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Abstract

Dynamic insulation walls can be used in buildings to achieve a high level of
integration between envelope and ventilation system. This technology, which has
been studied in northern Europe since the early Nineties, is based on the passage of
ventilation air through porous layers of the walls: in this way, such layers act both
as a heat exchanger and as a filter.

This research work is aimed at obtaining a good comprehension of heat and
mass transfer mechanisms inside porous materials. With this purpose, a detailed
study of possible theoretical approaches has been performed, leading to the imple-
mentation of the volume average method. This mathematical procedure allows us
to take into account the macroscopic effects of the microscopic interaction between
fluid and solid phase of a porous domain. Correction parameters, such as thermal
tortuosity and thermal dispersion, have been defined and quantified, by means of
the characterization of fibrous insulation an no-fines concrete.

Both materials have been modeled to perform CFD parametric simulations:
while fibrous insulation has been geometrically simplified, describing the solid ma-
trix as a ordered array of parallel cylinders, no-fines concrete has been studied by
means of image analysis technique, applied on real samples we have produced. Nu-
merical results have been used to correlate thermal tortuosity and dispersion with
macroscopic quantities (porosity and Peclet number). Air permeability and Er-
gun coefficient have also been obtained, and, for what concerns the concrete-based
material, experimentally validated.

Both theoretical and numerical achievements have been used in the development
of a one-dimensional full-implicit finite difference model, aimed at the simulation of
dynamic insulation multi-layered components under transient boundary conditions.
The algorithm as been used to build a Type for the TRNSYS c© calculus suite.

In the last part of this work, it is reported the description of an experimental ap-
paratus we have designed and built. It is based on two chambers connected through
the porous sample and a ventilation system. The laboratory arrangement is able to
reproduce both steady state and transient temperature conditions, independently
in each chamber. It will be used to validate all numerical and theoretical results
presented in this dissertation.
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nsf Local coordinate normal to Asf - nsf = nsf,xi+ nsf,yj

Nu Nusselt number (-) - Nu = hcv ·L
λair
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R Thermal resistance (m2K/W )
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Re Reynolds number (-) - ρ·u·L
µ

t Time coordinate (s)

T Temperature (K)

u Local velocity vector (m/s]) - u = ui+ vj

u Local value of x component of u( m/s)

U Thermal transmittance (W/(m2K))

V Volume (m3)

x Space coordinate (m)
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sf Interface between fluid and solid phase

tor Referred to thermal tortuosity (W/(mK))
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〈φ〉 Volume average of φ
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Acronyms
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Introduction

This study is focused on the dynamic insulation technology, also known as

breathable wall technology. Building envelope components belonging to this cat-

egory are generally multi-layered walls, which include air permeable layers in the

stratigraphy. Such layers are crossed by ventilation air of confined environments,

thus acting as heat exchangers and a filters of the ventilation system.

This technology has been studied in Northern European countries since the early

Nineties, and is based on the integration between building envelope and ventilation

plant: in cold climates, air entering through the wall is preheated (and filtered),

because of the heat exchange with the solid matrix of porous layers, and the energy

load to the plant is reduced. In past years, some efforts have been made by various

research groups to assess energy performance of this technical solution, by means

of analytical, numerical or experimental approaches. In Chapter 1 a short review

of works found in literature is presented.

A careful analysis of earlier studies has led to following considerations: first of all,

dynamic insulation seems to be promising in the reduction of energy consumption

for building usage; secondly, some technological issues have been raised, mainly

related to the superficial temperature reduction due to the air flow; moreover, we
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INTRODUCTION

have found only few studies aimed at the assessment of the energy performance of

dynamic insulation components in hot climates. Finally, we have noticed that the

analytical approach used in all past works introduces an implicit simplification in

dealing with the heat transfer in porous media.

Going more in detail, the approach involved to describe thermophysical prop-

erties of porous materials usually does not take into account the microscopic inter-

action between fluid and solid phases of the medium. Moreover, neither effects of

flowing air, nor effects of the solid matrix geometry are considered. Hence, we have

applied the volume average method to the problem under discussion, in order to

assess the macroscopic effects of the heat transfer in porous media at the micro-

scopic level. Furthermore, while in earlier works the fluid mechanics of the problem

is not treated explicitly, we have analyzed some possible approaches to evaluate

the air velocity inside interconnected pores, from a macroscopic point of view. All

theoretical considerations are reported in Chapter 2, together with all the required

mathematical instruments.

The theoretical approach selected has led to the definition of new quantities,

such as thermal tortuosity and thermal dispersion, which are related to the geo-

metrical structure of the solid matrix of the porous material considered. The same

consideration can be done about parameters that influence the fluid dynamic be-

havior of the air flowing inside pores (permeability and Egrun coefficient). In order

to quantify these parameters, and their effects on the overall problem, numerical

and experimental analyses have been performed.

Going more in depth, two main categories of materials have been considered:

fibrous insulation (e.g. rock wool), and no-fines concrete. In both cases, CFD

2



INTRODUCTION

simulations have been done on small portions of the porous domains, typical for

the aforementioned materials, in order to calculate the temperature distribution

and the velocity field under various boundary conditions. While the first kind of

porous medium has been strongly simplified from the geometrical point of view,

the solid matrix of pervious concrete has been carefully characterized, by means

of image analysis of samples. Moreover, thermophysical properties of the solid

phase, permeability and Ergun coefficient have been experimentally derived for the

concrete-based material considered. All the performed analyses are reported in

Chapters 3 and 4.

Along with the material characterization, which is mandatory to correctly de-

scribe both the fluid dynamic and the heat transfer in porous media, a numerical

algorithm aimed at the simulation of dynamic insulation building components under

transient boundary conditions has been developed. Therefore, a one-dimensional

time-dependent finite difference model has been produced. More in detail, a code

has been developed using the MATLAB R© environment: its purpose is to simulate

multi-layered walls, with both permeable and not-permeable layers implemented

(like the real component may be). Then, the code has been used to define a

TRNSYS R© Type: in this way, it will be possible to simulate the whole building

with breathable walls, taking into account their interaction with other structures,

and the effects of various boundary conditions (climate, internal gains, ventilation

rate, etc.). The whole algorithm is described in Chapter 5.

It is important to notice that all results, coming from the studies previously

presented, need an empirical validation to assess their reliability. For this reason,

we have decided to design and build an experimental apparatus, which is able to

3



INTRODUCTION

reproduce both steady state and transient thermal boundary conditions (Chapter 6).
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Chapter 1

Dynamic insulation technology

The aim of this Chapter is to introduce a kind of building envelope system usu-

ally called dynamic insulation, also known as breathable wall. In the next sections, a

description of this technology and its physical and technical foundations is provided

to the reader. Then, a summary of its evolution and present state of the art is

given. Successively, pros and cons of this technology are discussed.

1.1 Technological description

The system under study is a particular kind of parietodynamic building envelope

technology, which means that it is able to modify its behavior according to different

climate and working conditions [1]. For instance, the so called double-skin façade

could be considered a parietodynamic system, because it can change its performance

thanks to the variable intensity and direction of the ventilation rate across it.

Since the early Nineties, some studies have been developed in relation to opaque

closure systems (either vertical or horizontal), which are usually known as dynamic

5



CHAPTER 1. DYNAMIC INSULATION TECHNOLOGY

insulation [2]. This technology is based on the integration between ventilation

plant and building structures, and works as follows: instead of being delivered or

extracted through ducts or openings, ventilation air is forced to go slowly through

dedicated building envelope porous walls, like that represented in Figure 1.1, which

consequently acts as a heat exchanger [3] and a filter [4] of the ventilation system.

Hence, air is pre-tempered using the waste heat normally lost through the fabric of

the building. Depending on the rate of the air flow, part or all of the fabric heat

that is normally lost is recovered to the building’s fresh air ventilation supply.

If we consider the vertical envelope solution, the system is, from the technical

point of view, in many aspects similar to conventional walls, because it is composed

by [5]:

1. external screen for protection against weather conditions (rain, wind, etc.);

2. external ventilated cavity;

3. insulating substrate (in the case of dynamic insulation, it may include one or

more layers of material with open cell pores);

4. internal ventilated cavity (it can be directly linked with the internal environ-

ment, or can be connected to the ventilation plant, if present);

5. internal finishing.

Finally, it is possible to identify two main working configurations: pro-flux,

where heat flux and air flow have the same direction (incoming or outgoing), and

contra-flux, where they have opposite direction. An example of building design with

dynamic insulation is presented in [6].

6



1.2. THE WALL AS A HEAT EXCHANGER

Figure 1.1: Typical multi-layered dynamic insulation wall.

1.2 The wall as a heat exchanger

1.2.1 Steady state heat transfer

The evaluation of the temperature profile in a three-layer wall has been done

considering the heat transfer phenomenon in steady state condition [7], using the

following equation:

λi
d2T (x)

dx2
− uρaca

dT (x)
dx

= 0 with i = 1, 2, 3. (1.1)

where ρa, ca and u are the density, the specific heat and the velocity of the flowing

air, and λi is the thermal conductivity of the i-th layer.

In Eq. (1.1) both conductive and convective terms are present. We underline that

7



CHAPTER 1. DYNAMIC INSULATION TECHNOLOGY

Figure 1.2: Temperature profile inside a single layer wall, in steady-state
condition (Neumann boundary conditions).

the convention adopted is the one described in Figure 1.1. After the introduction of

appropriate boundary conditions (Dirichlet or Neumann conditions at the domain

boundary, temperature and flux continuity at the layers interfaces), the temperature

distribution represented in Figure 1.2 has been found.

The heat exchange the between flowing air and the solid matrix of the porous

layer yields to a reduction of the effective U-value, as represented in Figure 1.3.

From the analytical point of view, the equation to evaluate the U-value of the air-

permeable part of the wall is [3, 5]:

Udyn =
uρaca

Rse(uρacaRs) − 1
(1.2)

where Rs is the thermal resistance of layers involved. If a wall is composed by

both by stationary (diffusive) and dynamic layers, its effective transmittance Ueff

8



1.2. THE WALL AS A HEAT EXCHANGER

Figure 1.3: Transmittance variation as a function of air velocity.

becomes [5]:

Ueff =
1

1
Ust

+ 1
Udyn

(1.3)

where Ust is the U-value of the diffusive part of the considered wall.

Considering Figure 1.3 and Eq. (1.2), the dynamic part of the U-value depends

on the air velocity and on the thermal resistance of the layer: the reduction of

thermal transmittance for growing air velocity values is more effective in a well

insulated wall. It is also possible to infer a non symmetrical behavior of the envelope

in pro and contra-flux conditions.

Finally, it is important to notice that thermophysical properties of porous ma-

terials involved in Eq. (1.1) (thermal conductivity, density and specific heat), are

calculated as a volume average value of corresponding properties of both air and the

solid part of the material. This introduces an implicit simplification, by neglecting

9



CHAPTER 1. DYNAMIC INSULATION TECHNOLOGY

the macroscopic effects of the microscopic interaction between the fluid and the

solid part that compose the porous media (contact surface, geometry, convective

heat exchange, etc.).

1.2.2 Numerical analysis

In literature, a numerical study of energy performance of the dynamic insulation

technology has been found. It is presented in [8]: a set of CFD simulation of a room

with dynamic insulation has been performed, evaluating heat losses and thermal

comfort for different working conditions.

For the reference condition, two walls are dynamically insulated (while the others

are connected to adjacent rooms - i.e. adiabatic condition) and the total air flow

passes through them (1 volume per hour). No infiltrations and heating plant have

been considered at the beginning. The only internal gains are provided by a person

with a heat generation of 70 W and a uniformly distribute heat source of 20 W/m2,

which could result from a underfloor heating plant, or from other rooms heat gains

(e.g. lighting). In other simulations, air infiltrations are taken into account to

evaluate the effects on comfort conditions. A radiator and an heat recovery unit

are introduced.

The study presented has demonstrated the influence of the air tightness of the

whole envelope on the effectiveness of dynamic insulation closures. Furthermore,

the need for careful design has been emphasized, to ensure an adequate level of the

wall internal surface temperature, which strongly affects comfort conditions (such

achievement has been analytically confirmed in [9]).

10



1.2. THE WALL AS A HEAT EXCHANGER

1.2.3 Field and experimental analyses

Some experimental works on dynamic insulation systems, both field studies and

laboratory tests, have been found in literature.

The first work is reported in [10]: this paper deals with the evaluation of two

upon 12 residential buildings in the Oslo area with dynamically insulated roof. The

air flow has been provided by imposing a 10 Pa pressure difference between indoor

and outdoor (obtaining an air velocity through the insulation around 2 m/h). The

ventilation rate has been set around 1.1 volumes per hour, including the air changes

through the ventilation plant (0.8 vol/h) and the ones coming through leaks in

walls and floors (about 0.3 vol/h). Following parameters have been measured: tem-

perature inside, outside and the profile through the dynamic insulation; pressure

difference between outside, the attic, through the insulation and the inside; wind

speed and direction; ventilation rate inside and in the attic; tightness and thermog-

raphy of the houses. Following conclusions are given: first of all, in buildings with

good air tightness, dynamic insulation can significantly heat losses through the en-

velope; secondly, the control strategy for the ventilation rate needs to be accurately

defined.

The second work [11] deals with the evaluation of the inner and the outer air

film resistance. The performance of dynamic insulation has been studied using a

hot-box, in order to measure the temperature profile through the wall (a single

layer of mineral wool). Measured and theoretical data have been matched assuming

0.14 m2K/W and 0.19 m2K/W for inner and outer thermal resistance of the air film

respectively. Such values have been demonstrated theoretically.

11



CHAPTER 1. DYNAMIC INSULATION TECHNOLOGY

In [12] an experimental work on a wall component tested under real weather con-

ditions is reported. Indoor and outdoor climatic conditions have been measured:

beam and diffuse solar radiation, long wave radiation, wind velocity and direction,

relative humidity, air and surface temperature, and heating and cooling power de-

mand. Tests have been performed both in winter and spring, to evaluate dynamic

insulation system performance for various pressure difference between indoor and

outdoor and for two control regimes (fixed temperature around 22 ◦C and free float-

ing). This work leads to following considerations: first of all, internal superficial

temperature decreases when air flow rate increases (rising air velocity); secondly, it

is important to adjust working configuration (pro or contra-flux) taking into account

external climatic conditions; finally, conductive heat losses through wall decrease for

increasing pressure difference values (which affects air velocity through the envelope

component).

The most recent work found in literature is described in [13]: a field study of a

dynamic insulation panel has been performed in a residential building in Abu Dhabi,

during the hottest period of the year (from June to September). The dynamic

insulation cell (0.6m × 0.6m × 0.095m) is a commercial product, composed by

a fiber-based porous material contained within a rigid EPS encasement package.

Results have highlighted that the ventilation air is pre-cooled by an average of 3 ◦C

(this cooling effect can go from 2-4 ◦C in the evening and in the early morning, to

6-12 ◦C during the hottest part of the day).

12



1.3. THE WALL AS AN AIR FILTER

1.3 The wall as an air filter

As we previously stated, walls based on dynamic insulation technology are able

to act as a filter, when they are integrated in the ventilation plant of a building:

particles drawn by the flowing air are trapped by the solid matrix of the porous

“filter”.

This behavior is studied in [4], where the collection efficiency of dynamic insula-

tion layers is analyzed, as a function of particles diameter a air velocity. Generally,

a traditional air filter has an open fibrous structure, with a porosity around 90-95%.

Trapping mechanisms are (Figure 1.4):

Direct interception, which involves a particle following a streamline

and being captured, if it comes directly into contact with a fiber.

Inertial impaction, in which a particle is captured because it deviates

by its own inertia from the streamlines around the fiber.

Diffusional deposition, in which Brownian motion of the particle brings

it into contact with the fiber.

Thanks to the low air velocity typically used for this technology, all the three mech-

anisms previously described are involved, while the third is not activated in tradi-

tional filters.

A way to represent a fibrous filter behavior is the single fiber theory, which

evaluates the flow field around a fiber, taking into account neighboring fibers. This

flow field is used to calculate particles trajectories. Thank to this approach, it has

been possible to demonstrate that a fibrous dynamic insulation layer can effectively

trap most of small air borne particles, whit a high collection efficiency for the

13



CHAPTER 1. DYNAMIC INSULATION TECHNOLOGY

(a) (b)

(c)

Figure 1.4: Particle filtration mechanisms: (a) direct interception (the larger
particles are carried by the air flow to impact against the fibers, while the
smaller ones deviate); (b) inertial impaction (the airflow diverges close to
the fibers, but the particles continue to move by inertia in a straight line),
(c) diffusional deposition (for low speed flows, the Brownian motion brings
particles to impact on fibers).

so-called thin particulate [5]: only the 1% of particles with diameter lower than

0.022 µm and grater than 7.5 µm penetrates a dynamic insulation layer with a

thickness of 1 mm.

For what concerns filter clogging, studies of porous ceilings reported in [4] have

shown that on samples that have been installed for 6-16 years there was no noticeable

decrease in air permeability, if compared with initial values. It has been estimated

that, for a flow rate of 80 m3/m2h, the lifetime of a mineral wool layer would

exceed 20 years. In homes and office buildings, flow rates are generally one order of

magnitude lower, which leads to a slower dust accumulation rate in air permeable

layers of walls.
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1.4. MATERIAL PROPERTIES

1.4 Material properties

Fibrous insulating materials have been generally used to build dynamic insula-

tion systems: in fact, this technology has been initially developed for cold North-

European climates, where the main task for the building envelope is to reduce

thermal losses in winter. Then, the thermal resistivity has been considered as the

main way to achieve this goal.

Another approach, which has not yet led to a commercial product, is the use

of capacitive materials, such as concrete blocks or panels. Going more in detail,

to guarantee a sufficient level of air permeability, an air permeable concrete (APC)

has been studied as a potential component for dynamic insulation systems [14].

When hardened, this compound is highly porous and voids are interconnected

to allow air permeability. Their diameter is in a range between 0.5 mm and 5 mm.

In [14] a mathematical procedure to evaluate effective thermal conductivity (λe) is

presented, with following assumption:

• effects of aggregates shape, size and size distribution on λe are negligible;

• change in packing behavior resulting from interparticle forces is assumed to

be constant;

• solid matrix is assumed do be dry.

