POLITECNICO DI MILANO
ELECTRICAL ENGINEERING DEPARTMENT
DOCTORAL PROGRAM IN ELECTRICAL ENGINEERING

SENSITIVITY ANALYSIS OF
POWER SYSTEM STATE ESTIMATION
REGARDING TO NETWORK PARAMETER UNCERTAINTIES

Doctoral Dissertation of:

Mehdi Davoudi
(ID: 738962)

Supervisor:

Prof. Gabriele D’Antona

The Chair of the Doctoral Program:
Prof. Alberto Berizzi

2009-2012 (XXIV Cycle)



Abstract

In this thesis the effects of both network parameters uncertainty and measurement
uncertainty on Weighted Least Squares (WLS) State Estimates has been analyzed. An
algorithm for simulation of the uncertainty effects on the state estimator is proposed and

simulated on IEEE 14-Bus, 30-Bus, 57-Bus and 118-Bus power network test cases.

The implementation of this algorithm on the test cases enables us to analyze how
much the state estimator’s output is affected according to the network parameters
uncertainty by means of state errors distribution (in terms of error bars representing the

distribution mean and 1o standard deviation) versus the network parameters uncertainty.

Generally a serious defect in an estimator is the lack of unbiasedness. In literature the
analysis of network parameters effects on WLS State Estimator’s bias performance is
missing, hence it motivated us to perform a new prominent analysis to find how network
parameters uncertainty can affect the state estimator bias (for a given measurement
uncertainly). It is done using distribution of the ratio of the absolute value of the state
errors mean by the related standard deviations versus the network parameters uncertainty

and comparing it with a predefined threshold.

In order to decrease the sensitivity of state estimates on network parameters
uncertainty, a clue can be using Phasor Measurement Unit (PMU) because according to the
simulations, it is proven that when PMU measurement data are included in the traditional
measurement set, the State Estimator’s sensitivity to the network parameters uncertainty

will be notably smaller.



WLS State Estimation provides a mathematical expression for calculating the
variance covariance matrix of State Estimates. It is confirmed numerically that the standard
deviation of State Estimator’s output is underestimated significantly when there is network
parameter uncertainty. Thus the State Estimator’s uncertainty has been analyzed versus the

parameters uncertainty and compared with the theoretical WLS value.

Lastly an analysis is carried out to illustrate how much the State Estimator’s results
are correlated having network parameters uncertainty. Interestingly it is seen that when
the network parameters uncertainty increases, it uncorrelates significantly the estimation

€ITors.
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CHAPTER

Introduction

1.1 Foreword

n large power networks, there are vast number of connected generators and loads so
Ithere will be large number of nodes and branches. Electric power systems are one of
the biggest subjects that scientists have been putting too many efforts to understand and
predict their complex behavior through mathematical models. The hugeness of the power
transmission system forced early power engineers to be among the first to develop com-

putational approaches to solving the equations that describe them.

The computational methods are essential for power system planners and operators to keep
a consistent and secure operating environment [Crow 2007]. Between the computational
tools, State Estimation (SE) has key role in order to analyze the contingencies of power

system to determine any required corrective actions.
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1.2 State Estimation

Estimation theory is a subdivision of statistics and signal processing that deals with esti-
mating the values of parameters dependent upon measured data that has random compo-
nents. The parameters describe an underlying physical setting in such a way that their
values affect the distribution of the measured data. The estimator’s task is to approximate

the unknown parameters using the available measurements.

Power system state estimation is a tool to determine the voltage and phases on all nodes
of power network that is firstly proposed by Fred Schweppe in [Schweppe 1970a, 1970b,
1970c].

Therefore all of the node voltages along with the angles across the network are of interest
to be calculated using power network parameters and also a set of measurements in the
power network including: voltage magnitudes and power fluxes and angles which pro-

vided by Phasor Measurement Units (PMU).

Implementation of synchronized phasor measurements presents an opportunity for im-
provements of power system state estimation and if PMU’s were installed at all nodes,
the State Estimation wouldn’t be essential but from the economical point of view, having
PMU’s installed all over network is not applicable, therefore the task of State Estimation

still is crucial.

As already stated, the data which are fed into a State Estimator are including the parame-
ters of the power grid such as the transmission line’s resistance, reactance and suscep-
tance along with a set of measurements and the output of State Estimator is the states of
the power network (i.e. voltages and related phases). The traditional measurements in-
clude a portion of the bus voltage magnitudes, active and reactive power injections at
buses and active and reactive power flow through transmission lines. The nominal pa-
rameters of network and also the measurements across the network actually are not accu-

rate and have various uncertainties.

Form the viewpoint of power system planners, to improve the network quality, reliability
and security it is very important to know where to invest. To get better State Estimators,
they can either increase the accuracy of measurements by purchasing new high precision

measurement devices or perform accurate measurement of network parameters across
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network and make a model of it in real-time. Rationally having both measurement and
parameters accuracy improvement is the best way but could not be economical and they
have to find an optimized solution. Having exact measurements but very uncertain net-
work parameters (or vice versa) will not necessarily improve dramatically the SE but it is
very interesting to know that how much it is effective. This paper focuses on the effects
of parameters uncertainty and measurement noise on State Estimator and the results will

be useful to determine tolerable uncertainty values of measurement and parameter.

In this thesis an algorithm is proposed in order to observe the effects of parameter and
measurement uncertainties on the quality of power system state estimation. In the algo-
rithm the core components include a load flow and a WLS State Estimation, so in the
next two chapters the implementation of Load Flow and State Estimator are focused and
then development of algorithm and Monte Carlo procedure are described in detail.
Afterward the algorithm is tested on different standard power system test cases to analyze
the sensitivity of power system state estimation regarding to the parameters and

measurements noise.

1.3 Desirable properties of an estimator

In order to evaluate an estimator, it is needed to define clearly the mean of a “good”
estimator. A deterministic parameter X, is derived from n points of a random data
sequence x(n) and the estimation of X gives X that is a random variable which basically is

a function of x(n), i.e.
X=F(x(n).

X is pertaining to an estimator and each single value taken by the random variable X is an

estimate [Clarkson 1993].

Generally there may not be a “natural estimator” of a parameter X, hence several possible
estimators must be considered, with no clear insight of which one to be chosen. For this
regard, we must decide on the criteria by which we judge the quality of an estimator,
therefore a list of desirable properties of estimators is set out in the following subsections

briefly [Priestly 1981] [Clarkson 1993].
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1.3.1 Unbiasedness

The X is an unbiased estimator for X if the average value of X over all possible samples is

equal to “true value” X whatever value X takes, that is E ()? ) = 0 for all X.

The estimator is said to be “biased” if the above equation does not hold. The bias of X is

defined as:
bias(X) =X - X
where X = E{X} .

Since the sampling distribution of X will depend on n, the number of observations in the

sample bias()? ) will also depend on 7.

If bias(X) - 0 as n — oo then X is said to be asymptotically unbiased. Unbiasedness is
clearly a desirable property but a biased estimator may still be quite useful provided if it
is asymptotically unbiased. On the other hand, generally the lack of asymptotically

unbiasedness would be considered a serious defect in an estimator.

In general, the basic structure of power system state estimation implies some assumptions
which consequently introduce a bias meaning the inconsistency between the physical
system and the mathematical model and have resulted in practical difficulties manifested
by poor numerical reliability of the iterative state estimation algorithm [Meliopoulos

2001].

1.3.2 Efficiency of an Estimator and Minimum Variance

The efficiency of an estimator is determined by its variance. An estimator is more
efficient if its variance is lower. The variance of the estimated states is an indicator of the
state estimator performance [Bi 2008]. In this thesis, the average value of the variances
of the estimated states is taken as the performance indicator of the proposed state

estimator. The variance of an estimator X is:
Var(X) =E {()? — )?)2}

In the case that there are several different estimators e.g. X; and X, for the same

parameter X, if the bias of the estimators are the same then the estimator would be
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preferred that its sampling distribution has the smaller variance. Suppose two sampling
variances are shown in Figure 1.1 that X; has the smaller variance. The values of
X, over different samples are more concentrated around the true value X than are the
values of X,. Consequently the probability that X; lies in a distinct interval is higher than
the probability that X, lies in the same interval. In this case the X; is said to be a more

efficient estimator than X,.

Figure 1.1: Sampling distributions of two different estimators.

Relative efficiency of two different estimators X; and X, for the same parameter X, is

commonly evaluated as a percentage of the ratio between the related variances:

. .. Var(X;)
Relative Ef ficiency = ———=— X 100%
Var(X,)

1.3.3 Minimum Mean-Squared Error (MSE)

In general, when an estimation procedure is biased, the efficiency is not a good measure
of quality of the estimator e.g. in the case of having two different estimators X; and X,
for the same parameter, X; may be unbiased but have a high variance, whereas X, may be

biased but have low variance.



Chapter 1. Introduction 6

Under this situation it is important to define the measure of mean-squared error which

considers both bias and variance to determine which estimator is better. The mean-

squared error for the estimator X is defined as:
MSECS) = E{(% - x)*}

Using the stated definitions of variance and bias, the mean-squared error could be

expressed in other form as:
MSE(X) = E{(X - E(£} + bias(£))"}

MSE(R) = E{(% - E{X})" + bias?(R) + 2 bias(X)(X — E(X})]
MSE(X) = E{(% - E{(®})"} + bias?(X) + 2 bias(R)E{(X - E(X})}

Considering that in the above equation the E {()? ) {)?})} = 0, the first term is the

variance and the second term is the bias squared, the mean-squared error will be finally:
MSE(X) = Var(X) + bias?(X) .

The mean-squared error is more complete measure of the quality of an estimator than bias
or variance itself. So, if there are several estimators which are biased, a sensible

procedure would be to choose the estimator with smaller mean squared error.

This procedure is perfectly consistent with the measure of efficiency, when an estimator
is unbiased. In the latter case, mean squared error will reduce only the variance. So, for
an unbiased estimator, the MSE is the variance. Like the variance, MSE has the same
units of measurement as the square of the quantity being estimated. Similar to standard
deviation, taking the square root of MSE gives the root mean square error (RMSE),
which has the same units as the quantity being estimated. For an unbiased estimator, the

RMSE is the square root of the variance which obviously is the standard deviation.

1.3.4 Consistency

Another desirable feature for any estimator is that the more observations used, the closer
the parameter estimate X should be to the parameter X. It is reasonable to expect that an
estimator based on more observations should be more accurate than one based on less

observations.
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Formally, X is called a consistent estimator for X if X converges to X as the sample size
goes to infinity. One of the sufficient conditions for consistency is that the mean squared

error of X should converge to 0 as the sample size goes to infinity:

lim (MSE(X)) =0

n—->0oo

The mean squared error is the summation of variance with the bias squared, hence

equivalently the sufficient conditions for consistency could be:

lim,, oo (Var()?)) =0 and lim,,e (biasz()?)) =0.

1.3.5 Sufficiency

The X is a sufficient statistic for X, if the distribution of the observed data conditioned on
X is not depended on X, i.e. the observed data only give information about X if their

probability density functions depend on X.

In a simpler words, sufficiency means that the estimator contains all of the information in
the observations which is relevant to X. If the estimation process is such that all relevant
information form observations are included in X, then the density of the data conditioned

on the estimate will not depend on X, hence the estimator will be sufficient.

1.4 Novelty of This Study and Literature Review

In the literature, the topics which are more investigated on power system State Estimation
include the optimal placement of measurement devices (in particular considering PMU)),
bad data detection and data loss, network observability, wide-area state estimation and

dynamic state estimation (DSE) techniques.

At present Least Squares (LS) method of state estimation is most widely used in power
system and Weighted Least Squares (WLS) method is the one that used more often in
algorithms [Li 2011].

This thesis investigates the effects of parameter and measurement uncertainties on the

results of the power system Weighted Least Squares (WLS) State Estimation. The
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performance of State Estimator is based mainly on the accuracy of its inputs hence this

investigation is exactly related to the uncertainty of them.

The novelty of this thesis lies in the analysis of how the results of WLS State Estimation

are affected when there exist both:
e The network parameters uncertainty.
e The measurements uncertainty.

This study contains useful approaches for power system planners to improve the State
Estimation by determining whether to invest on increasing the measurement preciseness
or perform an accurate measurement along power network to get accurate values of

network parameters.

There are two interesting researches are done by Muscas et al. in [Muscas 2007a] and
[Muscas 2007a] which both the uncertainty introduced by the measurement devices and
the tolerance of the network parameters (line impedances) are taken into account and the
aim is the optimal number and location of measurement devices. In contrast, the analyses
used in this thesis are more focused on the changes of the results of State Estimator
versus the network parameters uncertainty. Therefore the difference with this thesis work

is that the goals are different while the approaches are similar.

Recently there is also a relevant investigation done by Rakpenthai et al. in [Rakpenthai
2012] that the network parameter uncertainty is also considered based on Parametric
Interval Linear Systems. They proposed an analytical approach to find the bounds of state
variables of the power system whose transmission line network parameters are within
particular upper and lower bounds. The state estimation problem is formulated as a
parametric interval linear system of equations and a novel method to find the outer
solution or the bounds of state variables is suggested. On the contrary, in this thesis a

statistical approach is utilized and we are dealing with uncertainties, not the intervals.

1.5 Notations and Operators

In this thesis the following notation for expressing matrices and the mathematical

operations are used:

e Rectangular matrices expressed by uppercase and boldface letters, e.g. A
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e Vectors expressed by lowercase and boldface letters, e.g. a
e Scalars expressed by lowercase and italic letters, e.g. a
e Complex quantities expressed by a hat over the letters, e.g. 4

e Magnitude of a complex matrix expressed by bars around the matrix, e.g. |4]

The following operators are also used for some matrix operations:

e real(.) and imag(.) operators denote the extractions of real and imaginary
elements of a complex vector or matrix respectively.
e diag(.) operator returns the main diagonal elements of a matrix as a vector.

e vect(.) operator creates a vector from all the columns of a matrix.



CHAPTER

Implementation of Load Flow

In this chapter a load flow method is described. It is used to make the calculated

measurement that is one of main components of the proposed algorithm.

Load flow analysis is the most important and fundamental tool including numerical
analysis applied to a power system to investigate problems in power system operating
and planning. It analyzes the power systems in normal steady-state operation and it
usually uses simplified notation such as a one-line diagram and per-unit system. The
power flow problem consists of a given transmission network where all lines are
represented by a Pi-equivalent circuit and transformers by an ideal voltage transformer in
series with an impedance. Once the loads, active and reactive power injections and
network parameters are defined, load flow analysis solves the bus voltages and phases
hence the branch power flow can be calculated. Generators and loads represent the
boundary conditions of the solution. Mathematically, the power flow requires a solution
of a system of simultaneous nonlinear equations. With the increase of power system scale
continuously, the dimension of load flow equations now becomes very high and for the
equations with such high dimensions, we cannot ensure that any mathematical method

can converge to the right solution. Hence, choosing the reliable method is essential

[Wang 2009], [Grainger 1994].



Chapter 2. Implementation of Load Flow 11

2.1 Literature Review on Load Flow Methods

Early on the development of first digital computers, the widely used method was Gauss-
Seidel iterative method that was based on the nodal admittance matrix of the power
system the impedance matrix that represents the topology and parameters of the power
network [Stagg 1968]. The fundamental of this method is rather simple and its memory

requirement is relatively small but its convergence is not satisfactory.

To solve this problem, the sequential substitution method based on the nodal impedance
matrix is used which is also called the impedance method. The main difficulty of the

impedance method is [Brown 1963]:

e High memory requirement.

e Computing burden.
The first solution for overcoming the disadvantages of the impedance method is a
piecewise solution of the impedance matrix load flow. It presents a method which
involves splitting a power system into pieces so that it permits use of the impedance
matrix method on large systems. This method retains the same features and convergence

characteristics of impedance method [ Andreich 1968].

The other -and better- solution for overcoming the disadvantages of the impedance
method is the Newton—Raphson method [Tinney 1967] which is more widely used and

preferred even at this time. Its prominent features are:

e More accurate and reliable.
e Less number of iterations for convergence.
¢ Independency of the iteration number to number of buses in the system.

e Faster computations.

The Newton—Raphson power flow is the most robust power flow algorithm used in
practice but however since 1970s the load flow methods continue to develop and among

them the most successful is the fast decoupled method [Scott 1974].

Comparing the Newton method with the fast decoupled method, the latter method is
faster and much simpler and more efficient algorithmically and needs less storage, but it

may fail to converge when some of the basic assumptions do not hold. Convergence of
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iterative methods depends on the dominance of the diagonal elements of the bus
admittance matrix. A comparison of the convergence of the Gauss-Seidel, Newton-
Raphson and the fast decoupled method power flow algorithms is shown in Figure 2.1

[Wood 1996].

Gauss-Seidel

Fast Decoupled

Log(max|AP))

Newton-Raphson

v

Iterations

Figure 2.1: Comparison of Various Methods for Power Flow Solution [Wood 1996].

Since, Newton—Raphson method is a gradient method, the method is quite complicated
and therefore, programming is also comparatively difficult and complicated. With this
method the memory that is needed is rather large for large size systems but still the
method is versatile, reliable and accurate and best matched for load flow calculation of

large size systems [Murty 2011].

Until now the research on load flow analysis has been still very active. The artificial
neural network algorithm [Nguyen 1995] [Chan 2000], the genetic algorithm [Wong
1999] and Fuzzy-logic method [Lo 1999], have also been applied to load flow analysis.
However, up to now these new models and new algorithms still cannot replace the

Newton-Raphson or fast decoupled methods.
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According to the literature review, because of the applicability of the Newton-Raphson
method on large size systems and its stability for convergence, in this thesis Newton-
Raphson method is implemented for the calculation of actual state of power system based
on the network parameters, power injections and loads regardless of its complicated

programming.

2.2 Formation of Nodal Admittance Matrix

The formulation of an appropriate mathematical model is the first step in the analysis of
an electrical network. The model must be able to describe the characteristics of individual

network components and the relations that rule the interconnection of the components.

The network matrix equations provide a suitable mathematical model for digital
processing. The elements of a network matrix depend on the selection of independent
variables like currents or voltages (the elements of network matrix, hence, will be

impedances or admittances) [Stagg 1968].

In the simulations of this thesis, the method of singular transformations is used for
forming the bus admittance matrix. This method is chosen because in practice it
performed faster simulations in Matlab simulation environment, compared to the methods

that are described in [Zimmerman 2011] and [Wang 2009].

This section will explain the basic power network models and matrices and finally works

ut the bus admittance matrix by singular transformations.

2.2.1 Bus incidence matrix 4

The incidence of branches to buses in a connected power network is shown by the
element-node incidence matrix A4. It does not provide any information about the electrical

characteristics of the power network parameters.

