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Chapter 1: Introduction 

1.1 Background and motivation  

In the developed and industrialized countries, a big part of civil structures and infrastructures 

was built on the beginning of twentieth century, and therefore have been subject to deterioration; 

for instance in the USA over     of the bridges were constructed before      (Stallings et al. 

2000), and it is reported that over     of all these bridges are structurally deficient (Klaiber et 

al. 1987). In Canada, over     of currently functional bridges were constructed before     , 

and a large number of them need prompt rehabilitation, strengthening or replacement (ISIS 

Canada 2007). The Canadian Construction Association estimated that the cost to rehabilitate 

global infrastructure is around     billion US dollars (ISIS Canada 2007). The large amount of 

the cost to rehabilitate the global infrastructure underlines the importance of developing reliable 

and cost effective methods for the investments needed for rehabilitation in the next years. 

Moreover, in seismically active zones, the deterioration due to degradation in the structures may 

be amalgamated with the damage due to extreme seismic actions. 

Recently, structural health monitoring has gained global attention in the civil engineering 

community with the objective of identifying the damage occurred in civil structures at the 

earliest possible stage, and estimating the remaining lifetime of the structures themselves. 

Structural damage caused by corrosion results in degradation of the mechanical properties of the 

affected components, and therefore it changes the response of the structure as well. Moreover, 

the failure of the structural components like shear walls, bracings and connections. explicitly 

changes the system. Hence, the goal of structural health monitoring can be realized by structural 

system identification; the system corresponding to healthy state should be identified first; in next 

planned system identifications, possible changes that occur in the system with respect to the 

structures’ healthy state are indications of structural damage. This task, within the frames of non-
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destructive  vibration-based damage identification is realized either by direct identification of the 

system, or indirectly; some dynamic characteristics of the system are identified, and possible 

variations in their value are used to update the system. Instances of former methods include dual 

estimation of states and parameters of the structure via Bayesian inference techniques (Chatzi, 

Smyth & Masri 2010), while latter methods make use of modal properties of the structure for 

detection of the damage (Moaveni et al. 2010). 

 

Figure  1-1: August 1, 2007 Minneapolis I-35W highway bridge collapse 

Timely detection of the structural damage allows to prevent the possible casualties and losses 

caused by a collapse of the structure. A recent instance of a structural catastrophe is the collapse 

of Minneapolis I-35W highway bridge, seen in Figure  1-1. The steel truss bridge, constructed in 

1967, collapsed on August 1, 2007 during rush hour, leading to dozens of causalities (French et 

al. 2011). Beyond humanistic concerns, the economic impact of the collapse have been 

considerable: road-user costs due to the unavailability of the river crossing summed up to 

        US dollars per day (Xie, Levinson 2011). These statistics underline the economic 

importance of infrastructure, and therefore substantiates the need for monitoring their health: the 

I35W St. Anthony Falls Bridge, constructed to replace the collapsed steel truss bridge, contains 

over 500 instruments to monitor the structural behavior (French et al. 2011). Long-term 
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monitoring systems are needed to process the data coming from these instruments to detect the 

damage at the earliest possible stage. 

1.2 Objectives and scope 

The objective of the work presented in this thesis is to develop damage identification techniques 

for vibration based non-destructive damage identification of the structures. The emphasis is on 

the development of fast and robust recursive damage detection algorithms, in order to facilitate 

the task of online real-time continuous monitoring of civil structures, like e.g. residential 

buildings, bridges etc.. To this end, four Bayesian filters, namely the extended Kalman filter 

(EKF), the sigma-point Kalman filter (SPKF), the particle filter (PF) and a hybrid extended 

Kalman particle filter (EK-PF) are adopted to identify the structural system. To avoid shadowing 

effects of the structural system, performance of the filters is benchmarked by dual estimation of 

state and parameters of a single degrees-of-freedom structure featuring nonlinear behaviours: an 

exponential softening and a bilinear (linear-softening, linear plastic and linear hardening) 

constitutive laws are studied. It will be seen that the EK-PF outperforms all the other filters 

studied here. It has to be underlined that, though Bayesian filters have been extensively studied 

in the automatic control field, their use in structural engineering is still to be investigated. The 

existing literature offers applications of EKF and SPKF and PF to simplified, low dimensional 

models; however, to the best of our knowledge, the use of EK-PF has never been reported when 

dealing with a structural engineering problem. After the performance of the filters are 

benchmarked when dealing with a single degree-of-freedom system, multi degrees-of-freedom 

structures are dealt with. In this regard EKF, for its computational efficiency and EK-PF, for its 

excellent performance dealing with single degree-of-freedom systems, are adopted. It will be 

shown that performance of EKF and EK-PF is similar when dealing with a two degrees-of-

freedom system; however, moving to three and four degrees-of-freedom structures, EK-PF 

outperforms the EKF in terms of the bias in the estimation. It is realized that, as the number of 

the degrees-of-freedom increase, the adopted methods lose their accuracy in system 

identification and therefore, in damage detection. This problem is raised due to the high 

dimension of the parameter space, i.e. by so-called curse of dimensionality. To cope with this 
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issue, here we make recourse to reduced order modelling of the systems. As for the model order 

reduction technique, a method based on the proper orthogonal decomposition (POD) is adopted. 

Such method makes use of POD to define a subspace in which main dynamic evolution of the 

system takes place; the vectors that span the POD subspace are called proper orthogonal modes 

(POMs). Once such a subspace is obtained, a projection method onto the POD subspace is used 

to reduce the order of the set of governing equations of the system, and then speed-up the 

calculations. Besides the speeding up the calculations, another striking property of the so-called 

POMs is that they are sensitive to changes in the system parameters, this property, is here 

exploited to identify the damage in the structure. 

The main contribution of the work presented in this thesis is the development of a recursive 

stochastic algorithm, by a synergy of dual estimation concept, POD-based order reduction and 

subspace update. The proposed methodology takes advantage of Bayesian filters (e.g. EKF and 

EK-PF) for dual estimation of state and parameters of a reduced order model of a time-varying 

system. Within each time iteration, a Kalman filter is used to update the subspace spanned by the 

POMs of the structure. The efficiency and effectiveness of the algorithm is verified via pseudo-

experimental tests, carried out on a ten-storey shear building. It will be shown that the procedure 

successfully identifies the state, the model parameters (i.e. the components of the reduced 

stiffness matrix of the structure) and relevant POMs of the reduced model. Unbiased estimates 

furnished by the algorithm permits the health monitoring of the structure. 

1.3 Organization of the thesis 

The research presented in this thesis is partitioned into three main topics, namely: (a) system 

identification of dynamic systems; (b) model order reduction of dynamic systems; and (c) 

reduced order model identification of dynamic systems. 

In Chapter  , the first research topic is extensively investigated. Dual estimation of state and 

parameters of structural state space models is considered; EKF, SPKF, PF and EK-PF are used 

for parameter identification and state estimation. First, the performance of the filters is 
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benchmarked by using a single degree-of-freedom nonlinear system; then, application of the 

filters to multi degrees-of-freedom systems is considered. In this regard, a multi storey shear 

building is assessed. Limitations for applicability of this approach to the identification of e.g. the 

stiffness matrix of multi storey structures is highlighted. It is concluded that, due to bias in the 

estimates, these approaches are not suitable for system identification of shear building structures 

with more than three storeys. 

Chapter   is devoted to model order reduction of multi storey buildings. Proper orthogonal 

decomposition is used for extracting the minimal subspace that features the dominant 

characteristics of the structure, via information contained in the response of the structure itself. 

The subspace found by POD is obtained by mathematical manipulation of samples of the 

response of the structure (gathered in the so-called snapshot matrix), hence it can be load 

dependent. In case the external excitation is a-priori known, load dependency of the reduced 

model would not be a problem; however, in case of seismic excitations such condition is not 

always true. To address this issue and build the snapshot matrix, samples are picked from the 

response of a case study structure to the El Centro accelerogram; the obtained reduced model 

then is used to simulate the response of the structure to the Friuli and the Kobe earthquake 

records. It is observed that POD-based reduced models are robust to changes in input seismic 

load. Next, efficiency of the method in speeding up the calculations, with high level of fidelity, is 

numerically investigated. 

Chapter   investigates the statistical properties of residual errors induced by POD-based reduced 

order modelling. Such errors enter into the state space equations of the reduced systems in terms 

of system evolution and observation noise. A fundamental assumption made by recursive 

Bayesian filters, as exploited in this study, is the whiteness of the aforementioned noises. In this 

Chapter, null hypothesis of the whiteness of the noise signals is tested by making use of the 

Bartlett’s whiteness test. It is shown that, no matter what the number of POMs retained in the 

analysis is, the null hypothesis of the whiteness is always to be rejected. However, the spectral 

power of the embedded periodic signals decreases rapidly by increasing the number of POMs. 
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The  speed-up gained by incorporating POD-based reduced models into Kalman observer of 

linear time invariant systems, is also addressed in this Chapter. 

Chapter   approaches the main objective of this research: the dual estimation of the reduced 

order model, and update of POMs of the structure to provide damage detection in structural 

system. It is shown that the first POM of the structure is quite sensitive to the intensity and 

location of the damage: a reduced model, featuring even a single POM, can therefore be used for 

developing damage detection algorithms. The proposed procedure shows a good performance 

when applied to pseudo-experimental tests. It is shown that the algorithm estimates the state, 

model parameters and relevant POMs of the reduced model of a ten storey shear building, 

featuring convergence to the true values of parameters and POMs used to create the pseudo test. 

Final Chapter of the thesis is devoted to the conclusions and suggestions for future work. It is 

remarked that this thesis proposes a novel methodology based on recursive Bayesian inference of 

a reduced order model of the structure. Accuracy and power the proposed approach has been 

tested in the thesis through pseudo-experimental analysis. Online and real-time detection of the 

damage in the civil structural systems is a field that is still to be investigated. It is suggested to 

make use of other existing Bayesian filtering techniques for the purpose of the online real-time 

damage detection. This study does not provide experimental verification of the proposed 

methodology; hence it is suggested as a future research work. 
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Chapter 2: Recursive Bayesian estimation 

of partially observed dynamic systems 

2.1 Introduction 

Recursive inference of the dynamics of a system through noisy observations is usually pursued 

within a Bayesian framework. In this regard, provided that there is a-priori information available 

on probability distribution of observable quantities of the system and there is a correlation 

between observable and hidden quantities of the system, Bayes probability concept is used to 

estimate probability distribution of the hidden state variables. Such an approach is exploited in a 

wide variety of applications: in econometrics for estimation of volatility in the market (Ishihara, 

Omori 2010, Yang, Lee 2011, Miazhynskaia, Frühwirth-Schnatter & Dorffner 2006), for a 

review on the literature see (D. Creal 2009); in robotics for developing behaviors for robots 

(Lazkano et al. 2007), system identification of the robots (Ting, D’Souza & Schaal 2011), and 

their localization (Zhou, Sakane 2007); in biology for molecular characterization of diseases 

(Alvarado Mora et al. 2011), finding linkage in DNA (Allen, Darwiche 2008, Biedermann, 

Taroni 2008) and for characterization of genomic data (Caron, Doucet & Gottardo 2012); in 

image processing for diagnosis of diseases from medical images (Mitra, Lee & Goldbaum 2005), 

for image segmentation (Adelino R., Ferreira da Silva 2009), for image retrieval (Duan et al. 

2005); in object tracking and radars (Jay et al. 2003, Velarde, Migon & Alcoforado 2008, White 

et al. 2009); in speech enhancement (Saleh, Niranjan 2001, Yahya, Mahmod & Ramli 2010); in 

mechanical characterization and parameter identification of materials (Corigliano, Mariani 2004, 

Corigliano, Mariani 2001a, Corigliano, Mariani 2001b), mechanical system identification 

(Mariani, Ghisi 2007, Mariani, Corigliano 2005) and many other fields that are not included for 

the sake of brevity. The mentioned instances are just a few fields of application of Bayesian 

inference schemes; their diversity proves the versatility of such approach in solving problems. 
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This Chapter of the thesis deals with simultaneous estimation of state and parameters of a 

structural system, in a recursive fashion. As new observations become available, the information 

concerning the current state of the system, which is obtained through a model of the system, is 

updated based on the  measured observation. This goal is realized by making use of four 

recursive Bayesian filters, namely: the extended Kalman filter (EKF), the sigma-point Kalman 

filter (S-PKF), the particle filter (PF) and a newly proposed hybrid extended Kalman particle 

filter (EKPF). In this regard, to avoid shadowing effects of high dimensional structures, a single 

degree-of-freedom system has first been considered. The performances of the filters are 

benchmarked for simultaneous estimation for state and parameters of a nonlinear constitutive 

model of the system. After the performance of the filters dealing with a single degree-of-freedom 

structure has been verified, we move to the analysis of multi degree-of-freedom (DOF) 

structures. To this end, a shear type of the buildings has been considered. It has to be highlighted 

that, though the studied Bayesian filters have been adopted in the other fields like automatic 

control, their use in the field of structural engineering needs further investigations. The 

remainder of this Chapter is organized as follows: in Section    , the dual estimation concept for 

simultaneous estimation of state and parameters of a state-space model is reviewed; in Section 

   , general frames of the recursive Bayesian inference techniques are discussed; Section     is 

devoted to the Kalman filter, as the optimal filter of linear state-space models; Section     deals 

with approximate Bayesian filters for nonlinear systems; in Section     numerical results 

concerning dual estimation of states and parameters of single DOF and multi DOFs structures is 

presented; the Chapter is finally concluded in Section    , where the limitations of studied filters, 

when applied to simultaneous state and parameter estimation of high dimensional problems, are 

discussed together with our remedy to solve the issue. 

2.2 Dual estimation of states and parameters of mechanical systems 

In this study the focus is on civil structures. Hence, we address mechanical systems whose 

dynamics is governed by the well-known set of ordinary differential equations governs evolution 

of their dynamic: 
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  ̈    ̇                           (2.1) 

where:   is the mass matrix,   is the damping matrix;        stands for possibly displacement 

dependent internal force, whereas      is the loading vector;  ,  ̇ and  ̈ are the nodal 

displacements, velocities and accelerations, respectively. Since measurements are usually done 

in discrete time, we limit our attention to a discrete time formulation, where it is assumed that a 

part of displacements or accelerations of the system are measured in evenly spaced time grids. 

To embed the mathematical model into algorithms designed for recursive Bayesian inference, we 

represent the dynamics of the system in a state-space form; details concerning the state-space 

representation of the mathematical model       is presented in the following Sections. 

Throughout the dissertation, by state we mean displacement, velocity and acceleration quantities 

of the response of the structure and by parameters we intend in the coefficients of the internal 

force term (in linear elastic case, components of the stiffness matrix). The state vector   thus 

contains  ,  ̇ and  ̈, namely: 

    [

  

 ̇ 

  ̈ 

]      (2.2) 

while parameter vector    gathers some unknown parameters of the system. 

The state space representation of the system thus reads: 

     
                

                 (2.3) 

     
                     (2.4) 

where, for any time interval           ,   
     is a function of the state      and parameters      

of the system, and evolves the state of the system         to obtain     .   
  quantifies the 

correlation between the state and the observable part of the system, at any given time instant; the 

name of Eq.      , observation equation, stems from the aforementioned fact.   
  and    are 

zero mean, uncorrelated Gaussian processes with covariance matrices    and  , respectively. In 

general, observation equation may take any form; however, in the current study it is reasonably 
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assumed that observation process consists of a part of the state vector, say displacements and/or 

accelerations of some representative points. Consequently, the observation equation can be 

written as a sum of a linear mapping of the state through a Boolean matrix (  
 ) and an additive, 

uncorrelated Gaussian noise stemming from uncertainty of measurement sensor. 

In this study the main mission of Bayesian filters, beyond estimating hidden part of the state 

vector, would be the calibration of system model parameters in an online fashion. At each time 

interval           , on the basis of the information contained in the latest observation   , the 

algorithms update previous knowledge of the parameter      to yield   . To this end, dual 

estimation of states and parameters is considered; the parameter vector    is therefore 

augmented by defining the state vector (Mariani, Corigliano 2005): 

   [
   

  
]      (2.5) 

Besides the conventional form of state-space equation, that is composed of evolution and 

observation equations, dual estimation is pursued via an extra vectorial equation that governs the 

evolution of the parameters over time according to: 

          
       (2.6) 

The intuitive idea behind this extra equation is to permit the unknown parameters of the system 

to vary over time, starting from an initial guess and hopefully converge onto an unbiased 

estimate. The possibility of variation to parameters is provided by white Gaussian fictitious noise 

  
 , added to parameter evolution; the intensity of such a noise should be tuned, in order to have 

an unbiased and converging estimate for the parameters (Bittanti, Savaresi 2000). The state-

space equation governing evolution of the augmented state thus reads: 

                       (2.7) 

                (2.8) 

where      , maps the extended state vector    over time, and therefore features both equations 

      and       in a unique equation. 
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2.3 Recursive Bayesian inference 

The inference problem might be regarded as recursively estimating the expected value 

           of the state of the system, conditioned on the observations. Provided that the initial 

probability density function (PDF)                of the state vector is known, the problem 

consists in estimating           , assuming that the conditional PDF                is 

available. The problem may  be decomposed in two stages of prediction and update. As for the 

prediction stage, the Chapman-Kolmogorov equation furnishes the a-priory estimate of the state 

PDF at    (Arulampalam et al. 2002): 

                                              (2.9)
 

In the update stage, as soon as the new observation    becomes available, Bayes rule is profited 

to apply correction on the PDF of the state (Cadini, Zio & Avram 2009): 

                                      (2.10)
 

where   is a normalizing constant which depends on the likelihood function of the observation 

process. The Eqs.       and        together forge the basis for any Bayesian recursive inference 

scheme. The analytical solution of the integral in       is not possible except for a limited 

category of problems, namely systems formulated by linear state space equations and disturbed 

by uncorrelated white Gaussian noises (Eftekhar Azam, Bagherinia & Mariani submitted). In 

case of a general nonlinear problem one has to make recourse to approximate solutions, either by 

approximating the nonlinear evolution equations via linearization (Corigliano, Mariani 2004) or 

via discrete approximate representation of the PDF of the state vector (Mariani, Ghisi 2007, 

Doucet, Johansen 2009, Doucet, Johansen 2009). In the next Section, main features of the 

analytical solution available for linear Gaussian state space model is reviewed, and is followed 

by the Section     which deals with approximate solutions for nonlinear state-space models. 
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2.4 Linear dynamic state space equations: optimal closed form estimator 

As mentioned in the preceding section, recursive Bayesian estimation of linear Gaussian state-

space models can be handled analytically. Consider a linear discrete state-space model, that can 

be obtained by substituting the arbitrary evolution equation       in Eqs.       and       by a 

linear operator   . The state-space equations of such a system therefore read: 

                      (2.11) 

                 (2.12) 

Provided that the initial probability distribution of the state is Gaussian, it is straight-forward to 

show that a linear operator does not change the Gaussian PDF over time (Kalman 1960). That is, 

in the Chapman-Kolmogorov integral at any arbitrary time instant    the functional form of both 

integrands is a priori known;                is always a Gaussian probability density function, 

and also             is by definition a Gaussian function. Consequently, the integral can be 

handled analytically. Kalman, in his seminal paper (Kalman 1960), introduced a well-known 

filter which is the optimal estimator for linear systems with uncorrelated  Gaussian noise; the 

filter provides an online estimation of first and second order statistics of a state space model, and 

it includes a prediction stage which is simply an evolution of state over time. In the update stage, 

by calculating the Kalman gain   , the filter enhances the predicted values furnished in previous 

stage. For a detailed description and algorithmic implementation of the Kalman filter (KF) 

readers are referred to Table  2-1.  

