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Sommario

In questa tesi si propone un approccio innovativo per l’analisi e la sintesi di campi

acustici, basato sulla decomposizione geometrica di un campo sonoro. La propagazio-

ne di onde sonore in un mezzo omogeneo può essere descritta tramite raggi acustici

che hanno origine in un punto sorgente e che si propagano in tutte le direzioni.

L’interazione con l’ambiente è quindi modellizzata secondo le leggi dell’acustica geo-

metrica, ovvero come riflessione dei raggi acustici sugli ostacoli presenti lungo il

cammino dei raggi stessi. Gruppi di raggi acustici contigui, originati dallo stesso

punto sorgente, possono essere rappresentati come fasci acustici. Ogni qualvolta un

fascio acustico incontra un ostacolo, esso viene riflesso generandone di nuovi che

saranno a loro volta verranno riflessi, producendo una struttura ramificata. Per

questo motivo, un campo acustico può essere interpretato come sovrapposizione di

fasci acustici, ognuno dei quali caratterizzato da un’origine (il punto sorgente), dalla

direzione, e dall’apertura angolare. Un modo naturale per descrivere i raggi è la

geometria proiettiva, che ben si adatta alla natura proiettiva dei raggi stessi. Lo

stesso formalismo risulta inoltre essere adatto per descrivere oggetti acustici più

complessi quali sorgenti, ricevitori, riflettori e fasci acustici.

Per quanto riguarda l’analisi dei campi acustici, la geometria proiettiva permette di

convertire misure acustiche standard (come i tempi di arrivo, le differenze dei tempi di

arrivo, e le direzioni di arrivo) in vincoli quadratici espressi in coordinate omogenee.

Essi sono tutti caratterizzati dalla medesima formulatione matematica, che permette

di combinare più vincoli in una funzione di costo la cui forma risulta essere equivalente

per i diversi problemi di stima introdotti, in particolare per problemi standard come

la calibrazione delle schiere di microfoni e la localizzazione di sorgente, e per problemi

innovativi come l’inferenza della geometria dell’ambiente.

Per quanto riguarda la sintesi di campi acustici, la decomposizione geometrica

permette di sviluppare una metodologia per la riproduzione di campi acustici arbi-

trari per mezzo di una o più schiere di altoparlanti. La conoscenza della geometria
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dell’ambiente (che può essere stimata nella fase di analisi) può essere sfruttata per

compensare parte della riverberazione (le prime riflessioni) prodotta dalle pareti, al

fine di rendere il sistema “consapevole” dell’ambiente. Dal punto di vista geometrico,

le prime riflessioni sono determinate da un’insieme di altoparlanti immagine, i quali,

una volta inseriti nel modello, contribuiscono alla riproduzione sonora.

La tesi include inoltre una serie di nuove metodologie per la validazione, teorica

e sperimentale, delle tecniche proposte. Per quanto riguarda l’analisi dei campi

acustici, si mostrerà che l’accuratezza degli algoritmi di stima può essere predetta

tramite una funzione lineare che lega l’errore di misura a quello di stima. Per quanto

concerne la sintesi di campi acustici, viene proposta una metodologia per valutare

sperimentalmente la bontà dei campi riprodotti da sistemi di altoparlanti. Il campo

acustico viene campionato su una circonferenza per mezzo di una coppia di microfoni

rotanti, ed estrapolato mediante decomposizione in armoniche circolari. L’eventuale

degradazione del campo misurato (estrapolato) rispetto a quello desiderato viene

quindi quantificata tramite metriche standard (basate sull’errore quadratico medio)

e metriche innovative (analisi modale). Nella tesi sono riportati i risultati di alcune

simulazioni ed esperimenti di sintesi di campi acustici in ambienti riverberanti.

Le soluzioni proposte in questo lavoro trovano potenziale applicazione in diversi

campi, quali le telecomunicazioni avanzate (telepresenza), i video-giochi immersivi,

la produzione musicale distribuita, la spazializzazione sonora per sistemi di home

entertainment.
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Abstract

In this thesis we propose a novel approach to wave field analysis and synthesis based

on the geometric description of a sound field. Under the hypothesis of homogeneous

medium, wave propagation can be approximated by means of acoustic rays that

originate from a point source and spread in all the directions. The interaction with

the environment causes the rays to reflect over the obstacles following the geometrical

acoustic laws. Contiguous bundle of rays can be represented as acoustic beams that

split and branch during the propagation as they encounter reflectors. An acoustic

wave field can be seen as the superposition of acoustic beams, each characterized

by the origin (source), direction and angular aperture. Due to the projective nature

of rays, the most suitable tool for their representation is projective geometry, which

gives also a compact and efficient description of more complex acoustic entities such

as sources, receivers, reflectors and beams.

As far as the wave field analysis is concerned, projective geometry makes it possible

to convert standard acoustic measurements (TOAs, TDOAs, DOAs) into homoge-

neous quadratic constraints, which all share the same mathematical formulation.

This way, through the combination of multiple constraints it is possible to formulate

a cost function whose form is equivalent for several estimation problems, ranging

from standard ones (e.g. acoustic source localization), to novel ones such as the

inference of the geometry of the environment.

As far as the sound field synthesis is concerned, the geometric description of a

wave field leads to developing a methodology that aims at reproducing a complex

wave field by superimposing elementary beams rendered by means of a loudspeaker

array. The knowledge of the map of the environment, which can be estimated in

the analysis stage, can be exploited to compensate for the environment hosting the

loudspeakers, thus making the rendering system environment-aware. In particular,

the reverberations (in terms of early reflections) are seen as determined by a set

of image loudspeakers, which are inserted into the model and contribute to the
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reproduction of the wave field.

This thesis also includes various novel validation methodologies for the proposed

techniques. As far as wave field analysis is concerned, we show that it is possible to

predict the accuracy of estimation algorithms as a linear mapping between the error

on the measurements and the estimation error. As for the sound field synthesis,

we propose a methodology for assessing the quality of wave fields reproduced by

real loudspeakers. The wave field is sampled over a circle with a pair of rotating

microphones and extrapolated by means of the circular harmonic decomposition. The

deviation between the extrapolated and the expected wave fields are then evaluated

by means of standard (MSE-based) and novel (modal analysis) metrics. In this thesis

we also show the results of some simulations and experiments of room compensation

and virtual environment rendering.

The solutions proposed in this thesis find potential application in a wide range

of fields, including advanced telecommunications (telepresence), immersive gaming,

distributed music production, spatial audio at home.
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1 Introduction

1.1 Motivations

The last decade has been characterized by an exponential growing of multimedia

applications employing multichannel input/output audio systems. The availability

of low-cost and small-size sensors and emitters contributed to make these systems

widespread, also in everyday home applications. Such systems typically employ set of

microphones, possibly organized in clusters or arrays, and distributions of loudspeak-

ers. Microphone arrays are extensively used for wave field analysis applications, see

for example [1, 2]. The signals acquired by the sensors are first converted into acous-

tic measurements, which are then employed to obtain information about acoustic

elements present in the environment. For instance, modern laptops typically include

microphone arrays that are used to improve the quality of the recorded sound. Fur-

thermore, source localization and tracking is becoming more and more frequent in

more complex tele-conference scenarios [3, 4, 5]. On the other hand, arrays or dis-

tributions of loudspeakers are adopted to generate synthetic wave fields (acoustic

rendering) within a certain region of space, with the aim of increasing the immersiv-

ity of one or more listeners. Stereophony, which constituted the standard for audio

reproduction for many years, is being replaced by 5.1 and 7.1 surround systems. If

this trend will be confirmed, we expect massive reproduction systems such as Wave

Field Synthesis (WFS) [6] and Higher Order Ambisonics (HOA) [7] to start becoming

attractive for everyday applications.

In the literature, wave field analysis and synthesis methodologies are often han-

dled as two separated topics. We believe, however, that synthesis algorithms could

highly benefit from the information gathered during the wave field analysis stage.

Consider, for example, a scenario in which one or more microphone arrays acquire

the signals generated by controlled or uncontrolled acoustic stimuli in a reverberant

environment. A suitable analysis of the acquired signals could be used to determine
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the positions of the loudspeakers (array calibration) constituting the reproduction

system. The same sensors could then be employed to extract information about the

environment (geometry, reflective properties, . . . ), which can be exploited to design

a sound field reproduction system taking into account the acoustic properties of the

environment in which it operates.

In this thesis we propose a novel approach to wave field analysis and synthesis, with

the aim of making analysis algorithms functional to the synthesis phase. Moreover,

we introduce novel methodologies and metrics for assessing the effectiveness of the

proposed algorithms. These methodologies are adopted for evaluating the proposed

techniques, but they are general enough to be employed for the evaluation of different

algorithms. In the following Section we introduce the main contributions given in this

work, and we describe the application scenario considered for testing the proposed

methodologies.

1.2 Original contributions and application scenario

A geometric approach for modelling the wave field

The methodologies that we propose are based on a geometric modelling of the wave

field. We start from the fact that, following the laws of the geometrical acoustics [8],

a propagating wave front can be described by means of acoustic rays. The direction

of a ray coincides with the local normal to the wave front. Since air is commonly

considered as an homogeneous propagation medium, rays can be represented as lines,

which originate at the acoustic source position. Although ray acoustics is not novel

for modelling applications (e.g. for ray and beam tracing applications [9, 10]), in

this thesis we propose an alternate representation of acoustic propagation by means

of projective geometry, whose validity goes beyond modelling purposes, as it is used

also for analysis, inference and rendering applications. Projective geometry is a

common tool in computer vision applications [11], since an image can be seen as

formed by the projection on a plane of all the rays that pass through the center

of projection. In the same way, in audio applications acoustic rays share the same

projective nature. In fact, an acoustic source can be seen as the center of projection of

all the rays originated from it. Similarly, an acoustic receiver can be interpreted as the

center of projection of all the gathered rays. Exploiting these properties, projective

geometry allows us to describe more complex objects, such as acoustic reflectors
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(rays passing through the reflector surface) and acoustic beams (compact bundles

of rays, originated from the same source but with a limited visibility in space).

Moreover, an extension of the classical projective geometry, called oriented projective

geometry [12], makes it possible to distinguish between different orientations of lines,

as well as the two opposite sides of a reflector. The geometric representation through

(oriented) projective geometry reveals to be suitable for both wave field analysis and

synthesis purposes. We discuss about this fact in the next two paragraphs.

A geometric approach for wave field analysis

As far as wave field analysis is concerned, projective geometry allows us to define a

general theoretical framework which enables to express acoustic measurements into a

compact mathematical representation. More specifically, standard acoustic measure-

ments such as Times Of Arrival (TOAs), Time Differences Of Arrival (TDOAs), and

Directions Of Arrival (DOAs) can be converted into projective constraints, which

embed informations about acoustic geometric primitives. In particular, acoustic

measurements relative to the direct path between sources and microphones brings

to projective constraints acting on projective points (representing either sources or

sensors). On the other hand, measurements relative to reflective paths (i.e. paths de-

termined by acoustic reflections) lead to constraints acting on projective lines (repre-

senting the line on which a planar reflector lies). All the projective constraints share

the same mathematical form. More precisely, they all consist of quadratic forms,

which correspond to different conic sections. For example, we will see that TOAs

relative to direct paths are associated to circumferences; DOAs relative to reflective

paths generate parabolas. However, in projective geometry there is no distinction

among different conic sections, since they can be seen as different projections of a

circumference [13]. For this reason, the combination of multiple projective quadratic

constraints leads to a common representation valid for different estimation problems.

Indeed, the proposed theory is suitable for addressing both standard problems, such

as array calibration (i.e., the estimation of the pose of sensors within an array) and

acoustic source localization; and novel problems such as the inference of the geom-

etry of the environment from acoustic measurements. Notice that the problem of

estimating the geometry of the environment is not novel at all, since it has been

addressed with other stimuli (e.g. computer vision [14], or radar tomography [15]).

However, acoustic measurements give more insight into the acoustic properties of the
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environment. For instance, the same wall could be detected using an image based

technique, while being completely transparent from the acoustic standpoint.

A geometric approach for wave field rendering

Sound field reconstruction can be approached in rather different fashions, depending

on the underlying mathematical representation of the acoustic wave field. WFS,

for example, relies on the Kirchhoff-Helmholtz integral to reconstruct the acoustic

wave field from a spatial sampling on a closed surface surrounding the spatial region

of interest [6]. HOA, on the other hand, relies on cylindrical (in the 2D case) or

spherical (in the 3D case) harmonic decompositions of the sound field to perform

sound reproduction with a spatial distribution of loudspeakers [7].

In this thesis we focus on the rendering of two-dimensional (horizontal) acoustic

wave fields by means of a distribution of loudspeakers located on the hearing plane.

Although three-dimensional reproduction is becoming attractive for the movie in-

dustry and 3D sound reproduction systems exist (see for example IOSONOr and

Auro Technologiesr installations1), an accurate 3D reproduction over a wide region

still requires an enormous number of loudspeakers [16] (e.g., a uniform sampling of

a sphere), making this solution extremely costly and not trivial to implement. For

this reason, 2D sound field reproduction turns out to be more tractable, especially

in everyday scenarios (video-conferencing, spatial sound at home, . . . ).

The rendering technique proposed in this thesis presents several points of novelty.

First of all, the wave field representation is based neither on spatial sampling nor

on harmonic decomposition of the sound field. Instead, we consider the wave field

as a geometric superposition of acoustic beams, each accounting for an image (wall-

reflected) source. Acoustic beams are assumed as being the result of the angular

windowing of the radial pattern of the actual source, on the part of the visibility

function that describes the chain of wall reflections that originate the image source.

The computation of this angular windowing can be performed using beam tracing

techniques [17], which was originally conceived for tracing acoustic paths in real time

in the presence of a moving receiver. This method, in fact, is suitable for swiftly com-

puting the branching of acoustic beams originated from an acoustic source, as they

encounter reflectors during their propagation. This technique was later generalized

to a method for computing the visibility between reflectors, which can be exploited

1www.iosono-sound.com, www.auro-3d.com
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for tracing beams in real time even in the presence of moving sources in the environ-

ment [18]. The use of this beam tracing process allows us to correctly emulate the

impact of an arbitrary 2D virtual environment onto the rendered wave field. This is

accomplished through the superposition of the acoustic beams generated by virtual

wall reflections, which can be traced in real time even if the acoustic source is moving

within the virtual environment. The generation of acoustic beams using a spatial

distribution of loudspeakers can be obtained with any beamforming method. One

rather effective method that enables an arbitrary placement of the image source and

a controllable beam shape is described in [19].

The geometric approach to sound field synthesis makes intensively use of the ge-

ometry of the environment in order to compensate for the effect of the reverberations

(room-compensation). We assume this knowledge to be estimated during the anal-

ysis stage by means of microphone arrays. In the last years, researchers started to

investigate room-compensation techniques for rendering applications. For example,

in [20], room compensation is achieved through a multichannel adaptive filtering

in the wave-domain. Although this system is capable of capturing almost instanta-

neous variations in the acoustic properties of the environment, it does not embed any

information about the environment itself (which can be considered mostly static).

The work in [21] shows that room compensation in environments characterized by

a convex geometry can be performed by modelling the acoustic reflections using the

image source method [22]. The proposed rendering methodology goes a step beyond

the one in [21], being suitable for arbitrarily complex environments. In fact, once

the geometry of the real environment hosting the loudspeakers is known, the very

same beam tracing engine described before can be used for predicting the effect of

the reverberations in the listening area. In particular, we propose to exploit the

existing acoustic reflectors to enrich the set of actual arrays with numerous image

(wall-reflected) speaker arrays. Using again the beam tracing technique, we can

estimate the position of each image loudspeaker, as well as its visibility inside the

listening region. This information is included into the data model, and therefore

image loudspeakers contribute, together with the real ones, to generate the synthetic

wave field. As a result, room compensation is achieved in a fully geometric fashion.
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Validation techniques for analysis and synthesis algorithms

In this thesis we introduce innovative methodologies for assessing the accuracy of

analysis and synthesis algorithms. As discussed before, wave field analysis is mainly

accomplished by estimation algorithms (e.g. source localization, localization of

acoustic reflectors). Such algorithms rely on acoustic measurements, which are nat-

urally subject to a certain amount of measurement error. This is due to a series

of factors, ranging from the environmental noise to errors in positioning the arrays,

as well as the non-idealities of the sensors. In the context of estimation theory, re-

searchers typically resort to Monte-Carlo simulations and to the Cramer-Rao Lower

Bound (CRLB) [23] for assessing the accuracy of an estimation methodology. The

first alternative is often time-demanding, as for each potential value of the unknown

variables a huge number of simulations is required. CRLB is then used as a theoret-

ical limit of the achievable accuracy under the hypothesis that no bias is introduced

in the estimation process. In this thesis we propose a novel method that combines

the advantages of Monte-Carlo simulations (algorithm-dependent prediction of the

accuracy) and CRLB (low computational cost) to predict the covariance matrix of

the estimated variables. We will see that, under the same hypothesis of CRLB (i.e.,

small bias), there exists a linear relationship between the covariance matrix of the

measurement and that of the estimation. Moreover, the proposed error propagation

analysis goes beyond the information provided the CRLB. On one hand, the proposed

method provides a lower bound for a specific estimation technique, instead that for

the general problem. On the other hand, the CRLB turns out to be a particular case

of the error propagation analysis when it is applied to a Maximum-Likelihood cost

function.

As far as wave field rendering is concerned, in this thesis we propose novel solutions

for both theoretical and experimental evaluations. In the literature, the accuracy of

rendering systems is typically evaluated by computing the Mean Square Error (MSE)

between the theoretical prediction of the reproduced wave field reproduced and the

desired wave field (see [16, 21], for example). MSE based metrics, however, provide

only a global information on the error. For a better characterization of the error, we

introduce a modal analysis of the rendered wave field in the wave number domain.

This solution allows us to analyze a wave field in terms of its propagating components,

thus allowing us to determine which propagation directions are actually corrupted

in the rendering process. In this thesis we also extend such theoretical metrics to
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experimental data. In order to do so, we propose a technique for measuring the

wave field reproduced by a real distribution of loudspeakers, based on the Circular

Harmonic Decomposition [24]. Through the combination of standard (MSE) and

novel (modal) analysis of the measured wave field, it is possible to quantify the

degradation introduced by the non-idealities of a real system.

Application scenario

The main methodologies proposed in this thesis are evaluated through a number

of simulations and experiments, within the context of an application scenario. In

particular, we consider a wave field rendering system operating into an arbitrarily

shaped reverberant environment. In order to achieve a good reproduction of the

desired wave field, we need to compensate for the environment, i.e. reverberations

have to be dampened. We do so in a geometrical way. In a first stage, wave field

analysis techniques are used to infer the geometry of the environment from acoustic

measurements. This knowledge, together with the position of the loudspeakers, is

then provided to the beam tracing engine, which is used to determine the set of im-

age loudspeakers, along with their visibility in the listening region. As a result, this

information enables the implementation of a fully environment-aware rendering sys-

tem. This scenario may be realistic in an everyday living-room, where a distribution

of loudspeakers is installed for home-entertainment purposes. Whenever the environ-

ment is modified (e.g. because of a change in the disposition of the furniture, or after

covering windows with curtains), the loudspeakers could be exploited for generating

a set acoustic stimuli, which can be processed by one or more microphones in order

to extract information about the acoustic reflectors.

As far as the evaluation is concerned, we consider the following simulations and

experiments. The accuracy of reflector localization algorithms (room inference) is

first evaluated by means of the theoretical error propagation analysis presented in this

thesis. Experiments are then performed to asses the localization accuracy for different

room geometries. We then evaluate the accuracy of the wave field reproduced by the

geometric rendering system. In particular, we perform a theoretical and experimental

evaluation of a loudspeaker system reproducing the effect of an acoustic source,

possibly collocated inside a virtual environment whose acoustics is rendered through

superposition of acoustic beams. We will see that the results of the analysis stage

reveal to be highly accurate, providing an effective estimate of the room geometry.
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For this reason, we omit to test the robustness of the rendering technique against

errors in estimating the map of the environment.

1.3 Application fields

The solutions proposed in this work find potential applications in several fields. As

an example, let us consider a tele-conference scenario. With the proposed rendering

methodology it could be possible to realistically emulate the presence of a virtual

acoustic source (telepresence), along with the virtual environment surrounding it.

A talker in a first room, therefore, could be localized and virtually reproduced in

a second room at the correct position by means of a loudspeaker array, giving the

impression of his presence. In order to compensate for the reverberation of the

conference room, a set of sensors could be employed for estimating the position of

the main reflectors present in the environment.

Music and artistic applications may also take advantage from the proposed solu-

tions. As an example, a geometric rendering system installed into a recording studio

could be employed for simulating the acoustics of an arbitrary environment. The

performance of a musician, therefore, can be virtually and instantaneously moved

from a small concert hall to a precise cathedral, and so on. The same scenario could

also be exploited for distributed music production, where several musicians could

perform in the same virtual environment while being in different recording studios.

A further potential application could be in the field of home-entertainment scenar-

ios (3D audio at home). Multiple small-size speaker arrays installed in the wall are

first calibrated through a set of small-size microphone arrays, which could be then

used for inferring the geometry of the environment.

The geometric rendering system could also find potential applications in the field of

immersive gaming. Indeed, the realistic reproduction of acoustic sources and virtual

environments is suitable for the rendering of arbitrary synthetic acoustic scenes.

1.4 Outline of the thesis

This thesis is organized as follows.

Chapter 2, after an overview of some basic acoustic laws, describes the geometric

representation of wave fields. By means of the (oriented) projective geometry frame-

work, a mathematical description of acoustic elements such as rays, beams, sources,
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receivers, and reflectors is then provided.

Chapter 3 is devoted to geometric wave field analysis solutions. Starting from

standard acoustic measurements, it presents the procedure for formulating and solv-

ing a wide set of estimation problems, ranging from array calibration and acoustic

source localization to room geometry estimation.

Chapter 4 focuses on the geometric approach to wave field rendering. After an

introduction on the beam tracing technique, geometric room compensation and the

rendering of virtual environments are described.

In Chapter 5 the theoretical and experimental validation techniques are discussed,

focusing on the theoretical error propagation analysis for estimation algorithms; on

the wave field measuring methodology; and on the modal analysis for assessing the

accuracy of rendering techniques. Moreover, the evaluation metrics are presented.

Chapter 6 reports the results of simulations and experiments conducted considering

the application scenario introduced in Section 1.2, focusing on reflector localization

techniques used for estimating the room geometry; and on the geometric rendering

methodology.

Finally, Chapter 7 draws the conclusions and outlines possible future research

directions.
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fields

This chapter introduces the terminology and the tools used throughout this thesis for

representing complex wave fields. Starting from the wave equation and the Helmholtz

equation, we first derive a simple model for acoustic point sources. Moreover, we

will see how, under certain conditions, a wave field can be represented in terms of

acoustic rays. Due to the projective nature of rays, the most natural representation

for describing the propagation is given by projective geometry. Although projective

geometry is employed especially in the computer vision community [11], its use in

audio is becoming important. For instance, in [25] the author formulates the problem

of acoustic scene reconstruction (localization of both M sensors and N sound sources

active in the environment) following the idea of structure from motion, typical in

computer vision problems. In [26] the authors extend the approach followed in [25]

to keep into account the uncertainties inherent in acoustic measurements. In our

context, the use of homogeneous coordinates instead of Cartesian ones gives us a

number of advantages such as the uniform handling of points to infinity (avoiding

their handling as special cases), the perfect duality between points and lines, as well

as a very efficient representation of conic sections.

We notice that traditional projective geometry does not allow to discriminate the

orientation of lines (i.e., the direction of a ray). Analysis and synthesis applications

often require to distinguish between rays traveling towards opposite directions. As

an example, such a distinction would make possible to manage separately the two

sides of a reflective surface, as described later on in this Chapter. For these rea-

sons, we introduce a set of acoustic geometric primitives defined on the base of the

oriented projective geometry [12], which extends classical projective geometry by ex-

plicitly assigning an orientation to geometric entities. Such a description reveals to

be particularly useful for developing the beam tracing engine described in Chapter
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4.

This Chapter is organized as follows: Section 2.1 provides a background of some

basic physical acoustic concepts such as the wave equation and the model of point

sources, and defines acoustic rays by means of a high frequency approximation of

the wave equation; Section 2.2, after an overview on classical projective geometry,

introduces the framework of oriented projective geometry; finally, in Section 2.3 we

define the set of acoustic geometric primitives employed throughout this work.

2.1 Modelling the acoustic propagation

In this Section we first derive the equation that governs the propagation of acous-

tic waves. Discussing its formulation in the frequency domain, i.e. the Helmholtz

equation, we present the model of a point source and the spherical propagation de-

scribed by the Green’s function. We then introduce a particular high frequency

approximation of the wave equation called Eikonal equation. We will see how this

approximation is suitable for representing the propagating wave fronts as acoustic

rays.

2.1.1 The acoustic wave equation

The derivation of the acoustic wave equation is based on three basic physical princi-

ples:

• the equation of motion,

• the continuity equation,

• the state equation (gas law).

Consider an infinitesimal volume element V of a fluid, whose center of gravity is

located at x = [x, y, z]T . Let m be the mass of the volume. Applying a force F to

the fluid, we can write the Newton’s second law

F = m
∂v(x, t)

∂t
, (2.1)

where v(t,x) denotes the particle velocity and t is the time. Since a force can be

expressed in terms of the pressure on a surface, the Newton’s law can be rewritten
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as

F = −∇p(t,x)V , (2.2)

where p(t,x) denotes the acoustic pressure at x; and ∇ is the gradient operator.

Inserting (2.2) into (2.1), we finally obtain the Euler’s equation of motion [27]

∇p(t,x) = −̺0
∂v(t,x)

∂t
, (2.3)

where ̺0 =
m
V

is the static density of the fluid1. Next, we consider the conservation

of mass principle: since the total mass of fluid in a deformable volume must remain

constant, letting τ(t,x) be the volume variation due to the pressure changing, we

can derive the continuity equation [27]

∂τ(t,x)

∂t
= V [∇ · q(t,x)] . (2.4)

Finally, we focus on the properties of the propagation medium. Assuming that the

fluid is an ideal gas, the Charles-Boyle gas law applies to the volume, i.e.

PV = RT ,

where P is the total pressure in the volume; T is the absolute temperature in degrees

Kelvin; and R is the specific gas constant2. Since the heat exchange in the wave in

the audible frequency range is negligible [27], the thermodynamic process can be

considered adiabatic. Therefore, the relation between the total pressure and the

volume is given by

PV γ = constant , (2.5)

where γ is the adiabatic index3. The total pressure can be expressed as P = P0 + p,

where P0 is the undisturbed pressure. Analogously, the volume can be written as

V = V0+τ , where V0 is the undisturbed volume4. Differentiating (2.5) and observing

1For air ̺0air = 1.18 kg
m3 .

2For air Rair = 286.9 J
kg T

.
3For air γair = 1.4.
4The dependency of P , p, V and τ upon space and time (t,x) is here omitted for the sake of

compactness.
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that p << P0 and τ << V0 the state equation becomes [27]

∂p(t,x)

∂t
= −γ

P0

V0

∂τ(t,x)

∂t
. (2.6)

We now derive the acoustic wave equation through the combination of the equa-

tion of motion (2.3), the continuity equation (2.4) and the state equation (2.6). In

particular, the combination of (2.4) and (2.6) leads to

∂p(t,x)

∂t
= −γP0 [∇ · q(t,x)] ,

and differentiating with respect to t we obtain

∂2p(t,x)

∂t
= −γP0

[

∇ · ∂q(t,x)
∂t

]

. (2.7)

Taking the divergence of each side of (2.3) we get ∇ · ∇p(t,x) = −̺0 [∇ · q(t,x)] ,

which can be rewritten as

∇2p(t,x) = −̺0 [∇ · q(t,x)] , (2.8)

where ∇2 is the Laplacian operator. Finally, the combination of (2.7) and (2.8) leads

to the acoustic wave equation

∇2p(t,x) =
1

c2
∂2p(t,x)

∂t2
, (2.9)

where the speed of sound c is related to the propagation medium properties through

c2 =
γP0

̺0
.

Further details on the derivation of the acoustic wave equation are available for

example in [27, 28].

2.1.2 Helmholtz equation and dispersion relation

The wave equation (2.9) is expressed in the space-time domain (t,x). We now in-

vestigate the properties of the spatio-temporal Fourier transform of this equation.

Let P (ω,x) be the temporal Fourier trasform of p(t,x), ω being the temporal fre-
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2.1 Modelling the acoustic propagation

quency. Applying the temporal Fourier transform to (2.9) we obtain the Helmholtz

equation [27]

∇2P (ω,x) + k20P (ω,x) = 0 , (2.10)

where k0 = ω/c. The Helmholtz equation can be expressed also in the spatio-

temporal frequency domain. Taking the multi-dimensional Fourier transform of

(2.10) with respect to x we get

−k2P̄ (ω,k) + k20P̄ (ω,k) = 0 ,

where P̄ (ω,k) is the multi-dimensional spatio-temporal Fourier transform of p(t,x);

and k = ‖k‖ is the wave number and denotes the length of the spatial frequency

vector k = [kx, ky, kz ]
T . We notice that this representation is satisfied only when the

dispersion relation [27] holds, i.e.

k2 = k20 =
(ω

c

)2
. (2.11)

There exists a single case for which the dispersion relation is not fulfilled, corre-

sponding to the trivial solution P̄ (ω,k) = 0. It is important to observe how (2.11)

links the length k of the spatial frequency vector k to the temporal frequency ω.

This means that the solutions of the wave equation are not independent in time and

space.

2.1.3 Point sources

The wave equation (2.9) and the Helmholtz equation (2.10) assume a source-free

medium. They are therefore homogeneous, as their right-hand terms are zero. How-

ever, complex wave fields are, in general, generated by the effect of multiple acoustic

sources. As a consequence, some non-zero term has to be added to the right-hand

terms in the wave equation and Helmholtz equation. A very simple and widely used

model is the point source. It can be seen as an infinitesimally small pulsating sphere

radiating acoustic energy. Since the medium is assumed to be homogeneous, the

energy spreads spherically. A point source located at x0 = [x0, y0, z0]
T is defined as

the solution of the inhomogeneous Helmholtz equation [29]

∇2Gω(x|x0) + k2Gω(x|x0) = −δ(x− x0) , (2.12)

15



2 Geometric representation of wave fields

where x 6= x0 represents a receiver point. The term Gω(x|x0) is called a Green’s

function and it is also a solution of the Helmholtz equation (2.10). The source is

described by δ(x−x0), which is a three-dimensional Dirac delta function. It can be

shown [29] that the solution of (2.12) representing outward travelling waves is given

by

Gω(x|x0) =
e−j ω

c ‖x− x0‖
4π‖x− x0‖

. (2.13)

Eq.(2.13) can be interpreted as the free-field transfer function between the source at

x0 and the receiver at x.