This matrix is rectangular and the dimension of it is Npy,s X Nprancn. The a;; elements of
A are 1 if the i branch is incident to and oriented away from the jth bus and the a;;
elements will be -1 if the /™ branch is incident to and oriented foward the jth bus. The

other elements are zero.
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If the rows of 4 are arranged according to a particular tree, the matrix can be partitioned
into two sub-matrices. The first part is the incidence of the links going from buses to the
zero reference bus that is equal to identity matrix I of the size N, and the last sub-

matrix is the incidence of network branches as shown in Figure 2.2.

Bus
Branch Buses
.
5 Alinks :
0 1 NpBusXNpuys
)
S Apranches =
=]
] NpranchXNBus
aa]

Figure 2.2 Illustration of the structure of Bus Incidence Matrix by the two sub-matrices.

2.2.2 Branch Model

A transmission line can be modeled by a two port pi-model as shown in Figure 2.3. Where
for each line connecting bus /% to k, a positive sequence series impedance of

Ry + jXni and total line charging susceptance of jBy, is considered.
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Ry jXpk
® AN—T0 ®
L JBhk JBhi |
T > T

Figure 2.3 Equivalent pi-model for a transmission line.

2.2.3 Shunt Elements

Shunt capacitors or reactors for voltage and/or reactive power control, are represented by
their per phase susceptance at the corresponding bus. The sign of the susceptance value
will determine the type of the shunt element (positive sign shows a shunt capacitor and
negative sign shows a reactor). The Figure 2.4 Illustrates the shunt conductance and

susceptance for an instance bus, k.

Figure 2.4 Tllustration of Shunt conductance and Shunt Susceptance for an instance bus, £.
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2.2.4 Transformers Model

Transmission lines with transformers can be modeled as series impedances, in series with
ideal transformers as shown in Figure 2.5. The two transformer terminal buses / and & are

named as the tap side bus and the impedance side bus respectively.

a:1 Rur  jXpg

®O—D AN—T ®

Figure 2.5 One-line diagram of a transmission line with transformer.

In Figure 2.6 the two port pi-model of a transmission line is shown considering the effects

of transformer tap value, a.

a(Rpy + jXni)

® —W—— ®

1-a) (a—1)
a?(Rpy + jXni) a(Rpy + jXnr)

© ©

Figure 2.6 Equivalent pi-model for a transmission line with transformer tap parameter.

2.2.5 Primitive Network Matrix

The electrical characteristics of the individual network components can be presented
easily in the form of a primitive network matrix Yprimitive . The primitive network matrix
describes the characteristics of each component. It does not present anything about the

network connections.

The diagonal elements of matrix l_/priml-tl-,,e are the self-admittances and the off-diagonal
elements are the mutual admittances. Assuming there is no mutual coupling between

elements, the l_/priml-tl-,,e matrix will be a diagonal matrix. The diagonal elements of
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Y rimitive are like a vector that consists of two parts, first the total bus admittances that
are connected from buses to the Reference bus (Bus number 0) and next the branch

admittances as clearly depicted in Figure 2.7.

» Total Bus Admittances

YNbus'O Y,
V1

» Branch Admittances

)_]Nbranch J
- “(Npus+Npranch) X 1

Figure 2.7 The vector of diagonal elements of YPTimiti,,e .

The Bus Admittance elements of this vector for tap side buses are defined as:

all the branches
connected to bus i

<jﬁ (1-a)

— )+
2 | a?(R, + an)>+ shunt

0=

[

n=1
Where R, and X,, are respectively the resistance and reactance of the branches that are

connected to bus i. Ygun: 1S the shunt admittance connected to bus i.

The Bus Admittance elements for impedance side buses are defined as:

all the branches
connected to bus i

_ JjBy, (a—1)
Vo = E (B4 -t + ¥
i,0 2 a(Rn +an) shunt
n=1
The transformer tap value a, for a non-transformer branch is considered 1. The Branch

Admittance elements are defined as:

) 1
Y1:Npranch = a(th +thk)

Where Ry, and X, are respectively the resistance and reactance of an instance branch

that connects bus 4 to k.
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2.2.6 Nodal Admittance Matrix

It is necessary to convert the primitive network matrix into a network matrix that
describes the performance of the interconnected network. It is done by using singular
transformations of the bus primitive network matrix with the bus incidence matrix.
Therefore, the bus admittance matrix ¥, can be extracted by using the bus incidence
matrix A to relate the primitive network’s variables and parameters to the bus quantities

of interconnected network [Stagg 1968].
Ybus = AT 7zr)rimit:ive A

The bus incidence matrix is singular, so the [AT l_/primiti,,e A] is singular transformation of

Y

primitive *

2.3 Nodal Power Equations Using the Nodal Admittances

Power system load flow is considered as the problem of finding the voltage and phase for
each bus when all the active and reactive power injections are specified. If the complex
power can be represented by equations of complex voltages, then a nonlinear equation
solving method can be used to find a solution of the node voltage. In this section the

nodal power equations are deduced using the nodal admittances. [Wang 2009, p.76]

The complex node power equations have two representation forms, polar and rectangular

form:

n
Sp=Pp+jQn= th ViVi
k=1
Which the index h is the bus number from 1 to Np,,s. The node admittance matrix Yy is a
sparse matrix and accordingly the terms in the summation are not many. The elements of

node admittance matrix can be written as:
Yok = Guic + jBr
Consequently the complex node power can be expressed as:

Npus

P, +jQn =V, (Ghi — JBri) Vi
k=1
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And if we consider the voltages in polar form: V), = |V},|e/%,

Npus
Py +jQn = [Vyle/®n Z (Ghic = JBri) Vicle ™70k
k=1
Npus
Py +jQn =Vl Y Vil(Grgx — jBpy)e’@nid
k=1

That 8y, = 6, — 0, is the voltage phase difference between node h and k. By using

Euler rule: e/® = cos 6 + j sin @ we can combine the exponential forms:

Npus

Ph +th = |Vh| Z |Vk|(th _thk) (COS Hhk +jsin0hk)
k=1

Npys
Py +jQn = Val ) [Vil(Ghi cos Oy + jGpi Sin Opy — jBpy €0S Oy + Bpy sin Opy)
k=1
Dividing above equation into real and imaginary parts gives the active and reactive

power injection at bus h in polar form:

Nbus

Py = |Vl |Vi|(Gri coS Opy + Bpy Sin Opy)
k=1
Nbus

Qn = Vil |Vic| (Gpy sin Bpg — Bpy cos 6py)
k=1

The last two equations are the polar form of the nodal active and reactive power

equations which are the main equations in the Newton-Raphson calculation procedure.

2.4 Newton—Raphson Power Flow

Since the active and reactive powers are represented by equations of voltage magnitude
and phases in previous section, a non-linear equation solving method can be applied to

extract the voltage and phases for each bus.

The Newton—Raphson method is an efficient step-by-step procedure to solve nonlinear

equations that it transforms the procedure of solving nonlinear equations into the
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procedure of repeatedly solving linear equations. This chronological linearization process

is the main part of the Newton—Raphson method [Wang 2009].

For building the mathematical models of the load flow problem, the simultaneous
nonlinear equations of node voltage phasors, which are derived in the previous section,

are expressed in the following forms to define the power mismatches in polar

coordinates:
Npus
APy = Pgpp — Vil ) |Vil(Gri cos Opg + Bpy sin Oy ) = 0
k=1
Npus
AQn = Qspn — Vil ) Vil (Gp Sin Opy — Bpy cos Opy) = 0
k=1

e AP, and AQy, are the magnitudes of active and reactive power errors respectively

and the index h is the bus number (from 1 to Np,s).
e Py, and Qg j, are the specified active and reactive powers at bus h.

e Gy and By, come from the definition of bus admittance matrix in previous

chapter which it was divided into real and imaginary parts as : Yy, = G + jBn-

Reminding that for the load flow analysis, active and reactive powers at all the buses

(except slack bus) in the power system network are specified explicitly.

Assuming that the slack bus is the first bus and the number of PV buses is Npy,. Hence

there will be (N, — 1) equations for active power:

( Npus
AP, = Py, , — V5| |Vi|(G2k cos Oz + By sinby) =0
k=1
4
Npus
APNbus = PST"Nbus - |VNbus| z |Vk|(GNbusk cos HNbusk + BNbusk sin HNbusk) = 0
\ k=1

and (Ny,s — Npy — 1) equations for reactive power:
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( Npus

k=1

Npus

\ =1

AQ; = Qsp2 — V2| [Viel (G sin Oy — By cos Oy) = 0

AQNbus = QSP'Nbus o |VNbu5| Z |Vk|(GNbusk Sin HNbusk o BNbusk cos erusk) = 0

Hence the total number of above equations will be (2N, — Npy — 2) that is equal to the

number of unknowns which are (Np,s — Npy — 1) voltage magnitudes and (Np,s — 1)

angles.

The load flow analyzer considers the acceptable tolerance for AP, and AQ; and it solves

the bus voltages (on all buses except slack and PV buses) along with the bus angles (on

all buses except slack bus).

Considering the first order of Taylor Series expansion and neglecting the higher order

terms of the non-linear equations for active and reactive power around the vector of

unknowns that is composed of voltage magnitudes and angles of size (2Ny,s — Npy — 2)

gives:
P
AP A=—
2Q
AQ C=-,

oP
B=3
_ %
D_av

Mismatches

Y
Jacobians

A6

AV

Pl

Corrections

AB and AV are the voltage angle correction values and voltage magnitude correction

values respectively. The last expression in extended from will be:

A.PZ | A2z = Aany,,
AP,
Np
e _ _ANbus'2 ANbus'Nbus_
AQ, Caz = Gy
-AQNbus- L _CNbus'2 CNbus'Nbus_

[ B,

_BNbus'2
D22

_DNbus'2

BzﬂNbus

BNbus'Nbus |

DZ,Nbus

DNbus'Nbus |

9 r Aez -

A6,

AV,

AV,

Npys

Npys-
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The matrices of A, B, € and D are the sub-blocks of the Jacobian matrix where their
elements can be calculated by differentiating the equations of active and reactive power
with respect to voltage angles and magnitudes. Hence the elements of the Jacobian matrix
can be obtained using the following equations (for each sub-block, the first equation is

related to the off-diagonal elements and the second one is for diagonal elements):

( 0P,

Aij :a_e;:_ViVj(GijSineij_Bijcoseij) fOTi-'ptj
< op Jj#L
Aii :_l:Vl z Vj(Gl‘jSingij—BijCOSHij)
d0; _
\ JENpys
(, 0P . .
Bij—a_Vj—_Vi(GijCOSQij‘l'Bijsmeij) fOTl:/:]
) e &
Bii :—l: z _V](GU COSQU +Bijsin9ij)—2ViGl-i
av,
\ JENpus
( 00; . -
Cij :a_e;:ViVj(Gijcoseij+Bij51n6ij) fOTl?‘—']
! 20 ji
Cii = a—el = _Vi z V](GU COS 91] + BU sin HU)
l .
\ JENpus
( 00; . o
Dij:a—V;:—Vi(Gl‘jSIHQU—BUCOSQU) fOTl?‘—']
4 P j#i
Dii :a—gl: z _V](GU SinHij _BU C059ij)+2ViBii
\ ‘ JENpus

Jacobian matrix is a sparse matrix, and the place of zeros in this matrix is the same as
place of zeros in bus admittance matrix because considering the equations of Jacobian
matrix for off-diagonal elements, it can be seen that each of them is related to only one
element of the bus admittance matrix. Therefore, if the element in the admittance matrix
is zero, the corresponding element in the Jacobian matrix is also zero. The Jacobian
matrix is not, however, symmetrical. The elements of Jacobian matrix are a function of
node voltage phasors and so during the iterative process they vary with node voltages

[Wang 2009].
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For saving the computation time, the voltage magnitudes in the correction vector can be
AV o . ) .
changed to — because in this case the equations for calculating sub-matrices for A and D

Ajj = Dj; and B;; = —Cjj. If we consider this situation, the number of elements to be
calculated for Jacobian matrix are only 2(Npus — 1) + [2(Npys — 1)]%/2 instead of
[2(Npys — 1)]? [Murty 2011].

2.5 Newton—Raphson Solution Algorithm

The flowchart for implementation of Newton-Raphson Load Flow procedure in Polar

Coordinates is depicted in Figure 2.8.
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Start: Reading data:

Network Parameters, bus types,

Initial Voltages, Psp, Qsp

v

Building Network Matrices:

Bus Incidence matrix A
Primitive Matrix: Y__

primitive

Formation of Bus1Admittance Matrix:

Y, =AY A
us

b primitive

v

| Iterations =1 |
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End:

Report Power Flow Results

Converged
?
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Jacobian Matrix (J)

v
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[AV;A0]1=] r

v
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Vnew=\’olt‘l+Av

0, e =00 140

L »

iterations + 1

Figure 2.8 Flowchart for implementation of Newton-Raphson Load Flow



CHAPTER

Implementation of WLS State Estimator

3.1 Power Equations Using the Physical Admittances

o examine the behavior of the state estimator in the presence of uncertainty in the
Tnetwork parameters, we extract the basic equations that relate the active and
reactive power injections to the voltages, angles and the network parameters using the
physical admittances. Firstly we describe the equivalent pi-model for a branch and then

we write the node power equations.

3.1.1 Complex Power Flow equations

Consider an equivalent pi model for a transfer line as shown in Figure 3.1:

a

— V2 = + b —
. T \@ Ynk = Gnk + JDnk @ Ten 7

—_— I_I -— k
Shk Skn
Yho = 9po + jbno Yko = Yo + jbio

© ©

Figure 3.1 Equivalent pi-model for a branch connecting bus h to bus k.
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Where:

eV}, and V}, are the complex voltages in polar form at bus h and k.

® Yo and Yy, are the admittances of the shunt branches connected at bus h and k.
* Yu 1s the admittance of the series branch connecting bus h to bus k.

e [, and I, are the line current flow between bus h and bus k.

e S, and Sy, are the complex power flows.

The reduced incidence matrix C will be:

c=@[1 1 0]
®l-1 0 1

and the branch admittance matrix is:

Yne O 0
V=0 Yo O
0 0 Yko

The nodal admittance matrix can be found by:

Y = CY,CT
Yne O 0111 -1
=14 A e o]l T
0 0 Jello 1
y = )_’hk‘_|‘3_’h0 __yhli ]
—Yhk Yhk T Yko

According to Ohm's law: I = YV, the vector of injected currents can be extracted as:

[I:hk] _ [)_’hk TV Yk ] [‘Zh]

Iin, —Yhk Ynk t Viol LV,

{I:hk = (Vnk + Yno)Vp — ythk_

Len = =YV + i + o) Vi

Which I, is the current from bus h to k. Finally the complex power Sy, that flows from bus

h to bus k will be:

§hk = Vh I_r*lk
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Sne = Va((Fnke + o)V — ViV

Snie = Gnre + Tn0) ViVi — Vi Vi Vit

Substituting the complex power flow 5_'hk with the elements of Y, = gnx + Jbnx yields:
Shk = (Gnk — Jbric + Ino — ibro) IVal? = (Gri — jbri) 1Vi |1V | e Onk

Using Euler rule: e/? = cos @ + j sin @ we will have:

Snk = (gnre + Gno — J B + bro))IVnl? = (Gnr — jbni) (€08 Oy + j sin O ) [V |1V |

§hk =
= (g + gno — J (brr + bpo) ) IV |? —
— [(gnk €08 Op + jGnk Sin Opg — jbpy €OS Bpy + bpy sin Opg) ||V [[Vic|

§hk =
= (Gnk + 9ho)|‘7h_|2 —_f(bhk + bpo) [V |2 __(ghlc oS Opi) [V ||V | -
— j(Gni sin O ) Vi [Viel + j(bpg €05 O ) IVi | [Vie| = (Bpy sin Op) [V ||V |

§hk =
= (Gnk + 9ho)|‘7h_|2 —_(bhk sin Hhk)IVhHVkl - Eghk cos 9hk)|‘7h||‘711| -
— j(Gni Sin O Vi1V 4 j (bpy cos ) Ve 1Vie| — j(Bpi + bpo) [Va|?

§hk =
= (Gnx + Gro) Vi |* = (Gni €08 Op) [V, ||V | — (b sin By ) [V, 1V | +
+ j[=(gnk sin O ) IV 1V | + (bpk €08 Opi) IV, [ [ Vil = (brk + bro) IVa]?]

§hk =
= (Gnr + Gro) IVn|* = (Gnk €0S Oy + by sin O ) [Vl [Viel + j[— by + bpo) [V |* —
— (Gn Sin Oy, — bpy €08 Opi) ViV |]

The complex power flow can decomposed into its real and imaginary parts:
Shic = Prc + jQn

Therefore the active and reactive power flows can be finally extracted as:
Pri = (Gni + 9no) IVal? = (gnk €0S Oy + bpy in Op) [V | [Vi|

Qni = —(bpg + bpo) IV |*—(gn Sin Oy — bpy cos Oy ) [V ||V |
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3.2 Measurement Model

For a power network the set of measurements z given are by:

Z1 fl(xlf ey xn) r
Zzlzﬂ: Ifz(xl,:...,xn) 722 roo 4
8 I T I

where:
fi(x) is the non-linear function relating measurement i to the state vector x

r is the vector of measurement errors

Regarding to the statistical properties of the measurement errors, for i = 1,...,m we

commonly have E[r;] = 0. Also the measurement errors are considered to be

independent, ie. E [rir]-] = 0. Furthermore, they are assumed to have a Gaussian

distribution with zero mean.

The measurement vector z is composed of the conventional measurements including:

Voltage magnitude, Active power injections, Reactive power injections, Active power

flows and Reactive power flows along with a set of phase measurements from PMU. The

measurement vector is in the following form:
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Vil

» Voltage Magnitudes

» Active Power Injection
Py, )

Q1

» Rective Power Injection

PF;

» Active Line Power Flow

PFy, |
QF;

QFNf

‘P1\

)
I
5 TRective Line Power Flow

Phases From PMU

PN, )

(Ny+2N;+2Nf+Ng) X 1

For the non-linear functions relating measurement i to the state vector, the power

injection and power flow equations, which are proven in previous chapter and in this

chapter, are considered. The equations can be summarized here as:
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( Npus

Py = |Vl Z |Vi|(Gri cos Opy + Bpy Sin Opy)
k=1
Nbus
) Qn = V] Z |Vie| (Gr Sin Opg — By cos Oy )
k=1
Pri = (G + 9no)IVal? — (Gni €0 Opg + bpy sin Oy ) [V [ [V |

\Qnr = —(bp + bpo) Vi |2 —(gh sin Oy, — bpy cos Opi) [V | Vi |

3.3 Minimization Problem

For obtaining the states (voltages and related phases of the power system) from the
measurements, state estimation is applied to 7 = z — f(x). So, the minimization problem

will be:

{MIN Jx) =1rTr
SST. r=z—f(x)

Which J(x) is the objective function that is going to be minimized. The objective

function can be written as:

J(x) = [z - f(O]"[z — f(x)]

To minimize J(x), its first derivative with respect to x is equated to zero:

aJ(x)
ax 0
J(x) 0[z2'z—2'f(x) - f(x)"z+ f(x)Tf(x)] ;T f(x) ) 1 2 payr I f(x)

ax Ax

aJ(x) _ af (x)
9% = —2[z - f(x)] [

The Jacobian matrix of J(x) is defined by g(x):

FJ(ENN )
g0 = | 22| = 2|2 )] )

The Jacobian Matrix structure and equations of calculating its components will be

described in the next sub-section.