In many real life problems, neither the dynamics of the system takes a linear form nor the 

uncertainties of transition equation might be regarded as Gaussian distributions. Even if the 

initial distribution of the uncertainties could be assumed Gaussian, a nonlinear state-space model 

would change the distribution over time (Mariani, Ghisi 2007). Hence, an optimal closed form 

solution would not be available for a general nonlinear problem (Doucet, Johansen 2009). 
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Table  2-1: Kalman Filter algorithm 

- Initialization at time   : 

  ̂       

          ̂       ̂  
  

 

- At time   , for         : 

 Prediction stage: 

1. Evolution of state and prediction of covariance 

  
         

  
          

   
 

 Update stage: 

1. Calculation of Kalman gain: 

     
   

 (    
   

    )
  

 

2. Improve predictions using latest observation: 

 ̂    
            

  

     
        

  

 

In a mechanical system, the source of nonlinearity might be the material response to loading 

(Corigliano, Mariani 2001a, Corigliano, Mariani 2001b, Corigliano 1993); however, even if the 

material behavior would be linear, dual estimation of states and parameter will result in a bilinear 

(nonlinear) state space model (Ljung 1999). We illustrate this issue via an intuitive example, by 

considering the following linear state space model: 

               
         (2.13) 

                (2.14) 

where:    and    denote the state and the observation of the system at a given time instant   ;   

and   represent the linear transition for the state in a given time interval           , while   links 
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the hidden state    to the observation process.   
  and    denote the zero mean white Gaussian 

processes that quantify evolution and measurement inaccuracies, respectively. In case one is only 

interested in estimating the state of the system   , we already know the Kalman filter furnishes 

optimal estimation; however, let us imagine one is also interested in an online estimation of the 

parameters of the state space model. For the sake of simplicity we assume that only parameter   

is of interest. As already mentioned the trick in dual estimation framework is to collect the 

unknown parameter   into the extended state vector    and try to track the dynamics of such 

system via recursive Bayesian inference algorithms. Note that, even though parameter   is 

stationary by definition, in the formulation of dual estimation the parameter is allowed to vary. In 

this regard, a transition equation governing evolution of the parameter is introduced: 

          
      (2.15) 

Equation       , together with        and       , constitute the required state-space model for 

dual estimation of states and parameters. The augmented state vector    thus becomes    

       , where          and         ; consequently Eqs.             become: 

                             (2.16) 

                
       (2.17) 

                   (2.18) 

or, in matrix form: 

 [
     

     
]  [

               

       
]  [

  
 

  
 ]  [

 
 
]   (2.19) 

        [
     

     
]          (2.20) 

It is evident that Eq.        is a nonlinear mapping over the given time interval           . The 

above mentioned fact, together with consideration that many real life problems are nonlinear, 

substantiates the need for Bayesian inference algorithms targeting general nonlinear, non-
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Gaussian problems. The following Section is devoted to reviewing the approximate solutions 

available in the literature to deal recursive Bayesian estimation of nonlinear state-space models. 

2.5 Nonlinear dynamic state space equations: approximate Bayesian 

estimators 

A simple remedy for dealing with nonlinear state-space models is through an extension of the 

Kalman filter, where for each time instant    the nonlinear state mapping          is linearized 

by a first order truncation of a Taylor series expansion around     . To this end, the Jacobian of 

the evolution equation is used as a surrogate for linear transition matrices in order to update 

covariance (Gelb 1974); then, the Kalman gain is used to update state statistics. This procedure is 

the extension of the Kalman filter for nonlinear state space models, hence its name extended 

Kalman filter (EKF). The extended Kalman filter assumes the prior                to be 

Gaussian; however, even if initially Gaussian, a nonlinear mapping will change its probability 

distribution. Moreover, a severely nonlinear mapping of state might change the probability 

distribution into a tailed or a bimodal distribution (Adelino R., Ferreira da Silva 2009, Van der 

Merwe 2004) and cause bias in the estimates furnished by the EKF. Also, the approximation of 

the state mapping via its Jacobian is not accurate enough in some cases; it does not consider the 

stochastic nature of the state vector, and the effect of the neglected terms may become 

considerable. As a consequence, the approximation might lead to an inconsistent estimation of 

the covariance, hence a bias or divergence might occur in estimation of the state (Julier, 

Uhlmann 1997). For a detailed description of EKF algorithm see Table  2-2, where 

                
denotes the Jacobian of       at         . 
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Table  2-2: Extended Kalman Filter algorithm 

- Initialization at time   : 

  ̂       

          ̂       ̂  
  

 

- At time   , for         : 

 Prediction stage: 

1. Computing process model Jacobian: 

                   
 

2. Evolution of state and prediction of covariance: 

  
         

  
          

   
 

 Update stage: 

1. Calculation of Kalman gain: 

     
   

 (    
   

    )
  

 

2. Improve predictions using latest observation: 

 ̂    
            

  

     
        

  

 

In case of severely nonlinear systems, the successive linearization approach might be inaccurate 

(Mariani 2009b). For certain problems it might be practically difficult to adopt: in case of a non 

holonomic material behavior, to calculate the Jacobian one has to know if the current state of the 

system proceeds toward loading or unloading (Mariani, Ghisi 2007). The difficulty in estimation 

of the Jacobian and also its inadequate accuracy has led to development of a category of 

derivative-free filters, called sigma-point Kalman filters, SPKF (Julier, Uhlmann & Durrant-

Whyte 1995, Julier, Uhlmann & Durrant-Whyte 2000). The basic idea behind these filters is that 

it is easier to approximate a probability distribution than a nonlinear state-space model. A SPKF 
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uses a deterministic set of quadrature points, called sigma-points, to handle the Chapman-

Kolmogorov integral (Ito, Xiong 2000); this set of deterministic points can be used since a-prior 

distribution of the state is assumed to have a Gaussian functional form for all the time instants. 

Hence, it is possible to approximate it through a set of deterministic points which are 

parameterized through the mean and covariance of the state vector. The distribution of the state 

vector, a multivariate Gaussian probability distribution, at time      reads: 

               
 

             
 

 ⁄
     

 

 
       ̂    

     
         ̂      (2.21) 

where:  ̂   and      are the associated mean vector and covariance matrix of the state vector, 

respectively. 

Once it is established that the a-priori distribution of the state vector is a known Gaussian one, 

the Chapman-Kolmogorov integral can be recast as a Gaussian integral of the form 

           
  , where      is an arbitrary probability distribution, whereas      denotes the a-

priori probability distribution of state vector. Hence (2.9) becomes (Ito, Xiong 2000): 

          
 

             
 

 ⁄
     

 

 
       ̂    

     
         ̂           (2.22) 

where      is an arbitrary function of state vector. To numerically handle the Gaussian integral 

in       , a discrete representation of        is necessary, as done by a set of points that feature 

the same statistics of the original Gaussian distribution (Ito, Xiong 2000): 

    {

√      

 √        

  

     
        

    
 

(2.23) 

and 

       {

  

      
      

 

      
      

 
(2.24) 
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where     is a constant and    is the  th
 unit vector in   . Julier and co-workers (Julier, 

Uhlmann & Durrant-Whyte 1995) proposed their S-PKF based on a quadrature rule which, for 

scalar functions, is identical to the Gauss-Hermit quadrature rule (Ito, Xiong 2000): 

            
   ∑           

    

   
 (2.25)

 

The      quadrature points are the minimal number of points necessary to preserve first and 

second moments of a multivariate normal distribution (Julier, Uhlmann & Durrant-Whyte 1995). 

One can assume       
as quadrature weights, which in this case are constant in all time instants, 

while the quadrature points are varying over time on the basis of the information contained in the 

covariance of the state, at      the set of sigma-points are: 

  

     {

 ̂         

 ̂      √           

 ̂      √                  

   (2.26)
 

where  ̂    denotes the expected value of the state and √       stands for j
th

 column of square 

root of its associated covariance at       . This scheme outperforms the extended Kalman 

filter (Mariani, Ghisi 2007); for a detailed description of SPKF algorithm, see Table  2-3. 

In Table 2-3,      and   are weights adopted in the merging stage at the end of the time step, to 

build mean and covariance of the current state.   instead denotes, a time invariant scaling factor 

that renders possible capturing local effects of nonlinear functions. To enhance the performance, 

the scaling factor   should be carefully calibrated to allow appropriate capturing of local 

nonlinearity effects, by tuning the distances of each sigma-point from the mean of a-priori 

distribution of the variable. In the SPKF, the square root √     is calculated by a Choleski 

factorization. The subscript   refers to the j
th

 column of the Choleski factor of the covariance. 

The SPKF approach, similarly to the EKF, is based on the assumption that at each time instant 

the a-priori distribution of the state is Gaussian. 



19 

 

Table  2-3: Sigma-Point Kalman Filter algorithm 

- Initialization at time   : 
  ̂       

          ̂       ̂  
  

 

- At time   , for         : 

 Prediction stage: 

1. Deploying Sigma-Points: 

     
  

{
 
 

 
  ̂         

 ̂      √           

 ̂      √                  

 

2. Evolution of the sigma points: 

       (    
 ) 

3. Estimation of the statistics: 

  
  ∑       

    

   

 

  
       

                    Where: 

   ∑    (       
 )(       

 )
 

    

   

 

 Update stage: 

1. Calculation of Kalman gain: 

     
   

 (    
   

    )
  

 

2. Improve predictions using latest observation: 

 ̂    
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To deal with more general problems, it is a common practice to make recourse to Sequential 

Monte Carlo methods (Doucet, Johansen 2009) for handling the Chapman-Kolmogorov integral 

by numerical approximations. Sequential Monte-Carlo methods make no explicit assumptions 

concerning the form of the posterior density             . These methods approximate the 

Chapman-Kolmogorov integrals in       through finite sums,  adopting a sequential importance 

sampling on an adaptive stochastic grid. Within this frame, the particle filter implements an 

optimal recursive Bayesian estimation by recursively approximating the complete posterior state 

density. A set of    weighted particles   
   

, drawn from the posterior distribution             , 

is used to map the integrals. To this end, the main trick is to represent the posteriori PDF via 

Dirac delta functions pond at discrete sample points, namely the so-called particles. Without loss 

of generality, one can write (Cadini, Zio & Avram 2009): 

                                            (2.27) 

where      denotes the Dirac function.
 

Assuming the true posterior              is known and can be sampled, an estimated of        is 

given by: 

              
 

  
∑            

  
  

   
 (2.28)

 

where   
  are a set of random samples drawn from true posterior             . In practice, it is 

impossible to efficiently sample from the true posterior; a remedy is built by making recourse to 

the importance sampling, i.e. to sample state sequences from an arbitrarily chosen distribution 

             called importance function. An unbiased estimate of              can then still be 

made as (Cadini, Zio & Avram 2009): 

 
                                 

          

            
                

 
 

  
∑   

             
  

  

   

 (2.29)
 

where: 
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 (2.30)
 

is the importance weight associated to the state process   
 . In practice, these weights are difficult 

to calculate, due to the need of evaluating the integral for normalizing constant        . Instead, 

the following weights are used (Gordon, Salmond & Smith 1993): 

   
  

           
        

  

    
       

 (2.31)
 

which are subsequently normalized according to: 

  ̃ 
  

  
 

∑   
 

  

   

 (2.32)
 

Thus, estimate of the posterior distribution reads: 

              ∑  ̃ 
            

  
  

   
 (2.33)

 

If the current state of the importance sampling function do not depend on future observations, 

i.e., if the importance sampling function satisfies the following condition (Van der Merwe 2004): 

 
                     ∏                  

 

   

                                                             

 (2.34) 

and if states can be considered as a Markov process, through the assumption that the 

observations are conditionally independent given the states we get (Van der Merwe 2004): 

               ∏  (       )
 
                                             (2.35) 

             ∏  (     )
 
                                                 (2.36) 

So, by using Eqs.           in       , the recursive formula for the update of importance 

weights becomes (Van der Merwe 2004): 
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 (2.37)

 

For filtering purposes, the estimation of the marginal probability density          of the full 

posterior is enough, that is, if                   is substituted by              , the sampling 

proposal will only depend on      and    (Arulampalam et al. 2002). Consequently, the 

recursive formula for estimation and update of the non-normalized weights reads (Arulampalam 

et al. 2002): 

   
      

        
      

      
  

    
      

     
 (2.38) 

 

The        provides a way to sequentially update the importance weights, given an appropriate 

choice of the proposal distribution              . Consequently, any expectations of the form 

                               ,      being any given function, can be approximated 

through          ∑   
  (  

 )
  
   . 

In (Doucet 1997), it was shown that the proposal distribution               minimizes  the 

variance of the importance weights, conditional on      and   . Nonetheless, the distribution 

 (       ) (i.e. the transition prior) is the most popular choice for the proposal distribution. 

Although it results in a Monte-Carlo variation higher than that obtained using the optimal 

proposal              , the importance weights are easily updated by simply evaluating the 

observation likelihood density            for  the sampled particle set, through (Cadini, Zio & 

Avram 2009): 

   
      

        
   (2.39) 

The variance of these importance weights increases stochastically over time (Doucet 1997); after 

a few time steps, one of the normalized importance weights tends to one, while the remaining 

weights tend to zero. To address this rapid degeneracy, a resampling stage may be used to 

eliminate samples with low importance weights, and duplicate samples with high importance 
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weights. An intuitive explanation of particle filtering technique reads: each sample   
 

 
might be a 

solution of the problem, and its associated weight   
  signifies its probability of being the correct 

solution. In the resampling stage, the particles with higher probability are duplicated and in turn 

the ones with lower probability are discarded. Such an approach somehow permits the filter to 

condense the cloud of particles around the peak probability zone. An algorithm built in this way 

was first proposed by (Gordon, Salmond & Smith 1993), and has been called in different names 

like bootstrap filter, condensation algorithm etc.; for a detailed algorithmic specification see 

Table  2-4. 

It is worth underlining that the update stage in the particle filter algorithm is conducted via 

evolution of particle weights, based on the probability of occurrence of each particle conditioned 

on latest observation a weight. After such weight evolution, the resampling stage is prescribed to 

alleviate the degeneracy issue, where ensemble of the samples is refined to increase the 

population of the samples which are more likely and decrease the lower probability population. 

To this end, different algorithms were proposed in the literature, like e.g. stratified, systematic, or 

residual resampling. Accounting for sampling quality and computational complexity, the 

systematic resampling scheme here adopted turns out to be the most favorable one (Hol, Schon 

& Gustafsson 2006). The resampling stage is performed by drawing a random sample    from 

the uniform distribution over      ; then, the  th
 particle for which the value of the random 

number    is between values of the empirical cumulative distribution of particles at     and   

is duplicated by resampling stage. Details of the systematic resampling (Kitagawa 1996) 

algorithm are shown in Table  2-5. 

Since particle filter handles the current, actual PDF of the state to draw particles in prediction 

stage, it can appropriately account for non-Gaussian densities. However, as the dimension of the 

state vector increases, computational costs associated with numerical integrations increase 

drastically. It is suggested, as a rough rule of thumb, not to apply paticle filter to problems with 

dimension of state vector more than five (Li, Goodall & Kadirkamanathan 2004). 
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Table  2-4: Particle filter algorithm 

- Initialization at time   : 

  ̂                                          

          ̂       ̂  
  

  
   

  ̂ 

             
   

                 

 

- At time   , for         : 

 Prediction stage: 

1. Draw particles: 

  
   

  (       
   

)                     

 Update stage: 

1. Evolve weights: 

  
   

     
   

  (     
   

)                    

2. Resampling, see Table  2-5. 

3. Compute expected value: 

 ̂  ∑  
   

   
   

  

   

 

Table  2-5: Systematic resampling algorithm 

- At time   , for         : 

 draw a random sample    from uniform distribution over       

 find   that satisfies: 

∑   
   

   

   

    ∑  
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The sampling distribution used in the generic particle filter can cause serious problems, since it is 

not the optimal one, conditioned on the latest observation. This fact leads to high computational 

costs, since the cloud of the samples fall far from the zones with high probability; many samples 

has therefore to be drawn in order to make the algorithm to converge. To alleviate the 

aforementioned issue, our remedy is to keep using the same sampling distribution; however, after 

the samples are drawn we improve the quality of the ensemble of the samples. Roughly 

speaking, once the samples are drawn, they are pushed by an extended Kalman filter toward the 

zones of higher probability in order to incorporate data from the latest observations into each 

sample. 

The reason for exploiting the EKF instead of the SPKF, for enhancing the quality of sample 

ensemble, is twofold: first, the difficulty in tuning it in a way to have all the particles moved 

appropriately; second, the computational cost of the SPKF combined with particle filter can be 

significant, since both adopt numerical approximations to handle the quadrature. That is, the 

EKF is combined with particle filter frames to update each particle based on the information that 

is contained in the latest observation, see Table  2-6. 

In Table  2-6 ,    represents the current Jacobians of mappings      . 

In what follows, we will assess performance of the filters through numerical examples. In the 

absence of experimental data, for validation of the algorithms we rely on pseudo experimental 

data, i.e. numerical data resulting from direct analysis contaminated by white Gaussian processes 

substitute noisy measurements of the observable part of the state vector. 
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Table  2-6: Hybrid extended Kalman particle filter algorithm 

- Initialization at time   : 

  ̂                                          

          ̂       ̂  
  

  
   

  ̂ 

             
   

                 

 

- At time   , for         : 

 Prediction stage: 

1. Draw particles: 

  
   

  (       
   

)                     

2. Push the particles toward the region of high probability through 

an EKF: 

  
           

     
   

   
   

   
      

 (    
      

   )
  

                                   

                                                                      

  
   

   
       

   
(       

    )

    
      

       
   

    
    

                         

 

 Update stage: 

1. Evolve weights: 

  
   

     
   

  (     
   

)                    

2. Resampling, see Table  2-5. 

3. Compute expected value or other required statistics: 

 ̂  ∑  
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2.6 Numerical Results for dual estimation of single degree and multi degrees 

of freedom dynamic systems 

To numerically solve the set of ordinary differential equations that govern the dynamics of the 

system, a Newmark explicit integration scheme has been adopted. According to (Hughes 2000), 

the time marching algorithm within the time step            can be partitioned into: 

 predictor stage: 

  ̃           ̇        
 

 
    ̈    (2.40) 

  ̇̃   ̇            ̈    (2.41) 

 explicit integrator: 

  ̈             ̇̃     ̃    (2.42) 

 corrector stage: 

     ̃       ̈  (2.43) 

  ̇    ̇̃       ̈  (2.44) 

where            denotes the time step size. To ensure numerical stability in the linear 

regime,    needs to be upper bounded by (Bathe 1996): 

      
  

 
 (2.45) 

where    is the period associated with the highest oscillation frequency. Even if      can be 

increased in the reduced model, since higher order oscillations are filtered out of the numerical 

solution, in what follows we are keeping    constant in all the simulations. Hence, the speedup 

reported is therefore to be mainly linked to the reduction of the number of handled DOFs.  

