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Introduction

Since a strong attention has been devoted in the last decades to healthcare management for social,
medical and economical reasons, over recent years also the analysis,development and improvement
of suitable tools apt at measuring the quality of care has become a researchfield of extreme impor-
tance. Within this context, since patient outcomes enable researchers (at least in part) to assess the
quality of care, there has been a widespread diffusion of techniques for monitoring and evaluating
the underlying processes generating such outcomes (see [171], [207], [208], [212] and in particular
the bibliographic overview reported in [155]). This task is nowadays unavoidable in order to get
a sensible improvement of healthcare services quality, as well as to contain economical costs. For
this reasons, performance measurements have to be carried out both at hospital and at physicians
levels. In order to achieve a suitable strategy for assessing healthcare performances, it is necessary
to identify suitable operating protocols, as well as the functional competenceof institutions, and
then to monitor them over time in order to understand the behavioural effects of rules on results
(as shown, for example, in [170] and [181]). In this way, a continuouscollection of data proved to
be mandatory, entailing a very strong burden as long as the number of players and the number of
indexes involved increases. Hence, in view of setting up a process for monitoring and evaluating
an healthcare system, it is necessary to answer several questions concerning (i) the definition of
proper outcomes to be measured in order to fulfill the desired targets; (ii) thedata to be collected
and how they should be collected; (iii) how data will be checked and audited;(iv) how data should
be analysed (and how frequently) and adjusted within a given context.

With this respect, a dataset (clinical registry and/or administrative database) describes the pro-
cess underlying itself. The more complex, structured and detailed is the dataset, the more difficult
is the analysis required for its exploitation (see [13] and [83]). In fact, not always the availability of
more information leads to more accurate predictions, since confounding effects grow up with com-
plexity of the problem [54]. In other words, monitoring healthcare systems through data collections
asks for a careful design of experiment and a high quality of collected data, for shared standards
of collection as well as for strict controls on the filling compliance and the reliability of the data.
Moreover, it calls for suitable statistical methods for analysis, modelling and predictions. Only in
this way it is possible to derive models which are capable of realistic interpretations of the process
underlying the dataset. The statistical analysis of data provides an invaluable insight into the be-
haviour of healthcare processes [30]. Statistical techniques, when applied to measurement data, can
be used firstly to highlight areas that would benefit from further investigation [133], then to model
processes relating patterns of care, patients case-mix, hospital influences and outcomes of interest,
and finally to make predictions (see [62] and [206]). Statistics enables the researchers to identify
variation within the process under observation. Understanding, modelling and then quantifying this
variation are the first steps towards quality improvement.

An important goal of Regione Lombardia (healthcare division) is the use ofperformance measures
for monitoring cardiological and cardiovascular healthcare offer, as well as to assess institutions
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within the regional healthcare service in order to provide evidence for initiatives aimed at enhancing
professional accountability in the public sector. Specifically, a Strategic Program, named“Sviluppo
di nuove strategie conoscitive, diagnostiche, terapeutiche e organizzative in pazienti con sindromi
coronariche acute”(www.salute.gov.it/ricercaSanitaria [35]), has started in 2008
with, among others, the following main goals:

• To point out a comprehensive clinical and epidemiological picture of how Acute Myocardial
Infarction (AMI) is treated in Regione Lombardia.

• To assess the effectiveness of patterns of care for AMI patients, in order to invest in innova-
tions starting from real epidemiological evidence and needs.

• To exploit administrative databanks for addressing clinical and epidemiological enquires.

• To highlight critical situations in healthcare delivery and then to improve hospital perfor-
mances.

• To provide people in charge with healthcare government with decisional support based on
statistical evidence and real time data.

In order to address these issues, suitable methods to collect, analyse and model data are needed.
The results of statistical analyses carried out on data arising both from clinical registries and admin-
istrative databanks may influence funding and policy decisions, and are used to generate feedback
for providers (see [36] and [112]). On the other hand, for reportson the performance of health care
providers to be effective, profiling must be done using the best statisticalmethods. The providers’
profiling based on current data collections is a new way for improving qualityof healthcare offer.
To this aim and to set an efficient network among providers, it is necessary a shared information-
technology systems of data collection and advanced statistical methods able to classify providers, to
quantify their effect on outcomes of interest at patients’ level, to analyse complex data arising from
biomedical context and to make reliable predictions.

Statistics is then of paramount importance in more than one step of the cardiovascular healthcare
process, especially in supporting this new concept of “real-time” epidemiology based on observa-
tional clinical registries and administrative databanks. In fact, as shown and explained in the thesis,
the statistician plays a central role during the design of experiment, carries out the monitoring of data
collection, evaluates the process and produces a feedback for involved players, elaborates models
necessary for providers’ profiling, classification and outcomes prediction. The decisional support
provided by statisticians is evidence based and it is based on real epidemiological evidence and
needs, involving low cost data sources, i.e., real-time and sustainable fromeconomic perspective.

In this thesis a general approach to model fitting aimed at clustering is considered, focusing on
grouped (longitudinal) data arising from healthcare context, where examples of grouping factors
are hospitals (and diseases) with respect to patients or patients themselves with respect to their own
measurements performed over time. The main goal of the thesis is then to present a number of statis-
tical techniques for the analysis of such data, in order to provide methods for supporting decisions
of people in charge with healthcare government. Clinically speaking, we will focus specifically
on problems related to the improvement and optimization of pattern of care for patients affected
by Acute Coronary Syndromes. On the other hand, the main statistical topic wewill deal with is
clustering carried out starting from random effects models estimation.

In fact, mixed effects models are used in a wide variety of biostatistical contexts, and can be
analysed both from a classical and Bayesian viewpoint. We can distinguishtwo types of applica-
tions: those in which the random effects are nuisance parameters, and are not of direct interest, and
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those in which the individual effects are of paramount interest. Although mixed effects models are
used in many applications in medical statistics, for our scopes the most interesting and new one is
the problem of hospital comparisons using routine performance data. Among other benefits, this
approach provides a diagnostic criterion to detect clusters of providerswith unusual results.

Thesis outline

The outline of the thesis is the following:

• In Part I , the funding project of the Ph.D. Scholarship and the clinical context it concerns are
presented, together with data arising from the whole process under investigation. The idea is
to carry out an overview of motivating problems the project wants to address and to present
data used to carry out analyses.

In particular, inChapter 1 motivations for performing Monitoring and Evaluation of health-
care systems (Section 1.1) are provided, together with the Information Technology devices
(Section 1.2) adopted to do it, in order to set the context and motivating the new concept of
epidemiology and healthcare assessment arising from the application of these methods. Fi-
nally (Section 1.3), a brief overview of clinical diseases of interest is proposed, in order to
make the reader familiar with some clinical concepts and terms he/she will find again later
on. InChapter 2, the idea of Cardiological Network is introduced and aims and scopes of the
Strategic Program are detailed. In particular, the healthcare process ofinterest, i.e., the pattern
of care which patients affected by Acute Coronary Syndromes undergo, is explained together
with the process indicators necessary to monitor it and then make it more efficient and effe-
tive. Finally, Chapter 3 describes all data sources arising from each step of the healthcare
proces of interest, which will be analysed in Part III using statistical methods proposed in Part
II, in order to give answers to healthcare problems set in this Part.

• In Part II , statistical methods for the analysis of data presented in Part I, Chapter 3 are
presented. The aim is to model hierarchical structured data, longitudinal and grouped data,
and multivariate functional data, in order to carry out both assessment ofthe effect of grouping
factors and reliable prediction and/or classification at patients’ level.

In particular,Chapter 4 provides an overview of the frequentist approach to Mixed Effect
Models, in the Linear, Generalized Linear and Nonlinear case. Both parametric and non-
parametric estimations of random effect distribution are considered, with theaim of clas-
sifying random effect estimates in order to investigate the presence of upper level clusters
among grouping factors.Chapter 5 refers to a similar approach to hierarchical models from
a Bayesian perspective, adopting Dirichlet and Dependent Dirichlet Process for modelling
random components and carrying out clustering of random effects, taking advantage by the
semiparametric setting. Results are set in the framework of Bayesian DecisionTheory. More-
over, the problem of strongly unbalanced sample size is faced. Finally, inChapter 6, statis-
tical methods for dealing with multivariate functional data arising from medical diagnostic
devices and longitudinal event-dependent data arising from the integration of clinical reg-
istries and administrative database are proposed.

• In Part III , data described in Chapter 3 are analysed adopting methods proposed in Part II,
in order to address different clinical and management problems broughtout in Part I.
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We present firstly the analyses carried out on STEMI (ST segment Elevation Myocardial
Infarction) Archive data (Chapter 7), from the descriptive analysis and data mining of the
clinical registry up to the application of both frequentist and Bayesian mixed effect mod-
els for clustering and prediction. Then inChapter 8 further analyses on different data
sources are presented, consisting of nonlinear parametric and nonparametric mixed effects
models applied to administrative data for the identification of clusters of hospitals, as well as
Bayesian decision rules for providers’ profiling. Finally, inChapter 9 clustering of multi-
variate functional data (Electrocardiograms) and nonparametric techniques are discussed and
implemented, aimed at semi-automatic diagnosis of a specific type of infarction andat multi-
variate functional outlier detection and inference respectively.

All the analysis are carried out usingRsoftware, version2.13.0 [124].



Part I

Regione Lombardia cardiovascular
healthcare system: data sources, hospital

network and Strategic Program
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In order to improve something, you must be able to change it.
In order to change it, you must be able to understand it.

In order to understand it, you must be able to measure it.

Key words: Process Monitoring and Evaluation; Provider Profiling; e-Health; Electronic Health
Record; Clinical Registries; Administrative Databanks; Record Linkage;Cardiovascular Syndromes;
ST-Elevation Acute Myocardial Infarction; Electrocardiography.



Chapter 1

A patient-focused documentation for a
new definition of epidemiology

In this chapter, some concepts like monitoring and evaluation of healthcare service are introduced in
order to set the context the Strategic Program moves into. Moreover, the Electronic Health Record
and its utilization as an instrument for the definition of a new epidemiology are pointed out.

1.1 Outcomes and performance measurements of public healthcare
systems

Public programs of any type and size across the nation are shifting from seeing themselves as ac-
countable for creating and carrying out activities to being accountable for achieving results, meeting
goals and improving the quality of services. Such transformation implies capability of changing the
way you work, the way you assess your work, and the way you inform others of your progress.
And it can be difficult redefining roles and responsibilities, creating new collaborations, overcom-
ing resistance to change [191]. In public health, such struggling to understand a program’s role
and striving to fairly evaluate how well it’s carrying out that role has its realization in the so called
Performance Monitoring(PM) [178], which records, analyses and publishes data in order to give
the public a better idea of how government policies change the public services and to improve
their effectiveness. The developing countries can begin to address thechallenges of working within
results based orientation and thus moving towards a result-based management approach to public
sector management by documenting their performance with credible informationthat goes beyond
the traditional reporting on inputs, activities, and outputs to now include outcomes and impacts.

In what follows, definition and analysis of the main concepts concerning performance measurements
[183], monitoring and evaluation in healthcare are proposed. They will berecalled and adapted to
the context of providers’ evaluation within Regione Lombardia policy for cardiovascular healthcare
in the next chapter. In fact, the idea of the project this thesis deals with is to develop specific
indicators, starting from clinical and administrative databases, in order to perform such evaluation
through suitable performances indexes and so doing providing decisional support to people in charge
with healthcare government.

Performance measurementanalyzes the success of a work group, program, or organization’s ef-
forts by comparing data on what actually happened to what was planned orintended. On the other
hand,performance managementuses performance information to manage organizational capacity
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and processes, reviews programs, assesses and revises goals andobjectives, monitors progresses
against targets; conducts employee evaluations. Performance measurement is needed as a manage-
ment tool to clarify goals, document the contribution toward achieving those goals, and the benefits
received from the investment in each program. Therefore, performance measurement (manage-
ment for results) seeks to assess, verify and demonstrate results, while performance management
(management by results) focuses more on experimentation, innovation, process, learning and re-
sponsiveness. Thus, performance management helps set agreed-upon performance goals, allocate
and prioritize resources to meet those goals, and report on the successin meeting those goals.

Monitoring is defined as a continuing function that aims primarily to provide the management and
main stakeholders of an ongoing intervention with early indications of progress, or lack thereof, in
the achievement of results. An ongoing intervention might be a project or other kind of support to
an outcome. It provides managers and stakeholders with regular feedback on program performance.

Evaluation on the other hand, provides a judgment based on assessments of relevance, appropri-
ateness, effectiveness, efficiency, impact and sustainability of development efforts. It involves a
rigorous and systematic process in the design, analysis and interpretation of information to answer
specific questions. It highlights both intended and unintended results, andprovides strategic lessons
to guide decision-makers and inform stakeholders [199]. Though monitoring can provide critical in-
puts to evaluation by way of systematic collection of data and information, yet anevaluation system
serves a complementary but distinct function from that of a monitoring systemwithin a performance
management framework.

ThePerformance-based Monitoring and Evaluation (PM&E) combines both, the traditional ap-
proach of monitoring implementation with the assessment of performance and results. It is this
linking of both implementation progress with progress in achieving the desired objectives or goals
of government policies and programs that make PM&E most useful as a tool for public manage-
ment. Implementing a PM&E system allows the organization to modify and make adjustments to
the implementation processes for achievement of desired results and outcomes. However, intro-
ducing PM&E for Result-based Management will often require interventionsthat address a wide
range of possible “determinants of performance”. These determinants are technical, organizational
and behavioural. The sustainable PM&E system is more likely to emerge from a cohesive strategy
harmonizing these three determinants. The result is a change, which can bean improvement, an
increase, a strengthening, a reduction, or a transformation in attitudes andbehaviours of a given
group.

Outcomesare the changes necessary to achieve the project purpose. The long-term socioeconomic
results to which projects contribute are Impacts, and are necessary to achieve the project goal. Hier-
archy of Results must be chained in a continuum for Performance Management and Impact. Figure
1.1 shows the flow chart of the chain, where activities lead to outputs, outputs lead to outcomes,
outcomes fulfill the purpose and lead to impact, impact will lead to the goal.

Performance indicatorsare variables to measure changes towards progress of results and should
be identified for each output and outcome. Performance indicators shouldanswer the question,
“What will be observed if the result is achieved?”. If a result is to improveor increase knowledge
or capacity, baseline data may need to be collected early on during project implementation to allow
measurement of what has changed. It is essential that one to three performance indicators be iden-
tified for each result, particularly for outcomes and outputs. These indicators may be qualitative
and quantitative and must serve to measure the achievement of results. Theperformance indicators
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Figure 1.1:Results chain of PM&E flow.

should be objectively verifiable andCREAM(Clear Relevant Economic Adequate Monitorable) for
providing meaningful measurement and being useful [183]. The ultimate aimof performance infor-
mation system is to promote the utilization of data and performance information emerging from it
for decision making from the operational to the policy making level. In the process towards selection
of performance indicators, a step-wise approach is required starting from analysis of the manage-
ment functions at each level, identifying their information needs according tothose functions and
deciding on performance indicators that provide those information needs.

On the one hand, rational selection of indica-
tors will help to address the classic problem of
too many indicators. On the other hand, use of
hierarchy of indicators at different levels will
help to focus on the national strategic outcomes
through bottom-up filtration until monitoring
and evaluation information needs are met at the
provincial, regional and national levels.

In what follows (see Chapters 2 and 7), our attention will be focused in pointing out suitable per-
formance indicators within the Strategic Program aims and scopes, easy to bemeasured and able to
quantify the providers’ efficiency in offering and managing suitable patterns of care for patients af-
fected by Acute Coronary Syndromes (ACS, see Section 1.3). Furthermore, it is important to build
a review mechanism into the system. The various sets of indicators for all levels should be reviewed
and challenged in terms of their effectiveness, cost implications, data qualityand source of data
collection. In order to do this, it is necessary to develop linkages between performance indicators
with the following aims:

i. to whole results chain→ The performance indicators must logically link outputs, immediate
outcomes, intermediate outcomes, and end outcomes.

ii. to planning and budgeting→ The performance indicators should link planning, budgeting
and accountability processes, otherwise their role will be limited to the implementationand
operational management targeting lower level results.
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Once the indicators are finalized and consensus has been reached, thenext step involves preparation
of data collection and reporting tools and instruments. The templates for data cross check to ensure
data quality of performance information should also be part of the informationsystems.

A performance monitoring plan is a critical tool for planning, managing, and documenting data
collection (in Section 1.2 we will see how collection of information can be performed through the
use of Electronic Health Records). It contributes to the effectiveness of the performance monitoring
system by assuring that comparable data will be collected on a regular and timely basis. This is
essential to a credible and useful performance-based management approach. It involves the regular
collection of information on actual results and demonstrates whether a project, program, or policy is
achieving its stated goals. That’s why the first need addressed within the Strategic Program has been
the planning and the activation of a new registry for collecting data which is common to all providers
on the territory of Regione Lombardia and which is designed to be easily handled and analysed by
researchers asked to provide monitoring and evaluation of providers’ performances during the time.

1.1.1 Performance measurement in public health

Assessing service delivery at the local level of government and measuring public health with the
intent of gathering information to improve public health practice is not a new enterprise in clinical
context (see [178], [191] and [183] among others). Anyway, linkingthe measures, or indicators,
to program mission, setting performance targets and regularly reporting onthe achievement of tar-
get levels of performance are new features in the performance measurement movement sweeping
across the public health service. This is also what Strategic Program aims to achieve within the
cardiovascular healthcare planning of Regione Lombardia.

Within the healthcare context, performance measurement is a simple concept with no simple nor
unique definition. Essentially, performance measurement analyses the success of a work group, pro-
gram, or organization’s efforts by comparing data on what actually happened to what was planned or
intended. Two simple but quite effective definitions of performance measurement are the following:

→֒ Performance measurement is the selection and use of quantitative measures of capacities,
processes, and outcomes to develop information about critical aspects of activities, including
their effect on the public.

→֒ Performance measurement is the regular collection and reporting of datato track work pro-
duced and results achieved.

To understand the first definition, you need to know what is meant by capacity, process, and out-
come. These are three key components of public health practice. On the other hand, the second
definition underlines other critical aspects of measurement and evaluation process, i.e. the reg-
ularity and the continuity of monitoring. Moreover, these definitions enable usto highlight two
fundamental aspects connected with the role of a statistician in the PM&E process: how to exploit
the results of measurements in order to develop mechanisms for acquiring information about critical
aspects of the process, and how to design surveys for data collection sothat such information can
be pointed out as well as possible.

Back to the first definition of performance measurement,Capacitymeans the ability of a work
group, program, or organization to carry out the essential public health services, and in particular,
to provide specific services; for example, disease surveillance, communityeducation, or clinical
screening. This ability is made possible by specific program resources aswell as by maintenance
of the basic infrastructure of the public health system.Processmeans the things that are done by
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defined individuals/groups - or to, for, or with individuals/groups - as part of the provision of public
health services.Processmeans all the things we do in public health practice. Finally,Outcome, as
we said before, means a change in the health of a defined population that is related to a public health
intervention.

Public health goals are broad-based community goals, not a specific goal for a specific organization,
then it is difficult to get clear causal connections. Consequently, a goodstarting point when think-
ing about implementing performance measurement in public health is to understand those things
that are unique or different about public health practice. Public health offers services to the whole
population in all of its diversity. These services can be resumed in the following list:

1. Monitor health status to identify and solve community health problems (i.e., community
health profile, vital statistics, and health status)

2. Diagnose and investigate health problems and health hazards in the community(i.e., epidemi-
ologic surveillance systems, laboratory support)

3. Inform, educate, and empower people about health issues (i.e., health promotion and social
marketing)

4. Mobilize community partnerships and action to identify and solve health problems (i.e., con-
vening and facilitating community groups to promote health)

5. Develop policies and plans that support individual and community health efforts (i.e., leader-
ship development and health systems planning)

6. Enforce laws and regulations that protect health and ensure safety (i.e., enforcement of sani-
tary codes to ensure safety of environment).

7. Link people to needed personal health services (i.e., services that increase access to health
care).

8. Assure competent public and personal health care workforce (i.e., education and training for
all public health care providers).

9. Evaluate effectiveness, accessibility, and quality of personal and population based health ser-
vices (i.e., continuous evaluation of public health programs).

10. Research for new insights and innovative solutions to health problems (i.e., links with aca-
demic institutions and capacity for epidemiologic and economic analyses).

Public health practitioners can use these broad service categories for developing performance mea-
sures of capacity (the capacity to conduct each service), process (the processes used to conduct each
service), and outcomes (the results of each service). In summary, publichealth offers a huge array
of services to a huge number of people. Even if it hopes to influence people’s lives and well-being,
it is not solely responsible for either.

Our goals within the Strategic Program and this thesis will focus on points 1, for what concerns
the population of patients affected by Acute Coronary Syndromes, and 5,6, 9 and 10, in terms
of providing decisional support through the statistical analysis and modellingof data arising from
clinical registries and administrative databanks.
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1.1.2 Why do performance measurements?

In order to improve something you have to be able to change it. In order to change it you have to be
able to understand it. In order to understand it you have to be able to measure it.

Performance measurement compels anyone who wants to implement it to reassess work, group,
programs and/or organization goals and objectives. Goals describe where the direction to be pur-
sued should lead. Objectives define specific results that will show movement toward goals. Thinking
about how to measure performances might inspire who wants to carry it outto set new long-term
goals, new long-term and short-term objectives, and new or revised approaches to work for reach-
ing them. Rethinking goals and objectives might result in developing a new strategic plan for many
efforts. Implementing performance measurement gives the opportunity to create working arrange-
ments with other groups, programs, agencies, organizations and stakeholders. This collaborative
cross-fertilizing can make for a stronger approach to meeting goals. A strictly program-specific ap-
proach might lead to duplication of data collection efforts or missed opportunities to adopt measures
that can be used by more than one program. Implementing performance measurement also provides
an opportunity to assess more pragmatic accountability issues, such as evaluating and defining roles
and responsibilities, and levels and lines of authority. Moreover, it enhances the definition of op-
erating integrated protocols to be applied in emergency intervention. Since wewill focus in the
following chapters on Acute Coronary Syndromes, in Figure 1.2 an exampleof protocol for pre-
hospital use of specific drugs for a particular type of acute cardiovasular event is shown (i.e., the
protocol for pre-hospital use of antithrombotic and antiplatelet agents according to different reper-
fusion strategies in STEMI, see also [213] for further details).

Figure 1.2:Pre-hospital use of antithrombotic and antiplatelet agents according to the different reperfusion
strategies in STEMI.

Within the cardiovascular policy of Regione Lombardia, all this means to deal with the organization,
rationalization and long-term planning of the hospitals network that provideshealthcare services to
the patients affected by Acute Coronary Syndromes. If the main and most important goal is to pro-
vide a good treatment for all patients who need it, this assumes several different declensions once
it must be implemented in practice. Moreover, any practical goal in this context must be subordi-
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nated to times constraints, i.e. you are asked not only to do the best, but to do itquickly. Finally,
the treatment of a patient affected by Acute Coronary Syndromes is a complex process involving
more than one player (and institution) within the healthcare context: from General Practitioners to
hospital physicians, passing through the network of 118 emergency rescue. As a consequence, not
only an hard work on hospital organization is expected, but also a joint plan taking into account the
prehospital care phase. Measuring such a complex process, avoidingredundances and waste of time
and money, is the real challenge of the Strategic Program presented in Chapter 2.

Often, several issues of those mentioned up to now can be addressed withalready existing re-
sources. For example, a question should always be taken into account when there is the need of iden-
tifying performance measurement is: what measures can be implemented with existing databases,
research methods, and personnel, rather than new or complicated data collection schemes? In most
cases, the greatest part of the key measures can be derived and reported from existing systems and
processes. When it comes to identifying the data sources at hand, often itis easy to notice that
you are surrounded with sources that can be used for performance measurement. These include,
for example, data and information collected from stakeholders, including recipients of services, for
example through surveys and case studies. Ultimately, it would be desirable that the performance
measurement process reveals improvement on past performance or, if an attainment level of perfor-
mance has been achieved, at least the steady maintenance of that level. That means that an ongoing
assessment of the capacities of the staff is required.

Anyway, having a lot of data does not necessarily mean having a lot of meaningful perfor-
mance measurement information. The philosophy of“Let’s collect everything and we’ll figure it
all out in the morning” (see [184]) is a very expensive and often useless philosophy. We need a
different model, i.e., a model that derives meaningful information from what the stakeholders want
to know about performance. If there is a good question about performance, a good measure can
be provided for it. If there are 50 good questions, the answer is probably a meaningful, focused
database. Matching performance measurement data and information demands advanced statistical
methods and modelling skills. That’s why suitable informatic tools for collecting dataand models
for analyzing them are requested to reach these goals.

1.2 Electronic Health Record (Fascicolo Sanitario Elettronico)

When you organize to develop a performance measurement process,you are asking a lot of your
internal stakeholders: the people whose performance will be measured. You are asking them to
understand, accept, and promote the concepts and values behind performance measurement. You
are asking them to think about how and why they conduct their work tasks and to rethink the goals
and objectives of their work group. You are asking them to develop ways tomeasure their own per-
formance and that of others. And you are asking them to report on the results of their performance
measurement. You are asking them to generate change. That’s a lot to ask. Consequently, one
of the key components in developing an effective performance measurement process is providing
those involved with the assistance they need to understand and implement theprocess, as well as
the training they need to improve their performance.

(P. Lichiello, Guidebook for Performance Measurement) [184]

The role of Information Technology (IT) in the PM&E process of healthcare is crucial, as well as
the statistical analysis of data arising from digital data collection procedures. In fact, the complexity
of healthcare request is growing up along time: citizens are more and more conscious of their needs
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and aware on answers that they could pretend by the clinical world. Moreover, the prevalence
of chronic-degenerative diseases like the cardiovascular ones asksfor continuing patterns of care
involving many different players of the health care context. From such a context a new vision of the
patterns of care comes out: it is no more a sequence of
independent events, but becomes a specific path for each
patient. This calls for the presence of networks and infor-
matic systems that allow physicians to seek and share in-
formation needed for diagnosis and treatment of patients.
Providing a common framework for collecting data en-
ables to improve quality of data entry, to ease communi-
cation of results as well as communication among provi-
ders and physicians involved.

The study of IT solutions aimed at doing what mentioned above is callede-Health. This is a
paradigm based on the centrality of the patient and aimed at connecting clinical and administrative
needs. In this context can be set theSistema Informativo Socio Sanitario (SISS)of Regione Lombar-
dia, i.e. the Italian platform for supporting Electronic Health Record (seehttp://www.siss.
regione.lombardia.it/ for details) and the related Electronic Health Record (EHR), which
is the main tool for defining a new epidemiology. The Electronic Health Record isa longitudinal
electronic record of patient health information generated by one or more encounters in any care de-
livery setting, as shown in Figure 1.3. Among the information provided by such an instrument there
are patient demographics, progress notes, problems, medications, vital signs, past medical history,
immunizations, laboratory data, and radiology reports.

Figure 1.3: Information collected in an Electronic Health Record, i.e.a longitudinal electronic record of
patient health information generated by one or more encounters in any care delivery setting.
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The EHR automates and streamlines the clinician’s workflow. Through the linkage of information
contained in different datawarehouses (like those described in Sections3.1 and 3.2) the EHR has
the ability to generate a complete record of a clinical patient encounter, as well as supporting other
care-related activities directly or indirectly via interface-including evidence-based decision support,
quality management, and outcomes reporting.

An EHR enables an administrator to obtain data for billing, a physician to see trends in the
effectiveness of treatments, a nurse to report an adverse reaction, and a researcher to analyse
the efficacy of medications in patients with co-morbidities. If each of these professionals works
from a data silo, each will have an incomplete picture of the patient’s condition.An EHR inte-
grates data to serve different needs, as highlighted by the picture in Figure 1.4. The goal is to
collect data once, then use it multiple times. EHRs are used in complex clinical environments. The
data presented, the format, the level of detail, and the order of presentation may be remarkably
different, depending on the service venue and the role of the user.

Figure 1.4:Administrative and clinical utilities of the Electronic Health Record.

If a clinician has integrated access to the semantic content of the data, then thesystem will be able to
show, for example, all cases in which patients were diagnosed with cardiovascular diseases. In this
sense, availability of data in such format enables to select sub population ofinterest for any clinical
study. Retrospective surveys obtained in this way match all the problems of observational studies
in terms of biases; on the other hand, they have the advantage of providingreal time information
without additional costs.

In the next section, details on pathologies we are interested in will be given,in order to understand
which population we focus on when we perform queries in EHR contents.
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1.3 Focus on Acute Coronary Syndromes

In this section, a brief overview of the pathology our studies deal with is presented, and the main
clinical terms and concepts used in the following chapters are provided, in order to introduce the
reader to the contents of the clinical registry described in Section 3.2.3.

Acute Coronary Syndromes (ACS) is a unifying term representing a commonend result, i.e., the
acute myocardial ischaemia. Acute ischaemia is usually, but not always, caused by atherosclerotic
plaque rupture, fissuring, erosion, or a combination with superimposed intracoronary thrombosis
(like in Figure 1.5), and is associated with an increased risk of cardiac death and necrosis. It encom-
passes Acute Myocardial Infarction (AMI), resulting in ST segment Elevation Myocardial Infarction
(STEMI) or non-ST segment Elevation Myocardial Infarction (NON-STEMI), and unstable angina
(ST segment is a subsegment of the ECG trace, see Paragraph 3.2.4). Recognizing a patient with
ACS is important because the diagnosis triggers both triage and management. Acute Myocardial
Infarction (AMI), commonly known as heart attack, is a common presentationof ischaemic heart
disease. Worldwide more than 7 million people per year experience an eventof Infarction (see
[217]). This makes the AMI the leading cause of death for both men and women worldwide. As
mentioned before, it results from the interruption of blood supply to a part of the heart, causing heart
cells to die. This is most commonly due to occlusion of a coronary artery following the rupture of
a vulnerable atherosclerotic plaque, which is an unstable collection of lipids (cholesterol and fatty
acids) and white blood cells in the wall of an artery. The resulting ischaemia (restriction in blood
supply) and ensuing oxygen shortage, if left untreated for a sufficient period of time, can cause dam-
age or death (infarction) of heart muscle tissue (myocardium), as can be observed in Figures 1.6 and
1.7. If impaired blood flow to the heart lasts long enough, it triggers a process called the ischaemic
cascade; the heart cells in the territory of the occluded coronary arterydie (chiefly through necrosis)
and do not grow back.

Figure 1.5:Diagram of an Acute Myocardial Infarction (2) of the apex of the anterior wall of the heart (an
apical infarct) after occlusion (1) of a branch of the Left Anterior Descendent (LAD) Coronary Artery.

Indeed, the most common triggering event for AMI is the disruption of an atherosclerotic plaque in
an epicardial coronary artery, which leads to a clotting cascade, sometimesresulting in total occlu-
sion of the artery. Blood stream column irregularities visible on angiographyreflect artery lumen
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narrowing (as shown in Figures 1.5 - (1) and 1.6) as a result of decades of advancing atherosclero-
sis. Atherosclerosis is the gradual buildup of cholesterol and fibrous tissue in plaques in the wall of
arteries (in this case, the coronary arteries), typically over decades. Plaques can become unstable,
rupture, and additionally promote a thrombus (blood clot) that occludes the artery; this can occur in
minutes. When a severe enough plaque rupture occurs in the coronary vasculature, it leads to Acute
Myocardial Infarction (necrosis of downstream myocardium). As a result, the patient’s heart will
be permanently damaged.

Injured heart tissue conducts electrical impulses more slowly than normal heart tissue. The differ-
ence in conduction velocity between injured and uninjured tissue can triggerre-entry or a feedback
loop that is believed to be the cause of many lethal arrhythmias (for example, ventricular fibrillation,
ventricular tachycardia). Cardiac output and blood pressure may fall todangerous levels, which can
lead to further coronary ischemia and extension of the infarction.

Figure 1.6:An Acute Myocardial Infarction occurs when an atherosclerotic plaque slowly builds up in the
inner lining of a coronary artery and then suddenly ruptures, causing catastrophic thrombus formation, totally
occluding the artery and preventing blood flow downstream.

Figure 1.7:Drawing of the heart showing anterior left ventricle wall infarction.
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The diagnosis of Acute Myocardial Infarction can be made after assessing patient’s complaints and
physical status. Among the diagnostic tests available to detect heart muscle damage are electrocar-
diogram (ECG), echocardiography, cardiac MRI and various blood tests. The most often used blood
markers are the Creatine Kinase-MB (CK-MB) fraction and the troponin levels.

The World Health Organization (WHO) criteria formulated in 1979 have classically been used
to diagnose AMI. A patient is diagnosed with Acute Myocardial Infarction iftwo (probable) or three
(definite) of the following criteria are satisfied: (i) Clinical history of ischaemic type and chest pain
lasting for more than 20 minutes; (ii) Changes in serial ECG tracings; (iii) Rise and fall of serum
cardiac biomarkers such as CK-MB fraction and troponin. The WHO criteria were refined in 2000
to give more prominence to cardiac biomarkers. According to the new guidelines, a cardiac troponin
rise accompanied by either typical symptoms, pathological ECG traces, ST elevation or depression
or coronary intervention are diagnostic of AMI.

In general, five main types of AMI can be identified, according to the causes originating them
(see the 2007 consensus document [210] for further details):

• Type 1 - Spontaneous Acute Myocardial Infarction related to ischaemia due to primary coro-
nary event such as plaque erosion and/or rupture, fissuring or dissection;

• Type 2 - Acute Myocardial Infarction secondary to ischaemia due to eitherincreased oxy-
gen demand or decreased supply, for example: coronary artery spasm, coronary embolism,
anaemia, arrhythmias, hypertension, or hypotension;

• Type 3 - Sudden unexpected cardiac death, including cardiac arrest, often with symptoms
suggestive of myocardial ischaemia, accompanied by presumably new ST segment elevation,
or new Left Bundle Branch Block (LBBB), or evidence of fresh thrombus in a coronary
artery by angiography and/or at autopsy, but death occurring before blood samples could be
obtained, or at a time before the appearance of cardiac biomarkers in the blood;

• Type 4 - Associated with coronary angioplasty or stents:Type 4a- Acute Myocardial Infarc-
tion associated with Percutaneous Coronary Intervention (PCI);Type 4b- Acute Myocardial
Infarction associated with stent thrombosis as documented by angiographyor at autopsy;

• Type 5 - Acute Myocardial Infarction associated with Coronary Artery Bypass Graft (CABG).

Classical symptoms of Acute Myocardial Infarction include sudden chestpain (typically radiating
to the left arm or left side of the neck), shortness of breath, nausea, vomiting, palpitations, sweating,
and anxiety (often described as a sense of impending doom). Women may experience fewer typical
symptoms than men. Approximately one quarter of all Acute Myocardial Infarctions are “silent”,
that is without chest pain or other symptoms. Important risk factors are previous cardiovascular
events, older age, tobacco smoking, high blood levels of certain lipids (triglycerides, low-density
lipoprotein) and low levels of High Density Lipoprotein (HDL), diabetes, highblood pressure, obe-
sity, Chronic Kidney Disease (CKD), heart failure, excessive alcohol consumption and chronic high
stress levels. To be stressed is that an AMI is a medical emergency which requires immediate medi-
cal attention. Treatment attempts to salvage as much myocardium as possible andto prevent further
complications, thus the common phrase “time is muscle”.

Focusing on STEMI, the most part of cases are treated with thrombolysis orPercutaneous Coronary
Intervention (PCI). The former consists in a pharmacological treatment which causes a breakdown
of the blood clots, whereas in the latter a balloon driven by a wire, called catheter, is inserted into
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the narrowed or obstructed vessels and then inflated to a fixed size. The balloon crushes the fatty
deposit, so that the vessel can be opened up, the blood flow improved, and finally the balloon is
deflated and withdrawn. Where the culprit lesion occurred, once the stenotic plaque is removed, a
medicated stent (i.e. a metal biocompatible device) is located. NON-STEMI should be managed
with medication, although PCI is often performed during hospital admission.

In what follows, we will be concerned mainly with Acute Coronary Syndromes in general and
their correlated issue, but we will focus on STEMI in particular. Specifically, the next chapter will
present organizational and informatics setting adopted by Regione Lombardia for prompting an
optimal pattern of care for patients affected by this disease. Moreover, inPart III, the statistical
analyses carried out on data coming from STEMI Archive (see Section 3.2) and all other data on
STEMI patients (see Section 3.1 and Paragraph 3.2.4) will be presented.



Chapter 2

Pre-hospital organization and systems of
care

In this chapter the project funding our research activity is described. It is calledStrategic Program
for Acute Coronary Syndromes(briefly Strategic Program - SP) and among its aims there is the
establishment of an effective cardiological emergency network among thehospitals of the Regional
district, in the sense explained in the following sections.

2.1 The idea of theCardiological Network

During the last years a growing attention has been reserved by Regione Lombardia to the develop-
ment of a network of medical institutions connected by an efficient emergency medical service. A
hospitals network is a network or group of providers that work together todeliver a broad spectrum
of services to their community. Of course a central coordination of the activity of the Emergency
Room (ER) of these hospital is needed, so that an efficient management of patients can be reached.
The main features of a successful network include a clear definition of thegeographical areas of
interest, reduction of delays, and close cooperation amongst care givers and institutions.

Focusing on cardiovascular topics, the main aims of a Cardiological Networkare to drive the de-
velopment and to facilitate the delivery of more patient-centred, sustainable and effective clinical
services for all patients affected by cardiovascular syndromes. It endeavours to forge effective and
productive working relationships between a broader range of people and organizations, in order to
promote a more direct and holistic focus on priorities for patients and carers. Concerning cardio-
vascular diseases, the sooner the interventions are, the higher the probability of good prognoses, so
cardiological networks of care must provide optimal services to the patientsas quickly as possible.
This issue never ends, since emergency networks ask for continue improvements as well as constant
monitoring of performances during the time, in order not to lay down on reached goals. A network
for acute cardiovascular syndromes management should be developed at a national/regional level,
with continuous outcome and quality metrics, to ensure that the reperfusion strategies will continue
to be effective after their implementation [202].

The need of a “network structured” emergency within cardiovascular healthcare delivery comes
out of the fact that over recent years, there has been a growing complexity of cardiovascular patient
conditions, due also to the ageing of affected population. So a multidisciplinaryand delocalized
management of cardiovascular patients is requested, as can be evinced by the picture reported in
Figure 2.1. For the multidisciplinary management of cardiological patients in emergency setting, an

31
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integrated organization of assistance plans is mandatory. This must be realized through the devel-
opment of a network efficient and complementary services among providers, irrespective of their
location. In such a model, the attention is shifted from single health care service to the whole wel-
fare path, in order to make it integrated and homogeneous, irrespective of where single treatments
are delivered.

Figure 2.1:All steps of the integrated process of care provided by an efficient network.

The integrated network for emergency cardiovascular delivery classifies providers according to in-
creasing complexity of the services they can offer. The Italian model for pre-hospital patients
management is the “Hub-Spoke” model, where hubs are reference centres where advance rescue
resources are concentrated and always available, supported by the spoke system of services, i.e.,
centres non-PCI capable that must provide primary treatments but then transfer patients to the near-
est or most suitable hub. For further details on definition of hub and spokecharacteristics see [195].
In fact, a broad evidence exists (see [151], [156], [157], [158],[160], [182], [189], [197], [211] and
[213]) to testify the benefit of early intervention in the treatment of STEMI. Networks are based
on the idea that patients, like those affected by STEMI or Acute Coronary Syndromes in general,
should be:

• rescued by advanced units of 118 Dispatch Centre (the National free tollnumber for emer-
gencies), which are equipped by tele ECG machinery and defibrillators;

• delivered in ahub (i.e., a hospital with 24 hours operating coronary care unit, 7 days per
week). If patient are self presented or delivered by a basic rescue unit in a spoke(i.e., a
hospital without always operating coronary care unit), they should be transferred in a hub
following local specific protocols that take care of total ischaemic time, of possibility of
performing a primary angioplasty within 90-120 minutes and so on.

In literature, the reference guidelines for the definition of such terms are those proposed by the
American Heart Association (AHA) and the American College of Cardiology (ACC) (see [188]).
Many examples suggest that the presence of a net connecting the territory to the hospitals, by a
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centralized coordination of the emergency resources, helps to promote and realize the best utiliza-
tion of the different reperfusion strategies, reducing transport and decisional delays connected with
logistics and therapies, and increasing the number of patients undergoing primary PCI before 90
minutes since the arrival at ER (see for example [151], [156] and [214]).

In Italy, the reference document for the Cardiological Network structuring is [169], where the model
for the cardiological network is established according to criteria approved by the main Italian Car-
diological societies, namely ANMCO (Associazione Nazionale Medici Cardiologi Ospedalieri -
http://www.anmco.it/ ), SIC (Societ̀a Italiana di Cardiologia -http://www.sicardio
logia.it/ ) and GISE (Società Italiana di Cardiologia Invasiva -http://www.gise.it/ ),
by the emergency dispatch of 118 and by people in charge with cardiovascular healthcare of each
Region. In this document [169], some issues are set, like who are the main players of the network
(physicians, healthcare district and government, hospitals, 118, etc.), who have to manage and ad-
ministrate it, which are the basic structural standards to be satisfied for hemodynamics and cath-labs,
the role of ERs and especially the main goals of the care process. Concerning patients affected by
Acute Coronary Syndromes, the main issue to be accomplished by the cardiological network are:

• to increase the number of patients arriving alive to the hospital;

• to increase the number of patients undergone any reperfusive treatment;

• to manage appropriately in the UTIC (Unità di Terapia Intensiva Cardiologica) the patients
arriving at ER with Acute Coronary Syndromes;

• to start the reperfusive treatment as soon as possible;

• to make reperfusive treatments available for all patients who need them, regardless of the
place where the diagnosis is established;

• to ensure the intervention to high risk patients.

The pre-hospital phase is the most critical especially in STEMI patients’ management, because the
myocardial savage and the number of lives saved is inversely proportional to the delay in treatment.
Implementation of STEMI systems of care has a pivotal role in modern STEMI treatment: they are
based on the network among medical cardiology institutions, connected by aneffective emergency
medical service. Since a STEMI can happen anywhere and anytime, and since very rapid diagnosis
and treatment are mandatory, networks have a key role in providing an equitable access to the most
effective care to the vast majority of STEMI patients.

In Regione Lombardia, the coordination of a local network is established ona territorial base that
corresponds to the 118 Dispatch Centre one. All Dispatch Centres depend on Azienda Regionale
Emergenza Urgenza(AREU), which coordinates rules and actions of each Dispatch Centre and
manage the network of ERs where 118 rescue units deliver patients. The guidelines for the estab-
lishment of a Cardiological Network for STEMI are contained in the law calledDecreto Regionale
N

◦
10446 - “Determinazioni in merito alla rete per il trattamento dei pazienti conInfarto Mio-

cardico Acuto con tratto ST elevato (STEMI)”[36]. Anyway, as we said before, the issue of con-
tinue improvement of network efficiency never ends, since emergency networks ask for continue
and constant monitoring along time. In this sense, clinical registries focusedon STEMI could en-
able comparisons among strategies adopted in different countries for managing pre-hospital phase
of STEMI, may lead changes in priorities and disease management and provide information for
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monitoring and evaluating the performances of the network. Then, starting from the advantages
carried on by the presence of an efficient network, it is possible to integrate it with the knowledge
that comes out from clinical surveys and administrative data, in order to take a snapshot of the net-
work activity and to evaluate its effects on high level output. The synergy between these aspects
(i.e., the advantages carried on by the Cardiological Network and the monitoring of performances
allowed by the use of clinical surveys and administrative data) is the main innovative purpose of the
Strategic Program, the scientific enterprise that Regione Lombardia embarked on in the last years
and that we have been involved in.

2.2 The Strategic Program of Regione Lombardia

The appropriate treatment of STEMI in a timely manner is instrumental in mortality reduction.
In the previous section we saw how systems of care based on networks ofmedical institutions
connected by an efficient emergency medical service are pivotal. To make these networks to work
at best, a continuous monitoring and evaluating process is absolutely mandatory. Clinical registries
of pathologies are the best candidates to reach this goal in a cost saving and effective way. In this
Section the Strategic Program (SP) of Regione Lombardia [35] is presented. This project started
in 2008, funded by Regione Lombardia, the Italian Ministry of Health and by the Regional district
for healthcare, namely the “Direzione Generale Sanità - Regione Lombardia”, aimed at stating the
programmatic lines for development of a cardiovascular healthcare management based on criteria
met in the previous sections.

The SP is structured into five sub-projects, two focused on health organization (P1 - Regione Lom-
bardia and P4 - Regione Emilia Romagna), and three (P2 - IRCCS Centro cardiologico Monzino, P3
- IRCCS Istituto Auxologico Italiano and P5 - IRCCS Policlinico San Donato) concerned with new
biomolecular and imaging strategies aimed at the identification of patients with ACS atthe highest
risk. Specifically, P1 and P4 are aimed at checking feasibility at regional level of

P1 a clinical registry of Acute Coronary Syndromes (ACS) - Regione Lombardia, Direzione
Generale Sanità, Scientific Director Dr.Maurizio Marzegalli;

P4 a clinical registry of adverse events occurring after coronary angioplasty where stent with or
without medication are employed - Regione Emilia-Romagna, Scientific Director Dr. Antonio
Marzocchi.

On the other hand, projects P2, P3 and P5, focus on the identification of high-risk patient profiles in
terms of:

P2 thrombotic complications due to reduced renal function and prothrombotic activation of blood
elements - IRCCS Centro Cardiologico Monzino, Scientific Director Dr. Gian Carlo Silvio
Marenzi;

P3 ventricular fibrillation and sudden death after Acute Myocardial Infarction, due to the preva-
lence of genetic polymorphisms relevant for the disease - Istituto AuxologicoItaliano, Scien-
tific Director Dr. Peter J Schwartz;
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P5 poor revascularisation consequent to reduced ventricular viability or function as identified
with new imaging techniques, also in relation to newly identified biomarkers - IRCCS Poli-
clinico S. Donato, Scientific Director Dr. Lorenzo Menicanti.

These projects will provide information to build up an integrated model for ACS,which will in-
clude new organisational, preventive and therapeutical strategies, which will take specific account
of patients’ risk. The Coordinator of the SP, Dr. Maurizio Marzegalli, is thechair of Project P1. He
met every year the Steering Committee composed by the scientific coordinators of other Projects. A
Technical Committee, composed by one representative of each Unit, had meetings every 6 months
to assess the accomplishment of deliverables and referred each time to the Steering Committee.

2.2.1 P1 - Part of Strategic Program of Regione Lombardia

We will focus now on the project P1 (we will refer to it in the following as SP-P1), whose title is
“Exploitation, integration and study of current and future health databases in Lombardia for Acute
Myocardial Infarction”, and where our scientific activity moved into during these three years. Three
are the sub-units whose work refers to it: UO 01 - Regione Lombardia, Scientific Director Dr.
Luca Merlino; UO 02 - Politecnico Milano, Scientific Director prof. Piercesare Secchi; UO 03 -
Universit̀a dell’Insubria, Scientific Director prof. Marco Ferrario.

The major goal of the SP-P1 is the identification of new diagnostic, therapeuticand organiza-
tional strategies to be applied to patients affected by Acute Coronary Syndromes, in order to increase
the occurrence of positive clinical outcomes. The secondary objectives can be summarized in the
work of each participating Unit, i.e., the management of regional database (UO 01), the integration
of databases, the development of suitable new ones and the statistical analysis of the resulting data
(UO 02), and the epidemiological study of the impact of STEMI on a specific territory (UO 03). In
the scientific literature in the medical field it is possible to find a lot of papers about the usefulness
of registries and administrative databases as evaluation instrument of the reality beside the more
traditional clinical trials. The relationship between clinical trials, guidelines and registries has been
sum up very well by Lukas Kappenberger“Science tells us what we can do; guidelines what we
should do; and registries what we are actually doing”. In the last ten years, many registries have
been constructed and focused on ACS, with particular attention to the Acute Myocardial Infarction
with or without ST-segment elevation (see, among others, [152], [163],[165], [190], [192], [193]
and [219]). On the initiative of scientific societies many databases have been collected in Lom-
bardia about the treatment of AMI (for example: GESTIMA, LOMBARDIMA, MOMI2, etc., for
details see Section 3.2). These pilot studies have proved the importance of collected information
for the analysis and improvement of clinical activity and medical planning, completing the knowl-
edge of the number of cases, the incidence of diseases/complications, the timeand performance of
treatments, the short term and long term survival, etc.

The purpose of the SP-P1 project is the study the treatment of the ACS in Regione Lombardia,
with particular attention to the patients affected by AMI. The aim is to exploit and integrate the
epidemiological knowledge with the already collected patient’s data: the Regione Lombardia and
scientific communities gave us the permission to extract and study these data from the administrative
regional datawarehouse and clinical databases. The actual limit in the knowledge is due to the fact
that no statistical analyses have never been carried out on the the already existing data, or that these
data let us have only a partial and spot picture of the reality. The new perspective pointed out by SP-
P1 concerning the share of already existing information, their integration withsuitable new records
and a whole analysis of data should produce a general picture of the real clinical world in Lombardia
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and drive the planned activities both in analysis and in improvement of clinicalperformance and
scheduling of regional activities.

The main objective of the project is then to give a global picture of data in epidemiology and
clinical treatment of Acute Myocardial Infarction. Quantitative analyses are necessary for an ade-
quate scheduling of medical activities in order to intercept the new needs ofthe health, to verify the
effectiveness of innovations and to measure the epidemiological outcomes.Traditionally, clinical
trials are used in order to give scientific evidence of efficacy of new drugs, treatments, technologies
and procedures respect to traditional ones. Nevertheless, often, even studies characterized by high
scientific impact factor do not give a guarantee to us that it is possible to generalize results from
particular experimental conditions and sample sizes. So the observational clinical studies become
crucial, in fact they let us measure the effectiveness of procedures and interventions, since they
describe the real clinical action on the treated population. The existence ofthe “Piano Cardio Cere-
bro Vascolare” in Regione Lombardia has been the stimulus to the integration ofdifferent clinical
databases in order to help medical planning. Moreover it has been also possible to integrate these
particular databases with the regional datawarehouse. In fact many databases concerning ACS are
already available and the principal object of this project is to find the way such that, with a little
supplementary amount of cost and work, the integration of all these information can be made imme-
diately available and can also be analyzed in a relatively short time, so that anaudit and a supervision
of these data can be carried out without wide efforts. Such a work enables each clinical reality to
detect those parameters upon which it can act in order to improve its own performance; moreover it
let Regione Lombardia to develop, strengthen and extend to the whole territory the network model
for ACS, so that it is possible to check and verify if network works well, assuggested by the rules
in the consensus document: “La rete interospedaliera per l’emergenza coronarica” [169]. More-
over a complete monitoring let the patient to be guaranteed with a better relief continuity between
pre-hospital phase, hospital and home care.