Chapter 3. Implementation of WLS State Estimation 31

The Hessian matrix of J(x) is the second derivative with respect to x and called Gain

Matrix:

af(x)
ax

0g9(x) _

H(x) = dx

2

"[afx)
lax

H(x) is symmetric, positive definite and is a matrix populated primarily with zeros (a

sparse matrix).

The Taylor Series expansion of the non linear function g(x) around the state vector x*

gives:

ag(xy)
dx

gx) = glxy) + (x—x )+ =0

Considering the first order of Taylor Series expansion and neglecting the higher order
terms, directs us to an iterative solution of Gauss-Newton method:
-1

Bg(xk)/ax g(xy)

Xg+1 = X —

Where k is the iteration index and x;, is the state vector at iteration k. Supposing:
AXpy1 = X1 — Xi

We will have:

Axppr = —[H(x )] g (i)

Finding the inverse of H(x),) in high dimensions for large networks can be an expensive
and time consuming operation. In such cases, instead of directly inverting the H(xy), it's

better to calculate the Axj,; as the solution to the system of linear equations:

[H(x,)]A%x 41 = —g(x)

af (x)]"
ax] [z — f(xp)]

[H(x;)]4%)41 = 2 I

This can be solved by triangular factorization techniques, like the Cholesky factorization.

The set of equation given by [H(x)]4x,, is also mentioned as the Normal Equations.
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3.3.1 Jacobian Matrix structure and components

According to the measurement vector structure, the Jacobian matrix will be in the

following form:

g1 gd12

g21 g22

g31 g32
g =

g1 942

Is1 ds2

61 Ideé2

Where the sub-matrices is described in the following:

® g41 is the Derivative of Voltage Magnitudes with respect to angles:

oVl _

0O - 0
91126—0_ . . .

0 OINUX(Nbus_l)
» All the elements are zero.
® g1 is the derivative of Voltage Magnitudes with respect to Voltage Magnitudes:

g1z =

1 0 0
vl 1o 1 o
vl |10 0 1

“INyX(Npys)

» All the elements are zero except the diagonals that are one.

® g, is the derivative of Real Power Injections with respect to Angles:



Chapter 3. Implementation of WLS State Estimation

33

- 9P,
20,

0Py,

| 06,

a HNbus

“NpiX(Npys—1)

Equations for calculation of g4 components:

N us
0Py 52 > 1o '
O BTl + ) [7(~Geysinby, + By cos6y)
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J

e (g,, is the derivative of Real Power Injections with respect to Voltage

Magnitudes:

[ 0Py
A

0Py,
A

“NpiX(Npys)

Equations for calculation of g,, components:

9Py =G |V|+Z
oIV | — TR

P,
a|v;|

-

® g3, is the derivative of Reactive Power Injections with respect to Angles:

931=%=

]

00,
06,

aQNqi
| 00,

aQNlJus

n
|I7j|(ij cos Oy + By; sin 6y;)
-1

= IVkl(Gk] Ccos Hk] + Bk] sin ij)

“NgiX(Npus—1)

Equations for calculation of g3, components:
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n
00k _ RIAL Al Ok; + By;sin@
T kel Viel> + ) |V|(Gyj cos Oy + Byj sin 6y;)
K =
00k - |
=g, = ~IVel|V;|(Gj cos O + By sin O)
j

e g3, is the derivative of Reactive Power Injections with respect to Voltage

Magnitudes:
[ 00, 00,
aQ alVll ) a|VI\.’bus|
932 = 5= : E :
alVl aQNqi aQNqi
-alVll a|I71Vbus|

“NgiX(Npys)

Equations for calculation of g3, components:

aQ N

k = = .

= = —Bklekl + |V]|(Gk] Slnekj - Bk] CoS Hk])
oWl £

0 _

alQ_kl = IVkl(Gk] Slngkj _Bk] Cos ij)

-

® g4 is the derivative of Real Power Flows with respect to Angles:

[ anll anll T
a0 a0

anl . 2 ) IYbus
g41 = — = H ‘. .
a6 9P P

Y Y

|90, 0,

“NpsX(Npus—1)

Equations for calculation of g41 components:

Pry _
——LE = |V, ||V | (e SIn Ope — b €OS Opi)
30,
0Pf, o
% = —|Vpl1Vic| (Gri SIn Opi — bpy oS Opy)
k

® g4, is the derivative of Real Power Flows with respect to Voltage Magnitudes:
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Equations for calculation of g4, components:
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® (gsq is the derivative of Reactive Power Flows with respect to Angles:

:%:
Is1 30

 0Qf
30,

aQﬂ"’qf
20,

= —|Vi|(Gnr €OS Opk + bpy sin Opy) + 2(gni + Gno) Vil

= —|Vy|(gnk oS Ok + by sin Oyy)

Q5 T
aHNlJus

90y INgs
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Equations for calculation of g5 components:

aQﬂhk
96,

anlhk
30,

= — |Vl 1Vi| (gni cOS Opi + bpy sin Opy,)

= |V [IVic| (Gh €OS Opi + bpy Sin Opy)

e (s, is the derivative of Reactive Power Flows with respect to Voltage

Magnitudes:
Q5
9gsz2 = m =

[ 0Qr1,
o|Vy|

aQﬂ"’qf
A

Q5 T
a|VNbus|
aQﬂqu
a|VNbus|—

NgfX(Npys)

Equations for calculation of g5, components:
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Qf _ _

a|—17h|k = —|Vi|(gnk sin Opy — bpy cos Opx) — 2(bpy + bpo) Vil
h

Q¢ _

e _ —|Vn|(Gnk sin Oy — bpy cos Opy)

0|Vl

® g1 1s the derivative of PMU Angles with respect to Angles:

90 all zeros
Jde1 = — = except
99 one (—1) ineach row
NgX(Npys—1)

» In each row there is only a (-1) corresponding to the PMU bus

number and the other elements are zero.

® (g2 1s the derivative of PMU Angles with respect to Voltage Magnitudes:

00

0 - 0
-

de2z =

0 - 0

NgX(Npys)

> All the elements are zero.

3.4 Minimization Problem Considering the Measurements Uncertainty

In realistic networks, all the measurements are not accurate and have deviation from the
real values. Besides some values of measurement vector z are not practically measured
and some predictive statistics and history are used to determine them (e.g. some power
fluxes) [Valenzuela 2000]. So the measurements are depend upon uncertain quantities

and can be considered as random variables.

To extract the states of the system (voltages and related phases) from the measurements,
Weighted Least Squares (WLS) estimation is applied to (z —f (x)). WLS state

estimation will minimize the weighted sum of the squares of the measurement residuals.

Z1 fi(xy, e, x0) T
7z = Izzl — Ifz(xp:---rxn) n 7"2 — f) +T
Zm

(X1, o) X) "m
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The minimization problem will be:
MIN  Jx)=71TX'r
S.T. r=z—f(x)

The X, is the variance-covariance matrix of measurement errors. Its inverse represents

the weighting matrix that is the inverse of measurement covariance matrix. The elements

1

of weighting matrix X, " cause to be connected with the influence of measurements

[Huang 2003].
X, =cov(r) = E[r.r7T]

[012 0 - 0]_1

_ 0 o2
Z'Zl = [ : 2 . 0 ‘

Which ¢2 is the variance, and o, is the standard deviation of m'™ measurement.
Standard deviation of each measurement is deliberated to reflect the expected accuracy of

the corresponding meter used.

The objective function can be written as:

J&) = [z = fO)I" 27z — f(x)]

For minimization, the first derivative with respect to x is equated to zero:

aJ(x)
ox 0

The Jacobian matrix of J(x) is defined by g(x):

aj(01" ) T
y(x)=[{3(:)l =-2 l%l I z-f(x)]=0

All the proofs for g(x) can be found in the appendices.

The Hessian matrix of J(x) is the second derivative with respect to x:

T

-1
z

af(x)
ax

af (x)

H(x) = dx

ag(x) _
=2

All the proofs for H(x) also can be found in the appendices.
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The Taylor Series expansion of the non linear function g(x) around the state vector x*

gives:

g (xy)
ox

gx) = g(x,) + (x—x)+=0

Considering the first order of Taylor Series expansion and neglecting the higher order
terms, directs us to an iterative solution of Gauss-Newton method:
_ 9] ~!
Xk+1 = Xk = |75, g(x)
Where k is the iteration index and x;, is the state vector at iteration k. Supposing:
AXpiq = X1 — X
We will have:
Axypr = —[Hx)] g (xp)

H(x}) is symmetric, positive definite, sparse matrix and called the Gain Matrix. Finding
the inverse of H(x;) in high dimensions for large networks can be an expensive and time
consuming operation. In such cases, instead of directly inverting the H(x},), it's better to

calculate the 4x;,; as the solution to the system of linear equations:
[H(x))] A% 41 = —g (xy)

3 T
[H(x))]Axy 1 = 2 l f;ik)l Iz - f(xp)]

This can be solved by Cholesky factorization. The set of equation given by

[H(x;)]Ax) is also mentioned as the Normal Equations.

The conditions for stopping the iterations are firstly if the number of iterations is enough
or the difference in two successive state variables is less than a satisfactory tolerance, i.e.

max|4xy,1| < Tolerance.

The variance covariance matrix of the estimates can be extracted by:

-1
T

af (x)
dx

af (x)
dx

-1
z

X, =
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As it can be seen in the last equation, the parameters uncertainty does not have any
contribution to the computation of variance covariance matrix of the estimates. In the
next chapter a method is proposed to consider both the contribution of measurement and

parameters uncertainty on variance covariance matrix of estimates.



CHAPTER 5

Algorithm Development

r I Yhe flowchart of implementation is depicted in Figure 4.1. In the following, the sub-

blocks and the steps are described in detail.
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Figure 4.1 Flowchart of the Algorithm Implementation
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4.1 Parameters Model

In our study, nominal values of resistance, reactance and susceptance characterizing the
network elements are randomly perturbed extracting their values from a multivariate
Gaussian distribution. The mean vector p of the distribution was represented by the
nominal values of the parameters, and the variance-covariance matrix was build
considering a standard deviation as a fixed percentage o of the nominal value, i.e. for the
i" parameter 0; = o X I; and assigning a prescribed correlation coefficient pj; for each
couple i,j of parameters. Furthermore the parameters with zero nominal values were not

perturbed.

Since all these parameters, for physical reason, are defined by positive real numbers, it is
important to avoid perturbations so wide resulting in negative parameters. For this
reasons it was evaluated the probability to get negative results for such extraction for
standard deviations less than 25% of the nominal values. Surprisingly it was found that
this probability is independent from the nominal values but it is just a function of a. The
authors were not able to find in literature a demonstration of such a property of the
Normal multivariate distribution but we just verified this property numerically computing

the probability P of getting at least one negative value among N parameter as:

P=P(a) = {U(n < 0)}
=2 1p{nlso} Zl 12} y (n,SO)ﬂ(n <0)
N
+ Zi_lz]._.zk_jp{(ﬂi <0) ﬂ(”i <0) ﬂ(nk < O)} + (-=1)N*1p {ﬂ(ni < 0)}
) - B i=1

The probability of the intersecting events in the previous equation was computed
marginalizing the known multivariate Normal distribution, e.g. the probability of the

event p{(ni <0)N(m <0) Ny < O)} was computed as:

(nl 0) ﬂ(n]<0)ﬂ(nk<0) f f j N(my, 70, 70) Ay Ay Ao,

with
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N
N(m;, mj,my.) :f N(my, ..., my) 1_[ dr,.
RN-3

m=i,j,k
and N(°) being the multivariate Normal probability density function.

As a numeric example, let’s consider the values of network parameters in IEEE 14 bus
test case. With a parameter standard deviation of 0.25 which is the greatest standard
deviation used in the simulations of this paper, the probability of reaching to a negative
number for resistance, reactance or susceptance will be P = 0.5 X 107° that is negligible
for the number of Monte Carlo trials we have considered. Practically, in the simulations
if a negative value is observed, until getting a positive value, the program will repeat the

parameter perturbation, without affecting the parameters probability density function.

4.2 Sub-blocks Details

4.2.1 Newton Raphson Load Flow

The realistic parameters along with the power injections are used to get the actual states
which are the voltage and phases of power network for each bus using power flow
solution by Newton Raphson (NR) method [Tinney 1967]. Since 1970s the load flow
methods continue to develop and among them the most successful is the Fast Decoupled
method [Wood 1996]. Comparing with the NR method, this method is faster and simpler
and more efficient algorithmically and needs less storage, but it may fail to converge
when some of the basic assumptions do not hold. Therefore the NR load flow is chosen

because it is the most robust power flow algorithm that widely used in practice.

The states that are generated by NR load flow are used for the next part that is the
calculation of exact measurement data. NR states are also taken as the reference (actual

states) for comparing the results of State Estimator afterwards.

4.2.2 Calculation of Measurement Quantities

The exact measurement data can be calculated using Newton-Raphson load flow states to

extract the measured quantities. To convert the exact measurement data to realistic
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measurement data (which always affected by uncertainty), Normal random numbers with

zero mean and variances according to the measurement devices’ uncertainty are added.

4.2.3 WLS State Estimation

In the last stage the nominal network parameters and the realistic (perturbed)
measurement data are used as inputs to WLS State Estimator to get the State Estimator’s

states and compared to the NR states to get the State Estimation Error.

4.3 Monte Carlo Procedure

Monte Carlo simulation method is based on probability and statistics theory and
methodology. For numerical problems in a large number of dimensions, Monte Carlo
experiments are often more efficient than conventional numerical methods on the other
hand Monte Carlo experiments needs sampling from high dimensional probability
distributions [Hastings 1970]. In Monte Carlo simulation method, the state of each
component in the system is determined by sampling [Wang 2009]. Monte Carlo
experiments rely on repeated random sampling to compute their results when it is

infeasible to compute an exact result with a deterministic algorithm.

In this thesis the uncertainty analysis is performed by Monte Carlo simulation and the

steps are described more in detail in the following:
Step1: Read and preprocess the data:

The data pertaining to network parameters (transmission line’s nominal data),
measurement locations and the standard deviations of measurement instruments

are read. The nominal bus admittance matrix is built.

Step2: Repeat for i = 1 to P sigmas defined per parameters uncertainty (sampling

of parameters noise):

1. Repeat for j=1 to MC tests defined per maximum number of Monte Carlo

trials:
I. Perturb each of the parameters by it" sigma.

II. Repeat I if we get negative values.
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III. Create the perturbed bus admittance matrix using perturbed network

parameters.

IV. Perform Newton-Raphson load flow using bus power injections and

perturbed bus admittance matrix and collect NR states.

V. Calculate the exact measurement data using NR states, perturbed bus

admittance matrix and measurement locations.

VI. Perform WLS State Estimation (SE) using the nominal bus admittance

matrix and perturbed measurements and collect the SE states.
VII. Subtract the NR states from SE states to get the SE error.

2. Calculate the RMS of SE errors and the standard deviations for all Monte

Carlo trials.

Step3: Show the results using statistical indices.

In the next chapter, the algorithm is implemented on different IEEE power test cases and

the numerical results are shown.



CHAPTER 6

Simulation Results

r I Vo analyze the effects of parameter and measurement uncertainties on the power
system state estimation results, the algorithm is tested on several IEEE power
network test cases such as: 14-bus, 30-bus, 57-bus and 118-bus test cases. The network

data files can be downloaded from Power Systems Test Case Archive in [Christie 1999].

In the following sections firstly it is briefly described that how the measurement set is
chosen and then the general criteria for evaluation of simulation results are defined.
Finally for each IEEE test case, the inputs (network data and measurements) are reported

and the simulations results are shown.

For each test case a set of measurement chosen to avoid an unobservable network.
Degree of redundancy (1) is generally expressed as the ratio of number of meters by the
number of states and is a very important quantity because the more redundant
measurements, the more chances for bad data to be detected [Clements 1988]. The

measurement redundancy ratio is defined by:

Number of Measurements

n= Number of States
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Which the number of states is (2N, — 1) for Ny,,; network buses. In fact for practical

implementation, there should be enough redundancy in measurement all over the network

[Pajic 2007].

The measurement set is chosen by calculating “perfect measurements” from the data
available (IEEE test cases come with both network parameters and true states). The
measurement set includes almost all the PV buses (voltage and power injection

measurements) together with some active and reactive power flow measurements.

Choosing of measurement locations are inspired from the literature; for instance for IEEE
14-bus from [Lukomski 2008] [Baran 1995], for IEEE 30-bus from [Kerdchuen 2009],
for IEEE 57-bus from [Chen 2006] and for IEEE 118-bus from [Rakpenthai 2005]. Some
of them altered by the author because of algorithm stability issues according to the

experience.

In reality, actual measurements are not exact and there is a level of uncertainty present in
the measurements. Therefore measurement error must be considered. For instance for the
test cases, the uncertainty for of voltage measurement considered as 0.1 percent of read

value and for power measurement considered as 1 percent of read value:
e oy =0.001
®  OPinj = OQinj = OPp = O¢p = 0.01

These quantities represent the expected accuracy of the meters used and are expressed in
the diagonal elements of the weighting matrix since measurement errors are considered

independent.

In the simulations, the following samples of uncertainty for network parameters are

assigned:
® Oyaram = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25.

The number of Monte Carlo trials is chosen so that the population of samples is sufficient
amount and experimentally it is seen that, for each parameter uncertainty, 1000 Monte
Carlo Trials are sufficient for our analysis. Besides, for most of our simulations the
increase of trials does not affect the results remarkably or extraordinary but for some of
the test cases, the trials are increased up to 5000 to have more reliable data (in the

simulations any change in the number of trials are reported clearly).
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For each network parameter uncertainty, the following actions are done:

» The developed algorithm that described in previous chapter is run on test cases.

Thus for Ny, Monte Carlo Trials, Ny values for each state are extracted.

» Then all of these values are formed a new matrix of size Ny, X Ny, for voltage

magnitude and another matrix of size Ny, X (Np,s — 1) for angles.
» Then for each state, the mean is computed (mean of each column).
» Finally the mean and standard deviation of all the buses is computed.

The mean and standard deviation of voltage magnitudes and angles of each IEEE test
case are used in order to evaluate the State Estimator’s output accuracy according to the

criteria that is described in the next section.

