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I 

 

 

Abstract 
 

 

 

 

In this thesis the effects of both network parameters uncertainty and measurement 

uncertainty on Weighted Least Squares (WLS) State Estimates has been analyzed. An 

algorithm for simulation of the uncertainty effects on the state estimator is proposed and 

simulated on IEEE 14-Bus, 30-Bus, 57-Bus and 118-Bus power network test cases. 

The implementation of this algorithm on the test cases enables us to analyze how 

much the state estimator’s output is affected according to the network parameters 

uncertainty by means of state errors distribution (in terms of error bars representing the 

distribution mean and 1𝜎 standard deviation) versus the network parameters uncertainty. 

Generally a serious defect in an estimator is the lack of unbiasedness. In literature the 

analysis of network parameters effects on WLS State Estimator’s bias performance is 

missing, hence it motivated us to perform a new prominent analysis to find how network 

parameters uncertainty can affect the state estimator bias (for a given measurement 

uncertainly). It is done using distribution of the ratio of the absolute value of the state 

errors mean by the related standard deviations versus the network parameters uncertainty 

and comparing it with a predefined threshold. 

In order to decrease the sensitivity of state estimates on network parameters 

uncertainty, a clue can be using Phasor Measurement Unit (PMU) because according to the 

simulations, it is proven that when PMU measurement data are included in the traditional 

measurement set, the State Estimator’s sensitivity to the network parameters uncertainty 

will be notably smaller. 



 

 
II 

 

WLS State Estimation provides a mathematical expression for calculating the 

variance covariance matrix of State Estimates. It is confirmed numerically that the standard 

deviation of State Estimator’s output is underestimated significantly when there is network 

parameter uncertainty. Thus the State Estimator’s uncertainty has been analyzed versus the 

parameters uncertainty and compared with the theoretical WLS value. 

Lastly an analysis is carried out to illustrate how much the State Estimator’s results 

are correlated having network parameters uncertainty. Interestingly it is seen that when 

the network parameters uncertainty increases, it uncorrelates significantly the estimation 

errors. 
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CHAPTER    1 

1 Introduction 
 

 

 

1.1 Foreword  

n large power networks, there are vast number of connected generators and loads so 

there will be large number of nodes and branches. Electric power systems are one of 

the biggest subjects that scientists have been putting too many efforts to understand and 

predict their complex behavior through mathematical models. The hugeness of the power 

transmission system forced early power engineers to be among the first to develop com-

putational approaches to solving the equations that describe them.  

The computational methods are essential for power system planners and operators to keep 

a consistent and secure operating environment [Crow 2007]. Between the computational 

tools, State Estimation (SE) has key role in order to analyze the contingencies of power 

system to determine any required corrective actions. 
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1.2 State Estimation 

Estimation theory is a subdivision of statistics and signal processing that deals with esti-

mating the values of parameters dependent upon measured data that has random compo-

nents. The parameters describe an underlying physical setting in such a way that their 

values affect the distribution of the measured data. The estimator’s task is to approximate 

the unknown parameters using the available measurements. 

Power system state estimation is a tool to determine the voltage and phases on all nodes 

of power network that is firstly proposed by Fred Schweppe in [Schweppe 1970a, 1970b, 

1970c]. 

Therefore all of the node voltages along with the angles across the network are of interest 

to be calculated using power network parameters and also a set of measurements in the 

power network including: voltage magnitudes and power fluxes and angles which pro-

vided by Phasor Measurement Units (PMU).  

Implementation of synchronized phasor measurements presents an opportunity for im-

provements of power system state estimation and if PMU’s were installed at all nodes, 

the State Estimation wouldn’t be essential but from the economical point of view, having 

PMU’s installed all over network is not applicable, therefore the task of State Estimation 

still is crucial. 

As already stated, the data which are fed into a State Estimator are including the parame-

ters of the power grid such as the transmission line’s resistance, reactance and suscep-

tance along with a set of measurements and the output of State Estimator is the states of 

the power network (i.e. voltages and related phases). The traditional measurements in-

clude a portion of the bus voltage magnitudes, active and reactive power injections at 

buses and active and reactive power flow through transmission lines. The nominal pa-

rameters of network and also the measurements across the network actually are not accu-

rate and have various uncertainties. 

Form the viewpoint of power system planners, to improve the network quality, reliability 

and security it is very important to know where to invest. To get better State Estimators, 

they can either increase the accuracy of measurements by purchasing new high precision 

measurement devices or perform accurate measurement of network parameters across 
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network and make a model of it in real-time. Rationally having both measurement and 

parameters accuracy improvement is the best way but could not be economical and they 

have to find an optimized solution. Having exact measurements but very uncertain net-

work parameters (or vice versa) will not necessarily improve dramatically the SE but it is 

very interesting to know that how much it is effective. This paper focuses on the effects 

of parameters uncertainty and measurement noise on State Estimator and the results will 

be useful to determine tolerable uncertainty values of measurement and parameter. 

In this thesis an algorithm is proposed in order to observe the effects of parameter and 

measurement uncertainties on the quality of power system state estimation. In the algo-

rithm the core components include a load flow and a WLS State Estimation, so in the 

next two chapters the implementation of Load Flow and State Estimator are focused and 

then development of algorithm and Monte Carlo procedure are described in detail. 

Afterward the algorithm is tested on different standard power system test cases to analyze 

the sensitivity of power system state estimation regarding to the parameters and 

measurements noise. 

1.3 Desirable properties of an estimator 

In order to evaluate an estimator, it is needed to define clearly the mean of a “good” 

estimator. A deterministic parameter 𝑋, is derived from n points of a random data 

sequence x(n) and the estimation of 𝑋 gives 𝑋� that is a random variable which basically is 

a function of x(n), i.e. 

𝑋� = 𝐹�𝑥(𝑛)� . 

𝑋� is pertaining to an estimator and each single value taken by the random variable 𝑋� is an 

estimate [Clarkson 1993]. 

Generally there may not be a “natural estimator” of a parameter 𝑋, hence several possible 

estimators must be considered, with no clear insight of which one to be chosen. For this 

regard, we must decide on the criteria by which we judge the quality of an estimator, 

therefore a list of desirable properties of estimators is set out in the following subsections 

briefly [Priestly 1981] [Clarkson 1993]. 
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1.3.1 Unbiasedness 

The 𝑋� is an unbiased estimator for 𝑋 if the average value of 𝑋� over all possible samples is 

equal to “true value” 𝑋 whatever value 𝑋 takes, that is 𝐸�𝑋�� = 0 for all 𝑋. 

The estimator is said to be “biased” if the above equation does not hold.  The bias of 𝑋�  is 

defined as: 

𝑏𝑖𝑎𝑠(𝑋�) = 𝑋� − 𝑋 

where 𝑋� = 𝐸{𝑋�} . 

Since the sampling distribution of 𝑋� will depend on n, the number of observations in the 

sample 𝑏𝑖𝑎𝑠�𝑋�� will also depend on n.  

If 𝑏𝑖𝑎𝑠�𝑋�� → 0 as 𝑛 → ∞ then 𝑋� is said to be asymptotically unbiased. Unbiasedness is 

clearly a desirable property but a biased estimator may still be quite useful provided if it 

is asymptotically unbiased. On the other hand, generally the lack of asymptotically 

unbiasedness would be considered a serious defect in an estimator.  

In general, the basic structure of power system state estimation implies some assumptions 

which consequently introduce a bias meaning the inconsistency between the physical 

system and the mathematical model and have resulted in practical difficulties manifested 

by poor numerical reliability of the iterative state estimation algorithm [Meliopoulos 

2001]. 

1.3.2 Efficiency of an Estimator and Minimum Variance 

The efficiency of an estimator is determined by its variance. An estimator is more 

efficient if its variance is lower. The variance of the estimated states is an indicator of the 

state estimator performance [Bi 2008]. In this thesis, the average value of the variances 

of the estimated states is taken as the performance indicator of the proposed state 

estimator. The variance of an estimator 𝑋� is: 

𝑉𝑎𝑟�𝑋�� = 𝐸 ��𝑋� − 𝑋��
2
� 

In the case that there are several different estimators e.g. 𝑋1 and 𝑋2 for the same 

parameter 𝑋, if the bias of the estimators are the same then the estimator would be 
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preferred that its sampling distribution has the smaller variance. Suppose two sampling 

variances are shown in Figure  1.1 that 𝑋1 has the smaller variance. The values of  

𝑋�1 over different samples are more concentrated around the true value 𝑋 than are the 

values of 𝑋�2. Consequently the probability that 𝑋�1 lies in a distinct interval is higher than 

the probability that 𝑋�2 lies in the same interval. In this case the 𝑋�1 is said to be a more 

efficient estimator than 𝑋�2.  

 

Figure  1.1: Sampling distributions of two different estimators. 
 

Relative efficiency of two different estimators 𝑋1 and 𝑋2 for the same parameter 𝑋, is 

commonly evaluated as a percentage of the ratio between the related variances: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑉𝑎𝑟(𝑋�1)
𝑉𝑎𝑟(𝑋�2)

× 100% 

1.3.3 Minimum Mean-Squared Error (MSE) 

In general, when an estimation procedure is biased, the efficiency is not a good measure 

of quality of the estimator e.g. in the case of having two different estimators 𝑋1 and 𝑋2 

for the same parameter, 𝑋�1 may be unbiased but have a high variance, whereas 𝑋�2 may be 

biased but have low variance.  

0

𝑋�2 

𝑋�1 

𝑋 



 
 

Chapter 1. Introduction  6 
 

 

Under this situation it is important to define the measure of mean-squared error which 

considers both bias and variance to determine which estimator is better. The mean-

squared error for the estimator 𝑋� is defined as: 

𝑀𝑆𝐸(𝑋�) = 𝐸 ��𝑋� − 𝑋�
2
�  

Using the stated definitions of variance and bias, the mean-squared error could be 

expressed in other form as: 

𝑀𝑆𝐸(𝑋�) = 𝐸 ��𝑋� − 𝐸{𝑋�} + 𝑏𝑖𝑎𝑠(𝑋�)�
2
�  

𝑀𝑆𝐸(𝑋�) = 𝐸 ��𝑋� − 𝐸{𝑋�}�
2

+ 𝑏𝑖𝑎𝑠2�𝑋�� + 2 𝑏𝑖𝑎𝑠(𝑋�)�𝑋� − 𝐸{𝑋�}��  

𝑀𝑆𝐸�𝑋�� = 𝐸 ��𝑋� − 𝐸{𝑋�}�
2
� + 𝑏𝑖𝑎𝑠2�𝑋�� + 2 𝑏𝑖𝑎𝑠�𝑋��𝐸��𝑋� − 𝐸{𝑋�}��  

Considering that in the above equation the 𝐸��𝑋� − 𝐸{𝑋�}�� ≡ 0, the first term is the 

variance and the second term is the bias squared, the mean-squared error will be finally: 

𝑀𝑆𝐸�𝑋�� = 𝑉𝑎𝑟�𝑋�� + 𝑏𝑖𝑎𝑠2�𝑋�� . 

The mean-squared error is more complete measure of the quality of an estimator than bias 

or variance itself. So, if there are several estimators which are biased, a sensible 

procedure would be to choose the estimator with smaller mean squared error.  

This procedure is perfectly consistent with the measure of efficiency, when an estimator 

is unbiased. In the latter case, mean squared error will reduce only the variance. So, for 

an unbiased estimator, the MSE is the variance. Like the variance, MSE has the same 

units of measurement as the square of the quantity being estimated. Similar to standard 

deviation, taking the square root of MSE gives the root mean square error (RMSE), 

which has the same units as the quantity being estimated. For an unbiased estimator, the 

RMSE is the square root of the variance which obviously is the standard deviation. 

1.3.4 Consistency 

Another desirable feature for any estimator is that the more observations used, the closer 

the parameter estimate 𝑋� should be to the parameter 𝑋. It is reasonable to expect that an 

estimator based on more observations should be more accurate than one based on less 

observations. 
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Formally, 𝑋� is called a consistent estimator for 𝑋 if 𝑋� converges to 𝑋 as the sample size 

goes to infinity. One of the sufficient conditions for consistency is that the mean squared 

error of 𝑋� should converge to 0 as the sample size goes to infinity: 

lim
𝑛→∞

�𝑀𝑆𝐸�𝑋��� = 0 

The mean squared error is the summation of variance with the bias squared, hence 

equivalently the sufficient conditions for consistency could be: 

lim𝑛→∞ �𝑉𝑎𝑟�𝑋��� = 0      and      lim𝑛→∞ �𝑏𝑖𝑎𝑠2�𝑋��� = 0. 

1.3.5 Sufficiency 

The 𝑋� is a sufficient statistic for 𝑋, if the distribution of the observed data conditioned on 

𝑋� is not depended on 𝑋, i.e. the observed data only give information about 𝑋 if their 

probability density functions depend on 𝑋.  

In a simpler words, sufficiency means that the estimator contains all of the information in 

the observations which is relevant to 𝑋. If the estimation process is such that all relevant 

information form observations are included in 𝑋�, then the density of the data conditioned 

on the estimate will not depend on 𝑋, hence the estimator will be sufficient. 

1.4 Novelty of This Study and Literature Review 

In the literature, the topics which are more investigated on power system State Estimation 

include the optimal placement of measurement devices (in particular considering PMU), 

bad data detection and data loss, network observability, wide-area state estimation and 

dynamic state estimation (DSE) techniques. 

At present Least Squares (LS) method of state estimation is most widely used in power 

system and Weighted Least Squares (WLS) method is the one that used more often in 

algorithms [Li 2011]. 

This thesis investigates the effects of parameter and measurement uncertainties on the 

results of the power system Weighted Least Squares (WLS) State Estimation. The 
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performance of State Estimator is based mainly on the accuracy of its inputs hence this 

investigation is exactly related to the uncertainty of them. 

The novelty of this thesis lies in the analysis of how the results of WLS State Estimation 

are affected when there exist both: 

• The network parameters uncertainty. 

• The measurements uncertainty. 

This study contains useful approaches for power system planners to improve the State 

Estimation by determining whether to invest on increasing the measurement preciseness 

or perform an accurate measurement along power network to get accurate values of 

network parameters. 

There are two interesting researches are done by Muscas et al. in [Muscas 2007a] and 

[Muscas 2007a] which both the uncertainty introduced by the measurement devices and 

the tolerance of the network parameters (line impedances) are taken into account and the 

aim is the optimal number and location of measurement devices. In contrast, the analyses 

used in this thesis are more focused on the changes of the results of State Estimator 

versus the network parameters uncertainty. Therefore the difference with this thesis work 

is that the goals are different while the approaches are similar.  

Recently there is also a relevant investigation done by Rakpenthai et al. in [Rakpenthai 

2012] that the network parameter uncertainty is also considered based on Parametric 

Interval Linear Systems. They proposed an analytical approach to find the bounds of state 

variables of the power system whose transmission line network parameters are within 

particular upper and lower bounds. The state estimation problem is formulated as a 

parametric interval linear system of equations and a novel method to find the outer 

solution or the bounds of state variables is suggested. On the contrary, in this thesis a 

statistical approach is utilized and we are dealing with uncertainties, not the intervals. 

1.5 Notations and Operators 

In this thesis the following notation for expressing matrices and the mathematical 

operations are used: 

• Rectangular matrices expressed by uppercase and boldface letters, e.g. 𝑨 
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• Vectors expressed by lowercase and boldface letters, e.g. 𝒂 

• Scalars expressed by lowercase and italic letters, e.g. 𝑎 

• Complex quantities expressed by a hat over the letters, e.g. 𝑨� 

• Magnitude of a complex matrix expressed by bars around the matrix, e.g. |𝑨| 

 

The following operators are also used for some matrix operations: 

• 𝐫𝐞𝐚𝐥(. ) and 𝐢𝐦𝐚𝐠(. ) operators denote the extractions of real and imaginary 

elements of a complex vector or matrix respectively. 

• 𝐝𝐢𝐚𝐠(. ) operator returns the main diagonal elements of a matrix as a vector.  

• 𝐯𝐞𝐜𝐭(. ) operator creates a vector from all the columns of a matrix.  

 



 
 

 

 

 

CHAPTER    2 

2 Implementation of Load Flow 
 

 

 

n this chapter a load flow method is described. It is used to make the calculated 

measurement that is one of main components of the proposed algorithm.  

Load flow analysis is the most important and fundamental tool including numerical 

analysis applied to a power system to investigate problems in power system operating 

and planning. It analyzes the power systems in normal steady-state operation and it 

usually uses simplified notation such as a one-line diagram and per-unit system. The 

power flow problem consists of a given transmission network where all lines are 

represented by a Pi-equivalent circuit and transformers by an ideal voltage transformer in 

series with an impedance. Once the loads, active and reactive power injections and 

network parameters are defined, load flow analysis solves the bus voltages and phases 

hence the branch power flow can be calculated. Generators and loads represent the 

boundary conditions of the solution. Mathematically, the power flow requires a solution 

of a system of simultaneous nonlinear equations. With the increase of power system scale 

continuously, the dimension of load flow equations now becomes very high and for the 

equations with such high dimensions, we cannot ensure that any mathematical method 

can converge to the right solution. Hence, choosing the reliable method is essential 

[Wang 2009], [Grainger 1994]. 

I 
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2.1 Literature Review on Load Flow Methods 

Early on the development of first digital computers, the widely used method was Gauss-

Seidel iterative method that was based on the nodal admittance matrix of the power 

system the impedance matrix that represents the topology and parameters of the power 

network [Stagg 1968]. The fundamental of this method is rather simple and its memory 

requirement is relatively small but its convergence is not satisfactory.  

To solve this problem, the sequential substitution method based on the nodal impedance 

matrix is used which is also called the impedance method. The main difficulty of the 

impedance method is [Brown 1963]: 

• High memory requirement. 

• Computing burden. 

The first solution for overcoming the disadvantages of the impedance method is a 

piecewise solution of the impedance matrix load flow. It presents a method which 

involves splitting a power system into pieces so that it permits use of the impedance 

matrix method on large systems. This method retains the same features and convergence 

characteristics of impedance method [Andreich 1968]. 

The other -and better- solution for overcoming the disadvantages of the impedance 

method is the Newton–Raphson method [Tinney 1967] which is more widely used and 

preferred even at this time. Its prominent features are: 

• More accurate and reliable. 

• Less number of iterations for convergence. 

• Independency of the iteration number to number of buses in the system. 

• Faster computations. 
 

The Newton–Raphson power flow is the most robust power flow algorithm used in 

practice but however since 1970s the load flow methods continue to develop and among 

them the most successful is the fast decoupled method [Scott 1974].  

Comparing the Newton method with the fast decoupled method, the latter method is 

faster and much simpler and more efficient algorithmically and needs less storage, but it 

may fail to converge when some of the basic assumptions do not hold. Convergence of 
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iterative methods depends on the dominance of the diagonal elements of the bus 

admittance matrix. A comparison of the convergence of the Gauss-Seidel, Newton-

Raphson and the fast decoupled method power flow algorithms is shown in Figure  2.1 

[Wood 1996]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.1: Comparison of Various Methods for Power Flow Solution [Wood 1996]. 
 

Since, Newton–Raphson method is a gradient method, the method is quite complicated 

and therefore, programming is also comparatively difficult and complicated. With this 

method the memory that is needed is rather large for large size systems but still the 

method is versatile, reliable and accurate and best matched for load flow calculation of 

large size systems [Murty 2011]. 

Until now the research on load flow analysis has been still very active. The artificial 

neural network algorithm [Nguyen 1995] [Chan 2000], the genetic algorithm [Wong 

1999] and Fuzzy-logic method [Lo 1999], have also been applied to load flow analysis. 

However, up to now these new models and new algorithms still cannot replace the 

Newton-Raphson or fast decoupled methods. 
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According to the literature review, because of the applicability of the Newton-Raphson 

method on large size systems and its stability for convergence, in this thesis Newton-

Raphson method is implemented for the calculation of actual state of power system based 

on the network parameters, power injections and loads regardless of its complicated 

programming. 

2.2 Formation of Nodal Admittance Matrix 

The formulation of an appropriate mathematical model is the first step in the analysis of 

an electrical network. The model must be able to describe the characteristics of individual 

network components and the relations that rule the interconnection of the components.  

The network matrix equations provide a suitable mathematical model for digital 

processing. The elements of a network matrix depend on the selection of independent 

variables like currents or voltages (the elements of network matrix, hence, will be 

impedances or admittances) [Stagg 1968].  

In the simulations of this thesis, the method of singular transformations is used for 

forming the bus admittance matrix. This method is chosen because in practice it 

performed faster simulations in Matlab simulation environment, compared to the methods 

that are described in [Zimmerman 2011] and [Wang 2009].  

This section will explain the basic power network models and matrices and finally works 

ut the bus admittance matrix by singular transformations. 

2.2.1 Bus incidence matrix A 

The incidence of branches to buses in a connected power network is shown by the 

element-node incidence matrix A. It does not provide any information about the electrical 

characteristics of the power network parameters.  

This matrix is rectangular and the dimension of it is 𝑁𝑏𝑢𝑠 × 𝑁𝑏𝑟𝑎𝑛𝑐ℎ. The aij elements of 

A are 1 if the ith branch is incident to and oriented away from the jth bus and the aij 

elements will be -1 if the ith branch is incident to and oriented toward the jth bus. The 

other elements are zero.  
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If the rows of A are arranged according to a particular tree, the matrix can be partitioned 

into two sub-matrices. The first part is the incidence of the links going from buses to the 

zero reference bus that is equal to identity matrix I of the size 𝑁𝐵𝑢𝑠 and the last sub-

matrix is the incidence of network branches as shown in Figure  2.2. 

 

 

2.2.2 Branch Model 

A transmission line can be modeled by a two port pi-model as shown in Figure  2.3. Where 

for each line connecting bus h to k, a positive sequence series impedance of  

𝑅ℎ𝑘 + 𝑗𝑋ℎ𝑘 and total line charging susceptance of 𝑗𝐵ℎ𝑘 is considered. 
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Figure  2.2 Illustration of the structure of Bus Incidence Matrix by the two sub-matrices. 
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Figure  2.3 Equivalent pi-model for a transmission line. 

 

2.2.3 Shunt Elements 

Shunt capacitors or reactors for voltage and/or reactive power control, are represented by 

their per phase susceptance at the corresponding bus. The sign of the susceptance value 

will determine the type of the shunt element (positive sign shows a shunt capacitor and 

negative sign shows a reactor). The Figure  2.4 Illustrates the shunt conductance and 

susceptance for an instance bus, k. 

 

 

 

 

 

 

 

 

Figure  2.4 Illustration of Shunt conductance and Shunt Susceptance for an instance bus, k. 
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2.2.4 Transformers Model 

Transmission lines with transformers can be modeled as series impedances, in series with 

ideal transformers as shown in Figure  2.5. The two transformer terminal buses h and k are 

named as the tap side bus and the impedance side bus respectively. 

 

 

Figure  2.5 One-line diagram of a transmission line with transformer. 

In Figure  2.6 the two port pi-model of a transmission line is shown considering the effects 

of transformer tap value, a. 

 

 

 

 

       

       

        

        

        

Figure  2.6 Equivalent pi-model for a transmission line with transformer tap parameter. 

 

2.2.5 Primitive Network Matrix 

The electrical characteristics of the individual network components can be presented 

easily in the form of a primitive network matrix 𝒀�𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 . The primitive network matrix 

describes the characteristics of each component. It does not present anything about the 

network connections.  

The diagonal elements of matrix 𝒀�𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒  are the self-admittances and the off-diagonal 

elements are the mutual admittances. Assuming there is no mutual coupling between 

elements, the 𝒀�𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒  matrix will be a diagonal matrix. The diagonal elements of 

𝑹𝒉𝒌 
h k 

𝒋𝑿𝒉𝒌 
  

a:1 

𝒂(𝑹𝒉𝒌 + 𝒋𝑿𝒉𝒌) 

(𝟏 − 𝒂)
𝒂𝟐(𝑹𝒉𝒌 + 𝒋𝑿𝒉𝒌) 

h k 

0 0 

(𝒂 − 𝟏)
𝒂(𝑹𝒉𝒌 + 𝒋𝑿𝒉𝒌) 
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𝒀�𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒  are like a vector that consists of two parts, first the total bus admittances that 

are connected from buses to the Reference bus (Bus number 0) and next the branch 

admittances as clearly depicted in Figure  2.7.  
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� 

Figure  2.7 The vector of diagonal elements of 𝑌�𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 . 

 

The Bus Admittance elements of this vector for tap side buses are defined as: 

𝑌�𝑖,0 = � �
𝑗𝐵𝑛

2
+

(1 − 𝑎)
𝑎2(𝑅𝑛 + 𝑗𝑋𝑛)�

all the branches
connected to bus i 

𝑛=1

+ 𝑌𝑠ℎ𝑢𝑛𝑡 

Where 𝑅𝑛 and 𝑋𝑛 are respectively the resistance and reactance of the branches that are 

connected to bus i. 𝑌𝑠ℎ𝑢𝑛𝑡 is the shunt admittance connected to bus i. 

The Bus Admittance elements for impedance side buses are defined as: 

𝑌�𝑖,0 = � �
𝑗𝐵𝑛

2
+

(𝑎 − 1)
𝑎(𝑅𝑛 + 𝑗𝑋𝑛)�

all the branches
connected to bus i 

𝑛=1

+ 𝑌𝑠ℎ𝑢𝑛𝑡 

The transformer tap value a, for a non-transformer branch is considered 1. The Branch 

Admittance elements are defined as: 

𝑦�1:𝑁𝑏𝑟𝑎𝑛𝑐ℎ =
1

𝑎(𝑅ℎ𝑘 + 𝑗𝑋ℎ𝑘) 

Where 𝑅ℎ𝑘 and 𝑋ℎ𝑘 are respectively the resistance and reactance of an instance branch 

that connects bus h to k. 
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2.2.6 Nodal Admittance Matrix 

It is necessary to convert the primitive network matrix into a network matrix that 

describes the performance of the interconnected network. It is done by using singular 

transformations of the bus primitive network matrix with the bus incidence matrix. 

