp (−βEbarr) (F.11)

where appears the transmission coefficient κ. This last parameter originally was intro-

duced to account for those trajectories in phase space that cross the transition state, but

successively come back to the original metastable basin without undergoing a complete

transition from the reactants state to the products one. Therefore, one usually has κ ≤ 1,
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and the true reaction rate k is always lower than the Transition State Theory reaction

constant defined as

kTST ≡
(
kBT

h

)
Zsaddle

Zbasin
exp (−βEbarr) (F.12)

The escape process as a ’noise-assisted’ reaction depending on temperature and friction

has successively been assessed by Kramers, following the relation between the microscopic

Brownian motion and its probabilistic description by a Fokker-Planck equation, as well

deeply developing the low- and high-friction limits of such a dynamics.

Transition State Theory (TST) is fundamentally a classical mechanical theory, although

some leading quantum corrections are accounted for. The main hypothesis are (i) thermal

equilibrium and (ii) a ’no-recrossing’ assumption, i.e. any trajectory crossing the sad-

dle points never returns back. It is evident from this last hypotesis why a transmission

coefficient has to be accounted for in the calculation of ’true’ phenomenological reaction

constants.

The TST rate is computed from the total flux of classical trajectories passing from

reactants to products state, crossing the transitionregion. This flux is calculated either

with a delta-function weighting accounting only for trajectories of a given energy, for mi-

crocanonical TST, or with a usual Boltzmann weight for canonical TST. The choice of the

transition region, i.e. the dividing surface between reactants and products, is important in

order to satisfy hypotesis (ii): indeed, this choice can strongly affects the rate of recrossing,

and it has been showed that the probability of correlate recrossings increases with the level

of coarse graining of the used reaction coordinate. It has to be stressed however that for

any dividing surface, the TST rate always overestimates the true reaction rate. Finally,

we note that by use of the thermodynamic relation Z = exp (−βF ), the TST rate can be

recast in the common form

kTST =

(
kBT

h

)
exp (−β∆Fbarr) (F.13)

where ∆Fbarr = Ebarr − T△S is the free energy barrier between reactants and products

F.2.1 Separation of time scales

The time scale of escape from a given basin clearly depends on the size of fluctuations

f(t) = x(t)− 〈x(t)〉 (F.14)

related to the energy scale of the thermal noise Enoise. The escape from basin A will be

an infrequent event if Enoise << Ebarr, where Ebarr is the height of the energy barrier

separating state A from B. For system connected to a heath bath at temperature T, the

noise is due to thermal fluctuations and the condition reads βEbarr >> 1. The time scale
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describing the decay within basin A is called relaxation time and reads

τrxn ≈
(
d2V

dx2

)−1/2

(F.15)

where V is the potential energy function. This relaxation time is well separated from the

escape time τe, as

τe ≈ τrxn exp(βEbarr) >> τrxn (F.16)

All the fast time scales (concerning noise or velocity correlation times, [51]) can be lumped

into the intra funnel relaxation time τrxn, and the escape rate is simply given by

k ≈ τ−1
e . (F.17)

F.2.2 Reactive flux method

The basic assumptions needed to compute reaction rates between two (or more) equilibrium

configurations are the presence of a detailed balance relation between states, and the

possibility of resorting to fluctuation-dissipation relation that enables us to write time

correlation functions, thanks to the Onsager regression hypothesis. Indeed, the underlying

idea of this chemical rate theory is that the spontaneous fluctuations from one state to

another at equilibrium are the same as those fluctuation one observes during the relaxation

from a nonequilibrium state towards equilibrium. The following description is mainly taken

from Hänggi [17].

For equilibrium systems with simple two-state kinetics, it is possible to derive an ap-

proximate but simple expression to calculate reaction constants. Given a many-particle

system prepared in state A, the populations of particles in state A (say, the reactant) and

state B (say, the product) can be indicated respectively as cA and cB , and undergo fluctu-

ations given by the spontaneous transitions between them. The problem of the choice of a

dynamical observable, like a reaction coordinate, in the definition of the two states will be

examined later on. 