5.1 General Criteria for Evaluation of the Simulation Results

In this section a general criteria is defined according to the desirable properties of a
power state estimator, to evaluate the simulation results. These measures include
evaluation of the mean and standard deviation, biasness and root mean square of state

estimator.

In addition, another simulation is performed to show how much the State Estimator’s
results are mutually connected to each other taking into account that there exists network
parameters uncertainty. The simulations are also repeated for the test networks including

PMU measurement data.

5.1.1 Mean and Standard Deviation of State Estimator
The error bars plots are used to illustrate the mean and standard deviation of voltage
magnitude and voltage angles versus all the network parameters uncertainty samples.

Please note that the states are shown separately in two different figures and the voltage

magnitudes are in Per Unit and the angles are in degrees.

As already described, in WLS State Estimation the theoretical standard deviations of

State Estimator errors can be extracted by taking the square root of the diagonal elements
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of the variance covariance matrix of the estimates. In the figures the distribution of the
theoretical standard deviations are depicted as two horizontal lines (10 above and below

the mean).

As will be seen, in the figures the mean of errors for both voltage magnitudes and angles

don’t start from zero that it implies the effect of the measurement uncertainty.

5.1.2 Bias Test for State Estimator

Another important analysis that can be performed is to check for which network
parameters uncertainties the State Estimator is biased. It is done by using the ratio of
absolute value of voltage error Means by the related Standard Deviations versus the

network parameters uncertainty.

To determine if the State Estimator is biased or not, a threshold can be defined. To have a
vision of this threshold, a horizontal dashed line is also depicted in the figures. It means
that the state estimator is not biased for the network parameters uncertainty range below
this line. To illustrate the dashed line, the value of the Mean of state errors over the

standard deviation is calculated by performing a hypothesis testing considering the

threshold.

5.1.3 Correlation of State Estimator’s Errors

This analysis is intended to show how much the State Estimator’s results are mutually
connected to each other taking into account that there exists network parameters
uncertainty. The State Estimator’s Error correlation coefficient matrix describes the
normalized measure of the strength of linear relationship between State Estimator’s

Errors. Correlation coefficients are given by:

Cov_SE(i,))
\JCov_SE(i,i)Cov_SE(j,})

R(@j) =

where Cov_SE is the covariance matrix of State Estimator’s errors. The diagonals of
Correlation coefficients matrix are equal to 1 and the other elements of correlation

coefficients matrix will be in the range between -1 to 1.

For each network case, the correlation coefficients of State Estimator’s errors are plotted

versus parameters uncertainty for Voltage errors and Phase errors.
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The values close to 0 suggest there is no linear relationship between the data. Values
close to 1 suggest that there is a positive linear relationship between the data and the
values close to -1 suggest that there is a negative linear relationship between the data

(anti-correlation).

5.1.4 Parameter’s Correlation Effect
Another analysis about the correlation effect that is performed in this section is the
evaluation effects of parameter’s correlation on different IEEE test cases.

For this aim, firstly the nominal values of line resistances are correlated with a correlation

coefficient (the line resistances with zero nominal values were not correlated).

Then the ratio of the mean of voltage magnitudes errors (and angles errors separately) by
standard deviations for each test case is displayed versus the network parameter

uncertainties.

Having parameters correlated, a threshold again is set by a horizontal dashed line in the

figures to determine if the State Estimator is biased or not.

5.1.5 The Results with PMU

In this analysis, the bias testing of State Estimator is performed when PMU

measurements are also included in the measurement set.
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5.2 Test of Algorithm on IEEE 14-Bus Case

The one-line diagram of the IEEE 14-Bus test case with measurement locations is
illustrated in Figure 5.1. This network has been used in many references that are cited in
this thesis and in many examples during the research. The original network and data files

can be found in [Christie 1999].

@ Generators
@ Synchronous Condensers

12

WV 7
ﬁq?._,,
M ]
|| =
MIG 2
©
® Bus voltage measurement
A 3=
4 Power injection measurement
® Power flow measurement @

Figure 5.1 IEEE 14-Bus Test Case with Measurement locations

For not experiencing the observability problem, totally 41 measurements are selected. For

14 buses, there are (2 X 14 — 1) states, so the measurement redundancy ratio will be:
n~=15

The measurement set for this test case almost includes all the PV buses (voltage and
power injection measurements) together with some power flow measurements as the

following:
e Voltage magnitudes at buses 1, 2, 3, 6 and 8.
e 9 active and reactive power injections at buses 1, 2, 6, 8,9, 10, 11, 12 and 14.

e 9 active and reactive power flows on branches 1-2, 1-5, 2-3, 2-4, 34, 4-5, 4-7,
5-6, and 6-13.

For each 0,4-qm, the actions that are done could be summarized as:

» The developed algorithm that described in previous chapter is run on this test

case. Thus 1000 values for each state are extracted which divided into one matrix
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of 1000 by 14 for voltage magnitude and another matrix of size 1000 by 13 for

phases.
» Then for each state, the mean is computed.

» Then the mean and standard deviation of all buses for each parameter uncertainty

is computed.

5.2.1 Mean and Standard Deviation of State Estimator

The error bars plots for mean and standard deviation of voltage magnitude and voltage
angles versus all the network parameters uncertainty samples are shown respectively in
Figure 5.2 and Figure 5.3.
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Figure 5.2 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 14-Bus test case.
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Figure 5.3 Mean and Standard Deviation of Voltage Angle Errors for IEEE 14-Bus test case.

In the figures the mean of errors for both voltage magnitudes and angles don’t start from

zero point showing the effect of the measurement uncertainty.

The figures clearly show that by growth of the network parameters uncertainty, the mean

and standard deviation of errors will considerably grow.

Therefore the State Estimation’s standard deviation is underestimated enormously, if just

the theoretical standard deviations are taken into consideration.

To see how much the mean standard deviation and deviation of State Estimator errors are
affected by measurement uncertainty, the same procedure is done for different
measurement uncertainties. In Figure 5.4 and Figure 5.5 using different line styles
displaying different measurement uncertainties, the error bar plots for mean and standard
deviation of voltage magnitude and voltage angles versus all the network parameters
uncertainty are shown respectively. These figures are only shown for IEEE 14-Bus test

casc.
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Figure 5.4 Mean and Standard Deviation of Voltage Magnitude Errors for Different Measurement Uncertainties for
IEEE 14-Bus test case
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Figure 5.5 Mean and Standard Deviation of Voltage Angles Errors for Different Measurement Uncertainties for IEEE
14-Bus test case
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As seen in the figures above, when the measurement uncertainty grows, the starting point

goes farther from zero and the error mean shifts upward.

5.2.2 Bias Testing for State Estimator

Figure 5.6 and Figure 5.7 show the ratio of absolute value of voltage error Means by the
related Standard Deviations versus the network parameters uncertainty respectively for

voltage magnitudes and angles for IEEE 14-bus test case.
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Figure 5.6 Ratio of the Mean of voltage magnitude errors by related Standard Deviations for IEEE 14-Bus test case.
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Figure 5.7 Ratio of the Mean of voltage angle errors by related Standard Deviations for IEEE 14-Bus test case.

A horizontal dashed line is also depicted in the figures to give an idea about the 5 percent
of threshold, meaning that the state estimator is not biased for the network parameters

uncertainty range below this line.

According to the figures, it is apparent that the State Estimator is not biased for the

parameters uncertainties up to nearly 7 percent.

5.2.3 Correlation of State Estimator’s Errors

In Figure 5.8 and Figure 5.9 the correlation coefficients of State Estimator’s errors versus

parameters uncertainty are shown for Voltage errors and Phase errors respectively.
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Figure 5.8 Correlation of State Estimator’s Errors (Voltage) of IEEE 14-Bus test case.
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Figure 5.9 Correlation of State Estimator’s Errors (Phase) of IEEE 14-Bus test case.
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In Figure 5.8 and Figure 5.9 it is noticeable that the State Estimator’s Errors are
correlated so much when there is no parameters uncertainty. By increasing the network
parameters uncertainty up to about 10%, the estimated voltage errors will be roughly
uncorrelated but the estimated voltage phases will be still correlated even for large

parameters uncertainties up to 25%.

5.2.4 Parameter’s Correlation Effect on IEEE 14-Bus case

To perform this analysis, the nominal values of line resistances are correlated with the
correlation coefficient of 0.8 and the line resistances with zero nominal values were not

correlated.

With having parameters correlation, the ratio of the mean of voltage magnitudes and
angles errors by Standard Deviations for IEEE 14-Bus test case are shown in Figure 5.10

and Figure 5.11.
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Figure 5.10 Ratio of the Mean of voltage magnitudes errors by Standard Deviations with parameters correlation for
IEEE 14-Bus test case.
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Figure 5.11 Ratio of the Mean of voltage angles errors by Standard Deviations with parameters correlation for [EEE
14-Bus test case.

By comparing the Figure 5.6 and Figure 5.7 with above figures (Figure 5.10 and Figure
5.11), it can be concluded that when the network parameters are correlated, the State

Estimator is more biased (for smaller parameters uncertainties).

5.2.5 The Results with PMU

Figure 5.12 and Figure 5.13 show the bias tests for voltage magnitudes and phases

respectively when there exist two PMUs on bus number 6 and 9.
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Figure 5.12 Ratio of the Mean of voltage magnitude errors by related Standard Deviations with the presence of PMU

measurements for IEEE 14-Bus test case
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As it is clear in the figures, when there is PMU installed, the output of SE voltage
magnitudes are less biased (for bigger range of network parameters) and the SE output of

phases are totally not biased.

5.3 Test of Algorithm on IEEE 30-Bus Case

The one-line diagram of the IEEE 30-Bus test case is illustrated in Figure 5.14. The

original network and data files can be found in [Christie 1999].
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Figure 5.14 IEEE 30-Bus Test Case One-Line Diagram

For not experiencing the observability problem, totally 83 measurements are selected.

The measurement redundancy ratio will be:
n=14

The measurement set for this test case almost includes all the PV buses (voltage and

power injection measurements) together with power flow measurements as the following:
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e Voltage magnitudes at buses 1, 2, 3,4,5,6,7,8,9, 10 and 11.

e Active and reactive power injections at buses: 2, 3, 5, 8,9, 11, 12, 13, 17, 20, 25,
27,28 and 29.

e Active and reactive power flows on branches: 1-3, 2-6, 2-4, 7-5, 4-6, 6-28, 6-8, 6-
9,10-6,12-13, 12-15, 10-20, 10-17, 10-21, 14-15, 15-23, 15-18, 22-24, 25-26, 25-
27, 28-27 and 29-30.

5.3.1 Mean and Standard Deviation of State Estimator

The error bars plots for mean and standard deviation of voltage magnitude and voltage
angles versus all the network parameters uncertainty samples are shown respectively in

the Figure 5.15 and Figure 5.16.
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Figure 5.15 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 30-Bus test case.
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Figure 5.16 Mean and Standard Deviation of Voltage Angle Errors for IEEE 30-Bus test case.

In the figures, the mean of errors for both voltage magnitudes and angles don’t start from

zero point showing the effect of the measurement uncertainty.

The figures clearly show that by growth of the network parameters uncertainty, the mean

and standard deviation of errors will considerably grow.

Therefore the State Estimation’s standard deviation is underestimated enormously, if just

the theoretical standard deviations are taken into consideration.

5.3.2 Bias Testing for State Estimator

Figure 5.17 and Figure 5.18 show the ratio of absolute value of voltage error Means by
the related Standard Deviations versus the network parameters uncertainty respectively

for voltage magnitudes and angles for IEEE 30-bus test case.
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Figure 5.17 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 30-Bus test case.
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Figure 5.18 Mean and Standard Deviation of Voltage Angle Errors for IEEE 30-Bus test case.
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A horizontal dashed line is also depicted in the figures to give an idea about the 5 percent
of threshold, meaning that the state estimator is not biased for the network parameters

uncertainty range below this line.

According to the figures, it is apparent that the State Estimator is not biased for the

parameters uncertainties up to nearly 10 percent.

5.3.3 Correlation of State Estimator’s Errors

In Figure 5.19 and Figure 5.20 the correlation coefficients of State Estimator’s errors

versus parameters uncertainty are shown for Voltage errors and Phase errors respectively.
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Figure 5.19 Correlation of State Estimator’s Errors (Voltage Magnitude) of IEEE 30-Bus test case.
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Figure 5.20 Correlation of State Estimator’s Errors (Angles) of IEEE 30-Bus test case.

In Figure 5.19 it is noticeable that the State Estimator’s Voltage Magnitude Errors are a
little bit correlated and by increment of network uncertainty, the correlation goes even
lesser. This behavior is because of the voltage measurement locations that are less

compared to IEEE case 14-bus.

The Figure 5.20 shows that the State Estimator’s Angles Errors are correlated so much
when there is no parameters uncertainty and the Angles errors will be still correlated even

for large parameters uncertainties up to 25%.

5.3.4 Parameter’s Correlation Effect on IEEE 30-Bus case

To perform this analysis, the nominal values of line resistances are correlated with the
correlation coefficient of 0.8 and the line resistances with zero nominal values were not

correlated.

With having parameters correlation, the ratios of the mean of voltage magnitudes and
angles errors by Standard Deviations for IEEE 30-Bus test case are shown in Figure 5.21

and Figure 5.22.
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Figure 5.21 Ratio of the Mean of voltage magnitudes errors by Standard Deviations with parameters correlation for
IEEE 30-Bus test case.
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Figure 5.22 Ratio of the Mean of voltage angles errors by Standard Deviations with parameters correlation for [EEE
30-Bus test case.



Chapter 6. Simulation Results

By comparing the Figure 5.21 and Figure 5.22 with the bias testing figures without
parameter correlation for this test case in Figure 5.17 and Figure 5.18, it can be

concluded that when the network parameters are correlated, the State Estimator is more

biased (for smaller parameters uncertainties).

5.3.5 The Results with PMU

According to the optimal PMU locations developed in [Chakrabarti 2009], for this test
case PMU are placed on 5 buses that shown in Table 5.1.

Figure 5.23 and Figure 5.24 show the bias tests for voltage magnitudes and phases

respectively.

Table 5.1 PMU locations for IEEE 30-Bus test case
PMU placed on bus number:
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Figure 5.23 Ratio of the Mean of voltage magnitude errors by related Standard Deviations with the presence of PMU
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Figure 5.24 Ratio of the Mean of voltage Angle errors by related Standard Deviations with the presence of PMU

measurements for IEEE 30-Bus test case.

As it is clear in Figure 5.24, when there are PMUs installed, the output of State

Estimator’s voltage Angles are not biased for the network parameter uncertainties up to
25%.

It is mentionable that in Figure 5.23, the bias behavior is not affected significantly in this
test case, it is mostly because the PMUs are placed on the buses that there was already

voltage meter available.

5.4 Test of Algorithm on IEEE 57-Bus Case

The one-line diagram of the IEEE 57-Bus test case is illustrated in Figure 5.25. The

original network and data files can be found in [Christie 1999].
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Figure 5.25 IEEE 57-Bus Test Case One-Line Diagram

For this test case, totally 166 measurements are selected. The measurement redundancy

ratio will be:
n~=147

The measurement set for this test case almost includes all the PV buses (voltage and

power injection measurements) together with power flow measurements as the following:
e Voltage magnitudes at PV buses: 1, 2, 3, 6, 8 and 9.

e Active and reactive power injections at buses: 1, 2, 3,5, 6,7, 8,9, 11, 17, 20, 21,
25,29, 30, 31, 33, 34, 37, 38, 39, 40, 44, 45, 46, 48, 49, 52, 54, 55, 56 and 57.

e Active and reactive power flows on branches: 1-2, 1-15, 2-3, 3-4, 4-5, 7-6, 8-
6, 8-9, 9-13, 11-9, 11-13, 12-13, 13-49, 14-15, 19-18, 20-19, 23-22, 24-23,
24-25, 24-26, 27-26, 27-28, 30-25, 30-31, 31-32, 32-34, 32-33, 34-35, 36-
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35, 36-37, 36-40, 37-38, 38-22, 38-40, 40-49, 40-56, 41-43, 42-41, 45-15,
46-47, 47-48, 48-49, 49-50, 50-51, 52-53, 53-54, 54-55 and 55-9.

5.4.1 Mean and Standard Deviation of State Estimator

The error bars plots for mean and standard deviation of voltage magnitude and voltage
angles versus all the network parameters uncertainty samples are shown respectively in

the Figure 5.26 and Figure 5.27.
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Figure 5.26 Mean and Standard Deviation of Voltage Magnitude Errors for [EEE 57-Bus test case.
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Figure 5.27 Mean and Standard Deviation of Voltage Angle Errors for IEEE 57-Bus test case.

In the figures, the mean of errors for both voltage magnitudes and angles don’t start from

zero point showing the effect of the measurement uncertainty.

The figures clearly show that by growth of the network parameters uncertainty, the mean
and standard deviation of errors will considerably grow. Therefore if just the theoretical
standard deviations are taken into consideration, the State Estimation’s standard deviation

is underestimated enormously.

5.4.2 Bias Testing for State Estimator

Figure 5.28 and Figure 5.29 show the ratio of absolute value of voltage error Means by
the related Standard Deviations versus the network parameters uncertainty respectively

for voltage magnitudes and angles for IEEE 57-bus test case.
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Figure 5.28 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 57-Bus test case.
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Figure 5.29 Mean and Standard Deviation of Voltage Angle Errors for IEEE 57-Bus test case.
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A horizontal dashed line is also depicted in the figures to give an idea about the 5 percent
of threshold, meaning that the state estimator is not biased for the network parameters

uncertainty range below this line.

According to the figures, it is apparent that for this power network test case the State
Estimator’s Voltage Magnitude and Voltage Angle outputs are not biased for the

parameters uncertainties up to nearly 4 percent and 8 percent respectively.

5.4.3 Correlation of State Estimator’s Errors

In Figure 5.30 and Figure 5.31 the correlation coefficients of State Estimator’s errors

versus parameters uncertainty are shown for Voltage errors and Phase errors respectively.
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Figure 5.30 Correlation of State Estimator’s Errors (Voltage Magnitude) of IEEE 57-Bus test case.
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Figure 5.31 Correlation of State Estimator’s Errors (Angles) of IEEE 57-Bus test case.

In Figure 5.30 it is noticeable that the State Estimator’s Voltage Magnitude Errors are a
little bit correlated and by increment of network uncertainty, the correlation goes even
lesser. This behavior is because of the voltage measurement locations that are less

compared to IEEE case 14-bus.

The Figure 5.31 shows that the State Estimator’s Angles Errors are correlated
considerably when there is parameters uncertainty and the Angles errors will be still
correlated even for large parameters uncertainties up to 25%. State Estimator’s Angles

Errors are less correlated when there is no parameters uncertainty.

5.4.4 Parameter’s Correlation Effect on IEEE 57-Bus case

To perform this analysis, the nominal values of line resistances are correlated with the
correlation coefficient of 0.8 and the line resistances with zero nominal values were not

correlated.