Therefore, the bus admittance matrix 𝒀�𝑏𝑢𝑠 can be extracted by using the bus incidence 

matrix 𝑨 to relate the primitive network’s variables and parameters to the bus quantities 

of interconnected network [Stagg 1968]. 

𝒀𝑏𝑢𝑠 = 𝑨𝑇 𝒀�𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒  𝑨 

The bus incidence matrix is singular, so the [𝑨𝑇 𝒀�𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒  𝑨] is singular transformation of 

𝒀�𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 . 

2.3 Nodal Power Equations Using the Nodal Admittances 

Power system load flow is considered as the problem of finding the voltage and phase for 

each bus when all the active and reactive power injections are specified. If the complex 

power can be represented by equations of complex voltages, then a nonlinear equation 

solving method can be used to find a solution of the node voltage. In this section the 

nodal power equations are deduced using the nodal admittances. [Wang 2009, p.76] 

The complex node power equations have two representation forms, polar and rectangular 

form: 

𝑆ℎ̅ = 𝑃ℎ + 𝑗𝑄ℎ = 𝑉�ℎ�𝑌�ℎ𝑘∗ 𝑉�𝑘∗
𝑛

𝑘=1

 

Which the index ℎ is the bus number from 1 to 𝑁𝑏𝑢𝑠. The node admittance matrix 𝑌�ℎ𝑘 is a 

sparse matrix and accordingly the terms in the summation are not many. The elements of 

node admittance matrix can be written as: 

𝑌�ℎ𝑘 = 𝐺ℎ𝑘 + 𝑗𝐵ℎ𝑘 

Consequently the complex node power can be expressed as: 

𝑃ℎ + 𝑗𝑄ℎ = 𝑉�ℎ � (𝐺ℎ𝑘 − 𝑗𝐵ℎ𝑘)𝑉�𝑘∗
𝑁𝑏𝑢𝑠

𝑘=1
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And if we consider the voltages in polar form: 𝑉�ℎ = |𝑉ℎ|𝑒𝑗𝜃ℎ , 

𝑃ℎ + 𝑗𝑄ℎ = |𝑉ℎ|𝑒𝑗𝜃ℎ � (𝐺ℎ𝑘 − 𝑗𝐵ℎ𝑘)|𝑉𝑘|𝑒−𝑗𝜃𝑘
𝑁𝑏𝑢𝑠

𝑘=1

 

𝑃ℎ + 𝑗𝑄ℎ = |𝑉ℎ| � |𝑉𝑘|(𝐺ℎ𝑘 − 𝑗𝐵ℎ𝑘)𝑒𝑗(𝜃ℎ𝑘)

𝑁𝑏𝑢𝑠

𝑘=1

 

That 𝜃ℎ𝑘 = 𝜃ℎ − 𝜃𝑘 is the voltage phase difference between node ℎ and 𝑘. By using 

Euler rule:  𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin𝜃 we can combine the exponential forms: 

𝑃ℎ + 𝑗𝑄ℎ = |𝑉ℎ| � |𝑉𝑘|(𝐺ℎ𝑘 − 𝑗𝐵ℎ𝑘) (cos𝜃ℎ𝑘 + 𝑗 sin𝜃ℎ𝑘)
𝑁𝑏𝑢𝑠

𝑘=1

 

𝑃ℎ + 𝑗𝑄ℎ = |𝑉ℎ| � |𝑉𝑘|(𝐺ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑗𝐺ℎ𝑘 sin𝜃ℎ𝑘 − 𝑗𝐵ℎ𝑘 cos 𝜃ℎ𝑘 + 𝐵ℎ𝑘 sin𝜃ℎ𝑘)
𝑁𝑏𝑢𝑠

𝑘=1

 

Dividing above equation into real and imaginary parts gives the active and reactive 

power injection at bus 𝒉 in polar form: 

𝑃ℎ = |𝑉ℎ| � |𝑉𝑘|(𝐺ℎ𝑘 cos 𝜃ℎ𝑘 + 𝐵ℎ𝑘 sin𝜃ℎ𝑘)
𝑁𝑏𝑢𝑠

𝑘=1

 

𝑄ℎ = |𝑉ℎ| � |𝑉𝑘|(𝐺ℎ𝑘 sin𝜃ℎ𝑘 − 𝐵ℎ𝑘 cos 𝜃ℎ𝑘)
𝑁𝑏𝑢𝑠

𝑘=1

 

The last two equations are the polar form of the nodal active and reactive power 

equations which are the main equations in the Newton-Raphson calculation procedure. 

2.4 Newton–Raphson Power Flow 

Since the active and reactive powers are represented by equations of voltage magnitude 

and phases in previous section, a non-linear equation solving method can be applied to 

extract the voltage and phases for each bus.  

The Newton–Raphson method is an efficient step-by-step procedure to solve nonlinear 

equations that it transforms the procedure of solving nonlinear equations into the 
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procedure of repeatedly solving linear equations. This chronological linearization process 

is the main part of the Newton–Raphson method [Wang 2009]. 

For building the mathematical models of the load flow problem, the simultaneous 

nonlinear equations of node voltage phasors, which are derived in the previous section, 

are expressed in the following forms to define the power mismatches in polar 

coordinates: 

∆𝑃ℎ = 𝑃𝑠𝑝,ℎ − |𝑉ℎ| � |𝑉𝑘|(𝐺ℎ𝑘 cos 𝜃ℎ𝑘 + 𝐵ℎ𝑘 sin𝜃ℎ𝑘)
𝑁𝑏𝑢𝑠

𝑘=1

= 0 

∆𝑄ℎ = 𝑄𝑠𝑝,ℎ − |𝑉ℎ| � |𝑉𝑘|(𝐺ℎ𝑘 sin 𝜃ℎ𝑘 − 𝐵ℎ𝑘 cos𝜃ℎ𝑘)
𝑁𝑏𝑢𝑠

𝑘=1

= 0 

• ∆𝑃ℎ and ∆𝑄ℎ are the magnitudes of active and reactive power errors respectively 

and the index ℎ is the bus number (from 1 to 𝑁𝑏𝑢𝑠).  

• 𝑃𝑠𝑝,ℎ and 𝑄𝑠𝑝,ℎ are the specified active and reactive powers at bus ℎ.  

• 𝐺ℎ𝑘 and 𝐵ℎ𝑘 come from the definition of bus admittance matrix in previous 

chapter which it was divided into real and imaginary parts as : 𝑌�ℎ𝑘 = 𝐺ℎ𝑘 + 𝑗𝐵ℎ𝑘. 

Reminding that for the load flow analysis, active and reactive powers at all the buses 

(except slack bus) in the power system network are specified explicitly.  

Assuming that the slack bus is the first bus and the number of PV buses is 𝑁𝑃𝑉. Hence 

there will be (𝑁𝑏𝑢𝑠 − 1) equations for active power:  

⎩
⎪⎪
⎨

⎪⎪
⎧∆𝑃2 = 𝑃𝑠𝑝,2 − |𝑉2| � |𝑉𝑘|(𝐺2𝑘 cos 𝜃2𝑘 + 𝐵2𝑘 sin𝜃2𝑘)

𝑁𝑏𝑢𝑠

𝑘=1

= 0

   ⋮

∆𝑃𝑁𝑏𝑢𝑠 = 𝑃𝑠𝑝,𝑁𝑏𝑢𝑠
− �𝑉𝑁𝑏𝑢𝑠� � |𝑉𝑘|(𝐺𝑁𝑏𝑢𝑠𝑘 cos𝜃𝑁𝑏𝑢𝑠𝑘 + 𝐵𝑁𝑏𝑢𝑠𝑘 sin𝜃𝑁𝑏𝑢𝑠𝑘)

𝑁𝑏𝑢𝑠

𝑘=1

= 0

� 

and (𝑁𝑏𝑢𝑠 − 𝑁𝑃𝑉 − 1) equations for reactive power: 



 
 

Chapter 2. Implementation of Load Flow  21 
 

 

⎩
⎪⎪
⎨

⎪⎪
⎧∆𝑄2 = 𝑄𝑠𝑝,2 − |𝑉2| � |𝑉𝑘|(𝐺2𝑘 sin𝜃2𝑘 − 𝐵2𝑘 cos 𝜃2𝑘)

𝑁𝑏𝑢𝑠

𝑘=1

= 0

   ⋮

∆𝑄𝑁𝑏𝑢𝑠
= 𝑄𝑠𝑝,𝑁𝑏𝑢𝑠

− �𝑉𝑁𝑏𝑢𝑠� � |𝑉𝑘|(𝐺𝑁𝑏𝑢𝑠𝑘 sin 𝜃𝑁𝑏𝑢𝑠𝑘 − 𝐵𝑁𝑏𝑢𝑠𝑘 cos 𝜃𝑁𝑏𝑢𝑠𝑘)
𝑁𝑏𝑢𝑠

𝑘=1

= 0

� 

Hence the total number of above equations will be (2𝑁𝑏𝑢𝑠 − 𝑁𝑃𝑉 − 2) that is equal to the 

number of unknowns which are (𝑁𝑏𝑢𝑠 − 𝑁𝑃𝑉 − 1) voltage magnitudes and (𝑁𝑏𝑢𝑠 − 1) 

angles. 

The load flow analyzer considers the acceptable tolerance for ∆𝑃ℎ and ∆𝑄ℎ and it solves 

the bus voltages (on all buses except slack and PV buses) along with the bus angles (on 

all buses except slack bus).  

Considering the first order of Taylor Series expansion and neglecting the higher order 

terms of the non-linear equations for active and reactive power around the vector of 

unknowns that is composed of voltage magnitudes and angles of size (2𝑁𝑏𝑢𝑠 − 𝑁𝑃𝑉 − 2) 

gives: 
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⎢
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___
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   Mismatches                                Jacobians                              Corrections 

∆𝜃 and ∆𝑉 are the voltage angle correction values and voltage magnitude correction 

values respectively. The last expression in extended from will be: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∆𝑃2
⋮

∆𝑃𝑁𝑏𝑢𝑠
_______
∆𝑄2
⋮
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�

�
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� �
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⎥
⎥
⎤
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The matrices of 𝑨, 𝑩, 𝑪 and 𝑫 are the sub-blocks of the Jacobian matrix where their 

elements can be calculated by differentiating the equations of active and reactive power 

with respect to voltage angles and magnitudes. Hence the elements of the Jacobian matrix 

can be obtained using the following equations (for each sub-block, the first equation is 

related to the off-diagonal elements and the second one is for diagonal elements): 

⎩
⎪
⎨

⎪
⎧𝐴𝑖𝑗 =

𝜕𝑃𝑖
𝜕𝜃𝑗

= −𝑉𝑖𝑉𝑗�𝐺𝑖𝑗 sin𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗�      𝑓𝑜𝑟 𝑖 ≠ 𝑗

𝐴𝑖𝑖 =
𝜕𝑃𝑖
𝜕𝜃𝑖

= 𝑉𝑖 � 𝑉𝑗�𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗�
𝑗≠𝑖

𝑗∈𝑁𝑏𝑢𝑠

� 

⎩
⎪
⎨

⎪
⎧𝐵𝑖𝑗 =

𝜕𝑃𝑖
𝜕𝑉𝑗

= −𝑉𝑖�𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin𝜃𝑖𝑗�      𝑓𝑜𝑟 𝑖 ≠ 𝑗

𝐵𝑖𝑖 =
𝜕𝑃𝑖
𝜕𝑉𝑖

= � −𝑉𝑗�𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin𝜃𝑖𝑗� − 2𝑉𝑖𝐺𝑖𝑖

𝑗≠𝑖

𝑗∈𝑁𝑏𝑢𝑠

� 

⎩
⎪
⎨

⎪
⎧𝐶𝑖𝑗 =

𝜕𝑄𝑖
𝜕𝜃𝑗

= 𝑉𝑖𝑉𝑗�𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin𝜃𝑖𝑗�      𝑓𝑜𝑟 𝑖 ≠ 𝑗

𝐶𝑖𝑖 =
𝜕𝑄𝑖
𝜕𝜃𝑖

= −𝑉𝑖 � 𝑉𝑗�𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin𝜃𝑖𝑗�
𝑗≠𝑖

𝑗∈𝑁𝑏𝑢𝑠

� 

⎩
⎪
⎨

⎪
⎧𝐷𝑖𝑗 =

𝜕𝑄𝑖
𝜕𝑉𝑗

= −𝑉𝑖�𝐺𝑖𝑗 sin𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗�      𝑓𝑜𝑟 𝑖 ≠ 𝑗

𝐷𝑖𝑖 =
𝜕𝑄𝑖
𝜕𝑉𝑖

= � −𝑉𝑗�𝐺𝑖𝑗 sin𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗� + 2𝑉𝑖𝐵𝑖𝑖

𝑗≠𝑖

𝑗∈𝑁𝑏𝑢𝑠

� 

Jacobian matrix is a sparse matrix, and the place of zeros in this matrix is the same as 

place of zeros in bus admittance matrix because considering the equations of Jacobian 

matrix for off-diagonal elements, it can be seen that each of them is related to only one 

element of the bus admittance matrix. Therefore, if the element in the admittance matrix 

is zero, the corresponding element in the Jacobian matrix is also zero. The Jacobian 

matrix is not, however, symmetrical. The elements of Jacobian matrix are a function of 

node voltage phasors and so during the iterative process they vary with node voltages 

[Wang 2009]. 
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For saving the computation time, the voltage magnitudes in the correction vector can be 

changed to ∆𝑉
𝑉

 because in this case the equations for calculating sub-matrices for A and D 

𝐴𝑖𝑗 = 𝐷𝑖𝑗 and 𝐵𝑖𝑗 = −𝐶𝑖𝑗. If we consider this situation, the number of elements to be 

calculated for Jacobian matrix are only 2(𝑁𝑏𝑢𝑠 − 1) + [2(𝑁𝑏𝑢𝑠 − 1)]2 2⁄  instead of 

[2(𝑁𝑏𝑢𝑠 − 1)]2 [Murty 2011]. 

2.5 Newton–Raphson Solution Algorithm  

The flowchart for implementation of Newton-Raphson Load Flow procedure in Polar 

Coordinates is depicted in Figure  2.8. 
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Figure  2.8 Flowchart for implementation of Newton-Raphson Load Flow 



 
 
 

 

 

 

 

CHAPTER    3 

3 Implementation of WLS State Estimator 
 

 

 

3.1 Power Equations Using the Physical Admittances 

o examine the behavior of the state estimator in the presence of uncertainty in the 

network parameters, we extract the basic equations that relate the active and 

reactive power injections to the voltages, angles and the network parameters using the 

physical admittances. Firstly we describe the equivalent pi-model for a branch and then 

we write the node power equations. 

3.1.1 Complex Power Flow equations 

Consider an equivalent pi model for a transfer line as shown in Figure  3.1: 

 

 

 

 

 

 

 
Figure  3.1 Equivalent pi-model for a branch connecting bus ℎ to bus 𝑘. 

T 

𝐼ℎ̅𝑘 𝑦�ℎ𝑘 = 𝑔ℎ𝑘 + 𝑗𝑏ℎ𝑘 

𝑦�ℎ0 = 𝑔ℎ0 + 𝑗𝑏ℎ0 𝑦�𝑘0 = 𝑔𝑘0 + 𝑗𝑏𝑘0 

𝐼𝑘̅ℎ 𝑉�ℎ 𝑉�𝑘 
h k 

0 0 

1 
 

2 
 

3 
 

𝑆ℎ̅𝑘 𝑆𝑘̅ℎ 
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Where: 

• 𝑉�ℎ and 𝑉�ℎ are the complex voltages in polar form at bus ℎ and 𝑘. 

• 𝑦�ℎ0 and 𝑦�𝑘0 are the admittances of the shunt branches connected at bus ℎ and 𝑘. 

• 𝑦�ℎ𝑘 is the admittance of the series branch connecting bus ℎ to bus 𝑘. 

• 𝐼ℎ̅𝑘 and 𝐼𝑘̅ℎ are the line current flow between bus ℎ and bus 𝑘.  

• 𝑆ℎ̅𝑘 and 𝑆𝑘̅ℎ are the complex power flows. 
 

The reduced incidence matrix 𝐶 will be: 

 

 

and the branch admittance matrix is: 

𝑦�𝑏 = �
𝑦�ℎ𝑘 0 0

0 𝑦�ℎ0 0
0 0 𝑦�𝑘0

�. 

The nodal admittance matrix can be found by: 

𝑌 = 𝐶𝑌𝑏𝐶𝑇 

𝑌 = � 1 1 0
−1 0 1� �

𝑦�ℎ𝑘 0 0
0 𝑦�ℎ0 0
0 0 𝑦�𝑘0

� �
1 −1
1 0
0 1

�  

𝑌 = �𝑦�ℎ𝑘 + 𝑦�ℎ0 −𝑦�ℎ𝑘
−𝑦�ℎ𝑘 𝑦�ℎ𝑘 + 𝑦�𝑘0

�  

According to Ohm's law: 𝐼 = 𝑌𝑉, the vector of injected currents can be extracted as: 

�𝐼ℎ̅𝑘
𝐼𝑘̅ℎ

� = �𝑦�ℎ𝑘 + 𝑦�ℎ0 −𝑦�ℎ𝑘
−𝑦�ℎ𝑘 𝑦�ℎ𝑘 + 𝑦�𝑘0

� �𝑉
�ℎ
𝑉�𝑘
� 

�𝐼ℎ̅𝑘 = (𝑦�ℎ𝑘 + 𝑦�ℎ0)𝑉�ℎ − 𝑦�ℎ𝑘𝑉�𝑘   
𝐼𝑘̅ℎ = −𝑦�ℎ𝑘𝑉�ℎ + (𝑦�ℎ𝑘 + 𝑦�𝑘0)𝑉�𝑘

� 

Which  𝐼ℎ̅𝑘 is the current from bus ℎ to 𝑘. Finally the complex power 𝑆ℎ̅𝑘 that flows from bus 

ℎ to bus 𝑘 will be: 

𝑆ℎ̅𝑘 = 𝑉�ℎ 𝐼ℎ̅𝑘∗  

𝐶 =        � 1 1 0
−1 0 1� 

 

h 
k 

1 
 

2 
 

3 
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𝑆ℎ̅𝑘 = 𝑉�ℎ�(𝑦�ℎ𝑘 + 𝑦�ℎ0)𝑉�ℎ − 𝑦�ℎ𝑘𝑉�𝑘�
∗
 

𝑆ℎ̅𝑘 = (𝑦�ℎ𝑘 + 𝑦�ℎ0)∗𝑉�ℎ𝑉�ℎ∗ − 𝑦�ℎ𝑘∗𝑉�ℎ𝑉�𝑘∗ 

Substituting the complex power flow 𝑆ℎ̅𝑘 with the elements of  𝑦�ℎ𝑘 = 𝑔ℎ𝑘 + 𝑗𝑏ℎ𝑘 yields: 

𝑆ℎ̅𝑘 = (𝑔ℎ𝑘 − 𝑗𝑏ℎ𝑘 + 𝑔ℎ0 − 𝑗𝑏ℎ0)|𝑉�ℎ|2 − (𝑔ℎ𝑘 − 𝑗𝑏ℎ𝑘)|𝑉�ℎ||𝑉�𝑘|𝑒𝑗𝜃ℎ𝑘  

Using Euler rule:  𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin𝜃 we will have: 

𝑆ℎ̅𝑘 = �𝑔ℎ𝑘 + 𝑔ℎ0 − 𝑗(𝑏ℎ𝑘 + 𝑏ℎ0)�|𝑉�ℎ|2 − (𝑔ℎ𝑘 − 𝑗𝑏ℎ𝑘)(cos𝜃ℎ𝑘 + 𝑗 sin 𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| 

𝑆ℎ̅𝑘 =
= �𝑔ℎ𝑘 + 𝑔ℎ0 − 𝑗(𝑏ℎ𝑘 + 𝑏ℎ0)�|𝑉�ℎ|2 −
− [(𝑔ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑗𝑔ℎ𝑘 sin𝜃ℎ𝑘 − 𝑗𝑏ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑏ℎ𝑘 sin𝜃ℎ𝑘)]|𝑉�ℎ||𝑉�𝑘| 

𝑆ℎ̅𝑘 =
= (𝑔ℎ𝑘 + 𝑔ℎ0)|𝑉�ℎ|2 − 𝑗(𝑏ℎ𝑘 + 𝑏ℎ0)|𝑉�ℎ|2 − (𝑔ℎ𝑘 cos𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| −
− 𝑗(𝑔ℎ𝑘 sin𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| + 𝑗(𝑏ℎ𝑘 cos 𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| − (𝑏ℎ𝑘 sin𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| 

𝑆ℎ̅𝑘 =
= (𝑔ℎ𝑘 + 𝑔ℎ0)|𝑉�ℎ|2 − (𝑏ℎ𝑘 sin𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| − (𝑔ℎ𝑘 cos 𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| −
− 𝑗(𝑔ℎ𝑘 sin𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| + 𝑗(𝑏ℎ𝑘 cos 𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| − 𝑗(𝑏ℎ𝑘 + 𝑏ℎ0)|𝑉�ℎ|2 

𝑆ℎ̅𝑘 =

= (𝑔ℎ𝑘 + 𝑔ℎ0)|𝑉�ℎ|2 − (𝑔ℎ𝑘 cos 𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| − (𝑏ℎ𝑘 sin𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| +

+ 𝑗[−(𝑔ℎ𝑘 sin 𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| + (𝑏ℎ𝑘 cos 𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| − (𝑏ℎ𝑘 + 𝑏ℎ0)|𝑉�ℎ|2] 

𝑆ℎ̅𝑘 =

= (𝑔ℎ𝑘 + 𝑔ℎ0)|𝑉�ℎ|2 − (𝑔ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑏ℎ𝑘 sin𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘| + 𝑗[−(𝑏ℎ𝑘 + 𝑏ℎ0)|𝑉�ℎ|2 −

− (𝑔ℎ𝑘 sin𝜃ℎ𝑘 − 𝑏ℎ𝑘 cos 𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘|] 

The complex power flow can decomposed into its real and imaginary parts: 

𝑆ℎ̅𝑘 = 𝑃ℎ𝑘 + 𝑗𝑄ℎ𝑘  

Therefore the active and reactive power flows can be finally extracted as: 

𝑃ℎ𝑘 = (𝑔ℎ𝑘 + 𝑔ℎ0)|𝑉�ℎ|2 − (𝑔ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑏ℎ𝑘 sin𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘|  

𝑄ℎ𝑘 = −(𝑏ℎ𝑘 + 𝑏ℎ0)|𝑉�ℎ|2�−(𝑔ℎ𝑘 sin𝜃ℎ𝑘 − 𝑏ℎ𝑘 cos𝜃ℎ𝑘) �|𝑉�ℎ||𝑉�𝑘| 
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3.2 Measurement Model 

For a power network the set of measurements 𝒛 given are by: 

𝒛 = �

𝑧1
𝑧2
⋮
𝑧𝑚

� =  �

𝑓1(𝑥1, … , 𝑥𝑛)
𝑓2(𝑥1, … , 𝑥𝑛)

⋮
𝑓𝑚(𝑥1, … , 𝑥𝑛)

�+ �

𝑟1
𝑟2
⋮
𝑟𝑚

� = 𝒇(𝑥) + 𝒓 

where: 

𝑓𝑖(𝑥)    is the non-linear function relating measurement 𝑖 to the state vector 𝑥 

𝒓           is the vector of measurement errors  
 

Regarding to the statistical properties of the measurement errors, for 𝑖 = 1, … ,𝑚 we 

commonly have 𝐸[𝑟𝑖] = 0. Also the measurement errors are considered to be 

independent, i.e. 𝐸�𝑟𝑖𝑟𝑗� = 0. Furthermore, they are assumed to have a Gaussian 

distribution with zero mean. 