This study represents a new form of collaboration among scientific societiesand institutional de-
cision makers, in order to attain a uniformity in high quality treatment on the whole regional area.
The law [36] contains instructions for the setting of a Regional Archive for STEMI as an instrument
to improve the efficacy of the cardiological network as well as to monitor efficacy and efficiency of
single provider, so that changes in operating policies can be implemented starting from a real time
and ongoing instrument of control. It is fundamental that this new methodology(see Figure 2.2) in
collecting and analyzing data, measuring indicators, giving a feedback to institutions, going throw
a synergic integration of different systems, will be in the future a standardmethod in other cardio-
logical pathologies and other medical topics to carry out evaluations and decision about healthcare,
as it is in Europe. This research project will involve mainly public hospitals, so the transferability
to all the National Health Service would be an easy goal. In particular we thinkthat the project will
improve the share of information coming from registries devoted to the epidemiological studies and
the diffusion of a new culture about the quality of collected data, unfortunately now not very deep
in different areas of Italian National Health Service.
Specifically concerning the UO 02 - Politecnico di Milano, the contribution of this unit is to give
a methodological support to the analyses of the collected data, in order to improve health care
quality and clinical performances in the treatment of patients affected by cardiovascular diseases,
with particular attention to Acute Myocardial Infarction with or without ST-segment elevation. This
support activity consists of different topics:

• the systematic study of the literature about determination of optimal treatment approach to
clinical practice, guidelines and quality indicators for the clinical performances;
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Figure 2.2: Workflow for measuring performances and outcomes and takingdecisions in cardiovascular
healthcare process.

• the identification of primary and secondary endpoints that must be investigated in order to
catch a realistic picture of the treatment of cardiovascular patients in all areas of the Regione
Lombardia;

• the identification of quality indicators for clinical performances, specific for the context where
the Cardiological Network operates;

• the identification of useful data that must be collected in the patients clinical history;

• the support activity to other participating units, in what concerns the extraction of suitable
records from the already existing databases;

• the management and quality control of data as well as the construction of suitable statistical
models to analyse them;

• the project management, coordination of the different groups working in this project and
management of the website of the project;

• the comprehension of knowledge/information gap and identification of organizational barriers
and related costs;

• the description and communication of the results to the scientific community.

All this issues will be addressed in the analyses presented in Chapter 7.
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2.2.2 Cardiovascular process indicators: time to treatment and time to intervenc-
tion.

We said that systems for STEMI care based on networks of medical institutions connected by an
emergency medical service are pivotal for providing good performances in the treatment and man-
agement of STEMI patients. Concerning ACS in general, efficiency is a matter of time, the shorter
the better. There are several ingredients that could combine to bring about delays in such a com-
plex process like the one from symptoms onset to treatment. In order to reduce these delays as
much as possible, different strategies can be adopted, depending on aimsand scopes that are being
pursued. Firstly it is necessary to minimize the patient’s delay in seeking care,then to dispatch
properly staffed and equipped rescue units to make diagnosis on scene,to deliver suitable drug ther-
apies or surgical treatments, and to transport the patient in the most appropriate (not necessarily the
closest) cardiac facility. Strong cooperation between cardiologists and emergency medicine doctors
is mandatory for optimal pre-hospital STEMI care. Scientific societies havean important role in
guideline implementation as well as in developing quality indicators and performance measures;
health care professionals must overcome existing barriers to optimal care together with political and
administrative decision makers.

Figure 2.3:Extent of Myocardial Salvage along time.Gersh (2005), JAMA293, 979–986.

In order to properly evaluate the efficiency of the delivered service, itis necessary to define suitable
process indicators. Since, as we said before, efficiency in STEMI care is a matter of time (Figure 2.3
quantifies the impact of time on capability of rescueing tissues as detailed in [172]), this forces to
define proper time indicators. They must deal both with pre-hospital and in-hospital times (shown
in Figures 2.4 and 2.6), which are defined according to the issues in [36] as:

• Onset: time of symptoms onset;

• Call: time of patient’s call for 118 rescue;

• First Medical Contact (FMC) : time of first electrocardiogram (ECG) that allows for STEMI
diagnosis, irrespectively of the setting and of the presence of a physician. It consists of the
time of first pre-hospital ECG carried out by Advanced Rescue Units or by Basic Rescue
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Units (the common ambulances) for patients who call 118, whereas consits offirst ECG time
in ER for self-presented patients;

• Door: time of admission to ER/emergency department;

• ECG: time of first electrocardiographic diagnosis;

• Needle: time of pharmacological treatment (if any);

• Balloon: time of inflaction of the balloon of the catheter in PCI treatment.

Figure 2.4:Pre-hospital times in STEMI.

The definitions proposed above define time intervals (see figure 2.5) to be evaluated for assessing
care and Emergency Medical System (EMS) efficiency. The possible total delay is then composed
by delays stored at each interval and, according to this, different actions can be implemented in
order to reduce them. It is proved that longer delays to reperfusion areassociated with higher
mortality and that the implementation of regional systems of care for STEMI can increase the rate
of reperfusion and reduce long term mortality (see [200]). Different logistics and patients’ ways
of admission to ER can modify the sequence of these times (see Figure 2.6), anyway the following
process indicators can be defined:

• Onset to Balloon (OB): total ischaemic time for patients undergone PCI;

• Onset to first ECG (OfECG): time from symptoms onset and first STEMI diagnosis;

• Onset to Door (OD): time from symptoms onset and admission at ER or at a triage in an
emergency department;

• Door to Needle (DN): time from admission at ER or at a triage in an emergency department
and pharmacological treatment;

• Door to Balloon (DB): time from admission at ER or at a triage in an emergency department
and inflaction of the balloon of the catheter in PCI treatment;

• first ECG to Balloon (EB): time from first STEMI diagnosis and inflaction of the balloon of
the catheter in PCI treatment.

It is clear from Figure 2.5 that the optimal management of STEMI is possible only through an emer-
gency systems based on a pre-hospital phase characterized by diagnostic and therapeutic capacities,
a good level of networking and an efficient delivery system.

Pre-hospital care is of outstanding importance for patients’ outcome. Decisions in the pre-hospital
setting are pivotal in STEMI care, as delays can not be compensated lateron. Systems of care need
to address not only delays from first medical contact to treatment, but alsothe total delay from
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Figure 2.5:Components of total ischaemic time in STEMI.

Figure 2.6:Time sequences stratified according to different ways of admission and/or pattern of care.

symptom onset to reperfusion (i.e., the total ischaemic time). The patients’ decision time is usually
a critical period. An early first call is desirable, since it allows for a rapiddiagnosis that prevents
complications, but often not realized. Emergency medical services vary intheir approach to re-
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ceiving and prioritising emergency calls. The ideal Emergency Medical Dispatcher triages should
rest on the availability of advanced rescue units, being both rescue units with physicians on board
and/or ambulances staffed by paramedics working with agreed protocols supplemented by physi-
cians’ direction. The use of pre-hospital ECG has already been shownto be able to reduce time
of reperfusion therapy (as shown, for example, in [180], [198] and[204]) and possibly to decrease
mortality (as sustained, for example, in [164]). Performing a high-quality diagnostic ECG is a spe-
cific process of care, requiring education, training and maintenance of competency for emergency
medical service providers. A focused study and analysis of data arisingfrom this activity is the
topic of Chapters 6, and Sections 9.1 and 9.2 respectively.



Chapter 3

Data sources

3.1 The administrative datawarehouse of Regione Lombardia

In this section we describe structure, aim and use of the Regione LombardiaPublic Health Database
(PHD), the datawarehouse the STEMI Archive has been designed to beintegrated with, as well as
all the clinical surveys we will consider for the analyses presented in Part III.

3.1.1 The star scheme: an overview of complexity

Administrative health care databases play today a central role in epidemiological evaluation of Lom-
bardia healthcare system because of their widespread diffusion and lowcost of information. Public
health care regulatory organizations can assist decision makers in providing information based on
available Electronic Health Records, promoting the development and the implementation of method-
ological tools suitable for the analysis of administrative databases and answering questions oriented
to disease management. The aim of this kind of evaluation is to estimate adherenceto best prac-
tice (in the setting of evidence based medicine) and potential benefits and harms of specific health
policies. Health care databases can be analysed in order to calculate measures of quality of care
(quality indicators); moreover the implementation of disease and intervention registries based on
administrative databases could enable decision makers to monitor the diffusionof new procedures
or the effects of health policy interventions.

Health information systems in Lombardia experienced a rapid growth as a consequence of the
introduction in the Italian health management of Diagnosis Related Groups (DRGs) in 1995. The
development of health care measures for the specific aim of health system financing, gave rise to
the availability of information useful for evaluating the efficiency of the providers and the efficacy
of their activities. The development of health information systems was particularly pronounced
in hospitals, and this extended the possibilities of measuring their activities: from the “classic”
indicators (average length of stay, occupancy rate, turnover interval), measuring bare hospitality, to
more meaningful evaluations linked to patient classification systems and to the actual opportunity
of calculating quality indicators. Several regional and national rules introduced in recent years a
large number of indicators in the Italian national health system.

The Regione Lombardia Public Health Database (PHD), called “BDA” (Banca Dati Assistito),
contains a huge amount of data and requires specific and advanced toolsand structures for data
mining and data analysis. This is an on going datawarehouse, which up to nowhas been used
only for administrative purposes, since decision makers of healthcare organizations need informa-
tion about efficacy and costs of health services. The structure adoptedby Regione Lombardia is

42
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Figure 3.1:Star Scheme structure of Public Health Database (PHD) of Regione Lombardia. Numbers are
referred to a two-years time period between 2003 and 2005

called Star scheme (see [86] and Figure 3.1), since it is centered on threemain databases (Ambu-
latoriale, Farmaceutica, Ricoveri) - containing informations about visits, drugs, hospitalizations,
surgical procedures that took place in hospitals in Lombardia - while being supported by secondary
databases (Assistibili, Medici, Strutture e Farmacie, Farmaci, Codici DiagnosieProcedure Chirur-
giche) which contain specific information about procedures coding or personal data about people
involved in the care process. The star scheme does not allow for repetitions in records entering.
Considering, for example, the databaseRicoveri, only one record for each episod of disease is al-
lowed and each record finishes with patient discharge. In this case, we call Eventthe total amount
of admissions and discharges related to the same episode of disease.

Inside the PHD, several records may correspond to the same patient over time: for example, a
patient may have several events during years, and each event could consist of multiple admissions.
As we said before, for each admission/discharge path, one record is produced in PHD. Records
related to the same subject may be linked in order to achieve the correct information about the basic
observation unit. However each of the above databases has its own dimension and structure, and
data are different and differently recorded from one database to another. Suitable techniques are
therefore required to make information coming from different databases uniform and to carry out
data mining and data analysis. In particular, the longitudinal data that we will analyse will be gen-
erated by deterministic record linkage between STEMI Archive and the databasesAmbulatoriale,
FarmaceuticaandRicoveriof the PHD, as described in Section 3.3. Regione Lombardia, as data
manager and owner, provides an encrypted code for each patient in order to protect citizen’s privacy.
This encrypted code represents the key to obtain the deterministic linkage between the databases.

3.1.2 Data mining of administrative databanks

Dealing with the huge amount of data the PHD contains is a very challenging scientific and mining
enterprise. In general, over recent years there has been an increasing agreement among epidemi-
ologists on the validity of disease and intervention registries based on administrative databases, as
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testified in [153], [154], [168], [176], [186] and [218]; this motivated Regione Lombardia to use its
own administrative database for clinical and epidemiological aims.

Administrative healthcare databases can be analysed in order to calculate measures of quality of
care (quality indicators). The importance of such databases for clinical purposes depends on the fact
that they provide all the relevant information that decision makers need to know, in order to evaluate
the implications of particular policies affecting medical therapies (for example,information about
applicability of a trial findings to the settings and patients of interest, effectiveness and diffusion
of new surgical techniques, estimation of adherence to best practice andpotential benefits/harms of
specific health policies, etc.). Moreover, administrative healthcare databases play today a central
role in epidemiological evaluation of healthcare systems because of their widespread diffusion and
low cost of information.

The most critical issue when using administrative databases for observational studies is repre-
sented by the selection criteria of the observation units: several different criteria may be used, and
they will result in different images of prevalence or incidence of diseases. Statistical analysis can
be performed by means of multiple logistic regression models for studying outcomes and by means
of survival analysis when studying failure times (hospital readmissions, continuity of drug prescrip-
tions, survival times). Multilevel models (see Part II) can also be adoptedif structural and orga-
nizational variables are measured. When outcomes are the main focus of theobservational study,
appropriate risk adjustment tools are needed. Hospital discharge records may be analysed with the
indicators developed by the Agency for Health care Research and Quality(AHRQ) that include
efficient risk adjustment tools within a multiple logistic regression model. In diseasemanagement
programs the Johns Hopkins Adjusted Clinical Groups (ACG) methodology and the Classification
Reasearch Group (CRG) classification system have been proposed (see [173], [179] and [205]).

3.2 Clinical surveys

Clinical Surveys (also named Clinical Registries of pathology) are databases that systematically
collect health-related information on individuals who are:

• treated with a particular surgical procedure, device or drug (i.e., joint replacement surgery);

• diagnosed with a particular illness (i.e., Acute Myocardial Infarction); or

• managed via a specific healthcare resource (i.e., treated in an intensive care unit).

Information in clinical registries is captured on an ongoing basis from a defined population. Clinical
registries provide the most suitable and accurate method of providing monitoring and benchmark
data and provide the greatest potential to improve healthcare performanceacross institutions and
providers.

In what follows, the cardiological surveys carried out in the last yearsin Regione Lombardia
will be presented, together with other sources of clinical data related to caridovascular sydromes.
Then details will be given on STEMI Archive and PROMETEO datawarehouse, since they are the
main object of analyses presented in Part III.

3.2.1 Past cardiological surveys of Regione Lombardia

On February 11th 2005, the Piano Cardio-Cerebro Vascolare was introduced in Regione Lombardia
[35]. This law sets favourable conditions for using clinical registries in health-care process planning.
Regione Lombardia is very sensitive to cardiovascular diseases, as proved by the huge amount of
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social and scientific projects concerning these syndromes that have been funded and promoted over
recent years. Among others, the following three projects can be mentionedto be the reference
experiences the SP drew inspiration from:

→ GestIMA - Gestione dello STEMI in Lombardia. Bimonthly data collection (Oct - Nov,
2003), 612 patients with STEMI diagnosis were enrolled. See [194].

→ LombardIMA - A regional registry for coronary angioplasty in ST-Elevation Myocardial
Infarction. 3901 STEMI patients underwent PCI procedure within 12 hours of the onset of
symptoms. See [196].

→ Nuove Reti Sanitarie(2004-2009). Tele-monitoring activities for patients affected by Chronic
cardiac insufficiency and those concerned with in-home care after cardiac admittance to hos-
pital.

→ MOMI 2 - MOnth MOnitoring Myocardial Infarction in MIlan(2006-2008). Observational
study collecting 841 STEMI patients in 6 monthly/bimonthly collections along 2 years. See
[57], [59], [62], [67], [74] and [78].

In the next section we will focus on the last project, detailing results achieved and statistical methods
implemented on data arising from this clinical survey on STEMI. It that can beconsidered a pilot
experiment on the “smaller scale” of Milanese urban area of what SP strives to do for Regione
Lombardia, since it enabled us to test feasibility of network and PM&E process concerning the
issues the STEMI Archive is also focused on.

3.2.2 The MOMI2 experience on Milan area

A significative preliminar experience of data collection on STEMI patients is represented by the
MOMI2 survey, an observational study hold between 2006 and 2008 where five 30-60 days collec-
tions have been performed on the Milanese urban area in order to assessthe impact and the efficiency
of the cardiological network in treatment of STEMI patients. In the city of Milano the coordination
of emergency resources servicing 1.4 million residents plus 1 million of daily commuters was cen-
tralized in 2001. It consists in a network connecting hubs that receives in-coming calls, variously
equipped ambulances and 23 receiving hospitals, all with cardiology departments and Coronary
Care Units, 18 with a 24-hour catheterization laboratory service able to perform primary PCI.

All details on setting, statistical analysis of data and results in terms of healthcare policy and
updating of STEMI care patterns can be found mainly in [74], then in [57],[59], [62], [67] and
[78]. Anyway, two main aspects arisen from MOMI2 experience should be highlighted: the first is
that the experience of the Milan network for Cardiac Emergency shows how a network coordinating
community, rescue units and hospitals in a complex urban area and making use of medical technol-
ogy contributes to the improvement of healthcare delivery concerning STEMI patients; the second
is the seminal idea for PROMETEO project (see Paragraph 3.2.4).

In MOMI2 survey, most of the 841 patients received a reperfusion therapy (82%), in particular
73% of them underwnt PCI treatment, in-hospital mortality was low (6.3%) and door-to-balloon
time was less than 90 minutes in nearly 64% of cases. Moreover, in that context a number of
variables related to the outcomes were identified, both non-modifiable and modifiable, i.e., variables
we cannot/can act upon. Among the latter ones, for example, pre-hospitaland in-hospital times
(like total ischemic time, which was inversely related to in-hospital mortality, door-to-balloon time
and symptom onset time, which were inversely related to treatment efficacy) were used as quality
indicators in the PM&E process.
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It is from the results arisen from this pilot study that the idea of PM&E process should have been
carried out using time process indicators. In fact, total ischaemic time and symptom onset time de-
pend on the time to first medical contact, time from medical contact to admittance in hospital and
door-to-balloon time. Time to first medical contact depends on the time the patientand/or other
people take to call the emergency services, which can be shortened by awareness campaigns. Time
from medical contact to admittance in hospital and door-to-balloon depend on pre-hospital and hos-
pital logistics respectively. In MOMI2 study four modifiable variables were found to have an impact
on door-to-balloon time: the most statistically significant predictors were mode of arrival and time
to first ECG, then fast track organization in hospital and time of arrival (i.e., on hours/off hours).
The mode of arrival had a major influence on door-to-balloon time, because the receptivity and hos-
pital response were different in terms of triage and direct transport to the catheterization laboratory
for patients whose arrival was expected or was managed by an Advanced Rescue Unit. Worthy of
note is that a significant difference was found only when the Advanced Rescue Unit was equipped
with 12-lead ECG recorder and transmitter. The difference between Basicand Advanced Supports
did not offer any additional advantage. Thus, the crucial factor was ECG transmission to hospital
staff, who, after having made the diagnosis of STEMI while the patient was still en route, could
alert the cardiology team and catheterization laboratory, which could then be prepared to receive
the patient by fast track and perform PCI immediately. This is consistent with the literature results,
which have shown that pre-hospital 12-lead ECG reduces door-to-balloon time and mortality; it
also suggests that pre-hospital ECG may either be transmitted for interpretation by hospital staff
or can be interpreted locally by paramedics who then communicate their diagnosis to the hospital,
with an acceptable false positive diagnosis rate. We speculate that the beneficial effects of recording
and transmitting a 12-leads ECG in the pre-hospital phase of STEMI may not be restricted to pa-
tients treated with PCI; they may extend also to patients treated with thrombolysis by implementng
effective pre-hospital management and by reducing the in-hospital delay.

These findings were made within the context of an Emergency Service, in which a hub is con-
nected to rescue units and receiving hospital in real time. Such a network ensures that an ambulance
is directed to the nearest appropriate hospital. The efficiency of the organization is reflected by the
very low transfer rate.

As to the use of different survey periods to validate the advantages and limitsof the Milan network,
it is worth pointing out that the analysis of data collected for short periods of time by different
observers has already proved to be a reliable and easy implementing method.Moreover, repeated
data collections enabled continual updates that fueled debates on logistics designed to optimize the
system. A limitation of the study was its observational nature that did not allow anyintervention
to ensure appropriate management of the patient. Another limitation was its sample size and short
observation periods, which did not enable an adequate estimate of the mortalityrate of the patients.
Anyway, MOMI2 pointed out significative results in terms of effective management of Milan Car-
diological Network (see [84]) and enabled to test the feasibility of performing a PM&E analysis
based on clinical registry.

The main result consists of having proved that, in the presence of suspected Acute Myocar-
dial Infarction, the immediate performance of an ECG is essential to documentSTEMI and alert
a catheterization laboratory at the nearest hospital available. In order toachieve this it is essential
to equip rescue units with devices able to record and transmit ECG to experienced staff. This sig-
nificantly shortens door-to-balloon time, which not only was found to contribute to effective reper-
fusion, but also to be an important factor, as component of total ischaemic time, associated with
mortality. These findings, made within the context of an emergency service that efficiently connects
a hub to rescue units and receiving hospitals, resulted in a better organization of STEMI patterns of
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Figure 3.2:Example of final result of filled sheet of STEMI Archive.

care on Milanese urban area. Moreover, as shown in [62], [66] and[78], advanced statistical analy-
ses carried out on these data within the Strategic Program made it possible to tune suitable process
indicators to be used in the monitoring process of performances of the wholeregional network of
cardiologies.

3.2.3 The STEMI Archive

All the previous experiences described in this chapter concurred in the definition of the new clini-
cal registry on STEMI pointed out within the Strategic Program, i.e., the STEMIArchive. STEMI
Archive enlarges the MOMI2 paradigm to the whole territory of Regione Lombardia, standardizing
data collection systems (the same standard for all hospitals involved based onElectronic Health
Records provided by SISS). It is also presented as a candidate for becoming the performance eval-
uation instrument for Regione Lombardia cardiovascular policy.

As presented in [83] and shown in Figure 3.2, STEMI Archive is a multicenter observational
clinical registry planned within the Strategic Program (see Section 2.2). Thisis an observational
clinical registry that collects clinical indicators, process indicators and outcomes concerning STEMI
patients admitted to any hospital of the Regional district, one of the most advanced and intensive-
care area in Italy. This registry is arranged to be automatically linked to the PHDpresented in
Section 3.1. Its main goal is to enhance the integration of different sourcesof health information
in order to automate and streamline clinicians’ workflow, so that data collected once can be used
multiple times for different aims, and especially for measuring performances of healthcare system,
to understand how hospitals work and to increase efficacy of healthcareoffer in terms of costs and
patterns of care. In fact, integrated systems enable people in charge with healthcare government to
obtain data for billing or performance evaluations, as well as they allow clinicians to see trends in
the effectiveness of treatments or to compare patterns of care. Finally, they let researchers to analyse
the efficacy and efficiency of system on patients’ outcomes. In other words, integrated systems play
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a fundamental role in complex clinical environments.

The STEMI Archive consists of clinical information collection related to patients admitted in all
hospitals of Regione Lombardia with STEMI diagnosis. The STEMI Archive, as well as every sur-
vey on specific disease, enables researchers to point out a subpopulation of interest for clinical and
scientific inquiries. Starting from these subpopulations, studies on effectiveness of different patterns
of care and then provider profiling can be carried out, adopting models for explaining outcomes by
means of suitable process indicators and adjusting for different case mix.In our case, a primary out-
come measure is incidence of Major Adverse Cardiovascular Events (MACE) defined as any one
of the following events: in-hospital mortality, Acute myocardial reinfarction,Cardiogenic shock,
Stroke, Long term Mortality, Major bleeding. A secondary outcome is reperfusion effectiveness
measured quantifying the reduction of ST segment elevation one hour afterthe treatment: if the
reduction is larger than 50% in the case of thrombolysis and 70% in the case ofangioplasty we
could consider the procedure effective. Process indicators and patients covariates can be resumed
in the following four categories:

• Personal data:Codice Fiscale(the alpha-numeric identity code used to identify people who
have fiscal residence on Italian territory), date of birth, sex, weight, height, hospital of admis-
sion;

• Risk factors: diabetes, smoking, high blood pressure, high cholesterollevel, history of cardiac
pathology;

• Admission data: time and type of symptoms onset, time of first medical contact, time to call
for rescue, type of rescue unit sent (advanced or basic rescue unit, that is with or without
pre-hospital ECG tele-transmission), time of first ECG, site of infarction on ECG, mode of
hospital admittance, Fast Track activation, Killip class (which quantify in four categories
the severity of infarction), systolic blood pressure, cardiac frequency, ejection fraction and
creatinine value at admittance, site of ST-elevation, number of leads with ST-elevation, pre-
hospital hearth failure;

• Therapeutic data: time of thrombolysis (Door to Needle time), time of angioplasty (Door to
Balloon time), culprit lesion, Ejection Fraction and therapy at discharge;

• Outcomes: in-hospital survival, ST-resolution after 60 minutes from treatment, bleedings,
shock, re-AMI, acute pulmunary edema, arrhythmias, Mytral regurgitation.

The eligible cohort consists in all patients admitted to any hospitals of the RegioneLombardia
Network with STEMI diagnosis.

In addiction to what is provided by STEMI Archive as typical clinical registry, the innovative con-
tents of this survey are represented by process indicators recorded init: the main idea is to evaluate
treatment times with the aim of designing a preferential therapeutic path to reperfusion in STEMI
patients, and to direct the patient flow trough different pathways according, for example, to on hours
vs off hours of working time table, or to clinical conditions such severity of infarction. In this sense,
this survey represents an instrument both for epidemiological enquiries and for organizational opti-
mization of the cardiological healthcare networks.

Moreover, personal data are collected not only for administrative purposes, but also so that the
patient can be univocally identified also within administrative datawarehouseand a longitudinal
electronic record containing his/her previous clinical history and follow-up can be traced, thanks to
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the potential of Electronic Health Record. The link between the two databasesgenerates the primary
platform for the study of impact and care of STEMI on the whole territory ofRegione Lombardia.
Finally, information concerning outcomes are recorded, so that they can be returned to clinicians
and institutions appropriately exploited in terms of patient’s case-mix and care pattern, in order to
support healthcare decisions and clinical policies through monitoring and analysing data. These
steps may be carried out through suitable statistical monitoring and modelling. Statistical models,
in fact, are able to capture complexity, variability and grouped nature of these data, providing an
evidence based decisional support as well as pursuing the optimization ofhealthcare offer.

The STEMI Archive should overcome the difficulties faced in previous pilotdata collections (i.e.,
MOMI2, GestIMA, LombardIMA) related to non-uniformity, inaccuracy of filling and data redun-
dance. In particular non-uniformity of data collection among different structures, or among suc-
cessive surveys, and inaccuracy in filling dataset fields ceased to be aproblem because the Archive
procedure for collecting data has become mandatory for all hospitals through a directive issued by
the lawmaker [36]. All centers fill in the registry along the same protocol andwith the same soft-
ware, thanks to the help of Lombardia Informatica (http://www.lispa.it ), the Information
& Communication Technology (ICT) society which Regione Lombardia leans onfor implemen-
tation of Electronic Health Record. Opinion leaders and Scientific Societies ofcardiology agreed
upon all fields to be recorded and a unique data collector was identified in theGovernance Agency
for Health, that is also the data owner. Moreover, since this registry is designed to be automatically
linked with administrative databases, inaccuracy of information will be partiallyovercome by the
fact that, after the linkage, all information contained in it are checked for coherence with those
contained in PHD. Then only information of interest will be extracted, avoiding redundance and
achieving greater accuracy and reliability (for further details on recordlinkage, see [39]).

Three data collections have been planned within the end of Strategic Program (December 2011).
The first has been performed during the time slot of January-December 2010, to set, test and cal-
ibrate the STEMI Archive; the second one, from January 2011 to July 2011, represents the first
official period of data collection and is the one we will refer to in the analysesof Chapter 7; fi-
nally a third collection period has been realized during October-December 2011. For this latter,
anyway, data from STEMI Archive are already available, but the integration with administrative
datawarehouse will be ready only at the end of January. The time planningis dictated by the need of
providing all clinical providers involved in the project with a suitable assistance that enables them
to overcome software and technical hitches, especially concerning SISSsystem.

3.2.4 The PROMETEO database

As we said in Paragraph 3.2.2, the ECG tele-transmission is crucial for the efficient and quick
management of STEMI patients. This Paragraph is then focused on a different source of clinical
data, arising from 118 Electrocardiographic traces. Statistical methods for dealing with these data
will be presented in Chapter 6, and their application to these data will be the focus of Chapter 9.

Since 2008, a project named PROMETEO (PROgetto sull’area Milanese Elettrocardiogrammi Tele-
trasferiti dall’Extra Ospedaliero) has been started with the aim of spreading the intensive use of ECG
as pre-hospital diagnostic tool and of constructing a new database of ECGs with features never
recorded before in any other data collection on heart diseases. In fact, anticipating diagnostic time,
reducing infarction complications and optimizing the number of hospital admissions are the three
main goals of PROMETEO. Thanks to the partnerships of Azienda RegionaleEmergenza Urgenza
(AREU), Abbott Vascular and Mortara Rangoni Europe s.r.l., ECG recorder with GSM transmission
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have been installed on all Basic Rescue Units (BRUs) of Milanese urban area. Persuading people
to call 118 Dispatch Center when needed, equipping all Milan rescue units with ECG recorder and
training rescuers to acquire ECG correctly to all people which call 118 forrescue, regardless of
symptoms declared, is the way to strongly reduce delays in treatments and then inreperfusion. In
fact this could be the way to obtain early diagnosis and then a quicker delivery of patients from ter-
ritory to Intensive Cardiac Care Units (ICCU) of Hospitals, i.e., a better service for patients affected
by ACS, enabling them to avoid to spend time in the ER and to go directly to PCI.

In [80], [81] and [82], data coming from PROMETEO dataware-
house are analysed. The aims of these analyses are, among others,
to point out a semi automatic diagnostic tool for Bundle Branch
Blocks (details on pathology are given later on this paragraph)
based on statistical unsupervised classification algorithms [80] and
inferential analysis on ECGs, considered as multivariate functional
signals, coming from different population of physiological and patho-
logical patients [81], [82].

PROMETEO datawarehouse contains all the ECG traces recorded by Basic and Advanced Rescue
Units (ambulances and advanced units with physicians on board) on Milanese urban area, concern-
ing patients who call 118 because supposed to be affected by infarction.Each file contained in
PROMETEO datawarehouse is in correspondence to three sub-files. The first one is calledDe-
tails and contains technical information, useful for signal processing and analysis, such as times
of waves’ repolarization and depolarization, landmarks indicating onset and offset times of main

ECG’s subintervals and automatic diagnoses, established by Mortara-Rangoni VERITAS
TM

algo-
rithm1. We used these automatic diagnoses to label ECG traces we analysed, in order to validate the
performances of our unsupervised clustering algorithm. The challenge of the work proposed in [80],
in fact, consists of tuning and testing a real time procedure which enables semi automatic diagnosis
of the patients’ disease based only on ECG traces morphology, then not dependent on clinical eval-
uations. The second sub-file is calledRhythmand contains the ECG signal sampled for 10 seconds
(10000 sampled points). The third one is calledMedian. It is built starting fromRhythmfile, and
depicts areferencebeat lasting 1.2 seconds (1200 points). Technical details on signal filtering are
reported in the Mortata RangoniPhysician’s Guide to VERITAS with adult and pediatric resting EG
interpretation(available atwww.mortara.com ). We carried out the analysis considering only
the Medianfiles, obtaining 8 curves (one for each ECG lead) for each patient, whichrepresents
his/her “Median” beat for that lead. Examples ofRhythmandMedianfiles of a patient are reported
in Figures 3.3 and 3.4 respectively.

The main goal of the analysis of these data is then to identify, from a statistical perspective, specific
ECG patterns which could benefit from an early invasive approach. Infact, the identification of
statistical tools capable of classifying curves using their shape only could support an early detection
of heart failures, not based on usual clinical criteria. To this aim, it is extremely important to
understand the link between cardiac physiology and ECG trace shape. Asdetailed in the following,
we focus on physiological traces in contrast to Right and Left Bundle Branch Block (RBBB and
LBBB respectively) traces. Bundle Branch Block (BBB) is a cardiac conduction abnormality seen
on the ECG. In this condition, activation of the left (right) ventricle is delayed, which results in the
one ventricle contracting later than the other.

1Mortara Rangoni Europe s.r.l. is the leading provider of ECG algorithmsand components for various clinical
applications, seehttp://www.mortara.com.
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Figure 3.3:An example of fileRhythm.

Figure 3.4:An example of fileMedian.

Electrocardiography and Bundle Branch Block

Electrocardiography is a transthoracic recording of the electrical activity of the heart over time cap-
tured and externally recorded through skin electrodes. The ECG worksmostly by detecting and
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amplifying the tiny electrical changes on the skin that are caused when the heart muscle depolarises
during each heart beat (for further inquiry about clinical details, see[185]). First attempts of mea-
suring ECG signals date back to Willem Einthoven (see [166], [167]). TheEinthovenlimb leads
(standard leads) are illustrated in Figure 3.5 and are defined in the followingway:

Figure 3.5:Einthoven limb leads

Lead I : VI = ΦL −ΦR,

Lead II : VII = ΦF −ΦR,

Lead III : VIII = ΦF −ΦL;

where

VI = voltage of Lead I

VII = voltage of Lead II

VIII = voltage of Lead III

ΦL = potential at the left arm

ΦR = potential at the right arm

ΦF = potential at the left foot

These lead voltages satisfy the following relationship:

VI +VIII =VII , (3.1)

hence only two of these three leads are independent. A simple model results from assuming that the
cardiac sources are represented by a dipole located at the center of a sphere representing the thorax,
hence at the center of an equilateral triangle. With these assumptions, the voltages measured by the
three limb leads are proportional to the projections of the electric heart vector on the sides of the
lead vector triangle. The voltages of the leads are obtained from Equation (3.1).

Nowadays, the most commonly used clinical ECG-system, the 12-lead ECG system, consists of
the following 12 leads: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5,V6. The main reason for
recording all 12 leads is that it enhances pattern recognition (see [174]and [175]; [187] and [216]).
Of these 12 leads, the first six are derived from the same three measurement points. Therefore, any
two of these six leads include exactly the same information as the other four. So, the ECG traces
analysed in the following sections will consist of leads I, II, V1, V2, V3, V4, V5 and V6 only.

Figure 3.6 shows a scheme of the stylized shape of a physiological single beat, recorded on ECG
graph paper; main relevant points, segments and waves are highlighted. Deflections in this signal
are denoted in alphabetic order starting with the letter P, which represents atrial depolarization. The
ventricular depolarization causes the QRS complex, and repolarization is responsible for the T-wave.
Atrial repolarization occurs during the QRS complex and produces such alow signal amplitude that
it cannot be detected, with the exception of physiological ECGs (see [201]). The direction of travel
of the wave of depolarization is named theheart electrical axis.

In the case of interest, the fileRhythmof our dataset represents the output of an ECG recorder.
From this curve, a representative heartbeat for each patient is obtained and it is provided in the file
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Figure 3.6:Scheme of the stylized shape of a physiological single beat,recorded on ECG graph paper. Main
relevant points, segments and waves are highlighted.

Median. As we said before, it consists of a trace of a single cardiac cycle (heartbeat), i.e., of aP
wave, aQRScomplex, aT wave, and aU wave, which are normally visible in 50% to 75% of ECGs.

The heart’s electrical activity begins in the sinoatrial node (the heart’s natural pacemaker, n.1 in
Figure 3.7), which is situated on the upper right atrium. The impulse travels next through the left and
right atria and summates at the AV node (n.2 in Figure 3.7). From the AV node the electrical impulse
travels down the Bundle of His (n.3 in Figure 3.7) and divides into the right and left bundle branches
(n.4 and n. 10 in Figure 3.7). The right bundle branch contains one fascicle. The left bundle
branch subdivides into two fascicles: the left anterior fascicle and the left posterior fascicle (n.4
and 5 in Figure 3.7). Ultimately, the fascicles divide into millions of Purkinje fibreswhich in turn
interdigitise with individual cardiac myocytes, allowing for rapid, coordinated, and synchronous
physiologic depolarization of the ventricles.
Bundle branch or fascicle injuries result in altered pathways for ventricular depolarization. In this
case, there is a loss of ventricular synchrony, ventricular depolarization is prolonged, and there may
be a corresponding drop in cardiac output. From a clinical perspective, a RBBB typically causes
prolongation of the last part of the QRS complex, and may shift the heart electrical axis slightly to
the right. LBBB widens the entire QRS, and in most cases shifts the heart electrical axis to the left.
Another usual finding with bundle branch block is appropriate T wave discordance: this means that
the T wave will be deflected opposite the terminal deflection of the QRS complex.From a statistical
point of view, we will focus our analysis on shape modifications induced onthe ECG curves and
their first derivatives by the BBB pathology, and we will investigate these shape modifications only
in a statistical perspective, i.e., not using clinical criteria to classify ECGs. The exploitation of these
morphological modifications in the clustering procedure is the focus of the [80].

3.3 More complex data

Most of the indicators arising from clinical surveys or administrative datawarehouse only measure
partial aspects of the health system: in the first case they take a clinical, realtime but partial snapshot
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Figure 3.7:Conduction system of the heart: 1. Sinoatrial node; 2. Atrioventricular node; 3. Bundle of His;
4. Left bundle branch; 5. Left posterior fascicle; 6. Left-anterior fascicle; 7. Left ventricle; 8. Ventricular
septum; 9. Right ventricle; 10. Right bundle branch.

of the population of interest, in terms of unavoidable biases and missing of longitudinal sight; on the
other hand, administrative data collections give the researchers/government an idea of costs, degree
and characteristics of supply, organizational factors, access to healthcare, population health status,
but not much about the processes within the hospitals. Indications about criteria for the definition of
such measures are scanty and research about the validation of the indicators has not been properly
developed. On the basis of these considerations the National Agency forRegional Health Services
in Lombardia (Agenzia per i Servizi Sanitari Regionali - ASSR) developed a set of quality measures
(outcome and process indicators) in the context of the Strategic Program founded by the Ministry of
Health, as we said in Chapter 2, Section 2.2. Indeed, one of the main goals ofthe Strategic Program
is finding a set of indicators useful for comparison and classification of health care providers and
for the identification of factors which can produce different outcomes, using both sources of data.
The way this can be accomplished is explained in the following sections.

3.3.1 Data Mart of Regione Lombardia datawarehouse

A Data Mart (DM) is the access layer of the datawarehouse (DW) environment that is used to get
data out to the users. The DM is a subset of the datawarehouse, usually oriented to a specific tar-
get. Within the Strategic Program, Lombardia Informatica S.p.A. (LISPA), provided a Data Mart
called DWRETEIMA to enable the data collection of STEMI Archive and the linkage of this data
with the PHD of Regione Lombardia. Details of software and services it provides are described in
[161]. This software has been produced thanks to a strict collaborationamong cardiologists (who
provided the epidemiological needs and clinical expertise), statisticians (who provided scientific
knowledge about experimental design and who are the intermediate user ofdata) and staff of LISPA
(who provided the technical support), according to the issues highlightedin Section 1.2. The goal
of DWRETEIMA is then to allow the clinical survey STEMI Archive to be as complete as possible
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without being redundant with respect to information contained in the PHD. InFigure 3.8 the struc-
ture of DWRETEIMA supporting the STEMI Archive is shown (with a zoom on one sub folders in
Figure 3.9). In the next paragraph will be shown how this instrument enables researchers to obtain
integrated longitudinal data for each patient.

Figure 3.8:The source DWRETEIMA aggregates all sources of data requested by STEMI Archive in the
single record connected to each patient admission.

Figure 3.9:Example of subfolder collecting way of admission, symptomsand times.

3.3.2 Integrated system: examples of complex longitudinaldata

Once different sources of data have been linked, it is possible for clinicians, researchers and people
involved in healthcare governance to answer epidemiological questions such: is the trigger event of
the STEMI Archive the first cardiological event for the observed patient? If not, how many cardio-
vascular events have been recorded in the previous history of this patient? These information are
provided by the integration of the STEMI Archive withRicoveriadministrative database. Moreover,
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if a patient is already known to the healthcare systems in terms of cardiovascular hospital admis-
sions, was his/her compliance to the therapy good, i.e., did he/she assumed correct quantities of
drugs and received a convenient treatment in terms of visits and clinical practice? These informa-
tion are provided by the integration of the STEMI Archive withBDA andFarmaci administrative
databases. Moreover, how the previous clinical history of each patientaffects his/her outcome ob-
served in the STEMI Archive gathering? These questions ask for a proper statistical modelling and
represent real and new challenges of the Strategic Program. Finally, thelong term mortality of each
patient can be obtained through the linkage withAnagrafica. Even if the long term mortality is
to be intended as the mortality due to any cause, not only to cardiovascular events, if considered
up to 30/60 days it is strongly realated to cardiovascular causes. Anywayit is the first time that
the long term mortality and follow up can be achieved for a clinical registry of STEMI in Regione
Lombardia.

All information coming from the integration enable the researchers to point out new prognostic
factors to be considered for better explain the main outcomes the hospitals areevaluated on. Then,
the longer is the time slot on which the integration can be performed, the richer,the more complete
and the more reliable is the information which can be used in order to built the outcome measures.
Regione Lombardia enabled us to look at the administrative datawarehouse up to 8 years ago. In
such time slot, a single patient could have order of dozens admissions, hundreds of visits, drugs and
procedures. Dealing with such complex and high dimensional data is the challenge of the statistical
analysis.

In this section we discuss the results of integration, in terms of the longitudinal electronic records
obtained for each patient inserted in the STEMI Archive. We said that, over recent years, there has
been an increasing agreement among epidemiologists on the validity of diseaseand intervention
registries based on administrative databases and that this motivated RegioneLombardia to use its
own administrative databases for clinical and epidemiological aims. Research using disease and
intervention registries, outcome studies using administrative databases and performance indicators
adopted by quality improvement methods can all shed light on who is most likely to benefit, what
the important tradeoffs are and how policy makers might promote the safe, effective and appropriate
use of new interventions.

When in the PHD we look for events related with a patient belonging to the population selected
by a clinical registry, for example the STEMI Archive (see Figure 3.10),we find all his clinical
history in term of healthcare utilization (visits, hospital admissions, drugs, etc). Since we are not
interested in all this huge amount of information, but only in cardiovascular events, criteria for
adequately choose only the hospital discharge records effectively related to cardiovascular events of
the patient of interest are needed. In fact, the most critical issue when using administrative databases
within observational studies is represented by the selection criteria of the discharge records: several
different criteria may be used, and they will result in different images of prevalence or incidence of
diseases. Among the most accepted criteria, those referring to the Agencyfor healthcare Research
and Quality (AHRQ) methodology, the ones of Johns Hopkins Adjusted Clinical Groups (ACG)
and Classification Research Groups (CRG) have been considered (for further details, see [13]).
As we said before, integrating clinical surveys on specific diseases with administrative databanks,
enable us to select subpopulation of interest for observational studies,focused on answering to
specific epidemiological needs. In fact, the main point and the novelty of Strategic Program is
the proposal of an epidemiological research for specific subpopulationof interest pointed out by
clinical registries, which is different from the classical epidemiological inquiry since it is conducted
starting from the Electronic Health Records, then it is faster and cheaper,and moreover it is real
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Figure 3.10:Sketch of integration between STEMI Archive and Public Health Database.

time achieving. For this new epidemiology, new methods for inquiry and analysismust be pointed
out, and adequate information media must be provided. The STEMI Archivedescribed in Paragraph
3.2.3 and statistical models proposed in Part II are some of the instruments to be adopted to this aim,
and the Strategic Program is the first official set in Italy where they have been considered.

As previously mentioned, when integration of different sources of data isperformed, attention must
be paid to a carefully selection of covariates and data of interest. In this sense, several further
problems arise: firstly it is necessary to select only cardiovascular events and events in some way
related to this pathology; then a dimensional reduction is needed, pointing outjust covariates which
can be of interest in exploiting outcomes by means of suitable covariates and process indicators.
This is the challenge of the statistician, and it is strongly related with the clinical questions that
physicians want to investigate. In this sense, several analyses can performed on such rich and
complex data. A review of techniques to be applied to such data can be foundin [13] and [83]

Dealing with integrated data provides us rich longitudinal data containing lots ofdifferent infor-
mation about each statistical unit (patient) of the subpopulation of interest. Onthe other hand, the
more information, the more complexity, then suitable statistical methods must be developed in or-
der to manage this information in the most fruitful way. For example, we could beinterested in
using information provided by the past clinical history of a patient to predicthis/her risk of re-
hospitalization. The use of hospitalizations (arising from integration of STEMI Archive with the
databaseRicoveriof the PHD) to study the risk of a new event or to quantify issues concerned with
healthcare assessment is an innovative approach, since no standard methodology exists to exploit
this kind of data.

Thinking to the integrated data like a longitudinal (functional) observation foreach patient or
like a realization of a stochastic counting process led us to implement models like the ones explained
in Section 6.3 mentioned in [15]. The idea is that database integration, countingprocess modelling
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of hospitalizations and generalized functional mixed models are methodologiesthat can be applied
to the study of many different pathologies, thanks to their flexibility and capability of dealing with
complex data. Although it can seem contradictory to define functional data as “synthetic”, it is clear
that complex, heterogeneous data are easier to study if their effect is resumed with a process that
represents their combined effect on instantaneous risk. Moreover, specific epidemiological enquires
can be addressed using integrated database, starting from the complianceto prescribed therapy up
to the impact of using specific treatments, drugs and devices. Actually we arestill working on
feasibility of analyses on integrated systems, but it is clear that such a fontof real time information
has a great potential within the context of both in clinical and economic assessment of Regione
Lombardia. In fact, this kind of methodology has led to interesting preliminar results that could
have an impact on the planning of this care strategy. Further development of this framework in
cooperation with medical staff could lead to the definition of a useful guidelines for supporting
long term decisions and performing health care assessment concerning policies to be adopted with
patient affected by STEMI.

3.4 Data mining of integrated databases

Capabilities of both generating, collecting and storing data have been increasing dramatically in the
last two decades. This explosive growth in stored or transient data has generated an urgent need for
new techniques and automated tools that can intelligently assist us in transforming the vast amounts
of data into useful information and knowledge. Moreover, the shift toward evidence-based practice
and outcomes research presents significant opportunities and challenges to extract meaningful in-
formation from massive amounts of clinical data to transform it into the best available knowledge
to guide clinical practice. In fact, healthcare has been no exception: modern medicine generates a
great deal of information stored in the medical database. Extracting useful knowledge and provid-
ing scientific decision-making for the diagnosis and treatment of disease from the database becomes
increasingly necessary. Databases are increasing in size in two ways: (1) the number of records or
objects in the database and (2) the number of fields or attributes to an object. Examples of these
can be found in the administrative datawarehouse of Regione Lombardia aswell as the integration
among clinical and on going data collections.

Data mining, a step in the process of Knowledge Discovery in Databases (KDD) (as shown in Fig-
ure 3.11), is a method of unearthing information from large data sets. Built upon statistical analysis,
it can analyse massive amounts of data and provide useful and interestinginformation about pat-
terns and relationships that exist within the data that might otherwise be missed.In medicine, data
mining can improve the management level of hospital information and promote the development of
telemedicine and community medicine. Because the medical information is characteristic of redun-
dancy, multi-attribution, incompletion and closely related with time, medical data mining differs
from other one.

In general, the basic problem addressed by the KDD process is one of mapping low-level data
into other forms that might be more compact, more abstract, or more useful. Thedistinction between
the KDD process and the data-mining step (within the process) is crucial. Theadditional steps in the
KDD process, such as data preparation, data selection, data cleaning, incorporation of appropriate
prior knowledge, and proper interpretation of the results of mining, are essential to ensure that
useful knowledge is derived from the data, especially when deling with high dimensional data. In
our case, in fact, not only there is often a large number of records in the database, but there is
also a large number of fields within each record; so, the dimensionality of the problem is high. A
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Figure 3.11:An Overview of the Steps That Compose the KDD Process.

high dimensional data set creates problems in terms of increasing the size of the search space for
model induction in a combinatorially explosive manner. In addition, it increases the chances that
a data-mining algorithm will find spurious patterns that are not valid in general. Approaches to
this problem include methods to reduce the effective dimensionality of the problem and the use of
prior knowledge to identify irrelevant variables. Another problem arisingwhen dealing with high
dimensional data is the problem of missing and/or noisy data: important attributes can be missing if
the database was not designed with discovery in mind, or field can be wrongly filled. This calls for
an accurate design of experiment, leading to a focused data collection.

Finally, the two high-level primary goals of data mining in practice tend to be description
and prediction. Description focuses on finding human-interpretable patterns describing the data,
whereas prediction involves using some variables or fields in the database topredict unknown or
future values of other variables of interest. Although the boundaries between prediction and de-
scription are not sharp, the distinction is useful for understanding the overall discovery goal. The
relative importance of prediction and description for particular data-mining applications can vary
considerably. The goals of prediction and description can be achieved using a variety of particular
data-mining methods.

In the context we are interested in, we focus on description when we perform monitoring of process
indicators and analyse patterns of dependence among variables that influence them. On the other
hand, we also develop models for survival and other outcomes mentioned inprevious sections, using
them in order to make predictions and to quantify losses/gains in terms of probability of success once
we adjusted for all the external influences. In this way it is possible to quantify the providers’ effect
on outcomes, as detailed in Part II from a theoretical point of view.
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Social and medical researchers have long been concerned about theneed properly to
model complex data structures, especially those where there is a hierarchical
structure such as pupils nested within schools or measurements nested within

individuals. Failure to take account of such structures in standard modelscan lead
to incorrect inferences. What has been less well appreciated is that a failure to

properly model complex data structures makes it impossible to capture the
complexity that exists in the real world.

Harvey Goldstein
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Chapter 4

Statistical models for healthcare: the
frequentist approach

In this chapter, an overview of the principal frequentist statistical methods for dealing with grouped
and hierarchical data is presented. The main goal is to understand how they can be useful in mod-
elling problems such those arising from the context presented in Part I andhow they can be applied
to data that tipically come out from the healthcare context. We focus in particular on mixed effects
models [55].

4.1 Motivations

Mixed effects models provide a flexible and powerful tool for the analysisof grouped data, which
arise in many areas as agriculture, biology, economics, manufacturing, geophysics and so on. Ex-
amples of grouped data include longitudinal data, repeated measures, andmultilevel data. The
increasing popularity of mixed effects models is explained by the flexibility they offer in modelling
the within-group correlation often present in grouped data, by the handling of balanced and un-
balanced data in a unified framework, and by the availability of reliable and efficient software for
fitting them [42] [49]. The mixed effects approach is based on the assumption that, for every group
of observations, the response can be modeled by a linear regression model, but with group/(subject)-
specific regression coefficients. In the case of repeated measures, the subject is in fact the grouping
factor. Many common statistical models can be expressed as linear models thatincorporate both
fixed effects, which are parameters associated with an entire population orwith certain repeatable
levels of experimental factors, and random effects, which are associated with individual experimen-
tal units drawn at random from a population. A model with both fixed effectsand random effects
is called a mixed effects model. Mixed effects models are primarily used to describe relationships
between a response variable and some covariates in data that are grouped according to one or more
classification factors.

4.2 Linear parametric mixed effects models

Linear parametric Mixed Effects (LME) models are mixed effects models in whichboth the fixed
and the random effects occur linearly in the model function and with suitable parametric assumption
on the random effects distribution. They extend linear models by incorporating random effects,
which can be regarded as additional error terms, to account for correlation among observations

62
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within the same group.

4.2.1 Single and multi level of grouping

For a single level of grouping, the linear mixed effects model expresses theni-dimensional response
vectoryi for the i-th group as

yi = X iβ +Z ibi + εi i = 1, . . . ,M (4.1)

bi ∼ N (0,Σ) εi ∼ N (0,σ2
I)

whereβ is the p-dimensional vector of fixed effects,bi is the q-dimensional vector of random
effects,X i (of sizeni×p) andZ i (of sizeni×q) are known fixed effects and random-effects regressor
matrices, andεi is theni-dimensional within-group error vector with a Normal distribution. The
assumptionVar(εi) = σ2

I can be relaxed, extending to the case of nonconstant variances or special
within-group correlation structures (for further details, see [122]). The random effectsbi and the
within-group errorsεi are assumed to be independent for different groups and to be independent of
each other for the same group. Because the distribution of the random effects vectorsbi is assumed
to be Normal with zero mean, it is completely characterized by its variance-covariance matrixΣ.
This matrix must be symmetric and positive semi-definite; that is, all its eigenvaluesmust be non-
negative. We will make the stronger assumption that it is positive-definite which is to say that all
its eigenvalues must be strictly positive. We can make this restriction because asingular model can
always be re-expressed as a positive-definite model of lower dimension. The columns ofZ i are
usually a subset of the columns ofX i . When computing with the model it is more convenient to
express the variance-covariance matrix in the form of a relative precision factor,∆∆∆, which is any
matrix that satisfies the following equality:

Σ−1

1/σ2 = ∆∆∆T∆∆∆

If Σ is positive-definite then such a∆∆∆ will exist, but it need not be unique. The Cholesky factor of
σ2Σ−1 is one possible∆∆∆. The matrix∆∆∆ is called arelative precision factorbecause it factors the
precision matrix of the random effects (Σ−1), expressed relative to the precision, 1/σ2, of theεi .