In (Corigliano, Mariani 2001b) it was shown that structural effects may play a prominent role in 

system identification. They typically lead to shadowing effects, arising when the sensitivity of 
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measurable variables (like, e.g. displacements or velocities) to constitutive parameters becomes 

negligible or falls out of the measurement range (i.e. they become comparable to round-off 

errors). Such structural effects practically lead to multiple solutions of the inverse problem in 

terms of model parameters update (all difficult to distinguish in the noisy environment), and 

filters provide biased or divergent calibrations, see e.g. (Corigliano, Mariani 2004, Corigliano, 

Mariani 2001a, Corigliano, Mariani 2001b). To solely benchmark performance of the filters we 

first focus on dynamics of a single degree-of-freedom structure. Once the performances of the 

filters are benchmarked by analyses concerning a single degree-of-freedom, then we move to the 

multi degrees of freedom structures to study the applicability of these methods to more realistic 

scenarios. 

2.6.1 Single degree-of-freedom dynamic system 

Since we are interested in benchmarking the extended Kalman particle filter (EK-PF) when 

compared to other Bayesian filters here tested (i.e. the EKF, the SPKF and the PF), the 

aforementioned structural effects are avoided by focusing on an undamped single DOF system 

constituted by a mass (or rigid block) connected to the reference frame through a spring, see 

Figure  2-1. The equation of motion of the system reads: 

  ̈                (2.46) 

where:   is the block mass;       is the spring force;      is the external load, which evolves in 

time;   and  ̈ are the displacement and acceleration of the block, respectively. Results can be 

easily extended to the damped case; in such situation, it is however important to have the system 

continuously (or permanently) excited, so as to avoid vibration amplitudes to progressively 

decrease in time, thereby loosing filter efficiency, see (Corigliano and Mariani, 2004). 
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Figure  2-1: Single degree-of-freedom structural system 

All the filters here studied perform well for dual estimation of a linear SDOF structure, hence the 

results are not discussed here for the sake of brevity. Instead, to assess the filter performance   is 

assumed to be a highly nonlinear, RFS-type function of the displacement  , i.e. of the spring 

elongation (Rose, Ferrante & Smith 1981, Corigliano, Mariani & Pandolfi 2006): 

                      (2.47) 

where   and   are unknown model parameters in need of tuning. Even if inspired by tight 

binding studies in atomistic simulations, law (2.47) is to be considered as phenomenological 

description of damaging processes taking place inside the spring: once a peak reaction is 

attained, softening (i.e. strength degradation) sets in and drives the state toward a smooth failure, 

occurring when     . The two parameters   and   in (2.47) can therefore be related to the 

strength    and the toughness   of the spring, through: 

   
 

  

                               
 

  

 

 

     (2.48) 

where   is the Nepero number. 

Law (2.47) can be handled as a tensile envelope, with damage activation/deactivation conditions 

to be adopted to properly describe unloading/reloading paths, see e.g. (Mariani, Ghisi 2007). In 

accordance with previous papers (Mariani 2009b, Mariani 2009a), we instead assume here that 

damage evolution is captured by strength degradation only, and model (2.45) is managed as a 

holonomic (nonlinear elastic) law. 
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Figure  2-2: State tracking. Comparison between target (dashed lines) and tracked (orange squared 

symbols) system evolution, in terms of: (left column) displacement u; (central column) velocity  ̇; (right 

column) acceleration  ̈. Results obtained by running: (top row) EK-PF; (middle row) PF, and (bottom 

row) S-PKF. 

As mentioned before, we focus on pseudo-experimental (numerical) tests only. They consist in 

running direct analyses with known (target) values of model parameters, and then adding a white 

noise of assigned variance to the system output. This procedure allows to obtain scattered 

measurements, which are then used to feed the filters. 
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In order to handle a stable system dynamics, followed by divergence (i.e. by     ) due to the 

inception and growth of damage in the spring, the applied load      (see Eq. 47) has been 

assumed to monotonically increase in time according to: 

                           (2.49) 

see also (Corigliano, Mariani 2004). With the mass initially at rest, this loading condition allows 

the system to be stable up to       s; beyond this threshold, softening in the spring becomes 

dominant (i.e. the transmitted force gets vanishing), and displacement   diverges. 

In the analyses, the mass has been assumed        Ns
2
/mm, see also (Corigliano, Mariani 

2004). Measurements consist of the current mass displacement only, featuring a noise level 

characterized by a standard deviation        mm. 

 

 

Figure  2-3: Model calibration. Time evolution of estimated model parameters (top row)   and (bottom 

row)  , at varying initialization values. Results obtained by running: EK-PF (long-dashed blue lines), PF 

(dashed orange lines) and S-PKF (continuous black lines). 
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Figure  2-4: PF, projections onto the parameters (top)   and (bottom)   axes of the evolution of particles. 

Results relevant to the tracking of the whole system state (i.e.  ,  ̇ and  ̈) are reported in Figure 

2-2, as obtained by running the EK-PF and, for comparison purposes, the PF and the S-PKF. In 

these plots, the dashed lines represent the target system response; the orange squared symbols are 

instead the discrete-time estimations furnished by the filters, and the blue circular symbols stand 

for the measurements (that are displacement values only). The figure shows that the three filters 

are all capable to track the initial, stable oscillations and the transition to the unstable regime due 

to inception of softening. Even if a high number of particles (500 in this analysis) has been 

adopted, the PF is not able to attain the same accuracy of the S-PKF; the EK-PF (run using   

particles) is instead very accurate, performing slightly better than the S-PKF. 
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We now move to the system identification task. As usual (see, e.g., (Ljung 1999)), results to 

follow have been obtained by setting the pivotal entries of    relevant to model parameters to be 

(at least) two orders of magnitude larger than those relevant to state variables. This way, model 

calibration is enhanced, since information (actually, innovation) brought by measurements is 

trusted much more than current estimates. 

 

 

Figure  2-5: EK-PF, projections onto the parameters (top)   and (bottom)   axes of the evolution of 

particles. 

In terms of time evolution of the estimates of model parameters   and  , it is shown in 

Figure  2-3 shows that they rapidly converge to the target values in the stable dynamic regime, 

independently of the initialization guess (here in the range between     and      of the target 
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values). The SPKF and the PF perform better than the EK-PF in the short-term time interval, 

featuring higher convergence rates without excessive oscillations of the estimates. But, as soon 

as the system stability threshold is approached, wild oscillations of increasing amplitude set in, 

and lead to diverging model calibration furnished by SPKF and PF. On the contrary, the EK-PF 

does not show such wild oscillations, and always provides stable, unbiased estimates. 

To get insights into the superior performance of the EK-PF, Figures 2-4 and 2-5 report the 

projections onto the two model parameter axes of the time evolution of the (smoothed) 

distribution of particles deployed by PF and EK-PF, respectively. It can be seen that step  #2 of 

prediction stage of the Table  2-6 proves very efficient in moving the particles toward the region 

of major interest, with distributions that are not spread over a wide range of values. This 

eventually helps avoid divergence of the estimates. 

Next, we study the performance of Bayesian filters for a slightly more difficult task: the dual 

estimation of a system having a bilinear constitutive model for its spring. The system is the same 

as before, but now the relationship between the force in spring   and the displacement   reads: 

   {
                                                         

                                                     
  (2.50) 

where    denotes initial slope of the constitutive model of the spring;    is the limit at which 

spring constitutive model starts its bilinear behavior; and    denotes the gradient of force-

displacement after the displacement has exceeded   .  

The strength of the constitutive law        lies in the versatility in simulating three different 

material behaviors, namely the linear-hardening, linear-perfect plastic and linear-softening. 

Under monotonically increasing loadings, depending on the    value this bilinear constitutive 

law can be adopted to deal with identification of parameters of a structure whose behavior may 

not be known a-priori.  

While dealing with joint state and parameter estimation, the main drawback of such constitutive 

law is the intricate interrelation of components of the state vector, when the parameter of the 
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constitutive model are included into the state vector. Consider the state-space representation of 

the system, augmented state vector incorporates   ,    and    so as: 

  [
  

  

  

]        (2.51) 

At each time iteration, the evolution equation, based on the value of    may find two different 

functional form: if displacement of the spring is less than   , only the initial linear behavior of 

the spring gets involved; if displacement of the spring exceeds   , nonlinearity of spring affects 

the spring force. Filter thus has to decide which path to follow, as long as deterministic 

information is not available for   . In what follows results of application of nonlinear versions 

of Kalman filters and Particle filter and also a hybrid extended Kalman particle would be 

presented. The results are organized in three sets, each one of the filtering algorithms are 

assessed when dealing with reference problems of each scenario: linear hardening, linear-

perfectly plastic and linear-softening constitutive laws. 

Like before, in all the analyses pseudo-experimental data are used instead of data coming from 

experiments; the numerical data contaminated by a zero mean additive white noise are therefore 

taken as observations of the system. The initial slope    is always assumed to be          , 

while          for hardening,      for plasticity and        to mimic softening 

behavior. The value of the threshold of linear behavior    is set to        ; the mass has been 

assumed        Ns
2
/mm, see also (Corigliano, Mariani 2004, Eftekhar Azam, Bagherinia & 

Mariani submitted). Measurements consist of the current mass displacement only, featuring a 

noise level characterized by a standard deviation        mm. In order to incept a nonlinear 

behavior due to damage in the spring, the applied load   has been assumed to monotonically 

increase in time according to       . Since the main objective of this study is the calibration of 

constitutive parameters, we just include the plots of parameter estimation unless there is a 

specific reason for presenting state estimate plots. 
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Figures 2-6, 2-7 and 2-8 show the performance of the EKF in simultaneous calibrating the three 

constitutive parameters of linear hardening, linear plastic and linear softening case, respectively. 

The filter is run for different initialization values; it is seen that, except for the initializations 

from target values, in none of the scenarios the EKF is able to identify the constitutive 

parameters. As mentioned before, the EKF is a straight-forward extension of the Kalman filter, 

based on linearization of the evolution equation. It is suitably adopted for weakly nonlinear 

problems; however, if the nonlinearity is severe, such linearization  is not accurate enough and 

poor performance is expected. It has to be underlined that tuning of the filter, in order to obtain 

unbiased estimate of parameters is not always easy, and we do not claim that we have tuned 

optimally the filters for different initializations and constitutive laws. In essence, three noise 

covariances associated with each parameter are tuning knobs of the system (Bittanti, Savaresi 

2000). One has to notice that, as the number of the parameters increase the simultaneous tuning 

of them might become more difficult and algorithm appears to be practically inefficient.  

Next, results relevant to the performance of the SPKF are presented; even though SPKF has 

proved to outperform EKF in many cases, it suffers from problem of positive definiteness of 

covariance matrix when dealing with parameter identification (Holmes, Klein & Murray 2008), 

and also the tuning of the scale factor might become critical (Mariani 2009b). Figures 2-9, 2-10 

and 2-11 present the results obtained by SPKF when dealing with the three different scenarios of 

constitutive laws. Like in the previous case, the filter is run with different initializations to see 

whether convergence is triggered from different starting points. It is seen that the performance of 

SPKF is quite poor, as it is not able to furnish unbiased estimates of the parameters, except for 

the case that the initial guess are set at the target values of parameters. We  remind that, in excess 

of three fictitious noise covariance to be tuned, within the SPKF algorithm also the scale factor 

should be tuned accurately; such a factor is used to let the filter capture local effects of 

nonlinearities of the evolution equation. Adding this to the three former parameters one can see 

how delicate could become the task of tuning. 
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Figure  2-6: results of EKF for estimation of parameters of linear-hardening constitutive law 

 

Figure  2-7: results of EKF for estimation of parameters of linear-plastic constitutive law 

 

Figure  2-8: results of EKF for estimation of parameters of linear-softening constitutive law 
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Figure  2-9: results of SPKF for estimation of parameters of linear-hardening constitutive law 

 

Figure  2-10: results of SPKF for estimation of parameters of linear-plastic constitutive law 

 

Figure  2-11: results of SPKF for estimation of parameters of linear-softening constitutive law 
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Figure  2-12: results of PF for estimation of parameters of linear-hardening constitutive law 

 

Figure  2-13: results of PF for estimation of parameters of linear-plastic constitutive law 

 

Figure  2-14: results of PF for estimation of parameters of linear-softening constitutive law 

Since common extensions of the KF could not furnish unbiased estimates of constitutive 

parameters, we make recourse to Particle filters, as they are basically designed for nonlinear 
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systems with arbitrary uncertainty associated with them. Figures 2-12, 2-13 and 2-14 show the 

results of estimation of the parameters of linear-hardening, linear-perfect plastic and linear-

softening constitutive model. Even though the particle filter is devised for nonlinear/non-

Gaussian systems, it is seen through the graphs that it fails to estimate the parameters 

appropriately. 

In designing a PF, it should be noticed that an appropriate initial guess of the distribution of the 

state of the system is essential to enhance the performance of the filter. Never the less, the value 

of the covariance of the noise for calibrating the parameters plays an important role 

(Arulampalam et al. 2002); they should be appropriately adjusted in order to let scattering of the 

samples in the feasible range of the parameter. We illustrate these issues via numerical examples. 

For ease of tuning, firstly it is assumed that we have quite good a priori knowledge of    and    

and aim to estimate only   . Figures 2-15 to 2-20 show the results of analysis for estimation of 

  . Looking at Figures 2-15 and 2-18, they plot the time histories of estimation of the parameter 

  , supposing that the values of    and    are a-priori known. Moving from Figure 2-15 to 2-18, 

we have changed the intensity if the tuning noise to highlight its importance in the parameter 

estimation. In both cases the initial value of the parameter is set to     of the target value. In 

the graph shown in Figure 2-15, the value of the noise for tuning    is set to       

   , which 

permit the evolution of the particles finally converge to the target value. On the contrary, the 

noise value equal to       

    which is used to obtain the results shown in Figures 2-18 to 2-20, 

does not let the algorithm to sample efficiently, and the ensemble of the particles does not finally 

converge to the target values of the parameters.  
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Figure  2-15: parameter estimates while noise covariance is set appropriately (      

   ) 

 

 

Figure  2-16: state estimates when noise covariance is set appropriately (      

   ) 
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Figure  2-17: histogram of observable part of state vector (top) and associated sample weights (bottom) 

though through the top figure it seems that the sample has degenerated, through the bottom it is seen that 

many samples have significant weights. Also notice that samples are distributed in a close neighborhood 

of observation (red vertical line) 

 

To compare the performance of the particle filter when the tuning noise intensity varies one can 

confront Figures 2-16 and 2-19. At        , as the parameter    enters in the system evolution 

due to the inception of nonlinearity, for the case with the noise equal to       

   , estimates of 

the states of the system diverge, while in with the noise equal to       

    states are estimated 

un-biasedly. This corroborates the idea that a small value for tuning noise intensity prevents the 

cloud of the particles to efficiently approximate the a-posteriori distribution of the state. To 

investigate this issue in more details, we have focused on the histograms of the particles and their 

associated weights at        , where there is a sharp change in the estimation of displacements 

(see Figure 2-17). Looking at the histograms and particle weights shown in Figure 2-20, it is seen 

that the cloud of the particles, shown via histogram, are far from the observation vicinity (the red 
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vertical line), where the distance of the closest bin to the observation is about        . As a 

consequence, in Figure 2-20 all of the particles have found equal normalized weights; their 

distance from the observation vicinity is too far, as a consequence the associated probability with 

each particle becomes less than the round-off errors. On the contrary, looking at the same time 

instant in the case in which estimates are converging target values, it is seen that the distance of 

the closest been to the observation is about         .;  thus, in Figure 2-18 the particles closer 

to observation have found a more significant normalized weight whereas other have smaller 

weights. Such diversity of weights shows that the particles are distributed in a zone which is 

close to  the observation. 

 

Figure  2-18: parameter estimates when noise covariance is not set appropriately (      

   ) 

 

Figure  2-19: state estimates when noise covariance is not set appropriately (      

   ) 
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Figure  2-20: histogram of observable part of state vector (top) and associated samples weights (bottom) 

though from top it is seen that the sample cloud is quite far from observation neighborhood (vertical red 

line) consequently none of the particles find significant weights. 

In what precedes, it has been shown that the proper choice of noise covariance has fundamental 

effects on the performance of PF. In case of dealing with one single parameter, it is not difficult 

to tune the filter; however, while dealing with more parameters, finding the right combination 

might become difficult. To address the issues induced by simultaneous track of the three 

parameters shown in Figures 2-11 to 2-14, for instance the step-function like behavior seen in 

Figure 2-14 when calibrating   , we focus on the state estimation time histories, see Figure 2-21, 

and consider the jump at       . To have a closer look at what happens while this jump occurs, 

once again we make use of histogram of the distribution of the particles in two time instants: the 

beginning of the time step; the end of the time step. Before proceeding with this objective, let us 

review again the particle filter algorithm. The procedure is triggered by drawing a number of    

samples from a Gaussian distribution, then at each time instant    the same number of samples 

are drawn from transition prior. By transition prior we mean a Gaussian distribution which it’s 

mean equals to the value of evolved estimated state at previous time step      while it’s 
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covariance equals to the covariance of the process noise. This procedure practically is equal to 

generation of    Gaussian random numbers, and adding to them the value of   which is evolved 

through evolution function. In the next stage, the probability of realization of each sample is 

computed. In this study, it is assumed that observation equation is contaminated by a white 

Gaussian process, hence calculation of the probability of realization of each particle would be a 

function of a norm of the distance of the particle from the observation. The functional form of a 

multivariate Gaussian distribution reads: 

     
 

√     
  

 

 
              

    (2.52) 

where:   and   denote mean and covariance of the state vector, respectively;      stands for the 

determinant of the matrix. Within  the PF algorithm, the above mentioned formula is used to 

compute the probability of realization associated with each particle   
   

, according to: 
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)  
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  (2.53) 

 

Figure  2-21: state estimation by PF, linear softening CL 
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Figure  2-22: state estimation by PF, linear softening constitutive law 

However, in case the observable part of the cloud of particles is too far from the observation   , 

the calculated probability will equal zero due to round off errors. To cope with ill-conditioning, it 

is set to a small value. As a result, all the particles will find an equal weight. In this condition, at 

the resampling stage the resampled cloud will not change considerably, and would be like the 

already existing cloud of particles. If the observable part of the cloud of particles approaches to 

observation vicinity (i.e. the zone in which at least some of the probabilities are not affected by 

round-off error) a sharp change in the estimation of the state will occur. The gradient of such 

change in estimation of the observable part of state vector is obviously toward improvement in 

the estimate; however, the hidden (unobserved) part of state entries may or may not change in 

the direction to converge to an unbiased estimate, as seen in Figure  2-23. 

 

Figure  2-23: state and parameter estimation by use of PF 
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To visualize the phenomenon, the time evolution of displacement and parameters of the system 

are shown in the same plot, see Figure 2-23. Now we regard a few time intervals of interest, and 

look at the histograms of particles at some time instants picked before and after the jump, we 

keep the time instant           as reference instant. 