The measurement vector 𝒛 is composed of the conventional measurements including: 

Voltage magnitude, Active power injections, Reactive power injections, Active power 

flows and Reactive power flows along with a set of phase measurements from PMU. The 

measurement vector is in the following form: 
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𝒛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

�

�

|𝑉1|

⋮

�𝑉𝑁𝑣�______

 

⎭
⎪
⎬

⎪
⎫

 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑠

�

𝑃1

⋮

𝑃𝑁𝑖______

 

⎭
⎪
⎬

⎪
⎫

𝐴𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑤𝑒𝑟 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛

�

𝑄1

⋮

𝑄𝑁𝑖______

 

⎭
⎪
⎬

⎪
⎫

𝑅𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑤𝑒𝑟 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛

�

𝑃𝐹1

⋮

𝑃𝐹𝑁𝑓______

 

⎭
⎪
⎬

⎪
⎫

𝐴𝑐𝑡𝑖𝑣𝑒 𝐿𝑖𝑛𝑒 𝑃𝑜𝑤𝑒𝑟 𝐹𝑙𝑜𝑤

�

𝑄𝐹1

⋮

𝑄𝐹𝑁𝑓______

  

⎭
⎪
⎬

⎪
⎫

𝑅𝑒𝑐𝑡𝑖𝑣𝑒 𝐿𝑖𝑛𝑒 𝑃𝑜𝑤𝑒𝑟 𝐹𝑙𝑜𝑤

�

𝜑1

⋮

𝜑𝑁𝜑______

 

⎭
⎪
⎬

⎪
⎫

 𝑃ℎ𝑎𝑠𝑒𝑠 𝐹𝑟𝑜𝑚 𝑃𝑀𝑈

 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(𝑁𝑣+2𝑁𝑖+2𝑁𝑓+𝑁𝜑) × 1

� 

For the non-linear functions relating measurement 𝑖 to the state vector, the power 

injection and power flow equations, which are proven in previous chapter and in this 

chapter, are considered. The equations can be summarized here as: 
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑃ℎ = |𝑉ℎ| � |𝑉𝑘|(𝐺ℎ𝑘 cos 𝜃ℎ𝑘 + 𝐵ℎ𝑘 sin𝜃ℎ𝑘)

𝑁𝑏𝑢𝑠

𝑘=1

𝑄ℎ = |𝑉ℎ| � |𝑉𝑘|(𝐺ℎ𝑘 sin 𝜃ℎ𝑘 − 𝐵ℎ𝑘 cos𝜃ℎ𝑘)
𝑁𝑏𝑢𝑠

𝑘=1

𝑃ℎ𝑘 = (𝑔ℎ𝑘 + 𝑔ℎ0)|𝑉�ℎ|2 − (𝑔ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑏ℎ𝑘 sin𝜃ℎ𝑘)|𝑉�ℎ||𝑉�𝑘|

𝑄ℎ𝑘 = −(𝑏ℎ𝑘 + 𝑏ℎ0)|𝑉�ℎ|2�−(𝑔ℎ𝑘 sin 𝜃ℎ𝑘 − 𝑏ℎ𝑘 cos 𝜃ℎ𝑘) �|𝑉�ℎ||𝑉�𝑘|

� 

3.3 Minimization Problem 

For obtaining the states (voltages and related phases of the power system) from the 

measurements, state estimation is applied to 𝒓 = 𝒛 − 𝒇(𝒙). So, the minimization problem 

will be: 

�
𝑀𝐼𝑁    𝑱(𝒙) = 𝒓𝑻𝒓

𝑆.𝑇.     𝒓 = 𝒛 − 𝒇(𝒙)
� 

Which 𝑱(𝒙) is the objective function that is going to be minimized. The objective 

function can be written as: 

𝑱(𝒙) = [𝒛 − 𝒇(𝒙)]𝑻[𝒛 − 𝒇(𝒙)] 

To minimize 𝑱(𝒙), its first derivative with respect to 𝒙 is equated to zero: 

𝝏𝑱(𝒙)
𝝏𝒙

= 𝟎 

𝝏𝑱(𝒙)
𝝏𝒙

=
𝝏[𝒛𝑻𝒛 − 𝒛𝑻𝒇(𝒙) − 𝒇(𝒙)𝑻 𝒛 + 𝒇(𝒙)𝑻𝒇(𝒙)]

𝝏𝒙
= −𝟐𝒛𝑻

𝝏𝒇(𝒙)
𝝏𝒙

+ 𝟐𝒇(𝒙)𝑻
𝝏𝒇(𝒙)
𝝏𝒙

 

𝝏𝑱(𝒙)
𝝏𝒙

= −𝟐[𝒛 − 𝒇(𝒙)]𝑻 �
𝝏𝒇(𝒙)
𝝏𝒙

� 

The Jacobian matrix of 𝑱(𝒙) is defined by 𝒈(𝒙): 

𝒈(𝒙) = �
𝝏𝑱(𝒙)
𝝏𝒙

�
𝑻

= −𝟐 �
𝝏𝒇(𝒙)
𝝏𝒙

�
𝑻

[𝒛 − 𝒇(𝒙)] 

The Jacobian Matrix structure and equations of calculating its components will be 

described in the next sub-section. 
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The Hessian matrix of 𝑱(𝒙) is the second derivative with respect to 𝒙 and called Gain 

Matrix:  

𝑯(𝒙) =
𝝏𝒈(𝒙)
𝝏𝒙

= 𝟐 �
𝝏𝒇(𝒙)
𝝏𝒙

�
𝑻

�
𝝏𝒇(𝒙)
𝝏𝒙

� 

𝑯(𝒙) is symmetric, positive definite and is a matrix populated primarily with zeros (a 

sparse matrix).  

The Taylor Series expansion of the non linear function 𝒈(𝒙) around the state vector 𝑥𝑘 

gives: 

𝒈(𝒙) = 𝒈(𝒙𝒌) +
𝝏𝒈(𝒙𝒌)
𝝏𝒙

(𝒙 − 𝒙𝒌) + ⋯ = 𝟎 

Considering the first order of Taylor Series expansion and neglecting the higher order 

terms, directs us to an iterative solution of Gauss-Newton method: 

 𝒙𝑘+1 = 𝒙𝑘 − �𝜕𝒈(𝒙𝑘)
𝜕𝒙� �

−1

𝒈(𝒙𝑘) 

Where 𝑘 is the iteration index and 𝒙𝑘 is the state vector at iteration 𝑘. Supposing:  

𝛥𝒙𝑘+1 = 𝒙𝑘+1 − 𝑥𝑘  

We will have: 

𝛥𝒙𝑘+1 = −[𝑯(𝒙𝑘)]−1𝒈(𝒙𝑘) 

Finding the inverse of 𝑯(𝒙𝑘) in high dimensions for large networks can be an expensive 

and time consuming operation. In such cases, instead of directly inverting the 𝑯(𝒙𝑘), it's 

better to calculate the 𝛥𝒙𝑘+1 as the solution to the system of linear equations: 

[𝑯(𝒙𝑘)]𝛥𝒙𝑘+1 = −𝒈(𝒙𝑘) 

[𝑯(𝒙𝑘)]𝛥𝒙𝑘+1 = 2 �
𝜕𝒇(𝒙𝑘)
𝜕𝒙

�
𝑇

[𝒛 − 𝒇(𝒙𝑘)] 

This can be solved by triangular factorization techniques, like the Cholesky factorization. 

The set of equation given by [𝑯(𝒙𝑘)]𝛥𝒙𝑘+1 is also mentioned as the Normal Equations. 
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3.3.1 Jacobian Matrix structure and components 

According to the measurement vector structure, the Jacobian matrix will be in the 

following form: 

𝒈 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�

  
𝒈𝟏𝟏 � �

  
𝒈𝟏𝟐 �

�
  
𝒈𝟐𝟏 � �

  
𝒈𝟐𝟐 �

�
  
𝒈𝟑𝟏 � �

  
𝒈𝟑𝟐 �

�
  
𝒈𝟒𝟏 � �

  
𝒈𝟒𝟐 �

�
  
𝒈𝟓𝟏 � �

  
𝒈𝟓𝟐 �

�
  
𝒈𝟔𝟏 � �

  
𝒈𝟔𝟐 �

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Where the sub-matrices is described in the following: 

• 𝒈𝟏𝟏 is the Derivative of Voltage Magnitudes with respect to angles: 

𝒈𝟏𝟏 =
𝜕|𝑉�|
𝜕𝜃

= �
0  ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

�
𝑁𝑣×(𝑁𝑏𝑢𝑠−1)

 

 All the elements are zero. 

• 𝒈𝟏𝟐 is the derivative of Voltage Magnitudes with respect to Voltage Magnitudes: 

𝒈𝟏𝟐 =
𝜕|𝑉�|
𝜕|𝑉�|

= �

1 0 0 …
0 1 0 …
0 0 1 …
⋮ ⋮ ⋮ ⋱

�

𝑁𝑣×(𝑁𝑏𝑢𝑠)

 

 All the elements are zero except the diagonals that are one. 

• 𝒈𝟐𝟏 is the derivative of Real Power Injections with respect to Angles: 
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𝒈𝟐𝟏 =
𝜕𝑃
𝜕𝜃

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑃1
𝜕𝜃2

 ⋯ 
𝜕𝑃1

𝜕𝜃𝑁𝑏𝑢𝑠
⋮ ⋱ ⋮

𝜕𝑃𝑁𝑝𝑖
𝜕𝜃2

⋯
𝜕𝑃𝑁𝑝𝑖
𝜕𝜃𝑁𝑏𝑢𝑠⎦

⎥
⎥
⎥
⎥
⎤

𝑁𝑝𝑖×(𝑁𝑏𝑢𝑠−1)

 

Equations for calculation of 𝒈𝟐𝟏 components: 

𝜕𝑃𝑘
𝜕𝜃𝑘

= −𝐵𝑘𝑘|𝑉�𝑘|2 + ��𝑉�𝑗�(−𝐺𝑘𝑗 sin 𝜃𝑘𝑗 + 𝐵𝑘𝑗 cos 𝜃𝑘𝑗)
𝑁𝑏𝑢𝑠

𝑗=1

 

𝜕𝑃𝑘
𝜕𝜃𝑗

= |𝑉�𝑘|�𝑉�𝑗�(𝐺𝑘𝑗 sin𝜃𝑘𝑗 − 𝐵𝑘𝑗 cos 𝜃𝑘𝑗) 

• 𝒈𝟐𝟐 is the derivative of Real Power Injections with respect to Voltage 

Magnitudes: 

𝒈𝟐𝟐 =
𝜕𝑃
𝜕|𝑉�|

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑃1
𝜕|𝑉�1|

 ⋯ 
𝜕𝑃1

𝜕�𝑉�𝑁𝑏𝑢𝑠�
⋮ ⋱ ⋮

𝜕𝑃𝑁𝑝𝑖
𝜕|𝑉�1|

⋯
𝜕𝑃𝑁𝑝𝑖
𝜕�𝑉�𝑁𝑏𝑢𝑠�⎦

⎥
⎥
⎥
⎥
⎤

𝑁𝑝𝑖×(𝑁𝑏𝑢𝑠)

 

Equations for calculation of 𝒈𝟐𝟐 components: 

𝜕𝑃𝑘
𝜕|𝑉�𝑘|

= 𝐺𝑘𝑘|𝑉�𝑘| + ��𝑉�𝑗�(𝐺𝑘𝑗 cos 𝜃𝑘𝑗 + 𝐵𝑘𝑗 sin𝜃𝑘𝑗)
𝑛

𝑗=1

 

𝜕𝑃𝑘
𝜕�𝑉�𝑗�

= |𝑉�𝑘|(𝐺𝑘𝑗 cos𝜃𝑘𝑗 + 𝐵𝑘𝑗 sin𝜃𝑘𝑗) 

• 𝒈𝟑𝟏 is the derivative of Reactive Power Injections with respect to Angles: 

𝒈𝟑𝟏 =
𝜕𝑄
𝜕𝜃

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑄1
𝜕𝜃2

 ⋯ 
𝜕𝑄1
𝜕𝜃𝑁𝑏𝑢𝑠

⋮ ⋱ ⋮
𝜕𝑄𝑁𝑞𝑖
𝜕𝜃2

⋯
𝜕𝑄𝑁𝑞𝑖
𝜕𝜃𝑁𝑏𝑢𝑠⎦

⎥
⎥
⎥
⎥
⎤

𝑁𝑞𝑖×(𝑁𝑏𝑢𝑠−1)

 

Equations for calculation of 𝒈𝟑𝟏 components: 
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𝜕𝑄𝑘
𝜕𝜃𝑘

= −𝐺𝑘𝑘|𝑉�𝑘|2 + ��𝑉�𝑗�(𝐺𝑘𝑗 cos 𝜃𝑘𝑗 + 𝐵𝑘𝑗 sin𝜃𝑘𝑗)
𝑛

𝑗=1

 

𝜕𝑄𝑘
𝜕𝜃𝑗

= −|𝑉�𝑘|�𝑉�𝑗�(𝐺𝑘𝑗 cos 𝜃𝑘𝑗 + 𝐵𝑘𝑗 sin𝜃𝑘𝑗) 

• 𝒈𝟑𝟐 is the derivative of Reactive Power Injections with respect to Voltage 

Magnitudes: 

𝒈𝟑𝟐 =
𝜕𝑄
𝜕|𝑉�|

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑄1
𝜕|𝑉�1|

 ⋯ 
𝜕𝑄1

𝜕�𝑉�𝑁𝑏𝑢𝑠�
⋮ ⋱ ⋮

𝜕𝑄𝑁𝑞𝑖
𝜕|𝑉�1|

⋯
𝜕𝑄𝑁𝑞𝑖
𝜕�𝑉�𝑁𝑏𝑢𝑠�⎦

⎥
⎥
⎥
⎥
⎤

𝑁𝑞𝑖×(𝑁𝑏𝑢𝑠)

 

Equations for calculation of 𝒈𝟑𝟐 components: 

𝜕𝑄𝑘
𝜕|𝑉�𝑘|

= −𝐵𝑘𝑘|𝑉�𝑘| + ��𝑉�𝑗�(𝐺𝑘𝑗 sin𝜃𝑘𝑗 − 𝐵𝑘𝑗 cos 𝜃𝑘𝑗)
𝑛

𝑗=1

 

𝜕𝑄𝑘
𝜕�𝑉�𝑗�

= |𝑉�𝑘|(𝐺𝑘𝑗 sin𝜃𝑘𝑗 − 𝐵𝑘𝑗 cos 𝜃𝑘𝑗) 

• 𝒈𝟒𝟏 is the derivative of Real Power Flows with respect to Angles: 

𝒈𝟒𝟏 =
𝜕𝑃𝑓𝑙
𝜕𝜃

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑃𝑓𝑙1
𝜕𝜃2

 ⋯ 
𝜕𝑃𝑓𝑙1
𝜕𝜃𝑁𝑏𝑢𝑠

⋮ ⋱ ⋮
𝜕𝑃𝑓𝑙𝑁𝑝𝑓
𝜕𝜃2

⋯
𝜕𝑃𝑓𝑙𝑁𝑝𝑓
𝜕𝜃𝑁𝑏𝑢𝑠 ⎦

⎥
⎥
⎥
⎥
⎤

𝑁𝑝𝑓×(𝑁𝑏𝑢𝑠−1)

 

Equations for calculation of 𝒈𝟒𝟏 components: 

𝜕𝑃𝑓𝑙ℎ𝑘
𝜕𝜃ℎ

= |𝑉�ℎ||𝑉�𝑘|(𝑔ℎ𝑘 sin𝜃ℎ𝑘 − 𝑏ℎ𝑘 cos 𝜃ℎ𝑘) 

𝜕𝑃𝑓𝑙ℎ𝑘
𝜕𝜃𝑘

= −|𝑉�ℎ||𝑉�𝑘|(𝑔ℎ𝑘 sin𝜃ℎ𝑘 − 𝑏ℎ𝑘 cos𝜃ℎ𝑘) 

• 𝒈𝟒𝟐 is the derivative of Real Power Flows with respect to Voltage Magnitudes: 
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𝒈𝟒𝟐 =
𝜕𝑃𝑓𝑙
𝜕|𝑉�|

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑃𝑓𝑙1
𝜕|𝑉�1|

 ⋯ 
𝜕𝑃𝑓𝑙1

𝜕�𝑉�𝑁𝑏𝑢𝑠�
⋮ ⋱ ⋮

𝜕𝑃𝑓𝑙𝑁𝑝𝑓
𝜕|𝑉�1|

⋯
𝜕𝑃𝑓𝑙𝑁𝑝𝑓
𝜕�𝑉�𝑁𝑏𝑢𝑠�⎦

⎥
⎥
⎥
⎥
⎤

𝑁𝑝𝑓×(𝑁𝑏𝑢𝑠)

 

Equations for calculation of 𝒈𝟒𝟐 components: 

𝜕𝑃𝑓𝑙ℎ𝑘
𝜕|𝑉�ℎ|

= −|𝑉�𝑘|(𝑔ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑏ℎ𝑘 sin𝜃ℎ𝑘) + 2(𝑔ℎ𝑘 + 𝑔ℎ0)|𝑉�ℎ| 

𝜕𝑃𝑓𝑙ℎ𝑘
𝜕|𝑉�𝑘|

= −|𝑉�ℎ|(𝑔ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑏ℎ𝑘 sin𝜃ℎ𝑘) 

• 𝒈𝟓𝟏 is the derivative of Reactive Power Flows with respect to Angles: 

𝒈𝟓𝟏 =
𝜕𝑄𝑓𝑙
𝜕𝜃

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑄𝑓𝑙
𝜕𝜃2

 ⋯ 
𝜕𝑄𝑓𝑙1
𝜕𝜃𝑁𝑏𝑢𝑠

⋮ ⋱ ⋮
𝜕𝑄𝑓𝑙𝑁𝑞𝑓
𝜕𝜃2

⋯
𝜕𝑄𝑓𝑙𝑁𝑞𝑓
𝜕𝜃𝑁𝑏𝑢𝑠 ⎦

⎥
⎥
⎥
⎥
⎤

𝑁𝑞𝑓×(𝑁𝑏𝑢𝑠−1)

 

Equations for calculation of 𝒈𝟓𝟏 components: 

𝜕𝑄𝑓𝑙ℎ𝑘
𝜕𝜃ℎ

= −|𝑉�ℎ||𝑉�𝑘|(𝑔ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑏ℎ𝑘 sin𝜃ℎ𝑘) 

𝜕𝑄𝑓𝑙ℎ𝑘
𝜕𝜃𝑘

= |𝑉�ℎ||𝑉�𝑘|(𝑔ℎ𝑘 cos 𝜃ℎ𝑘 + 𝑏ℎ𝑘 sin𝜃ℎ𝑘) 

• 𝒈𝟓𝟐 is the derivative of Reactive Power Flows with respect to Voltage 

Magnitudes: 

𝒈𝟓𝟐 =
𝜕𝑄𝑓𝑙
𝜕|𝑉�|

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑄𝑓𝑙1
𝜕|𝑉�1|

 ⋯ 
𝜕𝑄𝑓𝑙1
𝜕�𝑉�𝑁𝑏𝑢𝑠�

⋮ ⋱ ⋮
𝜕𝑄𝑓𝑙𝑁𝑞𝑓
𝜕|𝑉�1|

⋯
𝜕𝑄𝑓𝑙𝑁𝑞𝑓
𝜕�𝑉�𝑁𝑏𝑢𝑠�⎦

⎥
⎥
⎥
⎥
⎤

𝑁𝑞𝑓×(𝑁𝑏𝑢𝑠)

 

Equations for calculation of 𝒈𝟓𝟐 components: 
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𝜕𝑄𝑓𝑙ℎ𝑘
𝜕|𝑉�ℎ|

= −|𝑉�𝑘|(𝑔ℎ𝑘 sin 𝜃ℎ𝑘 − 𝑏ℎ𝑘 cos 𝜃ℎ𝑘) − 2(𝑏ℎ𝑘 + 𝑏ℎ0)|𝑉�ℎ| 

𝜕𝑄𝑓𝑙ℎ𝑘
𝜕|𝑉�𝑘|

= −|𝑉�ℎ|(𝑔ℎ𝑘 sin 𝜃ℎ𝑘 − 𝑏ℎ𝑘 cos 𝜃ℎ𝑘) 

• 𝒈𝟔𝟏 is the derivative of PMU Angles with respect to Angles: 

𝒈𝟔𝟏 =
𝜕𝜃
𝜕𝜃

= �
𝑎𝑙𝑙 𝑧𝑒𝑟𝑜𝑠
𝑒𝑥𝑐𝑒𝑝𝑡

𝑜𝑛𝑒 (−1) 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑟𝑜𝑤
�

𝑁𝜃×(𝑁𝑏𝑢𝑠−1)

 

 In each row there is only a (-1) corresponding to the PMU bus 

number and the other elements are zero. 

• 𝒈𝟔𝟐 is the derivative of PMU Angles with respect to Voltage Magnitudes: 

𝒈𝟔𝟐 =
𝜕𝜃
𝜕|𝑉�|

= �
0  ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

�
𝑁𝜃×(𝑁𝑏𝑢𝑠)

 

 All the elements are zero. 

 

3.4 Minimization Problem Considering the Measurements Uncertainty 

In realistic networks, all the measurements are not accurate and have deviation from the 

real values. Besides some values of measurement vector 𝑧 are not practically measured 

and some predictive statistics and history are used to determine them (e.g. some power 

fluxes) [Valenzuela 2000]. So the measurements are depend upon uncertain quantities 

and can be considered as random variables.  

To extract the states of the system (voltages and related phases) from the measurements, 

Weighted Least Squares (WLS) estimation is applied to �𝒛 − 𝒇(𝑥)�. WLS state 

estimation will minimize the weighted sum of the squares of the measurement residuals. 

𝒛 = �

𝑧1
𝑧2
⋮
𝑧𝑚

� =  �

𝑓1(𝑥1, … , 𝑥𝑛)
𝑓2(𝑥1, … , 𝑥𝑛)

⋮
𝑓𝑚(𝑥1, … , 𝑥𝑛)

�+ �

𝑟1
𝑟2
⋮
𝑟𝑚

� = 𝒇(𝑥) + 𝒓 
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The minimization problem will be: 

�
𝑀𝐼𝑁 𝑱(𝒙) = 𝒓𝑻 𝜮𝒛−𝟏 𝒓

𝑆.𝑇. 𝒓 = 𝒛 − 𝒇(𝑥)
� 

The 𝜮𝒛 is the variance-covariance matrix of measurement errors. Its inverse represents 

the weighting matrix that is the inverse of measurement covariance matrix. The elements 

of weighting matrix 𝜮𝒛−1 cause to be connected with the influence of measurements 

[Huang 2003].  

𝜮𝒛 = 𝑐𝑜𝑣(𝒓) = 𝐸[𝒓.𝒓𝑇] 

𝜮𝒛−𝟏 =

⎣
⎢
⎢
⎡𝜎1

2 0 ⋯ 0
0
⋮

𝜎22

⋱
⋮
0

0 ⋯ 0 𝜎𝑚2 ⎦
⎥
⎥
⎤
−1

 

Which 𝜎𝑚2  is the variance, and 𝜎𝑚 is the standard deviation of 𝑚𝑡ℎ measurement. 

Standard deviation of each measurement is deliberated to reflect the expected accuracy of 

the corresponding meter used. 

The objective function can be written as: 

𝑱(𝑥) = [𝒛 − 𝒇(𝑥)]𝑇𝜮𝒛−𝟏[𝒛 − 𝒇(𝑥)] 

For minimization, the first derivative with respect to 𝑥 is equated to zero: 

𝜕𝑱(𝒙)
𝜕𝒙

= 0 

The Jacobian matrix of 𝑱(𝒙) is defined by 𝒈(𝒙): 

𝒈(𝑥) = �
𝝏𝑱(𝒙)
𝝏𝒙

�
𝑇

= −2 �
𝝏𝒇(𝒙)
𝝏𝒙

�
𝑇

𝜮𝒛−𝟏[𝒛 − 𝒇(𝒙)] = 0 

All the proofs for 𝒈(𝒙) can be found in the appendices. 

The Hessian matrix of 𝑱(𝒙) is the second derivative with respect to 𝒙:  

𝑯(𝒙) =
𝝏𝒈(𝒙)
𝝏𝒙

≅ 𝟐 �
𝝏𝒇(𝒙)
𝝏𝒙

�
𝑻

𝜮𝒛−𝟏 �
𝝏𝒇(𝒙)
𝝏𝒙

� 

All the proofs for 𝑯(𝒙) also can be found in the appendices. 
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The Taylor Series expansion of the non linear function 𝒈(𝒙) around the state vector 𝒙𝑘 

gives: 

𝒈(𝒙) = 𝒈(𝒙𝑘) +
𝜕𝒈(𝒙𝑘)
𝜕𝒙

(𝒙 − 𝒙𝑘) + ⋯ = 0 

Considering the first order of Taylor Series expansion and neglecting the higher order 

terms, directs us to an iterative solution of Gauss-Newton method: 

 𝒙𝑘+1 = 𝒙𝑘 − �𝜕𝒈(𝒙𝑘)
𝜕𝒙

�
−1
𝒈(𝒙𝑘) 

Where 𝑘 is the iteration index and 𝑥𝑘 is the state vector at iteration 𝑘. Supposing:  

𝜟𝒙𝑘+1 = 𝒙𝑘+1 − 𝒙𝑘  

We will have: 

𝜟𝒙𝑘+𝟏 = −[𝑯(𝒙𝑘)]−𝟏𝒈(𝒙𝑘) 

𝑯(𝒙𝑘) is symmetric, positive definite, sparse matrix and called the Gain Matrix. Finding 

the inverse of 𝑯(𝒙𝑘) in high dimensions for large networks can be an expensive and time 

consuming operation. In such cases, instead of directly inverting the 𝑯(𝒙𝑘), it's better to 

calculate the 𝛥𝒙𝑘+1 as the solution to the system of linear equations: 

[𝑯(𝒙𝑘)]𝜟𝒙𝑘+𝟏 = −𝒈(𝒙𝑘) 

[𝑯(𝒙𝑘)]𝜟𝒙𝑘+𝟏 = 𝟐 �
𝝏𝒇(𝒙𝑘)
𝝏𝒙

�
𝑻

𝜮𝒛−𝟏[𝒛 − 𝒇(𝒙𝑘)] 

This can be solved by Cholesky factorization. The set of equation given by 

[𝑯(𝒙𝑘)]𝜟𝒙𝑘+𝟏 is also mentioned as the Normal Equations. 

The conditions for stopping the iterations are firstly if the number of iterations is enough 

or the difference in two successive state variables is less than a satisfactory tolerance, i.e. 

max|𝛥𝒙𝑘+1| < 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. 