This porous material is treated as a three-phase domain with a one-dimensional

heat transfer model, with the assumption of negligibility of radiative and convective

heat transfer. This model leads to the following equation for effective thermal
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CHAPTER 1. DYNAMIC INSULATION TECHNOLOGY

conductivity:

λe = (φa + φc)
{

λvλc
φcλv + φvλc

+ [φcλc + φaλa]
}
· (1− Pt) (1.4)

where Pt is a cement porosity factor based on the water/cement ratio, φa, φc and

φv are the volume fraction of aggregates, cement paste and voids respectively.

This model has been validated by means of laboratory tests using the hot wire

method. Predicted results show an acceptable agreement with experimental data

when the filling degree is in a range between 50% and 100%. Predictions for lower

values are not supported experimentally.

1.5 Objective and content of the research

According to the literature analysis, it is possible to underline strengths and

weaknesses of the dynamic insulation technology: first of all, it has been demon-

strated that with the convective component it is possible to significantly reduce the

envelope thermal transmittance; furthermore, this technology provides a good level

of integration between the ventilation system and the building envelope (higher

mass involvement, lower entrance velocity of the ventilation air, high filtration effi-

ciency). As far as cons are concerned, comfort issues have been detected, associated

to a reduction of internal surface temperature for rising air velocity; secondly, it

is important to underline a manufacturing complexity of the system, and a strong

dependence of its performance by the whole envelope air tightness (adequate control

of stray leakage).

With the described background, this research is divided into the following top-
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ics. First of all, a different theoretical approach to heat transfer in porous media is

taken into account: the differential equation of thermal energy is derived using the

averaging volume method. The evaluation of effective thermal conductivity is than

achieved by means of parametric CFD simulations. Secondly, a finite difference

algorithm to simulate air permeable walls in transient conditions has been devel-

oped, in order to assess dynamic insulation performance in hot climates (which have

not been analyzed in detail in past works). Finally an experimental apparatus have

been designed and built, with the aim both to validate the theoretical model and the

calculus algorithm, to investigate pro and contra flux working configurations, and

to test the technology behavior under variable temperature boundary conditions.
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Chapter 2

Fluid mechanics and heat

transfer in porous media

The mathematical description of the heat transfer through a dynamic insula-

tion layer has been presented in Chapter 1 and is mathematically described with

Eq. (1.1), which is based on the assumption of isotropic and homogeneous medium.

In this equation, density, specific heat and thermal conductivity of the porous layer

are considered from a macroscopic point of view. This means that each of these

quantities is an average value over the flowing fluid (air) and the solid matrix of the

material (i.e. values obtainable from data sheets). Furthermore, their dependence

on the flow field inside cavities is not taken into account explicitly. In this way, the

thermal (convective) interaction between the fluid and the solid phase at a micro-

scopic level is not considered, as well as the geometry of the solid microstructure.

Since we do not have found in literature any rigorous analysis to demonstrate,

from the theoretical point of view, the validity of the simplified model previously
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described (in the range of the parameters typical for the problem under examina-

tion - dynamic insulation layers), we have decided to study in deep the convective

and conductive heat transfer in porous media. For this purpose, in order to take

into account the effects of microscopic interaction on the macroscopic thermal per-

formance of a dynamic insulation layer, we have decided to solve the velocity field

(air velocity is not any more a problem parameter) and to use the average volume

method [15–19] for the energy equation.

2.1 Porosity

If we consider a porous medium, porosity is defined as the ratio between the

total void volume and the the total volume occupied by both void and solid matrix.

Moreover, a pore can be connected with more than another one (interconnected),

to only another void (dead end) or is not connected (isolated). The volume fraction

of the interconnected pores is called effective porosity.

Furthermore, a porous material is characterized not only by its porosity, but

also by its solid matrix structure, which affects the pore structure. In fact, pores

can have various size, can be connected or not and, finally, the whole structure can

be ordered or disordered (and isotropic).

This leads to various matrix structures, with different levels of simplicity. From

this distinction comes the need of appropriate analytical, numerical and experimen-

tal approaches to treat the effects of the microscopic geometry on the macroscopic

fluid mechanics and heat transfer problem.
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2.2 The local volume averaging technique

The purpose of this section is to briefly describe theorems and mathematical

principles that underpin the local volume averaging method.

This technique has been applied on transport and energy equations in order

to precisely describe multiphase systems behavior: the aim of this procedure is to

reach a rigorous treatment of transport phenomena in porous media, taking into ac-

count all microscopic interaction between phases and describing their effects on the

macroscopic behavior of the whole domain (which is then considered homogeneous).

As previously noted, the phenomenon of heat transfer in porous media has a

number of complexities related to the microstructural inhomogeneity of the material:

it is possible to identify two phases that constitute the porous medium: respectively

a solid (s) and a fluid phase (f) - Figure 2.1.

Figure 2.1: Schematic representation of the microstructure of a generic
porous medium.

This implies the need for appropriate mediation techniques of thermophysical

characteristics, in order to treat the problem from the macroscopic point of view,

taking into account the microstructure of the material at the same time.

One of possible approach is the volume averaging technique [15,17,20]. Consid-
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ering a thermodynamic property ψ, with a surface flux vector i, an external source

f and a volumetric production G, the corresponding conservation equation is:

∂(ρψ)
∂t

+∇ · (ρuψ)−∇ · i− ρf = ρG (2.1)

where ρ is the density and u is the velocity field in a point r. Eq. (2.1) is applicable

both to the solid and the fluid phase (the domain can be treated as a generic bi-

phase system α-phase ∪ β-phase), while decays at the interface between phases or,

more generally, at every discontinuities of the domain (Theorem I ). At the interface

αβ the balance equation becomes:

(ρψ(w − u) + i)|α · n
αβ + (ρψ(w − u) + i)|β · n

βα = 0 (2.2)

where w is the interface velocity and nαβ is the unit vector perpendicular to the

surface and directed from α to β (than we have nαβ = −nβα). The microstructural

complexity and the morphological variability of the interface lead to the impossi-

bility to reach an analytical solution.

Therefore, the volume averaging method is introduced to treat the microscopic

thermophysical problem from a macroscopic point of view. Equations are then

derived over a volume dV , defined so that its shape, size and orientation are in-

dependent from the position in space and time. In the same way areas dA are

defined. This process leads to the definition of macroscopic quantities for each

phase, considering each element dV as a physical point.

Hence, the volume on which quantities are mediated must be representative of

the domain microscopic structure: this leads to the definition of Representative Ele-
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mentary Volume (REV) and Representative Elementary Area (REA). A volume can

be considered representative of the whole domain only if its characteristic dimension

(D) satisfies the following inequality:

l� D � L (2.3)

where l is the microscopic dimensional scale of the porous matrix, and L is the

dimension of macroscopic inhomogeneities. Considering x as the center of gravity

of the volume dV and ξ as the relative distance of a single particle from the volume

center of gravity, it is possible to define the phases volume fraction γ (not defined

on the interface αβ):

γα = γα(x + ξ, t) =


1 if (x + ξ) ∈ Vα

0 if (x + ξ) ∈ Vβ
(2.4)

Eq. (2.4) can be integrated to evaluate the volume, or area, fraction of α-phase

inside dV or dA (dVα e dAα):

dVα(x + ξ, t) =
∫
dV

γα(x + ξ, t)dv (2.5)

dAα(x + ξ, t) =
∫
dA

γα(x + ξ, t)da (2.6)

Moreover, Eq. (2.4) is useful to simplify the volume integral calculation of a
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generic function h over dVα, which is the part of dV occupied by the phase α:

∫
dVα

hdv =
∫
dV

hγαdv (2.7)

It is also possible to define the volume fraction of phases as:

εα(x + ξ, t) =
dVα
dV

=
1
dV

∫
dV

γα(x + ξ, t)dv (2.8)

that is called porosity (ε) when it is evaluated on the fluid phase. We have also

to remember that the sum of volume fractions of all phases must be equal to one,

while for each phase it is defined between 0 and 1.

The specific surface related to the generic phase (e.g. the fluid phase), will be

then defined as the ratio between the phase internal area and the volume dV :

Sα(x + ξ, t) =

∑
α 6=β Sαβ

dV
=

1
dV

=
1
dV

∑
α 6=β

∫
dAαβ

dA (2.9)

Now, for the generic equation h we can define following average operators:

1. volume average operator - 〈 〉α

〈h〉α (x + ξ, t) =
1
dV

∫
dV

h(x + ξ, t)γα(x + ξ, t)dv (2.10)

2. intrinsic volume average operator - 〈 〉αα

〈h〉αα (x + ξ, t) =
1

dVα(x + ξ, t)

∫
dV

h(x + ξ, t)γα(x + ξ, t)dv (2.11)
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3. mass average operator - ¯ α

h̄α(x + ξ, t) =

∫
dV ρ(x + ξ, t)h(x + ξ, t)γα(x + ξ, t)dv∫

dV ρ(x + ξ, t)γα(x + ξ, t)dv
=

=
1

〈ρ〉α (x + ξ, t)dV

∫
dV

ρ(x + ξ, t)h(x + ξ, t)γα(x + ξ, t)dv
(2.12)

4. areal average operator - ˆ α

ĥα(x + ξ, t) =
1
dA

∫
dA

h(x + ξ, t) · nγα(x + ξ, t)da (2.13)

Starting from Eqs. (2.10) and (2.11), it is possible to obtain, using Eq. (2.8) too,

the following relation between volume average and intrinsic volume average:

〈h〉α = εα 〈h〉αα (2.14)

In order to obtain the average of a general balance equation of a phase, it is

possible to switch from microscopic to macroscopic quantities integrating micro-

scopic equations over the three-dimensional domain V . This can be done taking

into account previous definitions:

∫
V

 1
dV

∫
dVα

h(x + ξ, t)dvξ

 dVx =
∫
V

 1
dV

∫
dV

hγαdvξ

 dVx ≡
≡
∫
V

∫
dV

hγαdv =
∫
V

〈h〉α dV

(2.15)
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The same can be done for the edge A:

∫
A

 1
dA

∫
dAα

hγαdaξ

 dAx or

∫
A

 1
dA

∫
dAα

h · nγαdaξ

 dAx ≡
≡
∫
A

∫
dA

h · nγαda =
∫
A

ĥαdA

(2.16)

In Eq. (2.15) and (2.16) after the symbol ≡ contracted forms are reported, which

will be used hereafter for sake of shortness.

Below, some theorems about the mean values, integral and partial derivative

over space or time of the function h are reported:

• Theorem II - time derivative integration

∫
V

∫
dV

∂h

∂t
γαdv =

∫
V

∂

∂t

∫
dV

hγαdv −
∫
V

∑
β 6=α

∫
dAαβ

hw · nαβda (2.17)

• Theorem III - space derivative integration

∫
V

∫
dV

(∇ · h)γαdv =
∫
V

∫
dV

∇ · (hγα)dv +
∫
V

∑
β 6=α

∫
dAαβ

h · nαβda (2.18)

• Theorem IV - modified form of the Gauss Theorem

∫
V

∇ ·
∫
dV

hdv =
∫
V

∫
dV

∇ · hdv =
∫
A

∫
dA

h · nda

⇒
∫
V

∫
dV

(∇ · h)γαdv =
∫
A

∫
dA

(h · n)γαda+
∫
V

∑
β 6=α

∫
dAαβ

h · nαβda
(2.19)
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Finally, we can define the local value of a function h, referred to the phase α,

as the local sum of the volume average (〈 〉α) and the local deviation from the

volume average ( ˜ α):

h = 〈h〉α + h̃α (2.20)

2.3 Fluid mechanics analysis

The first study of the relation between the fluid velocity, flowing through a

porous medium, and the pressure drop has been performed by Darcy (1856) and

led to the following equation:

−dp
dx

=
µ

K
uD (2.21)

where µ is the air dynamic viscosity (in Pa · s) and K is the air permeability (in

m2), which is a parameter describing the solid matrix. Finally, uD is the “Darcean

velocity” (or filter velocity), which is determined by dividing the mass flow-rate by

the product of the fluid density (which is assumed to be incompressible) and the

cross-sectional area of the porous layer. In this way, a linear relationship is stated,

which is typical for a Stokes flow. This leads to a deviation of the actual flow from

Eq. (2.21) at high velocities.

Solid matrices can be divided in isotropic and anisotropic media: in the first

case, pressure gradient and velocity vector are parallel, giving the following equation:

−dp
dx

=
µ

K
uD (2.22)
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For anisotropic media, pressure gradient and velocity vector are not parallel. This

gives the following tensorial notation:

−dp
dx

=
µ

K
uD (2.23)

where K is the following second-order symmetric (Kij = Kji) tensor.

K =


K11 K12 K13

K21 K22 K23

K31 K32 K33

 (2.24)

More in general, permeability is a measure of the flow conductance of the matrix,

and is a synthetic description of the pore structure, which is highly variable. This

consideration leads to the need of mathematical models to describe the microscopic

geometry and its effects on the fluid dynamic behavior [20].

Capillary models: the Navier-Stokes equation is applied to flow in small-diameter

conduits, which can be divided in two categories: parallel/series conduits and

network of conduits. The reliability of this model is limited to simple and

regular structures.

Hydraulic radius model: the hydraulic diameter is defined as

dh =
4ε

A0(1− ε)

where A0 is the volumetric surface area (equal to Afs/Vs). This model gives

a relationship between permeability and hydraulic diameter, as a function of
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the capillary cross-section shape (circular, rectangular, elliptical, etc.).

Local volume average: the procedure described in §2.2 is applied to the Navier-

Stokes equation for the fluid phase of the REV. This approach introduces a

large number of unknown, coming from the complexity of the flow paths and

the interpore and pore-to-pore fluid dynamic interaction. Therefore, empiri-

cism at various level is mandatory to complete volume-averaged conservation

equations (mass and momentum). This method leads to the following equa-

tion:

ρ0

[
∂ 〈u〉
∂t

+ 〈u · ∇u〉
]

= −∇〈P − p0〉+ µ∇2 〈u〉 − εµ

d2ks
〈u〉 (2.25)

where d is the characteristic length at the pore scale, ks is a nondimensional

function of porosity and P is the combined effect of pressure p and the body

force per unit volume exerted by the fluid on the pore walls. However, this

method has not been implemented in this work.

Semiheuristic momentum equation: this approach has been introduced to have

a set of of governing equations that can describe both the momentum trans-

port through porous media (K is small) as well as that in plain media (K is

very large). This equation is substantially an extension of the Darcy law in
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Eq. (2.21), based on the application of local volume averaging:

ρ

ε

(
∂uD
∂t

+ uD · ∇uD

)
︸ ︷︷ ︸

macroscopic inertial

force or macroflow-

development term

= −∇〈p〉f︸ ︷︷ ︸
pore pressure

gradient

+ ρf︸︷︷︸
body force

+

+
µ

ε
∇2uD︸ ︷︷ ︸

macroscopic or

bulk viscous shear

stress diffusion

(Brinkman viscous

term or bounding

surface effect)

− µ

K
uD︸ ︷︷ ︸

microscopic viscous

shear stress,(Darcy

term)

− CE

K1/2
ρ |uD|uD︸ ︷︷ ︸

microscopic iner-

tial force (Ergun

inertial term or

micro-flow devel-

opment term)

(2.26)

where CE is Ergun coefficient, which is a form-drag constant [20–22]

In the work under discussion, the semiheuristic momentum equation (2.26) has

been implemented, after the introduction of some simplifications. First of all,

Eq. (2.26) has been reduced to a one-dimensional domain, becoming:

ρ

ε

(
∂uD
∂t

+ uD
∂uD
∂x

)
= −∂〈p〉

f

∂x
+ ρf +

µ

ε

∂2uD
∂x2

− µ

K
uD −

CE

K1/2
ρ |uD|uD. (2.27)

The assumption of one-dimensional domain, applied to the continuity equation,

leads to:

∇ · uD = 0⇒ ∂uD
∂x

= 0 ∀x. (2.28)

This means that also the second order space derivative is equal to zero.

The Eq. (2.27) has then been simplified by applying the Eq. (2.28) and neglecting
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every body-force effect. Finally, we obtain:

ρ

ε

∂uD
∂t

= −∂〈p〉
f

∂x
− µ

K
uD −

CE

K1/2
ρ |uD|uD (2.29)

Hence, Eq.(2.29) has been used in this work. In the following chapters the dis-

cretization of Eq. (2.29), and the experimental and numerical derivation of quantities

(i.e. permeability and Ergun coefficient) are presented.

2.4 Heat transfer analysis

As far as the heat transfer phenomenon is concerned, the volume average ap-

proach has been applied to the internal energy equation, taking into account a

two-phase domain, divided in a solid (s) and a fluid (f), which are the solid matrix

of a porous media and the flowing air respectively.

Assuming a stationary, laminar and fully developed velocity field, neglecting heat

sources or sinks, we can define an energy equation for each phase in the domain and

a boundary condition on the interface Afs (Figure 2.1), according to the procedure

presented in [20]:

(ρcp)f

(
∂Tf
∂t

+ uf · ∇Tf
)

= ∇ · λf∇Tf in Vf (2.30)

(ρc)s
∂Ts
∂t

= ∇ · λs∇Ts in Vs (2.31)

Tf = Ts, nfs · λf∇Tf = nfs · λs∇Ts on Afs (2.32)

31



CHAPTER 2. FLUID MECHANICS AND HEAT TRANSFER IN POROUS MEDIA

According to Eq. (2.20), we can divide temperature and velocity in local volume

average and deviation:

Tf = 〈Tf 〉f + T̃ f (2.33)

Ts = 〈Ts〉s + T̃ s (2.34)

uf = 〈uf 〉f + ũf (2.35)

Using Eqs. (2.33), (2.34) and (2.35) and the average volume approach, the partial

differential equation will become:

(ρcp)f

(
∂ 〈T 〉f
∂t

+ 〈u〉f · ∇ 〈T 〉f
)

= ∇ ·

λf∇〈T 〉f +
λf
Vf

∫
Afs

nfsT̃fdA


− (ρcp)f∇

〈
ũT̃
〉
f

+
1
Vf

∫
Afs

nfs · λf∇T̃fdA (2.36)

(ρc)s
∂ 〈T 〉s
∂t

= ∇ ·

λs∇〈T 〉s +
λs
Vs

∫
Afs

nsf T̃sdA

+
1
Vs

∫
Afs

nsf · λs∇T̃sdA (2.37)
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while for the boundary condition over the interface we will have:

T̃f = T̃s +
(
〈T 〉s − 〈T 〉f

)
nfs · λf∇T̃f = nfs · λs∇T̃s + nfs ·

(
λs 〈T 〉s − λf 〈T 〉f

) (2.38)

For the sake of brevity, we omit the mathematical manipulations, as well as the

conservation equations related to local disturbances of temperature for the two

phases, referring to [20] for more information.

