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Abstract

Evaluation of seismic performance of structures during their lifetime is nowadays an emerging
issue in the research community. In particular, a key aspect concerns the possibility to include
in the seismic assessment the effects of environmental hazards, because current seismic codes
and capacity design criteria are time-invariant and do not take into account such problem.
Actually, considering the lifetime of a generic structure, the energy dissipating collapse mode
may vary over time due to a reduction of both strength and ductility of the sections where
plastic hinges are expected to occur during an earthquake. Such an interaction could finally
bring to undesired failure mechanisms like weak column-strong beam, unpredicted during the
design phase. Regarding environmental hazards, this investigation focuses on the role of a
chloride attack, evaluating the loss of mechanical properties of the structural elements.
Among different structures, precast buildings are particularly subjected to the effect of
corrosion, because most of their structural members can be directly exposed to the atmosphere.
In such conditions, the diffusive attack from external aggressive agents, like sulphates and
chlorides, can take place and lead to a deterioration of concrete and steel. Damage induced
by corrosion can significantly reduce local strength and ductility, modifying in this way the
failure mechanism and the corresponding seismic performance during structural lifetime.
Despite of the extensive research on seismic behavior of precast structures, few studies
focused on the lifetime behavior of precast buildings subjected to environmental hazards.
In such conditions, the diffusive attack of aggressive agents can lead to a deterioration of
mechanical properties of structural members and to a decrease of the overall response. As a
consequence, capacity design criteria should be properly calibrated to consider the severity of
environmental exposure and the required structural lifetime. In particular, in this investigation
the corrosion of reinforcement due to chloride attack is considered, assuming a contamination by
chlorides the most significant source of environmental hazard for reinforced concrete structures.
With respect to this problem, in recent years different mitigation strategies emerged,
with the purpose to extend the lifetime of reinforced concrete structures or to reduce the
potential damage due to strong ground motions. In particular, new advanced materials have
been proposed in order to improve the seismic performance of structures and to extend their
durability characteristics. Among them, the use of the so called Engineered Cementitious

Composite (ECC) in place of normal concrete allows, by an appropriate mix design and adding

vii
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a minimum quantity of polimeric fibers (about 2%), the formation of multiple narrow cracking
in structural elements. This leads to a localized damage and a more uniform distribution
of energy dissipation. Nevertheless, the reduction of the crack width tends to decrease the
diffusion process of aggressive agents such as chlorides, with significant benefits in terms of
durability.

Finally, considering that all the phenomena involved in this investigation have an inherent
variability, the rational approach to take into account their randomness is based on a proba-
bilistic assessment. Moreover, since the nature of the problem is highly non linear, numerical
simulations provide the only practical and effective method. In particular, if random variables
are included, the numerical process with repeated simulations can be based on Monte Carlo
sampling technique, which is particularly effective in treatment of aleatory and epistemic
uncertainties. In order to reduce the computational cost involved in the simulation analysis
based on plain Monte Carlo method, advanced tools are also needed to have reliable results.
A stratified sampling called Latin Hypercube sampling is implemented, since such technique
requires a relative small number of simulations to have reliable information on the performance
of structural systems.

Based on the considerations above, it is expected a significant influence of environmental
hazard on the seismic performance of precast structures during their lifetime, and such influence
can be quantified in an effective way using the tools developed in this work. In fact, one of the
most relevant contributions of the present investigation is the possibility to show and evaluate
how same structures, placing at sites with the same seismic hazard, can have a different seismic
reliability depending on the environmental conditions. Such results should lead to improve the
current seismic design criteria included in design codes and recommendations to properly take

into account the potential coupling among seismic and environmental hazards.
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Chapter 1

Introduction

Evaluation of seismic performance of structures during their lifetime is nowadays an emerging
important issue in the scientific community. In particular, a key aspect concerns the possibility
to include in the seismic assessment the effects of environmental hazards, because current
seismic codes and capacity design criteria are time-invariant and do not take into account such
issue. Actually, considering the lifetime of a structure, the energy dissipating collapse mode
may vary over time due to a reduction of both strength and ductility of the sections where
plastic hinges are expected to occur during an earthquake. Such an interaction could finally
bring to undesired failure mechanisms like weak column-strong beam, unpredicted during the
design phase. Regarding environmental hazards, this investigation focuses on the role of a
chloride attack, evaluating the loss of mechanical properties of the structural elements.

Among different structures, precast buildings are particularly subjected to the effect of
corrosion, because most of their structural members can be directly exposed to the atmosphere.
In such conditions, the diffusive attack from external aggressive agents, like sulphates and
chlorides, can take place and lead to a deterioration of concrete and steel. Damage induced by
corrosion can significantly reduce local strength and ductility, modifying, in this way the failure
mechanism and the corresponding seismic performance during structural lifetime, Biondini
et al. [40]. Several international research projects in the past highlighted important issues
on the seismic behavior of precast structures, but none of them focused on the evaluation
of the structural performance during lifetime, where seismic hazard can be coupled with the
environmental one.

Performance-based earthquake engineering (PBEE) offers an effective methodology to assess
the seismic behavior of different kind of structures, regardless their material and configuration.
In particular the Pacific Earthquake Engineering Center (PEER) has developed in the last
years a comprehensive framework for the PBEE, Porter [198], Moehle and Deierlein [169].
This methodology has successfully implemented in past researches, see e.g. Jalayer [129] and
codes, FEMA 356 [84] and FEMA P695 [86]. In particular, through this approach a complete

risk analysis on a structure can be done, from hazard of the site to assessment of damage and
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monetary losses, including also economical and social issues. Within the present research this
methodology, in the following called PEER methodology, will be used for the evaluation of the

structural safety, even if the framework developed is more general.

1.1 Research on seismic performance of precast structures

The investigation moves from the general assumption that current seismic codes and capacity
design criteria are time-invariant and do not take into account the interaction with environ-
mental hazards. It is however important to predict the lifetime performance of a generic
structures, see e.g. Biondini et al. [42], because undesired mechanisms, not considered during
design, can appear and modify in a decisive way the structural behavior. To this aim the
primary goal of this study is to understand the seismic behavior of multistory RC precast
structures during their lifetime. In particular, among different environmental hazards, the
diffusive attack induced by chlorides is considered, in order to quantify in a reliable way the
structural safety for this kind of buildings.

The present research places oneself in a wider investigation on the seismic performance
of precast frames carried out in US (see e.g. the PRESS Programme, Priestley [202]) and in
Europe during last decades. Precast concrete structures are quite widespread in Italy and other
seismic countries in southern Europe, both for commercial and industrial buildings, where the
maximum number of stories is usually limited to two or three or, typically for industrial use,
these structures are one-story buildings. Structural members are generally prefabricated, and
dry connections with mechanical devices between them are adopted. Beam-to-column joints
are usually hinged, so the dissipative zones are located at the base of the columns, where
plastic hinges are expected to occur during a strong motion. For these systems, a capacity
design based on a collapse mechanism involving the maximum number of stories is required to
have a satisfying seismic behavior, Biondini et al. [39].

Considering seismic codes, such as EC8 [74] and NTC 2008 [181], the performance of
precast structures under earthquake, assuming a suitable capacity design of connections, can
be compared to that of cast-in-place structures in terms of global strength and ductility.
This statement is demonstrated on the base of results reached in recent European research
studies, namely “ECOLEADER” and “GROWTH?”, Biondini and Toniolo [32]. In particular
numerical and experimental studies were performed on one story industrial frames, Figure 1.1.
First, seismic response of the prototype was investigated in probabilistic terms for lognormally
distributed material strengths and under artificial accelerograms, in order to match very
well the design response spectrum. A Monte Carlo simulation based on a large sample of
incremental nonlinear dynamic analyses up to collapse was therefore carried out for each
prototype to compute the statistical parameters of the overstrength, defined as the ratio of the

computed value over design value of the seismic capacity. Numerical predictions proved that
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(@) (b)

Figure 1.1: Prototypes of one-story frames: (a) monolithic and cast-in-situ; (b) hinged and

precast, Biondini and Toniolo [32].

precast structures have the same seismic capacity of the corresponding cast-in-situ structures,
and confirmed the adequacy of the values given by the code to the behavior factor of concrete
frames (¢ = 4.5).

To support the results, pseudodynamic tests on real buildings have been performed at
ELSA (European Laboratory for Seismic Assessment) Laboratory. Figure 1.2 shows a view
of the full scale prototypes. The aim of the experimental tests was to compare the seismic
capacities of cast-in-situ and precast structures, validating at the same time the analytical
model used in the numerical investigations. Different load steps have been scheduled, and the
results in terms of force-displacement curves can be seen in Figure 1.3; the direct comparison
of the cycles highlights the expected large strength resources of this type of structures against
seismic collapse and confirms the overall equivalence of the seismic behavior of precast and
cast-in-situ structures. It is worth noting that at the third level for the precast prototype
(ag = 1.08), the amplitude of the motion took the jacks to the end of stroke and the test had
to be stopped. However, the maximum displacement of 400 mm was reached without any
incipient decay of the reaction force and the cover of the critical zones of the columns was still
intact. The structural collapse was still far.

The fourth stage of the research has been developed within the “GROWTH” program. Two
prototypes consisting of six columns and a mesh of beams and roof elements were designed to
investigate the seismic behavior of precast structures with roof elements placed side by side.
Figure 1.4 show a views of the prototypes and of the testing plants. The only difference among
them was the orientation of the beams and roof elements with respect to the seismic action.
Hinged connections were used between roof elements, beams and columns. The control of the
pseudodynamic tests was based on two degree of freedoms, associated with the top horizontal
displacements of the lateral and of the central frames; the measured top displacements of
lateral and central columns during the tests resulted practically coincident, proving that double
connections between beams and roof elements gives a rotational restraint in the roof plane
which enables the activation of an effective diaphragm action, even if the roof elements are not

connected among them. After the pseudodynamic tests, both prototypes have been subjected
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(a) Monolithic and cast-in-situ. (b) Hinged and precast.

Figure 1.2: View of the structural prototypes, Biondini and Toniolo [31].
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Figure 1.3: Force-displacement diagrams of the pseudodynamic tests: (a) cast-in situ frame;

(b) precast frames, Biondini and Toniolo [32].
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(a) Monolithic and cast-in-situ. (b) Hinged and precast.

Figure 1.4: View of the structural prototypes with roof elements with axis (a) parallel to the
direction of the seismic action (Prototype 1), and (b) orthogonal to the direction of the seismic

action (Prototype 2), Biondini et al. [35].

to a cyclic test under imposed displacements up to collapse, Figure 1.5. With a ultimate
displacement d,, ~ 360 mm and a yielding displacement d, ~ 80 mm, a global displacement
ductility equal to 4.5 was evaluated, as assumed by the final version of EC8 (EC8 [74]) for the
behavior factor of precast frame systems.

The outcomes of the studies carried out under the “ECOLEADER” and “GROWTH”
research projects showed the good seismic performance of precast structures under condition
that the connections were properly over-dimensioned (“strong connections”). To complete the
investigation, their actual behaviour under seismic excitation needs to be addressed. To this
aim, the European research program SAFECAST has been recently launched to investigate
the seismic performance of connections in precast systems, Biondini et al. [41]. This project
involved a campaign of experimental static tests carried out on single specimens, as well as
pseudo-dynamic tests on the three-storey full-scale prototype. The aim of this large size
experimentation is to provide proper reliable evidences about the seismic behaviour of a
common type of precast multi-storey buildings widely used for commercial and industrial
purposes. In particular the role of the beam-to-column connections, hinged or moment-resisting,
has to be investigated with respect to the inter-story drift control as regulated by the code
requirements. This also includes the verification of the accuracy of the ordinary methods of
analysis. Therefore, the choice of the prototype has been addressed to a three-story building
with a number of spans and bays sufficient to represent the behavior of this type of buildings,
the dimensions in plan being the maximum compatible with the capacity of the testing plant
of ELSA laboratory, Figure 1.6.

Figure 1.7 shows the image of the prototype, placed against the reaction wall of the

laboratory. The horizontal actions are applied symmetrically on the mid axis of the two bays
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(a) Prototype under construction. (b) Prototype completed.

Figure 1.7: Safecast structural prototype tested at ELSA laboratory.

—

m o] v s

Model1 Model 2 Model 3 Model 4

Figure 1.8: Structural schemes of the prototype for SAFECAST project.

in the directions of the beams. Two couples of jacks of 1000 kN of capacity are used at the 2nd
and 3rd floor levels and four jacks of 500 kN of capacity are used at the 1st floor level. Steel
beams are placed along the two axis to connect all the floor elements and distribute uniformly
the applied forces. The loading system works under displacement control with three degrees of
freedom and no torsional effects. During the pseudodynamic tests no vertical loads additional
to the dead load of the structure are applied. In this way the test situation does not correspond
exactly to what considered in the design for the dimensioning of the elements. The prototype
during the experimental campaign represents only itself with its mechanical properties. A
series of tests has been scheduled, changing subsequently the arrangement of the connection
system, in order to study different structural schemes on the same prototype, Figure 1.8.
First, a sequence of tests on the dual wall-frame system with the structure connected to the
two lateral bracing walls has been performed. Then the bracing walls have been uncoupled
and the structure reduced to a pure frame system. A second sequence has been performed
on this frame system with all hinged beam-to-column connections. A third sequence has
been performed after restraining the top floor joints turned into moment-resisting connections.
The final sequence of tests have been performed with the joints of all the floors turned into

moment-resisting connections.

Regarding the dual wall-frame system, due to his stiffness, with a computed natural
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vibration period of 0.27s, the first vibration mode is the dominant one. At the lower intensity
the response remained practically within the elastic range, as shown by the force versus
inter-story drift cycles of Figure 1.9a. At the higher intensity the response underwent relevant
non linear effects with wider force-drift cycles (see Figure 1.9b). The results are fully significant
up to the virtual duration of 12s at which a local rupture of the joint between the wall and
the floor slab at the second floor occurred, leaving the connection with an uneven efficacy.
The most important aspect of this first sequence of tests is the diaphragm behavior of the
floors for the transmission of the inertia forces to the two bracing walls. The large set of data
recorded by the dedicated gauges is under investigation for the deduction of a reliable model

to be used in design calculations.

The second sequence of tests was performed on the pure frame system with all hinged
beam-to-column connections. The much more flexible arrangement, with a computed natural
vibration period of 1.57s, led to lower inertia forces and higher story drifts. The vibration of
the structure is sensibly affected by the higher modes. At the lower intensity the response
remained again practically within the elastic range, as shown by the force versus inter-story
drift cycles of Figure 1.10a. The maximum inter-story drifts measured at the three levels
have been respectively 0.6%, 1.1%, and 1.3% from the lower to the upper floor. These values
pointed out the excessive deformability of the hinged frame structure that would require larger
sizes of the columns to fulfill the damage limit state imposed by the codes. At the higher
intensity the response underwent moderate non linear effects with wider force-drift cycles (see
Figure 1.10b). Results for the other two configurations will be provided in few time, when

Safecast project will be officially closed.

The results of the SAFECAST project are expected to complete the large research program
developed in Europe over the last two decades which provided significant advances in the
understanding of the seismic behaviour of precast systems and in the definition of reliable
design criteria for this type of structures. Since the purpose of the thesis is the lifetime seismic
assessment of multistory precast frames, part of the activity has been devoted to the numerical
simulation of the pseudo-dynamic tests, in order to identify the peculiar issues of this kind
of structures and to understand the role of connections. In particular, preliminary linear
and nonlinear dynamic analyses were performed to set the proper intensity measure for the
subsequent experimental tests. The purpose is double: from one side, the comparison between
two different methods of analysis allows to highlight the effectiveness of the approximated
methodology (dynamic modal analysis) in the estimation of important parameters such as

displacements and story forces.

From the other side, the comparison with the experimental results allows to validate the
effectiveness of the analytical models used during all the investigation; two different approaches
has been implemented (distributed and concentrated plasticity), and the results regarding

one of the pseudo-dynamic tests performed can be found in Section 3.4. Because for the
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SAFECAST project the seismic behavior of connections is fundamental, in the same section
also the results coming from an improved model (where the connections have a nonlinear
behavior) are presented. It is however worth nothing to remember that, because this research
is still in progress and the data about the behavior of connections are not completely available,
the remaining part of the thesis focuses on the seismic assessment of multistory precast frames

with strong connections.

1.2 Motivation for study

Despite of different research programs, few studies focus on the lifetime behavior of precast
buildings subjected to environmental hazards. In such conditions, the diffusive attack of
aggressive agents like sulphates and chlorides can lead to a deterioration of mechanical
properties of structural members and to a decrease of the overall response. As a consequence,
capacity design criteria should be properly calibrated to consider the severity of environmental
exposure and the required structural lifetime. Moreover, the coupling with seismic hazard
should be taken into account, integrating the effects of airborne chloride into reliability-
based durability design of RC structures, Akiyama et al. [3] and Akiyama et al. [4]. In this
investigation the corrosion of reinforcement due to chloride attack is considered, assuming a
contamination by chlorides the most significant source of environmental hazard for reinforced
concrete structure, Stewart and Rosowsky [229] and Vu and Stewart [242].

With respect to this problem, in recent years different mitigation strategies emerged, with
the purpose to extend the lifetime of reinforced concrete structures or to reduce the potential
damage due to strong ground motions. The enhancement of the overall behavior can be
reached acting on different levels, from global to local. In particular, new advanced materials
have been proposed in order to improve the seismic performance of structures and to extend
their durability properties. Among them, the use of the so called Engineered Cementitious
Composite (ECC), see e.g. Li [146] and Li [147], in place of normal concrete allows, by an
appropriate mix design and adding a minimum quantity of polymeric fibers (about 2%), the
formation of multiple narrow cracking in structural elements. This leads to a localized damage
and a more uniform distribution of energy dissipation. Nevertheless, the reduction of the
crack width tends to decrease the diffusion process of aggressive agents such as chlorides, with
significant benefits in terms of durability. With a proper tailoring of the micromechanics,
this kind of composite material suggests different classes of target applications like collapse
resistance under severe mechanical loading and structures requiring durability even when
subjected to environmental hazards, Li [147].

Finally, considering that all the phenomena involved in this investigation have an inherent
variability, the rational approach to take into account their randomness is based on a proba-

bilistic assessment. Since the nature of the problem is highly non linear, numerical simulations
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provide the only practical and effective method. In particular, if random variables are included,
numerical process with repeated simulations can be based on Monte Carlo sampling technique,
which is particularly effective in treatment of aleatory and epistemic uncertainties. For spe-
cialized problems there are also approximated numerical methods for finding solution for a
probabilistic application, such as FOSM (Wong [246]). However, Monte Carlo simulation is
the principal numerical tool to solve engineering problems involving probability, Ang and Tang
[11] and Schueller and Pradlwarter [220]. In particular, in order to reduce the computational
cost involved in the simulation analysis based on plain Monte Carlo method, advanced tools
are needed to have reliable results. Among them, a stratified sampling called Latin Hypercube
sampling is implemented, Iman and Conover [126], Stein [226] and Helton and Davis [113],
since such technique requires a relative small number of simulations to have reliable information

on the performance of structural systems.

1.3 Objectives and scope

The present study focuses on two main directions. From one side the purpose is to contribute
to develop a reliable framework to perform a structural assessment of multistory RC frames
subjected to chloride attack during the whole lifetime, in order to understand how environmental
hazards can modify the overall seismic performance of this kind of buildings. A set of six low-rise
precast frames, from two to four stories, designed according to a capacity criteria is considered
(Biondini et al. [39]), changing the size of structural members in order to cover a sufficiently
wide range of the structural behavior, from ordinary to less flexible buildings. Nonlinear
seismic analyses, both static and dynamic, are performed, within the PEER methodology,
during lifetime in order to check the capacity of the structures at different times, considering
different limit states, from limited damage up to collapse. In this way it is also possible to
verify in a more general way the proposed design criteria for precast structures, not only in
terms of required ductility but in the light of a risk analysis. Structural assessment is carried
out by using a calibrated element model capable to simulate the flexural response of RC
elements up to collapse, see Ibarra et al. [121] and Haselton [112]|. Special attention is given
in the treatment of uncertainties, in particular those related to structural properties of the
members; an advanced Monte Carlo method based on Latin Hypercube Sampling is applied,
Dolgek [69], summarizing the results in terms of statistical descriptors.

A rigorous study on diffusion process of aggressive agents in concrete sections is done,
implementing a code for the numerical simulation of diffusion mechanism in one-dimensional
and bi-dimensional domains, verifying his capability through the comparison with the analytical
solution for simple problems, and performing a parametric study in order to check the accuracy
of the 1-D description of the problem with respect to the more accurate 2-D approach. Finally,

the code is used to simulate the diffusion process of chlorides in the cross-sections of members,
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adopted subsequently for the seismic analysis, in order to evaluate during time the reduction
of steel bars diameter by introducing a damage index. In this way it is possible to describe
the reduction of strength and ductility of the structural elements, with the aim to perform
seismic analyses during the lifetime of precast structures.

From the other side a risk mitigation strategy is investigated, working on a local level and
improving the characteristics of the material. In particular in the dissipative zones of the
structures, where plastic hinges are expected to occur during an earthquake, standard concrete
is replaced with another cementitious composite, namely Engineered Cementitious Composite
(ECC). The name “Engineered” depends on a proper tailoring of the micromechanics of the
material, suitable to match different classes of target applications. In this study ECC is applied
in order to improve the overall seismic response of precast structures and their durability
during lifetime. On the basis of the element model used to simulate the flexural behavior of
concrete members, a moment-rotation law is proposed and subsequently calibrated considering
the peculiarity of this composite and the few experimental results available in literature.
Nonlinear analyses are then repeated, comparing the overall seismic response during time of

both concrete and ECC precast frames.

1.4 Outline

The present dissertation deals with the seismic performance of multistory precast structures
subjected to environmental hazards during their lifetime. The first part of the thesis presents
an overview of the PEER methodology and related tools to perform a reliable probabilistic
seismic assessment of reinforced concrete buildings. Second part introduces the environmental
hazard and shows how the problem of chloride diffusion into RC cross-section can be solved
numerically using an effective tool. In particular, through the procedures implemented,
the lifetime seismic assessment of the structures studied is investigated. Finally, third part
describes the potentiality of a mitigation strategy, working on a local level, to improve seismic
performance and durability, substituting in the dissipative zones of the structure standard
concrete with a cementitious composite, namely Engineered Cementitious Composite (ECC).

In details, Chapter 2 introduces elements of theory of probability at the base of PEER
methodology, and in particular focuses on Monte Carlo simulation for the treatment of
uncertainties, Rubinstein and Kroese [214]. The core of the chapter is dedicated to the advanced
sampling technique used in the present investigation in order to reduce the computation cost.
Latin Hypercube sampling (Iman and Conover [127]) is compared to the plain Monte Carlo
simulation, pointing out his effectiveness through the solution of simple problems. Finally, an
overview of the probabilistic seismic hazard analysis is presented, introducing all the issues
needed to develop hazard and fragility curves or, rather, to describe in a probabilistic way

the seismic hazard of a site and the probability, for the structure, of exceeding a particular
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damage state in regards to the damage measure adopted.

Chapter 3 shows the results of the probabilistic assessment of seismic performance of
multistory RC frame systems using practical tools available within the PEER methodology.
The chapter starts introducing the geometrical and mechanical characteristics of the buildings
studied, designed according to the EC8 rules, EC8 [74]. Different limit states, defined both
on a local and a global level, are introduced, in order to control the performance of the
structures, from elastic range up to collapse. An analytical model capable to simulate the
flexural behavior of beam and columns members up to collapse is presented, Ibarra et al. [121]
and Haselton [112]. Validation of this element regarding precast frames is done, comparing
the numerical results with those coming from pseudo-dynamic tests performed within the
SAFECAST project. Subsequently, two possible methods for seismic analysis are illustrated.
The more accurate incremental dynamic analysis (Vamvatsikos and Cornell [234]) is first
described, focusing on different steps of the procedure, in particular the choice of input
motion and the representation of uncertainties. Advantages and limitations are shown in the
light of the second method used here, that is pushover analysis. The comparison is done
because nonlinear static analysis reduces the computational cost and it is easy to implement
also for design offices. The probabilistic assessment is based on a LH sampling of the key
modeling parameters, evaluating the structural capacity in a statistical way and focusing on
the importance of different parameters. Numerical simulations are summarized in terms of

fragility curves and hazard scenarios, with a particular emphasis on the role of uncertainties.

Chapter 4 deals with the role of corrosion of rebars as environmental hazard for concrete
structures. After a brief introduction on theoretical aspects, the chapter shows the different
steps of the evolution of corrosion in the concrete sections and different types (from uniform
corrosion to localized pitting corrosion), depending on the source of it. Finally, the consequences
of environmental hazard on a local and global level are explained. The deterioration process is
therefore simulated through a damage model, and his effectiveness is proved by comparing
numerical results with experimental tests performed in the past on beams subjected to different

rates of corrosion.

Chapter 5 regards the lifetime seismic prediction of structural capacity for the multistory
RC frame structures studied. First of all the modeling of diffusion process of chlorides is
deeply investigated, exploiting the capability of a code developed during this dissertation
based on a particular type of evolutionary algorithm, known as “cellular automata”, Wolfram
[245] and Schiff [219]. Both 1-D and 2-D approaches are considered in order to evaluate the
concentration of chloride content within the concrete cross-sections, performing a parametric
study to check the accuracy of the 1-D description of the problem with respect to the more
accurate 2-D approach. Using then a damage index, the effect of corrosion on steel bars
is shown as a reduction of diameter, both for longitudinal and transversal rebars. Finally,

considering different times during lifetime of the structures, the mechanical properties of plastic
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hinges in the dissipative zones of structural members are updated on the basis of damage
process, and nonlinear analyses are repeated in order to evaluate the role of environmental
hazard in the overall seismic performance of multistory RC frames.

In Chapter 6 the capability of a mitigation strategy of seismic risk working on a material
level is explored. In, particular this investigation focuses on the use on a special type of
cementitious composite, namely Engineered Cementitious Composite (ECC), Li [147]. First
of all, the role of micromechanics is considered, showing how it is possible to drive the
material to predefined target applications. After that, the properties of ECC are illustrated;
the investigation of the compressive, tensile and cyclic behavior, as well as the durability
properties, allows to understand the main characteristic of this composite, particularly suitable
for the study presented here. Finally, combining the results of experimental tests and the
characteristics above explained, a hysteretic law for ECC plastic hinges in terms of moment-
rotation relationship is suggested, modifying the equations proposed by Haselton, Haselton
[112], for standard concrete element members. The same seismic analyses performed for RC
frames are repeated for R/ECC frames during the entire lifetime, in order to compare the
results in terms of structural assessment.

To conclude, Chapter 7 summarizes the results obtained in the present investigation,

tracing conclusions as well as limitations and future developments of the work done.
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Introduction




Chapter 2

Probability and earthquake

engineering

2.1 Introduction

The chapter presents an overview of some concepts of theory of probability in regards with
the PEER methodology. Among different numerical methods, the use of simulation based on
Monte Carlo approach is explored, in particular investigating the capability of a stratified
sampling technique in order to reduce the computational cost. Last part of the chapter is
devoted to the probabilistic seismic hazard analysis (PSHA), introducing the key issues that

will be used in the following studies.

2.2 Aleatory and epistemic uncertainties

Considering engineering problems, and in more general terms real world problems, uncertainties
are unavoidable. The inherent variability of phenomena and the lack of knowledge of our
models does not allow a description of the reality in a deterministic way, so it is crucial to
understand the role of statistics and probability. A proper estimation of the main parameters
involved in the problem allows to quantify the effects of uncertainties in the design and
performance of our systems. In addiction, a probabilistic description of the phenomena is
directly connected to a risk analysis, and the role of decision making in the design under
uncertainties becomes essential, Ang and Tang [11]. One common way of thinking is to assume
in the design the worst condition, in order to guarantee in all the situations a huge safety;
clearly, without a systematic evaluation of the uncertainties, this kind of approach is a sort of
deterministic one and may lead to an over design of structural elements with, consequently,
higher costs. A correct approach cannot disregard a proper balance between costs and benefits,
assuming probability of exceeding a particular limit state sufficiently low, but at the same

time keeping in mind the economic consequences for the design.

17
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In the analysis of complex systems, it is important to distinguish different sources of
uncertainty, namely aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty, as
the name suggests, deals with an intrinsic variability of the system studied, while epistemic
uncertainty refers to lack of knowledge, Der Kiureghian and Ditlevsen [66]. Sometimes it is dif-
ficult to clearly separate this two kinds of uncertainties and, in order to avoid misunderstanding
we can think to aleatory uncertainty as randomness, while epistemic one as uncertainty.

Aleatory uncertainty is related to the inherent variability of the phenomena studied, so
the outcomes are basically unpredictable. To figure out this kind of randomness, histograms
or frequency diagrams can be used; examples can be found in Ang and Tang [11].

Epistemic uncertainty depends on our capability to describe and model real phenomena.
Because in every field analytical tools used are idealization and, of consequence, approximated,
the results obtained from the analyses are, with a certain degree of error, inaccurate prediction
of the reality. This is related to lack of data or knowledge, so in principle it is possible to
reduce his variability collecting more data (e.g. by performing more experiments) or giving
also judgments. More accuracy in the models translates in a reduction of this variability.

It is important to divide uncertainty into the two categories above mentioned also because
the effects are different; aleatory uncertainty leads to the evaluation of a probability, while
epistemic uncertainty introduces a variability on the calculated probability. In other words,
the first type of uncertainty determines a probability of failure, while second type gives his

distribution, Ang and Tang [11].