ċA(t) = −kA→BcA(t) + kB→AcB(t)

ċB(t) = kA→BcA(t)− kB→AcB(t)
(F.18)

If the system is prepared in a (large) nonequilibrium initial concentration cA(0), this con-

centration will decay exponentially to to the equilibrium value c̄A as

cA(t)− c̄A = (cA(0)− c̄A) exp [− (kA→B + kB→A) t] (F.19)

Let a dividing surface be placed between products and reactants basins A and B, and let us

introduce a reaction coordinate x(q), function of all the configurational degrees of freedom

of the system. By convention, we will assume x < 0 in basin A and x > 0 in basin B, while
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the dividing surface is located at x = 0. Using an indicator (Heavyside) function hA,B ,

defined for a generic state Ω as

hΩ(x) =




1 x ∈ Ω

0 x /∈ Ω
(F.20)

one can express the equilibrium population in basin A as c̄A = 〈hA〉.
According to Onsager’s regression hypotesis, the exponential decay of the initial

nonequilibrium deviation to its equilibrium value has the same dynamic law as the equi-

librium correlation function of the fluctuation

δhA (x(t)) = hA(x(t)) − 〈hA〉 (F.21)

thus
〈δhA (x(0)) δhA (x(t))〉〈

δh2A
〉 = exp [− (kA→B + kB→A) t] (F.22)

For intermediates times τrxn < t << τe, the TST expression can now be recovered using

the reactive flux method: this flux is given by
〈
δhA (x(0)) δḣA (x(t))

〉

〈
δh2A

〉 = −〈δhA (x(0)) ẋ(0)δhA (x(t))〉〈
δh2A

〉 =

= − (kA→B + kB→A) exp [− (kA→B + kB→A) t]

and as we are in the regime t≪ (kA→B + kB→A)
−1, the total escape rate reads

kA→B + kB→A =
〈δhA (x(0)) ẋ(0)δhA (x(t))〉

c̄Ac̄B
. (F.23)

Equivalently, the forward rate can be obtained as

kA→B =
〈δhA (x(0)) ẋ(0)δhA (x(t))〉

〈hA(x)〉
(F.24)

Note that the last two equation hold equally well for weak or strong friction cases. If

we now take the limit t → 0+, the rate can be expressed as an equilibrium average of a

one-way flux at the transition state x = 0, we get the TST rate

kTST =
〈δ (x(0)) ẋ(0)hA (ẋ(0))〉

〈hA(x)〉
(F.25)

that always overestimates the true rate [75]

kTST ≥ kA→B (F.26)

as in TST recrossings of reactive trajectories are neglected, as TST assumes that all trajec-

tories heading toward the product region (with ẋ(0) > 0) at the dividing surface in x = 0

will all end up in the product basin.
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Figure F.1: Reactive flux as a function of time. The upper bound given by TST value;

at intermediate times, larger than the intra-funnel relaxation time τrxn, the reactive flux

joins the plateau value kA→B corresponding to the phenomenological reaction constant.

At longer times, comparable to the escape time τe ≈ k−1
t , the reactive flux decays expo-

nentially.

The transition state is identified as a dividing surface separating reactants from prod-

ucts, or more generally, any two physical states that are separated by a bottleneck in

phase space. There are two key assumptions to TST (i) thermodynamic equilibrium for all

degrees of freedom (all deviations from the thermal equilibrium distribution, such as the

Boltzmann distribution, are neglected), and (ii) any orbit crossing the dividing surface will

not recross it. The TST rate is proportional to the total of classical trajectories from reac-

tant to product side of the dividing surface. This is calculated either with the Boltzmann

weighting function at a given temperature T (canonical TST) or with a delta-function

weighting counting only for the trajectories of a given total energy E (microcanonical

TST)

The conventional choice for the dividing surface is a saddle point located between

reactants and products is the subspace perpendicular to the unstable mode, determined by

normal-mode analysis of small vibrations around the saddle point. From the assumptions

in (i) and (ii) it follows that microcanonical TST is exact only if no trajectory of a given

energy crosses the transition-state dividing surface more than once; canonical TST is exact

if no trajectory, of any energy whatever, recrosses the dividing surface. We stress that for

any dividing surface the TST rate is always an upper bound to the true rate.

The number of recrossing events of the reaction coordinate depends strongly on the

level of coarse graining in the phase space of the total system. If the reaction is described

by all degrees of freedom in the full phase space of the reacting system plus bath, a

classical trajectory has generally very little chance of returning to the narrow bottleneck
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region around the saddle point with activation energy Ebarr. The probability of correlated

recrossings increases for increasing coarse-graining for the reaction coordinate. In other

words, simple TST is expected to fail badly in complex systems if the dividing surface

is restricted to lie on a low-dimensional subspace. In view of the fact that TST always

overestimates the true rate, the dividing surface should be chosen so as to minimize the

flux through it.