The variance covariance matrix of the estimates can be extracted by: 

𝜮𝒙 = ��
𝝏𝒇(𝒙)
𝝏𝒙

�
𝑻

𝜮𝒛−𝟏 �
𝝏𝒇(𝒙)
𝝏𝒙

��

−𝟏

 



 
 
Chapter 3. Implementation of WLS State Estimation 39 
 

 

As it can be seen in the last equation, the parameters uncertainty does not have any 

contribution to the computation of variance covariance matrix of the estimates. In the 

next chapter a method is proposed to consider both the contribution of measurement and 

parameters uncertainty on variance covariance matrix of estimates. 

 



 
 

 
 
 

 

 

 

 

CHAPTER    5 

4 Algorithm Development 
 

 

 

 

 

he flowchart of implementation is depicted in Figure  4.1. In the following, the sub-

blocks and the steps are described in detail. 

  

T 
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Figure  4.1 Flowchart of the Algorithm Implementation 
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4.1 Parameters Model 

In our study, nominal values of resistance, reactance and susceptance characterizing the 

network elements are randomly perturbed extracting their values from a multivariate 

Gaussian distribution. The mean vector µ of the distribution was represented by the 

nominal values of the parameters, and the variance-covariance matrix was build 

considering a standard deviation as a fixed percentage α of the nominal value, i.e. for the 

ith parameter σi = α × µi and assigning a prescribed correlation coefficient  ρij   for each 

couple i,j of parameters. Furthermore the parameters with zero nominal values were not 

perturbed. 

Since all these parameters, for physical reason, are defined by positive real numbers, it is 

important to avoid perturbations so wide resulting in negative parameters. For this 

reasons it was evaluated the probability to get negative results for such extraction for 

standard deviations less than 25% of the nominal values. Surprisingly it was found that 

this probability is independent from the nominal values but it is just a function of α. The 

authors were not able to find in literature a demonstration of such a property of the 

Normal multivariate distribution but we just verified this property numerically computing 

the probability P of getting at least one negative value among N parameter as: 

𝑷 = 𝑷(𝛂) = 𝒑 ��(𝝅𝒊 ≤ 𝟎)
𝑵

𝒊=𝟏

� =

= � 𝒑{𝝅𝒊 ≤ 𝟎}
𝑵

𝒊=𝟏
−� � 𝒑�(𝝅𝒊 ≤ 𝟎)��𝝅𝒋 ≤ 𝟎��

𝑵

𝒋=𝒊

𝑵

𝒊=𝟏
+

+ � � � 𝒑�(𝝅𝒊 ≤ 𝟎)��𝝅𝒋 ≤ 𝟎��(𝝅𝒌 ≤ 𝟎)�
𝑵

𝒌=𝒋

𝑵

𝒋=𝒊

𝑵

𝒊=𝟏
+ (−𝟏)𝑵+𝟏𝒑 ��(𝝅𝒊 ≤ 𝟎)

𝑵

𝒊=𝟏

� 

 
The probability of the intersecting events in the previous equation was computed 

marginalizing the known multivariate Normal distribution, e.g. the probability of the 

event 𝑝�(𝜋𝑖 ≤ 0)⋂(𝜋𝑗 ≤ 0)⋂(𝜋𝑘 ≤ 0)� was computed as: 

𝒑 �(𝝅𝒊 ≤ 𝟎)��𝝅𝒋 ≤ 𝟎��(𝝅𝒌 ≤ 𝟎)� = � � � 𝑵(𝝅𝒊,𝝅𝒋,𝝅𝒌)𝒅𝝅𝒊𝒅𝝅𝒋𝒅𝝅𝒌
𝟎

−∞

𝟎

−∞

𝟎

−∞
 

with 
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𝑁�𝜋𝑖,𝜋𝑗 ,𝜋𝑘� = � 𝑁(𝜋1, … ,𝜋𝑁) � 𝑑𝜋𝑚

𝑁

𝑚≠𝑖,𝑗,𝑘ℝ𝑁−3
 

and N(•) being the multivariate Normal probability density function.  

As a numeric example, let’s consider the values of network parameters in IEEE 14 bus 

test case. With a parameter standard deviation of 0.25 which is the greatest standard 

deviation used in the simulations of this paper, the probability  of reaching to a negative 

number for resistance, reactance or susceptance will be 𝑃 = 0.5 × 10−5 that is negligible 

for the number of Monte Carlo trials we have considered. Practically, in the simulations 

if a negative value is observed, until getting a positive value, the program will repeat the 

parameter perturbation, without affecting the parameters probability density function. 

4.2 Sub-blocks Details 

4.2.1 Newton Raphson Load Flow 

The realistic parameters along with the power injections are used to get the actual states 

which are the voltage and phases of power network for each bus using power flow 

solution by Newton Raphson (NR) method [Tinney 1967]. Since 1970s the load flow 

methods continue to develop and among them the most successful is the Fast Decoupled 

method [Wood 1996]. Comparing with the NR method, this method is faster and simpler 

and more efficient algorithmically and needs less storage, but it may fail to converge 

when some of the basic assumptions do not hold. Therefore the NR load flow is chosen 

because it is the most robust power flow algorithm that widely used in practice.  

The states that are generated by NR load flow are used for the next part that is the 

calculation of exact measurement data. NR states are also taken as the reference (actual 

states) for comparing the results of State Estimator afterwards. 

4.2.2 Calculation of Measurement Quantities 

The exact measurement data can be calculated using Newton-Raphson load flow states to 

extract the measured quantities. To convert the exact measurement data to realistic 
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measurement data (which always affected by uncertainty), Normal random numbers with 

zero mean and variances according to the measurement devices’ uncertainty are added. 

4.2.3 WLS State Estimation 

In the last stage the nominal network parameters and the realistic (perturbed) 

measurement data are used as inputs to WLS State Estimator to get the State Estimator’s 

states and compared to the NR states to get the State Estimation Error. 

4.3 Monte Carlo Procedure 

Monte Carlo simulation method is based on probability and statistics theory and 

methodology. For numerical problems in a large number of dimensions, Monte Carlo 

experiments are often more efficient than conventional numerical methods on the other 

hand Monte Carlo experiments needs sampling from high dimensional probability 

distributions [Hastings 1970]. In Monte Carlo simulation method, the state of each 

component in the system is determined by sampling [Wang 2009]. Monte Carlo 

experiments rely on repeated random sampling to compute their results when it is 

infeasible to compute an exact result with a deterministic algorithm. 

In this thesis the uncertainty analysis is performed by Monte Carlo simulation and the 

steps are described more in detail in the following: 

Step1: Read and preprocess the data: 

The data pertaining to network parameters (transmission line’s nominal data), 

measurement locations and the standard deviations of measurement instruments 

are read. The nominal bus admittance matrix is built. 

Step2: Repeat for 𝑖 = 𝟏 to 𝑃 sigmas defined per parameters uncertainty (sampling 

of parameters noise): 

1. Repeat for j=1 to MC_tests defined per maximum number of Monte Carlo 

trials: 

I. Perturb each of the parameters by 𝑖𝑡ℎ sigma. 

II. Repeat I if we get negative values. 
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III. Create the perturbed bus admittance matrix using perturbed network 

parameters. 

IV. Perform Newton-Raphson load flow using bus power injections and 

perturbed bus admittance matrix and collect NR states. 

V. Calculate the exact measurement data using NR states, perturbed bus 

admittance matrix and measurement locations. 

VI. Perform WLS State Estimation (SE) using the nominal bus admittance 

matrix and perturbed measurements and collect the SE states. 

VII. Subtract the NR states from SE states to get the SE error. 

2. Calculate the RMS of SE errors and the standard deviations for all Monte 

Carlo trials. 

Step3: Show the results using statistical indices. 

 

In the next chapter, the algorithm is implemented on different IEEE power test cases and 

the numerical results are shown. 

 

 

 

 



 
 
 

 
 
 

 

 

 

CHAPTER    6 

5 Simulation Results 
 

 

 

 

o analyze the effects of parameter and measurement uncertainties on the power 

system state estimation results, the algorithm is tested on several IEEE power 

network test cases such as: 14-bus, 30-bus, 57-bus and 118-bus test cases. The network 

data files can be downloaded from Power Systems Test Case Archive in [Christie 1999]. 

In the following sections firstly it is briefly described that how the measurement set is 

chosen and then the general criteria for evaluation of simulation results are defined. 

Finally for each IEEE test case, the inputs (network data and measurements) are reported 

and the simulations results are shown. 

For each test case a set of measurement chosen to avoid an unobservable network. 

Degree of redundancy (η) is generally expressed as the ratio of number of meters by the 

number of states and is a very important quantity because the more redundant 

measurements, the more chances for bad data to be detected [Clements 1988]. The 

measurement redundancy ratio is defined by: 

η =
Number of Measurements

Number of States 
 

T 
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Which the number of states is (2𝑁𝑏𝑢𝑠 − 1) for 𝑁𝑏𝑢𝑠 network buses. In fact for practical 

implementation, there should be enough redundancy in measurement all over the network 

[Pajic 2007].  

The measurement set is chosen by calculating “perfect measurements” from the data 

available (IEEE test cases come with both network parameters and true states). The 

measurement set includes almost all the PV buses (voltage and power injection 

measurements) together with some active and reactive power flow measurements. 

Choosing of measurement locations are inspired from the literature; for instance for IEEE 

14-bus from [Lukomski 2008] [Baran 1995], for IEEE 30-bus from [Kerdchuen 2009], 

for IEEE 57-bus from [Chen 2006] and for IEEE 118-bus from [Rakpenthai 2005]. Some 

of them altered by the author because of algorithm stability issues according to the 

experience. 

In reality, actual measurements are not exact and there is a level of uncertainty present in 

the measurements. Therefore measurement error must be considered. For instance for  the 

test cases, the uncertainty for of voltage measurement considered as 0.1 percent of read 

value and for power measurement considered as 1 percent of read value: 

• 𝜎𝑉 = 0.001  

• 𝜎𝑃𝑖𝑛𝑗 = 𝜎𝑄𝑖𝑛𝑗 = 𝜎𝑃𝑓𝑙 = 𝜎𝑄𝑓𝑙 = 0.01 

These quantities represent the expected accuracy of the meters used and are expressed in 

the diagonal elements of the weighting matrix since measurement errors are considered 

independent.  

In the simulations, the following samples of uncertainty for network parameters are 

assigned:  

• 𝜎𝑝𝑎𝑟𝑎𝑚 = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25.  

The number of Monte Carlo trials is chosen so that the population of samples is sufficient 

amount and experimentally it is seen that, for each parameter uncertainty, 1000 Monte 

Carlo Trials are sufficient for our analysis. Besides, for most of our simulations the 

increase of trials does not affect the results remarkably or extraordinary but for some of 

the test cases, the trials are increased up to 5000 to have more reliable data (in the 

simulations any change in the number of trials are reported clearly). 
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For each network parameter uncertainty, the following actions are done: 

 The developed algorithm that described in previous chapter is run on test cases. 

Thus for 𝑁𝑀𝐶 Monte Carlo Trials, 𝑁𝑀𝐶  values for each state are extracted.  

 Then all of these values are formed a new matrix of size 𝑁𝑀𝐶 × 𝑁𝑏𝑢𝑠 for voltage 

magnitude and another matrix of size 𝑁𝑀𝐶 × (𝑁𝑏𝑢𝑠 − 1) for angles.  

 Then for each state, the mean is computed (mean of each column).  

 Finally the mean and standard deviation of all the buses is computed. 

The mean and standard deviation of voltage magnitudes and angles of each IEEE test 

case are used in order to evaluate the State Estimator’s output accuracy according to the 

criteria that is described in the next section.  

 

5.1 General Criteria for Evaluation of the Simulation Results 

In this section a general criteria is defined according to the desirable properties of a 

power state estimator, to evaluate the simulation results. These measures include 

evaluation of the mean and standard deviation, biasness and root mean square of state 

estimator.  

In addition, another simulation is performed to show how much the State Estimator’s 

results are mutually connected to each other taking into account that there exists network 

parameters uncertainty. The simulations are also repeated for the test networks including 

PMU measurement data. 

5.1.1 Mean and Standard Deviation of State Estimator 

The error bars plots are used to illustrate the mean and standard deviation of voltage 

magnitude and voltage angles versus all the network parameters uncertainty samples. 

Please note that the states are shown separately in two different figures and the voltage 

magnitudes are in Per Unit and the angles are in degrees. 

As already described, in WLS State Estimation the theoretical standard deviations of 

State Estimator errors can be extracted by taking the square root of the diagonal elements 
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of the variance covariance matrix of the estimates. In the figures the distribution of the 

theoretical standard deviations are depicted as two horizontal lines (1𝜎 above and below 

the mean).  

As will be seen, in the figures the mean of errors for both voltage magnitudes and angles 

don’t start from zero that it implies the effect of the measurement uncertainty.  

5.1.2 Bias Test for State Estimator 

Another important analysis that can be performed is to check for which network 

parameters uncertainties the State Estimator is biased. It is done by using the ratio of 

absolute value of voltage error Means by the related Standard Deviations versus the 

network parameters uncertainty.  

To determine if the State Estimator is biased or not, a threshold can be defined. To have a 

vision of this threshold, a horizontal dashed line is also depicted in the figures. It means 

that the state estimator is not biased for the network parameters uncertainty range below 

this line. To illustrate the dashed line, the value of the Mean of state errors over the 

standard deviation is calculated by performing a hypothesis testing considering the 

threshold. 

5.1.3 Correlation of State Estimator’s Errors  

This analysis is intended to show how much the State Estimator’s results are mutually 

connected to each other taking into account that there exists network parameters 

uncertainty. The State Estimator’s Error correlation coefficient matrix describes the 

normalized measure of the strength of linear relationship between State Estimator’s 

Errors. Correlation coefficients are given by: 

𝑅(𝑖, 𝑗) =
𝐶𝑜𝑣_𝑆𝐸(𝑖, 𝑗)

�𝐶𝑜𝑣_𝑆𝐸(𝑖, 𝑖)𝐶𝑜𝑣_𝑆𝐸(𝑗, 𝑗)
 

where 𝐶𝑜𝑣_𝑆𝐸 is the covariance matrix of State Estimator’s errors. The diagonals of 

Correlation coefficients matrix are equal to 1 and the other elements of correlation 

coefficients matrix will be in the range between -1 to 1.  

For each network case, the correlation coefficients of State Estimator’s errors are plotted 

versus parameters uncertainty for Voltage errors and Phase errors. 
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The values close to 0 suggest there is no linear relationship between the data. Values 

close to 1 suggest that there is a positive linear relationship between the data and the 

values close to -1 suggest that there is a negative linear relationship between the data 

(anti-correlation). 

5.1.4 Parameter’s Correlation Effect 

Another analysis about the correlation effect that is performed in this section is the 

evaluation effects of parameter’s correlation on different IEEE test cases.  

For this aim, firstly the nominal values of line resistances are correlated with a correlation 

coefficient (the line resistances with zero nominal values were not correlated).  

Then the ratio of the mean of voltage magnitudes errors (and angles errors separately) by 

standard deviations for each test case is displayed versus the network parameter 

uncertainties. 

Having parameters correlated, a threshold again is set by a horizontal dashed line in the 

figures to determine if the State Estimator is biased or not. 

5.1.5 The Results with PMU 

In this analysis, the bias testing of State Estimator is performed when PMU 

measurements are also included in the measurement set. 
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5.2 Test of Algorithm on IEEE 14-Bus Case 

The one-line diagram of the IEEE 14-Bus test case with measurement locations is 

illustrated in Figure  5.1. This network has been used in many references that are cited in 

this thesis and in many examples during the research. The original network and data files 

can be found in [Christie 1999]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.1 IEEE 14-Bus Test Case with Measurement locations 
 

For not experiencing the observability problem, totally 41 measurements are selected. For 

14 buses, there are (2 × 14 − 1) states, so the measurement redundancy ratio will be: 

η ≈ 1.5 

The measurement set for this test case almost includes all the PV buses (voltage and 

power injection measurements) together with some power flow measurements as the 

following: 

• Voltage magnitudes at buses 1, 2, 3, 6 and 8. 

• 9 active and reactive power injections at buses 1, 2, 6, 8, 9, 10, 11, 12 and 14. 

• 9 active and reactive power flows on branches 1–2, 1–5, 2–3, 2–4, 3–4, 4–5, 4–7, 

5–6, and 6–13.  

For each 𝜎𝑝𝑎𝑟𝑎𝑚, the actions that are done could be summarized as: 

 The developed algorithm that described in previous chapter is run on this test 

case. Thus 1000 values for each state are extracted which divided into one matrix 
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of 1000 by 14 for voltage magnitude and another matrix of size 1000 by 13 for 

phases.  

 Then for each state, the mean is computed.  

 Then the mean and standard deviation of all buses for each parameter uncertainty 

is computed. 

5.2.1 Mean and Standard Deviation of State Estimator 

The error bars plots for mean and standard deviation of voltage magnitude and voltage 

angles versus all the network parameters uncertainty samples are shown respectively in 

Figure  5.2 and Figure  5.3. 

 
Figure  5.2 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 14-Bus test case. 
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Figure  5.3 Mean and Standard Deviation of Voltage Angle Errors for IEEE 14-Bus test case. 

 

In the figures the mean of errors for both voltage magnitudes and angles don’t start from 

zero point showing the effect of the measurement uncertainty.  

The figures clearly show that by growth of the network parameters uncertainty, the mean 

and standard deviation of errors will considerably grow.  

Therefore the State Estimation’s standard deviation is underestimated enormously, if just 

the theoretical standard deviations are taken into consideration.  

To see how much the mean standard deviation and deviation of State Estimator errors are 

affected by measurement uncertainty, the same procedure is done for different 

measurement uncertainties. In Figure  5.4 and Figure  5.5 using different line styles 

displaying different measurement uncertainties, the error bar plots for mean and standard 

deviation of voltage magnitude and voltage angles versus all the network parameters 

uncertainty are shown respectively. These figures are only shown for IEEE 14-Bus test 

case. 
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Figure  5.4 Mean and Standard Deviation of Voltage Magnitude Errors for Different Measurement Uncertainties for 

IEEE 14-Bus test case 
 

 
Figure  5.5 Mean and Standard Deviation of Voltage Angles Errors for Different Measurement Uncertainties for IEEE 

14-Bus test case 
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As seen in the figures above, when the measurement uncertainty grows, the starting point 

goes farther from zero and the error mean shifts upward. 

5.2.2 Bias Testing for State Estimator 

Figure  5.6 and Figure  5.7 show the ratio of absolute value of voltage error Means by the 

related Standard Deviations versus the network parameters uncertainty respectively for 

voltage magnitudes and angles for IEEE 14-bus test case.  

 

 
Figure  5.6 Ratio of the Mean of voltage magnitude errors by related Standard Deviations for IEEE 14-Bus test case. 
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Figure  5.7 Ratio of the Mean of voltage angle errors by related Standard Deviations for IEEE 14-Bus test case. 

 

A horizontal dashed line is also depicted in the figures to give an idea about the 5 percent 

of threshold, meaning that the state estimator is not biased for the network parameters 

uncertainty range below this line. 

According to the figures, it is apparent that the State Estimator is not biased for the 

parameters uncertainties up to nearly 7 percent. 

5.2.3 Correlation of State Estimator’s Errors  

In Figure  5.8 and Figure  5.9 the correlation coefficients of State Estimator’s errors versus 

parameters uncertainty are shown for Voltage errors and Phase errors respectively.  
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Figure  5.8 Correlation of State Estimator’s Errors (Voltage) of IEEE 14-Bus test case. 

 

 
Figure  5.9 Correlation of State Estimator’s Errors (Phase) of IEEE 14-Bus test case. 
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In Figure  5.8 and Figure  5.9 it is noticeable that the State Estimator’s Errors are 

correlated so much when there is no parameters uncertainty. By increasing the network 

parameters uncertainty up to about 10%, the estimated voltage errors will be roughly 

uncorrelated but the estimated voltage phases will be still correlated even for large 

parameters uncertainties up to 25%.  

5.2.4 Parameter’s Correlation Effect on IEEE 14-Bus case 

To perform this analysis, the nominal values of line resistances are correlated with the 

correlation coefficient of 0.8 and the line resistances with zero nominal values were not 

correlated.  

With having parameters correlation, the ratio of the mean of voltage magnitudes and 

angles errors by Standard Deviations for IEEE 14-Bus test case are shown in Figure  5.10 

and Figure  5.11. 

 
Figure  5.10 Ratio of the Mean of voltage magnitudes errors by Standard Deviations with parameters correlation for 

IEEE 14-Bus test case. 
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Figure  5.11 Ratio of the Mean of voltage angles errors by Standard Deviations with parameters correlation for IEEE 

14-Bus test case. 
 

By comparing the Figure  5.6 and Figure  5.7 with above figures (Figure  5.10 and Figure 

 5.11), it can be concluded that when the network parameters are correlated, the State 

Estimator is more biased (for smaller parameters uncertainties). 

5.2.5  The Results with PMU 

Figure  5.12 and Figure  5.13 show the bias tests for voltage magnitudes and phases 
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Figure  5.12 Ratio of the Mean of voltage magnitude errors by related Standard Deviations with the presence of PMU 

measurements for IEEE 14-Bus test case. 
 

 
Figure  5.13 Ratio of the Mean of voltage Angle errors by related Standard Deviations with the presence of PMU 

measurements for IEEE 14-Bus test case. 
 

0 0.05 0.1 0.15 0.2 0.25
0

1

2

3

4

5

6

7

8

9
mean(V Errors)  / std(V errors)

 
 

 
 

 
 

 

Parameters Standard Deviations

 

 
meanV errors over stdV errors)

5 Percent of Threshold

0 0.05 0.1 0.15 0.2 0.25
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
mean(Phi Errors)  / std(Phi errors)

 
 

 
 

 
 

 

Parameters Standard Deviations

 

 
mean phi errors over std phi errors)
5 Percent of Threshold

M
ea

n 
of

 v
ol

ta
ge

 m
ag

ni
tu

de
 e

rr
or

s o
ve

r S
TD

 d
ev

. 
M

ea
n 

of
 v

ol
ta

ge
 a

ng
le

 e
rr

or
s o

ve
r S

TD
 d

ev
. 



 
 
 
 Chapter 6. Simulation Results  61 
 

 
 
 

As it is clear in the figures, when there is PMU installed, the output of SE voltage 

magnitudes are less biased (for bigger range of network parameters) and the SE output of 

phases are totally not biased. 

 

5.3 Test of Algorithm on IEEE 30-Bus Case 

The one-line diagram of the IEEE 30-Bus test case is illustrated in Figure  5.14. The 

original network and data files can be found in [Christie 1999]. 

 
Figure  5.14 IEEE 30-Bus Test Case One-Line Diagram 

 

For not experiencing the observability problem, totally 83 measurements are selected. 

The measurement redundancy ratio will be: 

η ≈ 1.4 

The measurement set for this test case almost includes all the PV buses (voltage and 

power injection measurements) together with power flow measurements as the following: 
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• Voltage magnitudes at buses 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11. 

• Active and reactive power injections at buses: 2, 3, 5, 8, 9, 11, 12, 13, 17, 20, 25, 

27, 28 and 29. 

• Active and reactive power flows on branches: 1-3, 2-6, 2-4, 7-5, 4-6, 6-28, 6-8, 6-

9, 10-6,12-13, 12-15, 10-20, 10-17, 10-21, 14-15, 15-23, 15-18, 22-24, 25-26, 25-

27, 28-27 and 29-30.  

5.3.1 Mean and Standard Deviation of State Estimator 

The error bars plots for mean and standard deviation of voltage magnitude and voltage 

angles versus all the network parameters uncertainty samples are shown respectively in 

the Figure  5.15 and Figure  5.16. 

 
Figure  5.15 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 30-Bus test case. 
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Figure  5.16 Mean and Standard Deviation of Voltage Angle Errors for IEEE 30-Bus test case. 

  

In the figures, the mean of errors for both voltage magnitudes and angles don’t start from 

zero point showing the effect of the measurement uncertainty.  

The figures clearly show that by growth of the network parameters uncertainty, the mean 

and standard deviation of errors will considerably grow.  

Therefore the State Estimation’s standard deviation is underestimated enormously, if just 

the theoretical standard deviations are taken into consideration.  

 

5.3.2 Bias Testing for State Estimator 

Figure  5.17 and Figure  5.18 show the ratio of absolute value of voltage error Means by 

the related Standard Deviations versus the network parameters uncertainty respectively 

for voltage magnitudes and angles for IEEE 30-bus test case.  
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Figure  5.17 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 30-Bus test case. 

 

 
Figure  5.18 Mean and Standard Deviation of Voltage Angle Errors for IEEE 30-Bus test case. 
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A horizontal dashed line is also depicted in the figures to give an idea about the 5 percent 

of threshold, meaning that the state estimator is not biased for the network parameters 

uncertainty range below this line. 

According to the figures, it is apparent that the State Estimator is not biased for the 

parameters uncertainties up to nearly 10 percent. 

5.3.3 Correlation of State Estimator’s Errors 

In Figure  5.19 and Figure  5.20 the correlation coefficients of State Estimator’s errors 

versus parameters uncertainty are shown for Voltage errors and Phase errors respectively.  

 
Figure  5.19 Correlation of State Estimator’s Errors (Voltage Magnitude) of IEEE 30-Bus test case. 
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Figure  5.20 Correlation of State Estimator’s Errors (Angles) of IEEE 30-Bus test case. 

 

In Figure  5.19 it is noticeable that the State Estimator’s Voltage Magnitude Errors are a 

little bit correlated and by increment of network uncertainty, the correlation goes even 

lesser. This behavior is because of the voltage measurement locations that are less 

compared to IEEE case 14-bus. 