With having parameters correlation, the ratio of the mean of voltage magnitudes and
angles errors by Standard Deviations for IEEE 57-Bus test case are shown in Figure 5.32

and Figure 5.33.
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Figure 5.32 Ratio of the Mean of voltage magnitudes errors by Standard Deviations with parameters correlation for

IEEE 57-Bus test case.
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Figure 5.33 Ratio of the Mean of voltage angles errors by Standard Deviations with parameters correlation for [EEE

57-Bus test case.
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By comparing Figure 5.32 and Figure 5.33 with the figures of bias testing without
parameter correlation for this test case (Figure 5.28 and Figure 5.29), it is evident that

when the network parameters are correlated, the State Estimator is more biased and.

This test case showed this effect prominently after increasing the number of Monte Carlo

trials to 5000.

5.4.5 The Results with PMU

According to the optimal PMU locations developed in [Chakrabarti 2009], for this test
case 7 PMUs are placed on the buses that shown in Table 5.2.

Table 5.2 PMU locations for IEEE 57-Bus test case
PMU placed on bus number:

4
9
15
20
24
53
57

Figure 5.34 and Figure 5.35 show the bias tests for voltage magnitudes and phases

respectively.
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Figure 5.34 Ratio of the Mean of voltage magnitude errors by related Standard Deviations with the presence of PMU

measurements for IEEE 57-Bus test case.
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Figure 5.35 Ratio of the Mean of voltage Angle errors by related Standard Deviations with the presence of PMU

measurements for IEEE 57-Bus test case.
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According to the Figure 5.34 and Figure 5.35, when there are PMU measurements for
this test case, the output of State Estimator’s voltage Magnitudes and Angles are less

biased (for bigger range of network parameters).

5.5 Test of Algorithm on IEEE 118-Bus Case

The one-line diagram of the IEEE 118-Bus test case is illustrated in Figure 5.36. Network

parameters and Bus data for this test case can be found in [Christie 1999].

Figure 5.36 IEEE 118-Bus Test Case One-Line Diagram

For this test case, totally 365 measurements are selected. The measurement redundancy

ratio will be:
n = 1.55

The measurement set for this test case almost includes all the PV buses (voltage and

power injection measurements) together with power flow measurements as the following:

e Voltage magnitudes at PV buses: 1,2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16,
17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
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39,40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,73, 74,75, 76, 77, 78, 79, 80, &1, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110, 111, 112 and 113.

e Active and reactive power injections at buses: 2, 3, 7, 8, 10, 12, 13, 15, 16, 17, 18,
21,22,23,24,27,28,29, 31, 33, 38, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 63, 65,
69, 70, 71, 73, 74, 75, 81, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 95, 96, 97, 100,
101, 102, 103, 104, 105, 106, 110, 111, 112, 113, 115, 116 and 118.

e Active and reactive power flows on branches: 1-2, 1-3, 3-5, 5-6, 7-12, 8-5, 8-9, 9-
10, 11-4, 12-14, 17-15, 17-30, 18-17, 19-20, 25-26, 29-31, 31-32, 32-114, 34-36,
35-36, 35-37, 37-39, 37-40, 38-37, 38-65, 39-40, 40-41, 49-54, 50-49, 51-49, 51-
52, 51-58, 52-53, 54-55, 54-59, 59-55, 59-56, 59-60, 59-61, 61-60, 63-59, 64-61,
65-68, 66-49, 66-62, 66-67, 69-68, 71-70, 77-78, 80-77, 80-79, 80-98, 81-68, 83-
84, 85-86, 86-87, 95-96, 96-97 and 105-108.

5.5.1 Mean and Standard Deviation of State Estimator

The error bars plots for mean and standard deviation of voltage magnitude and voltage
angles versus all the network parameters uncertainty samples are shown respectively in

the Figure 5.37 and Figure 5.38.



Chapter 6. Simulation Results

x 10° std(V errors)

/

Mean of standard deviations of Voltage errors

0 -, 1 1
0 0.05 0.1 0.15 0.2 0.25
Parameters Standard Deviations

Figure 5.37 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 118-Bus test case.
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Figure 5.38 Mean and Standard Deviation of Voltage Angle Errors for IEEE 118-Bus test case.
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The figures clearly show that by growth of the network parameters uncertainty, the mean
and standard deviation of errors will considerably grow. Therefore if just the theoretical
standard deviations are taken into consideration, the State Estimation’s standard deviation

is underestimated enormously. The results are based on 5000 Monte Carlo Trials.

In the figures, the mean of errors for both voltage magnitudes and angles don’t start from

zero point showing the effect of the measurement uncertainty.

5.5.2 Bias Testing for State Estimator

Figure 5.39 and Figure 5.40 show the ratio of absolute value of voltage error Means by
the related Standard Deviations versus the network parameters uncertainty respectively

for voltage magnitudes and angles for IEEE 118-bus test case.
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Figure 5.39 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 118-Bus test case.
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Figure 5.40 Mean and Standard Deviation of Voltage Angle Errors for IEEE 118-Bus test case.

A horizontal dashed line is also depicted in the figures to give an idea about the 5 percent
of threshold, meaning that the state estimator is not biased for the network parameters

uncertainty range below this line.

According to the figures, it is apparent that for this test case the State Estimator’s Voltage
Magnitude and Voltage Angle outputs are not biased for the parameters uncertainties up

to nearly 6 percent and 12 percent respectively.

5.5.3 Correlation of State Estimator’s Errors

In Figure 5.41 and Figure 5.42 the correlation coefficients of State Estimator’s errors

versus parameters uncertainty are shown for Voltage errors and Phase errors respectively.
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Correlation Coefficients

Figure 5.41 Correlation of State Estimator’s Errors (Voltage Magnitude) of IEEE 118-Bus test case.
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Figure 5.42 Correlation of State Estimator’s Errors (Angles) of IEEE 118-Bus test case.
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In Figure 5.41 it is noticeable that the State Estimator’s Voltage Magnitude Errors are
almost not correlated to each other and by increment of network uncertainty it remains
uncorrelated. This behavior is mostly because of choosing too many Voltage Magnitudes
measurements. The Figure 5.42 shows that the State Estimator’s Angles Errors are
moderately correlated and when there is parameters uncertainty, the Angles errors will be

still correlated even for large parameters uncertainties up to 25%.

5.5.4 Parameter’s Correlation Effect on IEEE 118-Bus case

To perform this analysis, the nominal values of line resistances are correlated with the
correlation coefficient of 0.8 and the line resistances with zero nominal values were not

correlated.

With having parameters correlation, the ratios of the mean of voltage magnitudes and
angles errors by Standard Deviations for IEEE 118-Bus test case are shown in Figure

5.43 and Figure 5.44.
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Figure 5.43 Ratio of the Mean of voltage magnitudes errors by Standard Deviations with parameters correlation for
IEEE 118-Bus test case.
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Figure 5.44 Ratio of the Mean of voltage angles errors by Standard Deviations with parameters correlation for [EEE
118-Bus test case.

By comparing Figure 5.43 and Figure 5.44 with the figures of bias testing without
parameter correlation for this test case (Figure 5.39 and Figure 5.40), it is evident that
when the network parameters are correlated, the State Estimator’s Voltage magnitude
errors are totally biased and the State Estimator’s Voltage magnitude errors is on the edge

of biasness for different network parameters.

5.5.5 The Results with PMU

According to the optimal PMU locations developed in [Chakrabarti 2009], for this test
case 13 PMUs are placed on the buses that shown in Table 5.3.

Table 5.3 PMU locations for IEEE 118-Bus test case
PMU placed on bus number:

3
12
21
30
37
45
56




Chapter 6. Simulation Results 87

64
75
85
94
105
114

Figure 5.45 and Figure 5.46 show the bias tests for voltage magnitudes and phases

respectively.
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Figure 5.45 Ratio of the Mean of voltage magnitude errors by related Standard Deviations with the presence of PMU

measurements for IEEE 118-Bus test case.
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Figure 5.46 Ratio of the Mean of voltage Angle errors by related Standard Deviations with the presence of PMU

measurements for IEEE 118-Bus test case.

Considering the Figure 5.45 and Figure 5.46 and comparing them with Figure 5.39 and
Figure 5.40, it is apparent when there are PMU measurements for this test case, the
output of State Estimator’s voltage Magnitudes are less biased (for bigger range of
network parameters) and the output of State Estimator’s voltage Angles are not biased at

least for the parameters uncertainty up to 25%.
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Conclusions

In this thesis an algorithm for analyzing both the effects of network parameters
uncertainty along with the measurement uncertainty on WLS state estimator is proposed
and simulated on IEEE 14-Bus, 30-Bus, 57-Bus and 118-Bus test cases in Matlab
simulation environment. The results of simulations show that the state estimator’s
accuracy is affected considerably according to the network parameters uncertainty and
the amount of variations are illustrated by means of state errors distribution (in terms of
error bars representing the distribution mean and 1o standard deviation) versus the

network parameters uncertainty for the test cases.

The lack of literature studies about the analysis of network parameters effects on
WLS State Estimator’s bias performance led us to perform a new prominent analysis to
find how network parameters uncertainty can affect the state estimator’s bias (for a given
measurement uncertainly). Hence it is done by using the ratio of absolute value of state
error means by the related standard deviations versus the network parameters uncertainty

and comparing it with a predefined threshold.

WLS State Estimation provides a mathematical expression for calculating the
variance covariance matrix of State Estimates and when there is network parameters
uncertainty, the simulations confirm that the State Estimation’s standard deviation is
underestimated enormously because only the uncertainty of measurement data is

considered.

Phasor Measurement Unit (PMU) can be used to make the state estimates less
sensitive to the network parameters uncertainty, because the analysis show that when

PMU measurement data are included in the traditional measurement set, the outputs of
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State estimator are comparatively much less biased so that in some test cases, the State

estimator’s phases are totally unbiased for huge range of network parameters.

Lastly an analysis is carried out to illustrate how much the State Estimator’s results
are mutually connected to each other when the network parameters have uncertainty. The
results reveal that when there is no parameters uncertainty the State Estimator’s Angle
errors are correlated considerably and by increment of network parameter uncertainty, the
correlation effect will be a little bit smaller. While the State Estimator’s Voltage
Magnitude errors are correlated moderately when there is no parameters uncertainty and
by increment of network parameter uncertainty, the correlation effect will significantly

goes smaller.
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Appendices

Proof of the Jacobian of J(x)

The first derivative of J(x) with respect to x is:

0J(x)  Oy"Ety =y I () = fOOTI Yy + ()T ES f(0)]

ox 0x
d 0
]a(;C)z_yTZ371 ];Ecx)_yTZylr af (x)  fayre LD f() FFETE ];Ecx)

The variance-covariance matrix of measurements X, 1 is symmetrical so we can simplify:

() _ _ f ( ) L 0f(x)
o= =2y B 2f ()T
oJ(x) f(x)

- = =2y~ "5y [

The Jacobian matrix of J(x) is defined by g(x):

a T
gx) = [ ]a(;)

——zlf() Ay — £(0]
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Proof of the Hessian of J(x)

The Hessian matrix of J(x) is the second derivative with respect to x:

Hx) = ag(sc)

0| -2[ 28 sy - f(x)]]
HEx) = 0x

[ T T

(-2 [%gcx)] 2;1y+2[%gcx)] 2;1f(x)l

HOO =— 0x
GE GE of ] __ [0
Hx) = ~2y7 550 f( )+2f( izt af(zx) 2[ ];ECX) Z;ll ];Ecx)
L) [ [ ()

HE) = 2[f ()" = y'15 " —— +2_ 7 | 2

L) _[of] . [af (0]
H(x) = 2[-r]"Z;? Py +2l w Zyll ox |

By neglecting the first part of above equation, we can write the Hessian matrix of J(x) as:

I f (x)l af (x)

H(x) =2
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Derivation of power network equations using a sample network

In this section the equations for the power calculations for a node will be inspected. Let’s

consider a sample power network as shown in the figure below:

Branch @

—eNode
Figure 5.47 Tree of the connected graph of a sample power network
Here all the complex power injections for one node are going to be written and it could

be applied to all the nodes in the network. We consider node 3 and all the branches

connected to it (Figure below):

Figure 5.48 The Node 3 in the sample power network along with the all branches connected and the illustration of

equivalent pi model for each branch

To find the power injections S, and S; and Sg we use the equivalent pi model described in

the previous section. The power injection equations will be:
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532 =@+ }_’30)*‘73‘73* - )72*V3V2*

S3a = (F3 + ¥30) VaVs — y5" V3V

536 = (s + }_’30)*‘73‘73* - )_’6*]73‘76*

The relationship between the injected complex powers in a node is ¥ S = 0. For node 3 it

will be:

S32+ 834+ S36=0

(V2 + ¥30) VaVs = 92" VsV5 + (73 + ¥30) VaVs — 73" VsVy + (F6 + ¥30) VaVs — ¥6 V3Vg = 0
(V2 + V3 + V6 + 3730) V3 1? = [72"V5 + 73"V + J6" Vs 1V3 = 0

The last equation is the desired non-linear function that relates the states to the physical

admittances for the sample power network.
Generalization of Power Equations

The total power fluxes equation for the sample network will be written in order to
conclude the equations for a general network easier. The injected powers in nodes are the

measured quantities.

\A“ ‘,_) Skh @ S
k
=<0
o5 7 Ski

Figure 5.49 Sample network with two branches connected to a generator (power injector) along with the illustration of

equivalent pi model

Skn = Grn + Ik0) ViVie = Yien ViV
Ski = ki + Fio) ViV = Vi ViV
In node k, the injected power, G is equal to the total power fluxes:

Sk = Skn + Ski
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Sk = Gin + Yk0) ViVie = Vi ViV + ki + Vo) VieVie = Vi Vi Vi
Sk = Gkn + Fri + 25k0) " WViel* = GienV + FiiVi) " Vic

The elements of node admittance can be written as:

Yikn = Gkn + jbkn

Note that y,, is equal to yy, and accordingly gxn = gnk and bxp = bpg.

Consequently the complex node power injection can be expressed as:

Py +jQx =
= (gn + jbrn + Gri + jbri + 29x0 + j2bro)*IViel* = (9xn Vi + jbrnVi + giiVi + jbiiVy)* Vi

Py +jQi =
= (grn — jbin + Gki = ibki + 29k0 = J2bk) Vel — Gicn ViV + ibin ViV —
— 9xiViVi” + jbuiVicVi

And using polar form of voltage it will be:

P +jQy =
= (gkn — jbkn + ki — jbri + 29k0 — J2bko) IVic|? = Gin Vil [V |€%%1 + jbyp, |V ||V, | € Oren —
— Gril Vil Vi1 €79k + jby; |V ||V | €Ok

Using Euler rule: e/? = cos 6 + j sin 8 we will have:

Pp+jQr =
= (Gkn + ki + 29ko — J (b + bii + 2bio))|Vie|* =
— Gl Vicl V| (cos Byp, + j sin Oy) + jbyen|Viel [V | (cos By, + j sin Oyp) —
= kil Vil 1Vi| (cos Oy; + j sin Oy;) + jby| Vil Vil (cos By + j sin ;)

Pp+jQr =
= (gkn + Gi + 29k0) [Vie|* = j(bin + byi + 2bo) Vic|? = gin Vil Vi cos Oy, —
— jkn Vil Vi sin Oy, + jbin Vil Vi | cos B, — byep | Viel Vi, | sin Oy, —
— gkl Vil IVil cos Ox; — jguilViel IVi| sin 6y; + jbii Vil V| cos B — byi V| [V;] sin 6
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Py +jQx =
= (9kn + Iri + 29k 1Viel* = Gin Vil IVi| cos O, — bip | Vi ||V | sin 6y, —
— kil Vie|IV;i| cos Oy; — by; [V [|V; | sin Oy + j[—(brn + b + 2bi) Vi |* —

— Ginl Vil IVi | sin Oy, + by [Vie ||V | cos O, — G Vie [ IV;] sin 0y +
+ by Vil Vi | cos 6]

Splitting above equation into real and imaginary parts gives the active and reactive node

power injection at node k in polar form.
Pk =

= (Grn + Gri + 29k Vie|* = gien Vil V| cos O, — bin | Vil [V | sin 6y, —
— kil Vie|IV;i| cos Oy; — by; [V [|V; | sin Oy

Qx =
= —(bgp + bii + 2bk) Vi |? — Gien Vil IV | sin Oy, + by [V ||V, | cos 6 —
— kil Vi |1V sin 6y; + by [Vie||V;] cos Oy,

Above equations are the total power fluxes equations for the sample network (top figure).
To conclude it for a general network, we simplify and then use a summation notation to

include all nodes. Therefore firstly for active node power it can be written that:

Pk =
= (grn + Gri + 29k Viel* = (Gin €08 Opep, + biep 5in O Ve[ [V | — (g €0 By +
+ by sin 05 [V ||V

n

Pk = Gkk|Vk|2 —ZleHV]l(gk] Ccos Hk] + bk] Sin9kj)
=
Jj*k

Where the index j is the node number from 1 to n. For reactive node power it can be

written in a similar way that:

n

Qk = =Byl Vie|* = Zle”le(gkj sin By — by cos Oy;)
=
j*k
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Matlab Codes: Implementation of Newton-Raphson Load Flow

function [V,phi] = newton (Ybus_nr)
%% Newton-Raphson Load Flow
global nbus baseMVA busdatas

%% Getting busdata

type = busdatas(:,2); Type of Bus 1-Slack, 2-PV, 3-PQ

V = busdatas(:,3); Slach Voltage and Voltage mag intitials
Vsp = busdatas(:,3); % Slach Voltage and Voltage mag intitials

o de

phi = busdatas(:,4); % Voltage Angle intitials
Pg = busdatas(:,5) /baseMVA;

Qg = busdatas(:,6) /baseMVA;

Pl = busdatas(:,7) /baseMVA;

Q1 = busdatas(:,8) /baseMVA;

Omin = busdatas(:,9) /baseMVA; % Minimum Reactive Power Limit..
Qmax = busdatas(:,10) /baseMVA; % Maximum Reactive Power Limit..
Psp = Pg - Pl; % calculate powers in the busses: P Specified

Qsp = Qg - Q1; % calculate powers in the busses: Q Specified

pq = find(type == 3); % PQ Buses (there is no generation)
pv = find(type == 2 | type == 1); % PV Buses

oo

npq = length(pq) ; No. of PQ buses

G_nr = real(Ybus_nr);
B_nr = imag(Ybus_nr);
Tol = 1;
itr = 1;

%% Iteration Starts:
while (Tol > le-9 && itr < 100)

P

zeros (nbus,1) ;

zeros (nbus,1) ;

Q

% Calculate P and Q
for i = 1l:nbus
for k = 1l:nbus
P(i) = P(i) + V(i)* V(k)*(G_nr(i,k)*cos(phi(i)-phi(k)) +
B nr(i,k)*sin(phi(i)-phi(k))); % pp. 77 Wang. (eq 2.9)
Q(i) = Q(i) + V(i)* V(k)*(G_nr(i,k)*sin(phi(i)-phi(k)) -
B nr(i,k)*cos(phi(i)-phi(k))); %
end
end
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% Checking Q-limit
if itr <= 7 && itr
for n = 2:nbus

if type(n)

violations..