The problem can be further simplified. Performing an order of magnitude anal-

ysis, it is possible to introduce the hypothesis of local thermal equilibrium:

• Time scale t will have to respect

ε(ρc)f l2

t

(
1
λf

+
1
λs

)
� 1 and

(1− ε)(ρc)sl2

t

(
1
λf

+
1
λs

)
� 1 (2.39)

• Space scale l will have to respect

ελf l

A0L2

(
1
λf

+
1
λs

)
� 1 and

(1− ε)λsl
A0L2

(
1
λf

+
1
λs

)
� 1 (2.40)

where A0 is the specific area. If inequalities (2.39) and (2.40) are fulfilled, it is

possible to assume the validity of the hypothesis of local thermal equilibrium, which

leads to:

〈T 〉f = 〈T 〉s = 〈T 〉 (2.41)

By applying the Eq. (2.8) to the fluid phase, we will have εf = ε ≡ porosity and,

consequently, εs = 1− ε. Summing Eq. (2.36) and (2.37), introducing the interface
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condition (nfs = −nsf ), we will find the following macroscopic energy equation for

the porous media:

[ε(ρcp)f + (1− ε)(ρc)s]
∂ 〈T 〉
∂t

+ (ρcp)f 〈u〉∇ 〈T 〉 = ∇ · λ
eff
· ∇ 〈T 〉 (2.42)

T̃f = T̃s = T̃ , −n · ∇T̃ = n · ∇ 〈T 〉 su Afs (2.43)

Furthermore, we have to underline that in Vf and Vs local temperature devia-

tions T̃ f and T̃ s do not have the same value. In Eq. (2.42) the effective conductivity

tensor λ
eff

depends on the thermal tortuosity tensor λ
tor

and the thermal dispersion

tensor λ
disp

:

λ
eff

= [ελf + (1− ε)λs] I + λ
tor

+ λ
disp

(2.44)

λ
tor
· ∇ 〈T 〉 =

λf − λs
∆V

∫
Asf

nsf T̃ dA (2.45)

λ
disp
· ∇ 〈T 〉 =

(ρcp)f
∆V

∫
Vf

ũf T̃ fdV (2.46)

2.5 Conclusions

In this Chapter, we have introduced the theoretical background supporting the

study under discussion. Equations for both fluid dynamic and heat transfer in
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porous media have been defined, together with main quantities which affect these

problems.

The velocity field in the fluid phase of a porous medium is described by Eq. (2.29).

This means that we have to evaluate both permeability and Ergun coefficient, for

the different materials involved.

A similar issue has been risen in the heat transfer treatment, described by

Eq. (2.42), where a corrected value of thermal conductivity appears. Considering

Eq. (2.44), (2.45) and (2.46), the differential problem needs another set of equations

to be solved, in order to calculate the spatial distribution of local deviations from

the volume average value of temperature and velocity. Several approaches to the

closure problem have been found in literature, aimed at the numerical or analytical

evaluation of effective properties [23–29]. Since equations depend on the domain

microstructure, which is highly variable, we have decided to numerically evaluate

λ
tor

and λ
disp

, simulating the fluid-dynamic problem over a REV, and correlating

the solution with macroscopic parameters, with an approach similar to the one used

in [26].

Following chapters deal with the characterization of fibrous insulation and per-

meable concrete from both fluid mechanics and heat transfer points of view, by

means of numerical simulations and laboratory tests.
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Chapter 3

Fibrous insulating materials

characterization

In this Chapter, the characterization of fibrous insulation materials is presented.

More in detail, the volume averaging technique has been applied to a geometrical

simplification of an elementary cell and, by means of CFD simulations, thermal tor-

tuosity, dispersion and air permeability have been derived as a function of macro-

scopic parameters, such as porosity and Peclet number (defined as ux ·
LREV (ρcp)f

λf

when referred to REV dimension).

The elementary volume has been modeled as an ordered array of longitudinally-

displaced cylinders, representing rock wool fibers (the elementary cell); temperature

distribution and velocity field have been calculated for six levels of porosity, five

average inlet air velocity and two temperature gradient along the x -axis, for both

pro and contra-flux conditions.

Numerical results have been processed and used to define regression equations
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for thermal tortuosity, dispersion and to correlate pressure drop with average air

velocity.

It is important to notice that this particular analysis has been performed to test

the reliability of the volume average method to the problem under discussion. For

this reason, all randomness of the solid matrix have been neglected. A more detailed

geometrical characterization have been done for pervious concrete, as described in

the next Chapter.

3.1 Domain definition and numerical model

The definition of the REV (Figure 3.1) has been done approximating the solid

matrix of rock wool as an array of parallel cylinders, orthogonally displaced to the

two-dimensional CFD simulation plane. The dimension of the REV side (LREV )

has been calculated as a function of porosity, keeping constant the solid cylinders

diameter (5 µm). Thus, six REV s have been defined for six values of porosity

(ε = 50%, 80%, 85%, 90% 95% and 99%). Keeping in mind that fibrous insulating

materials in buildings are characterized by high porosity values (generally greater

than 90% for commercial materials), lower values of this parameter have been taken

into account only to reach more general correlations for thermal dispersion and

tortuosity.

Thermophysical properties of the materials used for simulations are listed in

Table 3.1. Since this work deals with building material like rock wool, dolomitic

rock properties have been used to describe the solid matrix.

Energy and momentum equations have been solved over the fluid and the solid
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Figure 3.1: Geometrical approximation of a representative elementary vol-
ume of a transversal section of a fibrous insulating material, based on an array
of solid cylinders.

Table 3.1: Thermophysical properties of fluid and solid matrix used in CFD
simulations.

Fluid: Air

Density - ρf 1.225 kg/m3

Conductivity - λf 0.024 W/mK

Specific Heat - cp,f 1006 J/kgK

Solid: Dolomitic Rock

Density - ρs 2870 kg/m3

Conductivity - λs 1.75 W/mK

Specific Heat - cp,s 910 J/kgK

phases in steady-state conditions, using a finite volume discretization method. There

was no need for a viscous model, because of the low Re condition, resulting from

low values of inlet air velocity. This condition leads also to low values of Pe number.

3.2 Boundary conditions

Dealing with boundary conditions, five steps of average inlet velocity have been

applied to the inlet section on the unit-cell left side. Pe number has been succes-

sively calculated using the mean volume value of the x component of velocity. A

temperature gradient has been imposed over the x coordinate, keeping its value

constant along the y-axis: temperature values have been given for the left side,
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both for the solid wall and the inlet fluid. Since the fluid part of the unit-cell right

side is an outlet boundary condition, it was not possible to assign any temperature

value. This problem has been solved by extending five times the elementary cell

over the x direction and imposing the temperature value on the solid part of the

right side (Figure 3.2).

Figure 3.2: Definition of the calculus domain for CFD simulations. Results
on central elementary cell have been used for thermal tortuosity and dispersion
evaluation.

Table 3.2: Boundary conditions for the numerical solution of the velocity
field.

Inlet mean velocity ua ub uc ud ue

ūin [m/s] 0.001 0.003 0.005 0.007 0.01

Table 3.3: Boundary conditions for the numerical solution of the tempera-
ture distribution.

Temp. diff. porosity (ε)

over the x -axis 50% 80% 85% 90% 95% 99%

∆T1 [K] 0.080 0.125 0.146 0.176 0.250 0.560

∆T2 [K] 0.402 0.625 0.729 0.878 1.250 2.798

As will be later discussed, for every simulation, temperature distribution along

the y-axis has been checked on the left and right sides of the central REV. The aim

was to verify that the y-component of the temperature gradient was always negligi-

ble on the edges. Symmetry condition has been taken into account for both top and

bottom faces of the computational domain. Values of boundary conditions are listed

in Table 3.2 and 3.3. The simulation of pro-flux and contra-flux configurations have

been performed reverting temperature values of left and right faces.
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3.3 Results and discussion

An amount of 120 simulations has been performed, 60 for both pro and contra-

flux conditions. Results have been postprocessed to calculate macroscopic param-

eter for fluid dynamic and heat transfer.

3.3.1 Fluid dynamic

For what concerns the relationship between average air velocity and pressure

drop across a fibrous insulation layer of a permeable wall, CFD simulations results

have been used to evaluate permeability coefficient K and CE in Eq. (2.29). For

this reason, average air velocity in a REV (as represented in Figure 3.1) and average

pressure drop between left and right sides have been plotted for different porosity

values and velocity boundary conditions (Figure 3.3).

Figure 3.3: Pressure loss as a function of average inlet air velocity, for
different values of porosity.

Going more in detail, a linear relationship has been found between average fluid

velocity inside the REV and the pressure drop across it, for each porosity value.
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This means that the Eq. (2.29) degenerates into the Darcy equation. Hence, the

µ/K coefficient dependence on the fluid volume fraction ε has been investigated, by

means of a heuristic approach: first of all, we have assumed that the pressure loss is

negligible for the maximum value of porosity (completely fluid domain ⇒ ε = 1).

Figure 3.4: Graphical representation of the limit-porosity geometrical con-
figuration.

Secondly, we have hypothesized that pressure loss tends to infinity as porosity tends

to a limit value, which implies the contact between adjacent fibers, as represented in

Figure 3.4, and the interruption of free channels for the fluid motion (approximately

we have εlim ∼= 0.2146). The regression equation obtained is then (Figure 3.3):

−dp
dx

= 70.74
[

1− ε
5.527 · 10−4 (ε− εlim)

]1.437

· uD (3.1)

3.3.2 Heat transfer

Ignoring the two-dimensional behavior, thermal tortuosity and dispersion, which

have been defined in Eqs. (2.45) and (2.46), have been calculated on the x coordi-
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nate, using the following discretized form:

λtor,xx ≈
(λf − λs)/VREV
∆ 〈T 〉x /LREV

∫
Asf

nsf,x (T − 〈T 〉) dA (3.2)

λdisp,xx ≈
(ρcp)f/VREV

∆ 〈T 〉x /LREV

∫
Vf

(u− 〈u〉) (T − 〈T 〉)dV (3.3)

where u is the x component of the local velocity vector. In fact, considering a

multidimensional heat transfer phenomenon, thermal dispersion and tortuosity are

written in a tensorial form. If our analysis of the building envelope is restricted to a

one-dimensional problem, which is normally enough to describe the thermal behav-

ior of a dynamic insulation system (heat flux and air flow are generally transversal

to the wall section, while solid fibers statistically lie on the wall plane), the number

of dimensions considered for thermal tortuosity and dispersion can be reduced to

one.

The closure problem, which comes from the need for a set of equations to describe

the spatial distribution of local deviations, have been solved using numerical results

of CFD simulations for velocity and temperature fields, according to the method

proposed in [26]. For example, in Figure 3.5 representations of thermal and velocity

fields are reported, for ε = 95%, ūin = ue and ∆T1 in contra-flux condition (only the

central elementary cell of the computational domain has been used and represented

- Figure 3.5).

Before starting the postprocessing phase, the assumption consistency of con-

stant temperature conditions along the y-axis for left and right faces of the central

REV has been verified: in Figure 3.6(a) the horizontal distribution of temperature
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(a) (b)

Figure 3.5: Temperature (a) and velocity (b) fields representation, obtained
by means of a CFD simulation of a unit-cell with ε = 95%, ūin = ua and ∆T1

(contra-flux condition).

(a) (b)

Figure 3.6: Temperature field analyses. (a) Comparison among horizontal
temperature gradients at different y values for the ε = 95% unit-cell (ūin = ua,
∆T1) in contra-flux condition. (b) Comparison among horizontal temperature
gradients at y = LREV /2 (ε = 95%, ∆T1) for different average inlet velocities
(ua and ue) and working conditions (pro and contra-flux ).

is represented for three levels of ordinate values (y = 0, y = LREV /2 and y = LREV ).

Comparing the three curves, we can observe that for x = 0 and x = LREV (graph ab-

scissa) temperature values seem to be coincident along the y direction. This analysis

has confirmed that horizontal temperature gradient can be considered independent

from the vertical coordinate for the central REV.

In Figure 3.6(b), temperature values at y = LREV /2 are reported for extreme

44



3.3. RESULTS AND DISCUSSION

values of average inlet velocity and for pro and contra-flux working conditions at

∆T1: a negligible effect of velocity field on the temperature distribution can be

observed, perhaps as a result of the low Peclet condition.

(a) pro-flux (b) contra-flux

Figure 3.7: Comparison between numerical results and regression curves for
the tortuosity coefficient λtor,xx/〈λ〉 for pro (a) and contra-flux (b) conditions.

(a) pro-flux (b) contra-flux

Figure 3.8: Comparison between numerical results and regression curves for
the dispersion coefficient λdisp,xx/〈λ〉 for pro (a) and contra-flux (b) conditions.

Starting from the assumption that both thermal tortuosity and dispersion are

dependent on parameter like porosity, horizontal temperature gradient and Peclet

number, it has been possible to evaluate two regression equations based on numerical
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results of CFD simulations. In Figure 3.7 and 3.8 both quantities are represented

as a fraction of the average thermal conductivity of the REV calculated as follows:

〈λ〉 = ε · λf + (1− ε) · λs (3.4)

Interpolating equations for both these ratios are:

λtor,xx
〈λ〉

≈ ∓ −4.263 · ε+ 3.965 · ε10.5

1− 290.5 · ε− (1− 290.5) · ε0.1
(3.5)

λdisp,xx
〈λ〉

≈ ±2.675 · 10−4 · Pe2
H · e

100ε2·
[

(1−ε)2
2

]
(3.6)

These two parameters are analyzed separately.

Table 3.4: Results of thermal tortuosity calculation. For every porosity level
and every working configuration minimum and maximum values are reported.
Arithmetic mean (µ) and standard deviation (σ) are given.

Config. ε Min. Max. µ σ

pro 50% 4.98% 5.10% 5.04% 0.04%
80% 6.16% 6.81% 6.48% 0.31%
85% 7.48% 7.54% 7.50% 0.02%
90% 9.50% 9.55% 9.52% 0.01%
95% 13.02% 13.09% 13.06% 0.02%
99% 24.65% 25.29% 25.00% 0.22%

contra 50% -5.11% -5.01% -5.05% 0.03%
80% -5.84% -5.15% -5.51% 0.32%
85% -7.54% -7.49% -7.52% 0.02%
90% -9.59% -9.50% -9.53% 0.02%
95% -13.08% -13.02% -13.05% 0.02%
99% -25.26% -24.65% -24.99% 0.21%

The thermal tortuosity (Figure 3.7) seems to be affected only by the material

porosity, while it shows little sensitiveness to different values of horizontal ther-

mal gradient and Pe number (Table 3.4). For this reason, results obtained for the
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same value of porosity, but different ∆Tx and ūin, have been summarized with their

mean value (six points for each working condition). Moreover, the trend of data

seems to suggest a symmetry respect to the abscissa axis, for opposite working

conditions (pro and contra-flux ). Indeed, when air flow and thermal flux have the

same direction, thermal tortuosity gives a positive contribution to effective thermal

conductivity; while it decreases λeff,xx in contra-flux condition. Furthermore, its

relevance increases for higher values of porosity, which are typical for fibrous insu-

lating material in buildings (rock wool porosity is between 90% and 99%, depending

on bulk density): within this porosity range, thermal tortuosity is approximately

between the ∓9.5% and the ∓25% of the average thermal conductivity, as defined

in Eq. (3.4).

Table 3.5: Comparison among different thermal dispersion values depending
on temperature difference between left and right edge of the considered REV.

ε ūin [m/s] λdisp,xx

〈λ〉

∣∣∣
∆T1

λdisp,xx

〈λ〉

∣∣∣
∆T2

Abs.Diff.

50% 0.001 (pro) -1.03−8% -9.38−9% 9.01−10%
0.01 (pro) -3.13−7% -2.72−7% 4.11−8%
0.001 (contra) 9.71−9% 9.31−9% 3.95−10%
0.01 (contra) 3.03−7% 2.81−7% 2.19−8%

99% 0.001 (pro) -1.93−6% -1.92−6% 6.60−9%
0.01 (pro) -2.11−5% -2.11−5% 5.34−7%
0.001 (contra) 1.94−6% 1.90−6% 3.33−8%
0.01 (contra) 2.11−5% 2.11−5% 2.85−7%

Considering Figure 3.8, where thermal dispersion for pro and contra-flux condi-

tion is represented, a central symmetry respect of the axes origin could be inferred:

for the same values of Pe number and porosity, we have obtained similar values

of thermal dispersion, with opposite sign (minus in pro-flux, plus in contra-flux

regime). Moreover, it is possible to underline a substantial independence from the

temperature gradient over the x axis, keeping constant the other two independent

47



CHAPTER 3. FIBROUS INSULATING MATERIALS CHARACTERIZATION

variables, as shown in Table 3.5, where different results are compared, for extreme

values of porosity and Pe number. As it has been done for tortuosity, points in

Figure 3.8 are average values calculated for different thermal boundary conditions,

with the same porosity and Pe values. However, if we look at the order of magni-

tude of the results obtained for this quantity, the thermal dispersion contribution

on the energy balance is very small in the low Peclet number region (the maximum

value obtained is approximately ±2.1·10−4% of the correspondent average thermal

conductivity). Therefore, under these conditions, this quantity can be neglected.

Finally, if we consider both thermal tortuosity and dispersion, we could high-

light a general agreement between numerical results of CFD simulations and corre-

lation functions (3.5) and (3.6): R2 coefficients are respectively 0.9699 and 0.9999.

The greatest difference can be found for the lowest value of porosity considered

(ε = 50%): indeed, this seems to be the only situation in which there is no good cor-

respondence between data and regression values. However, for low porosity range,

thermal dispersion becomes increasingly negligible and tortuosity becomes less in-

fluential.

3.4 Conclusions and final remarks

All analyses shown in this work are finalized to obtain a detailed description

of the fluid dynamic inside fibrous materials and the heat exchange between the

flowing air and the solid matrix at microscopic scale. This could provide a better

comprehension of the behavior of resistive dynamic insulation in building envelopes

[3, 4].
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Taking into account the relationship between velocity and pressure drop, a linear

connection has been found, which corresponds to the Darcy equation. The ratio

µ/K has been assumed as a non-linear function of the solid matrix porosity. Its

form has been defined so that it becomes zero when we have a fluid domain, while

it tends to infinity when the effective porosity, as it has been defined in §2.1, tends

to zero.