2.3 Elements of theory of probability

This section presents a general overview of the fundamentals of the theory of probability and
the analytical models used to describe it. The aim of the chapter is to illustrate all the tools
at the base of the PEER methodology, in the following exploited. As suggested by Ang and
Tang [11], “probability can be considered a numerical measure of the likelihood of occurrence
of an event within an exhaustive set of all possible alternative events.” First of all, the space
(possibility space) within which all the possible events can occur should be identified, like so
the event of interest; finally at each event is associated a probability of occurrence. We can
also use the concepts of the set theory; in this case, the possibility space is the sample space,
the single possibilities are the sample points and an event is a subset of the sample space.

Among them, we can identify the following;:

e Impossible event, ¢, so the event without sample points;
e Certain event, S, so the event containing all the sample points;

e Complementary event E of an event F, that contains all the points of S that are not in
E.
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Concerning the terminology, we say that two events are mutually exclusive if the occurrence
of one exclude the occurrence of the other; in other words the intersection E1 E5 is the null set ¢.
Two events are collectively exhaustive if the union gives the overall sample space, Fq1 U Eo = S.
Like the other branches of mathematics, theory of probability is based on some assumptions,

fundamentals axioms where a proof is not required.

Axiom 1. At each event in the space S is associated a probability P(FE) > 0

Axiom 2. The certain event S has a probability P(S) =1

Axiom 3. If two events E; and Ey are mutually exclusive, P(Ey U E) = P(E;) + P(E»)

On the basis of these simple rules all the others can be derived. Among them, particular
importance is given to the conditional probability. To understand, we want to evaluate the
probability of one event if another one occurs; in mathematical terms, we want to evaluate
P(E1|E3). In a practical way, we search the occurrence of F; in a lower space made by Es:

P(EE»)

P(E\|Ep) = P(Ey)

(2.1)

Related to this concept we can introduce the concept of statistical independence, so the

occurrence of one event is independent from the occurrence of the other.
P(Ey|E2) = P(EL) (2.2)

Exploiting equation 2.1 it is possible to define the multiplication rule.
P(E\Ep) = P(Ey|E2)P(E?) (2.3)

If the events E7 and Es are independent the multiplication rule tells that the joint probability

is simply the multiplication of the single probabilities:
P(E\E3) = P(Ey)P(E3) (2.4)

Clearly these results can be generalized with a set on n events F1, F», ... E,. A fundamental
theorem at the base of the PEER methodology is the theorem of total probability. The idea is
that sometimes the probability of an event A cannot be evaluated directly, but depends whether
other events F; occurs or not; the probability of the event A will be the conditional probability
of A with respect to the other events F;, using as weight the probability of occurrence of F;.
The meaning of this theorem is a sort of propagation of the probabilities, from one step to the
subsequent, in order to obtain the overall probability of the system; this is in practice the idea
at the base of the PEER PBEE methodology.

In mathematical terms, we can consider n events mutually exclusive and collectively

exhaustive, F1, Fo, ... E,. Because the definition we can say that £y UFEy;U...UE, =S5. The
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theorem of total probability is derived:

A=AS
= A(E{UE,U...UE,)
=AF1UAFEU...UE,
Because the events E; are mutually exclusive, P(A) = P(AE,) + P(AE2) + ... P(AE,),

and using the multiplication rule we have:

P(A) = P(A|EV)P(Ey) + P(A|EV)P(E,) + ...+ P(A|E,)P(E,) (2.5)

The second part of this section is devoted to an overview of the analytical models of random
phenomena; the details can be found in Ang and Tang [11]. In a probabilistic problem the
variables cannot assume just one value, but they have a range of possible ones, each of them
with a prescribed probability; they are called random wvariables. Denoting as X a random
variable, an event is described such as X =z, X > x or X < x, where x can assume all the
values between two extremes a and b. The probability related to a particular value of the
random variable is governed by a prescribed law, namely the probability distribution; this rule

can be represented by the cumulative distribution function (CDF) Fx, defined as:

Fx = P(X <) (2.6)

Another possibility of representation is given by the probability density function (PDF)

that, just considering the continuous case, is defined as:

b
Pla<z<b) = / fx(x)dx (2.7)

Equation 2.7 gives the probability that random variable X belongs to the interval (a,b].

Following the above definition, the cumulative distribution function can be expressed as:

Fy(z) = P(X <2) = /_ (e (2.8)

If for F'x(x) the first derivative exist, from equation 2.8 is simply to see that:

Fxlz) = 3ng(x)

Figure 2.1 shows an example of a continuous distribution function. Clearly, each function used

(2.9)

to represent the probability distribution of a generic random variable must obey to the axioms
of the theory of probability. In particular, the function should not assume negative values and
the sum of all the probabilities related to the values of the random variable should be equal to

1. In summary:

o Fx(—o0) =0 and Fx(+o00) =1;
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Figure 2.1: Continous distribution function.

e Fx(x)> 0, and the function is not decreasing with z;
e Fx(x) is continuous on the right of .

With the knowledge of the form of the distribution function, using CDF or PDF, a random
variable is completely described in probabilistic terms; in practice, the exact form is usually
missing, so random variables can be described just in an approximated way by using their
main descriptors, namely the moment of a random variable. The first parameter that everyone
have in mind is somehow related to the central values of the range of the random variable;
because for each value the probability changes, we can think in terms of a “weighted average”,

that is the mean value p(X) or expected value E(X):

“+oo
BOY) =u(X) = [ afx(@ds (2.10)

—0o0
Another parameter of interest is the median value x,,, so the value for which the cumulative
distribution is the half:

Fx(zmm) = 0.5 (2.11)

The only knowledge of the central values is not sufficient to have reliable information
of the behavior of our random variable; also the dispersion of the values in the range is of
interest, in particular with reference to the mean value. The variance gives exactly this kind
of information, so tells us if the values of the random variables are close to the central value or
not; in a mathematical notation we have:

+oo
Var(X) = o0% = / (z — px)? fx (z)dz (2.12)

—0o0
Expanding equation 2.12 it is possible to link variance and mean value, in particular Var(X) =

E(X?) — p%, where E(X)? is the mean square value of the random variable. In order to
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represent dispersion with the same unit of the mean value, the square root of the variance is
used, introducing the standard deviation o, defined in equation 2.13. Since the sparsity of the
values is described in absolute terms, it is more convenient to refer it to the mean value or, in
other words, dispersion is more meaningful if it is measured with regard to the mean value. A
nondimensional parameter is therefore introduced (coefficient of variation, c.0.v.), as indicated

in equation 2.14:

ox = v/ Var(X) (2.13)

5y = X (2.14)

mx
Another significant information of a random variable is the degree of asymmetry of his

PDF; the measure of this characteristic is the skewness, see equation 2.15. If the skewness
is zero the PDF has a symmetric shape, otherwise it is asymmetric. In particular skewness
higher than zero means that the values on the right of ux are more dispersed that those on
the left of the central value, vice versa if it is lower than zero. Similarly to the definition of
the coefficient of variation, also in this case a more meaningful dimensionless parameter can

be defined, namely coefficient of skewness, see equation 2.16.

+o0
B = [ o= ) fx (oo (2.15)
Ox = M (2.16)
9x

Finally it is possible to define also the fourth moment of a random variable, namely kurtosis,
equation 2.17. This parameter measure the “peakedness” of the corresponding PDF, or in other
words how the the probability density function is far from a normal distribution. Typically
the dimensionless descriptor is the 8o index of Pearson, defines as indicated in equation 2.18,

that is zero for a normal distribution.

+o0
Ew—wf—/ (x — px)* fx (2)da (2.17)
8, = M (2.18)
Ox

To conclude the present section, we can extend the same concepts discussed above also for
two or more random variables, in particular with reference to the joint probability function.
Considering two arbitrary random variables X and Y, the probabilities of all possible pairs of
values x and y can be represented by the joint distribution function Fx y:

Fxy(n,y) = P(X <2,Y <y) (2.19)

)
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Clearly the axioms of the theory of probability still work, in particular Fx y(x,y) is

nonnegative and nondecreasing function of x and y. Moreover:

FX7y(—OO, —OO) =0 FX7y(—|—OO,—|-OO) =1
Fxy(—o00,y) =0 Fxy(+o0,y) = Fy(y)
FX7y($, —OO) =0 FX,y(x, +OO) = Fx(m)

Joint probability function can be represented also through the joint PDF, defined as
fxy(z,y) = Ple < X <z+dr,y <Y <y+dy). Then,

Ty
Fxy(z,y) = / / fxy(u,v)dvdu (2.20)
At the opposite, if partial derivatives exist,
82FX Y(‘Tv y)
= —— 2.21
fX,Y(J"’y) 6m8y ( )

Considering continuous random variables we can define the conditional PDF of X given Y,

e (aly) = P2 (2:22)

For the conditional PDF of Y given X equation 2.22 still works, just swapping the indices.
Using then the theorem of total probability, see equation 2.5, the marginal PDFs can be

obtained:
+00 +o0
fx(x) = / Py @) fy () dy = / fxy (. y)dy (2.23)
oo e
fr(y) = / Frix (W) f (2)de = / Fxy (0 y)de (2.24)

Finally we are interested in finding some relationship between two random variables X and Y;
the joint second moment is:

+o00
BOXY) = [ ayfor(oy)dody (2.25)

—00
If random variables are statistical independent, second moment is simply the multiplication of
the singular expected value, E(XY) = E(X)E(Y). Covariance is defined as the joint second

central moment:

Cov(X,Y) = E[(X — ux)(Y — py)] = B(XY) = B(X)E(Y) (2.26)

If random variables are statistical independent covariance is zero. This descriptor gives
information on the relationship between X and Y; Cov(X,Y) large and positive means that

the values of both random variables are large or small with respect to their central values,
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while a covariance large and negative means that if the values of one random variable are big
those of the other are small, or vice versa, always with respect to the central value. Finally
a covariance near zero means that there is no linear relationship between X and Y, or the
relationship is nonlinear. As just seen above, it is better to refer to a dimensionless parameter;

in this case we can define the coefficient of correlation:

= CO;’)((*?;Y) (2.27)
The coeflicient of correlation ranges from —1 to 1, and it measures the strength of the linear
relationship between two random variables.

This short overview has the purpose to introduce the main factors within the theory of
probability that are at the base of the PEER methodology; more details can be found in each

statistical and probability book, e.g. Ang and Tang [11] and Ross [213].

2.4 Monte Carlo simulations

The solution of real engineering problems usually cannot find through an analytical approach
due to the complexity of the systems studied. In many fields the only practical way is to
exploit numerical methods, in particular when random variables are involved in the analysis
process. During lifetime a generic structure can be subjected to a variety of loads, so the
system ranges from different states, from limited damage up to complete failure. Structural
reliability analysis has the aim to define these possible limit states, assigning for each of them
a probability of exceedance. In literature there are different numerical methods that allows to
define such probabilities, and a general overview can be found in Pinto [195] and Lupoi et al.
[157]. Using a mathematical formulation, it is possible to define a limit state function L(x),
where x is the vector containing all the parameters involved in the analysis, that assumes the

following values, Lupoi et al. [157]:

> ( if the limit state is not exceeded
L(z) := { = 0 if the limit state is reached (2.28)
< 0 if the limit state is exceeded

Clearly we are interested in all the conditions in which L < 0, so the probability of failure
can be seen as Py = Pr(L < 0); introducing the joint probability of failure f; and a failure

domain 7, the probability of failure can be expressed as indicated:

Py = Pr(re %) = / fadx (2.29)
F

The core of each numerical method used in structural reliability analysis is the resolution

of the integral in equation 2.29. Even if in literature approximated methods such as FORM
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and SORM can be applied for particual problems, see e.g. Wong [246] and Der Kiureghian
[65], Monte Carlo simulation is widely recognized as the more reliable and effective approach
to solve problems involving random variables.

Using a Monte Carlo simulation, it is useful to introduce an index I¢(x), which can assume
only discrete values depending on whether the random variables are or not in the failure
domain,

lifee F
If(x) == (2.30)
Oifx ¢ .7

With the above definition the integral in equation 2.29 can be seen as:

Py = [ 1@ fadn = Blly(a) (231)

In other words Monte Carlo simulation relies with the evaluation of an expected value. The
first step is the choice of the number of simulations to perform or, in other words, the size of
the random variables; for each of them, random numbers should be generated, according to
their prescribed probability functions. A review of different approaches to generate random
numbers, both for discrete and continuous variables, is done in Rubinstein and Kroese [214]
and Ross [213]. In this way the estimate of the probability of failure it is simply a counting of

the number of times that our parameters fall in the failure domain, I¢(x;) = 1.

Ng;
N 1 sim

We can see that the estimate of the mean value is unbiased:

Ngim Nsim
Z If(xs)| = . > Elly(w;)]) = iNsimPf = Py (2:33)
- N,

sim i sim
Regarding the variance we can write:

B[P = E[

szm

Var(Py = B[(Cr @)

E
Nsim
Nsim 2
_ E[[Ez o Ip(xi) — Py }
Ns%m
Nsym Nsim Nsim
N2 @l Z I(a;)] + E] Z PF - B[ 205(x;)Py])
sim i (2.34)
1 Nsym Nsym
= (Z [13(;)] + Z 2PfE[If(:n2)]>
sim
1
N2 (stmpf + stmPf 2stmpjg>

stm

[Pr(1— Py)]

sim
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Looking at the coefficient of variation the effectiveness of this method can be clearly

understood:

c.0.0. = A] = — \/;mpf (2.35)

E[Py Py

It is evident from equation 2.35 that the reduction of dispersion strongly depends on the
number of simulations Ng;,; for example, if we want to halve the variability, the number
of simulations should be increased by a factor of 4. Because in structural analysis the
probabilities of failure involved are very low, depending on the limit state considered, the
number of simulations required to obtain reliable results should be very high. In conclusion,
a standard Monte Carlo approach becomes not feasible due to the computational cost, also
because the single structural analysis, in particular in seismic field, could require lot of
computation time due to the nonlinearity of the system. To overcome this issue, in the last
decades great effort was done in the development of “advanced” Monte Carlo approach to
reduce the number of simulations required to obtain reliable results. Next section shows a
general overview of these methods, while the subsequent one focuses on the methodology used

in the present investigation.

2.4.1 Variance reduction techniques

Looking at equation 2.34, an improvement of a plain Monte Carlo approach can be reached
with a reduction of the variance; in this way reliable results can be obtained with a small
number of simulations or, in other words, with a small number of systems analyzed. In
literature many variance reduction techniques have been proposed, and in the following an

overview is presented.

Antithetic variables

Using simulation, suppose that we are interested in the estimation of § = F[X] (in our case
6 = Py and X = If). Assuming then that two random variables X; and X, has the same

distribution and the same mean value 0 it is possible to write:

Var (Xl—;X2> = i[Var(Xl) + Var(Xz) +2Cov(X1, X2)] (2.36)

Looking at the equation, a reduction of variance could be reached if the two random
variables are negative correlated (Cov < 0). How X; and X5 can be established in order to
give a negative correlation? Suppose that X; is a function of m random numbers such as
X1 = g(U1,Us,...,Up,), where U; are independent random numbers, uniformly distributed
on the interval [0,1]. The same definition can be also applied to 1 — U. Consequently,
Xo=9g(1-U;,1—Us,...,1—U,) has the same distribution of X;. Finally, because U and
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1 — U are negative correlated, the expectation is that also X; and X3 has the same property;
this is true if the function g is monotone. After the generation of uniformly distributed random
numbers U; to compute X7, there is no need to generate other independent random numbers
to compute Xo, but the idea is to compute it using the set 1 — U;. In this way the variance is
reduced, at least for monotonic function, and the other advantage is that just one generation,

instead of 2, of random numbers must be computed. Details can be found in Ross [213].

Control variates

As in the previous section, we are interested in the estimate § = E[X], where X is an output of
our simulation. Let assume that also Y is an output of the simulation for which the mean value
is known, E[Y] = py. Because equation 2.33, for an arbitrary constant k also the quantity

X 4+ k(Y — py) is an unbiased estimator of . The corresponding variance is:

Var (X + k(Y — py)) = Var(X +kY) = Var(X) + E*Var(Y) + 2kCou(X,Y)  (2.37)

Putting the derivative of Var(X + k(Y — py)) with respect to k equal to zero, the optimal
value k* that minimize the variance is obtained:

Cov(X,Y)

k= ———
Var(Y)

that, substituted in equation 2.37, gives:

ov ov 2
Var (X +E°(Y — py)) = Var(X+k"Y) = Var (X - WY) = Var(X)_W
(2.38)

Quantity Y is called control variate for the estimator X. For example, if X and Y are positive
correlated (k* is negative) a big value of Y correspond to a big value of X (with respect to
the mean value). Equation 2.38 in this case tells that a better estimation of X is obtained
reducing his value. A compact and meaningful notation for equation 2.38 is achieved dividing

both terms for Var(X), so:

Var (X +k*(Y — py))
Var(X)

where px y is the coefficient of correlation.

— 1 pky (2.39)

Importance sampling

Importance sampling is one of the most used approach in reliability analyses, Melchers
[164] and Glynn and Iglehart [102]. The idea is to drive samples of random parameters
X = (X1,Xy,...,X,) from a distribution function f(x) that belongs to the domain of
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interest, in our case the failure domain .%. Suppose again that we are interested in the

estimation of:

0 = E[h(X)] = / h(z) f(z)dw (2.40)

but for some reasons a direct approach, namely a direct estimation of h(X), is not possible.

Equation 2.40 can be rewritten with the above notation:

_ [M@f@) gy — g [MEAX)
9—/ o) J@M Eg|: 2(X) } (2.41)

Repeating simulations Ny, times, the estimator of § has the form:
Nsim
1 h(z;) f (i)

~

while the variance Var(6), considering that the expected value of the value is an unbiased

estimation of 6, is:

SVem (@) f (24) /g (i)
N2

sim

VCLT(@\) - B 1 Zivszm h(wz)f(wz) !

=F
Ngim g(ml)

(2.43)

Second equality comes from equation 2.34. With a proper choice of the function g(x) the
variance of the estimator can drop to zero; in particular, in equation 2.43 Var(é\) comes to
zero if:

o(@) = gopf) = "I (2.44)

where in the present investigation 6 is the probability of failure Py and h(x) = I¢(x). In
practice, optimal point cannot be computed because it requires a priori knowledge of the
probability of failure. Strategies to search proper important density functions g(x) can be
found in Ross [213].

Subset simulation

In the last decade a new methodology, specifically developed to structural reliability problems
concerning dynamic contest, with particular emphasis to seismic risk analysis, Au and Beck
[15], Au and Beck [16] and Au et al. [17]|, emerged. The basic idea in order to overcome
the high computational cost required for a plain Monte Carlo simulation is to express the
probability of failure Py by a subsequent multiplication of larger conditional probabilities.
Given the failure domain %, suppose to consider a decreasing nested sequence of failure regions,

FZk=1,...m.

F1 D Fa D ... Fy = .F; the generic region can be expressed as .F = [,

Exploiting the definition of conditional probability, we have:
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m—1
Py = P(Fn) = P(7) [] P(FinalP (7)) (2.45)

i
In other words subset simulation allows to split the overall problem, so the evaluation of the
total probability of failure, into the subsequent solution of m small problems, where a direct
Monte Carlo approach (MCS) can be effectively applied. In particular, the evaluation of the
first probability P(.%1) occurs with a plain MCS, while it was found that the application
of the Markov Chains method, Rubinstein and Kroese [214| and Ross [213], is an effective
tool for the evaluation of the conditional probabilities, which gives the samples for ﬁi+1 using
the samples generated in the previous step for the evaluation of ﬁl All the details of the
procedure, as well as the use of the Metropolis-Hastings (Metropolis et al. [167]) algorithm on
the base of the Markov Chain, can be found in Au and Beck [15].

Among different techniques available in literature in order to reduce the computational
cost of plain Monte Carlo simulation, the present investigation focuses on a particular version
of a stratified sampling, namely Latin Hypercube Sampling, considering the effective version

proposed by Vorechovski and Novak [240]. Details are presented in the next section.

2.4.2 Latin Hypercube Sampling

One of the major drawbacks of plain MonteCarlo simulation technique is the computational
cost, especially for time consuming problems or when small probability of failure are needed.
In particular, as explained in Ang and Tang [11], the sample size Ng;, of the random variables
is proportional to the inverse of the theoretical probability. Since in earthquake engineering
the usual probabilities of failure are very small (107°, 107%), this means that a reasonable
number of samples is around to some hundreds of thousands. Considering different methods
for the seismic analysis of structures (Chopra [55], Datta [64]), it is common accepted that
nonlinear dynamic analysis is the most refined one; clearly, the effort to solve thousands of
nonlinear analyses, also for very simple systems, should require a lot of time.

To overcome this important issue in the last decades different simulation techniques were
developed. For a review of this methods see Ross [213], Rubinstein and Kroese [214], Schueller
and Pradlwarter [220]. In this investigation the set of structural models is determined through
the application of the Latin Hypercube Sampling (Helton and Davis [113], Iman and Conover
[127], Stein [226], Vorechovsky and Novak [241]). Latin Hypercube Sampling, abbreviated
in the following as LHS, is an advanced MonteCarlo technique that uses the stratification of
the theoretical probability functions of the random variables X; in order to reduce the size
of sample data. Usually two steps are required in order to build the sampling matrix: in the
first one, samples from each marginal distribution are carefully chosen in order to represent
their probability density functions (PDF). Finally, the sample matrix is re-arranged in order

to match within a certain tolerance the target correlation matrix. In the following the two
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Figure 2.2: Illustration of the sampling of random variable Xj.

steps will be described in detail.

As mentioned before, the first step is the generation of samples from each marginal
distribution. The usual strategy is to divide the cumulative distribution function (CDF)
into Ny, equally spaced intervals, and then choosing one sample from each of them. One
possibility is to consider the sample in the middle of the k-th strata, Figure 2.2. Applying the

inverse transformation of the CDF, each sample is defined as:

k—O.S) (2.46)

Thi = Fz‘_l(pk,i) = Fi_1< N..
stm

where xy; is the k-th sample of the i-th random variable X; and F~1is the inverse of the
corresponding CDF. Through this “stratification” all the range of variation of the generic
random variable is explored. The same procedure is applied for the N4, random variables. To
build the sampling matrix the N, values of the first variable are randomly paired without
replacement with the Ng;,, samples of the second random variables. These pairs are then
randomly paired with the Ng;,, values of the third variable X3, and this process continues
until all the random variables are paired without replacement, Helton and Davis [113]. The
sample matrix so obtained is called Latin Hypercube, X = [X1, X1, ..., X Nvar)-

To visualize the procedure, the generation of a LHS is illustrated with reference to two
uniform random variables X7 and Xo, with lower and upper bound respectively equal to [1;1.5]
and [0;1]. The CDFs of the random variables are subdivided into 10 strata, Figure 2.3, and
one value is selected from each of the interval. Finally the generation of LHS is completed by
randomly pairing without replacement the resulting values for X; and X5, Helton and Davis
[113]. Because the pairing is completely random there are different LHSs admissible, as it can
be seen in Figure 2.4

Before to explain the procedure to impose a prescribed correlation it is possible to visualize
through a simple example, where the analytical solution is known, how LHS sampling is
significantly more effective than random sampling, i.e. also with a small sample size the
result in terms of mean and standard deviation estimate is very close to the real value. In

particular a lognormal variable X with mean p = 27.4 and a standard deviation ¢ = 4 is
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Figure 2.3: Subdivision of the CDFs into 10 equal probability strata.
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Figure 2.4: Examples of LHS for the random variables X; and X with 10 samples.
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chosen. Random and LH sampling are set considering different sample sizes Ng;yy,, from 10
to 50000. Figures 2.5a and 2.5b show, for each sample size, the error between the analytical
solution and the sampling scheme. Also for a very small sample size the error related to LHS
is significant lower than that predicted by the simple random sampling, both in the estimate
of mean value and standard deviation. Tables 2.1 and 2.2 summarize the percentage error on
statistical values (mean, standard deviation, percentile at 5% and 95%) for the two sampling
techniques. Another important issue, clearly shows in Figure 2.5, is the monotonic behavior of
this methodology in the estimate of actual values when sample size increases.

The second step concerns the application of the prescribed correlation between random
variables, because during the sampling procedure an undesired correlation is introduced,
especially if the number of samples N, is small, Vofechovsky and Novéak [241]. In the
following two procedures will be described in order to apply the predefined correlation between
the variables (e.g. 0 if uncorrelated). In particular two parameters can be used to measure the
degree of correlation between random variables, namely the Pearson correlation coefficient
and the Spearman correlation coefficient (Ang and Tang [11]). The first one is defined by:

Sope (whs — Ti) (wy — T)

Taia; = 1/2 1/2 (2'47)

[Zivff" (Tgi — fi)Z} [Zivff" (Tg; — fj)ﬂ

where
st‘m Nsim
T = (€ki/Neim) T = Y _ (rj/Naim)
k=1 k=1

Pearson correlation coefficient takes value between —1 and 1 and gives a measure of the
strength of the linear relationship between two random variables. A value equal to 1 stands
for a perfect linear relationship, while 0 means no relationship or a nonlinear trend between
them.

Spearman correlation coefficient has an analogous definition, but using in this case the
rank of the data. The rank represents the position of a generic sample when all the data of
that random variables are sorted in ascending order; for example the smallest value has rank
1, the second rank 2 and so on, where the biggest value has a rank equal to the number of
samples, Ngim. Spearman correlation coefficient is defined as following:

S [R(ani) — R:))[R(xrg) — R(x;)

S (Rlew) — R i Sveim (R(ay) — R(x;) e
|

where R(zg;) and R(zy;) denote the rank-transformed value of xy; and xy; while R(x;) and
R(z;) are defined as (Ngim + 1)/2. As explained before for the Pearson correlation coefficient
also the Spearman correlation coefficient takes values between —1 and 1, but in this case the
meaning is a little bit different, because it assesses the strength of the monotonic relationship

between two variables. In other words, it gives a prediction of how a value of a random
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Examples of LHS for the random variables X; and X5 with 10 samples.
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Table 2.1: Estimate of the error on statistical parameters for random sampling

Noim  Ap[%] Ac[%] Azse|%  Azgse %]

10 0.678 29.141 11.398 4.081
25 5.918 13.874 2.596 11.520
50 1.229 11.135 0.013 2.927
100 0.779 9.151 0.988 0.633
200 0.523 2.451 1.053 1.974
500 0.095 1.568 0.773 1.469
1000 0.994 7.498 0.118 2.814
5000 0.170 0.837 1.051 0.828
10000 0.017 0.335 0.338 0.162
50000 0.049 0.041 0.063 0.065

Table 2.2: Estimate of the error on statistical parameters for LH sampling

Nuim Aupl% Ac[% Axsel% Azose %]

10 0.128 1.720 0.00 0.00
25 0.053 0.823 0.454 0.555
50 0.027 0.464 0.00 0.00
100 0.014 0.259 0.026 0.031
200 0.007 0.143 0.006 0.008
500 0.003 0.064 0.001 0.001
1000 0.001 0.035 0.0003 0.0003
5000 0.0003 0.008 0.00 0.00
10000  0.0001 0.004 0.00 0.00

50000 0.000 0.001 0.00 0.00
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variable should be small or large depending on how small or large is another variable. In this
investigation the procedure to induce a predefined correlation between the variables of the
LHS will refer to the Spearman correlation coefficient.

The first procedure was introduced in the work of Iman and Conover (Iman and Conover

[127]); it has some advisable properties:
1. Distribution free. It can be applied to all statistical distributions;
2. Simplicity. There are no unusual mathematical techniques to apply;
3. General. It can be applied to any sampling scheme;
4. Marginal distributions of each random variables are preserved.

Here the methodology will be explained, with reference to the work of Iman and Conover [127]
and Helton and Davis [113]. Let start to assume that at the end of LHS a matrix X, with

Ngim rows and N,q, columns, is generated:

T11 T12 T1Nyar
X — Ta1 Z22 T2Nyar
_stiml stim2 stivaaT_

where Ny, is the number of samples for each random variable and Ny, is the number of
random variables. The idea is to rearrange the single columns of X in order to match within a
certain tolerance the desired correlation matrix, in the following denotes as C, that have the

same size Ngjm X Nyar:

C11

C21

_C]\/vsim1

C12

€22

chim2

ClN’UG.T

C2Nyar

CNsivaar_

where the generic value ¢;; is the rank correlation coefficient between random variables X; and
X ;. Since it is no possible to find directly a transformation matrix which results in the target
correlation matrix, Iman and Conover [127], scores are used for which the desired matrix C
and the rank correlation matrix of X are close one to each other. For this reaason, a new

matrix with size Ngjpm X Nyar 18 defined:

S11 512 S1Nyar
521 522 S$2Nyar
S = )
_SNsi'ml SNsim2 SNsivaa'r_




36 Probability and earthquake engineering

Each column of S contains a random permutation of the N, van der Waerden scores
@i/ (Ngim +1)] (Conover [59]), where ®~! is the inverse of the standard normal distribution.
A Cholesky factorization (Quarteroni et al. [204]) of C is used in order to rearrange each

columns of S. Here it is assumed that C' is symmetric and positive-definite, so:
Cc = ppPT

where P is a lower triangular matrix. Using matrix algebra, if the correlation matrix of S
is the identity matrix I, then §* = SP7 is the correlation matrix of C. Once that S* is
built, the final matrix X* is obtained rearranging each column of X considering the same
rank order coming from S*. Two conditions should be verified to complete the process, Helton

and Davis [113]:
1. The correlation matrix of .S should be close enough to the identity matrix;

2. The correlation matrix of S* should be approximately equal to the rank correlation

matrix of S*.

Let start to examine the first condition. Denoting by E the correlation matrix of S, usually it
is not exactly the identity matrix, but using again a Cholesky factorization it is possible to

obtain it. In particular:
E = QQ"

where @ is a lower triangular matrix. This can be done because the properties of E (it is

symmetric and positive-definite). Finally S* is defined as:
S* — S(Q_l)TPT

In this way S* has C as its correlation matrix. About the second condition, hypothesis is
satisfied using an appropriate way to define matrix S; in Iman and Conover [127] it is explained
that the use of the van der Waerden scores is a effective approach in order to build matrix
S. Finally, the procedure is completed if the rank correlation matrix related to S* is close
enough to the target matrix. Figure 2.6 shows the effects of imposing rank correlations equal
to 0.00,0.25,0.50,0.75,0.9,0.99 on a couple of random variable X; and X5. X is a standard
normal variate, while X5 is a uniform variate with lower and upper bound equal to +4.