The Figure  5.20 shows that the State Estimator’s Angles Errors are correlated so much 

when there is no parameters uncertainty and the Angles errors will be still correlated even 

for large parameters uncertainties up to 25%.  

5.3.4 Parameter’s Correlation Effect on IEEE 30-Bus case 

To perform this analysis, the nominal values of line resistances are correlated with the 

correlation coefficient of 0.8 and the line resistances with zero nominal values were not 

correlated.  

With having parameters correlation, the ratios of the mean of voltage magnitudes and 

angles errors by Standard Deviations for IEEE 30-Bus test case are shown in Figure  5.21 

and Figure  5.22. 
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Figure  5.21 Ratio of the Mean of voltage magnitudes errors by Standard Deviations with parameters correlation for 

IEEE 30-Bus test case. 
 

 
Figure  5.22 Ratio of the Mean of voltage angles errors by Standard Deviations with parameters correlation for IEEE 

30-Bus test case. 
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By comparing the Figure  5.21 and Figure  5.22 with the bias testing figures without 

parameter correlation for this test case in Figure  5.17 and Figure  5.18, it can be 

concluded that when the network parameters are correlated, the State Estimator is more 

biased (for smaller parameters uncertainties). 

5.3.5  The Results with PMU 

According to the optimal PMU locations developed in [Chakrabarti 2009], for this test 

case PMU are placed on 5 buses that shown in Table  5.1.  

Table  5.1    PMU locations for IEEE 30-Bus test case 
PMU placed on bus number: 

2 
4 
6 

10 
12 

 

Figure  5.23 and Figure  5.24 show the bias tests for voltage magnitudes and phases 

respectively. 

 
Figure  5.23 Ratio of the Mean of voltage magnitude errors by related Standard Deviations with the presence of PMU 

measurements for IEEE 30-Bus test case. 
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Figure  5.24 Ratio of the Mean of voltage Angle errors by related Standard Deviations with the presence of PMU 

measurements for IEEE 30-Bus test case. 
 

As it is clear in Figure  5.24, when there are PMUs installed, the output of State 

Estimator’s voltage Angles are not biased for the network parameter uncertainties up to 

25%. 

It is mentionable that in Figure  5.23, the bias behavior is not affected significantly in this 

test case, it is mostly because the PMUs are placed on the buses that there was already 

voltage meter available. 

5.4 Test of Algorithm on IEEE 57-Bus Case 

The one-line diagram of the IEEE 57-Bus test case is illustrated in Figure  5.25. The 

original network and data files can be found in [Christie 1999]. 
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Figure  5.25 IEEE 57-Bus Test Case One-Line Diagram 

 

For this test case, totally 166 measurements are selected. The measurement redundancy 

ratio will be: 

η ≈ 1.47 

The measurement set for this test case almost includes all the PV buses (voltage and 

power injection measurements) together with power flow measurements as the following: 

• Voltage magnitudes at PV buses: 1, 2, 3, 6, 8 and 9. 

• Active and reactive power injections at buses: 1, 2, 3, 5, 6, 7, 8, 9, 11, 17, 20, 21, 

25, 29, 30, 31, 33, 34, 37, 38, 39, 40, 44, 45, 46, 48, 49, 52, 54, 55, 56 and 57. 

• Active and reactive power flows on branches: 1-2,  1-15,  2-3,  3-4,  4-5,  7-6,  8-

6,  8-9,  9-13,  11-9,  11-13,  12-13,  13-49,  14-15,  19-18,  20-19,  23-22,  24-23,  

24-25,  24-26,  27-26,  27-28,  30-25,  30-31,  31-32,  32-34,  32-33,  34-35,  36-
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35,  36-37,  36-40,  37-38,  38-22,  38-40,  40-49,  40-56,  41-43,  42-41,  45-15,  

46-47,  47-48,  48-49,  49-50,  50-51,  52-53,  53-54,  54-55 and 55-9. 

5.4.1 Mean and Standard Deviation of State Estimator  

The error bars plots for mean and standard deviation of voltage magnitude and voltage 

angles versus all the network parameters uncertainty samples are shown respectively in 

the Figure  5.26 and Figure  5.27. 

 
Figure  5.26 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 57-Bus test case. 
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Figure  5.27 Mean and Standard Deviation of Voltage Angle Errors for IEEE 57-Bus test case. 

  

In the figures, the mean of errors for both voltage magnitudes and angles don’t start from 

zero point showing the effect of the measurement uncertainty.  

The figures clearly show that by growth of the network parameters uncertainty, the mean 

and standard deviation of errors will considerably grow. Therefore if just the theoretical 

standard deviations are taken into consideration, the State Estimation’s standard deviation 

is underestimated enormously.  

 

5.4.2 Bias Testing for State Estimator 

Figure  5.28 and Figure  5.29 show the ratio of absolute value of voltage error Means by 

the related Standard Deviations versus the network parameters uncertainty respectively 

for voltage magnitudes and angles for IEEE 57-bus test case.  
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Figure  5.28 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 57-Bus test case. 
 

 
Figure  5.29 Mean and Standard Deviation of Voltage Angle Errors for IEEE 57-Bus test case. 
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A horizontal dashed line is also depicted in the figures to give an idea about the 5 percent 

of threshold, meaning that the state estimator is not biased for the network parameters 

uncertainty range below this line. 

According to the figures, it is apparent that for this power network test case the State 

Estimator’s Voltage Magnitude and Voltage Angle outputs are not biased for the 

parameters uncertainties up to nearly 4 percent and 8 percent respectively. 

5.4.3 Correlation of State Estimator’s Errors 

In Figure  5.30 and Figure  5.31 the correlation coefficients of State Estimator’s errors 

versus parameters uncertainty are shown for Voltage errors and Phase errors respectively.  

 
Figure  5.30 Correlation of State Estimator’s Errors (Voltage Magnitude) of IEEE 57-Bus test case. 
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Figure  5.31 Correlation of State Estimator’s Errors (Angles) of IEEE 57-Bus test case. 

 

In Figure  5.30 it is noticeable that the State Estimator’s Voltage Magnitude Errors are a 

little bit correlated and by increment of network uncertainty, the correlation goes even 

lesser. This behavior is because of the voltage measurement locations that are less 

compared to IEEE case 14-bus. 

The Figure  5.31 shows that the State Estimator’s Angles Errors are correlated 

considerably when there is parameters uncertainty and the Angles errors will be still 

correlated even for large parameters uncertainties up to 25%. State Estimator’s Angles 

Errors are less correlated when there is no parameters uncertainty. 

5.4.4 Parameter’s Correlation Effect on IEEE 57-Bus case 

To perform this analysis, the nominal values of line resistances are correlated with the 

correlation coefficient of 0.8 and the line resistances with zero nominal values were not 

correlated.  

With having parameters correlation, the ratio of the mean of voltage magnitudes and 

angles errors by Standard Deviations for IEEE 57-Bus test case are shown in Figure  5.32 

and Figure  5.33. 
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Figure  5.32 Ratio of the Mean of voltage magnitudes errors by Standard Deviations with parameters correlation for 

IEEE 57-Bus test case. 
 

 
Figure  5.33 Ratio of the Mean of voltage angles errors by Standard Deviations with parameters correlation for IEEE 

57-Bus test case. 
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By comparing Figure  5.32 and Figure  5.33 with the figures of bias testing without 

parameter correlation for this test case (Figure  5.28 and Figure  5.29), it is evident that 

when the network parameters are correlated, the State Estimator is more biased and. 

This test case showed this effect prominently after increasing the number of Monte Carlo 

trials to 5000. 

5.4.5  The Results with PMU 

According to the optimal PMU locations developed in [Chakrabarti 2009], for this test 

case 7 PMUs are placed on the buses that shown in Table  5.2. 
 

Table  5.2    PMU locations for IEEE 57-Bus test case 
PMU placed on bus number: 

4 
9 

15 
20 
24 
53 
57 

 

Figure  5.34 and Figure  5.35 show the bias tests for voltage magnitudes and phases 

respectively. 
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Figure  5.34 Ratio of the Mean of voltage magnitude errors by related Standard Deviations with the presence of PMU 

measurements for IEEE 57-Bus test case. 
 

 
Figure  5.35 Ratio of the Mean of voltage Angle errors by related Standard Deviations with the presence of PMU 

measurements for IEEE 57-Bus test case. 
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According to the Figure  5.34 and Figure  5.35, when there are PMU measurements for 

this test case, the output of State Estimator’s voltage Magnitudes and Angles are less 

biased (for bigger range of network parameters). 

5.5 Test of Algorithm on IEEE 118-Bus Case 

The one-line diagram of the IEEE 118-Bus test case is illustrated in Figure  5.36. Network 

parameters and Bus data for this test case can be found in [Christie 1999]. 

 
Figure  5.36 IEEE 118-Bus Test Case One-Line Diagram 

 

For this test case, totally 365 measurements are selected. The measurement redundancy 

ratio will be: 

η ≈ 1.55 

The measurement set for this test case almost includes all the PV buses (voltage and 

power injection measurements) together with power flow measurements as the following: 

• Voltage magnitudes at PV buses: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 
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39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 

61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 

83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 

103, 104, 105, 106, 107, 108, 109, 110, 111, 112 and 113. 

• Active and reactive power injections at buses: 2, 3, 7, 8, 10, 12, 13, 15, 16, 17, 18, 

21, 22, 23, 24, 27, 28, 29, 31, 33, 38, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 63, 65, 

69, 70, 71, 73, 74, 75, 81, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 95, 96, 97, 100, 

101, 102, 103, 104, 105, 106, 110, 111, 112, 113, 115, 116 and 118. 

• Active and reactive power flows on branches: 1-2, 1-3, 3-5, 5-6, 7-12, 8-5, 8-9, 9-

10, 11-4, 12-14, 17-15, 17-30, 18-17, 19-20, 25-26, 29-31, 31-32, 32-114, 34-36, 

35-36, 35-37, 37-39, 37-40, 38-37, 38-65, 39-40, 40-41, 49-54, 50-49, 51-49, 51-

52, 51-58, 52-53, 54-55, 54-59, 59-55, 59-56, 59-60, 59-61, 61-60, 63-59, 64-61, 

65-68, 66-49, 66-62, 66-67, 69-68, 71-70, 77-78, 80-77, 80-79, 80-98, 81-68, 83-

84, 85-86, 86-87, 95-96, 96-97 and 105-108. 

5.5.1 Mean and Standard Deviation of State Estimator 

The error bars plots for mean and standard deviation of voltage magnitude and voltage 

angles versus all the network parameters uncertainty samples are shown respectively in 

the Figure  5.37 and Figure  5.38. 
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Figure  5.37 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 118-Bus test case. 

 

 
Figure  5.38 Mean and Standard Deviation of Voltage Angle Errors for IEEE 118-Bus test case. 
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The figures clearly show that by growth of the network parameters uncertainty, the mean 

and standard deviation of errors will considerably grow. Therefore if just the theoretical 

standard deviations are taken into consideration, the State Estimation’s standard deviation 

is underestimated enormously. The results are based on 5000 Monte Carlo Trials. 

In the figures, the mean of errors for both voltage magnitudes and angles don’t start from 

zero point showing the effect of the measurement uncertainty.  

 

5.5.2 Bias Testing for State Estimator 

Figure  5.39 and Figure  5.40 show the ratio of absolute value of voltage error Means by 

the related Standard Deviations versus the network parameters uncertainty respectively 

for voltage magnitudes and angles for IEEE 118-bus test case.  

 
 

Figure  5.39 Mean and Standard Deviation of Voltage Magnitude Errors for IEEE 118-Bus test case. 
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Figure  5.40 Mean and Standard Deviation of Voltage Angle Errors for IEEE 118-Bus test case. 

 

A horizontal dashed line is also depicted in the figures to give an idea about the 5 percent 

of threshold, meaning that the state estimator is not biased for the network parameters 

uncertainty range below this line. 

According to the figures, it is apparent that for this test case the State Estimator’s Voltage 

Magnitude and Voltage Angle outputs are not biased for the parameters uncertainties up 

to nearly 6 percent and 12 percent respectively. 

5.5.3 Correlation of State Estimator’s Errors 

In Figure  5.41 and Figure  5.42 the correlation coefficients of State Estimator’s errors 

versus parameters uncertainty are shown for Voltage errors and Phase errors respectively.  
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Figure  5.41 Correlation of State Estimator’s Errors (Voltage Magnitude) of IEEE 118-Bus test case. 

 

 
Figure  5.42 Correlation of State Estimator’s Errors (Angles) of IEEE 118-Bus test case. 
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In Figure  5.41 it is noticeable that the State Estimator’s Voltage Magnitude Errors are 

almost not correlated to each other and by increment of network uncertainty it remains 

uncorrelated. This behavior is mostly because of choosing too many Voltage Magnitudes 

measurements. The Figure  5.42 shows that the State Estimator’s Angles Errors are 

moderately correlated and when there is parameters uncertainty, the Angles errors will be 

still correlated even for large parameters uncertainties up to 25%.  

5.5.4 Parameter’s Correlation Effect on IEEE 118-Bus case  

To perform this analysis, the nominal values of line resistances are correlated with the 

correlation coefficient of 0.8 and the line resistances with zero nominal values were not 

correlated.  

With having parameters correlation, the ratios of the mean of voltage magnitudes and 

angles errors by Standard Deviations for IEEE 118-Bus test case are shown in Figure 

 5.43 and Figure  5.44. 

 
Figure  5.43 Ratio of the Mean of voltage magnitudes errors by Standard Deviations with parameters correlation for 

IEEE 118-Bus test case. 
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Figure  5.44 Ratio of the Mean of voltage angles errors by Standard Deviations with parameters correlation for IEEE 

118-Bus test case. 
 

By comparing Figure  5.43 and Figure  5.44 with the figures of bias testing without 

parameter correlation for this test case (Figure  5.39 and Figure  5.40), it is evident that 

when the network parameters are correlated, the State Estimator’s Voltage magnitude 

errors are totally biased and the State Estimator’s Voltage magnitude errors is on the edge 

of biasness for different network parameters. 

5.5.5 The Results with PMU 

According to the optimal PMU locations developed in [Chakrabarti 2009], for this test 

case 13 PMUs are placed on the buses that shown in Table  5.3. 
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Figure  5.45 and Figure  5.46 show the bias tests for voltage magnitudes and phases 

respectively. 

 
Figure  5.45 Ratio of the Mean of voltage magnitude errors by related Standard Deviations with the presence of PMU 

measurements for IEEE 118-Bus test case. 
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Figure  5.46 Ratio of the Mean of voltage Angle errors by related Standard Deviations with the presence of PMU 

measurements for IEEE 118-Bus test case. 
 

Considering the Figure  5.45 and Figure  5.46 and comparing them with Figure  5.39 and 

Figure  5.40, it is apparent when there are PMU measurements for this test case, the 

output of State Estimator’s voltage Magnitudes are less biased (for bigger range of 

network parameters) and the output of State Estimator’s voltage Angles are not biased at 

least for the parameters uncertainty up to 25%. 

 

0 0.05 0.1 0.15 0.2 0.25
-2

-1

0

1

2

3

4

5
mean(Phi Errors)  / std(Phi errors)

 
 

 
 

 
 

 

Parameters Standard Deviations

 

 
mean phi errors over std phi errors)
5 Percent of Threshold

M
ea

n 
of

 v
ol

ta
ge

 a
ng

le
 e

rr
or

s o
ve

r S
TD

 d
ev

. 



 
 
  89 
 

 
 
 

 

Conclusions 
 

 

 

In this thesis an algorithm for analyzing both the effects of network parameters 

uncertainty along with the measurement uncertainty on WLS state estimator is proposed 

and simulated on IEEE 14-Bus, 30-Bus, 57-Bus and 118-Bus test cases in Matlab 

simulation environment. The results of simulations show that the state estimator’s 

accuracy is affected considerably according to the network parameters uncertainty and 

the amount of variations are illustrated by means of state errors distribution (in terms of 

error bars representing the distribution mean and 1𝜎 standard deviation) versus the 

network parameters uncertainty for the test cases.  

The lack of literature studies about the analysis of network parameters effects on 

WLS State Estimator’s bias performance led us to perform a new prominent analysis to 

find how network parameters uncertainty can affect the state estimator’s bias (for a given 

measurement uncertainly). Hence it is done by using the ratio of absolute value of state 

error means by the related standard deviations versus the network parameters uncertainty 

and comparing it with a predefined threshold.  

WLS State Estimation provides a mathematical expression for calculating the 

variance covariance matrix of State Estimates and when there is network parameters 

uncertainty, the simulations confirm that the State Estimation’s standard deviation is 

underestimated enormously because only the uncertainty of measurement data is 

considered.  

Phasor Measurement Unit (PMU) can be used to make the state estimates less 

sensitive to the network parameters uncertainty, because the analysis show that when 

PMU measurement data are included in the traditional measurement set, the outputs of 
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State estimator are comparatively much less biased so that in some test cases, the State 

estimator’s phases are totally unbiased for huge range of network parameters. 

Lastly an analysis is carried out to illustrate how much the State Estimator’s results 

are mutually connected to each other when the network parameters have uncertainty. The 

results reveal that when there is no parameters uncertainty the State Estimator’s Angle 

errors are correlated considerably and by increment of network parameter uncertainty, the 

correlation effect will be a little bit smaller. While the State Estimator’s Voltage 

Magnitude errors are correlated moderately when there is no parameters uncertainty and 

by increment of network parameter uncertainty, the correlation effect will significantly 

goes smaller. 
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Proof of the Jacobian of 𝑱(𝒙)  

 

The first derivative of 𝐽(𝑥) with respect to 𝑥 is: 

𝜕𝐽(𝑥)
𝜕𝑥

=
𝜕[𝑦𝑇𝛴𝑦−1 𝑦 − 𝑦𝑇𝛴𝑦−1 𝑓(𝑥) − 𝑓(𝑥)𝑇𝛴𝑦−1 𝑦 + 𝑓(𝑥)𝑇𝛴𝑦−1 𝑓(𝑥)]

𝜕𝑥
 

𝜕𝐽(𝑥)
𝜕𝑥

= −𝑦𝑇𝛴𝑦−1
𝜕𝑓(𝑥)
𝜕𝑥

− 𝑦𝑇𝛴𝑦−1
𝑇  
𝜕𝑓(𝑥)
𝜕𝑥

+ 𝑓(𝑥)𝑇𝛴𝑦−1
𝑇 𝜕𝑓(𝑥)

𝜕𝑥
+ 𝑓(𝑥)𝑇𝛴𝑦−1

𝜕𝑓(𝑥)
𝜕𝑥

 

The variance-covariance matrix of measurements 𝛴𝑦−1 is symmetrical so we can simplify: 

𝜕𝐽(𝑥)
𝜕𝑥

= −2𝑦𝑇𝛴𝑦−1
𝜕𝑓(𝑥)
𝜕𝑥

+ 2𝑓(𝑥)𝑇𝛴𝑦−1
𝜕𝑓(𝑥)
𝜕𝑥

 

𝜕𝐽(𝑥)
𝜕𝑥

= −2[𝑦 − 𝑓(𝑥)]𝑇𝛴𝑦−1 �
𝜕𝑓(𝑥)
𝜕𝑥

� 

The Jacobian matrix of 𝐽(𝑥) is defined by 𝑔(𝑥): 

𝑔(𝑥) = �
𝜕𝐽(𝑥)
𝜕𝑥

�
𝑇

 

𝑔(𝑥) = −2 �
𝜕𝑓(𝑥)
𝜕𝑥

�
𝑇

𝛴𝑦−1[𝑦 − 𝑓(𝑥)] 
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Proof of the Hessian of 𝑱(𝒙)  

The Hessian matrix of 𝐽(𝑥) is the second derivative with respect to 𝑥:  

𝐻(𝑥) =
𝜕𝑔(𝑥)
𝜕𝑥

 

𝐻(𝑥) =
𝜕 �−2 �𝜕𝑓(𝑥)

𝜕𝑥 �
𝑇
𝛴𝑦−1[𝑦 − 𝑓(𝑥)]�

𝜕𝑥
 

𝐻(𝑥) =
𝜕 �−2 �𝜕𝑓(𝑥)

𝜕𝑥 �
𝑇
𝛴𝑦−1𝑦 + 2 �𝜕𝑓(𝑥)

𝜕𝑥 �
𝑇
𝛴𝑦−1𝑓(𝑥)�

𝜕𝑥
 

𝐻(𝑥) = −2𝑦𝑇𝛴𝑦−1
𝜕2𝑓(𝑥)
𝜕𝑥2

+ 2𝑓(𝑥)𝑇𝛴𝑦−1
𝜕2𝑓(𝑥)
𝜕𝑥2

+ 2 �
𝜕𝑓(𝑥)
𝜕𝑥

�
𝑇

𝛴𝑦−1 �
𝜕𝑓(𝑥)
𝜕𝑥

� 

𝐻(𝑥) = 2[𝑓(𝑥)𝑇 − 𝑦𝑇]𝛴𝑦−1
𝜕2𝑓(𝑥)
𝜕𝑥2

+ 2 �
𝜕𝑓(𝑥)
𝜕𝑥

�
𝑇

𝛴𝑦−1 �
𝜕𝑓(𝑥)
𝜕𝑥

� 

𝐻(𝑥) = 2[−𝑟]𝑇𝛴𝑦−1
𝜕2𝑓(𝑥)
𝜕𝑥2

+ 2 �
𝜕𝑓(𝑥)
𝜕𝑥

�
𝑇

𝛴𝑦−1 �
𝜕𝑓(𝑥)
𝜕𝑥

� 

By neglecting the first part of above equation, we can write the Hessian matrix of 𝐽(𝑥) as: 

𝐻(𝑥) ≅ 2 �
𝜕𝑓(𝑥)
𝜕𝑥

�
𝑇

𝛴𝑦−1 �
𝜕𝑓(𝑥)
𝜕𝑥

� 
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Derivation of power network equations using a sample network 

In this section the equations for the power calculations for a node will be inspected. Let’s 

consider a sample power network as shown in the figure below: 

 

 

 

 

 

 

 

 

Figure  5.47 Tree of the connected graph of a sample power network 

Here all the complex power injections for one node are going to be written and it could 

be applied to all the nodes in the network. We consider node 3 and all the branches 

connected to it (Figure below):  

 

 

 

 

 

 

 

 

Figure  5.48 The Node 3 in the sample power network along with the all branches connected and the illustration of 

equivalent pi model for each branch 

To find the power injections 𝑆2 and 𝑆3 and 𝑆6 we use the equivalent pi model described in 

the previous section. The power injection equations will be: 
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𝑆3̅2 = (𝑦�2 + 𝑦�30)∗𝑉�3𝑉�3∗ − 𝑦�2∗𝑉�3𝑉�2∗ 

𝑆3̅4 = (𝑦�3 + 𝑦�30)∗𝑉�3𝑉�3∗ − 𝑦�3∗𝑉�3𝑉�4∗ 

𝑆3̅6 = (𝑦�6 + 𝑦�30)∗𝑉�3𝑉�3∗ − 𝑦�6∗𝑉�3𝑉�6∗ 

The relationship between the injected complex powers in a node is ∑𝑆� = 0. For node 3 it 

will be: 

𝑆3̅2 + 𝑆3̅4 + 𝑆3̅6 = 0 

(𝑦�2 + 𝑦�30)∗𝑉�3𝑉�3∗ − 𝑦�2∗𝑉�3𝑉�2∗ + (𝑦�3 + 𝑦�30)∗𝑉�3𝑉�3∗ − 𝑦�3∗𝑉�3𝑉�4∗ + (𝑦�6 + 𝑦�30)∗𝑉�3𝑉�3∗ − 𝑦�6∗𝑉�3𝑉�6∗ = 0 

(𝑦�2 + 𝑦�3 + 𝑦�6 + 3𝑦�30)∗|𝑉�3|2 − [𝑦�2∗𝑉�2∗ + 𝑦�3∗𝑉�4∗ + 𝑦�6∗𝑉�6∗]𝑉�3 = 0 

The last equation is the desired non-linear function that relates the states to the physical 

admittances for the sample power network. 

Generalization of Power Equations 

The total power fluxes equation for the sample network will be written in order to 

conclude the equations for a general network easier. The injected powers in nodes are the 

measured quantities. 

 

 

 

 

 

 

Figure  5.49 Sample network with two branches connected to a generator (power injector) along with the illustration of 

equivalent pi model 

 

𝑆𝑘̅ℎ = (𝑦�𝑘ℎ + 𝑦�𝑘0)∗𝑉�𝑘𝑉�𝑘∗ − 𝑦�𝑘ℎ∗𝑉�𝑘𝑉�ℎ∗ 

𝑆𝑘̅𝑖 = (𝑦�𝑘𝑖 + 𝑦�𝑘0)∗𝑉�𝑘𝑉�𝑘∗ − 𝑦�𝑘𝑖∗𝑉�𝑘𝑉�𝑖∗ 

In node 𝑘, the injected power, 𝐺 is equal to the total power fluxes: 

𝑆𝑘̅ = 𝑆𝑘̅ℎ + 𝑆𝑘̅𝑖 
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𝑆𝑘̅ = (𝑦�𝑘ℎ + 𝑦�𝑘0)∗𝑉�𝑘𝑉�𝑘∗ − 𝑦�𝑘ℎ∗𝑉�𝑘𝑉�ℎ∗ + (𝑦�𝑘𝑖 + 𝑦�𝑘0)∗𝑉�𝑘𝑉�𝑘∗ − 𝑦�𝑘𝑖∗𝑉�𝑘𝑉�𝑖∗ 

𝑆𝑘̅ = (𝑦�𝑘ℎ + 𝑦�𝑘𝑖 + 2𝑦�𝑘0)∗|𝑉�𝑘|2 − (𝑦�𝑘ℎ𝑉�ℎ + 𝑦�𝑘𝑖𝑉�𝑖)∗𝑉�𝑘 

The elements of node admittance can be written as: 

𝑦�𝑘ℎ = 𝑔𝑘ℎ + 𝑗𝑏𝑘ℎ 

Note that 𝑦�𝑘ℎ is equal to 𝑦�ℎ𝑘 and accordingly 𝑔𝑘ℎ = 𝑔ℎ𝑘 and 𝑏𝑘ℎ = 𝑏ℎ𝑘. 