Concerning with the thermal tortuosity, it is only dependent on the material

porosity, while it is not affected by Pe number and temperature gradient. More-

over, this parameter seems to have a significant impact on the effective thermal

conductivity, especially in the high porosity range (ε ≥ 90%). Conversely, thermal

dispersion appears to be negligible: it depends both on the porosity and the Pe

number, but its order of magnitude is lower than the ±2.11 · 10−4% of the volume

average thermal conductivity. The effect of the working condition (pro or contra-

flux ) has been synthesized with the sign of both quantities: positive for pro-flux

tortuosity and contra-flux dispersion, negative in other cases. For both thermal

tortuosity and dispersion, regression equations have been obtained, with a good

agreement to numerical results, except the ones coming from the lowest porosity

considered (ε = 50%).

As we stated previously in this Chapter, all analyses described have been done

with the purpose to verify the reliability of the volume averaging technique for the

problem under discussion. For this reason, no statistical approach to the geometry

definition has been used. Anyway, in the future results will be used in numerical

simulations after an experimental validation.

The following Chapter deals with the pervious concrete, also known as no-fines
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concrete [30–32], characterization, which is based on a similar approach, while a

more detailed geometrical definition of the solid matrix has been performed.
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Chapter 4

No-fines concrete

characterization

This Chapter deals with the characterization of no-fines concrete. This material

is a cement based mixture, which is produced without using small diameter aggre-

gates. This leads to a highly porous hardened solid matrix, with well interconnected

pores. Thanks to its high permeability, this material has been largely used in streets

pavement construction [30–32].

Taking into account its effective porosity and its thermal capacity, we have

considered no-fines concrete a suitable choice for dynamic insulation technology, in

order to develop a stratified technical solution optimized for Mediterranean climate

conditions.

As it has been done for fibrous insulating materials, the volume average method

has been applied. Unlike what has been presented in the previous Chapter, no

geometrical approximation has been introduced: some cubic samples have been
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subjected to image analysis. This procedure has led to the REV definition and the

mesh production for CFD simulations.

Thermophysical properties of the solid matrix have been evaluated using a Tran-

sient Plane Source (TPS) apparatus [33–37].

Then, a simple experimental apparatus has been built to find the empirical

correlation between average air velocity and pressure drop across no-fines concrete

samples. The regression curve obtained has been compared with numerical simula-

tions results, in order to validate them.

CFD simulations have also been used to calculate thermal tortuosity and dis-

persion as a function of porosity and Peclet number, as we described in the previous

Chapter.

4.1 Domain definition and numerical model

In this section, the statistical approach used to define the REV dimension is

described. Than, we present the procedure to define the solid matrix geometry,

used to create calculus meshes for CFD simulations, and the laboratory anayses we

have done in order to evaluate thermophysical properties of the solid phase of the

porous medium considered.

4.1.1 The REV size

As stated in Chapter 2, a representative elementary volume can be considered

as a physical point of the domain. This assumption implies that, for characteristic

dimensions of the macroscopic problem (some orders of magnitude greater than the

REV size), macroscopic (i.e. locally volume averaged) thermophysical and geomet-
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rical properties are constant over the domain.

(a) (b)

(c)

Figure 4.1: (a) Picture of a cubic sample of no-fines concrete (this particular
one has not been used for experimental purposes, because of some inaccuracies
in the casting procedure). (b) Picture of one sample imbued in the hardened
epoxy resin. (c) Picture of one impregnated sample cut into slices.

This means that, first of all, we have to find the typical REV size for no-fines

concrete. Such a result has been obtained analyzing images of section of no-fines

concrete small samples. These cubic samples, with a side dimension of 10 cm

(Figure 4.1(a)), have been produced in collaboration with the research group of
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Prof. Luca Bertolini, from Dipartimento di Chimica, Materiali e Ingegneria Chimica

”‘G.Natta”’ of Politecnico di Milano. Mix-design parameters are as follows:

• water/cement mass ratio (w/c) - 0.39;

• aggregate/cement mass ratio - 7.03;

• aggregate - Zandobbio limestone

– large gravel (φ = 9÷ 12mm) - 60%;

– medium gravel (φ = 6÷ 9mm) - 40%;

• cement powder - limestone Portland cement CEM II-A-L/42.5

Once the samples were hardened, all inner cavities (pores) have been filled with

a transparent epoxy resin and, after its solidification (Figure 4.1(b)), have been

cut into slices (thickness of 1÷2 cm - Figure 4.1(c)), obtaining more or less 15

samples. After a photographic survey, 28 RGB images have been produced (e.g.

Figure 4.2(a)) and transformed into binary (black and white) square Limg × Limg

images (e.g. Figure 4.2(b)): white represents the fluid phase, while black represents

the solid matrix.

Hence, samples obtained have been used to define the REV size, referring to

following parameters: porosity and autocorrelation length (defined as the radial

coordinate of the pixel related to the maximum value of autocorrelation function,

as shown below).

With both porosity and autocorrelation length we have obtained two possible

REV sizes (Lε and LACF ); the actual value used in further analyses (LREV ) is the

greater of them.
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(a) (b)

Figure 4.2: (a) Original image of one of the slices obtained, with dimensional
scale reported; (b) binary conversion of the image.

Porosity calculation

As described with Eq. (2.4), we can consider the binary representation of the

no-fines concrete surface as a phase function as follows [38–40]:

Z (r) =


1 if r belongs to the pore space

0 otherwise

(4.1)

where r represents the vector position of each point of the domain (or binary im-

age), relative to a generic origin. Considering Eq. (4.1), in addiction to the physical

definition of porosity related to Eq. (2.8), we can introduce its mathematical inter-

pretation:

ε = Z(r) ∼=
∑m

(i=1)

∑n
(j=1) Z(i, j)

m× n
(4.2)

where the right member represents the discrete approximation, used for the binary
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: Graphical description of the procedure for porosity evaluation.
The red box represents the jig used to collect subsamples of the image. The
sampling procedure has been done translating horizontally and vertically, in
order to scan the whole image. Sub-sample size are: (a) 1024×1024 pxl
(1 sample); (b) 768×768 pxl (4225 samples); (c) 576×576 pxl (12769 sam-
ples); (d) 512×512 pxl (16641 samples); (e) 432×432 pxl (22201 samples);
(f) 324×324 pxl (30976 samples); (g) 256×256 pxl (37249 samples); (h)
240×240 pxl (38809 samples); (i) 128×128 pxl (50625 samples).

images analysis. Going more in detail, we have taken samples from every binary

image. For every image, a set of different jigs has been defined to collect subsamples

from each image considered. The sampling process has been performed starting with

the left-up corner of the image (with (0,0) coordinate), and identifying a subsample

of predefined size each time the jig is moved one pixel, vertically or horizontally,

over the whole image, like the procedure described in Figure 4.3. Then, samples
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have been divided into groups, according to their side dimension. On each group we

have calculated average porosity and standard deviation: the REV size assumed,

referred to porosity, is the smallest side dimension (Lε) with a porosity standard

deviation lower than 4% (Figure 4.4).

Figure 4.4: Statistical evaluation of REV size, referred to porosity (Lε),
of one of the samples considered. Dots represent average porosity (εave) for
a given sub-sample size (abscissa), while whiskers size is equal to standard
deviation (σ).

Therefore, the procedure described has led two main results: first of all, possible

values for REV dimension has been found; secondly, it has been possible to calculate

the average porosity of each sample (image), as summarized in Figure 4.5.

Figure 4.5: Mean values and standard deviations of porosity, calculated for
each image taken from the samples A, B and C.
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Autocorrelation function

The autocorrelation function, in its normalized form, is defined as follows [38,39]:

RZ(u) =
[Z(r)− ε] [Z(r + u)− ε]

σ2
(4.3)

where ε is the mean value of the phase function, calculated with Eq. (4.2) over the

whole image, and σ2 is the variance of the phase function and is equal to ε − ε2

(because the function Z(r) can be considered a Bernoulli distribution).

On each image, the autocorrelation function has been evaluated using an ad

hoc developed code employed in MATLAB R© environment. In literature [38, 39],

this function is interpreted as characterizing the dependence of a generic point

(r + u) upon a point r of the same image, parametric on its mean (ε). Therefore,

the autocorrelation function can be considered a synthetic description of the solid

matrix structure (pore size and interconnection, spatial periodicity, etc.), and its

calculation has been performed in order to find in every image (mathematically

considered a two-dimensional phase distribution) a possible sub-structure assumable

as a REV.

As fare as the MATLAB R© algorithm is concerned, in order to reduce the time

consumption of calculations we have used the Fourier transform of each image: in

fact, the convolution product, needed for the autocorrelation function evaluation

in the Cartesian domain, becomes a simple product between the Fourier transform

and its complex conjugate in the spatial frequency domain. The final passage has

been the calculation of the inverse Fourier transform of the result, and gave us the

autocorrelation of the original image (Figure 4.6).
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Figure 4.6: Autocorrelation function of one of the images considered. The
highlighted value (red) is the absolute maximum of the function.

Finally, we have introduced the concept of autocorrelation length, which has

been defined as the modulus of the coordinate vector r, related to the absolute

maximum of the autocorrelation function of the image considered (In Figure 4.6 it

is represented in red). This length has been defined as the REV size related to the

solid matrix structure (LACF ), defined as follows:

LACF = |rmax| : RZ(rmax) = max ‖RZ(u)‖ ∀u ∈ Limg × Limg. (4.4)
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Results of analyses

In Table 4.1 results of analyses previously described are summarized: Lε, LACF

and LREV are reported both in terms of pixels and millimeters. Values reported

in the last column of each table have been use for the domain definition in CFD

simulation further described.

Table 4.1: List of REV size for each image taken from samples A, B and C.

Samp. A LACF Lε LREV
Image [pxl] [mm] [pxl] [mm] [pxl] [mm]
A01 162 14.57 768 69.38 768 69.38
A02 354 31.58 432 38.62 432 38.62
A03 545 49.87 432 39.53 545 49.87
A04 288 25.95 432 38.91 432 38.91
A05 277 25.19 512 46.61 512 46.61
A06 206 19.31 324 30.34 324 30.34
A07 492 45.29 324 29.87 491 45.29
A08 124 11.39 512 47.05 512 47.05
A09 272 25.50 324 30.34 324 30.34
A10 349 33.26 324 30.93 348 33.26
Samp. B LACF Lε LREV
Image [pxl] [mm] [pxl] [mm] [pxl] [mm]
B01 153 14.33 432 40.54 432 40.54
B02 369 35.90 432 42.10 432 42.10
B03 373 36.52 512 50.10 512 50.10
B04 263 24.82 324 30.60 324 30.60
B05 428 40.79 432 41.21 432 41.21
B06 614 56.15 432 39.51 614 56.15
B07 352 33.17 512 48.33 512 48.33
B08 282 27.49 432 42.08 432 42.08
Samp. C LACF Lε LREV
Image [pxl] [mm] [pxl] [mm] [pxl] [mm]
C02 544 51.64 432 41.05 544 51.64
C03 286 27.51 432 41.60 432 41.60
C04 625 58.06 432 40.14 625 58.06
C05 138 12.81 512 47.76 512 47.76
C06 232 22.44 432 41.77 432 41.77
C07 257 23.84 432 40.03 432 40.03
C08 462 44.90 324 31.49 462 44.90
C09 228 21.87 432 41.52 432 41.52
C10 177 16.60 432 40.57 432 40.57
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4.1.2 The mesh definition

Once the REV size of each image has been found, some of them has been used

to produce numerical meshes for CFD simulations. A selection among them has

been done in order to have an acceptable level of interconnection between pores, to

allow the fluid motion across them. The admissibility of this arbitrary choice will

be later discussed in §4.3.1.

Image vectorization

The first step was to transform pixel images into vectorial ones, to be able to

import them into a mesh modeler.

(a) (b)

Figure 4.7: (a) rectangular selection in a binary image of a porous section;
(b) result of the edge detection process. The red square represents the central
REV, used for further calculation of parameters.

In the chosen images, a rectangular selection has been taken (Figure 4.7(a)),

which dimension are LREV hight and 2×LREV width. The reason of this approach

will be explained in §4.2.

The procedure used to obtain each mesh used for numerical simulations is di-
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(a)

(b) (c)

(d)

Figure 4.8: Notice that these images have illustrative purposes only: black
and white are reversed compared to the images actually used in the analyses.
(a) The scanning procedure starts from the pixel (1,1); (b) the first not-null
pixel is turned into null, while its coordinates are registered in a vector. This
pixel is used as a reference to scan the surrounding pixels; (c) any other not-
null pixel found is turned to null and used as a new reference. (d) Coordinates
are recorded into the vector every four pixels sampled.

vided in two main steps: first of all, every rectangle is processed with a edge-

detection algorithm developed in MATLAB R©, in order to produce binary images

with the only representation of boundary between solid and fluid phases (Fig-
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ure 4.7(b)); secondly, these new images have been vectorized with another algorithm

developed with a MATLAB R© code. Final results have been used as starting point

to define calculus mesh for CFD simulations.

Going more in detail, the algorithm analyzes binary images similar to the exam-

ple reported in Figure 4.7(b). Considering every image as a two-dimensional array

of boolean values, where edges are 1 and other point are 0, the program starts the

scanning process from the first element (first row, first column - Figure 4.8(a)) and

moves following a horizontal path until it finds a not-null pixel (Figure 4.8(b)). Its

value is turned to 0 and its coordinates (i, j) are registered in a vector. At this

point, the program scans the perimeter of the (i ± 1, j ± 1) square, moving with

a counterclockwise direction (Figure 4.8(c)). When a new not-null pixel (i′, j′) is

found, it is used as the center of a new (i′ ± 1, j′ ± 1) square. Again, its value is

turned to zero. Coordinates are recorded into the vector every four pixels found

(Figure 4.8(d)).

Meshing procedure

The final coordinate vector, produced by the vectorizing algorithm described

above, is transformed using an appropriate pixel→mm conversion and, later, is

used to generate a journal file to be run in Gambit c© [41]. In this way, we are able

to automatically generate a raw version of the edges of the domain. Finally, they

have been refined, and a triangular pave mesh has been defined, with a grid spacing

two orders of magnitude smaller than the REV size. The resulting geometrical

model has been loaded in Fluent c©, and used as a calculus domain [41].
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4.1.3 Thermophysical properties measurement

After the mesh definition, an experimental study of the solid matrix of no-fines

concrete was needed to obtain its thermophysical properties, required to perform

CFD simulations.

Measurements have been done using a Transient Plane Source apparatus [33–37],

represented in Figure 4.9. All studies have also been done on samples which have

been expressly produced, so that they were representative of the solid matrix of

no-fines concrete.

The TPS apparatus

This laboratory device is composed by a multimeter, a power supply, a Wheat-

stone bridge and a probe (also known as hot-disk), and is based on the theory of

heat conduction in a semi-infinite solid medium.

Going more in details, the hot-disk plays both the functions of heat source and

sensing element. Indeed, every record is based on two main phases: during the first

one, the probe is sandwiched between two samples of the same material (the contact

surface has to be smooth enough, in order to reduce the contact resistance between

materials); a very low potential difference is provided by the power supply, to allow

the user to balance the bridge. This means that the probe and the samples are in

thermal equilibrium, and a 0 V potential is measured.

Than the proper measurement phase starts: the hot-disk, represented in Fig-

ure 4.10, provides thermal power to the sample, thanks to a double nickel spiral,

and measures the temperature increase at the same time, for a user-defined tran-

sient period. Temperature measurement is obtained by means of potential difference
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Figure 4.9: Picture of the TPS apparatus: on the right side there are the
multimeter (bottom) and the Wheatstone bridge; on the left side there is the
power supply. On the bottom of the picture there are the circular probe and
one of the concrete samples used in the experimental analysis.

Figure 4.10: Representation of the hot-disk probe used in the TPS apparatus
(figure found in [33]).

measurement. In fact, the temperature rise of the sensor causes a increase in its

electrical resistance R (t), according to the following equation:

R (t) = R0

[
1 + αTCR ·∆T (τ)

]
(4.5)

where R0 is the TPS electrical resistance before the transient recording has been

initiated (it is measured during the balancing phase), αTCR is the temperature coef-

ficient of resistivity, and ∆T (τ) is a mean value of the time dependent temperature

increase experienced by the hot-disk. Than, the electrical resistance increase causes

the Wheatstone bridge imbalance, generating a potential difference ∆V (t), which
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is measured by the multimeter.

At the end of the transient recording, time dependent temperature increases are

calculated reverting Eq. (4.5). Their values are also analytically calculated, taking

into account the output of thermal power provided by the hot-disk, the sensor

geometry and hypothesis values for thermal conductivity and diffusivity [33]. Such

values are than refined iteratively, by means of comparisons between time dependent

temperature increase values measured and that analytically calculated.

Therefore, the temperature variation over time is used to solve the inverse prob-

lem of heat conduction, in order to iteratively calculate thermal conductivity, ther-

mal diffusivity and heat capacity at the same time [34]. For more details about the

hot-disk method, pleas refer to [42].

Samples

In order to measure thermophysical properties of the whole no-fines concrete

solid matrix, some cylindrical samples have been expressly prepared: in fact, we had

to perform TPS measurements on samples with a very low porosity (few small pores,

poorly interconnected) and, at the same time, the mixture had to be representative

of the overall solid matrix of cubic samples described in §4.1.1.

Therefore, we have used the same mix-design of cubic sample, keeping the same

water/cement and aggregate/cement mass ratio, but changing the aggregate size,

replacing gravel with sand and powder of Zandobbio limestone in the following

percentage:

• sand (φ = 1÷ 2mm) - 60%;
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• powder (φ < 1mm) - 40%;

Figure 4.11: Two of the samples used to measure thermophysical properties
of the no-fines concrete solid matrix.

Samples radius (30 mm) have been defined so that they were suitable for the

hot-disk radius (10 mm). Every sample has been cast and cut into two pieces,

after its hardening (Figure 4.11). Than, cut surfaces have been sanded, in order to

reduce, as far as possible, the contact thermal resistance between samples and the

probe.