To test the effective of LHS, with or without imposing a correlation, with respect to the
simple random sampling, two simple functions are evaluated in a probabilistic term. The first

one is the monotonic function fi:
AXY) = X+Y + XY + X2+ Y2+ X - min [exp(3y), 10} (2.49)

where X and Y are two uniform random variables with lower and upper bound equal respectively

to |1;1.5] and |0;1]. The sampling scheme is performed setting Ng;,, = 10,25, 100, repeating the
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Figure 2.6: Example of imposing a rank correlation between a standard normal variate X

and a uniform one Xo.

simulation 10 times for each size in order to test also the stability of the sampling technique.
In Figure 2.7 the CDF of the function f; is showed for different values of sampling size. In all
cases LHS gives better results than simple random sampling. In particular, considering that
the random variables are uncorrelated, little bit better results are obtain when the impose
correlation is applied. The LHS gives also more stable results considering repetitions of the
same simulation with a certain sampling size. This is clear considering Figure 2.8; each picture
shows the mean value and the upper and lower confidence interval with a tolerance of 5%. As
it can be seen, in case of LHS with imposed correlation the dispersion of the results is very
low, also considering 10 samples.

The second test refers to the non monotonic function f:
XY) = X+Y 4+ XY + X2+ Y24 Xg(Y) (2.50)
where h(Y) = (Y — 11/43)~1 4+ (Y — 22/43) 7! + (Y — 33/43)~! and g(Y) is defined as:
r(Y), if |A(Y)| <10
g(Y):=4q10, ifh(Y)>10
—10, if A(Y) < -10

Also in this case X and Y are two uniform random variables with lower and upper bound equal

respectively to [1;1.5] and |0;1]. The sampling scheme is performed setting Ng;,, = 10,25, 100,
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Figure 2.7: Evaluation of function f; varying the sample size N, for different sampling

techniques.
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Figure 2.8: Evaluation of confidence interval for function f; varying the sample size Ng;,, for

different sampling techniques.
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considering again 10 repetitions for each sampling scheme to test the stability of the technique.
In Figure 2.9 the CDF of the function f; is showed for different values of sampling size. In
all cases LHS gives better results than simple random sampling, and the difference is more
significant than the previous case. Random variables are set to be uncorrelated, so better
results are obtain when the impose correlation is applied. The LHS gives also more stable
results considering repetitions of the same simulation with a certain sampling size. This is
clear considering Figure 2.10; as for the monotonic function each picture shows the mean value
and the upper and lower confidence interval with a tolerance of 5%. As it can be seen, in case
of LHS with imposed correlation the dispersion of the results is very low, also considering 10
samples.

Although in some application this method to impose correlation is effective, there are also
some drawbacks. In particular the scheme has more difficulties when simulating correlated
variables, because the procedure can be performed only once and there is no way to improve
the results, Vorechovsky and Novék [241]. To achieve a positive definite correlation matrix the
number of samples should be higher than the number of random variables, so this procedure is
not robust enough in case of MonteCarlo simulations with a huge number of variables and a
limited number of samples, Vofechovsky and Novak [241].

To overcome this problem different methods, see e.g. Huntington and Lyrintzis [119], has
been proposed. In particular, the problem to impose a prescribed correlation matrix can be
seen as an optimization problem, where the goal is to match within a certain tolerance the
target matrix or, in the same terms, to minimize the difference between the actual matrix and
the target one. In mathematical language, the idea is to minimize the difference between the
correlation matrix associated with the LHS, S and the target matrix K. The “difference” can
be measured by using a norm of the maximum difference between correlation coefficients:

Fmaz = 1§z’22§vm|5i’j ~ il (2.51)
or using an overall norm, normalized to the total number of random variables, that takes into

account the differences between all correlation coefficients, Vofechovsky and Novak [241]:

Nyar—1 N,
2 var var
Fro = Sij — Kiy)? 2.52
tot Nvar(Nvm“ — 1) ; j;rl( %,] z,]) ( )

Since the optimization process is related to the ordering in the sampling scheme, the problem
usually has some local minima, and within them the aim is to search the global minimum; in
order to have chance to escape from a local minimum a stochastic optimization process able
to explore all the region of interest is implemented. Objective function E can be minimized

applying two steps, namely “mutation” and “selection”.

Mutation. In this first stage one variable (one column of the sampling matrix X) is randomly

selected and two randomly ranks of that vector are chosen and exchanged. After this
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the newly correlated matrix (“offspring”) is evaluated and compared with the previous

one (“parent”).

Selection. In this step the algorithm chooses the best norm, and the related sampling matrix
will survive for the next generation. The process is iterative in order to reduce step by

step the objective function until a certain tolerance is reached.

Considering this simple scheme it was observed that in many cases the algorithm fails into
a local minimum, because the only possibility to improve the process is the acceptance of the
“offspring”. One possibility to refine the selection stage is the implementation of a Simulated
Annealing (SA) approach, see Kirkpatrick et al. [134]. Originally this method was developed
in order to numerically simulated the heat treatment of a metal, where the material changes
his crystal structure to improve the properties. This technique is based on the Boltzmann

probability distribution:

(2.53)

P.(E) =~ exp(_AE>

ky-T
where AL is the difference of the norms before and after the random change, T is the
temperature and k, = 1.381 x 10?3 JK~! is the constant of Boltzmann. The probability
represents the condition of a system in thermal equilibrium at a temperature T', where the
energy is distributed in a probabilistic way among all the states AE. Also at low temperature
there is small chance that the system is locally in a high energy state; subsequently there is
a small probability that the system moves from a local energy minimum to a better one. In
other words, there is a small probability to escape from a local minimum in order to search a
global one, Vorechovsky and Novak [241]. At this point, there are two possibilities to improve

the optimization technique:

1. New arrangement of sample matrix X is automatically accepted if the norm E decrease;

2. If the new arrangement does not decrease the norm FE the “offspring” is however accepted

with a certain probability given by P,.

In particular new arrangement is accepted if:
Z = exp(-AE/T)—R>0

where R is a random uniformly distributed variable between 0 and 1. T is the temperature,
and the name comes from the application in metallurgy. In this case the initial temperature
represents the maximum norm F, i.e. the norm evaluated in which all the coefficients of
the correlation matrix S are £1, depending if K ; is positive or negative. To simulate the
real process of annealing, the temperature should be decrease after a predefined number of
mutations; in this study, from a stage to the following one, the temperature decreases with a

ratio equal to 0.95, similar to the value used elsewhere, Kirkpatrick et al. [134|. The overall
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Table 2.3: Statistical parameters of the normal variates used in the comparison test between

sampling techniques.

N'Ua'r' M o

1 1.0 0.5
2 25 20
3 -4 5.0
4 10 2
S 7 05
6 3 1.0
7 9 02
8 —6 04

process stops when a small temperature is reached (e.g. 107°), and the number of mutations
depends on the size of problem. If the number of random variables N, is around 10 and
the number of samples is less than 100, a reasonable number is 1000, Dolsek [69]. In this
investigation the maximum number of mutations is set to 1000.

The capability of LHS with Simulated Annealing (LHS-SA) is compared with the other
methods described in this section (random, LHS, LHS with “Iman and Conover” correlation
(LHS-IC)) considering a random function where the analytical solution is known. In particular

the function g is defined as the sum of 8 uncorrelated normal variables:

9= Xi, Nur=12...,8 (2.54)
=1

where mean values and standard deviation of each variate are listed in Table 2.3. As explained
in Ang and Tang [11] the sum of normal random variables is also a normal random variable

with mean and standard deviation respectively equal to:

(2.55)

i=1
Figure 2.11a shows the estimate of the mean value between random, LHS and LHS-IC,
while Figure 2.11b refers to the results of LHS-SA. Last sampling technique is separated from
the other because in the first case the sample size goes from 10 to 500000, while in the second
from 10 to 50, in order to highlight the capability of this method. Figure 2.12 shows the
estimate of the standard deviation while in Figure 2.13 is shown the estimate, in percentage, of
the norm of the difference between the correlation matrix and the prescribed one, see equation
2.52.
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Table 2.4: Error on the estimate of statistical parameters considering random sampling, LHS
and LHS-IC.

Nsim Random LHS LHS-IC

Ap Ao E  Ap-1072 Ao E Ap-107? Ao E

(%] (%] %] (%] (%] [%] (%] (%] [%]
10 10.98 24.74 5.42 0.00 14.73  5.24 0.01 278 1.82
25 0.46  20.89 3.96 0.01 6.07  4.50 0.01 1.57  0.72
50 6.77 10.35  2.60 0.04 0.02 2.86 0.01 0.32  0.43
100 0.74 321 1.58 0.01 7.66  2.21 0.07 0.50  0.30
500 0.84 6.01 0.95 0.00 3.35  0.94 0.02 0.03 0.03
1000 0.15 0.54 0.63 0.04 0.88  0.59 0.04 0.02 0.02
5000 021  1.57 026 0.33 043 0.24 0.18 0.02  0.00
10000 021  0.59  0.20 0.16 0.17  0.20 0.47 0.01  0.00
100000 0.15  0.08 0.06 0.08 0.05 0.05 0.79 0.00  0.00
500000 0.00  0.04 0.02 0.46 0.08  0.02 0.31 0.00  0.00

Table 2.5: Error on the estimate of statistical parameters considering LHS-SA.

Ngim LHS-SA
Ap-1078 Ao E
(%] %] [%]
5 0.11 9.96 7.22
10 0.11 1.77  0.54
15 0.00 0.45 0.23
20 0.11 0.52 0.1
25 0.22 0.29 0.05
30 0.00 0.54 0.05

50 0.11 0.25 0.05
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Some considerations can be done looking at the results listed in Tables 2.4 and 2.5. First of
all, the estimate of mean value performed with LHS gives always very good results, regardless
of the sample size. About the estimation of standard deviation, both LHS techniques with
imposed correlation give better results with respect to random sampling or simple LHS; also
in this case the sample size is not so important, but the only requirement is that the sample
size should be higher than the number of variable. Finally, considering the evaluation of
the norm of the difference between correlation matrix, see equation 2.52, Latin Hypercube
Sampling associated with Simulated Annealing is superior with respect to the sampling with
method given by Iman and Conover (Iman and Conover [127]). For example, if we consider
the last columns of Tables 2.4 and 2.5, the same norm is reached with a number of samples
approximately 5 + 10 times smaller for LHS-SA.

In conclusion, comparing random sampling and LHS-SA, the latter technique is significantly
better than the former, in particular in the estimate of standard deviation; the same error is
reached using a sample size hundred of times smaller, saving computational cost. In the light
of all these considerations, structural models used in the following for all the seismic analyses

will be establish on the base of Latin Hypercube Sampling with Simulated Annealing.

2.5 Probabilistic seismic hazard analysis

Probabilistic seismic hazard analysis (PSHA) is one of the step involved in the evaluation of
the seismic risk for a particular site; sometimes the terms risk and hazard are used to describe
the same issue, however there are some differences. Risk has a more general meaning, because
involves also social and economical aspects, and his definition is the probability that social or
economic consequences of earthquakes will equal or exceed specified values at a site, during a
specified exposure time. Hazard concerns the physical phenomena induce damages or negative
effects on human activities. Equation 2.56 can be used as a reference for the definition of

seismic risk:

SEISMIC RISK = SEISMIC HAZARD x VULNERABILITY x LOSS (2.56)

where “vulnerability” stands for probability of exceedance of a particular limit state due to
a predefined seismic intensity and “loss” represents the economic/social damages; symbol “x”
represents a convolution between the three parameters. Among different approaches available
in literature, PEER has developed in the last years a reliable framework for performance bases
assessment, Porter [198] and Moehle and Deierlein [169]. Within the present investigation, the
PEER methodology is applied in order to assess the seismic performance of RC multistory
frame structures subjected to environmental hazard, with emphasis on the vulnerability,
without considering the loss analysis. A meaningful picture of the steps involved in the PEER

PBEE approach is shown in Figure 2.14. In the figure p[A|B] represents the conditional
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Figure 2.14: Scheme of the PEER PBEE methodology (after Porter [198]).

probability of A given B, while g[A|B] means the occurrence frequency of A given B or, in
other word, the slope of the curve (in this case the hazard curve). From a mathematical point

of view, equation 2.56 is translated as expressed in equation 2.57:

g(DV|D) = ///P(DV|DM,D)P(DM|EDP,D)P(EDP|IM,D)g(IM|D)dIMdEDPdDM (2.57)

where vulnerability combines structural and fragility analysis. This section deals with the
hazard analysis, while the next one is devoted to the development of fragility curves. In the
following chapter different methods to perform a seismic analysis are explored.

There are two different approaches to perform a seismic hazard analysis, deterministic
(DSHA) and probabilistic (PSHA). A review of the two approaches can be found in Krinitzsky
[140], Romeo and Prestininzi [211] and Bommer [43|. Within the deterministic approach,
seismic hazard is computed with reference to a single earthquake that occurs at a fixed distance
to the site and with a prescribed ground motion probability level, while in the probabilistic
scheme seismic hazard is computed considering all possible earthquakes from all possible
sources and probability of occurrences. Both methods use attenuation laws to estimate ground
motion parameters, but the main difference is that in PSHA time is explicit while in DSHA
not. Considering the variabilities normally affect an engineering problem, in this investigation
the probabilistic approach is used, based on the fundamental work of Cornell, Cornell [62]; the
disadvantage is that with this method the concept of “design earthquake” is lost.

In PSHA it is possible to identify three different steps, namely occurrence laws, attenuation
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laws and distribution of occurrences in time. Next sections deal with the above issues.

2.5.1 Recurrence laws

A recurrence law gives the average rate at which an earthquake of some size will be exceeded.
The first attempt to introduce a relationship between the magnitude of the earthquakes and
their occurrence has been done by Gutemberg, Gutenberg and Richter [109]. The recurrence

law has the form:

log(Ayr) = A—bM (2.58)

where Aps is the mean annual rate of an earthquake exceeding magnitude M, namely the
number of earthquakes with a magnitude higher than M divided by the time of interest. A
and B are constants depending by the seismicity of the region, in particular A is the activity
parameter, that is the number of events with magnitude higher than 0, while B refers to the
likelihood of large and small earthquakes of the region. For example, a decrease in the value of
B, or in other words a decrease in the slope of the curve in equation 2.58, means an increase
in the likelihood of larger earthquakes, Sen [223].

It is more useful to express equation 2.58 into the exponential form:

Ay = 1047 = exp(a — M) (2.59)

From an engineering point of view, a magnitude lower that a minimum value M,,;, is not of
interest in terms of potential consequences on the structure studied. Equation 2.59 can be used
to evaluate the cumulative distribution function F'(M) for the magnitude of earthquakes higher
then a minimum threshold value; using the definition of conditional probability, equation 2.1,

the following expression is obtained:

Fyr(m) = P(M < m|M > Mp,n)

= P(Mmm <M< m)

>\Mmin — AM (2.60)
)\Mmin

=1—exp (_ﬁ(M - Mmm))

If derivative exists, also the PDF for the magnitude of earthquakes higher then M,,;, is defined:

OF
fu(m) = ——= = Bexp (=B(M — Mypin)) (2.61)

oM
Equation 2.61 theoretically predicts magnitudes without an upper limit, that is no feasible in
practice. An attempt has been done in order to introduce an upper bounds, Kramer [137];

CDF and PDF are therefore expressed in equation 2.62 and 2.63.
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1 —exp [—5(M - Mmm)]
1 —exp [—B(Mmam - Mmm)]

Fy = (2.62)

Bexp [~B(M — Myn)]
1 —exp [—B(Mmaz — Mmin)]

Gutenberg-Richter recurrence law is not the only model to describe the distribution of

far = (2.63)

earthquake magnitudes; for example another model is the so called Characteristic earthquake,
see e.g. Schwartz and Coppersmith [221|. However, available worldwide seismic data does
not support other models being adopted, Sen [223]. PEER methodology is then based on

Gutenberg-Richter recurrence law.

2.5.2 Ground motion models

Second step refers to estimate of ground motion parameters. To this aim, attenuation
relationships or, better ground motion models, are used. These equations give the probability
distribution of ground motion intensity IM (e.g. the peak ground acceleration PGA or
the spectral acceleration for a particular period) depending on the main descriptors of a
ground motion (magnitude, distance, fault mechanisms, etc., see Stewart et al. [228]) with the
corresponding variability. A review of different intensity measure used to describe a ground
motion can be found in Riddell [208] and Elnashai et al. [77]. Typically, the equations are
calibrated through a regression analysis of data collected among different observations, and

the generic function is the following:

In(IM) = p(M,R,0) +0o(M,R,0) - ¢ (2.64)

where In(IM) is a random variable with his main statistical descriptors mean value p and
standard deviation o. M and R are magnitude and distance while @ collects other parameters
involved in the process. ¢ is a standard normal variable that represents variability on In(7M).
Attempt has been done by different researchers all over the world in order to elaborate ground
motion models for different sites; to this purpose, attenuation relationships for Europe, US and
Japan have been developed. Reader can refers to Elnashai et al. [77]. A significant improvement
was done recently with the introduction of the “NGA” (Next generation attenuation models
) by Power, Power et al. [201], that has a wide applicability; in particular, in Campbell
and Bozorgnia [50| the applicability of these models to Europe is investigated. Moreover,
following the developments of structural codes toward a performance based approach, namely
representing capacity and demand due to a ground motion through displacements, attenuation
relationships involving displacement response spectra are emerging, Cauzzi and Faccioli [52].

Combining all the above information, ground motion models allow to compute the proba-
bility of exceedance of a particular intensity measure IM, given a magnitude and a distance.

In analytical form, exploiting the total probability theorem, it is possible to write:
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- Mmax
P(IM > TM) = /

/0 " PUM > T |m, r) fag frdmr (2.65)
Mmin

where P(IM > TM|m,r) comes from the attenuation relationship, fy; comes from
Gutenberg-Richter law, see equation 2.61, while fr is the PDF of the distance and depends
on the type of geometrical source (point, line, etc ...). In equation 2.65 the joint probability
between magnitude and distance is simply the multiplication of the marginal probability
because the hypothesis of independence. Introducing the information on the occurrence of an
earthquake in the site of interest, equation 2.65 is rewritten as explained below, Bazzurro and

Cornell |22]:

AIM > TM) = A(M > mmm)/ o

Mmin

/ " PUM > TMm, ) far frdmdr — (2.66)
0

where A(M > min) is the rate of occurrence of an earthquake with magnitude higher than the

lower bound. Equation 2.66 can be also generalized if multiple sources are present:

NTsources Mmaz Tmax -
AIM >TM) = > MM; > mupin) / / P(IM > IM|m,r)fa frdmdr
i Mmin 0

(2.67)

2.5.3 Distribution of occurrences in time

If the rate of exceedance is computed for different levels of the intensity measure, the hazard
curve is obtained, which is the primary results of a PSHA. An example can be visualize in
Figure 2.15.

Integral depicted in equation 2.66 in practice cannot be solved through analytical formula,
so numerical methods are applied. Because the parameters involved are random variables,
Monte Carlo simulation is an effective tool for the development of hazard curve, Ebel and
Kafka |[72] and Musson et al. [175]. Examples on his application can be found in Sen [223].
Last step concerns the introduction of a temporal model, in order to compute the probability
that a predefined ground motion level is exceeded within a time interval, typically 50 years.
When PSHA first appears, Cornell [62], Poisson process was selected; for his validity, some

assumption should be made:

1. Stationarity. If the mean annual rate of frequency is A, in a small time interval At the

probability of occurrence is AAt, for any time ¢ considered;

2. Non-multiplicity. The probability of occurrence of two or more events in a short interval

At is negligible with compared to AAt;
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Figure 2.15: Seismic hazard curves from the Yucca Mountain project (Stepp et al. [227],
Abrahamson and Bommer [1]).

3. Independence. The occurrence of an event in a given time interval is statistically
independent of that in any other nonoverlapping interval.

The validity of the assumptions above cited is argued, in particular for point 2 and 3. Point
2 is denied due to the presence of foreshocks and aftershocks during an earthquake, while point
3 is is in contradiction with the FElastic Rebound theory. In spite of these issues, time arrivals
of future events are modeled through a Poisson process because successful applications in past
years and especially because it is the simplest model capturing the basic characteristic of the
problem. The violation of the hypothesis can be also partially overcome considering that the
sum of non Poisson process is a Poisson process, Ang and Tang [11]. If the average number of

earthquakes in a time interval is £, the probability that the number of occurrence N is equal
to a predefined value n is:

é‘n

n) = exp(=¢)— (2.68)
Introducing the mean rate of occurrence A in a time interval t, equation 2.68 can be
rewritten as:

P(N

P(N = n) = exp(—At) (Arf!)n (2.69)

Denoting as T the length of time of interest, the probability that 0 events occur in that
period is:

(2.70)
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Table 2.6: Probability of exceedance and return period for a time interval of 50 years.

P[%)] A Trlyears]

63 0.0199 50

10 0.0021 475
5 0.0010 975
2 0.0004 2475

Conversely, the probability that at least one event will occur is:

P = 1—0 events occur = 1 —exp(—AT) (2.71)

Equation 2.71 is more significant if expressed in a logarithmic format, in order to highlight the

rate of occurrence A (or the return period Tg, that is the inverse):

In(P) = In(1 —exp(—AT)) = exp(—AT) = In(l1-P) =\ = ———= (2.72)

Assuming a time interval T' (usually equal to 50 years) and a range of probability P; the
probability of exceedance can be computed, as indicated in Table 2.6.

Selecting an intensity measure, at each value is associated the seismic hazard of a site
expressed in terms of the above probability of exceedance or, equivalently, in terms of return
period. About Italy, great effort has been done in order to develop such curves, considering
intensity measure refers to acceleration, Montaldo et al. [170] and displacement, Faccioli and
Villani [79]. The main reference is the INGV (Istituto Nazionale di Geofisica e Vulcanologia),
see website ; an example of such curves, with reference to PGA,

is shown in Figure 2.16. Details can be found in Meletti and Montaldo [166].

2.6 Development of fragility curves

Regardless the specific seismic hazard of a site, the vulnerability of a structure can be evaluated
through the so called fragility function or fragility curve, which expresses the probability of
exceeding a particular limit state given a predefined value of intensity measure. Usually the
performance states are in the nonlinear range of behavior, so it is necessary to perform a set
of nonlinear analyses in order to extrapolate statistics on the results. Fragility function is the
probability that a suitable damage state DM (e.g. the maximum interstory drift) is higher
that a threshold value DM when the intensity measure assumed IM is equal to a particular

value TM , see equation 2.73:
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Figure 2.16: Probabilities of exceedance of PGA for Italy with reference to a period of 50

years, Meletti and Montaldo [166].
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Fpy(IM) = P[DM > DM|IM = TM)] (2.73)

Fragility curve is obtained integrating on all the values of the intensity measure, equation 2.74

Py(IM) = /0 o fo(DM|IM)Fo(DM)dDM (2.74)

where fp(DM|IM) is a proper probabilistic model regarding demand (usually assumed as a
lognormal distribution, Jalayer [129]) and F(DM) is the cumulative distribution function of
the capacity. It is important to highlight that the fragility function depends not only from
the characteristic of the structure but also from the ground motion, and the influence of his
different features typically depends on the choice of the intensity measure, Pinto [196].

Different methodologies exist in order to compute fragility functions; a set of procedures
from different kind of data can be found in Porter et al. [197]. Another important issue regards
the possibility to highlight in a suitable way the effect of uncertainties coming from record to
record variability (a set ground motion records) and modeling. For the second case, a simulation
method based on Monte Carlo approach, eventually coupled with strategies to reduce the
computational cost, see e.g. Liel et al. [155], seems the better option to perform nonlinear
analyses. Finally, combining hazard curve of the site of interest and fragility function, the
probability of exceeding a particular performance level within a time period can be computed.
This is one of the main outcome of the PEER PBEE methodology.

2.7 Conclusions

This chapter highlights the importance of a probabilistic approach in seismic engineering. First
of all, a review of the main concepts in the theory of probability is presented, in order to
illustrate all the mathematical tools that are applied in this investigation. Regarding numerical
methods that are used nowadays to solve engineering problems, particular emphasis is given
to Monte Carlo approach, which is particularly effective when random variables are involved
in the process. Because the unfeasible computational cost associated with a plain simulation,
a review of different strategies able to reduce the variance, so the number of simulations
required, is illustrated and, among them, the use of a particular stratified sampling, namely
Latin Hypercube sampling, is adopted. Through simple problems where the analytical solution
exists, the effectiveness of this technique is highlighted, constituting the base to sample the
random variables introduced subsequently for the seismic assessment of the systems studied.

Second part of the chapter is devoted to probabilistic seismic hazard analysis, and the main
steps required to develop hazard curve are reviewed. Finally, the procedure to develop fragility
curves is shown, in order to highlight how the vulnerability of a structure, with regards to
a predefined ground motion level, can be expressed in a reliable way. Combining all these

concepts, namely hazard curve and fragility, the probability of exceeding a particular limit
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state over a period of time can be evaluated; this is the main concept at the base on the

Performance based Earthquake Engineering.



Chapter 3

Probabilistic assessment of seismic

performance

3.1 Introduction

This chapter deals with the assessment of seismic performance of multistory RC precast frame
systems within the PEER methodology, with particular emphasis on the probabilistic approach.
The choice of the best sampling for the random variables that will be used in the investigation
is based on the Latin Hypercube sampling, Iman and Conover [127] and Helton and Davis
[113]. First of all, the archetypes of the structures studied are presented, highlighting their
main characteristics. Section 3.3 is devoted to the choice of a suitable hysteretic law able
to predict the flexural collapse of reinforced concrete structural members, introducing the
analytical model and the equations for the calibration of the principal parameters. Next two
sections review the two methods used in this study to perform nonlinear seismic analyses,
namely incremental dynamic analysis (IDA) and pushover. The respective key issues are
addressed, underlining their advantages and drawbacks.

Subsequently, random variables involved in the analysis are selected, using LHS in order
to create the set of structures to perform the probabilistic assessment; particular importance
is given to the choice of the proper number of samples able to predict in a reliable way
the structural capacity of RC precast systems. To this purpose a sequence of two steps
is considered; first of all, the potential “candidate” Ng;,, is evaluated with reference to the
comparison between the theoretical correlation matrix and the matrix obtained at the end of
the sampling procedure. Second step requires to perform nonlinear analyses, each of them
with a different number Ng;,,, comparing the results until the differences are small; final choice
is done considering a Kolmogorov-Smirnov test for the goodness of fit, Ang and Tang [11].

Finally, the results of the IDA and pushover analyses are shown, comparing the outcomes
in terms of structural capacity. Selecting then different sites in Italy and considering their

respective hazard curves, the probabilities of failure for a set of limit states, from limited
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damage up to collapse, are computed, in order to evaluate the mean annual frequency of

exceedance of limit states chosen.

3.2 Archetypes of multistory precast frame systems

Over the last years the assessment of seismic performance of precast structures was deeply
investigated. Intensive studies, coupling experimental tests and probabilistic numerical analyses,
showed that also for precast buildings with hinged beams the same design criteria for cast-in-
situ structures can be applied, with the only requirement to avoid brittle failure of connections,
Biondini and Toniolo [32]. In literature different solutions have been proposed in order to
guarantee ductility to connections, see e.g. “PRESS” program (Pampanin et al. [186], Pampanin
[185]), where the effectiveness of unbonded post-tensioned tendons is studied. Recently, a
European project namely “SAFECAST”, involving universities and companies, is focusing on
the performance of innovative mechanical connections in precast buildings structures under
seismic conditions, Biondini et al. [41]. With appropriate dimensioning of members and
connections, hinged precast structures are able to to provide good seismic performance as
monolithic cast-in-place structures, Biondini et al. [39]. Because at the present time Eurocode
8, EC8 |74], does not cover the seismic design of this type of structures, capacity design are
required; to this aim the same approach applied for monolithic cast-in-situ frames is considered,
Biondini et al. [38].

Here it is presented only a sinthesys of the procedure adopted for the design of precast
structures; for all the details readers can refer to Biondini et al. [39]. Considering a behavior
controlled by the fundamental mode, a linear distribution of floor forces is applied to the
structure; with a proper capacity design criteria, Paulay and Priestley [192], a global collapse
mechanism is achieved; because the flexibility of the systems studied, a behavior factor ¢
equal to the displacement ductility p is chosen, following the well known “equal displacement”
rule, see e.g. Chopra [55] and Elnashai et al. [77]. With these characteristics, a linear static
analysis is then performed in order to design the critical cross-sections at the base of the
columns and the connections between columns and beams. Due the hypothesis at the base of
the procedure, a parametric analysis is carried out, changing the key parameters (e.g. stiffness
of the members, number of stories, ...). Performing subsequently a modal analysis and a
pushover one, the influence of higher modes and the displacement capacity of the structures is
clearly highlighted, in order to understand the range of applicability of such procedure. In the
following, the design parameters coming from such analyses are introduced.

Structures are designed assuming a story weights, equal for each floor, of 1200 kN, story
heights equal to 4m, a design peak ground acceleration a, = 0.35g and a behavior factor ¢ = 4.
For all the columns the same cross-section is considered, using concrete C'40/50 and a steel

B450C. The minimum amount of longitudinal reinforcement prescribed by code is adopted,
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Table 3.1: Design parameters for the multistory buildings.