2.1.4 Eikonal equation and acoustic rays

The Eikonal equation is a particular high frequency approximation of the wave equa-

tion, and it represents the basis of the ray theory [28, 30]. It is widely used in seismic

and geophysics applications [31, 32] since it constitutes a powerful tool for dealing

with non-homogeneous propagation media. Although, in general, the acoustic prop-

agation in air is considered homogeneous, the Eikonal equation is at the base of the

geometrical acoustics [8], for which the propagation is described through acoustic

rays. Ray acoustics is typically employed in geometric methods used for modelling

the acoustics of complex environments, see for example [9, 33, 10]. In our context,

acoustic rays represent the foundation of all the geometric acoustic primitives intro-

duced in the next Section.

For the sake of completeness, here we report the derivation for non-homogeneous

media. In this case, the Helmholtz equation is given by [8]

∇2P (ω,x) +
ω2

c2(x)
P (ω,x) = 0 , (2.14)

where the space-dependent sound speed c(x) accounts for the non-homogeneousness

of the medium. The most general solution of (2.14) representing a propagating wave

front is given by

P (x, ω) = S(ω)A(x, ω)ejωT (x) , (2.15)

where S(ω) is the Fourier transform of the propagating signal s(t); A(x, ω) is an

amplitude term which depends on both the position and the frequency; T (x) is a

function of the position representing the phase, and it is called Eikonal. Notice

that T (x) does not depend on the temporal frequency, and this condition is verified
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2.1 Modelling the acoustic propagation

for low spectral dispersion. In other words, this fact guarantees the existence of

the wave front. We now analize the properties of the amplitude term A(x, ω), whose

dependency on position and frequency can be separated by expressing it as an inverse

power series, also called Debye expansion [8]:

A(x, ω) =

∞
∑

n=0

An(x)

(−jω)n
,

where An(x) represents the nth series coefficient. We observe that, for high frequen-

cies, A(x, ω) ≈ A0(x) and therefore (2.15) becomes

P (x, ω) = S(ω)A0(x)e
jωT (x) . (2.16)

Using (2.16), we can apply the Laplacian operator to P (ω,x) obtaining

∇2P (ω,x) = S(ω)∇2A0(x)ejωT (x)+2S(ω)∇A0(x)jω∇T (x)ejωT (x)+

+jωS(ω)A0(x)∇2T (x)ejωT (x)−ω2S(ω)A0(x)[∇T (x)]2ejωT (x) .

Inserting this result into the Helmholtz equation (2.14), after some passages we get

ω2S(ω)
{

[∇T (x)]2− 1
c2(x)

}

+ωS(ω)[2A0(x)∇A0(x)∇T (x)+A0(x)∇2T (x)]+S(ω)∇2A0(x)=0 ,

which is a second order equation in ω. At very high frequencies the linear and

constant terms are negligible and therefore the propagation is governed solely by

[∇T (x)]2 − 1

c2(x)
= 0 . (2.17)

Eq.(2.17) is called Eikonal equation and represents a high-frequency approximation

of the Helmholtz equation. While (2.14) clearly operates on all the directions of the

term P (ω,x), (2.17) acts only on the gradient of the phase term T (x). This means

that the solution of the Eikonal equation is insensitive to possible variations of the

medium which are orthogonal to the direction of propagation. As a consequence,

the solution of (2.17) can be interpreted as a ray which propagates in the direction

of maximum variation of T (x), i.e. orthogonally to the wave front. For instance, a

point source can be seen as the origin of an infinite number of rays, which uniformly

spread towards all directions in space.
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2 Geometric representation of wave fields

2.2 Introduction to the 2D projective geometry

In this Section we give an overview on the projective geometry, following the approach

proposed in [11]. We will focus on the duality between points and lines, as well as on

the representation of conic sections. After discussing the limitations of the classical

formulation of projective geometry, we will present the oriented projective geometry

as introduced by Stolfi in [12].

2.2.1 Points, lines and duality

The 2D Euclidian space is a plane denoted by R2. A point in this plane is represented

univocally by a pair of Cartesian coordinates (x1, x2) that can be seen as the vector

x = [x1, x2]
T . A line is represented by l1x1 + l2x2 + l3 = 0, which is referred as

the line implicit equation. A line is therefore univocally identified by the parameter

vector l = [l1, l2, l3]
T . Notice that the correspondence between lines and vectors is

not one to one: the vector kl = [kl1, kl2, kl3]
T , k 6= 0, represents the same line, as its

associated line equation kl1x1 + kl2x2 + kl3 = 0 can be divided by k to obtain the

original one. This is due to the fact that the implicit line equation is homogeneous.

We are therefore defining an equivalence class of vectors, called homogeneous vectors.

The set of all equivalence classes of vectors forms a projective space P2 (essentially

R3 except [0, 0, 0]T that does not correspond to any line).

A point x = [x1, x2]
T lies on the line l = [l1, l2, l3]

T if and only if l1x1+l2x2+l3 = 0.

If we add a third coordinate and represent the point as the vector x = [x1, x2, 1]
T

we can write this equation in the matrix form

lTx = 0 .

The above equation still holds if we replace x with kx, k 6= 0. As a consequence, the

homogeneous vectors [kx1, kx2, k]
T ∈ P2 represent the same point x = [x1, x2]

T ∈ R2.

Using the homogeneous representation of lines, the intersection between two lines l

and l′ is readily found as the cross-product of l and l′:

x = l× l′ = det







i j k

l1 l2 l3

l′1 l′2 l′3






= [l2l

′
3 − l3l

′
2, l3l

′
1 − l1l

′
3, l1l

′
2 − l2l

′
1]
T ,

where i = [1, 0, 0]T , j = [0, 1, 0]T and k = [0, 0, 1]T . Analogously, the line l joining
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two points x and x′ is given by the cross product of x and x′:

l = x× x′ = det







i j k

x1 x2 1

x′1 x′2 1






= [x2 − x′2, x

′
1 − x1, x1x

′
2 − x2x

′
1]
T .

Though it may seem useless to use an extra coordinate to represent a point in the

2D space, this constitutes a significant conceptual step with some important impli-

cations. In this representation an arbitrary homogeneous vector x = [x1, x2, x3]
T

represents the point x = [x1/x3, x2/x3]
T in the euclidian space R2. When x3 = 0

the two Cartesian coordinates go to infinity. This way we introduce the concept of

points at infinity (or ideal points). We observe the importance of points at infinity

considering the problem met in euclidian geometry in finding the intersection of two

parallel lines, l = [l1, l2, l3]
T and l′ = [l1, l2, l

′
3]
T . If we use projective coordinates,

the third coordinate of the intersection point obtained with the cross product of two

lines is zero:

x = l×l′ = det







i j k

l1 l2 l3

l1 l2 l′3






= (l′3 − l3)[l2,−l1, 0]

T .

This result agrees with the general idea that parallel lines meet at infinity and allows

us to treat parallel lines in the same way as non parallel ones, without the need to

distinguish different cases. Furthermore, this allows us to exchange the role of points

and lines in statements concerning their properties, without the risk of incurring into

special cases. For example, the equation xT l = 0 is symmetrical and consequently

the role of points and lines can be switched to obtain lTx = 0. The duality is

also present in the definitions of the intersection of two lines (x = l×l′) and of the

line passing through two given points (l = x×x′). Similarly, we can change the

statement “two distinct points lie on a single line” to “two distinct lines intersect in

a single point”. This duality principle is not true in standard Euclidian geometry,

where we need to distinguish special cases.

All points at infinity x∞ = [x1, x2, 0]
T lie on a single line known as line at infinity

l∞ = [0, 0, 1]T , in fact

x∞
T l∞ = [x1, x2, 0][0, 0, 1]

T = 0, ∀x1,∀x2 .
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Analogously, every line l = [l1, l2, l3]
T intersects this line at a point at infinity:

x∞ = l×l∞ = det







i j k

l1 l2 l3

0 0 1






= [l2,−l1, 0]

T .

Notice that the intersection does not depend on l3 and since the vector [l2,−l1]
T is

orthogonal to the line’s normal [l1, l2]
T , it represents the line’s direction and therefore

lines at infinity can be seen as the set of all directions of lines in the plane.

2.2.2 Projective representation of conics

In this Section we review the general form of a conic and we provide its matrix-form

description using projective coordinates. Such a description is useful for dealing

with the quadratic constraints arising from the acoustic measurements introduced in

Chapter 3. A conic is represented by a quadratic form

ax21 + bx1x2 + cx22 + dx1 + ex2 + f = 0 , (2.18)

where c = [a, b, c, d, e, f ]T is the parameter vector. As (2.18) is homogeneous, the

vectors c = [a, b, c, d, e, f ] and kc = [ka, kb, kc, kd, ke, kf ], k 6= 0, represent the same

conic. Therefore the parameter vector c has five degrees of freedom.

If x = [x1, x2, 1]
T are the homogeneous coordinates corresponding to the point

x = [x1, x2]
T , (2.18) can be readily written as

xTCx = 0 , (2.19)

where

C =







a b/2 d/2

b/2 c e/2

d/2 e/2 f






. (2.20)

A conic is said to be degenerate if rank(C) < 3. In particular, if rank(C) = 2, the

conic-matrix can be written as

C = lmT +mlT .

In this case the conic reduces to the pair of lines l,m. If rank(C) = 1, the conic
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matrix can be expressed in the form

C = llT ,

that means that the conic corresponds to the line l.

2.2.3 Dual conics

The conic matrix C introduced in the previous Section is also called point conic,

since it is defines an equation on points. We saw in Section 2.2.1 that there exists

a strong duality between points and lines in the projective space. For this reason,

conics in the projective space can be defined starting from lines. More specifically,

we call a line conic the conic identified by the set of lines tangent to it.

A line l = [l1, l2, l3]
T tangent to the conic C satisfies the equation

lTC⋄l = 0 , (2.21)

where, for a non-singular matrix (i.e. a non-degenerate conic), C⋄ = det(C)C−1 is

the adjoint of the matrix C. The formulation in (2.21) is the dual of the formulation

in (2.19) as it expresses the conic in the line-space. Equation (2.21) will be exten-

sively used in Chapter 3 to derive the constraints used to infer the geometry of the

environment in which we operate.

2.2.4 Projective transformations

Projective geometry is useful also for dealing with geometric transformations, whose

general form is given by

x′ = Hx ,

where H is a non-singular 3× 3 matrix. Such a transformation is called homography

or projectivity [11], and it represents an invertible mapping from x ∈ P2 to x′ ∈ P2.

Notice that the above equation still holds for any non-zero scaling factor. This means

that H is homogeneous, i.e. only the ratio of the matrix elements is significant. The

total number of independent ratios in H is eight, corresponding to a transformation

with eight degrees of freedom (dof). An exhaustive discussion on this topic can be

found in [11]. In this Section we will introduce some basic transformations which

are useful to describe the rigid motion and the specular reflection, which are both

21
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described by an isometric transformation.

2.2.4.1 Rigid motion

The rigid motion of an object is a transformation of the plane R2 that preserves

Euclidean distances. Such a transformation is called isometry, and it can be seen as

the composition of a rotation and a translation. In Euclidean geometry, the rigid

motion from the point x to x′ is represented by

x′ = Rx+ t , R =

[

cos θ − sin θ

sin θ cos θ

]

, t =

[

t1

t2

]

,

where R describes a rotation through an angle θ about the origin of the Cartesian

plane; and t denotes a planar translation. Projective geometry allows us to represent

an isometric transformation using a single matrix that embeds the rotation and

the translation. Denoting with x = [x, 1]T and x′ = [x′, 1]T the homogeneous

representation of x and x′, respectively, the isometry is described by

x′ = Hx , H =

[

R t

0T 1

]

. (2.22)

2.2.4.2 Specular reflection

An interesting transformation which can be described by an isometry is the specular

reflection with respect to a line. This reveals to be very useful for the description of

acoustic reflections, as common in geometrical acoustics [22]. With reference to figure

2.1, consider a line with parameters l = [l1, l2, l3]
T and a point x = [x1, x2, 1]

T . The

reflection of x over l is denoted as x′ = [x′1, x
′
2, 1]. The points x and x′ are equidistant

from l and lie in the two opposite half planes delimited by the line. Moreover, x′

is bounded to lie on the line l′ perpendicular to l and passing through x. In other

words, the line l coincides with the axis of the segment xx′. These considerations

lead to write






x′1 =
−l21x1+l22x1−2l1l2x2−2l1l3

l21+l22

x′2 =
l21x2−l22x2−2l1l2x1−2l2l3

l21+l22

, (2.23)
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x

x′

x1

x2

l

l′

d

n

Figure 2.1: Specular reflection of the point x over the line l: the mirror point x
′ lies on the line l

′ perpen-
dicular to l and passing through x. The line l turns out to be the axis of the segment xx

′.

which can be expressed in matrix form as

x′ = Hx =









− l21−l22
l21+l22

− 2l1l2
l21+l22

− 2l1l3
l21+l22

− 2l1l2
l21+l22

l21−l22
l21+l22

− 2l2l3
l21+l22

0 0 1









x . (2.24)

If the scaling of the vector l is such that l21 + l22 = 1 and the third coordinate equals

the distance d of the line from the origin (i.e. d = l3), the transformation describing

the specular reflection can be rewritten as

H =







1− 2l21 −2l1l2 −2dl1

−2l1l2 1− 2l22 −2dl2

0 0 1






=

[

I− 2nnT −2dn

0T 1

]

,

where n = [l1, l2]
T is a unit vector denoting the normal to l. Notice that the trans-

formation is fully determined from the knowledge of the line parameters, as it does

not depends on the point coordinates.

2.2.5 Oriented Projective Geometry

One of the major drawbacks of the classical projective geometry is that it is not

possible to discriminate between a ray travelling from x = k[x1, x2, 1]
T to x′ =

k[x′1, x
′
2, 1]

T from the ray with opposite direction. Moreover, projective geometry

does not provide any mathematical tool to discriminate in which of the two half-

spaces determined by a line a given point belongs to. To overcome these problems
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we will use a slightly modified version of the classical projective geometry called

Oriented Projective Geometry (OPG) [12]. This leads to the definition of the Oriented

Projective Space, denoted by T2 for the two-dimensional case. OPG preserves the

properties of the classical projective geometry but at the same time allows us to talk

about oriented lines and planes, signed angles and convex figures (the latter have no

real relevance for our work and thus will not be discussed here). The change consists

in taking into account the sign of the scaling coefficient: points kx and k′x are not

coincident if sign(k) 6= sign(k′). More specifically, the line going from x to x′ is

represented in OPG by

l+ = k[l1, l2, l3]
T = k[x2 − x′2, x

′
1 − x1, x1x

′
2 − x2x

′
1]
T , k > 0 ,

while the line going from x′ to x is represented by

l− = k[l1, l2, l3]
T = k[x2 − x′2, x

′
1 − x1, x1x

′
2 − x2x

′
1]
T , k < 0 .

Notice also that

l− = −l+ = −k[l1, l2, l3]
T = k[x′2 − x2, x1 − x′1, x2x

′
1 − x1x

′
2]
T , k > 0 .

Therefore, given two points x and x′ we can define two lines joining them. The non-

oriented line l is given by the union of two oriented lines l+ and l−. This also means

that when we are performing operations such as finding the line passing through two

points, we need to pay attention to the order of operands. Given two points, x and

x′, the oriented lines l+ and l− are obtained as

l+ = x×x′ ,

l− = x′×x = −(x×x′) = −l+ .

By distinguishing line’s direction we can also distinguish its left and right sides.

Given the oriented line l = k[l1, l2, l3]
T , k > 0, and the point x = [x1, x2, 1], this

point is on the line’s left side if xT l > 0. Conversely, x is on the line’s right side

if xT l < 0. In order to make this fact evident, consider a point x′ = [x′1, x
′
2, 1]

T on

the line, such that x′T l = 0. With reference to Figure 2.2, we represent x and x′ in

the three-dimensional Euclidean space R3 as X = [x1, x2, 0]
T and X ′ = [x′1, x

′
2, 0]

T ,

respectively. Let V = [l2,−l1, 0]
T be the vector representing the line direction, and
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U = [x1 − x′1, x2 − x′2, 0]
T the vector going from X ′ to X. In order to determine

X′

X

V

U

V ×U

l

Figure 2.2: The point X lies on the left side of the oriented line l. This means that the third coordinate of
the cross-product V ×U is positive.

whether X lies on the left or right half-plane of l, it is sufficient to evaluate the

orientation (i.e., the sign of the third coordinate) of the vector

V ×U = det







i j k

l2 −l1 0

x1 − x′1 x2 − x′2 0






= [0, 0, l2x2 − l2x

′
2 + l1x1 − l1x

′
1]
T .

More specifically, V ×U points upwards if X is on the left side of l and, vice-versa,

it points downwards if X is on the line’s right side. Switching back to the projective

space, since x′T l = x′1l1 + x′2l2 + l3 = 0 it is readily verified that

l3 = −x′1l1 − x′2l2 . (2.25)

Moreover, computing the product

xT l = [x1, x2, 1]
T [l1, l2, l3] = x1l1 + x2l2 + l3

and using (2.25), it is easy to see that

V ×U = [0, 0, xT l]T .

Therefore, the sign of the product xT l indicates if the point x lies on the left or right

side of the oriented line l.
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2.3 Acoustic geometric primitives in the ray parameter

space

In this Section we introduce the concept of ray parameter space, which constitutes the

most natural choice for representing acoustic rays. Acoustic rays can be considered

as elementary entities whose composition leads to the definition of more complex

acoustic entities such as sources, receivers, reflectors and beams, which are efficiently

defined in the ray parameter space as well.

2.3.1 The ray parameter space

The acoustic ray can be seen as an oriented line in the geometric space. A line in R2

is represented by the equation

l1x1 + l2x2 + l3 = 0.

We parameterize a ray with the coordinates [l1, l2, l3]
T of the line on which the ray

lies. Since the vectors [l1, l2, l3]
T and k[l1, l2, l3]

T , k 6= 0 represent the same ray,

this parametrization defines a class of equivalence, as it uses scalable (homogeneous)

coordinates. With reference to Figure 2.3, a generic point in the (l1, l2, l3) space

corresponds to a ray in the geometric space and thus this parametrization is here

referred as the ray space. The equivalence class inherent in the ray space implies that

the ray space is a projective space P2. As already discussed in Section 2.2, using

the classical projective geometry it is not possible to distinguish different travel

directions. Adopting the concepts of the oriented projective geometry introduced in

Section 2.2.5 it is possible to assign different orientations to lines. Rays on the same

line but with opposite orientations can therefore be interpreted as two distinct lines

in the oriented projective space T2

l+ = k[l1, l2, l3]
T , k > 0

l− = k[l1, l2, l3]
T , k < 0 .

2.3.1.1 Reduced ray space

For clarity of visualization, rather than visualizing the whole three dimensional ray

space, we depict the primitives in a reduced 2D ray space, obtained by intersecting
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x1

x2

l1

l2

l3

l

l1x1 + l2x2 + l3 = 0

Geometric space Ray space

Reduced ray space

(a) (b)

Figure 2.3: A ray in geometric (a) and ray spaces (b).

the ray space with a prescribed plane, as shown in Figure 2.3 (b). We notice, however,

that in the reduced ray space we cannot distinguish rays with the same direction but

with opposite orientations.

2.3.2 Geometric primitives

In order to model the environment we are working in (i.e. the acostic scene), we

need to define a minimal set of elementary objects. The geometric primitives we are

interested in are acoustic rays, sources, receivers, reflectors and beams. We will see

how these objects are conveniently described in the ray space. Moreover, we will

show that the ray space turns out to play the role of dual of the geometric space.

Exploiting this duality, it is also possible to model complex acoustic scenes by taking

into account the mutual visibility of the reflectors present in the environment.

2.3.2.1 Acoustic ray

As described before, the acoustic ray can be seen as an oriented line in the geometric

space and thus as a half line passing through the origin in the ray space. An example
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of the representation of a point in the geometric and reduced ray spaces is shown in

Figure 2.5-(a).

2.3.2.2 Acoustic source and receiver

Sources and receivers can be seen as points in the geometric space. In the ray space,

the Euclidean point xP = [x1P , x2P ]
T can be represented as the set of all rays that

pass through it. The homogeneous coordinates of xP are xP = λ[xP , 1]
T , λ > 0.

The set of rays passing through xP is

P = {(l1, l2, l3) ∈ R
3 | l1x1P + l2x2P + l3 = 0} = {l ∈ P

2 | xT
P l = 0}. (2.26)

Note that (2.26) defines a plane in the ray space passing through the origin, as xP

is known. An example of the representation of a point in the geometric and reduced

ray spaces is shown in Figure 2.5-(b).

2.3.2.3 Reflector

In the geometric domain the reflector R is a line segment and it is completely defined

by the two endpoints xA = [xA, 1]
T and xB = [xB , 1]

T , denoted as A and B in the

ray space. As for points, we represent the reflector with the set of all the rays that

intersect it, i.e. the rays that pass through an intermediate point between xA and

xB . Examples of two such rays, l+ and l−, are shown in Figure 2.4. As each point

xSxS′

xA

xB

l
−

l
+

R

Figure 2.4: The source xS is mirrored over the reflector in order to obtain the source xS′ . According to the
image source principle, the obstacles in the half-space in which xS′ lies (depicted with the shaded wiring)
are not considered in the visibility evaluation from xS′ . Two rays l+ and l− have with different orientations
since they cross the obstacle at opposite sides.

of the line segment maps to a plane in the ray space, the reflector corresponds to the

set of all the planes representing the infinite intermediate points between A and B,
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2.3 Acoustic geometric primitives in the ray parameter space

i.e.

R = A ∪ ... ∪ Pi ∪ ... ∪ B.

Orienting the reflector According to the image source principle [22], an acoustic

source located at xS in the geometric space is mirrored over the reflector R in the

so-called mirror position xS′ . We notice that, when we evaluate the visibility of

the environment from a mirrored source, we do not consider the reflectors in the

half-space where the mirrored source lies, i.e. the grey shaded area in Figure 2.4.

When we evaluate the visibility from the mirrored source xS′ we consider only rays

that pass through the line segment xAxB and go from the grey to the white half-

space. This motivates us in distinguishing rays that have different directions with

respect to two half-spaces and thus in defining two reflectors, one for each face of

the line segment. With reference to Figure 2.5-(c), the two rays l+ and l− fall onto

the opposite faces of the line segment AB, i.e. onto two different reflectors defined

by the same line segment but characterized by different directions of incident rays.

We observe that l+ and l− have the endpoints A and B on opposite sides: A is on

the left for l+ and on the right for l− and therefore xT
Al

+ > 0 and xT
Al

− < 0. We

exploit this inequalities when we represent the two oriented reflectors R+ and R−

corresponding to the non-oriented reflector R. We define them in the ray space as

the set of all rays that fall to the corresponding face of the line segments:

R+ = {l ∈ P
2|xT

Al > 0} ∩ {l ∈ P
2|xT

Bl < 0} = A+ ∩ B−,

R− = {l ∈ P
2|xT

Al < 0} ∩ {l ∈ P
2|xT

Bl > 0} = A− ∩ B+.

The non oriented reflector can be expressed in a closed form as the union of two

oriented reflectors that compose it

R = R+ ∪R− = {A+ ∩ B−} ∪ {A− ∩ B+}.

We notice that the rays in R− correspond to the rays in R+ but with opposite

travel directions. We denote this relationship as R− , {−l | l ∈ R−}. Therefore we

have that R− = R+ and R+ = R−.

Visibility region All the rays originated from an oriented reflector Ri form the

region of visibility from that reflector, Γ(Ri). These rays correspond to the rays
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2 Geometric representation of wave fields

that define the oriented reflector, i.e. the ray that fall onto it, but with opposite

travel directions and thus, using the notation introduced above, Γ(Ri) = Ri. By

intersecting this region with the rays that fall onto another oriented reflector Rj we

obtain the visibility region of Rj from Ri

Υ(Ri,Rj) = Γ(Ri) ∩Rj = Ri ∩Rj .

With reference to Figure 2.5-(d), in the reduced ray space the visibility region

Υ(Ri,Rj) is given by the intersection of four half spaces that form a pyramid with

the apex at the origin of the ray space.

Visibility diagram If the environment is composed of more than two reflectors,

mutual occlusions may arise. This corresponds to an overlapping of visibility re-

gions in the ray space. Sorting out which reflector occludes which in the geometric

space means determining which visibility region overrides which in their overlap as

described in Figure 2.5-(e). We perform this operation casting a test ray in the

overlap region and finding which reflector it hits first, as illustrated in Figure 2.5-(e).

The resulting collection of visibility regions constitutes the visibility diagram of the

reflector Ri

Ω(Ri) = {Υ⊛(Ri,Rj) 6= ∅, j 6= i}Ni

j=1 ,

where Rj are the Ni reflectors visible from Ri and ⊛ indicates that visibility regions

have been overridden according to the front-to-back order. The collection of visi-

bility diagrams of all the reflectors gives us the information on the mutual visibility

between all reflectors in the environment. Notice that this operation requires only

the knowledge of the geometry of the environment, as it is independent from the

presence of potential sources or receivers.

2.3.2.4 Beam

With the term beam we refer to a compact bundle of acoustic rays that originate from

the same point and fall onto the same reflector. A beam W, originated from reflector

Ri that falls onto reflector Rj, is completely specified by an origin xS (image source)

and by the (connected) illuminated region of the reflector Rj. In the ray space, the

beam corresponds to the intersection of the representations S of the image source
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2.3 Acoustic geometric primitives in the ray parameter space

and of the illuminated portion of the visibility region Υ(Ri,Rj):

W = S ∩Υ(Ri,Rj)|l2l1 ,

where |l2
l1

indicates that the visibility region is limited by the rays l1 and l2. Figure

2.5-(f) shows an example of a beam in the geometric and reduced ray space.
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Figure 2.5: Transformations from geometric to ray space: (a) ray; (b) point; (c) reflector; (d) visibility
region; (e) visibility diagram; (f) beam.
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3 Geometric wave field analysis

This Chapter is devoted to geometric solutions for wave field analysis. Starting from

classical acoustic measurements (Times of Arrival, Time Differences of Arrival, and

Directions of Arrival), we will devise algorithms for estimating the position of acoustic

primitives such as microphones, sources, and reflectors. We will see how the use of

projective geometry is suitable for turning acoustic measurements into homogeneous

quadratic constraints that directly act on the primitives to be estimated. Multiple

constraints are then collected into an homogeneous cost function, whose minimization

leads to an estimate of the primitive of interest. Two are the main advantages of using

a projective representation: on one hand, since points and lines have the identical

homogeneous representation, they can be managed in the same way; on the other

hand, all the homogeneous constraints arising from the measurements share the same

mathematical form, independently from the specific estimation problem. This also

means that different estimation problems can be solved through the minimization of a

cost function collecting multiple constraints and whose form is problem independent

as well. As a consequence, projective geometry leads to an unified theory valid for

a huge set of problems. It is therefore possible to identify an unified optimization

strategy that can be applied to all the estimation problems.

The Chapter is organized as follows. In Section 3.1 we present an overview of

acoustic measurements such as Time of Arrival, Time Difference of Arrival, and

Direction of Arrival. In particular, we give some hints for their measurement for

both direct and indirect acoustic paths. In Section 3.2 we introduce the projective

constraints arising from acoustic measurements. Section 3.3 is devoted to the devel-

opment of the theory which is at the base of all the estimation problems. After the

definition of a suitable cost function, a set of possible common optimization strate-

gies is discussed. Finally, Section 3.4 describes the estimation algorithms used for

array calibration, source localization, and reflector localization tasks. Moreover, such

estimation problems will be discussed within the context of acoustic scene analysis.
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3 Geometric wave field analysis

3.1 Acoustic measurements on direct and indirect paths

In this Section we describe the acoustic measurements on which geometric constraints

rely. Times Of Arrival (TOAs), Time Differences Of Arrival (TDOAs), and Direction

Of Arrival (DOAs) are considered for both direct and indirect paths generated by the

presence of an acoustic source in a reverberant environment. The measurement of

these quantities is performed by means of one or more microphones possibly arranged

in an array structure.

3.1.1 Time Of Arrival

In this paragraph we assume that the reproduction and the acquisition systems are

synchronized, i.e. the analog-to-digital and the digital-to-analog converters share

the same clock. This means that from the acquisitions we can measure the time of

flight of the signal that propagates from a controlled acoustic source located at xs

(e.g., a loudspeaker) to a microphone located at xm. An example is shown in Figure

3.1, which depicts the direct source-microphone path and two reflective paths in a

rectangular room. We aim at measuring the Time Of Arrival of direct and reflective

xm

xs

direct path

first order reflection

second order reflection

Figure 3.1: Examples of direct and reflective paths between a source located at xs and a microphone located
at xm in a rectangular room.

acoustic paths that link xs and xm from the estimation of the corresponding acoustic

impulse response h̄sm(t). In order to do so, the loudspeaker produces a known time-

continuous sequence s̄(t). The time-continuous signal ūm(t) acquired by the sensor

is commonly modelled as the summation of delayed and attenuated replicas of the
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3.1 Acoustic measurements on direct and indirect paths

signal s̄(t) [2]:

ūm(t) = ᾱms̄(t− τm) +
L
∑

l=1

β̄lms̄(t− τlm) + ν̄m(t) . (3.1)

The coefficient ᾱm is the attenuation of the direct path from source to receiver; τm

is the corresponding delay; the summation over l models the presence in the impulse

response of reflections from obstacles, which are delayed by τlm and attenuated by

β̄lm; finally ν̄m(t) is an additive noise that alters the measurement. The number of re-

flective paths L is generally greater than the number of obstacles in the environment,

since paths that bounce on more than one obstacle are present in ūm(t).

After sampling by the analog-to-digital converter we write the time-discrete signal

as

um(n) , ūm(nTs) = αms(n− im) +

L
∑

l=1

βlms(n− ilm) + νm(n) , (3.2)

where Ts is the sampling period; n is the time-discrete index; s(n) , s̄(nTs) is the

discrete version of the source signal; νm(n) , ν̄m(nTs) is the discrete noise signal;

im and ilm are the discrete versions of τm and τlm, respectively; αm and βlm are the

attenuation coefficients associated to ᾱm and β̄lm, respectively (in general, αm 6= ᾱm

and βlm 6= β̄lm). We observe that, since the measurement relies on the discrete delays

im and ilm rather than on τm and τlm, we introduce an error. This is due to the fact

that, after time-sampling, the time-axis becomes discrete.

In the literature different methodologies have been proposed for the estimation

of the acoustic impulse response. They range from algorithms devoted to acoustic

channel identification [34, 35, 36], to techniques dedicated to the estimation of the

Time of Arrival [37, 38]. One of the simplest methods rely on the cross-correlation

between the emitted signal sm(n) and the acquired signal um(n) [39]. Although the

cross-correlation gives only a rough estimate of the impulse response, it reveals to

be suitable for assessing the TOA of the direct and the first reflective paths [39],

corresponding to im and ilm, l = 1, . . . , L, respectively. In mathematical terms, this

corresponds to

ĥm(n) = um(n)⊗ s(n) ,
+∞
∑

k=−∞

um(k)s(n − k) , (3.3)
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Figure 3.2: Impulse response acquired in a dry room in which two parallel reflective panels have been placed.
The peaks corresponding to the direct path and the first two orders of reflections are marked with circles.

where the symbol ⊗ denotes the cross-correlation operator. In order to obtain the

maximum resolution along with an acceptable robustness against additive noise, the

most suitable sequence s(n) for our purposes is a band-limited white noise signal of

arbitrary duration.