Results

In Table 4.2 results of TPS measurements are reported. It is important to

notice that such experimental arrangement provides values for thermal conductivity,

thermal diffusivity and heat capacity, which are homogeneous equivalents of the

compound structure of samples (intra-pore radiative heat transfer is thus taken

into consideration using such properties). The density ρ has than been evaluated

by means of volume and weight measurements.
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Table 4.2: Thermal conductivity, thermal diffusivity, heat capacity and den-
sity obtained by means of experimental measurements.

quantity Mean Std. Dev.
density - ρ [kg/m3] 1823.65 107.35
th. conductivity - λ [W/mK] 2.101 0.396
th. diffusivity - α [m2/s] 1.588·10−06 0.656·10−06

heat capacity - C [MJ/m3K] 1.445 0.377

Finally, in Table 4.3 thermophysical properties used in CFD simulations are

reported, both for air (fluid phase) and solid matrix. Starting from experimental

results, specific heat of the solid matrix cs has been calculated using the definition

of thermal diffusivity α:

α =
λ

cs · ρ
⇒ cs =

λ

α · ρ
(4.6)

Table 4.3: Thermophysical properties of fluid and solid matrix used in CFD
simulations.

Fluid: Air

Density - ρf 1.225 kg/m3

Conduttivity - λf 0.024 W/mK

Specific Heat - cp,f 1006 J/kgK

Solid: Zandobbio limestone, cement powder and water

Density - ρs 1824 kg/m3

Conduttivity - λs 2.101 W/mK

Specific Heat - cs 815 J/kgK

4.2 Boundary conditions

For what concerns boundary conditions adopted for CFD simulations, we have

adopted the same approach described in §3.2, in the fibrous insulation character-

ization. For every mesh considered, five steps of average inlet velocity have been

applied to the inlet section (left side) of the domain. Pe number has been succes-
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sively calculated using the mean volume value of the x component of velocity. A

horizontal temperature gradient ∆Tx/L has been imposed, keeping its value con-

stant along the y-axis: as described in the previous Chapter, temperature values

have been given for the left side, both for the solid wall and the inlet fluid.

As far as the right side is concerned, we have experienced the same problem we

had in the fibrous insulation treatment: since the fluid part of the unit-cell right

side is an outlet boundary condition, it was not possible to assign any temperature

value. The solution to this problem has been achieved extending two times the

elementary cell over the x direction and imposing the temperature value on the

solid part of the right side. The calculus domain has than been divided into three

parts: the first and the third are LREV /2 width, while the central one has the same

width of one REV, and has been used in data processing.

Velocity and temperature boundary conditions used in CFD simulations are

summarized in Table 4.4 and 4.5 respectively. The simulation of pro-flux and contra-

flux conditions have been performed reverting temperature values of left and right

faces.

Table 4.4: Boundary conditions for the numerical solution of the velocity
field.

Inlet mean velocity ua ub uc ud ue

ūin [m/s] 0.001 0.003 0.005 0.007 0.01

4.3 Results and discussion

As mentioned above in §4.1.2, only 12 of the 29 no-fines sections have been

vectorized and used as calculus domain in CFD simulations. Results have been
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Table 4.5: Boundary conditions for the numerical solution of the temper-
ature distribution. Data in bold are related to the mesh effectively used for
CFD simulations

mesh ∆T1 ∆T1 mesh ∆T1 ∆T1 mesh ∆T1 ∆T1

A01 3.469 K 17.346 K B01 2.022 K 10.112 K

A02 1.931 K 9.654 K B02 2.105 K 10.524 K C02 2.582 K 12.909 K

A03 2.494 K 12.468 K B03 2.505 K 12.524 K C03 2.080 K 10.401 K

A04 1.946 K 9.729 K B04 1.530 K 7.650 K C04 2.903 K 14.516 K

A05 2.331 K 11.653 K B05 2.061 K 10.303 K C05 2.388 K 11.940 K

A06 1.517 K 7.584 K B06 2.807 K 14.037 K C06 2.088 K 10.442 K

A07 2.265 K 11.324 K B07 2.416 K 12.081 K C07 2.001 K 10.007 K

A08 2.353 K 11.763 K B08 2.104 K 10.520 K C08 2.245 K 11.225 K

A09 1.517 K 7.586 K C09 2.076 K 10.381 K

A10 1.663 K 8.315 K C10 2.029 K 10.143 K

used to evaluate fluid dynamic parameters (permeability and Ergun coefficient)

and heat transfer parameters (thermal tortuosity and thermal dispersion), in order

to define regression functions with macroscopic parameters, such as porosity and

Peclet number. Permeability and Ergun coefficient values have also been validated

by means of laboratory tests.

4.3.1 Fluid dynamic

For what concerns the evaluation of fluid dynamic parameters in Eq. (2.29),

we have adopted two approaches: first of all, we have performed some laboratory

tests aimed at detecting the connection between pressure drop and average air

velocity inside pores for no-fines concrete, which have led to a regression equation.

Secondly, we have compared this equation with numerical results coming from CFD

simulations of no-fines concrete REVs, to validate this latter.

In order to analyze the fluid dynamic behavior of no-fines concrete, we have built

an experimental arrangement (Figure 4.12), mainly consisting in a parallelepiped-

shaped wood box, which is used to accommodate samples, with in-line inlet and
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outlet sections. Circular section ducts have been connected both to the inlet and

the outlet of the box.

The inlet channel has been used to simplify the air velocity measurement: it is

know that, for a laminar regime, the air velocity has a parabolic profile, with the

maximum in the channel axis and a null value in the area of contact between the

fluid and the inner walls of the pipe. Therefore, after confirming that the regime was

laminar for all flow rates imposed, we have limited our measurements to the central

(maximum) value of the velocity profile of the inlet section. From this information

we have been able to calculate the volumetric flow rate (m3/s) and, knowing the

area of the samples front section, evaluate the Darcean velocity, as it has been

defined in §2.3. For what concerns the outlet channel, its purpose was only to allow

the connection to the extraction fan.

Finally, pressure drop across samples have been measured with a differential

manometer. If we consider Figure 4.12(b) it is possible to notice that there is

an empty chamber upstream samples inside the box, while another one is located

downstream. They have been used to stabilize pressure values before and after

samples, in order to obtain more reliable measurements of the pressure drop.

Dealing with no-fines concrete samples, they have been prepared using the same

mixture described in §4.1.1. Moreover, their size (0.32 m × 0.32 m × 0.15 m) is

bigger than that of cubic samples: in fact, they have been prepared with the original

purpose to build a 1 m × 1 m wall to be used in thermal analyses performed with

the DAVTB apparatus described later in this dissertation. More details about this

experimental arrangement are provided in Chapter 6.

Pressure drop measurements have been performed on four of the nine samples
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(a) (b)

Figure 4.12: (a) overview of the experimental arrangement for pressure drop
measurement. (b) Detail of the sample and the air flow inlet section.

Figure 4.13: Experimental data and regression curve for pressure drop vs
filter velocity in no-fines concrete samples. In the small box, a comparison
with the regression curve and numerical values obtained with CFD simula-
tions is reported, values for abscissa are reduced to values typical for dynamic
insulation technology.

prepared, combined in various way, in order to obtain a wide data set to process.

Values of filter velocity and differential pressure have been than used to obtain the
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following regression equation (R2 = 0.9839), reported in Figure 4.13:

−dp
dx

= 11530u2
D + 247.3uD (4.7)

while for fibrous insulation, according to Darcy equation, a linear relationship

between dp
dx and uD has been found, for no-fines concrete we have obtained a

quadratic relationship, like the more general reported, in a time-dependent form,

with Eq. (2.29). For this reason, we have used both velocity coefficients in Eq. (4.7),

in order to empirically derive permeability and Ergun coefficient for no-fines con-

crete: assuming air density ρ and dynamic viscosity µ equal to 1.205 kg/m2 and

1.81·10−5 Pa·s respectively, we have obtained

K ∼= 7.32 · 10−8 m2

and

CE ∼= 2.589.

As we have stated previously, we have validated numerical results of CFD sim-

ulations, from the fluid dynamic point of view, by means of direct comparison with

values calculated using Eq. (4.7), as reported in the small box in Figure 4.13.

It is important to notice that results coming from CFD simulations on no-

fines concrete REV have a punctual meaning: in fact, according to the theoretical

approach summarized in Chapter 2, a representative elementary volume can be

considered as a physical point of the mediated domain. This assumption is not

true any more when we deal with experimental results obtained with the procedure
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previously described, which allow us to obtain only mean quantities. For this reason,

in order to compare Eq. (4.7) with numerical results, we have mediated these last,

grouping the ones with the same boundary condition for the inlet velocity. This

manipulation led us to the points reported in the small box in Figure 4.13, which

show a good agreement between experimental and numerical results.

Moreover, this evidence means also that calculus domains used for CFD sim-

ulations are enough representative for the real porous medium, even if we have

arbitrarily chosen them, as stated in §4.1.2.

4.3.2 Heat transfer

According to what we have done in the fibrous insulation characterization de-

scribed in Chapter 3, results coming from CFD simulations of no-fines concrete

meshes have been used to derive regression equations for thermal tortuosity λtor,xx

and thermal dispersion λdisp,xx, trying to relate them with both porosity ε and Peclet

number PeH .

We have to notice that results obtained from this kind of irregular geometries

are more disperse than the ones coming from fibrous insulation. Moreover, we also

have to consider that the range of porosity values we have been able to reproduce

is smaller than the 50%÷ 99% one: for no-fines concrete we have

ε = 18.5%÷ 23.5%.

Regression equations have been evaluated trying to use the same shape of

Eqs. (3.5) and (3.6), and changing only coefficients.
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Figure 4.14: Thermal tortuosity for no-fines concrete in contra-flux condi-
tion. Comparison between numerical results and regression analysis.

Taking into account thermal tortuosity, it seems to be affected only by the

material porosity, while it shows little sensitiveness to different values of horizontal

thermal gradient and Pe number, like what we have noticed for fibrous insulation.

In a first step we have searched for coefficients to modify Eq. (3.5), to make it

representative for numerical data. Unfortunately, being thees too disperse, it has not

been possible to achieve any acceptable result: the best regression curve obtained,

represented in Figure 4.14, has a R2 parameter lower than 0.4.

Therefore, we had to follow a different approach: considering that tortuosity

values are generally in a range between the 1% and the 5% of the volume average

thermal conductivity (calculated according to Eq. (3.4)), they have small effect

over the whole thermal behavior of the domain, but they can not be considered

negligible. Than, we have decided to calculate a constan mean value, not depending
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on ε, working in two steps: fist of all, mean value and standard deviation of the

whole data set have been calculated; secondly, values not included in the range

µ − σ ÷ µ + σ have been considered outliers and eliminated. A new mean value

has been calculated on the remaining data, and assumed to be equal to λtor,xx/〈λ〉.

According to this approach, we have obtained:

λtor,xx/〈λ〉 ∼= ∓3.16%,

where we consider a negative value for pro-flux and a positive one for contra-flux :

again, when air flow and thermal flux have the same direction, thermal tortuosity

gives a positive contribution on effective thermal conductivity; while it decreases

λeff,xx in contra-flux condition.

In Figure 4.14 are reported the first and the second (actual thermal tortuosity)

mean values, the selection range, the trial regression equation and the complete set

of numerical data.

Dealing now with thermal dispersion, the central symmetry underlined for fi-

brous insulation and the independence from the temperature gradient have been

confirmed. Therefore, numerical results have been used to search for new coefficient

suitable to modify the fibrous insulation regression Eq. (3.6), in order to obtain a

new relation with porosity and Peclet number. Again, data are more disperse than

the ones reported in §3, because of the irregular shape of the different solid matrices

assumed as calculus domains.

After a firs trial, we have also noticed a not negligible difference (more than

one order of magnitude) between results coming from two of the considered meshes
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Figure 4.15: Thermal dispersion for no-fines concrete in contra-flux condi-
tion. Comparison between numerical results and regression analysis.

and the regression surface initially obtained. A detailed analysis of simulations

performed have highlighted a wrong choice of the vectorized image portion: in fact,

image subsamples considered for such simulations are smaller than the actual REV

size. Therefore, their results have been rejected.

The new data set has than been used to derive a new regression equation, por-

trayed in Figure 4.15, which seems to be enough representative of numerical results

(R2 ∼= 0.9871):

λdisp,xx
〈λ〉

≈ ±6.343 · 10−7 · Pe2
H · e

100ε2
[

(1−ε)2
2

]
(4.8)
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However, if we take into account the order of magnitude of the numerical results

obtained for this quantity, its effect on the energy balance is very small in the low

Peclet number region considered (the maximum value obtained is approximately

±0.8% of the correspondent average thermal conductivity). Therefore, under these

conditions, this quantity can be neglected, like we have assumed for fibrous insula-

tion.

4.4 Conclusions and final remarks

Following the same approach described in Chapter 3, all analyses performed are

meant to obtain a detailed description of the fluid dynamic inside no-fines concrete

and the heat exchange between the flowing air and the solid matrix at microscopic

scale, and their effects from the macroscopic point of view.

First of all, a detailed analysis of solid matrix geometries has been performed,

aimed at evaluate values for porosity and REV size. Moreover, images used for such

studies have been exploited to define calculus domains for CFD simulations, thanks

to a MATLAB R© vectorization algorithm we have developed.

Dealing with the relationship between filter velocity, as it is described in §2.3,

and pressure drop, a quadratic equation has been found: air permeability and

Ergun coefficient have been found by means of laboratory tests, performed using

an experimental arrangement expressly built. The regression curve has than been

compared with appropriately manipulated numerical results of CFD simulations, in

order to validate the mesh definition procedure.

Concerning with thermal tortuosity, we have not been able to relate it with the
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solid matrix porosity, because of its high degree of dispersion (in a range between

the 1% and the 5% of the volume average thermal conductivity). Moreover, no

significant connection with Pe number and temperature gradient has been found.

For this reason, we have decided to evaluate a corrected mean value, which is around

the 3.16% of the volume average thermal conductivity.

Taking into account thermal dispersion, a dependence on porosity and Pe num-

ber has been found, while there is no effect coming from the temperature gradient.

A regression curve has been derived, with the same shape of the one defined for

fibrous insulation. Anyway, this quantity seams to be negligible, because its or-

der of magnitude is generally lower than the 0.8% of the volume average thermal

conductivity.

Even if a part of numerical results has been experimentally validated, the found

thermal tortuosity and dispersion relations with porosity and Pe still need to be

confirmed. Therefore, an experimental set up, which is described in Chapter 6, has

been designed and built. Unfortunately, the lack of time did not allow us to perform

such laboratory test.

In the next Chapter, the description of a finite one-dimensional difference simu-

lation algorithm is reported, which purpose is to simulate the thermal performance

of dynamic insulation envelope technologies.
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Chapter 5

Numerical simulation of

Dynamic Insulation walls

The evaluation of energy performance of a building envelope technical solution

is, in general terms, closely related to the whole building structure and to boundary

conditions, such as climate forcing agents, internal gains, etc. Moreover, when sum-

mer performances are investigated, a time-dependent approach is most appropriate

than a steady-state model.

For this reason, we have developed a numerical simulation algorithm, expressly

deigned to assess the thermal performance of a multilayer dynamic insulation wall,

taking into account the environment in which it operates. The numerical modeling

approach adopted is based on the one-dimensional finite difference method, for the

energy equation. On the other hand, a quasi-static treatment has been used for the

flow field calculation.

After a development phase, which has been done working on a MATLAB R© code,
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we have built a component to be integrated into the TRNSYS c© simulation environ-

ment, in order to explore the dynamic insulation building component performance

when it is coupled with a complex building structure, with statistically meaningful

boundary conditions.

5.1 A finite difference model of permeable materials

When a differential problem can not be solved analytically, the only possible

approach is the numerical solution of its discrete approximation, namely the im-

plementation of a numerical method [43]. Generally speaking, if we consider the

abstract exact problem

F (x, d) = 0,

where d is the data set which the solution depends on, x is the solution, and F

expresses the functional relationship between x and d, and the numerical approxi-

mation of the problem

Fn(xn, dn) = 0,

following properties have to be respected:

consistency: if x is the solution of the exact problem corresponding to the data

set d, we must obtain

Fn(x, d) = Fn(x, d)− F (x, d)→ 0 if n→∞;

convergence: if the numerical solution tends to the exact solution for a growing
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number of nodes n

lim
n→∞

max ‖Fn(xn, dn)− F (xn, dn)‖ = 0;

stability: if the solution xn depends continuously on the data dn. More precisely,

if δdn is an admissible perturbation of data, and δxn is the corresponding

solution, we must have

Fn(xn + δxn, dn + δdn) = 0.

One of possible approaches to numerically solve a generic differential problem

F (x, d) = 0 is represented by the finite difference method: it is based on the original

definition of a function derivative, which is equal to the limit of the incremental ratio.

In general terms, we have:

ḟ (x) =
df

dx
= lim

∆x→0

f (x+ ∆x)− f (x)
∆x

(5.1)

Moving from a continuous space to a discrete one, the limit operation can be

eliminated, and a function derivative can be replaced with its incremental ratio.

In this way, starting from a continuous problem, mathematically modeled with a

partial differential equation, we have to deal with a discrete one, treated as a linear

equation system: in fact, the one-dimensional spatial domain is discretized with a

calculus grid and nodes are used to evaluate the approximated solution.

Therefore, the discretization procedure leads to the definition of a coefficient

matrix, which links the solution of the approximated in between two adjacent time
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steps for every node of the spatial domain. More in detail, we can have

{Tn}τ+1 = A
exp
{Tn}τ = [an,n]

exp
{Tn}τ

for a full-explicit time modeling, and

{Tn}τ = A
imp
{Tn}τ+1 = [an,n]

imp
{Tn}τ+1

for a full-implicit one.