2 story frame 3 story frame 4 story frame
Ti[s] 2.50 1.00 0.75 2.50 1.50 2.50
F[kN] 34 70 140 50 106 67
Mgq[kNm] 224 699 933 470 986 806
blcm] 45 70 80 60 80 80
A 8P18 16920 20920 16918 20920 20920

EC8 [74], because it is higher than that required by design; so ps = pmin = 0.01. A set of six
structural systems is investigated, changing both the number of stories and the size of the
cross-section. Table 3.1 presents all the design parameters involved in the analysis, where F is
the total column base shear, M,y is the bending moment at the base of the column at the first
story, b is the cross-section size and Ay is the longitudinal reinforcement. For each number of
story, in order to decrease the value of the fundamental period, the size of the cross-section
should be increased; however no other dimensions are studied because outside the range of
practical interest.

About longitudinal reinforcement, prescriptions given by Eurocode 8 for high-ductility
class are followed, ECS8 |74]. In particular the diameter of the hoops and the spacing follow

the requirements illustrated in equation 3.1:

dbw > 0-4dbL,max 1\ fydL/fydw (3 1)

s = min(b,/3,125, 6dgpr,)

where dpr,,, 4z is the maximum longitudinal diameter, fyq7, and fyq, are the yielding strength of
the longitudinal and transversal reinforcement, respectively, and b, is the minimum dimension
of the concrete core. Considering the data listed in Table 3.1, the diameter of the hoops
dpy = 8mm and the spacing is 10 cm. Regarding durability requirements, a class designation
XD (corrosion induced by chlorides), EC2 [73], the net cover of concrete is assumed equal to
35mm. Figure 3.1 shows the four different column cross-sections adopted in the investigation,

while in Figure 3.2 the archetypes of the structures are introduced.

3.3 Choice of a suitable hysteretic law to predict collapse be-

havior

In the perspective of the Performance-based Earthquake Engineering, Ghobarah [97], one of

the main challenge is the assessment of the seismic performance of different kind of structures
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Figure 3.4: Lumped plasticity model for a RC member.

during their entire range of behavior, from limited damage if subjected to minor earthquakes
up to near collapse when major ones are involved. Such an information can be evaluated
in a reliable way if appropriate tools are considered; among them, a proper modeling of the
nonlinear behavior of structural members is one the key factor. In practice there are two
options to take into account the nonlinear behavior of elements, namely distributed and lumped
plasticity models. In a distributed plasticity model the nonlinear behavior is spread along
the entire length of the element, and the generic section is usually discretized into fibers; at
each fiber is associated the constitutive law of the corresponding material, e.g. for a RC cross
section the stress-strain models for concrete and steel are applied, see Figure 3.3, eventually
taking into account the confinement effect due to the hoops.

On the other side lumped plasticity model are simpler and computationally less expensive
because plasticity is concentrated within a predefined length of the member, namely the
“plastic hinge”; if the length has a finite length, nonlinearity can be represented by an hysteretic
law such as moment-curvature relationship, while if the length is zero, nonlinearity is lumped
into a nonlinear spring, using e.g. a moment-rotation relationship, Figure 3.4. Between the
two ends, the element has elastic properties, eventually modified to take into account the effect
of cracking and bond slip. A review of different hysteretic models suitable for modeling the
nonlinear behavior of concrete members can be found in Otani [183].

Apparently, a fiber discretization of the sections, spreading the nonlinear behavior along
the entire length of the members, seems a better choice for nonlinear seismic analysis of

structures. In fact, the choice of one modeling rather than the other depends on the purpose of
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the investigation; in particular, if collapse is required, a lumped plasticity modeling is a better
option for simulating strength and stiffness degradation, Liel et al. [154]. Considering a RC
frames where the behavior is flexurally-dominated, collapse depends on the strain-softening
behavior of beam-column members due to a combination of concrete crushing, yielding of bars
coupled with their buckling. Research is pushing hard in order to develop fiber models capable
to include such phenomena; for example, in Monti and Nuti [171], the behavior of reinforcing
bars including buckling is experimentally studied through monotonic and cyclic tests, and an

analytical model is proposed.

In Spacone et al. [224] a fiber beam-column model with a formulation flexibility-based
is presented; since within this modeling the equilibrium is always respected, also the highly
nonlinear behavior of concrete members can be properly considered, without reducing the
size of the finite elements. In a companion paper, see Spacone et al. [225], some applications
are presented. In Biondini [27] a 3-D finite beam element for seismic analysis of concrete
structures is developed, including also a description of damage in terms of damage indices at

multiple levels, from local to global behavior.

In spite of these important advances, fiber models nowadays are not fully calibrated and
validated to capture strain softening associated with buckling and fracture of the longitudinal
steel reinforcing bars; if buckling is the main issue to induce a flexural strength softening,
distributed models cannot be used directly to estimate collapse, Liel et al. [154]. On the
opposite, if the user is interested in tracking the crack path and the estimate of yielding, fiber
models become the better option. Although lumped plasticity models loose in accuracy for
the evaluation of the linear and mild nonlinear behavior of concrete members, the presence of
a decreasing branch in the moment-rotation backbone, Figure 3.4b, allows to consider in a

reliable way the softening behavior and, of consequence, the estimation of collapse.

Due to the above considerations, a lumped plasticity model will be used in the present
study; in the following, a review of the main characteristics of the hysteretic law adopted is
shown. In particular, the plastic hinges at the ends of the structural members are based on the
nonlinear spring developed by Ibarra (see Ibarra et al. [121]) and subsequently implemented in
OpenSees, Mazzoni et al. [163], by Altoontash, Altoontash [7]. However other formulations
can be used, and a critical review can be found in Fischinger et al. [93]. The choice depends
on the capability to take into account multiple modes of deterioration that induce the collapse
of RC frames; in particular, four modes are considered, namely basic strength deterioration,
post-capping deterioration, unloading stiffness deterioration and accelerated reloading stiffness

deterioration. For collapse estimate, post-capping behavior is the key factor.

The nonlinear spring has a trilinear backbone curve, Figure 3.5, associated with the above
hysteretic laws to simulate progressive damage; for all the modes an energy index is used to
describe the cyclic deterioration. This parameter, 5, depends on two factors: one is A, the

normalized energy dissipation capacity, and one is ¢, the exponent term that measures the
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Figure 3.5: Moment-rotation backbone curve for Ibarra model, Haselton [112].

rate, namely the velocity, at which the deterioration occurs. In details:

E; ‘
- S 3.2
B <Et—2§:1 Ej> (3.2)

where 3; is the cyclic deterioration in excursion ¢, F; is the hysteretic energy dissipated in
excursion 4, y . F; is the hysteretic energy dissipated in all previous excursions through loading
in both positive and negative directions and F; is the reference hysteretic energy dissipation
capacity, By = AF,d,, see Ibarra et al. [121].

This kind of approach is quite different with respect to cumulative damage models. In the
latter case a “counter”, usually called damage indez, is used to evaluate the level of damage
(e.g. a value equal to 1 refers to a complete failure) but typically does not incorporate the
evidence that a cumulative damage induces a deterioration of strength and stiffness of the
structural members, accelerating the collapse. It is however possible to make a comparison
between the procedure proposed in Ibarra et al. [121] and the damage models including two
contributions, e.g. the well known Park-Ang index, Park and Ang [190]. In the former damage
includes a cyclic deterioration controlled by the energy dissipation and a deterioration due to
the softening branch of the backbone curve, Figure 3.5. In the latter, damage index is a linear
combination between a strain parameter and an energy one, equation 3.3.

oM B

pM = M
S0 Fyou

dE (3.3)

where DM is a damage index, dy is the maximum displacement under earthquake, ;7 is the
maximum displacement under a monotonic load, and B is a structural performance parameter.
In practice, the parameters dy and B of this cumulative damage model are analogous to the
capping point d¢ and dissipation capacity A of the deterioration model proposed by Ibarra.
Backbone curve and cyclic behavior depend on seven parameters, namely My, K., M./M,,

Ocap,pls Ope, A and ¢, as indicated in Figure 3.5. The model allows also to include a residual
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strength; for steel members a value higher than zero is recommended, Lignos [156], while for
RC members the parameter is typically close to zero. Other details, especially for non-ductile
members, can be found in Krawinkler and Lignos [138|. Finally, recommendations concerning
the modeling of the nonlinear behavior of structural members can be found also in the FEMA
P695 report, FEMA P695 [86].

The parameters listed above have been calibrated considering 255 experimental tests on RC
columns; a regression analysis has been subsequently performed in order to develop empirical
equations used as input for the modeling of the nonlinear springs. A comprehensive and deep
investigation about this procedure can be found in Haselton [112|. In particular the data
come from the study on rectangular columns included in the PEER Structural Performance
Database (Berry et al. [24]), where the performance of members with ductile and non-ductile
detailing have been examined; among this large set of data, 220 columns failed in a flexural
mode, while the remaining in a flexural-shear mode, due to lack of seismic detailing. All the
parameters investigated cover the practical range of values, including axial load ratio, strength

of the concrete, longitudinal and transversal steel ratio.

To calibrate element model parameters, columns have been studied as cantilever columns
through OpenSees platform (Mazzoni et al. [163]), dividing each element into three parts:
two nonlinear rotational springs at both ends and an elastic element in between, Figure
3.4a. The object of the calibration procedure was the definition of the parameters of the
nonlinear springs. Main attention has been given to a proper calibration of the capping point
and post-capping strength deterioration, because these factors have a strong impact in the
evaluation of collapse capacity, Liel [153]. In particular, as clearly indicated in Figure 3.6, two
different types of deterioration can be identified, namely in-cycle strength degradation and
cyclic strength degradation. The former induces a decrease in the strength within the same
cycle or, in other words, the element has a negative stiffness; the latter is related to a decrease
in the strength considering two subsequent cycles of deformation, but the stiffness is always
positive. It is extremely important to keep separated these two sources of deterioration in
order to avoid mistakes in the modeling; e.g. in Figure 3.6a it is shown the correct procedure,
where both modes of deterioration are included, while in Figure 3.6b the wrong modeling
appears, since only the in-cycle deterioration is activated in order to simulate the behavior of
the cantilever column. Such an approach has a deep consequence in the estimation of collapse
capacity; in Haselton [112] it is shown how probability of collapse for SDOF systems subjected

to earthquakes changes if the sources of deterioration are not properly taken into account.

The result of the calibration procedure is a set of empirical equations to estimate the main
parameters involved in the definition of the properties of the nonlinear spring used in the
modeling. In Haselton [112] these equations have been compared with the results of previous
research, e.g. Panagiotakos and Fardis [187], in order to highlight advantages and limitations

of such procedure. In the following a review of the equations developed is presented; for each of
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them not only the central value is given (the outcome of the equation) but also the dispersion.
This factor is very important for the probabilistic approach that it will be illustrated in the

next sections.

Effective stiffness

Due to the effect of cracking, the stiffness of RC members depend on the load applied. Equation
3.4 gives an estimate of the secant stiffness to yield, depending on the axial load ratio v and

the shear span ratio Lg:

Ely o 0074059 +o.07 | L 02< v 6 (3.4)
EI, S 7 e 7] “=FEIL - '

where v = P/(Ayf.), I, is the inertia of the gross section and H is the length of the member.
About dispersion of the results, considering a lognormal distribution, the logarithm of standard
deviation ory = 0.28. The expression takes into account not only the flexural behavior but
also an additional flexibility due to shear and bond-slip. The lower and upper limits depend
on the experimental data, since for the lower bound few cases with low axial load have been
found, while for the upper one the scatter tends to increase increasing the axial load. The
estimation of the initial stiffness of the member is not a trivial issue, and a lot of research has
been done in this field. In FEMA 356 (FEMA 356 [84]) approximated procedures are allowed,
in particular using 0.5F1, if the axial load ratio is lower than 0.3 and 0.7E1, if v > 0.3. Other
recommendations can be found in Priestley et al. [203|, where it is explained that one of the
fundamental problem of the force-based design is the choice of the appropriate stiffness for the

element members.
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Moment at yielding

Moment at yielding M, is evaluated through a moment-curvature analysis of the section, in
order to include the confinement effect due to the transversal steel; within the core of the
sections, see Figure 3.1, the equations of Mander (Mander et al. [158|) are used in order to
include an increase in strength and ductility. Another possibility is to compute the flexural
strength considering the procedure proposed by Panagiotakos and Fardis, Panagiotakos and
Fardis [187].

Capping rotation capacity

Plastic rotation 6.4, is estimated as indicated in equation 3.5; the uncertainty on the results
has a logarithmic standard deviation op = 0.45. This parameter is affected mainly by the
axial load ratio v = P/(Agf.) and by the transversal steel ratio psy; other parameters of
interest are the strength of concrete f. and the longitudinal steel ratio p. In equation 3.5 ag
is an index equal to 1 or 0 depending if reinforcing bar slip is included in the rotation capacity

or not; because slip usually occurs ag = 1.

Ocap = 0.12(1 + 0.4a) - 0.2 - (0.02 + 40p41,) 52 - 0.56°01/e . 2.37107 (3.5)

It is important to highlight that equation 3.5 has been calibrated just considering columns
with a symmetric layout of reinforcement; in principle such equation cannot be applied to
beams, due to their unsymmetric arrangement. If the element is loaded in such that the side
with more steel is in tension the rotation capacity is smaller since, due to equilibrium, the
concrete is subjected to larger compressive stresses and strains, Haselton [112]|. In order to
overcome this limitation, the same coefficient computed by Fardis and coworkers (Fardis and
Biskinis [83]) analyzing columns with generic reinforcement arrangement is used, equation
3.6. In the present investigation only columns have a nonlinear behavior, so apparently this
coefficient is not necessary (columns are symmetric); however, due to the unsymmetric diffusion
of chlorides on the cross-sections, reinforcement layers in the columns have different rates of
corrosion. In this way, during time, backbone curve of the nonlinear spring tend to have an

unsymmetric behavior. The expression for Fardis’ coefficient is:

max (0.01, p}fy) o
-~ (3.6)

max (0.01, @)

Coeffrardgis =
fe

where p and p’ are the longitudinal steel ratios in the tension and compression side respectively.

Post capping rotation capacity

This parameter plays an important role in the prediction of the collapse capacity; the proposal

equation is:
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0pe = (0.076)(0.031)¥(0.02 + 40p,,)" 0% < 0.1 (3.7)

where v is the axial load ratio, psp is the transversal steel ratio and the logarithm of the
standard deviation oy = 0.72. The upper bound comes from the lack of reliable data for
elements with shallow post-capping slopes, Haselton [112] and Liel [153]; according to the

authors the value should be conservative considering cross-sections well confined.

Post-yield hardening stiffness

Hardening slope is described in terms of ratio between capping and yielding moment, M./M,;
axial load and concrete strength are the most significant parameters, and the outcome of the

regression analysis is equation 3.8:

M./M, = (1.25)(0.89)"(0.91)0-01/ (3.8)

where the dispersion of the data is described by oy = 0.10. Considering a typical range for
fe and v, the ratio predicted by equation 3.8 comes from 1.11 to 1.22; in order to simplify the

problem, a constant value equal to 1.13 is recommended.

Cyclic energy dissipation capacity

This factor is related to the deterioration of strength and stiffness of the spring during nonlinear
analysis. In particular, with reference to the Ibarra model, Ibarra et al. [121], four modes of
cyclic deterioration are considered, namely basic strength deterioration, post-cap strength
deterioration, unloading stiffness deterioration and accelerated reloading stiffness deterioration.
Theoretically for each of them a dissipation energy capacity A and an exponent term c¢ used
to describe the rate of deterioration is assigned. To simplify the estimate, for each mode the
same factor \ is applied, and a value ¢ = 1 is used (there is the hypothesis that all modes
have the same rate of deterioration). The predicted equation for energy dissipation capacity is

shown in 3.9:

A = (127.2)(0.19)7(0.24)%/9(0.595) "%/ Vn (4.25)Pshett (3.9)

where s/d is the ratio of stirrup spacing to column depth, pg cf is the effective transversal
steel ratio and V,,/V;, is the ratio of shear at flexural yielding to shear strength. Last term is

evaluated according to equation 3.10, Kramar [135]:
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Vo= My/Ls

Vo =Ve+ Vs

Ve = 0.0166+/f.hd
Vs = Agnzfy/s

(3.10)

With the predicted equations listed above the nonlinear springs applied at the ends of the
structural members in the frames investigated can be calibrated, in order to perform nonlinear
simulations exploiting two different seismic analysis methods, highlighting pro and contra of

the two approaches.

3.4 Validation of the model used

The analytical model of the nonlinear spring illustrated in the previous section is very effective
in the prediction of collapse behavior of RC frames, Goulet et al. [105]; anyway, all the
applications described in literature regard frame systems with moment-resisting connections
and not precast buildings, where the joints between columns and beams are typically modeled
as hinged connections (“strong connections”). SAFECAST project gave the opportunity to test
the Ibarra model also for this kind of structures. In particular, as anticipated in Chapter 1, the
prototype experimentally studied allows different structural schemes, from shear wall system
to emulative frame. One of the task of the research is therefore the numerical simulation
of pseudo-dynamic tests in order to understand the seismic behavior of different kind of
connections and the overall performance of the prototype. Here, results regarding frame with
hinged connections (Model 2 in Figure 1.8) are shown.

Because experimental program at the ELSA Laboratory involved different pseudo-dynamic
tests (one or two for each structural scheme), it has been decided to bound the intensity
measure in order to avoid extended damage at the beginning of the champaign, so to study in
a deep way the performance of all the schemes. Only for the last frame, Model 4 in Figure 1.8,
also a cyclic test up to collapse has been performed. For sake of brevity, the results on Model
2, considering a PGA equal to 0.15¢g, are illustrated. After a preliminary phase selection,
nonlinear dynamic analyses has been carried out with reference to the Tolmezzo accelerogram,
modified in order to match the Eurocode 8 spectrum for soil class B, EC8 [74]. Figure 3.7
shows the input motion (scaled up to 1g) and the corresponding response spectrum.

Both a distributed plasticity model (see Figure 3.3) and a concentrated plasticity one
(Figure 3.4) have been implemented for the numerical simulation. Because the low seismic
intensity reached in the pseudo-dynamic test, it is expected that fiber model allows a better
estimation of the response, Liel et al. [154]; if structural members do not go deeply in the

nonlinear range, a model where plasticity is spread for the entire length is capable to capture
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Figure 3.7: Ground motion input used in SAFECAST project.

basic deterioration of the concrete due to his higher refinement. Although the use of nonlinear
spring at the end of the elements gives results with a lower accuracy, the intent of this validation
is to show that also this approach allows to catch the main characteristics of the response.
With such validation, it possible to extend the use of the Ibarra model for the archetypes of

the precast frames studied in the present investigation.

Figure 3.8 shows the response of Model 2 (hinged connections) to an input motion with a
PGA equal to 0.15¢g in terms of story displacements. As explained before, distributed plasticity
model predicts in a better way the seismic behavior; however, also the concentrated plasticity
model catches the important features of the response. As it can be seen, the phase (at least
until 10 seconds) is correct, as well as the peak displacements. For both modeling, at the
end of the ground motion there is a delay in the response between numerical simulation and
experimental test, probably for the activation of the nonlinear behavior of the connections,

here represented simply with perfect hinges.

To overcome this problem, the model has been improved including nonlinear springs
between columns and beams, as indicated in Figure 3.9a. In particular the hysteretic material
included in OpenSees library (Mazzoni et al. [163]) has been applied on the basis of the available
data on the connections. Figure 3.10 highlights the different accuracy in the prediction of story
displacements for fiber model without or with the nonlinear modeling for the connections,

when the frame is subjected to an earthquake with PGA = 0.3g.

The research on the seismic performance of connections in precast frames is not completed
yet, and further investigations are needed to clarify the actual behavior of beam-to-column
hinged joints. However, these results illustrate the effectiveness and accuracy of the numerical
modeling. In the following, the lifetime behavior will be studied based on the models above

described.
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Figure 3.8: Prediction of story displacements for Model 2, PGA = 0.15g.
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Figure 3.10: Prediction of story displacements for Model 2, PGA = 0.3g.
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3.5 Numerical simulation via Incremental Dynamic Analysis

Among different methods to assess the seismic performance of different structural systems,
nonlinear dynamic analysis is recognized the most reliable one, even if computational costly,
Clough and Penzien [58], Chopra [55], Elnashai et al. [77] and Datta [64]. Typically, one set
of accelerograms (natural or artificial) is selected, the dynamic analyses run and for each of
them the performance of the structure is investigated considering some key factors (e.g. the
top displacement, hysteresis loops at the base on the columns, etc ...). Depending on the
intensity level of the record chosen, the system can have an elastic behavior or going deeply
in the nonlinear range; from the other side, the use of a nonlinear static analysis gives, in a
static way, a complete picture of the performance of the structure, from limited damage up
to collapse. The idea on the base of the incremental dynamic analysis, Vamvatsikos [232],
Vamvatsikos and Cornell [234], and Vamvatsikos and Cornell [236] is to multiple dynamic
analyses on the same structure, scaling each time the intensity, in order to cover the full
behavior. Some codes, e.g. FEMA P695 [86], recommend this method for the assessment of
the global collapse capacity of the structures; due to the growth of computer computational
power, this procedure is become widely available. Moreover, first applications using a parallel
processing are emerging in literature, Vamvatsikos [233]. It is also worth noting that this
approach is well-suited with the performance-based earthquake engineering, Vamvatsikos and
Cornell [235], since all the limit states of interest can be easily evaluated.

Before performing an incremental dynamic analysis, two quantities must be selected,
namely the intensity measure (IM) and the damage measure (DM). Intensity measure is a
non-negative parameter used to scale up the records, while a damage measure is a non-negative
parameter able to characterize the seismic response of the structure; another problem concerns
the implementation of the algorithm to perform IDA, which should be reliable and effective.
To this purpose, next sections review these important issues, while details can be found in
Vamvatsikos [232]. The outcome of the procedure is the IDA curve, which is a plot of a state
variable (DM) recorded in an IDA study versus one or more IMs that characterize the applied
scaled accelerogram, Vamvatsikos and Cornell [234]. Finally, because one single IDA curve
cannot represent in a suitable way the complete behavior of structure, from elastic range up
to collapse, a suite of accelerograms must be used, in order to explore the variability of the
performance and to develop statistics on the response. As an example, Figure 3.11 shows a

collection of 30 IDA curves.

3.5.1 Selection of ground motion input and choice of intensity measure

Different metrics are used in order to represent seismic intensity, considering scalar quantities
or vector values. Typically PGA is exploited due to his simplicity; however this quantity

is connected only with the ground motion characteristics and not with the response of the
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Figure 3.11: Example of IDA study for 30 records, Vamvatsikos [232].

structure, so it does not contain information on the system studied. To overcome this problem,
researchers in last years have proposed the use of the pseudo-spectral acceleration evaluated
at the fundamental period (Sq(71)), see e.g. Zareian and Krawinkler [249] and Liel et al.
[155]. This choice typically performs better than the use of PGA, but it required that the
fundamental period, namely the first, is the most important period resulting from a modal
analysis; if higher modes play a key role in the overall behavior of the structure (e.g. for tall

buildings with long periods), maybe this choice is not the proper one.

Other researchers have also proposed vector quantities to represent intensity measure,
namely [Sq(711),¢], where ¢ is a measure of the difference between S,(71) and the median
of spectral acceleration predicted by the attenuation law with reference to T;. In practice
¢ is an indicator of the spectral shape; details can be found in Baker and Cornell [18] and
Baker and Cornell [19]. Moreover, it has been shown that the practice of scaling up ground
motions without consideration of ¢ is likely to result in overestimation of the demand on the
structure. A comparison of the adequacy of alternative ground motion intensity measures for
the estimation of structural responses can be found in Giovenale et al. [98], while in Appendix

A a list of different ground motion indices proposed in the last decades is shown.

Regardless the intensity measure, in any case the recommendation is to choose a sufficient
and efficient one, Pinto [196], that means low variability; low variability of the candidate
implies that the median response of the structural analysis can be estimated more efficiently.

Among the pool of intensity measure available, usually the PGA or the spectral acceleration
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at the fundamental period (S,(T%)) are used, and the last one tend to have a small dispersion.
However, peak ground acceleration is selected as the IM candidate in present investigation
in order to simplify the problem, because the spectral acceleration S, (77) is not a trivial IM
since the period of the structure differs from model to model due to introduction of modeling
uncertainties required for the probabilistic approach, Dolsek [69]. Moreover, there are other
two issues regarding the final choice of the IM value. One it is the nature of the ground motion
adopted, since using of artificial accelerograms also PGA has a low dispersion. The second is
the type of structures investigated (precast systems with medium to long periods); in this case

the choice of the spectral acceleration at the fundamental period could not be so appropriated.

Another big challenge in order to perform nonlinear dynamic analyses is the selection
of the ground motion input, Iervolino and Cornell [122[; in literature there are essentially
three approaches, and the main characteristics of each of them are reviewed in the following.
It is also important to remember that seismic codes such as Eurocode 8 (EC8 [74]) and
Italian code (NTC 2008 [181]) assume spectral compatibility to the elastic design spectrum
as the main criterion. However, due to the availability of strong motion recordings, the use
of natural accelerograms is become popular in the last years, Elnashai et al. [77]. On-line
databases can be exploited to select an appropriate suite of records, depending on the site
of interest; examples are the European Strong Motion Database (

) and the PEER NGA Database (
). Clearly they provide a realistic seismic input
to the structure, but typically the main drawback is the low compatibility of their response
spectrum with that prescribed by the code so, in order to get reliable information, a large set

of accelerograms should be selected.

To overcome this problem, in last years great effort has been done in order to develop
a robust strategy for the selection of a set of natural records complying the EC8 spectra,
Iervolino et al. [123|. The result of this research has been REXEL (Iervolino et al. [125]),
a computer program that provides a suitable set of accelerograms compatible with a code
spectrum, given as input the characteristics of the site of interest (e.g. class type of the soil, a
range of magnitude and distance, etc ... ). Regarding ground motion input selection, other
recommendations can be found in FEMA document (FEMA P695 [86]); in particular it is
suggested that the standard deviation of the natural logarithm of the spectra should be around
0.5 for short periods and 0.6 for long periods. Even if in this study artificial earthquakes
are used, as explained later, preliminary considerations has been done also with reference to
natural records; in particular, using REXEL, a set of 20 ground motion inputs from European
Strong Motion Database has been selected, Ambraseys et al. [8], with reference to a soil class
B. Figure 3.12 shows their response spectrum and standard deviation of the natural logarithm.
As we can appreciated in Figure 3.12a, the variability of the accelerograms is high, but the

mean spectrum match very well the prescribed one.


http://www.isesd.hi.is/ESD_Local/frameset.htm
http://www.isesd.hi.is/ESD_Local/frameset.htm
http://peer.berkeley.edu/products/strong_ground_motion_db.html
http://peer.berkeley.edu/products/strong_ground_motion_db.html
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Figure 3.12: Response spectra and their dispersion for recorded accelerograms.
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Another possibility available in literature is to couple the selection of recorded earthquakes
with a wavelet transform that modifies the signal and provides a good match with the prescribed
response spectrum, Gurley and Kareem [108], Mukherjee and Gupta [174] and Hancock et al.
[111].

On the other side, artificial accelerograms can be employed; generation is based on random
vibration theory, Bendat and Piersol [23], modifying iteratively the Fourier amplitude spectrum
of each accelerogram generated in order to match the prescribed spectrum. The most widely
used approach is to develop a stationary signal with a constant power spectral density (white
noise signal), subsequently enveloped in a trapezoidal shape to simulate the non-stationary
characteristics of ground motion. Adapting iteratively the amplitudes of the corresponding
Fourier spectrum, a very good match with the code spectrum can be reach, also for the single
signal; the procedure is described in Clough and Penzien [58], and the well-known computer
program SIMQKE (Gasparini and Vanmarcke [95]) works in this way. Using this methodology
the signals have a frequency content higher than that of realistic earthquake and are unrelated
to the physics of earthquake stress wave generation and propagation, Elnashai et al. [77]; the
consequence is usually an unrealistic demand on the systems studied, with a cyclic response

overestimation.

An improvement can be reached considering non-stationary signals, that are based on
physical parameters of an earthquake (e.g. magnitude and distance) but typically are not
compatible with a prescribed spectrum. Following the work of Sabetta and Pugliese (Sabetta
and Pugliese [215]), where attenuation laws of response spectra have been developed using
Italian strong motion data in order to simulate artificial earthquakes as a function of magnitude,
distance and site geology, in Mucciarelli et al. [173] a computer program named BELFAGOR
has been developed. It consists of two steps: in the first one, a synthetic accelerogram is
generated, for which time length, amplitude and distribution of phases depend on magnitude
and distance of the event considered. Finally, an iterative procedure adjusts the amplitudes
of the spectrum in order to match the prescribed one. According to the authors the signal
obtained is more realistic than a pure artificial earthquake, and the frequency content is close to
that of a natural earthquake. In Pousse et al. [200] an improvement of the Sabetta and Pugliese
model is presented, adopting a stochastic procedure able to model also the ground-motion
natural variability.

A comparison on the use of different types of ground motion input can be found in Iervolino
et al. [124], where nonlinear dynamic analyses have been performed on SDOF systems with
both non-degrading and degrading behavior, highlighting the peculiarity of each choice; in
particular, as just mentioned before, if the cyclic response is considered, artificial record classes
show a significant overestimation of the demand.

For the present investigation SIMQKE program (Gasparini and Vanmarcke [95]) has been

used to generate a set of 25 earthquakes that match very well the Eurocode 8 spectrum for soil
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class B, Figure 3.13a; in particular, following the recommendations in seismic codes (EC8 [74]
and NTC 2008 [181]), each ground motion has a length at least equal to 25s and a stationary

interval At > 10s. In order to increase the variability, three classes are considered, namely:
1. 10 earthquakes with a total length of 25s and a stationarity interval of 10s;
2. 10 earthquakes with a total length of 30s and a stationarity interval of 12s;
3. 5 earthquakes with a total length of 40s and a stationarity interval of 15s.