Figure 3.2 shows an example of impulse response acquired when source and sensor

are placed in an acoustically dry room and some reflectors are placed in arbitrary

positions; the peaks corresponding to the direct path and the first two orders of

reflections are marked with circles. Amplitudes have been normalized to the highest

peak of the impulse response. We observe a different duration of the impulses corre-

sponding to direct and reflective paths: while the direct-path impulse is defined on

a short time interval, the peaks corresponding to the reflective paths are spread over

a longer time range. This low-pass filtering effect is due to the frequency-dependent

reflection coefficient of obstacles in the environment.

It is important to notice that the response of the whole sound processing chain

(digital-to-analog converter, loudspeaker, microphone and analog-to-digital conver-

ter) is not explicitly modeled, therefore in ĥm(n) we observe not only the effect of

the acoustic channel between xs and xm, but also the convolutive effect of emission

and acquisition devices. For our purposes, however, we consider the processing chain

to be completely transparent.
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3.1 Acoustic measurements on direct and indirect paths

Under the assumptions introduced above, TOAs can be measured by estimating

the time positions of peaks in the impulse response. In particular the algorithm must

select the discrete time lags im, i1m, i2m, . . . iLm corresponding to the most relevant

local maxima of ĥm(n). An estimate τ̂m, τ̂1m, τ̂2m, . . . τ̂Lm of the continuous time

positions associated to the discrete lags im, i1m, i2m, . . . iLm can be obtained through

parabolic interpolation [40]. The TOAs, expressed in seconds, are finally given by

tm = τ̂mTs (direct path); and tlm = τ̂lmTs , l = 1, . . . L (reflective paths).

In the following we will consider that source and sensor are in line of sight. This

means that the direct path is always present in the impulse response. Since the

direct path always has the shortest propagation time, the lag im corresponds to the

location of the first relevant peak in the impulse response. Consequently, as a final

result of the measurement process, it is possible to organize TOAs in two sets: the

first one, tm, contains only the TOA associated to the direct path; the second one,

t1m, . . . tLm, arranges the TOAs of reflective paths.

3.1.2 Time Difference Of Arrival

We now remove the hypothesis that the source is synchronized with the acquisition

device, which is now composed of a pair of microphones located at xp and xq. This

scenario accounts for situations in which an arbitrary source (e.g. a person uttering

a sentence, a ring of a mobile phone, etc.) is active in the environment. Even if

we cannot measure the Time Of Arrival, many cues about the source position can

still be extracted from the joint knowledge of the synchronized signals available at

sensors. After time sampling, the signals acquired by the sensors are

up(n) = αps(n− ip) +

L
∑

l=1

βlps(n− ilp) + νp(n) (3.4)

uq(n) = αqs(n− iq) +
L
∑

l=1

βlqs(n− ilq) + νq(n) .

The model in the above equation is equivalent to the model in (3.2); notice, however,

that the source is unknown, let alone its delay. In the following we discuss about

the possibility of estimating the Time Difference Of Arrival on the two microphones,

which corresponds, for the direct path, to the time delay tpq = (ip − iq)Ts, where Ts

denotes the sampling period. A simple way for estimating TDOAs is again the cross-
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3 Geometric wave field analysis

correlation [39], which is computed, in this case, between the signals received on a

pair of synchronized microphones. The position of the peaks in the cross-correlation

give an estimate of the direct and indirect TDOAs. If the source and the microphones

are in line of sight, we expect the main peak to be related to the direct path.

We start our discussion by neglecting, for the moment, the presence of reflections

from obstacles, therefore the signals acquired by sensors become

up(n) ≈ αps(n− ip) + νp(n) (3.5)

uq(n) ≈ αqs(n− iq) + νq(n) .

If the source is sufficiently far from the microphones we can assume that the attenu-

ation is the same on both the sensors, i.e. α = αp = αq. Assuming also that additive

noises at different microphones are uncorrelated, the cross-correlation of up(n) and

uq(n) gives

Rpq(n) = α2s(n− ip)⊗ s(n− iq) .

Different source signals can be used. We consider here two cases: sinusoidal (or

narrowband) signal and white noise.

As far as sinusoidal signals are concerned the cross-correlation becomes

Rpq(n) = α2 cos{2πTs[n− (ip − iq)]} .

The signal Rpq(n) has maxima at n = ip− iq +
k
Ts

, k ∈ Z. We notice that, according

to the geometric arrangement of the array, only a limited range of delays is allowed.

In order to make this fact more evident, we consider the case shown in Figure 3.3.

A distant source generates a planar wavefront propagating towards the microphones

in direction θ. The propagation delay on the pair of sensors is

tpq = (ip − iq)Ts =
D

c
cos θ , (3.6)

where D is the distance between the microphones; Ts is the sampling period; and

c is the speed of sound. Notice from (3.6) that the delay is in the range
[

−D
c
, D
c

]

.

Therefore, we search for maxima of the cross-correlation only in this interval.

In order to accommodate the case of moving sources, in real scenarios it is common

to work with frames of finite length. When using rectangular windows, each esti-

mation of the cross-correlation turns out to be multiplied by a Bartlett (triangular)
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3.1 Acoustic measurements on direct and indirect paths

xp xq

θ

D

Figure 3.3: The delay between two microphones depends on the distance between microphones in the array
and the Direction of Arrival of the signal.

window:

Rpq(n) = α2 cos{2πTs[n− (ip − iq)]}w(n) , (3.7)

where w(n) is the window. Notice that windowing does not affect the estimation of

the propagation delay to sensors xp and xq, as local maxima are still present at lags

k = ip − iq +
k
Ts

, k ∈ Z.

When the source signal is a white noise, we obtain

Rpq(n) = α2δ[n − (ip − iq)] , (3.8)

which exhibits a global maximum for n = ip − iq.

The cases of sinusoidal signals and white noise represent two extreme situations: in

the first case the cross-correlation is periodic and multiple local maxima are present,

while with white noise a single maximum is present. Arbitrary signals (e.g a person

uttering a sentence, a musical instrument, etc.) exhibit an intermediate behaviour

between these two cases.

When reflectors are present in the environment, along with the direct signal we

observe reflections from walls. The cross-correlation Rpq(n) between up(n) and uq(n)
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gives

Rpq(n) = α2s(n− ip)⊗ s(n− iq) + α
L
∑

l1=1

βl1ps(n− ip)⊗ s(n− il1q)+

+ α

L
∑

l2=1

βl2ps(n− iq)⊗ s(n− il2p) +

L
∑

l1=1

L
∑

l2=1

βl1pβl2ps(n− il1q)⊗ s(n− il2p) .

(3.9)

The first term in the right-hand member of Rpq(n) is the cross-correlation of the

direct paths. The second (third) term accounts for the cross-correlation of the direct

signal in up(n) (uq(n)) with the reflected ones in uq(n) (up(n)). Finally, the last term

is the cross-correlation between reflected replicas in up(n) and uq(n). The TDOAs

associated to the L reflective paths are given by

tl,pq = (il1p − il2q)Ts , l = l1 = l2 , l = 1, . . . L .

We observe that Rpq(n) presents (L+1)2 local maxima. As a consequence, from the

observation of a single impulse response, it is impossible to assign a label to local

maxima, which identifies the walls that generate reflections.

3.1.3 Direction Of Arrival

The Direction Of Arrival is an acoustic measurement alternative to the TDOA. As

for TDOAs, the measurement of DOAs requires no synchronism of the source with

respect to the acquisition system. As shown in Figure 3.3, when the source is located

far from the microphones, its Direction Of Arrival is related to the time delay on

the sensors. The straightforward approach for estimating the DOA of a signal is

therefore based on (3.6). However, this solution is not robust against measurement

noise, since a small error in the estimation of the time delay may cause a severe error

on the estimated DOA, especially when the source is almost aligned with the sensors

(i.e. when θ ≈ 0 + kπ , k ∈ Z).

The literature presents many solutions for the robust estimation of the DOAs

relative to one or more acoustic sources by means of a microphone array. These

are typically subdivided into two categories [41]: non-parametric methods based on

spatial filtering; and parametric methods. Non-parametric techniques rely on a sim-
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3.1 Acoustic measurements on direct and indirect paths

ple array data model which does not specify any particular assumption on the data

covariance. The delay and sum beamformer, as well as the Capon (MVDR) beam-

former [42, 43, 41] belong to this category. More sophisticated techniques such as

MUSIC [44, 45], ESPRIT [46], EB-ESPRIT [47] belong to the category of parametric

algorithms, and they are formulated under restrictive hypothesis on the statistics of

the array data. In particular, to work properly they require source signals to be

uncorrelated each other. Moreover, they assume that the number of sources to be

localized is known in advance and it must be smaller than the number of micro-

phones. When all these assumptions are verified, parametric algorithms outperform

non-parametric techniques. Conversely, in situations where it is not possible to as-

sume the uncorrelatedness of the sources, non-parametric algorithms reveal to be

more robust than parametric ones.

In this paragraph we give some hints for the estimation of the DOAs, in particular

for the detection of reflected sources. DOAs related to the reflected sources constitute

the basis for the geometric constraint described in Section 3.2.3. Reflected sources

can be seen as mirrored versions of the principal source. As a consequence, their

signals are characterized by strong mutual correlation with the direct path one.

For this reason, in order to estimate the DOAs related to the reflected paths the

natural choice falls on non-parametric algorithms. A convenient approach for such

estimation is the wideband Capon algorithm proposed in [48]. Since, in general, no a-

priori information about the position of the mirror source is available, the algorithm

is adapted for a circular uniform array, which guarantees a constant resolution for

all the directions. The algorithm is summarized in the following.

With reference to Figure 3.4, the sensors are uniformly arranged on a circle with

radius ρ at positions xi = [ρ cosφi, ρ sinφi]
T , i = 1, . . . M . The ith microphone ac-

quires the signal ui(n), where n is the discrete time-index. We refer to the filterbank

analysis of ui(n) with the symbol yi(ωk, n), where ωk, k = 1, . . . ,K denotes the kth

frequency sub-band. The signals are then organized in the vector

y(ωk, n) =













y1(ωk, n)

y2(ωk, n)
...

yM(ωk, n)













,
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x1

x2

xM

xi

xM−1

θ
φi

ρ

Figure 3.4: A planar wave front coming from the direction θ impinges on a uniform circular array.

and the frequency-dependent autocorrelation matrix is estimated as [48]

Rk =
1

K

T
∑

t=1

y(ωk, n)y
H(ωk, n) , k = 1 . . . ,K. (3.10)

For each sub-band, we compute the function

f(ϑ, k) =
1

a(ϑ, k)HR−1
k a(ϑ, k)

, a(ϑ, k) =













ej
ωk
c
ρ cos(ϑ−φ1)

ej
ωk
c
ρ cos(ϑ−φ2)

...

ej
ωk
c
ρ cos(ϑ−φM )













, (3.11)

where c is the speed of sound. The function f(ϑ, k) gives an estimate of the energy

in the kth sub-band coming from the direction ϑ, and it is known as spatial-spectrum

[41]. The term a(ϑ, k) is called transfer vector [41], and models the propagation of

a monochromatic plane wave with frequency ωk, traveling with direction ϑ towards

the sensors. The overall spatial-spectrum is computed as the geometric mean of the

spatial-spectra of the different sub-bands [48]:

F (ϑ) =

[

K
∏

k=1

f(ϑ, k)

]

1
K

. (3.12)
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Finally, the DOAs are selected as the most relevant local maxima of the function

F (ϑ) in the range [0, 2π]. For example, when a single source (e.g. a source in a low-

reverberation chamber) impinges on the array from the direction θ as in Figure 3.4,

F (ϑ) is expected to exhibit a single peak located in proximity of ϑ = θ. In presence

of reverberations, letting θ be the DOA relative to the direct path and θ1, θ2, . . .

the DOAs relative to the reflected paths, the function F (ϑ) will present peaks in

proximity of ϑ = θ, θ1, θ2, . . ..

30◦
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 Capon spatial-spectrum

Theoretical direct DOA
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Figure 3.5: Example of Capon spatial-spectrum for measuring direct and indirect DOAs.

An example of measurement of direct and indirect DOAs is shown in Figure 3.5.

The acquisitions relative to the example were made in a low-reverberation room

whose acoustics has been altered by inserting a rigid wooden panel. The array was

composed of 10 microphones disposed on a circle with radius 4 cm, perpendicular to

the plane of the panel. From the plot of the spatial-spectrum one can identify the

DOAs relative to the direct and reflective paths.
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3.2 Constraints deriving from acoustic measurements

In this Section we describe how to turn measurements (TOAs, TDOAs, DOAs)

into constraints acting on geometric primitives such as sources, microphones, and

reflectors. In particular, we show that each measurement on acoustic paths turns

out to generate a projective constraint in P2 that takes the shape of a quadratic

form.

3.2.1 Constraints related to TOAs

In this paragraph we will derive the geometric constraints arising from the measure-

ment of the Time of Arrival. We will see that the TOA related to the direct path

leads to a the quadratic constraint on the position of sources or microphones. On

the other hand, a reflective TOA generates a constraint acting on the line on which

the reflector generating the acoustic path lies.

3.2.1.1 Direct signal

Let tm be the Time Of Arrival measured by a microphone located at xm = [x1m , x2m ]
T .

If the source location xs = [x1s , x2s ]
T is given, the TOA constrains the microphone

to be placed on a circumference centered at xs and with radius ρm = tmc, where c

is the sound speed. The equation of the circumference is

(x1 − x1s)
2 + (x2 − x2s)

2 = ρ2m.

Expanding the terms, we obtain

x21 + x21s − 2x1x1s + x22 + x22s − 2x2x2s − ρ2m = 0 ,

and through comparison with the expression of a general conic in (2.18) we get

the parameter vector cm = [1, 0, 1, −2x1s , −2x2s , −ρ2m + x21s + y21s ]
T and the

corresponding conic matrix

Cm =







1 0 −x1s
0 1 −x2s

−x1s −x2s −ρ2m + x21s + y21s






. (3.13)
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As a consequence, the TOA leads to a quadratic constraints that, adopting homoge-

neous coordinates, can be written as

xTCmx = 0 ,

where x = [x, 1]T is the homogeneous representation of the point x = [x1, x2]
T .

Notice that the roles of microphone and source can be interchanged: if we know the

microphone position, the TOA constrains the source to be located on a circumference

centered at xm, and the conic matrix (3.13) is modified inserting (x1m , x2m) in place

of (x1s , x2s).

3.2.1.2 Indirect signal

We now consider the measurement of the Time Of Arrival related to a reflected

signal. For the sake of simplicity, we assume that only one reflector is present in the

environment, so that there exists a single reflected path. With reference to Figure

3.6, we consider the acoustic path that links the source located at xs = [x1s , x2s ]
T

and the receiver located at xm = [x1m , x2m ]
T through a reflection. The reflection

point xP on the reflector honors the Snell’s law. We observe that the corresponding

xs xs′
xP

lr

xm

lm

Figure 3.6: An acoustic path links xs and xm through the reflector. The reflection point xP honors the
Snell’s law, and it is bounded to lie on an ellipse whose foci are xs and xm and its major axis is lm.
Moreover, the reflector line lr corresponds to the tangent to the ellipse at xP .

TOA t′m is the sum of the time-of-flight from xs to xP and the time-of-flight from

xP to xm, and it is equivalent to the TOA relative to the mirror source located at

xs′ . Consequently, we are constraining the reflection point xP to lie on an ellipse

whose foci are xs and xm and whose major axis is lm = t′mc, where c is the sound

speed. In order to find the equation of the ellipse, we start from the fact that it is

defined as the locus of all points of the plane whose distances from the foci add to
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the same constant. In our case, this is equivalent to

√
(x1−x1s)

2+(x2−x2s )
2+
√

(x1−x1m )2+(x2−x2m)2=lm ,

which can be written also as

√
(x1−x1s)

2+(x2−x2s )
2=lm−

√
(x1−x1m)2+(x2−x2m )2 . (3.14)

Taking the square power of both sides of (3.14), after some arithmetics we get

2lm
√

(x1−x1m )2+(x2−x2m )2=l2m+2(xx1s+xx2s−xx1m−xx2m )+x2
1m

+x2
2m

−x2
1s

−x2
2s

. (3.15)

Finally, squaring both the sides of (3.15) and comparing the result with the general

conic equation (2.18), we derive the homogeneous parameter vector of the ellipse

cm = [am, bm, cm, dm, em, fm]T , where











































am = −4[l2m−(x1m−x1s )
2]

bm = 8(x1m−x1s)(x2m−x2s )

cm = −4[l2m−(x2m−x2s )
2]

dm = 4[l2m(x1m+x1s )−(x1m−x1s )(x
2
1m

+x2
2m

−x2
1s

−x2
2s

)]

em = 4[l2m(x2m+x2s )−(x2m−x2s )(x
2
1m

+x2
2m

−x2
1s

−x2
2s

)]

fm = l4m−2l2m(x2
1m

+x2
2m

+x2
1s

+x2
2s

)+(x2
1m

+x2
2m

−x2
1s

−x2
2s

)2

. (3.16)

As for the direct path, we can encode the constraint relative to the reflective path

in the quadratic form

xTCmx = 0 , Cm =







am bm/2 dm/2

bm/2 cm em/2

dm/2 em/2 fm






(3.17)

where, as usual, x is the homogeneous representation of the point x = [x1, x2]
T .

The constraint given by (3.17) imposes the presence of the reflection point on an

ellipse, but it does not involve any geometric primitive. If we are interested in posing

a constraints on the line on which the reflector lies, it is convenient to consider the

dual of the ellipse Cm, which is given by the set of lines tangent it:

lTC⋄
ml = 0 , (3.18)
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where C⋄
m = det(Cm)C−1

m is the line-conic matrix; and l = [l1, l2, l3]
T is the ho-

mogeneous representation of a line tangent to the ellipse. This constraint now acts

directly on the reflector line lr = [l1R , l2R , l3R ]
T , which has to be a solution of (3.18).

3.2.2 Constraints related to TDOAs

In this Section we transform the measurement of the Time Difference of Arrival into

a constraint that acts directly on the position of the source (localization problems)

or on the position of the reflector (geometry-inference problem).

3.2.2.1 Direct signal

We consider the Time Difference of Arrival tpq estimated from the lag of the maxi-

mum of the cross-correlation Rpq(n), measured from the signals on two microphones

located at xp = [x1p , x2p ]
T and xq = [x1q , x2q ]

T . The knowledge of tpq constrains

the source to lie on an hyperbola whose foci are xp and xq and whose major axis is

lpq = |tpq|c, as depicted in Figure 3.7. In fact, the hyperbola is defined as the locus

xs

xp xqlpq

Figure 3.7: The TDOA tpq measured on the microphone pair located at xp and xq constrains the acoustic
source xs to lie on a hyperbola with foci at the sensor positions and major axis lpq = |tpq |c.

of points where the difference of the distances from the two foci is constant. This

means that
√

(x1−x1p )
2+(x2−x2p)

2−
√

(x1−x1q )
2+(x2−x2q )

2=lpq ,
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or equivalently that

√
(x1−x1p )

2+(x2−x2p)
2=lpq+

√
(x1−x1q )

2+(x2−x2q )
2 . (3.19)

As for the ellipse, we take the square power of both sides of (3.19) and, after some

calculation we obtain

2lpq
√

(x1−x1q )
2+(x2−x2q )

2=−
[

l2pq+2(xx1p+xx2p−xx1q−xx2q )+x2
1q

+x2
2q

−x2
1p

−x2
2p

]

. (3.20)

After taking again the square of both sides and expanding the terms, through com-

parison with the general conic equation (2.18) we obtain the parameter vector of the

hyperbola cpq = [apq, bpq, cpq, dpq, epq, fpq]
T , where











































apq = −4[l2pq−(x1q−x1p )
2]

bpq = 8(x1q−x1p)(x2q−x2p)

cpq = −4[l2pq−(x2q−x2p )
2]

dpq = 4[l2pq(x1q+x1p)−(x1q−x1p )(x
2
1q

+x2
2q

−x2
1p

−x2
2p

)]

epq = 4[l2pq(x2q+x2p)−(x2q−x2p )(x
2
1q

+x2
2q

−x2
1p

−x2
2p

)]

fpq = l4pq−2l2pq(x
2
1q

+x2
2p

+x2
1q

+x2
2p

)+(x2
1q

+x2
2q

−x2
1p

−x2
2p

)2

. (3.21)

Once again, the quadratic constraint can be expressed using homogeneous coordi-

nates as

xTCpqx = 0 , Cpq =







apq bpq/2 dpq/2

bpq/2 cpq epq/2

dpq/2 epq/2 fpq






(3.22)

where x = [x1, x2, 1]
T .

From comparison between (3.21) and (3.16), we observe that the structures of the

hyperbola and ellipse parameter vectors are equivalent. The quantity that makes it

possible to distinguish between the two different conics is the length of the major

axis. In order to prove this fact, we consider a general non-degenerate conic with pa-

rameters c = [a, b, c, d, e, f ]T . According to [13], the shape of the conic is determined

by the discriminant ∆ = b2 − 4ac. In particular, if ∆ > 0 the conic is an ellipse; if

∆ = 0 the conic is a parabola; if ∆ < 0 the conic is an hyperbola. Computing the

discriminant of the ellipse (3.16) and of the hyperbola (3.21) we obtain

∆m = −16l2m[(x1m − x1s)
2 + (x2m − x2s)

2 − l2m] (3.23)
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and

∆pq = −16l2pq[(x1p − x1q )
2 + (x2p − x2q )

2 − l2pq] , (3.24)

respectively. It is clear that ∆m > 0 if and only if l2m > (x1m−x1s)
2+(x2m−x2s)

2, i.e.

if the major axis lm is greater than the distance between the foci xm = [x1m , x2m ]T

and xs = [x1s , x2s ]
T . The constraint arising from the indirect TOA presented in

Section 3.2.1 reflects this situation: the indirect path is always longer than the

distance between the source and the microphone. On the other hand, ∆pq < 0 if and

only if l2pq < (x1p − x1q )
2 + (x2p − x2q )

2, i.e. when the major axis lpq is smaller than

the distance between the foci xp = [x1q , x2p ]
T and xq = [x1q , x2q ]

T . Indeed, this is

the case of the constraint on the TDOA: the time delay tpq is always in the range
[

−Dpq

c
,
Dpq

c

]

, where Dpq is the distance between the sensors.

3.2.2.2 Indirect signal

Like for the case of TOAs, in this Section we consider a scenario in which a single

reflector is present in the environment. This causes the presence of a reflective

acoustic path that links source and microphones through a specular reflection. As

a consequence, only two replicas of the source signal are present in the microphone

signals up(n) and uq(n). With reference to (3.9) L = 1 and therefore Rpq(n) exhibits

(L+1)2 = 4 local maxima. We consider here the Time Difference of Arrival t′pq that

is directly related to the reflection, neglecting the presence of other local maxima in

the cross-correlation. Figure 3.8 depicts the geometry of the problem. The source is

located at xs, and the microphone locations are xp and xq. The point xs′ represents

the image source, which is obtained by mirroring xs over the reflector. Denoting

with dr the distance of the reflector line lr from the origin, and letting nr be the

unit vector normal to the reflector and pointing towards the half-space containing

xs, the image source position is obtained as

xs′ = Hrxs , Hr =

[

I− 2nrn
T
r −2drnr

0T 1

]

(3.25)

where xs and xs′ are the homogeneous representations of xs and xs′ , respectively. As

seen in Section 2.2.4.2, the homography Hr contains all the information about the re-

flector, since nr and dr univocally define the line parameter vector lr = [l1r , l2r , l3r ]
T

associated to the reflector.

We now exploit the knowledge of the TDOA t′pq relative to the indirect path, which
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dr

nr

xs

xs′

xp

xq

x1

x2

lr

Figure 3.8: An acoustic path links xs to xp and xq through the reflector lr. The reflective path can be
thought as generated from the image source xs′ , obtained by mirroring xs over the reflector. The image
source is bounded to lie on a hyperbola with foci in xp and xq .

constrains the image source xs′ to lie on a hyperbola with foci in xp and xq and with

major axis |t′pq|c. This is equivalent to writing

xT
s′C

′
pqxs′ = 0 , (3.26)

where the conic matrix C′
pq is obtained as in (3.22). Replacing (3.25) into (3.26)

gives

xT
s H

T
r C

′
pqHrxs = 0 . (3.27)

We observe that if the source position xs is known, the only unknowns in (3.27) are

the distance dr and the versor nr, embedded into the matrix Hr.

3.2.3 Constraints from DOAs

In this Section we investigate the constraints related to Direction Of Arrival mea-

surements on direct and reflected paths. In the following we will assume that the

DOAs are measured using the algorithm presented in Section 3.1 by means of a cir-

cular array, whose geometry is given. We will refer to DOAs as lines linking the

corresponding sources (real or image ones) and the center of the array x0.
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3.2.3.1 Direct signal

A Direction Of Arrival can be seen as the line linking the corresponding source with

the array reference point. For the wide-band Capon algorithm introduced in Section

3.1 the reference point coincides with the center of the circular array xc = [x1c , x2c ]
T .

Letting θs be the DOA of an acoustic source located at xs, the source is constrained

to lie on the line

ls = [− sin θs, cos θs, x1c sin θs − x2c cos θs]
T , (3.28)

which is the line passing through xc and directed as θs. The source position is

therefore a solution of

xT ls = 0 ,

where x is a point on the line ls.

3.2.3.2 Indirect signal

We now consider the Direction Of Arrival relative to the reflective path originated by

the presence of an acoustic source at xs and of a single reflector lying on the line lr.

As usual, we can think of the reflective path as generated by the image source xs′ ,

obtained by mirroring the source xs = [x1s , x2s ]
T against the reflector. Therefore, the

measured DOA θs′ unequivocally defines the line ls′ = [− sin θs′ , cos θs′ , x1c sin θs′ −
x2c cos θs′ ]

T passing through the centre of the microphone array and with direction

θs′ , as shown in Figure 3.9. We notice that if we make an hypothesis on the position

of the image source xs′ , the reflector line lr is constrained to be the axis of the

segment xsxs′ in order to honor the Snell’s law. Let xps be the intersection between

the line perpendicular to ls′ through xs′ and the reflector line lr. By construction

the triangle xsxs′xps is isosceles and lr is the bisector of the angle ̂xsxpsxs′ . We

recall that the focal property of a parabola with focus xs and directrix ls′ states that

the line tangent to a parabola at xps is also the bisector of the angle formed by the

line joining xs and xps and the perpendicular to ls′ through xps, as shown in Figure

3.9.

The parabola is also described as the locus of points equidistant from ls′ and from

xs, which is equivalent to writing

|−x1 sin θs′+x2 cos θs′+x1c sin θs′−x2c cos θs′ |=
√

(x1s−x1)2+(x2s−x2)2, (3.29)
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x1

x2

lr

θs′

xs

xs′

xps

ls′

Figure 3.9: An acoustic source at xs is mirrored over the reflector to its image position xs′ . A sensor array
centered in the origin measures the DOA θs′ related to the reflected path. The reflector line lr is the tangent
at xps of a parabola with directrix ls′ and focus at xs.

where the left side is the Euclidean distance between the generic point x = [x1, x2]
T

and the directrix; the right side corresponds to the Euclidean distance between x

and the focus. Squaring both the sides and expanding the terms, through compar-

ison with the general conic equation (2.18) we obtain the parameter vector cs′ =

[as′ , bs′ , cs′ , ds′ , es′ , fs′ ], where











































as′ = cos2 θs′

bs′ = 2 cos θs′ sin θs′

cs′ = sin2 θs′

ds′ = −2x1s+2 sin θs′(x1c sin θs′−x2c cos θs′ )

es′ = −2x1s−2 cos θs′(x1c sin θs′−x2c cos θs′ )

fs′ = x2
1s

+x2
2s

−(x1c sin θs′−x2c cos θs′ )
2

. (3.30)

The homogeneous representation of the parabolic constraint is therefore given by

xTCs′x = 0 , Cs′ =







as′ bs′/2 ds′/2

bs′/2 cs′ es′/2

ds′/2 es′/2 fs′






(3.31)

where x = [x, 1]T .

As for the case of the indirect TOA discussed in Section 3.2.1, it is convenient to

formulate the constraint given by (3.31) in terms of the reflector line lr. To do so,
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we consider the dual representation of the conic given by

lTC⋄
s′l = 0 , C⋄

s′ = det(Cs′)C
−1
s′ , (3.32)

whose solutions are all the lines l tangent to the parabola with focus in xs and

directrix ls′ . The reflector line lr is one of the infinite solutions of 3.32.
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3.3 From constraints to estimation

The projective relationships derived in the previous Section provide a complete theo-

retical framework for turning acoustic measurements into constraints that act directly

on geometric acoustic primitives such as sources, microphones and reflectors. In this

Section we exploit the common formulation of the derived constraints. In particular,

we consider constraints that are described by a conic section, which are character-

ized by the same quadratic form. This way, it is possible to abstract from a specific

problem (estimation of source or microphone positions, as well as the position of

a reflector) for defining a general estimation problem relying on the minimization

of a cost function that combines multiple quadratic constraints. The global mini-

mum of the cost function gives an estimate of the geometric primitive of interest,

being either a point (source or microphone position) or a line (reflector position).

Moreover, we will develop a set of minimization strategies which are not strictly

problem-dependent, but whose performances and feasibility depend on the structure

of the conic matrices.

3.3.1 Definition of the cost function

Let the geometric primitive under estimation (position of a source, a sensor or line

parameters of a reflector) be denoted by v = [v1, v2, v3]
T . The matrix associated

to the constraint (it can be C or C⋄) is denoted by the symbol G. The generic

constraint, therefore, has the form

vTGv = 0 . (3.33)

When multiple measurements concerning the same variable of interest are considered,

we can organize the constraints in the following system equation























vTG1v = 0

vTG2v = 0
...

vTGNv = 0

, (3.34)

where G1 . . .GN are the conic matrices associated to N measurements. However,

acoustic measurements are affected by different kinds of error, due as an example to

outliers or the finite sampling frequency. Therefore, it is convenient to define a cost
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function that sums the squared residuals of the individual constraints:

J(v) =
N
∑

n=1

(

vTGnv
)2

. (3.35)

The minimization of this function is not, in general, an easy task, since J(v) is a

multivariate polynomial of degree 4 which presents a huge number of local minima.

Furthermore, since the function is built from projective constraints, an infinite num-

ber of solutions correspond to its global minimum. Finally, a constraint has to be

posed on the norm of the searched solution, in order to prevent us from finding

the trivial null solution v0 = [0, 0, 0]T . In the next Section we will present a set of

methodologies for addressing these problems.