For what concerns the temperature distribution T (x, t), derivative terms in the

Eq. (2.42) are than approximated using the Taylor series expansion, in the right

and left neighborhood of x and t alternatively:

T (x+ ∆x, t) = T (x, t) +
∂T (x, t)
∂x

∆x+
∂2T (x, t)
∂x2

∆x2

2
+R2(x) = T τj+1 (5.2)

T (x−∆x, t) = T (x, t)− ∂T (x, t)
∂x

∆x+
∂2T (x, t)
∂x2

∆x2

2
+R2(x) = T τj−1 (5.3)

T (x, t+ ∆t) = T (x, t) +
∂T (x, t)

∂t
∆t+

∂2T (x, t)
∂t2

∆t2

2
+R2(t) = T τ+1

j (5.4)
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T (x, t+ ∆t) = T (x, t)− ∂T (x, t)
∂t

∆t+
∂2T (x, t)

∂t2
∆t2

2
+R2(t) = T τ−1

j (5.5)

where R2(x) and R2(t) are the remains of the Taylor series expansions referred to

space and time respectively, and are due to the second order truncation. Time and

space derivatives are than treated separately: for both first and second order space

derivatives, a centered finite difference approach is used; conversely, a backward

(full-implicit) Euler method is used for the time derivative. Therefore we have:

First order space derivative (centered difference):
∂T

∂x
∼=
T τj+1 − T τj−1

2∆x
(5.6)

Second order space derivative (centered difference):
∂2T

∂x2
∼=
T τj+1 − 2T τj + T τj−1

∆x2
(5.7)

First order time derivative (backward difference):
∂T

∂t
∼=
T τj − T τ−1

j

∆t
(5.8)

Once we have replaced all derivative terms contained in Eq. (2.42), with Eqs. (5.6),

(5.7) and (5.8), we obtain the following finite difference model of the temperature

distribution in a porous medium over space and time:
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[ε(ρcp)f + (1− ε)(ρc)s]︸ ︷︷ ︸
〈ρc〉

T τ+1
j − T τj
δt

+ u(ρcp)air
T τ+1
j+1 − T

τ+1
j−1

2∆x
=

= λeff
T τ+1
j+1 − 2T τ+1

j + T τ+1
j+1

∆x2
(5.9)

Eq. (5.9) is the field discrete equation for a general heat transfer problem in a

one-dimensional and macroscopically homogeneous domain. Velocity, at this early

stage, is considered as a parameter of the problem: it is a fixed value, independent of

boundary conditions. The solution of the problem at the time step τ +1 is obtained

reversing the coefficient matrix

{Tn}τ+1 = A−1
imp
{Tn}τ .

5.1.1 Field equation

Dealing now with the actual algorithm, in its first version it has been developed

for a multilayer porous wall. Considering the j − th node of the i− th layer of the

technical solution, the approximated field equation, evaluated over τ and τ +1 time

steps, is:

〈ρc〉
i

T τ+1
i,j − T τi,j

∆t
+ u(ρcp)air

T τ+1
i,j+1 − T τ+1

i,j−1

2∆x
=

= λeff,i
T τ+1
i,j+1 − 2T τ+1

i,j + T τ+1
i,j+1

∆x2


i = 1 . . . N

j = 1 . . .Mi − 1
(5.10)
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where N is the total number of porous layers, and Mi is the total number of nodes

contained into the i−th layer. Part of the coefficient matrix [an,n]
imp

is than obtained

manipulating Eq. (5.10), in order to express the τ value of the temperature in the

j− th node, as a function of the τ + 1 one in the nodes j− 1, j and j+ 1, according

to the following equation:

T τi,j = T τ+1
i,j+1

[
u

(ρcp)air
〈ρc〉

i

∆t
2∆xi

− (λ)eff,i
〈ρc〉

i

∆t
∆x2

i

]
+

+ T τ+1
i,j

[
1 +

(2λ)eff,i
〈ρc〉

i

∆t
∆x2

i

]
+

+ T τ+1
i,j−1

[
−u(ρcp)air

〈ρc〉
i

∆t
2∆xi

− (λ)eff,i
〈ρc〉

i

∆t
∆x2

i

]
(5.11)

Finally, it is important to notice that λeff,i is the effective thermal conductivity

in a one-dimensional domain, as it is defined in Eq. (2.44). Thermal tortuosity

and dispersion are calculated for the i − th layer according to the corresponding

correlation, as discussed in Chapters 3 and 4.

5.1.2 Boundary conditions

Boundary conditions for the heat transfer differential problem under discussion

have been defined using the finite volume method: for every geometrical disconti-

nuity (external and internal surface, interface between adjacent layers), the energy

balance for a reference volume has been defined, according to the following general
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equation:

1
dt

∫
V i

ρi · ci · Ti · dV = −
Nsj∑
j=1

∫
Asi

φj→i · nij · dS +
∫
V i

σi · dV (5.12)

where φj→i are the generic incoming thermal fluxes, coming from the adjacent vol-

umes V j into V i through the Nsj interface surfaces, and σi represents energy sources

or sinks. Going more in detail with the problem under discussion, in Figure 5.1 a

graphical description of the approach adopted to define boundary conditions is re-

ported.

For illustrative purposes, in Figure 5.1(a) a two layers wall have been considered.

In Figure 5.1(b) the external surface node is treated, considering both temperature

and radiation boundary conditions (respectively, the external air temperature Te

and the incident solar radiation ϕsol); for the internal boundary, in Figure 5.1(d),

the air temperature Ti in given. Discrete equations and coefficients have than been

derived as follows:

• External boundary condition (BC-E - Figure 5.1(b))

〈ρc〉
1

T τ+1
1,0 − T τ1,0

∆t
∆x1

2
= he

(
T τ+1
ext − T τ+1

1,0

)
+
λeff,1
∆x1

(
T τ+1

1,1 − T
τ+1
1,0

)
+

+ u(ρcp)air[T τ+1
ext − T τ+1

1
2︸ ︷︷ ︸

Tτ+1
1,0 +Tτ+1

1,1
2

] + α1ϕ
τ+1
sol (5.13)
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(a)

(b)

(c)

(d)

Figure 5.1: (a) Calculus domain discretization. (b) Integration volume for
the external boundary condition. (c) Integration volume for the interface
between two adjacent layers of the wall. (d) Integration volume for the internal
boundary condition.
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T τ+1
1,1

[
u

(ρcp)air
〈ρc〉

1

∆t
∆x1

− 2λeff,1
〈ρc〉

1

∆t
∆x2

1

]
+

+ T τ+1
1,0

[
1 +

2he
〈ρc〉

1

∆t
∆x1

+
2λeff,1
〈ρc〉

1

∆t
∆x2

1

+ u
(ρcp)air
〈ρc〉

1

∆t
∆x1

]
+

+ T τ+1
ext

[
−2u

(ρcp)air
〈ρc〉

1

∆t
∆x1

− 2he
〈ρc〉

1

∆t
∆x1

]
= T τ1,0 +

2∆t
〈ρc〉

1
∆x1

α1ϕ
τ+1
sol (5.14)

where T τ1,0 is the external surface temperature Tse at the τ − th time step.

• Interface between adjacent layers (BC-INT - Figure 5.1(c))

〈ρc〉i−1,i︸ ︷︷ ︸
∆xi−1(ρcp)i−1+∆xi(ρcp)i

∆xi−1+∆xi

T τ+1
j − T τj

∆t
〈∆x〉i−1,i︸ ︷︷ ︸
∆xi−1+∆xi

2

=

=
λeff,i−1

∆xi−1

(
T τ+1
i−1,j−1 − T

τ+1
j

)
+
λeff,i
∆xi

(
T τ+1
i,j+1 − T

τ+1
j

)
+

+ u(ρcp)air[ T τ+1
− 1

2︸ ︷︷ ︸
Tτ+1
i−1,j−1

+Tτ+1
j

2

− T τ+1
1
2︸ ︷︷ ︸

Tτ+1
j

+Tτ+1
i,j+1

2

] (5.15)

T τ+1
i,j+1

[
u

2
(ρcp)air
〈ρc〉i−1,i

∆t
〈∆x〉i−1,i

− λeff,i
〈ρc〉i−1,i

∆t
〈∆x〉i−1,i ∆xi

]
+

+ T τ+1
j

[
1 +

λeff,i−1

〈ρc〉i−1,i

∆t
〈∆x〉i−1,i ∆xi−1

+
λeff,i
〈ρc〉i−1,i

∆t
〈∆x〉i−1,i ∆xi

]
+

+ T τ+1
i−1,j−1

[
−u

2
(ρcp)air
〈ρc〉i−1,i

∆t
〈∆x〉i−1,i

− λeff,i−1

〈ρc〉i−1,i

∆t
〈∆x〉i−1,i ∆xi−1

]
= T τj (5.16)

where the j − th node represents the interface between layers i− 1 and i.
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• Internal boundary condition (BC-I - Figure 5.1(d))

〈ρc〉
N

T τ+1
N,MN

− T τN,MN

∆t
∆xN

2
= hi

(
T τ+1
int − T τ+1

N,MN

)
+

+
λeff,N
∆xN

(
T τ+1
N,MN−1 − T

τ+1
N,MN

)
+ u(ρcp)air[ T τ+1

− 1
2︸ ︷︷ ︸

Tτ+1
N,MN−1

+Tτ+1
N,MN

2

−T τ+1
i ] (5.17)

T τ+1
int

[
2u

(ρcp)air
〈ρc〉

N

∆t
∆xN

− 2hi
〈ρc〉

N

∆t
∆xN

]
+

+ T τ+1
N,MN

[
1 +

2hi
〈ρc〉

N

∆t
∆xN

+
2λeff,N
〈ρc〉

N

∆t
∆x2

N

+ vx
(ρcp)air
〈ρc〉

N

∆t
∆xN

]
+

+ T τ+1
N,MN−1

[
−u(ρcp)air
〈ρc〉

N

∆t
∆xN

− 2λN
〈ρc〉

N

∆t
∆x2

N

]
= T τN,MN

(5.18)

where T τN,MN
is the internal surface temperature Tsi at the τ − th time step.

5.1.3 The coefficient matrix

The numerical method discussed leads to the definition of the coefficient matrix,

which links, in an implicit way, nodal temperature values at the τ + 1 time step

with correspondent ones at the τ time step.

As a result, we obtain the tridiagonal coefficient matrix represented in Figure 5.2.

Some considerations can be done: first of all, the first and the last element of the

main diagonal are equal to 1 and are aimed at the description of external and

internal thermal conditions. Therefore, correspondent values of the known terms

vector have to be equal to T τ+1
e and T τ+1

i . Secondly, coefficients obtained with

91



CHAPTER 5. NUMERICAL SIMULATION OF DYNAMIC INSULATION WALLS

Figure 5.2: Representation of the not-null elements of the tridiagonal coef-
ficient matrix an,n defined for a double-layered domain. The number of rows
and columns depends on the number of nodes in the spatial grid.

Eqs. (5.14) and (5.18) appear into the second and the penultimate row. Concerning

again the known terms vector, its second element have to be affected from solar

radiation, as it is possible to understand from Eq. (5.14).

5.2 A numerical model for dynamic insulation walls

We have now to remember that the simulation algorithm under discussion has

been developed in order to perform time dependent numerical simulations of build-

ings with dynamic insulation technical solutions. This means that the algorithm
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has to be able to reproduce realistic stratigraphies.

Figure 5.3: Wall schematization and boundary conditions. From left to right
we have the external shield, the external ventilated cavity, the external air
permeable layers, the internal ventilated cavity and the internal not permeable
layers. On the top of the right side the connection with the ventilation system
is represented.

Therefore, we have introduced some changes to the stratigraphy treatment:

while the previous approach was concerned with a fully permeable wall (every layer

is made of a open cell porous material), in this new version we have introduced an

external shield, such as a ventilated façade, which purpose is the protection of the

underlying porous layer from climatic agents. In this way, the model takes into ac-

count that the flowing air which crosses permeable layers is taken from the external

cavity, and its temperature may be different from the actually external one.

Moreover, we have take in to account that porous layers have to be protected on

the inner side too: indeed, building users may not accept an air flow coming from

wall surfaces. For this reason, we have introduced a internal not permeable facing,

which could be made of bricks with plaster coating, gypsum plasterboard, etc.

The internal layers introduced lead than to the formation of an air cavity between

permeable and not permeable layers. From the technological point of view, this
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cavity will be linked to channels of the ventilation system. The wall schematization

is represented in Figure 5.3.

Internal layers are than numerically treated with a null air velocity: therefore,

the reference differential equation is not Eq. (2.42), but the well known Fourier

equation [44].

Modifications introduced have led to a modified set of discrete equations for the

coefficient matrix definition.

5.2.1 The energy equation modeling

The problem modeled at this stage is different from the previous one from some

point of view: first of all, not only permeable layers are taken into account. This

means that we have to introduce another field equation to evaluate nodal values of

temperature. Secondly, we have to model the thermal behavior of both internal and

external cavities. Lastly, we have defined new boundary conditions and modified

some o previous ones, in order to take into account the new sequence of layers.

Field equation

As far as the field equation is concerned, we have to make a distinction between

permeable domain and not permeable domain: the first one is still described by

the discrete Eq. (5.10), which correspondent coefficients are calculated according

Eq. (5.11). Conversely, the not permeable sub-domain finite difference full-implicit

equation is:
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〈ρc〉
i

T τ+1
i,j − T τi,j

∆t
= λi

T τ+1
i,j+1 − 2T τ+1

i,j + T τ+1
i,j+1

∆x2


i = N + 1 . . . L

j = 1 . . .Mi − 1
(5.19)

T τi,j = T τ+1
i,j+1

[
− (λ)i
〈ρc〉

i

∆t
∆x2

i

]
+

+ T τ+1
i,j

[
1 +

(2λ)i
〈ρc〉

i

∆t
∆x2

i

]
+

+ T τ+1
i,j−1

[
− (λ)i
〈ρc〉

i

∆t
∆x2

i

]
(5.20)

where L is the number of not permeable layers in the wall under discussion.

Boundary conditions

In order to model dynamic insulation multi-layered walls, new boundary con-

ditions have been introduced, according to Figure 5.4. The analytical procedure

involved to define differential equations is the same previously described for the

first version of the simulation algorithm.

For what concerns the external side of the wall, we have introduced the follow-

ing approximation: since no simple and reliable physical models of ventilated façade

have been found in literature, we have decided to neglect the external shield con-

tribution to the heat transfer phenomenon, in terms of thermal resistance and time

shift (Figure 5.4(a)). Therefore, we only take into account its shielding effect, only

reducing the superficial heat transfer coefficient, between the outermost permeable

layer and the outside air, in Eq. (5.14). Its is assumed to be equal to the internal
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(a)

(b)

(c)

Figure 5.4: Control volumes used for boundary conditions definition: (a) ex-
ternal cavity interface, interface between two adjacent permeable layers, (b)
interface between a permeable layer and the internal cavity, the interface be-
tween the internal cavity and a not permeable layer, (a) the interface between
two adjacent not permeable layers, and the internal boundary condition.96
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one, as suggested in [45]:

he = hi = 7.7
W

m2K
.

Interface between two adjacent permeable layers (Figure 5.4(a)) is treated in the

same way previously presented, according to Eq. (5.16). Conversely, the interface

between the internal porous layer and the internal cavity has been introduced (Fig-

ure 5.4(b)): in order to simplify the calculus procedure, we have represented the

cavity as a single node, which temperature (Tcav) is equal to the arithmetic average

between superficial temperature. Therefore we have:

〈ρc〉
N

T τ+1
N,MN

− T τN,MN

∆t
∆xN

2
= h∗i

(
T τ+1
cav − T τ+1

N,MN

)
+

+
λeff,N
∆xN

(
T τ+1
N,MN−1 − T

τ+1
N,MN

)
+ vx(ρcp)air[ T τ+1

− 1
2︸ ︷︷ ︸

Tτ+1
N,MN−1

+Tτ+1
N,MN

2

−T τ+1
i ] (5.21)

T τ+1
cav

[
2vx

(ρcp)air
〈ρc〉

N

∆t
∆xN

− 2h∗i
〈ρc〉

N

∆t
∆xN

]
+

+ T τ+1
N,MN

[
1 +

2h∗i
〈ρc〉

N

∆t
∆xN

+
2λeff,N
〈ρc〉

N

∆t
∆x2

N

+ vx
(ρcp)air
〈ρc〉

N

∆t
∆xN

]
+

+ T τ+1
N,MN−1

[
−vx

(ρcp)air
〈ρc〉

N

∆t
∆xN

− 2λeff,N
〈ρc〉

N

∆t
∆x2

N

]
= T τN,MN

(5.22)

where h∗i is the heat transfer coefficient referred to the internal cavity. Its definition

will be further discussed. The interface between the internal cavity and the first

not permeable layer (Figure 5.4(b)) is characterized by the following equation:
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〈ρc〉
N+1

T τ+1
N+1,0 − T τN+1,0

∆t
∆xN+1

2
=

= h∗i

(
T τ+1
cav − T τ+1

N+1,0

)
+

λN+1

∆xN+1

(
T τ+1
N+1,1 − T

τ+1
N+1,0

)
(5.23)

T τ+1
N+1,1

[
−2λN+1

〈ρc〉
1

∆t
∆xN+12

]
+

+ T τ+1
N+1,0

[
1 +

2h∗i
〈ρc〉

N+1

∆t
∆xN+1

+
2λN+1

〈ρc〉
N+1

∆t
∆x2

N+1

]
+

+ T τ+1
cav

[
− 2h∗i
〈ρc〉

N+1

∆t
∆xN+1

]
= T τN+1,0 (5.24)

where the subscript N +1 represent the first not permeable layer of the wall. Than,

the interface between two adjacent layers of this kind is treated as follows (Fig-

ure 5.4(c)):

〈ρcp〉i−1,i︸ ︷︷ ︸
∆xi−1(ρcp)i−1+∆xi(ρcp)i

〈∆x〉i−1,i

T τ+1
j − T τj

∆t
〈∆x〉i−1,i︸ ︷︷ ︸
∆xi−1+∆xi

2

=

=
λi−1

∆xi−1

(
T τ+1
i−1,j−1 − T

τ+1
j

)
+

λi
∆xi

(
T τ+1
i,j+1 − T

τ+1
j

)
(5.25)
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T τ+1
i,j+1

[
− λi
〈ρcp〉i−1,i

∆t
〈∆x〉i−1,i ∆xi

]
+

+ T τ+1
j

[
1 +

λi−1

〈ρcp〉i−1,i

∆t
〈∆x〉i−1,i ∆xi−1

+
λi

〈ρcp〉i−1,i

∆t
〈∆x〉i−1,i ∆xi

]
+

+ T τ+1
i−1,j−1

[
− λi−1

〈ρcp〉i−1,i

∆t
〈∆x〉i−1,i ∆xi−1

]
= T τj (5.26)

where the subscript i for the central node considered has been dropped, because

it represents the interface surface, and is not possible to attribute it unequivocally

to a layer. Finally, the internal boundary condition equation is the following (Fig-

ure 5.4(c)):

〈ρc〉
L

T τ+1
L,ML

− T τL,ML

∆t
∆xL

2
= hi

(
T τ+1
int − T τ+1

L,ML

)
+

+
λL

∆xL

(
T τ+1
L,ML−1 − T

τ+1
L,ML

)
+ (5.27)

T τ+1
int

[
− 2hi
〈ρc〉

L

∆t
∆xL

]
+

+ T τ+1
L,ML

[
1 +

2hi
〈ρc〉

N

∆t
∆xN

+
2λL
〈ρc〉

L

∆t
∆x2

L

]
+

+ T τ+1
L,ML−1

[
− 2λL
〈ρc〉

L

∆t
∆x2

L

]
= T τL,ML

(5.28)

where TL,ML
is internal surface of the L−th layer and, therefore, the internal surface

of the wall.
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The internal cavity treatment

As previously stated, the internal air cavity is approximated with a single tem-

perature node and is treated using the simplified approach of a single air gap thermal

resistance split in two equal parts, in order to take into account the overall effects

of convective and radiative heat transfer.