Since each accelerogram matches very well the code spectrum due to the generation procedure,
the variability is not so high, as can be seen in Figure 3.13b, where the logarithm of the
standard deviation of the spectra is shown. The values are lower than the limit recommeded by
FEMA P695, FEMA P695 [86]. It is clear that such procedure to develop artificial accelograms
is completely detached from the physical parameters of a ground motion, leading to a higher
loading on the structure with respect to realistic input motion but, as explained in Kramar et al.
[136], “...applied loading is more critical than the actual loading at a given site; hence, the
final results should be conservative.”. Moreover, artificial earthquakes have been successfully
employed in another research of the seismic performance of precast structures, Biondini and
Toniolo [32].

3.5.2 Choice of the damage parameter

Second important issue when an incremental dynamic analysis is performed is the choice
of a suitable damage measure DM that can be easily evaluated and allows to give reliable
information on the performance of the system studied. In literature there are different proposals,
considering both local and global parameters; possible choices are e.g. maximum base shear,
maximum top displacement, cumulative hysteretic energy, Park-Ang index (Park and Ang
[190]), maximum floor acceleration, maximum interstory drift. None of the parameters listed
above is the best solution; if the focus is on the potential damage of non-structural elements,
peak floor accelerations are the natural choice, while for potential damage of structural elements,
the displacement approach seems better than the force one, Priestley et al. [203]|. To this aim,
maximum interstory drift becomes a good choice, where the interstory drift 8 is defined as
the ratio between interstory displacement and interstory height, § = Axz/Ah; in this way also
local collapse mechanism can be recognized (“weak story”). This approach is reflected also
in the definition of the limit states; in past years seismic code such as FEMA 356 (FEMA
356 [84]) gave recommended values of maximum interstory drifts depending on the limit state
considered, from limited damage up to near collapse, and on the type of structural system, e.g.
concrete or steel frame, wall building and so on.

Recently, new perspective are emerging, with the intention to define limit states at a local

level (for example reaching of yielding or capping point) and then translate them to a global
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Figure 3.13: Response spectra and their dispersion for artificial accelerograms.
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level, Dolgek [70]. The advantage of this methodology is to identify in a reliable way the
conditions at which damage effectively occurs; using the old approach, values suggested could
be accurate enough for a particular category of structures but not for others; for example,
threshold values given by FEMA 356 for concrete frames may be too low for precast frames,
because usually this kind of system is more flexible than the emulative one. In the present
investigation both methods are implemented; the first one is used only in a preliminary phase,
with the purpose to select the proper sample size for the probabilistic approach. The second

one will be used for the risk analysis.

3.5.3 Practical tools for IDA

To conclude this brief review on incremental dynamic analysis, the procedure on how to
interpolate IDA curves and the algorithm implemented are summarized. Due to high compu-
tational cost required, it is not feasible to perform tens of nonlinear dynamic analyses for each
earthquake; usually 10 to 20 runs are employed, so the IDA curve is based on this reduced
number of points. A proper post-processing of the results allow to enrich the curve without
performing other analysis, in order to extrapolate the IM and DM values for the entire range
of performance, from elastic behavior up to collapse. Discrete points can be interpolated using
a piecewise linear approximation or a spline interpolation; the latter one provide the better
results, Vamvatsikos and Cornell [236]. There are two possible options: extrapolate values
of IM given DMs, or extrapolate values of DM given IMs; looking at the outcome of IDA,
see Figure 3.11, each curve can have alternatively hardening and softening branches until
collapse is reached (flatline of the curve). To this aim, for a given IM only one value of DM is
returned; viceversa the relationship between DM and IM is not monotonic, so for a sigle DM
can correspond more IM values. Due to these considerations, the IM approach is followed; an
example of the fitting of an IDA curve can be seen in Figure 3.14.

Despite to the simplicity of the idea at the base of an IDA investigation, his implementation
is not so straightforward; in particular, as indicated in Vamvatsikos and Cornell [234], two
issues should be preserved, namely demand and capacity resolution. First one means that the
gap between two adjacent IM values should not be higher than a certain tolerance, in order to
spread the data almost equally for the entire range. Second one means that a concentration of
points is necessary around collapse point in order to bracket it properly. To this reasons a
simple stepping algorithm is not a good choice; exploiting this procedure a predefined step
value for IM is chosen, and the accelerogram is subsequently scaled up until collapse is reached.
Clearly the method is not optimized because a certain IM step value could be effective for
some earthquake and not for others, that is some IDA curves could be rich enough and others
not.

A better choice is to introduce a searching technique, in order to balance the distribution

of runs for each record; in particular a hunt & fill algorithm is implemented. After a first
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Figure 3.14: Interpolation of an IDA curve, Vamvatsikos and Cornell [236].

elastic analysis, using a very low intensity, the IM is scaled up in order to reach in few runs the
collapse point. Subsequently, a bisection method is applied, in order to bracket the collapse,
within a certain tolerance, selecting an IM value between the highest non-collapsing point
and the lowest one. Finally, the fill phase fits the curve, in order to have gap between all
the non-collapse points below a certain tolerance. For example, in the present study a 2%
of tolerance for the bracket phase and a maximum gap between adjacent IM values equal
to 0.10g are chosen. Readers interested can find other details in Vamvatsikos and Cornell
[234], Vamvatsikos and Cornell [236] and Buratti [46]; the entire procedure is illustrated from
Figures 3.15 to 3.17.

Finally, care is required in the use of solution schemes, because systems are deeply pushed
into the nonlinear range up to global failure. Here collapse is seen as loss of dynamic equilibrium,
so the system is not able to sustain vertical loads, and the IDA curve reaches a flatline; because
algorithm can encounter in non-convergence solutions, different procedures are employed (e.g.
Newton-Raphson with line search, Modified Newton scheme, Broyden method), eventually
reducing the convergence tolerance. A description of these methods can be found in Zienkiewicz
and Taylor [251], while in Liel et al. [154] their use in IDA is illustrated.

3.6 Numerical simulation via Pushover Analysis

In the previous section the steps required to perform an incremental dynamic analysis have
been illustrated. It is well-recognized that a nonlinear time history analysis is the best approach
to assess the seismic performance of a generic structure, Chopra [55], however, as explained
before, careful is needed in order to have reliable results. In particular the choice of the input
motion is the main issue, and the implementation of IDA is not so straightforward for the

practitioners. Due to above considerations, in last years the use of nonlinear static procedures
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Figure 3.18: Example of a pushover curve for a multistory building.

is emerging; a review of different approaches available can be found in FEMA 440 [85]. The
common idea is to “push” the structure with a particular load pattern, in order to cover the
complete range of behavior, from elastic up to severe damage. Because the analysis is static
the computational cost is lower, however careful is needed in the modeling of the nonlinear
behavior of structural members and in the shape of load pattern applied.

In particular, second point represents the main issue involved in such method, and different
proposals are available in literature. Usually an invariant force pattern is applied to the
structure, for which there is the hypothesis that inertia forces remain constant throughout the
ground motion; as indicated in Krawinkler and Seneviratna [139] this is true if the structure is
mainly controlled by the fundamental mode and has one single yielding mechanism. If different
failure modes are expected or higher modes play an important role, at least two load patterns
should be used, e.g. a uniformly distributed one and an inverted triangular one, proportional
to the first modal shape. A comparison between pushover and dynamic analysis can be found
also in Mwafy and Elnashai [176], where it is suggested that the use of pushover analysis can
be appropriate in particular for low rise and short period frame structures, and meaningful
information can be extrapolated taking care of modeling and choice of the load pattern.

The outcome of a pushover analysis is the so called pushover curve or capacity curve, which
is a plot of the total base shear at the base of the system depending on the top displacement,
Figure 3.18; this format is particularly meaningful since allows to visualize the global “yielding
point” of the structure, corresponding to the point where the slope has a sudden drop, and
the global ductility, which it can be defined as the ratio between the ultimate displacement
and the yielding one. Usually ultimate displacement is estimated as the displacement refers to
a 20% drop of base shear with respect to the maximum value. Finally, pushover curve can
be seen as the hysteretic backbone curve of an equivalent SDOF system, which represents
approximately the global behavior of the original MDOF system.

As indicated above, the main limitation of a standard pushover analysis is the inability to
take into account the effect of higher modes and variation of load pattern due to the stiffness
deterioration of structural members when subjected to an earthquake. To this purpose, in past

years attempts have been done in order to improve the methodology. Considering the influence
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of higher modes, Chopra and Goel (Chopra and Goel [56]) proposed a modal pushover analysis
(MPA); the idea is to push the structure with different load patterns coming from modal
analysis, transform each pushover curve in a SDOF system, compute the target displacement
for each of them, finally evaluating the target displacement of the original MDOF system
by using a modal combination analysis, such as SRSS. In his original format the method
allowed only the estimate of displacement parameters for regular buildings, but subsequently
improvements have been made to include also the estimation of member forces (Goel and
Chopra [103]), application for irregular buildings (Chopra and Goel [57]) and other structures
like bridges (Paraskeva et al. [188]). Since the method is based on a decoupling of modal
properties also in the inelastic range, reliable results can be found if the structure does not go
deeply in the nonlinear range of behavior. Moreover, each load pattern is assumed constant
during the analysis.

To overcome this problem, adaptive pushover has been introduced, Bracci et al. [44]; the
idea is to change the pattern of forces applied to the structure during the analysis, in order
to consider the effect of damage on the distribution of stiffnesses of structural members. A
description of the procedure can be found in Elnashai et al. [77]. Despite to the conceptual
superiority, there is no an unanimous consensus on his effectiveness, particularly in what

concerns the estimation of deformation patterns of buildings, Antoniou and Pinho [12].

3.6.1 Reduction to SDOF system through N2 method

Following the PEER methodology ([129], [169]) the structural capacity depends on the
formulation adopted. In particular, the EDP-based formulation expresses the capacity in
terms of a suitable engineering demand parameter, while the IM-based one requires the
structural capacity expressed in term of the intensity measure adopted. In this work the
IM formulation is used, and the peak ground acceleration is chosen as the intensity measure.
Since the investigation is performed using pushover analyses, there is the need to translate
the information coming from it in a format suitable for the PEER methodology, relating top
displacement (for different limit states) to peak ground acceleration. This is done using the N2
method (Fajfar and Gaspersi¢ [82], Fajfar [80] and Fajfar [81]). The elastic response spectrum
used matches the requirement of EC8 (EC8 |74]) for soil class B (S =1.2,T¢ = 0.55).

The procedure requires the definition of the equivalent single degree of freedom (SDOF)
system, which is defined through a linearization of the pushover curve for the MDOF system,
Figure 3.19.

The key parameters of such an approximation are the yielding displacement D, and the
yielding strength F,. The properties of the SDOF system are determined by dividing the
corresponding properties of the MDOF system by the transformation factor I':

MSDOF
I — SDOF |

= MSDOF. e or = Y mudy
Zmld)zga SDO z¢z
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Figure 3.19: Example of idealization of pushover curve for multistory buildings investigated.

where ¢, is the modal shape vector of the predominant translational mode, normalized by
the roof component. The yielding point of the equivalent SDOF system is simply obtained as
dy, = Dy/T" and f; = F,/T. Subsequently the period of the equivalent system is:

Y
mspor - d;,
« _ y
Tspor = 2m | —
)

In all cases studied the period of the SDOF system exceeds the corner period T¢, so the
equal displacement rule can be applied. For each limit state the corresponding mean spectral

acceleration is evaluated in the following way:

" 2 \2
Sats = dis- <TSDOF>

where dj, = Ds/I'. Finally, the capacity of the system in terms of peak ground acceleration

for each limit state is:

R Sais  Tspor
ols T g 25 Te

where S is the soil factor (= 1.2) and 7 is the parameter related to the viscous damping (=1

for 5% of damping).

The procedure is repeated for all the structures investigated, each of them analyzed during
the whole lifetime, as subsequently explained, in order to consider the effect of environmental
hazard on the overall seismic performance. Once the capacity in terms of PGA is obtained,
fragility curves can be established, as well as the evaluation of frequency of exceeding a
particular limit state using the PEER methodology, Dolsek and Fajfar [71]. Because two
seismic methods are used, it is also meaningful to compare the estimated capacity in order to
give suggestions on the applicability of approximated methods like pushover analysis.

Last section of the chapter is devoted to the presentation of the results of the risk analysis
for the multistory precast structures investigated at time 0, before the introduction of the

environmental hazard, in order to establish the initial capacity of the systems and to understand
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subsequently the effect of corrosion on seismic performance. Before that, next section illustrates
how the uncertainties in the modeling are taken into account, exploiting LHS explained in
Section 2.4.2.

3.7 Incorporating modeling uncertainties

In order to deeply investigate the seismic performance of the precast systems, uncertainties
should be included in the analysis (Schueller and Pradlwarter [220], Zareian and Krawinkler
[249]). Uncertainties in ground motion are taken into account considering a pool of records,
each scaled up to collapse (here seen as a dynamic collapse, so the structure is not able to
sustain gravity loads). Uncertainties related to the modeling (Dolsek [70], Liel et al. [155]) are
introduced via random variables of important parameters, each with a predefined probability

distribution. In particular 9 random variables are selected, namely:

1: Mass (equal for each story) m;

2: Compressive strength of the concrete fe,;

3: Yield strength of the steel fy,,;

4: Damping &;

5: Initial stiffness of the nonlinear springs El.g/ Elgross;

6: Ratio between maximum moment and moment at yield Mcqp/My;
7: Rotation at maximum moment ©qp;

8: Rotation in the post-capping branch ©,.;

9: Energy dissipation capacity A;

Table 3.2 depicts the probability distributions used. In this investigation is assumed that
random variables are uncorrelated, Dolsek [69].

Because the computational cost required in plain MonteCarlo simulations, an advanced
method is selected in order to reduce the effort. A promising approach is represented by
the Latin Hypercube Sampling (Helton and Davis [113|, Stein [226]). The description of the
procedure is illustrated in Section 2.4.2; here the procedure adopted in order to choose the
appropriate sample size, so the number of different models, is described. In particular two
issues need to be addressed, one related to the statistical properties of the sampling matrix
and one related to the results of the structural analysis. The former requires that the size

of the sampling should be enough to ensure that the correlation matrix resulting from the
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Table 3.2: Characterization of random variables used in the investigation

Parameter = Mean or median COV Distribution Reference
m[kN] 1200 0.1 Normal Ellingwood [76]
fem[MPal 48 0.2 Normal Melchers [165]
fym[MPa] 450 0.05 Lognormal Melchers [165]
13 0.03 0.4 Normal Porter et al. [199]
El./Elgross 1 0.28 Lognormal Haselton [112]
Meap/My 1 0.1 Lognormal Haselton [112]
Ocap 1 0.45 Lognormal Haselton [112]
Ope 1 0.72 Lognormal Haselton [112]
A 1 0.49 Lognormal Haselton [112]

Table 3.3: Evolution of the norm £ and maximum difference S; ; — K ; for different sample

sizes.

Ngim 10 15 20 30 50

E 0.0057 0.0021  0.0010 0.0005 0.0005

FEmaz 00871  0.0277 0.0128 0.0078  0.0075

sampling procedure is close to the prescribed one (Iman and Conover [127]). This can be seen

through the evaluation of the norm:

2 N’UEL’I‘_]- N'uar
E = S;i— K2,
Noar(Noar — 1) ; 1§+1< i — Ki)

where §; ; and K ; are respectively the generated and the prescribed correlation coefficients
between random variables X; and X;. Because the norm can be seen as an objective function,
different numerical methods can be used in order to minimize it. An effective method is
represented by the Simulated Annealing procedure (Dolsek [69], Vofechovsky and Novak
[241]). Table 3.3 shows the evolution of the norm E and the maximum difference between the
generated and the prescribed correlation coefficients S; ; and K; ; with reference to different
sample sizes Ng;,; due to the optimization process, the correlation among variables is close to
zero, as theoretically prescribed. In particular a sample size equal to 30 seems acceptable from
a statistical point of view.

The second consideration is related to the influence of the sample size on the results coming
from the structural analysis. Usually the appropriate number should be selected in order to
obtain “stable” results even changing the number of sampling. In this case, since data can

be summarized into fragility curves, a test of goodness of fit could be effective; in particular,
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considering that the probability distribution of IM related to a particular limit state has
typically a lognormal distribution (Jalayer [129]), the cdf coming from numerical simulations
can be compared with the theoretical one using a Kolmogorov-Smirnov test (Ang and Tang
[11]).

Considering the results of past researches, it has found that the number of sampling should
be at least double with respect to the number of random variables (Dolsek [69]). In order
to verify the effect of the number of samples on the structural response and to choose the
proper value different analyses are realized, changing each time the number of models. In
particular IDA analyses are performed considering 10, 15, 20, 30 and 50 different models, and
for each of them two accelerograms are used. Here only the results for the 2 story building
with cross-section 45 x 45 are presented and discussed, but the same conclusions attain also

for the other structural systems.

Within the pool of 25 earthquakes, two are chosen in order to have the highest difference
in terms of spectral acceleration around the first mode vibration period. The indication of
a proper value Ng;, coming from the structural response is combined with the minimum
sampling requirement to match within a certain tolerance the prescribed correlation matrix in

order to define the final size of the random variables.

For each simulation and for each earthquake 3 parameters are monitored, such as PGA
at collapse (PGA¢), maximum interstory drift at collapse (Drift) and top displacement at
collapse (Disp); also the dispersion § is evaluated, here seen as the standard deviation of the
natural logarithm, Dolsek [69]. Finally, the difference between the quantities determined on the
basis of the selected N, and the quantities determined by assuming Ng;,, = 50 is presented.
The estimation of the above parameters, for the two different accelerograms, are reported
in Table 3.4 and Table 3.5. No significant differences can be seen changing the size of the
sampling. To better understand the role of the number of sampling, in Figure 3.20 and Figure
3.21 the same parameters are plotted considering the ratio between the quantity determined
on the basis of the selected Ng;,, and the quantity determined by assuming Ng;,, = 50. In
particular on the left, from top to bottom, are shown the trend of PGA, maximum interstory
drift and top displacement, while on the right the corresponding dispersions are plotted. The

dispersion seems to have a higher uncertainty.

Finally a Kolmogorov-Smirnov test is performed comparing the cumulative distribution
function coming from the data with the lognormal distribution that is used in the PEER PBEE
methodology. The maximum difference D,, between the two cumulative distribution functions
is presented in Table 3.6 together with the critical value D), considering a significance level
a = 5%. In all the cases the test is satisfied. Figures from 3.22 to 3.26 show the comparison
between the cdf coming from simulation and the theoretical cdf for the different limit states,
here defined in terms of maximum interstory drift, as recommended in FEMA 356, FEMA 356
[84]:
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Figure 3.20: Effect of size sampling on different parameters for earthquake 1

DL: Damage Limitation. Maximum interstory drift 1%;
LS: Life Safety. Maximum interstory drift 2%;
CP: Collapse Prevention. Maximum interstory drift 4%;

DI: Dynamic Instability. Flatline.

In the present investigation, combining the information coming from statistical properties
on the correlation matrix and results of structural analyses, a sample size equal to 30 sampling

seems a reasonable choice.

3.8 Results of numerical simulations

In the following the main outcomes from nonlinear dynamic and static analyses are presented,
with reference to the structures at the beginning of their life, ¢t = 0. One important issue
regards the definition of limit states, because they can be referred to the overall behavior
or to the local one. In particular, two different approaches are presented. In the first one,
widely used because his simplicity, limit states refer to different values of maximum interstory
drift, depending on the structural system (e.g. concrete or steel frames, shear wall buildings,
ect ...). This approach has been used in the previous section in order to define a proper
value for the sample size performing IDA analyses, exploiting the recommended values give in
FEMA 356, FEMA 356 [84]; the main drawback of such procedure is that the values are “only”
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Figure 3.23: Comparison between cdf coming from simulation and lognormal cdf for sampling
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Table 3.4: Monitoring of different parameters at collapse for earthquake 1

Nom PGAc|g] Alg] Brca A Drift (%]  A[%]  Bprife A Disp [m] A[m]  PBpisp A
10 0.445 0.007 0.217 0.006 7.92 0.438 0.206 —0.013 0.453 0.017 0.206 —0.040
15 0.407 —0.031 0.148 —0.0635 7.47 —0.019  0.247 0.028 0.446 0.009 0.259  0.0125
20 0.437 0.0005  0.202 —0.010 7.30 —0.019  0.236 0.017 0.422 —0.015 0.266 0.0194
30 0.393 0.045 0.187 —0.025 7.42 —0.067  0.197 —0.022 0.427 —0.009 0.193 —0.054
50 0.438 0.212 7.49 0.219 0.437 0.247
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Table 3.6: Maximum difference between simulated and prescribed cdf and critical value for a

5% significance level for different size sampling

Nsim fo Dn
DL LS CcP DI

10 0.41 0.105 0.210 0.161 0.195

15 0.34 0.097 0.095 0.182 0.119

20 0.27 0.122 0.142 0.170 0.128

30 0.24 0.074 0.161 0.073 0.096

50 0.19 0.073 0.124 0.071 0.096

suggested values, reasonable for the structural systems presented, but may be not appropriate
for a specific case. In order to verify their applicability for multistory precast frame structures,
typically more flexible than cast-in-situ systems, a second approach is introduced considering
the local behavior of the plastic hinges.

As also indicated in Dolsek [70], at the element level limit states are defined as follows:

e DL (Damage Limitation): The reinforcement of structural element starts to yield;

e LS (Life Safety): The rotation of the plastic hinge corresponds to the rotation at the

capping point, see Figure 3.5;

e NC (Near Collapse:) The rotation of the plastic hinge corresponds to the ultimate

rotation (20% reduction with respect to the maximum moment)

At a global level, DL limit state is reached if all the columns at a generic story are in the
DL limit state, while LS and NC limit states are reached if one column reaches the capping
moment or the ultimate rotation, respectively. However, if the base shear is lower than 80% of
the maximum base shear coming from a pushover analysis, NC limit state falls in the softening
branch of the pushover curve and corresponds to a 20% reduction with respect to the maximum
base shear, while LS limit state is equal to the 75% of the NC top displacement, Dolsek [70].
When performing IDA analyses, also complete failure can be estimated, here referring to a
dynamic instability (DI); because structural systems cannot sustain vertical loads, IDA curve
reaches a flatline.

The two methodologies are then compared, performing IDA analyses and pushover ones,
also to give suggested values for the maximum interstory drifts. It is worth nothing to remind
that NC limit states defined above is related to a ductile collapse mechanism, due to a modern

design philosophy (e.g. EC8 ECS8 [74]), where brittle failures are not admissible. Usually
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this kind of mechanism is related to the shear strength, so in the present investigation also a
comparison between shear capacity and shear demand on structural elements is done, in order
to check the effectiveness of the design procedure adopted, Biondini et al. [39]. Total shear

capacity depends on three contributions, Isakovi¢ et al. [128], namely:

e V.. shear strength of an element without shear reinforcement;
e Vy: influence of the compressive stresses to the increase in shear strength;

e V,,: contribution of shear reinforcement.

Following the recommendations of Eurocode 8 (EC8 [74|), shear capacity Vg is evaluated

as indicated in equation 3.11:

VR:[VN‘F‘/C‘FVw]
_h—x
2L,

L,
+ (1 — 0.05 min(5; MX)) [0.16 max(0.5; 100ps0r) <1 — 0.16 min(5; h))] Vo AA+

min(N;0.55A. fc)+
(3.11)

+ (1= 0.05min(5; p3) ) V2

where h is the depth of the cross section, x is the neutral axis depth, L, is the shear span
(equal to the height of the columns), ,ugl is the plastic part of the rotational ductility, psot is

the longitudinal steel ratio and V.2 depends on transversal steel reinforcement:

Vi = pubw- 2 fow (3.12)

where p,, is the transversal steel ratio, b,, is the width of cross-section web, z is the internal
level arm and fy,, is the yielding strength of transversal reinforcement.

In order to compare shear capacity and demand the story shear capacity to demand ratio
(DCR) is used; a value equal or higher than 1 points out the achievement of a brittle collapse
failure. It is important to foresee that the structures investigated are not sensitive to a brittle
collapse (DCR values are always lower than 1); however, because corrosion can affects in a
severe way the transversal steel strength, also a potential brittle limit state is estimated. In

particular a DCR value equal to 0.5 is selected, Celarec et al. [53].

3.8.1 IDA and pushover curves for RC frames

Results of IDA analyses and pushover ones will be presented in this section, with the purpose
to assess the capacity of the systems studied for different limit states at the beginning of their
lifetime. Because the inclusion of modeling uncertainties, IDA analysis allows to separate in a

clear way the effect of the sources of variability, in the following named as “record to record



100 Probabilistic assessment of seismic performance

07

0.6- 4 0.4+

05+
) 5 0.3r
< 04 §

03 viodas | 0.2

02 . E'S- |

. L |
oil e | 04 ---Fractile 16%
. -~ Fractile 84%
0 5 10 15 20 % 2 4 6 8 10
°__ % o _ [%
max max

(a) Extended IDA, 2 story building with cross-section (b) IDA summary, 2 story building with cross-section
45 x 45. 45 x 45.

Figure 3.27: Extended IDA curves and their fractiles at time ¢t = 0.

1 0
1 0.6
0.5
0.8
S oL R A T
< 0.6 <
g Modd 0¥
—Moaels / ‘
0.4 4 A
o Elé o s —Median
0.2 4 L ---Fractile 16%| |
s NC 0.1 i !
# -- Fractile 84%
0 5 10 15 20 % % 2 4 6 8 10
o (% o [%]
max max

(a) Extended IDA, 3 story building with cross-section (b) IDA summary, 3 story building with cross-section
60 x 60. 60 x 60.

Figure 3.28: Extended IDA curves and their fractiles at time ¢ = 0.

variability (R)” and “modeling uncertainties (U)”; if both are simultaneously considered, we
refer to it as “RU”. Due to the probabilistic approach adopted, IDA curves can be summarized
into fractiles; in particular median (50%), 16% and 84% values are selected, Vamvatsikos and
Cornell [234], in order to cover a wide range in the seismic behavior and to understand the
dispersion in the results. For example, Figures 3.27 and 3.28, as an example, show extended
IDA curves for all the earthquakes and all the random variables together with summarized IDA
for 2 story and 3 story building with columns cross-section 45 x 45 and 60 x 60, respectively.

Even if the nominal period for the structures is the same (2.5s) the capacity of the 3 story
building is slightly higher. Table 3.7 summarizes the structural capacity in terms of peak
ground acceleration for all the systems studied. As can be seen, an increase in cross-section
size, taking constant the number of stories, improves the capacity, due to the increase in
strength and ductility. At the same, considering the same cross-section, structural capacity
tends to decrease considering a higher number of stories.

Because the inclusion of modeling uncertainties, IDA method allows also to understand
the importance of random variables involved in the process with reference to the engineering

demand parameter (EDP) introduced, here equal to the maximum interstory drift 6, Dolsek
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Table 3.7: Median capacity in terms of PGA from IDA analysis at different limit states for all

the structures investigated

Frame DL [g] LS [g] NC |g]

2 Story 45 x 45 0.060 0.141  0.3040

2 Story 70 x 70 0.108 0.332 0.748

2 Story 80 x 80  0.134 0.451 0.832

3 Story 60 x 60  0.068 0.144 0.390

3 Story 80 x 80  0.085 0.215 0.699

4 Story 80 x 80  0.079 0.168 0.497

[69]. There is no a unique approach to highlight such importance however, due to the use
of LHS to sample random variables, an effective way concerns the introduction of Spearman
rank-order correlation coefficient p that, for the generic ith variable, is defined as (Vofechovsky
and Novak [241]):

6524 (r(aya) — r(EDP))
Nsim (N522m - 1)

where x;; is the jth outcome of the random variable X;, N, is the number of simulations

and 7 represents the rank of the jth sample value of random variable or response variable.
The coefficient ranges from —1 to 1; a value close to 1 means that the corresponding random
variable has a positive effect on the response parameter chosen, viceversa if p is close to —1. A
value near zero means that a particular random variable has not remarkable effects on EDP.
Figure 3.29 shows the Spearman rank coefficients for all the structures investigated, considering
the collapse limit state (DI). In particular each bar refers to a particular earthquake, while the
horizontal line is the median value. The sensitivity of each random variable to the seismic
response is quite different if we consider the frames with the higher vibration periods, Figures
3.29a, 3.29¢ and 3.29e and the other systems, Figures 3.29b, 3.29d and 3.29f. This can be
understood if we remember that for the first ones the design method applied is not appropriate
due to the low behavior factor computed, Biondini et al. [38]. In particular, for these cases the
positive correlation between ultimate rotation and seismic capacity is not so clear.

On the opposite, for 2 story buildings with column cross-section 70 x 70 and 80 x 80 and 3
story building with column cross-section 80 x 80 the sensitivity of the parameters is clearly
pointed out. Mass and initial stiffness have a negative correlation with respect to the response,
while damping, ultimate rotation and energy dissipation capacity are positive correlated as
expected.

The same structures are investigated also via pushover analysis, because this methodology
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has a lower computational cost, despite to the accuracy. In this case limit states are defined
in a different way, first exploring the local behavior of the plastic hinges, and subsequently
defining them on the global level as explained before. Such procedure is more correct from an
analytical point of view, and allows to verify if the maximum interstory drifts given by the
codes can be effective also for precast systems. The same random variables are adopted, so for
each frame 30 structural models are selected. Figure 3.30 represents the capacity curves of
the buildings in terms of top displacement versus base shear, where limit states are indicated
with different dots. Due to the high value of story masses (nominal value equal to 1200 kN)
P-delta effects are significant, and the hardening branch can be seen only for buildings with

large column cross-section.

In many cases NC limit state is governed by the drop of base shear, because it occurs earlier
with respect to the reaching of ultimate rotation in the plastic hinges. It is also important to
highlight that such limit state refers to a ductile mechanism, since shear strength is always
higher than shear demand, as can be seen in Figure 3.31 where DCR are plotted for each

precast systems.