3.3.2 Minimization strategies

The cost function (3.35) introduced above is obtained as the squared sum of a num-

ber of homogeneous quadratic forms. As a consequence, J(v) turns out to be a

multivariate polynomial of order 4 in the variables v1, v2 and v3. The minimization

of multivariate polynomials is a very debated topic in the literature, see for exam-

ple [49, 50, 51]. Exact methods exist [52, 53] for the unconstrained case, however they

are not applicable to our kind of problem, which is constrained. Other minimization

techniques [54, 55, 56, 57] rely on a semidefinite relaxation [58] of the original prob-

lem, which is suitable for the constrained optimization. Unfortunately, such methods

provide only approximated solutions, which can by highly inaccurate [59]. In this

Section we propose a set of alternate approaches for minimizing an homogeneous cost

function in the form of (3.35). In particular, we will introduce two exact methods

and two iterative ones.

3.3.2.1 Exact minimization through cutting of the parameter space

As stated before, the cost function in (3.35) is a multivariate polynomial of order 4 in

v1, v2, v3. Denoting the coefficients of the conic associated to the nth measurement
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with cn = [an bn cn dn en fn]
T , the cost function can be expanded as

J(v) =
∑N

n=1 [a2nv
4
1 + c2nv

4
2 + f4

nv
4
3 + 2anbnv

3
1v2 + 2andnv

3
1v3 + 2bncnv1v

3
2 +

+2cnenv
3
2v3 + 2dnfnv1v

3
3 + 2enfnv2v

3
3 + (2ancn + b2n)v

2
1v

2
2 +

+(2anfn + d2n)v
2
1v

2
3 + (2cnfn + e2n)v

2
2v

2
3 + 2(anen + bndn)v

2
1v2v3 +

+2(bnen + cndn)v1v
2
2v3 + 2(bnfn + dnen)v1v2v

2
3] .

(3.36)

The vector v is homogeneous (i.e. it is defined up to a scaling factor), and therefore

the direct minimization of (3.36) leads to an infinite number of solutions representing

the same point. The scaling ambiguity can be solved by noticing that v can be defined

by the ratio of its elements. This corresponds to cutting the parameter space with a

plane orthogonal to one of the parameter axes, e.g. vi = 1, where i ∈ {1, 2, 3}. The

cost function can therefore be redefined as

Ji(v) , J(v)|vi=1 , i ∈ {1, 2, 3} . (3.37)

We observe that the plane vi = 1 excludes potential solutions having vi = 0. This

situation can be circumvented by cutting the parameter space with a further plane

vj = 1, j 6= i, which leads to a second cost function Jj(v). The reduced cost

functions Ji(v) and Jj(v) have the form of non-homogeneous fourth-order polynomial

in two variables. As an example, the unknowns in Ji(v) are vl and vk, where l, k ∈
{1, 2, 3} \ {i}, l 6= k. In order to find the global minimum of J(v), we define two

unconstrained minimization problems

v̂i = arg min
v

Ji(v)

v̂j = arg min
v

Jj(v)
, (3.38)

whose solutions v̂i and v̂j make null the gradients of Ji(v) and Jj(v), respectively.

In mathematical terms, this means that v̂i is contained in the set

Vi =

{

v :
∂Ji(v)

∂vl
= 0 ∧ ∂Ji(v)

∂vk
= 0

}

.
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Similarly, v̂j is contained in

Vj =

{

v :
∂Jj(v)

∂vl
= 0 ∧ ∂Jj(v)

∂vk
= 0

}

.

Since the gradient of Ji(v) (Jj(v)) is a vector of two bivariate polynomials of order

3, Vi (Vj) contains 9 elements. Some of them may be imaginary, thus we denote

with V̄i (V̄j) the subset of purely real solutions of Vi (Vj). In the light of the above

considerations, the global minimum of J(v) is finally given by

v̂ = arg min
v

J(v) , v ∈ V̄i ∪ V̄j . (3.39)

The choice of the planes used for cutting the parameter space depends on the

meaning of the vector v, i.e. on the type of primitive it represents. As an example,

when v is the homogeneous representation of an Euclidean point (suitable for sources

and microphones), it is sufficient to minimize a single cost function in the form of

(3.37) by posing v3 = 1. In this case we are not interested to points having v3 = 0, as

they represent points at infinity. When v corresponds, instead, to a line parameter

vector (a reflector line), without any a-priori information on the position of the line

to be estimated, it is necessary to select two planes (e.g. v1 = 1 and v2 = 1), and

solve a problem in the form of (3.39).

The proposed methodology guarantees to find the exact solution of the minimiza-

tion problem. Its main drawback, however, is the fact that its implementation re-

quires the use of a symbolic mathematical solver. Since the computation time may

be considerable, this solution is suitable only when the estimation time is not crucial

(e.g. for array calibration or reflector estimation). For applications where real-time

is a requirement, such as source localization, more efficient solutions must be applied,

such as the iterative one described in the next paragraph.

3.3.2.2 Iterative minimization on the unit sphere

Here we tackle the problem of the minimization of the cost function using a different

reduction of the parameter space. Instead of cutting the parameter space with one

or more planes, we formulate a single optimization problem which looks for solutions

lying on the unit sphere, i.e.

v̂ = arg min
v

J(v) subject to ‖v‖ = 1 . (3.40)
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As depicted in Figure 3.10, a point v = [v1, v2, v3] on the unit sphere is described by

two parameters, namely the azimuth angle φ and the elevation θ, while the radius is

kept fixed to ρ = 1.

v1

v2

v3

θ

φ

v

ρ=1

Figure 3.10: Representation of points on the unit sphere.

The conversion to spherical coordinates is given by











v1 = cosφ sin θ

v2 = sinφ sin θ

v3 = cos θ

. (3.41)

This means that the parameter space reduces to φ ∈ [0, 2π] and θ ∈ [0, π]. It repre-

sents a bounded search space, which reveals to be particularly suitable for iterative

minimization algorithms, such as the non-linear least squares algorithm described

in [60]. The constrained minimization problem in (3.40) can be reformulated as an

unconstrained one:

(φ̂, θ̂) = arg min
φ∈[0,2π], θ∈[0,π]

J (v(φ, θ)) ,

whose solution, in the projective domain, corresponds to the vector

v̂ = [cos φ̂ sin θ̂, sin φ̂ sin θ̂, cos θ̂]T .

This method could be sub-optimal in some cases and it could get trapped into

local minima. However, we will see that, if properly initialized, it leads to accurate

solutions and it can be adopted for source localization purposes.
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3.3.2.3 Iterative minimization on the unit cylinder

As an alternative to the minimization on the unit sphere we can consider the opti-

mization on the unit cylinder. Eq.(3.40) is modified as follows

v̂ = arg min
v

J(v) subject to ‖v1,2‖ = 1 , (3.42)

where v1,2 , [v1, v2]
T denotes the first two coordinates of v = [v1, v2, v3]

T . The

constraint on v1,2 = [v1, v2]
T forces v to lie on the unit cylinder, in fact











v1 = cosφ

v2 = sinφ

v3 = z

,

where φ ∈ [0, 2π] denotes the azimuth angle; and z ∈ R is the signed distance from

the plane v3 = 0, as shown in Figure 3.11.

v1

v2

v3

z

φ

v

ρ=1

Figure 3.11: Representation of points on the unit cylinder.

The unconstrained version of the problem in (3.42) is given by

(φ̂, ẑ) = arg min
φ∈[0,2π], z∈R

J (v(φ, z)) ,

which leads to the final solution

v̂ = [cos φ̂, sin φ̂, ẑ]T .

Notice that this methods is suitable especially when the primitive to be estimated
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is a line: in this case, the parameters φ and z have a direct geometrical interpretation.

More specifically, the angle φ corresponds to the orientation of the normal of the line;

|z| coincides with the distance of the line from the origin.

3.3.2.4 Exact minimization using the GTRS approach

In this paragraph we discuss about the possibility of turning the minimization of

the generic cost function (3.35) into a linear Least Square problem with a single

quadratic constraints. As noted in [59], problems of these type are referred to as

Generalized Trust Region Subproblems (GTRS), whose exact solution can be derived

quite efficiently. We will see that, whenever the cost function combines constraints

having the form of a circumference, the estimation problem can be brought to a

GTRS one. It is important to notice that this approach is not limited to the case of

direct TOA measurements described in Section 3.2.1, which directly leads to circum-

ferences. Indeed, we will see that, under suitable conditions, the dual representations

of ellipses, parabolas, and hyperbolas can be brought to circumferences.

We start our discussion by observing that a generic conic parameter vector cC =

[aC, bC, cC, dC, eC, fC]
T represents a circumference if and only if aC = cC and bC = 0

[13], i.e. when the conic matrix has the form

CC =







aC 0 dC/2

0 aC eC/2

dC/2 eC/2 fC






. (3.43)

As seen in Section 3.2, this applies for TOAs related to the direct path, which bound

a source (microphone) to lie on circumference centered at the microphone (source)

position.

We now investigate how other type of conics can be brought to a circumference

in the dual domain. We first consider the conic matrix CE of an ellipse, whose

parameters are given in (3.16). Computing the corresponding dual matrix we obtain

C⋄
E = detC⋄

E(C
⋄
E)

−1 =







a⋄E b⋄E/2 d⋄E/2

b⋄E/2 a⋄E e⋄E/2

d⋄E/2 e⋄E/2 f⋄
E






. (3.44)
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The coefficients of C⋄
E are given by











































a⋄E = kE[−l2m+(x1m+x1s )
2+(x2m−x2s)

2]

b⋄E = 4kE(x1mx2s+x1sx2m )

c⋄E = kE[−l2m+(x1m−x1s )
2+(x2m+x2s)

2]

d⋄E = 4kE(x1m+x1s )

e⋄E = 4kE(x2m+x2s )

f⋄
E = 4kE

, (3.45)

where

kE=−4l2m[−l2m+(x1m−x1s)
2+(x2m−x2s )

2] .

We recall that (x1m , x2m) and (x1s , x2s) are the Euclidean coordinates of the micro-

phone and the source positions, respectively, and they represent the foci of an ellipse

with major axis lm. We observe that, if either the microphone or the source are

located at the origin of the reference system (i.e., [x1m , x2m ] = [0, 0] or [x1s , x2s ] =

[0, 0]), the parameters in (3.45) simplify in such a way that a⋄E = c⋄E and b⋄E = 0. This

means that, when one of the two foci of the ellipse coincides with the origin, the

dual conic is a circumference and the corresponding matrix C⋄
E has the form of CC

in (3.43). Notice that this property holds also for the case of the hyperbola, whose

parameter vector is equivalent to that of the ellipse (see Section 3.2). For the sake

of completeness, we can prove that also the dual of a parabola can be brought to a

circumference. The conic matrix CP of a parabola is determined by the parameters

in (3.30) and the corresponding dual matrix is

C⋄
P = detC⋄

P(C
⋄
P)

−1 =







a⋄P b⋄P/2 d⋄P/2

b⋄P/2 a⋄P e⋄P/2

d⋄P/2 e⋄P/2 f⋄
P






, (3.46)

where










































a⋄P = kP[−(x1s+x1c ) sin θs′−(x2s−x2c) cos θs′ ]

b⋄P = 2kP(x1s cos θs′−x2s sin θs′ )

c⋄P = kP[(x1s−x1c ) sin θs′+(x2s+x2c) cos θs′ ]

d⋄P = −2kP sin θs′

e⋄P = 2kP cos θs′

f⋄
P = 0

(3.47)
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and

kP=−(x1s−x1c) sin θs′+(x2s−x2c) cos θs′ .

With reference to (3.30), the pair (x1s , x2s) refers to the Euclidean coordinates of

the source position, which corresponds to the focus of the parabola. It is clear that

we obtain a simplification in the parameters of the dual parabola (3.47), under the

assumption that the focus coincides with the origin of the reference system (i.e.

[x1s , x2s ] = [0, 0]). In particular, once again we get a⋄P = c⋄P and b⋄P = 0. Hence, the

dual of a parabola with the focus at the origin is a circumference and therefore C⋄
P

has the same structure of CC in (3.43).

We now exploit the particular form of a constraint described by a circumference.

The conic matrix related to the nth measurement has the form

Cn =







an 0 dn/2

0 cn en/2

dn/2 en/2 fn






. (3.48)

Inserting (3.48) into (3.35), after some manipulations we obtain the following form

of the cost function

J(v) =
N
∑

n=1

[

an(v
2
1 + v22) + dnv1v3 + env2v3 + fnv

2
3

]2
. (3.49)

We now perform a cutting of the parameter space with the plane v3 = 1, yielding

the modified version of the cost function

J3(v) , J(v)|v3=1 =
N
∑

n=1

[

an(v
2
1 + v22) + dnv1 + env2 + fn

]2
.

Notice that this operation does not exclude meaningful solutions having v3 = 0. In

fact, if the primitive to be estimated is a microphone or source position, v3 = 0

represents points at infinity, which are meaningless if all the acoustic objects are

at finite distances. Conversely, if we aim at estimating a reflector line parameters,

v3 = 0 denotes lines passing through the origin. It is evident that there are no lines

passing through one of the foci of the conic (i.e., the origin) and tangent to it. In

the light of the previous considerations, we can therefore define the optimization
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problem as

v̂ = arg min
v

J3(v) , (3.50)

whose solution v̂ represents the best estimate of the primitive of interest. Following

the same approach proposed in [59], the optimization problem (3.50) can be refor-

mulated as a quadratically constrained linear Least-Squares one. More specifically,

introducing the simple substitution w = v21 + v22 and defining a vector of unknowns

w = [w, v1, v2], (3.50) can be rewritten in matrix form as

ŵ = arg min
w

{

‖Aw − b‖2 : wTDw + 2fTw = 0
}

, (3.51)

where

A =









a1 d1 e1
...

...
...

aN dN eN









, b =









−f1
...

−fN









and

D = diag(0, 1, 1) , f = [−0.5 0 0]T .

Assuming that A has full column rank, the minimum is found as

ŵ(λ) = (ATA+ λD)−1(ATb− λf) ,

where λ is the unique solution of ŵ(λ)TDŵ(λ) + 2fT ŵ(λ) = 0 on the interval for

which ATA+ λD is positive definite [59]. From the optimum value ŵ = [ŵ v̂1 v̂2]
T ,

the solution to the original problem in (3.50) is finally given by v̂ = [v̂1 v̂2 1]
T .

3.3.3 Discussion

The minimization strategies described in the previous paragraphs aim at minimizing

a cost function that sums up a number of homogeneous quadratic constraints. Ex-

cept for the GTRS approach (Section 3.3.2.4), which requires the conic matrices to

have a specific form, all the strategies can be applied to any estimation problem that

can be brought to the general form given by (3.35). In particular, all of them are

expected to converge to the same result. Nevertheless, the peculiarities of each of

the approaches make them best suited for specific (class of) problems. A comparison

of the minimization strategies is shown in Table 3.1, which summarizes the pros and

cons, and provides some hints for their application.
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Table 3.1: A comparison of the minimization strategies
Min. strategy Pros Cons Suggested application

Par. space
cutting

(sec. 3.3.2.1)
Exact Time demanding

Array calibration, reflector
localization

Unit sphere
(sec. 3.3.2.2)

Fast convergence
Requires

initialization
Source localization using TDOAs

Unit cylinder
(sec. 3.3.2.3)

Fast convergence,
direct geometrical

interpretation

Requires
initialization

Reflector localization

GTRS
(sec. 3.3.2.4)

Exact, fast
convergence

Requires conic
matrices to have a

specific form

Array calibration using TOAs,
reflector localization using TOAs

In the next Section the different minimization strategies are applied within the con-

text of acoustic scene analysis. In particular, the class of problems indicated in Table

3.1 are discussed and solved.
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3.4 Acoustic scene analysis

With the term acoustic scene analysis we refer to a set of operations that aim at

building a self-aware and environment-aware multichannel input/output audio sys-

tem. To this end, we can identify the following sequence of operations:

1. array calibration,

2. source localization and characterization,

3. environment inference.

The self-awareness of the system is reached when all the microphone and loudspeaker

arrays/clusters composing the audio system are completely characterized, i.e. when

they are calibrated. For example, the microphones within an array are charac-

terized by a position, a polar pattern, and, possibly, an orientation if the pattern

is not omnidirectional. Loudspeaker arrays need a similar characterization. The

environment-awareness is a more challenging task, since it aims at identifying and

characterizing the acoustic entities that may interact with the audio system, such

as acoustic sources, or obstacles that cause reverberations to appear (environment

inference). The degree of awareness of the system with respect to the environment

depends on the level of detail in describing such acoustic entities. As an example, an

acoustic source can be fixed at a certain position, or moves following a trajectory; it

can also present a proper radiation pattern. Furthermore, an acoustic obstacle, or

reflector, is characterized by its shape and its reflective properties, which can vary

with the frequency.

In this Section we limit our discussion to propose some solutions for acoustic scene

analysis, putting the geometric constraints derived in Section 3.2 at good use for a

number of estimation problems. Notice that not all of the constraints presented in

Section 3.2 can be easily implemented in practice. This is the case of the constraint

associated to the TDOAs relative to the indirect path. Although algorithms for

disambiguating TDOA estimates in multi-path and multi-source environments have

been proposed [61, 62], its application to reflective TDOAs requires high computation

time, especially when multiple reflectors are present. Moreover, in our discussion we

will not consider constraints related to DOAs associated to the direct path. The

simplicity of such constraints (lines on which sources are bound to lie) makes them

less interesting than other type of constraints. Moreover, source localization through
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the triangulation of multiple DOAs is a common approach in the literature [63, 64],

and it has been widely studied.

In the next paragraphs we devise algorithms for array calibration (in terms of

position of the elements) from TOA measurements; source localization from TDOA

measurements; and reflector localization from TOA and DOA measurements.

3.4.1 Array calibration

The location and pose of the microphone/loudspeaker arrays with respect to the

environment and the position of the elements within each array need to be available

or they need to be somehow estimated. This problem is referred in the literature

as self-calibration. Calibration is a fairly common operation in 3D vision, as it is a

preliminary step to any application that uses multiple cameras to extract 3D geomet-

ric information from the imaged scene [11]. Only in recent times the multi-channel

audio processing community started investigating the problem of self-calibration of

microphone arrays. We can categorize the existing algorithms of self-calibration in

two classes: we refer to intra-calibration and inter-calibration techniques.

As far as intra-calibration is concerned, the goal is to accurately localize elements

within the same array and it is required when space-time processing algorithms can-

not rely on approximate measurements of the locations of the sensors. In [65] the

authors approach the problem of source localization with non-calibrated microphone

arrays with a two-step iterative algorithm: at alternate steps source and microphone

locations are localized using the knowledge acquired at the previous step. In [66] the

authors tackle the intra-calibration problem using the Multi-Dimensional Scaling

(MDS) [67] framework. More specifically, given the tape measures of the distances

between all possible pair of sensors, the locations of microphones are estimated with

respect to a reference one. In [68] the authors use the same approach but the mea-

surement of the distances between sensors is accomplished through the analysis of the

complex coherence function between microphones when diffuse noise field is present

in the environment. As a result, the calibration procedure turns out to be greatly

simplified with respect to [66].

Inter-calibration is required when multiple arrays are present in the acoustic scene

and the knowledge of their mutual positions is needed. Some solutions in this di-

rection have recently appeared in the literature. In [69] the authors address the

inter-calibration problem by jointly localizing with two microphone arrays an acous-
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tic source. The mutual positions are found with tools borrowed by computer vision

that jointly analyze the localization results for several locations of the acoustic source.

In [70] the authors combine intra and inter-calibrations using a hierarchical ap-

proach: first each array is “intra-calibrated” using diffuse-noise field as input signal,

then arrays are “inter-calibrated” with an approach similar to [69]. We notice, how-

ever, that intra-calibration and inter-calibration need two different procedures, as

different input signals are used in the two phases.

In this Section we describe a novel solution for the intra-calibration. Moreover,

we will introduce the concept of array global calibration which refers to the case

of estimating the pose of an array whose geometry is known in advance. Finally,

inter-calibration of multiple arrays is achieved by extending the global calibration

technique. The input measurements are the Times Of Arrival of signals emitted by

an acoustic source located at multiple positions. Notice that the same procedure

can be applied for the self-calibration of loudspeaker arrays, simply by switching the

roles of emitters and sensors.

3.4.1.1 Intra-calibration using TOAs

In this paragraph we discuss the problem of determining the position of an array

of microphones with respect to a calibration pattern (i.e. a set of sources in known

positions) using the constraints derived from the measurement of Times Of Arrival.

We refer to the case of intra-calibration, which means that the geometry of the

array is unknown. As a consequence, we are bound to estimate the location of each

microphone separately.

The scenario of the self-calibration problem is depicted in Figure 3.12. Sources in

given positions xs1 , . . . ,xsN produce a synchronized and known signal. TOAs tmn

related to the direct path are extracted for each receiver positions xr1 , . . . ,xrM . Our

goal is to infer the receiver positions from the knowledge of tmn. In order to do so,

we recall from Section 3.2.1 that each measurement imposes a quadratic constraint

on the receiver position in the form

xTCmnx = 0 , (3.52)

where Cmn is a conic matrix representing a circumference centered at xsn with

radius equal to tmnc; and x is the homogeneous representation of a point lying on

the circumference. If we consider all constraints related to the mth microphone at
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xr1

xr2

xrm

xrM

xs1

xs2

xsn

xsN

tmnc

Figure 3.12: Sources in known positions xs1 , . . . ,xsN emit a known signal. Times Of Arrival tmn related
to the direct path are extracted for each receiver positions xr1 , . . . ,xrM .

the same time we can collect them to obtain a cost function in the form of (3.35),

i.e.

J(x) =

N
∑

n=1

(

xTCmnx
)2

.

The most natural choice for the minimization of this function is the GTRS approach

proposed in Section 3.3.2.4, which is specific for constraints expressed by circumfer-

ences. Therefore, the microphone positions are estimated as

x̂rm = arg min
x

J(x)|x3=1 .

3.4.1.2 Global calibration and inter-calibration using TOAs

When the internal geometry of the array (i.e., the mutual position of the micro-

phones) is known in advance we can fruitfully take advantage of this information.

Let us denote with x′
rm the nominal position of the mth microphone (i.e. its posi-

tion in the local reference system), while xrm is its position in the world coordinate

system. We intend to estimate the rotation matrix and the translation vector that

relate the world and the local coordinate systems. The homogeneous points x′
rm

and

xrm corresponding to x′
rm and xrm , respectively, are related by an isometry, which is

a projective transformation H that embeds the rotation matrix and the translation

vector (see Section 2.2.4.1). In mathematical terms, this is written as

xrm = Hx′
rm , (3.53)
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where

H =

[

R(θ) t

0T 1

]

, (3.54)

where R(θ) is the matrix operating a rotation of the reference frame by an angle θ

and t is the translation vector.

xr1

xr2

xrm

xrM

x′
r1

x′
r2

x′
rm

x′
rM

t

R(θ)

Figure 3.13: Self-calibration problem when the geometry of the array is known in advance: our goal is
to estimate the rotation matrix R(θ) and the translation vector t that bring the array from the nominal
position to the actual one.

The problem has now become the estimation of the isometry that brings the local

coordinate system to the global one, i.e. find the rotation matrix and the translation

vector that moves x′
rm

to xrm . Replacing (3.53) into (3.52) leads to a new form of

the constraint:

x′T
rm

HTCmnHx′
rm

= 0 . (3.55)

If the nominal positions of the microphones in the array have been measured, the

only unknown in (3.55) is the isometry matrix H. As neither Cmn nor x′
rm are

unknowns in (3.55), we can define a cost function collecting the squared residuals for

all microphones in the same array:

Jgl(θ, t) =

M
∑

m=1

N
∑

n=1

(

x′T
rmH

TCmnHx′
rm

)2
, (3.56)

and the solution is given by

(θ̂, t̂) = arg min
θ,t

Jgl(θ, t) . (3.57)

The function in (3.56) does not present the same form of the generic cost function
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(3.35), hence we cannot use any of the optimization techniques introduced in Section

3.3.2. Moreover, we notice that the cost function has a strongly nonlinear dependence

on the rotation angle and the translation vector and therefore we can expect it

to present several local minima. The minimization problem can be solved using,

for example, the non-linear least-squares algorithm proposed in [60]. In order to

guarantee that the iterative minimizer is not trapped in a local minimum, it needs

to be initialized. A practical way to do so is to use the results from the intra-

calibration. In particular, the initial translation is set to the estimated position of the

first microphone, assumed that its nominal position is [0, 0]T . The initial value for the

rotation is then estimated finding the angle that minimizes the Euclidean distances

between the estimated sensor positions and the rotated nominal ones. Finally, the

position of the mth microphone is given by

x̂rm = Ĥx′
rm

,

where Ĥ is the homography estimated according to the minimization in (3.57).

If multiple arrays are present in the acoustic scene, the above equation is replicated

for the two arrays, therefore we end up with the estimation of two rotation angles

and two translation vectors. In this case, the two arrays can be inter-calibrated

(according to the definition of inter-calibration given in [69]) remapping the world

coordinate system with one of the two arrays.

3.4.1.3 Examples

In this Section we show some examples of array intra and global calibration on simu-

lated and real data. The experimental setup is depicted in Figure 3.14. It is installed

into a typical office-room, whose reverberation time is 0.7 s. The setup consists of a

calibration grid (visible in the foreground) and two uniform linear microphone arrays

(in the background), each accommodating 5 sensors distant 0.15 m. The calibration

grid is rectangular with size 0.9m×0.5m, and defines a set of 25×5 potential positions

of the loudspeaker. The origin of the grid is also the origin of the global reference

frame, whose axes are parallel to those of the calibration pattern. The loudspeaker

produces a sequence of white noise in the band [0, 22 kHz] and it is synchronized

with the microphones. The impulse response from the loudspeaker to each micro-

phone in the arrays is measured through a cross-correlation. The Times Of Arrival

tmn of the direct path are estimated by picking the first relevant maximum in the

70



3.4 Acoustic scene analysis

Figure 3.14: Snapshot of the acquisition system: the loudspeaker is placed on any position on the calibration
pattern (in the foreground). The gray panels close to the walls, on the background, are the two arrays (each
accommodating five sensors).

impulse responses. The measurements are then converted into geometric constraints

as described in Section 3.2.1 and collected into the corresponding cost function.

Simulations We first consider a simulation of the setup described above. The

positions of the arrays (in terms of rotation matrix and translation vector with

respect to the calibration pattern) are given in Table 3.2. The acquisition of the

Table 3.2: Displacement of the arrays with respect to the reference frame

Array # Rotation angle Translation vector

1 −π/6 [−1.8, 0.5]T

2 π/6 [1.8, 0.5]T

signal is simulated for up to N = 19 positions of the loudspeaker and with a sampling

frequency Fs = 44.1 kHz. For each position the measurement process is emulated by

corrupting the theoretical TOAs with K = 100 realizations of additive white noise

whose standard deviation error is 0.03 ms, corresponding to an error of 0.01 m on the

distances of flight, assuming the standard sound speed c = 343 m/s. The effectiveness

of the intra and inter-calibration algorithms is evaluated using the averaged Root
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Mean Square Error

E =

√

√

√

√

1

MK

K
∑

k=1

M
∑

m=1

‖x̂m,k − xm‖2 ,

where M = 10 is the total number of microphones; xm is the position of the mth

microphone; and x̂mk is the estimation of the position of the mth microphone in

the kth repetition. In order to verify the increase of robustness of the algorithms

to a variable number of constraints, the error has been computed for N ranging

from 3 to 19. Table 3.3 confirms that when a few measurements are available (from

Table 3.3: Average root mean square error of localization of microphones for a variable number of TOA
measurements

TOA meas. Intra-cal. RMSE Global cal. RMSE

3 0.0522 m 0.0331 m

4 0.0215 m 0.0187 m

5 0.0208 m 0.0194 m

8 0.0126 m 0.0086 m

12 0.0109 m 0.0077 m

16 0.0096 m 0.0063 m

19 0.0091 m 0.0056 m

three to five) the global calibration process is much more efficient than the intra-

calibration. When more information is available, the global calibration presents only

a little advantage over the intra-calibration.

Experiments We now test the accuracy of intra and global array calibration in the

real scenario of Figure 3.14. As far as global calibration is concerned, we test two

different configurations. First, we assume that the nominal geometry of the array

is preserved, i.e. the five sensors are collinear and the inter-distances are 0.15 m.

Due to the construction imperfections, however, the arrays do not exactly match

the above configuration, as they are not exactly collinear and uniformly distributed.

As a consequence, the global calibration procedure is repeated when the nominal

positions are assessed by the intra-calibration algorithm, thus performing a 2 steps

global calibration. Figure 3.15 shows the averaged Root Mean Square Errors of intra

and global calibration processes as a function of the number of observations, ranging

from 3 to 19. We notice that the intra-calibration overcomes the global calibration

algorithm when assuming perfect uniform linear arrays. The different behaviour

with respect to the simulations can be interpreted as the consequence of non exact

knowledge of the inner geometry of the arrays and an imperfect positioning of the
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Figure 3.15: Error of intra and global calibration as a function of the number of measurement of the Times
Of Arrival.

sensors. Indeed, when the a-priori information comes from intra-calibration results,

the global calibration exhibits improved accuracy. We observe that the RMSE rela-

tive to the experimental results is smaller than in simulative conditions; the reason

for this is that the error introduced in the simulations is greater than the error in

the experiments.

3.4.2 Source localization using TDOAs

Source localization with microphone arrays from TDOA measurements is a problem

that has been widely studied by the audio signal processing community. Most of

the localization algorithms are based on the fact that, given a pair of sensors, the

source is bound to lie on a hyperbola whose foci are on the sensors and whose

distance between vertices is proportional to the measured TDOA. This knowledge is

exploited in different ways. In [71] the authors propose a closed-form solution for the

intersection of TDOA-related hyperbolas measured on an array of three microphones.

In [72] the author proposes another closed-form algorithm for range computation that

applies to an arbitrary array geometry. In [73] a two-stage weighted least-squares

approach for source localization with a linear microphone array is proposed. Here

the weighting procedure is either based on some a-priori information on the statistics

of the measurement errors, or it starts from an approximate location of the source.

Spherical Interpolation [74] and Spherical Intersection [75] are shown [2] to improve

the localization accuracy over the above hyperbola-based methods, by intersecting
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spheres (circles in 2D). In order to accomplish this task, the source-reference sensor

distance is added as an extra unknown. In [2] a least squares reformulation of

the Spherical Interpolation is proposed, with a more efficient implementation. A

linear correction is also presented in order to improve the results. A similar least

squares method is proposed in [76]. An alternate approach is the linear intersection

algorithm proposed in [77]. In [73] the authors attenuate the non-linearity problem

by using the geometry of linear uniform arrays, and by reformulating the hyperbolic

constraint in terms of eccentricity and foci of the hyperbolas. Recently, in [59] the

authors summarized the most relevant approaches to source localization and provided

a set of exact and approximate solutions to the related estimation problems. In this

Section we will show how source localization can be efficiently formulated combining

projective constraints, leading to some advantages with respect to the state-of-the-

art solutions. In particular, since this approach does not require the definition of

a reference sensor, it makes it possible to realize localization systems composed by

multiple clusters of microphones. The clusters do not need to be synchronized each

other, thus making simpler and cheaper the required hardware.