The formulation for single level LME models presented above can be extended to multiple, nested
levels of random effects. In the case of two nested levels of random effects the response vectors at
the innermost level of grouping are writtenyim, i = 1, . . . ,M, m= 1, . . . ,Mi whereM is the number
of first-level groups andMi is the number of second-level groups within first-level groupi. The
length ofyim is Mim. The fixed effects model matrices areX im, i = 1, . . . ,M, m= 1, . . . ,Mi of size
Mim× p. Using first-level random effectsbi of lengthq1 and second-level random effectsbim of
lengthq2 with corresponding model matricesZ i,m of sizeMi ×q1 andZ im of sizeMi ×q2, we write
the model as

yim = X imβ +Z i,mbi +Z imbim+ εim i = 1, . . . ,M, m= 1, . . . ,Mi (4.2)

bi ∼ N (0,Σ1), bim ∼ N (0,Σ2), εim ∼ N (0,σ2
I)

The level-1 random effectsbi are assumed to be independent for differenti, the level-2 random
effectsbim are assumed to be independent for differenti or m and to be independent of the level-
1 random effects, and the within group errorsεim are assumed to be independent for differenti
or m and to be independent of the random effects. Extensions to an arbitrarynumberQ of levels
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of random effects follow the same general pattern. As with a single level ofrandom effects, the
variance-covariance matrixΣq, q= 1, . . . ,Q will be expressed in terms of relative precision factors
∆∆∆q.

In what follows, we will always assume a single level of grouping, assuming every time a grouped
data framework (where subjects are units within groups) or longitudinal data structure (where sub-
jects are the grouping factor with respect to their own data).

4.2.2 Estimation in LME models

Consider first the model (4.1) that has a single level of random effects.The parameters of the model
areβ , σ2 and whatever parameters determine∆∆∆. We useθ to represent an unconstrained set of
parameters that determine∆∆∆, assuming for instance that a suitable parametrization has been chosen
for it (for further discussion on this topic, see [73] and [122], Paragraph 2.2.7). The likelihood
function for the model (4.1) is the probability density for the data given the parameters, but regarded
as a function of the parameters with the data fixed, instead of as a function ofthe data with the
parameters fixed. That is,

L(β ,θ ,σ2|y) = f (y|β ,θ ,σ2)

whereL is the likelihood, f is a probability density, andy is the entireN-dimensional response
vector, N = ∑M

i=1ni . Because the nonobservable random effectsbi , i = 1, . . . ,M are part of the
model, we must integrate the conditional density of the data given the random effects with respect
to the marginal density of the random effects to obtain the marginal density forthe data. We can use
the independence of thebi and theεi to express this as

L(β ,θ ,σ2|y) =
M

∏
i=1

f (yi |β ,θ ,σ2)

=
M

∏
i=1

∫
f (yi |bi ,β ,σ2) f (bi |θ ,σ2)dbi

(4.3)

where the marginal density ofyi is multivariate Normal

f (yi |bi ,β ,σ2) =
exp
(
−‖yi −X iβ −Z ibi‖2/2σ2

)

(2πσ2)ni/2
(4.4)

and the marginal density ofbi is also multivariate Normal

f (bi |θ ,σ2) =
exp
(
−bT

i Σ−1bi
)

(2π)q/2
√
|Σ|

=
exp
(
−‖∆∆∆bi‖2/2σ2

)

(2πσ2)q/2abs|∆∆∆|−1

(4.5)

Substituting (4.3) and (4.4) in (4.5) provides the likelihood as

L(β ,θ ,σ2|y) =
M

∏
i=1

abs|∆∆∆|
(2πσ2)ni/2

∫ exp
[
−
(
‖yi −X iβ −Z ibi‖2+‖∆∆∆bi‖2

)]

(2πσ2)q/2
dbi

=
M

∏
i=1

abs|∆∆∆|
(2πσ2)ni/2

∫ exp
(
−‖ỹi − X̃ iβ − Z̃ ibi‖2

)

(2πσ2)q/2
dbi

(4.6)
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where

ỹi =

[
yi

0

]
, X̃ i =

[
X i

0

]
, Z̃ i =

[
Z i

∆∆∆

]
, (4.7)

are augmented data vectors and model matrices. This approach of changing the contribution of the
marginal distribution of the random effects into extra rows for the response and the design matrices
is called a pseudodata approach because it creates the effect of the marginal distribution by adding
“pseudo” observations. The exponent in the integral of (4.6) is in the form of a squared norm
or, more specifically, a residual sum-of-squares. We can determine the conditional modes of the
random effects given the data, writtenb̂i , by minimizing this residual sum-of-squares. This is a
standard least squares problem for which we could write the solution as

b̂i =
(
Z̃T

i Z̃ i
)−1

Z̃T
i

(
ỹi − X̃ iβ

)
.

The squared norm can then be expressed as

‖ỹi − X̃ iβ − Z̃ ibi‖2 = ‖ỹi − X̃ iβ − Z̃ i b̂i‖2+‖Z̃ i
(
bi − b̂i

)
‖2

= ‖ỹi − X̃ iβ − Z̃ i b̂i‖2+
(
bi − b̂i

)T
Z̃T

i Z̃ i
(
bi − b̂i

) (4.8)

The first term in (4.8) does not depend onbi so its exponential can be factored out of the integral
in (4.6). Integrating the exponential of the second term in (4.8) is equivalent, up to a constant, to
integrating a multivariate normal density function. Note that

√
|Z̃T

i Z̃ i |
√
|Z̃T

i Z̃ i |

∫ exp
[
−
(
bi − b̂i

)T
Z̃T

i Z̃ i
(
bi − b̂i

)
/2σ2

]

(2πσ2)q/2
dbi

=
1√

|Z̃T
i Z̃ i |

∫ exp
[(

bi − b̂i
)T

Z̃T
i Z̃ i
(
bi − b̂i

)
/2σ2

]

(2πσ2)q/2/
√

|Z̃T
i Z̃ i |

=
1√

|Z̃T
i Z̃ i |

=
1√

|ZT
i Z+∆∆∆T∆∆∆|

(4.9)

By combining (4.8) and (4.9) we can express the integral in (4.6) as

∫ exp
[
−
(
‖ỹi − X̃ iβ − Z̃ ibi‖2

)]

(2πσ2)q/2
dbi =

∫ exp
[
−
(
‖ỹi − X̃ iβ − Z̃ i b̂i‖2

)]
√
|Z̃T

i Z̃ i |
(4.10)

to give

L(β ,θ ,σ2|y) = 1

(2πσ2)N/2

(−∑M
i=1‖yi −X iβ −Z i b̂i‖2

2σ2

) M

∏
i=1

abs∆∆∆√
|Z̃T

i Z̃ i |
(4.11)

The expression (4.11) could be used directly in an optimization routine to calculate the maximum
likelihood estimates forβ , θ , andσ2. However, the optimization is much simpler if we firstprofile
the likelihood so it is a function ofθ only. That is, we calculate the conditional estimatesβ̂ (θ)
and σ̂2(θ) as the values that maximizeL(β ,θ ,σ2) for a givenθ . Notice that the parts of (4.11)
involving β andσ2 are identical in form to the likelihood for a linear regression model soβ̂ (θ) and
σ̂2(θ) can be determined from standard linear regression theory.
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We do need to be careful because the least squares estimates forβ will depend on the conditional
modesb̂i and these, in turn, depend onβ . Thus, we must determine these least squares values jointly
as the least squares solution to

(
b̂T

1 , . . . , b̂
T
M, β̂ T

1

)T
= arg min

b1,...,bM ,β
‖ye−Xe(b1, . . . ,bM,β )T‖2

where

Xe =




Z1 0 . . . 0 X1

∆∆∆ 0 . . . 0 0
0 Z2 . . . 0 X2

0 ∆∆∆ . . . 0 0
...

...
...

...
...

0 0 . . . ZM XM

0 0 . . . ∆∆∆ 0




, and ye =




y1

0
y2

0
...

yM

0




(4.12)

Conceptually we could write

(
b̂T

1 , . . . , b̂
T
M, β̂ T

)T
=
(
XT

e Xe
)−1

XT
e ye

but we definitely would not want to calculate these values this way. The matrixXe is sparse and can
be very large. If possible we want take advantage of the sparsity and avoid working directly with
Xe. Linear regression theory also gives us the conditional maximum likelihood estimate forσ2

σ̂2(θ) =
‖ye−Xe(b̂T

1 , . . . , b̂
T
M, β̂ T)‖2

N
(4.13)

Substituting these conditional estimates back into (4.11) provides theprofiled likelihood

L(θ) = L(β̂ (θ),θ , σ̂2(θ)) =
exp(−N/2)

[2πσ̂2(θ)]N/2

M

∏
i=

abs|∆∆∆|√
|Z̃T

i Z̃ i |
(4.14)

We do not actually need to calculate the values ofb̂1, . . . , b̂M, β̂ (θ) to evaluate the profiled likeli-
hood. We only need to know the norm of the residual from the augmented least squares problem.
There is, in fact, a decomposition methods that provide us with fast, convenient way of calculating
this. Referring to theOrthogonal-triangular decompositionsof rectangular matrices described in
[122] Paragraph 2.2.2, we have that theQRdecomposition of a general matrixX ∈ R

n×p, n> p is
given by

X = Q
[

R
0

]

beingQ a n×n orthogonal matrix,R a p× p upper triangular matrix. An important property of
orthogonal matrixes is that they preserve the norm of vectors they are applied to. So, if we apply
this to the residual vector of a least squares problem we get

‖y−Xβ‖2 = ‖QT(y−Xβ )‖2

= ‖QTy−QTXβ‖2

= ‖c−QTQ
[

R
0

]
β‖2

= ‖c1−Rβ‖2+‖c2‖2
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wherec= (cT
1 ,c

T
2 ) = QTy is the rotated residual vector. The components ofc1 andc2 are of lengths

p andn− p respectively. IfX has rankp, the p× p matrix R is non singular and upper-triangular.
The least-squares solution̂β is easily evaluated as the solution of

Rβ̂ = c1

and the residual sum of squares is‖c2‖2. Notice that the residual sum of squares can be evaluated
without having to calculateβ . Now, applying these last considerations to the framework of lin-
ear mixed effects models with single level grouping, we take an orthogonal decomposition of the
augmented model matrix̃Z i

Z̃ i = Q(i)

[
R11(i)

0

]

whereQ(i) is (ni +q)× (ni +q) andR11(i) is q×q. Then

‖ỹi − X̃ iβ − Z̃ ibi‖2 = ‖QT
(i)

(
ỹi − X̃ iβ − Z̃ ibi

)
‖2

= ‖c1(i)−R10(i)β −R11(i)bi‖2+‖c0(i)−R00(i)β‖2

where theq× p matrix R10(i), theni × p matrix R00(i), theq-vectorc1(i) and theni-vectorc0(i) are
defined by [

R10(i)

R10(i)

]
= QT

(i)X̃ i and

[
c1(i)

c0(i)

]
= QT

(i)ỹi

Returning to the integral in (4.6), we can now reduce it to

∫ exp
[
−
(
‖yi −X iβ −Z ibi‖2+‖∆∆∆bi‖2

)
/2σ2

]
√

2πσ2
dbi =

exp

[
‖c0(i)−R00(i)β‖2

−2σ2

]∫ exp
[ ‖c1(i)−R10(i)β−R11(i)bi‖2

−2σ2

]

(2πσ)q/2
dbi

(4.15)

and then providing the likelihood as

L(β ,θ ,σ2|y) =
M

∏
i=1

exp
[
−‖c0(i)−R00(i)β‖2/2σ2

]

(2πσ2)ni/2
abs

( |∆∆∆|
|R11(i)|

)

=

exp

(
−‖

M

∑
i=1

c0(i)−R00(i)β‖2/2σ2

)

(2πσ2)N/2

M

∏
i=1

abs

( |∆∆∆|
|R11(i)|

)

Detailed procedure is reported in [122],§2.2.3. The term in the exponent has the form of a residual
sum-of-squares forβ pooled over all the groups. Forming another orthogonal-triangular decompo-
sition 


R00(1) c0(1)
...

...
R00(M) c0(M)


= Q0

[
R00 c0

0 c−1

]
(4.16)

produces the form

L(β ,θ ,σ2|y) = (2πσ2)−N/2exp

(
−‖c−1‖2+‖c0−R00β‖2

2σ2

) M

∏
i=1

abs

( |∆∆∆|
|R11(i)|

)
(4.17)
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For a givenθ , the values ofβ andσ2 that maximize (4.17) are

β̂ (θ) = R−1
00 c0 and σ̂2(θ) =

‖c−1‖2

N
(4.18)

which give the profiled likelihood

L(θ |y) = L(β̂ (θ),θ , σ̂2(θ)|y)

=

(
N

2π‖c−1‖2

)N/2

exp

(
−N

2

) M

∏
i=1

abs

( |∆∆∆|
|R11(i)|

) (4.19)

The profiled likelihood (4.19) is maximized with respect toθ , producing the maximum likelihood
estimateθ̂ . The maximum likelihood estimateŝβ and σ̂2 are then obtained by settingθ = θ̂ in
(4.18), beingθ included in theR00 andc−1 terms.

Although technically the random effectsbi are not parameters for the statistical model, they do
behave in some ways like parameters and often we want to “estimate” their values [111]. The
conditional modes of the random effects, evaluated at the conditional estimate of β , are the Best
Linear Unbiased Predictors (BLUPs) of thebi , i = 1, . . . ,M. They can be evaluated as

b̂i(θ) = R−1
11(i)

(
c1(i)−R10(i)β̂ (θ)

)
(4.20)

Maximum likelihood estimates of variance components tend to produce underestimates. Many
analysts prefer the REstricted Maximum Likelihood (REML) estimates for thesequantities. There
are several ways to define the REML estimation criterion. According to the one that refers to Laird
and Ware in [97] and that provides a convenient computational form, this is

LR(θ ,σ2|y) =
∫

L(β ,θ ,σ2|y)dβ

which, within a Bayesian framework, corresponds to assuming a locally uniform prior distribution
for the fixed effectsβ and integrating them out of the likelihood. Using (4.17) in log-likelihood
version, we have

lR(θ ,σ2|y) =−N− p
2

log(2πσ2)− ‖c−1‖
2σ2 − logabs|R00|+

M

∑
i=1

logabs

( |∆∆∆|
|R11(i)|

)

This produces the conditional estimateσ̂2
R(θ) = ‖c−1‖2/(N− p) for σ2, from which we obtain the

profiled log-restricted-likelihood

lr(θ |y) = lR(θ , σ̂2|y)

= const− (N− p) log‖c−1‖− logabs|R00|+
M

∑
i=1

logabs

( |∆∆∆|
|R11(i)|

)
(4.21)

The evaluation of the restricted maximum likelihood estimates is done by optimizing the profiled
log-restricted-likelihood (4.21) with respect toθ only, and using the resulting REML estimateθ̂R to
obtain the REML estimate ofσ2 andσ̂2

R(θ̂R). Similarly, the REML estimated BLUPs of the random
effects are obtained by replacingθ with θ̂R.

An important difference between the likelihood function and the restricted likelihood function
is that the former is invariant to one-to-one reparameterizations of the fixedeffects (i.e., a change in
the contrasts representing a categorical variable), while the latter is not. Changing theX i matrices
results in a change in logabs|R00| and a corresponding change inlR(θ |y). As a consequence, LME
models with different fixed effects structures fit using REML cannot be compared on the basis of
their restricted likelihoods. In particular, likelihood ratio tests are not valid under these circum-
stances. For details
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4.2.3 Classification and inference using LME models

Inference on the parameters of a linear mixed effects model usually relies on approximate distri-
butions for the maximum likelihood estimators and the restricted maximum likelihood estimators
derived from asymptotic results. In [121] Pinheiro shows that, under certain regularity conditions
generally satisfied in practice, the maximum likelihood estimates in the general LMEmodel are
consistent and asymptotically normal. The approximate distributions of the maximumlikelihood
estimators in a LME model withQ levels of nesting are

β̂ ∼ N
(
β ,σ2R−1

00 R−T
00

)



θ̂1
...

θ̂Q

logσ̂


∼ N







θ1

. . .
θQ

logσ̂


 , III

−1(θ1, . . . ,θQ,σ2)




(4.22)

where

III(θ1, . . . ,θQ,σ2) =




∂ 2l
∂θ1∂θ T

1

∂ 2l
∂θ2∂θ T

1
. . . ∂ 2l

∂ logσ∂θ T
1

...
...

...
∂ 2l

∂θ1∂ logσ
∂ 2l

∂θ2∂ logσ . . . ∂ 2l
∂ 2 logσ




and l(θ1, . . . ,θQ,σ2) denotes the log-likelihood function profiled on the fixed effects, beingIII the
empirical information matrix.R00 is defined as in (4.16). We use logσ in place ofσ2 in (4.22) to
give an unrestricted parameterization for which the normal approximation tends to be more accurate.
As shown by [121], the REML estimates in an LME model also are consistent and asymptotically
normal, with approximate distributions identical to (4.22) but withl replaced by the log-restricted-
likelihood lR. In practice, the unknown parametersθ1, . . . ,θQ andσ2 are replaced by their respective
ML or REML estimates in the expressions for the approximate variance-covariance matrices in
(4.22). Starting from these approximate distributions for the maximum likelihood estimates and
REML estimates it is possible to produce hypothesis tests and confidence intervals for the LME
model parameters, as shown in [122], Section 2.4.

In general, the greatest inferential effort about LME models is focused on the fixed effects and the
variance components. Random effects are a sort of “residual noise”to be suitably taken into account,
but which does not have any more appeal for inference purposes. Usually, graphical enquires are
adopted a priori to test for the presence of the grouping factor effecton data, then a Normal random
effect is included in the model, and finally Normality assumption is checked.

In our work, we look at random effects estimates from a different perspective. Although tech-
nically the random effectsbi are not parameters for the statistical model, they do behave in some
ways like parameters and often we want to “estimate” their values as well as to use them for further
analyses. When the assumptions made on random effects are not satisfied, in fact, this is often be-
cause there are some groups (individuals) whose effects are “more similar” than others. This leads
to a sort of “clustering of clusters”. In fact, our idea is to take advantageof these hints and to adopt
mixed effects models as explorative tool for pointing out higher level of grouping on grouping fac-
tor, i.e., to investigate if grouping factor (for us, providers admitting patients affected by STEMI)
can be thought as belonging to macro-groups with “similar behaviour”. In other words, the point
estimates of the random effects are telling us something about the providers’effect adjusted for the
case mix it deals with, then the question is wheter any pattern of behaviour canbe seen among dif-
ferent structures. This would be of great interest for people in charge with healthcare government,



CHAPTER 4. THE FREQUENTIST APPROACH 70

to drive actions oriented to profile providers, to assess benchmarks of acceptability and so on. We
generalize this idea also to a more complex models like generalized linear mixed effects models
(see Section 4.3)

Starting from point estimates of random effects, is it possible to classify andto rank providers
according to some acceptability criteria, labelling them as shown in [62], or to embody the pursuit
of these labels within the estimate procedure, as done in [77].

4.3 Generalized linear parametric mixed effects models

Multilevel modelling is applied to logistic regression and other generalized linearmodels in the
same way as linear regression. In fact, Generalized Linear Mixed Models(GLME Models) extend
Generalized Linear Models (GLMs) by the inclusion of random effects in the predictor. In fact,
a linear mixed model like (4.1) assumes that the relationship between the mean of the dependent
variableyi and the fixed and random effects can be modeled as a linear function, thatthe variance
of yi is not a function of the mean, and that the random effects follow a normal distribution. Any or
all these assumptions may be violated for certain traits. A number of approaches have been taken
to address the deficiencies of a linear mixed model (see for example [21]).Transformations have
been used to stabilize the variance, to obtain a linear relationship, and to normalize the distribution.
However the transformation needed to stabilize the variance may not be the same transformation
needed to obtain a linear relationship. Further details on LME models with more general variance
structure can be found in [73] and [122]. Anyway, all these options sidestep the issue that the
linear mixed model is incorrect. It seems more reasonable to start with an appropriate model for the
data and use an estimation procedure derived from that model. A generalized linear mixed model
is a model which gives us extra flexibility in developing an appropriate model for the data. The
generalized linear mixed model is the most frequently used random effects model in the context of
discrete repeated measurements.

4.3.1 Model formulation for GLME models

Let yi j , is the j-th outcome measured for cluster (subject)i, i = 1, . . . ,M, j = 1, . . . ,ni andyi is
the ni-dimensional vector of all measurements available for clusteri. As introduced in Section
4.2, it is assumed that, conditionally onq-dimensional random effectsbi , assumed to be drawn
independently from theN (0,Σ), the outcomesyi j are independent with densities belonging to the
exponential family

fi j (yi j |bi ,β ,τ) = exp
{

τ [yi j ζi j −a(ζi j )]+c(yi j ,τ)
}

with µi j = E[yi j |bi ] andηi j = h(µi j ) = xT
i j β + zT

i j bi for a known link functionh(·). Usually the

canonical link function is chosen, i.e., such thath(E[yi j |bi ]) = ζi j , and sinceE[yi j |bi ] = a
′
(ζi j ), we

haveζi j =(a
′
)−1(E[yi j |bi ]). xi j andzi j are respectively ap-dimensional and aq-dimensional vectors

of known covariate values, andβ is ap-dimensional vector of unknown fixed regression coefficients.
Moreover,ζi j is the natural parameter of the exponential family, andτ the scale parameter. Finally,
let f (bi |Σ) be the density of theN (0,Σ) distribution for the random effectsbi .
The hierarchical model formulation where the outcome is modeled conditionally on random effects,
which are then modeled in an additional step, makes Bayesian methodology veryappealing for
fitting generalized linear mixed models. We will discuss this approach deeply later on for both
LME Models and GLME Models in Chapter 5.
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As already mentioned, random effects models can be fitted by maximization of themarginal like-
lihood, obtained by integrating out the random effects. The likelihood contribution of groupi then
becomes

fi(yi |β ,Σ,τ) =
∫ ni

∏
j=1

fi j (yi j |bi ,β ,τ) f (bi|Σ)dbi (4.23)

from which the likelihood forβ , Σ, andτ is derived as

L(β ,Σ,τ |yi) =
M

∏
i=1

fi(yi |β ,Σ,τ)

=
M

∏
i=1

∫ ni

∏
j=1

fi j (yi j |bi ,β ,τ) f (bi|Σ)dbi

(4.24)

The key problem in maximizing (4.24) is the presence ofM integrals over theq-dimensional random
effectsbi . In some special cases, these integrals can be worked out analytically. For example, as
it has been shown in Section 4.2 on linear mixed models for outcomes belonging tothe Gaussian
family. In general, no analytic expressions are available for the integrals in(4.24) and numerical
approximations are needed. There is a large statistical literature on variousmethods to do so. In
Paragraph 4.3.2 we will just make an overview of the most frequently used ones, also implemented
in commercially available software packages. For further discussions on these topics, see [142] and
[143].

Although in practice one is usually primarily interested in estimating the parameters inthe marginal
distribution foryi , we are also deeply interested in obtaining estimates for the random effectsbi

as well. They reflect between-subject variability, which makes them helpful for detecting special
profiles (i.e., outlying groups) or groups with behaviour or patterns different from all the others.
If groups are subjects, i.e., if we have repeated measures for each unitalong time, this means to
be interested in pointing out subjects evolving differently in time. Also, estimates for the random
effects are needed whenever interest is in prediction of group (subject)-specific evolutions.

4.3.2 Estimation for GLME models

As mentioned before, the key problem in maximizing (4.24) is the presence ofM integrals over the
q-dimensional random effectsbi . In some special cases, these integrals can be worked out analyti-
cally, but in general, no analytic expressions are available for them and numerical approximations
are needed. These numerical approximations can be divided in those thatare based on the approx-
imation of the integrand, those based on an approximation of the data, and those that are based on
the approximation of the integral itself.

Approximation of the integrand

When integrands are approximated, the goal is to obtain a tractable integral such that closed-form
expressions can be obtained, making the numerical maximization of the approximated likelihood
feasible. Several methods have been proposed, but basically all come down to Laplace-type ap-
proximations of the function to be integrated. The Laplace method [139] has been designed to
approximate integrals of the form

I =
∫

eQ(b)db (4.25)
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whereQ(b) is a known, unimodal, and bounded function of aq-dimensional variableb. Let b̂ be
the value ofb for which Q is maximized. We then have that the second-order Taylor expansion of
Q(b) is of the form

Q(b)≈ Q(b̂)+
1
2
(b− b̂)TQ

′′
(b̂)(b− b̂) (4.26)

for Q
′′
(b̂) equal to the Hessian ofQ, evaluated at̂b. ReplacingQ(b) in (4.25) by its approximation

in (4.26), we obtain

I ≈ (2π)q/2
∣∣∣−Q

′′
(b̂)
∣∣∣
−1/2

eQ(b̂) (4.27)

Clearly, we can use this method when each integral in (4.24) can be written in the form (4.25),
with suitable functionsQ(b). Note that the modêβ of Q depends on the unknown parametersβ ,
τ and Σ, such that in each iteration of the numerical maximization of the likelihood,β̂ will be
recalculated conditionally on the current values for the estimates for these parameters. The Laplace
approximation will be exact whenQ(b) is a quadratic function ofb, i.e., if the integrands in (4.24)
are exactly equal to normal kernels. More details can be found in [68].

Approximation of the data

A second class of approaches is based on a decomposition of the data into the mean and an appropri-
ate error term, with a Taylor series expansion of the mean that is a non-linearfunction of the linear
predictor. All methods in this class differ in the order of the Taylor approximation and/or in the point
around which the approximation is expanded. More specifically, one considers the decomposition

yi j = µi j + εi j = h−1(xT
i j β +zT

i j bi)+ εi j (4.28)

in which h−1(·) equals the inverse link function, and where the error terms have the appropriate
distribution with variance equal toVar(yi j |bi). Now, let consider, for example, binary outcomes
with the logistic natural link function andτ = 1. One then has

µi j = P(yi j = 1) = πi j =
exp(xT

i j β +zT
i j bi)

1+exp(xT
i j β +zT

i j bi)

and soεi j equals 1− πi j with probability πi j and equals−πi j with probability 1− πi j . Several
approximations of the meanµi j in (4.28) can be considered.

The first one we discuss is a linear Taylor expansion of (4.28) around current estimateŝβ andb̂i of
the fixed effects and random effects, respectively. This yields

yi j ≈ h−1(xT
i j β̂ +zT

i j b̂i)

+ h−1
′
(xT

i j β̂ +zT
i j b̂i)xT

i j (β − β̂ )

+ h−1
′
(xT

i j β̂ +zT
i j b̂i)zT

i j (b− b̂)+ εi j

= µ̂i j +Var(µ̂i j )xT
i j (β − β̂ )+Var(µ̂i j )zT

i j (b− b̂)+ εi j

whereµ̂i j equals the current predictorh−1(xT
i j β̂ +zT

i j b̂i) for the conditional meanE[yi j |bi ]. In vector
notation it becomes

yi ≈ µ̂i + V̂ iX i(β − β̂ )+ V̂ iZ i(bi − b̂i)+ εi



CHAPTER 4. THE FREQUENTIST APPROACH 73

for appropriate design matricesX i andZ i , and withV̂ i equal to the diagonal matrix with diagonal
entries equal toVar(µ̂i j ). Re-ordering the above expression yields

y∗i ≡ V̂−1
i (yi − µ̂i)+X i β̂ +Z i b̂i ≈ X iβ +Z ibi + ε∗

i (4.29)

for ε∗
i equal toV̂−1

i εi , which still has mean zero. Note that (4.29) can be viewed as a linear mixed
effects model for the pseudo datay∗i , with fixed effectsβ , random effectsbi , and error termsε∗

i .
This immediately yields an algorithm for fitting the original generalized linear mixed effects model.
Given starting values for the parametersβ , Σ in the marginal likelihood, empirical Bayes estimates
(see [143], Section 4.5) are calculated forbi , and pseudo datay∗i are computed. Then, the ap-
proximate linear mixed model (4.29) is fitted, yielding updated estimates forβ andΣ. These are
then used to update the pseudo data and this whole scheme is iterated until convergence is reached.
The resulting estimates are calledPenalized Quasi-Likelihood(PQL) estimates because they can be
obtained from optimizing a quasi-likelihood function which only involves first- and second-order
conditional moments, augmented with a penalty term on the random effects. We refer to [19] for
more details.

An alternative approximation is very similar to the PQL method, but is based on a linear Taylor
expansion of the meanµi j in (4.28) around the current estimatesβ̂ for the fixed effects and around
b̂i = 0 for the random effects. This yields very similar expressions as derived in the paragraph
before, only is the current predictorµ̂i j now of the formh−1(xT

i j β̂ ), rather thanh−1(xT
i j β̂ +zT

i j b̂i) as

was the case before. The pseudo-data are now of the formy∗i ≡ V̂−1
i (yi − µ̂i)+X i β̂ and satisfy the

approximate linear mixed effects model

y∗i ≈ X iβ +Z ibi + ε∗
i (4.30)

Again, model fitting is done by iterating the calculation of the pseudo-data and the fitting of the
approximate linear mixed model for these pseudo-data. The resulting estimatesare calledMarginal
Quasi-Likelihood(MQL) estimates. As with the PQL estimates, they can be obtained by optimizing
a quasi-likelihood function which only involves first- and second-order moments, but now evaluated
in the marginal linear predictorxT

i j β̂ rather than the conditional linear predictorxT
i j β̂ +zT

i j b̂. We refer
to [19] and [52] for more details.

The essential difference between PQL and MQL is that the latter do not incorporate the random
effectsbi in the linear predictor, but both methods are based on the same key idea and will, in
general, have very similar properties. Obviously the accuracy of both approximations depends on
the accuracy of the linear mixed effects model for the pseudo datay∗i . In each step of the iterative
process∏ j fi j (yi j |bi ,β ,τ) in (4.24) is replaced by the multivariate Normal density ofy∗i . Note that

ni

∏
j

fi j (yi j |bi ,β ,τ) = exp

{
ni

∑
j

τ [yi j ζi j −a(ζi j )]+∑
j

c(yi j ,τ)

}

= exp

{
τ

[
β T

ni

∑
j

xi j yi j +bT
i

ni

∑
j

zi j yi j −a(ζi j )

]
+

ni

∑
j

c(yi j ,τ)

}

The sufficient statistics forβ andbi are ∑ j xi j yi j and ∑ j zi j yi j , respectively. The approximation
will be accurate whenever these sufficient statistics are approximately normally distributed, i.e.,
whenever the responsesyi j are “sufficiently” continuous and/or if the numberni of measurements
per group (subject) is sufficiently large. This explains why, as for the Laplace method, PQL and
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MQL perform poorly in cases with binary repeated observations, with a relatively small number of
repeated observations available for all groups.

Although similar in underlying key ideas, there are also some important differences between
MQL and PQL. Obviously, MQL completely ignores the random effects variability in the lineariza-
tion of the mean. Therefore, it will only provide a reasonable approximationwhen the variance of
the random effects is (very) small. Even with increasing numbers of measurements per cluster, the
bias in MQL remains. This is not the case for PQL which can be shown to be consistent when both
the number of subjects as well as the number of measurements per subject approach infinity, even
for binary outcomes. One way to improve the accuracy of the approximationsis the inclusion of a
second-order term in the Taylor expansions. This leads to the PQL2 and MQL2 methods, discussed,
for example, in [53]. Finally, besides using higher orders in the Taylor expansions, some authors
have advised the introduction of bias correction terms (for example [20]).Because the lineariza-
tions in the PQL and the MQL methods lead to linear mixed effects models, the implementation of
these procedures is often based on feeding updated pseudo data into software for the fitting of linear
mixed effects models. However, it should be emphasized that outputs resulting from such fittings,
which are sometimes reported intermediately, should be interpreted with great care. For example,
reported (log-)likelihood values correspond to the assumed normal model for the pseudo data and
should not be confused with (log-)likelihood for the generalized linear mixed effects model for the
actual data at hand. Also, as discussed in the previous sections, fitting oflinear mixed effects mod-
els can be based on maximum likelihood (ML) as well as restricted maximum likelihood (REML)
estimation. Hence, within the PQL and MQL frameworks, both methods can be used for the fitting
of the linear model to the pseudo data, yielding (slightly) different results.

Approximation of the integral

Especially in cases where the above approximation methods fail, approximations to the integral,
i.e., numerical integration, proves to be very useful. Of course, a wide toolkit of numerical inte-
gration tools, available from the optimization literature, can be used. Severalof those have been
implemented in various software tools for generalized linear mixed effects models. A general class
of quadrature rules selects a set of abscissas and constructs a weighted sum of function evaluations
over those. In the particular context of mixed effects models, so called adaptive quadrature rules
can be used, were the numerical integration is centered around the Empirical Bayes estimates (see
[143], Section 14.4) of the random effects, and the number of quadrature points is then selected
in terms of the desired accuracy. To illustrate the main ideas, we consider Gaussian and adaptive
Gaussian quadrature, designed for the approximation of integrals of the form

∫
f (t)φ(t)dt (4.31)

for a known functionf (t) and forφ(t) the density of the multivariate standard Normal distribution.
We will therefore first standardize the random effects such that they get the identity covariance
matrix. Letsi = Σ−1/2bi . We then have thatsi is normally distributed with mean0 and covarianceI,
and the linear predictor becomesηi j = xT

i j β +zT
i j Σ1/2si . Hence, the variance components inΣ have

been moved to the linear predictor. The likelihood contribution for groupi equals

fi(yi |β ,Σ,τ) =
∫ ni

∏
j=1

fi j (yi j |bi ,β ,τ) f (bi|Σ)dbi

=
∫ ni

∏
j=1

fi j (yi j |si ,β ,Σ,τ) f (si)dsi

(4.32)
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Obviously, (4.32) is of the form (4.31) as required to apply (adaptive) Gaussian quadrature. This
class of methods, approximates integrals in the form of (4.31) by the weightedsum

∫
f (t)φ(t)dt ≈

K

∑
k=1

wk f (tk).

K here is the order of the approximation. The higherK, the more accurate the approximation is.
Further, the so called nodes (or quadrature points)tk are solutions to theK-th order Hermite poly-
nomial, while thewk are appropriately chosen weights. Further discussion on Gaussian quadrature,
as well as methods for numerical integration of multivariate integrals are no directly concerned with
the main aim of this thesis, then we remind to [143] for further details on this topic.

4.3.3 Inference for GLME models

Because the fitting of generalized linear mixed effects models is based on maximum likelihood
principles, inferences for the parameters are readily obtained from classical maximum likelihood
theory. Indeed, assuming the fitted model is appropriate, the obtained estimators are asymptotically
normally distributed with the correct values as means, and with the inverse Fisher information matrix
as covariance matrix. Hence, Wald-type tests, comparing standardized estimates to the standard
normal distribution can easily be performed. Composite hypotheses can be tested using the more
general formulation of the Wald statistic which is a standardized quadratic form, which is then
compared to the chi-squared distribution. Alternatively, likelihood ratio and score tests can be
used as well. As discussed in the previous section, the parameters in generalized linear mixed
effects models are often estimated by fitting linear mixed effects models to pseudo-data. Therefore,
precision estimates for the fixed effects and for the random effects are often calculated using linear
mixed effects model methodology, yielding for example Z-, t- and F-tests for the fixed effects. A
detailed discussion of inferential tool to be applied and used in the LME Models framework can be
found in [142], Chapter 6.

Finally, when interest is also in inference for some of the variance components in Σ, classical
asymptotic Wald, likelihood ratio, and score tests can be used, as long as the hypotheses to be tested
are not on the boundary of the parameter space. For example, supposeone wishes to test whether
the variance of a single random effect (let us denote it asσ2

b ) in a generalized linear mixed effects
model equals zero. This is of crucial interest, since it assesses if the random effect should or not
be included in the model. In this case, one has to test the null-hypothesisH0 : σ2

b = 0 versus the
alternativeH1 : σ2

b > 0, then rejectingH0 allows for the presence of the random effects. Obviously,
the null-hypothesis is on the boundary of the parameter spaceσ2

b ≥ 0. None of the classical Wald,
likelihood ratio, or score tests are still valid. This can most easily be seen from considering the
classical Wald test that would be based on the standard Normal approximation to the standardized
maximum likelihood estimatêσ2

b .

Last but not least, as already mentioned before, the inference for binary data is often influenced by
the sample balancing. If we deal we unbalanced samples in the overall population and/or within the
single groups, we could get biased estimates of parameters of interest which determine uncorrect
inference. A solution that involves modification of iterative algorithms generating estimates for
GLME models is proposed in [51], but since this is the case we deal with in the context of inference
and prediction of survival in patient affected by STEMI (for whom in-hospital empirical survival
probability is around 94%), this topic is treated in detail in Section 4.7.
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4.4 Linear nonparametric mixed effects models

At the start of the previous section, we said that, in linear mixed effects models, assumptions of lin-
ear relationship between the mean of the dependent variable and fixed andrandom effects, constant
variance, and normality are questionable. Then in the previous section attention has been focused
on pointing out more general and flexible models to solve problem mainly due to thelack of linear-
ity assumption. Often happens that the Normality assumption on the random effect distribution, or
in general parametric assumptions on it, are very restrictive and unrealisticfor modelling real data.
We mentioned a different approach to the analysis data not satisfying suchassumption in Paragraph
4.2.3. In this section we then introduce a technique for modelling random effect distribution in a
nonparametric way for linear and generalized linear mixed effects models, then we will move in the
nex section to the most general case of parametric and nonparametric modelling of random effects
within non linear models.

In [4], interest is focused on an EM algorithm for Non Parametric Maximum Likelihood (NPML)
estimation in generalized linear mixed effects models with variance component structure, which
provides an alternative analysis to approximate MQL and PQL estimates, mentioned in Section 4.3.
The algorithm is initially derived as a form of Gaussian quadrature assuminga normal mixing dis-
tribution, but with only slight variation it can be used for a completely unknowndistribution of the
random effects, giving a straightforward method for the fully NPML estimation of this distribution.
This is because the ML estimates of the GLME models parameters can be sensitive to the speci-
fication of a parametric form for the mixing distribution of the radnom effects.This can produce
substantial computational saving compared with full numerical integration over a specified para-
metric distribution for the random effects parameters.

In the following we focus our attention on grouped data, such that the statistical unit i is no more the
grouping factor (as for longitudinal data), but belongs to a groupj, with j = 1, . . . ,J. For easying
the exposition, we begin with the simple two level model for a structure with upper- or second-level
sampling units indexed byj = 1, . . . ,J and lower or first-level sampling units indexed byi sampled
within each upper-level unit, wherei = 1, . . . ,n j . On each first-level unit, we measure or record a
responseyi j , and we have explanatory variablesz, which can be measured at both upper (zj ) and
lower (zi j ) levels. We want to represent the distribution of the responsey by an exponential family
member, with a link function and linear predictor involving the explanatory variables at both levels
and perhaps their cross-level interactions. The nested structure of theresponsesyi j induces an in-
traclass correlation between the lower-level responses on the same upper-level unit. A natural way
of representing this common variation is by adding a common unobserved random effect to the lin-
ear predictor for each lower-level unit in the same upper-level unit. Thus, the common variation is
modeled as an extra unobserved variable on the same scale as the linear predictor. If the distribution
of this random effect belongs to the exponential family distribution, we already saw that then maxi-
mum likelihood (ML) is straightforward in principle from the marginal distributionof the observed
data [98]. An appealing approach would be to assume a common distribution for the random effects
across the exponential family; an obvious choice is the normalN (0,σ2) distribution [19]. This is
especially natural for link functions giving an unbounded space for thelinear predictor. However,
exponential family models other than the normal with a normal random effect have been difficult
and slow to fit by ML because the resulting likelihood does not have a closedform.

Anyway, the main disadvantage of any approach using a specified parametric form for the mix-
ing distribution of the unobserved random effects is the possible sensitivityof the conclusions to
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this specification. This difficulty can be avoided by NPML estimation of the mixing distribution
concurrently with the structural model parameters; the NPML estimate is knownto be a discrete
distribution on a finite number of mass points (it is discussed and proved in [93], [96] and [100]
among others). An example of this approach, in the framework of a single level overdispersion
model can be found in [25].

Finding the NPML estimate is widely regarded as computationally intensive, the particular dif-
ficulty being the location of the mass points. In [4], an exposition of how estimating both the mass-
point locationsck and the massesωk in a very straightforward way by ML within the framework of
a finite mixture of GLMs is given for the two-level variance case, allowing thestraightforward full
NPML estimation of the mixing distribution. Convergence of the EM algorithm can then become
very slow, as information in the data about the mixing distribution might be very limited, but the
algorithm is easily programmed.

4.4.1 From parametric to nonparametric GLME models

Concerning the model specifications, fori = 1. . . ,n j , j = 1, . . . ,J and∑ j n j = N let yi j be from an
exponential family distributionf (yi j |ζi j ) with canonical parameterζi j , meanµi j and explanatory
variablesX = (xi j ), related toµi j through a link functionηi j = h(µi j ) with linear predictorηi j .
Here theX matrix is understood to include both upper- and lower-level explanatory variables. In
the extension to mixed effect models, we have an unobserved common random effectb j for each
lower-level unit in thej-th upper-level unit, theb j being initially assumed independently Normally
distributedb j ∼ N (0,σ2), and conditionally onb j , the yi j have independent GLMs with linear
predictorηi j = β Txi j +b j . The random effect is modeled as acting on the same scale as the linear
predictor. The likelihood is then

L(β ,σ) = ∏
j

∫
∏

i
f (yi j |β ,σ ,b j) f (b j)dbj

where f (b) is the Normal density function. Because the integral does not have a closed form except
for y normal, we approximate it by Gaussian quadrature: we replace the integralover the normalb j

by a finite sum overK Gaussian quadrature mass pointsck with massesωk. The likelihood is then

L(β ,σ) = ∏
j

K

∑
k=1

ωk∏
i

f (yi j |β ,σ ,ck) (4.33)

The likelihood is thus (approximately) the likelihood of a finite mixture of exponential family den-
sities with known mixture proportionsωk at known mass pointsck, with the linear predictor for the
i j -th observation in thek-th mixture component being

ηi jk = β Txi j +ck.

This is inherently of interest because the NPML estimate of the mixing distribution isknown to
be a discrete distribution on a finite number of mass points. In the following we consider the joint
estimation ofβ , theωk and the mass pointsck, but for the moment consider the latter quantities as
fixed.

Now, the log-likelihood version of (4.33) is

l(β ,σ) = ∑
j

log∑
k

ωk f jk (4.34)
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being f jk = ∏i fi jk , fi jk = f (yi j |β ,σ ,ck) = exp
{

yi j ζi jk −a(ζi jk)+c(yi j )
}

and ηi jk = h(µi jk) =
β Txi j +ck. Then

∂ l
∂β

= ∑
j

∑k ωk f jk
∂ log f jk

∂β

∑k ωk f jk
= ∑

j
∑

i
∑
k

w jksi jk(β ) (4.35)

wherew jk is the posterior probability that observationyi j comes from componentk, i.e.,

wik =
ωk f jk

∑l ωl f jl

andsi jk(β ) is theβ component of the score for observationi j in componentk. Thus,ck becomes
another observable variable in the regression. Equating the score to zero gives likelihood equations
that are simple weighted sums of those for an ordinary GLM with weightsw jk; alternately solv-
ing these equations for given weightsw jk and updating these weights from the current parameter
estimates is an EM algorithm.

Because the model assumption for unobservable random variables cannot be directly assessed, we
consider as a preferable modelling strategy the NPML estimation of the mixing distribution, to-
gether with the GLM parameters. The aim is not to estimate this distribution, but to avoid possibly
misleading inferences from an inappropriate and unverifiable model assumption. Then we now treat
the masses and mass points as unknown parameters; the number K of mass points is also unknown
but is treated as fixed and sequentially increased until the likelihood is maximized. So in the linear
predictorηi jk = β Txi j +ck, ck are now considered as intercept parameters for thek-th component.
Differentiating the log likelihood with respect toωk and usingωK = 1−∑K−1

1 ωk, we have directly

∂ l
∂ωk

= ∑
j

f jk − f jK

∑l ωl f jl
= ∑

j

{
w jk

ωk
− w jK

ωK

}

Equating this to zero gives

ω̂k = ∑
j

w jk

N
(4.36)

a standard mixture ML result. The same EM algorithm applies with the additional calculation in
each M-step of the estimate ofωk from the weights. A distinctive feature of the weights is that they
are calculated for each upper-level unit in the E step but applied to all lower-level units in this upper
level unit in the M-step.

4.5 Nonlinear parametric mixed effects models

In this section, a quick overview of methods for dealing with theory and computations concerned
with Nonlinear Mixed Effects (NLME) Models is presented (a deeper tractation can be found in [46]
and [122]). A general formulation of a NLME model is given in the case ofsingle level of grouping.

When choosing a regression model to describe how a response variablevaries with covariates, one
always has the option of using models that are linear in the parameters. By increasing the order
of the model, one can get increasingly accurate approximations to the true, usually nonlinear, re-
gression function, within the observed range of the data. In general, wedeal with empirical models
that are based only on the observed relationship between the response and the covariates and do not
include any theoretical considerations about the underlying mechanism producing the data. Non-
linear models, on the other hand, are often mechanistic, i.e., based on a modelfor the mechanism
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producing the response. As a consequence, the model parameters in a nonlinear model generally
have a natural physical interpretation and generally uses fewer parameters than a competitor lin-
ear model, giving a more parsimonious description of the data. Even when derived empirically,
nonlinear models usually incorporate known, theoretical characteristics of the data, such as asymp-
totic behaviour and monotonicity. This is typical of growth curves, for example, which are often
employed in biomedical applications for description of numbers of differentphenomena.

NLME models extend LME models by allowing the regression function to dependnonlinearly on
fixed and random effects. Because of its greater flexibility, an NLME model is generally more in-
terpretable and parsimonious than a competitor LME model. Also, the predictionsobtained from an
NLME model extend more reliably outside the observed range of the data. The greater flexibility of
NLME models does not come without cost, however. Because the random effects are allowed to en-
ter the model nonlinearly, the marginal likelihood function, obtained by integrating the joint density
of the response and the random effects with respect to the random effects, does not have a closed-
form expression, as in the LME model. As a consequence, an approximatelikelihood function needs
to be used for the estimation of parameters, leading to more computationally intensive estimation
algorithms and to less reliable inference results. We won’t enter into details ofthis topic, but several
different options can be considered for numerical approximations of such likelihoods. An important
practical difference between NLME and LME models is that the former require starting estimates
for the fixed effects coefficients. Anyway, there are far more similarities than differences between
LME and NLME models. Both models are used with grouped data and serve thesame purpose: to
describe a response variable as a function of covariates, taking into account the correlation among
observations in the same group. Random effects are used to representwithin-group dependence in
both LME and NLME models, and the assumptions about the random effects and the within-group
errors are identical in the two models.

4.5.1 Theory and computational methods of NLME models

Nonlinear mixed effects models are mixed effects models in which some, or all, ofthe fixed and
random effects occur nonlinearly in the model function. They can be regarded either as an extension
of linear mixed effects models in which the conditional expectation of the response given the random
effects is allowed to be a nonlinear function of the coefficients, or as an extension of nonlinear
regression models for independent data in which random effects are incorporated in the coefficients
to allow then to vary by group, thus inducing correlation within the groups.

We will now focus on a basic NLME model, i.e., a nonlinear model with a single-level of group-
ing and classical assumption on random effects, and on already existing estimation methods for it
(see for example [145]). Generalizations of this framework towards bothrelaxation of assumption
on random effect distribution and more complex structure for modelling the error terms can be found
in [122].

By far the most common application of NLME models is for repeated measures data (i.e., the
individual i turns back to be the grouping factor), and in particular for longitudinal data, which can
be thought of as a hierarchical models. At one level thej-th observation on thei-th group is modeled
as

yi j = g(φi j ,vi j )+ εi j i = 1, . . . ,M j = 1, . . . ,ni (4.37)

whereM is the number of groups,ni is the number of observations on thei-th group,g is a general,
real-valued, differentiable function of a group specific parameter vector φi j and a covariate vector
vi j , andεi j is a normally distributed within-group error term. The functiong is nonlinear in at least
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one component of the group-specific parameter vectorφi j , which is modeled as

φi j = A i j β +Bi j bi bi ∼ N (0,Σ) (4.38)

whereβ is a p-dimensional vector of fixed effects andβi is aq-dimensional random effects vector
associated with thei-th group (not varying withj) with variance-covariance matrixΣ. The matrices
A i j andBi j are of appropriate dimensions and depend on the group and possibly on the values of
some covariates at thej-th observation. This assumption allows the incorporation of “time varying”
covariates in the fixed effects or the random effects for the model. It is assumed that observations
corresponding to different groups are independent and that the within-group errorsεi j are indepen-
dently distributed asN (0,σ2) and independent of thebi . The assumption of independence and
homoscedasticity for the within-group errors can be relaxed (see [122]for a deeper tractation of this
topic). The general model in (4.37) and (4.38) can be written in matrix form as

yi = gi(φi ,vi)+ εi φi = A iβ +Bibi (4.39)

for i = 1, . . . ,M, where

yi =




yi1
...

yini


 ,φi =




φi1
...

φini


 ,εi =




εi1
...

εini


 ,gi(φi ,vi) =




g(φi1,vi1)
...

g(φini ,vini )


 ,

vi =




vi1
...

vini


 ,A i =




Ai1
...

Aini


 ,Bi =




Bi1
...

Bini


 (4.40)

This framework can be straightforwardly generalized to the case of grouped data with multiple,
nested random effects, as shown in [122], Section 7.1.

Different methods have been proposed to estimate the parameters of NLME models. Here we
consider only the case of likelihood-based methods. Because the randomeffects are unobserved
quantities, maximum likelihood estimation in mixed effects models is based on the marginal density
of the responsesy, which is calculated as

f (y|β ,σ2,Σ) =
∫

f (y|b,β ,σ2) f (b|Σ)db (4.41)

where f (y|β ,σ2,Σ) is the marginal density ofy, f (y|b,β ,σ2) is the conditional density ofy given
the random effectsb, and the marginal distribution ofb is f (b|Σ). For NLME model in (4.37),
expressing the random effects variance-covariance matrix in terms of theprecision factor∆∆∆, so that
Σ−1

1/σ2 = ∆∆∆T∆∆∆, provides the marginal density

f (y|β ,σ2,∆∆∆) =
|∆∆∆|

(2πσ2)(N+Mq)/2

M

∏
i=1

∫
exp

{‖y−gi(β ,bbbiii)‖2+‖∆∆∆bi‖2

−2σ2

}
dbi (4.42)

wheregi(β ,bi) = gi [φi(β ,bi),vi ]. Because the model functiong can be nonlinear in the random
effects, the integral in (4.41) generally does not have a closed-form expression. To make the numer-
ical optimization of the likelihood function a tractable problem, different approximations to (4.41)
have been proposed. Some of these methods consist of taking a first-order Taylor expansion of the
model functiong around the expected value of the random effects, or around the conditional (on∆∆∆)
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modes of the random effects. Gaussian quadrature rules have also been used. We describe briefly
the method for approximating the likelihood function in the NLME model proposed by Lindstrom
and Bates in [101], called LME approximation in [122]. It is the basis of the estimation algorithm
currently implemented in thenlme function ofR. Other methods can be found in [122], Paragraph
7.2.1.