> 2 % Only checked up to 7th iterations..

QG = Q(n)+Q1 (n);

if QG < Qmin (n)
V(n) = V(n) + 0.01;

elseif QG > Qmax(n)
V(n) = V(n) - 0.01;

end
end
end
end
dP = Psp-P;
2.13)
dol = Qsp-Q; %
k =1;

dQ = zeros (npq,1);
for i = 1l:nbus

if type(i) == 3
do(k,1) = dQ1(i);
k = k+1;
end
end
r = [dP(2:nbus); dQ]; % Mismatch Vector, not considering the

first value that is the slack bus P,Q

%% The Jacobian matrix

Jl zeros (nbus-1,nbus-1) ;
for i = 1: (nbus-1)
m = i+l1;
for k = 1: (nbus-1)
n = k+1;
ifn=m
for n = 1l:nbus
Jl(i,k) = J1(i,k)

V(n) *(G_nr(m,n) *sin (phi (m) -phi (n))

Pp. 84 Wang. eq(2.41)
end

Jl(i,k) = J1l(i,k) - V(m)*2*B _nr(m,m);

else

Jl(i,k) = V(m)* V(n)*(G_nr(m,n)*sin(phi (m)-phi(n))
PP- 84 Wang.

B _nr(m,n) *cos (phi (m)-phi(n))); %
end
end
end

% J2 - Derivative of Real Power Injections with V

J2 = zeros(nbus-1,npq);

- B_nr(m,n)*cos (phi (m) -phi(n))) ;

% Calculate change from specified value pp.78 Wang.

% J1 - Derivative of Real Power Injections with Angles

- V(m)*

eq(2.42)
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for i = 1: (nbus-1)
m = i+1;
for k = 1:npq
n = pq(k);
ifn=m
for n = 1l:nbus
J2(i,k) = J2(i,k) + V(n)*(G_nr(m,n)*cos(phi (m)-
phi(n)) + B_nr(m,n)*sin(phi(m)-phi(n)));
end
J2(i, k) = J2(i,k) + V(m)*G_nr(m,m);

else
J2(i,k) = V(m)*(G_nr(m,n)*cos (phi (m) -phi(n)) +
B nr(m,n)*sin(phi (m)-phi(n))) ;
end
end
end

% J3 - Derivative of Reactive Power Injections with Angles
J3 = zeros (npqgq,nbus-1) ;

ifn=m
for n = 1l:nbus
J3(i,k) = J3(i,k) + V(m)*
V(n) *(G_nr(m,n) *cos (phi (m) -phi(n)) + B nr(m,n)*sin(phi(m)-phi(n)));
end
J3(i,k) = J3(i,k) - V(m)*2*G_nr(m,m);

else
J3(i,k) = V(m)* V(n)*(-G_nr(m,n) *cos (phi (m) -phi(n)) -
B nr(m,n)*sin(phi(m)-phi(n))); % pp. 84 Wang. eq(2.44) !!!!! MANFI
end

end
end

% J4 - Derivative of Reactive Power Injections with V
J4 = zeros (npq,npq) ;

npq
pa(k);

ifn=m

for n = 1l:nbus
J4(i,k) = J4(i,k) + V(n)*(G_nr(m,n)*sin(phi (m)-

phi(n)) - B nr(m,n)*cos(phi(m)-phi(n)));
end
J4(i,k) = J4(i,k) - V(m)*B_nr(m,m) ;

else
J4(i,k) = V(m)*(G_nr(m,n) *sin (phi (m) -phi (n)) -
B nr(m,n)*cos(phi(m)-phi(n))); % pp. 85 Wang. eq(2.48) !!!!! MANFI
end

end
end
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J = [J1l J2;
J3 J4]; % Jacobian Matrix % J = Jacob (busdatas, ybus,nbus) ;
X = J\r; % inv(J)*r; <TIME SAVING> % Correction Vector
dTh = X(1l:nbus-1); % Change in Voltage Angle
dvV = X(nbus:end) ; % Change in Voltage Magnitude

%% record the phita V and phita Angle
dv_sq(itr,:) = dv';
dTh_sq(itr,:) = dTh';

%% Updating State Vectors

phi (2:nbus) = dTh + phi(2:nbus); % Angle update
k=1;
for i = 1l:nbus
if type(i) ==
V(i) = dv(k) + V(i) % Voltage Magnitude update
k = k+1;
else
V(i) = Vsp(i); % reset the slack and PV bus voltages to
the specified wvalues
end
end
itr = itr + 1; % iteration counter
Tol = max(abs(r));

end % end of Iterations
% fprintf ('N-R Iterations = %4d', itr) ;fprintf('\n');

%% Figure of convergence

% figure

% plot([l:itr-1],diag(dV_sq*dVv_sq'),[l:itr-

1] ,diag(dTh_sg*dTh _sq'),'qg');

% title('Load Flow: phita-V and phita-Phi decrease according to
Iterations'); xlabel('iteration'); ylabel('phita V & Angle'); grid on %
figure for convergence

end
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Matlab Codes: Implementation of WLS State Estimation

50; $ number of iterations
le-6; % normally e-6

max_ iters
tol

%% State Vector initialization:

V_SE = ones (nbus,1); % Initialize the bus voltages: all ones
V_SE(v_meas_bus nr,l1) = v_meas_ perturbed; % put the slack bus
voltage and PV bus voltages

phi_SE = zeros(nbus,1); % Initialize the bus angles: all zeroz
% if pmu _meas bus_nr

% phi_SE (pmu_meas _bus nr(:,2),1) = - phi meas_perturbed; % put
the phases az inits

$ end

state = [phi_SE(2:end); V_SE]; % State Vector size: 27 = (2*n)-1

iters = 0;
converged = 0;

while (~converged && iters < max_iters)

iters = iters + 1;

%$% Measurement Function: £

fl = V_SE(v_meas_bus_nr,1); % Voltage Magnitude (Traditional + PMU)
f2 = zeros(n_pi meas,l);

f3 = zeros(n_qgi_meas,1);

f4 = zeros(n_pf meas,l);

£f5 = zeros(n_gf meas,l);

if pmu _meas_bus_nr

f6 = phi_ SE (pmu_meas _bus nr(:,1),1) - phi_ SE(pmu_meas_bus nr(:,2),1); %
PMU Phases

else f6 = [];

end

oe

V_SE = V_nr;

phi_SE = phi nr;

oe

%$Real power injection calculation OK
for i = 1:n_pi_meas

m = pi meas_bus nr(i);

for k = 1l:nbus

f2(i) = £2(i) + V_SE(m)*V_SE (k) * (G(m,6 k) *cos (phi_SE (m) -

phi_SE(k)) + B(m,k)*sin(phi_SE (m)-phi_SE(k))) ;

end
end

[}

% Reactive power injection calculations OK
for i = 1:n_gi_meas

m = gi_meas_bus_nr(i);

for k = 1l:nbus

£3(i) = £3(i) + V_SE(m)*V_SE (k) *(G(m, k) *sin(phi_SE (m) -

phi_SE(k)) - B(m,k)*cos(phi_SE (m)-phi_SE(k)));

end
end
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% Real power flows calculation OK

for i = 1:n_pf meas

m = pf meas bus nr(i,1);

n = pf meas bus_nr(i,2);

f4(i) = -V_SE(m)*2*(G(m,n)) +

V_SE(m) *V_SE (n) * (G(m,n) *cos (phi_SE (m) -phi_SE(n)) +
B(m,n) *sin(phi_SE(m)-phi_SE(n)));

end

% Reactive power flows calculation OK
for i = 1:n_gf meas

m = gf meas_bus nr(i,1);

n = gf meas_bus_nr(i,2);

£5(i) = V_SE(m)“*2*(B(m,n)- bbus(m,n)) +
V_SE(m) *V_SE (n) *(G(m,n) *sin(phi_SE (m) -phi_SE(n)) -
B(m,n) *cos (phi_SE(m)-phi_ SE(n)));
end

f = [£f1; £2; £3; f4; £5; f6];

%% Jacobians
gll - Derivative of V_SE with respect to angles: All Zeros

oo

gll = zeros(n_v_meas,nbus-1);
% gl2 - Derivative of V_SE with respect to V_SE
gl2 = zeros(n_v_meas,nbus);
for k = 1:n_v_meas
for n = 1l:nbus
if n ==
gl2(k,n) = 1;
end
end
end
% g2l - Derivative of Real Power Injections with Angles
g2l = zeros(n_pi_meas,nbus-1);
for i = 1:n_pi_meas

m = pi meas_bus nr(i);
for k = 1: (nbus-1)
if k+1l == m
for n = 1l:nbus
g21(i, k) = g21(i,k) + V_SE(m)* V_SE(n)* (-
G(m,n) *sin(phi_SE (m)-phi_ SE(n)) + B(m,n)*cos(phi_SE(m)-phi SE(n)));
end
g21(i,k) = g21(i,k) - V_SE(m)”*2*B(m,m);
else
g2l (i, k) = V_SE(m)*
V_SE(k+1) *(G(m,k+1) *sin(phi_SE (m)-phi_SE (k+1)) -
B(m,k+1) *cos (phi_SE (m) -phi_SE(k+1))); % k+1
end
end
end

% g22 - Derivative of Real Power Injections with V_SE
g22 = zeros(n_pi_meas,nbus) ;
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for i = 1:n_pi_meas
m = pi_meas_bus nr(i);
for k = 1: (nbus)

if k =m

for n = 1l:nbus
g22(i,k) = g22(i,k) +

V_SE(n) *(G(m,n) *cos (phi_SE (m)-phi_SE(n)) + B(m,n)*sin(phi_SE (m) -
phi_SE(n)));

end
g22(i,k) = g22(i,k) + V_SE(m)*G(m,m) ;
else
g22(i,k) = V_SE(m)*(G(m,k)*cos (phi_SE (m)-phi_SE(k)) +
B(m,k) *sin(phi_SE(m)-phi_ SE(k)));
end

end
end

% g3l - Derivative of Reactive Power Injections with Angles
g3l = zeros(n_gi_meas, nbus-1);
for i = 1:n_gi_meas
m = gi_meas_bus_nr(i);
for k = 1: (nbus-1)
if k+1 ==
for n = 1l:nbus
g31(i,k) = g31(i,k) + V_SE(m)*
V_SE(n) *(G(m,n) *cos (phi_SE(m)-phi SE(n)) + B(m,n)*sin(phi_SE (m) -
phi_SE(n)));
end
g31(i,k) = g31(i,k) - V_SE(m)*2*G(m,m);
else
g31l(i,k) = V_SE(m)* V_SE(k+1) * (-
G(m,k+1) *cos (phi_SE (m) -phi_SE(k+1)) - B(m,k+1l)*sin(phi_SE (m) -
phi_SE(k+1))); % k+1
end
end
end

% g32 - Derivative of Reactive Power Injections with V_SE
g32 = zeros(n_qgi_meas,nbus) ;
for i = 1:n_gi_meas
m = gi_meas_bus nr(i);
for k = 1: (nbus)
if k ==
for n = 1l:nbus
g32(i,k) = g32(i,k) +
V_SE(n)*(G(m,n) *sin(phi_SE(m)-phi_SE(n)) - B(m,n)*cos(phi_SE (m) -
phi_SE(n))) ;
end
g32(i,k) = g32(i,k) - V_SE(m)*B(m,m);
else
g32(i,k) = V_SE(m)*(G(m,k)*sin(phi_SE(m)-phi_SE (k)) -
B(m,k) *cos (phi_SE(m)-phi_SE (k))) ;
end
end
end

o

g4l - Derivative of Real Power Flows with Angles
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g4l = zeros(n_pf meas,nbus-1);

for i =
m
n

1

:n_pf meas
pf meas bus nr(i,1);
pf meas bus nr(i,2);

for k = 1: (nbus-1)

phi_SE(n))

if k+1 == m

g4l(i,k) = -V_SE(m)* V_SE(n)*(G(m,n)*sin(phi_SE (m) -
- B(m,n)*cos (phi_SE(m)-phi SE(n)));

else if k+1 == n

g4l(i,k) = V_SE(m)*
V_SE(n)*(G(m,n) *sin(phi_SE(m)-phi_SE(n)) - B(m,n)*cos(phi_SE (m) -

phi_SE(n))) ;

end

end

% g42 - Derivative of Real Power Flows with V_SE

else
g4l (i, k)
end
end

g42 = zeros(n_pf meas,nbus);
for i = 1:n_pf meas
m = pf meas bus nr(i,1);

n

pf_meas bus_nr(i,2);

for k = l:nbus

B(m,n) *sin(phi_SE(m)-phi_SE(n))) - 2*G(m,n)*V_SE(m);

end

end

Q

if k=m

0;

g42(i,k) = V_SE(n)*(G(m,n)*cos (phi_SE (m)-phi_SE(n)) +

else if k == n

g42(i,k) = V_SE(m)*(G(m,n) *cos (phi_SE (m) -
phi SE(n)) + B(m,n)*sin(phi_SE (m)-phi SE(n)));

else

g42(i,k) = 0;

end
end

g51 = zeros(n_gf meas,nbus-1);
for i = 1:n_gf meas
m = gf meas bus nr(i,1);
n = gf meas_bus_nr(i,2);

for k = 1: (nbus-1)

if k+1 == m

g51(i,k) = V_SE(m)* V_SE(n) * (G(m,n) *cos (phi_SE (m) -
phi_SE(n)) + B(m,n)*sin(phi_SE (m)-phi_SE(n)));

else if k+1 ==

% g51 - Derivative of Reactive Power Flows with Angles

V_SE(n) *(G(m,n) *cos (phi_SE(m)-phi SE(n)) + B(m,n)*sin(phi_SE (m) -

phi_SE(n)));
else

end
end
end
end

g51(i,k) = - V_SE(m)*

g51(i,k) = 0;
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% g52 - Derivative of Reactive Power Flows with V_SE
g52 = zeros(n_gf meas,nbus);
for i = 1:n_gf meas
m = gf meas bus nr(i,1);
n = gf meas bus_nr(i,2);
for k = 1l:nbus
if k = m

g52(i,k) = V_SE(n)*(G(m,n)*sin(phi_SE(m)-phi_SE(n)) -

B(m,n) *cos (phi_SE(m)-phi_SE(n)))...
+ 2*V_SE(m) * (B(m,n) - bbus(m,n));
else if k == n

g52(i,k) = V_SE(m)*(G(m,n)*sin(phi_SE (m) -

phi_SE(n)) - B(m,n)*cos(phi_SE (m)-phi_SE(n)));
else

g52(i,k) = 0;

end
end
end
end

% g6l - Derivative of PMU Phases with respect to angles
g6l = zeros(n_phi_meas,nbus-1);
for i = 1:n_phi meas
m = pmu meas bus nr(i,1); % from
n pmu_meas_bus _nr(i,2); % to
for k = 1: (nbus-1)
if k+1l == m

g6l(i, k) =1;
end
if k+1 == n

g6l (i, k) = -1;
end

end
end

% g62 - Derivative of PMU Phases with respect to V_SE
g62 = zeros(n_phi meas,nbus);

%% Measurement Jacobian, g =df / dx
g = [gll gl2;
g21 g22;
g31 g32;
g4l g42;
g51 g52;
gél g62];
% test if g is full rank
[mmm, nnn] = size(qg):;
rk = rank(qg) ;

if rk < min(mmm, nnn)
error('System is not observable');
end

%% Hessian Matrix or Gain Matrix(double derivative), H
H = g' * (sigma_square\g); % g'*inv(sigma_square)*g; %
SAVING CALCULATION>

<FOR

TIME
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%% Objective Function, J
% J = sum(sigma_square\res.”"2); % sum(inv(sigma_square) *res.”2); %
<FOR TIME SAVING CALCULATION>

%% Residue

res = y perturbed - £;

%% State Vector:

delta x = H\(g'*(sigma_square\res)); %

inv (H) *(g'*inv(sigma_square) *res) % <FOR TIME SAVING CALCULATION>
state = state + delta_x;

phi_SE(2:end) = state(l:nbus-1);

V_SE = state(nbus:end);

%% check for convergence
normF = max (abs(delta_x)); $normF =
norm( (g'*inv(sigma_square) *res) , inf);
if normF < tol
converged = 1;
end
% fprintf ('WLS iteration # %4d: norm of mismatch: %5.20f\n', iters,
normF) ;

end %%%%%%%%%%%%%%%%%%% end of iterations

%% THEORY: Variance Covariance matrix of estimates sigma_ x
sigma x = diag(inv(g'*(sigma_square\q)));

sigma_x v = sqgrt(sigma_x(nbus:end));

sigma_x phi = [0; sqrt(sigma_x(l:nbus-l))*180/pi];
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Matlab Codes: Building the bus admittance matrix

%% Formulation of Ybus by singular transformation method (With
Transformer Tap settings and Shunt Admittances)

function [Ybus A] = ybus_incidence (r,x,b)

global fb tb nbranch nbus linedatas baseMVA busdatas

tap = linedatas(:,6); % Tap setting values (one for the other buses)
GS = busdatas(:,11); % shunt conductance (MW at V = 1.0 p.u.)

BS = busdatas(:,12); % shunt susceptance (MW at V = 1.0 p.u.)

Ysh = ( GS + 1j * BS) / baseMVA; % vector of shunt admittances

Z= r + 1li*x; % z matrix...