3.4.2.1 Localization algorithm

Here we discuss the proposed source localization algorithm. In order to emphasize the

advantage of the absence of a reference sensor, we distinguish between two opposite

scenarios, as depicted in Figure 3.16. In particular, Figure 3.16-(a) shows a distri-

(a) (b)

Figure 3.16: Two different source localization scenarios. In (a) the microphones are all synchronized and
one of them is selected as the reference. The sensors surrounds the potential source positions denoted by
the gray area. In (b) the microphones are arranged in synchronized pairs, distributed along the border of
the room. The dashed lines depict the synchronization of the microphones.

bution of microphones installed along the borders of a room in which a source has
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to be localized, whose potential positions are denoted by the gray area. The state-

of-the-art algorithms typically operate in this situation, where all the sensors are

synchronized and one of them is selected as a reference. The TDOAs are measured

between microphone pairs that include the reference sensor. A set of N + 1 sensors

leads to the measurements of N TDOAs, denoted with t1, . . . tN . Figure 3.16-(b) de-

picts the same room in which the microphones are arranged in distributed pairs. In

this case, only the sensors within a same pair are synchronized, thus making mean-

ingless the definition of a reference microphone. The TDOAs are measured between

paired microphones. From the signals on 2N microphones we measure N TDOAs,

namely t1, . . . tN .

The proposed localization algorithm is suitable for both the scenarios. However,

the situation in Figure 3.16-(b) presents several advantages with respect to one in

Figure 3.16-(a). First of all, since the synchronism is required only between pair of

microphones, the acquisitions can be made with a set of two-channel (stereo) audio

interfaces, instead of using expensive multi-channel devices. Moreover, this solution

makes it possible to place the paired sensors at a distance that allows a reliable

estimation of the corresponding TDOA. It is well known that best performances

are given by microphone pairs separated by a distance in the range from 5 cm to

20 cm. Higher distances may cause a loss in the correlation of the microphone signals,

especially in reverberant rooms [78], thus making harder the correct estimation of

the TDOA.

As shown in Section 3.2.2, the TDOA tn measured on a pair of sensors leads to an

hyperbolic constraints, which is expressed as

xTCnx = 0 , (3.58)

where Cn is a conic matrix representing an hyperbola with foci at the microphone

positions and major axis equal to tnc. All the individual constraints can be collected

in a cost function in the form of (3.35):

J(x) =

N
∑

n=1

(

xTCnx
)2

. (3.59)

It is important to notice that the cost function is defined independently from the

particular scenario, as it does not involve the definition of a reference microphone.

Source localization is typically performed in real-time, therefore it is convenient to
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minimize (3.59) on the unit sphere by means of an iterative optimization algorithm.

The source position is therefore estimated as

x̂S = arg min
x

J(x) subject to ‖x‖ = 1 . (3.60)

The advantages of this approach are discussed in Section 3.3.2. Notice that the

iterative search of the minimum requires an initialization value. A good starting

point may be provided by linear methods such as the one presented in [76].

3.4.2.2 Examples

We now show some simulative examples in order to verify the feasibility of the source

localization algorithm. The first example we consider is a comparison of the accuracy

of the proposed methodology and of the state-of-the-art algorithm SRD-LS [59], both

operating with 4 sensors located at the corners of a 2 m × 2 m square room. The

SRD-LS algorithm has been chosen as a reference due to its superior localization

accuracy (low bias and standard deviation of the estimation error) with respect to

other standard methods, as shown in [59]. The localization is performed inside the

square defined by the sensors, which has been regularly sampled with 900 test source

positions. The theoretical range-differences (i.e. the TDOAs scaled by the speed

of sound) have been corrupted with 500 realizations of a zero-mean Gaussian noise

with standard deviation σ = 1 cm. The results are reported in Figures 3.17 and

3.18, relative to the x1 and x2 coordinates, respectively. In particular, from Figures

3.17-(a,b) and 3.18-(a,b), it can be noticed that the proposed algorithm present

moderate bias on the estimation of both x1 and x2 coordinates, within the same

range of values of SRD-LS technique. Similarly, Figures 3.17-(c,d) and 3.18-(c,d)

shows a comparable behaviour of the two algorithms in terms of standard deviation.

In fact, the average standard deviation of the estimation error is 81 mm for both

the algorithms, on both coordinates. What mainly distinguishes SDR-LS from the

proposed technique is the different distribution of the error in space.

The first example shows that the proposed localization technique has performances

comparable to the state-of-the-art algorithms, in particular SRD-LS [59]. We now

consider a scenario similar to one in Figure 3.16-(b), where the localization is per-

formed by means of pairs of synchronized algorithms. This case is interesting to show

the actual strength of the proposed approach. Here, the comparison with SDR-LS

algorithm is not possible, since it is based on measurements relative to a reference
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Figure 3.17: Comparison between the proposed source localization algorithm and the SRD-LS technique,
operating with 4 synchronized microphones located at the corners of a 2 m× 2 m square room. The sensors
are depicted as black dots; one of them is selected as a reference. Figures (a) and (b) show the bias on the
x1 coordinate; (c) and (d) show the standard deviation on the x1 coordinate.

microphone. Therefore, we decided to make a comparison with the linear technique

presented in [76] (referred as to GS), which allows to define an arbitrary number

of reference sensors. The results are shown in Figure 3.19-(a,b,c,d), where the sub-

figures are organized as in the previous example. The standard deviation of the

measurement error is kept fixed to σ = 7mm. Here we limit to show the behaviour

for the x1 axis, since that of x2 is analogous to the first one. In this case, the pro-

posed technique outperforms the linear one. The advantages over the first scenario

are evident: as discussed before, the synchronization is required only among sen-

sors belonging to the same pair; moreover, the TDOAs measured on closely-spaced

sensors are more reliable than one estimated from distant microphones.
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Figure 3.18: Comparison between the proposed source localization algorithm and the SRD-LS technique,
operating with 4 synchronized microphones located at the corners of a 2 m× 2 m square room. The sensors
are depicted as black dots; one of them is selected as a reference. Figures (a) and (b) show the bias on the
x2 coordinate; (c) and (d) show the standard deviation on the x2 coordinate.

3.4.3 Reflector localization

The knowledge of the acoustic properties of the environment is crucial for many

space-time processing applications. For example, in [79] source localization is ap-

proached using a maximum likelihood estimator whose data model incorporates the

prediction of the early reflections. In [21] the knowledge of the room geometry is used

to improve the rendering of soundfields through a loudspeaker array in a reverberant

environment.

Techniques for the reconstruction of the geometry of the environment are common

in computer vision. However, due to the different wavelengths of sound and opti-

cal waves, computer vision techniques return a geometry of the environment which

contains too much detail for acoustic purposes and, moreover, reflectance proper-

78



3.4 Acoustic scene analysis

x
1
 [m]

x 2 [m
]

 

 

−2 −1 0 1 2
−2

−1

0

1

2

−2

−1

0

1

2

(a) Bias of GS alg.

x
1
 [m]

x 2 [m
]

 

 

−2 −1 0 1 2
−2

−1

0

1

2

−0.1

−0.05

0

0.05

0.1

(b) Bias of the proposed alg.

x
1
 [m]

x 2 [m
]

 

 

−2 −1 0 1 2
−2

−1

0

1

2

0.5

1

1.5

(c) Std. dev. of GS alg.

x
1
 [m]

x 2 [m
]

 

 

−2 −1 0 1 2
−2

−1

0

1

2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(d) Std. dev. of the proposed alg.

Figure 3.19: Comparison between the proposed source localization algorithm and the GS technique, operating
with 4 pairs of sensors located at the corners of a 2 m× 2 m square room. The sensors are depicted as black
dots. Figures (a) and (b) show the bias on the x1 coordinate; (c) and (d) show the standard deviation on
the x1 coordinate.

ties of materials can strongly differ between the acoustic and optical domains. For

this reason the use of acoustic stimuli for the reconstruction of the geometry of the

environment is highly desirable.

The inference of room geometry from acoustic measurements is a quite novel prob-

lem, therefore the amount of related literature is limited. In [80] the authors use a

constrained room model and a ℓ1 least-squares regularization to perform the estima-

tion of the room geometry from the acoustic impulse responses. In [81] the authors

present a technique for the estimation of the reflective surfaces from continuous sig-

nals in theaters and large auditory rooms, which is based on inverse mapping of the

acoustic multi-path propagation problem. In [82] the problem is addressed using a

single room impulse response. Although introducing a remarkable theoretical formu-
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lation, this approach reveals to be much sensible to errors on the measured impulse

response, making it inapplicable in real situations.

In this Section we introduce two algorithms for localizing a planar obstacle, ex-

ploiting the quadratic constraints derived in Section 3.2 arising from measurement

related to the reflective paths. More specifically, the first algorithm is based on TOA

measurements and requires the synchronization between source and microphones.

The second method we propose is based on DOA measurements, which is suitable

whenever is it not possible to synchronize the acquisition system with the acous-

tic source. At the end of the Section, both the approaches are generalized for the

estimation of multiple planar reflectors.

As discussed in Chapter 1, reflector localization (and consequently the room geom-

etry inference) are at the base of the application scenario considered for the testing

of the methodologies proposed in this thesis. For this reason, the results relative to

this topic are reported in Chapter 6, which is devoted to simulations and experiments

concerning the specific application scenario.

3.4.3.1 Using TOAs

We consider a microphone array with sensors placed at xM1 , . . .xMN
. An acoustic

source is located at xS and, with no loss of generality, we assume the origin of the

reference frame to be placed in that location. This scenario is depicted in Figure

3.20, where the a single planar reflector lies on the line lR. The image source xS′ is

xM1

xM2

xMN

t1

t2

tN

xS xS′

lR

Figure 3.20: A microphone array with sensors at xM1
, . . .xMN

is used to estimate the reflective TOAs
t1, . . . tN caused by the presence of a reflector lying on the line lR. The source location xS coincides with
the origin of the reference frame.

obtained by mirroring xS over lR, and from the microphone signals we estimate the

reflective TOAs t1, . . . tN . As discussed in Section 3.2.1, each measurement leads to
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a quadratic constraint in the form

lTC⋄
nl = 0 , (3.61)

where C⋄
n denotes the dual conic matrix of an ellipse with foci at xS and xMn and

major axis tnc; and l = [l1, l2, l3]
T is a line tangent to the ellipse. The constraints

are then collected into the cost function

J(l) =

N
∑

n=1

(

lTC⋄
nl
)2

.

Since the source is located at the origin, C⋄
n has the form of a circumference matrix

(see Section 3.3.2.4). It is therefore convenient to cut J(l) with the plane l3 = 1, and

write the cost function as the constrained least-squares problem (3.51). The reflector

line is therefore estimated as

l̂R = arg min
l

J(l)|l3=1 . (3.62)

3.4.3.2 Using DOAs

We now consider the case of DOA measurements. In this case, a microphone array

is employed for estimating the DOAs related to the reflected paths. Without loss of

generality, the array is centered at the origin of the reference system, therefore DOAs

are measured with respect to this point. Multiple measurements can be performed

by moving a source in a set of known positions xS1 , . . .xSN
in order to estimate

the angles θ1, . . . θN , as depicted in Figure 3.21. As for the case of TOAs, each

measurement is turned into a quadratic constraint having the form

lTC⋄
nl = 0 , (3.63)

where now C⋄
n denotes the dual conic matrix of a parabola with focus at xSn and

directrix ln = [− sin θn, cos θn, 0]
T . As usual, the constraints are combined into the

cost function

J(l) =
N
∑

n=1

(

lTC⋄
nl
)2

, (3.64)

whose minimum provides an estimate of the reflector line. Since the computation

time is not crucial for the estimation of the reflector line, in this case the most
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xS1

xS2

xSn

xS′
1

xS′
2

xS′
n

θ1
θ2

θn

lR

Figure 3.21: A circular microphone array, centred at the origin of the reference frame, estimates the reflective
DOAs θ1, . . . θN generated by the reflections of a source moved at multiple positions xs1 , . . .xsN . We assume
the presence of a single reflector, lying on the line lR.

suitable approach for minimizing (3.64) is the one described in Section 3.3.2.1. In

particular, J(l) is cut with the planes l1 = 1 and l2 = 2, leading to the reduced

cost functions J1(l) = J(l)|l1=1 and J2(l) = J(l)|l2=1. Denoting with l̂1R and l̂2R the

global minima of J1(l) and J2(l), respectively, the estimated reflector line is finally

given by

l̂R = min
{

l̂1R, l̂
2
R

}

. (3.65)

3.4.3.3 Localization of multiple reflectors: Hough Transform

We consider here the problem of localizing multiple reflectors present at the same time

in the acoustic scene. In this case, a single acoustic acquisition leads to the estimation

of multiple measurements. More specifically, as far as TOAs are concerned, the

impulse response measured at the nth microphone will present peaks at positions

tl,n, where l = 1, . . . L is an index denoting different reflective paths. Similarly, for

the case of DOAs, the nth source position generates L reflective paths corresponding

to the angles θl,n, l = 1, . . . L. For the sake of simplicity, we assume that the number

of detectable reflections L remains constant for all the measurements. Notice that

L does not correspond, in general, to the number of obstacles in the environment,

since it accounts also for higher order reflections. However, higher order reflections
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can be seen as generated by virtual walls, which can be treated just as real ones. At

the end of the estimation process, potential virtual reflectors related to higher order

reflections may be pruned, if needed, by means of geometrical considerations.

The problem now is to assign a label to each measurement, in order to group the

TOAs or DOAs generated by the same reflector. We resort for this purpose to the

generalized Hough transform [83], which is a feature extraction technique commonly

used in computer vision to find out lines and other parametric curves in an image.

The basic idea is to make a number of hypotheses on the reflector locations and

then to verify, through a voting procedure, which of them are mostly coherent with

the measurements. We define a grid of I × J test reflector lines parametrized by

their orientation αi, i = 1, . . . I in the range [0, 2π]; and distance from the origin

ρj, j = 1, . . . J , in the range [ρmin, ρmax]. Therefore, the pair (αi, ρj) identifies the

line

x1 cosαi + x2 sinαi − ρj = 0 ,

whose parameter vector is l̃ij = [cosαi, sinαi,−ρj]
T . Mirroring the source located

at xS = [xS , 1]
T over the test reflector l̃ij, we obtain an hypothesis mirror source at

x̃ = HrxS , (3.66)

where

Hr =







1− 2 sin2 αi −2 cosαi sinαi 2ρj cosαi

−2 cosαi sinαi 1− 2 cos2 αi 2ρj sinαi

0 0 1






(3.67)

is the homography describing the specular reflection (see Section 2.2.4.2 for details).

The TOA associated to the test reflector l̃ij and relative to the nth microphone in

the array can be calculated as

t̃n,ij =
‖x̃− xMn‖

c
, (3.68)

where x̃ is the Cartesian representation of x̃; and the speed of sound c is assumed

to be known. Similarly, the DOA associated to l̃ij and relative to the source located
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at xSn = [xSn , 1]
T is obtained as

θ̃n,ij =















arctan
(

x̃2n
x̃1n

)

, if x̃2n ≥ 0

arctan
(

x̃2n
x̃1n

)

+ π , if x̃2n < 0

(3.69)

where (x̃1n , x̃2n) are the coordinates of the hypothesis mirror source given by

x̃n = [x̃1n , x̃2n , 1]
T = HrxSn .

At this point we can set up a voting procedure that estimates the likelihood of each

test reflector. For this purpose we consider the functions ft(i, j) and fd(i, j) for

TOAs and DOAs, respectively:

ft(i, j) =

N
∑

n=1

L
∑

l=1

ηt(tl,n, t̃n,ij) ,

fd(i, j) =

N
∑

n=1

L
∑

l=1

ηd(θl,n, θ̃n,ij) .

(3.70)

As far as TOAs are considered, ηt(tl,n, t̃n,ij) is a binary function that evaluates if the

measured TOA tl,n is compatible with the hypothesis t̃n,ij and it is defined as

ηt(tl,n, t̃n,ij) =

{

1 if |tl,n − t̃n,ij| < νt

0 if |tl,n − t̃n,ij| ≥ νt
,

where νt is an acceptance threshold. In a similar way, the function ηd(tl,n, t̃n,ij) for

DOAs is defined as

ηd(θl,n, θ̃n,ij) =

{

1 , if |θl,n, θ̃n,ij|π < νd

0 , if |θl,n, θ̃n,ij|π ≥ νd
,

where |θl,n, θ̃n,ij|π denotes the unsigned angular distance in the range [0, π] between

θl,n and θ̃n,ij; and νd is a different acceptance threshold.

For the case of TOA measurements, a set of L candidate reflector lines (i.e., the

reflectors that most likely have generated the acoustic measurements) are selected as
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the hypothesis reflectors such that ft(i, j) > Tt, where Tt is an acceptance threshold.

If necessary, it is also possible to define a neighborhood suppression rule in order

to retain a single candidate reflector in certain portion of the grid. An example of

generalized Hough transform for the case of TOA measurements is shown in Figure

3.22-(b). This map is obtained from simulations on the simple scenario in Figure

3.22-(a), where reflections have been predicted up to the first order. The measure-

ment process has been simulated by corrupting the calculated TOAs with zero-mean

gaussian noise with standard deviation σt = 0.045 ms, corresponding to 2 samples

at 44100 Hz in the discrete impulse responses. The candidate reflectors are denoted

by the green circles superimposed to the Hough map.
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Figure 3.22: Generalized Hough transform for the case of TOA measurements. Figure (a) depicts the
simulated scenario; the corresponding Hough map is shown in Figure (b).

The case of DOA measurements is a bit more involved. We discuss about this case

through the example in Figure 3.23. The Hough map in Figure 3.23-(b) is calculated

from simulations relative to the scenario in Figure 3.23-(a), considering reflections

up to the first order. The DOAs have been corrupted with zero-mean white noise

with standard deviation σd = 1◦. We notice that the Hough transform is capable

to precisely detect the orientation of candidate reflectors, but it fails in determining

their distance. It is therefore convenient to estimate the orientation and the distance

in two stages. More specifically, we first estimate the orientations from the highest

85



3 Geometric wave field analysis

peaks of the function

a(i) =

J
∑

j=1

fd(i, j) , (3.71)

located at î1, . . . îL. The second steps concerns the estimation of the corresponding

distance indexes, which are given by

ĵl = arg min
j

fd(̂il, j) . (3.72)

Finally, the parameters of the candidate reflectors are obtained as
{

α(̂il), ρ(ĵl)
}L

l=1
.
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Figure 3.23: Generalized Hough transform for the case of DOA measurements. Figure (a) depicts the
simulated scenario; the corresponding Hough map is shown in Figure (b).

The generalized Hough transform provides only a rough estimate of the reflector

positions. The estimation can be refined by setting up L optimization problems in

the form of (3.62) for the case of TOAs, or in the form of (3.65) for the case of

DOAs. In order to do so, it is necessary to associate each measurement with one of

the candidate reflectors. This labeling operation can be done as follows. Denoting

with t̃n,l the TOA associated to the lth candidate reflector l̃l, the measured TOA tn

is assigned to that reflector if

|tn − t̃n,l| < Gt , (3.73)
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where Gt is an acceptance threshold. Similarly, the measured DOA θn is assigned to

the lth candidate reflector if

|θn, θ̃n,l|π < Gd , (3.74)

where θ̃n,l is the DOA relative to the candidate reflector l̃l; and Gd is an acceptance

threshold.

Notice that the procedure presented above is useful for detecting potential outliers

in the set of measurements. Indeed, if (3.73) (for TOAs) or (3.74) (for DOAs) are

not satisfied for any of the candidate reflectors, the nth measurement is considered

as an outlier and therefore discarded.

3.4.4 Discussion

All the presented estimation algorithms rely on quadratic constraints based on a

two-dimensional geometry. Notice that this fact does not constitute a limitation,

since the underlying theory can be readily extended to the three-dimensional case.

In particular, moving from 2D to 3D means working in the projective space P3,

where a generic point is represented by means of 4 homogeneous coordinates, namely

X = [x1, x2, x3, x4]
T . In P3 there exists a duality between points and planes [11]. The

homogeneous representation of a plane with equation p1x1 + p2x2 + p3x3 + p4 = 0

is given by the vector P = [p1, p2, p3, p4]
T , which is homogeneous and therefore

represents a point in P3. Quadratic forms in P3 are called quadrics, which have

the same duality properties of conics in P2. In particular, a quadric is described by

XTDX = 0, where D is a symmetric 4 × 4 matrix containing the quadric coefficients

[11]. Its dual representation is given by PTD⋄P where P is the parameter vector of

a plane tangent to the quadric, and D⋄ = det(D)D−1 contains the coefficients of the

dual quadric [11].

As shown in [84], TOA measurements related to reflective paths in a three-dimen-

sional space lead to quadratic constraints in P3, i.e. to quadrics. In particular, the

TOA related to the path linking a source at XS and a microphone at XM through

a reflection, constrains the reflector (a plane in 3D) to be tangent to an ellipsoid.

The foci of the ellipsoid are XS and XM , while its major axis is proportional to

the TOA. Following the same reasoning, it can be proved that TOA measurements

on the direct paths lead to quadrics representing spheres; TDOA measurements on

direct paths correspond to hyperboloids; and DOAs related to reflective paths lead

to paraboloids. The combination of multiple constraints conducts to the definition of
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a homogeneous cost function in P3, whose minimization leads to an estimate of the

acoustic primitive of interest, which can be either a 3D point (microphone or source

position) or a plane (on which a reflector lies). As an example, in [84] the position of

a planar reflector is estimated as the common tangent to a set of ellipsoids originated

from multiple TOA measurements.
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In this Chapter we describe a methodology for wave field rendering through an array

of loudspeakers, based on the geometric decomposition of a complex sound field.

Starting from the problem of rendering a virtual source in an anechoic chamber, we

will incrementally discuss the steps needed to render also the virtual environment

in which the virtual source is collocated. Adopting a beam tracing technique, it is

possible to predict the effects of the virtual source in the virtual environment. More

specifically, the acoustic propagation is modelled as a set of beams that originate

from virtual image source positions, each one parametrized with a direction and an

angular aperture. Each beam represents the region where the correspondent virtual

image source is visible. As a consequence, the use of the beam tracing engine makes

it possible to describe complex wave fields as the superposition of elementary beams.

The virtual environment can therefore be rendered by synthesizing all the individual

beams by means of a loudspeaker array, each properly delayed and attenuated. The

rendering of a beam is performed through a beam shaping algorithm.

The beam tracing engine is developed in a two-dimensional space. This fact does

not constitute a restriction since we aim at rendering the wave field in the plane

surrounding the listener ears. Although the proposed rendering engine is easily

estendible to the three-dimensional case, we prevent us from the rendering in a 3D

space due to the disproportionate cost of the implementation, as already discussed

in Section 1.2.

As a second step, we consider also the problem of sound field reproduction within

a real room that, in most cases, is far from being anechoic. This problem is known

in the literature as room compensation. Relevant works related to this topic can be

found, for example, in [20] and [21]. More specifically, in [20] the authors address the

problem through a particular multichannel adaptive filtering which considers also

the physical acoustic propagation; in [21] the room compensation in simple environ-

ments is achieved by modelling the early reflections by means of the image source
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method. Here we propose an alternate method which exploits the before mentioned

beam tracing technique also for predicting the early reflections caused by the envi-

ronment to be compensated for. Given the floor plan of the environment and the

loudspeaker positions, the beam tracing engine determines the set of image loud-

speakers along with their visibility in all the listening points. We notice that, if the

information about the geometry of the room in which the rendering system operates

is not available in advance, it may be inferred from suitable acoustic measurements,

as described in Section 3.4.3.

The Chapter is organized as follows. Section 4.1 introduces the problem of ren-

dering, taking into account all the aspects mentioned above; Section 4.2 presents the

beam tracing algorithm employed for determining the set of acoustic beams to be

rendered as well as the beams that generate the early reflections to be compensated;

in Section 4.3 we describe the rendering methodology, showing some preliminary

tests on room compensation.

4.1 Problem formulation

In this section we give a general description of the rendering problem. In particular

we define the concept of a rendering system pointing out issues that we need to

address to achieve reproduction of the desired wave field.

4.1.1 Scenario description

The goal of a rendering system is to accurately reproduce a desired wave field inside

the listening area, by means of arbitrary distribution or array(s) of loudspeakers.

The listening area is defined by a set of control points. A simple example of a

rendering scenario is shown in Figure 4.1, where the loudspeakers (indicated with

black crosses) are placed on a circle around the listening area, which is sampled by

a regular distribution of control points.

Let us consider the situation of rendering an omnidirectional virtual source. In

Figure 4.1 the virtual source is depicted by a black circle and the control points by

dots. The listening area encloses the control points and it is denoted by shaded grey.

This rendering scenario is interesting for walkthrough applications, where we intend

to improve the immersivity of the acoustic scene.

We now consider a more challenging scenario in which we aim at rendering not only
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Loudspeakers

Control points

Virtual source

Virtual environment

Virtual image sources

Real environment

Image loudspeakers

Figure 4.1: Geometry of a rendering system operating in a real environment and aiming at reproducing the
reflections of a virtual environment.

the presence of the virtual source but also of a virtual environment that surrounds

it. The environment causes reverberations to appear, and consequently we should

perceive the reflective paths coming from the reflectors along with the direct path. In

order to reproduce the effect of reverberations (at least in terms of early reflections)

we need therefore, under the hypothesis of geometrical acoustics, to render also the

virtual image sources obtained by mirroring the virtual source against the reflectors

[22, 85, 86]. We aim at resorting to the superposition principle, i.e. we superimpose

the effect of reflective sources to the direct one as adopted in [87]. A simple example

is shown in Figure 4.1, where the dashed line defines the contour of a rectangular

room. More specifically, each segment represents a planar reflector. The virtual

image sources are represented by grey circles.

So far, however, we neglected the effect on the wave field reproduction of the

real environment in which the rendering system is operating, i.e. we supposed a

free-field (anechoic) propagation between each loudspeaker and each control point.

We aim at devising a methodology for compensating, at least partially, the effect of

reverberations coming from the real environment on the reproduced wave field. Once

again, if the real environment is composed by planar reflectors the early reflections

can be modelled by image loudspeakers whose positions are predicted with the image

source technique. In Figure 4.1 the continuous line represents the real environment

and the grey crosses denote image loudspeakers.
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4 Geometric wave field rendering

The example in Figure 4.1 is very simple. Indeed, the real and virtual environ-

ments present a rectangular geometry. In more complex environments (both real

and virtual) image sources (virtual sources or image loudspeakers) are not visible

from all points in space. Consider for example the environment shown in Figure 4.2.

Here, the presence of a wall occludes the direct path between the acoustic source

and a receiver (marked with a black point). We notice that in this example no

reflective paths imping on the receiver. In fact, the visibility conditions cause the

subdivision of rays originating from the (image) source into beams, which split and

branch during propagation and interaction with the environment. Each beam has a

limited region in which it is visible. We notice that this problem is common for both

virtual sources in virtual environments and image loudspeakers in real environments,

as they both can be occluded by virtual or real walls respectively. It is well known

in the literature [86, 10] that the image source technique is not suitable for occluded

environments, as a demanding visibility check between receivers (control points) and

image sources (virtual sources or image loudspeakers) is required. A technique that

addresses the above visibility issues is beam tracing [88, 89, 33, 90, 91, 10, 17, 92],

which models the interaction of the wave field with the environment as the propa-

gation, branching and reflection of beams, each characterized by the position of the

image source, its orientation and its aperture.

first ordersecond order

image source image source

source

receiver

Figure 4.2: Occlusions limit regions in which the source and image sources are visible; the visibility conditions
can be encoded by beams that split and branch during propagation and interaction with the environment.

As a result, beam tracing models the wave field as a tiling and superposition of

acoustic beams. The Figure 4.3 shows the superposition of beams predicted by beam

tracing in a densely occluded enclosure. For clarity of visualization the figure shows

only beams up to the second order of reflection.
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Figure 4.3: The superposition of beams predicted by beam tracing in a densely occluded environment; beams
up to the second order of reflection are shown.

4.1.2 Requirements

In the light of the issues introduced in the previous paragraph, we now identify

the requirements of a rendering system that reproduces the acoustics of a virtual

environment when it is operating in a reverberant room. We can distinguish the

following components:

1. A propagation modelling technique that traces beams as they propagate in the

virtual environment. This operation can be efficiently performed by employing

the beam tracing method described in Section 4.2;

2. A beam shaping engine that allows us to render a beam in the listening area by

means of a loudspeaker array. This component is detailed in Section 4.3.1;

3. A methodology for the compensation of the early reflections produced by the

environment hosting the rendering system. As we see in Section 4.3.4, the room

compensation requires the knowledge of the positions of the image loudspeaker

along with their visibility conditions. Once more, we resort for this task to

beam tracing.

Let us consider the scenario of rendering a virtual source when both virtual and

real environments are anechoic. In this situation we need only the beam shaping

component. On the other hand, when we intend to reproduce the early reflections of

a virtual environment we need to incorporate the propagation modelling technique

to trace virtual image sources and render them. If, finally, our rendering system is
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hosted in a reverberant real environment, we need also the compensation technique.

As a consequence the components outlined above should be modularly used to achieve

the desired reproduction result.

4.2 Beam tracing

As discussed in Section 4.1, visibility conditions cause the splitting of rays originating

from an image source into beams. In Section 2.3.2 we saw that the mutual visibility

between reflectors is conveniently encoded by visibility diagrams in the ray param-

eter space. With reference to Figure 4.4, we show how to use visibility diagrams to

iteratively trace beams. Let us consider the reflection of a beam Wi onto the reflector

AB delimited by the endpoints xA and xB. We first compute the reflected bundle

of rays W′
i finding the image source x′

S (determined by mirroring the source xS over

the segment xAxB) and the rays l1 and l2 that limit W
′
i, as in Figure 4.4-(a). The

splitting process is accomplished in the ray space by intersecting the reflector’s visi-

bility diagram with the ray space representation of W′
i (i.e. the portion of the plane

S ′ limited by l1 and l2), as shown in Figure 4.4-(b). The ray space representation

of W′
i is made of the segments Wi1, Wi2 and Wi3, each lying in a different visibil-

ity region. These segments represent the sub-beams originated from the splitting of

W
′
i. The corresponding beams in the geometric space are depicted in Figure 4.4-(c).

One of them (Wi3) proceeds to infinity, the others (Wi1 and Wi2) are blocked by

reflectors and therefore they originate new beams. The recursive procedure stops

when the preassigned order of reflection is reached or when the beams die out (i.e.,

when they are attenuated below a preassigned threshold of magnitude). It is well
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xF

xF
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xS′

xS′
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l1
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l2
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l2
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W′
i

W′
i

Wi1
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A
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Wi2
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(a) (b) (c)

Figure 4.4: (a) Reflection of the beam in the geometric space; (b) Beam subdivision in the ray space; (c)
New beams in the geometric space.
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known in the literature [88, 10, 17, 92] that beams can be organized in a beam tree

data structure that contains the branching relationship between acoustic beams and

represent efficiently the visibility from the geometric space of the source position.

Further references on the beam tracer and its implementation can be found in [18]

and [93].