The estimation algorithm described in [101] alternates between two steps, a Penalized Nonlinear
Least Squares (PNLS) step, and a Linear Mixed Effects (LME) step, as described below. We will
consider only the alternating algorithm for the single level NLME model in (4.41). In the PNLS
step, the current estimate of∆∆∆ (the precision factor) is held fixed, and the conditional modes of the
random effectsbi and the conditional estimates of the fixed effectsβ are obtained by minimizing a
penalized nonlinear least squares objective function

M

∑
i=1

[
‖yi −gi(β ,bi)‖2+‖∆∆∆bi‖2] (4.43)

The LME step updates the estimate of∆∆∆ based on a first-order Taylor expansion of the model
function g around the current estimates ofβ and the conditional modes of the random effectsbi ,
which we will denote byβ̂ (w) andb̂(w)

i respectively. Letting

X̂(w)
i =

∂gi

∂β T

∣∣∣β̂ (w)
i ,b̂(w)

i
Ẑ(w)

i =
∂gi

∂bT
i

∣∣∣β̂ (w)
i ,b̂(w)

i

ŵ(w)
i = y−gi(β̂

(w)
i , b̂(w)

i )+ X̂(w)
i β̂ (w)+ Ẑ(w)

i b̂(w)
i

the approximate log-likelihood function used to estimate∆∆∆ is

lLME(β ,σ2,∆∆∆|y) = −N
2

log(2πσ2)− 1
2

M

∑
i=1

{log|Σi(∆∆∆)|

+σ−2
[
ŵ(w)

i − X̂(w)
i β

]T
Σ−1

i (∆∆∆)
[
ŵ(w)

i − X̂(w)
i β

]}

whereΣ−1
i (∆∆∆) = I+ X̂(w)

i ∆∆∆−1∆∆∆−TX̂(w)T

i . As we saw in Paragraph 4.2.2, one can express the optimal
values ofβ andσ2 as a function of∆∆∆ and work with the profiled likelihood, greatly simplifying
the optimization problem. In [101] a restricted maximum likelihood estimation for∆∆∆ is proposed,
consisting of replacing the log-likelihood in the LME step of the alternating algorithm by the log-
restricted likelihood

lR
LME(σ2,∆∆∆|y) = lLME(β̂ (∆∆∆),σ2,∆∆∆|y)− 1

2

M

∑
i=1

{log|Σi(∆∆∆)|

+σ−2
[
ŵ(w)

i − X̂(w)
i β

]T
Σ−1

i (∆∆∆)
[
ŵ(w)

i − X̂(w)
i β

]}

More details on maximum likelihood estimation in nonlinear mixed effect models can befound in
[94].

4.6 Nonlinear nonparametric mixed effect models

We saw in the previous sections that nonlinear mixed effects models are mixed effects models in
which at least one of the fixed or random effects appears nonlinearly inthe model function. NLME
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models are routinely and increasingly used in several biomedical applications, especially in popula-
tion pharmacokinetics, pharmacodynamic, immune cells reconstruction and epidemiological studies
(examples are [32], [34], [77], [132]). In these fields, statistical modelling based on NLME models
takes advantage of tools that allow to distinguish overall population effects from drugs effects or
unit specific influence. Indeed, mixed effects models address well theseissues, since they include
parameters associated with the entire population (fixed effects) and subject/group specific param-
eters (random effects). For this reason they are able to describe the dynamics of the phenomenon
under investigation, even in presence of high between subjects variability.When the random effects
represent a deviation from the common dynamic of the population, mixed effects models provide
both estimates for the entire population’s model and for each subject’s one.We will now assume
random effects to have a different meaning, i.e., to describe the common dynamic of different groups
of subjects. In this framework, mixed effects models provide only estimates for each group-specific
model. Thanks to this property, it will be possible to consider mixed effects models as an unsuper-
vised clustering tool for longitudinal data and repeated measures, as mentioned in Paragraph 4.2.3.
For this reason we focus our attention on the estimation of the distribution of the random effects
P∗.

A wide literature exists for parametric modelling of random effects distribution inlinear and non
linear mixed effects models, as discussed in the previous sections. In this framework, Maximum
Likelihood (ML) estimators are generally preferred because of their consistency and efficiency.
However, due to the non linearity of the likelihood, we are not always able toprovide explicitly the
parameter estimators. In summary, parametric models are widely used, but theyrely on a normality
assumption which may be too restrictive. In practice, this assumption is often checked using the
empirical distribution of random effects’ empirical Bayes estimates. Unfortunately, when data are
sparse, this method is unreliable. Moreover, when the number of measurements for unit is small,
predictions for random effects are strongly influenced by the parametricassumptions. For these
reasons nonparametric (NP) framework, which allowP∗ to live in an infinite dimensional space, is
attractive. The discreteness of optimal nonparametric distribution enables toovercome some tech-
nicalities due to the numerical integration of likelihood functions conditioned to continuous random
effects density functions (see for example [146], where a Laplace approximation for nonlinear ran-
dom effects marginal distributions is introduced).

In [7] and [144], different nonparametric methods are compared with usually adopted parametric
ones, since in literature several nonparametric methods have been proposed but their use is limited.
That’s because their practical and theoretical properties are unclear and they have a reputation for
being computationally expensive. Nevertheless, nonparametric methods seem to be very useful
when data are sparse. What we would like to do in the next paragraph, is topoint out a new method
for dealing at the same time with nonlinearities and relaxation of hypotheses on random-effects
distribution inspired by works like [95], as introduced in [11] and [12].

4.6.1 NLNPEM: unsupervised classification in nonlinear nonparametric framework
using random effects

We are interest in proposing a novel estimation method for nonlinear nonparametric mixed effects
models, aimed at unsupervised classification. The proposed method is an iterative algorithm that
alternates a nonparametric EM step and a nonlinear Maximum Likelihood step. We will call it
NonLinear NonParametric Expectation Maximization algorithm (briefly NLNPEM).
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We consider the following NLME model for longitudinal data, which is a particulr case of (4.37):

yi = g(β ,bi , t)+ εεε i i = 1, . . . ,M
εi ∼ N (0,σ2

In) i.i.d.
(4.44)

whereyi ∈ R
n is the response variable evaluated at timest ∈ R

n andg is a general, real-valued
and differentiable function withp+ q parameters. Each parameter ofg is treated either as fixed
or as random. Fixed effects are parameters associated with the entire population whereas random
effects are subject-specific parameters that allow to identify clusters of subjects.β ∈ R

p is a vector
that contain all fixed effects andbi ∈ R

q is the vector for thei-th subject random effects. The
functiong is non linear at least in one component of the fixed or random effects. The errorsεi j are
associated with thej-th measurement of thei-th longitudinal data. They are normally distributed,
independent between different subjects and independent within the samesubject. In general, the
proposed method could also take account of a different number of observations, located at different
times, for different subjects (i.e.,ni not necessarily is equal ton ∀i = 1, . . . ,M). In (4.44) we chose
not to consider this case in order to ease the notation, but the generalizationis straightforward.

Usually random effects are assumed to be Normal distributed,bi ∼ N (0,Σ), with unknown
parameters that, together withβ andσ , can be estimated through methods based on the likelihood
function. In this parametric framework the maximum likelihood estimators are generally favored by
their statistical properties, i.e., consistency and efficiency. Neverthelessthe parametric assumptions
could be too restrictive to describe highly heterogeneous or grouped data, so it might be necessary
to move to a non parametric approach. In our case, we assumebi , for i = 1, ...,M, independent and
identically distributed according to a probability measureP∗. Looking for the ML estimatorP̂∗

of P∗ in the space of all probability measures onRq, the discreteness theorem proved in [100],
states thatP̂∗ is a discrete measure with at mostM support points. Therefore the ML estimator of
the random effects distribution can be expressed as a set of points(c1, . . . ,cN), whereN ≤ M and
cl ∈ R

q, and a set of weights(ω1, . . . ,ωN), whereωl ≥ 0 and∑N
l=1 ωl = 1. As mentioned above, in

this paper we propose an algorithm for the joint estimation ofβ , M, (c1, . . . ,cN) and(ω1, . . . ,ωN)
in the non linear framework of model (4.44). The estimation of fixed effectsβ and varianceσ2 is
performed through the maximization of the restricted likelihood:

L(β ,σ2
∣∣y) = f (y|β ,σ2) =

N

∑
l=1

ωl
1

(2πσ2)(nM)/2
e−

1
2σ2 ∑M

i=1 ∑n
j=1(yi j−g(β ,cl ,t j ))

2

.

Notice that the number of support pointsN is estimated by the algorithm as well and we do not
have to fix it a priori. Since we don’t have to specify a priori the number ofsupport points and
in consequence the number of groups, the nonparametric mixed effects model could be interpreted
as an unsupervised clustering tool for longitudinal data. This tool could be very useful in order to
identify the groups of subjects to be used in the analysis.

The algorithm proposed for the estimation of the parameters of model (4.44) arises from the frame-
work described in [129], and alternates two steps. The first one is a nonparametric EM step whereas
the second one is a non linear maximum-likelihood step. The nonparametric EM step estimates
the discreteq-dimensional distribution(c,ωωω) of the random effectsbi . The non linear maximum
likelihood step provides an estimation of the fixed effectsβ and the varianceσ2, givenbi . The non-
parametric EM step consists in an update of the parameters of the discrete distribution (c,ωωω) that
increases the likelihood function. The property of increasing the likelihoodwas proved in [129].
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The update is the following:




ω̃l =
1
M

M

∑
i=1

Wil

c̃l = argmax
c

[
M

∑
i=1

Wil ln{ f (yi |β ,σ2,c)}
] (4.45)

where

Wil =
ωl f (yi |β ,σ2,cl )

∑N
k=1 ωk f (yi |β ,σ2,ck)

and

p(yi |β ,σ2,cl ) =
1

(2πσ2)n/2
e−

1
2σ2 ∑n

j=1(yi j−g(β ,cl ,t j ))
2

.

The coefficientsWil represent the probability ofbi being equal tocl conditionally to the observation
yi and given the fixed effectsβ and the varianceσ2, that is

Wil = f (cl |yi ,β ,σ2)

in fact,

Wil =
f (cl ) f (yi |β ,σ2,cl )

f (yi |β ,σ2)
=

f (yi ,cl |β ,σ2)

f (yi |β ,σ2)
= f (cl |yi ,β ,σ2).

In order to estimatebi for i = 1, . . . ,M we want to maximize the conditional probability ofbi con-
ditionally to the observationsyi and given the fixed effectsβ and the error varianceσ2. For this
reason the estimation of the random effects,b̂i , is obtained maximizingWil over l , that is

b̂i = cl̃ if l̃ = argmax
l

Wil .

During the nonparametric EM step, we could also reduce the support of thediscrete distribution.
The reduction of the support is performed in order to cluster the supportof random effects. This
support reduction consists in both making points very close to each other collapse and removing
points with very low weight and not associated with any subject. In particularif two points are
too close, that is‖cl −ck‖ < D, whereD is a tuning tolerance parameter, than we replacecl and
ck with a new pointcmin{l ,k} = (cl + ck)/2 with weightωmin{l ,k} = ωl +ωk. Otherwise, ifωl < ω̃,
whereω̃ is another tuning tolerance parameter, and the subset

{
i : b̂i = cl

}
is empty, we remove the

point cl . The thresholdsD andω̃ are two complexity parameters that affect the estimation of the
nonparametric distribution; the higherD is set, the lower is the number of groups. For this reason
the two complexity parameters define a trade off between bias and high numberof groups. We
prefer settingD low in order to obtain an higher number of groups and, in case, cluster themlater.

The non linear maximum likelihood step provides the estimation of the fixed effectsβ and the errors
varianceσ2, givenbi = b̂i . In this step we maximize the non linear log-likelihood:

ℓ(β ,σ2
∣∣y, b̂) =−nM

2
ln(2πσ2)− 1

2σ2

M

∑
i=1

n

∑
j=1

(
yi j −g(β , b̂i , t j)

)2

whereb̂i is the estimation of random effects for thei-th subject provided in the nonparametric EM
step.

The algorithm, given a starting discrete distribution withM support points for the random effects
and a starting estimate for the fixed effects, alternate the nonparametric EM step and the non linear
maximum likelihood step until convergence. Technical details can be found in[12]. Here we report
a sketch of the algorithm:
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1. Define a starting discrete distribution for random effects with support on M points(c(0),ω(0)),
a starting estimate for the fixed effectsβ (0) and forσ2(0) and the tolerance parametersD and
ω̃;

2. given(c(k−1),ωωω(k−1)), β (k−1) andσ2(k−1), perform the EM step (without the support reduc-
tion) in order to update the support pointsc(k) and the weightsωωω(k) of the random effect
distribution, according to equation (4.45);

3. given(c(k),ωωω(k)), perform the nonlinear maximum likelihood step in order to estimate the
fixed effectsβ (k) and the error varianceσ2(k);

4. iterate steps 2 and 3 until convergence;

5. reduce the support of the discrete distribution, according with the tuningparametersD andω̃;

6. given(c(k−1),ωωω(k−1)), β (k−1), σ2(k−1), D andω̃, perform the EM step with the support re-
duction in order to update the support pointsc(k) and the weightsωωω(k) of the random effect
distribution, according to equation (4.45);

7. given(c(k),ωωω(k)), perform the nonlinear maximum likelihood step in order to estimate the
fixed effectsβ (k) and the error varianceσ2(k);

8. iterate steps 6 and 7 until convergence.

The algorithm reaches convergence when parameters and discrete distribution stop changing or
when there is no variation in the log-likelihood function.

In order to validate the proposed estimation algorithm and to compare it with different procedures,
two simulation studies are proposed in [12] and detailed in Section 8.2. Since themain interest is in
classifying curves in an unsupervised framework, attention is focused on the estimation of random
effects distribution.

In the first simulation study, the testing framework is the linear one, in order to be able to com-
pare results of our procedure with those obtained with the algorithm introduced in [3] and imple-
mented in thenpmlreg R -package (see [37]). In the second one, two classic non linear functions
g in (4.44) are considered: the exponential and the logistic growth curves.In both these cases, the
number of groups and distribution of random effects are correctly and effectively identified by our
method, which performs better than the competitor not only when nonlinearities and high number
of groups are present, but also in the linear case. Test sets of simulated curves and evaluation of the
algorithm performances in the estimation of the random effects are detailed in [12], together with
an application to real data arising from administrative data banks. Results ofthe analysis carried out
with this method on data arising from PHD of Regione Lombardia are also presented in Chapter 8,
Section 8.1.

4.7 Problems due to unbalanced share

In a binary logistic regression analysis with unequal sample frequencies of the two outcomes the
less frequent outcome always has lower estimated prediction probabilities than the other one. This
effect is unavoidable, and its extent varies inversely with the fit of the model, as given in [28]
by a new measure that follows naturally from the argument. Unbalanced samples with a poor fit
are typical for survey analyses in the social sciences and epidemiology,and there the difference
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in prediction probabilities is most acute. It affects two common diagnostics: the within-sample
percentage correctly predicted and the identification of outliers.

In this section, we deal with the problems that may arise in estimating and predictingsuccess proba-
bilities with logistic models when samples are unbalanced. The context is then setto be the standard
binary logistic regression with Maximum Likelihood estimation of unknown parameters. Leaving
the parameter estimates aside, we focus on the estimated within-sample probabilitiesp̂i of the out-
comeyi = 1. These probabilities are arranged in a vectorp̂, with complement̂q; the outcomes are
likewise recorded iny, with complement vectorz. Starting from this setting, the crude residuals can
be defined ase= y− p̂, with the complement vectorz− q̂. The sample consists ofn observations,
m with yi = 1 andn−m with yi = 0. We callsharesthe relative empirical means ofy andz. Let
us denote them asπ and 1−π respectively. Whenever the two sample shares are unequal,π is by
convention the larger share and the corresponding outcome is labelledyi = 1. In the case of interest,
π will be the in-hospital or long-term survival probability of a patient admitted inany hospital of
Regione Lombardia with STEMI diagnosis.

The regressor matrix of the full model isX, and the ML estimateŝp of the logit model satisfy
XT(y− p̂) = XTe= 0. SinceX is always taken to include a unit constant, in particular it holds
the following identity1T(y− p̂) = 1Te= 0, in other termsπ = p̄, wherep̄ is the overall mean of
the elements of̂p (i.e., p̄ = 1

n ∑n
i=1 p̂i). This property of the estimated probabilities will be called

equality of the means. We shall make use of the estimated probability of the observed outcomeP(i),

P(i) = yi p̂i +zi q̂i (4.46)

Note that the maximum of the log-likelihood function

log(L̂) = ∑
i

log{P(i)}

The null modelL0 is the model with the unit constant as the sole regressor is nested in the full
model with richerX. In this model ˆpi andq̂i are constant and equal toπ and 1−π respectively, with
log-likelihood

log(L0) = mlog(π)+(n−m) log(1−π)

This is the lower limit of log(L̂); on average, theP(i) are at least equal to the estimated probabilities
with the null modelL0, but it is of course hoped that they are substantially higher. This leads usto
consider the ratio ofP(i) to its null value

Pr(i) = yi(p̂i/π)+zi {q̂i/(1−π)} (4.47)

Pr(i) reflects the improvement of the full model over the null model in predicting thei-th outcome;
it is an index of performance for that particular observation. It is not a probability; it is non-negative,
and its average should exceed 1. On taking logarithms and summing we find

∑ log{Pr(i)}= log(L̂)− log(L0) (4.48)

Doubling this givesLR, the common likelihood ratio statistic for the significance of the full model.

4.7.1 Prediction probabilities in unequal sample size

In most survey data in the social sciences and epidemiology the sample shares of the two outcomes
are unequal, for example in STEMI Archive we have a value for in-hospital survival which is around
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0.94. Such values are much more common than equal shares. On fitting a logistic model it is
then invariably found that the estimated prediction probabilitiesP(i) are quite high foryi = 1, the
outcome with the greater share, and very low for the outcome with the lesser share (inequality of
sample proportions of the outcomes thus by itself leads to a high overall level of P(i) and to high
log-likelihoods). If we distinguish two subsets among the ˆpi , with p̂+i for yi = 1 andp̂−i for yi = 0,
and likewise for ˆqi , the p̂+i have a much higher overall level than the ˆq+i . This asymmetry in the
prediction ofyi = 1 andyi = 0 is well known to practitioners. As highlighted in [28], yet there is
no clear reason why a rare outcome should be badly predicted; a good prediction must be simply
a matter of choosing the right regressors. This is indeed so: even quite rare outcomes can have
estimated probabilities all the way up to 1; but, whatever value they attain, on average the other,
prevalent, outcome will always be predicted even better. The extent of thissystematic difference
varies with the fit of the model, and since outside controlled experiments the fit isusually mediocre
a great contrast between the poor prediction of rare states and the goodprediction of prevalent states
is the rule.

This result can be explained by the following argument. Consider the averages of p̂+i and p̂−i
for the two subsets of observations withyi = 1 andyi = 0 respectively, i.e.,

p̄+ = p̂Ty/m

p̄− = p̂Tz/(n−m)
(4.49)

with the first refers to the outcome with the largest share. Similarly

q̄− = q̂Ty/m

q̄+ = q̂Tz/(n−m)
(4.50)

The overall mean ¯p is the weighted average of equations (4.49), or

π p̄++(1−π)π p̄− = p̄= π (4.51)

If the fitted model has any explanatory power, ¯p+ exceeds ¯p−, and the two will lie on either side
of their (weighted) averageπ. Both mean probabilities are constrained to the interval(0,1); p̄−

lies in (0,π] and p̄+ in [π,1). This suggests writing ¯p+ as a linear combination ofπ and 1 with
non-negative weights 1−λ andλ , or

p̄+ = (1−λ )π +λ = π +λ (1−π) (4.52)

and by equation (4.51)
p̄− = (1−λ )π (4.53)

so that ¯p− is a linear combination of 0 andπ with the same weightsλ and 1−λ . Similar expressions
hold for theq̂i . Making use of

p̄++ q̄− = 1

p̄−+ q̄+ = 1

we find

q̄+ = 1−π +πλ
q̄− = (1−λ )(1−π)

(4.54)

Thusq̄+ andq̄− are linear combinations like ¯p+ and p̄− with the same weights. The upshot is that
all four means are determined by two parameters, the shareπ and the weightλ , with 0< π < 1
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and 0≤ λ < 1. The limits ofπ are self-evident;λ is 0 for the null model with ¯p+ = p̄− = p̄= π.
Negative values are ruled out, as they would mean that the log-likelihood of thefull model is less
than that of the null model, andλ cannot attain its upper bound since this would imply that ¯p+ =
q̄+ = 1. Such perfect prediction is beyond logit probabilities and their estimate.

Combining equations (4.52) and (4.54) as

p̄+− q̄+ = 2(π −0.5)(1−λ ) (4.55)

we have the answer to the initial question why the level of predicted probabilities varies with the
sample share. Unlessπ = 0.5, p̄+ exceeds ¯q+, and this excess varies inversely withλ . Large values
of λ therefore limit its size; but in practice this is of little help, asλ is usually quite small, as
proved by simulation studies carried out in [28]. In these conditions estimatedprobabilities are a
poor measure of within-sample predictive performance: they may lead to the absurd conclusion that
success is predicted very well whereas failure is predicted badly, as if we can simultaneously predict
survival with precision but death not at all. From equations (4.52)-(4.54) we also find

p̄+− p̄− = q̄+− q̄− = λ (4.56)

λ can therefore be seen as a crude measure of fit since it indicates the discrimination of p̂i (and of
q̂i) between the two observed outcomes. Further comments on this considerationcan be found in
[28].

4.7.2 Undesirable effects for unbalanced samples

In this paragraph we come back to unbalanced samples with widely differentlevels of p̂+i andq̂+i
in order to examine the effect of unbalancing on two common diagnostics. Usually, after fitting a
logistic regression model, the percentage correctly predicted in the sample is computed. Estimated
0− 1 predicted values ˆyi are assigned to the observations according to whichever is the greater
of p̂+i and q̂+i , i.e., if p̂+i ≥ 0.5, ŷi = 1; q̂+i ≥ 0.5, ŷi = 0. But the number of correct prediction
carried out in this way reflects the composition of the sample rather than the performance of the
model. This incongruous result hinges on the cut-off point of 0.5. This choice is usually defended
by the argument that it is optimal if the ˆyi determine a course of action and if moreover the cost of
misclassification is the same for either form that this may take. But if the cut-off point is optimal
for the use of the predictions in actual decisions it need not also be optimal for assessing the within-
sample performance of the fitted model. For the latter purpose it is natural to use a prediction that
is optimal in the sense that, for given ˆpi , it maximizesPr(i) of equation (4.47), and hence the fit of
ŷ to the given ˆp. This is achieved by a cut-off point ofπ. We will adopt this criterion for choosing
the classification threshold in our logistic regression models, as can be observed in [62] and [66]
among others.



Chapter 5

Statistical models for healthcare: the
Bayesian approach

In this chapter, the Bayesian approach to problems and data proposed in the previous part is pre-
sented. Both parametric and nonparametric mixed effect models are considered. In particular, we
are interested to inference on grouping factors provided by the predictive distributions in paramet-
ric models and to in built clustering of random effects arising from the choiceof Dirichlet priors in
semi-parametric ones. This is because one of the main aim of this work is to detect eventual patterns
among the grouping factors. Finally, the Bayesian decision theory is also considered, since it can
provide support to healthcare governance in term of identification of structures that need to improve
their performances.

5.1 Motivations

In order to address the issues arising from the problems treated in Part I,we saw that it is important
to incorporate scientists’ expertise into making decisions related to the data. Itis also clear that
prediction plays a central role in the decision making process itself. Bayesian statistical analysis is
based on the premise that all uncertainty should be modeled using probabilitiesand that inferences
arising from statistical models should be logical conclusions based on the laws of probability. Mod-
els typically involve parameters that are presumed to be related to characteristics of the sampled
population, and for them the Bayesian approach mandates an additional probability model, incor-
porating the “a priori” information, obtaining a hierarchy of models. A key question for this type of
approach becomes then how the causal structure that operates at one level of analysis varies across
a higher level of analysis. The Bayesian approach to statistical inference is extremely well-suited to
answering this question. The idea in Bayesian approach is that parametersare always random vari-
ables, typically in the sense that the researcher is unsure as to their value,but can characterize that
uncertainty in the form of aprior density replacing the prior with a stochastic model formalizing the
researcher’s assumptions about the way the parameters might vary across groups, perhaps as a func-
tion of observable characteristics of the groups. The model is then comprised of a nested hierarchy
of stochastic relations: the data from each group are modeled as functionsof covariates and pa-
rameters, while cross-groups heterogeneity in parameters is modeled as a function of group-specific
covariates andhyperparameters. Starting from prior probabilities, which describe the current state
of knowledge of the researcher about the phenomenon to be modeled, theBayesian approach incor-
porates information through collection of data, leading to new probabilities (posteriordistributions)
to describe the state of knowledge after combining prior and data. Inference is then carried out on

89



CHAPTER 5. THE BAYESIAN APPROACH 90

parameters through computation ofposterioror marginaldistributions of the parameters, as well as
predictivedistribution for new observations. The Bayes theorem, the assumption ofexchangeability
and the MCMC algorithm for simulation and sampling will be the instruments that allow us to reach
this goal in the Bayesian setting.

In most analyses of the following chapters, we want to learn about a continuous parameter, like
the mean of a continuous variable, a proportion (that is a continuous parameter on an interval) or
a regression coefficient. In general, letψψψ be the vector of unknown parameters andy the vector
of data available for the analysis. In this case, the beliefs about the parameters are presented as
probability density functions. Denotingf (ψψψ) the prior density andf (ψψψ|y) the posterior, theBayes
theoremstates that

f (ψψψ|y) = f (y|ψψψ) f (ψψψ)∫
f (y|ψψψ) f (ψψψ)dψψψ

often written asf (ψψψ|y)∝ f (y|ψψψ) f (ψψψ), since the constant of proportionality (the denominator) does
not depend onψψψ. In some cases, the posterior distribution belongs to the same class of parametric
densities of the prior. When it happens, the prior is said to beconjugatewith respect to the likeli-
hood, and then the posterior belongs to the same family of the prior, and its parameters will result
in an updated version of the prior ones through data. In a Bayesian approach, the best information
one can ever have about the parameters is their posterior density, since itallows for any inference
purpose the researcher has. In fact, this is the strenght of the Bayesian paradigm, i.e., the fact it
provides a distribution for the unknown parameters which allows for any inference to be carried
out. This has become particulary true and feasible since the introduction of sampling method for
posterior distributions that were not analytics, that is the MCMC methods (see [47], [48] and [128]
among others for introduction and a deeper tractation of the topic).

Moreover, another inferential issue of interest is the prediction of a newset of observations, say
ynew, independent ofy givenψψψ . The predictive densityfp(ynew|y) of the future observations given
the past ones is given by

fp(ynew|y) =
∫

fp(ynew|ψψψ) f (ψψψ|y)dψψψ

To see this, it must be used the fact that by conditional independencefp(ynew|y,ψψψ) = fp(ynew|ψψψ)
and that for any measurable setA, by the law of total probability

P(ynew∈ A|y) =
∫

P(ynew∈ A|y,ψψψ) f (ψψψ|y)dψψψ

=
∫ [∫

A
fp(ynew|y,ψψψ)dynew

]
f (ψψψ|y)dψψψ =

∫ [∫

A
fp(ynew|y,ΨΨΨ) f (ΨΨΨ|y)dynew

]
dΨΨΨ

=
∫

A

[∫
fp(ynew|y,ψψψ) f (ψψψ|y)dψψψ

]
dynew=

∫

A
fp(ynew|y)dynew

Even if, as we said before, the best one can obtain when the purpose is tocarry out inference is
the posterior distribution of the parameters of interest, it is often necessaryto report such wider
information in few point estimates or summary statistics. The choice of which pointsummary of
the posterior distribution to report can be rationalized by drawing on Bayesian decision theory,
which may address the specific problem of choosing suitable summary of posterior distribution, but
also, more generally, can answer the question of how to make rational choices under conditions of
uncertainty.

Definition 5.1.1 Let Ψ be a set of possible states of parameterψψψ, and let d∈ D be decision
available to the researcher. Then define L(ψψψ,d) as the loss to the researcher from taking decision d
when the parameter isψψψ.
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Averaging the losses over beliefs aboutψψψ, makes it possible to defined theexpected lossas

Definition 5.1.2 If f (ψψψ) is the probability density forψψψ ∈ Ψ at time of decision making, the
Bayesian expected loss of a decision d is

ρ( f (ψψψ),d) = E [L(ψψψ,d)] =
∫

Ψ
L(ψψψ,d) f (ψψψ)dψψψ

An interesting case is whenf in Definition 5.1.2 is a posterior density. In fact, given a pos-
terior density forψψψ, say f (ψψψ|y), the posterior expected loss of a decisiond is ρ( f (ψψψ),d) =∫

Ψ L(ψψψ,d) f (ψψψ|y)dψψψ.

A Bayesian rule for choosing among decisionsD is to selectd ∈ D so to minimize posterior ex-
pected loss. If the chosen loss function is convex, the corresponding Bayes estimate is unique, so
the choice of what Bayes estimate to report usually amounts to what (convex) loss function to adopt.
It can be proved, in fact, that the mean of the posterior density is the best choice for the parameter
ψψψ arising from the use of quadratic loss. The same for suitable quantiles of posterior density in case
of linear loss. See [88] for a deeper tractation and further references on the topic.

Once we presented motivation and theoretical context for Bayesian paradigm, in the next sec-
tions we will analyze the Bayesian modelling approach for parametric, nonparametric, generalized
linear and nonlinear mixed-effects models.

5.2 Parametric Models

The rationale for applying multilevel models to grouped data is well established.When units at
lower levels are nested within one or more higher level strata, conventionalsingle level regres-
sion analysis is not appropriate since observations are no longer independent: pupils in the same
schools, households in the same communities, patients in the same hospital tend to be more simi-
lar one another than pupils in different schools, households in different communities and patients
in different hospitals. Such dependency means standard errors are underestimates if the nesting is
ignored, and spurious inference regarding predictor effects may be made (see [72] and [73]). This
asks for proper descriptions of variables that may differ between groups. A way to address this
issue is to join regression models which describe within-group variation with models that describe
heterogeneity among regression coefficients across groups, i.e multilevelmodels.

In multilevel analysis, predictors may be introduced at any level and the interest focuses on
adjusting predictor effects for the simoultaneous operation of contextual and individual variability in
the outcome. This may be important in health applications, for example, if the impactof individual
level risk factors varies according to geographic context or organizational one. Another major goal
is variance partitioning: for example, what proportion of area variations inmortality is due to the
characteristics of those areas (contextual variation), and how much is due to the characteristics of
the individuals who live in these areas (individual variation), as detailed in [21] and [22]. As well
as predictor effects at any level, a multilevel model is likely to involve random effects defined over
the clusters at higher level(s), and makes possible to carry out inferences about cluster effects. We
enhanced all these goals within the context of data arising from STEMI Archive.

5.2.1 Hierarchical linear mixed effects models

To model hierarchical data where units belonging to each group are different in terms of sample size
and/or variance, we use an ordinary regression model to describe the within-group heterogeneity of
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observations, while we describe the between-group heterogeneity usinga sampling model for the
group specific regression parameters [26]. It is known, in fact, that the smaller is the sample size
for the group, the more probable that unrepresentative data are sampledand an extreme estimate
is produced. In order to overcome this problem, hierarchical mixed effects models are introduced
in order to stabilize estimates for small sample size groups by sharing informationacross groups.
This is the reason why hierarchical models estimates can be regarded as realizations of “shrinkage”
estimators ([88], Paragraph 7.1.4). Focusing on grouped data for which i is the statistical unit index
belonging to thej-th group, the linear model results to be

Yi j = β T
j wi j + εi j εi j

i.i.d∼ N (0,σ2) (5.1)

where, fori = 1, . . . ,n j and j = 1, . . . ,J, wi j is ap×1 vector of regressors for observationi in group
j andβ j is a p dimensional random vector. ExpressingY1 j , . . . ,Yn j j as a vectorY j and combining
w1 j , . . . ,wn j j into a n j × p matrix W j , the within-group sampling model can be equivalently ex-
pressed asY j ∼N (W jβ j ,σ2

I) with the group-specific data vectorsY1, . . . ,YJ being conditionally
independent givenβ1, . . . ,βJ andσ2.

The eterogeneity among the regression coefficientsβ1, . . . ,βJ will be described with a between-
group sampling model. If we have no prior information distinguishing the different groups, we
can model them as being exchangeable, i.e., the joint probability of any permuted sequence is the
same as the joint probability distribution of the original one. Otherwise, we canconsider them
(roughly) equivalently as being i.i.d from some distribution representing the sampling variability
across groups. TheNormal Hierarchical Regression Modeldescribes the across-groups hetero-
geneity with a multivariate Normal model, whereβ j are drawn from a population of regression
parameters with random meanθ and random variance-covariance matrixΣ, i.e.,

β1, . . . ,βJ|θ ,Σ i.i.d∼ N (θ ,Σ) (5.2)

A graphical representation of the hierarchical model appears in Figure5.1, and makes clear that the
multivariate Normal distribution forβ1, . . . ,βJ is not a prior distribution representing uncertainty
about fixed but unknown quantity. Rather, it is a sampling distribution representing heterogeneity
among collection of objects.

Figure 5.1:Graphical representation of the hierarchical model in 5.2.



CHAPTER 5. THE BAYESIAN APPROACH 93

The hierarchical regression model in (5.1)-(5.2) can be reparametrized in a different way that makes
clear why these models are calledlinear mixed effect models. In fact, rewriting (5.1) and (5.2), a
slightly different between-groups sampling model can be obtained:

β j = θ +b j

b1, . . . ,bJ|Σ i.i.d.∼ N (0,Σ),

whereΣ is random as before. Plugging this into within-group regression model gives

Yi j = β T
j wi j + εi j

= θ Twi j +bT
j wi j + εi j

In this parametrization,θ is referred to asfixed effectas it is constant across groups, whereas
b1, . . . ,bJ are calledrandom effects, as they vary. Although for our particular example the regres-
sors corresponding to the fixed and random effects are the same, this is not compulsory. Splitting
the covariates contained in the design matrixW j in a matrixX j (containing only covariates related
to fixed effects) and in another matrixZ j (containing those related to random effects only), a more
general model comes out and can be written as

Yi j = θ Txi j +bT
j zi j + εi j (5.3)

wherexi j andzi j could be vectors of different lengths which may or may not contain overlapping
variables. The prior of random effects(b1, . . . ,bJ) is assumed to be exchangeable.

Given a prior distribution for (θ ,Σ,σ2) and having observedY1 = y1, . . . ,YJ = yJ, a Bayesian
analysis proceeds by computing the posterior distributionf (b1, . . . ,bJ,θ ,Σ,σ2|y1, . . . ,yJ). If conju-
gate prior distributions are used forθ , Σ andσ2, then the posterior distribution can be approximated
quite easily with Gibbs sampling. Common prior distributions forθ , Σ andσ2 are

θ ∼ N (µ0,Σ0)

Σ−1 ∼Wishart(S0,η0)

σ2 ∼ inverse−Gamma(ν0/2,ν0σ2
0/2)

(5.4)

A common alternative for level 1 varianceσ2 is represented by a Uniform distribution (for detailed
discussion about sensitivity of results to the specification of priors hyperparameters, see [50]). We
adopted this framework and this choice in [63] and [66].

Computing the posterior distribution for so many parameters may seem danting, and effectively is
analytically possible only for conjugate models. Even in this case, computational effort requested
for high-dimensional parameters vectors are not straightforward. On the other hand, posterior dis-
tributions of parameters of interest are the main focus of our inferential efforts. The problem has
been overcome thanks to the development of MCMC methods (see [47] and [128]), which rest
upon the Markov Chain theory to get samples from the joint posterior distribution (or to approxi-
mate it), using the full conditional distributions of the parameters themselves. The most frequently
adopted algorithm for getting and simulating full conditional distributions is the Gibbs Sampler
[23], as it is implemented inR [124] or jags [123]. It is a version of the more general family of
Metropolis-Hastings algorithms [24], that iteratively sample from full conditionals to approximate
the joint posterior distribution. Then the focus moves to how getting samples from full conditional
distributions of parameters of interest.



CHAPTER 5. THE BAYESIAN APPROACH 94

Full conditionals for b1, . . . ,bJ

Hierarchical regression model shares information across groups via the parameters (θ ,Σ,σ2). As a
result, conditional toθ ,Σ andσ2 the regression coefficientsβ1, . . .βJ are a priori independent. This
helps in computing the full conditionals in the Gibbs Sampler algorithm, since it can be shown (see
[71] and [72], Paragraph 9.2.1) that

b j |y j ,θ ,Σ,σ2 ∼ N
(
(ZT

j Z j +σ2Σ−1)−1ZT
j (y j −X jθ),σ2(ZT

j Z j +σ2Σ−1)−1)

Full conditional for Σ

We have assumed thatb js conditioned toΣ are independent Normal random variables with 000 mean
and variance-covariance matrixΣ. The standard non informative prior forΣ is the one we assumed
in (5.4), then, the full conditional distribution ofΣ−1 givenb j ( j = 1, . . . ,J) at each iteration, denoted

by b(k)
j follows a Wishart distribution with the following parameters:

Σ−1|b(k)
1 , . . . ,b(k)

J ∼Wishart(S(k),η0+J)

whereS(k) =
J

∑
j=1

b(k)
j b(k)T

j andη0+J are the degrees of freedom (see [148]). Note thatS(k) must be

recomputed each time the vectorsb(k)
j of the random effects is updated in Gibbs sampler Markov

chain.

Full conditionals for σ2

The parameterσ2 represents the error variance, assumed to be common across all groups. As such,
conditional onb1, . . . ,bJ,θ , the data provide information aboutσ2 via the sum of squared residuals
from each group:

σ2|b1, . . . ,bJ,θ ∼ inverse−Gamma([ν0+∑
j

n j ]/2, [ν0σ2
0 +SSR]/2)

whereSSR=
J

∑
j=1

n j

∑
i=1

(yi j − (θ Txi j +bT
j zi j ))

2. Again, note that SSR also depends on the value ofb j ,

and so must be recomputed in each scan of the Gibbs sampler beforeσ2 is uploaded.

5.2.2 Hierarchical generalized linear mixed effects models

As the name suggests, a generalized linear mixed effects model combines aspects of linear mixed
effects models with those of generalized linear models. Such models are useful when we have
hierarchical data structure but the Normal model for the within-group variation is not appropriate.
Within this setting is the work [66], which uses Bayesian generalized linear mixed effects models
with parametric additive random effect on grouping factor (the hospital of admission) to account
for overdispersion induced by the grouped nature of STEMI Archivedata, as well as to classify
providers.

SupposeYi j , i = 1, . . . ,n j to be a conditionally independent sample, drawn from a distribution
belonging to the exponential family. In the analysis of STEMI Archive data and in general in models
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proposed in Part III, we will be interested in GLME models for binary response, in particular logistic
regression, i.e.,

f (yi j |θ ,b j) = exp
{

yi j (xT
i j θ +zT

i j b j)− log
(

1+exT
i j θ+zT

i j b j

)}

Notice that GLME models imitates the Normal hierarchical mixed effects model in that we assume
that, conditional on the random effectb j , the observations of groupj are independent. Thus the
likelihood forJ groups in the GLME model is

f (y|X,Z,θ ,b) =
J

∏
j=1

f (y j |X j ,Z j ,θ ,b j) ∝
J

∏
j=1

n j

∏
i=1

f (yi j |θ Txi j ,bT
j zi j ) (5.5)

whereb = (b1, . . . ,bJ) andy = (y1, . . . ,yJ). Usually in parametric framework, the model is com-
pleted by the specification of the following priors:

θ ∼ N (µ0,Σ0)

b1, . . . ,bJ|Σ i.i.d∼ N (0,Σ)
Σ−1 ∼ Wishart(S0,η0)

where(µ0,Σ0) are considered known and fixed.

Bayesian estimation in the linear mixed effects model is straightforward because the full conditional
distributions of each parameter are standard, allowing for easy implementationof the Gibbs sampler.
In contrast, for non-Normal generalized linear mixed effects models, tipically only θ andΣ have
standard full conditional distributions. This suggests to use a Metropolis-Hastings within Gibbs
algorithm [140] to approximate the posterior distribution of the parameters, using a combination of
Gibbs steps for updating (θ ,Σ) with a Metropolis step to generate from the full conditionals of each
b j . In what follows we will assume the context of logistic regression. If necessary, a more general
framework can be assumed, where it is inserted as further parameter to beupdated using the Gibbs
sampler if the conditional distribution is available, and Metropolis if it is not.

Gibbs step for θ , and Σ

The conditional law ofθ given Σ,b j ,y j is independent ofΣ, as long as they are assumed to be a
priori independent. This is the case we are considering.

Given theb(k)
j s, the random effects model reduces to a generalized linear model with offsetzT

i j b
(k)
j

for each observation. Assuming a flat prior forθ , f (θ |b(k)
j ,y) is proportional to the likelihood

function∏i j f (yi j |β Txi j ,bT
j zi j ). In larger samples, this can be closely approximated by a Gaussian

distribution with meanθ̂ (k), the maximum likelihood estimator, and varianceV(k)

θ̂
, the inverse of

the Fisher information. That is, to sample fromf (θ |b(k),y), we find θ̂ (k) andV(k)

θ̂ by performing

GLM regression ofyi j , on xi j , using the simulated valueszT
i j b

(k)
j s as offsets and then generate a

randomθ (k+1) from a multivariate Gaussian distribution,N (θ̂ (k),V(k)

θ̂ ). The preceding Gaussian
approximation may not be adequate in smaller samples. A sample from the exact distribution can
be obtained with little additional effort using rejection sampling [127]. Denote the Gaussian density
by g(θ) and the true density byf (θ). To perform rejection sampling, a constantc≥ 1 is chosen so
thatc ·g(θ)≥ f (θ) over the range ofθ . The following steps result in a random variateθ (k+1) with
density f (θ):
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1. Sampleθ ∗ ∼ g(θ);

2. Sampleu∼Uni f (0,1);

3. Setθ (k+1) = θ ∗ if f (θ)/(c·g(θ))< u, otherwise return to step 1.

Thatθ (k+1) has densityf (θ) is shown in [127]. Note the additional computation is only to evaluate
the likelihood function at one or a fewθ ∗s. The choice ofc involves a tradeoff of accuracy and
computational effort. It is difficult a priori to decide whether a Gaussian approximation tof (θ |b j ,y)
is adequate or whether rejection sampling is needed. In practice, therefore, the rejection sampling
is always used.

Concerning the Gibbs update forΣ, the scheme presented in the paragraph before can be assumed.

Metropolis step for b js

Generatingb(k+1)
j s from f (b j |θ (k),Σ(k),y j) is the most time-consuming step. We saw that in the

linear mixed-effects modelf (b j |θ ,Σ,y j) is a multivariate Normal. Unfortunately, this conditional
distribution does not have a closed form for the entire GLM family and must usually be evaluated
by numerical techniques. Its density is given by

f (b j |θ ,Σ,y) =
f (y j |b j ,θ) f (b j |Σ) f (θ ,Σ)∫
f (y j |b j ,θ) f (b j |Σ) f (θ ,Σ)db j

(5.6)

The numerator can be easily evaluated (see [148]), but the scale factorin the denominator involves
the same integral with respect tob j . Anyway, in Gibbs sampling, only a simulated value from
f (b j |θ (k),Σ(k),y j) is needed. Again, it can be obtained using rejection sampling without evaluating
the integral in the denominator. Then the more the mode and curvature of the numerator of (5.6)
will match a Gaussian kernel arising from the prior onb j , the more efficient the rejection sampling
will be (for deeper tractation of this topic, see [148]).

5.3 Semiparametric models

In the previous section, we saw how generalized linear mixed-effects models can address the wide
range of problems where the assumption of independence among observations is no longer valid,
because of the presence of grouping factors that induce stronger correlations between units of the
same group. In such models, a group-specific covariance structure is generated by assuming that
each group has a unique set of coefficients, the random effects, distributed around the mean re-
gression coefficients for the population, the fixed effects. As we saw, conditional on the random
effects, observations are considered independent, while marginalizing over the random effect, a
unique covariance structure for the observations within each group is obtained. We will now con-
sider a semi-parametric Bayesian model for generalized linear models with random effects, where
these have non-parametric prior distribution. The corresponding frequentist attempt is presented in
Section 4.4.

The semi-parametric Bayesian approach for the random effects is to specify a prior distribution
on the space of all possible distribution functions of the random effects themselves. Instead of as-
suming that the random effects parameters are conditionally independent i.i.d. from a parametric
distribution, we will assume them from a random distribution function, namely theDirichlet Pro-
cess (DP). We will assume such a nonparametric prior within this context because it handles well
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relaxations on parametric assumption on random effects distribution and provides an in-built classi-
fication of random effects themselves. In fact, the DP prior results in whatMacEachern [107] calls
a “cluster structure” among theb js. This cluster structure partitions theJ b js intok sets or clusters,
0 ≤ k ≤ J. All of the observations in a cluster share an identical value ofb j and observations in
different clusters have differing values ofb j . We will exploit this “in-built classification” provided
by discreteness of DP trajectories in order to cluster hospitals (our grouping factors) with similar
behaviour in the sense above. In other words, unlike the usual goals ofBayesian inference which
is focused on fixed parameters estimation and inference, we will focus ourattention on the bias of
random effects posteriors, since we want to use them to classify clinical structures.

In our works, an example of the use of DP priors within a GLME model for survival where
STEMI patients are grouped by hospital of admission is [67].

5.3.1 Dirichlet Process for clustering

Unlike the parametric case, where we have a prior on a finite dimensional spaceΨ and, givenψ , the
observations are assumed i.i.d. from a parametric probability distributionPψ , in the nonparametric
case, we have a priorP on the spaceP(Rm) of all probability distributions on(Rm,B,Rm) and,
givenP, the observations are assumed i.i.d. fromP. Under the assumption of exchangeability, de
Finetti’s Representation Theorem gives a validation of the Bayesian setting.
Let consider an infinite sequence of observations(Xn)n≥1 defined on some probability space(Ω,F ,P),
with eachXi taking values onRm endowed with the Borelσ -algebraB(Rm). This last hypothe-
sis can be relaxed and we could consider observations which take valuesin a complete metric and
separable spaceX. Here it is enough to considerX = R

m. There are several types of dependence
among a sequence of observations(Xn)n≥1. Under the exchangeability assumption, the informa-
tion that the observationsXis provide is independent of the order in which they are collected. A
random element defined on(Rm,B,Rm), with values inP(Rm), is called random probability mea-
sure (r.p.m.). The most popular r.p.m. classes in literature are Dirichlet Processes, Polya Trees and
Bernstein Polynomials. A complete review of the main r.p.m. classes appears in [114].

The Dirichlet Process is a stochastic process introduced in Ferguson [40]. Its distribution consists
of a probability law on the space of all probability measures onR

m, for some integerm, which
induces finite-dimensional Dirichlet distributions when the data are grouped. Since grouping can
be done in many different ways, reduction to finite-dimensional Dirichlet distribution should hold
under any grouping mechanism. In practice, this means that for any finite measurable partition
{B1, . . . ,Bk} of Rm, the joint distribution of the probability vector (P(B1), . . . ,P(Bk)) is a finite-
dimensional Dirichlet distribution. A more formal definition can be obtained thinking the Dirichlet
Process as infinte dimensional generalization of the finite-dimensional Dirichlet distribution.

Definition 5.3.1 Let ααα = (α1, . . . ,αk) with αi > 0 for i = 1, . . . ,k. The random vector P=
(P1, . . . ,Pk), ∑

i

Pi = 1, has Dirichlet distribution with parameterααα if (P1, . . . ,Pk−1) is absolutely

continuous with respect to the Lebesgue measure onR
k−1 with density

f (p1, . . . , pk−1) =
Γ(∑k

i=1 αi)

Γ(α1)Γ(α2) . . .Γ(αk)
pα1−1

1 pα1−1
1 . . . pαk−1−1

k−1

(
1−

k−1

∑
i=1

pi

)αk−1

where0≤ pi ≤ 1, 0≤ p1+ · · ·+ pk−1 ≤ 1, 0 otherwise. We will write P∼ D(α).

Starting from this definition, also the one for Dirichlet Process can be given:
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Definition 5.3.2 Let α be a finite measure onRm, a := α(Rm). Moreover, letα0(·) = α(·)/a. A
random probability measure P with values in the spaceP(Rm) of all probability distributions is a
Dirichlet process onRm with parameterα if, for any finite measurable partition B1, . . . ,Bk ofRm

(P(B1), . . . ,P(Bk))∼ D(α(B1), . . . ,α(Bk)).

In what follows, we will writeP∼ DP(α) for short, or equivalentlyP∼ DP(aα0). If P∼ DP(α), it
follows thatE[P(A)] = α0(A) for any Borel setA, and then we say thatα0 is the prior expectation of
P. It can be proved that such process exists. The two parameters defining the DP are then the weight
parametera, and the base measureα0. Their role can be better understood thinking that, as we said
above, for any Borel setA, E(P(A)) = α0(A), where following the Definition 5.3.2 we have that
α0(A) = α(A)/a, anda= α(Rm), the total mass. Also, observe thatVar(P(A)) = α0(A)/(a+1),
so that the prior is more tightly concentrated around its mean whena is larger, that is, the prior is
more precise. Hence the parametera can be regarded as the precision parameter.

Now, let (b1,b2, . . . ,bn) be a sample from a Dirichlet processP, i.e., b1,b2, . . . ,bn|P i.i.d∼ P, P ∼
DP(aα0). The Dirichlet prior is conjugate onP(Rm); in fact, the posterior distribution ofP, given
b1,b2, . . . ,bn, is

P|b1,b2, . . . ,bn ∼ DP

(
aα0+

n

∑
i=1

δbi

)
(5.7)

In this case, marginalizing with respect toP, the predictive distribution ofbn+1 givenb1, . . . ,bn can
be described as follows:

b1 ∼ α0

bn+1|b1, . . . ,bn ∼
a

a+n
α0+

n
a+n

(
∑n

i=1 δbi

n

)
(5.8)

The predictive distribution in (5.8) is calledBlackwell-MacQueen Urn Scheme[17], since it is a
mixture of the base-line measureα0 and the previous observations. This means that there is a
positive probability of coincident values for any finite positivea. Moreover ifα0 is an absolutely
continuous probability measure, thenbn+1 will assume a different, distinct value with probability

a
a+n. Formula (5.8) allows us to sample (marginally) fromP without simulating any trajectory of
the Dirichlet process.

Again, equation (5.8) highlights the roles of scaling parametera and base distributionα0. The
unique values contained in(b1, . . . ,bn) are drawn independently fromα0, and the parametera de-
termines how likelybn+1 is to be a newly drawn value fromα0 rather than take on one of the values
from (b1, . . . ,bn). This equation also reveals the clustering property of the joint distribution of
(b1, . . . ,bn): there is a positive probability that eachbi will take on the value of anotherb j , leading
some of the variables to share values.

Sethuraman [131] provided a useful representation of the Dirichlet process. Its construction gives
an insight on the structure of the process and provides an easy way to simulate its trajectories.