Dealing with the convective part of the resistance (1/hcv), we have searched in

literature for some semi-empirical correlations with the Nusselt number related to

a weakly ventilated cavity. In [44] we have found:

Nucav = 4.86; (5.29)

therefore we have:

hcv =
λairNucav
Lcav

; (5.30)

where Lcav is the cavity thickness expressed in meters.

As far as the radiative heat transfer coefficient hrd is concerned, we have intro-

duced the dependence on superficial temperatures of cavity internal and external

surfaces, and on their emissivity ε. Therefore, the heat transfer problem across the

air cavity becomes non-linear, and an iterative method for numerical solution is

needed. The radiative heat transfer coefficient is calculated as follows:

hrd = σ ·
(
T 2
s,ext + T 2

s,int

)
· (Ts,ext + Ts,int)

1
εs,ext

+ 1
εs,int

− 1
(5.31)

where σ is the Stefan-Boltzmann constant and is equal to 5.67 · 10−8 W
m2K4 , Ts,ext
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and Ts,int are the superficial temperatures of the external and the internal surface

of the air cavity respectively, εs,ext and εs,int are correspondent values of emissivity.

With this approach, it is possible to evaluate the effects of low-emission coating,

such as aluminum films, on the overall heat transfer phenomenon: in fact, this kind

of solution can be considered interesting from the technological point of view, in

order to solve thermal comfort issues due to superficial temperature reduction, as

it has been noticed in literature [7, 8, 12].

Finally, once that hcv and hrd are calculated, the thermal resistance for the

cavity is then as follows:

Rcav =
1
h∗i

=
1

hcv + hrd
(5.32)

5.2.2 The velocity field evaluation

While the previous version of the simulation algorithm, according to the sim-

plified approach presented in literature [3–5, 7, 8], is treated as a simple boundary

condition not depending on anything else, we have introduced the evaluation of the

filter velocity, as defined in §2.3, as a function of pressure difference between indoor

and outdoor, according to semi-empirical correlations described in Eqs. (3.1) and

(4.7).

It is important to underline that the algorithm under discussion is aimed at

the time-dependent simulation of permeable multi-layer walls. This means that

the velocity calculation would have to be performed in the same way, according to

Eq. (2.29). Further analyses have been performed to evaluate the opportunity of a

quasi-static approach to the problem.
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Numerical analysis

The first step of this study has been the numerical discretization of the time-

dependent velocity equation (2.29), using permeability and Ergun coefficient re-

ferred to no-fines concrete (§4.3.1). The main purpose is to evaluate the relaxation

time of the equation, for a step-wise pressure drop boundary condition. The nu-

merical approximation of the simplified momentum equation is:

ρ

ε

uτ+1
D − uτD

∆τ
= −d〈p〉

f

dx
− µ

K
uτD −

CE

K1/2
ρ |uτD|uτD (5.33)

where the time dependency has been treated with a fully-explicit approach. Then,

assuming that the pressure gradient remains constant through the domain thickness

L, we can consider d〈p〉f
dx = ∆P

L . In this way the old pore pressure gradient term in

Eq. (2.29) is used as boundary condition in the approximated momentum equation.

Therefore we can write:

uτ+1
D = −ε ·∆τ

ρ

(
∆P
L

+
µ

K
uτD +

CE

K1/2
ρ |uτD|uτD

)
+ uτD (5.34)

It can be noticed that the final discrete equation does not depend on the spatial

coordinate x. A MATLAB R© code has been written in order to solve Eq. (5.34),

for different transient conditions of pressure drop: a step-wise condition is imposed,

than the relaxation time is evaluated. It is defined as the time required by the nu-

merical solution to reach the 99.99% of the velocity value in steady state condition,

after a sudden change of boundary condition (from 0 to non-0 Pa/m of pressure

drop). Results are reported in Figure 5.5.
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Figure 5.5: Relaxation time of the numerical problem, as a function of
pressure drop boundary condition. Incoming and outgoing flows have been
considered.

The range of velocity values obtained is wider than the working range of dynamic

insulation systems (generally around ±0.003 m/s), which corresponds to a ∓1 Pa/m

(with a minimum of ∓0.3 Pa/m ) of pressure drop range. The resulting relaxation

time obtained is between 0.15 s and 0.18 s. This means that, simulating the energy

performance of a dynamic insulation for variable temperature boundary condition

with an hourly time step, it will be possible to treat the solution of the velocity field

with a steady state approach.

Order-of-magnitude analysis

To confirm numerical results, a dimensionless analysis has been performed. First

of all, some reference quantities have been defined; than, dimensionless variables

(both dependent and independent) have been derived; finally, a order-of-magnitude

analysis of coefficients has been performed to understand if the time dependent

term was negligible or not. Fixing Pdiff as the differential pressure between left and

right domain boundaries (and, therefore, dependent on the domain thickness L),
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reference quantities and dimensionless variables are:

velocity: V =

√
Pdiff
ρ

⇒ u∗ =
uD
V

pressure: p∗ =
p

Pdiff

length: x∗ =
x

L

time: t∗ =
L

V

Manipulating Eq. (2.29) we obtain:

ρ

ε

V 2

L

∂u∗

∂t∗
= −Pdiff

L

∂p∗

∂x∗
− V µ

K
u∗ − V 2 CE

K1/2
ρ |u∗|u∗

ρ

ε

Pdiff
ρL

∂u∗

∂t∗
= −Pdiff

L

∂p∗

∂x∗
−

√
Pdiff
ρ

µ

K
u∗ − Pdiff

ρ

CE

K1/2
ρ |u∗|u∗

∂u∗

∂t∗
= −εPdiff

L

L

Pdiff

∂p∗

∂x∗
− ε

√
Pdiff
ρ

L

Pdiff

µ

K
u∗ − εPdiff

ρ

L

Pdiff

CE

K1/2
ρ |u∗|u∗

∂u∗

∂t∗
= −ε∂p

∗

∂x∗
− µεL

K
√
Pdiffρ︸ ︷︷ ︸
α

u∗ − ε CEL
K1/2︸ ︷︷ ︸
β

|u∗|u∗ (5.35)

With Eq. (5.35) the velocity field is treated in a nondimensional form. The

numerical order-of-magnitude analysis of α and β coefficients for Pdiff
L = 0.25 ÷

1 Pa/m and L = 0.1÷ 0.3 m is reported in Figure 5.6.
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Figure 5.6: Order of magnitude analysis of α and β coefficients in Eq. (5.35).
The reference line represents the coefficient of the dimensionless time deriva-
tive (equal to one).

As we can see, α and β are one or two order of magnitude bigger than the

coefficient of the time dependent term (which in Eq. (5.35) assumes the value 1).
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Results

Thanks to numerical and nondimensional analyses previously discussed, it is

possible to affirm that in the range of pressure drop and wall thickness useful for this

kind of technical solution, the time derivative term in Eq. (2.29) can be neglected in

the numerical simulation of air permeable walls under variable boundary conditions.

Therefore, a quasi-static approach to the solution of the fluid dynamic problem can

be considered enough reliable.

5.2.3 Simulation results

For illustrative purpose only, some results of a numerical simulation performed

are now presented.

Going more in detail, we have simulated e multi-layered wall in winter climate

conditions. The indoor environment has been considered with constant tempera-

ture (Tint = 21 ◦C, as if a heating plant would be active), while for the external

temperature boundary condition time dependent values have been imposed. On the

external surface, also an incident solar radiation is considered. For hourly values of

boundary conditions refer to Figure 5.7.

Layer thermophysical and geometrical properties are reported below in Table 5.1.

When porosity is higher than zero the layer is considered permeable, and density,

thermal conductivity and specific heat are referred to the solid matrix only; while

in other cases are intended as nominal quantities taken from data sheets.

Taking into account superficial radiative properties, the external shield ab-

sorbance is equal to 0.3 (light-colored surface); while the emissivity of both sur-

faces of the internal cavity is equal to 0.9. Finally, resultant value of velocity is
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Figure 5.7: Internal and external boundary conditions for temperature and
irradiance in winter conditions.

Table 5.1: Wall thermophysical end geometrical properties.

ID material ε ρ λ csp s n◦nodes

[-] [ kg
m3 ] [ W

m2K
] [ J

kgK
] s

1 fibrous insulation 0.98 2872 1.750 910 0.10 21

2 no-fines concrete 0.23 1824 2.101 815 0.15 31

3 air cavity 1.188 0.026 1006 0.05 1

4 gypsum plasterboard 0 1000 0.350 840 0.025 5

5 insulation 0 80 0.039 840 0.05 11

6 gypsum plasterboard 0 1000 0.350 840 0.025 5

approximately equal to 0.001 m/s.

The simulation has been performed for a period of seven days, repeating bound-

ary conditions previously presented. Results for superficial temperature over time

are reported in Figure 5.8, referred to internal and external surfaces, and to inter-

faces between main layers. Considering the nature of example of the simulation

presented, a detailed analysis of the results obtained is not reported.
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Figure 5.8: Temperature values obtained for the main surfaces of the wall.

5.3 Development of a TRNSYS Type

The main purpose of the numerical simulation algorithm previously discussed is

the development of a TRNSYS c© simulation modulus, also known as Type [46].

Almost every complex transient energy problem can be modeled by dividing

it into some elementary problems, each of which is solved by a dedicated Type.

A Type behaves as a black box: the calculus algorithm elaborates inputs (time

dependent) and parameters (constant and user-defined), and returns outputs.

The building thermal behavior in transient conditions is modeled by a dedicated

software called TRNbuild: it allows the user to define boundary conditions, envelope

and partition technical solutions, ventilation rates and internal gains, in order to

represent as accurately as possible the real building. Therefore, the main issue in

defining a new numerical model aimed at wall simulation is the integration process

with the whole building model developed in TRNbuild.

In fact, with this software technical solutions are treated with the transfer func-

tion technique and their corresponding coefficient are defined one-off before the

108



5.3. DEVELOPMENT OF A TRNSYS TYPE

simulation process starts. Than, the main problem is to allow the information

exchange between the building model and the dynamic insulation simulation Type.

Figure 5.9: Representation of the integration between the Type for dynamic
insulation modeling (finite differences) and the generic building model devel-
oped in TRNbuild (transfer functions).

The solution for this problem has been achieved using the following workaround:

the dedicated Type simulates the whole building, considering as internal bound-

ary condition the operative temperature coming from the TRNbuild model of the

building. In the building model, only the not permeable part (internal shield) of a

dynamic insulation wall is modeled, using the BOUNDARY option. Therefore, the

Type passes to TRNbuild the temperature value related to the internal cavity node.

In this way, after some unavoidable iterations, a convergent solution is reached.

Moreover, the internal air cavity temperature is used by the building numerical

model to evaluate the ventilation air temperature and, consequently, to calculate

the energy need related to air change of the enclosed environments considered. A

simple schematization of the integration process is reported in Figure 5.9.
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5.4 Conclusions and final remarks

In this Chapter, the development of a finite difference algorithm for the time

dependent numerical simulation of multi-layered permeable walls have been pre-

sented.

More in detail, the development process is based on three key steps: first of

all, we have implemented a MATLAB R© code aimed at the simulation of permeable

layers based on the volume average approach presented in previous chapters, with

a constant velocity value given by the user.

These restrictions have been eliminated in the second version of the calculus

procedure, where the simulation of not-permeable layers have been implemented,

together with the velocity dependence on pressure difference between indoor and

outdoor. Moreover, the ability to model external and internal cavities has been

introduced: while the first kind is treated as a simple reduction of the heat transfer

coefficient (considered now equal to that related to enclosed environment), for the

second kind we have treated separately convective and radiative heat transfer. In

this way, it is possible to evaluate effects of low-emissivity coatings on the overall

heat transfer performance.

Finally, this last version of the algorithm has been used to develop a component

for the TRNSYS R© calculus suite: in this way, it is possible to evaluate the per-

formance of the technology under discussion when it is integrated with a building,

taking into account possible effects of control strategies, boundary conditions, etc.

In this Chapter, only few results have been presented, just with illustrative

purpose: in order to be used for design and research oriented simulations, the
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developed tool has to be validated. First of all, as we have stated in Chapter 3 and

4, all correlations used for the evaluation of effective thermal conductivity have to

be compared with empirical data. The same operation would have to be performed

over the whole algorithm, in order to check the reliability of the numerical model.

Finally, the TRNSYS R© Type has to be tested too, with the main purpose to assess

the numerical consistency of the integration with the TRNbuild building model.

Taking into account the empirical validation of results previously presented,

Chapter 6 introduces the design and construction of an experimental arrangement

expressly developed for this purpose.
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Chapter 6

The Dual Air Vented Thermal

Box (DAVTB) apparatus

In previous chapters, the characterization of porous media that can be used

for the construction of breathable walls has been described. All empirical and

numerical correlations, as well as the simulation algorithm, need an experimental

validation. Therefore, an experimental apparatus has been built in the Building

Physics Laboratory of the Energy Department of Politecnico di Milano.

Going more in detail, the design process has been inspired by the hotbox arrange-

ment presented in [11]. While the laboratory test arrangement found in literature

is only able to reproduce a steady-state wall behavior, our apparatus have been

designed with the purpose to test multi-layered building components under both

transient or steady state boundary conditions.

Hence, the apparatus under discussion have been expressly developed with three

main objectives: first of all, the validation of thermal tortuosity and dispersion
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correlations presented in Chapter 3 and 4; secondly, the assessment of the numerical

model robustness, as it has been described in Chapter 5; finally, the experimental

arrangement can be used to study optimized technical solutions for various boundary

conditions.

6.1 The apparatus

The apparatus under discussion can be considered as a sort of small double

climatic chamber: it is mainly composed by two insulated chambers divided by the

sample and connected by the ventilation system. Temperature can be controlled in

each chambers separately, and the air flow can be controlled both in velocity and

direction. The name of the apparatus, Dual Air Vented Thermal Box (DAVTB)

derives from this features.

6.1.1 Chambers

External dimension of both chambers are 1.5 m × 1.5 m × 1.29 m, and wall

section is a sandwich made with internal and external laminated coating (4 mm

each one) with a polystyrene layer interposed, for a total thickness of 140 mm. Its

purpose is to make the envelope as much adiabatic as possible.

Each chamber has two openings: the first, is a missing wall on the side with

external dimension of 1.5 m × 1.5 m, and is used to put chambers in thermal

(convective and conductive) contact through the sample, which is placed in the

middle. The second opening is a hole on the opposite side, with a diameter of

20 cm, which is used to connect both chambers to the ventilation system.

In Figure 6.1 it is possible to see the chambers, as they have been produced by the
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Figure 6.1: Picture of both chambers of the DAVTB apparatus as they
have been produced by the manufacturer. In the right one the hole for the
connection with the ventilation system is visible. The frame for the sample
housing is visible too (in the picture is connected to the box on the left side).

manufacturer, in an open configuration: on the right one, the hole for the connection

with the ventilation plant (on the back) and the gaskets for the airtightness (on the

front) are visible; the steel frame for the sample housing is connected to the chamber

on the left side of the picture. It is important to notice that the above mentioned

frame can be completely detached from the rest of the apparatus, to allow the user

to mount or unmount samples under study.

6.1.2 Heating and cooling plant

Temperature conditions in each chamber are controlled in an independent way,

by a heating and cooling plant.

Going more in detail, this plant is linked to the central supply of the Energy De-

partment building (primary plant) through two water tanks (Figure 6.2(a)), which

have a dual purpose. First o all, they have to provide hot and cold water, thanks to
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internal coil heat exchangers, to the part of the plant directly connected to the appa-

ratus (secondary plant). Secondly, they allow us to decouple primary and secondary

plants to facilitate any maintenance operation.

The secondary plant consists of three circuits similar to each other: two are used

to provide thermally treated water to chambers; the third is connected to a heat

exchanger in the ventilation system of the apparatus. In each of these circuit, the

supply temperature to the corresponding terminal is controlled independently: hot

and cold water coming from tanks are mixed in appropriate proportion to obtain

a set-point temperature, which can be defined dynamically and can change during

one experimental test, by acting on two servo valves for each circuit: the first is

a mixing valve upstream of the delivery terminals; conversely, the other one is a

diverter downstream (in Figure 6.2(b) the electrical actuators are visible).

As far as delivery terminals are concerned, two main kind can be identified: as

mentioned before, in the ventilation plant there is a heat exchanger, which can act

as a hot or cold battery either. The second kind is located directly into each of

the two chambers, and consists of five radiant panels per chamber, connected in

parallel. Every panel has been made with copper strips for solar collectors, like that

in Figure 6.3(a), properly combined and connected (Figure 6.3(b)).

In order to promote the radiative heat exchange, thermal emissivity of the inner

surface of each panel has been painted with a matte black ferromicaceous varnish.

The new thermal emissivity has than been estimated by means of thermographic

measurements: superficial temperature of a painted plate has been measured with

thermocouples and a thermal imaging camera at the same time; the right value of

emissivity is that which allows to obtain in both cases the same measured value. At
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(a)

(b)

Figure 6.2: (a) Detail of tanks, in a early stage of the building procedure.
(b) Main part of the water plant and the end of the building process.
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(a)

(b)

Figure 6.3: (a) Original appearance of copper solar strips. (b) Radiant
panels assembled and mounted in one of the two chambers. Inward surfaces
are painted with ferromicaceous varnish, to increase thermal emissivity.
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the end, the emissivity is assumed to be equal to 0.92÷ 0.94, which is grater than

the usual value for copper (0.01÷ 0.07 when it is not oxidized).