The knowledge of acoustic beams is necessary for the rendering stage whenever

we want to reproduce the early reflections of a virtual environment and/or we want

to compensate those of a real environment. In the first case the virtual environment

causes virtual image sources to appear and the rendering system has to reproduce

each one together with its beam-pattern (see Section 4.3.3). In the second case, in

order to prevent that reverberations of the real environment damage substantially

the quality of rendered sound field, early reflections have to be incorporated in the

data model (see Section 4.3.4). To do this, the visibility between control points

and image loudspeakers is extracted from the beam tree in the path tracing phase

described in the following paragraph.

4.2.1 Path tracing

Once the receiver (control point) location xr = (x1r , x2r) is specified, a simple it-

erative procedure looks up the beam tree to find the paths from source to receiver.

We use the beam parametrization shown in Figure 2.5-(f), Section 2.3, where the

beam is parametrized with the vectors corresponding to its bounding lines oriented

so that a point inside the beam is always on the right of those vectors. In order to

test if a point is inside the beam, therefore, we only need to verify that it is on the

right side of all vectors that parametrize the beam. Denoting the beam origin with

xS′ = (x1S′ , x2S′ ), the length of the acoustic path is d = ‖xS′ − xr‖. The corre-

sponding travelling time (delay) is t = d/c, where c indicates the speed of sound.

4.3 Soundfield Rendering

This Section focuses on the methodology for reproducing a desired wave field within

a listening area by means of a loudspeaker array. First of all we describe the beam

shaping engine used for rendering elementary narrow-band acoustic beams. After

that the wideband extension is described. Then, we show how the rendering of

a complex wave field is achieved through the superposition of individual beams.
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Finally, the room compensation strategy is discussed.

4.3.1 Beam shaping

We now consider the rendering of an acoustic beam through a loudspeaker array. Ac-

cording to Figure 4.5, a set of ideal omnidirectional loudspeakers (i.e., point sources)

are placed at arbitrary positions xp1 , . . .xpM in an anechoic room. We also define

xs

xp1

xp2

xpM

xa1

xa2

xan

xaN

αn
θ

φ

Figure 4.5: Geometry of the proposed rendering system.

a set of control points xa1 , . . .xaN within the listening area, depicted as the gray-

shaded circle. The goal is to reproduce the acoustic beam generated by a virtual

source located at xs emitting towards the direction θ and with angular aperture φ.

The Fourier transform Pd(ω,xan) of the desired wave field at the nth control point

is therefore given by

Pd(ω,xan) = Gω(xan |xs)Θ(θ, φ, αn)S(ω) ,

where

Gω(xan |xs) =
e−j ω

c
‖xs−xan‖

4π‖xs − xan‖
is the Green’s function (see (2.13)) from xs to xan , ω being the angular frequency;

Θ(θ, φ, αn) is an angular function describing the beam-pattern. With reference to

Figure 4.5, αn is the angle under which the virtual source is seen from xan ; and S(ω)

is the Fourier transform of the source signal. The goal of the beam shaping engine is

to reproduce the effect of the virtual source at all the listening points by means of the

loudspeakers. In other words, we aim at finding the vector of complex coefficients

hω applied to the loudspeakers that satisfies the following system of equations:

rωS(ω) = GωhωS(ω) , (4.1)
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where

Gω =









Gω(xa1 |xp1) . . . Gω(xa1 |xpM )
...

. . .
...

Gω(xaN |xp1) . . . Gω(xaN |xpM )









(4.2)

is the propagation matrix from each loudspeaker to each control point. The vector

rω encodes the desired response at all the control points, and it is therefore defined

as

rω =









Gω(xa1 |xs)Θ(θ, φ, α1)
...

Gω(xaN |xs)Θ(θ, φ, αN )









. (4.3)

The system in (4.1) has, in general, no exact solution; the best solution in the least-

squares sense is given by

ĥω = G+
ω rω = (GH

ω Gω)
−1GH

ω rω . (4.4)

A smooth beam-pattern can be obtained by choosing N >> M and specifying

Θ(θ, φ, αn) as a Gaussian function [94]. Unfortunately, in some cases the matrix

GH
ω Gω is ill-conditioned, and a reconditioning step is needed in order to provide

feasible values to the coefficients ĥω. As noticed in [19], a SVD-based reconditioning

technique reveals to be suitable for our purposes. With respect to Tikhonov regular-

ization [95], the SVD-based reconditioning is independent from rω, and therefore it

can be performed just with the knowledge of loudspeaker and control point locations,

before defining the virtual source position. As a consequence, the matrix G+
ω can be

stored in advance.

4.3.2 Wideband extension

The least-squares solution in (4.4) depends on the frequency ω. If the virtual source

emits a narrow-band signal s(t) centered at the frequency ω̄, the resulting coefficients

ĥω̄ = [hω̄,1, . . . hω̄,M ]T can be directly applied to the loudspeakers to obtain the best

approximation of the desired response. However, when the source signal is wide-

band, a single-frequency solution is not sufficient for accurately reproducing the

beam-pattern. In this case, we have to derive a digital filter to be applied to each

loudspeaker, instead of a single complex coefficient.

Let us consider a wide-band source signal sampled at ωS having frequency com-
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ponents limited in the range [ωmin, ωmax]. We operate a uniform sampling of the fre-

quency axis in [0, ωS

2 ] using a sampling step of ∆ω. Therefore, by posing ωk = k∆ω

with k = 0, . . . , L − 1, the frequency response of the loudspeaker filters can be ob-

tained as

ĥωk
=







G+
ωk
rωk

if ωk ∈ [ωmin, ωmax] ,

0 otherwise
.

The total number L of samples specifies the frequency resolution. As noticed in [94],

in order to achieve an accurate wave field reproduction at all the frequencies, a proper

choice is to select L such that ∆ω ≤ 2π · 40 rad/s. In order to obtain a real-valued

filter in the time domain, the response at the negative frequencies is derived as

ĥ−ωk
= ĥ∗

ωk
,

where ∗ denotes the complex conjugation operation.

4.3.3 Rendering of the wave field as multiple beam shaping

We now consider the problem of rendering a virtual source along with the effect of the

early reflections generated by the virtual environment surrounding it. As discussed

in Section 4.1, the global wave field can be modelled by superposing the direct beam

and the beams originated from the reflective paths. Once the planar geometry of the

virtual environment and the position of the virtual source are specified, the beam

tracing engine introduced in Section 4.2 determines the set of virtual image sources

and the relative beams to be rendered. More specifically, the beam tracer specifies

each beam with the virtual image source position, the direction and angular aperture.

We notice that these parameters give a pure geometrical characterization of a beam.

In order to reproduce the effect of a beam as a reflection, we need also to control

two other parameters: the amplitude attenuation due to the reflective properties of

the virtual environment and the emission delay. More specifically, the beam to be

rendered has to be attenuated by a factor that depends on the reflection order of the

virtual source and on the reflection coefficients of the virtual environment. Moreover,

the beam emission has to be delayed in order to account for the distance between

the virtual source and the listening area. The rendering of a complete wave field is

finally performed by superposing the loudspeaker signals produced by the individual

beams, each one properly scaled and delayed.
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4.3.4 Room compensation

So far, we considered the ideal scenario of rendering a wave field in a anechoic

room. When the sound reproduction system is operating into a real environment,

the effect of the reverberations drastically affects the quality of the rendered wave

field, as noticed in [21]. Here we discuss a methodology for performing the room

compensation, i.e. a technique for attenuating the effect of the early reflections

on the reproduced sound field. This can be done in a complete geometric fashion,

exploiting the knowledge of the two-dimensional map of the environment. In order

to do so, we employ, once again, the beam tracing engine presented in Section 4.2.

In particular, the beam tracing allows us to:

1. determine the set {x′
pm,i

}Qm

i=1 of the Qm image loudspeakers associated to the

mth loudspeaker, up to an arbitrary reflection order;

2. evaluate the visibility of the control point xan from the image loudspeaker

x′
pm,i

; this operation is accomplished through the path-tracing described in

Section 4.2.1.

The contribution of the mth loudspeaker to the nth control point can be modelled

as follows:

G⋆
ω(xan ,xpM ) = Gω(xan |xpM ) +

Qm
∑

i=1

βm,iV (xan ,x
′
pm,i

)Gω(xan |x′
pm,i

) , (4.5)

where V (xan ,x
′
pm,i

) is a binary function that maps the visibility of xan from x′
pm,i

;

βm,i is the attenuation coefficient associated to the image loudspeaker at x′
pm,i

. The

value of βm,i depends on the reflective properties of the walls and on the reflection

order of the image loudspeaker. In (4.5) we recognize a first term which corresponds

to the free-field propagation (i.e., the Green’s function), and a second term including

the effect of all the visible reflective paths generated by the mth loudspeaker at the

control point xan . The propagation matrix in (4.2) becomes

G⋆
ω =









G⋆
ω(xa1 ,xp1) . . . G⋆

ω(xa1 ,xpM )
...

. . .
...

G⋆
ω(xan ,xp1) . . . G⋆

ω(xan ,xpM )









, (4.6)
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and the corresponding least-squares solution is given by

ĥ⋆
ω = G⋆+

ω rω = (G⋆H
ω G⋆

ω)
−1G⋆H

ω rω .

It is important to notice how the total number of image loudspeakers, given by
∑M

m=1 Qm, is determined by the maximum reflection order considered for the beam

tracing step. In other words, this means that the proposed room compensation

technique counteracts the effect of a limited number of reflections. An increase of

the maximum reflection order is therefore expected to improve the compensation, at

the expense of a slower and more memory consuming beam tracing step. A practical

solution is to consider reflections up to the second or third order, which represents

a good trade-off between the amount of compensation and the computation effort.

As shown in the next paragraph, in fact, the effect of early reflections is mostly

dampened considering image loudspeakers up to the second order of reflection.

4.3.5 Discussion

We now discuss the effect of room compensation in the listening area. For the sake of

convenience, we consider a rendering system having a number of loudspeakers equal

to the number of control points, i.e. M = N . In this case the propagation matrix

G⋆
ω is square. We also suppose that the reciprocal positions of the loudspeakers and

of the control points guarantees that G⋆
ω is non-singular. Under these assumptions,

the system in (4.1) presents the exact solution

h⋆
ω = (G⋆

ω)
−1rω .

In order to characterize the effect of room compensation, let us consider the case

of having a desired response rω = [1 . . . 1]T . It is clear that, in this case, G⋆
ωh

⋆
ω =

[1 . . . 1]T . This means that h⋆
ω compensates for both the effects of the loudspeakers

and of the early reflections. In other words, h⋆
ω acts as an equalizer of the channels

between each loudspeaker and each control point. When a generic desired response

rω is considered, we can interpret the filtering operation as composed of two steps:

in a first stage the system performs a deconvolution operation in order to equalize

the channels; after that, the system identifies the filters to synthesize the desired

response.

In the more general case of N > M , the system in (4.1) admits only an approx-
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imate solution (the best in the least-squares sense) ĥ⋆
ω. This means that an exact

deconvolution is not possible. However, we expect the system to achieve the best

room compensation in the least-squares sense.

For a better comprehension of the effects of room compensation, we show the

results of a simple simulation. Consider the rendering of a beam inside a real envi-

ronment composed of two parallel reflectors. The distance between the reflectors is

5 m and the reflection coefficient is 0.7. The acoustic propagation in the real envi-

ronment is simulated with the beam tracer, modelling the reflections up to the 10th

order. Figure 4.6 shows the response of the beam shaping engine at a point xan̄ in
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Figure 4.6: Frequency response of the beam shaping engine. The desired response Fd is compared with: the
free-field response Fff, the non-compensated response Fnc, the room-compensated response up to the 2nd

order F
(2)
rc and the room-compensated response up to the 10th order F

(10)
rc . The vertical lines denote the

room resonant modes.

the center of the listening area. The desired response Fd(ω,xan̄) is compared with:

• the free-field response, i.e. the frequency response Fff(ω,xan̄) of the beam

shaping engine in an anechoic environment;

• the non-compensated response Fnc(ω,xan̄), i.e. the frequency response of the

beam shaping engine inside the real environment without compensating for it;

• the response of the room compensation F
(2)
rc (ω,xan̄) performed considering

reflections up to the 2nd order;

• the response of the room compensation F
(10)
rc (ω,xan̄) performed considering
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reflections up to the 10th order, i.e. the maximum compensation for this sim-

ulation.

We observe that the free-field response approaches the desired one as the frequency

increases. The noticeable gap in the left part of the curve is due to the poor directiv-

ity at low frequencies. On the other hand, we notice that the environment acts on the

non-compensated frequency response as a filter, which strongly alters the frequency

content of the reproduced wave field. In particular, we notice that the most relevant

peaks of Fnc(ω,xan̄) coincide with a subset of the room resonant modes envisioned

by the propagation theory, denoted in Figure 4.6 with vertical lines. Through the

room compensation we aim at reducing the effect of the reverberations. When the

room is compensated up to the 2nd order, we observe a modest attenuation of the

peaks. When the maximum compensation is performed (10th order in this case),

the frequency response F
(10)
rc (ω,xan̄) follows the free-field response Fff(ω,xan̄). The

residual ripple around the free-field response remarks the fact that an exact decon-

volution is not possible.

So far we considered the response in a single-point. However, the solution ĥ⋆
ω

is optimal in the least-squares sense, i.e. it guarantees that the residual ‖rω −
G⋆

ωĥ
⋆
ω‖2 between the desired response and the actual response at the control points

is minimum. In order to better appreciate the effect of room compensation, Figure 4.7

shows: the normalized residual1 Rff of the free-field response; the normalized residual

Rnc of the non-compensated response; the normalized residual R
(2)
rc of the room-

compensated response up to the 2nd reflection order; and the normalized residual

R
(10)
rc of the room-compensated response up to the 10th order. Looking at the non-

compensated response Rnc, we observe that the effect of early reflections becomes

very evident. In fact, the environment acts as a comb filter on the free-field response,

whose peaks match the room resonant frequencies, depicted as vertical lines in Figure

4.7. This phenomenon is less evident in the response at xan̄ , since some resonant

modes may be cancelled out by the zeros of the impulse response at xan̄ . We also

observe that the room compensation strongly dampens the resonant peaks, especially

for the 10th order compensation where the normalized error R
(10)
rc approaches the

free-field curve Rff.

1The normalized residual is calculated as
‖rω−G

⋆

ω
ĥ⋆
ω
‖2

‖rω‖2
.
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Figure 4.7: Normalized residual of beam shaping at the control points. The curves Rff, Rnc, R
(2)
ff and R

(10)
ff

depict the free-field response, the non-compensated response, the 2nd room-compensated response and the
10th room-compensated response, respectively. The vertical lines denote the room resonant modes.
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5 Theoretical assessment

methodologies and evaluation

metrics

In this Chapter we introduce novel methodologies suitable for predicting the accuracy

of arbitrary estimation algorithms, as well as for assessing the accuracy of wave field

rendering techniques. Such methodologies are introduced in Sections 5.1 and 5.2,

respectively, and they will be used for evaluating the analysis algorithms and the

rendering technique proposed in Chapter 3 and 4, respectively. Finally, in Section

5.3 we present the evaluation metric used for evaluating the accuracy of the reflector

localization techniques proposed in Section 3.4.3.

5.1 Error propagation analysis for estimation algorithms

In this Section we present a novel approach to error propagation analysis that allows

us to predict the impact of measurement errors on an arbitrary minimization process.

The proposed methodology is based on introductory concepts of Catastrophe Theory

[96], and can be applied to a wide range of situations and cost functions. For our

purposes, we adopt it for predicting the accuracy of some of the estimation algorithms

presented in Chapter 3.

5.1.1 Mathematical derivation

Let J(x, c) be a generic cost function, with variables x = [x1, . . . xM ]T and parame-

ters c = [c1, . . . cN ]T . The parameters correspond to the experimental measurements

or observations, and the variables represent the object of the estimation. As an

example, for the case of source localization using TDOAs (see Section 3.4.2), the

variables x1 and x2 denote the unknown source position; and the terms c1, . . . cN are
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5 Theoretical assessment methodologies and evaluation metrics

given by the measured TDOA values. Let x0 be the correct value of the variable

that we intend to determine, and c0 the related error-free measurements. In a real

situation we are given noisy measurements c̄ = c0 + δc, δc being the measurement

error. Consequently, the global minimum of the cost function moves from (x0, c0) to

(x̄, c̄), where x̄ = x0 + δx. Assuming the error δc to be sufficiently small, we want

to determine δx through a truncated Taylor expansion of J(x, c).

The second-order Taylor series expansion of J(x, c), centred at (x0, c0), can be

written as

J(x, c) ≃ J |x0,c0 + (∇xJ)
T |x0,c0(x− x0) + (∇cJ)

T |x0,c0(c− c0) +

+
1

2
(x− x0)

THx,x(J)|x0,c0(x− x0) +

+
1

2
(c− c0)

THc,c(J)|x0,c0(c− c0) +

+(c− c0)
THc,x(J)|x0,c0(x− x0) , (5.1)

where

∇xJ = [Jx1 , . . . JxM
]T , ∇cJ = [Jc1 , . . . JcN ]

T ,

Jxi
=

∂J

∂xi
, Jcj =

∂J

∂cj
,

and

Hx,x(J) =









Jx1x1 · · · Jx1xM

...
. . .

...

JxMx1 · · · JxMxM









, Hc,c(J) =









Jc1c1 · · · Jc1cN
...

. . .
...

JcNc1 · · · JcNcN









,

Hx,c(J) =









Jx1c1 · · · Jx1cN
...

. . .
...

JxM c1 · · · JxM cN









,

with

Jxixj
=

∂2J

∂xi∂xj
, Jxicj =

∂2J

∂xi∂cj
, Jcicj =

∂2J

∂ci∂cj
.

Notice that (∇xJ)
T |x0,c0 = 0, as the function with the correct parameters c0 has a

minimum in x0.

Now we study ∇xJ(x, c)|x̄,c̄ = 0 to search for the new minimum x̄. Deriving the
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Taylor series expansion in (5.1) we obtain

Hx,x(J)|x0,c0(x̄− x0) +Hx,c(J)|x0,c0(c̄− c0) = 0 .

Observing that x̄− x0 = δx and c̄− c0 = δc, the above equation becomes

Hx,x(J)|x0,c0δx+Hx,c(J)|x0,c0δc = 0 ,

and finally we can write

δx = −Hx,x(J)|−1
x0,c0

·Hx,c(J)|x0,c0δc . (5.2)

5.1.2 Discussion

The above analysis relies on the hypothesis that we can truncate the Taylor series

expansion of J to the second order. This is, of course, true if δx and δc can be

assumed as being sufficiently small. In order to provide a theoretical upper bound

for δc, we need a more in-depth study of the Taylor expansion, for example, through

the analysis of the Lagrange remainder of the Taylor expansion.

It is also important to notice that (5.2) does not envision the possibility of esti-

mation bias, as δx and δc are linearly related. As a consequence, the proposed error

propagation analysis is applicable whenever the estimation bias is negligible.

Finally, (5.2) is valid under the hypothesis that det(Hx,x(J))|x0 ,c0 6= 0. Mathe-

matically this condition means that J should have an isolated non-degenerate mini-

mum at (x0, c0).

5.1.3 Statistical error analysis

In a real scenario we cannot assume the measurement noise δc to be known. However,

some statistical information could be available or could be estimated from data. It

is therefore important to find a relation between statistical descriptors of the noise

δc and of δx. In this paragraph, we provide examples for the case of zero-mean

Gaussian error on δc. We define A = −Hx,x(J)|−1
x0,c0

·Hx,c(J)|x0,c0 , such that (5.2)

can be rewritten as

δx = Aδc .
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The relationship between the covariance matrix Σx of the localization error and the

covariance matrix Σc of the measurements is

Σx = AΣcA
T , (5.3)

where

Σc =













σ2
c1

0 · · · 0

0 σ2
c2

· · · 0
...

...
. . .

...

0 0 · · · σ2
cN













, Σx =













σ2
x1

σx1x2 · · · σx1xM

σx2x1 σ2
x2

· · · σx2xM

...
...

. . .
...

σxMx1 σxMx2 · · · σ2
xM













under the assumption of statistical independence of measurement errors.

5.1.4 Error propagation analysis and Cramer-Rao Lower Bound

We now investigate the link between the proposed error propagation analysis and

the standard analysis tool given by the Cramer-Rao Lower Bound (CRLB). More

specifically, we aim at showing that CRLB is a particular case of the error propagation

analysis applied to a Maximum-Likelihood (ML) cost function. It is well known in the

literature (see for example [97, 23, 98]) that ML estimation techniques asymptotically

attain the CRLB. As a consequence, for the presented theory to be valid, the results

of the error propagation analysis performed onto a ML cost function must match the

CRLB of that problem.

In order to demonstrate this fact, we first derive the ML cost function of a generic

estimation problem. We notice that the noise-free measurements can be modelled as

c0 = f(x0) ,













f1(x0)

f2(x0)
...

fN(x0)













,

where f : RM → RN is a multidimensional function that maps the variables to

be estimated, x0, to the observations c0. In real situations, the measurement are

corrupted with some measurement error. We denote the noisy measurements with

c̄ = f(x0) + δc .
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The error δc ∈ RN is commonly modelled [2] as a multivariate zero-mean Gaussian

distribution with covariance matrix Σc, i.e. δc ∼ N (0,Σc). The probability that the

measurements c̄ = [c̄1, . . . c̄N ]T are generated from a generic point x = [x1, . . . xM ]T

is therefore given by

p(c̄,x) =
1

√

(2π)N det(Σc)
e−

1
2{[c̄−f(x)]TΣc[c̄−f(x)]} , (5.4)

which corresponds to the likelihood function [23]. The ML estimator is defined as [23]

x̂ = arg max
x

L(c̄,x) ,

where L(c̄,x) is the log-likelihood function [23], which is given by

L(c̄,x) = ln p(c̄,x) = − ln
√

(2π)N det(Σc)−
1

2

{

[c̄− f(x)]T Σc [c̄− f(x)]
}

.

(5.5)

The first term of the right-hand side of (5.5) is constant, therefore the estimation

problem can be rewritten as

x̂ = arg max
x

(

−1

2

{

[c̄− f(x)]T Σc [c̄− f(x)]
}

)

,

or equivalently as

x̂ = arg min
x

JML(x, c = c̄) ,

where

JML(x, c) =
1

2

{

[c− f(x)]T Σc [c− f(x)]
}

(5.6)

denotes the ML cost function.

The CRLB of the estimated variables covariance is given by the inverse of the

Fisher Information Matrix [23], whose [i, j] element is

[I(x)]ij , −E

[

∂2L(c̄,x)
∂xi∂xj

]

.

For a Gaussian distribution, the Fisher Information Matrix becomes [2]

I(x) =

[

∂f(x)

∂x

]T

Σ−1
c

[

∂f(x)

∂x

]

, (5.7)
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where

∂f(x)

∂x
=

[

∂f(x)
∂x1

∂f(x)
∂x2

· · · ∂f(x)
∂xM

]

,
∂f(x)

∂xi
=













∂f1(x)
∂xi

∂f2(x)
∂xi

...
∂fN (x)
∂xi













.

We now apply the proposed error propagation analysis to the ML cost function

(5.6). The covariance matrix Σx of the estimation error can be computed using (5.3).

In this case we have that

ΣML,x = AMLΣcA
T
ML (5.8)

where AML = −Hx,x(JML)|−1
x0,c0

·Hx,c(JML)|x0,c0 . The [i, j] element of Hx,x(JML) is

given by

[Hx,x(JML)]ij =
∂2JML(x, c)

∂xi∂xj
=

=
∂

∂xi

{

−
[

∂f(x)

∂xj

]T

Σ−1
c [c− f(x)]− [c− f(x)]T Σ−1

c

[

∂f(x)

∂xj

]

}

.

The covariance matrix Σc is symmetric by definition, and therefore the above ex-

pression can be simplified as

[Hx,x(JML)]ij = −2
∂

∂xi

{

[

∂f(x)

∂xj

]T

Σ−1
c [c− f(x)]

}

=

= −2

{

[

∂2f(x)

∂xi∂xj

]T

Σ−1
c [c− f(x)]−

[

∂f(x)

∂xj

]T

Σ−1
c

[

∂f(x)

∂xi

]

}

.

(5.9)
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In a similar way we compute the matrix Hx,c(JML), whose [i, j] element is

[Hx,c(JML)]ij =
∂2JML(x, c)

∂xi∂cj
=

=
∂

∂xi

{

[

∂c

∂cj

]T

Σ−1
c [c− f(x)] + [c− f(x)]T Σ−1

c

[

∂c

∂cj

]

}

=

= 2
∂

∂xi

{

[c− f(x)]T Σ−1
c

[

∂c

∂cj

]}

=

= −2

[

∂f(x)

∂xi

]T

Σ−1
c

[

∂c

∂cj

]

. (5.10)

Equations (5.9) and (5.10) have to be evaluated at (x = x0, c = c0). We observe

that f(x0) = c0, and therefore [c− f(x)]|x0,c0
= 0. As a consequence, we obtain

[Hx,x(JML)|x0,c0
]ij = 2

{

[

∂f(x)

∂xj

]T

Σ−1
c

[

∂f(x)

∂xi

]

}
∣

∣

∣

∣

∣

x0,c0

,

which leads to

Hx,x(JML)|x0,c0 = 2

{

[

∂f(x)

∂x

]T

Σ−1
c

[

∂f(x)

∂x

]

}∣

∣

∣

∣

∣

x0,c0

. (5.11)

In the right-hand side of (5.11) we recognize the Fisher Information Matrix (5.7),

and therefore we can finally write

Hx,x(JML)|x0,c0 = 2 I(x)|x0,c0
= 2I(x0) . (5.12)

From (5.10) we readily obtain

Hx,c(JML) = −2

[

∂f(x)

∂x

]T

Σ−1
c ,

and therefore

Hx,c(JML)|x0,c0
= −2

[

∂f(x)

∂x

]T
∣

∣

∣

∣

∣

x0,c0

Σ−1
c . (5.13)
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Inserting (5.12) and (5.13) into (5.8) we obtain

ΣML,x =
{

−[2I(x0)]
−1

}







−2

[

∂f(x)

∂x

]T
∣

∣

∣

∣

∣

x0,c0

Σ−1
c







Σc ×

×







−2

[

∂f(x)

∂x

]T
∣

∣

∣

∣

∣

x0,c0

Σ−1
c







{

−[2I(x0)]
−T

}

. (5.14)

Since the Fisher Information Matrix is symmetric [23], its inverse is symmetric as

well and therefore [I(x0)]
−T = [I(x0)]

−1. Consequently, after some passages (5.14)

simplifies to

ΣML,x = [I(x0)]
−1

{

[

∂f(x)

∂x

]T

Σ−1
c

[

∂f(x)

∂x

]

}∣

∣

∣

∣

∣

x0,c0

[I(x0)]
−1 . (5.15)

In (5.15) we recognize again the Fisher Information Matrix, and therefore we finally

obtain

ΣML,x = [I(x0)]
−1I(x0)[I(x0)]

−1 = [I(x0)]
−1 . (5.16)

Equation (5.16) proves that the error propagation analysis applied to the ML cost

function (5.6) is equivalent to the CRLB of the corresponding estimation problem,

which is defined as the inverse of the Fisher Information Matrix evaluated at x = x0.
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5.2 Measuring the accuracy of wave field rendering

5.2 Measuring the accuracy of wave field rendering

Sound field reproduction methodologies, such as Wave Field Synthesis [6] and Higher-

Order Ambisonics [7] are generally studied and developed under specific assumptions.

The typical scenario consists of a distribution of ideal loudspeakers mounted in a com-

pletely anechoic acoustic environment. The accuracy of these systems is therefore

predicted in a theoretical fashion by modeling the wave propagation inside the same

ideal scenario (see for example [21, 16, 99, 100, 101]). When the rendering method-

ologies are implemented on a real reproduction system, however, the non-ideality of

both loudspeakers and environment may alter the quality of the rendered wave field.

In order to evaluate this degradation, a methodology for accurately measuring the

reproduced wave field inside the listening area is required.

This task is not trivial, because it implies a space-time sampling of the wave field

within a wide region. If the sampling is performed with a single microphone moving

inside the listening area, the number of acquisitions required to obtain a sufficiently

dense reconstruction of the wave field makes this solution impracticable. On the other

hand, if a regular grid composed of many microphones is used for sampling the wave

field, their presence significantly alters the measured wave field. Furthermore, one has

to be aware of the risk that the error introduced by the measurement methodology

exceeds the degradation of the rendered wave field caused by the non-ideality of the

reproduction system.

In this Section we consider a well-established technique for the measurement of

a two-dimensional wave field. As presented in [24] the wave field is sampled over

a circle by means of a pair of rotating microphones (an omnidirectional one and

a figure-of-eight one). The wave field inside and outside the circle is extrapolated

exploiting the Circular Harmonic Decomposition [102]. In order to compare target,

theoretical and measured wave fields using synthetic parameters, we define some

evaluation metrics. More specifically, we first introduce two MSE metrics based

on the difference between the theoretical and the measured wave fields. Although

useful, these metrics are not able to distinguish at which propagation modes the

error between the measured and theoretical wave field is introduced. In order to

circumvent this problem, we also define two novel evaluation metrics that rely on a

modal analysis based on the two-dimensional discrete Fourier transform.
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5.2.1 Problem formulation

A generic rendering system, shown in Fig. 5.1, is composed by an arbitrary dis-

tribution of M loudspeakers located at xp1 , . . .xpM . The goal of this system is to

xs1

xs2

xsV

xp1

xp2

xp3

xpM

xq1 xq2

xqQ

Figure 5.1: A very general model of a rendering system.

reproduce the wave field generated by a set of V virtual point sources located at

xs1 , . . .xsV by means of the loudspeakers. The rendering system is designed for re-

producing the target wave field inside the listening area, denoted by the gray-shaded

region shown in Fig. 5.1. We define an evaluation region composed of a set of Q

points xq1 , . . .xqQ regularly distributed inside the listening area. Let Sdes(ω,xqi)

and ST(ω,xqi) be the Fourier transforms of the target and theoretical wave fields at

the point xqi , respectively. Using the wave field measuring technique described in

Section 5.2.2 we acquire the measured wave field SM(ω,xqi).

Our goal is to introduce some methodologies to evaluate the differences between

Sdes(ω,xqi), ST(ω,xqi) and SM(ω,xqi).

5.2.2 Measurement of the wavefield

In this Section we summarize the methodology for the measurement of the wave

field presented in [24]. Adopting a polar coordinate system (radius ρ, angle φ), the

time-domain Fourier transform of the sound pressure can be written as an angular
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Fourier series, whose coefficients can be further decomposed into circular harmonics

P (ω, ρ, φ) =

∞
∑

µ=−∞

P̊µ(ω, ρ)e
jµφ

=
∞
∑

µ=−∞

Cµ(ω)Jµ(kρ)e
jµφ , (5.17)

where Cµ(ω) represents the µth circular harmonic at frequency ω; k = ω/c is the

wave number, c being the sound speed; Jµ is the Bessel function of the first kind and

order µ. We notice that the circular harmonic coefficients depend only on the angular

mode µ and the frequency ω. The knowledge of the sound pressure P (ω, ρ0, φ) on a

circle with radius ρ0 is therefore, in principle, sufficient to determine the wave field

P (ω, ρ, φ) inside and outside the circle, by adopting the following equalization:

Cµ(ω) =
1

Jµ(kρ0)
P̊µ(ω, ρ0) .