Let consider two independent sequences of random variables{vi}i≥1 and{ξi}i≥1 such thatvi
i.i.d.∼

Beta(1,a) andξi
i.i.d.∼ α0 (defined on some probability space(Ω,F ,P)), and define the following

weights 



p1 = v1

pn = vn

n−1

∏
i=1

(1−vi) n≥ 2.
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It is straightforward to see that 0≤ pn ≤ 1, n= 1,2, . . . and that∑∞
n=1 pn = 1 a.s.. This construction

is calledstick-breaking. In fact p1 represents a piece of a unit-length stick,p2 represents a piece
of the remainder of the stick and so on, where each piece is independently modeled as aBeta(1,a)
random variable scaled down to the length of the remainder of the stick. Now we can define a
random variableP onP(Rm).

P(A) =
∞

∑
n=1

pnδξn
(A), A∈ B(Rm)

Sethuraman [131] proved thatP has Dirichlet prior distribution, i.e.,P is a Dirichlet Process with pa-
rameterα = aα0. From this construction it is clear that a Dirichlet Process has discrete trajectories,
i.e., if P∼ DP(α), thenP({ω : P(ω) is discrete}) = 1.

Moreover, let(b1,b2, . . . ,bn) be a sample fromP, whereP ∼ DP(α). If Kn denotes the random
variable representing the number of distinct values among(b1,b2, . . . ,bn), it can be proved [8] that
the distribution ofKn is the following

P(Kn = k) = cn(k)n!ak Γ(a)
Γ(a+n)

k= 1,2, . . . ,n, (5.9)

wherecn(k) is the absolute value of Stirling number of the first kind, for instance tabulatedor com-
puted by a software. From (5.9) it is clear that the mass parametera has a great influence on the prior
of the number of clusters. In particular, the largera, the higher the prior number of components.

Now, coming back to the main focus of the section, the idea is to fit a GLME model for binary
responses with a DP prior on the random effects parameters (here only considered on intercept, i.e.,
as additive grouping factor) in order to take advantage of the in-built classification the DP induce
on them. This is the case we considered in [67]. So, let assume the base measure for theb js is
Normal, i.e.,α0 ≡ N (0,Σ). Denote byf (yi j |θ ,b j) the distribution of the binary outcomeyi j for
group j at observationi in the logistic regression case, as given in (5.5). The prior specificationsfor
the parameters of the DP-GLME are

θ ∼ N (µ0,Σ0)

b j |P i.i.d∼ P

P ∼ DP(aα0)

whereθ andP are assumed independent a priori. IfP has the form reported above, it is impossible
to write down the joint posterior density of parameters, because there is nota common dominat-
ing measure. Anyway, it is possible to obtain the full conditional distributions needed for Gibbs
sampling, as detailed in [92]. In fact, it hs been shown that

f (θ |b,y) ∝ exp

(
J

∑
j=1

n j

∑
i=1

log f (yi j |θ ,b j)−
1
2
(θ −µ0)

TΣ−1
0 (θ −µ0)

)
.

as far as the full conditional ofθ is concerned. Unlessyi j has the Normal distribution, sampling
from this distribution is not straightforward, but it can still be accomplished,using for example a
Metropolis step. Moreover, concerning the full conditionals of the random effects, we have

f (b j |θ ,y,b− j) ∝
J

∑
i 6= j

exp

{
n j

∑
i=1

log f (yi j |θ ,b j)

}
δb j +

[
α
∫

exp

{
n j

∑
i=1

log f (yi j |θ ,b j)

}

× φ(b j)dbj ]φ(b j)
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whereb− j denotes the random effects for the groups excluding groupj, δs a degenerate distribution
with point mass ats and φ indicates the Gaussian density ofα0. An important subtlety in the
formula above is that the termsf (yi j |θ ,b j) in the first summation use data from groupj and the
random effects for each of other groups. That is, it evaluates the likelihood for groupj using the
other groups random effects. The better the fit of groupj random effect, the greater the likelihood
then the more likely it is thatδb j is the distribution from whichb j is drawn.

From the full conditional above, it can be evinced that the density structure for each random
effect is similar to the one already seen in (5.8), i.e., a mixture of a new value for the parame-
ter with the already exsisting ones. This leads to a natural clustering among random effects, and
consequently among what they represent in th model, achieved using the sample’s bias ofb js.

In the analyses carried out in Part III and in particular in Section 7.4, we will deal with a DP-GLME
model where the binary oucomeyi j will be the survival of patienti admitted in j-th provider with
STEMI diagnosis, and a nonparametric distribution (specifically DP prior) will be assumed for the
additive random effect on grouping factor, i.e., for the hospital of patient admission.

5.3.2 Dependent Dirichlet Process for classification

Dependent Dirichlet Processes (DDPs) generalize the DP to allow for a collection of non paramet-
ric distributions, the realization of which are dependent, with the level of covariates governing the
degree of dependence. The idea that drives the dependence for one dimensional DP is that, in the
presence of a covariate, the location of the DP can be replaced by the sample path of the corre-
sponding stochastic process. This sample path provides the location and theweights in Sethurman’s
representation at each value of the covariate.

Starting from the setting proposed in the previous Section, let consider a family of random
measuresF = {Fz,z∈ Z } indexed by a covariatez. MacEachern in [108] defined a probability
model forF such that, marginally, for eachz, Fz = ∑whδbzh follows a DP. In the basic DDP model,
the weightswh are common to allFz and are defined as in the stick-breaking procedure. The DDP
induces dependence acrosszby assuming thatbh = (bzh,z∈Z ) are i.i.d. realizations of a stochastic
process (as a function ofz). Independence acrossh, together with the stick-breaking prior for the
weightswh, guarantees thatFz marginally follows a DP.

In what follows and in Section 7.4 we will use this DDP structure to develop an ANOVA-like
probability model over an array of random distributions.

Therefore, as in [33], assumeF = (Fz,z∈ Z ) is an array of random distributions, indexed by
a categorical covariatez. For semplicity of explanation, assume thatz = (u,v) is bivariate with
u ∈ {1, . . . ,U} andv ∈ {1, . . . ,V}. The covariates(u,v) could be, for example, the levels of two
treatments in a clinical trial, and the distributionsFz may be sampling distributions for random ef-
fects. In this context we wish to develop a probability model for the random distributionsFz that
will enable us to build an ANOVA-type dependence structure. For example,we want the random
distributionsFz andFz′ for z= (u1,v1) andz

′
= (u1,v2) to share a common main effect due to the

common factoru1. The model should allow us to incorporate prior information about the presence
of interaction between the covariates. If interactions are present, the effect of u = u1 should be
allowed to depend on the level of the other covariatev. The following model gives a formal defi-
nition to notions like “main effect” and “interaction”. Briefly, instead of a nonzero additive effect
on the mean of the response variable in an ANOVA model, an effect is recast as a difference in
distribution of some quantity that has, in turn, an impact on the distribution of the final response
(see [33] fur further details). Thus, the models we create allow us to transfer both the interpretation
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and the structure used for unknown normal means in the traditional ANOVA model to unknown
random distribution functions. Like standard ANOVA models the proposed model can be justified
by a judgment of partial exchangeability for observed data. Assumeyzi, i = 1,2,3, . . . , are observed
data, indicating thei-th observation under conditionz. If, for eachz, the subsequence(yz1,yz2, . . .)
is judged exchangeable, then by de Finetti’s representation theoremyzi can be assumed to be an i.i.d.
sample from distributionFz. More technical details on ANOVA-DDP models and their properties
can be found in [33] or in the references therein.

The model we consider for our application can be derived as follows: letFz =∑whδbzh for z= (u,v).
We assume Sethuraman’s stick breaking prior for the common weights as in the Dirichlet case:

wh

∏h−1
i=1 (1−wi)

∼ Beta(1,a) h= 2,3, . . . ,

wherew1 ∼ Be(1,a) We impose an additional structure on the locationsbzh:

bzh = mh+Auh+Bvh (5.10)

As in standard ANOVA models, we need to introduce an identifiability constraintfor interpretabil-
ity. We may impose any of the standard constraints, for exampleA1h = B1h = 0. For the remain-

ing parameters we assumemh ∼ α0
m(mh), Auh

i.i.d.∼ α0
Au
(Auh) and Bvh

i.i.d.∼ α0
Bv
(Avh) with indepen-

dence being acrossh, u and v. We refer to the joint probability model onF as (Fz,z∈ Z ) ∼
ANOVA-DDP(a,α0). Marginally, for each(z = (u,v)), the random distributionFz follows a DP
with massa and base measureα0

z , given by the convolution ofα0
m, α0

Au andα0
Bv. Model (5.10)

defines dependence acrossz by defining the covariance structure of the point massesbzh acrossz.
As in standard ANOVA the structural relationships are defined by the additive structure (5.10) and
the level of the dependence is determined by the variances inα0

m, α0
Au andα0

Bv.
Note that the ANOVA DDP model introduces an additional level of uncertaintyby defining

the random measures(Fz,Fz′ ). The resulting covariance structure remains unchanged eccept for
the attenuation factor 1/(a+ 1), corresponding to the additional uncertainty aboutFz. The same
result remains true for arbitrary ANOVA structure, including more factorsand possibly interactions.
Moreover, model (5.10) is not constrained to univariate distributionsFz. The point massesbzh and
the ANOVA effectsmh, Auh, andBvh can beq-dimensional vectors. This is important, for example,
if the random distributionsFz will represent the random effects in a hierarchical model.

5.4 Optimal decision rules for hospital ranking and classification

Investigations on surgical performance have always adopted routinelycollected clinical data to high-
light unusual provider outcomes. In addition, there are a number of regular reports using routinely
collected data to produce indicators for hospitals. As well as highlighting possible high- and low-
performers, such reports help in understanding the reasons behind variation in health outcomes, and
provide a measure of performance which may be compared with benchmarksor targets, or with
previous results to examine trends over time. Statistical methodology for provider comparisons has
been developed in the context of both education and health.

The statistical components of such an analysis generally comprise a model for the provider
effects that adjusts for differences between patient risks either through standardisation methods or
incorporating covariates. In these cases, “provider” is used in a verygeneral sense and might be
a hospital, a health-care authority, or even an individual surgeon. It isknown that pursuing the
issue of adjustment for patient severity (case-mix) is a challenging task, since it requires a deep
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knowledge of the phenomenon from a clinical, organizal, logistic and epidemiological point of view.
However, this is the reason why it is always expected to be inadequate andtherefore unavoidable
residual variability (over-dispersion) will generally exist between providers. It is then crucial that a
statistical procedure is able to assess whether a provider may be considered “unusual”. In particular,
note that although hierarchical models are recommended since they account for the nested structure
in describing hospital performance, it is not straightforward how assessing unusual performance.

Studies of variations in health care utilization and outcomes involve the analysis of multilevel clus-
tered data. Those studies quantify the role of contributing factors (patientsand providers) and assess
the relationship between health-care processes and outcomes. In [65],we develop Bayes rules for
several families of loss functions for hospital report cards when Bayesian Semiparametric Hierar-
chical models are used, and discuss the impact of assuming different lossfunctions on the number
of hospitals identified as “non acceptably performing”. The analysis is carried out on a case study
dataset arising from MOMI2 survey (see Paragraph 3.2.2 and Section 8.3 for details on data descrip-
tion and analysis respectively) on patients admitted with STEMI to one of the hospitals of the Milan
Cardiological Network. The major aim consists of the comparison among different loss functions
to discriminate among health care providers’ performances, together with theassessment of the role
of patients’ and providers’ characteristics on survival outcome.

The model we assume here is a DP-GLME model where, for unit (patient)i = 1, . . . ,n j in group
(hospital) j = 1, . . . ,J, Yi j is a Bernoulli random variable with meanpi j , i.e.,

Yi j |pi j
ind∼ Be(pi j ).

According to the DP-GLME model, thepi j s are modelled through a logit regression of the form

logit(pi j ) = log
pi j

1− pi j
= θ0+

p

∑
h=1

θhxi jh +
J

∑
l=1

bl zjl (5.11)

wherezil = 1 if i = l and 0 otherwise. In this model,θθθ = (θ0, . . . ,θp) represents the(p+ 1)-
dimensional vector of the fixed effects,xi j is the vector of patient covariates andb = (b1, . . . ,bJ)
is the vector of the additive random-effects parameters of the grouping factor. Assuming a suitable
prior for b1, . . . ,bJ, theb js are i.i.d. according to this; the prior forθθθ is parametric. If we assume a
setting like the one proposed in (5.11), we saw how to take advantage of the bias of random effect
distributions to cluster the random effects themselves. We show now how such a framework can be
encompassed within a Bayesian decision analysis framework. In fact, once the posterior distribution
of the random effect has been obtained, suitable loss functions can be defined in order toa poste-
riori weigh the decision of wrongly classifying the hospital as having acceptableor unacceptable
performances.

The random intercepts of model (5.11), i.e.,θ0+b1,θ0+b2, . . . ,θ0+bJ represent the hospital per-
formances quantifying the contribution to the model after patients’ covariatesadjustment. Let us
denote byβ j the sum ofθ0 andb j . We consider the class of loss functions

L(β j ,d) = cI · f1(β j) ·d · I(β j > βt)+cII · f2(β j) · (1−d) · I(β j < βt), (5.12)

whered is the decision to take (d = 1 means that the hospital has “unacceptable performances”,
d = 0 stand for ”acceptable performances”),cI is the weight assigned to the costf1(β j), occurring
for a false positive,cII is the weight assigned to costf2(β j), occurring for a false negative andβt is
defined as log(pt/(1− pt)), beingpt a reference value for survival probabilities.
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Without loss of generality, we can assume a proportional penalization, i.e.,f2(β j)= k· f1(β j), taking
k as the ratiocII /cI . In this sense, the parameterk quantifies our beliefs on cost, being greater than
1 if we credit that accepting afalse negativeshould cost more than rejecting a true negative and
less than 1 otherwise. An acceptable performance is then defined comparing the posterior expected
losses associated with the decision that the hospital hasacceptable performances

R(y,d = 0) = Eπ (L(β j ,d = 0)|y) =
∫

f2(β j)I(β j < βt)Π(β j |y)dβ j

and the decision that the hospital hasunacceptable performances

R(y,d = 1) = Eπ (L(β j ,d = 1)|y) =
∫

f1(β j)I(β j > βt)Π(β j |y)dβ j .

Π(β j |y) denoting here the posterior distribution ofβ js. In short, we classify an hospital as being
acceptable(or with acceptable performances) if the risk associated with the decisiond = 0 is less
than the risk associated with the decisiond= 1, i.e., ifR(y,d= 0)<R(y,d= 1). Within this setting,
in [65] the comparison of four different loss functions is proposed, to address the decision problem
of judging hospitals performances. Results of the comparison and of the sensitivity analysis carried
out on parameterk are shown in Section 8.3.

The application of this theoretical setting to the problem of managing a Cardiological Network as
presented in Section 8.3 is an example of how Bayesian decision theory couldbe employed within
the context of clinical governance of Regione Lombardia. It may point out where investiments are
more likely to be needed, and could help in not to loose opportunities of quality improvement.

5.5 Problems due to unbalanced share: a Bayesian solution

In Section 4.7 we discussed problems arising from unbalanced shares in logistic regression frame-
works within the frequentist setting, and how they reflect on the predictivepower of the models we
considered and used for the analyses. The same problem arises also adopting a Bayesian approach.
Anyway in this case, taking advantage of posterior predictive distributions of estimated responses, a
new method for carrying out classification and prediction is proposed (see [64]), based on posterior
predictive credibility intervals (CIs). As we will see in Section 7.4, this method seems to be able to
increase the predictive power of generalized linear mixed effects models.

So, let consider the problem of predictive performances evaluation fora generalized linear mixed
effects model. Once such a model is fitted to grouped data, estimated successprobabilitespi j for
each given uniti belonging to the groupj can be computed.

So letYi j , i = 1, . . . , I , j = 1, . . . ,J, be a binary outcome assuming value 1 if a success is ob-
served, 0 otherwise. In this case,i denotes the statistical units that belong to any of theJ groups.
When a generalized linear mixed effect model with an additive random effect on grouping factor is
fitted to such data, the usual way to make prediction is then based on point estimates summarizing
the posterior predictive distributions of success probabilities, i.e., on the comparison among these
estimates with repect to a given threshold. In particular we could classify a unit i belonging to group
j as “success” ifE(pi j |YYY) is bigger than a given cut-off point. Since the classification is typically
sensitive to the cut-off point, there are several criteria to choose the cut-off point. In [45] a review
and comparison of the most popular criteria is proposed. In our application, since our dataset is
particularly unbalanced, if we consider the standard cut-off point equal to 0.5, we would obtain a
very low overall misclassification rate, but also a bad negative predictivepower. A first remedy is
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proposed in [28], where a cut-off point equal to the survival sample proportion p̄ is adopted (see
Paragraph 4.7.2). The false positive and false negative rates are morebalanced than using a cut-off
point of 0.5, but this does not guarantee an improvement in the overall misclassificationrate. The
overall misclassification rate as in [28] can be considered as a goodnessof fit index since it is less
dependent on the unequal sample proportion. On the other hand, insteadof choosing a given cut-off
point, we could plot the ROC curve. However, we believe that results comingout from comparison
of pointwise estimates with any thresholds cannot be considered completely satisfactory. In fact, on
one hand those cut-off criteria are not robust in case of a very unbalanced data-set. On the other
hand, even if the ROC curve is indipendent of a given threshold, it can be used as a comparison tool
among models rather than as a predictive tool itself.

To this aim, the idea we propose for improving the predictive power of logistic mixed effects
models when shares are strongly unbalanced takes advantage of Bayesian approach: in fact, interval
estimate is richer than point estimate which does not provide any information on the prediction un-
certainty. The new approch adopts the entirely interval estimates, computed starting from posterior
distributions. We then classify a statistical unit as “success” if the entirelyα% interval estimate of
the posterior predictive probabilitypi j is over a given cut-off point, as “dead” if the entirely interval
estimate is below the cut-off point and we do not classify it if the cut-off pointlies in the CI. The
higher is the credible level, the more patients will belong to the Uncertainty Class (UC).

In the application that motivated the development of this new method (recall thatin STEMI we deal
with a share of in-hospital mortality rates nearly equal to 4%), this solution cameout to be much
more effective than the corresponding pointwise one (see Section 7.4). This is really interesting from
both statistical and clinical points of view, since the negative predictive power in the application of
interest is the model ability in predicting when patients are likely to die. This ability is clinically
much more relevant than the opposite one, i.e., the ability of predicting which patients are likely to
survive. We are actually planning to set a battery of simulations for testing themethod in order to
prove and quantify its effectiveness, especially in increasing negativepredictive power of models in
the case of strongly unbalanced shares.



Chapter 6

Statistical models for healthcare: more
complex data

In this chapter, statistical methods for dealing with multivariate functional data and longitudinal
event-dependent data arising from clinical diagnostic devices and fromthe integration of clin-
ical registries and administrative database are proposed. These methodshave been applied to
data coming from PROMETEO datawarehouse (presented in Section 3.2.4) and to the integrated
database arising from the linkage between the STEMI Archive and Regione Lombardia Adminis-
trative datawarehouse (discussed in Paragraph 3.3.2). In the first case, two different targets have
been pursued: the unsupervised classification of multivariate functionaldata and outlier detection,
as reported in [80], [81] and [82]. In the second case, the idea is to point out suitable models for
predicting binary outcomes also through functional covariates. An exampleof application of such
techniques can be found in [14] and [15].

ECG signals can be considered as multivariate functional data with dependent components (see
Paragraph 3.2.4). In this context, some issues of interest are, for example, classification of groups
of curves with similar morphological patterns, multivariate functional outliers detection within a
homogeneous group and classical inference on mean and quantiles of subpopulations. From a clin-
ical point of view, the first issue concerns how to carry out a semi automatic diagnosis based only
on the morphological deviations from physiological patterns induced by thepresence of the disease
of interest; the second one leads to profile “typical” curve expression for each pathology; finally
the third one allows for the investigation of the presence of statistically significant differences in
the subpopulations of pathological units with respect to physiological ones. On the other hand,
the hospitalization process of each patient may be considered itself, for implementation of time to
event models, or in connection with the output measured by a clinical survey, where it is modeled
as counting process and considered as functional predictors for outcomes of interest.

Making inference on the underlying process generating any kind of curve (multivariate functional
curves like ECGs, or counting processes like hospitalization processes and so on) has the following
meanings: in the real world, it means discriminating among effect that pathologies or phenomena
under examination induce in the observed data; in the statistical world, it meansconstructing a
model able to captures the real phenomenon as well and reliably as possible.

105
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6.1 Unsupervised classification of multivariate functional data

In [80] a method for the analysis and the classification of ECG curves starting from their sole
morphology is proposed. The main goal is to identify, from a statistical perspective, specific ECG
patterns which could benefit from an early invasive approach. In fact, the identification of statistical
tools capable of classifying curves using their shape only could supportan early detection of heart
failures, not based on usual clinical criteria.

In what follows, an overview of smoothing and registration techniques forfunctional data is
given. The exhaustive tractation of these topics are beyond the scope of this thesis, so we just set the
context where techniques we used come from and motivations that guided our choices in analyzing
data as in [80].

6.1.1 An overview of smoothing and registration techniquesfor functional data

In statistics and image processing, to smooth a dataset is to create an approximating function
that attempts to capture important patterns in the data, while leaving out noise or other fine-scale
structures/rapid phenomena. A wide choice of different algorithms and methods are available for
smoothing, among others Smoothing spline, Local regression also known as“loess”, Convolution,
Wavelets, Laplacian smoothing, Kalman filter etc.. Among these, Wavelet analysis is an accurate
and reliable tool for studying signals with sudden changes of phase and frequency. It is useful
for audio/image/video analyzing and processing, data compression, signal smoothing and denois-
ing, speech recognition and biomedical imaging. Concerning functional data like ECG signals can
thought to be, Wavelet bases seem suitable to be used because every basis function is localized
both in time and in frequency, being therefore able to capture ECG strong localized features (peaks,
oscillations...). A systematic introduction to wavelets can be found in [110].

Wavelet bases have been so far mainly applied in problems where there wasno interest in deriva-
tives, because of the absence of close analytical forms for smooth wavelet bases. This issue has re-
stricted their application to a small part of the Functional Data Anlaysis (FDA) field. To overcome
this limitation, in [120] a numerical method that allows to obtain derivatives of wavelet estimated
data is presented. This method holds in general for multivariate functional signals, allowing for a
joint smoothing of all the components of the multivariate functional signal. Sincethe eight leads
of an ECG jointly describe the same phenomenon (i.e., the heart dynamic), when smoothing these
data it is appropriate to use a technique which takes into account all the eightleads simultaneously.
This helps in detecting significant features, which reflect on more then oneleads.

When the functional response evolves with respect to time, the subject may experience events at
different times with the consequence that the sample curves are not alignedin some sense. In these
cases, any estimator will fail in the attempt to be satisfactory. Curve registration is a way to solve
this problem. Moreover, functional observations usually show both phase and amplitude variation,
i.e., each curve has its own biological time so that same features can appear at different times among
the statistical units. It is well known that a correct separation between these two kind of variability
is necessary for a successful analysis [126].

Example of registration techniques are, among others, Landmarks registration, Continuous
Monotone registration, Dynamic time warping, Semi-parametric registration, Shape invariant mod-
els. As shown in Section 9.1 and in [80], we address the problem of correctly separating the different
kind of variability through a registration procedure based on landmarks, since in the ECG signals
case they are provided and have a specific biological meaning (start/end points of each ECG wave).

The smoothed and registered curves may be clustered in groups solving a suitable optimization
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problem that takes into account the distance inH1 space between curves. So doing, we are able
to implement a semi automatic diagnosis of ECGs based on statistical techniques, as detailed in
Section 9.1 and in [80].

6.2 Depth measure for multivariate functional data and outlier detec-
tion

A challenging task in functional data analysis is to provide an ordering within asample of curves that
allows the definition of order statistics, such as ranks and L-statistics [43].A natural tool to analyze
these functional data features is the idea of statistical depth, which provides a measure of centrality
or outlyingness of an observation with respect to a given dataset or a population distribution. Several
definition of depth measures for multivariate data have been proposed andanalyzed in literature
(see [102], [109], [141], [149] and [150] among others). A generalization to functional data is given
in [106], starting from depth measures for multivariate data. They also provide the extension of
robust statistics to a functional framework, generalizing properties of depth measures which are
proved to hold in multivariate case (see [102], [130] and [149] for further details on multivariate
setting). Finally a specific focus on trimmed means for functional data can be found in [44], where
a generalization of some issues treated in [43] about multivariate L-estimation isproposed. Once a
depth measure is associated with each univariate or multivariate functional data within a sample, it
is possible to rank them as well as to visualize graphically the result of ranking through functional
boxplots, as proposed in [137] and [81], for univariate and multivariate functional data respectively.

There are lots of different aims which lead to rank curves according to suitable depth indexes.
Indeed, several applications focus on classification of functions arising from different population
and make inference about the latent differences among them analyzing themorphological effects
they induce on the curves shape. This is usually carried out without parametric assumptions on the
model which the sample of curves is associated with, like in [29] and [106]. On the other hand,
sometimes the interest is in making inference on specific summary statistics, as proposed in [99]
for the multivariate setting. In [81] and [82] we deal with multivariate functional observations, i.e.,
statistical units where each component is a curve. Firstly, a generalization of the concept of depth
for functional data to the multivariate functional case is provided, then suitable generalizations of
nonparametric statistics for ranking and classifying multivariate curves aredefined, in order to make
inference on them. So a new concept of a multivariate index of depth, derived from averaging uni-
variate centrality measures for functional data in a suitable multivariate index isproposed, analyzed,
and applied. The employment of the functional boxplots is widen, adopting thisgraphical tool also
in the more complex case of samples of multivariate functions. Then the Wilcoxonrank test based
on the order induced by the multivariate functional depth is proposed to testdifferences between
groups of multivariate curves. In fact, two are the main goals of the analysis: the first one is to point
out a suitable method for performing outliers detection in a multivariate functional setting, within a
sample of curves arising from the same population (temptative analyses in this sense are proposed
for the univariate functional case in [38]); the second one is to carry out non parametric test for
comparing samples of multivariate curves and making inference on the corresponding populations.

A natural and motivating application of this theoretical framework comes fromthe biomedical
context, and in particular from applications that deal with cardiovascular diseases diagnoses carried
out using Electrocardiographic (ECG) devices.
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6.2.1 Band depth and inference for multivariate functional data

As mentioned in the previous section, a natural tool to analyze and rank functional data is the idea
of statistical depth, which measures the centrality of a given curve within a group of trajectories
providing center-outward orderings of the set of curves itself. In general, several different definitions
of depth can be given [149]. In our case, we refer to the band depth measure for functional data
proposed by [105] and [106].

Let X a stochastic process with lawP taking values on the spaceC (I) of real continuous functions
on the compact intervalI . The graph of a functionf ∈ C (I) is the subset of the planeG( f ) =
{(t, f (t)) : t ∈ I}. The random band depth, of orderJ ≥ 2, for a functionf ∈ C (I) is then

BDJ
PX
( f ) =

J

∑
j=2

PX{G( f )⊂ B(X1,X2, ...,Xj)},

whereB(X1,X2, ...,Xj), for j = 2, ...,J is the random band inR2 delimited byX1, ...,Xj , independent
copies of the stochastic processX, defined as

B(X1, ...,Xj) = {(t,y(t)) : t ∈ I , min
r=1,..., j

Xr(t)≤ y(t)≤ max
r=1,..., j

Xr(t)}

We propose a new definition of a band depth measure for multivariate functional data, i.e., data
generated by a stochastic processX taking values in the spaceC (I ;Rs) of continuous functions
f = ( f1, ..., fs) : I → R

s.

Definition 6.2.1 Let f be a function on I taking values inRs. The multivariate band depth measure
is then defined as

BDJ
PX
(f) =

s

∑
k=1

pkBDJ
PXk

( fk), pk > 0 f or k= 1, ...,s,
s

∑
k=1

pk = 1. (6.1)

Let X a multivariate random process such thatP(mink=1,...,s‖Xk‖∞ > M) → 0 asM → ∞, then it
is easy to prove, using the properties of the functional depth measure summarized in [106], the
following results on the basic properties of the multivariate band depth measure defined in (6.1).

Proposition 6.2.1

(a) Let T(f) = A(t)f(t) + b(t), where∀t ∈ I A(t) is a s× s diagonal matrix such thatAkk (t)
are continuous functions in I, withAkk (t) 6= 0, for each t∈ I, and b(t) ∈ C (I ;Rs). Then
BDJ

PT(X)
(T(f)) = BDJ

PX
(f).

(b) BDJ
PX(g(t))

(f(g(t))) = BDJ
PX(t)

(f(t)) = when g is a one-to-one transformation of the interval I.

(c) supmink=1,...,s‖ fk‖∞>M BDJ
PX
(f)→ 0 as M→ ∞.

(d) If ∀k = 1, ...,s the probability distribution PXk on C (I) has absolutely continuous marginal
distributions, then BDJPX

is a continuous functional onC (I ;Rs).

Proof. (a) using Definition 6.2.1 and the property (1) of Theorem 3 in [106] we have

BDJ
PT(X)

(T(f)) =
s

∑
k=1

pkBDJ
PAkkXk+bk

(Akk fk+bk) =
s

∑
k=1

pkBDXk( fk) = BDJ
PX
(f).

The diagonality requirement on matrixAmeans that the multivariate functional depth measure
BDJ

PX
(f) is invariant as regards affine transformations of each component takenone by one,

without combining different elements of the multivariate function.
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(b) follows directly from property (2) of Theorem 3 in [106].

(c)

sup
mink=1,...,s‖ fk‖∞>M

BDJ
PX
(f) = sup

mink=1,...,s‖ fk‖∞>M

s

∑
k=1

pkBDXk( fk)

and each term in the sum over components goes to zero whenM goes to infinity.

(d) also this point follows directly from property (4) of Theorem 3 in [106].

If X1, . . . ,Xn are independent copies of the stochastic processX, the sample version of (6.1) can be
introduced in order to conduct descriptive and inferential statistical analyses on a set of multivariate
functional dataf1, ..., fn generated by the processX. For anyf in the samplef1, ..., fn we can compute
the depth as

BDJ
n(f) =

s

∑
k=1

pkBDJ
n,k( fk),

where for the functionfk ∈ C (I)

BDJ
n,k( fk) =

J

∑
j=2

(
n
j

)−1

∑
1≤i1<i2<···<i j≤n

I{G( fk)⊂ B( fi1;k, ... fi j ;k)}

and I{G( fk) ⊂ B( fi1;k, ..., fi j ;k)} indicates if the band determined by( fi1;k, ..., fi j ;k) contains the
whole graph off . Thek component of the vectorf i is denoted byfi;k.

Proposition 6.2.2The sample version of multivariate functional depth is consistent, in fact

|BDJ
n(f)−BDJ

PX
(f)| → 0, a.s. i f n → ∞ (6.2)

Proof.

|BDJ
n(f)−BDJ

PX
(f)|= |

s

∑
k=1

pkBDJ
n,k( fk)−

s

∑
k=1

pkBDXk( fk)| ≤
s

∑
k=1

pk|BDJ
n,k( fk)−BDXk( fk)| (6.3)

and each term of the sum in the last term of (6.3) goes to zero as stated in Theorem 4 of [106].

As proposed in [106] also in this multivariate functional setting we can move to the analogous of
the modified band depth:

MBDJ
n(f) =

s

∑
k=1

pkMBDJ
n,k( fk), (6.4)

where for the functionfk ∈ C (I) the modified band depth measures the proportion of time that the
curve fk is in the band, i.e.,

MBDJ
n,k( fk) =

J

∑
j=2

(
n
j

)−1

∑
1≤i1<i2<···<i j≤n

λ̃{E( fk; fi1;k, ..., fi j ;k)},

whereE( fk) =: E( fk; fi1;k, ..., fi j ;k) = {t ∈ I ,minr=i1,...,i j fr;k(t) ≤ fk(t) ≤ maxr=i1,...,i j fr;k(t)} and

λ̃ ( fk) = λ (E( fk))/λ (I) and λ is the Lesbegue measure onI . As stated in [106] the values of
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the modified band depth measure are stable with respect to the choice ofJ, and in order to be
computationally faster we setJ = 2 and we denoteMBDJ

n(f) asMBD(f) in the following. The use
of the modified band depth measure avoids also having too many depth ties.

Given the multivariate band depth measure defined in (6.4), a sample of multivariate functional
dataf1, ..., fn can be ranked. In the following we denotef[i] the sample curve associated with the
i-th largest depth value, sof[1] = argmaxf∈{f1,...,fn}MBD(f) is themedian(deepest and more central)
curve, andf[n] = argminf∈{f1,...,fn}MBD(f) the most outlying one.

The idea of generalizing the concept of functional boxplot to multivariate functional data is based
on the new definition of multivariate functional depth measure given in (6.4) which takes into ac-
count simultaneously the behaviour of all thes components off weighting in a suitable way the
components in order to take into account correlations among them. The same holds when the goal
is to carry out multivariate functional outliers detection, to be used for example to robustify training
set adopted in unsupervised classification algorithms. In such cases, thefollowing steps should be
implemented on multivariate curves samplef1, ..., fn:

1. For each statistical unitj, compute the value of measure depthMBD(f j );

2. Rank the multivariate functionsf j(t) according to the value of multivariate depth measure and
define outliers those curves that, for at least onet, are outside the fences obtained inflating the
envelope of theα% central region byh times the range of theα% central region. In particular
theα% central region for the componentfk determined by a sample of curves is defined as

Cα =

{
(t,y(t)) : min

r=1,...,⌈αn⌉
f[r];k(t)≤ y(t)≤ max

r=1,...,⌈αn⌉
f[r];k(t)

}

where⌈αn⌉ is the smallest integer greater than or equal toαn. In the following we set
α%= 50% andh= 1.5.

3. Visualize the functional boxplot of each component, building the envelope of the 50% deepest
functions and then the functional boxplot according to the ranking arisingfrom the multivari-
ate index previously pointed out.

Notice that this algorithm defines outliers according to a multivariate index of depth, which takes
into account simultaneously the depth of all components of the multivariate function. This implies
that the envelope of the central region is composed of the sameα% most central curves, with respect
the multivariate index of depth, in each component.

Given the order in the sample of curves induced by the multivariate functional depth measure,
the definition oftrimmed meanfollowing, for example, [44] can be extended to multivariate func-
tional data straightforwardly. We can also widen to this framework a non parametric rank test to
compare two samples of multivariate functions. In particular consider a samplef1, ..., fn generated
according to a distributionPX and another sampleg1, ...,gm generated according to a distribution
PY . We want to test differences between the two populations; combine the two samples, that is, let
W = w1, ...,wn+m ≡ f1, ..., fn,g1, ...,gm. We can assign to each element of the combined set a rank
according to values of the multivariate functional depth, and in particular thehigher the depth the
lower the rank. The proposed test statisticsR is the sum of the ranks of the second sampleg1, ...,gm

with respect to the combined setW (R= ∑m
j=1RankW(g j)≡ ∑m

j=1 r(g j)). If according to the null hy-
pothesis (H0) there is no differences between the distributions generating the data(r(g1), ..., r(gm))
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can be viewed as a random sample sizem drawn without replacement from the set(1, ...,n+m),
and we rejectH0 for values ofR too small or too high. For large values ofn andm it is possible to
use a Normal approximation (see [99]).

Such test represents a quantitative method for carrying out inference ina supervised multivariate
functional clustering framework. On the other hand, for the unsupervised clustering case, it can be
also seen as a way to test if the process generating the outliers pointed out by the functional boxplot
can be considered as different from the process generating the curves of theα% most central region.

In summary, in this section we generalize the notion of depth for functional data presented in [106]
to the multivariate functional case and define also a new multivariate functional index of depth
which is able to take into account jointly the depth of the multivariate functional data on each
component. This provides a center-outward ordering criterion for a sample of multivariate functions.
Extensions and proofs of the properties of the new index are also provided, as well as for its modified
version. A generalization of the non parametric test to this framework has been adopted to carry
out inference in a supervised clustering context. The application of the new index to a real case of
ECG signals proposed and discussed in [81] and in [82] and detailed in Section 9.2, highlights how
the methodology works effectively both in detecting outliers and in distinguishing between samples
arising from different underlying processes.

6.3 Generalized linear models with functional predictors

In this section we present statistical methods that may be used for the analysisof complex data
like those described in Paragraph 3.3.2. We are actually working on the implementation of these
technique on integrated data arising from the linkage between STEMI Archive and Public Health
Database (PHD) of Regione Lombardia. A preliminar example of application that testify for feasi-
bility of such a statistical technique is provided in [15].

In what follows, only statistical methods for generalized linear models with functional covari-
ates (FGLM) are presented [113]. The idea is to apply these models to binary outcomes such as
in-hospital, long term mortality or time to the next admission, using, among others, functional pre-
dictors like the process of previous hospitalization of each patient.

6.3.1 Model for recurrent events

Let (Ft)t∈I be a filtration associated to the probability space(Ω,F ,P), with I = [0,τ ]. We define
the counting process(N(t))t∈I adapted to(Ft)t∈I as follows:

N(t) =
∞

∑
j=0

I{Sj ≤ t,Sj ≤ τ}, (6.5)

whereSj represents the calendar time of thej-th occurrence of the observed event andτ represents
a random censoring time for the process.N is a submartingale such that, for every stopping timeT,
N(T) is uniformly integrable, then the Doob-Meyer decomposition theorem states that there exists
a unique predictable, non decreasing, cadlag and integrable compensator (or cumulative hazard)
process(Λ(t))t∈I such that

M = N−Λ (6.6)

is a zero-mean, uniformly integrable martingale [6]. Hence the distribution of event times is com-
pletely characterized by the knowledge of processΛ, on which modelling efforts should then be
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focused. We assume that

Λ(t) =
∫ t

0
C(s)λ (s)ds, (6.7)

whereC(s) = I{s≤ τ} is theat-risk process, and(λ (s))s∈I is calledhazard function, or intensity
process.
A wide variety of models for the intensity process can be found in the literatureon counting pro-
cesses, ranging from Poisson processes to the Cox model [27], additive models, frailty and dynamic
models (see for instance [1] and [6] for a presentation and discussion of various possibilities). Our
choice for the target problem is the following: fori = 1, . . . ,n, the i-th subject has covariate vector
XXXi(t) = (Xi1(t), . . . ,Xiq(t))T (eventually time dependent), and the intensity is

λ (t|XXXi) = λ0(t)αNi(t−)eγTXXXi(t), (6.8)

whereλ0(t) is an unknown baseline hazard function,α is a real parameter andγ = (β1, . . . ,βq)
T a

q-dimensional vector of real coefficients.

The model assumed in equation (6.8) is a Cox model with the process stateNi(t) as a dynamic
covariate, but the proposed methodology, as will be clear in the following, can be applied to a wide
range of models for intensity. We choose to account for unobserved heterogeneity by using the dy-
namic componentαNi(t−) instead of a frailty variable, i.e., a multiplicative random effect. Dynamic
and frailty modelling can be seen as two related methods for describing subject heterogeneity, but
the former is more general and flexible (see [1] for a discussion on frailtyand dynamic models).The
dependence of intensity on process state, here representing the hospitalization process of each pa-
tient, is modeled by the termαNi(t−) because of its clear interpretation: values ofα higher than 1
indicate that a new event implies a worsening of the patient’s condition, increasing future rehos-
pitalization risk, vice versa forα values lower than 1. We assume the baseline intensityλ0 to be
dependent on total timet, but more general choices can be made within the same framework; see
for example the concept ofeffective ageintroduced in [118].

Adding a censoring variable to account for different observation times,the model for cumulative
hazard can be written as follows, for patientsi = 1, . . . ,n

Λi(t|XXXi) =
∫ t

0
Ci(s)λ0(s)αNi(s−)exp[γTXXXi(s)]ds, (6.9)

whereCi(s) = I{s≤ τi} (i.e., subjects have different censoring timesτi , assumed to be mutually
independent). Independent censorship as defined in [89] can be reasonably assumed for the consid-
ered problem, as we will deepen in the following.

6.3.2 Cumulative hazard smoothing and reconstruction

Semiparametric estimation of cumulative hazard, as proposed in [113], produces a step function
estimateΛ̂0 of the cumulative baseline hazard functionΛ0(t) =

∫ t
0 λ0(s)ds that has the following

expression: definingt j as thej-th observed jump time of the aggregated processN.(t) = ∑n
i=1Ni(t)

andτ = max
i=1,...,n

τi

Λ̂0(t) = ∑
t j≤t

1

∑n
i=1Ci(t j)α̂Ni(t

−
j )e

γ̂T XXXi (t j )
, t ∈ (0,τ ],

whereα̂ andγ̂ are maximum likelihood estimates ofα andγ. Assuming the realΛ0 function to be
absolutely continuous, we deal with the issue of smoothing its estimateΛ̂0, successively moving on
to the reconstruction of cumulative hazard process realizations for eachpatient.
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The functionΛ0(t) has two a priori characteristics that we want to be preserved by the smooth-
ing procedure: increasing monotonicity andΛ0(0) = 0. A fast and efficient way of smoothing
functional data while enforcing desired constraints has been proposedin [70]. The method consists
in a minimum absolute deviation estimate of coefficients for a B-spline basis expansion: given
a set of observations{(xi ,yi)}i=1,...,m from a functiony = f (x) to be smoothed, a set of knots
{u0 = 0,u1, . . . ,uk−1,uk = τ} and a fixed polynomial degreed, find aaa∗ = (a∗0, . . . ,a

∗
k+d−1)

T such
that

aaa∗ = argmin
aaa∈Rk+d

m

∑
i=0

∣∣∣∣∣yi −
k+d−1

∑
j=0

a jB
(d)
j (xi)

∣∣∣∣∣ , (6.10)

B(d)
0 (x), . . . ,B(d)

k+d−1(x) being the B-spline basis of degreed on the chosen set of knots. If basis func-
tions of polynomial degreed= 1,2 are used, then monotonicity, convexity and pointwise constraints
can be written as linear constraints. Since the quantity to be minimized can also be written as a linear
objective function, the problem can be solved with linear programming techniques, whose efficiency
and reliability are ascertained. Using{(0, Λ̂0(0)),(t1, Λ̂0(t1)),(t2, Λ̂0(t2)), . . .} as observations, the
application of this method provides the desired smooth estimateΛ̃0.

We then need to reconstruct the realizations of processesΛi(t) for every patienti = 1, . . . ,n,
under the chosen model, since in the following cumulative hazard functions are treated as functional
data. Given the particular formulation of our model for cumulative hazard,we can rewrite it in a
form that allows us to use directly the smoothed estimateΛ̃0 instead of an estimate ofλ0. For
i = 1, . . . ,n, we set 0= t(i)0 and let(t(i)1 , . . . , t(i)Ni(t)

) be the jump times for patienti; then

Λi(t) =
∫ t

0
λ0(s)e

Ni(s−) logα+γTX i(s)ds

=
Ni(t)

∑
k=0

∫ t(i)k+1

t(i)k

λ0(s)e
k logα+γTX i(s)ds. (6.11)

Here we consider the case of a covariate vectorXT
i = (Xd

i
T
,Xc

i
T), i = 1, . . . ,n, whereXXXd

i (t) =
(Xi1(t), . . . ,Xind(t))

T is a vector of differentiable functions, whileXc
i (t)= (Xi(nd+1)(t), . . . ,Xi(nc+nd)(t))

T

is a vector of stepwise constant functions with discontinuities correspondingto the jumps ofNi(t);
hence we split also the parameter vectorγ usingγd = (γ1, . . . ,γnd)

T andγc = (γnd+1, . . . ,γnd+nc)
T , so

thatγ = (γT
d ,γ

T
c )

T . DefiningPX(t) =
∫ t

0 λ0(s)eγd
TXd

i (s)dsand integrating by parts we obtain

PX(t) = Λ0(t)e
γT
d Xd

i (s)−
∫ t

0
Λ0(s)γT

d [X
d
i (s)]

′eγT
d Xd

i (s)ds, (6.12)

where[Xd
i (s)]

′ =
(

dXi1(s)
ds , . . . ,

dXind (s)
ds

)T
. PluggingPX(t) into (6.11) leads to the expression

Λi(t) =
Ni(t)

∑
k=0

ek logα+γT
c Xc

i (t
(i)
k )
[
PX(t

(i)
k+1)−PX(t

(i)
k )
]
. (6.13)

This form allows us to perform only one integration to obtain (6.12), which is computed substituting
Λ0(t) with its smoothed estimatẽΛ0(t), and to reconstruct the realizationsΛ̃i(t) by adding process
jumps information.

6.3.3 Functional principal component analysis

We shall now use the reconstructed realizationsΛ̃i(t) as functional covariates in a generalized linear
model, to predict outcome. Since these data are high-dimensional, a common strategy is to perform
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a suitable dimensional reduction. In the case of functional data, this can bedone by expanding them
on a functional basis, and choosing only relevant components of the expansion.

Consider a functional ANOVA decomposition of data, as suggested in [119]

Λ̃i(t) = µ(t)+Di(t)+ εi(t), i = 1, . . . ,n (6.14)

whereµ(t) = E[Λ̃(t)], Di(t) is the residual for subjecti andεi(t) a noise term. One of the possi-
bilities for representing̃Λi(t) is to use Karhunen-Lòeve decomposition, which states that functional
principal components of a set of functions defined on domainT form a complete orthonormal basis
of L2(T) (see [41] for some theoretical results and [126] for details on the implementation of func-
tional principal component analysis, briefly FPCA). At this point we assume that functional data
are known on a common supportT, thus enabling us to estimate a common Karhunen-Loève basis.
Given the covariance operator

G(t,s) = E

[{
Λ̃(t)−E

[
Λ̃(t)

]}{
Λ̃(s)−E

[
Λ̃(s)

]}
]

for (t,s) ∈ I × I ,

the eigenvalue problem to be solved in order to obtain principal components is tofind the couples
{(ψk,νk)}k∈N, with ψk ∈ L2(T) andνk ∈ R, such that

∫

T
G(t,s)ψk(s)ds= νkψk(t). (6.15)

Once eigenfunctions{ψk}k∈N and eigenvalues{νk}k∈N have been found, we can express the func-
tional ANOVA decomposition (6.14) through the following representation

Λ̃i(t) = µ(t)+
∞

∑
k=1

ξikψk(t)+ εi(t), i = 1, . . . ,n,

whereξik =
∫

T Di(s)ψk(s)ds is thek-th score for subjecti.

Eigenfunction-eigenvalue couples{(ψk,νk)}k∈N completely explain modes of variation in the data,
in the sense that eigenfunctions represent orthonormal directions of decreasing variability with re-
spect to the explained variances expressed by the corresponding eigenvalues. Thanks to the basis
expansion given by principal components, it is possible to represent data using just the firstK ele-
ments of{ψk}k∈N, the linear combination of which is, by construction, a good approximation for
the original curves. The interpretation of eigenvalues as variances is useful also to determine a cri-
terion to choose the most relevant modes. Since∑K

k=1 νk represents variance captured by the firstK
components, we can chooseK so that the proportion of variance described by these components is
higher than a thresholdc, i.e.,

∑K
k=1 νk

∑m
k=1 νk

≥ c,

wherem is the number of abscissa values on which functional data are known, which is an upper
bound to the number of components that can be estimated. We then use the following approximation

Λ̃K
i (t) = µ(t)+

K

∑
k=1

ξikψk(t)+ εi(t), i = 1, . . . ,n.

For the sake of notation simplicity, from now on we will writẽΛi(t) even when its truncated basis
expansioñΛK

i (t) is used.
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6.3.4 Generalized linear models with functional covariates

Let us consider now a logistic regression model taking into accountΛ̃(t) as a functional covariate.
In particular, let us callηi the linear predictor composed by both functional and traitional covariate
related to subjecti.

ηi =
∫

T
Di(t)δ (t)dt+xT

i β

≈
∫

T
δ (t)

K

∑
k=1

ζikψk(t)dt+xT
i β ,

whereδ : T 7→ R is a functional parameter,β is a vector of time independent parameters to be
estimated andxi is a vector of time independent covariates. Notice that we used theK most relevant
principal components to representDi(t). If δ (·) is also represented with respect to the principal
components basis, i.e.,δ (t) = ∑K

j=1 δ jψ j(t), for the orthonormality of{ψk}k∈N we obtain

ηi =
K

∑
k=1

ζikδk+xT
i β

In this formulation the firstK FPC scores can be used to summarize the features of hazard functions
with a finite dimensional vector, thus providing a powerful methodology to usefunctional data in
many different classical models for multivariate data: the functional estimationproblem is reduced
to the multivariate estimation of parameter vectorsβ andδδδ = (δ1, . . . ,δK)

T . We are actually work-
ing to the generalization of such a framework to mixed-effects models. Temptatives in this direction
are suggested in [134] and [135].
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Data Analysis and Applications
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In God we trust; all others must bring data.
. . .

Uncertainty makes research predictable,
but you still need proof to satisfy everyone else.

. . .
The most important things cannot be measured. The issues that are most

important, long term, cannot be measured in advance. However, they might be
among the factors that an organization is measuring,

just not understood as most important at the time.

Edwards Deming

Keywords: Data Mining; Providers’ profiling; League Tables; Model selection; Survival Predic-
tion; Bundle Brunch Block; Functional Boxplots.



Chapter 7

Statistical analysis of STEMI Archive
data

In this chapter, the analyses carried out on data arising from STEMI Archive (Paragraph 3.2.3) are
presented. Data refer to data collection performed from November 2010 toJuly 2011. Main goals
of the analyses are:

• to depict the epidemiological reality of STEMI characterizing Regione Lombardia cardiolog-
ical context, through STEMI Archive and its linkage to administrative datawarehouse. This
real time data collection, performed simultaneously by all providers of Regione Lombardia
using the same technical support, enhances the use of already existing data resources without
any further economic effort, improves the quality of data and can be considered an effective
method for monitoring and giving feedback to the involved structures and players;

• to monitor hospital performances in terms of both outcomes and process indicators, in order
to point out atypical situations to invest into in terms of quality improvement and to sup-
port decision on management and rationalization of resources and the Cardiological Network
itself;

• to classify healthcare providers according to evidence based criteria and to effect they have on
outcomes of interest, using suitable statistical methods and adjusting for different case mix.

Within each of the following sections will be specified the dataset analyzed among those cited in
Section 3.2 and the method adopted among those presented in Part II.

7.1 Descriptive analysis of data

Information contained in the dataset we describe here and we will analyze inthe following sec-
tions concern the fields mentioned in Paragraph 3.2.3, and can be divided inthe following areas:
Overall description of patients; Way of admission and symptoms; Clinical evaluation at admittance;
Reperfusion Therapy; Process indicators; Outcomes. In what followswe will provide an overall
descriptive analysis of STEMI Archive, with some final benchmarks of providers’ performances
concerning the main process indicators, focusing only on those elements that will be of interest for
inferential analyses in the following sections. Detailed descriptive analysisof all the contents of the
Archive can be found in [85].

118
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Overall description

The dataset consists of 1889 statistical units whose Hospital Discharge Form (Scheda di Dimissione
Ospedaliera, briefly SDO) has been closed and sent to Regione Lombardia within the time period
from November 2010 to July 2011. These patients were eligible to be insertedin the Archive
since admitted with STEMI diagnosis in one of the hospital belonging to the Cardiological Network
(Section 2.1) of Regione Lombardia. In particular, 35 providers result tohave inserted cases within
the period of interest. The minimum number of inserted cases is 3, the maximum is 154.