 

 

 

Figure  2-24: histogram of estimated displacements @          

 

 

Figure  2-25: weights associated with each particle @          before resampling 
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Figure  2-26: histogram of estimated parameters before and after resampling stage @         , top:   ; 

middle:   ; bottom:    

In Figure 2-24 it is seen that cloud of particles is not including the observation and the distance 

of the closest bin to the observation is about       . (the value of the observation is indicated 

by a red vertical bar in the graph). Consequently, all the probabilities become zero, due to the 

round-off errors. To cope with the problem of ill-conditioning caused by the zero probabilities, in 

case of a zero probability, it is set to the smallest value that the computer program used accounts 

for it. That is, all the particles find the same weight. Figures 2-26 shows the histograms of   ,    

and    respectively. As a consequence of the equal weights of the particles; it is seen that, before 

and after resampling stage, the histograms are not changed. 
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Now let us look at        , plots included in Figures 2-27 to 2-29 look much like previous 

time instant         , however it seems that the cloud of samples is now closer to observation, 

as seen Figure  2-27. 

 

 

 

Figure  2-27: histogram of displacements @           

 

Figure  2-28: weights associated with each particle @           before resampling 
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Figure  2-29: histograms of estimated parameters before and after resampling stage @          , top: 

  ; middle:   ; bottom:    

In what follows, histograms related to time instant           are assessed. First see 

Figure 2-30, in which the histogram of displacements is shown. Again, the red bar signifies the 

value observation    at related time instant, at its intersection with horizontal axis. It is seen that 

they are scattered throughout a wide interval; however, some particles have approached 

observation vicinity, as close as required to have non-zero weights for a couple of the particles, 

see Figure 2-32. 
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Figure  2-30: histogram of displacements @           

To have a more clear idea, in Figure 2-31 we have enlarged the vicinity of observation and 

histogram of resampled particles, in order to highlight the changes in the particle cloud after 

resampling stage. We have to remark that the plot is an enlargement also in ordinate. It is clearly 

seen that a few particles (represented via blue histogram) have reached quite close to observation 

(red bar) so that their associated weight has become significant (see Figure 2-32); as a 

consequence, in the resampling stage the particles far from observation neighborhood are 

eliminated, and the ones close to it are duplicated.  Figure 2-32 shows the weights associated 

with each particle. The peaks in Figure 2-32 are the normalized weights associated with each 

particle, before the resampling stage. The closer ones have visible peaks; there are also some 

peaks which are not visible in Figure 2-32, once enlarged, also those become visible; however 

they are about ten (see Figure 2-33), almost negligible when compared with the number of 

particles, which in this case is    . 
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Figure  2-31: close up of histogram of displacements @           

 

 

Figure  2-32: weights associated with each particle @           before resampling 

 

Figure  2-33: close up plot of weights associated with each particle @           before resampling 
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Figure  2-34: histogram of estimated parameters before and after resampling stage @          , top:   ; 

middle:   ; bottom:    

As it is seen in Figure  2-34, resampled particles do not necessarily move toward the target value; 

this is due to the fact that a wrong set of parameters has accompanied the shift of the samples 

toward the observation vicinity. Figure  2-34 well described the reason of failure of PF in 

estimating states and parameters, namely the distance of could of samples from observation 

vicinity. In order to alleviate such a problem, a remedy is to push the cloud of the samples 

toward observation vicinity. It can be done by use of the EKF: in each iteration, the EKF is used 

to update each particle by considering the information contained in the latest observation (de 

Freitas et al. 2000). More precisely, in the sampling stage, samples are drawn from the transition 
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prior; afterwards, each sample is updated by the EKF and so is pushed toward the observation 

vicinity. This approach alleviates to some extent the problems arouse by choosing a suboptimal 

sampling distribution, namely the transition prior. Figures 2-35, 2-36 and 2-37 show 

performance of a generic PF enhanced by EKF. It is seen that such approach substantially 

improves the estimate of the parameters of the system. 

  

 

Figure  2-35: results of EK-PF for estimation of parameters of linear-hardening constitutive law 

 

 

Figure  2-36: results of EK-PF for estimation of parameters of linear-plastic constitutive law 
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Figure  2-37: results of EK-PF for estimation of parameters of linear-softening constitutive law 

To allow a clear understanding of the algorithm, let us look more closely at Figure 2-37. Filter 

results from the initialization at      of the target values is chosen just as an example. Figures 

2-38 and 2-39 show the state and parameter estimation obtained through the EK-PF. It is seen 

that an excellent convergence is achieved. Figure 2-40 supports the idea that, by updating each 

individual particle within cloud of samples via EKF, the ensemble has to approach the zones of 

high probability. 

 

Figure  2-38: parameter estimation via EK-PF for a linear softening constitutive law 
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Figure  2-39: state estimation via EK-PF for a linear softening constitutive law 

 

Figure  2-40: top: histograms of displacement of the system at sampling (black hist.), after EKF 

implemented on each sample (magenta hist.) and after resampling stage (green hist.), bottom: associated 

importance weight with each particle 

As one can see in Figure  2-40, after the EKF stage is implemented the cloud of the samples 

drawn in the sampling stage, moves toward the red bar (observation vicinity). In the resampling 

stage, the particles with higher probabilities are duplicated, and the ones with lower probability 
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are eliminated; consequently, the cloud of the samples once again approaches the observation 

vicinity. Assessing other time instants always reveals the same results. 

An extensive assessment of the performances of the Bayesian filters, when dealing with highly 

nonlinear dynamics of a SDOF system, has been presented. Though the studied mechanical 

system has only one degree-of-freedom, the extended state vector has three state components 

(displacement, velocity and acceleration) and   or   parameters (in case of a exponential 

softening constitutive law two parameters are to be calibrated, whereas in a bilinear one three 

parameters exist), consequently the extended state vector is multivariate even in present case. It 

was observed that EKF, SPKF and PF all fail to furnish satisfactory results concerning 

identification of the parameters of the system, whereas EK-PF provides quite good estimation of 

the states and parameters: for the exponential behavior of the spring the results are unbiased for a 

wide range of initializations; for the bilinear spring behavior EK-PF, in some cases it converges 

to unbiased solutions, and in some others it converges to values affected by small biases. 

2.6.2 Multi degrees-of-freedom dynamic system 

In this Section, dual estimation of state and parameters of a shear type building is studied, as 

seen in Figure  2-41. To start with the most simple case,  we focus on the linear elastic response. 

By neglecting dissipating phenomena, the governing equations of motion thus read: 

  ̈              (2.54) 

 

where   and   denote the stationary mass matrix and stiffness matrix respectively: 

  

[
 
 
 
  

  

 
  ]

 
 
 
     (2.55) 
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     ]
 
 
 
 

                         (2.56) 

whereas       is the external loading vector; in general,      can be any kind of loading. 

However, here we assume that it is a harmonic force applied to the top floor: 

     [

 
 
 

       

]     (2.57) 

where   and   are the amplitude and the frequency of the excitation, respectively. To 

numerically solve       , the Newmark explicit time integrator has been used, see equations 

       to       . 

To write the equations in a discrete state-space form, we introduce an extended state   that, at 

each time instant   , includes  ,  ̇ and  ̈ according to: 

    [

  

 ̇ 

  ̈ 

]      (2.58) 

The state-space form of        then reads: 

                  (2.59) 

where: 

   

[
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                    (  ⁄   )    ]
 
 
 

   

 (2.60) 

and : 
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   [

           

          

     

]      (2.61) 

In this study, it is assumed that displacements and accelerations of the floors can be measured, 

hence the observation equation reads: 

              (2.62) 

where:   denotes a Boolean matrix of appropriate dimension, which links the observation 

process to the state of the system;    denotes the associated measurement noise;   and   are 

parameters of the Newmark integration algorithm. For the dual estimation, the model parameter 

vector results: 

  [

  

  

 
  

]      (2.63) 

 

Figure  2-41: schematic view of a shear building 

In the numerical analysis we deal with a multiple-story shear building, featuring the same 

stiffness and mass values at each floor. We start by considering the smallest possible number of 

floors (say two), and see how many parameters are calibrated unabiasedly. In this regard, we 

assume          and                    . The outcomes of state estimation and 
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parameter calibration are a function of the quality and quantity of the information provided to the 

algorithms; by quality we intend the accuracy of measurement devices, accuracy of the model of 

the system and initialization guess; by quantity the number of degrees of freedom, whose 

evolution in time is measured, is intended.  

This work focuses on the study of the effects of an increasing number of parameters in dual 

estimation of multi-dimensional mechanical systems. It has to be highlighted that the observable 

quantity is considered to be the displacement of the top floor only. Covariance of the 

measurement noise is assumed to be            ; the initial covariance of states (displacement, 

velocity and acceleration) is supposed to be very small (        ), whereas diagonal entries of 

initial covariance of unknown parameters are assumed to be   
   

   . In all the analyses, the 

covariance of the fictitious noise for tuning the parameters is set to      
   

   . Since states are 

always tracked unabiasedly, for the sake of brevity relevant results are not reported. 

To ensure the algorithm has reached an unbiased estimate, it is a common practice to run 

analysis starting from different initializations; in case all converge to the same estimate, then it 

might be most likely an unbiased estimate. In this case we initialize the analyses by values     

less and     more than target value. We begin our numerical assessment by study of a two DOF 

structure and report the results of parameter estimation in Figure  2-42: it is seen that two filters 

show the same performances. In EK-PF procedure    particles are deployed; by increasing the 

number of particles to    , changes are visible in the plots of Figure  2-42. Hence number of the 

particles was fixed to   . 
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Figure  2-42: EKF (red line) and EK-PF (blue line) performances for calibration of a two-storey shear 

building stiffness’s. the black line always represents the target value 

Though by increasing the number of particles toward infinity, particle filter can furnish unbiased 

estimates (Cadini, Zio & Avram 2009), in practice such a number of particles may be intractable 

for current power of computational tools. By increasing the number of unknown parameters, it is 

seen that the bias in the estimates becomes more visible. In Figure  2-43 it is seen that again both 

EKF and EK-PF show the same performance, however the bias in the estimates is increased 

when compared to a  -DOF system. Moving to a  -DOF and  -DOF system, Figure  2-44 and 2-

44 reports the results when three and four inter-storey stiffnesses has to be estimated, 

respectively. Comparing with the case of a  -storey shear building, again the bias in the estimate 

of the parameters increases. 

By exploring the literature concerning online methods for the identification of structures, one 

will see that most of it is focused on shear building structures with less than four stories (e.g. see 

(Chatzi, Smyth & Masri 2010, Gao, Lu 2006, Koh, See & Balendra 1995, Xie, Feng 2011)). We 

avoid showing the results concerning estimation of more complicated structures, since they 
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confirm the same trend seen in this reported part of the analysis. As the dimension of the state 

vector (hence the number of the parameters) increases, estimation of the parameters become 

more and more difficult; in the jargon of dynamic programming, such a problem is termed curse 

of dimensionality (Bellman 1957). Powell (Powell 2007) illustrates this issue via an intuitive 

examples: if state space has   dimensions and if each state component can take   possible values 

then we might have    possible states, i.e. by a linear increase in dimension of state vector the 

dimension of the space of possibilities increases exponentially. 

A possible remedy, for problems featuring high dimensionalities, is represented by searching for 

a possible subspace capturing the main variation in data; in forthcoming Chapters, first 

applicability of Proper Orthogonal Decomposition (POD) is shown in constructing reduced order 

models, and afterwards such a model will be embedded in filtering schemes. 
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Figure  2-43: EKF (red line) and EK-PF (blue line) performances for calibration of a three-sotrey shear 

building stiffness’s. the black line always represents the target value 
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Figure  2-44: EKF (red line) and EK-PF (blue line) performances for calibration of a four-storey shear 

building stiffness’s. the black line always represents the target value 
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2.7 Summary and conclusions 

In this Chapter, recursive Bayesian inference of partially observed dynamical systems has been 

reviewed. As a tool for structural system identification, nonlinear Bayesian filters are applied to 

dual estimation problem of linear and nonlinear dynamical systems. Dealing with a SDOF 

structure, it has been shown that the hybrid EK-PF filter is able to furnish a good estimation of 

parameters of nonlinear constitutive models. Assessment of SDOF systems is followed by 

identification of multi storey buildings. In this regard, performances of the EK-PF and EKF 

algorithms are compared, and it has been concluded that they are almost the same, and by an 

increase in the number of storeys of the building the algorithms fail to provide an unbiased 

estimate of the parameters (stiffness of the storeys). Therefore, they are not reliable tools for 

monitoring state and parameters of multi storey systems. 

To develop a robust algorithm for monitoring of health of the structures via recursive Bayesian 

inference, we would make recourse to model order reduction of the dynamic systems. To this 

end, next Chapter reviews important features of proper orthogonal decomposition and its 

application to model order reduction of dynamic systems.  
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Chapter 3: Model Order  Reduction of 

dynamic systems via Proper Orthogonal 

Decomposition 

3.1 Introduction 

Dealing with a space discretized system, proper orthogonal decomposition (POD) automatically 

looks for a dependence structure between the degrees-of-freedom, which are normally assumed 

to be independent. This is achieved through a set of ordered, orthonormal bases, and through 

information concerning the relevant energy contents. POD has been developed independently by 

different scientists in different fields (see e.g.(Kosambi 1943, Karhunen 1947, Obukhov 1954)) 

and has been called with different names. When applied to finite dimensional systems, it is called  

principal component analysis (PCA) (Jolliffe 1986), its origins are found in the work of Pearson 

on plane and line fitting to point sets (Pearson 1901). When dealing with distributed parameter 

systems, it is named Karhunen–Loève decomposition (KLD); however, its discrete 

representation is also introduced (Fukunaga 1990). Another POD method is called singular value 

decomposition (SVD) (Mees, Rapp & Jennings 1978), novation of such method is attributed to 

Eckart and Young; where, they proposed extension of eigen value decomposition for general non 

square matrices (Klema, Laub 1980). For a detailed proof of equivalency of PCA, KLD and SVD 

readers may consult (Liang et al. 2002a). 

Due to standard numerical tools developed for extracting proper orthogonal modes (POMs) of 

the systems, and due to its power in feature extraction and reduced modeling, POD is now 

extensively used in different engineering fields. For instance, it has been used for reduced order 

modeling of heat transfer phenomena (Samadiani, Joshi 2010), of computational fluid dynamics 

(Smith, Moehlis & Holmes 2005, Tadmor, Noack & Morzyński 2006), of micro electro 
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mechanical systems (Liang et al. 2002b) and other different fields of computational physics 

(Lucia, Beran & Silva 2004) and aeroelasticity (Thomas, Dowell & Hall 2003). The method of 

POD has gained popularity in the field of structural dynamics, where it is used for active sensing 

(Park et al. 2008) and active control of structures (Al-Dmour, Mohammad 2002),  damage 

detection (De Boe, Golinval 2003, Galvanetto, Surace & Tassotti 2008, Shane, Jha 2011c), 

model updating (Lenaerts, Kerschen & Golinval 2003, Hemez, Doebling 2001), modal analysis 

(Han, Feeny 2003, Feeny 2002) and model reduction (Steindl, Troger 2001). For a review of 

pertinent literature readers are referred to (Kerschen et al. 2005). The work done in the literature 

suggests that POD is a strong tool for model order reduction of structural systems, however a 

specific study of speed-up, computational accuracy of the reduced model and robustness to the 

change in the source of excitation is missing. The work presented in this Chapter addresses those 

aforementioned issues. 

In what follows, Section     reviews structural dynamics of systems that are studied in this 

Chapter, their associated set of governing differential equation and the numerical scheme used 

for time discretization. Section     reviews fundamentals of POD, and it is followed by section 

    which summarizes the fundamental works done in finding the links between POMs and eigen 

modes of linear structures. In Section     reduced model is constructed via Galerkin projection 

of the set of governing equations onto the reduced space spanned by POMs. Finally, Section     

reports the results of the numerical assessment of efficiency of POD: speedup and accuracy of 

reduced models of Pirelli tower, as a case study, are investigated. 

3.2 Structural dynamics and time integration 

In this study, we exploit POD for reduced order modeling of dynamic systems. Such reduced 

model will be then embedded into a Bayesian filter in the forth-coming Chapters. In this section, 

we review the differential equations of the governing dynamics of structural systems studied 

herein; the numerical integration scheme used for time discretization of the aforementioned 

differential equations is briefly discussed. 
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Let the dynamic response of the structural system to the external loads be described by the 

following linear equations of motion: 

   ̈      ̇               (3.1) 

where:   is the mass matrix;   is the viscous damping matrix;   is the stiffness matrix;   is the 

time-dependent external force vector;  ̈,  ̇ and   are the time-varying vectors of accelerations, 

velocities and displacements, respectively. For instance, in a shear model of a building (like the 

one adopted in Section    ) these vectors gather the lateral displacements, velocities and 

accelerations of the storeys. 

Eq. (3.1) is usually arrived at once the structural system has been space discretized (e.g. through 

finite elements), or once assumptions concerning the behavior of the building (e.g. shear-type 

deformation) have taken into account. This preliminary stage of the analysis can affect the 

sparsity of matrices in Eq. (3.1), and can therefore have an impact on the speedup obtained 

through POD as well. 

The solution of the vectorial differential equation (3.1) is here advanced in time by making use 

of the Newmark explicit integration scheme. For details the reader is referred to Section    . 

3.3 Fundamentals of Proper Orthogonal Decomposition for dynamic 

structural systems 

The aim of reduced order modeling is to automatically find a solution to the following two 

conflicting requirements: create the smallest possible numerical model of the original dynamic 

system; preserve accuracy in the description of the system behavior. Standard techniques try to 

extract fundamental features from the dynamic model, so as the governing equations can be 

thereafter projected onto a reduced state space, or subspace. 

POD, in its snapshot version (Sirovich 1987), is here adopted to build the model-specific optimal 

linear subspace on the basis of an ensemble of system observations. Let us consider the 
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displacement vector     ,   being the set of real numbers and   the dimension of vector  ; 

we assume that   effectively describes system evolution (i.e. it does not need to be supplemented 

by  ̇ and  ̈ to define the full state space), and consider a set of arbitrary orthonormal bases {  }, 

         , spanning its vector space   . Such bases satisfy   
        (         ), where 

    is the Kronecker’s delta (such that       if    , otherwise      ). The original vector   

can then be written as a linear combination of the aforementioned bases, according to: 

    ∑      
 
       (3.2) 

where    are the combination coefficients, arranged in the column vector  , and: 

                     (3.3) 

is the matrix gathering all the bases. 

To ensure computational gain, we define a reduced representation of the state via: 

    ∑            
    (3.4) 

where we enforce     or, for large systems, even    . In (3.4),    is the matrix gathering 

the first   columns of matrix   (i.e. the first   bases), and   collects the relevant first   

components of vector  . The goal of POD is to provide an ordered sequence of the bases   , so 

as to satisfy the following extreme value problem: 

            (3.5) 

where      represents the L
2
 norm of vector  . Given  , Eq. (3.5) hence requires to find the 

optimal subspace spanned by the bases        . 

We now need to establish   on the basis of the required accuracy of the solution provided by the 

reduced order model, and to compute the bases gathered by   . Both problems can be attacked 

through the so-called snapshot version of POD. First, since we have to provide a subspace for the 
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state vector  , the characteristic displacements            (       ) at   time instants are 

computed and collected in an ensemble, or snapshot matrix  , according to: 

   [                ]    (3.6) 

Next PCA and SVD, two POD methods for extracting so-called POMs are briefly discussed. 