However, the zeros of the Bessel functions at the denominator of (5.18) make the

direct implementation of this procedure impracticable. This issue is faced in [24] with

the knowledge of the pressure and its gradient on the circle ρ0. The combination of

the signals acquired by the two sensors leads to a modified version of (5.18), whose

associated equalization function is free of zeros [24]. Moreover, the measurement of

the wave field over the circle with radius ρ0 in infinite positions is not feasible. A

spatial sampling of P (ω, φ) over the circle is therefore adopted in [24] through the

rotating rig shown in Figure 5.2. The radius of the circle described by the arm is

ρ0 = 0.74 cm. The position of the arm is controlled by a stepper motor that, for

every complete rotation, stops at Z intermediate positions, under the assumption

that the wave field is stationary during the rotation of the arm. This solution allows

ρ0

Figure 5.2: The virtual array. An omnidirectional and a figure-of-eight microphones are used to emulate a
cardioid microphone, as described in [24].
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to sample the measurement circle with high angular resolution (up to Z = 4000

positions can be used), keeping thus moderate the effect of modal aliasing introduced

by the spatial sampling. Finally, we notice that the wave field P (ω, ρ0, φ) is measured

on a circle with radius ρ0, while the listening points xqi are located in arbitrary

positions. Therefore an interpolation or extrapolation as described by (5.17) and

(5.18) is required to map P (ω, ρ, φ) on the listening points xqi . The final result of

the measurement procedure is the measured wave field SM(ω,xqi).

5.2.3 Evaluation methodology

In this Section we introduce the metrics used to evaluate the accuracy of the ren-

dering technique. The evaluation methodology proposed here distinguishes between

the target, theoretical and the measured wave field. The target wave field is the

desired outcome of the reproduction (e.g. a plane wave). The theoretical wave field

results from an approximation of the target wave field with a finite number of ideal

loudspeakers and a given rendering technique. The measured wave field is the one

resulting from acoustic measurements in a real-world rendering situation. First we

introduce an evaluation metric that synthetically describes the accuracy of the theo-

retical and measured wave fields with respect to the target one. Later on we define a

new evaluation metric that gives further insight into the evaluation of the accuracy,

by performing a modal analysis on target, theoretical and measured wave fields.

5.2.3.1 Normalized mean square error metrics

As a first step we normalize the target wave field Sdes(ω,xqi) in order to make

its energy unity. The resulting normalization coefficient Wdes(ω) is used also to

normalize the theoretical wave field. The resulting normalized wave fields are

S̄des(ω,xqi) =
Sdes(ω,xqi)

Wdes(ω)
, S̄T(ω,xqi) =

ST(ω,xqi)

Wdes(ω)
,

where

Wdes(ω) =

√

√

√

√

1

Q

Q
∑

i=1

|Sdes(ω,xqi)|2 . (5.18)

This way, the target wave field is forced to have unitary energy in the evaluation

region, independently on the set of virtual sources to be reproduced. As a conse-

quence, the results related to different distributions of virtual sources can be directly
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compared.

Using the normalization in (5.18), we derive an evaluation metric based on the

mean square error between S̄des(ω,xqi) and S̄T(ω,xqi). This is a common approach

for the theoretical evaluation of rendering techniques [103, 100, 104]. In particular,

the quantity

ET(ω) =
1

Q

Q
∑

i=1

|S̄des(ω,xqi)− S̄T(ω,xqi)|2 . (5.19)

corresponds to the Normalized Mean Square Error (NMSE) as defined in [100]. The

metric in (5.19) synthetically quantifies the accuracy obtained by the theoretical

wave field in reproducing the target one.

As far as the measured wave field is concerned, one could define an evaluation

metric analogous to the one introduced for the theoretical evaluation. However,

the measured wave field cannot be directly compared with the target wave field

because its amplitude depends on the microphone gains and the loudspeaker volumes.

Therefore, a normalization of the measured wave field is in order. More specifically,

we propose to normalize it in such a way that the global energy within the evaluation

region equals the energy of the theoretical wave field. In other words

S̄M(ω,xqi) =
SM(ω,xqi)

√

1
Q

∑Q
i=1 |S̄T(ω,xqi)|2

√

1
Q

∑Q
i=1 |Sdes(ω,xqi)|2

.

This way, the NMSE between the theoretical and measured wave fields becomes

EM(ω) =
1

Q

Q
∑

i=1

|S̄des(ω,xqi)− S̄M(ω,xqi)|2 . (5.20)

5.2.3.2 Modal analysis

We notice that the evaluation metrics in (5.19) and (5.20) do not give insight on

the distribution of the error for different wave fronts in the sound field. In order

to address this issue, we perform a two-dimensional discrete Fourier transform on

ℜ{S̄des(ω,xqi)}, ℜ{S̄T(ω,xqi)} and ℜ{S̄M(ω,xqi)} to obtain Ŝc
des(kx, ky), Ŝ

c
T(kx, ky)

and Ŝc
M(kx, ky), respectively. The variables (kx, ky) are the spatial frequency bin

coordinates. We omit the variable ω in the notation for the sake of compactness.

A planar wavefront propagating in the environment is compactly described by the
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5 Theoretical assessment methodologies and evaluation metrics

wavenumber k, inversely proportional to the wavelength, and by its direction of

propagation ϕ. After some arithmetic we find that k and ϕ are related to kx and ky

by

k = 2π
D

√

k2x + k2y (5.21)

ϕ = arctan ky/kx , (5.22)

where D is the diameter of the area under analysis, in meters. For the sake of

clarity, Figure 5.3 shows an example of target wave field on the left-hand side and

the corresponding two-dimensional discrete Fourier transform on the right-hand side.

We obtain therefore from Ŝc
des(kx, ky) the function Ŝp

des(k, ϕ) using the change of
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Figure 5.3: An example of target wave field and the corresponding two-dimensional Fourier transform.

variables in (5.21) and (5.22). We derive from Ŝp
des(k, ϕ) two functions, Ŝ′

des(k) and

Ŝ′′
des(ϕ). The function Ŝ′

des(k) aims at finding the distribution of the wavenumbers of

the propagating wavefronts, regardless of their propagation direction and it is defined

as

Ŝ′
des(k) =

√

∑

ϕ

|Ŝdes(k, ϕ)|2 . (5.23)

In other words Ŝ′
des(k) sums all the wavefronts in Ŝp

des(k, ϕ), which are character-

ized by the same wavenumber. Under the hypothesis that the loudspeaker array

is rendering a monochromatic signal, however, we obtain a wavenumber distribu-

tion characterized by a dominant wavenumber at which almost all the energy of the

wavefront is contained. In order to distinguish wavefronts with the same wavenum-
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5.2 Measuring the accuracy of wave field rendering

ber but with different directions of propagation, we define the function Ŝ′′
des(ϕ). The

dominant wavenumber is found as

k̂ = argmax
k

Ŝ′
des(k) . (5.24)

The metric Ŝ′′
des(ϕ) assesses the distribution of the directions of propagation for the

dominant wave number

Ŝ′′
des(ϕ) = Ŝp

des(k̂, ϕ) . (5.25)

Notice that, due to the symmetry properties of the spatial Fourier transform of

ℜ{S̄des(ω,xqi)}, the function Ŝ′′
des(ϕ) is periodic with period π. This means that

Ŝ′′
des(ϕ) is fully determined for ϕ ∈ [0, π] or ϕ ∈ [−π, π]. In other words, Ŝ′′

des(ϕ) is

not able to discriminate between inward and outward propagating wave components.

Adopting the same procedure described above, we derive Ŝ′
T(k) and Ŝ′′

T(ϕ) from

ŜT(kx, ky); and Ŝ′
M(k) and Ŝ′′

M(ϕ) from ŜM(kx, ky). The comparison of the two

functions allows us to analyze the differences for each wavenumber and, limited to

the dominant wavenumber, for each direction of propagation between theoretical,

measured and target wave fields.
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5 Theoretical assessment methodologies and evaluation metrics

5.3 Evaluation metric for reflector localization algorithms

In order to asses the accuracy of reflector localization, we adopt a polar represen-

tation of reflector lines. With reference to Figure 5.4, a line is defined by its dis-

tance ρ and angle α with respect to the origin, and therefore its parameter vector

is l = [cosα, sinα, −ρ]T . Denoting with (α, ρ) and (α̂, ρ̂) the actual and estimated

x1

x2

ρ

α

l

Figure 5.4: Polar representation of a line.

reflector line parameters, we define the following metrics:

• distance error ερ = ρ− ρ̂;

• angular error εα = 〈α, α̂〉π, where 〈α, α̂〉π denotes the signed angular distance

in the range [0, π] between α and α̂.

120



6 Simulations and experiments

In this Chapter we evaluate the accuracy of the most relevant algorithms presented in

this thesis, considering the application scenario introduced in Chapter 1. In partic-

ular, we consider a geometric wave field rendering system operating in a reverberant

room. As discussed in Section 4.3.4, this system requires the knowledge of the ge-

ometry of the real environment in which it operates. More precisely, the position

of the walls are used for determining the location of the image loudspeakers that

appear from acoustic reflections. This information is then employed for modelling

the acoustic propagation from the loudspeakers to the listening area, making pos-

sible the compensation of the real environment. For this reasons, simulations and

experiments are focused on the evaluation of

• room geometry inference techniques introduced in Section 3.4.3;

• the wave field rendering methodology presented in Chapter 4.

This chapter is organized as follows. In Section 6.1 we test the effectiveness of

room geometry inference algorithms based on TOA and DOA measurements. In

particular, as far as simulations are concerned, we consider both standard Monte-

Carlo simulations and the error propagation analysis described in Section 5.1. As for

experiments, we test the accuracy of the algorithms in localizing one or more acoustic

reflectors. In Section 6.2 we first evaluate the rendering technique by simulating

anechoic and reverberant environments. After that, we analyse the accuracy of the

rendering working on a real reproduction system. To do so, we consider measured

wave fields obtained adopting the wave field measuring methodology outlined in

Section 5.2.2.
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6 Simulations and experiments

6.1 Inference of the environment

In this Section we evaluate the effectiveness of the reflector localization algorithms

based on TOA and DOA measurements, described in Sections 3.4.3.1 and 3.4.3.2,

respectively. On the base of the evaluation metric proposed in Section 5.3, we present

a set of simulative and experimental results.

6.1.1 Inference using TOAs: simulations

Here we test, by means of simulations, the reflector localization algorithm described

in Section 3.4.3.1. Such method relies on TOA measurements, which generate el-

liptic constraints acting on the reflector line. We first compare the accuracy of two

different minimization strategies, namely the minimization on the unit cylinder (see

Section 3.3.2.3) and the exact solution provided by the GTRS approach (see Section

3.3.2.4). After that we compare the results of Monte-Carlo simulations with those

of the theoretical error propagation analysis devised in Section 5.1, proving that the

latter can be proficiently used for predicting the accuracy of the reflector localization

technique.

6.1.1.1 Simulation setup

All the simulations are conducted with reference to the setup of Fig. 6.1. A set of

N = 5 microphones located at xM1 , . . .xM5 are uniformly spaced on a circle of radius

30 cm centered in the origin of the reference frame (corresponding to the acoustic

source position xS). The simulations are performed on a set of 9000 test reflector

lines defined by their distance ρ and angle α with respect to the origin, as shown in

Figure 6.1. The test reflector lines are defined by distances in the range [1 m, 4 m]

and angles in the range [0, 2π].

6.1.1.2 Exact and iterative methods

The localization of a reflector is based on the minimization of the cost function in

(3.62), which collects multiple elliptical constraints arising from TOA measurements.

As discussed in Section 3.3.2, when the acoustic source is located at the origin of

the reference frame, there exist two suitable optimization strategies for minimizing

the cost function, namely the GTRS approach and the iterative minimization on the
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xM1

xM2

xM3

xM4

xM5

ρ

α

l

xS x1

x2

30 cm

Figure 6.1: Simulation setup for reflector localization using TOAs.

unit cylinder. While the former provides an exact solution, the latter may provide a

bad estimate if local minima are present.

In this paragraph, using the setup in Figure 6.1, we compare the results of the

iterative methods with the groundtruth provided by GTRS. In order to simulate

the measurement process, for each reflector position, reflective TOAs are calculated

and then corrupted by 1000 realizations of independent identically distributed zero-

mean Gaussian noise with standard deviation σt/c, where c = 340 m/s is the speed

of sound. The accuracy is evaluated by considering the standard deviation of the

distance error ερ and of the angular error εα. Figures. 6.2-(a) and 6.2-(b) show the

results as a function of σt, respectively, averaged over all the tested locations and

repetitions. As far as the distance error is concerned, the iterative and the exact
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Figure 6.2: Comparison between the iterative and the exact solutions.

solutions turn out to exhibit almost identical errors, which are proportional to the
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6 Simulations and experiments

standard deviation σt of the measurement error. As for the angular error, for values

of σt below 0.05 m, the two approaches have the same results, but for higher values

of σt, the iterative method is affected by larger errors. This is due to the presence of

multiple local minima in the cost function. For large measurement errors, the risk

of encountering local minima increases as the cost function becomes less smooth.

Although this phenomenon occurs occasionally, its impact on the standard deviation

of the angular error is quite noticeable. The exact solution is therefore preferable

over the iterative one, especially for large measurement errors.

6.1.1.3 Monte-Carlo simulations and error propagation analysis

We now compare the results of Monte-Carlo simulations with ones predicted through

error propagation analysis. We keep fixed the standard deviation of the measure-

ment noise to σt = 0.01 m. The standard deviation of the error predicted with the

analytic method is compared with the results of the simulations conducted on the

same testing reflector positions, adopting the GTRS approach. The results depicted

in Figure 6.3 show the distance error for theoretical (a) and simulated (b) analysis,
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Figure 6.3: Comparison between the theoretical standard deviation of the error (predicted with the error
propagation analysis) and the simulation results.
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6.1 Inference of the environment

respectively. Similarly, Figures 6.3-(c) and 6.3-(d) show the theoretical and simu-

lated results relative to the angular error. The comparison between Monte-Carlo

simulations and the theoretical prediction of the accuracy confirms the validity of

the error propagation analysis. In fact, the results of the simulations accurately

match the theoretical ones: they present the same mean error of the expected values

(2.5 mm for the distance and 1.3◦ for the angle). The patterns of local maxima (i.e.

diagonal white lines) correspond to configurations where two or more reflective paths

are (almost) collinear, thus producing ellipses having the same point of tangency on

the reflector. A simple graphical explanation is given in Figure 6.4. In particular,

Figure 6.4-(a) depicts a situation in which two ellipses are generated from distinct

reflection points. Figure 6.4-(b) shows the case in which two reflective paths are

collinear, thus sharing the same reflection point. In this situation, it is evident that

two measurements carry similar information, thus reducing the robustness of the

estimation.

(a) (b)

Figure 6.4: The reciprocal positions of reflector (black line), source (black circle) and microphones (colored
dots) determine different configurations of the ellipses generated from reflective TOAs. In (a) the reflective
paths generate two ellipses tangent to the reflector in distinct points. In (b) the reflective paths are so that
the tangency points are coincident.

6.1.2 Inference using TOAs: experiments

In this Section we present experimental results for the localization of the reflectors

of two environments. Experiments have been conducted in an acoustically dry room

in which wood panels have been placed to alter the impulse response. The first

experiment concerns the problem of localizing two reflectors that are not mutually

visible. In a later stage we consider the case of mutually visible reflectors.
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6 Simulations and experiments

In these experiments we used a loudspeaker that was moved in 24 different posi-

tions on a circle and a microphone located at the center of the circle, coincident with

the origin of the reference frame1. The radius of the circle is 0.16 m. The sampling

frequency is Fs = 44.1 kHz and the excitation signal is a white noise in the band-

width [0, 5 kHz]. TOAs relative to different reflectors have been disambiguated and

labeled by means of the generalized Hough transform described in Section 3.4.3.3,

and the corresponding estimation problems have been solved using the GTRS ap-

proach. The geometry of the system for the first environment is depicted in Figure

1

2

(a) First test environment.

1

2

3

4

5

6

7

8

(b) Second test environment.

Figure 6.5: Geometry of the environments used for the experiments. The first environment (a) is composed
of two reflectors which are not mutually visible. The second environment (b) is composed of four reflectors;
parallel reflectors are mutually visible causing multiple reflections which generate “virtual walls”, denoted by
dashed lines.

6.5-(a). Numbers next to the walls refer to indexes in Table 6.1, where localization

results for both reflectors are shown according to the criteria defined above. In the

Table 6.1: Experimental results for the environment in Figure 6.5-(a).

Index (ρ [m] , α [◦]) (ρ̂ [m] , α̂ [◦]) ερ [m] εα [◦]

1 (1.805 , 180) (1.81 , 178) −0.005 2
2 (2.24 , 90) (2.24 , 89) 0 1

1Notice that, from the geometrical point of view, the roles of loudspeakers and microphones can
be interchanged. As a consequence, a single microphone located at the origin of the reference
frame leads to ellipses with a focus in that point, thus making possible the use of the GTRS
approach for solving the estimation problem.
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6.1 Inference of the environment

second experiment we have tested the system in the environment depicted in Fig-

ure 6.5-(b). Dashed lines refer to “virtual reflectors” originated from second-order

reflections. Table 6.2 shows the corresponding localization results using the metrics

defined in Section 5.3. We notice that even “virtual” reflectors are localized with a

good accuracy.

Table 6.2: Experimental results for the environment in Figure 6.5-(b).

Index (ρ [m] , α [◦]) (ρ̂ [m] , α̂ [◦]) ερ [m] εα [◦]

1 (1.18 , 270) (1.17 , 270) 0.01 0
2 (1.37 , 180) (1.38 , 179) −0.01 1
3 (1.68 , 90) (1.68 , 89) 0 1
4 (2.08 , 360) (2.08 , 358) 0 2
5 (2.82 , 270) (2.84 , 271) −0.02 −1
6 (2.82 , 90) (2.85 , 85) −0.03 5
7 (3.44 , 180) (3.45 , 181) −0.01 −1
8 (3.44 , 360) (3.44 , 357) 0 3

6.1.3 Inference using DOAs: simulations

We now test the accuracy of the reflector localization algorithm described in Section

3.4.3.2. Such method converts DOA measurements into quadratic constraints which

have the form of parabolas tangent to the reflector line. More specifically, each DOA

generates a parabola with focus at the source position, and whose directrix coincides

with the DOA line. As shown in Section 3.3.2.4, if the source is kept fixed at the origin

of the reference frame, the dual of the parabola arising from each DOA measurement

takes the form of a circumference. Therefore, in principle, the GTRS approach could

be used to obtain the exact solution of the estimation problem. However, this setup

is not easy to implement, since it would require to move the microphone array around

the source. The converse (i.e. moving the source around a fixed microphone array)

turns out to be much more practical and easier to be automatized. Although in this

case the GTRS method can not be applied, the exact solution can still be obtained

by means of cutting of the search space with two planes orthogonal to the parameter

axes, as discussed in Section 3.3.2.1.

6.1.3.1 Simulation setup

We now describe the simulation setup adopted for the simulations. According to

Figure 6.6, the source is moved at N = 10 positions xS1 , . . . xSN
uniformly distributed
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xS1

xS2

xS3

xSN

xSN−1

ρ
α

l

xM x1

x2

r

Figure 6.6: Simulation setup for reflector localization using TOAs.

on a circle centred at xM = [0, 0]T and with radius r. The origin of the reference

system coincides with the centre xM of the microphone array, and reflective DOAs

are calculated with respect to this point. As for the case of TOAs described in

Section 6.1.1.1, the simulations are performed on a set of 9000 test reflector lines

l = [cosα, sinα, −ρ]T defined by their distance ρ ∈ [1 m, 4 m] and angle α ∈ [0, 2π]

with respect to the origin.

6.1.3.2 Error propagation analysis

The results presented in Section 6.1.1.3 prove the effectiveness of the theoretical

error propagation analysis in predicting the impact of the measurement error on the

estimated reflector lines. For this reason, it is reasonable to limit the evaluation of

the DOA-based localization algorithm to a theoretical analysis, applying the error

propagation analysis to the setup of Figure 6.6. This allows us to avoid Monte-Carlo

simulations, which in this case are extremely time-demanding. In fact, as discussed

in Section 3.3.2.4, the minimization process based on the cutting of the parameter

space is very expensive in terms of computation effort. This makes Monte-Carlo

simulations impracticable, which require a high number of repetitions for each test.

As a first test, we evaluate the accuracy of the estimation varying the radius r

of the circle on which the sources are disposed. The error on DOAs is assumed to

be Gaussian, zero-mean and independently distributed on each measurement with

standard deviation σθ. The results are shown in Figure 6.7. In particular, Figure

6.7-(a) shows the average standard deviation of the distance error ερ as a function
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of σθ. These results are obtained averaging the standard deviation of ερ for all the
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Figure 6.7: Accuracy of reflector localization as a function of the standard deviation σθ of the measurement
error.

9000 test reflector positions. Similarly, Figure 6.7-(b) shows the average standard

deviation of the angular error ερ as a function of σθ. First of all, we observe that

the localization technique based on DOAs suffers from noticeable errors (up to 0.6 m

for r = 0.25 m and σθ = 3◦) in estimating the distance of the reflectors. On the

other hand, the angular error is kept moderate (slightly above 1◦ in the worst case).

This behaviour is not surprising, since by definition DOA measurements provide

information only about the angle of emission of indefinitely distant sources. The

distance error is reduced when the source occupies positions on larger circles. For

instance, when r = 1.5 m, the distance error reduces to 0.2 m for σθ = 3◦. As far as

the angular error εα is concerned, it reveals to be almost independent from the size

of the source circle.

As a second test, we fix the radius of the circle to r = 0.75 m and the measurement

error to σθ = 1◦. The predicted standard deviation of ερ and εα for all the 9000 test

positions are shown in Figures 6.8-(a) and 6.8-(b), respectively. As for the case of

TOAs shown in Figure 6.3, the estimation error exhibits a periodic behaviour in the

parameter space (ρ, α). In this case however, unlike for TOAs, the spread between the

minimum and the maximum values of the distance error is more significant. While in

the best case the standard deviation of ερ maintains below 3 cm, the patterns of local

maxima in Figure 6.8-(a) are characterized by a standard deviation of 35 cm. This

happens whenever one ore more DOA measurements lead to degenerate parabolas,

i.e. when one or more sources lie on the same line determined by the measured DOA.

On the other side, the standard deviation of the angular error maintains moderate
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Figure 6.8: Standard deviation of the error predicted with the error propagation analysis.

with values around 0.38◦. Moreover, it is interesting to notice that the patterns of

local minima of the angular error (i.e, the diagonal black lines in Figure 6.8-(b))

correspond to the patterns of local maxima of the distance error (i.e. the diagonal

white lines in Figure 6.8-(a)). This means that a lack in the estimation of the reflector

distance is partially recovered by a better estimation of the reflector angle.

6.1.4 Inference using DOAs: experiments

In the experiments we tested the reflector localization accuracy as a function of the

number of DOA measurements used in the estimation. The experimental setup is

depicted in Figure 6.9. The experiments have been conducted using the microphone

array2 shown in Figure 6.9-(b), which is composed by 10 sensors disposed on a rigid

cylindrical baffle with radius 0.04 m. For further reference on the microphone array,

see [105]. The signal acquired by the sensors has been sampled at Fs = 44.1 kHz. In

all the experiments we considered the presence of a single reflector in the environment.

For this purpose, we have placed a planar reflective surface in a low-reverberating

chamber. Figure 6.9-(a) shows 140 potential positions of the source, disposed on a

grid. However, due to the reciprocal configuration of the array and the reflector,

not all the positions on the grid generate a reflective path. For this reason, we

have placed a loudspeaker at 88 positions out of 140. The loudspeaker emitted a

white noise in the band [1 kHz , 10 kHz]. We tested the accuracy of the reflector

localization as a function of the number of constraints N used in the minimization, N

being between 3 and 24. For each value of N , we tested all the possible combinations

of DOA measurements. The results are depicted in Figures 6.10-(a) and 6.10-(b),

2The array has been provided by the LMS laboratory at the Technische Fakultät of the Friedrich-
Alexander University of Erlangen-Nuremberg.
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(a) Setup of the experiment: the grid marks all the potential
positions of the loudspeaker. The microphone array is at the
center of the grid. The reflector is distant 1.3 m from the center
of the microphone array.

(b) The circular micro-
phone array used in the
experiments [105].

Figure 6.9: Setup of the experiments.
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Figure 6.10: Mean angular (a) and distance (b) errors vs number of DOAs.

which show the average of |ερ| and of |εα|, respectively. We notice that even with

three constraints, i.e. three source positions, the reflector is well localized.

In order to show the stability of the estimation, we show also the standard deviation

of ερ and εα as a function of the number of DOA measurements. We notice that as

the number of constraints increases the standard deviation decreases, as expected.

Nonetheless, when N ≥ 4 measurements are used, the solution is almost independent

from the specific set of measures used.
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Figure 6.11: Std. dev. of angular (a) and distance (b) errors vs number of DOAs.

6.2 Wave field rendering

This Section is dedicated to evaluating the rendering technique proposed in Chapter

4. In the first part of the Section, we aim at testing the rendering methodology in a

theoretical fashion. To do so, the reproduced wave field is first predicted by modelling

the propagation between each loudspeaker and the listening area, taking into account

the effect of the environment hosting the rendering system. The accuracy of the

reproduced wave field is then evaluated through a comparison with the desired wave

field, adopting the NMSE and modal metrics introduced in Section 5.2. Since the

room estimation methodologies revealed a great accurateness (see the results in the

previous Section), here we omit to test the robustness of room-compensation against

errors in the geometry of the environment. In all the simulations, we assume the

knowledge of the floor-map.

In the second part of the Section we consider a real reproduction system consisting

in an arrangement of 48 high-quality loudspeakers mounted on a circular array. Such

system is tested with both the proposed rendering technique and the Wave Field

Synthesis [6] technique. The rendered wave fields are measured by means of the

Circular Harmonic Decomposition, as discussed in Section 5.2.2. The comparison

of the results of the two rendering techniques makes it possible, on one hand, to

verify the suitability of the measuring methodology. On the other hand, it allows us

to investigate the differences between the proposed technique and a well-established

rendering methodology such as WFS, even in a real scenario.
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6.2 Wave field rendering

6.2.1 Environment-aware rendering: a theoretical evaluation

In this Section we evaluate the accuracy of the proposed rendering methodology

in two different scenarios. In a first stage, we test the beam shaping engine with a

linear array of loudspeakers emitting a single beam. After that, we consider a circular

loudspeaker array for the rendering of a virtual source along with its effects on three

different virtual environments. In both the scenarios we simulate the presence of an

L-shaped real environment.

The terminology employed throughout this Section was introduced and explained

in Chapter 4. For the sake of clarity, in the following we recall the main definitions:

• virtual source: a source to be rendered by the loudspeakers;

• real environment : the environment in which the rendering system operates;

• beam shaper : the system devoted to synthesizing beams by means of the loud-

speakers;

• virtual environment : the environment hosting the virtual source. Its effect is

reproduced by overlapping multiple beams;

• room compensation: the process of predicting and compensating the impact of

the real environment on the rendered wave field.

6.2.1.1 Simulation scenarios

Scenario 1: the first scenario is shown in Figure 6.12. The loudspeakers are ar-

ranged on a linear array with aperture l and the listening area covers a rectangle

with dimensions 3 m×2.5 m. The real environment models an L-shaped room, whose

reflection coefficient is set to 0.7 for all the reflectors. The number M of loudspeakers

varies for the different tests shown in Section 6.2.1.3. The beam shaper synthesizes

a single virtual source located at a distance d from the array and emitting a beam

directed as θ and with angular aperture φ. The virtual source is positioned so that

the center of the beam always passes through the array center. The listening area is

sampled with N = 1000 control points. A more dense grid of Q = 10000 evaluation

points is used for evaluating the NMSE and modal performances of the beam shaper.
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d

l

θ

φ

4 m 3 m

3 m

2 m

2.5 m

4 m

Figure 6.12: Setup for the evaluation of the beam shaping engine. The loudspeakers are arranged on a linear
array with aperture l and the listening area is rectangular. The real environment models an L-shaped room.
The virtual source, depicted with the black circle, is positioned at a distance d from the array and emits a
beam passing through the array centre and directed as θ, with angular aperture φ.

Scenario 2: the second scenario is depicted in Figure 6.13. The rendering system

is composed of M loudspeakers disposed on a circumference with radius ra and a

listening area covering a circle with radius rl inside the array. The control points

are regularly spaced within the listening area. The rendering system is operating

in the same L-shaped real environment of the first scenario. The listening area is

regularly sampled with N = 1000 control points, while the evaluation is performed

on a regular distribution of Q = 10000 evaluation points.

ra

rl

4 m 3 m

3 m

2 m

Figure 6.13: Setup for the evaluation of the rendering engine. The loudspeakers are disposed on a circle
with radius ra and the listening area covers a circle with radius rl inside the array. The real environment
models an L-shaped room.
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6.2 Wave field rendering

6.2.1.2 Evaluation metrics

The accuracy of the rendered wave fields is evaluated by means of the NMSE and

modal metrics introduced in Section 5.2.

The NMSE metric provides a global information about the accuracy of the re-

produced wave fields. It is calculated by means of (5.19), and we distinguish the

following quantities:

• Erc → NMSE associated to wave fields synthesized performing the room com-

pensation;

• Enc → NMSE of wave fields rendered without compensating for the real envi-

ronment;

• Eff → NMSE of wave fields reproduced in the free-field, i.e. when the real

environment is anechoic and no compensation is required.

The modal metrics allow us to examine the wave field propagation. In particular,

the function Ŝ′(k) defined in (5.23) is used for determining the distribution of the

wavenumbers k in the reproduced wave fields; and the function Ŝ′′(ϕ) gives insight on

the propagation directions ϕ of the rendered wave fields. We consider the following

quantities:

• Ŝ′
des , Ŝ

′′
des → modal analysis of the desired wave field;

• Ŝ′
rc , Ŝ

′′
rc → modal analysis for room-compensated rendering;

• Ŝ′
nc , Ŝ

′′
nc → modal analysis for non-compensated rendering;

• Ŝ′
ff , Ŝ′′

ff → modal analysis for rendering in the free-field.

6.2.1.3 Beam shaping with a linear array

In this paragraph we consider the first scenario, described in Section 6.2.1.1. We

evaluate the effectiveness of the beam shaper engine for different values of the pa-

rameters of the array (number of loudspeakers) and of the beam (distance, direction

and aperture). For all the following tests, the room compensation is performed up to

the 3rd order of reflection, while the reflections of the real environment are modelled

up to the 15th order.

135



6 Simulations and experiments

Test 1 Let us consider the rendering of a beam with an array of M = 32 loudspeak-

ers and aperture l = 2 m. The desired beam-pattern has parameters d = 5 m, θ =

0 ◦, φ = 10◦. A snapshot of the desired wave field at 1 kHz is shown in Figure 6.14-
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Figure 6.14: Example of beam shaping with a linear array of 32 loudspeakers, at 1 kHz. The desired
beam-pattern (a) has parameters d = 5 m, θ = 0 ◦, φ = 10◦. The free-field, non-compensated and room-
compensated wave fields are shown in (b), (c) and (d), respectively.