Consequently the complex node power injection can be expressed as: 

𝑃𝑘 + 𝑗𝑄𝑘 =

= (𝑔𝑘ℎ + 𝑗𝑏𝑘ℎ + 𝑔𝑘𝑖 + 𝑗𝑏𝑘𝑖 + 2𝑔𝑘0 + 𝑗2𝑏𝑘0)∗|𝑉�𝑘|2 − (𝑔𝑘ℎ𝑉�ℎ + 𝑗𝑏𝑘ℎ𝑉�ℎ + 𝑔𝑘𝑖𝑉�𝑖 + 𝑗𝑏𝑘𝑖𝑉�𝑖)∗𝑉�𝑘 

𝑃𝑘 + 𝑗𝑄𝑘 =

= (𝑔𝑘ℎ − 𝑗𝑏𝑘ℎ + 𝑔𝑘𝑖 − 𝑗𝑏𝑘𝑖 + 2𝑔𝑘0 − 𝑗2𝑏𝑘0)|𝑉�𝑘|2 − 𝑔𝑘ℎ𝑉�𝑘𝑉�ℎ
∗ + 𝑗𝑏𝑘ℎ𝑉�𝑘𝑉�ℎ

∗ −

− 𝑔𝑘𝑖𝑉�𝑘𝑉�𝑖
∗ + 𝑗𝑏𝑘𝑖𝑉�𝑘𝑉�𝑖

∗ 

And using polar form of voltage it will be: 

𝑃𝑘 + 𝑗𝑄𝑘 =

= (𝑔𝑘ℎ − 𝑗𝑏𝑘ℎ + 𝑔𝑘𝑖 − 𝑗𝑏𝑘𝑖 + 2𝑔𝑘0 − 𝑗2𝑏𝑘0)|𝑉�𝑘|2 − 𝑔𝑘ℎ|𝑉�𝑘||𝑉�ℎ|𝑒𝑗𝜃𝑘ℎ + 𝑗𝑏𝑘ℎ|𝑉�𝑘||𝑉�ℎ|𝑒𝑗𝜃𝑘ℎ −

− 𝑔𝑘𝑖|𝑉�𝑘||𝑉�𝑖|𝑒𝑗𝜃𝑘𝑖 + 𝑗𝑏𝑘𝑖|𝑉�𝑘||𝑉�𝑖|𝑒𝑗𝜃𝑘𝑖 

Using Euler rule:  𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin𝜃 we will have: 

 

𝑃𝑘 + 𝑗𝑄𝑘 =

= (𝑔𝑘ℎ + 𝑔𝑘𝑖 + 2𝑔𝑘0 − 𝑗(𝑏𝑘ℎ + 𝑏𝑘𝑖 + 2𝑏𝑘0))|𝑉�𝑘|2 −

− 𝑔𝑘ℎ|𝑉�𝑘||𝑉�ℎ|(cos𝜃𝑘ℎ + 𝑗 sin𝜃𝑘ℎ) + 𝑗𝑏𝑘ℎ|𝑉�𝑘||𝑉�ℎ|(cos𝜃𝑘ℎ + 𝑗 sin𝜃𝑘ℎ) −

− 𝑔𝑘𝑖|𝑉�𝑘||𝑉�𝑖|(cos𝜃𝑘𝑖 + 𝑗 sin 𝜃𝑘𝑖) + 𝑗𝑏𝑘𝑖|𝑉�𝑘||𝑉�𝑖|(cos𝜃𝑘𝑖 + 𝑗 sin𝜃𝑘𝑖) 

𝑃𝑘 + 𝑗𝑄𝑘 =

= (𝑔𝑘ℎ + 𝑔𝑘𝑖 + 2𝑔𝑘0)|𝑉�𝑘|2 − 𝑗(𝑏𝑘ℎ + 𝑏𝑘𝑖 + 2𝑏𝑘0)|𝑉�𝑘|2 − 𝑔𝑘ℎ|𝑉�𝑘||𝑉�ℎ| cos 𝜃𝑘ℎ −

− 𝑗𝑔𝑘ℎ|𝑉�𝑘||𝑉�ℎ| sin𝜃𝑘ℎ + 𝑗𝑏𝑘ℎ|𝑉�𝑘||𝑉�ℎ| cos 𝜃𝑘ℎ − 𝑏𝑘ℎ|𝑉�𝑘||𝑉�ℎ| sin𝜃𝑘ℎ −

− 𝑔𝑘𝑖|𝑉�𝑘||𝑉�𝑖| cos 𝜃𝑘𝑖 − 𝑗𝑔𝑘𝑖|𝑉�𝑘||𝑉�𝑖| sin𝜃𝑘𝑖 + 𝑗𝑏𝑘𝑖|𝑉�𝑘||𝑉�𝑖| cos 𝜃𝑘𝑖 − 𝑏𝑘𝑖|𝑉�𝑘||𝑉�𝑖| sin𝜃𝑘𝑖 
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𝑃𝑘 + 𝑗𝑄𝑘 =

= (𝑔𝑘ℎ + 𝑔𝑘𝑖 + 2𝑔𝑘0)|𝑉�𝑘|2 − 𝑔𝑘ℎ|𝑉�𝑘||𝑉�ℎ| cos 𝜃𝑘ℎ − 𝑏𝑘ℎ|𝑉�𝑘||𝑉�ℎ| sin𝜃𝑘ℎ −

− 𝑔𝑘𝑖|𝑉�𝑘||𝑉�𝑖| cos 𝜃𝑘𝑖 − 𝑏𝑘𝑖|𝑉�𝑘||𝑉�𝑖| sin 𝜃𝑘𝑖                      + j[−(𝑏𝑘ℎ + 𝑏𝑘𝑖 + 2𝑏𝑘0)|𝑉�𝑘|2 −

− 𝑔𝑘ℎ|𝑉�𝑘||𝑉�ℎ| sin 𝜃𝑘ℎ + 𝑏𝑘ℎ|𝑉�𝑘||𝑉�ℎ| cos𝜃𝑘ℎ − 𝑔𝑘𝑖|𝑉�𝑘||𝑉�𝑖| sin 𝜃𝑘𝑖 +

+ 𝑏𝑘𝑖|𝑉�𝑘||𝑉�𝑖| cos 𝜃𝑘𝑖] 

Splitting above equation into real and imaginary parts gives the active and reactive node 

power injection at node 𝑘 in polar form.  

𝑃𝑘 =

= (𝑔𝑘ℎ + 𝑔𝑘𝑖 + 2𝑔𝑘0)|𝑉�𝑘|2 − 𝑔𝑘ℎ|𝑉�𝑘||𝑉�ℎ| cos 𝜃𝑘ℎ − 𝑏𝑘ℎ|𝑉�𝑘||𝑉�ℎ| sin𝜃𝑘ℎ −

− 𝑔𝑘𝑖|𝑉�𝑘||𝑉�𝑖| cos 𝜃𝑘𝑖 − 𝑏𝑘𝑖|𝑉�𝑘||𝑉�𝑖| sin 𝜃𝑘𝑖 

𝑄𝑘 =

= −(𝑏𝑘ℎ + 𝑏𝑘𝑖 + 2𝑏𝑘0)|𝑉�𝑘|2 − 𝑔𝑘ℎ|𝑉�𝑘||𝑉�ℎ| sin 𝜃𝑘ℎ + 𝑏𝑘ℎ|𝑉�𝑘||𝑉�ℎ| cos 𝜃𝑘ℎ −

− 𝑔𝑘𝑖|𝑉�𝑘||𝑉�𝑖| sin𝜃𝑘𝑖 + 𝑏𝑘𝑖|𝑉�𝑘||𝑉�𝑖| cos 𝜃𝑘𝑖 

Above equations are the total power fluxes equations for the sample network (top figure). 

To conclude it for a general network, we simplify and then use a summation notation to 

include all nodes. Therefore firstly for active node power it can be written that: 

𝑃𝑘 =

= (𝑔𝑘ℎ + 𝑔𝑘𝑖 + 2𝑔𝑘0)|𝑉�𝑘|2 − (𝑔𝑘ℎ cos 𝜃𝑘ℎ + 𝑏𝑘ℎ sin𝜃𝑘ℎ)|𝑉�𝑘||𝑉�ℎ| − (𝑔𝑘𝑖 cos 𝜃𝑘𝑖 +

+ 𝑏𝑘𝑖 sin𝜃𝑘𝑖)|𝑉�𝑘||𝑉�𝑖| 

𝑃𝑘 = 𝐺𝑘𝑘|𝑉�𝑘|2 −�|𝑉�𝑘|�𝑉�𝑗��𝑔𝑘𝑗 cos 𝜃𝑘𝑗 + 𝑏𝑘𝑗 sin𝜃𝑘𝑗�
𝑛

𝑗=1
𝑗≠𝑘

 

Where the index 𝑗 is the node number from 1 to 𝑛. For reactive node power it can be 

written in a similar way that: 

𝑄𝑘 = −𝐵𝑘𝑘|𝑉�𝑘|2 −�|𝑉�𝑘|�𝑉�𝑗��𝑔𝑘𝑗 sin 𝜃𝑘𝑗 − 𝑏𝑘𝑗 cos 𝜃𝑘𝑗�
𝑛

𝑗=1
𝑗≠𝑘
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Matlab Codes: Implementation of Newton-Raphson Load Flow 

 
function [V,phi] = newton(Ybus_nr)  
  
%% Newton-Raphson Load Flow 
global nbus baseMVA busdatas 
  
%% Getting busdata 
type = busdatas(:,2);      % Type of Bus 1-Slack, 2-PV, 3-PQ 
V = busdatas(:,3);         % Slach Voltage and Voltage mag intitials 
Vsp = busdatas(:,3);         % Slach Voltage and Voltage mag intitials 
  
phi = busdatas(:,4);       % Voltage Angle intitials 
Pg = busdatas(:,5)/baseMVA; 

Qg = busdatas(:,6)/baseMVA; 

Pl = busdatas(:,7)/baseMVA; 

Ql = busdatas(:,8)/baseMVA; 

Qmin = busdatas(:,9)/baseMVA;      % Minimum Reactive Power Limit.. 
Qmax = busdatas(:,10)/baseMVA;     % Maximum Reactive Power Limit.. 
  
Psp = Pg - Pl;   % calculate powers in the busses: P Specified 
Qsp = Qg - Ql;   % calculate powers in the busses: Q Specified 
  
pq = find(type == 3);               % PQ Buses(there is no generation) 
pv = find(type == 2 | type == 1);   % PV Buses 
npq = length(pq);                   % No. of PQ buses 
G_nr = real(Ybus_nr); 

B_nr = imag(Ybus_nr); 

Tol = 1;   

itr = 1; 
  
%% Iteration Starts: 
while (Tol > 1e-9 && itr < 100) 
  
P = zeros(nbus,1); 

Q = zeros(nbus,1); 

% Calculate P and Q 
for i = 1:nbus 
      for k = 1:nbus 
            P(i) = P(i) + V(i)* V(k)*(G_nr(i,k)*cos(phi(i)-phi(k)) + 
B_nr(i,k)*sin(phi(i)-phi(k)));  % pp. 77 Wang.  (eq 2.9) 
            Q(i) = Q(i) + V(i)* V(k)*(G_nr(i,k)*sin(phi(i)-phi(k)) - 
B_nr(i,k)*cos(phi(i)-phi(k)));  % ... 
      end 
end 
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% Checking Q-limit violations.. 
if itr <= 7 && itr > 2    % Only checked up to 7th iterations.. 
    for n = 2:nbus 
        if type(n) == 2 
            QG = Q(n)+Ql(n); 

            if QG < Qmin(n) 
                V(n) = V(n) + 0.01; 

            elseif QG > Qmax(n) 
                V(n) = V(n) - 0.01; 

            end 
        end 
    end 
end 
  
dP = Psp-P;  % Calculate change from specified value pp.78 Wang. (eq 
2.13) 
dQ1 = Qsp-Q; % ... 
    k = 1; 
    dQ = zeros(npq,1); 
    for i = 1:nbus 
        if type(i) == 3 
            dQ(k,1) = dQ1(i); 
            k = k+1; 
        end 
    end 
  
r = [dP(2:nbus); dQ];       % Mismatch Vector, not considering the 
first value that is the slack bus P,Q 
  
%% The Jacobian matrix 
% J1 - Derivative of Real Power Injections with Angles 
J1 = zeros(nbus-1,nbus-1); 

for i = 1:(nbus-1) 
      m = i+1; 
      for k = 1:(nbus-1) 
            n = k+1; 
            if n == m 
                  for n = 1:nbus 
                        J1(i,k) = J1(i,k) - V(m)* 
V(n)*(G_nr(m,n)*sin(phi(m)-phi(n)) - B_nr(m,n)*cos(phi(m)-phi(n))); % 
pp. 84 Wang. eq(2.41) 
                  end 
                  J1(i,k) = J1(i,k) - V(m)^2*B_nr(m,m); 

            else 
                  J1(i,k) = V(m)* V(n)*(G_nr(m,n)*sin(phi(m)-phi(n)) - 
B_nr(m,n)*cos(phi(m)-phi(n))); % pp. 84 Wang. eq(2.42) 
            end 
      end 
end 
% J2 - Derivative of Real Power Injections with V 
J2 = zeros(nbus-1,npq); 
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for i = 1:(nbus-1) 
      m = i+1; 
      for k = 1:npq 
            n = pq(k); 
            if n == m 
                  for n = 1:nbus 
                        J2(i,k) = J2(i,k) + V(n)*(G_nr(m,n)*cos(phi(m)-
phi(n)) + B_nr(m,n)*sin(phi(m)-phi(n))); 
                  end 
                  J2(i,k) = J2(i,k) + V(m)*G_nr(m,m); 

            else 
                  J2(i,k) = V(m)*(G_nr(m,n)*cos(phi(m)-phi(n)) + 
B_nr(m,n)*sin(phi(m)-phi(n))); 
            end 
      end 
end 
% J3 - Derivative of Reactive Power Injections with Angles 
J3 = zeros(npq,nbus-1); 

for i = 1:npq 
      m = pq(i); 
      for k = 1:(nbus-1) 
            n = k+1; 
            if n == m 
                  for n = 1:nbus 
                        J3(i,k) = J3(i,k) + V(m)* 
V(n)*(G_nr(m,n)*cos(phi(m)-phi(n)) + B_nr(m,n)*sin(phi(m)-phi(n))); 
                  end 
                  J3(i,k) = J3(i,k) - V(m)^2*G_nr(m,m); 

            else 
                  J3(i,k) = V(m)* V(n)*(-G_nr(m,n)*cos(phi(m)-phi(n)) - 
B_nr(m,n)*sin(phi(m)-phi(n)));  % pp. 84 Wang. eq(2.44) !!!!! MANFI 
            end 
      end 
end 
% J4 - Derivative of Reactive Power Injections with V 
J4 = zeros(npq,npq); 

for i = 1:npq 
      m = pq(i); 
      for k = 1:npq 
            n = pq(k); 
            if n == m 
                  for n = 1:nbus 
                        J4(i,k) = J4(i,k) + V(n)*(G_nr(m,n)*sin(phi(m)-
phi(n)) - B_nr(m,n)*cos(phi(m)-phi(n))); 
                  end 
                  J4(i,k) = J4(i,k) - V(m)*B_nr(m,m); 

            else 
                  J4(i,k) = V(m)*(G_nr(m,n)*sin(phi(m)-phi(n)) - 
B_nr(m,n)*cos(phi(m)-phi(n)));  % pp. 85 Wang. eq(2.48) !!!!! MANFI 
            end 
      end 
end 
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J = [J1 J2;  

     J3 J4];     % Jacobian Matrix    % J = Jacob(busdatas,ybus,nbus); 
  
X = J\r;  % inv(J)*r; <TIME SAVING> %          Correction Vector 
dTh = X(1:nbus-1);      % Change in Voltage Angle 
dV = X(nbus:end);       % Change in Voltage Magnitude 
  
%% record the phita V and phita Angle 
dV_sq(itr,:) = dV'; 
dTh_sq(itr,:) = dTh'; 
  
%% Updating State Vectors 
phi(2:nbus) = dTh + phi(2:nbus);    % Angle update 
  
k = 1; 
for i = 1:nbus 
      if type(i) == 3 
            V(i) = dV(k) + V(i);        % Voltage Magnitude update 
            k = k+1; 
      else 
            V(i) = Vsp(i);    % reset the slack and PV bus voltages to 
the specified values 
      end 
end 
  
itr = itr + 1;   % iteration counter 
Tol = max(abs(r)); 

end  % end of Iterations 
% fprintf('N-R Iterations = %4d', itr);fprintf('\n'); 
  
%% Figure of convergence 
% figure 
% plot([1:itr-1],diag(dV_sq*dV_sq'),[1:itr-
1],diag(dTh_sq*dTh_sq'),'g');  
% title('Load Flow: phita-V and phita-Phi decrease according to 
Iterations'); xlabel('iteration'); ylabel('phita V & Angle'); grid on % 
figure for convergence 
end 
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Matlab Codes: Implementation of WLS State Estimation 

 
max_iters = 50;      % number of iterations 
tol       = 1e-6;   % normally e-6 
  
%% State Vector initialization: 
V_SE = ones(nbus,1);           % Initialize the bus voltages: all ones 
V_SE(v_meas_bus_nr,1) = v_meas_perturbed;      % put the slack bus 
voltage and PV bus voltages 
phi_SE = zeros(nbus,1);        % Initialize the bus angles: all zeroz 
% if pmu_meas_bus_nr 
%       phi_SE(pmu_meas_bus_nr(:,2),1) = - phi_meas_perturbed; % put 
the phases az inits 
% end 

state = [phi_SE(2:end); V_SE];    % State Vector size: 27 = (2*n)-1 
iters = 0; 
converged = 0; 
  
while (~converged && iters < max_iters) 
iters = iters + 1; 
%% Measurement Function: f 
f1 = V_SE(v_meas_bus_nr,1);  %  Voltage Magnitude (Traditional + PMU) 
f2 = zeros(n_pi_meas,1); 
f3 = zeros(n_qi_meas,1); 
f4 = zeros(n_pf_meas,1); 
f5 = zeros(n_qf_meas,1); 
if pmu_meas_bus_nr 
f6 = phi_SE(pmu_meas_bus_nr(:,1),1) - phi_SE(pmu_meas_bus_nr(:,2),1); % 
PMU Phases 
else f6 = []; 
end 
  
% V_SE = V_nr; 
% phi_SE = phi_nr; 
  
%Real power injection calculation OK 
for i = 1:n_pi_meas 
      m = pi_meas_bus_nr(i); 
      for k = 1:nbus 
            f2(i) = f2(i) + V_SE(m)*V_SE(k)*(G(m,k)*cos(phi_SE(m)-
phi_SE(k)) + B(m,k)*sin(phi_SE(m)-phi_SE(k))); 
      end 
end 
  
% Reactive power injection calculations OK 
for i = 1:n_qi_meas 
      m = qi_meas_bus_nr(i); 
      for k = 1:nbus 
            f3(i) = f3(i) + V_SE(m)*V_SE(k)*(G(m,k)*sin(phi_SE(m)-
phi_SE(k)) - B(m,k)*cos(phi_SE(m)-phi_SE(k))); 
      end 
end 
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% Real power flows calculation OK 
for i = 1:n_pf_meas 
      m = pf_meas_bus_nr(i,1); 
      n = pf_meas_bus_nr(i,2); 
      f4(i) = -V_SE(m)^2*(G(m,n)) + 
V_SE(m)*V_SE(n)*(G(m,n)*cos(phi_SE(m)-phi_SE(n)) + 
B(m,n)*sin(phi_SE(m)-phi_SE(n))); 
end 
  
% Reactive power flows calculation OK 
for i = 1:n_qf_meas 
      m = qf_meas_bus_nr(i,1); 
      n = qf_meas_bus_nr(i,2); 
      f5(i) = V_SE(m)^2*(B(m,n)- bbus(m,n)) + 
V_SE(m)*V_SE(n)*(G(m,n)*sin(phi_SE(m)-phi_SE(n)) - 
B(m,n)*cos(phi_SE(m)-phi_SE(n))); 
end 
  
f = [f1; f2; f3; f4; f5; f6]; 
  
%% Jacobians 
% g11 - Derivative of V_SE with respect to angles: All Zeros 

g11 = zeros(n_v_meas,nbus-1); 
  
% g12 - Derivative of V_SE with respect to V_SE 
g12 = zeros(n_v_meas,nbus); 
for k = 1:n_v_meas 
      for n = 1:nbus 
            if n == k 
                  g12(k,n) = 1;  
            end 
      end 
end 
  
% g21 - Derivative of Real Power Injections with Angles 
g21 = zeros(n_pi_meas,nbus-1); 
for i = 1:n_pi_meas 
      m = pi_meas_bus_nr(i); 
      for k = 1:(nbus-1) 
            if k+1 == m 
                  for n = 1:nbus 
                        g21(i,k) = g21(i,k) + V_SE(m)* V_SE(n)*(-
G(m,n)*sin(phi_SE(m)-phi_SE(n)) + B(m,n)*cos(phi_SE(m)-phi_SE(n))); 
                  end 
                  g21(i,k) = g21(i,k) - V_SE(m)^2*B(m,m); 
            else 
                  g21(i,k) = V_SE(m)* 
V_SE(k+1)*(G(m,k+1)*sin(phi_SE(m)-phi_SE(k+1)) - 
B(m,k+1)*cos(phi_SE(m)-phi_SE(k+1))); % k+1  
            end 
      end 
end 
  
% g22 - Derivative of Real Power Injections with V_SE 
g22 = zeros(n_pi_meas,nbus); 



 
 
Appendices  107 
 

 
 
 

for i = 1:n_pi_meas 
      m = pi_meas_bus_nr(i); 
      for k = 1:(nbus) 
            if k == m 
                  for n = 1:nbus 
                        g22(i,k) = g22(i,k) + 
V_SE(n)*(G(m,n)*cos(phi_SE(m)-phi_SE(n)) + B(m,n)*sin(phi_SE(m)-
phi_SE(n))); 
                  end 
                  g22(i,k) = g22(i,k) + V_SE(m)*G(m,m); 
            else 
                  g22(i,k) = V_SE(m)*(G(m,k)*cos(phi_SE(m)-phi_SE(k)) + 
B(m,k)*sin(phi_SE(m)-phi_SE(k))); 
            end 
      end 
end 
  
% g31 - Derivative of Reactive Power Injections with Angles 
g31 = zeros(n_qi_meas,nbus-1); 
for i = 1:n_qi_meas 
      m = qi_meas_bus_nr(i); 
      for k = 1:(nbus-1) 
            if k+1 == m 
                  for n = 1:nbus 
                        g31(i,k) = g31(i,k) + V_SE(m)* 
V_SE(n)*(G(m,n)*cos(phi_SE(m)-phi_SE(n)) + B(m,n)*sin(phi_SE(m)-
phi_SE(n))); 
                  end 
                  g31(i,k) = g31(i,k) - V_SE(m)^2*G(m,m); 
            else 
                  g31(i,k) = V_SE(m)* V_SE(k+1)*(-
G(m,k+1)*cos(phi_SE(m)-phi_SE(k+1)) - B(m,k+1)*sin(phi_SE(m)-
phi_SE(k+1))); % k+1  
            end 
      end 
end 
  
% g32 - Derivative of Reactive Power Injections with V_SE 
g32 = zeros(n_qi_meas,nbus); 
for i = 1:n_qi_meas 
      m = qi_meas_bus_nr(i); 
      for k = 1:(nbus) 
            if k == m 
                  for n = 1:nbus 
                        g32(i,k) = g32(i,k) + 
V_SE(n)*(G(m,n)*sin(phi_SE(m)-phi_SE(n)) - B(m,n)*cos(phi_SE(m)-
phi_SE(n))); 
                  end 
                  g32(i,k) = g32(i,k) - V_SE(m)*B(m,m); 
            else 
                  g32(i,k) = V_SE(m)*(G(m,k)*sin(phi_SE(m)-phi_SE(k)) - 
B(m,k)*cos(phi_SE(m)-phi_SE(k))); 
            end 
      end 
end 
  
% g41 - Derivative of Real Power Flows with Angles 
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g41 = zeros(n_pf_meas,nbus-1); 
for i = 1:n_pf_meas 
      m = pf_meas_bus_nr(i,1); 
      n = pf_meas_bus_nr(i,2); 
      for k = 1:(nbus-1) 
            if k+1 == m 
                  g41(i,k) = -V_SE(m)* V_SE(n)*(G(m,n)*sin(phi_SE(m)-
phi_SE(n)) - B(m,n)*cos(phi_SE(m)-phi_SE(n))); 
            else if k+1 == n 
                        g41(i,k) = V_SE(m)* 
V_SE(n)*(G(m,n)*sin(phi_SE(m)-phi_SE(n)) - B(m,n)*cos(phi_SE(m)-
phi_SE(n))); 
                  else 
                        g41(i,k) = 0; 
                  end 
            end 
      end 
end 
  