Table 3.8 shows the median values of base shear for the set of structures analyzed; due to
the significant influence of P-delta effects, in almost each case the hardening branch is not
present, so the softening part starts immediately after the achievement of the capping points.
Hardening behavior appears if the structure is sufficiently stiff, e.g. for 2 story buildings with
cross section 80 x 80, as also evident from Figure 3.30d. Table 3.9 shows the median top
displacements for different limit states; one important emerging issue is the influence of the
cross-section size with respect to the displacement reached. For example, taking constant
the number of stories, an increase in the size of columns tends to decrease the displacement
corresponding to the DL limit state, but at the same time tends to increase the displacements
related to LS and NC limit state. Because DL limit state corresponds in practice to the last
point of the elastic point, an increase in stiffness, due to the increase of cross-section size,
reduces the range of elastic behavior but at the same, because a simultaneous increase in

ductility, the plastic resources (related to LS and NC limit state) are enhanced.

Looking at Table 3.10 some considerations emerge. In particular, an increase in cross-
section size taking constant the number of stories, improves the capacity, due to the increase
in strength and ductility. At the same time, considering the same cross-section, structural
capacity in terms of DL limit state is also improved increasing the number of stories, while
LS and NC limit states are related to a lower intensity, due to a wider spreading of plastic
resources within the structure.

Finally, it is possible to compare the PGA capacity (with reference to 5%

percentile) for
DL, LS and NC limit states carried out by performing IDA and pushover analyses, illustrated
in Figure 3.32. In this case two different considerations can be done; for frames where the

proposal capacity design is not appropriate the differences in terms of structural capacity
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Figure 3.30: Capacity curves for buildings studied at time t = 0.

Table 3.8: Median base shear from pushover analysis at different limit states for all the

structures investigated

Frame DL [kN] LS [kN] NC [kN]

2 Story 45 x 45 95.25 88.82 75.87

2 Story 70 x 70 353.96 342.60 291.06

2 Story 80 x 80  480.73 485.26 408.75

3 Story 60 x 60  161.77 149.14 129.48

3 Story 80 x 80  357.30 332.39 290.54

4 Story 80 x 80  265.58 243.34 213.05
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Figure 3.31: Demand over capacity ratio for buildings studied at time ¢ = 0.

Table 3.9: Median top displacement from pushover analysis at different limit states for all the

structures investigated

Frame DL [m] LS [m] NC [m]
2 Story 45 x 45 0.130 0.180 0.240
2 Story 70 x 70 0.078 0.390 0.520
2 Story 80 x 80  0.068 0.399 0.533
3 Story 60 x 60  0.230 0.330 0.440
3 Story 80 x 80  0.165 0.493 0.658
4 Story 80 x 80  0.313 0.501 0.663
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Table 3.10: Median capacity in terms of PGA from pushover analysis at different limit states

for all the structures investigated

Frame DL [g] LS [g] NC |g]

2 Story 45 x 45 0.107 0.147 0.196

2 Story 70 x 70 0.160 0.737 0.988

2 Story 80 x 80  0.173 0.987 1.320

3 Story 60 x 60  0.149 0.202 0.271

3 Story 80 x 80  0.187 0.522 0.701

4 Story 80 x 80  0.205 0.293 0.387

prediction between the two methods are considerable, Figures 3.32a, 3.32c and 3.32¢. Moreover,
for such configurations, the effect og higher modes tend to be quite important, so pushover
method with a distribution of story forces corresponding to the first mode has some drawbacks.
On the other side, for buildings with a nominal vibration period lower than 2.5s the results
are close one to each other, except for Life Safety limit state. This could mean that the
recommended value equal to 2% for maximum interstory drift is not well suitable for precast
systems, and a higher threshold can be used. Moreover, also the suggested maximum interstory
drift for DL limit state could be increase a little bit. Such considerations prove, within a
Performance-based approach, that multistory precast systems have a capacity comparable to

that of cast-in-situ frames, as expected.

3.8.2 Collapse fragility curves

One of the main outcome of the analyses in the PEER methodology is the development of
fragility curves. These function represent the probability of exceedance of a particular limit
state given a certain engineering demand parameter (EDP), here described by intensity of
the ground motion in terms of PGA. The procedure is the following: for each limit state,
the corresponding PGA value is stored in the database by performing a nonlinear analysis.
Subsequently, all the results are sorted in an ascending order, and a stepwise cumulative
distribution function is plot. Usually the results can be represented by a lognormal distribution,
see e.g. Jalayer [129], so it is possible to compare the outcomes of the MonteCarlo simulation
with the analytical cdf, which is evaluated on the base of the mean value and the standard
deviation of the parameter of interest, e.g. the PGA related to a particular limit state.

An important advantage in the use of extended IDA is the possibility to develop fragility
curves only for record to record variability, modeling uncertainties or both. The statistical

description of the results is based on the estimate of the median value and the corresponding
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Figure 3.33: Fragility curves for record to record variability from IDA analysis for 2 story

building with column cross-section 45 x 45.

dispersion, here defined as the standard deviation of the natural logarithm, which is calculated
as the average value of the 516 = log(ys0/y16) and B4 = log(ysa/ys0), where y16, ys0 and ysg
represent the 16, 50 and 84% fractile in terms of the EDP chosen, Dolsek [69]. Figure 3.33
presents the fragility curves considering only record to record variability for 2 story building
with column cross-section 45 x 45; as it can be seen the results of Monte Carlo simulation
(dots) match very well the analytical cdf curve, which represent a lognormal distribution of

probability of exceedance.

When both the two sources of uncertainties are considered, fragility curves have the shape
illustrated in Figures 3.34 and 3.35. Here, including modeling variability, fragility functions
tend to flat, so there is an increase in the dispersion. This happens also when the effects of
different types of uncertainties are combined using the so called “mean estimate approach”;
within this method, both record to record variability and modeling uncertainties are described
through lognormal random variables, independent one to each other. The resulting distribution
is also lognormal, where the median is unchanged and the logarithmic variance is the sum of

the two.
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Figure 3.34: Fragility curves including all the uncertainties from IDA analysis for 2 story

building with column cross-section 45 x 45.
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Figure 3.35: Fragility curves including all the from IDA analysis for 2 story building with

column cross-section 80 x 80.
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3.8.3 Hazard scenario and seismic risk

In order to perform a seismic risk analysis, the information coming from the structural analysis
(namely the fragility functions for different limit states, see e.g. Lupoi et al. [157]) should be
combined with the hazard scenario. The final result states the annual probability of exceedance

of a particular limit state (MAF=mean annual frequency of exceedance), expressed here as:
o0
ALs = / P.(D > C|IM) -dHg(x)dx (3.14)
0

where the first term (P.(D > C|IM)) is the probability that the demand exceeds the capacity
given a particular EDP (for example the ground motion intensity), namely the fragility
function, while the second term is the slope of the hazard curve. The hazard curve shows
the annual probability of exceedance of a certain value of the intensity measure IM chosen,
here referred to the PGA, for a particular site. These data can be computed in different way:
for Italy the information comes from the National Institute of Geophysical and Vulcanology
( ). Four different sites are selected, ranging from low to high

seismic intensity. In particular the sites are:

1: Milano (as reference);
2: Gemona del Friuli;
3: S.Benedetto del Tronto;

4: Messina.

Figure 3.36 shows the hazard curves for each site, considering 9 values of probability, from
81% of probability of exceedance in 50 years to 2%, Meletti and Montaldo [166]. As it can be
seen, the site of Milano has a very low level of seismicity, while Gemona and Messina has the
higher value. The data are referred to the median value together with the 16*" and the 84"
percentile. To compute MAF values, the integral represented in equation 3.14 can be solved
by a numeric scheme or, under certain assumptions, in an analytical way; the second approach

follows the SAC-FEMA methodology, Jalayer [129], and the assumptions are reported below:

1: The collapse capacity S¢ has a lognormal distribution;

2: Hazard function Hg has a lognormal distribution with a dispersion oy,(f,) and its median

approximated by a power-law expression with parameters k and ky;

3: The global variance coming from numerical analyses can be expressed as the sum of the

variance due to ground motion (RTR) and variance due to uncertainties in modeling (U).

2 _ 2 2
UlnSC(tot) - UIHSC(RTR) + UIHSC(U) (3]‘5)
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Figure 3.36: Hazard curves for the selected sites.

With these assumptions, the mean annual frequency of exceedance of a particular limit

state can be expressed in the following closed-form relation:
7 L 5 Lo 2 2
ALS = HS(IMSC) . eXp(iUlnHS> - exp |:§]€ . (UlnSC(RTR) + JlnSC(U)>:| (316)
In equation 3.16 the median value of the hazard curve has a power-law expression:
Hg(IM) = ko-IM~* (3.17)

where the parameters kg and k are estimated through a nonlinear regression analysis, see Ang
and Tang [11]. The outcomes of such procedure can be seen in Figure 3.37 for the different sites
analyzed. Because the estimation of Arg (equation 3.16) requires also to include a dispersion
for hazard curve, a value o, g = 0.5 1s chosen, Kramar et al. [136]. In Figures 3.38a and
3.38b such value is applied in order to obtain the 16" and the 84" percentile curves for the
sites of S.Benedetto and Messina; the choice seems appropriate because the computed curves
suite very well the seismological data.

Performing IDA analyses it is easy to evaluate MAF values by a numerical integration and
through the analytical formulation, in order to compare such results; in particular for each site
the probability of exceedance related to different limit states (DL, LS, NC and DI) is computed,
and finally a regression analysis is performed in order to cover the entire range of behavior.
Figure 3.39 shows the comparison between the structural performance curves coming from the

two approaches illustrated above for 2 story building with column cross-section 45 x 45. As

can be seen the analytical formulation gives higher values, so the probability of exceedance
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Figure 3.37: Results of the regression analysis on the hazard curve.

tends to be overestimated if the approximated methodology is applied, in order to lead the
practitioners on the safety side.

The comparison between IDA and pushover analysis can be also made with respect to
the estimate of MAF values, exploiting the analytical formulation, since performing pushover
analyses only the modeling variability is computed, record to record variability is added a
posteriori, following recommended values given in literature. In particular the dispersion f is
set equal to 0.2, 0.3 and 0.4, for DL, LS and NC limit states respectively, FEMA P695 [86] and
Celarec et al. [53]. Clearly, the differences in terms of structural capacity illustrated above are
reflected also in this case. However, because the evaluation of MAF is strongly influenced by
the slope of hazard curve, the most significant deviations are found around Damage Limitation
limit state, where the slope is higher, as indicated in Figures 3.40 and 3.41.

Finally, evaluation of seismic risk is carried out with reference to two different parameters,

Kramar et al. [136]:

1: The 5" percentile PGA capacity;

2: The probability of collapse over a period of 50 years;

The first parameter can be seen as a characteristic value (PGAy), and it is compared with
the design PGA for different sites and different limit states according to the Italian Standard
Code (NTC 2008 [181]). The second parameter is computed according with the Probabilistic

Seismic Hazard Analysis (Cornell [62], Sen [223]), considering a Poisson process; in this case
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the probability of exceedance during a time period V,. is expressed as:
Prrs = 1—exp(—Ars-V;)

where V, is the time period (50 years) and Apg is the instantaneous value of MAF. This
probability is compared with that related to a particular limit state and, according to Italian

Code, the following values are taken into account:

DL: Damage limitation limit state. P, = 63% in 50 years.;
LS: Life safety limit state. P, = 10% in 50 years.;

NC: Collapse prevention limit state. P, = 5% in 50 years.;

In case of IDA analysis also the state of collapse (loss of dynamic equilibrium) is considered,
assuming a probability P, = 2% in 50 years, or a return period equal to 2475 years.
Concerning the design PGA, in the new Italian code (see NTC 2008 [181]) the national

country is subdivided into grids, and for each node three parameters are given, namely:
ag: Maximum horizontal acceleration;
Fp: Maximum amplification factor for horizontal response spectrum;

T¢:: Period within the response spectrum where the constant velocity branch begins;
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Figure 3.42: Ratio between capacity and demand PGA for NC limit state.

For each site the parameters listed above are selected considering limit states chosen, so

with the chosen return period. Finally the PGA at design is computed as:

PGAy = S, - a, (3.18)

where S; is the soil factor, determined in the following way (for soil class B):

14— 04F, a, if1<S8,<1.2

Se =<1

)

1.2,

if S, < 1 (3.19)
if Sg> 1.2

Figure 3.42 shows the ratio between the 5% percentile of the PGA carried out by nonlinear

analyses and PGA at design considering NC limit state; a value higher than 1 means that

the system studied has a capacity higher than the demand, so it is on the safety side. It is

worth nothing that the structural systems where the proposed capacity design criteria is not

appropriate are those where the ratio is lower than 1. Another issue, as just expressed above,

is that pushover and IDA analysis predict values close one to each other, so the recommended

value of 4% as maximum interstory drift is suitable also for precast systems.

To conclude, Figure 3.43 presents the ratio between capacity and demand in terms of

probability of exceedance of NC limit state in 50 years. Here the difference are higher, because

to compute MAF with pushover analysis an arbitrary dispersion was introduced to simulate

record to record variability. Also in this case the ratio is lower than 1 for frames where the

design method proposed in Biondini et al. [39] is not applicable.
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3.9 Conclusions

In this chapter the seismic performance of multistory precast frames at the beginning of
their lifetime is assessed within the PEER methodology. First, the archetypes of the systems
studied are presented, following a capacity design; the number of stories and the size of the
columns change in order to cover the range of practical interest for these type of structures,
underlining in which conditions the design method proposed in Biondini et al. [39] is reliable
or not. Subsequently, the analytical model specifically developed in order to simulate collapse
of RC frames is illustrated; since in past years the Ibarra model has been used for the seismic
assessment of cast-in-situ frames, a preliminary validation is done considering the results of
the experimental tests carried out at the ELSA Laboratory for the SAFECAST projects. The
good match between numerical simulation and the outcome of one of the pseudo-dynamic
test allows to extend this model for the simulation of collapse capacity of the archetypes
investigated.

Two different approaches are then presented, in particular IDA analysis and pushover
one; the main features of both methods are highlighted, with emphasis on advantages and
drawbacks. Exploiting the advanced MonteCarlo procedure described in Chapter 2, 9 random
variables are selected, each of them with the proper distribution, in order to include in the
seismic assessment the modeling uncertainties. One of the most valuable issue is the selection
of different limit states, just considering the overall behavior, as suggested by codes such as
FEMA 356 [84], or investigating the local behavior of plastic hinges; the first choice is related
to IDA analysis, while the second refers to pushover ones.

Finally, results of numerical simulation are presented for the two different methodologies;
the effect of modeling variability is clearly depicted through the development of fragility
curves; subsequently, considering different sites in Italy, the corresponding hazard curves are
evaluated in order to compute the vulnerability for the systems investigated. For different limit
states MAF are computed, and the seismic risk is then carried out considering two different

parameters, namely the PGA capacity and the probability of collapse during the lifetime, here
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set to 50 years. The comparison of the results between the two types of analysis clearly shows
that for precast system the recommended values in terms of maximum interstory drift usually
used for cast-in-situ regarding DL and LS limit states can be increased, due to higher flexibility
of such systems. A maximum interstory drift equal to 4% for NC limit state is on the contrary
a suitable threshold also for precast systems, because pushover and IDA analysis gives similar
results considering different parameters such as PGA capacity or MAF for a particular limit
state.

Since in the following all these analyses will be repeated for different times, considering
the environmental hazard, pushover method is adopted, in order to reduce the computational

cost within a probabilistic approach.



Chapter 4

Damage processes 1n concrete

structures exposed to corrosion

4.1 Introduction

Environmental hazard plays a fundamental role in the lifetime performance of a generic
structure. Typically in a structural analysis only the mechanical properties of the materials
adopted are considered but, if the effects of aggressive agents are not properly taken into
account, the capacity of the system investigated could be greatly overestimated. In particular,
the present investigation focuses on how the seismic performance of RC frames can be affected
by environmental hazard, because nowadays structural codes are based on time-invariant
design criteria, but the combined effect of earthquake loading and aggressive agents can lead

to undesired collapse mechanisms, with a consequent drop of structural capacity.

Among different damage processes on reinforced concrete structures, the corrosion of
reinforcement bars is the main factor. At the beginning of their lifetime bars are protected by
a passive film, but the diffusion of carbon dioxide (carbonation) or chlorides can lead to the
initiation and propagation of such phenomenon. In the first case the pH drops near neutral
conditions, so the passive film cannot developed and bars are subjected to a uniform corrosion;

in the second one, chlorides destroy the protective film, starting a localized corrosion (pitting).

First, the electrochemical issues will be briefly revisited, considering both carbonation and
chloride attack. Next section is devoted to the modeling of corrosion, with particular emphasis
on chloride induced corrosion, being the subject of the present investigation. Subsequently, the
effect of corrosion on reinforcement bars and concrete is illustrated, in order to highlight how
the mechanical properties of the materials can be jeopardized during their lifetime. Finally,

the consequences on the overall behavior are briefly summarized.

119
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4.2 Theoretical aspects of the corrosion

At the beginning of the lifetime, the environment of concrete is highly alkaline (pH>12.5) due
to the products of the hydration of concrete; within such conditions bars are protected for
the presence of a passive film. However, during time the diffusion of aggressive agents tend to
decrease the alkalinity of the environment or to destroy locally the film, leading to a drop in
the mechanical performance of the materials.

4.2.1 Electrochemical issues

The phenomenon of corrosion in a metal is an electrochemical process that involves the

following steps:

e Anodic reaction of metal oxidation, which develops the corrosion products and releases

electrons in the crystal grating of the metal;

e Cathodic reaction where the oxygen is reduced and the electrons produced in the anodic

reaction are spent;
e Electrons flow in the crystal grating, in which a current is generated within the metal;

e Generation of a current in the surrounding environment, with a migration of the ions in

the liquid solution in contact with the metal.

Considering iron, the anodic reaction is:
Fe — Fe?T 4+ 2e¢ (4.1)
while the corresponding cathodic reaction is the reduction of the oxygen;
O, +2H,0+4e — 40H™ (4.2)

Exploiting the Faraday’s first law, the loss of mass can be expressed as:

Al = | 2 (43)

where M is the molar mass of the metal [g/mol|, z is the number of ions produced in the anodic
reaction, ¢ is the electric charge [C| and F is the Faraday’s constant (96487 C). Dividing both
terms in equation 4.3 by the area of the metal and time of interest, the velocity of mass lost is

obtained:

1

1| M
%—MAW—MLAQ (44)

Usually this parameter is expressed in [g/(m?year)]; finally, the corrosion penetration vp

[nm/year| is obtained dividing the velocity of mass lost by the corresponding specific weight.
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Because the exchange of electrons between anode and cathode, the corrosion current density
icorr 1s @ measure of the velocity of corrosion; the process can be activated only if the potential
at equilibrium of the anodic reaction is lower than that of the cathodic one, so Feg an < Eeg,cat-
The potential corrosion E... and the velocity of corrosion i.. can be evaluated looking at
the Evan’s diagrams.

The main product of the corrosion is the so called “red rust”; combining equations 4.1 and

4.2, in the presence of water and oxygen, it is possible to obtain:

2 Fe(OH); — 2H,0 + (Fe,0,)H,0 (4.5)

where (Fe,O5)H,0 is the red rust. Since the volume of the products of the corrosion is three
to four times larger than the original volume of steel, the formation of the rust induces high
internal stresses, so the concrete near the reinforcement tends to crack and eventually the
spalling of the cover can occur. In any case, since all the reactions involved in the process
need water and oxygen, if one of the two is not available in the environment corrosion cannot

initiated.

4.2.2 Carbonatation

The environment within concrete is highly alkaline due to the hydration phenomena that
occur; however, carbon dioxide (CO,) presents in the atmosphere tends to react with the
alkaline components and calcium idroxide (Ca(OH),). In this way the pH decreases, until
the condition of passivation cannot be sustain. Although the carbonation reaction involves

intermediate steps, in synthesis can be written as:

CO, + Ca(OH), — CaCO, + H,0 (4.6)

Such phenomenon does not induce a direct damage to the concrete, but has important
consequences on the reinforcement steel; pH drops to values lower than 11.5 (threshold for
conditions of passive without the presence of chlorides), so corrosion can start. Carbonation
begins of the external surface of the concrete and then it propagates in depth. From an

analytical point of view, penetration can be represented as stated in equation 4.7:

r = K-t/ (4.7)

where z is the penetration depth and ¢ is time; n is a coefficient equal to 2 for porous concretes,
while it is a little bit higher for compact ones. Finally, K is the carbonation coefficient,
measured in [mm/year!/?], and it is related to the velocity of the carbonation. This coefficient
depends both from environmental conditions and characteristics of the concrete. It is possible

to understand the depth of the carbonation on a generic structure spraying a solution of
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Figure 4.1: Influence of relative humidity on the velocity of carbonation, Pedeferri and Bertolini

[194].

phenolphthalein on a concrete surface; the zones with a pink color are not carbonated yet, so

the constant K in equation 4.7 can be estimated.

The main parameter to evaluate the propagation of the carbonation is the relative humidity
of the concrete (RH); clearly the transport of carbon dioxide is easier if the porous are filled
with air respect to water, so for saturated concrete propagation cannot occur. From the other
side, chemical reaction needs water to start, so for a content of water lower than 40% the
velocity is negligible. The waste conditions are reached if RH ranges from 50% to 80%, Figure
4.1.

It is extremely important to consider, in practice applications, the microclimate, because
different zones of the structure can be subjected to different conditions of humidity and
temperature. For example, the penetration of carbonation is always higher in the zones
protected from the rain; key factors are the time in which a structure is wet and the frequency
of wet/dry cycles. Typically, the coefficient of carbonation K ranges from 2 to 15 mm/ year!/ 2;
exploiting equation 4.7, only for K < 2.8 it is possible to obtain a carbonation depth lower

than 20 mm after 50 years, Figure 4.2.

Once the front line of carbonation reaches the reinforcement and the conditions for passivity
disappear, corrosion can start in presence of oxygen and water. This process is mainly governed
by the resistivity of the concrete, which is strictly related to the water content; for structures
exposed to the atmosphere, oxygen is always available, so corrosion depends practically by the
relative humidity of the concrete. In particular, a higher water content reduces the resistivity,
so corrosion velocity increase. For good quality concrete, corrosion velocity is negligible for
RH values lower than 80%; in this case, corrosion can be considered only during “wet time”,
namely the time when RH > 80%. If concrete is saturated, corrosion can reach maximum
velocity near 100-200 pm/year, Figure 4.3; however, in usual condition carbonation is related

to a corrosion velocity ranges from 5-10 pm/year.
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Figure 4.2: Influence of coefficient K on the carbonation depth, Pedeferri [193].
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Figure 4.4: Pitting mechanism, Bertolini et al. [26].

4.2.3 Chloride attack

Corrosion induced by chlorides is different with respect to carbonation. In this case, the passive
film around reinforcement bars is locally broken due to the presence of chlorides that penetrate
in the concrete from outside, e.g. considering structure in a marine environment or roads where
de-icing salts are used during winter. Chlorides can also be present in buildings for particular
industrial applications. Corrosion starts when the chloride content near reinforcement reaches
a critical threshold, that depends on the electrical potential of the bars; since this parameter
is governed by the availability of oxygen, critical threshold is particularly low for structure
exposed to atmosphere, while is higher for structures under water. Considering the local
rupture of the film, corrosion follows the pitting mechanism; electric current from anodic zone
to cathodic one induces a migration of chlorides toward the former one, with a significant
decrease of pH. On the contrary, cathodic zone increase the alkaline conditions, enhancing the
passive film, Figure 4.4.

It is important to remember that only the free chlorides in solution can attack the passive
film, Razaqpur and Isgor [206]; however, for simplicity, critical threshold is given in terms
of total chloride content, usually expressed in terms of percentile with respect to the mass
of cement in the concrete. Critical threshold depends on the characteristics of the concrete
and exposure conditions. In a Portland concrete, without carbonation, corrosion risk is not
significant for values lower than 0.4%, while is high is the content exceeds 1%, Pedeferri [193].
In structures under water, typically corrosion cannot occur due to the absence of oxygen in
the concrete porous.

During time, the concentration of chlorides within concrete increases until the critical
threshold is reached; the corresponding time is called initiation time. The main parameters
are the concentration of chlorides on the surface and the characteristics of the concrete
that govern the transport of the aggressive agent. Such phenomenon is generally complex,
potentially involving different mechanisms like permeation, diffusion and absorbing. Depending
on the conditions, transport of chloride may be driven by one or a combination of these three

mechanisms. Permeation occurs in the presence of a pressure gradient, and it is very important
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Figure 4.5: Chlorides diffusion profiles after 10 years, with a surface concentration Cs = 5%,

for different values of D (Pedeferri [193]).

for concrete structures under water such as offshore structures. Absorption is related to a
capillary pore suction, and it is the predominant transport process when the unsaturated
concrete is exposed to chloride solution.

Diffusion is the most commonly studied transport process of chloride ions. This mechanism
depends by a concentration gradient created between the concrete element surface and the pore
solution. Fick’s law is applied in order to study the penetration of chlorides within concrete
members; although pure diffusion occurs only for saturated concrete, the solution of equation
4.9 gives in any case acceptable results, confirmed by experimental tests on real structures.
The uni-directional nonstationary flow, as stated before, is expressed by the second Fick’s law,
Stewart and Rosowsky [229]:

2
=028 (48)
where C' is the concentration of the aggressive agent and D, is the effective diffusion coeflicient,
depending on the material. Assuming that the concentration on the surface is constant, as

well as D,, if at time 0 the material does not contain chlorides, the solution of equation 4.8 is:

Cla,t) = Cs - [1—erf<w%t>] (4.9)

where CY is the concentration on the surface, and erf is the error function. This solution is also
used to estimate the diffusion coefficient, comparing the profiles obtained by equation 4.9 with
those coming from experimental tests. It ranges from 107! to 10 x 107! m? /s depending on
the characteristics of the concrete; in Figure 4.5 different chlorides diffusion profiles are shown,
depending on the diffusion coefficient adopted.

Once the chloride content reaches the critical threshold around reinforcement bars, corrosion
occurs, and the velocity can increase from 50 — 60 pm/year up to 1 mm/year if the relative

humidity grows from 70% to 90% and the chloride content increase from 1% to 3%. In
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a relatively limited time the area of reinforcement bars can drop to unacceptable values,
determining a premature failure of the structural element.

Next sections are devoted to the modeling of the corrosion phenomenon, with reference to
chloride induced corrosion, analyzing the effects on the materials (steel and concrete), and on

a global level.

4.3 Modeling of the corrosion phenomenon

Corrosion is a complex phenomenon, involving different mechanisms and depending on many
parameters. In literature different studies can be found, in order to understand the fundamental
factors. Both experimental tests and numerical simulations has been carried out, with the
purpose to investigate the effects on a local and a global level, and also to develop analytical
models. Among different aggressive agents, the presence of chlorides plays the fundamental
role, Vu and Stewart [242], so this section is dedicated to the study of chlorides induced
corrosion. Regardless the type of corrosion, it is generally assumed that the evolution of
damage in a generic structure follows the Tuutti formulation, Tuutti [230]: when the conditions
for the onset of corrosion are reached, damage can propagate within concrete members, with a
reduction of the cross-section of reinforcement bars and the develop of cracks, follow by the
spalling of concrete cover and finally to the failure of structural member, Figure 4.6. Such
approach gives only qualitative information on the evolution of damage, so the single factors
need to be properly considered and studied; in any case some considerations can be done
immediately. For example, as clearly indicated in Figure 4.6, it is not correct to break off the
lifetime of a structure at the time where the corrosion starts, but it is essential to understand
how different effects depicted in the figure can affect the capacity of the member and, of

consequence, the capacity of the structural system.

4.3.1 Initiation phase

Initiation time is the time that elapses between the construction of the structure and the
develop to favorable conditions for the beginning of the corrosion; with reference to chlorides
induced corrosion, it means until when the concentration of the aggressive agents around
reinforcement bars reaches the critical threshold. Using a concrete of good quality and a
proper cover, initiation time can significantly increase, Figure 4.7.

As indicated before, the transport of chlorides in concrete is a complex phenomenon,
involving different mechanisms; experimental tests carried out in the past have however
demonstrated that the hypothesis of a diffusion mechanism is acceptable, using an effective
diffusion coefficient D.. As indicated above, the simplest model is the Fick’s first law, which
assumes a linear relationship between the mass flow and the concentration gradient. The

combination of the Fick’s model with the mass conservation principle leads to the Fick’s second



4.3 Modeling of the corrosion phenomenon 127

Onset

Cracking

Spalling

Collapse

=

Initiation Propagation

Damage

Figure 4.6: Damage evolution due to corrosion, Gjorv [99].
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Chloride concentration

Depth of chloride penetration

Figure 4.8: Definition of surface chloride concentration through a regression analysis of

experimental data, Gjorv [99].

law; assuming an isotropic media, the problem is described by the following second-order
partial differential equation, Glicksman [101]:

- V- (=D.,VC) = 88? (4.10)
where C' = C(«, t) is the mass concentration of the component at point = (z,y, z) and time
t, and VC = gradC'. Typically the problem of the penetration of chlorides into concrete

cross-sections is studied in a uni-dimensional form, so the solution of equation 4.10 is expressed

as:

C(z,t) = Cs - [1 _erf(Z\/a;TetH (4.11)

The concentration of chlorides on the surface C and the diffusion coeflicient D, can be
obtained by a regression analysis on the results of experimental tests, as shown in Figure 4.8.
The transport occurs only in the presence of water; if the concrete has a low relative humidity,

there is no diffusion of chloride ions.