(a). The corresponding rendered wave fields are shown in Figures 6.14-(b), 6.14-(c)

and 6.14-(d), which show, respectively: the wave field rendered in the free-field; the

wave field reproduced without compensating for the real environment; the wave field

reproduced performing the compensation of the real environment. It can be noticed

that the free-field and room-compensated rendered wave fields are similar to the de-

sired one. On the other hand, the non-compensated reproduction suffers from the

effect of the real environment, which produces, in this case, visible artifacts in the

bottom part of the listening area. This deterioration is probably due to a reflection

coming from the lower part of the L-shaped environment (see Figure 6.12).

We now focus on the NMSE performances of the system reproducing the beam

under analysis. Figure 6.15 shows the NMSE values in the range [100 Hz, 4 kHz].

The vertical grey lines denote the natural modes associated to the two parallel walls

orthogonal to the beam. These resonant modes are expected to be the most likely to

be excited in the case under analysis, since for θ = 0◦ the beam is oriented exactly

towards the wall in front of the loudspeaker array (see Figure 6.12). Indeed, the

performances of the non-compensated rendering reveals to be highly affected in cor-

respondence of a subset of the resonant modes. On the other hand, the deconvolution

provided by room compensation strongly attenuates the effect of reverberations. In

fact, the NMSE related to the room compensation approaches the curve relative to

the free-field NMSE.
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Figure 6.15: NMSE values of the free-field (Eff), non-compensated (Enc) and room-compensated (Erc)
responses of the beam shaper. The array has an aperture l = 2 m and it is composed of M = 32 loudspeakers.
The desired beam-pattern has parameters d = 5 m, θ = 0 ◦, φ = 10◦.

We now analyse the modal performances relative to the same test. The distribution

of the wavenumbers is depicted in Figure 6.16, which shows the function Ŝ′(k) for

all frequencies in the range [100 Hz, 2.5 kHz]. We notice that Figure 6.16-(c), which
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Figure 6.16: Analysis of the wave number distribution for the rendering of a beam-pattern with parameters
d = 5 m, θ = 0 ◦, φ = 10◦.

refers to the function S′
nc, presents a set of parallel horizontal stripes. This fact is due,

as expected, to the dominant natural modes. In fact, such horizontal stripes are in

correspondence of the frequencies at which the curve Enc in Figure 6.15 exhibits the

highest peaks. The boosting of the resonant modes is almost completely eliminated

by room-compensation. Indeed, the function S′
rc in Figure 6.16-(d) approaches the

137



6 Simulations and experiments

Wave direction ϕ [deg]

F
re

q
u
en

cy
[k

H
z]

 

 

−90 −45 0 45 90

1

2

3

0.2

0.4

0.6

0.8

1

(a) S′′
des

Wave direction ϕ [deg]

F
re

q
u
en

cy
[k

H
z]

 

 

−90 −45 0 45 90

1

2

3

0.2

0.4

0.6

0.8

1

(b) S′′
ff

Wave direction ϕ [deg]

F
re

q
u
en

cy
[k

H
z]

 

 

−90 −45 0 45 90

1

2

3

0.2

0.4

0.6

0.8

1

(c) S′′
nc

Wave direction ϕ [deg]

F
re

q
u
en

cy
[k

H
z]

 

 

−90 −45 0 45 90

1

2

3

0.2

0.4

0.6

0.8

1

(d) S′′
rc

Figure 6.17: Propagation direction analysis for the rendering of a beam-pattern with parameters d = 5 m, θ =
0 ◦, φ = 10◦.

free-field behaviour S′
ff and the desired behaviour S′

des in Figure 6.16-(a). As far as the

propagation direction is concerned, the results are shown in Figure 6.17. The results

are organized as in Figure 6.16, i.e. the function S′′
des is plotted in Figure 6.17-(a);

S′′
ff in (b); S′′

nc in (c); and S′′
rc in (d). We notice that the function S′′

nc presents local

maxima in correspondence of the resonant frequencies. Moreover, at low frequencies

we observe the presence of undesired propagation modes which are not present in

the desired (S′′
des), free-field (S′′

ff) and room-compensated (S′′
rc) responses.

Test2 We now consider a second simulation to evaluate the effectiveness of the

beam shaper for different number of loudspeakers, keeping constant the aperture to

l = 2 m. The beam parameters are again set to d = 5 m, θ = 0 ◦, φ = 10◦. Figure

6.18 shows the NMSE results of beam shaping at 4 kHz. We observe that a good
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Figure 6.18: NMSE values, at 4 kHz, of the free-field (Eff), non-compensated (Enc) and room-compensated
(Erc) responses of the beam shaper as a function of the number of loudspeakers. The array has an aperture
l = 2 m and the desired beam parameters are d = 5 m, θ = 0 ◦, φ = 10◦.

reproduction of the beam-pattern requires a sufficient number of loudspeakers, i.e.
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6.2 Wave field rendering

M ≥ 28. This problem is due to the spatial aliasing artefacts introduced by an

incorrect spacing between the loudspeakers. For a constant aperture of the linear

array, aliasing can be avoided increasing the number of loudspeakers.

In order to better characterize the phenomenon of spatial aliasing, we perform a

modal analysis of the reproduced wave fields. As noticed in [106], spatial aliasing

in rendering applications can be interpreted as the effect of undesired propagation

modes. For this reason, we focus on analysing the distribution of the propagation

directions. In Figure 6.19 the function Ŝ′′
rc relative to the reproduced wave fields

with M = 12, M = 20, and M = 28 loudspeakers is compared with the function

Ŝ′′
des relative to the desired wave field at 4 kHz. We observe that, with M = 12,
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Figure 6.19: Spatial aliasing: analysis of the direction of propagation. The rendering system reproduces a
beam at 4 kHz with M = 12, 20, 28 loudspeakers. The corresponding functions Ŝ′′

rc are compared with the

desired one Ŝ′′
des .

the beam-pattern is not correctly synthesized since unwanted propagation modes

at directions ±40◦ are present. Moreover, we notice an equal repartition of the

energy of the rendered wave field at −40◦, 0◦ and 40◦, causing an attenuation of the

reproduction in the desired direction. Similar considerations hold for M = 20. In

this case, however, the desired propagation direction 0◦ gains energy with respect to

the undesired ones, which are now moved to ±60◦. When M = 28 aliasing artifacts

disappear, and the function Ŝ′′
rc approaches the desired one Ŝ′′

des, exhibiting only the

desired propagation direction. A visual confirmation of the analysis reported above

is given by Figure 6.20, which shows the rendered wave fields at 4 kHz for M = 12

(a), M = 20 (b), and M = 28 (c).

The analysis of the distribution of the wavenumbers by means of the function Ŝ′
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Figure 6.20: Spatial aliasing: rendering a beam with a variable number M of loudspeakers.

is omitted, since it leads to results similar to those presented above.

Test 3 We now analyze the performances of the beam shaping engine varying the

beam parameters. The number of loudspeakers and the array aperture are kept fixed

to M = 32 and l = 2 m, respectively. In a first stage, we consider a virtual source

positioned at a distance d = 5 m from the array emitting a beam with aperture

φ = 10◦; the beam direction varies in the range [0◦, 50◦]. Figure 6.21 shows the

results of the NMSE analysis at 1 kHz. We notice that the free-field and room-
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Figure 6.21: NMSE values, at 1 kHz, of the free-field (Eff), non-compensated (Enc) and room-compensated
(Erc) responses of the beam shaper as a function of the beam direction θ. The other beam parameters
are fixed to d = 5 m and φ = 10◦. The array has an aperture l = 2 m and it is composed of M = 32
loudspeakers.

compensated responses are nearly independent from the beam direction. On the

other hand, looking at the non-compensated response, we observe that the effect

of the environment strongly depends on the emission direction. Once again, the

room compensation technique reveals to be effective for attenuating the effect of
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reverberations. We now analyse the modal behaviour of the rendered wave fields.

Figure 6.22 shows the function Ŝ′′ for two different beam directions, namely θ = 9◦
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Figure 6.22: Analysis of the propagation direction for the rendering of beams oriented towards θ = 9◦ (a)
and θ = 46◦ (b).

(a) and θ = 46◦ (b). In the first case, the real environment introduces only an error

on the amplitude of the rendered wave field, as it can be noticed looking the curve

Ŝ′′
nc in Figure 6.22-(a). In the case shown in Figure 6.22-(b), the environment reacts

generating a reflection from the direction around −45◦. This happens due to the

major steering of the beam with respect to the previous case. It is interesting to

observe that the room-compensation is able to dampen both the types of distortion

introduced by the environment. Indeed, the curves of Ŝ′′
rc approach those of Ŝ′′

des and

Ŝ′′
ff.

We now keep fixed the orientation of the beam, and we consider a virtual source

positioned at various distances from the array, in the range [0.1 m, 5 m]. The virtual

source emits a beam directed as θ = 0◦ with aperture φ = 5◦. Figure 6.23 shows

the NMSE results at 1 kHz. We notice, once again, that the effect of reverberations

seriously damages the performances of the beam shaper if the real environment is not

compensated. Regarding the free-field and compensated responses, we notice that

their respective NMSEs depend on the distance of the virtual source from the array.

More specifically, we observe that the accuracy increases for virtual sources located

far from the array. This happens since the portion of listening area illuminated by

the beam decreases as the source moves close to the array. In other words, when the
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Figure 6.23: NMSE values, at 1 kHz, of the free-field (Eff), non-compensated (Enc) and room-compensated
(Erc) responses of the beam shaper as a function of the distance d of the virtual source from the array. The
other beam parameters are fixed to θ = 0◦ and φ = 10◦. The array has an aperture l = 2 m and it is
composed of M = 32 loudspeakers.

source is very close to the array, the beam shaper is asked to render a very sharp

beam. Better performances may be obtained by increasing the array aperture. Also

in this case, the degradations introduced by the environment have different natures,

as it can be observed from the propagation direction analysis shown in Figure 6.24.

For virtual sources located close to the array, the environment alters the propagation

direction of the non-compensated rendered wave field. An example is shown in Figu-

re 6.24, which is relative to a virtual source located at a distance d = 1.8 m from the

array. Here, the non-compensated wave field exhibits two propagating components

at ±15◦, while the desired one is centred at 0◦. On the other hand, far sources

determine only an amplitude error on the reproduction of non-compensated wave

fields. This can be noticed in Figure 6.24-(b), which is relative to a virtual source

located at a distance d = 10 m behind the array.

6.2.1.4 Wave field rendering with a circular array

We consider here the rendering of a virtual source along with the effect of three

different virtual environments. The simulations are conducted considering the second

scenario described in Section 6.2.1.1, setting M = 32, ra = 1.4 m and rl = 1.1 m.

The reflections of the real environment are modelled up to the 15th order, whereas

room compensation is performed up to the 3rd order of reflection. The virtual source

and the virtual environments considered for the experiments are shown in Figure

6.25, which depicts also their mutual positions with respect to the real environment.
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Figure 6.24: Analysis of the propagation direction for the rendering of beams originated from a virtual source
close (d = 1.8 m) to the array (a) and far (d = 10 m)from the array (b).

The circular geometry of the loudspeaker array and of the listening area allows us

to asses the maximum alias-free frequency fA. In fact, as noticed in [21], for such ge-

ometry the number M of loudspeaker necessary to achieve an alias-free reproduction

has to fulfill the relationship (M −1)/2 ≥ krl, where k = 2πf/c is the wave number,

f being the frequency. For the rendering system used in simulations (M = 32 and

rl = 1.1 m) we obtain fA ≈ 800 Hz.

In the first simulation we consider the virtual environment in Figure 6.25-(a), that

models a 5 m side square room with reflection coefficient 0.7. We simulate the ren-

dering of the virtual source along with the beams associated to reflections up to the

2nd order. Figure 6.26 shows the NMSE results in the range [100 Hz, 2.2 kHz]. As

expected, looking at the NMSE of the free-field and room-compensated responses,

we observe that the wave field is rendered with good accuracy up to the maximum

alias-free frequency fA. Above this frequency value, the quality of rendering de-

creases because of the spatial aliasing artifacts. On the other hand, the quality of

the rendered wave field is poor when no compensation is performed. In fact, the

NMSE of the non-compensated response highlights, as usual, the effect of the real

environment on the listening area. As far as the modal analysis is concerned, we fo-

cus on the analysis of the directions of propagation. In particular, Figures 6.27-(a),

6.27-(b) and 6.27-(c) show the quantities |Ŝ′′
ff − Ŝ′′

des|, |Ŝ′′
nc − Ŝ′′

des| and |Ŝ′′
rc − Ŝ′′

des|,
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Figure 6.25: The rendering system operates in an L-shaped real environment and renders a virtual source
(depicted as a black circle) along with its effect on three different virtual environments. The first virtual
environment (a) models a square room; the second virtual environment (b) represents an L-shaped room
slightly bigger than the real environment; the third virtual environment (c) models a small church.
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Figure 6.26: NMSE values of the free-field (Eff), non-compensated (Enc) and room-compensated (Erc)
responses of rendering the virtual source and the virtual environment in Figure 6.25-(a).

respectively. When no compensation of the real environment is performed, the re-

verberation interferes with the reproduced wave field introducing several undesired
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rc − Ŝ′′
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Figure 6.27: Propagation direction analysis relative to the rendering of the virtual environment in Figure
6.25-(a).

propagation modes, as noticed in Figure 6.27-(b). On the other hand, the free-field

and room-compensated wave fields share a similar behaviour, presenting only few

isolated undesired propagation modes, as it can be observed from the local maxima

in Figures 6.27-(a) and 6.27-(c).

The same simulation is repeated using the virtual environments in Figures 6.25-(b)

and 6.25-(c), representing an L-shaped room (slightly bigger than the real environ-

ment) and a small church, respectively. The reflection coefficient is set to 0.7 for

both the virtual environments. The corresponding NMSE results are shown in Fig-

ures 6.28-(a) and 6.28-(b), respectively. For these tests, virtual sources are rendered

along with the beams associated to acoustic reflections up to the 5th order. The

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
M

S
E

 

 

Eff
Enc
Erc

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

N
M

S
E

 

 

Eff
Enc
Erc

(b)

Figure 6.28: NMSE values of the free-field (Eff), non-compensated (Enc) and room-compensated (Erc)
responses of rendering the virtual source and the virtual environment in Figures 6.25-(b) (left picture)) and
6.25-(c) (right picture).

results of the propagation direction analysis for the two test environments are shown

145



6 Simulations and experiments

in Figures 6.29 and 6.30, respectively, which are organized as in Figure 6.27. We

notice that the results present the same behaviour of the first test, revealing the

effectiveness of the free-field and room-compensated rendering independently from

the characteristics of the virtual environment.
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Figure 6.29: Propagation direction analysis relative to the rendering of the virtual environment in Figure
6.25-(b).

Wave direction ϕ [deg]

F
re

q
u
en

cy
[k

H
z]

 

 

−90 −45 0 45 90

0.5

1

1.5

0.5

1

1.5

(a)

Wave direction ϕ [deg]

F
re

q
u
en

cy
[k

H
z]

 

 

−90 −45 0 45 90

0.5

1

1.5

0.5

1

1.5

(b)

Wave direction ϕ [deg]

F
re

q
u
en

cy
[k

H
z]

 

 

−90 −45 0 45 90

0.5

1

1.5

0.5

1

1.5

(c)

Figure 6.30: Propagation direction analysis relative to the rendering of the virtual environment in Figure
6.25-(c).
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6.2 Wave field rendering

An example of the desired, free-field, non-compensated and room-compensated

wave fields is shown in Figure 6.31. More specifically, Figure 6.31-(a) depicts the

real part of the desired wave field, at 1 kHz, relative to the rendering of a virtual

source inside a small church (Figure 6.25-(c)). Looking at Figures 6.31-(b) and

6.31-(d), we notice that the free-field and room-compensated wave fields accurately

reproduce the desired one. On the other hand, when no compensation is performed,

the reverberation causes a degradation in the reproduced wave field (Figure 6.31-(c)).
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Figure 6.31: The real part of the desired wave field (a) at 1 kHz produced considering the virtual source and
the virtual environment in Figure 6.25-(c) is compared with: the real part of the free-field wave field (b),
the real part of the non-compensated wave field (c), and the real part of the room-compensated wave field
(d).
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6 Simulations and experiments

6.2.2 Experimental evaluation

In this Section we show the results of an experimental evaluation of the proposed ren-

dering methodology. The experiments have been performed on the loudspeaker array

installed at the LMS laboratory at the Friedrich-Alexander University of Erlangen-

Nuremberg. This system arranges 48 high quality loudspeakers mounted on a circular

array operating in a low-reverberating chamber. It has been extensively employed

in many works [87, 107, 108] that contributed to make Wave Field Synthesis [6] one

of the standards for sound field reproduction over wide regions.

The experiments presented in this Section have a twofold goal. On one hand, they

serve to confirm the suitability of the wave field measuring technique introduced in

Section 5.2.2. On the other and, they allow us to perform a comparative analysis

between the proposed rendering technique and the Wave Field Synthesis method.

For the sake of compactness, in the following we will refer to the proposed technique

as to Geometric Rendering.

6.2.2.1 Experimental setup

A picture of the experimental setup is depicted in Figure 6.32, which shows the

rendering system installed at the LMS laboratory at the University of Erlangen-

Nuremberg. The loudspeaker array accommodates 48 high-quality emitters disposed

Figure 6.32: Setup for the experimental evaluation of the proposed rendering technique.
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6.2 Wave field rendering

on a circumference with radius 1.5 m. The virtual microphone array (described in

Section 5.2.2 - Figure 5.2) is located at the centre of the loudspeaker array. It samples

the rendered wave field in 200 intermediate angular positions on the circle described

by the arm, which has a radius of 0.74 m. For each position, the signal is acquired

for T = 2 s. Signals are emitted and acquired at the frequency of Fs = 44.1 kHz.

6.2.2.2 Results

In this paragraph we report the results of the experimental evaluation of Geometric

Rendering, comparing them with those of Wave Field Synthesis. For the sake of

clarity, we recall the definition of the terms used in the following, which has been

introduced in Section 5.2.2:

• target wave field : it refers to the wave field to be rendered;

• theoretical wave field : it refers to the theoretical prediction of the rendered

wave field;

• measured wave field : it refers to the wave field reproduced by the real system,

measured by means of the technique based on the Circular Harmonic Decom-

position introduced in Section 5.2.2.

We will show two set of experiments. In a first stage, we evaluate the accuracy

of the measurement and of the reproduction of the wave field produced by the loud-

speaker array when it simulates the presence of a virtual point source. In a second

stage, we consider the rendering of a virtual source along with the acoustics of a

virtual environment.

Rendering of a virtual point source Simple source models such as plane waves and

point sources are commonly used for comparing the accuracy of different rendering

systems [101, 99, 109]. In order to compare Geometric Rendering (GR) and Wave

Field Synthesis (WFS) we considered point sources, which are simply rendered with

both the techniques. As far as GR is concerned, a point source can be interpreted

as a beam with angular aperture φ = 2π that originates at the source position3, and

therefore it can be rendered, as usual, by means of the beam shaping engine. As far

WFS is concerned, the loudspeaker signals are computed in a closed-form [16].

3Notice that, in this case, the beam direction θ is meaningless.
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6 Simulations and experiments

We evaluated the accuracy of the two rendering systems for three distances (d =

3 m, d = 6 m and d = 10 m) of the source from the array centre. The source emits

monochromatic signals at 500 Hz, 1000 Hz and 1500 Hz. Table 6.3 summarizes the

NMSE results for all the source distances and frequencies. In particular, it reports

the NMSE values relative to the theoretical wave fields (denoted with EGR
T and EWFS

T

for GR and WFS, respectively), and the NMSE values relative to the measured wave

fields (EGR
M and EWFS

M ). Best performances are marked in bold.

Table 6.3: NMSE results of the experimental analysis related to the rendering of point sources.

d f EGR
T EWFS

T EGR
M EWFS

M

500 Hz 0.049 0.055 0.253 0.252

3 m 1000 Hz 0.058 0.088 0.462 0.567
1500 Hz 0.248 0.627 0.534 1.088

500 Hz 0.073 0.074 0.207 0.256
6 m 1000 Hz 0.083 0.097 0.364 0.376

1500 Hz 0.270 0.475 0.490 0.745

500 Hz 0.083 0.090 0.205 0.199

10 m 1000 Hz 0.092 0.112 0.345 0.352
1500 Hz 0.277 0.456 0.530 0.806

We first consider the theoretical performances, whose NMSE values are denoted

with EGR
T and EWFS

T in Table 6.3. We notice that the performances of the two

rendering methods vary with respect to the distance of the virtual source and with

respect to the frequency. More specifically, the two rendering methods have almost

the same behaviour at 500 Hz, although GR performs slightly better with respect to

WFS. As it is predictable, due to the spatial Nyquist criterion, when the frequency

increases the performances of both methods tends to degrade. The spatial Nyquist

frequency for this loudspeaker array is around fA = 900 Hz, which is derived from

the fact that fA ≈ c(M−1)
4πr , M = 48 being the number of loudspeakers; r = 1.5 m

the radius of the listening area; and c the speed of sound. For details on the spatial

Nyquist frequency see Section 6.2.1.4 or [21]. Looking at the NMSE values, it can

be noticed that the degradation amount is not very relevant for 1000 Hz (i.e., when

the frequency is slightly above the Nyquist), but it becomes significant for 1500 Hz.

Consider, for example, the source at 6 m rendered with GR: the error EWFS
T is 0.073 at

500 Hz, 0.083 at 1000 Hz and 0.27 at 1500 Hz. Moreover, comparing the behaviours

of WFS and GR, it can be noticed that GR tends to limit the degradation introduced

by spatial aliasing. For example, considering again the source at 6 m, at 1500 Hz we
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6.2 Wave field rendering

have that EGR
T = 0.27, while EWFS

T = 0.475. Analogous considerations can be made

for all the source distances and for all the errors types, and they are valid for both

WFS and GR.

The experimental results, denoted with EGR
T and EWFS

T in Table 6.3, basically

confirm the results relative to the theoretical comparison. In particular, GR generally

performs better than WFS, especially at high frequency. As it can be expected, the

NMSE values are always greater than the correspondent theoretical values. Many

factors may contribute to degrade the rendered wave fields, such as the non-ideality of

the loudspeakers; a certain amount of reverberations; and noise in the measurements,

which can be amplified by the wave field measuring technique.

In order to investigate, at least partially, the reasons of the degradation introduced

in the measured wave fields, we resort to a modal analysis. To this end, we selected

a case for which spatial aliasing is absent. Figure 6.33. shows the wavenumber (a)

and wave direction (b) analyses for the source located at a distance d = 6 m from

the centre of the array. We observe that the experimental wave number and wave
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Figure 6.33: Wave-number and wave direction distributions for the target, theoretical and measured wave
fields of GR and WFS for the first experiment for d = 6 m.

direction distribution functions well fit the respective target distributions. We notice

that, however, that the measured wave fields (relative to both GR and WFS) are

slightly degraded by waves propagating from directions around Φ = 80◦, Φ = 130◦

and Φ = 150◦. This is probably due to some spurious reverberations introduced by

the environment, which is not completely anechoic.

151



6 Simulations and experiments

Rendering of a source in a virtual environment For the second experiment we

limit our evaluation to the GR technique. Here we aim at rendering the acoustics

of a virtual environment. This is accomplished by spatially overlapping the acoustic

beams generated by the image sources, following the approach proposed in Section

4.3.3. We aim at rendering the same virtual environments used for the theoretical

evaluation proposed in Section 6.2.1.4, in particular:

• a 5 m× 5 m square room;

• an L-shaped room;

• a small church.

The mutual arrangements of the loudspeaker array and each virtual environment

are shown in Figures 6.34-(a), 6.34-(b) and 6.34-(c). The array is depicted as black

crosses disposed on a circle; the listening points are denoted by the black points

within the array; and the virtual source is depicted by a black circle.

(a) (b) (c)

Figure 6.34: Test environment used in the second experiment.

Table 6.4 shows the results of the NMSE evaluation. The results confirm the

effectiveness of GR in reproducing a virtual source along with the effects of different

virtual environments. The theoretical performances are comparable with those of the

rendering of a single point source. We notice that, also in this case, a degradation of

the experimental results with respect to the theoretical ones is present. As before,

we investigate the origin of such degradation by means of a modal analysis. Figure
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6.2 Wave field rendering

Table 6.4: NMSE results of the experimental analysis related to the rendering of a source in three different
virtual environments: a square room (a), an L-shaped room (b), a small church (c).

Env. f EGR
T EGR

M

500 Hz 0.073 0.283
a 1000 Hz 0.069 0.202

1500 Hz 0.238 0.681

500 Hz 0.075 0.203
b 1000 Hz 0.080 0.292

1500 Hz 0.251 0.498

500 Hz 0.050 0.286
c 1000 Hz 0.053 0.445

1500 Hz 0.336 0.552

6.35 shows the wave number (a) and wave direction (b) distributions relative to

the rendering of a source in the L-shaped virtual environment, at 500 Hz. We notice
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Ŝ′′
des
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Figure 6.35: Wave-number and wave direction distributions for the target, theoretical and measured wave
fields of GR for the second experiment.

that the wave number distributions of theoretical and measured wave fields generally

well fit the target one. Also in this experiment, the measurement methodology

allows us to appreciate the presence of some spurious propagating wave fronts in

the range [60◦ , 90◦], which probably correspond to reverberations generated by the

reproduction room.
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6 Simulations and experiments

Discussion As stated at the beginning of this Section, the experiments we have

presented can be used to assess the suitability of the wave field measuring technique

introduced in Section 5.2.2. This is possible because the experiments have been

conducted in a controlled environment. For this reason, we expect the experimental

results to match, as much as possible, the theoretical ones. This was indeed verified

by the results of the proposed experiments. In fact, although a certain amount of

degradation in the rendered wave fields is inevitably present (due to the non-ideality

of the loudspeakers and of the environment, as well as of the acquisition system), the

experimental results exhibit a behaviour similar to the theoretical ones. In particular:

• the experimental results shown in Tables 6.3 and 6.4 present the same trend of

the corresponding theoretical results;

• the measuring technique was able to capture the differences between GR and

WFS. More specifically, Table 6.3 shows how the theoretical better perfor-

mances of GR with respect of WFS are captured also in the experimental

results.

Moreover, the measurement technique revealed to be capable of detecting the subtle

details of the reproduced wave fields. In particular, through a modal analysis of the

measured wave fields, we noticed the presence of spurious reverberation caused by

the non-completely anechoic environment.
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directions

In this thesis we have presented novel solutions for the analysis and the synthesis of

acoustic wave fields. All the proposed methodologies have been developed following

a geometric approach, which allowed us to describe the propagation in terms of

acoustic rays, and to model complex wave fields as the superposition of elementary

acoustic beams.

As far as wave field analysis is concerned, we have proposed a number of techniques

that make use of projective geometry for reformulating standard estimation problems

such as source localization and array calibration; and to formulate novel problems,

such as the estimation of the position of acoustic reflectors present in an environment.

Furthermore, we have proposed an unified theory for dealing with all the types of

estimation problem. In particular, we have seen how acoustic measurements (TOAs,

TDOAs, DOAs) can be turned into homogeneous quadratic constraints (i.e., conic

sections) acting on the primitive of interest leading to the formulation of a cost func-

tion that shares the same form for all the problems. We have also discussed a number

of minimization strategies for that cost function, proposing both exact and iterative

solutions. While the former are suitable for achieving the maximum accuracy in the

estimation (useful in reflector localization tasks), the latter are characterized by a

shorter computation time, thus being more suitable for real-time applications such

as source localization.

As far as wave field synthesis is concerned, we have proposed a geometric approach

for the rendering of complex wave fields with loudspeaker arrays in a reverberant

environment. Through an efficient beam tracing engine, the reverberation of the

real environment is predicted and included into the data model as the contribution

of a number of image (wall-reflected) loudspeakers. This way, image loudspeakers

actually contribute to the rendering and operate room-compensation in a completely
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7 Conclusions and future research directions

geometric manner. To do so, the system requires the knowledge of the geometry of

the environment, which can be estimated in advance by means of reflector localization

algorithms based on TOA and DOA measurements. The same beam tracing engine

is then used for modelling the wave field to be rendered. More specifically, given the

geometry of a virtual environment, the beam tracer is used for determining the set of

the acoustic beams generated by the reflections of an acoustic source over the virtual

walls. Each beam is reproduced by means of the loudspeakers through a suitable

beam shaping technique.

For the evaluation of the proposed techniques we have introduced novel methodo-

logies and metrics. In particular, we have proven the existence of a linear relationship

between the measurement error and the estimation error. This fact allowed us to

verify in a very efficient way the effectiveness of the proposed estimation algorithms.

Moreover, this technique is applicable to all the estimation problems that are based

on the minimization of a cost function. For the evaluation of the geometric rendering

technique, we have developed a methodology that is valid for both simulative and

experimental analyses. In particular, standard MSE-based metrics have been com-

plemented with a novel modal analysis conducted in the wave number domain, which

allowed us to give insight on the distribution of the error for different wave fronts

in the sound field. In order to measure wave fields reproduced by real loudspeaker

systems, we have resorted to an extrapolation technique. The wave field is first sam-

pled on a circle by means of a pair of rotating microphones, and then extrapolated

through circular harmonic decomposition.

Simulative and experimental results proved the effectiveness of both analysis and

synthesis methodologies. In particular, reflector localization techniques turned out

to be accurate and robust even in real scenarios, enabling the reconstruction of the

geometry of different environments. The geometric approach to sound field synthesis

revealed to be accurate in rendering the effect of a single source as well as the effect

of a source located inside a virtual environment. Geometric room compensation

revealed to be effective in canceling out most of the reverberations, enabling a free-

field behaviour in an arbitrary environment.

To conclude, we mention a set of possible evolutions of the work presented in this

thesis. As far as wave field analysis is concerned, it could be interesting a further

exploitation of the common formulation of all the constraints arising from different

acoustic measurements. As an example, let us consider a scenario in which multiple

microphone arrays or clusters provide DOA and TOA measurements relative to the
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reflective paths. This way, it could be possible to build an unique cost function em-

bedding DOA and TOA constraints. Moreover, assuming a priori knowledge on the

covariance of the measurement error it may be possible to assign different weights to

each type of constraints, such that the estimation error is minimized. In the context

of wave field analysis, another extension could be that of exploiting different acoustic

measurements along with the knowledge of the room geometry. This way, we could

devise novel estimation problems, such as “behind the corner” source localization

and tracking. As far as wave field rendering is concerned, it may be desirable to

include also other propagating phenomena in the reverberation model, such as diffu-

sion and diffraction. Assuming the knowledge of diffusive and diffractive properties

of the walls, room compensation could be made even more effective if complemented

by this information. Furthermore, the effect of a source within a virtual environ-

ment may be rendered in an even more realistic fashion modelling also diffusive and

diffractive propagations.
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