F.2.3 Kramers rate theory

Transition state theory reduces to the Kramers rate theory, derived from the Fokker-

Planck-Kramers equation of Chapter 1, for systems in one dimension. The rate is obtained

with a ’flux over population’ approach:

kA→B =
j

cA
(F.27)

where j is the flux of particle going from state A to B, and cA is the population in state

A. The main ansatz made by Kramers is to assume the probability density

ρ(x, v) = ξ(x, v) exp

{
−1/2mv2 + V (x)

kBT

}
(F.28)

where ξ is a function that has to be determined taking into account boundary conditions

for the system. As shown in [17], assuming a linearized potential

U(x) = U(xA) + 1/2mω2
0(x− xA)

2 (F.29)

the population in the A basin is

cA =
2πkBT

mω0
Z−1 exp[−βU(xA)] (F.30)

and the flux

j = (−γ/2 +
√
ω2
s + (γ/2)2)

kBT

mωs
Z−1 exp[−βU(xs)] (F.31)

thus giving the Kramers formula presented in Eq. (2.65)

kA→B =

√
ω2
s + (γ/2)2 − γ/2

ωs

ω0

2π
exp[−βEbarr] (F.32)

describing a rate for moderate to strong friction, that further simplifies for γ >> ωs in the

overdumped expression

kA→B =
ωsω0

2πγ
exp[−βEbarr]. (F.33)

also called ’space-diffusion limited rate’, as the jump happens if the friction allows the

particle to join the saddle point.
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F.2.4 One-dimensional TST

For a simple one dimensional system with hamiltonian H(q, p), the reaction coordinate x

is the position q and Eq. (F.25) reads

kTST =

∫
dqdpδ(q)q̇hAq̇ exp[−βH(q, p)]∫

q∈A dqdp exp−βH(q, p)
(F.34)

that becomes

kTST =
β−1 exp [−βEbarr]∫

q∈A dqdp exp [−βH(q, p)]
. (F.35)

Rewriting the denominator as the partition function ZA on state A we have

kTST =
kBT exp [−βEbarr]

ZA
(F.36)

and taking again an harmonic approximation for the potential around point xAwe recover

the expression

kTST ≈ ωA

2π
exp [−βEbarr] (F.37)

where ωA/2π is the oscillation frequency at the bottom of state A.

F.2.5 Multidimensional TST

In order to retur now to the explicit TST expression for a canonical multidimensional

system, we define the reaction coordinate x = x(q1, ..., qN , p1, ..., pN ) . In this case, we

consider an hypersurface S of dimension 3N − 1 passing across the saddle point. The

transition state theory approximation implies that particle cross this hypersurface only

once.

Averages 〈· · · 〉 in Eq. (F.25) are taken over the canonical distribution: this equation

can be developed integrating explicitly over momenta in the canonical averages, obtaining

first a reaction rate expression depending only on positions,

kTST =
1√
2πβ

〈δ (x) |∇qx|〉q
〈hA(x)〉q

(F.38)

where averages over configurational degrees of freedom are indicated as

〈· · · 〉q =
∫
dqN · · · exp [−βU(q1, . . . , qN )] . (F.39)

This rate expression can now be evaluated with a Gaussian steepest-descent approxima-

tion, and further developed up to the second order in the potential U(q1, . . . , qN ) [17]. The

normal-mode eigenvalues of the Hessian matrix of the potential, evaluated at the bottom of

the reactants basin and on the saddle point and written respectively as
{
ωi
0
2
}
i=0,...,3N

and
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{
ωi
s
2
}
i=1,...,3N

. Note that eigenvalues corresponding to motions restricted to saddle hy-

persurface do not correspond one-to-one to frequencies in the basin. Indeed, new modes of

the system at the saddle point have no counterparts with those of the basin: the transition

state theory, being based on the flux over population approach (see Eq. (F.27)), requires

to compute a flux of particle j across the 3N − 1 hypersurface S and a configurational

integral, corresponding to cA, in 3N dimension over state A. From this dimensionality

difference arises the disparity in the number of vibration eigenvalues. One finally writes

the well-known expression vineyard

kTST =
1

2π

∏N
i=0 ω

i
0∏N

i=1 ω
i
s

exp [−βEbarr] (F.40)

and using for the partition function the harmonic approximation at the bottom of state A

ZA ≡
N∏

i=0

(
kBT

~ωi
0

)
(F.41)

and for the transition state

Zs =
N∏

i=1

(
kBT

~ωi
s

)
(F.42)

one obtains again

kTST =
kBT

h

Zs

ZA
exp(−βEbarr) (F.43)

with the prefactor kBT/h having the dimension of a frequency.