Figure 6.4: Pressure drop, referred to water flow rate, due to one of the
radiant panels installed. The whole water flow rate circulating inside each
chamber is around 0.5m 3/h, therefore the fraction that passes through each
panel is around 0.1 m3/h, which gives a pressure loss of 365 Pa.

In each of the three circuits, water is moved by an electric three speeds pump,

visible in Figure 6.2(a). In order to allow the sizing of these devices, the pressure

loss due to each radiant panel has been evaluated numerically as a function of the

water flow rate. The resulting curve is reported in Figure 6.4.

6.1.3 Ventilation system

The main function of the apparatus under discussion is the experimental anal-

ysis of dynamic insulation systems. In order to allow that, the air flow has to

be guaranteed through the sample. For this reason, we have designed and built a

ventilation system which connects the two chambers.

Going more in detail, the plant is divided into three main parts: the first one
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is related to the heat exchanger previously described. The second part, is the fan

section represented in Figure 6.5(b), which has been designed to allow the control

of the air flow in terms of velocity and direction. In fact, this section consists of

two parallel fans, facing in opposite direction, and two butterfly damper for each

fan: one, with a ON/OFF control, insulates the circuit branch; the other, with a

proportional control, regulates air flow rate. As far as fans are concerned, they are

originally designed for computer equipment: as it is possible to see in Figure 6.5(a),

they are centrifugal devices, with a PWM velocity control to allow a precise setting

of air flow rate in the apparatus (48 Pa ÷ 560 Pa at 30.6 m3/h ÷ 106.2 m3/h).

While in the most part of the ventilation system channels have a diameter be-

tween 160 mm and 200 mm, in the third section it decreases to 50 mm. Indeed,

this section consists of a 2 m long tube (visible in Figure 6.6) used to measure air

flow rate, thanks to a small fan anemometer put in the middle: with this probe, the

air velocity on the central axis of the tube is measured; than, assuming a laminar

regime, the air flow rate can be inferred and, finally, the air velocity through the

sample can be estimated.

6.2 Probes and control devices

The whole apparatus is automatically driven by a multifunctional switch unit,

which is remotely controlled by a LabVIEW R© algorithm. The multifunctional

switch is an Agilent 34980A, equipped with following modules:

3×34921A/T - 40-Channel Armature Multiplexer: used for data measure-

ment (temperature, air velocity, differential pressure) by means of voltage
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(a)

(b)

Figure 6.5: (a) One of the fans installed. The perspex frame used to mount
it inside the channel is visible. (b) The ventilating section of the system. Fans
are hidden into the channels in correspondence of the flanges (on the left and
the right side of the picture). Damper actuators are also visible.
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Figure 6.6: Picture of the overall apparatus at the end of the construction
process. The measurement section is visible.

and current metering.

2×34951A/T 4-Channel D/A Converter with Waveform Memory: is used

to control proportional actuators, generating a voltage or a current output. It

is also able to generate waveforms, used for the PWM control of fans.

1×34938A/T 20-Channel 5A Form A Switch: is used to control ON/OFF ac-

tuators and the power supply of all electrical devices (through relays inside

the control cabinet).

As fare as the measurement of environmental parameters is concerned, following

probes have been adopted:

• a differential micromanometer for the measurement of the pressure difference

between the two chambers straddling the sample;

• the aforementioned bidirectional fan anemometer (± 20 m/s - fan diameter ∼=
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10 mm);

• a series of thermocouples for the measurement of temperature in the two

chambers (9 + 9 measuring points) and in the channel for air recirculation

(one upstream of the fan section, one downstream of the heating and cooling

coil);

• 16 needle thermocouples embedded in the hydraulic circuits and in the cool

and warm tanks (Figure 6.2(b));

• 55 thermocouples embedded inside the concrete sample.

Every thermocouple in the experimental arrangement is a type T (copper-

constantan), and has been calibrated in two main steps: the first is a thermostatic

bath, filled with saturated ice obtained from demineralized water (temperature

around 0 ◦C). The other step is a variable temperature measurement: the tem-

perature of demineralized water is risen to around 65 ◦C in a thermally insulated

container with a heating system, based on an electrical resistance. Than, the heat

source is turned off, and a slow free-cooling process begins. In this way, the water

inside the container cools down until it reaches thermal equilibrium with the sur-

rounding environment (around 25 ◦C). In both calibration steps, the temperature

of water is measured with thermocouples and a Pt100 thermoresistance, calibrated

in a laboratory with the SIT accreditation (Servizio Italiano di Taratura - Italian

Calibration Service), used as a reference element.

The thermocouples are connected to the multiplexer through a terminal block

with a built-in thermocouple reference junction, which is used to obtain a direct

measurement of temperature after the thermocouple signal is read. Therefore, the
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internal reference junction gives a temperature value which has to be equal for all

thermocouples connected (maximum 40 elements): if the connection in inside the

terminal block is not isothermal, a measurement error is introduced. For this reason,

we have adopted two precautions: first of all, we have detached all terminal blocks

from the multifunctional switch unit. Indeed, the cooling system of this device

produces hot air which can affect the temperature uniformity of terminal blocks.

Secondly, we have built a small insulated and airtight box to contain terminal blocks.

These expedients should ensure nearly isothermal junction of thermocouples on the

terminal block, increasing the accuracy of measurement.

Figure 6.7: Comparison between temperature measurement performed with
the reference thermoresistance and one of the thermocouple calibrated. The
regression equation (with both slope and intercept) is given.

Finally, the regression linear equation to correlate both measurements have been

found, obtaining a slope and a intercept, both representing the error in the temper-

ature measuring with thermocouples. In Figure 6.7 the result of the calibration of

one thermocouple is represented for illustrative purpose.
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6.3 The no-fines concrete sample

Simultaneously with the construction of the experimental apparatus, we have

built a wall sample made of no-fines concrete blocks, visible in Figure 6.8. It has a

frontal area of about 1 m2, and a thickness of 15 cm. Because of its considerable

weight, this sample has been divided into 9 elements (32 cm × 32 cm × 15 cm) of two

kinds: the first 4 blocks, represented in Figure 6.9(a), have no thermocouples inside.

They have been built only for filling purposes, and have been used also to measure

pressure drops as a function of filter velocity, as described in §4.3.1. Conversely,

the other 5 blocks (Figure 6.9(b)) have 9 thermocouples embedded in each of them,

arranged parallel to the thickness with a wheelbase of 1.5 cm, and 2 thermocouples

attached to the exposed surfaces. In this way, the temperature distribution in these

blocks will be monitored during every laboratory test. It is important to notice that

the casting procedure has been performed carefully, not to damage the embedded

junction of the thermocouple; moreover, distance between these probes has been

measured, trying to reduce possible uncertainties during future experimental tests.

Figure 6.8: Wall sample made of no-fines concrete blocks. The edge insula-
tion made of polystyrene slices is visible.

125



CHAPTER 6. THE DUAL AIR VENTED THERMAL BOX (DAVTB) APPARATUS

(a)

(b)

Figure 6.9: (a) Four samples without thermocouples. (b) One of the no-fines
blocks during the casting procedure. Embedded junctions of thermocouples
are visible.

The mix design used for each block is the same employed to prepare cubic

samples for the image analysis of this material, described in §4.1.1. After their

hardening, they have been bounded by means of mortar layers. Moreover, in order
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to ensure a unidirectional heat flux during tests, some slices of polystyrene have been

put the external edge of the sample, to make the metal frame as much adiabatic as

possible.

6.4 Conclusions and final remarks

In this Chapter the development of an experimental apparatus has been pre-

sented. The main purposes of this device are: first of all, the experimental valida-

tion of numerical correlations described in Chapter 3 and 4. This will allow us to

verify the reliability of the volume average method, compared to the simplified one

proposed in literature, in dealing with heat transfer in porous media.

Secondly, it will be possible to check the consistency of the numerical model

implemented to simulate air permeable walls. Going more in detail, thanks to the

particular design of the heating and cooling plant of the apparatus under discussion,

we will be able to reproduce either steady-state or transient thermal conditions,

representative for winter and summer environmental conditions respectively.

Finally, it will be useful to optimize a multilayer technical solution for building

envelope under climate conditions typical for Mediterranean countries: in fact, it

will be possible to optimize the stratigraphy of the wall and the control strategy

of the ventilation system (which will be the scaled representation of the ventilation

plant of a real building), in order both to reduce energy needs for heating or cooling

the enclosed environment and to ensure adequate conditions for thermal comfort

(acceptable values for the temperature of the internal surface).

Going more in detail about the optimization of the control strategy, thanks to
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arrangements taken in the realization the ventilating section, it will be possible

to revert the direction of the air flow that passes through the sample, allowing us

to study the effects of pro and contra-flux working configurations over the whole

energy performance of the wall.

Unfortunately, because of construction delays, it has not been possible to per-

form any experimental test to be included in this work: all analyses described above

will be the subject of future research developments.
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Within the research work described in this dissertation, dynamic insulation com-

ponents for building envelopes have been investigated. As a result of a literature

review, following considerations can be done: first of all, the technology seems to

be an interesting approach to reduce building energy requirements, thanks to the

heating recovery effect related to the thermal exchange between the solid matrix

and the flowing fluid inside porous layers; secondly, the wall acts as a heat exchanger

and a filter of the ventilation plant, and is characterized by a low crossing velocity,

which leads to reduced values of pressure loss and, theoretically, to lower energy

consumption related to fans. In brief, the high level of integration between building

envelope and ventilation system allows the users to dynamically control the energy

behavior of walls. Furthermore, earlier studies have noticed that the main issue

related to this technology, when it works in a contra-flux configuration in winter,

is the reduction of the internal surface temperature, which affects indoor comfort

conditions. Along with this, we have found a simplified approach to the treatment

of heat and mass transfer in porous media.

Hence, purposes of our research are multiple: first of all, the theoretical study

of the physical problem under discussion, with the introduction of a mathemati-
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cal approach aimed at the evaluation of the thermal interaction between the fluid

and solid phase in porous media. Secondly, the thermophysical characterization of

porous materials of some interest in building breathable walls. Moreover, another

of our purpose was the development of an algorithm for numerical simulations of

dynamic insulation components under transient conditions, which can be useful

both for research and design purposes. Finally, since such achievements require

an empirical validation to assess their reliability, an experimental apparatus was

needed.

As far as the theoretical approach is concerned, after a careful study of dedi-

cated bibliography, the volume average method has been chosen in dealing with the

heat transfer problem related to porous media. Going more in detail, the energy

equation (2.42) at p. 34, coming from an average procedure performed over a repre-

sentative elementary volume (REV) of the medium considered, has been used. This

equation allows us to consider the problem under discussion from a macroscopic

point of view, taking into account microscopic phenomena at the same time, thanks

to a corrected value of thermal conductivity, described by Eq. (2.44) at p. 34. This

quantity is related to some important parameters: first of all, the thermal conduc-

tivities of both the fluid and the solid part of the domain; secondly, its porosity

(defined as the volume fraction of the fluid phase). Finally, due to the mathemat-

ical approach used, two more quantities appear: one is related to the local values

of the temperature deviations from the average value, integrated over the interface

between phases (thermal tortuosity - Eq. (2.45)); the other depends on both temper-

ature and velocity deviations from their respective average values, integrated over

the fluid volume contained in a REV (thermal dispersion - Eq. (2.46)). These two
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parameters, which act as a correction of the mere volume averaged value of thermal

conductivity, give rise to the need for an additional set of equations to close the

problem. Considering now the mathematical method used to evaluate macroscopic

(mediated) values of air velocity inside pores, we have chosen Eq. (2.29), reported

at p. 31, where Darcean velocity and pressure gradient are linked by air permeabil-

ity and Ergun coefficient of the material. As a conclusion of this first part of the

study, we have experienced the need for a detailed analysis of some materials, which

could be used in building dynamic insulation components. Materials considered are

fibrous insulation (e.g. rock wool) and no-fines concrete.

Dealing now with fibrous insulating material, we have first defined a simplified

REV, approximating fibers with parallel and ordered arrays of cylinders, orthogo-

nally displaced in relation to fluid flow and thermal flux. This simplification has

been considered acceptable at this stage: in fact, the study on this material has been

mainly performed to test the volume average approach. Besides, a more detailed

analysis would have need a image collection of thin sections of the material involved,

which are difficult to produce because of the lack of suitable equipment. The cal-

culus domain has been defined with six levels of porosity, and parametric boundary

conditions have been applied for both inlet air velocity and temperature (five val-

ues for the first and two values of temperature gradient across the x-coordinate).

Pro and contra-flux configurations have been simulated reverting the temperature

gradient, obtaining an amount of 120 CFD simulations performed. Results have

been used to calculate both thermal tortuosity (Eq. (3.5) at p. 46) and dispersion

(Eq. (3.6) at p. 46), trying to correlate them with macroscopic parameters, such as

porosity, Peclet number and temperature gradient. Two regression equations have
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then been obtained: tortuosity is calculated as a function of the porosity only, and

significantly affects the effective thermal conductivity; dispersion is influenced by Pe

too, and its contribution on the overall heat transfer phenomenon can be considered

negligible. Temperature gradient seems to have no effect on any of the two quanti-

ties. Numerical results have also been used to derive a correlation between pressure

drop across the REV and the average air velocity. This analysis has led to the

definition of a linear regression equation, which means that the aforementioned mo-

mentum equation is reduced to the Darcy equation. Then, the velocity coefficient in

such equation (defined as the ratio between air dynamic viscosity and permeability

of the material) has been heuristically calculated as a function of porosity.

A similar procedure has been applied in the no-fines concrete treatment. Though,

this time a detailed description of the solid matrix geometry has been performed

in defining calculus domains: real samples have been produced, cut and used for a

photographic survey. Images produced have than been subjected to analyses, aimed

at three main purposes: first, the evaluation of porosity; second, the definition of

the REV size, obtained not only in comparison to porosity values of subsamples

of each image taken, but also to the autocorrelation function of the whole picture

itself; third and last goal, the definition of edges from the vectorization of the in-

terface between the solid and the fluid phase (obtained thanks to an edge-detection

algorithm). At the end of this process, twelve meshes have been prepared. As it

has been done for fibrous insulation, similar parametric boundary conditions for

inlet air velocity and temperature gradient have been applied, for an amount of

240 CFD simulations, both for pro and contra-flux configuration. Hence, thermo-

physical properties of the compound solid matrix have been obtained by means
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of TPS measurements. Again, thermal tortuosity and dispersion have been calcu-

lated, and we have tried to relate them to the same macroscopic parameters used

for fibrous insulation, using equations of the same form. As far as the tortuosity is

concerned, it has not been possible to find any good correlation; therefore, a mean

value (p. 76) has been calculated over a filtered set of results (outliers have been

found and eliminated). On the contrary, a regression equation with good agreement

with numerical results has been found for thermal dispersion (Eq. (4.8) at p.77),

which depends again on porosity and Peclet number. Results of CFD simulations

have also been used to evaluate a correlation between pressure drop and average

velocity: unlike what has been obtained for the fibrous insulation, in this case the

regression equation has a quadratic form. Therefore, we have been able to obtain

both permeability and Ergun coefficient for no-fines concrete. Numerical results

and regression equation have also been validate by means of experimental analy-

sis, performed on parallelepiped-shaped samples, and show a good agreement with

empirical data.

Besides the characterization of materials, some efforts have been made in the

definition of a simulation algorithm aimed at the evaluation of realistic multi-layered

dynamic insulation building components in transient boundary conditions. In or-

der to have a detailed description of the temperature distribution inside the wall,

we have decided to implement a one-dimensional finite difference numerical model.

More in detail, space derivatives have been approximated with central differences,

and time derivative has been treated with a full-implicit approach. All boundary

conditions have been derived defining the energy conservation equations over appro-

priated reference volumes. The numerical model obtained at the end of this work
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presents following features: first of all, we have introduced an external cavity, which

comes from the fact that, in real technical solutions, insulating layers have to be

protected from atmospheric agents that may damage them. The contribution of the

external shield has been reduced to the assumption that the heat transfer coefficient

is taken equal to the one used for enclosed environments. Secondly, an arbitrary

number of air permeable layers can be modeled: all parameters (effective thermal

conductivity, permeability and Ergun coefficient) are calculated as a function of

user-defined conditions, according to all regression equations previously mentioned.

Therefore, only fibrous insulation and no-fines concrete can be implemented at this

stage. Thirdly, we have decided to introduce the ability of the numerical model to

portray also not-permeable materials, which can be used as an internal screen in

real walls. Therefore, in order to allow the air motion through porous layers, we

planned the presence of an internal cavity, between permeable and not-permeable

layers. This fluid layer has been treated as a single temperature node, and its ther-

mal resistance is calculated considering separately convective and radiative heat

transfer. This has led to the ability of the algorithm to evaluate effects of superfi-

cial coatings with different values of emissivity, which could be a possible solution

for the comfort issue mentioned in literature. In addition to the computation of

the temperature distribution, we have implemented the velocity calculation as a

function of pressure gradient across the wall. Thanks to both numerical and order-

of-magnitude analyses, we have been able to demonstrate that, with typical time

steps for walls simulation (0.25h ÷1.00 h), a quasi-static approach to the velocity

evaluation is sufficiently reliable. At the end, the algorithm described has been

used to define a TRNSYS R© Type, which allows the user to simulate the kind of
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wall under discussion when it is integrated in a building, taking into account the

effects of all boundary conditions.

Simultaneously with the theoretical and numerical work described above, we

have developed an experimental apparatus, aimed at the reproduction of both in-

door and outdoor environments, in steady state or transient temperature condi-

tions. Moreover, the ventilation system adopted is able to precisely control air flow

in terms of velocity and direction, allowing the user to investigate the effects of pro

and contra-flux configurations. At this stage, a no-fines concrete wall has been built,

with 55 embedded thermocouples for the temperature distribution measurement.

In the future, the experimental arrangement will be used to validate all correla-

tions numerically derived, both for fibrous insulation and no-fines concrete, and will

allow us to test the consistency of the finite difference model. Moreover, after the

validation process is over, it will be possible to search for stratigraphies and control

strategies optimized for climate conditions typical for Mediterranean countries.
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