4.3.2 Onset of corrosion

When the passive film around reinforcement bars is locally broken, corrosion starts. This
happens when the chloride content within the concrete reaches a threshold value, namely critical
concentration C,.;;. In literature there is no a common definition of critical concentration:
from a scientific point of view, it is defined as the chloride content sufficient to locally brake
the passive film, while from a practice vision it can be also defined as the concentration related

to a visible damage on the structure. It is worth nothing to remember that only free chlorides
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the concrete, Gjorv [99].

are involved in the corrosion process, Razaqpur and Isgor [206], even if C,.;; is expressed, for
simplicity, in terms of total chloride content with respect to the mass of cement, or sometimes

as the ratio between Cl1~ and OH ~, that depends on the pH value.

In literature, suggested values for chloride corrosion on structures exposed to atmosphere
ranges from 0.1% to 2%; Figure 4.9 shows the relationship between critical concentration,
exposure conditions and quality of the concrete. As indicated, in order to perform durability
analyses, a value equal to 0.4% is suggested. Because the problem investigated involves different
parameters, each associated with uncertainties, a probabilistic approach should be adopted.
Recommendations can be found in Model Code, fib 2006 [87|, where the critical concentration
is modeled as a random variable with a beta distribution, with lower and upper bound equal

respectively to 0.2% and 2%, and mean value equal to 0.6%.

Once the critical concentration is known, equation 4.9 can be used to estimate the initiation

time:

2

tinit = 4:;@ [erf_1<1 - Cs )}72 (4.12)

where x is the concrete cover, Cy is the surface concentration and Cy.;+ is the critical content.
In Enright and Frangopol [78| a probabilistic approach is carried out in order to evaluate
the initiation time; in particular, for each of the parameters indicated in equation 4.12 is
associated a probabilistic distribution, and a Monte Carlo analysis is performed. Some results

are indicated in Figure 4.10.



130 Damage processes in concrete structures exposed to corrosion

0.14 . .
| - - -~ Monte Carlo Simulation|
W -~~~ Monte Carlo Simulation| 0.30 - lognormal distribution
0.12 —— lognormal distribution E
g
iy A: E(C,)=0.10; T=LN(15.84; 8.23)
| . — ST .
0.10 | A A E()=3.81; T=LN(8.91; 4.63) B: E(C,)=0.15; T=LN(8.79; 4.05)
B: E(X)=5.08; T;=LN(15.84; 8.23) C: E(C)=0.20; TALN(B.54; 2.92)
0.08 | C: E(X)=6.35; T=LN(24.16; 12.56)
~ c D: E(C,)=0.30; T=LN(4.73; 2.07)
S D: E(X)=7.62; T=LN(35.64; 18.52) =
006 A% B E: E(C,)=0.40; T;=LN(3.93; 1.70)
&
0.04 TR, ¢
)
0 D
0.02 k
0.00 2 -
0.0 20.0 40.0 60.0 80.0 100.0 20.0 30.0 40.0 50.0
CORROSION INITIATION TIME, T, (YEARS) CORROSION INITIATION TIME, T, (YEARS)
(a) Influence of cover depth. (b) Influence of surface concentration.

Figure 4.10: Probabilistic estimation of corrosion initiation time, Enright and Frangopol [78].

4.3.3 Rate of corrosion

Next step concerns the evaluation of the corrosion velocity Vierr [pm/year|, that can be

expressed in terms of corrosion current intensity icor [mA/m?| through the Faraday’s law:

chorr = 1.16- icorr (413)

There are different techniques to measure the corrosion current; one of the most used is the
linear polarization technique (LPT), that enables the estimation of the polarization resistance
and from that the corrosion rate. In particular if the metal/electrolyte interface is perturbed
by a weak current, the potential F has a little variation dE, or in other words the metal is
polarized. The ratio dE/i is the polarization resistance R, that is inversely proportional to

the corrosion velocity:

. B
Leorr = —5—
R
/4

where B is the potential applied (usually equal to 26 mV for corroding and 52mV for non-

(4.14)

corroding steel) and R, is the potential resistance (Q~! m~2). Equation 4.14 gives a mean
value, but the actual current in correspondence of the pit can be significantly higher, so the
corrosion velocity obtained can underestimate the real penetration. Other details, as well as
the description of other techniques, can be found in Razaqpur and Isgor [206].

One of the main parameters that affects the corrosion velocity is the resistivity of the
concrete p[€2m], Andrade and Alonso [10] and Morris et al. [172]. Resistivity depends essentially
on the water content in the pores of the concrete, as clearly indicated in Figure 4.11. Usually
the relationship between resistivity and corrosion velocity can be approximated by a linear
function, as indicated in Gulikers [107]; Figure 4.12 shows an example of it.

Corrosion velocity can be also expressed with reference to the ratio between the concentra-
tion of CH ™ and OH ~, see Figure 4.13.
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Figure 4.11: Influence of water content on concrete resistivity, Gjgrv [99].
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Table 4.1: Qualitative description of corrosion rate, BRITE/EURAM [45].

Corrosion level g [1A /cm?]

Negligible < 0.1
Low 0.1-0.5
Moderate 0.5—-1
High >1

In literature different empirical models are available, based on observed correlation between
corrosion rate of steel in concrete and different parameters affecting it, Razaqpur and Isgor
[206]; Liu and Weyers, see Chen and Mahadevan [54], developed an empirical model based
on statistical analyses of experimental results carried out by accelerated corrosion testing
programme on 44 uncracked bridge deck slabs. Corrosion rate ico, expressed in pA/cm?, is

defined as:

3.006 0.215

icorr = 0.926 exp|7.98 + 0.7771In(L69Cy) — == — 0.000116 R, + 2.24¢~ (4.15)

where Cy is the chloride content at the steel level (kg/m3), T is the temperature in Kelvin, R,
is the resistance (£2) and ¢ is the time, measured in years.

In the model developed by Vu and Stewart, Vu and Stewart [242], the O, availability
at the steel surface is the governing parameter. For typical values of relative humidity and
temperature (RH = 75% and T=20°C), the corrosion rate up to 1 year can be related to the
water to cement ratio (w/c) and thickness of concrete cover, Figure 4.14a:

_ 378(1—w/c) 184

icorr(1) = . (4.16)

where w/c is the water to cement ratio and z is the cover thickness. Because the formation of
rust products on the steel surface, the diffusion of the iron ions away from the steel surface

tends to decrease, so the corrosion rate has consequently a reduction during time, Figure 4.14b:

icorr = ficorr(1)0-85¢, 0% (4.17)

where t,, is the propagation time. A comprehensive description of different models developed
in past years can be found in Otieno et al. [184]. Finally, a qualitative description of corrosion
rate can be found in Table 4.1, BRITE/EURAM [45] and Berto et al. [25].

In the following the effect of corrosion of steel reinforcement and concrete is analyzed;
moreover, analytical models which describes the damage on these two materials are illustrated,

in order to perform subsequently structural analyses during time, since it is important to
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Figure 4.14: Corrosion rate prediction for Vu and Stewart model, Vu and Stewart [242].

have reliable tools for the assessment of lifetime performance of concrete structures, both for

diffusion process and damage modeling.

4.4 Influence on reinforcements bars

The most significant effect of corrosion is the reduction of the cross-section of reinforcing
steel bars. Depending on the source of corrosion, different models can be applied in order
to simulate it, Figure 4.15. By denoting p the corrosion penetration depth, it is useful to

introduce a dimensionless corrosion penetration index 0 € [0,1] defined as:

_ P (4.18)

where Dy is the original diameter of the bar. Finally, the area of corroded steel can be

represented by a function of corrosion penetration index, depending on type of corrosion.

A,(8) = [1 - 8,(0)]Aw (4.19)

where Ay = WD% /4 is the area of the undamaged bar and d; = J5(d) is the dimensionless

damage index for reinforcing steel.

4.4.1 Uniform corrosion

In carbonated concrete, without a significant presence of chlorides, corrosion tends to develop
in a uniform way around steel bars, Figure 4.15a. In this case the penetration depth p = 2z,

and the damage function d, has the following expression:

ds = 0(2—9) (4.20)

Exploiting equation 4.19, the uniform reduction of area is:
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Figure 4.15: Modeling of cross-section reduction of a steel bar, Biondini [28].

At) = 7 [ - x(tp)r (4.21)

where ¢, is the propagation time (the time related to the beginning of the corrosion). In Saetta
et al. [216], it is possible to find a generalization of equation 4.21, which takes into account

the possibility of a one-side or a two-side corrosion attack:

™

At) =

[Do — nx(ty)]? (4.22)

where coefficient n is equal to 1 or 2 in case of one-side or two-side attack, respectively.

4.4.2 Localized corrosion

If concrete is contaminated by chlorides, reduction of steel area is not uniform but tend to
localize (pit); the model presented above is therefore not suitable. From measures of current
intensity it is possible to obtain a mean value of penetration depth, x; however, due to the
localization of the damage, the maximum depth x4, in correspondence of the pit is significant

higher. One solution is to define the pitting factor R, defined as:

R = Ime (4.23)

T

Usual values for pitting factor ranges from 4 to 8 in case of natural corrosion, and between
5 and 13 for accelerated tests, Gonzalez et al. [104]. Concerning spatial distribution, pits
usually do not develop along concrete cracks but have a random distribution, depending on the
presence of defects in the passive layer or at the interface, Zhang et al. [250]. Since pits have
an irregular shape, simplified models are used; in particular, a hemispherical shape is assumed,
Val and Melchers [231], where pitting surface is characterized by a circle with a radius equal

t0 Ty, Figure 4.15b. The model is described by the following parameters, Biondini [28]:
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551+5527 if Ogégl/\/i
5 == (4.24)
1— 04+ 00, if 1/V/2<6<1

where:

1
851 = %(191 — 281 —26%))
2
652 = ﬁ(192 - 5)
v

(4.25)

Finally, with reference to Figure 4.15b:

ﬁ:%’ = 25y/1— 42
0

Y = 2arcsin 8 (4.26)

Y9 = 2 arcsin <256>

It is possible also to include both types of corrosion in a single model, see Figure 4.15¢; in
this case the localized corrosion (with the formation of the pit) is coupled with a uniform one.
The same damage function introduced before for uniform corrosion is applied (equation 4.20),
using a penetration depth p = x4.; if a pitting factor R equal to 2 is considered, this model
predicts the same steel area reduction of the uniform corrosion:

™

AA,
4

(2p- Do —p) (4.27)

Such approach could be reliable to simulate results of accelerated corroded tests, but not
appropriate for natural corrosion, where models depicted in Figures 4.15a and 4.15b are more

appropriate, Zhang et al. [250].

4.4.3 Influence on ductility and strength

Another important consequence of a corrosion attack is the reduction of ductility of steel bars,
which could lead to a brittle behavior, as it is shown in Figure 4.16, where the changing from
a ductile to brittle occurs with a mass loss around 13%. In literature, ductility reduction is
expressed as a function of section loss; based on such results, ultimate deformation can be

related to the damage function for steel, Vergani [237]:

€ su0) if 0<6,<0.016
P b f ’ (4.28)
0.15216;04983¢ 0, if 0.016 < 6, < 1

where €40 is the ultimate strain for uncorroded bars.
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Figure 4.17: Reduction of yielding and ultimate strength for corroded bars, Cairns et al. [49].

About the evolution of yielding and ultimate strength, the reduction is negligible, as can
be seen in Figure 4.17; in particular, a linear function can be extrapolated from the results of

experimental tests on corroded bars, Cairns et al. [49]:

f=0=-5-Q)f (4.29)

where fp is the strength of the undamaged bars and @ is the corrosion level [%]. It is worth
nothing to highlight that the strength reduction is related not to a uniform corrosion but to a
localized one so, for the former case, a parameter 8 = 0 should be adopted. In any case, if
someone wants to take into account the effect of corrosion on the strength, a value equal to
0.005 is suggested.

To conclude, the fundamental effect of corrosion on reinforcing bars is a reduction of
cross-section area, with a simultaneous drop of ductility; the influence on mechanical properties

is on the contrary not significant.
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4.5 Influence on concrete

The influence of corrosion of mechanical properties of RC members is not limited to reinforcing
steel; in particular, in case of uniform corrosion with low penetration rate, the development of
corrosion products leads to longitudinal cracks and cover spalling. This because rust and other

(22

oxidation products have a volume significant higher than ‘virgin concrete”, see equation 4.5,
therefore induce tension stress around steel bars. Clearly, once that longitudinal cracks appear,
the diffusion of aggressive agents like chlorides within concrete sections is easier. Typically,
cracks are longitudinal and parallel to the steel reinforcement, as can be seen in Figure 4.18;
the arrangement of the bars governs the detachment mode of the concrete cover.

Two failure modes can be recognized, one with inclined fracture planes (scaling) and the

other with horizontal planes parallel to longitudinal bars (delamination). Scaling occurs for

wide spacing bars (Figure 4.19), in particular if:
S >6D (4.30)

where S is the space among reinforcing steel bars and D the diameter. On the contrary

delamination, see Figure 4.20, is the predominant behavior if:

S—D
2
where C' is the cover thickness. For corner bars, corrosion cracking induces local ruptures

C>

(4.31)

as those illustrated in Figure 4.21. The main parameters that influence cover cracking are
the ratio ¢/D and the quality of the concrete; with a low ratio the corrosion products induce
cracking in few time, while the presence of pores within the cementitious matrix allows an
expansion of rust without the development of significant cracks.

Some authors have proposed models where the level of corrosion is predicted from measures
of crack opening. In Vidal et al. [239], a linear relationship between crack opening and

reduction of steel area is proposed:
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Figure 4.19: Concrete scaling due to corrosion cracking.
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Figure 4.20: Delamination of concrete due to corrosion cracking.

Figure 4.21: Corner effects due to corrosion cracking.
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Figure 4.22: Relationship between crack opening and reduction of steel area, Vidal et al. [239]

w= K- (A4, — Ady) (4.32)

where w is the crack opening [mm] and K = 0.0575 mm ™" (from Figure 4.22); A A, is evaluated
as indicated in equation 4.27, while A Ay is the steel area necessary for cracking initiation,

expressed in the following way:

AAg = As
0 0

1- <1 - Dﬂ(7.53 - 9.325)10—3>2] (4.33)

where R is the pitting factor, ¢ the concrete cover and Dy the initial diameter.

Other models proposed in literature try to estimate the time between corrosion initiation
and the development of cracks in the concrete cover. In El Maaddawy and Soudki |75] an
analytical model to estimate the time between corrosion initiation and cracking is developed;
here there is the hypothesis that the corrosion products cover uniformly the steel bars, in
order to develop a concentric circle around reinforcement. The different phases are depicted in
Figure 4.23; once the corrosion products fill the porous layer around steel bar (free expansion),
a radial pressure starts, and cracking appears when this pressure exceeds tension strength.
In particular the authors propose a relationship among the steel mass loss and the internal
radial pressure caused by the expansion of corrosion products, and from the knowledge of the
corrosion rate, loss of mass steel and time to cracking can be evaluated. Other details can be
found in El Maaddawy and Soudki [75] and Vergani [237].

To model the damage of concrete it is possible to follow the same approach as just seen for
reinforcing steel; in this case a damage index d. is introduced, and the reduction of concrete

area can be evaluated as:

Ao = [1 = 6.(0)) Aco (4.3)
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Figure 4.23: Cracking evolution in Maaddawy model, E1 Maaddawy and Soudki |75]

where A, is the area of the undamaged section. In this form it is not easy to find a relationship
between damage index and corrosion penetration index, so the effect of corrosion can be related

to a reduction of concrete strength, Vergani [237]:

fc = [1 - 5c(5)]f00 (4.35)

where f.o is the initial strength. One method to evaluate concrete strength reduction f. due

to cracking can be found in Coronelli and Gambarova [63]:

fc()

= 2= 4.36
fC 1+/€§TJE) ( )

where & is a coefficient related to bar diameter and roughness (= 0.1 for medium diameter
ribbed bars), €9 is the strain at peak stress in compression and € is an average value of the
tensile strain in cracked concrete at right angles to the direction of the applied stress. The
following relationship can be used:
by —b; Ab
Eperp = fb— =5 (4.37)
where b; is the width of the undamaged concrete cross-section and by is the width after cracking.

The increase Ab of the member width is evaluated as:

Ab = npgw (4.38)

where npq, is the number of bars and w is the mean crack opening for each bar, equation 4.32.
The reduction in concrete strength is usually applied to the entire concrete cover but, as stated
before, the pattern of longitudinal cracks strongly depends on the arrangement of reinforcing

steel.
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Figure 4.24: Variation of bond stress due to corrosion, Coronelli and Gambarova [63]
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It is worth nothing to underline that corrosion has an influence also on the bond between
concrete and steel; in particular there is a reduction due to the development of longitudinal
cracks and the formation of rust around steel bars. From result of experimental tests, maximum
bond stress changes qualitatively as indicated in Figure 4.24; in an initial phase there is an
increase in strength due to confinement induced by the expansion of corrosion products, and
subsequently there is a significant reduction. Same trend can be seen also in Figure 4.25,
where results coming from pull-out tests are illustrated, Cabrera [48]. A linear relationship is

therefore proposed:

Thy = 23.478 — 1.313X,, [MPa] (4.39)

where X, is the corrosion level expressed in terms of mass loss [%]. Other relationships can
be found in literature, but depend on the type of experimental (pull-out or bending) and the

geometry of the specimens adopted.

4.6 Validation of damage model

In order to perform a reliable lifetime durability analysis on precast systems, it is important
to validate damage models introduced in previous sections with reference to the influence of
corrosion on steel bars and concrete. To this aim, numerical results of nonlinear analyses are
compared with experimental tests described in Rodriguez et al. [210]. As an example, the
simply supported beam shown in Figure 4.26 is considered for the validation procedure. The
tested beams have been cast adding calcium chloride to the mixing water, subjected to an
accelerated corrosion process with a current density of 100 1A /cm?, and loaded up to failure.
The beams type 11, with a lower reinforcement ratio, showed a flexural failure of the tensile
bars. For beams type 31, with a higher reinforcement ratio, a crushing failure of concrete
in compression occurred. For these members the mean and maximum values of corrosion
penetration depth measured during the tests are listed in Table 4.4. The mechanical properties
of concrete and steel are listed in Tables 4.2 and 4.3. For sake of brevity only beams type 11
will be considered.

It is worth nothing that maximum values of penetration are in some case three times the
mean value; this is an important issue, because seems reasonable that the failure of the bars
is related to the section with higher reduction. Moreover, the influence of corrosion is very
significant on the stirrups, due to their small diameter.

Nonlinear analyses are performed by using OpenSees, Mazzoni et al. [163], where the beams
are subdivided, due to symmetry, into 6 finite elements. Each element is modeled following
a displacement-based approach, see Zienkiewicz and Taylor [251] for more details, even if in
OpenSees also the force-based formulation is available, Spacone et al. [224] and Scott and

Fenves [222]. A fiber discretization is used to describe RC cross-sections, in order to model
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Table 4.2: Mechanical properties of concrete.

Beam 111 Beams 114-116 Beam 311 Beams 313-316

fe [M Pal) 50 34 49 37
fet [M Pd] 4.1 3.1 4.1 3.2
E.|GPd] 37.3 33.8 37.1 34.5

Table 4.3: Mechanical properties of steel.

Bars @8 Bars @10 Bars 312

fsy [M Pal 615 575 585
fsu [M Pal 673 655 673
E, [GPal 210 210 210

Table 4.4: Measured corrosion penetration [mm|. Mean value (maximum value).

Beam Tensile bars Compressive bars Stirrups

114 0.45(1.1) 0.52 0.39(1.1)
115 0.36(1.0) 0.26 0.37(3.0)
116 0.71(2.1) 0.48 0.66(5.0)
313 0.30(1.3) 0.20 0.35(2.8)
314 0.48(1.5) 0.26 0.50(4.0)
316 0.42(1.8) 0.37 0.54(4.3)
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Figure 4.27: Force-displacement curve for beam 111 (no corrosion).

each longitudinal bars. For concrete, in compression the Mander model is adopted in order to
take into account the confinement effect of stirrups, Mander et al. [158|, while in tension a
bilinear law is chosen. For steel, a simply bilinear model is used, with a hardening branch after
yielding. All the analyses are performed considering a displacement control strategy, where
each step Az is set to 0.025 mm in order to have continuous curves. In all the experiments
beams are pushed up to failure by using a 4 points bending test.

In Figure 4.27 is shown the comparison between experimental test and numerical simulation
for beam 111 (undamaged), in terms of force-displacement curve; with reference to Figure 4.26,
the displacement is referred to the middle section, while load is the sum of the concentrated
loads P. As can be seen, yielding point and ultimate strength are very close to experimental
data; about ultimate displacement, simulation predicts very well the failure point. Differences
can be seen in the initial branch due to tensile strength of the concrete; however, the same

behavior has been obtained also in other works, see e.g. Vergani [237].

In beam 115, subjected to accelerate corrosion for the shortest time, a mean penetration
equal to 0.36 mm has been measured for tensile bars and 0.26 mm for compressive ones. At
the beginning a uniform corrosion is assumed, considering only a reduction of steel bars
area. The comparison between numerical and experimental result is illustrated in Figure 4.28;
with respect to the undamaged situation there is a decrease in the ultimate strength and a
corresponding increase in deformability. In any case the hypothesis of uniform corrosion is not

appropriate, because simulation overestimates the strength and also the stiffness.

Due to the above considerations, the analysis is repeated with the hypothesis of a pitting
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Figure 4.28: Force-displacement curve for beam 115 - Hypothesis of uniform corrosion.

corrosion, considering a maximum penetration depth equal to 1 mm, Table 4.4; Figure 4.29
shows the corresponding force-displacement diagram. In this case there is an improvement in
the estimation of the ultimate strength, because after yielding the two curves are very close.
In any case, as just seen for the case of uniform corrosion, numerical simulation underestimate
a little bit the position of the failure point; in addition, initial stiffness is always bigger than

actual value, and this can be related to the hypothesis of undamaged concrete.

To overcome this issue, in Figure 4.30 is shown the result of non-linear analysis considering
also a damage of the concrete in terms of a reduction of compressive strength of the concrete
cover as indicated in Table 4.2. Numerical simulation matches in a very good way the
experimental result, both in the prediction of the failure point and estimation of the initial

stiffness.

Finally, beam 114 is studied, which presents a higher value of corrosion (mean penetration
equal to 0.45 mm and maximum penetration equal to 1.1 mm); in particular the corrosion
penetration in compressive bars is double with respect to beam 115 (0.52 mm versus 0.26 mm).
Force-displacement curve is presented in Figure 4.31; with respect to beam 111 and beam 115,
from experimental data is evident a significant reduction of the displacement in the middle
section, probably related to the loss of ductility of longitudinal bars. Even if the numerical
model considers a pitting corrosion and a degradation of concrete cover, yielding point and

ultimate strength are a little bit overestimated. Moreover, the failure point is underestimated.
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Figure 4.29: Force-displacement curve for beam 115 - Hypothesis of pitting corrosion.
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4.7 Influence on the global behavior

In the present investigation the aim is to study the lifetime seismic performance of multistory
precast frames subjected to chloride induced corrosion, so it is important to highlight some
results obtained in loading tests on structures subjected to corrosion, in order to understand
the effect of this kind of environmental hazard on the overall behavior of structural systems.

In Castel et al. [51], beams subjected to natural corrosion and subsequently loaded have a
reduction of ductility, stiffness and ultimate strength with respect to the undamaged situation;
this depends on a reduction of ductility of reinforcing steel bars.

In Ballim and Reid [20] the effects of reinforcement corrosion on the serviceability deflections
of reinforced concrete beams have been evaluated; beams under 4-point bending test have
been subjected to 23% and 34% of the ultimate design load, measuring the central deflection
and comparing it with the value related to undamaged beams. The result is a significant
increase in the displacement, because with only a 6% of mass loss, beam deflections have been
increased by 40 — 70%.

At the same time, an effort has been made in the last years to reproduce numerically the
results indicated above, investigating the performance of different structural systems subjected
to corrosion. As just an example, Figure 4.32 shows the result of a pushover analysis on a RC
frame where both columns and beams are damaged by corrosion; a significant reduction of
the total base shear strength, even thought gradual, is observed over the structural lifetime.

Moreover, an abrupt reduction of the ultimate displacement and hence of the displacement
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Figure 4.32: Total base shear F' versus top displacement A for the low ductility frame, Biondini
et al. [40]

ductility is obtained after about 20 to 30 years. In fact, as expected, due to the reduction of
bending moment capacity of the columns, a change of collapse mechanism occurs moving from
a typical “beam sway” to a “column sway” mechanism. As a consequence, since the overall
dissipation capacity is totally lumped at the bottom of the columns, with all beams in the
elastic range, a brittle failure occurs. Lifetime analysis can be applied not only to buildings
but also on other structural systems such as bridges; remarkable examples can be found in

Biondini et al. [34] and Biondini and Frangopol [30].

4.8 Conclusions

This chapter focuses on the damage process involving corrosion, because his leading importance
in the lifetime assessment of performance of RC structural systems. In particular, different
studies carried out in last two decades are presented, both considering the local effect of the
materials and on the overall behavior. First, a brief review of theoretical aspects of corrosion
is illustrated, starting from electrochemical issues regarding such phenomenon, and then
considering the two typical sources of corrosion, namely carbonation and chloride propagation,
because they are related to different mechanisms.

Subsequently, different phases involving corrosion process are illustrated, from initiation
time to the onset of corrosion, with particular attention of chloride induced corrosion because
the topic of the present investigation. It is explained how the diffusion model based on Fick’s
laws can be applied without loss of generality, introducing fundamental parameters such as
initiation time and critical concentration. A section is devoted to the presentation of different
models available in literature that predict the rate of corrosion, usually in terms of current
intensity, subsequently transformed in a corrosion velocity pm/year exploiting Faraday’s law.

The influence of parameters such as resistivity of concrete and cover depth on corrosion rate is
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shown, and also qualitative information are given.

After that, the local effects on the materials are studied. The fundamental aspect regarding
reinforcing steel is the reduction of cross-section area, and different analytical models are
presented, depending on type of corrosion (uniform, pitting or a mix formulation). Another
important topic is the reduction of ductility of steel bars, and it is worth nothing that also
with a not severe loss of mass the behavior of steel can change from ductile to brittle. About
the influence on strength (yielding and ultimate), typically the effect is negligible.

Concerning concrete, damage can be induced by the formation of corrosion products like
rust, which induce radial pressure in the cover, leading to cracks and spalling. Depending on
the arrangement of reinforcing steel bars different mechanisms of cover detachment can occur,
and models that predict rate of corrosion from crack opening and reduction of concrete strength
are presented. Another effect is related to the change of bond stress; at the initial stage there
is an improvement of bond strength due to the confinement induced by the expansion of
corrosion products, and subsequently bond stress drops. Subsequently, the damage model here
adopted is validated by simulating the experimental results coming from four-points bending
tests on beams subjected to different rate of corrosion, underlining the effectiveness of the
approach applied.

Last section is devoted to the illustration of the effects of corrosion on the overall behavior
of RC structural members, considering the results of experimental tests performed in last
years. Typically, corroded elements have a reduction of ultimate strength and ductility, and
sometimes there is also a change in the failure mode, from ductile to brittle.

After this presentation, next chapter is dedicated to the analysis of the lifetime seismic
performance of RC multistory precast frames introduced in Chapter 3, exploiting the analytical

models here presented.
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Chapter 5

Lifetime seismic performance of

multistory precast buildings

5.1 Introduction

Due to the presence of aggressive agents in the environment like sulphates and chlorides,
concrete structures are subjected to a progressive deterioration of their mechanical properties,
which makes the structural systems less able to withstand the applied actions. A proper
modeling of deterioration process is therefore essential to completely understand the phenomena
illustrated in Chapter 4. In recent years, relevant advances have been accomplished in the
fields of modeling, analysis, and design of deteriorating civil engineering systems, Biondini and
Frangopol [29], and novel approaches to time-variant assessment and optimization of concrete
structures have been proposed in deterministic and probabilistic terms, see e.g. Biondini et al.
[34].

In this chapter the lifetime seismic performance of precast frames introduced previously is
investigated. First, a special class of evolutionary algorithms, known as cellular automata, is
presented, in order to simulate the diffusion process of chlorides within the concrete sections
and subsequently the damage. The specific algorithm developed for the present study is
validated by comparing the results coming from numerical analysis with the analytical solution
of simple 1D and 2D problems. Both 1D and 2D approaches are considered, performing a
parametric study to check the accuracy of the 1-D description of the problem with respect to
the more accurate 2-D formulation, since the former method is proposed by some codes and
recommendations (see e.g. fib 2006 [87]).

Subsequently, the tools implemented are used to simulate the progressive deterioration of
RC structural members of precast systems, first at a local level, considering the time evolution
of cross-section analysis, and then focusing on the overall behavior, in order to understand the
influence of corrosion on the different limit states and to evaluate the corresponding seismic

risk.

151
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5.2 Simulation of diffusion processes

As indicated in Chapter 4, the diffusion of chemical components in solids can be described by
relating the rate of mass diffusion to the concentration gradients responsible for the net mass
transfer. The simplest model is represented by the Fick’s first law, which assumes a linear
relationship between the mass flow and the concentration gradient. The combination of the
Fick’s model with the mass conservation principle leads to the Fick’s second law, which, in the
case of a single component diffusion in isotropic media, is represented by equation 4.8, here

repeated for convenience, Glicksman [101]:

oC
= D,V? 1
T veC (5.1)

where C' is the concentration of the chemical species, D, is the effective diffusion coefficient
and the operator V represents the derivative of a generic quantity with respect to the spatial
variables; for example, in one-dimension problems, Vu = u, and, consequently, V2u = ;.