In order to rewrite the rate constant using thermodynamic functions such as the

Helmholtz free energy

F = E − TS (F.44)

the prefactor in Eq. (F.40) can be recasted as an entropy term,

1

2π

∏N
i=0 ω

i
0∏N

i=1 ω
i
s

=
kBT

h
exp(∆S/kB) (F.45)

where ∆S is the entropy difference between the basin and the saddle point. This is the

very same expression used in point defects migration context: indeed, replacing Eq. (F.45)

in Eq. (F.40) we find

kTST =
kBT

h
exp(−β∆Fbarr) (F.46)

where ∆Fbarr is the free energy barrier separating states A and B.

We conclude noting that this theory applies for point defect migration in crystals (see

Chapter 4), where the migration rate in the transition state theory approach is usually

written as

kTST = Γ0 exp(−βEbarr) (F.47)

with prefactor Γ0 that reduces to the term in Eq. (F.45). The entropy difference is called

migration entropy.
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Embedded Atom Model potentials

Accurate predictions of the structure and properties of materials and their defects depend

on the quality of the description of atomic interactions. The best existing approaches

describing atomic interactions in condensed phases are obviously based on a quantum-

mechanical approach; unfortunately, first-principles quantum-mechanical descriptions are

computationally expensive and, hence, their application is usually limited to systems of

a few hundred or less atoms. In addition, first-principles molecular dynamics (MD) sim-

ulation times rarely exceed a few picoseconds. As a result, most large-scale and long-

time atomistic simulations are performed using empirical or semi-empirical descriptions of

atomic interactions. Such descriptions of atomistic interactions represent a compromise

between computational efficacy, generality and accuracy.

Empirical potentials are commonly determined by fitting a proposed functional form

to available data. These data may be obtained from either experimental measurements or

first-principles calculations. Commonly, the input data include such quantities for perfect

crystals as lattice parameter, cohesive energy, elastic constants and unrelaxed vacancy

formation energy.

The embedded atom model (EAM) potential is an approximation describing the inter-

action between two atoms. The potential energy is computed as a function of the separation

between an atom and its neighbors, and the total potential energy in the EAM is divided

into two contributions: a pairwise part and a local term,

U =
∑

i 6=j

V (rij) +
∑

i

Fi

∑

j

φ(rij)

where the subscripts i and j label distinct atoms, N is the number of atoms in the system,

rij is the separation between atoms i and j. The function φ represents the contribution to

the electron charge density from atom j at the location of atom i, and function F is the

embedding function that represents the energy required to place atom i into the electron

cloud. For F [x] =
√
x this is the second moment tight binding form of Finnis-Sinclair [98],

as the electrons in this model should be tightly bound to the atom to which they belong

and have limited interaction with states and potentials on surrounding atoms of the solid.

As a result the wave function of the electron will be rather similar to the atomic orbital of

the free atom to which it belongs.
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Since the electron cloud density is a summation over many atoms, usually limited by

a cutoff radius, the EAM potential is a multibody potential. For a single element system

of atoms, three scalar functions must be specified: the embedding function, a pair-wise

interaction, and an electron cloud contribution function.

To determine the potential proposed A04 by Ackland et al. [90] , two procedures were

developed to fit interatomic potentials of the embedded atom method (EAM) form and

applied to determine a potential which describes crystalline and liquid Iron. While both

procedures use perfect crystal and crystal defect data, the first procedure also employs the

first-principles (ab initio) forces in a model liquid and the second procedure uses experimen-

tal liquid structure factor data. These additional types of information were incorporated to

ensure more reasonable descriptions of atomic interactions at small separations than is pro-

vided using standard approaches, such as fitting to the universal binding energy relation.

This potential is in good agreement with the experimental or first-principles lattice param-

eter, elastic constants, point-defect energies, bcc-fcc transformation energy, liquid density,

liquid structure factor, melting temperature and other properties than other existing EAM

iron potentials.

The M07 potential features are described in Appendix A of [96]. It was developed

following the same approach as for the A04 potential. The same analytical form was used,

namely with an embedding function including a term proportional to the square of the

density in addition to the square root term characteristic of tight-binding potentials in

the second moment approximation, such as Finnis-Sinclair potentials [98]. Concerning ab

initio data, no data from liquid iron were used, instead more configurations were considered

for the vacancy formation, and migration energies were added. For the latter, values

obtained from density functional theory calculations carried out with the SIESTA code

using 250 atom cells were used. The ab initio values of the fcc lattice parameter as well as

the fcc-bcc energy difference were also taken into account. Among the tests performed on

the obtained potentials, a particular attention was paid to improve, with respect to A04,

on the one hand, the thermal expansion and, on the other hand, the vacancy migration

barrier, as compared to experiment/ab initio results.
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