Y=1./2;

%% Formation of Bus Incidence matrix A (signs: comes in is

-1, goes out is +1)
A=zeros (nbranch+nbus, nbus) ;

for i=1l:nbus % building top I submatrix:
for j=1l:nbus
if (i==3)
A(i,i)=1;
end
end
end
for i = nbus+l : nbus+nbranch % building Buttom A branch submatrix:
A(i , fb(i-nbus)) = 1;
A(i , tb(i-nbus)) = -1;
end

%% Calculation of primitive matrix

Yprimitive = zeros (nbranch+nbus,1);

% For buses:

for i=1l:nbranch
Yprimitive (fb(i))

Y(i) / tap(i)~2;
Yprimitive (tb(i))

Y(i) / tap(i);

end

Yprimitive (l:nbus) = Yprimitive(l:nbus) + ¥sh; % adding shunt

admittances

Yprimitive (fb(i)) + 1li*b(i)/2 + (l-tap(i)) *

Yprimitive (tb(i)) + 1i*b(i)/2 + (tap(i)-1) *

% Branches:
for i=1l:nbranch

Yprimitive (i+nbus) = Y (i) / tap(i);
end

%% Bus Admittance matrix:
Ybus = A' * diag(Yprimitive) * A; %% shunt admittance
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Matlab Codes: Calculation of Power injections and power flows

measurements

%% Calculation of Power Injections (p.u)
V - Voltage Magnitude pu
% phi - Voltage Angle in radians

oe

function [Pi, Qi] = power_inj (V,phi, Ybus)
% function Si = power_inj(V,phi, Ybus)

global nbus

G

B

imag (Ybus) ;

%% power injection calculations From WLS
Pi = zeros(nbus,1l);

Qi = zeros(nbus,1);

for i = 1l:nbus
for j = 1l:nbus

Pi(i) = Pi(i) + V(i)*V(j)*(G(i,])*cos(phi(i)-phi(])) +

B(i,]) *sin(phi(i)-phi(])));

Qi(i) = Qi(i) + V(i)*V(]J)*(G(i,])*sin(phi(i)-phi(]))

B(i,j)*cos(phi(i)-phi(])))
end
end

real (Ybus); % Bus Admittance matrix split:
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oP

% Calculation of Line Power flows (p.u)
V - Voltage Magnitude pu
phi - Voltage Angle in radians

oe

o°

function [Pij, Qij, Pji, Qji] = power_flow(V,phi, Ybus)
global fb tb nbus nbranch b_perturbed

G

real (Ybus) ;

B

imag (Ybus) ;

%% Polar coordination:

% Shunt Admittance Matrix Formation: % Off-diagonals are the mutual

admittances between the respective nodes

bbus_perturbed = zeros (nbus,nbus);

for k=1:nbranch
bbus_perturbed (fb (k) ,tb(k))
bbus_perturbed (tb (k) ,fb(k))

b_perturbed(k) ./ 2;
bbus_perturbed (fb (k) ,tb(k)) ;

end

% power flows calculation
for i = l:nbranch

m = fb(i);
n = tb(i);
Pij (i) = -V(m)*2*(G(m,n)) + V(m)*V(n)*(G(m,n)*cos (phi (m)-phi (n))

+ B(m,n) *sin (phi (m) -phi(n))) ;
Qij(i) = V(m)~*2*(B(m,n)- bbus perturbed(m,n)) +
V(m) *V(n) * (G(m,n) *sin (phi (m) -phi(n)) - B(m,n) *cos (phi (m)-phi(n)));
Pji(i) = -V(n)*2*(G(n,m)) + V(n)*V(m)* (G(n,m)*cos (phi (n)-phi (m))
+ B(n,m) *sin(phi (n) -phi (m))) ;
Qji(i) = V(n)~*2*(B(n,m)- bbus perturbed(n,m)) +
V(n) *V (m) * (G (n,m) *sin (phi (n) -phi (m)) - B(n,m) *cos (phi (n) -phi (m))) ;
end
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Matlab Codes: Measurement data calculation

%% Determining the Number of measurements:

n_v_meas = length(v_meas_bus nr); % Number of Voltage
measurements

n_pi_meas = length(pi_meas bus nr); % Number of Real Power
Injection measurements

n_qgi_meas = length(qi_meas bus nr); % Number of Reactive Power
Injection measurements

n_pf meas = length(pf_meas bus_nr); % Number of Real Power Flow
measurements

n_gf meas = length(qf meas bus nr); % Number of Reactive Power
Flow measurements

n_phi_ meas = length(pmu_meas bus nr); % Number of Voltage
measurements

%% Variance Covariance Matrix(weighting Matrix) construction:

sigma_vector = [
sigma_ v * ones(n_v_meas, 1)
sigma_pi * ones(n_pi meas, 1)
sigma_qgqi * ones(n_qgi meas, 1)
sigma pf * ones(n_pf meas, 1)
sigma_gqf * ones(n_gf meas, 1)

sigma_phi* ones(n_phi_ meas,1)

1;
sigma_square = diag(sigma_vector) .”2; % Measurement Variance Covariance
matrix

%% Voltage Measurements:
v_meas = V_nr(v_meas bus nr); % set the NR voltages to the measured
voltage data.
$% PMU Measurements:
if pmu _meas_bus_nr

phi_meas = phi_ nr(pmu_meas bus nr(:,1),1) -
phi_nr(pmu meas bus nr(:,2),1); % set the NR phases to the measured pmu
data.

else
phi_meas = [];
end
%% Power Injection Measurements:
[Pi_ nr Qi nr] = power_inj(V_nr , phi nr, Ybus_perturbed); % Bus Power
injections calculations
pi_meas = Pi_nr(pi_meas bus nr); % set the NR active Power Injections
to the measured data.
gi _meas = Qi nr(gi_meas_bus nr); $% set the NR reactive Power

Injections to the measured data.

%% Power Flow Measuremets:

[Pij, Qi]j, Pji, Qji] = power_flow(V_nr , phi nr, Ybus_ perturbed); % Bus

Power flows calculations

% Active power flow:

pf meas = [];

for i = 1l:length(pf_meas_bus_nr)
m = pf meas bus nr(i,1);
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n = pf meas_bus_nr(i,2);
for p = l:nbranch

end
end

Q

qf_meas = [];

for i =

HhS 8 1|

or

end
end

if m == fb(p) && n == tb(p)
pf_meas(i,1) = Pij(p);
elseif m == tb(p) && n == fb(p)
pf _meas(i,1) = Pji(p):;
end

% ReActive power flow:

:length (qf_meas_bus_nr)

gf meas_bus nr(i,1);
gf meas_bus nr(i,2);

p=

1:nbranch
if m == fb(p) && n == tb(p)
qf _meas(i,1l) = Qij(p)-
elseif m == tb(p) && n == fb(p)
qf_meas(i,1) = Qji(p);
end

%% Measurement Perturbation:

v_meas_perturbed
pi_meas perturbed = normrnd(pi_meas , sigma pi
qgi_meas_perturbed
pf_meas_perturbed
qf meas_perturbed
phi_meas perturbed

= normrnd(v_meas , sigma_ v v_meas) ;
abs (pi_meas));

abs (qi_meas));

normrnd (gi_meas , sigma_qgi
normrnd (pf_meas , sigma_pf abs (pf_meas)) ;
normrnd (qf_meas , sigma_gf abs (qf_meas)) ;
normrnd (phi_meas, sigma_phi* abs(phi_meas)) ;

I
* ok ok ok ok

%% Perturbed Measurement Vector composition:
y_perturbed = [v_meas_perturbed

pi_meas_ perturbed
qgi_meas_perturbed
pf_meas_perturbed
qf_meas_perturbed
phi_meas_perturbed] ;
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Matlab Codes: Line Data File Structure (linedata.m)

function linedatas = linedata()
global test case
switch test_case

case 4
% | From | To | R | X | B
% | Bus | Bus | pu | pu | pu
linedatas = [1 2 0.02 0.06 0.20
1 3 0.02 0.06 0.25
2 3 0.05 0.10 0.0
2 4 0.0 0.08 0.0
1;
case 6
% | From | To | R | X | B
% | Bus | Bus | pu | pu | pu
linedatas = [1 2 0.1 0.2 0.04
1 4 0.05 0.2 0.04
1 5 0.08 0.3 0.06
2 3 0.05 0.25 0.06
2 4 0.05 0.1 0.02
2 5 0.1 0.3 0.04
2 6 0.07 0.2 0.05
3 5 0.12 0.26 0.05
3 6 0.02 0.1 0.02
4 5 0.2 0.4 0.08
5 6 0.1 0.3 0.06
1;
case 14
% | From | To | R | X | B
% | Bus | Bus | pu | pu | pu
linedatas = [1 2 0.01938 0.05917 0.0528
1 5 0.05403 0.22304 0.0492
2 3 0.04699 0.19797 0.0438
2 4 0.05811 0.17632 0.0374
2 5 0.05695 0.17388 0.0340
3 4 0.06701 0.17103 0.0346
4 5 0.01335 0.04211 0.0128
4 7 0.0 0.20912 0.0
4 9 0.0 0.55618 0.0
5 6 0.0 0.25202 0.0
6 11 0.09498 0.19890 0.0
6 12 0.12291 0.25581 0.0
6 13 0.06615 0.13027 0.0
7 8 0.0 0.17615 0.0
7 9 0.0 0.11001 0.0
9 10 0.03181 0.08450 0.0
9 14 0.12711 0.27038 0.0
10 11 0.08205 0.19207 0.0
12 13 0.22092 0.19988 0.0
13 14 0.17093 0.34802 0.0

And so on for other cases...

X'mer
TAP (a)

OH KRR

X'mer
TAP (a)

RFRRRBRRRRRBRRBR

X'mer
TAP (a)

RFRRRBRRRRRR
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Matlab Codes: Bus Data File Structure (busdata.m)

% Returns Bus data

function busdatas = busdata()

global test_case baseMVA V_true Phi_true
switch test_case

B
1: Slack Bus: V and thera are known (P and Q must be solved)

2: PV Bus: P and V_mag are known <generator busses are PV>(Q and theta must solved)
3: PQ Bus: P and Q are known(V and theta must solved)

%% Example of 2.1 in Abur Book:

case 4
% |Bus | Type | Vsp*|theta | PGi | QGi | PLi | QLi | OQmin |
Omax | Gs | Bs |
busdatas =[1 1 1.0 0 1.9963 .44939 0 0 0 0 0 0;
2 3 1.0 0 0 0  .49944 .30229 0 0 0 0;
3 3 1.0 0 0 0 1.2006 .79897 O 0 0 0.5;
4 3 1.0 0 0 0 .25057 .09907 O 0 0 0;

1;
baseMVA = 1; % Base MVA
V_true = [1 0.9629 0.9597 0.9742]"';
Phi_ true = [0 -2.76 -3.58 -3.96]"';

%% 6 bus example from pp. 104, 112, 119, 123-124, 549 of "Power Generation, Operation,
and Control, 2nd Edition",
% by Allen. J. Wood and Bruce F. Wollenberg, John Wiley & Sons, NY, Jan 1996.

case 6

% |Bus | Type | Vsp*|theta | PGi | QGi | PLi | QLi | Qmin |

Omax | Gs | Bs |

busdatas =[1 1 1.05 0 107.9 16 0 0 0 0 0 0;
2 2 1.05 0 50 74.4 0 0 0 0 0 0;
3 2 1.07 0 60 89.6 0 0 0 0 0 0;
4 3 1.0 0 0 0 70 70 0 0 0 0;
5 3 1.0 0 0 0 70 70 0 0 0 0;
6 3 1.0 0 0 0 70 70 0 0 0 0;

1;
baseMVA = 100; % Base MVA
V_true = [241.5 241.5 246.1 227.6 226.7 231]'./230; % baseKV is 230 and baseMVA is 100
Phi_true = [0 -3.7 -4.3 -4.2 -5.3 -5.9]"';

%% IEEE 14 bus system
case 14

busdatas =[1 1 1.060 0 232.4 -16.9 0 0 0 0 0 0;
2 2 1.045 0 40 42.4 21.7 12.7 -40 50 0 0;
3 2 1.010 0 0 23.4 94.2 19.0 0 40 0 0;
4 3 1.0 0 0 0 47.8 -3.9 0 0 0 0;
5 3 1.0 0 0 0 7.6 1.6 0 0 0 0;
6 2 1.070 0 0 12.2 11.2 7.5 -6 24 0 0;
7 3 1.0 0 0 0 0.0 0.0 0 0 0 0;
8 2 1.090 0 0 17.4 0.0 0.0 -6 24 0 0;
9 3 1.0 0 0 0 29.5 16.6 0 0 0 19;
10 3 1.0 0 0 0 9.0 5.8 0 0 0 0;
11 3 1.0 0 0 0 3.5 1.8 0 0 0 0;
12 3 1.0 0 0 0 6.1 1.6 0 0 0 0;
13 3 1.0 0 0 0 13.5 5.8 0 0 0 0;
14 3 1.0 0 0 0 14.9 5.0 0 0 0 01;

baseMVA = 100; % Base MVA

V_true = [1.060 1.045 1.010 1.019 1.020 1.070 1.062
1.090 1.056 1.051 1.057 1.055 1.050 1.036]"';
Phi_true = [0 -4.98 -12.72 -10.33 -8.78 -14.22 -13.37 -13.36
-14.94 -15.10 -14.79 -15.07 -15.16 -16.04]1"';

And so on for other cases...
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Matlab Codes: Measurement Data File Structure (measurement14.m)

%% Measurement Data Preparation:
%states = 27
$measurements = 1.5 * states = 41

oo

% The bus numbers that traditional voltage mag. measurement happens:

v_meas bus nr = [1 2 3 6 8]';

%% The bus numbers that PMU measurement happens:
pmu_meas_bus_nr = [

16

109

1;

v_meas_bus nr = unique ([pmu_meas bus nr(:);v_meas_bus nr]);
%% The bus numbers that active power injection measurement happens:
pi_meas bus nr = [1 2 6 8 9 10 11 12 14]"';

%% The bus numbers that active and reactive power injection measurement
happens:
qgi_meas_bus nr = pi meas_bus_nr;

%% The bus numbers that active power flow measurement happens: (Power
is flowing from the first number to the second)

pf meas bus nr = |
12
15
23
2 4
34
45
47
56
6 13
1;

oo

Q
H o°

The bus numbers that reactive power flow measurement happens:
meas_bus_nr = pf meas bus_nr;
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Matlab Codes: Implementation of Proposed Algorithm

%% Power System State Estimation Considering Parameters Uncertainty
tic

global fb tb nbranch nbus linedatas busdatas V_nr phi nr test case
r_perturbed x perturbed b _perturbed r nominal x_nominal b _nominal
baseMVA Phi_ true V_true

%% Initials:

test case = 14; % Run which case data? IEEE 14 or 30 or 57 or 118
bus test system?

measurementl4; % Measurement Data

MC_tests = 1000; % MC test numbers

% Power Network Parameters(r, x, b) noise:

sigma_params_all = [0 0.05 0.10 0.15 0.20 0.25];

showplots = 1; % set it 1 if you want to see the figures

display SE_results = 1;

%% Variance of Voltage magnitude, Active and reactive Power Injections
and flows:

sigma_v = 0.001; % 1le-20; %

sigma_phi = 0.0001; % 1le-20; %

sigma_pi =0.01; % 1le-20; %

sigma_qgi = 0.01; % 1le-20; %

sigma_pf = 0.01; % 1le-20; %

sigma_qf = 0.01; $ 1e-20; %

rho = 0.0; % correlation factor

%% Reading Nominal Line Parameters and Ybus arrangement:
linedatas = linedata(); % Calling "linedata.m" for Line Data

fb = linedatas(:,1); From bus number

tb = linedatas(:,2); To bus number

nbranch = length(£fb) ; number of branches

nbus = test_case; % number of buses

negatives = 0;

r nominal linedatas(:,3); Resistance, R
x_nominal = linedatas(:,4); Reactance, X

b nominal = linedatas(:,5); % Shunt Admittance
busdatas = busdata() ; % reading bus data
[Ybus_nominal A _incidence Yprimitive_nominal] =
ybus_modified(r_nominal,x nominal,b nominal) ;

G = real (Ybus_nominal); % Bus Admittance matrix split:
B imag (Ybus_nominal) ;

o0 o°

o©

%
%

%% sigma_params loop

for sigma params_idx = l:length(sigma_params_all)
sigma_params = sigma_params_all(sigma_params_idx) ;
V_error_seq [1;

phi_error_seq [1;

V_SE_seq = [1;
phi_SE seq = [1;
V_nr seq = [1;
phi_nr_ seq = [1;
sigma_x v_seq = [];

[1:;

sigma_x phi_ seq
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%% MC iterations:
for MC_test = 1:MC_tests

%% Parameters Perturbation:
r_perturbed normrnd (r_nominal, sigma params .* r nominal) ;
x_perturbed normrnd (x_nominal, sigma params .* x nominal) ;
b_perturbed = normrnd(b_nominal, sigma_params .* b nominal);
while find(r_perturbed < 0)
negatives = negatives + length(find(r_perturbed<0)) ;
fprintf ('\nRecalculating r again...'); pause(l);
r_perturbed = normrnd(r_nominal, sigma params .* r nominal); %
Generate and add again random numbers
end
while find(x_perturbed < 0)
negatives = negatives + length(find(x_perturbed<0)) ;
fprintf (' \nRecalculating x again...'); pause(l);
x_perturbed = normrnd(x_nominal, sigma_params .* x nominal); %
Generate and add again random numbers
end
while find(b_perturbed < 0)
negatives = negatives + length(find(b_perturbed<0)) ;
fprintf (' \nRecalculating b again...'); pause(l);
b _perturbed = normrnd(b_nominal, sigma params .* b nominal); %
Generate and add again random numbers
end

% Correlating the Resistance parameters:

if rho > 0 && sigma_params > 0

r nominal nonzeros = nonzeros (r_nominal);

sigma_r corr = zeros(length(r_nominal nonzeros),h1l);

for i;ITlength(r_pominal_ponzeros) % diagonal elements:
sigma r corr(i,i) = ( sigma params * r nominal nonzeros(i) ) * 2;
end
for i=l:length(r_nominal_ nonzeros) % non-diagonal elements:
for j=1:length(r_nominal nonzeros)
if i ~= 3
sigma_r corr(i,j) = rho *
sqrt(sigma_r corr(i,i)*sigma_r corr(j,Jj)):
end
end
end

L sigma_r corr = chol(sigma_r corr, 'lower'); % Cholesky factorization:
produces an upper triangular matrix

r perturbation = normrnd(0,1,length(r_nominal nonzeros) ,1); %
normrnd (0,sigma params .* r nominal,nbranch,l);

r_perturbed nonzeros = L _sigma_r corr * r perturbation +

r nominal nonzeros;

r perturbed = zeros(nbranch,l);

r perturbed(find(r_nominal~=0)) = r_ perturbed nonzeros;

Q

% Recalculation in Negative case
while find(r_perturbed<0)
fprintf ('Warning: The number of negative values for r while
correlating it in this MC trial: '); fprintf('%2g',
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length (find (r_perturbed<0))); fprintf('\nRecalculating correlated r
again...'); pause(1l);
% r perturbed(find(r_perturbed<0)) = 0; % Changing
negative values to zero.
negatives = negatives + length(find(r_perturbed<0)) ;
r_perturbation = normrnd(0,1,length(r_nominal nonzeros),l);
% normrnd(0,sigma params .* r nominal,nbranch,l);
r perturbed nonzeros = L sigma r corr * r perturbation +
r nominal nonzeros;
r perturbed = zeros(nbranch,l);
r_perturbed(find(r_nominal~=0)) = r_perturbed nonzeros;
end
end
%% Bus Admittance Formation
[Ybus_perturbed A incidence Yprimitive] =
ybus_modified(r_perturbed,x perturbed,b perturbed) ;