We are working also on tests for assessing if the sample of cases inserted inSTEMI Archive is
effectively representative of the population treated by each hospital, thanks to the integration with
Ricoveridatabase of Regione Lombardia.

Gender

Stratifying the population by gender, we observe 1355 (71.73%) men and 534 (28.27%) women,
according to data that can be found in literature concerning STEMI patients.

Age

The overall mean age (± standard deviation) is equal to 66.29 (±13.24). Inspecting Figure 7.1, it
can be evinced that women are significantly elder than men (mean age of 73.42±12.87 vs mean age
of 63.48±12.30 years), as confirmed by the Wilcoxon nonparametric test (p-value< 2.2∗10−16).

Female Male

30
50

70
90

Age by gender

Figure 7.1:Flanked Boxplots of patients’ age, stratified by gender.

Moreover, partitioning the overall age in classes as reported in Table 7.1,it can be noticed that more
than a quarter of the population is over 75 years.

(35,50] (50,65] (65,70] (70,75] (75,80] over 80

263 636 232 248 195 315
14% 34% 12% 13% 10% 17%

Table 7.1:Stratified overall age.
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Admission to hospital and symptoms

Mode of admission

Stratifying patients acording to their mode of admission to hospital (there are 58missing data in this
field), we obtain what is reported in Table 7.2. In particular, 53.12% of the population is managed
by 118 rescue units, whereas 46.88% is self-presented. Among patients managed by 118, 61.71%
are rescued by Advanced Rescue Units (ARUs), i.e., rescue units with doctors onboard, 35.06% by
Basic Rescue Units (BRUs), i.e., the common ambulances, and the remaining 3.23% by rescue units
with nurse onboard (IRUs). For all patients, but especially for those managed by 118, it is possible to
check that for 44.7% of patients, the Fast-Track have been activated (i.e., patterns of careconnecting
directly patients with hemodynamic or cath-lab without passing through Emergency Room - ER), in
order to monitor and evaluate the efficiency of Network for the providers admitting these patients.

ARU BRU IRU Self-presented
535 (32.78%) 304 (18.62%) 28 (1.72%) 765 (46.88%)

Table 7.2:Stratified way of admission, without patients transferred from one hospital to another one.

Moreover, 199 patients who were transferred from one hospital to another one have been excluded;
they will be analyzed apart later, since represent a different population with respect to the one we
are interested in, both in terms of treatment type and process indicators.

Symptoms

The stratification of declared symptoms atcall time (see Paragraph 2.2.2) is reported in Figure 7.2.
Thoracic pain is, as expected, the most common declared symptom, followed byepigastric pain and
dyspnea, which are also typical of infarction, then more atypical symptoms and the cardiac arrest.

Figure 7.2:Declared symptoms stratification.

Admission/discharge department and drugs

Patients of this collection of STEMI Archive are admitted in one of the following departments:
UTIC (the Italian acronym for Intensive Care Coronary Unit, 93.22%), Cardiologia (2.01%), Ri-
animazione(3.02%), Medicina Generale(1.38%), Medicina d’urgenza(0.37%). On the other
hand, they all result to be discharged by on of the two following: UTIC (87.80%) and Cardiology
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(12.20%). Most of them result treated with almost one of the following drugs:Aspirina (83.22%),
Tienopiridine(15.30%),Eparina(60.14%),Bivaluridina (7.31%),Prasugrel(4.50%),Clopidogrel
(33.62%). Moreover, 24.14% of them are treated with antiplatelet, 19.45% with beta-blockers, and
3.65% take insulin. These fields are useful to check for the compliance to prescribed protocols of
care for STEMI patients.

Evaluation at admittance

Killip

The Killip class quantify the severity of the infarction on a discrete scale fromI (less severe in-
farction) to IV (the most severe infarction). According to this classification, the patients of STEMI
Archive are divided as follows: 81% in Killip class I, 11.06% in Killip class II, 3.92% in Killip
class III and 4.02% in Killip class IV. The latter class is the one containing the patients presenting
with highest risk and then more likely to die, as proved by the number of death within each class,
reported in Table 7.3.

I II III IV
Alive pts. 1503 193 58 37
Dead pts. 27 16 16 39

Table 7.3:Number of dead patients within each Killip class.

Among the 76 patients in Killip class IV, 52 present Cardiogenic shock among Major Adverse
Cardiovascular Events (MACE), i.e., complications due to the clinical conditions of patients and to
the clinical practice they are treated with.

Risk Factors

Risk Factors can be used to depict the inner case mix of each provider. This information can not be
obtained from an administrative database, but only from a clinical registry. The survey of risk factors
in STEMI Archive is the following: Diabetes (17.79%), Smoke (39.54%), Hypertension (59.82%),
Cholesterol (50.24%), Vasculopathy (10.85%), Chronic Kidney Disease (CKD) (9.11%), previous
AMI (12.55%). In summary, only 5.61% of patients has no risk factors, 94.39% present at least one
risk factor, 11.69% present more than 4 risk factors. The presence of high number of risk factors
could be considered as prognostic of in-hospital mortality, whereas CKD isprognostic of long term
mortality, as we will see in the following.

Other clinical feautres of interest

For each patient inserted in the STEMI Archive, we saw in§3.2.3 that several clinical data are
recorded. Among these, we report in the following the most interesting for carrying out a prelimi-
nary clinical evaluation of the patient.

⊲ Systolic Blood Pressure- The distribution of the Blood Pressure in patients of STEMI
Archive has mean equal to 136.9 mmHg and standard deviation equal to 30 mmHg.

⊲ Creatinine peak - The adverse prognostic significance of biomarker elevations (i.e., creatine
kinase among others) during AMI has been object of many studies in the past decades. In fact,
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peak levels of biomarker have been shown to be reliable predictors of infarct size and prog-
nosis in patients with AMI. In our population, the mean of Creatinine peak is equal to 1.212
mg/dl, with standard deviation equal to 0.816 mg/dl. Creatinine peak and its relationship with
the creatinine value at admittance are of great importance for decision on optimal treatment,
and are related with consequences on kidneys health. In STEMI Archive, 139 patients have a
Creatinine peak greater than 1.5 times the value at admittance. Among these 10 present CKD
among MACE.

⊲ Site of infarction - Among others criteria, different type of infarction can be distinguished
according to which part of the myocardium wall is interested by the necrosisevent. According
to the location, the prognosis and the treatment may be different. In particularan anterior
infarction is an infarction affecting the anterior surface of the heart, i.e., the portion facing
forward just beneath the chest wall. In STEMI Archive, 44.68% of patients are affected by
anterior infarction, whereas 55.32% presents it in other sites.

⊲ Bundle Branch Blocks and Atrial Fibrillation - 3.12% of infarctions are classified as Left
Bundle Brunch Blocks (LBBB) (see Paragraph 3.2.4) and 6.03% of patients present also
Atrial Fibrillation.

Reperfusion therapy

Two are the main categories of treatment that STEMI patients may undergo: primary Percutaneous
Coronary Intervention (PCI) and pharmacological treatment, namely Thrombolysis, which can be
further divided in pre-hospital (preH) and in-hospital (intraH), as reported in Table 7.4:

Therapy Primary PCI preH Thrombolysis intraH Thrombolysis No therapy
pts. (%) 77.92% 0.16% 4.98% 16.94%

Table 7.4:Reperfusion therapy of patients of STEMI Archive

As a whole, 83.06% of patients result to undergo a reperfusion therapy. In particular primary PCI is
the most common procedure, as suggested by protocols and guidelines whenever times of interven-
tion make it possible.

Thrombolysis and no-treatment

320 patients come out as not treated. For the first time in a clinical registry, withSTEMI Archive
it is possible to investigate the reasons of missing treatment (see Table 7.5). This could be of great
interest for people in charge with healthcare government as well as physicians of each provider,
since it enables them to understand if missing treatments are to be ascribed to errors, logistics,
delays or other factors. Noticed that this is the first time that such an enquirecan be addressed with
a clinical registry.

Patients transferred from spokes to hubs

Of the 199 patients transferred from a first to a second hospital, we observed the received treatment
(14 thrombolysis, 152 primary PCI and 33 no treatment) and measured times from Door to Door and
Door to Balloon (DB) time in the receiving hospital. The boxplots relating to the latter time indexes
are reported in Figure 7.3. The median time of Door 1 to Door 2 time is equal to 111minutes,
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Other causes 110 (34.70%)
Delay in diagnosis 105 (33.12%)

Spontaneous ST resolution 47 (14.83%)
Spontaneous Reperfusion. 20 (6.31%)

Comorbidities 15 (4.73%)
Hemodynamic not available 10 (3.15%)

Pt. refuses treatment 7 (2.21%)
Pt. dies before 3 (0.95%)

Table 7.5:Causes of missed treatment.

whereas the median time of DB in the receiving hospital is equal to 31 minutes. This information
may induce considerations on treatment of these patients, and in general to the treatment to be given
in such a situation, in order to get the best reperfusion.
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Figure 7.3:Boxplots of distributions of times from admittance to the transferring hospital to admittance to
the receiving hospital (left panel) and from admittance to the receiving hospital to Balloon (right panel), for
the 199 transferred patients.

Process Indicators

According to times of call, treatment and intervention as defined in Paragraph2.2.2 and in [36], it
is possible to compute process indicators for each provider, in order to evaluate and monitor their
efficiency in activating and managing suitable patterns of care for STEMI patients. In the following
analysis, we focus on the subpopulation of patients undergone primary PCI and not transferred from
one hospital to another one, i.e., 1286 of the original 1889 units.

In Table 7.6, a summary of the main process indicators is reported. Median time of each distribu-
tion are presented, together with guidelines (if any) and proportion of patients treated according to
guidelines.
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Index name Median Guidelines % of pts. treated
(if any) according to guidelines

Onset to Balloon (OB) 193 min
Onset to Door (OD) 97 min 180 min 81.81%

Door to Balloon (DB) 72 min 90 min 64.76%
Onset to First Contact (OFC) 75 min

First Contact to Balloon (FCB) 90 min
Onset to fisrt ECG (OfECG) 85 min

first ECG to Balloon (EB) 78 min 80 min 50.64%
ECG to Needle (EN) 26 min 30 min 52.50%

Table 7.6:Summary indexes concerning distributions of the main process indicators.

Onset to Balloon (OB)

The total ischaemic time is a global measure of efficiency, which jointly accountsfor delays due to
patients (call delay), to 118 service (pre-hospital delay) and to providers logistics and STEMI care
protocols (in-hospital delay). It provides a snapshot of the whole process timing, measuring the
fluency of the STEMI care pattern from symptoms onset to care delivery.

The distribution of Onset to Balloon (OB) time has a median equal to 193 minutes and mean
equal to 273 minutes (patients whose OB time is greater than 24 hours have been excluded by the
analysis, since probably these times represent an error in inputing data oranyway, for them, primary
PCI should not have been performed, according to guidelines that suggest PCI to be effective within
at most 6 hours from symptoms onset). It can be observed that 75% of patients has OB less than
310 minutes, and 90% of them has OB less than 572 minutes. The boxplot and thehistogram of the
distribution are reported in Figure 7.4. The red lines indicate the threshold of6 hours. 12 missing
data are present.
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Figure 7.4:Boxplot and histogram of OB time for patients with OB less than 24 hours.

Onset to Door (OD)

The distribution of Onset to Door (OD) time measures the delay to treatment due topre-hospital
events. Unfortunately, it does not allow for distinguishing if the delay is dueto the patient fault
(delay in calling 118 or in presenting at ER) or to the rescue system (delay inrescue units arrival).
This can be done through the joint use of this indicator with the one measuring the time between
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symptoms onset and time of first contact with healthcare system (OFC).
The distribution of OD time has median equal to 97 minutes and mean equal to 116 minutes.

75% of patients has OD less than 153 minutes, 90% less than 229 minutes. Patientswith OD greater
than 6 hours (185) have not been considered for the previously mentioned reasons. Figure 7.5 shows
the boxplot and the histogram of OD distribution for patients whose OD is less than 6 hours. The
red lines indicate the gold standard threshold of 3 hours. 23 missing data arepresent.
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Figure 7.5:Boxplot and histogram of OD time for patients with OD less than 6 hours.

Door to Balloon (DB)

The Door to Balloon is the time interval starting with the patient’s arrival in the emergency depart-
ment and ending when a catheter guidewire crosses the culprit lesion in the cardiac cath lab. It is
an index of internal organizational efficiency of hospitals, and it is one of the most accepted process
indicator to be monitored in literature (see [156], [158], [189] and [197]among others).
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Figure 7.6:Boxplot and histogram of DB time for patients with DB less than 6 hours.

The distribution of DB time, evaluated for all patients whose DB is less than 6 hours, has median
equal to 72 minutes and mean equal to 86 minutes. 75% of patients has DB time less than 107
minutes, 90% of them less than 163 minutes. On the whole, 64.76% of patients has DB time less
than prescribed 90 minutes. Figure 7.6 shows the boxplot and the histogram of DB distribution for
patients whose DB is less than 6 hours. The red lines indicate the gold standard threshold of 90
minutes. 14 missing data are present.
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Figure 7.7:Flanked boxplots of DB time stratified according to ECG tele-transmission.

In Figure 7.7 the distributions of DB time for patients with and without tele-transmission of pre-
hospital ECG from the rescue units which delivered them to the hospitals arecompared. It can be
immediately appreciated that the first is stochastically lower than the second. This is confirmed
by Wilcoxon nonparametric comparison test (p-value< 2∗10−16). In the subpopulation with tele-
transmitted ECG, 88.76% of patients has DB time less than 90 minutes, whereas in the subpop-
ulation without tele-transmitted ECG, only 53.31% of patients results to be treated according to
guidelines.

Onset to First Contact (OFC)

The time from symptoms onset to the First Contact with the National Health Serviceis the Door
time for self-presented people, whereas it is the arrival time of the rescue units for people delivered
by 118. The distribution of OFC time for patients whose OFC is less than 6 hours(161 patients are
then excluded), has median equal to 75 minutes and mean equal to 101 minutes.75% of patients
has OFC less than 130 minutes, and 90% less than 224 minutes. 13 missing data are present.

Onset to First ECG (OfECG)

The first ECG time is defined as the time of ECG tele-transmission by the rescue units (if any) for
patients delivered by 118, and as the time of first ECG at ER for all the others. The time from
symptoms onset to first ECG (OfECG) enable us to monitor how fast the diagnosis is carried out.
The distribution of OfECG time, excluding patients whose OfECG is greater than6 hours (33) or
negative (15), has median equal to 85 minutes and mean equal to 108 minutes.75% of patients has
OfECG less than 145 minutes, and 90% less than 224 minutes.

First ECG to Balloon (EB)

The time from first ECG to primary PCI (EB) enables us to monitor how fast the therapy is executed
for those patients who received a STEMI diagnosis through ECG.
The distribution of EB time, excluding patients with EB time greater than 6 hours or negative (9),
has median equal to 78 minutes and mean equal to 90.65 minutes. 75% of patients has EB time less
than 109 minutes, and 90% less than 151 minutes. Figure 7.8 shows the boxplotand the histogram
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of EB distribution for patients whose EB is less than 6 hours. The red lines indicate the gold standard
threshold of 80 minutes. 69 missing data are present.

0
10

0
20

0
30

0

Boxplot of EB time

EB

m
in

Histogram of EB time

min

0 100 200 300 400

0
20

0
40

0
60

0

Figure 7.8:Boxplot and histogram of EB time for patients with EB less than 6 hours.

Overall benchmarks of process indicators

In this paragraph, we show some benchmarks of the most important process indicators, relating the
behaviour of each provider (all the information are available to us in anonymous form) with respect
to the overall behaviour of the network. These benchmarks are a simple andeffective instrument
that people in charge with healthcare governance could be take advantage of in describing the real
condition of the network in term of efficacy and efficiency.

DB vs Exposure

In Figure 7.9 the proportion of patients with DB less than 90 minutes against Exposure, i.e., the
proportion of cases inserted in the STEMI Archive by each hospital over the total of 1889 units.
The coloured lines show respectively: the threshold of 25 cases (yellowvertical line), the threshold
of 50% of patients treated according to guidelines (red horizontal line) andthe threshold of 75%
of patients treated according to guidelines (green horizontal line). The best-operating hospitals are
those being in to right-up corner. It seems to be no evidence for the hypothesis “the greater number
of patients treated, the better the performances achieved”.

DB stratified by hospital

Figure 7.10 shows the boxplots of DB distribution for each hospital of the STEMI Archive (only
patients with DB less than 6 hours are considered). The red line indicates thegold standard threshold
of 90 minutes. From this graph can it be better understood the good result already indicated by the
median of the overall DB time. In fact, most of providers maintain medians and sometimes even
3rd quartile under the guidelines. This is probably the effect of the last years campaigns, carried out
especially on Milan urban area, for improving in-hospital organizations.

EB vs first ECG

In Figure 7.11 is reported, for each hospital of STEMI Archive, the median EB time against the
median of the time of first ECG. The circle dimension is proportional to the exposure of each
structure. The best performing hospitals are those in the lower-left corner. Again it seems to be no
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Figure 7.9:Benchmark of DB time against Expoure for each hospital of STEMI Archive. The yellow line
is the threshold of 25 cases inserted, the red one is the threshold of 50% of patients treated according to
guidelines, and the green line the threshold of 50% of patients treated according to guidelines.
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Figure 7.10:Flanked Boxplots of DB time for each hospital of STEMI Archive (only for patients whose DB
time is less than 6 hours).

evidence for correlating the number of treated patients with good performances. The green square
is the global median of all hospitals. Coloured lines highlight the guidelines of 80and 10 minutes
respectively.
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Figure 7.11:Benchmark of median DB times against median times of first ECGfor each hospital of STEMI
Archive. The diameter of each circle is proportional to the number of cases inserted in the registry by each
hospital. Red lines indicate the thresholds of acceptability (80 minutes and 10 minutes respectively) suggested
by international guidelines [151]. The green square shows the overall median of all hospitals.

Outcomes

Major Adverse Cardiovascular Events (MACEs)

As we said before, MACEs are adverse events arising after treatment and/or induced by the critical
profile of patients, which have a great influence not only on the mortality outcome, but also on the
quality of life of the patient. Consequently, cost-effectiveness considerations could be facilitate by
the knowledge of their presence. In particular in STEMI Archive 44.79% of patients present at
least one MACE. In particular, there are 157 (8.31%) patients presenting Shock, 23 (1.22%) with
Re AMI, 37 (1.96%) with Mechanical complications, 190 (10.06%) with Mitral insufficiency, 111
(5.88%) with Pulmonary Oedema, 63 (3.34%) with Major Bleedings, 29 (1.54%) with Ischemia,
628 (33.24%) with Arrhythmias.

In-hospital Mortality

The in-hospital mortality of STEMI Archive patients is equal to 5.19% (98 deaths). Concerning
death patients, 63.27% of them have been treated with primary PCI, 6.12% with intraH thromboly-
sis, and 30.61% of them received no treatment. Deaths are distributed in each hospital as reported in
Figure 7.12. Even at first sight, the great variability among structures is evident, then it is reasonable
that this grouping factor may induce an overdispersion effect on the mortalityoutcome.

Long term survival

The linkage between STEMI Archive and the administrative database ofAnagrafica, enable us to
observe for each patient of STEMI Archive, the long term survival, i.e., the censored data on life
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Figure 7.12:Number of patients and in-hospital mortality (%) for each hospital of STEMI Archive.

status of patients at the time of linkage between STEMI Archive and administrative databases. In
Anagraficadatabase we observe the mortality due not only to cardiovascular causes,anyway within
a month (or few months) from discharge, it is likely that the death is connectedwith the cardio-
vascular event happened not far ago. In particular in our case, having performed the integration at
the end of September 2011, it is possible to point out for all patients mortality after 30 and 60 days
from discharge. Moreover, according to each date of discharge, wehave long term mortality up to
September 30th, 2011. In what follows we will refer to the analysis of mortalityafter 60 days as
long termmortality. For patients of STEMI Archive, the long term mortality comes out to be equal
to 7.9%.

ST-resolution after 60 minutes

Analysis of ST-segment resolution on ECG, after any treatment for ST elevation Myocardial Infarc-
tion, offers an attractive and cost effective solution to assess coronary reperfusion, since it measures
the degree of microvascular reperfusion, which is strongly correlated with the outcome. ST segment
is therefore a good indicator of prognosis. We have this information for patients undergone to pri-
mary PCI (1436 units). Among these, 76.1% have a successful reperfusion, in term of ST-segment
resolution of 70% after 60 minutes from PCI.

As we will see later, ST-segment can be thought both as outcome itself (modelswill be provided
for it) and as prognostic factor for in-hospital and long term mortality, as known also from literature
(see [162] and [203]). It is in fact strongly correlated with in-hospitalmortality outcome (p-value
of independance Chi-squared test= 1.437∗ 10−11), as well as influenced by pre-hospital and in-
hospital times.

Integrated databases: an overview of complexity

Integrating the STEMI Archive with the PHD of Regione Lombardia, a complexlongitudinal data
can be obtained for each patient. We saw in Paragraph 3.3.2 the main features of such data both
in terms of complexity and potential interest for a wide range of analyses. Here we describe some
preliminary information arising from integrated data.
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Number of admissions to hospitals

The first and most simple information arising from integrated data is the longitudinal overview of
patients’ clinical history. For example, with respect to the index event of theSTEMI Archive, we
can assess how many (if any) previous admissions each patient has as well as how many (if any) re
admission he/she experiences in the 60 days after discharge.

In particular, we are actually working on previous admissions (and all the features related to
them) with models like those described in Section 6.3, as well as focusing on the 772 patients who
have re-admissions after STEMI Archive event.

Further analyses on integrated data

The integration between STEMI Archive and administrative databases ofFarmacienables us to ad-
dress further epidemiological enquires like the identification of subpopulationof patients “already
known” to the therapeutic iter, and allows for checking the compliance to the prescribed therapy af-
ter STEMI Archive event of infarction. In general, we verified also thecompliance of each hospital
concerning the number of cases inserted in the STEMI Archive. Since it isknown to Regione Lom-
bardia how many SDO are dued during data collection periods, we observed that, on average, 70%
of cases have been inserted by structures involved in data collection. Anyway, since the percentage
of inserted cases ranges from 12% to 98%, we are actually checking if samples of cases inserted in
STEMI Archive by eaxh hospital are really representative of the population of STEMI patients they
treat.

Results of analyses on STEMI Archive concerning these last two paragraphs are actually under
inspection of Regione Lombardia healthcare district, and then cannot be reported here, yet. See
[14], [15] and [77] for an example of application of such statistical techniques to a similar databases.

Quality control

Finally, the integration between STEMI Archive and PHD of Regione Lombardia allows for check-
ing of data quality, in terms of completeness, accuracy and reliability. No more self-referenced
data are admitted, since all information can be compared with those contained in the administrative
database (whose data collection is continuous and compulsory, since it is used by Regione Lombar-
dia to refund hospitals for services delivered). For example, we checked for the correspondence of
admission date of STEMI Archive. For 1743 of 1889 patients, it has beenpossible to achieve the
match. Some of the missing matches differed by one day, some were completely missing.

7.2 Frequentist approach to outcomes modelling

In this section, we present the statistical models fitted for the main outcomes of interest of STEMI
Archive, i.e., in-hospital mortality (Paragraph 7.2.1), Long term mortality (Paragraph 7.2.2) and
MACE (Paragraph 7.2.3). We will focus on subpopulation of STEMI patients undergone primary
PCI and not transferred, i.e., on 1286 of the original 1889 statistical units. The main aims of the
modelling effort are firstly to verify that literature assessments about factors to be considered as
prognostic for outcomes of interest hold also in our dataset, then to include allthe significant factors
useful to make predictions at patient’s level. The first step of the analysis isthen the selection of the
most significative features to be considered, both from clinical and statistical point of view. Then
the selected models are fitted to STEMI Archive data, providing estimates for parameters of interest.
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Plots of the predictive surfaces for some benchmark cases are presented in order to quantifying the
gain/loss in responses for each setting of interest.

7.2.1 In-hospital survival

Concerning the in-hospital survival (measured through the binary variableSurvival, assuming value
1 if patient is discharged alive, 0 otherwise), we observe in the subpopulation of patients undergone
primary PCI and not transferred a share of success (96.11%) even higher than the in-hospital survival
of the overall population. In this case, according to clinical best practicecriteria, we considered the
following covariates as eligible to be inserted in the model:

⊲ Age: a continuous variable indicating the age of each patient at hospital admission;

⊲ Sex: a categorical variable indicating the sex of each patient;

⊲ Killip : a binary variable for categorized Killip class, assuming value 0 for the lesssevere class
of infarction (Killip I) and 1 for the most severe ones (Killip II, III and IV);

⊲ FE: a continuous variable indicating the percentage of ejection fraction of each patient at
admittance;

⊲ Risk: a binary variable indicating the presence (Risk= 1) of almost 4 risk factors among those
registered in STEMI Archive (see Section 7.1);

⊲ STresolution: a binary variable indicating if an effecacy reperfusion has been reached (almost
70% of ST elevation reduction after 60 minutes from intervention);

⊲ Mezzo: a binary variable indicating the type of rescuing (1 if 118 delivering is observed, 0 if
the patient is self-presented);

⊲ logOB: a continuous variable indicating the total ischaemic time (in logarithmic scale) for
each patient.

We do not includeSexin the model, since it is strongly correlated with (and then masked by) the
patient’s age (p-value of Pearson Correlation test< 2.2∗10−16); in fact, as we saw in Section 7.1,
women are much elder than men. AlsoMezzois not included, since it is confounded byKillip (p-
value of Fisher test for independence= 2.363∗10−06), in the sense that patients in worse conditions
are often delivered by 118 rescue units. Finally, the total ischaemic time results to be not significant
in explaining mortality, but anyway it is correlated with ST resolution (p-value of Wilcoxon test for
comparison= 0.002123). Nonlinear growth like those presented in Section 4.5 or Section 4.6for
modelling the behaviour of DB time as function of suitable process indicators are actually under
analysis. Figure 7.13 shows the distribution of OB time in logarithmic scale for subpopulations of
patients with negative (left) and positive (right) ST resolution respectively.

After these considerations and the stepwise variables selection based on AIC index for variable
selection, we fit a GLM model for a Bernoulli binary outcome with canonical logistic link function,
obtaining the following output:

Call:
glm(formula = Survival ˜ Age + Killip + FE + Risk + STresolutio n,
family = binomial())
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Figure 7.13:Flanked boxplots of OB time in logarithmic scale for patients with positive (left) and negative
(right) outcome of ST resolution.

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.72247 1.73793 2.717 0.006582 **
Age -0.04931 0.01760 -2.801 0.005096 **
Killip -1.74335 0.46070 -3.784 0.000154 ***
FE 0.09987 0.02145 4.657 3.21e-06 ***
Risk -1.73056 0.72437 -2.389 0.016892 *
STresolution 0.97143 0.42839 2.268 0.023351 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ‘ ‘ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 272.90 on 945 degrees of freedom
Residual deviance: 171.89 on 940 degrees of freedom
AIC: 183.89

Number of Fisher Scoring iterations: 8

The model for in-hospital survival of patienti is then

logit(E[Survival= 1|Age,Killip ,FE,Risk,STresolution]) =

4.72247−0.04931·Agei −1.74335·Killip i +0.09987·FEi

−1.73056·Riski +0.97143·STresolutioni

(7.1)

As expected, for increasing age, risk and Killip class, the survival probability decreases. On the
other hand, the higher the ejection fraction and the reperfusion efficacy, the better the survival.
Figure 7.14 shows the estimated survival surfaces (as functions of ageand ejection fraction) for 8
different scenarios: from left to right and from top to bottom, we pass from the best case scenario
to the worst case one.

Respectively:

(a) Less severe infarction (i.e., Killip class I), low risk (i.e., less than 4 risk factors are present),
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reperfusion accomplished (i.e., 70% STsegment elevation reduction 60 minutes after PCI has
been achieved);

(b) Less severe infarction, high risk (i.e., almost 4 risk factors are present), reperfusion accom-
plished;

(c) More severe infarction (i.e., Killip class II, III or IV), low risk, reperfusion accomplished;

(d) More severe infarction, high risk, reperfusion accomplished;

(e) Less severe infarction, low risk, reperfusion not accomplished (i.e., 70% STsegment elevation
reduction 60 minutes after PCI has not been achieved);

(f) Less severe infarction, high risk, reperfusion not accomplished;

(g) More severe infarction, low risk, reperfusion not accomplished;

(h) More severe infarction, high risk, reperfusion not accomplished;

The green points on each survival surface mark the estimated survivalprobability (resumed in Table
7.7) for a reference patient, aged 75 and with 50% of ejection fraction at admittance. This is a
simple way of quantifying the impact of each component of the model on outcome. The different
shape of each surface is speaking about different case-mix.

Scenario (a) (b) (c) (d) (e) (f) (g) (h)
Killip 0 0 1 1 0 0 1 1
Risk 0 1 0 1 0 1 0 1

STresolution 0 0 0 0 1 1 1 1
Survival prob. 99.47% 97.11% 97.07% 85.47% 98.62% 92.71% 92.62% 69.01%

Table 7.7:Estimated survival probability of a reference patient (Age= 75 years,FE = 50% in different
case-mix scenarios.

The estimated survival surfaces and related probabilities reported in Table 7.7 are computed not
taking into account the grouped nature of data. It is reasonable that theychange from hospital to
hospital; in fact, the overall mean (std. dev.) of survival probability estimated on GLM model
fitted values is 0.9672 (0.0884), whereas the same qauntity computed hospital by hospital ranges
from 0.8789 to 0.9955. In other words, there may be latent factors we are actually not accounting
for with a simple GLM model, and it is possible that these latent factors influencethe estimation
procedure. So the next step is not only to adjust our estimates for case-mix, but also to estimate
the influence of grouping factor on outcomes. This can be accomplished adopting a mixed-effects
approach, which indeed not only enables us to account for the overdispersion induced on data by the
presence of a grouping factor (the hospital of admission), but also to quantify the “provider effect”
on survival. Moreover, we will take advantage of random effects estimates for clustering together
providers characterized by similar influences.

7.2.2 Long term survival

Following the same standards adopted for the analysis of in-hospital survival, in this paragraph
we present the model pointed out for long term survival in the subpopulation of patients undergone
primary PCI and not transferred. Also in this case, the outcome is represented by the binary variable
Survival, assuming value 1 if patient is alive after 60 days from discharge, 0 otherwise (we observe
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Figure 7.14:Estimated survival surfaces in different case-mix scenarios, obtained fitting a GLM model
for survival outcome. Green points indicate the survival probability for a patient aged 75 and with 50% of
ejection fraction at the entrance.

a share of success equal to 93%). We recall that it is the first time that it is possible to achieve
this information, together with patients’ clinical follow up, and that it is due to the integration of
STEMI Archive with administrative databaseAnagrafica, where births and deaths of each citizen of
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Regione Lombardia are registered. As we said in Paragraph 3.3.2, this is theoverall mortality, i.e.,
not only the mortaliy due to cardiovascular events. Anyway, up to 60 days from a cardiovascular
event, the death it is likely to be connected to hearth failure.

After the stepwise variable selection based on AIC index for variable selection, again we fit a GLM
model for a Bernoulli binary outcome with canonical logistic lin function, obtaining the following
output:

Call:
glm(formula = Survival ˜ Age + Killip + FE + CKD + STresolution ,
family = binomial())

Deviance Residuals:
Min 1Q Median 3Q Max

-3.2811 0.1219 0.1954 0.3138 1.3245

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.17916 0.96190 2.265 0.0235 *
Age -0.05226 0.01115 -4.687 2.77e-06 ***
Killip -1.19473 0.27873 -4.286 1.82e-05 ***
FE 0.08712 0.01342 6.492 8.45e-11 ***
CKD -0.66008 0.37081 -1.780 0.0751 .
STresolution 0.34597 0.13787 2.509 0.0121 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ‘ ‘ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 587.84 on 1162 degrees of freedom
Residual deviance: 417.31 on 1157 degrees of freedom

(121 observations deleted due to missingness)
AIC: 429.31

Number of Fisher Scoring iterations: 6

where CKD stays for Chronic Kidney Disease and assumes value 1 if thei-th patient is affected by
CKD, 0 otherwise. As it has been told us by physicians, it is relevant that such factor is included
in the model, since often the drugs given for primary PCI treatment are difficult to be drained by
kidneys, then if a patient undergoing primary angioplasty is also affected by chronic kidney disease,
the choice of drugs and treatments could strongly affect his/her quality of life (and then his/her long
term survival) after discharge. The model for long term survival of patienti is then

logit(E[Survival= 1|Age,Killip ,FE,CKD,STresolution]) =

2.17916−0.05226·Agei −1.19473·Killip i +0.08712·FEi

−0.66008·CKDi +0.34597·STresolutioni

(7.2)

As expected, for increasing age, CKD and Killip class, the long term survival probability decreases.
On the other hand, the higher the ejection fraction and the reperfusion efficacy, the better the long
term survival.
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7.2.3 MACE

In this paragraph we present the analysis pointed out for Major Adverse Cardiovascular Events
(MACE) in the subpopulation of patients undergone primary PCI and not transferred. The outcome
is represented by the binary variableMACE, assuming value 1 if patient present at least 1 Major Ad-
verse Cardiovascular Events among re-AMI, major bleedings, ischaemy and death, and 0 otherwise
(we observe a share of success equal to 20.2%). The idea is to consider a less unbalanced outcome
than survival one. At the same time, we would like to catch a more general index of quality of life
after STEMI event, i.e., to consider as good prognosis not only the absence of death, but also the
absence of events that worsen the patient’s health.

Of course, such an outcome depends on covariates and previous clinical history of patient in
a complex way. A preliminar stepwise variable selection based on AIC criteriondetected only a
strong correlation betweenMACE and ejection fraction (p-value of Wilcoxon test= 6.22∗10−7),
as shown in Figure 7.15. Anyway, several confounding are likely to be present. That’s why we are
actually trying to consider a wider set of covariates, led by clinical best practice. Further modelling
analyses connecting MACE with patients previous clinical history are actuallyunder inspection of
physicians and Regione Lombardia healthcare district.
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Figure 7.15:Flanked boxplots of FE for patients presenting no MACE (left) and at least one MACE (right).

7.3 Frequentist approach to hospitals clustering

Models adopted in the previous section are now enriched in order to focuson clustering healthcare
providers with similar effects on patients survival. Mixed effect models aresuitable candidate to
enable us to reach such a target. In what follows, we will focus on the in-hospital survival outcome
alone, but the approach can be straightforwardly applied to any of the other outcomes of interest.

Performance indicators for assessing quality in healthcare contexts havedrawn more and more
attention over the last few years because they enable the research workers to measure several com-
ponents of the healthcare process, clinical outcomes and disease incidence. At the same time,
questions about the right use of such indicators as a measure of care quality have emerged. Here we
propose the use of performance indicators in modelling the outcomes of clinical structures in order
to identify “similar behaviours” among clinical structures. These models includevariability be-
tween institutions (not forgetting case-mix) and performance indicators arecomputed starting from
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data collected through clinical registries. The purpose of this section is, in fact, to highlight how
advanced statistical methods can be used to identify suitable models for complexdata coming from
clinical registries in order to classify and evaluate health-care providers. In clinical literature (see
[160], [177] and [200] among others), several examples make use ofclinical registries to evaluate
performances of medical institutions.

We want to capture the real standards of performances of the Cardiological Network of Re-
gione Lombardia, a very heterogeneous area in terms healthcare offer.So we identify an effective
and robust statistical technique to find similar behaviours or clusters among clinical structures. In
general, procedures for analyzing and comparing the effects of the healthcare providers on health
services delivery and outcomes are known asprovider profiling. In a typical profiling procedure,
patient-level responses are measured by clusters of patients treated by different providers.

So three different methodologies to evaluate hospital’s performance in this provider profiling
perspective are proposed. In the first one, we estimate the in-hospital survival rates after fitting a
GLM on outcome of interest and then we use the estimated survival probabilityfor computing a
score called Stadewide Survival Rate (SSR), relating the actual survival at the j−hospital to the
expected survival in the same hospital, adjusted for different patient severity resumed in the covari-
ates of the GLM. In the second one, we fit a GLME model to explain in-hospital survival outcome,
with a parametric random effect due to the hospital grouping factor, then we perform an explorative
classification and ranking analysis on the point estimates of hospital effects. In the third one, we
classify the hospitals on the basis of the variance components analysis explained by a GLME model
on outcome with a nonparametric random effect. We then use all the three methods to discriminate
between different behaviours: we compare classification structures obtained starting from these
models and quantify the effect of making part of different groups on outcomes of interest. Results
of similar analyses, tested on MOMI2 dataset, can be found in [62].

7.3.1 Stadewide Survival Rate (SSR)

Starting from the GLM model in (7.1), we compute the Statewide Survival Rate (SSR) for hospital
j, defined as

SSRj =
∑n j

i=1yobs
i j

∑n j

i=1 p̂i j
,

whereyobs
i j is the resulting outcome for patienti treated in the hospitalj, andp̂i j is the corresponding

survival probability estimated by using the GLM in (7.1). An elementary assessment of hospitalj
can be obtained by comparingSSRj with 1. Once computed theSSRj for every hospital, we are
able to separate the hospitals in two groups, namely “A” and “B”, accordingto the comparison of
SSRwith the threshold of 1: if greater, then hospital belongs to the first group,if less to the second.
According to this criterion, we obtain the classification reported in Table 7.8.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11
A A A A A B B B B A A

h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 h22
A A A A B A B A A B A

h23 h24 h35 h26 h27 h28 h29 h30 h31 h32 h33
B A B B A A A B A A A

Table 7.8:Providers’ clustering according to SSR criterion.
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7.3.2 Analysis of random effect estimates of a parametric GLMEmodel

We now consider a GLME model like the one presented in Pargraph 4.3.1 forthe survival outcome,
considering thei index as associated to statistical units grouped in-hospitalj. In this case we
consider univariate Gaussian random effect additive on the interceptof the GLME model. We
denote byσ2 the related variance. Estimates for fixed effects coefficients (β ) and standard deviation
of Normal random effect (σ ) can then be obtained through maximization of Likelihood function

L(β ,σ) = ∏
j

∫
∏

i

f (yi j |β ,σ ,b j) f (b j)dbj

where f (b j) is the Normal density function. This integral does not have a closed form except for
Normal outcomes, then approximations have to be computed. We fitted GLME models usinglme4
package [16], which makes use of Laplace approximation (Paragraph 4.3.2) for computing high-
dimensional integrals.

Considering the database composed by survival response (Survival), the categorical variable indi-
cating hospital of admission (hospital) and the covariates included in the GLM model (Age, Killip ,
Risk, STresolution) omitting all theNA(missing data), it consists of 1065 statistical units, grouped
in 33 hospitals. The output for this model, including the covariates previouslyexplained in the
analogous model with fixed effects only is:

Formula:
Survival ˜ Age + Killip + FE + Risk + STresolution + (1 | hospita l)

AIC BIC logLik deviance
217.5 252.3 -101.8 203.5

Random effects:
Groups Name Variance Std.Dev.

hospital (Intercept) 0.24187 0.4918

Number of obs: 1065, groups: ospedale, 33

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.25645 1.47949 1.525 0.12722
Age -0.04711 0.01652 -2.852 0.00435 **
Killip -1.36351 0.43236 -3.154 0.00161 **
FE 0.10598 0.02121 4.996 5.84e-07 ***
Risk -1.41011 0.68168 -2.069 0.03859 *
STresolution 1.25275 0.41570 3.014 0.00258 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ‘ ‘ 1

The model for in-hospital survival of patienti treated in-hospitalj[i] is then:

logit(E[Survival= 1|Age,Killip ,FE,Risk,STresolution,hospital)) =

2.25645−0.04711·agei −1.36351·killip i +0.10598·FEi

−1.41011·Riski +1.25275·STresolutioni +hospitalj[i]

(7.3)

where withhospitalj[i] we mean the effect ofj−th hospital, the one wherei−th patient has been
admitted. Again, as expected, for increasing age, risk and Killip class, the survival probability
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decreases, whereas the higher the ejection fraction and the reperfusion outcome, the better the sur-
vival. Moreover, it is to be noticed that the residual variability of the random effect is high, attesting
the significative contribution coming from the inclusion of the random effectamong the model pa-
rameters. Moreover, it is known that mixed effects models are suitable for those situation where
unbalanced units per group are present, since they “borrow strength”in carrying out estimation for
single unit level by upper level modelling. In summary, fitting a GLME model is themore suitable
way to account for overdispersion of our data: this will turn in a better estimation and prediction of
in-hospital survival where suitable adjustment for case mix is done, but also in a innovative method
for clustering hospitals, according to the effect they have on survivalitself. In fact it would be of
interest to quantify the effect of each hospital on in-hospital survival,but, it would be even more
useful to detect if groups of “similar hospitals” are present, and then summarizing the effect of each
class on the outcome.

Fitting a GLME model, we obtain also the point estimates of the random effects, i.e.,the additive
contributions of each hospital to the intercept of the linear predictor for survival probability. In-
dicating them bŷb j , j = 1, . . . ,33, we apply to this set of points a k-means clustering algorithm
[69]. A robustness analysis for the number of clusters using the average silhouette width (see [136]
and Section 8.1) indicatesk = 3 as the optimum choice for the number of cluster. Anyway, since
no strong evidence exist for discriminating amongk = 2 or k = 3 (as can be evinced observing
the average silhouette indexes in Figure 7.16, which indicates that, in both cases ofk equal to 2
and 3, a reasonable clustering structure has been found), we will consider both the choices of 2
and 3 groups, in order to be able to compare results with the clustering carried out by the method
previously presented.
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Figure 7.16:Silhouette plots for the choices of the number of cluster, with k= 2 (left) k= 3 (right) respec-
tively.

The means of the two clusters are 0.08863 and−0.2312 in the case ofk = 2, and 0.2151, 0.0211
and−0.2312 for the case ofk= 3. Again, we label the groups as “A” and “B” in the case ofk= 2,
respectively for groups with higher and lower means. In the case ofk= 3, we add a third name (“C”
as central). According to this criterion, we obtain the classification reportedin Table 7.9.
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h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11
GLME k= 2 A A A A A B B B B A A
GLME k= 3 C C C C C B B B B C A

h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 h22
GLME k= 2 A A A A A A B A A B A
GLME k= 3 C C C A C A B A C B A

h23 h24 h35 h26 h27 h28 h29 h30 h31 h32 h33
GLME k= 2 B A B B A A A B A A A
GLME k= 3 B C B B A C C B A A C

Table 7.9:Providers clustering according to GLME model random effectestimates criterion.

We can observe, that passing from 3 to 2 groups, the hospitals belongingto classes “A” and “C” are
simply joined together. The reason is clear observing plots in Figure 7.17.
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Figure 7.17:Clustering of estimated random effects of the GLMM model in (7.3) into 2 (left panel) and 3
(right panel) groups respectively.

Figure 7.3.2 shows estimated survival surfaces, functions of age and ejection fraction, for 6 different
benchmark settings. In particular, in the first row, from left to right “best case” scenario is considered
(i.e., patient affected by less severe infarction, with low risk and accomplished ST resolution after
60 minutes), respectively admitted in the centroid hospital of group A (left), C(center) and B (right).
Then in the second row, the “worst case” scenario (patient affected by more severe infarction, with
high risk and not accomplished ST resolution after 60 minutes) for the same groups is depicted.
More specifically:

(a) Less severe infarction (i.e., Killip class I), low risk (i.e., less than 4 risk factors are present),
reperfusion accomplished (i.e., 70% STsegment elevation reduction 60 minutes after PCI has
been achieved) in the centroid of hospitals belonging to group A;

(b) Less severe infarction, low risk, reperfusion accomplished in the centroid of hospitals belong-
ing to group C;

(c) Less severe infarction, low risk, reperfusion accomplished in the centroid of hospitals belong-
ing to group B;
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(d) More severe infarction (i.e., Killip class II, III or IV), high risk (i.e., almost 4 risk factors are
present), reperfusion not accomplished (i.e., 70% STsegment elevation reduction 60 minutes
after PCI has not been achieved) in the centroid of hospitals belonging to group A;

(e) More severe infarction, high risk, reperfusion not accomplished inthe centroid of hospitals
belonging to group C;

(f) More severe infarction, high risk, reperfusion not accomplished inthe centroid of hospitals
belonging to group B.
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Figure 7.18:Survival surfaces in different case-mix scenarios (best case, first row vs worst case, second
row), in the hospital centroid of group “A” (left panel), “C”(central panels) and “B” (right panels) respec-
tively. Green points indicate the survival probability fora reference patient aged 75 and with 50% of ejection
fraction at Admittance.

The green points indicate the estimated survival probability for a reference patient aged 75 and with
50% of ejection fraction at the entrance, which are equal, respectively,to 99.59% (casea), 99.50%
(caseb), 99.36% (casec), 81.21% (cased), 78.07% (casee), 73.45% (casef ).

7.3.3 Analysis of random effect estimates of a nonparametric GLME model

In modelling overdispersed and grouped data, we saw that the use of a fully parametric model for
random effects could be considered as too restrictive, and then the ideaof Non Parametric Maximum
Likelihood (NPML) estimation for distribution of random effect has been considered (see Paragraph
4.4.1). We computed non parametric maximum likelihood estimations on our data withnpmlreg
package [37].

Considering the database composed by survival response (Survival), the categorical variable in-
dicating hospital of admission (hospital) and the covariates included in the GLM models (Age,
Killip , RiskandSTresolution) omitting all theNA(missing data), it consists of 1065 statistical units,
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grouped in 33 hospitals. The output for this model, including the covariates previously explained in
the analogous model with fixed effects only is:

Call:
allvc(formula = Survival ˜ Age + Killip + FE + Risk + STresolut ion,

random = ˜1 | hospital, family = binomial(), k = 2, random
distribution = "np")

Coefficients:
Estimate Std. Error t value

Age -0.04666938 0.01622140 -2.877025
Killip -1.36574575 0.41456261 -3.294426
FE 0.10499803 0.02050766 5.119943
Risk -1.39121735 0.67262080 -2.068353
STresolution 1.21984131 0.39789590 3.065730
MASS1 1.89308139 1.44684078 1.308424
MASS2 2.59791339 1.44789628 1.794268

Mixture proportions:
MASS1 MASS2

0.4838802 0.5161198

Random effect distribution - standard deviation: 0.352232 8

-2 log L: 203.7 Convergence at iteration 10

whereMASS1andMASS2are the mass points(c1,c2) of the nonparametric random effects model,
whose corresponding mixing proportions are estimated to beω1 = 0.4838 andω2 = 0.5162. The
model for in-hospital survival of patienti in-hospital j is then:

logit(E[Survival= 1|Age,Killip ,FE,Risk,STresolution,hospital]) =

2.25645−0.04711·Agei −1.36351·Killip i +0.10598·FEi

−1.41011·Riski +1.25275·STresolutioni +ck[ j]

(7.4)

where withck[i] we mean the effect ofk−th group (k = 1,2), which is the one hospitalj has been
assigned to. In fact, the package provides the estimation of masses composing the mixture, as well as
the probability distribution of belonging to any of thek groups for each hospital. Again, as expected,
for increasing age, risk and killip class, the survival probability decreases, whereas the higher the
ejection fraction and the reperfusion outcome, the better the survival. Moreover, also in this case
we can see that the residual variability of the random effect is quite high, attesting the significative
contribution coming from the inclusion of the random effect among the model parameters. Here we
chose to setk = 2, i.e., to cluster hospitals in 2 groups, since resulted to be best. This is a further
evidence for the real presence of the dichotomic structure among hospitalseffects. In summary,
fitting a nonparametric GLME model is a suitable way to account for overdispersion of our data
with the flexibility due to the nonparametric modelling of the random effects.

In order to usenpmlreg estimates for clustering, we assign thej−th hospital to thek−th group
according to the arg-max of the probabilities of each structure estimated for the two masses (i.e.,
assigning each hospital to the group whose estimated probability is greater).Adopting this criterion,
we obtain the clustering of hospitals reported in Table 7.10.
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h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11
A A A A A B B B B A A

h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 h22
A A A A B A B A A B A

h23 h24 h35 h26 h27 h28 h29 h30 h31 h32 h33
B A B B A A A B A A A

Table 7.10:Providers clustering according tonpmlreg random effect estimates criterion.

Figure 7.19 shows the estimated survival surfaces, functions of age and ejection fraction, for 4
different benchmark settings.
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Figure 7.19:Estimted survival surfaces in different case-mix scenarios (best case, first row vs worst case,
secondo row), in a hospital belonging to group “A” (left panel) and “B” (right panels) respectively. Green
points indicate the survival probability for a reference patient aged 75 and with 50% of ejection fraction at
admittance.

In particular, the first row from left to right the “best case” scenario isconsidered (i.e., a patient
affected by less severe infarction, with low risk and accomplished ST resolution 60 minutes after
PCI), in a hospital classified as belonging to the group A (left), and B (right) respectively. Then in
the second row, the “worst case” scenario (i.e., a patient affected by more severe infarction, with
high risk and not accomplished ST resolution 60 minutes after PCI) for the same groups is depicted.
More specifically:

(a) Less severe infarction (i.e., Killip class I), low risk (i.e., less than 4 risk factors are present),
reperfusion accomplished (i.e., 70% STsegment elevation reduction 60 minutes after PCI has
been achieved) in a hospital belonging to group A;

(b) Less severe infarction, low risk, reperfusion accomplished in a hospital belonging to group B;
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(c) More severe infarction (i.e., Killip class II, III or IV), high risk (i.e., almost 4 risk factors are
present), reperfusion not accomplished (i.e., 70% STsegment elevation reduction 60 minutes
after PCI has not been achieved) in a hospital belonging to group A;

(d) More severe infarction, high risk, reperfusion not accomplished ina hospital belonging to
group B.

The green points indicate the survival probability for a patient aged 75 and with 50% of ejection
fraction at the entrance, which are equal, rspectively, to 99.61% (casea), 99.23% (caseb), 83.07%
(casec), 70.80% (cased). All the values are similar to the corresponding ones computed starting
from the parametric GLME model with 2 groups.

7.3.4 Comparison of different methods

In the previous paragraph, we focused on the influence of group effect on survival prediction at
patient level. We will now compare (see Table 7.11) classifications of providers pointed out by the
different methods proposed.

In conclusion, following three different clustering procedures, we obtain the same clustering struc-
ture except for hospital 16 which is classified as belonging to the group “B” of poorer-performing
hospitals according to SSR and nonparametric GLME methods, as belonging tothe group “A” of
better-performing hospitals according to parametric GLME method with 2 groups, and as belong-
ing to the group “C” of central-performing hospitals according to parametricGLME method with 3
groups. The nearly unanimous agreement in the classification of the three methods support the idea
that a real clustering structure in two groups exists.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11
SSR A A A A A B B B B A A

GLME param - 2 clusters A A A A A B B B B A A
GLME param - 3 clusters C C C C C B B B B C A
GLME nonparam - 2 clus. A A A A A B B B B A A

h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 h22
SSR A A A A B A B A A B A

GLME param - 2 clusters A A A A A A B A A B A
GLME param - 3 clusters C C C A C A B A C B A
GLME nonparam - 2 clus. A A A A B A B A A B A

h23 h24 h35 h26 h27 h28 h29 h30 h31 h32 h33
SSR B A B B A A A B A A A

GLME param - 2 clusters B A B B A A A B A A A
GLME param - 3 clusters B C B B A C C B A A C
GLME nonparam - 2 clus. B A B B A A A B A A A

Table 7.11:Providers clustering provided by the three different criteria described in Section 7.3.
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7.4 Bayesian Hierarchical Models for Hospital Clustering

In this Section, we apply models and techniques described in Chapter 5 to STEMI Archive data,
with the aim to model in-hospital survival in the treatment of STEMI. As we saidin Paragraph
3.2.2, similar studies were conducted in the Milano Cardiological Network (see[56], [57], [58],
[60], [62], [74], [75], [78] and [84]). Now we consider a largerand more heterogeneous set of hos-
pitals, i.e., those belonging to the network of all hospitals of Regione Lombardia, with the aims of
identifying differences between providers, pointing out factors that increase/decrease the probabil-
ity of survival (both at patient and hospital level), and evaluating the efficiency of process indicators,
using Bayesian methods.