% g42 - Derivative of Real Power Flows with V_SE 
g42 = zeros(n_pf_meas,nbus); 
for i = 1:n_pf_meas 
      m = pf_meas_bus_nr(i,1); 
      n = pf_meas_bus_nr(i,2); 
      for k = 1:nbus 
            if k == m 
                  g42(i,k) = V_SE(n)*(G(m,n)*cos(phi_SE(m)-phi_SE(n)) + 
B(m,n)*sin(phi_SE(m)-phi_SE(n))) - 2*G(m,n)*V_SE(m);  
            else if k == n 
                        g42(i,k) = V_SE(m)*(G(m,n)*cos(phi_SE(m)-
phi_SE(n)) + B(m,n)*sin(phi_SE(m)-phi_SE(n)));      
                  else 
                        g42(i,k) = 0; 
                  end 
            end 
      end 
end 
  
% g51 - Derivative of Reactive Power Flows with Angles 
g51 = zeros(n_qf_meas,nbus-1); 
for i = 1:n_qf_meas 
      m = qf_meas_bus_nr(i,1); 
      n = qf_meas_bus_nr(i,2); 
      for k = 1:(nbus-1) 
            if k+1 == m 
                  g51(i,k) = V_SE(m)* V_SE(n)*(G(m,n)*cos(phi_SE(m)-
phi_SE(n)) + B(m,n)*sin(phi_SE(m)-phi_SE(n))); 
            else if k+1 == n 
                        g51(i,k) = - V_SE(m)* 
V_SE(n)*(G(m,n)*cos(phi_SE(m)-phi_SE(n)) + B(m,n)*sin(phi_SE(m)-
phi_SE(n))); 
                  else 
                        g51(i,k) = 0; 
                  end 
            end 
      end 
end 
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% g52 - Derivative of Reactive Power Flows with V_SE 
g52 = zeros(n_qf_meas,nbus); 
for i = 1:n_qf_meas 
      m = qf_meas_bus_nr(i,1); 
      n = qf_meas_bus_nr(i,2); 
      for k = 1:nbus 
            if k == m 
                 g52(i,k) = V_SE(n)*(G(m,n)*sin(phi_SE(m)-phi_SE(n)) - 
B(m,n)*cos(phi_SE(m)-phi_SE(n)))... 
                       + 2*V_SE(m)*(B(m,n) - bbus(m,n));      
            else if k == n 
                        g52(i,k) = V_SE(m)*(G(m,n)*sin(phi_SE(m)-
phi_SE(n)) - B(m,n)*cos(phi_SE(m)-phi_SE(n)));     
                  else 
                        g52(i,k) = 0; 
                  end 
            end 
      end 
end 
  
% g61 - Derivative of PMU Phases with respect to angles 
g61 = zeros(n_phi_meas,nbus-1); 
for i = 1:n_phi_meas 
      m = pmu_meas_bus_nr(i,1); % from 
      n = pmu_meas_bus_nr(i,2); % to 
      for k = 1:(nbus-1) 
            if k+1 == m 
                  g61(i,k) = 1;  
            end 
            if k+1 == n 
                  g61(i,k) = -1; 
            end 
      end 
end 
  
% g62 - Derivative of PMU Phases with respect to V_SE 
g62 = zeros(n_phi_meas,nbus); 
  
%% Measurement Jacobian,     g = df / dx 
g = [g11 g12;  
     g21 g22;  
     g31 g32;  
     g41 g42;  
     g51 g52; 
     g61 g62]; 
% test if g is full rank 
[mmm, nnn]  = size(g); 
rk      = rank(g); 
if rk < min(mmm, nnn) 
     error('System is not observable'); 
end 
  
%% Hessian Matrix or Gain Matrix(double derivative), H 
H = g' * (sigma_square\g); % g'*inv(sigma_square)*g;  % <FOR TIME 
SAVING CALCULATION> 
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%% Objective Function, J 
% J = sum(sigma_square\res.^2);   % sum(inv(sigma_square)*res.^2);  % 
<FOR TIME SAVING CALCULATION> 
  
%% Residue 
res = y_perturbed - f; 
%% State Vector: 
delta_x = H\(g'*(sigma_square\res)); % 
inv(H)*(g'*inv(sigma_square)*res) % <FOR TIME SAVING CALCULATION> 
state = state + delta_x; 
phi_SE(2:end) = state(1:nbus-1); 
V_SE = state(nbus:end); 

  
%% check for convergence 
normF = max(abs(delta_x));      %normF = 
norm((g'*inv(sigma_square)*res), inf); 
if normF < tol  
        converged = 1;  
end 
% fprintf('WLS iteration # %4d: norm of mismatch: %5.20f\n', iters, 
normF); 
  
end %%%%%%%%%%%%%%%%%%% end of iterations 
  
%% THEORY: Variance Covariance matrix of estimates sigma_x   
sigma_x = diag(inv(g'*(sigma_square\g)));     
sigma_x_v   = sqrt(sigma_x(nbus:end)); 
sigma_x_phi = [0; sqrt(sigma_x(1:nbus-1))*180/pi]; 
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Matlab Codes: Building the bus admittance matrix 

 
%% Formulation of Ybus by singular transformation method (With 
Transformer Tap settings and Shunt Admittances) 
  
function [Ybus A] = ybus_incidence(r,x,b) 
  
global fb tb nbranch nbus linedatas baseMVA busdatas 
tap = linedatas(:,6);    % Tap setting values (one for the other buses) 
GS = busdatas(:,11);     % shunt conductance (MW at V = 1.0 p.u.) 
BS = busdatas(:,12);     % shunt susceptance (MW at V = 1.0 p.u.) 
Ysh = ( GS + 1j * BS) / baseMVA; % vector of shunt admittances 
Z= r + 1i*x;                    % z matrix... 
Y = 1./Z;  
  
%% Formation of Bus Incidence matrix A              (signs: comes in is 
-1, goes out is +1) 
A=zeros(nbranch+nbus,nbus); 
for i=1:nbus                   % building top I submatrix: 
      for j=1:nbus 
            if(i==j) 
                  A(i,i)=1; 
            end 
      end 
end 
for i = nbus+1 : nbus+nbranch     % building Buttom A_branch submatrix: 
      A( i , fb(i-nbus)) = 1; 
      A( i , tb(i-nbus)) = -1; 
end 
  
%% Calculation of primitive matrix 
Yprimitive = zeros(nbranch+nbus,1); 
% For buses: 
for i=1:nbranch 
    Yprimitive(fb(i))   = Yprimitive(fb(i)) + 1i*b(i)/2 + (1-tap(i)) * 
Y(i) / tap(i)^2; 
    Yprimitive(tb(i))   = Yprimitive(tb(i)) + 1i*b(i)/2 + (tap(i)-1) * 
Y(i) / tap(i);            
end 
Yprimitive(1:nbus) = Yprimitive(1:nbus) + Ysh;  % adding shunt 
admittances 
  
% Branches: 
for i=1:nbranch 
    Yprimitive(i+nbus) = Y(i) / tap(i); 
end 
  
%% Bus Admittance matrix: 
Ybus = A' * diag(Yprimitive) * A;        %% shunt admittance 
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Matlab Codes: Calculation of Power injections and power flows 

measurements 

 
 
 
 
%% Calculation of Power Injections (p.u) 
% V - Voltage Magnitude pu 
% phi - Voltage Angle in radians 
  
function [Pi, Qi] = power_inj(V,phi,Ybus) 
% function Si = power_inj(V,phi,Ybus) 
  
global nbus 
  
G = real(Ybus); % Bus Admittance matrix split: 

B = imag(Ybus); 

  
  
%% power injection calculations From WLS 
Pi = zeros(nbus,1); 

Qi = zeros(nbus,1); 

  
for i = 1:nbus 
      for j = 1:nbus 
            Pi(i) = Pi(i) + V(i)*V(j)*(G(i,j)*cos(phi(i)-phi(j)) + 
B(i,j)*sin(phi(i)-phi(j))); 
            Qi(i) = Qi(i) + V(i)*V(j)*(G(i,j)*sin(phi(i)-phi(j)) - 
B(i,j)*cos(phi(i)-phi(j))); 
      end 
end 
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%% Calculation of Line Power flows (p.u) 
% V - Voltage Magnitude pu 
% phi - Voltage Angle in radians 
  
function [Pij, Qij, Pji, Qji] = power_flow(V,phi,Ybus) 
  
global fb tb nbus nbranch b_perturbed 
  
G = real(Ybus); 

B = imag(Ybus); 

  
  
%% Polar coordination: 
  
% Shunt Admittance Matrix Formation:    % Off-diagonals are the mutual 
admittances between the respective nodes 
bbus_perturbed = zeros(nbus,nbus); 
for k=1:nbranch 
      bbus_perturbed(fb(k),tb(k)) = b_perturbed(k) ./ 2; 
      bbus_perturbed(tb(k),fb(k)) = bbus_perturbed(fb(k),tb(k)); 
end 
  
%  power flows calculation 
for i = 1:nbranch 
      m = fb(i); 
      n = tb(i); 
      Pij(i) = -V(m)^2*(G(m,n)) + V(m)*V(n)*(G(m,n)*cos(phi(m)-phi(n)) 
+ B(m,n)*sin(phi(m)-phi(n))); 
      Qij(i) = V(m)^2*(B(m,n)- bbus_perturbed(m,n)) + 
V(m)*V(n)*(G(m,n)*sin(phi(m)-phi(n)) - B(m,n)*cos(phi(m)-phi(n))); 
      Pji(i) = -V(n)^2*(G(n,m)) + V(n)*V(m)*(G(n,m)*cos(phi(n)-phi(m)) 
+ B(n,m)*sin(phi(n)-phi(m))); 
      Qji(i) = V(n)^2*(B(n,m)- bbus_perturbed(n,m)) + 
V(n)*V(m)*(G(n,m)*sin(phi(n)-phi(m)) - B(n,m)*cos(phi(n)-phi(m))); 
end 
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Matlab Codes: Measurement data calculation 

%% Determining the Number of measurements: 
n_v_meas      = length(v_meas_bus_nr);   % Number of Voltage 
measurements 
n_pi_meas     = length(pi_meas_bus_nr);  % Number of Real Power 
Injection measurements 
n_qi_meas     = length(qi_meas_bus_nr);  % Number of Reactive Power 
Injection measurements 
n_pf_meas     = length(pf_meas_bus_nr);  % Number of Real Power Flow 
measurements 
n_qf_meas     = length(qf_meas_bus_nr);  % Number of Reactive Power 
Flow measurements 
n_phi_meas    = length(pmu_meas_bus_nr); % Number of Voltage 
measurements 
  
%% Variance Covariance Matrix(weighting Matrix) construction: 
sigma_vector = [ 
    sigma_v  * ones(n_v_meas,1) 
    sigma_pi * ones(n_pi_meas, 1) 
    sigma_qi * ones(n_qi_meas, 1) 
    sigma_pf * ones(n_pf_meas, 1) 
    sigma_qf * ones(n_qf_meas, 1) 
    sigma_phi* ones(n_phi_meas,1) 
    ]; 
sigma_square = diag(sigma_vector).^2; % Measurement Variance Covariance 
matrix 
  
%% Voltage Measurements: 
v_meas = V_nr(v_meas_bus_nr); % set the NR voltages to the measured 
voltage data. 
  
%% PMU Measurements: 
if pmu_meas_bus_nr 
      phi_meas = phi_nr(pmu_meas_bus_nr(:,1),1) - 
phi_nr(pmu_meas_bus_nr(:,2),1); % set the NR phases to the measured pmu 
data. 
else 
      phi_meas = []; 
end 
%% Power Injection Measurements: 
[Pi_nr Qi_nr] = power_inj(V_nr , phi_nr, Ybus_perturbed); % Bus Power 
injections calculations 
pi_meas = Pi_nr(pi_meas_bus_nr);  % set the NR active Power Injections 
to the measured data. 
qi_meas = Qi_nr(qi_meas_bus_nr);  % set the NR reactive Power 
Injections to the measured data. 
  
%% Power Flow Measuremets: 
[Pij, Qij, Pji, Qji] = power_flow(V_nr , phi_nr, Ybus_perturbed); % Bus 
Power flows calculations 
% Active power flow: 
pf_meas = []; 
for i = 1:length(pf_meas_bus_nr) 
        m = pf_meas_bus_nr(i,1); 
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        n = pf_meas_bus_nr(i,2); 
        for p = 1:nbranch 
                if m == fb(p) && n == tb(p) 
                        pf_meas(i,1) = Pij(p); 
                elseif m == tb(p) && n == fb(p) 
                        pf_meas(i,1) = Pji(p); 
                end 
        end 
end 
% ReActive power flow: 
qf_meas = []; 
for i = 1:length(qf_meas_bus_nr) 
        m = qf_meas_bus_nr(i,1); 
        n = qf_meas_bus_nr(i,2); 
        for p = 1:nbranch 
                if m == fb(p) && n == tb(p) 
                        qf_meas(i,1) = Qij(p); 
                elseif m == tb(p) && n == fb(p) 
                        qf_meas(i,1) = Qji(p); 
                end 
        end 
end 
  
%% Measurement Perturbation: 
v_meas_perturbed   = normrnd(v_meas  , sigma_v  * v_meas); 
pi_meas_perturbed  = normrnd(pi_meas , sigma_pi * abs(pi_meas)); 
qi_meas_perturbed  = normrnd(qi_meas , sigma_qi * abs(qi_meas)); 
pf_meas_perturbed  = normrnd(pf_meas , sigma_pf * abs(pf_meas)); 
qf_meas_perturbed  = normrnd(qf_meas , sigma_qf * abs(qf_meas)); 
phi_meas_perturbed = normrnd(phi_meas, sigma_phi* abs(phi_meas)); 
  
%% Perturbed Measurement Vector composition: 
y_perturbed = [v_meas_perturbed 
               pi_meas_perturbed 
               qi_meas_perturbed 
               pf_meas_perturbed 
               qf_meas_perturbed 
               phi_meas_perturbed]; 
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Matlab Codes: Line Data File Structure (linedata.m) 

function linedatas = linedata() 
global test_case 
switch test_case 
%% 
case 4 
%         |  From |  To   |   R     |   X     |   B      |  X'mer    | 
%         |  Bus  | Bus   |  pu     |  pu     |   pu     | TAP (a)   | 
linedatas = [1      2       0.02      0.06       0.20         1 
             1      3       0.02      0.06       0.25         1 
             2      3       0.05      0.10       0.0          1 
             2      4       0.0       0.08       0.0        0.98 
             ]; 
%% 
case 6 
%         |  From |  To   |   R     |   X     |   B      |  X'mer    | 
%         |  Bus  | Bus   |  pu     |  pu     |   pu     | TAP (a)   | 
linedatas = [1       2      0.1        0.2       0.04         1 
             1       4      0.05       0.2       0.04         1 
             1       5      0.08       0.3       0.06         1 
             2       3      0.05       0.25      0.06         1 
             2       4      0.05       0.1       0.02         1 
             2       5      0.1        0.3       0.04         1 
             2       6      0.07       0.2       0.05         1 
             3       5      0.12       0.26      0.05         1 
             3       6      0.02       0.1       0.02         1 
             4       5      0.2        0.4       0.08         1 
             5       6      0.1        0.3       0.06         1 
             ]; 
%% 
case 14 
%         |  From |  To   |   R     |   X     |   B      |  X'mer    | 
%         |  Bus  | Bus   |  pu     |  pu     |   pu     | TAP (a)   | 
linedatas = [1      2       0.01938   0.05917    0.0528         1 
             1      5       0.05403   0.22304    0.0492         1        
             2      3       0.04699   0.19797    0.0438         1        
             2      4       0.05811   0.17632    0.0374         1        
             2      5       0.05695   0.17388    0.0340         1        
             3      4       0.06701   0.17103    0.0346         1        
             4      5       0.01335   0.04211    0.0128         1        
             4      7       0.0       0.20912    0.0        0.978 
             4      9       0.0       0.55618    0.0        0.969 
             5      6       0.0       0.25202    0.0        0.932 
             6     11       0.09498   0.19890    0.0            1 
             6     12       0.12291   0.25581    0.0            1 
             6     13       0.06615   0.13027    0.0            1 
             7      8       0.0       0.17615    0.0            1 
             7      9       0.0       0.11001    0.0            1 
             9     10       0.03181   0.08450    0.0            1 
             9     14       0.12711   0.27038    0.0            1 
            10     11       0.08205   0.19207    0.0            1 
            12     13       0.22092   0.19988    0.0            1 
            13     14       0.17093   0.34802    0.0            1 ]; 
And so on for other cases... 
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Matlab Codes: Bus Data File Structure (busdata.m) 

% Returns Bus data 
function busdatas = busdata() 
global test_case baseMVA V_true Phi_true 
switch test_case 
  
% Bus Types: 
% 1: Slack Bus: V and thera are known (P and Q must be solved) 
% 2: PV Bus: P and V_mag are known <generator busses are PV>(Q and theta must solved) 
% 3: PQ Bus: P and Q are known(V and theta must solved) 
  
%% Example of 2.1 in Abur Book: 
case 4 
%         |Bus | Type | Vsp*|theta | PGi | QGi | PLi | QLi |  Qmin | 
Qmax    | Gs   |  Bs | 
busdatas =[1     1    1.0      0   1.9963 .44939 0      0       0       0      0        0; 
           2     3    1.0      0      0     0   .49944 .30229   0       0      0        0; 
           3     3    1.0      0      0     0   1.2006 .79897   0       0      0        0.5; 
           4     3    1.0      0      0     0   .25057 .09907   0       0      0        0; 
            ]; 
baseMVA = 1;  % Base MVA 
V_true = [1 0.9629 0.9597 0.9742]'; 
Phi_true = [0 -2.76 -3.58 -3.96]'; 
  
%%   6 bus example from pp. 104, 112, 119, 123-124, 549 of "Power Generation, Operation, 
and Control, 2nd Edition", 
%   by Allen. J. Wood and Bruce F. Wollenberg, John Wiley & Sons, NY, Jan 1996. 
case 6 
%         |Bus | Type | Vsp*|theta | PGi | QGi | PLi | QLi |  Qmin | 
Qmax    | Gs   |  Bs | 
busdatas =[1     1      1.05   0    107.9  16     0      0     0       0        0      0; 
           2     2      1.05   0     50    74.4   0      0     0       0        0      0; 
           3     2      1.07   0     60    89.6   0      0     0       0        0      0; 
           4     3      1.0    0      0     0     70    70     0       0        0      0; 
           5     3      1.0    0      0     0     70    70     0       0        0      0; 
           6     3      1.0    0      0     0     70    70     0       0        0      0; 
            ]; 
baseMVA = 100;  % Base MVA 
V_true = [241.5 241.5 246.1 227.6 226.7 231]'./230;   % baseKV is 230 and baseMVA is 100 
Phi_true = [0 -3.7 -4.3 -4.2 -5.3 -5.9]'; 
 
%% IEEE 14 bus system 
case 14 
busdatas  =[1     1    1.060   0    232.4 -16.9    0     0       0       0      0       0; 
            2     2    1.045   0      40   42.4  21.7   12.7    -40     50      0       0; 
            3     2    1.010   0       0   23.4  94.2   19.0     0      40      0       0; 
            4     3    1.0     0       0     0   47.8   -3.9     0       0      0       0; 
            5     3    1.0     0       0     0    7.6    1.6     0       0      0       0; 
            6     2    1.070   0       0   12.2  11.2    7.5    -6      24      0       0; 
            7     3    1.0     0       0     0    0.0    0.0     0       0      0       0; 
            8     2    1.090   0       0   17.4   0.0    0.0    -6      24      0       0; 
            9     3    1.0     0       0     0   29.5   16.6     0       0      0       19; 
            10    3    1.0     0       0     0    9.0    5.8     0       0      0       0; 
            11    3    1.0     0       0     0    3.5    1.8     0       0      0       0; 
            12    3    1.0     0       0     0    6.1    1.6     0       0      0       0; 
            13    3    1.0     0       0     0   13.5    5.8     0       0      0       0; 
            14    3    1.0     0       0     0   14.9    5.0     0       0      0       0]; 
baseMVA = 100;  % Base MVA 
V_true = [1.060    1.045    1.010    1.019    1.020    1.070    1.062    
1.090    1.056    1.051    1.057    1.055    1.050    1.036]';        
Phi_true = [0   -4.98  -12.72  -10.33   -8.78  -14.22  -13.37  -13.36  
-14.94  -15.10  -14.79  -15.07  -15.16  -16.04]'; 
And so on for other cases... 
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Matlab Codes: Measurement Data File Structure (measurement14.m) 

%% Measurement Data Preparation: 
%states = 27 
%measurements = 1.5 * states = 41 
 
%% The bus numbers that traditional voltage mag. measurement happens: 
v_meas_bus_nr  = [1 2 3 6 8]';     
%% The bus numbers that PMU measurement happens: 
pmu_meas_bus_nr  = [ 
1 6 
1 9 
]; 
  
v_meas_bus_nr = unique([pmu_meas_bus_nr(:);v_meas_bus_nr]); 
%% The bus numbers that active power injection measurement happens: 
pi_meas_bus_nr = [1 2 6 8 9 10 11 12 14]'; 
  
%% The bus numbers that active and reactive power injection measurement 
happens: 
qi_meas_bus_nr = pi_meas_bus_nr; 
  
%% The bus numbers that active power flow measurement happens: (Power 
is flowing from the first number to the second) 
pf_meas_bus_nr = [ 
1 2 
1 5 
2 3 
2 4 
3 4 
4 5 
4 7 
5 6 
6 13 
]; 
 
%% The bus numbers that reactive power flow measurement happens: 
qf_meas_bus_nr = pf_meas_bus_nr; 
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Matlab Codes: Implementation of Proposed Algorithm 

%% Power System State Estimation Considering Parameters Uncertainty 
tic 
global fb tb nbranch nbus linedatas busdatas V_nr phi_nr test_case 
r_perturbed x_perturbed b_perturbed r_nominal x_nominal b_nominal 
baseMVA Phi_true V_true 
  
%%  Initials:  
test_case = 14;      % Run which case data? IEEE 14 or 30 or 57 or 118 
bus test system? 
measurement14;       % Measurement Data 
MC_tests  = 1000;     % MC test numbers 
% Power Network Parameters(r, x, b) noise: 
sigma_params_all = [0 0.05 0.10 0.15 0.20 0.25];  
showplots = 1;  % set it 1 if you want to see the figures 
display_SE_results = 1; 
%% Variance of Voltage magnitude, Active and reactive Power Injections 
and flows: 
sigma_v      = 0.001; % 1e-20; %  
sigma_phi    = 0.0001; % 1e-20; %  
sigma_pi     = 0.01; % 1e-20; %  
sigma_qi     = 0.01; % 1e-20; %  
sigma_pf     = 0.01; % 1e-20; %  
sigma_qf     = 0.01; % 1e-20; %  
rho          = 0.0;  % correlation factor 
%% Reading Nominal Line Parameters and Ybus arrangement: 
linedatas = linedata();  % Calling "linedata.m" for Line Data 
fb = linedatas(:,1);     % From bus number 
tb = linedatas(:,2);     % To bus number 
nbranch = length(fb);    % number of branches 
nbus = test_case;      % number of buses 
negatives = 0; 
r_nominal = linedatas(:,3);      % Resistance, R 
x_nominal = linedatas(:,4);      % Reactance, X 
b_nominal = linedatas(:,5);      % Shunt Admittance 
busdatas = busdata();   % reading bus data 
[Ybus_nominal A_incidence Yprimitive_nominal] = 
ybus_modified(r_nominal,x_nominal,b_nominal); 
G = real(Ybus_nominal); % Bus Admittance matrix split: 
B = imag(Ybus_nominal); 
  
%% sigma_params loop 
for sigma_params_idx = 1:length(sigma_params_all) 
sigma_params = sigma_params_all(sigma_params_idx); 
V_error_seq   = []; 
phi_error_seq = []; 
V_SE_seq      = []; 
phi_SE_seq    = []; 
V_nr_seq      = []; 
phi_nr_seq    = []; 
sigma_x_v_seq   = []; 
sigma_x_phi_seq = []; 
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%% MC iterations: 
for MC_test = 1:MC_tests 
  
%% Parameters Perturbation: 
r_perturbed = normrnd(r_nominal, sigma_params .* r_nominal); 
x_perturbed = normrnd(x_nominal, sigma_params .* x_nominal); 
b_perturbed = normrnd(b_nominal, sigma_params .* b_nominal); 
while find(r_perturbed < 0) 
      negatives = negatives + length(find(r_perturbed<0));  
      fprintf('\nRecalculating r again...'); pause(1); 
      r_perturbed = normrnd(r_nominal, sigma_params .* r_nominal); % 
Generate and add again random numbers 
end 
while find(x_perturbed < 0) 
      negatives = negatives + length(find(x_perturbed<0)); 
      fprintf('\nRecalculating x again...'); pause(1); 
      x_perturbed = normrnd(x_nominal, sigma_params .* x_nominal); % 
Generate and add again random numbers 
end 
while find(b_perturbed < 0) 
      negatives = negatives + length(find(b_perturbed<0)); 
      fprintf('\nRecalculating b again...'); pause(1); 
      b_perturbed = normrnd(b_nominal, sigma_params .* b_nominal); % 
Generate and add again random numbers 
end 
  