As can be seen, equation 5.1 is a partial differential equation (PDE), in particular at the
second order. Since many engineering problems can be described by using linear PDEs at
the second order, it seems useful a briefly summary of their properties, before to introduce a
possible numerical solution. Let assume for simplicity a 2D formulation, considering an open
subset Q € R? and a second order partial derivative differential operator A : C?(2) — F(Q)
which, Vu € C%(Q) and (x,y) € €, is defined as:

0%u 0% 9%u
Au(z,y) = a(x,y)w + 2b($,y)8?ay + C(Q?ay)aT/g
)2 4 ele )2+ fay) -
z,y o e,y By T,Y)u

where a,b,c,d, e, f : Q € R are the coefficients of the differential operator A. A linear partial

differential equation of the second order is therefore in the form:

Au(z,y) = g(z,y) (5.3)

where g : € R is a predefined function. Second order PDEs can be classified considering the
value of the coefficients related to the second derivatives a, b and ¢ in a generic point (xg, yo);

denoting a = a(xo,yo), b = b(xo,yo) and ¢ = ¢(xo,yo), the operator A is:
e Elliptic if b* — 4ac < 0;
e Parabolic if b2 — 4ac = 0;

e Hyperbolic if b — 4ac > 0.



5.2 Simulation of diffusion processes 153

The same classification can be performed also in the light of the eigenvalues of the matrix
M:

M (z0,y0) = [Z j (5.4)

Operator A is:

e Elliptic if eigenvalues are both positive or negative;
e Parabolic if one of the eigenvalues is zero;

e Hyperbolic if eigenvalues have opposite sign.

It is possible to derive an archetype for each of these categories, namely:

Poisson equation
Ugg + Uyy + Uz = f(2,Y,2) & Vu = f(x,y, z) e Au = f(z,y,z2) (5.5)

The associated homogeneous equation Au = 0 is the Laplace equation, prototype for elliptic
PDEs.

Wave equation
Uy = P (Ugy + Uyy + Uzz) & (V) (5.6)

The wave equation is the prototype for hyperbolic PDEs.

Heat equation
up = gy + Uy + Uzs) S (V) (5.7)

The heat equation is the prototype for parabolic PDEs. As can be seen in equation 5.1, the
second Fick’s law is a particular application of the heat equation.

Since only for simple problems a partial differential equation can be solved in an analytical
way, numerical procedures are essential. In literature different methods can be applied,

Quarteroni et al. [204]; in the present investigation, the cellular automata approach is used,
Schiff [219].

5.2.1 Basic concepts of cellular automata

Cellular automata were firstly introduced by von Neumann and Ulam in 1948-1950 (Burks
and Von Neumann [47]) and subsequently developed by other researchers in many fields of
science (see e.g. Wolfram [245]). Originally related to the study of self-replication problems

on the Turing’s machine, cellular automata left laboratories in the 1970s and became popular
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in the academic circles with the now famous Game of Life invented by Conway (Conway
[60], Gardner [94]). Basically, they represent simple mathematical idealizations of physical
systems in which space and time are discrete, and physical quantities are taken from a finite
set of discrete values. In fact, as already mentioned, any physical system satisfying differential
equations may be approximated as a cellular automaton by introducing discrete coordinates
and variables, as well as discrete time steps. Properly speaking, therefore, models based on
cellular automata provide an alternative and more general approach to physical modeling
rather than an approximation; they show a complex behavior analogous to that associated
with complex differential equations, but in this case complexity emerges from the interaction
of simple entities following simple rules.

In its basic form, a cellular automaton consists of a regular uniform grid of sites or cells,
theoretically having infinite extension, with a discrete variable in each cell which can take only
a finite number of states. The state of the cellular automaton is then completely specified by
the values s; = s;(t) of the variables at each cell i. During time, cellular automata evolve in

discrete time steps according to a parallel state transition determined by a set of local rules:
k+1

the variables s; ™" = s;(t;41) at each site 7 at time ¢4 are updated synchronously based on
the values of the variables s¥ in their “neighborhood” n at the preceding time instant t;. The
neighborhood n of a cell 7 is typically taken to be the cell itself and a set of adjacent cells
within a given radius 7, or ¢ — 7 < n <4+ r. Thus, the dynamics of a cellular automaton can
be formally represented as:

skl — @(sk'sk), t—r<n<i+r (5.8)

7 19 °n

where the function @ is the evolutionary rule of the automaton. Clearly, a proper choice of
the neighborhood plays a crucial role in determining the effectiveness of such a rule. Figure
5.1 shows an example of typical neighborhoods for two-dimensional cellular automata, but
patterns of higher complexity can be also proposed. Since the actual extension of the automaton
cannot be infinite as required by the theory, special attention has to be paid to neighborhoods
along the sides of the finite grid, which may be defined in many different ways. The more
frequent assumptions refer to the hypotheses of periodic boundaries, in which opposite cells are
considered neighbors, or of absorbing boundaries, where the cells at the borders are assumed
to have no neighbors beyond the limits of the grid. As an example of one-dimensional cellular
automaton, consider a line of cells with the variable s = s(¢) at each cell ¢ and time instant ¢
which can take only the value sf =0or sf = 1. Concerning the evolutionary rule, defined on
the base of a neighborhood with radius r = 1, it states that a cell remain alive or becomes
alive if only one of its neighbors is also alive. If neither is alive, the cell dies from “isolation”,
or if both are alive it dies from “over-population”.

Even with this very simple rule, complex behaviors can be nevertheless found. In fact,

by assuming for example an initial state of the automaton consisting of a single cell with
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Figure 5.1: Typical neighborhoods for two-dimensional cellular automata (radius r = 1),
Biondini et al. [34].

Figure 5.2: One-dimensional cellular automaton leading to geometrical pattern characterized

by property of self-similarity and having fractal dimension.

value 1 and all other cells having value 0, after 75 time steps the pattern shown in Figure 5.2
appears, where the white cells denote the state sf = (0 and the black ones the state sf = 1.
The geometry of such pattern is characterized by the property of self-similarity, since some
of its regions, when magnified, are indistinguishable from the whole. In particular, it can be
shown that such a self-similar pattern represents a fractal and can be characterized by a fractal

dimension log, 3 ~ 1.59 (see also Wolfram [245]).

5.2.2 Simulation of transport process

Cellular automaton provides a very effective tools in the numerical solution of partial differential
equations such as diffusion problems, see equation 5.1, or in multi-physics modeling (Vick

[238]); in the present investigation the linear equation indicated below needs to be solved:

oC

il D.V*C (5.9)
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where the state variable C is the concentration of the chemical species in a diffusion process.
A solution can be achieved through a proper selection of both the neighborhood n and the rule
®. For example, the diffusion process described by Fick’s laws in d dimensions (d = 1,2, 3)
can be effectively simulated by adopting a von Neumann neighborhood with radius » = 1 and

the following rule of evolution (Biondini et al. [36] and Biondini et al. [37]):

d
k+1 k — ik k
j=1
where the discrete variable s¥ = CF = V/(x;,t;.) represents the state variable in the cell i at
time t;. To satisfy the mass conservation law, the values of the evolutionary coeflicients @,

(I>j_ and q)j' (j =1,...,d) must obey to the following normality rule:

d
Do+ ) (B; + @) =1 (5.11)
j=1

In order to avoid directionality effects, for isotropic media the symmetry condition o =
<I>;r = ®;(j = 1,...,d) must be adopted. The equivalence between the evolutionary rule
of the cellular automaton and the differential equations of mass diffusion can be proven by
considering the problem in one-dimension for an homogeneous and isotropic solid medium.

Therefore, specializing equation 5.10 and 5.11, where d = 1, it is possible to write:
o3 (

1—
CI! = ®Cf + ——

5 Ciy+Chy) (5.12)

(]

The relationship can be arranged in an equivalent form:

1 -

Ci,t+At) = &C(x,t + [C(x — Az, t) + C(z + Az, t)] (5.13)

where z; = z, zjx1 = x £ Ax, tp =t and tx11 =t + At. Subtracting V (z,t) from both sides
and dividing by At, the following expression is obtained:

_ 1—dg 1
C(a:,t+AAti Cla,t) _ g OA—t[C(x—A:U,t) —20(z,t) + C(z + Az, t)] (5.14)

or, equally:

Clz,t+ At) — C(z,t)  1—®¢Az? [Cz + Az, t) — C(z,1)] — [C(z,t) — Cz — Az, t)]
At 2 At Az?

(5.15)

Assuming:

11— Dy As?
2 At

(5.16)
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and taking the limit Az — 0 and At — 0 the equation here reported is derived:
oC (z,t) D82C(m,t)
o Ox?
The same procedure can be generalized in d dimensions; in particular equation 5.16 becomes:

(5.17)

1-— (I)O AJJQ A.@Q
D = 2d AL <I>1—At (5.18)

Usually a deterministic value &y = 1/2 is related to a good accuracy in the results; in any

case an appropriate balance between grid dimension Ax and time step At must be achieved.
With this aim, a suitable discretization in space and time may be chosen; since the diffusion
coeflicient is one of the input data of the problem, a consistent value of both grid dimension
Ax and time step At is chosen to regulate the process according to equation 5.18. In the
present investigation a deterministic definition of evolutionary coefficient is used; however, in
order to consider stochastic effects in the diffusion process, a probabilistic formulation of the

cellular automata can be applied, Biondini et al. [34].

5.2.3 1D and 2D formulation - Validation and comparison

In present study an algorithm for the resolution of the diffusion problem through cellular
automata has been developed, both considering the 1D and 2D formulation. The validation
is carried out by comparing the results coming from numerical simulation with the solution
of simple problems where the analytical expression is available. Subsequently, by performing
a parametric study, it is verified the accuracy of the 1D formulation with respect to the 2D
approach, since the former method is proposed by some codes and recommendations (see e.g.
fib 2006 [87]).

Case A: 1D problem

In this first example, the domain €2 is defined as Q := [0, 0.5 m], and the only spatial variable
is z € Q. The chloride concentration on the surface Cj is equal to 3% [wt.%c.], and two
different values of the diffusion coefficient are considered, in order to explore the reliability
of the numerical solution, namely D, = 10 x 10?2 m?/s and D, = 25 x 1072m?/s, see fib
2006 [87], which correspond to CEM I 42.5 R with water to cement ratio equal respectively to
0.40 and 0.60. Other lower values of D, are not considered since, as illustrated in next figures,
numerical result matches practically in a perfect way the analytical solution, which is in the

form:

C(z,t) = Cy[l —erf<2\/%)} (5.19)

Chloride profiles evaluated by using equation 5.19 for different times (¢t = 10,20, 30, 40, 50

years) can be seen in Figures 5.3a and 5.4a; concerning numerical solution, the evolutionary
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Figure 5.3: Comparison between analytical and numerical solution for 1D problem, D, =

10- 10712 m?/s.

coefficient @ is set to 1/2, and a grid step Az = 0.01 m is chosen; time step At is therefore
evaluated in order to satisfy equation 5.16. The accuracy of the adopted approach can be seen
in Figures 5.3 and 5.4, where the comparison between analytical expression and numerical
simulation is shown for different times and for the two different values of diffusion coefficient.
There is a very good agreement between different profiles, and only for the higher diffusion
coefficient the curves tend to have a gap beyond 30 years; in any case numerical solution is
on the safety side because it estimates higher values of the chlorides concentration along the

domain €.
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Figure 5.5: 2D domain to check asymptotic behavior of numerical solution.

Case B: 2D problem - Asymptotic behavior

In this second example the asymptotic behavior of the solution predicted by cellular automata
is studied, considering the 2D domain depicted in Figure 5.5. Each side of the domain ) has a

length equal to L = 0.45m, and boundary conditions are defined as:

0, onz=0,L Vy
C(z,y) =10, ony=0 Vz (5.20)
Cosin(rz/L), ony=L Vzx

where Cy = 3% [wt.%c.] is the concentration on the surface, keeping constant for all the
analysis. Because the focus is on the asymptotic behavior, the Laplace equation V2C(z,y) = 0
needs to be solved. In this case, exploiting the separation of variables and applying boundary

conditions, analytical solution is:

C(z,y) = s'1nh(C7TOb/L) sin (%x) sin (%) (5.21)

Regarding numerical analysis, a grid step Az = 0.01m is used and two different values
of diffusion coefficient, D, = 10 x 1072m?/s and D, = 25 x 1072 m?/s, are considered.
Asymptotic behavior is simulated considering different times; theoretically, for ¢ — oo, cellular
automata should tend to the analytical result. Figures 5.6a and 5.7a show the distribution of
concentration, normalized with respect to the surface value Cpy, coming from equation 5.21,
for the two different values of diffusion coefficient; clearly the pictures are identical because
Laplace equation is not influenced by D.. The comparison between analytical and numerical
solution is on the contrary depicted in Figures 5.6b and 5.7b, considering a section in the
middle of the domain €2, namely y = b/2, Yz and different times, ¢t = 10, 20, 30, 50, 100, 200
years. Correctly, when time increases, theoretically to infinite, solution predicted by cellular
automata is very close to the analytical one; this is the proof that the algorithm satisfies

the asymptotic behavior. To complete the validation of the developed numerical code, next
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Figure 5.6: Validation of asymptotic behavior, D, = 10 - 107 12m?/s.

example compares the solution of diffusion equation for different time steps.

Case C: 2D problem - Complete solution

In the last example the complete numerical solution of equation 5.1 for a simple 2D problem
is compared with the analytical expression, in order to fully validate the proposal cellular
automata algorithm. The problem is depicted in Figure 5.8, where domain 2 is defined as
Q :=[0,27] x [0,27]. To solve the equation, both boundary conditions and initial ones are

required; in particular:

u—Au = 0 on Q x [0, 7]
u(z,y,t =0) = sin(nx)sin(my), on (5.22)
u(x,y,t) = 0, on 0N

where D, is set to 1 and n = m = 2. The solution is on the form, Altieri and Stefanoni [6]:

—(n?4m?2)t

u(z,y,t) = e sin(nx) sin(my) (5.23)

Each side of the domain is divided into 50 spatial intervals, and time is increased up to 1

second, namely 7 = [0, 1]. Figure 5.9 presents the difference in terms of concentration between
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Figure 5.9: Difference in terms of concentration between analytical and numerical analysis.

analytical and numerical analysis for different time steps; as can be seen the prediction coming
from cellular automata is always very good, because in each point the gap is always lower than
1073, Same information can be visualized also in an equivalent form, Figures 5.10 and 5.11;
here the comparison is carried with reference to two different values of normalized coordinate
n = y/(27), Yz, one close to the boundary and one in the middle of the domain, namely
n = 0.05 and n = 0.5. As can be seen dot points (related to numerical simulation) match very

well the sinusoidal behavior of the analytical solution.

Once that the algorithm for simulation of diffusion process is validated, it is worth nothing
to compare the results coming from numerical simulation using both 1D and 2D formulation,
in order to check the accuracy of the former method with respect to the more reliable bi-
dimensional description of the problem. Such comparison is done because usually the evaluation
of chlorides concentration within RC cross-section of structural is carried considering the
one-dimensional Fick’s law, see e.g. Vu and Stewart [242| and Glass and Buenfeld [100], so
it is important to understand if and in which situations the prediction carried out from 1D
formulation is appropriate. To this aim, a parametric analysis is performed; in particular the
diffusion process is studied by using the tools developed with reference to different rectangular

RC cross-sections, where the shape factor § = B/H ranges from 0.25 up to 5, Figure 5.12.

It is assumed that on the top of the section there is a surface concentration Cy, kept

constant for all the duration of the analysis; on the other sides it is imposed a null flow, so
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Figure 5.12: Example of RC cross-sections studied in the parametric analysis.
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Figure 5.13: Map of chlorides concentration after ¢ = 50 years (normalized with respect to the

surface concentration Cp).

the corresponding concentration is zero at the beginning of the simulation, and subsequently
increases due to the chlorides diffusion from inner cells. In this configuration, it is expected
that a satisfactory comparison among the two different approaches is achieved when shape
factor f = B/H increases; in particular if 8 — oo the results should be the same. The
explanation can be found by a visual inspection of the curves of “equal concentration”; in a
1D approach the concentration front is uniform along the entire width of the section, while
in the bi-dimensional formulation the curves has the shape indicated in Figure 5.13. Clearly,
if B >> H, at least in the middle of the section the profiles tend to be uniform, because
the effect of boundaries is limited to a region close to the external sides; on the contrary, if
B << H, the influence of the boundaries is reflected along the entire section, so the hypothesis

of uniform front concentration is not appropriate.

For the presentation of the results carried out from parametric analysis it is convenient
to introduce dimensionless quantities; in particular, the geometric coordinates £ = x/B and
n = y/H and time coordinate 7 = t/T}q, are used, where T4, is set to 50 years. The
effect of shape factor on the response coming from 1D and 2D formulation can be seen in
Figures 5.14 and 5.15; it is shown, with respect to time 7 and for different sections &, the
ratio C'/C'P | where C is the concentration coming from one the two approaches and C'P is
the concentration evaluated in the one-dimensional case. If the shape factor is small, Figure

5.14, the approximated formulation predicts for almost the entire duration of the analysis
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Figure 5.14: Comparison between 1D and 2D formulation in terms of concentration estimation

for a shape factor § = 0.25.

higher values with respect to the bi-dimensional approach due to the strong influence of the
boundaries. On the contrary, it is possible to see in Figure 5.15 that, if 5 is higher enough,
the two approaches give more or less the same results, at least in a region sufficiently far from

the external sides.

The influence of the shape factor can be clearly visualized looking at Figure 5.16, where
the same ratio C'/ C'P introduced before is illustrated for different time steps and values of 3,
considering the middle section & = 0.5. Again, if the width of the base where chlorides can
spread is big enough, the results predicted by the two formulations are close one to each other,

at least sufficiently far from the external side with zero flow (n = 1).
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for a shape factor g = 5.0.
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5.3 Diffusion process and damage evolution

In a durability analysis, the time evolution of damage induced by corrosion is not independent,
but it is strictly related to the corresponding evolution of the diffusion process. When
aggressive agents like sulphates or chlorides propagate within a concrete section, the corrosion
rate depends, among different parameters, on the level of concentration of the chemical
substance. Clearly the entire process is complex and many uncertainties are involved; in
any case, it is possible to adopt simple but reliable models for the lifetime assessment of
concrete structures. Among different methods proposed in literature, the approach presented
in Biondini et al. [34] seems promising; here, the damage functions for concrete and steel are

related to the concentration of the aggressive agent in the following way:

do.(x,t)  Clz,t)

d0s(x,t)  Clx,t) o) '
ot C.At, b

where C. and Cj represent the values of constant concentration C(,t) which lead to a
complete damage of the materials after the time periods At. and Atg, respectively. To solve
the problem, initial conditions are necessary; in particular, denoting as C,, the critical threshold
of concentration, damage functions d. and ds are zero until the initiation time is not reached.
Finally, ¢q. and ¢s; depend on actual rate of damaging process. Details can be found in Biondini
et al. [34] and Biondini et al. [40].

5.4 Evaluation of seismic performance during lifetime

The corrosion process has influence both at local and global level. In particular, in the present
investigation, with respect to the corrosion models illustrated in previous sections, some
hypotheses are made in order to simplify the problem, but at the same time to provide an

effective tool for the estimation of seismic risk of multistory RC frames, namely:

e Only a reduction of the steel bars (longitudinal and transversal) is considered, see e.g.
Celarec et al. [53|. Concrete damage is not included here, even if in recent works a
reduction of cover compressive strength is introduced, Berto et al. [25] and Biondini
et al. [40];

e A linear relationship between rate of damage index §, and concentration is assumed.

With respect to last point, the following expression is applied, see e.g. Biondini et al. [34],
Biondini et al. [40] and Biondini [28|:
005(x,t)

= rC(x,1) (5.25)
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Figure 5.17: Scheme for the distribution of chlorides concentration of the surface of the columns.

Example on 2 story building.

where 7 is a damage coefficient, here taken equal to 0.02/Cy, where Cj is the chloride
concentration on the surface (= 3%[wt.%c|, fib 2006 [87]). Such value is adopted so to
reproduce a deterioration process with severe damage of materials, as may occur for heavily
chloride-contaminated concrete and high relative humidity, Bertolini et al. [26]. Clearly, the
damage index is set to zero until the chloride concentration reaches the critical value C,, in
correspondence of the bars; in particular, following the recommendations of Model Code, fib
2006 [87], Cer = 0.6%[wt.%c]. To conclude, diffusion coefficient D is set to 10.58 x 1072 m/s?
Sahmaran et al. [217], in order to subsequently perform a comparison with the composite

material adopted for the enhancing of lifetime seismic performance.

5.4.1 Lifetime cross-section analysis

In order to clear understand the role of corrosion on the performance of structural members, the
scheme depicted in Figure 5.17 is adopted. In particular, a parametric analysis is carried out
introducing the dimensionless factor a which ranges from 0 to 1, namely a = 0,0.25,0.5,0.75, 1.
In this way the chloride concentration on the surface changes, so for each external side Cy = aCp;
only the sides of external columns exposed directly to the atmosphere have always a surface
concentration equal to Cjp.

An example of such simulations is represented in Figures 5.18 and 5.19, which illustrate
the concentration map, normalized with respect to the surface value, within cross-section
45 x 45, for different times, assuming respectively & = 0 and o« = 1. As it can be seen, cellular
automaton represents an effective tool to investigate the diffusion process of a generic chemical
species in bi-dimensional domains. Clearly, the same procedure is carried out for all the other

cross-sections, changing the value of . After that, equation 5.25 is exploited to evaluate
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Figure 5.18: Normalized concentration maps for cross-section 45 x 45, o = 0.

damage index Js at a level of longitudinal and transversal bars, with the final purpose to
estimate the reduction of steel area by using equation 4.19. For the stirrups, since corrosion
can propagate in unsymmetric modes depending on the value of a and due to boundary effects,
it assumed that the section with the higher reduction determines the total transversal area

Agp, that it is used subsequently as one of the parameter for the Ibarra model.

The propagation of chlorides leads therefore to a reduction of mechanical properties of
structural members during their lifetime; this is evident by looking at Figure 5.20, which shows
the envelope of the Ibarra model for the external column at the base of the 2 story building
with cross-section 45 x 45, assuming two different values of a. In particular moment-rotation
diagrams are depicted at the beginning of lifetime (¢ = 0, no corrosion) and after 50 years.

Some important considerations can be done: first, considering Figure 5.20a, there is a different
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Figure 5.19: Normalized concentration maps for cross-section 45 x 45, o = 1.
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behavior for M < 0 and M > 0, because the exposure conditions are not symmetric. A
significant reduction in the strength is achieved especially for the positive direction, since
the bars in tension are located in the most exposed part of the cross-section, Biondini et al.
[40]. On the contrary, when corrosion can propagates along each side, the corresponding
moment-rotation curve is symmetric, as expected, Figure 5.20b. In both cases there is a
remarkable drop in ductility due to the transversal steel area reduction, which is translated in

a decrease of the parameter pgp, in the Ibarra model, see Haselton [112].

5.4.2 Time evolution of structural capacity

The deterioration of mechanical properties of structural members are then reflected on the
capacity of the multistory frames. As an example, Figure 5.21 represents the time evolution
of median base shear coming from the probabilistic approach for the 2 story building with
cross-section 45 x 45 and 80 x 80, respectively. As expected, for each limit state, there is
a significant drop of structural capacity with respect to the initial value due to the severe
damage coefficient adopted. Moreover, the most important issue emerging is the significant
effect of the exposure conditions (different values of «). A similar information is given also in
Figure 5.22, but in this case the variation of median base shear refers to Near Collapse limit
state for all the systems investigated. Increasing the environmental hazard, o — 1, structural
capacity can have a decrease around 55%. As just explained, corrosion affects in a decisive
way the transverse reinforcement, because the small diameter; for this reason, during time
shear capacity, defined as indicated in equation 3.11, tends to decrease, and a brittle failure
can appear in ordinary reinforced concrete structures.

In the present investigation, however, frames studied are not subjected to a brittle collapse,
as can be seen from Figure 5.23, where the story shear demand/capacity ratios evaluated
during time for two different configurations are always lower than 1. Anyway, as suggested by
Celarec (Celarec et al. [53]), a potential brittle limit state can be defined, assuming for DCR a
threshold equal to 0.5; such condition can represent in a reliable way a probable shear failure.
An increase in the exposure conditions (o — 1) leads to higher DCR values, so the influence
of corrosion on shear behavior is well caught.

To conclude, by using the N2 method, Fajfar and Gaspersi¢ [82], the capacity of the
structural systems can be translated into PGA capacity, defined for different limit states. For
sake of brevity, only the results for the 2 story building with cross-sections 45 and 80 x 80
are presented, even if all the multistory frames are studied. Median values are indicated in
Tables 5.1 and 5.2, assuming @ = 0 and @ = 1. When the environmental exposure is not so
severe (a = 0), the reduction during the entire lifetime is not so significant, even if the effect
of corrosion has a higher influence increasing the limit state. The explanation can be found in
the definition used; in particular, Near Collapse refers to the softening behavior, and usually

numerical simulations are more sensitive to changes in this branch.
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Figure 5.20: Influence of corrosion on the moment-rotation envelope for a base column of the

2 story building with cross-section 45 x 45.
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Figure 5.21: Time evolution of base shear for different limit states, 2 story building.
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Figure 5.22: Decrease of base shear for NC limit state during time.
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Figure 5.23: Time evolution of the first story shear demand over capacity ratio (DCR) for the
2 story building.
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Table 5.1: Structural capacity as peak ground acceleration (|g]) for different limit states, 2
story 45 x 45.

(a) a=0. (b) a=1.
Time [years] DL LS NC Time [years] DL LS NC
0 0.107 0.147 0.196 0 0.107 0.147 0.196
10 0.107 0.147 0.196 10 0.103 0.142 0.191
20 0.106 0.144 0.193 20 0.098 0.134 0.181
30 0.106 0.142 0.189 30 0.090 0.125 0.168
40 0.106 0.138 0.185 40 0.083 0.114 0.153
50 0.105 0.135 0.182 50 0.075 0.104 0.137

Table 5.2: Structural capacity as peak ground acceleration ([g]) for different limit states, 2
story 80 x 80.

(a) a=0. (b) a=1.
Time [years] DL LS NC Time [years] DL LS NC
0 0.173 0.987 1.320 0 0.173 0.987 1.320
10 0.173 0.982 1.315 10 0.169 0.826 1.101
20 0.173 0.963 1.284 20 0.151 0.756 1.003
30 0.173 0.933 1.249 30 0.135 0.679 0.898
40 0.172 0.916 1.220 40 0.114 0.590 0.777

50 0.170 0.893 1.197 20 0.096 0.479 0.613
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5.4.3 Influence on seismic risk

By using PEER methodology, chlorides induced damage can be seen also in the light of a
seismic risk analysis. As indicated in section 3.8.3, risk study is based on two parameters:
PGA capacity and probability of exceedance a particular limit state in 50 years, see Kramar
et al. [136]. The former is computed with reference to the 5* percentile of PGA capacity
resulting from the probabilistic approach here adopted and compared with the design value
prescribed by national code for the specific site, NTC 2008 [181], while the second is compared
with the recommended values always reported in NTC 2008 [181] (63%, 10% and 5% for DL,
LS and NC limit state, respectively). Two sites, namely Gemona and S.Benedetto, and two
different configurations of the 2 story building are selected for the presentation of results;
when capacity design criteria is not appropriate (columns cross-section 45 x 45) probability of
exceedance a predefined limit state is alway higher than the threshold value, see Figure 7.2.
At the same time, PGA capacity is lower than the design value recommend by the code for
the particular sites selected, Figure 5.25.

For the stiffer configuration (cross-section 80 x 80), there is a lower probability to exceed
limit states, because for such configuration capacity design criteria gives reliable results and
seismic behavior is good, see Biondini et al. [39]. Anyway, during time, the influence of
exposure conditions plays a fundamental role, resulting in a final capacity that in some cases
is lower than the design value, Figure 7.2. Looking at this results, the most important issue
emerging is that same structures, placing at sites with the same seismic hazard, can lead to a

different seismic risk depending on the environmental conditions.

5.5 Conclusions

This chapter is devoted to the prediction of lifetime seismic performance of multistory precast
frames subjected to a corrosion process. First of all the problem of the numerical simulation
of diffusion phenomena of chemical species in concrete sections is addressed by using a special
class of evolutionary algorithms, known as cellular automata. Because the propagation of
aggressive agents can be represented as a diffusion process, cellular automata method is used
to solve Fick’s law, and the algorithm is successfully validated both in one-dimensional and
bi-dimensional formulation by comparing the numerical results with the analytical solution
of simple problems. Subsequently, a parametric study is carried out considering different
concrete cross-sections, in order to understand the reliability of the 1D approach with respect
to the more accurate 2D formulation, since the former method is proposed by some codes
and recommendations (see e.g. fib 2006 [87]). The comparison in terms of evaluation of
concentration shows that the geometric ratio between the dimensions of the sections (here
indicated as shape factor) and the position for which the differential equation is solved are the

most important parameters. In particular, 1D approach usually predicts higher values, and
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Figure 5.24: Time evolution of probability of exceedance and comparison with design value for

2 story building with cross-section 45 x 45.
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Figure 5.25: Time evolution of PGA at 5" percentile and comparison with design value for 2

story building with cross-section 45 x 45.



182 Lifetime seismic performance of multistory precast buildings

LS
12
10
T 8
S
z 9
4t
2,
20 30 0 10 20 30 40 50
Time[years] Time [years)|
NC
6 : —Threshold
5 —o—0=0
4 ——0=0.25
= . -a-01=0.50
& ——0=0.75
2 ——q=1
1
0 10 20 30 40 50
Time [years]
(a) Gemona.
DL LS
: : : 12~ : :
60 10
< = 8
g S o
& 40 &
4+
20 2t A/Q‘
0 10 20 30 40 50 0 10 20 30 40 50
Time [years] Time [years]
NC
6r ‘ : — Threshold
5 —o—a=0
_4 ——0=0.25
Sa -o-a=050
T 5 | ——a=0.75
——q=1
1 N M
0 10 20 30 40 50

Time [years)

(b) San Benedetto.

Figure 5.26: Time evolution of probability of exceedance and comparison with design value for

2 story