The idea of the analysis, detailed in [64], is to compare results in modelling in-hospital survival
arising from different model setting, from parametric to semi-parametric Bayesian models, and in
particular to point out a new method for prediction and classification of new patients, within the
context of strongly unbalanced shares. In fact, as we mentioned in Section 4.7, when the outcome
is particularly unbalanced it is difficult to evaluate the fitting of the model and predict the with-
in sample negative outcomes. From a frequentist perspective, Cramer [28] suggests a criterion to
improve the predictive capacity of negative outcomes. Cramer’s criterion isbased on point estimate,
whereas here we propose a new approach based on interval estimate ofthe posterior predictive
distributions proposed in Section 5.5.

As we saw in Paragraph 3.2.3, there is a hierarchical structure in the data arising from STEMI
Archive: the providers at a higher level and the patients at a lower one.Bayesian generalized linear
mixed models (see Paragraph 5.2.2) provide a natural framework for such kind of data. Concerning
the models considered in this section, in the first one we put a parametric prioron all factors,
whereas in the second and the third ones lower level factors are treated parametrically, while higher
level factors are treated in a nonparametric way, according to [92]. In particular, in the second
model we considered a bivariate Dirichlet process (DP) prior for the random effects, while in the
third model random effects with a Dependent Dirichlet process (DDP) prior are assumed, according
to the setting proposed in [107]. The DDP prior will take into account specific hospital-covariates,
yielding dependency among the distribution of parameters of different subpopulations; in particular
we include a geographical binary covariateMilano (equal to 1 if the hospital is in Milano, equal
to 0 otherwise) in the semiparametric prior for the providers’ random effects. Both DP and DDP
priors relax the parametric assumption and induce a grouping of the randomeffects. Relaxing the
parametric assumption brings to more flexible priors and better estimates, while therandom effects’
clustering provides a starting point for providers’ profiling.

The information provided by STEMI Archive we are most interested in are mode of admission
of each patient (spontaneous or delivered by different types of 118rescue units), personal data
(age, sex), clinical appearance (Killip class), risk factors (diabetes,smoke, Chronic Kidney Disease
CKD, . . . ), pre-hospital and in-hospital treatment times, and clinical outcomes (in-hospital survival,
MACE, ST-resolution). Killip classification with values{1,2,3,4} is used to risk stratify patients,
being 1 the less severe class of infarction, and 4 the most severe one. Inthis study we focus on in-
hospital survival probability. Moreover, we make use of information provided by the administrative
databanks concerning the grouping factors (the hospitals). From the linkage with databaseRicoveri
it is possible to know if the hospital is in Milano or outside and the hospital’s exposure. Here
the exposure of a hospital is the number of patients treated there with primary PCI in a year. We
consider a sub population of patients for which all covariates of interest are present and filled in the
correct way, focusing on patients underwent primary PCI and not-transferred to another hospital.
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Then the dataset consists of 697 patients fromJ = 29 hospitals. There is a large heterogeneity of
the number of patients for each hospital. Moreover, in-hospital survival is particularly unbalanced
in our sample (97% of patients were discharged alive), coherently with literature [158].

A first patient covariates’ selection was done according to clinical know-how and frequentist
selection procedures; the most significant factors which explain survival probabilities are age, the
time from symptom Onset to Balloon in log-scale (logOB), Killip and CKD. In addition to the
above mentioned patient covariates, in our models we considered the provider covariates (Milano
and exposure). In fact, we are interested in evaluating if there are differences among the hospitals
and, in case, if those differences are related to particular characteristics of the providers.

7.4.1 Parametric and semiparametric models

As mentioned before, in the first model we considered all factors parametrically, while in the sec-
ond and the third models the random effects normality assumption is relaxed andtreated semi-
parametrically. In particular, in the second model we use a bivariate DP prior for the hospitals’
random intercepts and the hospitals’ exposure random slopes, while in thelast model we remove
the hospitals’ exposure random slopes and we use a DDP prior for the providers’ random effects
including the geographical binary covariateMilano. Finally, we provide the latent variable repre-
sentation [5] of the logistic regression, which is useful in performing Bayesian inference and model
checking.

The parametric model

For patienti = 1, . . . ,n j , in each groupj = 1, . . . ,J, letYi j be a Bernoulli random variable with mean
pi j , which represents the probability that the patienti treated in-hospitalj survived after STEMI.
The pi j ’s are modelled through a logit regression with covariates and group (random) effects:

Yi j |pi j
ind∼ Be(pi j ) (7.5)

log(
pi j

1− pi j
) =

4

∑
l=1

αl ui jl +
5

∑
k=1

βkxi jk +b0 j +b1 jzj , (7.6)

whereuuui j = (ui j1, . . . ,ui j4) = (killip1 , . . . ,killip4)i j is a dummy vector,xxxi j = (xi j1, . . . ,xi j5) = (age,
logOB,CKD,exposure,Milano)i j andzj = exposurej . The prior is

α1, . . . ,α4,β1, . . . ,β5
i.i.d.∼ N(0,100)

bbb1, . . . ,bbbJ|Σb
i.i.d.∼ N2(000,Σ)

(7.7)

where

bbb j = (b0 j ,b1 j) and Σ =

[
σ2

0 ρσ0σ1

ρσ0σ1 σ2
1

]
, (7.8)

while

σ0,σ1
i.i.d.∼ Uni f (0,5) and ρ ∼Uni f (−1,1).
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Dirichlet process model

As far as the second model is concerned, we relax the random effects parametric assumption and
put a DP prior on them. The likelihood is as in (7.5) and the prior is

α1, . . . ,α4,β1, . . . ,β5
i.i.d.∼ N(0,100)

bbb1, . . . ,bbbJ|P i.i.d.∼ P

P|a,P0 ∼ DP(a,P0) where P0|σ2
0 ,σ2

0 is N(0,σ2
0)×N(0,σ2

1)

a∼ trunc−Exp(1) with support(1,+∞)

σ1,σ2
i.i.d.∼ Uni f (0,5).

(7.9)

Dependent Dirichlet process model

Here we remove the exposure effect (both the fixed and the random slope) since we found it is
not statistically significant (see the analyses below) and considered an ANOVA-DDP prior for the
covariateMilano, as in the framework proposed in [33] and in Paragraph 5.3.2. The conditional
distribution of the outcomes under (7.6) is

log(
pi j

1− pi j
) =

4

∑
l=1

αl ui jl +
3

∑
k=1

βkxi jk +b jz j , (7.10)

whereuuui j is the killip dummy vector,xxxi j = (xi j1,xi j2,xi j3) = (age, logOB,CKD)i j andb jz j is the
Milano (zj = 0/1) hospital random intercept. Unlike (7.5) - (7.9), here we distinguish the random
intercept parameter according to the geographical origin of the hospital:b j1 if the j-th hospital is
in Milano, b j0 otherwise. We assume a prior dependency betweenb j0 andb j1 through a DDP. The
prior is

α1, . . . ,α4,β1, . . . ,β3
i.i.d.∼ N(0,100)

b jz j |P,zj
ind∼ Pzj

Pzj |P0zj ,a
ind∼ ANOVA−DDP(a,P0zj )

P0|µµµb,Σb is N2(µµµb,Σb)

a∼ trunc−Exp(1) with support(1,+∞)

where

Σb =

[
σ2

0 0
0 σ2

1

]
, µµµb =

[
0
µ1

]
and P0zj =

{
N(0,σ2

0) i f z j = 0
N(µ1,σ2

1) i f z j = 1.
(7.11)

Moreover, we assume

σ0,σ1
i.i.d.∼ Uni f (0,5) and µ1 ∼ N(0,10).

The marginal prior of(b1, . . . ,bJ) is partially exchangeable; more precisely the prior distribution
for (P0,P1), representing the distributions of the hospital random effects outside andin Milano,
respectively, is a bivariate Dirichlet process

(
P0

P1

)∣∣∣∣ a,

(
P00

P01

)
∼ DP

(
a,

(
P00

P01

))
,
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i.e., forzequal to 0 or 1,

Pz =
+∞

∑
h=1

whδbzh,

(
b0h

b1h

)
i.i.d.∼ N2

((
0
µ1

)
, Σ
)
.

Observe that marginallyPz is DP(α ,P0z), whereas the covariance structure of the locationsbzh’s
acrossz yields dependency betweenP0 and P1. Since the dependance structure makes the prior
richer and more flexible, we expect better estimates of the hospital random intercepts.

In (7.9) we put a DP prior on the random effects, while in the last one we use a generalization of the
DP prior. It is well known that the DP selects discrete distribution almost surely [40]. Since there
is a positive probability of coincident values, sampling fromP induces a random partition on the
positive integers. More specifically, letX1, . . . ,Xn be a sample from a DPP (onRk for some positive
integerk), i.e.,X1, . . . ,Xn, givenP, are i.i.d. fromP. SinceP is almost surely discrete, two sampled
random variablesXi andXj could be equal with positive probability. We say thatXi andXj share the
same cluster if and only ifXi = Xj . In this case, the set of integers{1,2, . . . ,n} is partitioned into
a finite number of sets{A1, . . . ,Ak(n)}, wherek(n) is the number of different determinations among
(X1, . . . ,Xn) and eachA j contains the labels of the random variables(X1, . . . ,Xn) which coincide
but are different from the others. Note that since(X1, . . . ,Xn) is a random vector, the partition
{A1, . . . ,Ak(n)} of {1,2, . . . ,n} is random as well. This is what is usually meant by random partition
induced by the sampling from a DP (or from a random probability measure which is discrete with
positive probability). The nonparametric models based on DP priors (or like) are very useful when
the aim is clustering. For instance, in the DP model a priori the hospital random effectsbbb111, . . . ,bbbJJJ

are a sample fromP onR2 (intercept and slope). Since the DP is conjugate, a posteriori the random
effects are still a bivariate sample from a DP and hence we could have coincident values among
them. Instead, in the DDP model we could observe coincident values within each subpopulations.

7.4.2 Posterior inferences and prediction

In this paragraph we present the posterior inferences obtained from the three models introduced so
far. First we provide posterior estimates of the parameters for each model,focusing in particular
on posterior interval estimates and clustering of the hospital random intercepts; then we evaluate
their fit and classify the patients. All estimates were computed using the program JAGS[123] via
Gibbs sampler algorithms. In the two nonparametric models we implemented the truncated DP
approximation suggested by [87] to obtain a trajectory fromP. We ran the three models for 200.000
iterations, the first 100.000 were discarded, we used a thinning of 20 to reduce autocorrelation and
so the final sample size was 5.000. Traceplots, autocorrelations and Geweke diagnostics indicate
that the Gibbs sampler algorithms could have converged.

A robustness analysis showed that inferences are not particularly sensitive to the choice of the
fixed effects’ hyperparameters, while they are quite sensitive to the priorchoice on the variance
componentsσ2

0 andσ2
1 . We used two classes of priors: the conjugate inverse-gamma distribution

on the variances or the uniform distribution on the standard deviations. Theestimates of the random
effects are particularly sensitive to the choice of the inverse-gamma hyperparameters, while they
are more robust using the uniform prior. We refer to [50] for a discussion on priors of the variance
components in hierarchical models. The lower bound of the support of theprior distribution for
the total mass parameter was set equal to 1 to avoid computational problems. Weassumed an
exchangeable prior for the killip effect parameter vector, instead of indipendent priors for each
vector component, but the inferences were quite the same under the two different choices.
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In Table 7.12 we provide posterior 95% Credibility Intervals (CIs) of the fixed effects under the three
models. Notice that all the estimates are similar. In particular, the Killip seems a goodstratification
parameter for all models, since the posteriors of the Killip 1 parameter concentrate on “high” values
(i.e., it brings to high survival probability), those of Killip 2 and 3 concentrate on “average” values,
while those of Killip 4 concentrate on “small” values. As we could expect, as long as age or logOB
or CKD increases, it will have a negative effect on the survival probability. Finally, theMilano
covariate has a weak negative effect in both parametric and DP models, while the exposure is not
significant, i.e., it seems that the number of patients treated with primary PCI doesnot improve the
survival probability. as suggested by preliminar descriptive analyses of benchmarks in Section 7.1.
For this reason we decided to omit the exposure from the last model, but used Milano covariate to
enrich the hospital random intercept prior distribution.

Parametric model DP model DDP model
Parameter 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

killip1 5.14 7.46 10.80 3.22 7.12 11.71 2.24 5.00 8.32
killip2 3.00 5.48 9.09 0.97 5.17 10.06 0.35 3.24 6.68
killip3 2.00 4.78 8.19 0.27 4.50 9.49 -0.72 2.41 5.98
killip4 -1.11 1.41 4.19 -2.49 1.47 5.96 -3.86 -0.85 2.43

age -3.87 -2.00 -0.37 -3.81 -2.03 -0.42 -3.53 -1.73 -0.13
log(OB) -4.43 -2.54 -0.41 -4.04 -2.28 -0.39 -4.32 -2.54 -0.62

CKD -3.72 -2.03 -0.47 -3.56 -1.92 -0.43 -3.86 -2.34 -0.87
exposure -3.06 0.48 3.96 -4.47 0.24 5.96
Milano -5.83 -2.68 0.06 -5.24 -2.38 -0.19

Table 7.12:Posterior 95% CIs of the fixed effects

As mentioned before, one of the main aim of the analysis is to investigate if there are hospitals (or
groups of hospitals) with a better/worse service than others. In other words, we want to evaluate
differences among the provider random effects and cluster them in some way.

In Table 7.13 we provide posterior 95% CIs of the components of the covariance matrices of the
hospital random effectsbbb j ’s of the parametric and the DP model. Notice that in the parametric
model the outer diagonal term of the matrixΣ in (7.8) does not seem significantly different from
zero and hence we omitted the correlation parameterρ from the DP model (seeP0 in (7.9) ). We
recall that in the DP model the variance and the covariance of thej-th hospital random effect could
be represented by the following random variables

Var[bk j|P] = E[b2
k j|P]− (E[bk j|P])2, k= 0,1,

Cov[b0 j ,b1 j |P] = E[b0 jb1 j |P]−E[b0 j |P]E[b1 j |P],

where
E[bm

0 jb
n
1 j |P] = ∑

h≥1

phbm
0hbn

1h, m,n= 0,1,2, . . . .

The interval estimates of the variances of the random intercept are similar under the first two
models (σ2

0 andVar[b0 j |P], respectively), while the interval estimate of the variance of the ran-
dom slope seems shorter for the DP model than for the parametric one. Moreover, the covariance
Cov[b0 j ,b1 j |P] of the DP model seems centered around zero.

When considering the DDP model, the random variables considered in Table7.13 have a differ-
ent interpretation: in fact they represent the variances of the two different subpopulations and the
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covariance between them, respectively. In particular, we observe a greater heterogeneity among the
hospitals in Milano then among those outside Milano, since the posterior 95% CIsof Var[b0 j |P]
andVar[b1 j |P] we obtained are(0.01,8.92) and(0.67,30.80), respectively. The covariance among
the two subpopulations is not significantly different from zero also in this model. We recall that the
prior marginal covariance is zero, sinceCov[b0 j ,b1 j ] = Cov[P00,P01]/(a+ 1) = 0 for any givena
(since the outer diagonal elements ofΣ in (7.8) are zero).

(a) Parametric model

Parameter 2.5% 50% 97.5%
σ2

0 0.04 2.25 13.91
σ2

1 0.11 3.86 22.51
ρσ0σ1 -4.94 0.36 9.47

(b) DP model

Parameter 2.5% 50% 97.5%
Var[b0 j |P] 0.00 1.37 14.75
Var[b1 j |P] 0.00 1.20 15.02

Cov[b0 j ,b1 j |P] -3.58 0.03 5.61

Table 7.13:Posterior 95% CIs of the random effects’ covariance matrices elements.

In Figure 7.20 we provide posterior 95% CIs of the hospital random intercepts with at least ten
patients for the parametric model (Figure 7.20, left panel) and for the DP model (Figure 7.20, right
panel). The posterior medians under the DP model are more shrunk towards zero and the widths of
the intervals are larger. The widths of the DP model’s new random interceptsare also larger than the
parametric ones. The plots of the hospital slopes (exposure) for both models show CI’s even more
shrunk towards zero and for this reason we do not include them here.
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Figure 7.20:Posterior 95% CIs of hospital random intercepts with at least ten patiens. The estimates are in
increasing order of number of patients. The last estimates represent new random intercepts.

We cannot compare the hospital random intercepts of the DDP model directlyto those of the previ-
ous models, since in the DDP model theMilano covariate is included in the DDP prior. The hospital
random intercepts of the DDP model are equivalent to the hospital randomintercept plus theMilano
effect of the parametric and the DP models.

In Figure 7.21 we provide posterior 95% CIs of the hospital random intercepts with at least ten pa-
tients plus theMilano effect for the parametric and DP models on the top, and the hospital random
intercepts for the DDP model on the bottom. In the parametric and the DP models allhospitals out-
sideMilano have higher median thanMilano ones, and in the parametric model intervals are shorter.
Notice that in the DDP model there is larger variability within each of the two subpopulations. We
can guess that this variability is due to the flexibility of DDP prior. However, weobtain a better
clustering in the DDP model, since it is clear from Figure 7.21 (c) that we can identify two groups:
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the first group with hospitals 18, 27, 2 and 22 and the second one with all theothers. On the other
hand in the parametric and the DP models the grouping is less clear and mainly dueto theMilano
effect.
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(a) Parametric model
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(c) DDP model

Figure 7.21:Posterior 95% CIs of hospital random intercepts plusMilano effect with at least ten patiens.
The hospital effect in Milano are depicted in blue dashed, those ooutside Milano in red solid lines. The
estimates are in increasing order of number of patients per hospital. The last two intervals represent new
random intercepts for a hospital in and outside Milano, respectively.

As mentioned before, the DP induces a random partition on the grouping of the random effects and
so we analyse the posterior of the processP to obtain an insight on the clustering among the hospi-
tals. The mass parametera is a posteriori concentrated around small values under both parametric
models: mean 1.60 (std. dev. 0.62) in the DP model and 1.65 (std. dev. 0.66) in the DDP one.
Consequently we observe a reduction of the expected number of groups, which from the prior mean
of 5.8 becomes a posteriori 5.1 for the DP and 5.2 for the DDP. The a priori expected number of
clusters is slightly higher than our actuala priori knowledge since we would expect less groups,
indicating macro behavioural setting. We run the algorithm fixing the mass parametera equal to
one (doing so, the expected number of cluster is 4.0) and we obtained similar posterior estimates;
hence we can conclude that the inference is quite robust to the prior specification of the mass pa-
rametera. Since the DP induces a random partition, the posterior partition mode could provide an
estimate of the clustering among the hospitals. However the posterior partition mode is the one with
all hospitals in the same group, but it is reached only 135/5000 and 4/5000 times in the DP and
DDP, respectively, and hence there is much uncertainty in both posteriorsof the random partitions.
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7.4.3 Model fit and patients classfication

Once we fitted our models and compared their estimates, we focus on the evaluation of their pre-
dictive performance by computing survival probabilites for each givenpatient. In particular, we
compare two different predictive methods: the usual one based on point estimates summarizing the
posterior predictive distributions and a new one based on interval estimates. As will result in the
following, our method leads to a more accurate classification. The usual predictive method is based
on point estimate of the posterior predictive distribution; in particular we couldclassify a patienti
from hospital j as alive ifE(pi j |YYY) is bigger than a given cut-off point. Since the classification is
typically sensitive to the cut-off point, there are several criteria to choosethe cut-off point; see [45]
for a review and comparison of the most popular ones in the frequentist literature.

In our application, since our dataset is particularly unbalanced, if we consider the standard cut-
off point equal to 0.5, we would obtain a very low overall misclassification rate (around 2% for
all models), but a bad negative predictive power (more than 50% of the deaths are misclassified).
Table 7.14 displays the results of the patient classification under the three models considered here,
using a cut-off point equal to the survival sample proportion ¯p = 0.97, as suggested by Cramer
[28]. The false positive and false negative rates are more balanced then using a cut-off point of
0.5, but we obtain a worse overall misclassification rate (around 10% for allmodels). The overall
misclassification rate as in [28] can be considered as a goodness of fit index since it is less dependent
on the unequal sample proportion. On the other hand, instead of choosinga given cut-off point, we
could plot the ROC curve (see Figure 7.22). The overall misclassification rate (with cut-off point
equal to the sample proportion) and the ROC curve shows a good and similar predictive fit of the
three models.

(a) Parametric model

Y = 1 Y = 0
Ŷ = 1 605 3
Ŷ = 0 69 20

(b) DP model

Y = 1 Y = 0
Ŷ = 1 599 3
Ŷ = 0 75 20

(c) DDP model

Y = 1 Y = 0
Ŷ = 1 600 3
Ŷ = 0 74 20

Table 7.14:Predictive tables using point estimates and cut-off point equal to p̄= 0.97.
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Figure 7.22:ROC curves for the three models.
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However, we believe that the previous results are not completely satisfactory. On one hand those
cut-off criteria are not robust in case of a very unbalanced data-set,as in our case, coherently with
the analysis in [45]. On the other hand,the ROC curve is indipendent of a given threshold, it can
be used as a comparison tool among models rather then as a predictive tool itself. To this aim, we
may take advantage of Bayesian approach: in fact, interval estimate is richer than point estimate
which does not provide any information on the prediction uncertainty. The new method we propose
is based on interval estimate and is a straightforward generalization of the classical one.

We classify the patient as alive if the entirely interval estimate is over a given cut-off point, as
dead if the entirely interval estimate is above the cut-off point and we do not classify it if the cut-off
point lies in the CI. The higher is the credible level, the more patients will belong tothe Uncertainty
Class (UC). In Table 7.15 we report classification tables based on 90% posterior predictive CIs and
assume equal misclassification costs, i.e., the cut-off point is set equal to 0.5. With our data-set,
only around 4% of the patients belong to the UC and the total misclassification rate, based only on
classified patients, is around 1% for all the models. If the number of patients inUC provides an
index of the predictive performance of the model, then the three models havesimilar results.

(a) Parametric model

Y = 1 Y = 0
Ŷ = 1 659 7
Ŷ = 0 0 3
UC 15 13

(b) DP model

Y = 1 Y = 0
Ŷ = 1 660 7
Ŷ = 0 0 4
UC 14 12

(c) DDP model.

Y = 1 Y = 0
Ŷ = 1 657 7
Ŷ = 0 0 3
UC 17 13

Table 7.15:Predictive tables using 90% CIs and cut-off point equal to 0.5.

In Figure 7.23 we provide the 90% posterior predictive CIs for all patientsunder the DDP model
(the plots for the other two models are quite similar and we do not report them here). Notice that
most of the interval widths of the survived patients are quite small, while there ismore uncertainty
on the negative outcomes.
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Figure 7.23:90% posterior predictive CIs of all the patients (ordered byincreasing median) under the DDP
model. The positive outcomes are in blue and the negative ones in red.

As an example, in Figure 7.24 we focus on a smaller set of patients, those 29 treated in-hospital
19 (under the DDP model). Notice that predictive distributions with very largeand very low mean
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have small width, while those with mean around 0.5 have wider interval estimates. There are 6
unclassified patients (but in one case the cut-off point falls on the lower estreme of the inteval) and
only one is misclassified
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Figure 7.24:90% posterior predictive CIs of all the patients from hospital 19, under the DDP model. The
CIs corresponding to alive patients are in blue solid line, while those corresponding to dead patients are in
red dasehd. There are six unclassified patients and only one misclassified.



Chapter 8

Statistical analysis of other clinical
surveys

In this chapter, the analyses carried out on data described in Paragraph 3.2.2 and Section 3.3 are
presented. These are examples of data mining on administrative databanks (Section 8.1 and Sec-
tion 8.2) carried out with statistical techniques presented in Section 4.6, and of Bayesian decision
analysis (Section 5.4) applied to the evaluation of acceptability of providers’performances.

8.1 Nonlinear parametric models for an epidemiologic enquire

In this section we illustrate a pilot data mining case study on hospital dischargesdata for patients
with NON-STEMI diagnosis. The behaviour of NON-STEMI cases over the years is, in fact, a
very interesting problem for epidemiologists, here faced for the first time using statistical methods
applied to administrative data. In fact, data come from PHD of Regione Lombardia (Paragraph
3.1.1), and the study is part of the Strategic Program (Section 2.2). This study represents an example
of unsupervised clustering carried out starting from the random effects estimates in a NLME model
setting, according to method and purposes highlighted in Section 4.2.3.

The statistical analysis is conducted along different phases. The visualevidence for growth in
the number of NON-STEMI diagnoses is firstly questioned by fitting a semiparametric mixed effect
model, in order to capture the shape of growth curves and to test the significance of the grouping
factor effect. The relevant features emerged with this first analysis arethen modeled by means of
parametric nonlinear models of decreasing complexity, which are easier to interpret and more suited
to inferential purposes. We focused on the numbers of hospital discharges with a diagnosis of NON-
STEMI, grouped by hospital and relative to the 30 largest clinical institutions of Lombardia Region,
during years 2000−2007. Cases detection is performed according to the AHQR guidelines [173].
Figure 8.1-left panel represents the number of Acute Myocardial Infarction without ST-elevation
(NON-STEMI) diagnoses, along the time period 2000−2007, for the 30 hospitals. The total number
of diagnoses in the time period 2000−2007 has a considerable variability between institutions: in
fact it ranges from a minimum value of 715 to a maximum of 1872. This difference is due to
the different exposure of different hospitals; indeed, exposure could be a confounding factor in a
statistical analysis focused on the growth trend of the number NON-STEMI cases. Hence, in order
to analyze comparable data, for each hospital the yearly number of diagnoses has been standardized
by the hospital total number of diagnoses in the time period 2000−2007, thus adjusting for hospital
exposure (see Figure 8.1-rigth panel).

The high variability between hospitals and the structure of the data grouped by hospital, motivate

156
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Figure 8.1:Left panel: Number of AMI without ST-elevation diagnoses inthe period 2000 - 2007 in the
30 largest clinical institutions of Lombardia Region. Right panel: Standardized number of AMI without ST-
elevation diagnoses in the period 2000 - 2007 in the 30 largest clinical institutions of Lombardia Region. For
each hospital the yearly number of diagnoses has been divided by the hospital total number of diagnoses in
the time period 2000−2007.

the use of mixed effects models for the analysis of these longitudinal data. A first explorative
analysis conducted by means of a linear mixed model, where the standardizednumber of NON-
STEMI diagnoses appears as a linear function of time, with hospital as a grouping factor, shows a
significant linear trend over time (the p-value of the test on the “year” fixedeffect is less than 10−14).
Since the use of a linear parametric model can be quite binding, a further enquire into the growth
trend has been conducted by fitting a semiparametric mixed effect model. Indeed, we setÑi j to be
the standardized number of NON-STEMI diagnoses for hospitali = 1, ...,30 and yearj = 1, ...,8,
where j = 1 is for year 2000 andj = 8 is for year 2007, and following [147], we fit the following
mixed effects semiparametric model with respect to time

Ñi j = s(t j)+b0i +b1it j + εi j i = 1, ...30, j = 1, ...,8, (8.1)

wheret j is the centered time covariate (i.e.t0 = 2000−2003.5=−3.5, t1 = 2001−2003.5=−2.5
and so on),s is a common cubic regression spline, whileb0i andb1i are i.i.d samples of the random
variablesb0 ∼N (0,σ2

b0
) andb1 ∼N (0,σ2

b1
) respectively, representing gaussian additive indepen-

dent random effects, grouped by hospital. The quantitiesεi j are i.i.d. samples from the random
variableε ∼ N (0,σ2) representing residual error:ε, b0 andb1 are assumed to be independent.
Estimates are obtained by maximization of restricted likelihood. Figure 8.2 shows the estimated
growth curves together with the original data.
We fitted a semiparametric mixed effects model in order to catch a common behaviorin the growth
of normalized number of NON-STEMI diagnoses in the years 2000-2007,smoothing data and tak-
ing into account overdispersion due to the grouping factor. In fact, inspection of Figure 8.2 suggests
a common “S-shaped” growing pattern. Concerning the random effects,the estimated parameters
are: σ̂b0 = 2.702∗ 10−07, σ̂b1 = 0.00765 andσ̂ = 0.02297. The negligible effect of the random
variableb0 suggests that the curves are in fact different only with respect to their growth rate. The
greater effect of the random variableb1 is conducive to a further analysis of these data by means
of a model that captures the common growth trend while taking into account overdispersion in the
growth rates. Indeed, the following parametric logistic mixed effects model accommodates for the



CHAPTER 8. STATISTICAL ANALYSIS OF OTHER SURVEYS 158

Semiparametric mixed effects model
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Figure 8.2:Estimated growth curves through model (8.1) together with the original data.

“S-shaped” common growing pattern, pointed out by the nonparametric analysis, while enabling
the testing of its significance:

Ñi j =
Asym+αi

(1+exp(Tmid+ τi − t j))
+ εi j , i = 1, ...30, j = 1, ...,8, (8.2)

wheret j is the centered time covariate, the fixed effects Asym and Tmid represent, respectively,
the asymptote and the inflection point of the logistic curve, whileαi andτi are i.i.d samples of the
random variablesα ∼ N (0,σ2

α) andτ ∼ N (0,σ2
τ ), respectively, representing gaussian additive

random effects, grouped by hospital. The quantitiesεi j are i.i.d. samples from the random variable
ε ∼ N (0,σ2) and they represent residual error. The two random effectsα andτ are assumed to be
independent, and independent ofε; all estimates are computed by restricted maximum likelihood.
Table 8.1 shows that both fixed effects Asym and Tmid are significant.
Concerning the random effects, the estimated parameters are:σ̂α = 6.8183∗10−07, σ̂τ = 0.4821
and σ̂ = 0.0287. It is then confirmed that the variability of the additive random effectrelative
to the asymptote is negligible; thusαi can be removed from model (8.2) without loss in model
performance. On the contrary, the variability of the random effect relative to the inflection point is
large and implies a very significant effect; this stimulates an interesting interpretation, since, in the
logistic model, the inflection point indicates the time of maximum growth speed and this,in turn, is
directly related to the timing of a growth speed significantly different from zero.

The inspection of the set of (estimated) random effectsτi , i = 1, ...,30, related to the inflection
point suggests a clustering structure that has been captured by partitioningthe set ink = 1,2, ...,
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Fixed effects estimates:
Value Std. Error

Asym 0.1544 0.0026
Tmid -2.7017 0.1368

Anova Table:
numDF denDF F-value p-value

Asym 1 209 5417.630 < .0001
Tmid 1 209 389.845 < .0001

Table 8.1:Fixed effects estimates and Anova table for model (8.2).

clusters by means of the Partitioning Around Medoids procedure (PAM, [90]), implemented with
the euclidean distance, denoted byd. A critical point is the choice ofk, the number of groups:
an helpful method is the computation of the average silhouette width, and the inspection of the
silhouette plot of PAM. For each estimatedτi , let A be the cluster to whichτi has been assigned and
computea(τi), the average dissimilarity ofτi to all other objects inA,

a(τi) =
1

|A|−1 ∑
τ j∈A,τ j 6=τi

d(τ j ,τi).

Now, if C is a cluster different fromA, denote by

d(τi ,C) =
1

|C|−1 ∑
τ j∈C

d(τ j ,τi)

the average dissimilarity ofτi from all objects inC and setc(τi) to be the smallest value ofd(τi ,C)
whenC is let to range over the set of all clusters different fromA. Thesilhouette value s(τi) of τi is
defined as

s(τi) =
c(τi)−a(τi)

max{a(τi),c(τi)}
.

Clearly s(τi) lies between−1 and 1; large values ofs(τi) support the fact that the elementτi is
well classified inA. The entire silhouette plot, i.e. the plot of alls(τi), and the Average Silhouette
Width, i.e. the average of all silhouette values, are qualitative indexes helpful to judge and compare
the results obtained by PAM for different values ofk [136]. By inspecting the silhouette plot,
represented in Figure 8.3, the presence ofk = 3 clusters can be sustained. Indeed, fork = 3, the
Average Silhouette Width is equal to 0.58 and, as a general rule, it can be asserted that a reasonable
clustering structure has been found when the Average Silhouette Width is greater than 0.5. The
medoids representative of the three clusters correspond to yearsyA = 2000,yB = 2001 andyC =
2002. “Cluster A” denotes the institutions for which the estimated time of inflection point Tmid+τi

in model (8.2) is closer to−3.1692, i.e. closer to yearyA = 2000. Analogously, “Cluster B” denotes
the institutions for which the estimated time of inflection point is closer to−2.6839, i.e. closer to
yearyB = 2001, and “Cluster C” denotes the institutions for which the estimated time of inflection
point is closer to−2.3014, i.e. closer to yearyC = 2002.
In the left panel of Figure 8.4, the curves estimated by model (8.2) are represented, one curve for
each hospital, together with the real data; the right panel shows the estimatedlogistic growth curves.
The thick red, black and green curves represent the three benchmarks growth curves, i.e. medoids
for cluster A, B and C, respectively.
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Figure 8.3:Silhouette plot of PAM procedure on the estimated inflectionpoints withk= 3 clusters.

The particular interest in analyzing the clustering structure of the random effects related to the
inflection points derives by the clinical surmise about their presence. Indeed, it is known that from
the early 2000s the troponin exam has been introduced in hospital practices as a diagnostic device
to better identify NON-STEMI events; hence, the presence of 3 clusters for the random effectsτi

could be a consequence of the different hospital timings in the introduction and adoption of this
practice. This hypothesis cannot be validated directly since the timings of adoption of the troponin
exam by the 30 different hospitals included in the analysis are not available.
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Figure 8.4:Estimated logistic growth curves for different medical institutions.

The previous analysis suggests a simpler model with fixed effects only, where dummy variables
represent the identified cluster structure (clusters A, B, or C). This modelis easier to interpret and
communicate to clinicians; for instance, it quantifies the statistical evidence of the existence of
groups in terms of p-values reported in Table 8.2. The model is:
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Ñi j =
Asym

(1+exp(TmidA ·1i∈A+TmidB ·1i∈B+TmidC ·1i∈C− t j))
+ εi j , (8.3)

wherei = 1, ...30, is the institution index,j = 1, ...,8, is the year index, andε is defined as before.
Estimates for the effects of model (8.3) appear in Table 8.2; they are all significant. Notice that the
fixed effects estimates reported in Table 8.2 are close to the values identifyingthe inflection points
of the three medoidsyA,yB andyC generated by the analysis of model (8.2).

Value Std. Error p-value

Asym 0.1540 0.0025 < .0001
TmidA -3.9434 0.2383 < .0001
TmidB -2.6719 0.1294 < .0001
TmidC -1.9108 0.1637 < .0001

Table 8.2:Fixed effects estimates for model (8.3).

Testing all possible contrasts between the three different fixed effects related to the inflection point,
always generates a p-value less than 10−4; there is a strong evidence of different inflection points in
the three groups. Diagnostic checks show that normality assumption of residuals can be sustained.

In conclusion, the statistical analysis advocates the presence of three groups of hospitals, possi-
bly distinguished by different timings of introduction and adoption of the troponin test and supports
the clinical tenet that in the time period 2000−2007 there has been an apparent increase in the nor-
malized number of NON-STEMI diagnoses that is not due to a real increasein the disease incidence,
but to a new diagnostic procedure adopted in hospitals along different timings.

This study represents an example of unsupervised clustering carried out starting from the random
effects estimates in a NLME model setting, according to methods and purposeshighlighted in Para-
graph 4.2.3.

8.2 Nonlinear nonparametric models for an epidemiologic enquire

In this Section, the analysis related to the theoretical framework proposed inParagraph 4.6.1 are
presented. Simulated dataset, analyses and results are detailed in [12].

8.2.1 Linear growth model

Starting from the simulation study for linear models, letg in model (4.44) is linear. The general
model, fori = 1, . . . ,N, include three different cases, that are:

yi =





α +di t+ εεε i (random-slope case)
ai +δ t+ εεε i (random-intercept case)
ai +di t+ εεε i (fully random case)

whereεεε i are i.i.d. fromN (0,σ2
In) andt is the vector of sampling times. Intercept and slope are

treated as fixed or random effects according to the different cases. In the fully random case, both
slope and intercept parameters are considered random, i.e.bi = (di ,ai), whereas in the random-
slope and random intercept case,bi = di andbi = ai respectively. The interest is focused on random
effects estimation, because our main goal is to test the performance of our algorithm in identifying
the correct number of groups in simulated data and in estimating properly location and weights
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of different groups. Testing the linear case enables us to compare results of our algorithm with
those carried out by theRalgorithmnpmlreg , which implements [3] procedure of non parametric
random effect estimation. To be noticed is that our method is not efficient in the linear case, since
it doesn’t take advantage of the linearity of the problem. However it doesn’t need any a priori
specification of the number of support points of the random effects. Even if we don’t specify the
exact number of groups beforehand, the proposed method is able of carrying out a good estimation
of the random effects distribution.

Some examples of simulated data from a linear growth model are shown in left panels of Figure
8.5. We simulated 8 datasets of linear curves grouped in a number of clustersthat vary form 2 to
10. Different values of the error varianceσ2 have been chosen for each test set, in order to obtain
noisy observations for each curve. Datasets addressed with the name “S” contain groups in which
only slopes is random, “I” datasets contain groups where only intercept israndom and “SI” datasets
contain curves where both slope and intercept are random. The simulated datasets are then:

• lin2S: 2 balanced groups, each one composed by 25 curves, with the sameintercept (equal to
4), 2 different slopes (c= (c1,c2) = (1,2)) andσ = 1;

• lin2I: 2 balanced groups, each one composed by 25 curves with the same slope (equal to 1),
2 different intercept (c= (c1,c2) = (3,10)) andσ = 0.65;

• lin4SI: 4 balanced groups, each one composed by 25 curves, where location pointsc =
(c1,c2,c3,c4) are obtained from all possible combinations of 2 different slopes (equalto 1 and
3) and 2 different intercepts (equal to 40 and 60), i.e.,c1 = (1,40), c2 = (1,60), c3 = (3,40)
andc4 = (3,60) with σ = 1;

• lin3S: 3 unbalanced groups, composed by 24, 24 and 2 curves respectively, with the same
intercept (equal to 4), 3 different slopes (c= (c1,c2,c3) = (1,2,3.5)) andσ = 1;

• lin3I: 3 unbalanced groups, composed by 24, 24 and 2 curves respectively, with the same
slope (equal to 1), 3 different intercepts (c= (c1,c2,c3) = (2,7,14)) andσ = 1;

• lin9SI: 9 unbalanced groups, 6 of whom containing 24 curves and 3 containing 2 curves,
where location pointsc = (c1,c2,c3,c4,c5,c6,c7,c8,c9) are obtained from all possible com-
binations of 3 different slopes (equal to 1, 4 and 7) and 3 different intercept (equal to 20, 35
and 60) withσ = 1.5;

• lin10S: 10 balanced groups, each one composed by 50 curves with the same intercept (equal
to 1), 10 different slopes (c = (c1,c2,c3,c4,c5,c6,c7,c8,c9,c10) = (0.5,2,4,5.5,7.5,10,12,
13.5,16,20)) andσ = 1.5;

• lin10I: 10 balanced groups, each one composed by 15 curves with the same slope (equal to 1),
10 different intercepts (c= (c1,c2,c3,c4,c5,c6,c7,c8,c9,c10) = (1,5,10, 15,20,25,30,35,40,
45)) andσ = 1.

All these datasets represent typical situations in which fitting a parametric mixedeffects model could
be wrong because random effects are not normally distributed. On thesedatasets, we fitted models
with both the NLNPEM method and the nonparametric maximum likelihood approach introduced
in [3].

The method introduced in [3] is a method for fitting overdispersed generalized linear models: the
idea is to approximate the unknown and unspecified distribution of the randomeffects by a discrete
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mixture of densities from exponential family. This approximation leads to a simple expression of
the marginal likelihood that can be maximized using a standard EM algorithm. Oncespecified the
model and the number of random effects groupsk, the R packagenpmlreg fits a linear mixed
effects model using nonparametric maximum likelihood. Since we are testing the proposed method
in a simulation setting, whennpmlreg method is used we provide the correct number of groups,
whereas, when NLNPEM is used, we don’t have to. TheM starting points for random effects dis-
tribution are randomly chosen in a proper range and the starting fixed effects are estimated through
linear least squares. Finally, the toleranceD is set equal to 0.05 and̃ω = 0.05. According to the
dimension of the random effect (q= 1 for random-slope or random-intercept case,q= 2 when both
effects are random), we properly define the model innpmlreg and NLNPEM algorithms.

Notice thatnpmlreg does not allow to select one dimensional random effect for slope only but
provides a random effects estimation for both intercept and slope parameters. In this case, in order
to correctly compare the two methods, we have set also in the NLNPEM method both slope and
intercept to be random in the random-slope case. Of course, in the NLNPEM method, random
effects only for the slope may be selected by the user, if necessary.

In Tables 8.6, 8.7 and 8.8 of Paragraph 8.2.5, results ofnpmlreg and NLNPEM algorithms for
three representative cases are compared, i.e the estimations of random effects in terms of points
and weights are reported and compared with the corresponding true distributions. Observing esti-
mated values reported in these Tables, it can be argued that both methods estimate well both the
discrete random components of the model and the fixed effects when a smallnumber of groups
is considered. Increasing the number of groups, the two algorithms show different behaviors. In
particular we notice that, for large number of groups,npmlreg misses some points of the nonpara-
metric distribution, whereas NLNPEM performs better, even ignoring the truenumber of groups.
The number of groups estimated by the NLNPEM algorithm depends in general on the tuning tol-
erancesD andω̃, introduced in Paragraph 4.6.1. This algorithm tends to overestimate the number
of points of the discrete distribution. However, even if the number of points isgreater than the real
number, the points tend to cluster near the true ones. Moreover, summing the weights of the points
in each cluster, we obtain results similar to the exact weights. The hints concerning the number
of groups provided by NLNPEM algorithm make this method a powerful tool inexplorative analy-
ses within an unsupervised framework. The NLNPEM method is also capableof detecting outlier
groups, whereas thenpmlreg method is able to detect them only in presence of small number of
groups. In general, we notice that sometimesnpmlreg method performs poorly in estimation or
even misses convergence, whereas NLNPEM doesn’t. These situationshappen in particular when
there are 9 different groups both for intercept and slope (“lin9SI” dataset) and when there are 10
groups for slope or intercept(“lin10S” and “lin10I” dataset respectively).

In order to resume the goodness of fit of NLNPEM method and thenpmlreg one, we finally
compare the normalized Wasserstein distances between the true discrete random effects distribution
and the estimated one through the two methods, for each simulated set of linear curves. Results are
reported in Table 8.3, together with the goodness of fit index−2logL.
To be noticed is that, in the case of Wasserstein distance, results are similar for all datasets where
both algorithm perform well. On the other hand, significant differences exist in cases with large
number of groups, where NLNPEM performances are much better both in terms of Wasserstein
distance and−2logL.
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Figure 8.5:Simulated data (left panels),npmlreg (central panels) and NLNPEM classification (right pan-
els) in lin2I, lin3S, lin9SI, lin10I and lin10S datasets respectively. Different colors are used to represent
real groups (left panels), groups identified bynpmlreg and NLNPEM methods (central and right panels
respectively).
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Model Wasserstein distance −2logL
npmlreg NLNPEM npmlreg NLNPEM

lin2S 0.013572 0.013724 2861.2 942.0
lin2I 0.004538 0.005187 2097.7 190.5

lin4SI 0.008121 0.006298 5974.4 2017.7
lin3S 0.003041 0.004651 2839.8 912.7
lin3I 0.003454 0.003454 2938.3 1017.2

lin9SI 0.017756 0.001565 16127.0 5376.7
lin10S 0.033632 0.000410 76716.1 18025.9
lin10I 0.023045 0.001649 12795.8 2947.3

Table 8.3:Normalized Wasserstein distances and−2logL index for npmlreg and NLNPEM algorithm
respectively in the simulated linear cases.

In the following we describe two nonlinear case studies: the exponential and the logistic growth
model. These two models are among the most used in nonlinear mixed effects framework because
they find application in several areas like pharmacokinetics and epidemiological studies.
Since other nonlinear nonparametric methods are not available for free software, we are not able
to compare the NLNPEM results with those obtained with other methods; for this reason we will
only test NLNPEM performances, providing the normalized Wasserstein distance between the true
distribution and the estimated one.

8.2.2 Exponential growth model

We first describe the exponential case, in which we consider the followingnonlinear function in
model (4.44):

g(t) = α
(

1−e−λ t
)

which is nonlinear inλ . The two parametersα andλ represent respectively the asymptote and the
growth rate. In this case study we consider only random effects for the asymptote, that means that
the mixed effects model becomes

yi = ai

(
1−e−λ t

)
+ εεε i

whereεεε i ∼ N (0,σ2
In) are i.i.d. errors,ai are the random effects for the asymptote (bi = ai) andλ

is the fixed effect for the growth rate (β = λ ).

We simulated 3 datasets of exponential growth curves where only asymptote varies and is considered
as random. All datasets are then addressed with the name “A”. They are:

• exp2A: 2 balanced groups, each one composed by 25 curves, with the same growth rate
(λ = 0.5), 2 different asymptotes (c= (c1,c2) = (1,1.5)) andσ = 0.04;

• exp3A: 3 unbalanced groups of 24, 24 and 2 curves respectively, with the same growth rate
(λ = 0.5), 3 different asymptotes (c= (c1,c2,c3) = (1,1.5,2.3)) andσ = 0.04;

• exp10A: 10 balanced groups, each one composed by 5 curves, with thesame growth rate (λ =
0.5), 10 different asymptotes (c = (c1,c2,c3,c4,c5,c6,c7,c8, c9,c10) = (1,1.25,1.5,1.75,2,
2.25,2.5,2.75,3,3.25) andσ = 0.04.
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The starting random effects distribution hasM support points, randomly chosen in a proper range,
and the starting fixed effects are estimated through nonlinear least squares. The tuning tolerance
parameterD is set equal to 0.01 andω̃ = 0.05. Figure 8.6 shows original datasets, where each curve
is colored according to the group estimated by NLNPEM method.
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Figure 8.6:NLNPEM classification in exp2A, exp3A and exp10A datasets respectively with exponential
model.

The estimated number of groups is larger than the real one in all the three cases; however the
estimated random effects create the right number of clusters located close tothe correct points. In
the exp3A case the NLNPEM method is also able to identify theoutlier group estimating well the
location and the weight of the random effects. The performance of NLNPEM method is evaluated
in this case only in terms of normalized Wasserstein distance, shown in Table 8.4.

Model Wasserstein distance
exp2A 0.030048
exp3A 0.015025
exp10A 0.011524

Table 8.4:Normalized Wasserstein distances for NLNPEM algorithm in the simulated exponential cases.

8.2.3 Logistic growth model

The second nonlinear model tested is the logistic growth model. In this case the nonlinear function
is:

g(t) =
α

1+e−
t−δ

γ

whereα represent the asymptote,δ is the inflection point, which correspond to the time at which
the growth curve reaches the half of the asymptote, andγ is the time elapsed betweenδ and the
time at which the growth curve reaches 3/4 of the asymptote level. The parameter γ will always be
treated as a fixed effect while the asymptote and the inflection point will be treated either as fixed
or as random effect according to different cases. The general model, which is nonlinear inλ andγ,
include three different cases:
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yi =





ai

1+e−
t−δ

γ
+ εεε i (random-asymptote case)

α

1+e−
t−di

γ

+ εεε i (random-inflection case)

ai

1+e−
t−di

γ

+ εεε i (random-asymptote and inflection case)

(8.4)

whereεεε i ∼ N (0,σ2
In) are i.i.d. errors,ai anddi represent the random effects for the asymptote

and the inflection point, whileα , δ andγ represent the fixed effects. In particular in the varying
asymptote casebi = ai andβ = (δ ,γ), in the varying inflection casebi = di andβ = (α ,γ) and in
the varying asymptote and inflection casebi = (ai ,di) andβ = γ.

We simulated 8 datasets of logistic growth curves that include all the cases resumed in (8.4). Each
dataset is composed by a different number of balanced or unbalanced groups (from 2 to 10 clusters)
similar to those presented in the linear framework. Datasets addressed with thename “A” represent
random asymptote cases, “I” datasets contain groups where only inflection point is random and “AI”
ones contain curves where both asymptote and inflection point are random.We then have:

• logis2A: 2 balanced groups, each one composed by 25 curves, withδ = 6, γ = 1, 2 different
asymptotes (c= (c1,c2) = (1,2)) andσ = 0.04;

• logis2I: 2 balanced groups, each one composed by 25 curves, withα = 1, γ = 1, 2 different
inflection points (c= (c1,c2) = (6,8)) andσ = 0.04;

• logis4AI: 4 balanced groups, each one composed by 25 curves, where location pointsc =
(c1,c2,c3,c4) are obtained from all possible combinations of 2 different asymptotes (equal to
1 and 2) and 2 different inflection points (equal to 6 and 10), i.e.,c1 = (1,6), c1 = (1,10),
c1 = (2,6) andc4 = (2,10) with γ = 1 andσ = 0.04;

• logis3A: 3 unbalanced groups of 24, 24 and 2 curves respectively, with δ = 6, γ = 1, 3
different asymptotes (c= (c1,c2,c3) = (1,2,3.5)) andσ = 0.04;

• logis3I: 3 unbalanced groups of 24, 24 and 2 curves respectively, with α = 1, γ = 1, 3 different
inflection points (c= (c1,c2,c3) = (6,8,11.5)) andσ = 0.04;

• logis9AI: 9 unbalanced groups of curves (6 of whom containing 24 curves and 3 containing
2 curves), where location pointsc= (c1,c2,c3,c4,c5,c6,c7, c8,c9) are obtained from all pos-
sible combinations of 3 different asymptotes (equal to 1, 2 and 4) and 3 different inflection
points (equal to 6, 8 and 11.5) with γ = 1 andσ = 0.04;

• logis10A: 10 balanced groups, each one composed by 5 curves, withδ = 6, γ = 1, 10 different
asymptotes (c=(c1,c2,c3,c4,c5,c6,c7, c8,c9,c10)= (1,1.25,1.5, 1.75,2,2.25,2.5,2.75,3,3.25)
andσ = 0.04;

• logis10I: 10 balanced groups, each one composed by 5 curves, withα = 1, γ = 1, 10 different
inflection points (c=(c1,c2,c3,c4,c5,c6,c7, c8,c9,c10)= (4.5,5.5,7,8,9.5,10.5,12,13,14.5,16)
andσ = 0.04.

Since the NLNPEM method is able to fit all three models resumed in (8.4), we fit theright model
for each dataset. The starting random effects distribution hasM support points, randomly chosen in
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a proper range, and the starting fixed effects are estimated through nonlinear least squares. We set
the toleranceD equal to 0.05 and̃ω = 0.05.