%% Correlating the Resistance parameters: 
if rho > 0 && sigma_params > 0 
r_nominal_nonzeros = nonzeros(r_nominal); 
sigma_r_corr = zeros(length(r_nominal_nonzeros),1); 
for i=1:length(r_nominal_nonzeros)        % diagonal elements: 
      sigma_r_corr(i,i) = ( sigma_params * r_nominal_nonzeros(i) ) ^ 2; 
end 
for i=1:length(r_nominal_nonzeros)        % non-diagonal elements: 
      for j=1:length(r_nominal_nonzeros) 
            if i ~= j 
                  sigma_r_corr(i,j) = rho * 
sqrt(sigma_r_corr(i,i)*sigma_r_corr(j,j)); 
            end 
      end 
end 
  
L_sigma_r_corr = chol(sigma_r_corr,'lower'); % Cholesky factorization: 
produces an upper triangular matrix 
r_perturbation = normrnd(0,1,length(r_nominal_nonzeros),1);   % 
normrnd(0,sigma_params .* r_nominal,nbranch,1); 
r_perturbed_nonzeros = L_sigma_r_corr * r_perturbation + 
r_nominal_nonzeros; 
r_perturbed = zeros(nbranch,1); 
r_perturbed(find(r_nominal~=0)) = r_perturbed_nonzeros; 
  
      % Recalculation in Negative case 
      while find(r_perturbed<0) 
            fprintf('Warning: The number of negative values for r while 
correlating it in this MC trial: '); fprintf('%2g', 
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length(find(r_perturbed<0))); fprintf('\nRecalculating correlated r 
again...'); pause(1); 
            %       r_perturbed(find(r_perturbed<0)) = 0; % Changing 
negative values to zero. 
            negatives = negatives + length(find(r_perturbed<0)); 
            r_perturbation = normrnd(0,1,length(r_nominal_nonzeros),1);   
% normrnd(0,sigma_params .* r_nominal,nbranch,1); 
            r_perturbed_nonzeros = L_sigma_r_corr * r_perturbation + 
r_nominal_nonzeros; 
            r_perturbed = zeros(nbranch,1); 
            r_perturbed(find(r_nominal~=0)) = r_perturbed_nonzeros; 
      end 
end 
%% Bus Admittance Formation 
[Ybus_perturbed A_incidence Yprimitive] = 
ybus_modified(r_perturbed,x_perturbed,b_perturbed); 
  
%% Newton Raphson calculations: 
[V_nr,phi_nr] = newton(Ybus_perturbed); 
phi_nr_dg = 180/pi*phi_nr;   % Angles in Degree 
  
%% WLS State Estimation 
  
% Shunt Admittance Matrix Formation:    % Off-diagonals are the mutual 
admittances between the respective nodes 
        bbus = zeros(nbus,nbus); 
        for k=1:nbranch 
            bbus(fb(k),tb(k)) = b_nominal(k) ./ 2; 
            bbus(tb(k),fb(k)) = bbus(fb(k),tb(k)); 
        end 
  
meas_calc;        % Calculates the measured values according to the 
perturbed NR states. 
wls;              % WLS State Estimation: 
phi_SE_dg = 180/pi*phi_SE; % rad to degree 
  
%% Collecting V and Phi errors in each iterarion 
V_error = V_nr - V_SE; 
phi_error = phi_nr_dg - phi_SE_dg; 
  
phi_errors = sqrt(mean(phi_error_seq.^2))'; 
  
  
if abs(V_error) < 10    % to exclude incorrect answers          
############# 
        if abs(phi_error) < 20 
                V_error_seq(end+1, :) = V_error; % each row is a new 
iteration and columns are buses 
                phi_error_seq(end+1, :) = phi_error; 
                V_SE_seq(end+1, :) = V_SE;  
                phi_SE_seq(end+1, :) = phi_SE_dg; 
                sigma_x_v_seq(end+1, :) = sigma_x_v; 
                sigma_x_phi_seq(end+1, :) = sigma_x_phi; 
%               V_nr_seq(end+1, :) = V_nr;  % collecting 
%               phi_nr_seq(end+1, :) = phi_nr_dg; % collecting 
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        end 
end 
  
  
%% Display the WLS results 
  
if test_case >= 57 || mod(MC_test,20) == 0 
    clc 
    if display_SE_results 
        disp('_________________State Estimation_________________'); 
        disp('Bus   V_SE   V_NR     V_Er                 Ph_SE    Ph_NR     
Ph_Er'); 
        for m = 1:nbus 
            fprintf('%3g', m); fprintf('%8.3f', V_SE(m)); 
fprintf('%7.3f', V_nr(m)); fprintf('%21.16f', V_nr(m)-V_SE(m)); 
fprintf('  %8.3f', phi_SE_dg(m)); fprintf(' %8.3f', phi_nr_dg(m)); 
fprintf('%21.16f', phi_nr_dg(m)-phi_SE_dg(m));fprintf('\n'); 
        end 
        disp('__________________________________________________'); 
    end % of display_SE_results 
    fprintf('MC Trial Number: '); fprintf('%g',MC_test); fprintf('\n'); 
    fprintf('Sigma of Parameters: '); fprintf('%g',sigma_params); 
fprintf('\n'); 
    if iters > 1 
        fprintf('WLS Iterations = %4d', iters);fprintf('\n'); 
    end 
end  % of display each 10 trial 
  
end   % of MC  
  
 
% For SE  
mean_V_SE_all(:,sigma_params_idx) = mean(V_SE_seq)'; 
mean_V_phi_all(:,sigma_params_idx) = mean(phi_SE_seq)'; 
std_V_SE_all(:,sigma_params_idx) = std(V_SE_seq)'; 
std_V_phi_all(:,sigma_params_idx) = std(phi_SE_seq)'; 
% For SE Errors 
mean_V_errors_all(:,sigma_params_idx) = mean(V_error_seq)'; 
mean_phi_errors_all(:,sigma_params_idx) = mean(phi_error_seq)'; 
std_V_errors_all(:,sigma_params_idx) = std(V_error_seq)'; 
std_phi_errors_all(:,sigma_params_idx) = std(phi_error_seq)'; 
  
% WLS theoritical STD 
mean_sigma_x_v_all(:,sigma_params_idx) = mean(sigma_x_v_seq)'; 
mean_sigma_x_phi_all(:,sigma_params_idx) = mean(sigma_x_phi_seq)'; 
  
  
%% Correlation of SE errors 
% corr_coefs = corrcoef(V_error_seq);    % returns a matrix R of 
correlation coefficients, input matrix rows are observations and whose 
columns are variables. 
corr_coefs_upper = nonzeros(triu(corrcoef(V_error_seq),1)); 
mean_corr_coefs_V_all(sigma_params_idx) = mean(corr_coefs_upper); 
std_corr_coefs_V_all(sigma_params_idx) = std(corr_coefs_upper); 
% phi 
corr_coefs_upper = []; 
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corr_coefs_upper = nonzeros(triu(corrcoef(phi_error_seq(:,2:end)),1)); 
mean_corr_coefs_phi_all(sigma_params_idx) = mean(corr_coefs_upper); 
std_corr_coefs_phi_all(sigma_params_idx) = std(corr_coefs_upper); 
  
end   % of parameters loop 
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Network Data for IEEE test cases 

The network data for the test cases are shown here. In the process of programming, it is 

important to have a reliable reference data to confirm the results that are generated by the 

test program. For the author it was not easy to find the consistent data for some cases, for 

example line Susceptance (B) for IEEE 14-Bus case. In [Christie 1999] some of the 

provided data seems not to be consistent and regardless of sending email and asking for 

the modifications of their database, they have not yet made the corrections. This is why 

the network data are brought here. 

IEEE 14-Bus Test Case 

Network parameters and Bus data for this test case is shown in Table  5.4and Table  5.5 

respectively. 

Table  5.4    Branch data for IEEE 14-Bus test case 
From  
Bus 

To  
Bus 

Resistance 
R 

Reactance 
X 

Susceptance 
B 

Transformer  
Turns Ratio 

1 2 0.01938 0.05917 0.0528 0 
1 5 0.05403 0.22304 0.0492 0 
2 3 0.04699 0.19797 0.0438 0 
2 4 0.05811 0.17632 0.0374 0 
2 5 0.05695 0.17388 0.034 0 
3 4 0.06701 0.17103 0.0346 0 
4 5 0.01335 0.04211 0.0128 0 
4 7 0 0.20912 0 0.978 
4 9 0 0.55618 0 0.969 
5 6 0 0.25202 0 0.932 
6 11 0.09498 0.1989 0 0 
6 12 0.12291 0.25581 0 0 
6 13 0.06615 0.13027 0 0 
7 8 0 0.17615 0 0 
7 9 0 0.11001 0 0 
9 10 0.03181 0.0845 0 0 
9 14 0.12711 0.27038 0 0 
10 11 0.08205 0.19207 0 0 
12 13 0.22092 0.19988 0 0 
13 14 0.17093 0.34802 0 0 

 
Table  5.5   Bus data for IEEE 14-Bus test case 

Bus 
# 

Bus 
Type 

PV Bus  
Voltage 

P_Gen 
MW 

Q_Gen 
MVR 

P_Load 
MW 

Q_Load 
MVR 

Gs: Shunt  
Conductance 

Bs: Shunt  
Susceptance 

1 1 1.06 232.4 -16.9 0 0 0 0 
2 2 1.045 40 42.4 21.7 12.7 0 0 
3 2 1.01 0 23.4 94.2 19 0 0 
4 3 1 0 0 47.8 -3.9 0 0 
5 3 1 0 0 7.6 1.6 0 0 
6 2 1.07 0 12.2 11.2 7.5 0 0 
7 3 1 0 0 0 0 0 0 
8 2 1.09 0 17.4 0 0 0 0 
9 3 1 0 0 29.5 16.6 0 19 
10 3 1 0 0 9 5.8 0 0 
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11 3 1 0 0 3.5 1.8 0 0 
12 3 1 0 0 6.1 1.6 0 0 
13 3 1 0 0 13.5 5.8 0 0 
14 3 1 0 0 14.9 5 0 0 

Bus Types: 1 is Slack Bus, 2 is PV Bus and 3 is PQ Bus. 
 

The bus admittance matrix for this test case is shown here. It can be used as a reference 

because in this bus admittance matrix, all the transformers and shunt elements are 

correctly considered. 

The bus admittance matrix is a symmetric matrix and the nonzero elements of this matrix 

for IEEE 14-Bus case are shown in Table  5.6. 

Table  5.6    Ybus nonzero elements for IEEE 14-Bus test case 
   (1,1)              6.02502905576822 -      19.4470702055144i 
   (2,1)             -4.99913160079803 +      15.2630865231796i 
   (5,1)             -1.02589745497019 +      4.23498368233483i 
   (1,2)             -4.99913160079803 +      15.2630865231796i 
   (2,2)              9.52132361081478 -      30.2707153987791i 
   (3,2)              -1.1350191923074 +      4.78186315175772i 
   (4,2)             -1.68603315061494 +      5.11583832587208i 
   (5,2)              -1.7011396670944 +      5.19392739796971i 
   (2,3)              -1.1350191923074 +      4.78186315175772i 
   (3,3)              3.12099490223296 -      9.81148012935164i 
   (4,3)             -1.98597570992556 +      5.06881697759392i 
   (2,4)             -1.68603315061494 +      5.11583832587208i 
   (3,4)             -1.98597570992556 +      5.06881697759392i 
   (4,4)              10.5129895220362 -      38.6351712076078i 
   (5,4)             -6.84098066149567 +      21.5785539816916i 
   (7,4)                             0 +      4.88951266031734i 
   (9,4)                             0 +       1.8554995578159i 
   (1,5)             -1.02589745497019 +      4.23498368233483i 
   (2,5)              -1.7011396670944 +      5.19392739796971i 
   (4,5)             -6.84098066149567 +      21.5785539816916i 
   (5,5)              9.56801778356026 -      35.5275394560448i 
   (6,5)                             0 +      4.25744533525338i 
   (5,6)                             0 +      4.25744533525338i 
   (6,6)              6.57992340746622 -      17.3407328099191i 
  (11,6)             -1.95502856317726 +      4.09407434424044i 
  (12,6)             -1.52596744045097 +       3.1759639650294i 
  (13,6)             -3.09892740383799 +      6.10275544819312i 
   (4,7)                             0 +      4.88951266031734i 
   (7,7)                             0 -      19.5490059482647i 
   (8,7)                             0 +      5.67697984672154i 
   (9,7)                             0 +      9.09008271975275i 
   (7,8)                             0 +      5.67697984672154i 
   (8,8)                             0 -      5.67697984672154i 
   (4,9)                             0 +       1.8554995578159i 
   (7,9)                             0 +      9.09008271975275i 
   (9,9)              5.32605503946736 -      24.0925063752679i 
  (10,9)             -3.90204955244743 +      10.3653941270609i 
  (14,9)             -1.42400548701993 +       3.0290504569306i 
   (9,10)            -3.90204955244743 +      10.3653941270609i 
  (10,10)             5.78293430614783 -      14.7683378765214i 
  (11,10)             -1.8808847537004 +      4.40294374946052i 
   (6,11)            -1.95502856317726 +      4.09407434424044i 
  (10,11)             -1.8808847537004 +      4.40294374946052i 
  (11,11)             3.83591331687766 -      8.49701809370096i 
   (6,12)            -1.52596744045097 +       3.1759639650294i 
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  (12,12)             4.01499202727289 -      5.42793859120161i 
  (13,12)            -2.48902458682192 +      2.25197462617221i 
   (6,13)            -3.09892740383799 +      6.10275544819312i 
  (12,13)            -2.48902458682192 +      2.25197462617221i 
  (13,13)             6.72494614846623 -      10.6696935494707i 
  (14,13)            -1.13699415780633 +      2.31496347510535i 
   (9,14)            -1.42400548701993 +       3.0290504569306i 
  (13,14)            -1.13699415780633 +      2.31496347510535i 
  (14,14)             2.56099964482626 -      5.34401393203596i 

 

IEEE 30-Bus Test Case 

Network parameters and Bus data for this test case is shown in Table  5.7 and Table  5.8 

respectively. 

Table  5.7    Branch data for IEEE 30-Bus test case 
From  
Bus 

To  
Bus 

Resistance 
R 

Reactance 
X 

Susceptance 
B 

Transformer  
Turns Ratio 

1 2 0.0192 0.0575 0.0528 0 
1 3 0.0452 0.1652 0.0408 0 
2 4 0.057 0.1737 0.0368 0 
3 4 0.0132 0.0379 0.0084 0 
2 5 0.0472 0.1983 0.0418 0 
2 6 0.0581 0.1763 0.0374 0 
4 6 0.0119 0.0414 0.009 0 
5 7 0.046 0.116 0.0204 0 
6 7 0.0267 0.082 0.017 0 
6 8 0.012 0.042 0.009 0 
6 9 0 0.208 0 0.978 
6 10 0 0.556 0 0.969 
9 11 0 0.208 0 0 
9 10 0 0.11 0 0 
4 12 0 0.256 0 0.932 
12 13 0 0.14 0 0 
12 14 0.1231 0.2559 0 0 
12 15 0.0662 0.1304 0 0 
12 16 0.0945 0.1987 0 0 
14 15 0.221 0.1997 0 0 
16 17 0.0524 0.1923 0 0 
15 18 0.1073 0.2185 0 0 
18 19 0.0639 0.1292 0 0 
19 20 0.034 0.068 0 0 
10 20 0.0936 0.209 0 0 
10 17 0.0324 0.0845 0 0 
10 21 0.0348 0.0749 0 0 
10 22 0.0727 0.1499 0 0 
21 23 0.0116 0.0236 0 0 
15 23 0.1 0.202 0 0 
22 24 0.115 0.179 0 0 
23 24 0.132 0.27 0 0 
24 25 0.1885 0.3292 0 0 
25 26 0.2544 0.38 0 0 
25 27 0.1093 0.2087 0 0 
28 27 0 0.396 0 0.968 
27 29 0.2198 0.4153 0 0 
27 30 0.3202 0.6027 0 0 
29 30 0.2399 0.4533 0 0 
8 28 0.0636 0.2 0.0428 0 
6 28 0.0169 0.0599 0.013 0 
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Table  5.8   Bus data for IEEE 30-Bus test case 

Bus 
# 

Bus 
Type 

PV Bus  
Voltage 

P_Gen 
MW 

Q_Gen 
MVR 

P_Load 
MW 

Q_Load 
MVR 

Gs: Shunt  
Conductance 

Bs: Shunt  
Susceptance 

1 1 1.06 232.4 -16.9 0 0 0 0 
1 1  260.2 -16.1 0 0 0 0 
2 2 1.043 40 50 21.7 12.7 0 0 
3 3 1 0 0 2.4 1.2 0 0 
4 3 1.06 0 0 7.6 1.6 0 0 
5 2 1.01 0 37 94.2 19 0 19 
6 3 1 0 0 0 0 0 0 
7 3 1 0 0 22.8 10.9 0 0 
8 2 1.01 0 37.3 30 30 0 0 
9 3 1 0 0 0 0 0 0 
10 3 1 0 0 5.8 2 0 0 
11 2 1.082 0 16.2 0 0 0 0 
12 3 1 0 0 11.2 7.5 0 0 
13 2 1.071 0 10.6 0 0 0 0 
14 3 1 0 0 6.2 1.6 0 0 
15 3 1 0 0 8.2 2.5 0 0 
16 3 1 0 0 3.5 1.8 0 0 
17 3 1 0 0 9 5.8 0 0 
18 3 1 0 0 3.2 0.9 0 0 
19 3 1 0 0 9.5 3.4 0 0 
20 3 1 0 0 2.2 0.7 0 0 
21 3 1 0 0 17.5 11.2 0 0 
22 3 1 0 0 0 0 0 0 
23 3 1 0 0 3.2 1.6 0 0 
24 3 1 0 0 8.7 6.7 0 4.3 
25 3 1 0 0 0 0 0 0 
26 3 1 0 0 3.5 2.3 0 0 
27 3 1 0 0 0 0 0 0 
28 3 1 0 0 0 0 0 0 
29 3 1 0 0 2.4 0.9 0 0 
30 3 1 0 0 10.6 1.9 0 0 

Bus Types: 1 is Slack Bus, 2 is PV Bus and 3 is PQ Bus. 
 

IEEE 57-Bus Test Case 

Network parameters and Bus data for this test case is shown in Table  5.9 and Table  5.10 

respectively. 

Table  5.9    Branch data for IEEE 57-Bus test case 
From  
Bus 

To  
Bus 

Resistance 
R 

Reactance 
X 

Susceptance 
B 

Transformer  
Turns Ratio 

1 2 0.0083 0.028 0.129 0 
1 15 0.0178 0.091 0.0988 0 
1 16 0.0454 0.206 0.0546 0 
1 17 0.0238 0.108 0.0286 0 
2 3 0.0298 0.085 0.0818 0 
3 4 0.0112 0.0366 0.038 0 
3 15 0.0162 0.053 0.0544 0 
4 5 0.0625 0.132 0.0258 0 
4 6 0.043 0.148 0.0348 0 
4 18 0 0.43 0 0.978 
4 18 0 0.555 0 0.97 
5 6 0.0302 0.0641 0.0124 0 
6 7 0.02 0.102 0.0276 0 
6 8 0.0339 0.173 0.047 0 
7 8 0.0139 0.0712 0.0194 0 
7 29 0 0.0648 0 0.967 
8 9 0.0099 0.0505 0.0548 0 
9 10 0.0369 0.1679 0.044 0 
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9 11 0.0258 0.0848 0.0218 0 
9 12 0.0648 0.295 0.0772 0 
9 13 0.0481 0.158 0.0406 0 
9 55 0 0.1205 0 0.94 
10 12 0.0277 0.1262 0.0328 0 
10 51 0 0.0712 0 0.93 
11 13 0.0223 0.0732 0.0188 0 
11 41 0 0.749 0 0.955 
11 43 0 0.153 0 0.958 
12 13 0.0178 0.058 0.0604 0 
12 16 0.018 0.0813 0.0216 0 
12 17 0.0397 0.179 0.0476 0 
13 14 0.0132 0.0434 0.011 0 
13 15 0.0269 0.0869 0.023 0 
13 49 0 0.191 0 0.895 
14 15 0.0171 0.0547 0.0148 0 
14 46 0 0.0735 0 0.9 
15 45 0 0.1042 0 0.955 
18 19 0.461 0.685 0 0 
19 20 0.283 0.434 0 0 
21 20 0 0.7767 0 1.043 
21 22 0.0736 0.117 0 0 
22 23 0.0099 0.0152 0 0 
22 38 0.0192 0.0295 0 0 
23 24 0.166 0.256 0.0084 0 
24 25 0 1.182 0 0 
24 25 0 1.23 0 0 
24 26 0 0.0473 0 1.043 
25 30 0.135 0.202 0 0 
26 27 0.165 0.254 0 0 
27 28 0.0618 0.0954 0 0 
28 29 0.0418 0.0587 0 0 
29 52 0.1442 0.187 0 0 
30 31 0.326 0.497 0 0 
31 32 0.507 0.755 0 0 
32 33 0.0392 0.036 0 0 
34 32 0 0.953 0 0.975 
34 35 0.052 0.078 0.0032 0 
35 36 0.043 0.0537 0.0016 0 
36 37 0.029 0.0366 0 0 
36 40 0.03 0.0466 0 0 
37 38 0.0651 0.1009 0.002 0 
37 39 0.0239 0.0379 0 0 
38 44 0.0289 0.0585 0.002 0 
38 48 0.0312 0.0482 0 0 
38 49 0.115 0.177 0.003 0 
39 57 0 1.355 0 0.98 
40 56 0 1.195 0 0.958 
41 42 0.207 0.352 0 0 
41 43 0 0.412 0 0 
44 45 0.0624 0.1242 0.004 0 
46 47 0.023 0.068 0.0032 0 
47 48 0.0182 0.0233 0 0 
48 49 0.0834 0.129 0.0048 0 
49 50 0.0801 0.128 0 0 
50 51 0.1386 0.22 0 0 
52 53 0.0762 0.0984 0 0 
53 54 0.1878 0.232 0 0 
54 55 0.1732 0.2265 0 0 
56 41 0.553 0.549 0 0 
56 42 0.2125 0.354 0 0 
57 56 0.174 0.26 0 0 

 
Table  5.10   Bus data for IEEE 57-Bus test case 

Bus 
# 

Bus 
Type 

PV Bus  
Voltage 

P_Gen 
MW 

Q_Gen 
MVR 

P_Load 
MW 

Q_Load 
MVR 

Gs: Shunt  
Conductance 

Bs: Shunt  
Susceptance 

1 1 1.04 128.9 -16.1 55 17 0 0 
2 2 1.01 0 -0.8 3 88 0 0 
3 2 0.985 40 -1 41 21 0 0 
4 3 1 0 0 0 0 0 0 
5 3 1 0 0 13 4 0 0 
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6 2 0.98 0 0.8 75 2 0 0 
7 3 1 0 0 0 0 0 0 
8 2 1.005 450 62.1 150 22 0 0 
9 2 0.98 0 2.2 121 26 0 0 
10 3 1 0 0 5 2 0 0 
11 3 1 0 0 0 0 0 0 
12 2 1.015 310 128.5 377 24 0 0 
13 3 1 0 0 18 2.3 0 0 
14 3 1 0 0 10.5 5.3 0 0 
15 3 1 0 0 22 5 0 0 
16 3 1 0 0 43 3 0 0 
17 3 1 0 0 42 8 0 0 
18 3 1 0 0 27.2 9.8 0 10 
19 3 1 0 0 3.3 0.6 0 0 
20 3 1 0 0 2.3 1 0 0 
21 3 1 0 0 0 0 0 0 
22 3 1 0 0 0 0 0 0 
23 3 1 0 0 6.3 2.1 0 0 
24 3 1 0 0 0 0 0 0 
25 3 1 0 0 6.3 3.2 0 5.9 
26 3 1 0 0 0 0 0 0 
27 3 1 0 0 9.3 0.5 0 0 
28 3 1 0 0 4.6 2.3 0 0 
29 3 1 0 0 17 2.6 0 0 
30 3 1 0 0 3.6 1.8 0 0 
31 3 1 0 0 5.8 2.9 0 0 
32 3 1 0 0 1.6 0.8 0 0 
33 3 1 0 0 3.8 1.9 0 0 
34 3 1 0 0 0 0 0 0 
35 3 1 0 0 6 3 0 0 
36 3 1 0 0 0 0 0 0 
37 3 1 0 0 0 0 0 0 
38 3 1 0 0 14 7 0 0 
39 3 1 0 0 0 0 0 0 
40 3 1 0 0 0 0 0 0 
41 3 1 0 0 6.3 3 0 0 
42 3 1 0 0 7.1 4.4 0 0 
43 3 1 0 0 2 1 0 0 
44 3 1 0 0 12 1.8 0 0 
45 3 1 0 0 0 0 0 0 
46 3 1 0 0 0 0 0 0 
47 3 1 0 0 29.7 11.6 0 0 
48 3 1 0 0 0 0 0 0 
49 3 1 0 0 18 8.5 0 0 
50 3 1 0 0 21 10.5 0 0 
51 3 1 0 0 18 5.3 0 0 
52 3 1 0 0 4.9 2.2 0 0 
53 3 1 0 0 20 10 0 6.3 
54 3 1 0 0 4.1 1.4 0 0 
55 3 1 0 0 6.8 3.4 0 0 
56 3 1 0 0 7.6 2.2 0 0 
57 3 1 0 0 6.7 2 0 0 

Bus Types: 1 is Slack Bus, 2 is PV Bus and 3 is PQ Bus. 
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