3.3.1 Principal Component Analysis 

To detect the main dependence structure in an ensemble of data, PCA looks for the subspace 

which is able to keep the maximum variability in the data. A very naïve justification of this 

procedures reads: in the state-space, the directions along which data vary are important, since the 

dynamics of the system is actually occurring along those directions, whereas the directions 

featuring no variations are redundant in the dynamic representation, and computational cost 

would be spent in calculating something that we already know if they were retained in the 

analysis. Consider the aforementioned vector     ; suppose                are the first, 

second,… and     principal components respectively. Let the first principal component    be a 

linear combination of each element of the original vector, i.e.: 

    ∑      
 
      

            (3.7) 

where:    {               }
 . The variance of   , assumed to be a random variable, is then: 

    
    

              (3.8) 

where    is the covariance of the variable  , assumed to be random as well. To find the 

direction in which maximum variability of data is captured, we look for the direction in which 

the projection of the samples onto it yields maximum variance. The maximum of    
   would not 

be achieved for a finite value of   , so a constraint have to be imposed and reads: 

    
  

     
                   

          (3.9) 

Introducing the Lagrangian multiplier   , from       and       we get: 
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                   (3.10) 

where      is Lagrangian operator. After differentiation,        gives: 

 
         

   
                              (3.11) 

where    and    are the eigenvalue and the corresponding eigenvector of the covariance matrix 

  , respectively. 

Applying the same procedures, the objective function to be maximized in order to extract the 

principal components of a random variable writes: 

    
  

  ∑   
     

 

   
              

           (3.12) 

and the approximation error due to a representation by its first   principal components,   

∑     
 
   , would be:  

                     ∑     
  

 

     
   ∑    

 
 

     
  (3.13) 

In order to compute the principal components, one has to handle the covariance matrix of the 

random vectorial variable. However, since in practical problems it is usually impossible to 

determine this covariance matrix, it is a common practice to use the correlation matrix as an 

acceptable approximation of it (Schilders 2008). To approximate the covariance matrix with the 

required accuracy, one needs an appropriately chosen ensemble of the samples; such a seed of 

samples is the so-called snapshot matrix, wherein each snapshot represents the state of the 

system at a specific time instant (see Figure  3-1). 
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Figure  3-1: Building the matrix of snapshots. 

The covariance of the data set, allocated in a snapshot matrix  , is then calculated as (Schilders 

2008): 

       
   

  ̃  
 

 
        (3.14) 

3.3.2 Singular Value Decomposition 

Exploiting the singular value decomposition of the snapshot matrix   we get (Liang et al. 

2002a): 

                      (3.15) 

where:   is a     orthonormal matrix, whose columns are the left singular vectors of  ;    is 

a     pseudo-diagonal and semi-positive definite matrix, whose pivotal entries     are the 

singular values of  ;   is a     orthonormal matrix, whose columns are the right singular 

vectors of  . 

The whole basis set  , i.e. the set of all the so-called POMs, is given by  , i.e. by the left 

singular vectors of the snapshot matrix (Kerschen, Golinval 2002). If singular values     are 

sorted decreasingly, and the columns of   and   are accordingly arranged, the decomposition 

       is such that the first   columns (with   given) of     represent the optimal basis subset 

that fulfills      . Moreover, it is known (see, e.g. (Kerschen, Golinval 2002)) that the     
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singular value squared (i.e.    
 ) represents the maximum of the relevant oriented energy

1
; this 

means that the     oriented energy is maximized, among all the possible unit vectors, by the basis 

  . Since we are looking for the most informative subspace, which should be able to furnish as 

much insight as possible into the dynamics of the original system and, therefore, into how energy 

fluxes take place inside it, we retain in the reduced order model the proper modes    that feature 

the highest singular values. Additional proper modes, featuring less energy contents, would be 

redundant in the reduced order representation, and add computational costs with marginal 

enhancement in the accuracy. 

Now, having established a way to sort bases   , and the link between the singular value     and 

the energy content of the proper mode   , we need to set  . According to (Kerschen, Golinval 

2002), we assign the required accuracy   of the reduced order solution, intended as a fraction of 

the total oriented energy of the full model, and select the dimension   of the subspace by 

fulfilling: 

  
∑    

 
 

   

∑    
 

 

   

    (3.16) 

hence, on the basis of the ratio between the sum of the singular values of the kept modes and the 

sum of all the singular values. 

                                                 

1 The oriented energy of a vector along a direction is given by the magnitude of the projection of the 

(  dimensional) vector itself onto the mentioned direction, namely by the dot product of the two vectors. When 

we have to deal with a vector sequence like  , the oriented energy of the sequence is given by the sum of the 

magnitudes of the projections of all the vectors      onto the same direction. 
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3.4 Physical interpretation of proper orthogonal modes 

It is known that POD is a statistical technique that extracts POMs from the response of the 

system. However, a close relationship has been established between POMs and natural eigen-

modes of a mechanical system (Feeny, Kappagantu 1998, Kerschen, Golinval 2002). The effort 

toward establishing a link between POMs and eigen-modes of the system intends in making POD 

a modal identification tool (Yadalam, Feeny 2011). To this end, theoretical and experimental 

work has been done to link POMs with eigen-modes of a linear (Feeny 2002) and nonlinear 

(Georgiou 2005) mechanical systems. In this Section, we do not discuss the details offered by 

existing literature and only mean to summarize interesting findings published therein. 

Free vibrations of an undamped linear system, with mass matrix proportional with identity 

matrix (e.g. a shear building with equal masses at each storey) results in a set of POMs that 

asymptotically converge to eigen-modes of the system. POMs of a lightly damped similar system 

are a good approximation of eigen-modes of the system (Kerschen, Golinval 2002), however in 

case of forced harmonic vibration there is no guarantee that POMs converge to eigen-modes. 

When the system resonates at a certain frequency, independently of mass matrix entries, the 

POMs coincides with the respective eigen-modes of that frequency (Kerschen et al. 2005). It has 

been shown that POMs coincide with eigen-modes for many noise driven oscillators 

(Preisendorfer 1979), moreover, North has established a general criteria for symmetry of POMs 

and eigen-modes of the mechanical systems excited by noise (North 1984). 

3.5 Galerkin projection 

Once POD has furnished the required subspace, the displacement vector can be approximated 

through   . Since matrix    is a function of the position vector only, and defines the shapes of 

POMs for the structure, while   governs the evolution in time of the structural response, it 

follows that: 

  ̈     ̈  ̇     ̇       (3.17) 
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The equations of motion (3.1), allowing for (3.17), can now be approximately stated as: 

     ̈        ̇                 (3.18) 

By defining the residual   of such approximation as: 

             ̈        ̇             (3.19) 

within a Galerkin projection frame (Steindl, Troger 2001), we enforce it to be orthogonal to the 

subspace    spanned by the solution, i.e.: 

   
     (3.20) 

Hence, the equations of motion of the reduced order model turn out to be: 

   
     ̈      

     ̇      
           

      (3.21) 

or, equivalently: 

    ̈       ̇                 (3.22) 

Once the solution of (3.22) is obtained, the full state of the system can be computed by making 

use of (3.17). 
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Figure  3-2: The Pirelli Tower. 

3.6 Results: Reduced-order modeling of a tall building excited by earthquakes 

For linear systems, it would be beneficial if POMs    depend only on physical and geometrical 

properties of the structure, with marginal effects of the kind of loading considered in the phase of 

construction of the snapshot matrix. Since different loading conditions may excite a different set 

of structural vibration modes, what claimed here above does not necessarily hold true. Though a 

thorough analysis of theoretical aspects of POD, when applied to structural systems, has been 

carried out in the literature, only a handful of work is available on some practical points 

including the load-dependency of POMs. Such issue may become crucial, especially when the 

structure is subject to seismic loadings, which are difficult to predict in nature. 

The performance of POD has been already assessed in defining reduced models for multi-

support structures subject to seismic excitation (Tubino, Carassale & Solari 2003); also, POD has 

been applied for efficient reduced modelling of high-rise buildings subject to earthquake loads 

(Guti rrez,  aldivar 2000,  schheim, Black &  uesta 2002). However, its efficiency for high 

fidelity reduced order modelling of multi-storey buildings trained by a certain seismic load and 

excited by another one, has not been done yet. In this section, we investigate whether a reduced 

order model, built by considering a specific input while constituting the snapshot matrix, can be 
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used to represent with a similar level of accuracy the dynamics of the full structure in case of 

different excitation, in terms e.g. of frequency content and, therefore, of excited vibration modes.  

In the forthcoming numerical examples we will set        to ensure accuracy. As a case study, 

we investigate the capability of POD in speeding up the computations by considering the Pirelli 

Tower in Milan, see Figure  3-2. The building features 39 stories, and its total height is about 130 

m. The plan dimensions of the standard floor are approximately          . The structure is 

entirely made of CIP reinforced concrete. The structure is assumed to behave elastically, with 

lumped masses at each storey that basically undergo horizontal displacements. Such an 

assumption might be far from reality if the rigid diaphragm assumption does not hold true for 

vertical displacements of all the nodes at the same floor. 

We start with a three-dimensional finite element discretization of the whole building featuring 

     DOFs (Barbella, Perotti & Simoncini 2011). For the sake of simplicity we have neglected 

the damping effect; so, in a relative frame moving with the basement of the tower, the undamped 

equations of motion of the structure read: 

   ̈                                                                    (3.23) 

where      denotes the earthquake-induced acceleration time history, whereas   is a Boolean 

matrix of appropriate dimension which defines the shacked DOFs. To simplify the problem, 

static condensation has been adopted to keep out the vertical displacements of the floors. By 

partitioning the nodal displacements   into horizontal    and vertical    components, we can 

write: 

 [
   
   

] [
 ̈ 

 ̈ 
]  [

      

      
] [

  

  
]        [

    

    
]               (3.24) 

Keeping only the horizontal DOFs only in the equations of motion, to be thereafter managed by 

POD, we arrive at: 

    ̈             
                                     (3.25) 



78 

 

where now       . 

To obtain the reduced model, the building has been assumed to be shacked by the well-known El 

Centro earthquake, whose time vs. acceleration record, together with its relevant fast Fourier 

transform, is reported in Figure  3-3. To give an idea about the number of vibration modes that 

may be excited by such earthquake, the first natural eigen-frequencies of the structure (see also 

Table  3-1) are denoted by red vertical lines in Figure 3-3 (b). It can be deduced that only first 

five eigen-modes of structure can be effectively excited, as the power of the spectra of the 

accelerogram is intuitively seen to be small for the frequencies higher than the 6
th

 natural 

frequency of the structure.  

Table  3-1: First natural frequencies of the building. 

vibration 

mode 

index 

1 2 3 4 5 6 7 8 9 10 11 12 13 

natural 

frequency 

(Hz) 

0.26 1.09 2.61 4.71 7.07 8.79 9.56 9.92 11.38 13.36 14.64 18.30 22.14 
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Figure  3-3: top: May 18–1940, El Centro accelerogram (east-west direction) and bottom: relevant FFT. 

A comparison among the dynamics of the original 39-DOF system and the responses of reduced 

order models at varying accuracy index p (see Eq. (3.20)) has been performed. The link between 

  and the retained DOFs in the reduced systems is reported in Table  3-2. The result reported in 

Figures 3-4 and 3-5 compare the time histories of (lateral) displacements, velocities and 

accelerations of the 20
th

 and 39
th

 (roof) floors, respectively, with the target values which are 

available from the simulations. In these plots, the blue vertical line indicates the end of the time 

window within which the snapshots are collected; hence, only around         all the reduced 

order analyses start departing from the full model response. 

To have a more clear view of the time histories, a close up of the last     of the time histories of 

20
th

 floor is presented in Figure 3-6. By making a comparison between time histories of 

displacements, velocities and accelerations, it can be seen that two POMs are enough for a 
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reduced model to accurately reproduce displacements of the full model; however, at least four 

POMs are necessary to feature the same level of accuracy for velocities and accelerations too. By 

investigating the FFTs of the aforementioned time histories (see Figures 3-7, 3-8 and 3-9), it is 

shown that in the FFT of the displacement time histories, only two first natural modes are 

effectively excited. Instead, in the velocity and acceleration time histories, looking at the FFTs it 

is seen that six and seven first natural frequencies are effectively excited. Such a trend suggests 

that a reduced model that retains a few POMs may feature a better accuracy in reconstruction of 

the displacements of the system, when compared with velocities and acceleration responses. 

Table  3-2: Outcomes achieved through POD, in terms of accuracy   and speedup as functions of the 

number of DOFs retained in the reduced order model. 

# DOFs   speedup 

1 0.99 515 

2 0.999 385 

3 0.9999 276 

4 0.99999 244 

Moving to the speedup obtained by reducing the order of the full model, results here discussed 

have been obtained with a personal computer featuring and Intel Core 2 Duo CPU E8400, with 4 

Gb of RAM, running Windows 7x64 as operating system and performing the simulations with 

MATLAB version 7.6.0.324. The speedup values reported in Table  2-1 testify the dramatic 

decrease of the computing time obtained through POD, and show how powerful this 

methodology can be to approach real-time computing. 
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Figure  3-4: Time histories of the horizontal, displacement (top), velocity (middle) and  acceleration 

(bottom) of the 20th floor, as induced by the El Centro earthquake. 
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Figure  3-5: Time histories of the horizontal displacement (top), velocity (middle) and  acceleration 

(bottom) of the 39th floor, as induced by the El Centro earthquake. 
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Figure  3-6: Close up of the time histories of the horizontal displacement (top), velocity (middle) and 

acceleration (bottom) of the 20th floor, as induced by the El Centro earthquake. 
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(a) 

 

(b) 

Figure  3-7: FFTs of the horizontal displacements of the storeys as induced by the El Centro earthquake at 

(a) 20th  and (b) 39th floors 
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(a) 

 

(b) 

Figure  3-8: FFTs of the horizontal velocities of the storeys as induced by the El Centro earthquake at (a) 

20th  and (b) 39th floors 
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(a) 

 

(b) 

Figure  3-9: FFTs of the horizontal accelerations of the storeys as induced by the El Centro earthquake, (a) 

20th (top), and (b) 39th floor 
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approximate snapshot taken at       , since the shape of the building is more complicated and 

higher modes are playing more significant role when compared to       . 

Another global feature of the reduced model which may be of interest for design practice is the 

envelope of the displacement, with is reported in Figure 3-11. It is seen that even the reduced 

model with a single POM has an acceptable performance in reconstructing the envelope, even 

though it underestimates the envelope itself. By increasing the flexibility of the reduced model 

through additional POMs, as the higher POMs are retained in the analysis, it is seen that the 

envelope of the reduced model almost matches that of full one. 

 

 

Figure  3-10: Snapshots of the horizontal storey displacements as induced by the El Centro earthquake. 

top: t=10 s and bottom: t=30 s 
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Figure  3-11: Envelope of horizontal storey displacements, as induced by the El Centro earthquake. 
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(a) 

 

(b) 

Figure  3-12: Time histories of (a) kinetic and (b) potential energies. 

 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2
x 10

4

t (s)

k
in

e
ti
c
 e

n
e
rg

y
 (

J
)

 

 

1 DOF

2 DOF

3 DOF

4 DOF

full model

0 5 10 15 20 25 30 35 40
0

5000

10000

15000

t (s)

p
o
te

n
ti
a
l 
e
n
e
rg

y
 (

J
)

 

 



90 

 

 

 

 

(a) 

 

(b) 

Figure  3-13: Time evolution of cumulative discrepancy between full model and reduced order model, in 

terms of  (a)  kinetic, (b) potential energies. 
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again the red vertical lines (as indicator of the natural frequencies of the structure) are drawn in 

the figure to allow for understanding the number of eigen-modes that get excited by 

accelerogram of the relevant earthquakes. By an intuitive comparison of Figures 3-3 and 3-14, it 

is seen that a different amount of eigen-modes of the structure are excited by the two earthquake 

records. 

 

 

Figure  3-14: top: May 6–1976, Friuli earthquake and bottom: relevant FFT. 
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earthquake, is the same as if it got shacked by El Centro earthquake. This fact shows that a 

reduced model built by POD may be robust to change in the excitation source. 

 

 

 

igure  3-15: Time histories of the horizontal floor displacement (top), velocity (middle) and  acceleration 

(bottom) of the 39th floor, as induced by the Friuli earthquake. 
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the FFTs of the structure when subjected to El Centro record, moving from displacement to 

velocity and acceleration FFTs, the number of peaks increases. Therefore, the number of POMs 

required to match the FFT of the response of the structure increases. 

 

 

 

Figure  3-16: FFTs of the 39th floor, displacement (top), velocity (middle) and  acceleration (bottom) as 

induced by the Friuli earthquake 
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Figure  3-17: Close up of FFT of the horizontal displacement (a), velocity (b) and acceleration (c) of 39th 

floors, as induced by the Friuli earthquake. 
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natural vibration modes are effectively excited. Hence, accuracy of a reduced model in 

reconstructing the acceleration responses of the system is not the same as the velocities and 

displacements. 

The performance of the reduced models in approximating snapshots of the system are once again 

tested at        and       . Looking at Figure 3-18, it is seen that at        the state of the 

system is like a line with constant slope; hence, all reduced models feature more or less similar 

accuracy; however, at        the state of the structure is more complicated and at least four 

POMs are required to approximate the considered snapshot. 

Concerning the envelope of the displacements (see Figure 3-19), it is seen that even a two DOF 

reduced model is matching the envelope featured by the full model. It is seen that, in the vicinity 

of the 25
th

 floor, there is a break in the envelope of the structure, while in the envelope of floor 

displacements relevant to the El Centro earthquake such a break is not seen. This is due to the 

fact that, the range of frequency content of Friuli earthquake is wider than that of El Centro 

earthquake, see Figures 3-3(b) and 3-14(b), it results in excitation, and therefore contribution of 

higher natural modes in the response of the structure and as a consequence the shape of the 

structure may become more complicated. 

To evaluate the accuracy of the reduced models concerning the energies, accumulated 

discrepancies has been considered; as before the time histories feature the same features of those 

related to El Centro record. Figure 3-20 shows the accumulated discrepancies of kinetic and 

potential energies for two scenarios: the continuous lines represent the case in which snapshots 

are related to the El Centro excitation, instead the dot lines stand for the case in which snapshots 

are related to Friuli record. It is worth recalling that in both cases the reduced and full model are 

shacked by Friuli record. It is seen that, despite the fact that the reduced models are constructed 

by  different inputs in simulations, the accumulated discrepancies almost coincide. However, in 

this case the accumulated discrepancies appears to be bilinear: the graphs look like an straight 

line which changes its slope at       . This is due to the fact that the amplitude of the 



96 

 

excitations increases at the vicinity of the       , the increase in the energy of input excitation 

therefore changes the rate of accumulation of the discrepancies changes. 

 

 

 

Figure  3-18: Snapshots of the horizontal storey displacements at (top) t=10 s, and (bottom) t=30 s, as 

induced by the Friuli earthquake. 