%% Newton Raphson calculations:
[V_nr,phi_nr] = newton (Ybus_perturbed) ;
phi nr dg = 180/pi*phi_nr; % Angles in Degree

%% WLS State Estimation

[}

% Shunt Admittance Matrix Formation: % Off-diagonals are the mutual
admittances between the respective nodes
bbus = zeros (nbus,nbus) ;
for k=1l:nbranch
bbus (fb (k) , tb(k))
bbus (tb (k) ,fb (k) )

b _nominal (k) ./ 2;
bbus (fb (k) ,tb(k)) ;

end
meas_calc; % Calculates the measured values according to the
perturbed NR states.
wls; % WLS State Estimation:

phi SE dg = 180/pi*phi SE; % rad to degree

%% Collecting V and Phi errors in each iterarion
V_error = V_nr - V_SE;

phi_error = phi nr dg - phi_SE dg;

phi_errors = sqrt(mean(phi_error_ seq.”2))';

if abs(V_error) < 10 % to exclude incorrect answers
#HEHHHHHHHH
if abs(phi_error) < 20
V_error_seq(end+l, :) = V_error; % each row is a new
iteration and columns are buses
phi_error_seq(end+l, :) = phi_error;

V_SE seq(end+l, :) = V_SE;

phi_SE seq(end+l, :) = phi_ SE dg;

sigma_x v_seq(end+l, :) = sigma x v;

sigma_x phi_seq(end+l, :) = sigma_x phi;

V_nr seq(end+l, :) = V_nr; % collecting
phi_nr seq(end+l, :) = phi nr dg; % collecting

oe

o°
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end
end

%% Display the WLS results

if test case >= 57 || mod(MC_test,20) ==
clc
if display_ SE_results
disp (' State Estimation ")
disp('Bus V_SE V_NR V_Er Ph_SE Ph_NR
Ph_Er');

for m = 1:nbus
fprintf('%3g', m); fprintf('%8.3f', V_SE(m));
fprintf('%$7.3f', V_nr(m)); fprintf('%21.16f', V_nr(m)-V_SE(m));
fprintf(' %8.3f', phi_SE dg(m)); fprintf(' %8.3f', phi_nr dg(m));
fprintf ('%21.16£f", phi_pr_dg(m)-phi_SE_dg(m));fprintf('\n');
end
disp (' ")
end % of display SE results
fprintf ('MC Trial Number: '); fprintf('%g',6MC_test); fprintf('\n');
fprintf('Sigma of Parameters: '); fprintf('%g',sigma params);
fprintf('\n');
if iters > 1
fprintf ('WLS Iterations = %4d', iters) ;fprintf('\n');
end
end % of display each 10 trial

end % of MC

$ For SE

mean_V_SE_all(:,sigma_params_idx) = mean(V_SE_seq)';
mean_V_phi_all(:,sigma params_idx) = mean(phi_SE_ seq)';

std V_SE all(:,sigma params_idx) = std(V_SE_seq)';

std V_phi_all(:,sigma_params_idx) = std(phi_SE seq)';

%$ For SE Errors

mean_V_errors_all(:,sigma_params_idx) = mean(V_error_seq)';
mean_phi_errors_all(:,sigma_params_idx) = mean(phi_error_seq)';
std V_errors_all(:,sigma_params_idx) = std(V_error_seq)';

std phi_ errors_all(:,sigma_params_idx) = std(phi_error_seq)';

% WLS theoritical STD
mean _sigma x v_all(:,sigma_params_idx) = mean(sigma x v_seq)';
mean_sigma x_phi_all(:,sigma_params_idx) = mean(sigma_x phi_seq)';

oo

% Correlation of SE errors

corr_coefs = corrcoef (V_error_seq); $ returns a matrix R of
correlation coefficients, input matrix rows are observations and whose
columns are variables.

corr_coefs_upper = nonzeros (triu(corrcoef (V_error_seq),1l));

o°

mean_corr coefs V all(sigma params_idx) = mean(corr_coefs upper);
std_corr coefs V_all(sigma_params_idx) = std(corr_coefs upper);
% phi

corr_coefs_upper = [];
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corr_coefs upper = nonzeros (triu(corrcoef (phi_error_seq(:,2:end)),1));
mean_corr_coefs phi all(sigma_params_idx) = mean(corr_coefs_upper) ;
std_corr coefs phi all(sigma params_idx) = std(corr_coefs upper);

end % of parameters loop
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Network Data for IEEE test cases

The network data for the test cases are shown here. In the process of programming, it is
important to have a reliable reference data to confirm the results that are generated by the
test program. For the author it was not easy to find the consistent data for some cases, for
example line Susceptance (B) for IEEE 14-Bus case. In [Christie 1999] some of the
provided data seems not to be consistent and regardless of sending email and asking for
the modifications of their database, they have not yet made the corrections. This is why

the network data are brought here.
IEEE 14-Bus Test Case

Network parameters and Bus data for this test case is shown in Table 5.4and Table 5.5

respectively.
Table 5.4 Branch data for IEEE 14-Bus test case
From | To Resistance | Reactance | Susceptance | Transformer
Bus Bus | R X B Turns Ratio
1 2 0.01938 0.05917 0.0528 0
1 5 0.05403 0.22304 0.0492 0
2 3 0.04699 0.19797 0.0438 0
2 4 0.05811 0.17632 0.0374 0
2 5 0.05695 0.17388 0.034 0
3 4 0.06701 0.17103 0.0346 0
4 5 0.01335 0.04211 0.0128 0
4 7 0 0.20912 0 0.978
4 9 0 0.55618 0 0.969
5 6 0 0.25202 0 0.932
6 11 0.09498 0.1989 0 0
6 12 0.12291 0.25581 0 0
6 13 0.06615 0.13027 0 0
7 8 0 0.17615 0 0
7 9 0 0.11001 0 0
9 10 0.03181 0.0845 0 0
9 14 0.12711 0.27038 0 0
10 11 0.08205 0.19207 0 0
12 13 0.22092 0.19988 0 0
13 14 0.17093 0.34802 0 0
Table 5.5 Bus data for IEEE 14-Bus test case
Bus Bus PV Bus P_Gen Q_Gen P_Load Q_Load Gs: Shunt Bs: Shunt
# Type Voltage MW MVR MW MVR Conductance Susceptance
1 1 1.06 232.4 -16.9 0 0 0 0
2 2 1.045 40 42.4 21.7 12.7 0 0
3 2 1.01 0 23.4 94.2 19 0 0
4 3 1 0 0 47.8 -3.9 0 0
5 3 1 0 0 7.6 1.6 0 0
6 2 1.07 0 12.2 11.2 7.5 0 0
7 3 1 0 0 0 0 0 0
8 2 1.09 0 17.4 0 0 0 0
9 3 1 0 0 29.5 16.6 0 19
10 3 1 0 0 9 5.8 0 0
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11 3 1 0 0 3.5 1.8 0 0
12 3 1 0 0 6.1 1.6 0 0
13 3 1 0 0 13.5 5.8 0 0
14 3 1 0 0 14.9 5 0 0
Bus Types: 1 is Slack Bus, 2 is PV Bus and 3 is PQ Bus.

The bus admittance matrix for this test case is shown here. It can be used as a reference
because in this bus admittance matrix, all the transformers and shunt elements are

correctly considered.

The bus admittance matrix is a symmetric matrix and the nonzero elements of this matrix

for IEEE 14-Bus case are shown in Table 5.6.

Table 5.6 Ybus nonzero elements for IEEE 14-Bus test case

(1,1) 6.02502905576822 -  19.4470702055144i
(2,1) -4.99913160079803 +  15.2630865231796i
(5,1) -1.02589745497019 +  4.23498368233483i
(1,2) -4.99913160079803 +  15.2630865231796i
(2,2) 9.52132361081478 -  30.2707153987791i
(3,2) -1.1350191923074 +  4.78186315175772i
(4,2) -1.68603315061494 +  5.11583832587208i
(5,2) -1.7011396670944 +  5.19392739796971i
(2,3) -1.1350191923074 +  4.78186315175772i
(3,3) 3.12099490223296 -  9.81148012935164i
(4,3) -1.98597570992556 +  5.06881697759392i
(2,4) -1.68603315061494 +  5.11583832587208i
(3,4) -1.98597570992556 +  5.06881697759392i
(4,4) 10.5129895220362 -  38.6351712076078i
(5,4) -6.84098066149567 +  21.5785539816916i
(7,4) 0+ 4.88951266031734i

(9,4) 0+ 1.8554995578159i

(1,5) -1.02589745497019 +  4.23498368233483i
(2,5) -1.7011396670944 +  5.19392739796971i
(4,5) -6.84098066149567 +  21.5785539816916i
(5,5) 9.56801778356026 -  35.5275394560448i
(6,5) 0+ 4.25744533525338i

(5,6) 0+ 4.25744533525338i

(6,6) 6.57992340746622 -  17.3407328099191i
(11,6) -1.95502856317726 +  4.09407434424044i
(12,6) -1.52596744045097 +  3.1759639650294i
(13,6) -3.09892740383799 +  6.10275544819312i
(4,7) 0+ 4.88951266031734i

(7,7) 0- 19.5490059482647i

(8,7) 0+ 5.67697984672154i

(9,7) 0+ 9.09008271975275i

(7,8) 0+ 5.67697984672154i

(8,8) 0- 5.67697984672154i

(4,9) 0+ 1.8554995578159i

(7,9) 0+ 9.09008271975275i

(9,9) 5.32605503946736 -  24.0925063752679i
(10,9) -3.90204955244743 +  10.3653941270609i
(14,9) -1.42400548701993 +  3.0290504569306i
(9,10) -3.90204955244743 +  10.3653941270609i
(10,10) 5.78293430614783 -  14.7683378765214i
(11,10) -1.8808847537004 +  4.40294374946052i
(6,11) -1.95502856317726 +  4.09407434424044i
(10,11) -1.8808847537004 +  4.40294374946052i
(11,11) 3.83591331687766 -  8.49701809370096i
(6,12) -1.52596744045097 +  3.1759639650294i
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(12,12) 4.01499202727289 -  5.42793859120161i
(13,12) -2.48902458682192 + 2.25197462617221i
(6,13) -3.09892740383799 +  6.10275544819312i
(12,13) -2.48902458682192 +  2.25197462617221i
(13,13) 6.72494614846623 -  10.6696935494707i
(14,13) -1.13699415780633 +  2.31496347510535i
(9,14) -1.42400548701993 +  3.0290504569306i

(13,14) -1.13699415780633 +  2.31496347510535i
(14,14) 2.56099964482626 -  5.34401393203596i

IEEE 30-Bus Test Case

Network parameters and Bus data for this test case is shown in Table 5.7 and Table 5.8

respectively.

Table 5.7 Branch data for IEEE 30-Bus test case

From | To Resistance | Reactance | Susceptance | Transformer
Bus Bus | R X B Turns Ratio
1 2 0.0192 0.0575 0.0528 0

1 3 0.0452 0.1652 0.0408 0

2 4 0.057 0.1737 0.0368 0

3 4 0.0132 0.0379 0.0084 0

2 5 0.0472 0.1983 0.0418 0

2 6 0.0581 0.1763 0.0374 0

4 6 0.0119 0.0414 0.009 0

5 7 0.046 0.116 0.0204 0

6 7 0.0267 0.082 0.017 0

6 8 0.012 0.042 0.009 0

6 9 0 0.208 0 0.978
6 10 0 0.556 0 0.969
9 11 0 0.208 0 0

9 10 0 0.11 0 0

4 12 0 0.256 0 0.932
12 13 0 0.14 0 0

12 14 0.1231 0.2559 0 0

12 15 0.0662 0.1304 0 0

12 16 0.0945 0.1987 0 0

14 15 0.221 0.1997 0 0

16 17 0.0524 0.1923 0 0

15 18 0.1073 0.2185 0 0

18 19 0.0639 0.1292 0 0

19 20 0.034 0.068 0 0

10 20 0.0936 0.209 0 0

10 17 0.0324 0.0845 0 0

10 21 0.0348 0.0749 0 0

10 22 0.0727 0.1499 0 0

21 23 0.0116 0.0236 0 0

15 23 0.1 0.202 0 0

22 24 0.115 0.179 0 0

23 24 0.132 0.27 0 0

24 25 0.1885 0.3292 0 0

25 26 0.2544 0.38 0 0

25 27 0.1093 0.2087 0 0

28 27 0 0.396 0 0.968
27 29 0.2198 0.4153 0 0

27 30 0.3202 0.6027 0 0

29 30 0.2399 0.4533 0 0

8 28 0.0636 0.2 0.0428 0

6 28 0.0169 0.0599 0.013 0
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Table 5.8 Bus data for IEEE 30-Bus test case
Bus Bus PV Bus P_Gen Q_Gen P_Load Q_Load Gs: Shunt Bs: Shunt
# Type Voltage MW MVR MW MVR Conductance Susceptance
1 1 1.06 232.4 -16.9 0 0 0 0
1 1 260.2 -16.1 0 0 0 0
2 2 1.043 40 50 21.7 12.7 0 0
3 3 1 0 0 2.4 1.2 0 0
4 3 1.06 0 0 7.6 1.6 0 0
5 2 1.01 0 37 94.2 19 0 19
6 3 1 0 0 0 0 0 0
7 3 1 0 0 22.8 10.9 0 0
8 2 1.01 0 37.3 30 30 0 0
9 3 1 0 0 0 0 0 0
10 3 1 0 0 5.8 2 0 0
11 2 1.082 0 16.2 0 0 0 0
12 3 1 0 0 11.2 7.5 0 0
13 2 1.071 0 10.6 0 0 0 0
14 3 1 0 0 6.2 1.6 0 0
15 3 1 0 0 8.2 2.5 0 0
16 3 1 0 0 3.5 1.8 0 0
17 3 1 0 0 9 5.8 0 0
18 3 1 0 0 3.2 0.9 0 0
19 3 1 0 0 9.5 3.4 0 0
20 3 1 0 0 2.2 0.7 0 0
21 3 1 0 0 17.5 11.2 0 0
22 3 1 0 0 0 0 0 0
23 3 1 0 0 3.2 1.6 0 0
24 3 1 0 0 8.7 6.7 0 4.3
25 3 1 0 0 0 0 0 0
26 3 1 0 0 3.5 2.3 0 0
27 3 1 0 0 0 0 0 0
28 3 1 0 0 0 0 0 0
29 3 1 0 0 2.4 0.9 0 0
30 3 1 0 0 10.6 1.9 0 0
Bus Types: 1 is Slack Bus, 2 is PV Bus and 3 is PQ Bus.

IEEE 57-Bus Test Case

Network parameters and Bus data for this test case is shown in Table 5.9 and Table 5.10

respectively.
Table 5.9 Branch data for IEEE 57-Bus test case
From To Resistance Reactance Susceptance Transformer
Bus Bus R X B Turns Ratio
1 2 0.0083 0.028 0.129 0
1 15 0.0178 0.091 0.0988 0
1 16 0.0454 0.206 0.0546 0
1 17 0.0238 0.108 0.0286 0
2 3 0.0298 0.085 0.0818 0
3 4 0.0112 0.0366 0.038 0
3 15 0.0162 0.053 0.0544 0
4 5 0.0625 0.132 0.0258 0
4 6 0.043 0.148 0.0348 0
4 18 0 0.43 0 0.978
4 18 0 0.555 0 0.97
5 6 0.0302 0.0641 0.0124 0
6 7 0.02 0.102 0.0276 0
6 8 0.0339 0.173 0.047 0
7 8 0.0139 0.0712 0.0194 0
7 29 0 0.0648 0 0.967
8 9 0.0099 0.0505 0.0548 0
9 10 0.0369 0.1679 0.044 0
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9 11 0.0258 0.0848 0.0218 0

9 12 0.0648 0.295 0.0772 0

9 13 0.0481 0.158 0.0406 0

9 55 0 0.1205 0 0.94

10 12 0.0277 0.1262 0.0328 0

10 51 0 0.0712 0 0.93

11 13 0.0223 0.0732 0.0188 0

11 41 0 0.749 0 0.955

11 43 0 0.153 0 0.958

12 13 0.0178 0.058 0.0604 0

12 16 0.018 0.0813 0.0216 0

12 17 0.0397 0.179 0.0476 0

13 14 0.0132 0.0434 0.011 0

13 15 0.0269 0.0869 0.023 0

13 49 0 0.191 0 0.895

14 15 0.0171 0.0547 0.0148 0

14 46 0 0.0735 0 0.9

15 45 0 0.1042 0 0.955

18 19 0.461 0.685 0 0

19 20 0.283 0.434 0 0

21 20 0 0.7767 0 1.043

21 22 0.0736 0.117 0 0

22 23 0.0099 0.0152 0 0

22 38 0.0192 0.0295 0 0

23 24 0.166 0.256 0.0084 0

24 25 0 1.182 0 0

24 25 0 1.23 0 0

24 26 0 0.0473 0 1.043

25 30 0.135 0.202 0 0

26 27 0.165 0.254 0 0

27 28 0.0618 0.0954 0 0

28 29 0.0418 0.0587 0 0

29 52 0.1442 0.187 0 0

30 31 0.326 0.497 0 0

31 32 0.507 0.755 0 0

32 33 0.0392 0.036 0 0

34 32 0 0.953 0 0.975

34 35 0.052 0.078 0.0032 0

35 36 0.043 0.0537 0.0016 0

36 37 0.029 0.0366 0 0

36 40 0.03 0.0466 0 0

37 38 0.0651 0.1009 0.002 0

37 39 0.0239 0.0379 0 0

38 44 0.0289 0.0585 0.002 0

38 48 0.0312 0.0482 0 0

38 49 0.115 0.177 0.003 0

39 57 0 1.355 0 0.98

40 56 0 1.195 0 0.958

41 42 0.207 0.352 0 0

41 43 0 0.412 0 0

44 45 0.0624 0.1242 0.004 0

46 47 0.023 0.068 0.0032 0

47 48 0.0182 0.0233 0 0

48 49 0.0834 0.129 0.0048 0

49 50 0.0801 0.128 0 0

50 51 0.1386 0.22 0 0

52 53 0.0762 0.0984 0 0

53 54 0.1878 0.232 0 0

54 55 0.1732 0.2265 0 0

56 41 0.553 0.549 0 0

56 42 0.2125 0.354 0 0

57 56 0.174 0.26 0 0

Table 5.10 Bus data for IEEE 57-Bus test case

Bus Bus PV Bus P_Gen Q_Gen P_Load Q_Lload Gs: Shunt Bs: Shunt
# Type Voltage MW MVR MW MVR Conductance Susceptance
1 1 1.04 128.9 -16.1 55 17 0 0
2 2 1.01 0 -0.8 3 88 0 0
3 2 0.985 40 -1 41 21 0 0
4 3 1 0 0 0 0 0 0
5 3 1 0 0 13 4 0 0
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