 

Figure  3-19: Envelope of horizontal storey displacements, as induced by the Friuli earthquake. 
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(a) 

 

(b) 

Figure  3-20: Time evolution of cumulative discrepancy between full model and reduced order model, in 

terms of (a) kinetic, and (b) potential energies. Comparison between outcomes of the reduced order model 

trained with the El Centro earthquake, and of the reduced o 
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(a) 

 

(b) 

Figure  3-21: (a) January 17–1995, Kobe earthquake and (b) relevant FFT. 
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Figure  3-22: Time histories of the horizontal  displacement (top),  velocity (middle) and acceleration 

(bottom) of the 39th floor, as induced by the Kobe earthquake. 
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Figure  3-23: Snapshots of the horizontal storey displacements at (top) t = 10 s, and (bottom) t = 30 s, as 

induced by the Kobe earthquake. 

 

Figure  3-24: Envelope of horizontal storey displacements, as induced by the Kobe earthquake. 
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same number of DOFs, no matter snapshots are collected from simulation o El Centro or Kobe 

earthquake simulations, almost feature the same level of accuracy. 

Through the results shown in this Section, it has been shown that prediction capabilities of POD-

based reduced order models when dealing with different seismic excitations along with their high 

speed-up in computation makes them suitable candidates for models used in online and real-time  

structural health monitoring. 

 

 

Figure  3-25:  Time evolution of cumulative discrepancy between full model and reduced order model, in 

terms of (top) kinetic, and (bottom) potential energies. Comparison between outcomes of the reduced 

order model trained with the El Centro earthquake, and of the reduced o 
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3.7 Summary and conclusion 

In this Chapter, we have investigated the capability and efficiency of POD in reducing the order 

of dynamic structural systems. In its SVD description, POD is expected to find the directions in 

which retain the maximum energy of the system, whereas its PCA explanation is based on the 

search for the directions which preserve maximum variability of the set of samples, which are 

gathered into the so-called matrix of snapshots. Handling snapshots collected in an initial time 

window, we have built the reduced model through a coupling of POD and Galerkin projection. 

To assess the performance of the studied methodology, the Pirelli Tower in Milan has been 

assumed to get shacked by an earthquake. Concerning accuracy issues, time histories of the state 

of the system (storey displacements, velocities and accelerations), together with their associated 

Fourier transform, have been compared with their real values available through the simulations. 

The power of the order reduction method in preserving the energies of the system is tested via a 

comparison of their time histories with those of full model. It has been seen that energy time 

histories of a  -DOF reduced model almost coincided with target values. 

When dealing with accuracy versus sped-up, it has been shown that POD can decrease the 

number of DOFs from the original 39 (one at each storey) to just 1, guaranteeing an accuracy of 

0.99 (1 being featured by the original model) according to what here explained, and leading to a 

speedup in the computations higher than 500. We have also shown that, to also match higher 

order frequency oscillations (accuracy of 0.99999), the retained degrees of freedom result to be 

increased to 4, still getting a speedup higher than 200. 

It has been shown that the POD based reduced models are also robust to a change of loading; the 

models built by snapshots resulting from simulations of the full model subject to El Centro 

record feature the same level of accuracy when are shacked by Kobe and Friuli record. 

In following Chapters, the reduced model built by POD will be incorporated into Bayesian filters 

to assess the capabilities of such an approach in state estimation of non-damaging and dual 

estimation of damaging structures, possibly detecting and locating the occurring damage. 
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Chapter 4: POD-Kalman observer for 

linear time invariant dynamic systems 

 

4.1 Introduction 

The ultimate objective of this thesis is to develop an online and real-time algorithm for the 

detection of damage in structural systems. To this end, in Chapter   we have first studied the 

possibility of exploiting Bayesian filters for fulfilling the objective of this study. However, it was 

shown that in the case of multi-storey buildings that, as the number of floors increases, the bias 

in the estimation of parameters and therefore, in damage detection increases as well. 

Our proposal is then to use reduced order models in combination with Bayesian filters to monitor 

the state of the structure. In the previous Chapter, the efficiency of POD, in terms of speed-up 

and accuracy, has been investigated numerically. This Chapter deals with the numerical 

assessment of the efficiency of POD-based reduced order models in state estimation of linear 

time-invariant structural systems. It is known that the Kalman filter provides optimal estimates of 

the state of a linear state-space model affected by white Gaussian noises. However, in what 

follows we will show the uncertainties induced by POD are not white noises. 

The analysis of the linear time-invariant model permits the analysis of the effect of uncertainties 

induced by POD on the optimal performance of the Kalman filter. In this regards, the reduced 

model of the system is incorporated into a Kalman filter; the speed-up and accuracy of state 

estimation is investigated, by assuming that a minimal number of observables is managed. It is 

known that POD models are not robust to a change in the parameters of the system; indeed, 

proper orthogonal modes (POMs) were anyhow used as indicators of the damage in different 

structures, like beams (Galvanetto, Violaris 2007a), trusses (Ruotolo, Surace 1999) and 
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composite materials (Shane, Jha 2011a). In case the system is subject to unpredictable change in 

the parameter, e.g. due to inception or growth of damage, the reduced model fails to be accurate. 

However, potential use of an approximated linear time invariant model in automatic control of 

the structural response (Gustafsson, Mäkilä 1996) motivates the search for high fidelity and 

computationally efficient reduced models. Estimation of the state of a system, even in an 

accurate fashion, does not explicitly contain information on the damage: in the next Chapter we 

will therefor address damage detection via Bayesian filtering and reduced order modelling. In the 

sequel, first the necessity of using observers in structural feedback control is discussed; then, 

statistical properties of the residual error process is assessed, to verify if they satisfy the 

requirements (whiteness and Gaussianity) of Kalman filter for providing optimal solution. 

Thence, Kalman-POD observer is briefly reviewed. The Chapter is finally concluded by 

illustrating the performance of Kalman-POD observer: the efficiency of the algorithms is 

assessed to ensure robustness to change in the seismic excitation source, as it was done in 

Chapter 3. The effect of correlated uncertainties in the performance of Kalman-POD observer is 

discussed. Computational gain obtained by the use of Kalman-POD observer, when compared to 

Kalman observer alone, is shown in terms of speed-up gained in calculations. 

4.2 Structural feedback control and the Kalman observer 

Feedback control intends in developing automated algorithms for harnessing response of the 

systems (Goodwin, Graebe & Salgado 2001). Early instances of control systems include clock 

regulating devices and mechanisms for keeping wind-mills pointed toward the wind. During 

industrial revolution, invention of machinery for transforming raw materials into goods, 

specifically steam engine, which includes transforming a large amount of energy to mechanical 

work, made engineers realize the need for organized control strategies of the power consumed by 

machinery in order to guarantee the safe operation of the facilities (Goodwin, Graebe & Salgado 

2001). Nowadays control engineering has become an omnipresent element of industry. Though 

industrial instances of feedback control date back to the nineteenth century, its use in structural 

engineering field is quite recent. In last two decades, automatic control strategies are gaining 

popularity to further extend life cycle and performance of earthquake resistant structural systems; 
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for a review of the real applications of active structural control in Japan see (Ikeda 2009), were 

the use of active tuned mass dampers for vibration suppression of high rise buildings subject to 

lateral loads is discussed. For a list concerning the active control strategies used in other building 

types including bridges, tensegrity structures and trusses refer to (Korkmaz 2011).  Control 

algorithm design is realized by merging many disciplines of science and technology, including 

but not limited to modelling (for capturing the underlying dynamics of the system), sensors (for 

measuring state of the system), actuators (for forcing the system to follow the desired trajectory), 

communications (for transmitting the data) and computing (for the task of computing action data 

based on measured observations) (Goodwin, Graebe & Salgado 2001). This Chapter of the thesis 

is aimed at developing computationally efficient reduced models for their possible use in control 

of seismically excited multi storey buildings. 

We are not going to discuss control algorithms. However, to explain in further details how 

system control terms enter the state-space equations and to describe the need for the models in 

structural control, consider a linear time invariant system and its state-space equations: 

                          (4.1) 

                (4.2) 

where:    represents the state of the system (e.g. displacement, velocity and acceleration of each 

storey in a structure) at time instant    ;    is the control input, which is computed by using 

control algorithms in order to restrict the state of structure to a desired reference;    denotes the 

noisy system observations;   maps the state over time;   links the control feedback to the 

relevant degrees-of-freedom and   links the observation and state;    and    are evolution and 

observation uncertainties. The idea in the state space approach to feedback control, is to 

synthesize a full state feedback through: 

               (4.3) 

where  , the gain matrix,  is computed to satisfy the objective of the closed loop system; in a 

civil structure such an objective would be, e.g. the suppression of vibrations induced by external 
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loads (e.g. loads or seismic excitations). The problem is that, in most practical cases the state 

vector is not fully known: it may require too many sensors, or it may be due to technical reasons 

(for instance, displacements of a multi-storey structure are difficult to monitor). 

The process of reconstructing the whole state of a system, based on a physical model and 

observation signals, is called observer design (Preumont 2011). It is known that, dealing with 

linear state-space models, provided that the distribution of the uncertainties is Gaussian and there 

is no correlation in uncertainty time series, Kalman Filter furnishes the optimal observer of the 

system (Preumont 2011). This Chapter of the thesis deals with the reduction of the computational 

cost of a Kalman observer of the linear time invariant  dynamic systems, by making use of a 

surrogate POD-based reduced model of the system to be incorporated into the Kalman filter 

algorithm. The efficiency of POD for model reduction of models studied in current Chapter, in 

terms of speed-up and accuracy, has been ascertained in Chapter 3, where it has been shown that 

POD can be a reasonable candidate to reduce the computational costs of structural analysis.  

4.2 Statistical assessment of residual errors induced by POD 

We start by recalling from Chapter 3 the set of ordinary differential equation that governs the 

dynamics of a structural system: 

   ̈          (4.4) 

where:   and   are the stationary mass and stiffness matrices, respectively;      is the external 

load vector;  ̈ and   are the storey acceleration and displacement vectors, respectively.  

By making use of a Newmark time-integration algorithm,       is discretized in the time domain, 

through definition of the vector        ̇  ̈  
 at time   . The discrete state space form of 

      reads: 

                   (4.5) 

               (4.6) 
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where: 

  [

                             (  ⁄   )  
 
        (  ⁄   )  

                            (  ⁄   )  
 
              

                  (  ⁄   )    

]           (4.7) 

and: 

   [

           

          

     

]      (4.8) 

   and    are evolution and measurement noises, assuming the full model to be deterministic, 

former one is not considered to enter the evolution of state of the system, while latter is assumed 

to be a stationary zero mean white Gaussian noise featuring time invariant covariance matrix of 

 . 

With the same notation of Chapter  , the reduced order model of the system can now be written 

as: 

    ̈                 (4.9) 

where:   is the coordinate of the reduced model and governs the evolution in time of the 

structural response along the POMs. Once the solution of       is obtained, the full state of the 

system can be computed by making use of      : 

  ̈     ̈  ̇     ̇       (4.10) 

or equivalently: 

{
 
 ̇
 ̈
}  [

    
    
    

] {
 
 ̇
 ̈
}   {

 
 ̇
 ̈
}                                     (4.11) 
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Hence, the reduced state space model of the system can be obtained by coupling the time 

evolution of the coordinates of the reduced model and the observation equation. By definition of 

the vector          ̇  ̈  
 , the state space equation reads: 

i.e.: 

                          (4.12) 

                   (4.13) 

where: 

   [

         
                 

       (  ⁄   )     
        (  ⁄   )  

         
              

        (  ⁄   )     
              

    
          

        (  ⁄   )  
    

]   (4.14) 

and: 

     [

       
       

       
      

  
      

]      (4.15) 

Since it is assumed that the original model is deterministic,    is solely attributed to inaccuracy 

of the reduced model;    instead is representative of measurement errors and model reduction 

inaccuracies together. In case    and    are white Gaussian noises, the Kalman filter can furnish 

optimal estimates of the state of the reduced model; on the contrary, if the distributions of the 

uncertainties are not Gaussian, uncorrelated or a combination thereof, the performance of 

Kalman filter is not a priori known to be satisfactory. 

In this section, Bartlett white noise test (Bartlett 1978) is profited to verify the null hypothesis of 

whiteness of the errors induced by the reduced order modelling. In this regard, Bartlett test 

compares the empirical cumulative normalized periodogram of the given signal with the 

cumulative distribution of a uniform random variable. The periodogram of an arbitrary random 
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signal (e.g.             ), as a mean for spectral analysis, is defined as (Stoica, Moses 

1997): 

     
 

 
|∑   

 
        |                                               (4.16) 

while, the cumulative periodogram is computed: 

      
∑      

 
   

∑  (  )
 
   

                                                             (4.17) 

To perform the comparison, and measure the possible deviation from the whiteness assumption,  

the Kolmogorov-Smirnov statistics is adopted by Bartlett test (Reschenhofer 1989). In case the 

associated Kolmogorov-Smirnov statistics of the test exceeds the critical values, for a given 

confidence interval, the null hypothesis of whiteness would be rejected. For each sample size, 

and for some confidence levels, the critical values of Kolmogorov-Smirnov statistics are 

tabulated and reported in references (Miller 1956, Kececioglu 2002). The highest confidence 

interval, for which the test statistics are reported in (Kececioglu 2002), are related to a 

probability equal to     ; therefore, to accept or reject the hypothesis by maximum probability, 

in this Chapter we compare test statistics to the value associated with probability of    . The 

critical values of the test statistics also depend on the sample size, which in our case is the length 

of the error signal. These critical values are estimated trough Monte Carlo simulations (Lilliefors 

1967): if the sample size ( ) is higher than   , the critical value of the test statistics is curve 

fitted and is represented by 
    

√ 
 (Kececioglu 2002). It is reported that the Bartlett test is not a 

suitable method to test whiteness of observation signals with small sample sets (Reschenhofer 

1989). However, dealing with time series of error signal, there is practically no limitation in 

increasing the number of the samples, and samples size issues are not affecting test results. The 

results of the test are reported graphically, where empirical cumulative normalized periodogram 

of the given signal and the cumulative distribution of a uniform random variable (a straight line, 

passing from the origin and with a slope equal to the inverse of the Nyquist frequency), 

accompanied by two lines representing the confidence interval, are plotted in the same graph. 
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Assuming that the true dynamics of the system is known and obtained by analysis of the full 

model, the errors induced by the model order reduction are here defined as the difference 

between the true dynamics of the system and the dynamics furnished by the reduced model. The 

error is considered in terms of difference between the physical coordinates (i.e.  ,  ̇,  ̈) and the 

POD temporal coordinates (i.e.  ,  ̇,  ̈). At time instant   , the error signals can therefore be 

written: 

     ̈     ̈     ̇     ̇              (4.18) 

while the errors concerning POD coordinates are: 

     
  ̈   ̈      

  ̇   ̇      
                                  (4.19) 

It is seen in        and        that the error signals relevant to velocity and acceleration are not 

assumed as temporal derivatives of displacement error signal. This fact is due to the uncertainties 

induced by the model order reduction. 

In the next section, it is shown that the errors in the reconstructing the state of the full model 

affects the observation equation of the reduced state space model. Instead the error in the 

reconstructing the state of the reduced model enters affects the evolution equation of the reduced 

model. 

4.3 Formulation of Kalman-POD observer for linear time invariant systems 

The bulk of Chapter   has been dedicated to Bayesian filters for the estimation of states and 

parameters of mechanical systems, of which only a part of the state is observed. However, to 

keep this Chapter self-contained, key points of recursive Bayesian estimation of mechanical 

systems are reviewed. The outline of all the Bayesian filters can be drawn in the two stages of 

prediction and update: in the prediction stage, a model of the system is used to predict the 

dynamics of the whole state vector, whereas in the update stage, as observations from a part of 

the state, or as measurable quantities that are correlated with the state become available, the 

whole state vector is updated. For instance, in a multi storey building it is expensive or even 
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practically impossible to measure displacements of the storeys directly, while accelerations are 

easy to measure. In such cases, provided that a model of the structure is available and the model 

is linear, if uncertainties in the model and in the measurements are uncorrelated Gaussian noises 

the Kalman filter is the optimal tool for estimating the state of the system. 

In practice, it may happen that the high dimension of the model of the structure prevent the filter 

to fulfill its task in real-time. In such a case, exploiting a reduced model would be beneficial for 

reducing the computational cost of the Kalman filter. In this chapter, reduced models that are 

built by POD are used to speed-up the calculations. 

The idea of speeding up the calculations required by Kalman filters via reduced order modelling 

has been already exploited in meteorology, to predict the near surface winds over the tropical 

Pacific ocean (Wikle, Cressie 1999). A set of empirical functions was adopted to reduce the 

computational burden of the reconstruction of the wind velocity field, via data available from a 

few observation points. Malmberg and co-workers (Malmberg, Holst & Holst 2005) adopted 

subspace realized by PCA for attacking the same problem; they assumed that the weather 

condition can be thought of as a linear combination of some dominant modes (the weather 

condition is modeled by a linear time invariant state-space model), the modes being supposed to 

be invariant; however, the contribution of each mode may vary over time, and the Kalman filter 

was used for estimating the contribution of each one. Though the concept of reduced state-space 

Kalman filter is gaining popularity in meteorology (He, Sarma & Durlofsky 2011, Tian, Xie & 

Sun 2011), its possible application in structural engineering field has not been considered yet. In 

this section, we deal with the use of Kalman filter to estimate the POD coordinates of Eq. (4-12). 

At each time instant, after the reduced states are estimated, the whole state vector is 

reconstructed. For details concerning the synergy of POD and Kalman filter, see Table  4-1. 

Provided that the reduced model of the structure is already available, it is seen that the algorithm 

is simply the application of a Kalman filter to estimate the current state of a linear time-invariant 

system. In such a system, a linear combination of POMs can represent the dynamics of the 

system. The POMs are constant over time and do not change; however, the contribution of each 
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mode in the construction of the response of the structure is changing over time. The Kalman 

filter, based on the observation made from a part of state vector (e.g. accelerations of some 

storeys) quantifies the contribution of each POM in the estimation of the state of the system. 

 

Table  4-1: POD-Kalman observer 

- Initialization at time   : 

  ̂      
      

       
         ̂       ̂  

    

 

- At time   , for         : 

 Prediction stage: 

2. Evolution of state and prediction of covariance 

    
                  

    
                

   
 

 Update stage: 

3. Calculation of Kalman gain: 

       
       

 (          
        

    )
  

 

4. Improve predictions using latest observation: 

 ̂        
    (              

 )

         
              

  

 Reconstruction stage: 

 ̂     ̂    
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4.4 Numerical assessment of POD-Kalman observer for seismic analysis of 

linear time invariant systems 

As a case study, in Chapter   we investigated the capability of POD in speeding up the 

computations required to model the dynamics of the Pirelli Tower in Milan; in this Section, 

whiteness of the uncertainties in the reduced models built in Chapter   is first assessed, so as to 

verify the satisfaction of requirements of the Kalman filer for optimal performance. Then, 

robustness of the Kalman-POD approach to changes in the seismic excitation source is 

investigated. The Section finally ends with the numerical assessment of speed-up and accuracy 

of the Kalman-POD algorithm. 

As for the error of reduced models for reconstructing the displacement history of the roof floor, 

Figure 4-1 shows the relevant error for reduced models with various number of retained POMs. 

The errors are related to the analysis of the building when acceleration time history of El Centro 

earthquake is used to shake the structure. It is seen that, by increasing the number of POMs, the 

amplitude of the error signal drastically decreases. However, from the time evolution of the error 

signals relevant to reduced models featuring different number of POMs, it seems that there is a 

strong correlation in them, as the signals look like a sinusoid with a time varying amplitude. This 

is corroborated by the cumulative periodograms of the error signals shown in Figure  4-2. By 

increasing the number of POMs retained in the reduced models from one to eight, despite the 

decrease in the error amplitudes, the hypothesis of the whiteness can still be rejected, as all three 

periodograms relevant to the reduced model exceed the     confidence interval (indicated by 

two parallel black lines in the closeup presented in Figure 4-2). By looking at the cumulative 

periodograms it can be seen that, as the number of POMs of the reduced model increases, the 

main jumps move to higher frequency zones.  
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Figure  4-1: Errors in the displacement time histories furnished by reduced order models 

 

 

Figure  4-2: Cumulative periodograms of error signals 

To investigate this issue in further details, we look at the periodograms of the error signals 

shown in Figure  4-3. For ease of comparison, the first few natural frequencies of the structure are 

indicated by vertical dashed lines (see Table  3-1). It is seen that the main peak in the error of the 

 -DOF reduced model is coincident in second natural frequency of the structure. By increasing 

the number of DOFs of the reduced models, according to the decrease in the error amplitude 

already shown in Figure  4-3, the power of the harmonic components embedded in the signal 

attenuates severely, to the extent that it is not possible to distinguish the corresponding peaks in 

Figure  4-3. 
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Figure  4-3: Periodograms of the error signals 

Close-ups in Figure 4-3 allow to compare the spectral power of the error of three reduced models 

in a clearer fashion: it is seen that the main periodicity of the error signal of the  -DOF reduced 

model coincides with third natural frequency of the system; the close up also shows that, in 

frequency content of the error signal of the  -DOF reduced model, the first peak is coincident in 

the 8
th

 natural frequency of the system. The trend in Figure 4-1 suggests that as the number of 

DOFs of the reduced model increases, the amplitude of the error signal decreases; consequently, 

the spectral power of the error signal decreases as well. Also, as the number of DOFs retained in 

the reduced model increases, the dominant frequency contents coincide with higher natural 

frequencies of the system. This trend suggests that the subspace spanned by POMs has a degree 

of similarity with the subspace spanned by the eigenmodes of the system: frequency content of 

the error induced by neglected POMs is coincident in the higher order eigen-frequencies of the 

structure. 

In what precedes it was observed that the uncertainties in the errors of reduced order models are 

correlated, and not white noises; hence, optimal performance of the Kalman observer is not 

guaranteed. However, it was also shown that, by an increase in the number of POMs retained in 

the reduced model, the spectral density of the correlation in the errors diminishes rapidly. 
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(a) 

 

(b) 

Figure  4-4: Time histories of the horizontal displacements of 20th floor (a) and 39th floor (b) as induced by 

the El Centro earthquake, performance of the Kalman filter. 

 

In what follows, the performance of the Kalman observer, if applied to the estimation of the 

whole state vector on the basis of observations of the acceleration time history of the 39
th

 storey 

(roof floor) is assessed. Choosing other storeys for observation, or adding more data yields the 

similar results: it is known that state of a linear state space model with white Gaussian noises is 

optimality estimated through the Kalman observer. In Figures 4-4 to 4-6, displacement, velocity 

and acceleration time histories of the 20
th

 (mid floor) and 39
th

 (roof) floors are shown as 

representative outcomes for the performance of the filter. 
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(a) 

 

(b) 

Figure  4-5: Time histories of the horizontal velocities of 20th floor (a) and 39th floor (b) as induced by 

the El Centro earthquake, performance of the Kalman filter. 

In the analysis for numerical assessment of performance of the Kalman filter, the evolution 

equation is assumed to be deterministic, and the noise in the observations is supposed to be a 

white stationary Gaussian process. As expected from optimality of the Kalman observer for 

dealing with aforementioned problems, it is seen that the estimates furnished by the Kalman 

filter almost coincide with the target values. This fact is seen through the close-ups in each time 

history graph. 
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(a) 

 

(b) 

Figure  4-6: Time histories of the horizontal accelerations of 20th floor (a) and 39th floor (b) as induced by 

the El Centro earthquake, performance of the Kalman filter. 

In the remainder of this Section, the performance of Kalman-POD algorithm for estimating the 

state of the Pirelli tower is assessed. As it has been shown, the uncertainties in the state-space 

model are not white; consequently, the performance of the Kalman observer is not a priori 

known. In this Chapter, we make use of the POD-based reduced models, for the details the 

readers are referred to see Chapter  . The reduced model is used by snapshots taken from the 

simulation of the response of the full model to El Centro accelerogram excitation. Figures 4-7 to 

4-9 show time histories of the estimations of displacements, velocities and accelerations of 20
th

 

and 39
th

 floor via Kalman-POD algorithm, when the building is shacked by Friuli acceleration 
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record. It is seen that by keeping only 3 POMs in the reduced model, the time histories estimated 

by POD-Kalman match those of the full model. To have insights on the improvement in the 

quality of the estimates by Kalman-POD when it is compared to POD, Table  4-3 and Table  4-4 

report residual mean squared error (RMSE) of the 20
th

 and 39
th

 floors, respectively.  

 

(a) 

 

(b) 

Figure  4-7: Time histories of the horizontal displacements of 20th floor (a) and 39th floor (b) as induced 

by the Friuli earthquake, performance of the POD-Kalman. 
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(a) 

 

(b) 

Figure  4-8: Time histories of the horizontal displacements of 20th floor (a) and 39th floor (b) as induced 

by the Friuli earthquake, performance of the Kalman-POD. 
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(a) 

 

(b) 

Figure  4-9: Time histories of the horizontal accelerations of 20th floor (a) and 39th floor (b) as induced by 

the Friuli earthquake, performance of the POD-Kalman. 

In Table  4-3 it is seen that, as the number of DOFs in the reduced model increases, the RMSE 

error of reconstruction of displacements, velocities and accelerations realized by POD rapidly 

decreases. When using reduced models with   and   POMs, the RMSEs of POD solely are less 

than those of Kalman-POD. However, moving to reduced models with   and   POMs Kalman-

POD is able to improve the quality of the estimate with respect to what the use of POD alone 

offers. This phenomenon is mainly due to the high spectral power of the correlation structure 

embedded in the error signal: it has been shown that by increasing the POMs retained in the 

reduced model the spectral power of the noise correlations decrease rapidly. 

Moving to the 39
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 floor, whose acceleration is measured, it is seen that RMSE of accelerations 
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provided by POD alone, see Table  4-4. Concerning RMSE of displacements and velocities, it is 

seen that estimates of POD-Kalman always are smaller than estimates of POD. Unlike the 20
th

 

storey RMSEs, which the estimates of the Kalman-POD observer in some cases featured higher 

error when compared with POD alone, in this case RMSE of Kalman-POD always is lower than 

POD. This is due to the fact that the response of the system is measured at 39
th

 floor. The trend 

suggests that, as the number of POMs in the reduced model increases, the estimates of POD-

Kalman outperform POD only.  

Concerning the speedup obtained by reducing the order of the full model, similarly to Chapter 3, 

results here discussed have been obtained with a personal computer featuring and Intel Core 2 

Duo CPU E8400, with 4 Gb of RAM, running Windows 7x64 as operating system and 

performing the simulations with MATLAB version 7.6.0.324. The speedup values reported in 

Table  4-2 confirms the efficiency of Kalman-POD in reducing the computational costs related to 

the Kalman filter algorithm. It is seen that, using POD-based models incorporated in a Kalman 

observer can render the calculations hundreds of times faster. 

Table  4-2: speed-up obtained by Kalman-POD and POD 

# DOFs   speed-up (Kalman-POD) speed-up (POD) 

1 0.99 309 515 

2 0.999 279 385 

3 0.9999 225 276 

4 0.99999 187 244 
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Table  4-3: RMSE of time histories of displacemens, velocities and accelerations of 20th floor, comparison 

between POD and Kalman-POD approaches 

# DOFs 

RMSE of POD RMSE of POD-Kalman 

disp. vel. acc. disp. vel. acc. 

1                                                          

2                                                             

3                               1.                            

4                                                             

 

Table  4-4: RMSE of time histories of displacemens, velocities and accelerations of 39th floor, comparison 

between POD and Kalman-POD approaches 

# DOFs 

RMSE of POD RMSE of POD-Kalman 

disp. vel. acc. disp. vel. acc. 

1                                                          

2                                                             

3                               1.                            

4                                                             

 

4.5 Summary and conclusion 

In this section, the problem of monitoring the whole state of a structure via a numerical model 

and observations relevant to some points of interest is addressed. It has been shown that, dealing 

with a linear model of the Pirelli tower, when the building is shacked by the El Centro 

earthquake record, the Kalman filter can provide almost perfect results by using only 

acceleration time history of the last floor, as the observation signal. 
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The reduced models built via POD are then introduced into the Kalman filter to reduce the 

computational cost of the filter. It has been shown that the reduced models incorporated into the 

Kalman filter dramatically reduce the computing time, leading to speed-up of     for a POD 

model featuring 1 POM, which is able to accurately reconstruct the displacement time history of 

the structure. Moreover, it has been shown that the coupling of POD and Kalman filter can 

improve the estimations provided by POD alone.  

This chapter has been limited to linear time invariant systems, the bulk of next Chapter will be 

instead dealing with the time-varying systems, when there is no a priori information concerning 

the variation of parameters. 
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Chapter 5: Dual estimation and reduced 

order modeling of damaging structures 

 

5.1 introduction 

Detection of changes in the mechanical properties of a structural members can be assumed as a 

method for health monitoring. In many cases, the damage in the structure can be considered as a 

reduction of the stiffness (Yang, Lin 2005); it may be due to failure of a member to sustain 

further action, or it can be due to degradation in its material properties. That is, detection of 

damage in a structure can be posed as a system identification problem. Dealing with a linear 

structure, offline identification of system matrices can be done via several robust algorithms; as 

for output only techniques, data driven stochastic subspace identification (SSI) algorithm is the 

de facto standard stochastic system identification method (Van Overschee, De Moor 1996); 

subspace identification algorithm is instead widely applied for the identification of deterministic 

input-output systems (Loh et al. 2011). The aforementioned methodologies include singular 

value decomposition (SVD) and QR decomposition techniques (Moaveni et al. 2011). Extension 

of such methodologies to online system identification is usually realized via setting a fixed 

length moving time window; as new observations become available, a new subspace 

identification is realized. Computational costs associated with SVD and QR prevent real-time 

application of such methods. To reduce the computational burden of SVD and QR operations, 

several methods were proposed, based on updating SVD and QR decomposed matrices, making 

them suitable for near real-time applications (Loh et al. 2011). In this research, damage detection 

has been approached via dual estimation of state and stiffness parameters by making use of 

recursive Bayesian filters, in an online fashion. We have shown in Chapter   that, as the number 

of DOFs of the space model of the structure increases, biases often affect the estimates furnished 
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by the filters. To cope with this problem, we resort to dual estimation of state and parameters of a 

reduced model of the structure. 

However, unlike the identification of the full model of the system, estimating components of the 

reduced stiffness does not provide explicit information concerning the intensity and location of 

the damage. It is known that proper orthogonal modes of the structures contain information 

concerning location and intensity of the damage (Ruotolo, Surace 1999, Vanlanduit et al. 2005, 

Galvanetto, Violaris 2007b, Shane, Jha 2011b); this feature of POMs can potentially resolve 

shortcomings of parameter estimation of a reduced model as indicator of damage location and 

severity. To this end, we propose an algorithm for dual estimation of state and parameters of a 

reduced model, accompanied by an online estimation of the POMs of the structure. The proposed 

procedure makes use of proper orthogonal decomposition for model order reduction, and then 

exploits Bayesian filters for dual estimation of the full state and reduced parameters of the 

system. At each recursion, Kalman filter is adopted to update the subspace spanned by the POMs 

retained in the reduced model. This approach can effectively detect, locate and identify the 

severity of the damage in shear building type structures. The efficiency of the methodology is 

testified through pseudo experimental data, obtained with direct analyses. 

The remainder of this Chapter is organized as follows. In Section     the state space formulation 

of shear buildings is reviewed, it is followed by Section     that highlights key features of the 

reduced order state space model of the system. In Section     the peculiarities of dual estimation 

and reduced order modelling of a damaging structure are presented and discussed, and our 

proposal for attacking the problem is defined. In Section    , efficiency of our proposed 

approach is numerically testified. 
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5.2 State space formulation of shear building-type structural systems 

Aiming to develop an algorithm for multi-storey buildings, in this study we investigate shear 

buildings, i.e. models obtained by lumped mass assumption for each story, see Figure  5-1. 

 

Figure  5-1: schematic view of a shear building 

Representing storey displacements, velocities and accelerations by  ,  ̇ and  ̈ respectively, the 

governing equation of motion of the building reads: 

  ̈    ̇                    (5.1) 

where   is the stationary mass matrix,   denotes time invariant damping matrix and      

stands for time varying stiffness matrix, whose variation in time is due to possible damage 

phenomena and is usually unpredictable;       is the loading vector: 

  

[
 
 
 
  

  

 
  ]

 
 
 
     (5.2) 
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           ]
 
 
 
 

  (5.3) 

In general,      can be any kind of loading; however, here we assume that it is a harmonic force 

applied to the top floor: 

     [

 
 
 

       

]     (5.4) 

where   and   are the amplitude and frequency of excitation, respectively. For the sake of 

simplicity, in this study we neglect damping effects. 

To numerically solve the set of ordinary differential equations, Newmark explicit integrator is 

used. To write the equations in the discrete state-space form we introduce an extended state,  , 

that at each time instant    includes  ,  ̇ and  ̈ according to: 

    [

  

 ̇ 

  ̈ 

]      (5.5) 

State-space form of Eq.       then writes: 

                   (5.6) 

where: 
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                                 (   (  ⁄   )            )     (  ⁄   )  

          
                               (   (  ⁄   )            )           

     
                     (   (  ⁄   )            ) ]

 
 
 

  

(5.7) 

and : 

   [

           

          

     

]      (5.8) 
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  and   are parameters of the Newmark algorithm, for details see Section    . 

Concerning the observation process, it is assumed that a part of state vector is directly 

observable; hence,  observation equation reads: 

              (5.9) 

where   denotes a Boolean matrix of appropriate dimension which links the states of the system 

to observation process, and     denotes associated measurement noise. 

 

5.3 Reduced order modelling of structural systems 

A detailed study of the use of POD for model order reduction of structural system has been 

presented in Chapter  . However, to keep this Chapter self-contained, in this Section we review 

key features of the procedure. Let us assume that the displacement field      of the system 

can be written in a separable form, according to: 

       ∑           
 

   
     (5.10) 

where       are a set of orthonormal vectors that satisfy proper orthogonal decomposition 

(POD) requirements and,    are temporal functions. Dealing with structural problems with high 

dimensional state vectors, the main variation in the data is usually occurring in a rather small 

subspace; consequently, it is often possible to approximate the state of the system by keeping just 

a few, say   proper orthogonal modes, with    : 

       ∑           
 

   

     
     (5.11) 

where    denotes the matrix containing the retained   POMs of the system. 

Substituting        into      , and applying Galerkin projection yield the reduced dynamic 

model of the system: 
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   ̈     ̇                (5.12) 

where: 

     
               

               
                  

       (5.13) 

The reduced dynamic model in state-space form then reads: 

                  
      (5.14) 

                    (5.15) 

 

where the reduced order state includes the temporal coefficient, its first and second time 

derivatives: 

      [

  

 ̇ 

  ̈ 

]      (5.16) 

In       : 

   

[
 
 
          

                  
  (          )         

  (   (  ⁄   )               )     (  ⁄   )  
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  (   (  ⁄   )               )           
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  (5.17) 

     [

       
       

       
      

  
      

]             (5.18) 

and, in       :  

   [

  

  

  

]                      (5.19) 
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Throughout the paper, whenever two indexes are used to denote a variable, the first subscript     

refers to a property associated to reduced order model, while the second subscript refers to the 

time instant at which variable is considered. 

In        and       ,   
  and    are the process and measurement noises, respectively. The 

former uncertainty stems from the loss of accuracy due to the reduced modeling, and needs to be 

further assessed, to determine its probability distribution and verify the correlation structure in it. 

In Chapter  , we have tested the whiteness of the residual error signal of POD-based reduced 

model of Pirelli tower; it has been shown that, by an increase in the number of POMs retained in 

the analysis, a reduction occurs in the amplitude of the noise signal and its spectral power. As a 

consequence, the effect of the non-white uncertainty in the Kalman-POD observer becomes 

negligible. Hence, in this Chapter we assume that the noises satisfy the requirements of the 

family of recursive Bayesian inference algorithms. 

To attack the dual estimation problem, we now augment the parameters of the reduced model 

into the state vector, to comply with the state space form. We then introduce the augmented state 

vector     , that at any time     encompasses both states and parameters of the system      

            . In Section    , it is shown that dual estimation of states and parameters of a linear 

system leads to a nonlinear state-space model. The new state space equation writes: 

         (      )                       (5.20) 

                              (5.21) 

   [ 
 

]             (5.22) 

where:   in   is a null matrix of appropriate dimension to annihilate the effects in the 

observation mapping of parameters in the augmented state vector;         maps the state of the 

system in time and   denotes the correlation between states and observables of the system;   

links the reduced states of the system to the full state; whereas    and    stand for the zero 

mean white Gaussian processes with associated covariance matrices   and  . Likewise previous 
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Chapters,      includes the parameters of the reduced state space model that should be estimated, 

namely the components of the reduced stiffness matrix     . 

 

5.4 Dual estimation of reduced states and parameters of a damaging structure 

Dual estimation  problem for a non-damaging (elastic) structure can be pursued via the 

estimation of reduced state and parameters, since there wouldn’t be changes in the subspace of 

the problem. On the contrary, subspace of a damaging structure varies in time: for instance, a 

change in a story stiffness can lead to a change in the POMs. As a consequence, dual estimation 

of the reduced state and parameters of a damaging structure not only includes tracking of the 

reduced state and estimation of the reduced parameters of the system, but also needs online 

update of the relevant subspace of the structure. 

In this Section, we introduce a novel approach for simultaneous state and parameter estimation, 

accompanied by an online subspace update in order to obtain an estimate of the full state. In this 

regard, we adopt recursive Bayesian filters: the extended Kalman filter (EKF) and the extended 

Kalman particle filter (EK-PF). They have been discussed in Chapter  , and used for dual 

estimation. A Kalman filter is instead used to update the subspace furnished by POD. Likewise 

all recursive Bayesian inference algorithms, the iterations start by an initial guess; then, within 

each time interval            , provided that at      estimations of state, parameters and subspace 

of the system are available, the state      and parameters in      are simultaneously estimated. 

Let us consider the following state space model: 

         (      )             (5.23) 

                                 (5.24) 

where: 



133 

 

   

[
 
 
 
    

    

    

 ]
 
 
 

    (5.25) 

Along with Eqs.        and       , an additional equation should be introduced in order to 

permit time variation and update of   , similar to the trick used for dual estimation of states and 

parameters. The following equation is introduced to allow the subspace to vary over time, and 

use the data in observation in order to adapt to the possible changes: 

                      (5.26) 

where   denotes a fictitious zero mean, white Gaussian noise with associated covariance ϒ, that 

needs to be obviously tuned to obtain unbiased estimates of the subspace vectors.  

To recursively update the subspace, Eqs.        and        are assumed as the state-space model 

for subspace evolution. The former equation governs the evolution of the subspace, and the latter 

one links the observation to the subspace. In Eqs.        and       , it is assumed that      

remains independent of     . The observation equation       , when used for subspace update 

can be rewritten as: 

                  (5.27) 

where     is a stationary matrix which links the observation process to the subspace spanned by 

the POMs, and can be computed by manipulating Eq.       . Eq.        establishes a linear 

relationship between the observation    and the subspace     , whose linearity allows us to use 

the Kalman filter (the optimal estimator for linear state-space models) for the estimation of the 

subspace. 

In Tables     and    , an algorithmic description of the procedure is reported; the EKF and the 

EK-PF are used for dual estimation. In the Table  5-1,                ̂   
denotes Jacobian of 

       , at          
 . 
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Table  5-1: EKF-KF algorithm for dual estimation of the reduced model and subspace update 

- Initialization at time   : 

  ̂      
              

         ̂       ̂  
     

  ̂     [    ]        [(      ̂   )(      ̂   )
 
]
 

- At time   , for         : 

 Prediction stage: 

1. Computing process model Jacobian: 

                    ̂   
 

2. Evolution of state and prediction of covariance: 

    
      (      )

    
            

     
   

 

 Update stage: 

1. Use        to estimated    and Kalman gain: 

       
   

   (       
   

      )
  

 

2. Update state and covariance: 

         
    (          

 )

          
           

  

3. Predict subspace and its associated covariance: 

    
        

     
          ϒ

 

4. Calculate Kalman gain for updating subspace: 

           
    

 (        
    

    )
  

 

5. Update subspace and its associated covariance: 

         
       (          

 )
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As seen in Table    , the algorithm has two main stages of prediction and update. In the 

prediction stage, the evolution equations are used to map in time the reduced state        along 

with its covariance. In the update stage, first the reduced state and parameters and their 

associated covariances are corrected by incorporating the information contained in the latest 

observation (steps    and   ), then the Kalman filter is exploited to update the subspace   . 

Step    in the prediction stage of dual estimation algorithm, is indeed the predictor stage of the 

Kalman filter to update the subspace. In step   , Kalman gain is computed and is used in step 

   to update the estimate of the subspace by taking the latest observation into account. 

Concerning the use of EK-PF for dual estimation, according to previous Chapter  , combined 

with the Kalman filter for subspace update, similar to the procedure used by EKF-KF algorithm, 

the reader is referred to Table  5-2. In the Table  5-2,     
   

 is: 

               ̂   
     (5.28) 

where it denotes Jacobian of the reduced evolution          at          
    

. 

Table  5-2: EK-PF-KF algorithm for dual estimation of the reduced model and subspace update 

- Initialization at time   : 

  ̂      
             

         ̂       ̂  
    

 ̂     [    ]        [(      ̂   )(      ̂   )
 
]

    
   

  ̂   
   

  (       )         

 

- At time   , for         : 

 Prediction stage: 

1. Draw particles: 

    
      (           

   
)                     

2. Push the particles toward the region of high probability through 

an EKF: 
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(            
    

)

      
        

       
   

         
    

                         

 

 Update stage: 

1. Evolve weights: 

  
   

     
   

  (       
   

)                    

2. Resampling, see Table  2-5. 

3. Compute expected value or other required statistics: 

 ̂    ∑  
   

     
   

  

   

 

4. Predict subspace and its associated covariance: 

    
        

     
          ϒ

 

5. Calculate Kalman gain for updating subspace: 

           
    

 (        
    

    )
  

 

6. Update subspace and its associated covariance: 

         
       (          

 )

           
               

  

5.5 Numerical results: damage detection in a ten storey shear building 

This section deals with the numerical assessment of the proposed algorithm for detecting damage 

in a   -storey shear building. To deal with the damage scenarios, it is not straight forward to use 
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the model of Pirelli tower, due to the fact that a static condensation has been carried out to derive 

matrices of lumped mass system of the Pirelli towers. For the sake of simplicity, in the numerical 

example it is assumed that all the floors have equal mass and inter-storey stiffness, i.e.    

      and             where            , and the damping effect is neglected. It the 

analysis, the external load shaking the structure, is a sinusoidal load applied to the last floor 

(roof) of the building, varying according to: 

                       (5.29) 

where         and          . 

Consider a case in which a stiffness reduction equal to     has occurred at the 5
th

 floor. The 

POMs of the structure, before and after damage occurrence, are computed and presented in the 

Figure 5-2. To compute these POMs of the healthy and damaged cases, two direct analyses have 

been carried out to assemble the so-called snapshot matrices. Looking at Figure 5-2, it can be 

seen that the ten POMs of the structure are affected by the stiffness reduction at the 5
th

 floor. The 

effect of the damage in the first POM is quite visible, the usefulness of such sensitivity to 

damage, even in the first POM, helps tracking the evolution of damage in a single DOF reduced 

model. 

Figure 5-3 compares the first POM of the structure when the 5
th

 floor of the structure suffers a 

damage of varying intensity; the close-up in the graph allows to compare the shape of the POM 

in the vicinity of the damage location. Obviously, the intensity of damage leads to an increase in 

the deviation of the POM relevant to the damaged state with respect to the healthy state of the 

structure. To highlight the sensitivity of the 1
st
 POM to damage location, in Figure 5-4 the first 

POM of the damaged state is compared with healthy state of it, when damage occurs at different 

floors. The imposed level of the damage in all the cases is equal to a     reduction of the 

stiffness of the relevant floor. 
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Figure  5-2: proper orthogonal modes of a 10 storey shear building before and after damage 

 

 

Figure  5-3: 1st  POM of the 10 storey shear building subject to different levels of damage at 5th  floor 
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Figure  5-4: 1st POM of a ten storey shear building for a damage occuring at different storeys of the 

building 

 

Now that the link between the first POM of the structure and the location and severity of the 

damage is  established, we move to the problem of the recursive estimation of the state, 

parameters and POMs of the reduced model of the structure. To detect the damage, POMs of 

healthy and current state of the structure are compared, so information concerning the healthy 

state of the structure are needed. In this study, the case in which the reduced models retain one or 

two POMs are assessed, the latter case is mainly reported to verify the performance of the 

algorithm in case of the higher number of parameters to be estimated: dual estimation of reduced 
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uncertainties in measuring the response of the structure. The covariance of the added noise to all 

the pseudo experimental data considered in this section is set to         to simulate a high level 

of measurement uncertainty. The duration of the analysis is set to       , in order to let the 

estimates of the algorithms converge to a steady state value. The damage scenario is once again a 

reduction of     in the stiffness of the 5
th

 floor, which occurs at        . Other damage 

scenarios, featuring severities ranging from     to     in the reduction of the stiffness of other 

floors has been assessed; the algorithms show similar performance dealing with those scenarios, 

hence results are not presented here for the sake of brevity. 

Since the goal of this Section is the identification of damage, results concerning the estimation of 

the state are not discussed. Figure 5-5 shows the time history of the estimated stiffness of the 

reduced system when compared with its target value. It is seen that before damage occurs, the 

estimation coincides with the target value; however, after damage occurs, it takes almost       

for the algorithm to make its estimate to converge to the target value. Figure 5-6 shows the 

estimated POMs of the building before and after damage: the POM concerning the healthy state 

is related to       , and the POM concerning the damaged state is related to         . To 

compare the performance of the algorithm in tracking the POM of the system over time, Figure 

5-7 shows time history of the estimated POM, compared with its target value. It is seen that the 

estimations of the POM components before damage occurrence coincide with the true value; 

after damage occurs, the algorithm needs almost      , similar to parameter estimates, to reach 

to steady state. EK-PF, when dealing with some problems discussed in Chapter   outperforms 

the EKF; hence it is here used to verify if its convergence rate would be better than EKF’s one. 

However, it is seen in Figure  5-5 that the quality of estimation of the reduced stiffness and the 1
st
 

POM of the structure is not change, when either EKF-KF or EK-PF-KF are used for dual 

estimation and reduced order modelling of the damaging shear building. 
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Figure  5-5: estimation of the reduced reduced via EKF-KF and EK-PF-KF algorithms 

 

Figure  5-6: 1
st
 POM of the structure estimated EKF-KF and EK-PF-KF algorithms 
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Figure  5-7: time histories of the components of the 1st POM of the structure, from top to bottom 

resectively corresponds to first to last component of the POM vector (time histories of entries of POM) 
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Now, let us move to a case in which there are two POMs retained in the reduced order model of 

the system. In this case, taking advantage of the symmetry of the stiffness matrix, the reduced 

stiffness matrix    has three components to estimate. Figure 5-8 shows the results of the reduced 

stiffness matrix estimation via the EK-PF-KF and EKF-KF algorithms. It is seen that both 

algorithms are able to calibrate two of the components of the reduced stiffness matrix, while the 

          component  is failed to be estimated. The reason for such failure could be the insensitivity 

of the observations to the sought parameter. 

 

Figure  5-8: time histories of the parameter estimation of the reduced model via EK-PF-KF and EKF-KF 

algorithms:         ,          and          from top to bottom, respectively 
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Figure  5-9:  results concerning estimation of the second POM of the shear building after damage occures 
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Chapter 6: Conclusions 

6.1 Summary of contributions 

The main objective of the current study has been the development of fast and robust algorithms 

for online damage detection in structural systems. To this end, the research work presented in 

this thesis can contribute to three different research areas: (a) stochastic system identification of 

multi degrees-of-freedom structural systems via recursive Bayesian inference algorithms, (b) 

reduced order modelling of multi degrees-of-freedom structural systems through proper 

orthogonal decomposition; and (c) stochastic system identification of reduced order models of 

multi degrees of freedom structural systems through recursive Bayesian filters. 

The principal contributions and major findings of this research work can be summarized as 

follows: 

(1) Four state of the art Bayesian filters, namely the extended Kalman filter, the sigma-point 

Kalman filter, the particle filter and the hybrid extended Kalman particle filter have been 

adopted. To benchmark the performance of filters and avoid shadowing effects of the 

structure, the filters have been adopted to recursively identify the parameters of the 

constitutive model of a single degree-of-freedom dynamical system: an exponential 

softening, and three bilinear models (linear-hardening, linear-plastic and linear-

softening), as possible representatives of initial stages of damage are adopted. The goal is 

achieved by dual estimation concept, where the parameters of the system are joined to the 

state vector in order to simultaneously track the state of the system and calibrate the 

parameters, as new observations become available. Provided that the Jacobian of the  

evolution equations of the state space model is positive definite and bounded, it is known 

that the adopted filters are stable and can converge to unbiased estimates; however, such 

conditions are not always satisfied in a model featuring softening constitutive law. This 

fact substantiates numerical assessment of stability and convergence of the studied filters, 
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when applied to the estimation of parameters of a softening constitutive law used to 

describe damage evolution in the system. The numerical campaign here carried out has 

shown that while the extended Kalman filter, the unscented Kalman filter and the particle 

filter all fail to provide unbiased estimates of the sought parameters, the hybrid extended 

Kalman particle filter performs rather good. 

(2) The  extended Kalman filter (because of its computational time efficiency) and the hybrid 

extended Kalman particle filter (due to its excellent performance when applied to the 

analysis of single degree-of-freedom nonlinear system) have been adopted for dual 

estimation of states and constitutive parameters of a multi degrees-of-freedom linear 

shear building-type structure. The performance of the two filters has been assessed 

through the estimation of the values of the inter-storey stiffness of the floors of the 

building. In the simplest case, i.e. a two-storey shear building, both filters furnish quite 

accurate estimates of the stiffness values; however, moving to a three-storey structure, the 

performance of both filters is adversely affected. The trend is corroborated by results in 

the case of a four storey building: the estimation resulted in a bias up to     of the target 

values of the parameters. This trend suggests that, when dealing with dual estimation of a 

multi storey shear building, an increase in the number of storeys rapidly deteriorates 

accuracy of the parameter estimates. Therefore, this approach would not be an effective 

damage detection method; we the adopted a dual estimation of a reduced order model of 

the building. 

(3) To cope with the curse of dimensionality issue, the method of proper orthogonal 

decomposition (POD) has been adopted to produce a reduced order model of the 

vibrating structure. Provided that there exist a set of samples from the response of the 

system and its members are chosen in way that the ensemble contains information on the 

main dynamic characteristics of the system, POD automatically looks for those main 

characteristics. To this end, POD finds the directions that capture maximum variation, or 

equivalently, maximum energy of the system. Once the relevant directions (called proper 

orthogonal modes, POMs) in an initial training stage are found, Galerkin projection is 

used to project the equations onto the subspace spanned by the computed POMs. The 
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efficiency of the algorithm, in terms of speed-up and accuracy of the estimations has been 

then numerically assessed. The procedure is applied for reduced order modelling of the 

Pirelli tower located in Milan; prediction capability and speed-up issues are numerically 

assessed. It is seen that, reducing the original    degrees-of-freedom structure to a 

reduced model consisting of   POMs makes the computations     times faster, while a 

reduced model featuring a single POM has a speed-up value of    . Moreover, 

robustness of the reduced models, featuring different number of retained POMs, to a 

change in the source of the external loading has been also analyzed. To produce the 

samples required for initial training stage of POD-based reduced model, the Pirelli tower 

has been assumed to be shacked by the well-known El Centro acceleration time history. 

The resulted reduced model has then been used to simulate the response of the structure 

to the Kobe and Friuli earthquake excitations. It has been shown that the change in the 

source of excitation does not affect much the prediction capabilities of POD-based 

reduced models in seismic analysis of the structure. 

(4) Prior to the use of the reduced models obtained by POD in the recursive Bayesian 

inference algorithms adopted in this thesis, a statistical assessment of the uncertainties 

induced by reduced order modelling is essential. All the Bayesian filters adopted here 

assume that the uncertainties in the state space model are uncorrelated processes. The null 

hypothesis of whiteness of the residual error of POD models has been tested by 

cumulative periodogram-based test of Bartlett (Bartlett 1978). It has been shown that, no 

matter what the number of the POMs featured by the reduced model is, its residual error 

is always correlated. However, by an increase in the number of retained POMs, the 

spectral power of the correlation in the signal decreases. The linear, time-invariant 

reduced models of the Pirelli tower has been incorporated into a Kalman filter in order to 

speed-up the calculations. Provided that the noises in the state space equation are white 

Gaussian processes, it is known that Kalman filter furnishes optimal estimates of state of 

a linear model. We have shown that the POD-based reduced state space used in this study 

is not white. That is, when just a single POM is retained in the analysis residual mean 

squared error (RMSE) of the POD-Kalman observer is higher than POD alone, however, 
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as the number of POMs retained in the analysis increases and spectral power of the 

correlations decrease, POD-Kalman observer performs better, in terms of reducing 

RMSE of estimates: POD-Kalman observer featuring three and four POMs in its reduced 

model decrease quality of estimates provided by POD alone. Concerning speed-up gained 

by introducing POD-based models into Kalman observer, by maintaining a minimal 

number of POMs, the observer is run up to hundreds of times faster. 

(5) Besides its efficiency in model order reduction, POD has an interesting feature which 

makes it apt for the purpose of damage detection. Proper orthogonal modes that are 

furnished by POD have been shown to be sensitive to the severity and location of the 

damage in the mechanical systems, and they are already used as damage detection tools 

(Shane, Jha 2011a). These two aspects of POD, namely its efficiency for model order 

reduction and its capability in identifying the damage, makes it an ideal candidate for the 

problem of damage detection in structural systems via reduced order modelling and dual 

estimation. In this thesis, we have proposed a novel algorithm for dual estimation of a 

POD-based reduced order model of a time-varying shear model of building. The 

capability of the algorithm in tracking the state of the system, the parameters of the 

reduced model and the POMs of the reduced model has been numerically assessed. We 

have used our approach to detect a variety of damage scenarios in a ten-storey shear 

building; however, the assessment has been based on pseudo experimental verifications. 

It has been concluded that the proposed procedure performs accurately. 

The main objective of this thesis has been developing robust algorithms for online and real-time 

detection of the damage in civil structures. The objective of the thesis is realized by developing a 

procedure by a synergy of recursive Bayesian inference methods and proper orthogonal 

decomposition.  In this regard, a POD-based reduced model of the structure has been considered: 

dual estimation concept has been exploited, within a recursive Bayesian framework the state and 

the parameters of the reduced model are simultaneously estimate based on observational signal 

that becomes available in discrete time instants. In each recursion, not only the state and the 

parameters of the reduced model are estimated, but also the proper orthogonal modes used to 

construct the reduced model are estimates. It is shown that, the POD modes can indicate location 
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and severity of the damage in mechanical systems. The unbiased estimate of the POMs provided 

by our approach permits robust, online and real-time indication of the damage in a shear type of 

the building. 

6.2 Suggestions for future research 

Based on the work presented herein, several research areas have been identified as open to and in 

need of future work: 

(1) Concerning the use of Bayesian filters for dual estimation of states and parameters of the 

multi-storey shear buildings, in this thesis we have adopted the family of Kalman filter, 

particle filter and a combination thereof. However, the use of evolutionary particle filters 

has not been considered here; it is suggested to attack this problem by making use of 

aforementioned filters as well. 

(2) To construct the POD-based reduced models, the effects of nonlinear mechanisms has 

been neglected. It is suggested to take also those effects into consideration. 

(3) The algorithms proposed in this thesis for damage detection via dual estimation of the 

reduced model and subspace update, have been assumed to be fed by displacement 

response at each floor. The reason is, to construct the reduced model POD modes of the 

displacement response of the structure are used, for acceleration modes are different from 

displacement modes, accuracy of reproducing accelerations by reduced model is lower 

than displacements. There are two remedies: one is increasing the number of POMs 

retained in the reduced model to improve the quality of acceleration reconstruction; this 

can lead to curse of dimensionality by increasing number of the parameters to be 

estimated in the reduced model, the other option is to compute the displacement response 

from the acceleration response data. In the literature there are several methods available 

for computing displacement response based on the acceleration (Skolnik, Nigbor & 

Wallace 2011). It is suggested to make use of those techniques to verify the algorithms by 

pseudo experimental data. It is worthy to see if the Bayesian filters can handle the 
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uncertainty introduced by converting the acceleration response into the floor 

displacements. 

(4) Through this work, the methodologies that was used or developed are have been verified 

via pseudo-experiments. It is recommended to verify the effectiveness of the proposed 

procedure by making use of real experiments. 

(5) It is has been shown that, dealing with a ten-storey shear building with equal masses and 

stiffnesses at each floor, there exist an intuitive and clear correlation between damage 

location and intensity and the POM. However, to quantify the damage index relevant to 

each floor, it is suggested to make use of artificial neural networks (the standard 

classification methodologies) in order to provide quantitative damage indexes for each 

storey based on the POM of the structure, such method has been already adopted to 

identify damage based on the changes in the coefficients of an auto regressive moving 

average model of a four storey structure (de Lautour, Omenzetter 2010). 
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