Figure 8.7 shows original datasets, where each curve is colored according to the group estimated by
NLNPEM method. We notice in Figure 8.7 that, even if we don’t specify a priori the correct number
of groups, we are able to cluster correctly the subjects both when there are few groups and when
there are many. The method is also able to capture correctlyoutliersgroups; in all the unbalanced
cases the proposed method recognize theoutliersgroups and estimate well both the location and the
weight of random effects.
In order to test the NLNPEM method we can compare these results with those obtained considering
always both asymptote and inflection point as random effects. For the two varying asymptote and
inflection cases we have obviously fitted only the model with two random effects.
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Figure 8.7:NLNPEM classification in logis2A, logis2I, logis4AI, logis3A, logis3I, logis9AI, logis10A and
logis10I datasets respectively with logistic growth model.

The normalized Wasserstein distances are shown in Table 8.5; the left columnrepresents the nor-
malized Wasserstein distance for a model with one random effect while the right one represent the
same distance for models with two random effects.



CHAPTER 8. STATISTICAL ANALYSIS OF OTHER SURVEYS 169

Model Wasserstein distance
q= 1 q= 2

logis2A 0.000150 0.000450
logis2I 0.003202 0.012171

logis4AI – 0.004869
logis3A 0.000396 0.000629
logis3I 0.007243 0.010250

logis9AI – 0.006477
logis10A 0.001286 0.0.0015
logis10I 0.004664 0.005207

Table 8.5:Normalized Wasserstein distances for NLNPEM algorithm in the simulated logistic cases.

We first notice that the normalized Wasserstein distances are always verylow, that means that the
NLNPEM method is able to estimate well both random and fixed effects even in presence of a
high number of groups. We also notice, comparing results for the same casestudy with one or
two random effects, that the normalized Wasserstein distances are always very close together. Both
observing the Wasserstein distances and the fitted curves obtained with the model with two random
effects, we notice that in the NLNPEM method we are allowed to consider more parameters as
random effects than needed, without damaging the parameter estimation. In particular this approach
could be useful when we don’t know which are the parameters to be considered random. For this
purpose we could perform a first analysis considering all parameters as random effects and then
fit a second model fixing the parameters that show a very low variability. Thisapproach could be
performed with the NLNPEM method because it can handle both random and fixed effects whereas
other previous methods cannot.

8.2.4 Application to NON STEMI data

In this example, we study a dataset concerning Hospital Discharges of patients affected by Acute
Myocardial Infarction (AMI) without ST-segment elevation (NON-STEMI), a dataset arising from
the Administrative databaseRICOVERIdescribed in Paragraph 3.1.1. It contains the same data
that have been already studied in [77] through Nonlinear Parametric MixedEffects Models and that
have been detailed in Section 8.1. Figure 8.8 represents the normalized number of NON-STEMI
diagnoses along the time period 2000-2007 grouped by hospital and relative to the 30 largest clinical
institutions of Regione Lombardia. For each hospital the yearly number of diagnoses has been
standardized by the hospital total number of diagnoses in the time period 2000-2007.

As pointed out in Section 8.1, the random-inflection case in model (8.4) seems tocapture the com-
mon “S-shaped” growing pattern. The NLNPEM algorithm clusters the hospitals inN = 2 different
groups, according to the estimated discrete distribution of the random effect for the inflection point
(see Figure 8.8). The estimated fixed effects areα̂ = 0.16 andγ̂ = 1.31, the estimated discrete mea-
sureP̂∗ is concentrated on(ĉ1, ĉ2) = (−3.76,−2.43) with weights(ω̂1, ω̂2) = (0.2,0.8) and the
estimated variance iŝσ2 = 7.7·10−4. This analysis, performed withD = 0.05 andω̃ = 0.05, backs
up the presence of two groups of hospitals according to different inflection points and automatically
detects an unsupervised cluster structure. Even if clinical best practicemaintains that there is no
evidence for a greater incidence of NON-STEMI in this period it is known that since the early 2000s
a new diagnostic procedure - thetroponinexam - has been introduced and this could have produced
an increased number of positive diagnoses, by easing NON-STEMI detection.



CHAPTER 8. STATISTICAL ANALYSIS OF OTHER SURVEYS 170

−3 −2 −1 0 1 2 3

0.
05

0.
10

0.
15

0.
20

0.
25

Centered Year

N
um

be
r 

of
 c

as
es

Figure 8.8:Standardized number of AMI without ST-segment elevation diagnoses in the period 2000 - 2007
in the 30 largest clinical institutions of Lombardia Region. The year has been centered and normalization has
been carried out standardizing the yearly number of diagnoses for each hospital by total number of diagnoses
in the time window 2000−2007. Real data are colored according to the NLNPEM clustersand NLNPEM
fitted models are superimposed.

Hence, the presence of 2 clusters could be a consequence of the different hospital timings in the
introduction and adoption of this practice. This hypothesis cannot be validated directly since the
timings of adoption of the troponin exam by the 30 different hospitals includedin the analysis are
not available. The agreement with previous results of Section 8.1 together withthe great advantage
of a non-parametric approach advocates the real profit in using this newestimation algorithm.

8.2.5 Comparison of results

Comparison of estimates carried out bynpmlreg and NLNPEM method are reported here, for
some cases of interest mentioned before.

• Linear case - Random-intercept case (lin2I)

effects True npmlreg NLNPEM
fixed slope 1 1.0021 1.0022

intercept 1 3 2.9382 2.9368
random (weight 1) (0.5) (0.5) (0.5)

intercept 2 10 10.0150 10.0136
(weight 2) (0.5) (0.5) (0.5)

Table 8.6:Estimates carried out bynpmlreg and NLNPEM method on lin2I dataset, where intercept is
considered as random, with 2 balanced groups.

• Linear case - Random-slope case (lin3S)
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effects True npmlreg NLNPEM
slope 1 1 1.0107 1.0107

(weight 1) (0.48) (0.48) (0.48)
random slope 2 2 1.9982 2.0030 1.9637

(weight 2) (0.48) (0.48) (0.4214) (0.0585)
slope 3 3.5 3.5250 3.5250

(weight 3) (0.04) (0.04) (0.04)
intercept 4 3.9326 3.9326

random intercept 4 4.0751 3.9954 4.6502
intercept 4 3.3717 3.7174

Table 8.7: Estimates carried out bynpmlreg and NLNPEM method on lin3S dataset, where slope is
considered as random, with 3 unbalanced groups.

• Linear case - Random-intercept case (lin10I)

effects True npmlreg NLNPEM
fixed slope 1 1.001857 1.001232

intercept 1 1 0.9114 0.9114 0.9185
(weight 1) (0.1) (0.00050) (0.09949) (0.1)
intercept 2 5 5.0257 5.0328
(weight 2) (0.1) (0.1) (0.1)
intercept 3 10 - 10.048
(weight 3) (0.1) - (0.1)
intercept 4 15 12.5442 14.8397 15.1058
(weight 4) (0.1) (0.2) (0.0192) (0.0807)
intercept 5 20 19.9818 19.9312 20.0026

random (weight 5) (0.1) (0.1) (0.0368) (0.0631)
intercept 6 25 27.4750 24.9215 25.1181 25.1975
(weight 6) (0.1) (0.2) (0.0325) (0.0371) (0.0302)
intercept 7 30 - 29.886
(weight 7) (0.1) - (0.1)
intercept 8 35 35.0050 34.9582 35.2459
(weight 8) (0.1) (0.1) (0.0813) (0.0186)
intercept 9 40 39.9516 39.6837 39.9624 40.4505
(weight 9) (0.1) (0.1) (0.0186) (0.0714) (0.0098)

intercept 10 45 45.0017 45.0017 45.008
(weight 10) (0.1) (0.09949) (0.000507) (0.1)

Table 8.8:Estimates carried out bynpmlreg and NLNPEM method on lin10I dataset, where intercept is
considered as random, with 10 balanced groups.
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8.3 Bayesian decision rules for provider profiling in cardiovascular
context

In this section, we develop Bayes rules for several families of loss functions for hospital report cards
under a Bayesian semiparametric hierarchical model like those proposed inSection 5.4. Moreover,
we present some robustness analysis with respect to the choice of the lossfunction, focusing on
the number of hospitals our procedure identifies as “unacceptably performing”. The analysis is
carried out on a case study dataset arising from MOMI2 survey (see Paragraph 3.2.2) on patients
admitted with ST-Elevation Myocardial Infarction to the hospitals of Milan Cardiological Network.
The major aim of this analysis is the ranking of the health care providers performances, together
with the assessment of the role of patients’ and providers’ characteristicson survival outcome.

Performance indicators have recently received increasing attention; they are mainly used with the
aim of assessing quality in health care research (see [9], [10], [62],[115], [116], [117], [125]). In this
analysis, the aim is to point out similar behaviours among groups of hospitals and then classify them
according to some acceptability criteria, suitably modelling the survival outcomeof patients affected
by a specific disease and admitted to different clinical structures. In general, provider profiling
of health care structures is obtained producing report cards comparingtheir global outcomes or
performances of their doctors. These cards have mainly two goals:

• to provide information that can help individual consumers (i.e., patients) making a decision,

• to identify hospitals that require investments in quality improvement initiatives.

Here we are interested not only in the point estimation of the mortality rate, but also to decide
whether investing in quality improvement initiatives for each hospital with “unacceptable perfor-
mances”, as explained and implemented in [65].

8.3.1 Statistical support to decision-making in health-care policy

Even in a perfect risk-adjustment framework, random errors will be present. Therefore, when clas-
sifying hospital performances as “acceptable” or not, some mistakes couldoccur, so that some
hospitals could be misclassified. Anyway, different players in the health care context would pay
different costs on misclassification errors. ByFalse Positivewe mean the hospital that truly had ac-
ceptable performances but was classified as “unacceptably performing”, and byFalse Negativethe
hospital that truly had unacceptable performances but was classified as“acceptably performing”.
Then a health care consumer would be presumably willing to pay a higher charge for decisions that
minimize false negatives, whereas hospitals might pay a higher cost for information that minimizes
false positives. On the other hand, the same argument could be used to target hospitals for quality
improvement: false positives would yield unneeded investments in quality improvement, but false
negatives would lead to loose opportunities in improving the hospital quality. According to its plans,
any health care government could be interested in minimizing false positives and/or false negatives.

In order to provide support to decision-making in this context, we carry out the statistical anal-
ysis in the following way: firstly we estimate the in-hospital survival rates after fitting a Bayesian
semiparametric generalized linear mixed effects model like in Section 5.4, in particular modelling
the random effect parameters via a Dirichlet process (Paragraph 5.3.1); then we develop Bayes de-
cision rules in order to minimize the expected loss arising from misclassification errors, comparing
four different loss functions for hospital report cards (Section 5.4).
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The Bayesian generalized mixed effects model for binary data we fitted forunit (patient) i =
1, . . . ,n j , in group (hospital)j = 1, . . . ,J is the following: letYi j be a Bernoulli random variable
with meanpi j , i.e.,

Yi j |pi j
ind∼ Be(pi j ).

The pi j s are modelled through a logit regression of the form

logit(pi j ) = log
pi j

1− pi j
= θ0+

p

∑
h=1

θhxi jh +
J

∑
l=1

bl zjl (8.5)

wherezjl = 1 if j = l and 0 otherwise. In this model,θθθ = (θ0, . . . ,θp) represents the(p+ 1)-
dimensional vector of the fixed effects,xi j is the vector of patient covariates andb = (b1, . . . ,bJ)
is the vector of the additive random effects parameters of the grouping factor. According to [91],
we assume a nonparametric prior forb1, . . . ,bJ, namely theb js will be i.i.d. according a Dirichlet
process, to include robustness to miss-specification of the prior at this stage, since it is known that
the regression parameters can be sensitive to the standard assumption of normality of the random
effects; the prior forθθθ is parametric. Model (8.5) is a generalized linear mixed model withp+1
regression coefficients and one random effect. In [67] the same model was fitted on a different
dataset to classify hospitals taking advantage of the in-built clustering property of the Dirichlet pro-
cess prior. Here we use Bayesian estimates to address a new decision problem concerning hospitals’
performances.
Bayesian inferences are based on the posterior distribution, i.e., the conditional distribution of the
parameters vector, given the data. Once the posterior distribution has been computed, suitable loss
functions can be defined in order toa posterioriweigh the decision of wrongly classifying the hos-
pital as having acceptable or unacceptable performances. The randomintercepts of model (8.5),
i.e.,θ0+b1,θ0+b2, . . . ,θ0+bJ represent the hospital performances quantifying the contribution to
the model after patients’ covariates adjustment. Let us denote byβ j the sum ofθ0 andb j . The class
of loss functions we are going to assume is then

L(β j ,d) = cI · f1(β j) ·d · I(β j > βt)+cII · f2(β j) · (1−d) · I(β j < βt), (8.6)

whered is the decision to take (d = 1 means that the hospital has “unacceptable performances”,
d = 0 stand for ”acceptable performances”),cI is the weight assigned to the costf1(β j), occurring
for a false positive,cII is the weight assigned to costf2(β j), occurring for a false negative andβt is
defined as log(pt/(1− pt)), beingpt a reference value for survival probabilities.

Without loss of generality, we can assume a proportional penalization, i.e.,f2(β j) = k · f1(β j),
takingk as the ratiocII /cI . In this sense, the parameterk quantifies our beliefs on cost, being greater
than 1 if we credit that accepting afalse negativeshould cost more than rejecting a true negative and
less than 1 otherwise. An acceptable performance is then defined comparing the posterior expected
losses associated with the decision that the hospital had “acceptable performances”

R(y,d = 0) = Eπ (L(β j ,d = 0)|y) =
∫

f2(β j)I(β j < βt)Π(β j |y)dβ j

and the decision that the hospital had “unacceptable performances”

R(y,d = 1) = Eπ (L(β j ,d = 1)|y) =
∫

f1(β j)I(β j > βt)Π(β j |y)dβ j .

HereΠ(β j |y)dβ j denotes the posterior distribution ofβ j . In short, we classify an hospital as being
“acceptable” (or with “acceptable performances”) if the risk associatedwith the decisiond = 0 is
less than the risk associated with the decisiond = 1, i.e., ifR(y,d = 0)< R(y,d = 1).
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Within this setting, four different loss functions of the form (8.6) will be considered in the next
paragraph, to address the decision problem, namely

0/1 Loss :

L(β j ,d) = d · I(β j > βt)+k · (1−d) · I(β j < βt),

Absolute Loss :

L(β j ,d) = |β j −βt | ·d · I(β j > βt)+k · |β j −βt | · (1−d) · I(β j < βt),

Squared Loss :

L(β j ,d) = (β j −βt)
2 ·d · I(β j > βt)+k · (β j −βt)

2 · (1−d) · I(β j < βt),

LINEX Loss :

L(β j ,d) = l(β j −βt) ·d · I(β j > βt)+k · l(β j −βt) · (1−d) · I(β j < βt).

For instance, this means that, to recover the 0/1 loss function above, the functions fi(β j), i = 1,2 in
(8.6) are both constant,fi(β j) = |β j −βt |, i = 1,2 for the Absolute Loss case,fi(β j)= (β j −βt)

2, i =
1,2 for the Squared Loss case andfi(β j) = l(β j −βt) = exp

{
a· (β j −βt)

}
−a·(β j −βt)−1, i = 1,2

to obtain the LINEX Loss function. Note that all the loss functions but the lastone are symmetric,
and the parameterk is used to introduce an asymmetry in weighting the misclassification error costs.

8.3.2 Application to MOMI 2 data

In this section we apply the model and the method proposed in the previous paragraph to 536 patients
of MOMI2 data underwent to primary PCI treatment. For this sample, 17 hospitals of admission
are involved, and a in-hospital survival rate of 95% is observed. Among all possible covariates
(mode of admission, clinical appearance, demographic features, time process indicators, hospital
organization etc.) available in the survey, only age and Killip class have beenselected as being
statistically significant. The killip class is binary here, i.e., the killip covariate is equal to 1 for the
two more severe classes and equal to 0 otherwise. Moreover we considered the total ischemic time
in the logarithmic scale too, because of clinical best practice and know-how. The choice of the
covariates and the link function was suggested in [78], according to frequentist selection procedures
and clinical best-practice, and confirmed in [66] using Bayesian tools.
Summing up, the model (8.5) we considered for our dataset is

logit(E[Yi j |b j ]) = logit(pi j ) = θ0+θ1 ·agei +θ2 · log(OB)i +θ3 ·killip i +b j (8.7)

for patienti (i = 1, . . . ,536) in hospitalj ( j = 1, . . . ,17). As far as the prior is concerned, we assume

θ⊥b θ ∼ N (0,100· I4)

b1, . . .bJ|P i.i.d.∼ P P|α ,P0 ∼ Dir (αP0) (8.8)

P0|σ ∼ N (0,σ2) σ ∼Uni f (0,10) α ∼Uni f (0,30).

See details in [67]. The estimated posterior expected number of distinct values among theb js,
computed on 5000 iterations of Markov chain, is close to 7. In Table 8.9 the performances of
different loss functions for different values ofk and different thresholdβt are reported. The different
values ofpt we considered (that determine theβt values), were fixed in a range of values close to the
empirical survival probability, in order to stress the resolution power of different loss in detecting
unacceptable performances. Of course, when increasing the threshold pt (and thereforeβt), more
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hospitals will be labelled as unacceptable. The tuning depend on the sensitivity required by the
analysis. The parametera of the LINEX loss is set to be equal to−1.

k= 0.5 k= 1 k= 2
Loss pt = 0.96 pt = 0.96 pt = 0.96

βt = 3.178 βt = 3.178 βt = 3.178

0/1 None None None
Absolute None None None
Squared None None 9
LINEX None None 9

k= 0.5 k= 1 k= 2
Loss pt = 0.97 pt = 0.97 pt = 0.97

βt = 3.476 βt = 3.476 βt = 3.476

0/1 None 9 3,5,9,10
Absolute None 9 3,5,9,10
Squared 9 9 3,5,9,10
LINEX 9 3,5,9,10 3,5,9,10

k= 0.5 k= 1 k= 2
Loss pt = 0.98 pt = 0.98 pt = 0.98

βt = 3.892 βt = 3.892 βt = 3.892

0/1 3,5,9,10 All All
Absolute 2,3,4,5,9,10, 1,2,3,4,5,6,7,8,9,10,All

13,15 11,13,14,15,16,17
Squared 2,3,4,5,9,10, 1,2,3,4,5,6,7,8,9, All

13,15 10,13,14,15,17
LINEX 2,3,4,5,6,7,8,9, All All

10,13,15,17

Table 8.9: Providers labelled as “unacceptable”, for different loss functions and different values of the
threshold.

Some comments are due, observing results of the Table 8.9. Firstly, as mentioned before,k de-
scribes the different approach to evaluating misclassification errors. For example, people in charge
with health care government might be more interest in penalizing useless investments in quality im-
provements, choosing a value less than 1 fork. On the other hand, patients admitted to hospitals are
more interested in minimizing the risk of wrongly declaring as “acceptably performing” providers
that truly behave “worse” than the gold standards; therefore, they would probably choose a value
greater than 1 fork. Moreover, when fixing the loss functions among the four proposed here, andk
equal to 0.5,1 or 2, as the thresholdβt increases, we obtain the same “implicit ranking” of providers:

9,3,5,10,2,4,13,15,6,7,8,17,1,14,16

(i.e., hospital 9 was classified as “unacceptable” even with small values ofβt , then, when increasing
βt , hospital 3 was classified as “unacceptable”, etc.). This result is in agreement with the provider
profiling pointed out also in [62]. On the other hand, Figure 8.9 shows the number of hospitals
labelled as “unacceptable” ask increases, for a fixed value of the thresholdβt , under the Squared
and the LINEX Loss functions.



CHAPTER 8. STATISTICAL ANALYSIS OF OTHER SURVEYS 176

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
5

10
15

K

N
um

be
r 

of
 n

ot
 a

cc
ep

ta
bl

y 
pe

rf
or

m
in

g 
ho

sp
ita

ls

9

3,5,10

2

4,13
15

17

9

3,5,10
2

13

4,15
17

7

6

8

16

Figure 8.9: Number of hospitals labelled as “unacceptable” as a function of k, under the Squared Loss
function (solid black) and the LINEX Loss function (dotted blue). The threshold parameterβt is 3.6635.

Of course, the choice of the most suitable loss function is problem-driven:in our case, it seems
reasonable to consider an asymmetric loss in order to penalize departures from threshold in different
ways. For this reason we suggest the LINEX Loss withk 6= 1.



Chapter 9

Statistical analysis of ECG signals

In this chapter, the analyses carried out on data arising from PROMETEOdatawarehouse (see Para-
graph 3.2.4) are presented. In Section 9.1 the aim is to point out an unsupervised classification
technique for semi-automatic diagnosis of Bundle Brunch Block, whereas inSection 9.2, multivari-
ate functional depths are used to rank multivariate ECG signals and to carryout outliers detection
and nonparametric comparison tests on them.

9.1 Semiautomatic diagnosis for Bundle Brunch Block

In this section we analyse a sample (n= 198) of data coming from PROMETEO datawarehouse with
the aim of identifying, from a statistical perspective, specific ECG patternswhich could benefit from
an early invasive approach. In fact, the identification of statistical tools capable of classifying curves
using their shape only could support an early detection of heart failures, not based on usual clinical
criteria. To this aim, it is extremely important to understand the link between cardiac physiology
and ECG trace shape. As detailed in following paragraphs, we focus on physiological traces in con-
trast to Right and Left Bundle Branch Block (RBBB and LBBB respectively) traces. Bundle Branch
Block (BBB) is a cardiac conduction abnormality seen on the ECG. In this condition, activation of
the left (right) ventricle is delayed, which results in the one ventricle contracting later than the other.
Details on Bundle Branch Blocks and their connection with non-physiological shape of ECG signal
have been treated in Paragraph 3.2.4, where also clinical details about ECG signals have been given.
As mentioned in Section 6.1, the analysis of ECG signals passes through a preprocessing step con-
sisting of wavelet smoothing and landmark registration, which are necessary to denoise signals and
removing the variability we are not interested in. From a statistical point of view,we will focus our
analysis on shape modifications induced on the ECG curves and their first derivatives by the BBB
pathology, and we will investigate these shape modifications only in a statistical perspective, i.e.,
not using clinical criteria to classify ECGs. The exploitation of these morphological modifications
in the clustering procedure will be the focus of the following paragraphs.

9.1.1 Data smoothing and registration

We considered a sample of ECG signals consisting ofn = 198 subjects, among which 101 are
Normal and 97 are affected by BBB (49 RBBB and 48 LBBB). The basic statistical unit is the
multivariate function which describes heart dynamics, for each patient, onthe eight leads. However,
in practice we have only a noisy and discrete observation of the function describing ECG trace for
each patient. Moreover, each patient has his own “biological” time, i.e., the same event of the heart
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dynamics may happen at different time measurements for different patients:this is only misleading
from a morphological point of view. These two problems are common in Functional Data Analysis
(FDA) applications and they can be addressed respectively with data smoothing and registration
(see [41]).

Wavelets smoothing

The first step of the statistical analysis consists in data smoothing starting fromnoisy measurements:
to this aim, the choice of the functional basis is crucial. Wavelet bases seem suitable for our data
because every basis function is localized both in time and in frequency, beingtherefore able to
capture ECG strong localized features (peaks, oscillations...). In particular we use a Daubechies
wavelet basis with 10 vanishing moments (see [31] for details), because weare interested also in
derivatives of the ECG traces and thus we need a basis smooth enough for this purpose. As in most
smoothing methods based on wavelet expansion, it is necessary to deal witha grid of 2J points,
J ∈ N. Thus, in the further analysis we use only the central 210 = 1024 observation points. There is
no loss of significant information: the portion of the signal on which we focus the analysis contains
all the important features of the ECG trace. For this reason, we choose not to turn to non-decimated
wavelets, which could be applied also to non dyadic grid but require a larger computational effort.

Since the eight leads (i.e., I, II, V1, V2, V3, V4, V5 and V6) jointly describe the complex heart
dynamic, when smoothing these data it is appropriate to use a technique which takes into account
all the eight leads simultaneously. This helps in detecting significant features, which reflect on
more then one leads. To this aim, in [120] it is developed a wavelet based smoothing technique for
multivariate curves. This technique is used to obtain the estimation of 8 dimensional ECG signals.
It has also the advantage to provide an estimate of derivatives, which is straightforward when the
estimate is provided in functional basis expansion: it can be obtained simply bya linear combination
of the basis functions derivatives.

Thus, starting from the vectorial raw signal, we estimate the vectorial function

f i(t) = (Ii(t), II i(t),V1i(t),V2i(t),V3i(t),V4i(t),V5i(t),V6i(t)),

and its derivatives, for each patienti = 1, . . . ,198. See [120] for a detailed description of this
smoothing procedure. Figure 9.1 shows raw data and functional estimates obtained with this wavelet
smoothing procedure for a normal subject. Observations are now in a functional form and thus we
can use FDA techniques. The smoothing procedure is essential also for an accurate derivative
reconstruction, as shown in Figure 9.2, where the estimate of the first derivative is superimposed to
the first central finite difference (i.e., a rough indication of first derivative behavior).

Landmarks registration

Functional observations usually show both phase and amplitude variation, i.e., each curve has its
own biological time so that the same feature can appear at different times among the patient. It is
well known that a correct separation between these two kind of variability isnecessary for a suc-
cessful analysis [41]. We address this problem through a registration procedure based on landmarks,
which are points of the curve that can be associated with a specific biological time. Five of these
landmarks are provided by Mortara-Rangoni procedure and can be found in theDetailsfile. They
identify the P wave (Ponset, Poffset), QRS complex (QRSonset, QRSoffset) and T wave (Toffset). We add
one more landmark corresponding with the R peak on the I lead (I peak). We choose this landmark
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Figure 9.1:Raw data of the eight leads (black points) and wavelet functional estimates (blue) for a normal
subject.
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Figure 9.2:First central finite difference of the eight leads (gray) andwavelet estimates of the first derivatives
(blue) for a normal subject.

because only on the I lead both physilogical and pathological ECG traces present a clearly identifi-
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able R peak. Since all the leads capture the same heart dynamics, biologicaltime must be the same.
Thus, these landmarks can be used to register all the leads. For each patient i we look for a warping
functionhi such that

hi(Ponset) = P0
onset hi(Poffset) = P0

offset

hi(QRSonset) = QRS0
onset hi(I peak) = I peak0

hi(QRSoffset) = QRS0
offset hi(Toffset) = T0

offset

whereP0
onset, P0

offset, QRS0
onset, I peak0, QRS0

offset andT0
offset are the mean values of the correspondent

landmarks. These values are reported in Table 9.1, together with the associated standard deviations.
We solve this problem using spline interpolation of degree 3. Thus, the registered vectorial function
will be

Fi(t) = f i(hi(t)),

for every patienti = 1, . . . ,198. Figure 9.3 shows both unregistered and registered I leads for all the
198 patients. This is a non linear registration procedure, since in this framework there is no simple
affine transformation which can take in account the subject specific variability.

P0
onset P0

offset QRS0
onset I peak0 QRS0

offset T0
offset

mean 184.3 298.2 354.8 407.2 476.9 755.8
standard deviation 39.7 37.4 18.9 15.4 21.4 44.2

Table 9.1:Landmarks obtained at the end of the registration procedure, as the mean of landmarks of all
the curves, and used to select the portion of smoothed and registered ECG curves relevant to our analysis
(first line of the table); in the second line, landmarks standard deviations. Landmarks values are referred to a
registered time in ms.

The registration procedure separates morphological information (i.e., amplitude variability) from
duration of the different segments of ECG (i.e., phase variability). The former is captured by the
registered ECG traces, while the latter is described by warping functions, determined by landmarks.
In clinical practice the duration of different segments of ECG and particularly the QRS complex
length is one of the most important parameters to identify pathological situations.However, this
kind of information is not able to distinguish among different pathologies, such as Right and Left
BBB. This can be seen also in our dataset. If we perform a multivariate 3-means algorithm on
interval lengths(Poffset−Ponset, QRSonset−Poffset, QRSoffset−QRSonset andToffset−QRSoffset), with
the aim of identifying the existing 3 groups, we obtain the result shown in Table9.2: this method
correctly separates physiological traces from pathological ones but itgives no information on the
pathology.

Normal RBBB LBBB
Cluster 1 96 6 0
Cluster 2 2 17 25
Cluster 3 3 26 23

Table 9.2:Confusion matrix related to patients disease classification. Results are obtained performing 3-
means clustering algorithm on interval lengths.
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For this reason, we focus our analysis on the registered curves, in the attempt to extract other diag-
nostic information from ECG morphology. In clinical practice, the result of our analysis should be
considered together with traditional diagnostic tools based on segment lengths.
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Figure 9.3:Original I leads for the 198 patients (left) and registered ones (right). Vertical lines indicate
position of mean landmarksP0

onset, P0
offset, QRS0

onset, I peak0, QRS0
offset, T0

offset .

9.1.2 Data analysis

In this paragraph we propose the use of FDA techniques to perform clustering of smoothed and
registered ECG traces. Aim of the analysis is the development of a proper classification procedure,
able to distinguish the grouping structure induced in the sample of ECGs by the presence of different
pathologies, on the basis of the sole shape of the considered curves.
As previously discussed, ECG traces are very complex functional data,in which different portions of
the domain can be analyzed in order to detect different pathologies. The main focus of our analysis
stands in the investigation of BBB pathology, which mainly expresses in the ECGtrace through a
lengthening of the QRS complex and a modification of the T wave. In fact, the diagnosis of BBB is
not concerned with modifications in P wave, since this portion of the ECG curve deals with cardiac
rhythm dysfunctions our patients are not affected by. We thus focus our classification analysis on
the QT-segment. Since we have already registered the ECG signals, all the curves show relevant
features at the same time points, corresponding to the reference landmarksP0

onset, P0
offset, QRS0

onset,

I peak0, QRS0
offset, T0

offset (see paragraph 9.1.1): this fact allows us to select, for all the registered

curves of the dataset, only the portion of ECG trace belonging to the interval[P0
offset,T

0
offset], which is

relevant to our diagnostic purposes. In particular, we select only the portion of

F(t) = {F r(t)}8
r=1 = (I(t), II (t), V1(t), V2(t), V3(t), V4(t), V5(t), V6(t))

such thatt ∈ T := [P0
offset,T

0
offset], whereP0

offset and T0
offset are the values reported in the first line,

second and sixth columns of Table 9.1.

Functional classification

We analyze then patients according to a functionalk-means clustering procedure, in which all
the eight leadsFi(t) : T → R

8, for patientsi = 1, . . . ,n, are simultaneously clustered. To develop
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this clustering procedure we suppose thatFi(t) ∈ H1(T;R8). Since we consider all the eight leads
simultaneously in the analysis, we name the employed clustering proceduremultivariate functional
k-means, to distinguish it fromstandard functional k-means, which would treat each lead separately.
A proper definition of functionalk-means procedure and an introduction to its consistency properties
can be found in [138]. We develop a similark-means procedure, choosing the following distance
between ECG traces

d1(Fi(t),F j(t)) =

√
8

∑
r=1

∫

T
(F r

i (t)−F r
j (t))

2dt+
∫

T
(DF r

i (t)−DF r
j (t))

2dt, (9.1)

for i, j = 1, . . . ,n, and withDF r
i (t) being the wavelet estimate of the first derivative of ther-th lead

in the ECG trace of thei-th patient. Note that the distance defined in (9.1) is the natural distance in
the Hilbert spaceH1(T;R8).

In order to perform comparisons, and to test the robustness of our clustering procedure, we consid-
ered two more distances between two ECG traces

d̃1(Fi(t),F j(t)) =

√
8

∑
r=1

∫

T
(DF r

i (t)−DF r
j (t))

2dt, (9.2)

d2(Fi(t),F j(t)) =

√
8

∑
r=1

∫

T
(F r

i (t)−F r
j (t))

2dt. (9.3)

The distance defined by (9.2) is the natural semi–norm in the Hilbert spaceH1(T;R8), while the one
defined in (9.3) is the norm in the Hilbert spaceL2(T;R8): they are both considered in the clustering
procedure not only to compare performances of multivariate functionalk-means under different
specifications of the distance, but also to have an insight on the role of curves first derivatives:
we claim that both the ECG trace and its first derivative are essential to distinguish more similar
morphologies from less similar ones.

Functionalk-means clustering algorithm is an iterative procedure, which alternates a step of
cluster assignment, in which all curves are assigned to a cluster, and a step ofcentroid calcula-
tion, in which a relevant functional representative (the centroid) for eachcluster is identified. More
precisely, in the cluster assignment step each curve is assigned to the cluster whose centroid (com-
puted at the previous iteration) is nearer according to the distances defined in (9.1), (9.2) or (9.3)
respectively. Instead, the identification of centroidsϕl (t) for l = 1, . . . ,k, is performed solving the
following optimization problem

ϕl (t) = argmin
ϕ∈Ωd

∑
i:Ci=l

d(Fi(t),ϕ(t))2,

whereCi is the cluster assignment of theith patient at the current iteration,d is one of the three
distances defined in (9.1-9.3), andΩd is the Hilbert space with respect to which the chosen distance
d is natural. The solution to this infinite dimensional optimization problem obviously depends on
the choice of the distance: it is possible to prove that, both when the distance ismeasured with
(9.1), and when it is measured with (9.3), the minimizerϕl (t) corresponds to the functional mean
of curves belonging to the same cluster. An immediate consequence of this result is that, when the
semi–norm inH1 (eq. (9.2)) is used, the centroid is the functional mean of the first derivatives of
curves belonging to the same cluster.

There are many different implementations of functionalk-means algorithm in the literature on
functional data analysis, among which some procedures integrate registration in the classification
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steps (see for example [18], [103] and [104]). Here, instead, we chose to separate registration and
clustering in two subsequent steps of the analysis, since the latter doesn’tuse any information beside
morphology of the ECG traces, while the former is based on a strong clinical indication provided

by landmarks supplied by the Mortara-Rangoni VERITAS
TM

algorithm.
Thek-means clustering procedure clearly depends not only on the choice of the distance, but also

on the number of clustersk. Being the number of clusters a–priori unknown, we also consider a way
to select the optimal number of clustersk∗ via silhouette values and plot of the final classification
[136]. Note that a patient which alone constitutes a cluster, has silhouette value equal to 1, but he is
not considered in the silhouette plot for choosingk∗.

silhouette plot: 2 clusters

silhouette

0.0 0.1 0.2 0.3 0.4 0.5 0.6

silhouette plot: 3 clusters

silhouette

−0.1 0.0 0.1 0.2 0.3 0.4

silhouette plot: 4 clusters

silhouette

−0.1 0.0 0.1 0.2 0.3

silhouette plot: 5 clusters

silhouette

−0.2 −0.1 0.0 0.1 0.2 0.3

Figure 9.4:Silhouette plots of the clustering result obtained via multivariate functionalk-means procedure,
settingk = 2,3,4,5 and with distance given by (9.1); data are ordered according to an increasing value of
silhouette within each cluster, and are coloured accordingto the cluster assignment.

9.1.3 Results and discussion

Aim of the analysis is to detect the underlying grouping structure in our sampleof 198 ECG traces.
We thus perform clustering of the whole dataset via the multivariate functional k-means algorithm
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previously described, using the different definitions of the distance between curves given in (9.1-
9.3). The final silhouette plots obtained by clustering the sample of 198 ECG traces according to a
multivariate functionalk-means procedure with distanced1 (9.1), and settingk= 2,3,4,5, are shown
in Figure 9.4. As we can appreciate from the picture, the grouping structure obtained settingk= 3
seems the best one, both in terms of silhouette profile, and in terms of wrong assignments. A similar
result is obtained measuring the distance between curves via (9.2) or (9.3); however, the procedure
seems to detect the best grouping structure when both the curves and theirderivatives are considered
in the distance. We thus setk∗ = 3. The final classification obtained with this choice of the distance,
and settingk= 3, is shown in Figure 9.5, where the whole functional dataset is coloured according
to cluster assignments; each panel corresponds to a different lead. From inspection of this picture
a different shape of ECGs assigned to different clusters can be immediately appreciated, especially
looking at the final centroids (functional mean) of each group, drawn inblack in each panel of the
picture. We shall now verify whether this difference in the ECGs morphology across clusters is due
to the different pathology.

Since we have an indication of the different pathologies of the patients included in the sample,
we can analyze the confusion matrix associated to the final cluster assignments, with respect to
the Mortara-Rangoni algorithm classification (Normal, RBBB and LBBB). The confusion matrices
obtained via multivariate functionalk-means with different choices of the distance between curves
(given byd1, d̃1 or d2) are shown in Table 9.3. We remark that the final cluster assignments are based
on the sole shape of the smoothed and registered ECG curves and their first derivatives, analyzed via
a unsupervised classification procedure. Both choosing theH1 norm and theL2 norm, the results
seem appreciable, and slightly better in the former case: the final groupingstructure traces out quite
coherently the patients disease classification, with only few cases wrongly assigned. Moreover, we
remark the improvement in the results obtained via multivariate functional 3-means with respect to
the results of 3-means clustering algorithm on interval lengths (see Table 9.2): we are now able not
only to detect pathological subjects, but also to distinguish between the two different pathologies
present in the dataset. The result obtained via multivariate functional 3-means clustering withH1

semi-norm, instead, is not so positive, since cluster 1 and 2 apparently merge physilogical traces
with ECGs of patients affected by RBBB.

H1 norm H1 semi-norm L2 norm
Normal RBBB LBBB Normal RBBB LBBB Normal RBBB LBBB

1 95 7 1 71 12 0 94 6 2
2 6 42 3 30 36 5 7 43 3
3 0 0 44 0 1 43 0 0 43

Table 9.3:Confusion matrices related to patients disease classification. Results are obtained by application
of multivariate functional 3-means clustering algorithm to smoothed and registered QT-segment of ECG
curves, with different choices of the distance between ECGs: H1 norm (eq. (9.1), first table),H1 semi-norm
(eq.(9.2), second table) andL2 norm (eq. (9.3), third table). In the first table, cluster 1,2,3 respectively
correspond to orange, green and red in Figure 9.5.

The effectiveness of the clustering procedure in detecting the groupingstructure among data sug-
gests the definition of a semi–automatic diagnostic procedure based on the multivariate functional
k-means algorithm: in fact, the final result of our clustering procedure is a set of k centroids, rep-
resentative of each cluster, which can be used as reference signals tocompare a new ECG trace.
Suppose a new ECG signal is available: we could have an immediate hint on the new patient’s diag-
nosis by smoothing its ECG trace, registering it and finally assigning it to the group characterized
by the nearest centroid.
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Figure 9.5:Smoothed and registered ECG traces (QT-segment): the wholedataset is coloured according to
the final cluster assignments of multivariate functional 3-mean clustering, with distance given by (9.1); the
superimposed black lines are the three final cluster centroids (functional means). Each panel correspond to a
different lead of the ECG traces.
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It is important to evaluate themisclassification costfor this procedure, with the choice of the dif-
ferent functional distances. To this aim, we perform a cross-validation analysis. We randomly
choose among ECGs a training set of 80 Normal subjects, 40 to RBBBs and 40 to LBBBs, for a
total of ntraining = 160 curves. A multivariate functional 3-means clustering is performed on the
selected training set; we then consider the remainingntest= 38 curves, and we assign each of them
to the cluster whose centroid is nearer, according to distances (9.1)-(9.3). Given the patients disease
classification, we compute misclassification cost using the following index

costCV =
λ1 ·miscN +λ2 · (miscRN+miscLN)+λ3 · (miscRL+miscLR)

ntest
, (9.4)

wheremiscN is the number of healthy patients assigned to a pathological cluster1, miscRN andmiscLN

are the number of patients respectively affected by RBBB and LBBB whichare assigned to the clus-
ter of healthy patients, whilemiscRL andmiscLR are the number of patients whose ECGs are detected
as pathological, but whose pathology is wrong. The parametersλ1, λ2 andλ3 are misclassification
weights: they are chosen according to the suggestion of the clinicians, whobelieve that assigning a
BBB patient to the cluster of healthy patients is approximately 4 times more serious than treating as
pathological a normal subject, which indeed is two times more serious than assigning a RBBB pa-
tient to the LBBB cluster (or viceversa); in order to determine the values of the weights we introduce
a further request:costCV = 1 in the worst case, i.e., when all Normal subjects are classified as BBB
and all BBB subjects are classified as Normal. This led to the choicesλ1 = 0.4270,λ2 = 1.7079 and
λ3 = 0.2135. We repeat this procedure 20 times, computing each time the misclassification cost ac-
cording to equation (9.4): the mean and standard deviation computed along the20 cross-validation
repetitions are shown in Table 9.4. Even if all the distances (9.1)-(9.3) provide good results, we
notice that the norm in the Hilbert spaceH1(T;R8) seems to give best results, thus confirming our
initial claim: both registered curves and first derivatives are needed to accurately compare ECGs
morphology.

distance d1 d̃1 d2

meancostCV 0.1227563 0.2286588 0.1275316
std devcostCV 0.1112663 0.1050911 0.1220574

Table 9.4:Mean misclassification cost (first row) and standard deviation (second row) computed over 20
repetitions of the cross-validation procedure via equation (9.4).

1given the final cluster assignments, the cluster of healthy patients is detected as the one that includes the most
physiological traces. The pathological ones are subsequently chosen, first the one that contains the more RBBB traces,
while the cluster that remains is the LBBB one.



CHAPTER 9. STATISTICAL ANALYSIS OF ECG SIGNALS 187

9.2 Depth measures for multivariate functional data

In Section 9.1, a statistical framework for analysis and classification of ECGcurves starting from
their sole morphology is proposed. In fact, the identification of statistical toolscapable of classi-
fying curves using their shape only could support an early detection of heart failures, not based on
usual clinical criteria. In order to do this, a real time procedure consistingof preliminary steps like
reconstructing signals, wavelets denoising and removing biological variability in the signals through
data registration is tuned and tested. Then, a multivariate functional k-meansclustering of recon-
structed and registered data is performed. Since when testing new procedures for classification the
performances of classification method are to be validated through cross validation, it is mandatory
a suitable training of the algorithm on data. This would lead to robustify classification algorithm
and would improve reliability in prediction. The procedure proposed in the previous Section is
an effective way to reach this goal. In fact, it leads to select for the training set the proportion of
multivariate curves whose depth is greater. Considering the ECG of thej-th patient as a 8-variate
functionf j = ( f j;1, ..., f j;8), the f j;k, (k= 1, ...,8) correspond to the eight leads I, II, V1, V2, V3, V4,
V5 and V6. Then the procedure discussed in Section 6.2 is applied in orderto carry out functional
boxplots and to perform outliers detection for two different groups: physiological and pathologi-
cal patients, i.e., people affected by a particular kind of heart disease, called Bundle Branch Block
(BBB). This is a pathology which is easy to detect through the observation of shape modifications
it induces on ECG pattern and divides in Right Bundle Branch Block (RBBB) and Left Bundle
Branch Block (LBBB) according to the heart side it affects. In the following, we will consider a
sample of 100 physiological signals and 50 pathological ones, where the latter come from patients
affected by LBBB.

In Figures 9.6 and 9.7 the raw data are shown, whereas Figures 9.8 and 9.9 show the correspond-
ing functional boxplots, one for each lead of the ECG, (see [81] and [82] for details on statistical
analysis and procedures). Functional Boxplots are produced according to the ranking induced by
the multivariate functional index where the weightspk, (k= 1, . . . ,8) are all equal to 1/8, weigthing
in the same way all the leads. Since there is a common ranking of all components of f js, induced
by the multivariate index of depth, the central band is defined with the same curves in each compo-
nent of the functional boxplot, since the multivariate funtional index of depth defined in (6.4) takes
jointly into account the order of each component (lead) of the multivariate function (ECG). This is
the main and most important difference between functional boxplots reported in Figures 9.8 and 9.9
and those we would have obtained simply asking for functional boxplots of each lead.

As described in Section 6.2, given the order in the sample of curves induced by the multivariate func-
tional depth measure, it is possible to widen to this framework a non parametric rank test in order
to compare two samples of multivariate functions. Actually, we will adopt the rank test to check for
differences in the underlying process generating the LBBB curves with respect to the physiological
ones. Then the combined dataset consists of 150 8-variate functional ECG signals. Thep−value of
the test carried out on these curves using the multivariate functional indexcomputed on them all is
equal to 3.38∗10−16. The statistical evidence is still very strong (p−value = 2.96∗10−16) if we com-
pute the depth measure (6.4) setting(p1, ..., p8) equal to(1/10,1/10,2/10,1/10,1/10,1/10,1/10,
2/10), stressing the weight of leads V1 and V6, since they are the most important for carrying out
the LBBB diagnosis, as confirmed by cardiologists. That is, a strong evidence for the LBBB to be
considered as arising from a different latent process exists. This is also detectable looking at the
functional boxplots arising from the combined database of physiological and pathological signals,
shown in Figure 9.10: almost all the outliers are those related to LBBB signals.
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Figure 9.6:Raw signals of the 100 physiological patients.
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Figure 9.7:Raw signals of the 50 pathological patients.
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Figure 9.8: Functional boxplots of each component (lead) of the 100 physiological ECGs. The central
bands (purple coloured area) and outliers (red dotted lines) of each lead are defined as described in Section
6.2, according to the ranking induced byMBDJ

n(f) defined in (6.4).
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Figure 9.9:Functional boxplots of each component (lead) of the 50 pathological (Left Bundle Brunch Block)
ECGs. The central bands (purple coloured area) and outliers(red dotted lines) of each lead are defined as
described in Section 6.2, according to the ranking induced by MBDJ

n(f) defined in (6.4).
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Figure 9.10:Functional boxplots of each component (lead) of the 150 physiological (100) and pathological
(50 Left Bundle Brunch Block) ECGs. The central bands (purple coloured area) and outliers (red dotted lines)
of each lead are defined as described in Section 6.2, according to the ranking induced byMBDJ

n(f) defined in
(6.4).



Conclusions and Future Works

In this thesis, we develop statistical methods focused at supporting decisions in healthcare context.
In particular, we focus on optimization and improvement of patterns of care for cardiological and
cardiovascular patients treated in any hospital of the Cardiologica Networkof Regione Lombardia
within the Strategic Program [36], and on development of statistical tools forthe semi automatic
diagnosis of specific types of infarction.

Concerning these frameworks, we designed a new clinical registry (namely STEMI Archive) to
collect data about patients affected by Acute Coronary Syndromes and we used this tool to monitor
and evaluate the process consisting of care delivery and treatment in the pre- and in-hospital phase,
as well as after patient’s discharge. This is made possible by integration of the clinical registry
with the administrative datawarehouse of Regione Lombardia. Such instruments provide a real time
picture of the healthcare offer of our Regional District with respect the cardiological and cardio-
vascular syndromes, enhancing at the same time the already exsisting administrative resources of
data of Regione Lombardia, and depict how the Cardiological Network works in managing these
patients, highlighting critical situations to be acted upon. The model we propose for monitoring and
evaluating the healthcare process of interest is sustainable and effective, as proved also by previous
pilot experiences performed on Milanese urban area. It is also general and flexible, and can then be
applied to any other pathology or care process. Moreover, it enables people in charge with health-
care government to plan activities and make investments according to real epidemiological evidence
and needs.

One of the main results achieved thanks to our collaboration to Strategic Program in these three
years concerns the Design and activation of a clinical registry for collecting data on Acute Coronary
Syndromes (STEMI Archive [36]), which involves all public and private cardiological divisions of
Regione Lombardia, since it is a mandatory data collection, part of the goals of Direttori Generali.
Moreover, the work carried out within the Strategic Program turned out inthe strengthening and
extension of the Network among providers. In fact, thanks to the shared protocols and information
technology systems developed in these years, it is now active a Regional Network among hospitals,
connected by 118 rescue service, that could be extended also to those pathologies that, similarly to
Acute Coronary Syndromes, have a wide spread, a high incidence and takes benefits by well timed
organization.

From a statistical perspective, we focused our research on regression models and classification tech-
niques for longitudinal, grouped and multivariate functional data. In particular, we studied and
adopted regression models, namely mixed effects models, able to handle grouped and longitudinal
data arising from clinical context. The aim was profiling providers acording to the clustering of
grouping factor’s effect on outcome of interest, as shown in [62], [78] and [79]. We mainly con-
sidered generalized linear mixed effects models, since the most part of the outcomes of interest
consisted in binary variables, and we explored linear and nonlinear dependencies among outcomes
and model parameters, as well as parametric and nonparametric approaches to the modelling of the
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random effects distributions. This led to face some complexities in terms of parameters’ estimation.
Firstly, since for GLME models likelihood integrals cannot be worked out analytically, numerical
approximations are needed, based on the approximation of the integrand, on an approximation of
the data, or on the approximation of the integral itself. Within GLME models, also problems due to
unbalanced shares are treated. Then the choice of linear or nonlinear models has been considered,
developing also new algorithms for the nonlinear nonparametric case [12],in order to fit data at best.
Finally, both frequentist and Bayesian approaches have been considered, studied and implemented.
Comparisons among different methods within the same framework [62] as wellas among different
approaches have been carried out. We have been confirmed in our initialguess that nonparamet-
ric techniques suit better the unsupervised clustering aims of our research, especially in nonlinear
context, since more and more often parametric assumptions are too restrictivefor modelling com-
plexity of data arising from clinical surveys. Anyway, the joint sequentialuse of nonparametric and
parametric techniques (as shown, for example, in [77]), together with the information coming from
the clinical best practice, could lead to a more refined choice of the model, increasing its goodness
of fit and its predictive power. Moreover, it often happens that resultsarising from parametric mod-
els are easier to communicate to the clinical community, and this remains an important issue to be
considered in the monitoring and evaluating healthcare processes. Concerning the model predictive
power, we saw how Bayesian posterior densities can be adopted to point out new decison mecha-
nisms and thresholds for patients’ classification [64]. Bayesian nonparametrics provide also several
advantages in terms of in-built classification of the random effects [67]. Moreover the decisional
issue of hospitals’ profiling can be effectively addressed setting the problem within the Bayesian
decision theory, as proposed in [65].
We considered also statistical methods for dealing with multivariate functional data, with the aim of
addressing problems connected with the semi automatic diagnosis of cardiac diseases that are de-
tecteable through electrocardiogram. We developped suitable clustering tools for the unsupervised
classification of functional data [80], and generalized some results on functional depth measures to
the multivariate functional case and performed nonparametric tests for carrying out inference on the
difference between families of multivariate functional curves, as detailed in[81] and [82].

Further developments of this work are actually ongoing both from clinical and statistical perspec-
tive. As previously mentioned, Regione Lombardia is considering the extension of this paradigm
of monitoring and evaluation of healthcare process also to other family of diseases. Moreover, the
STEMI Archive linked to the administrative database may also be used for specific clinical enquiries
concerning health technology assessment, cost-effectiveness studieson drugs utilization and so on.

There are several potential further directions to be investigated in statistics. We are actually
working on generalization of results on nonparametric modelling of random effects to mixtures
models, as well as on consistency properties and convergence of multivariate functional indexes
od depth. It would also be interesting to move towards the theory of Generalized Additive Mixed
Models (GAMMs), in order to use them for better accounting for the complexrelationship among
outcomes at patient’s level and the process he/she undergoes. Another current topic where our
research is moving toward is the use of ECG signals comning from PROMETEOdatabase for
studying and validating numerical simulated ECGs.

In general, this work showed how statistical methods can be adopted for handling complex problems
arising from clinical and healthcare context. The strength of this experience consists in the prof-
itable collaboration among Regional District government of healthcare, statisticians and physicians
or in general players involved in the delivery of care. We believe that thisway of monitoring and
evaluating processes starting from on-going, shared and well structured data collections can really
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highlight critical points and enable people involved in the process to act upon them. The contin-
uous statistical control aimed at improving healthcare service can really be helpful in optimizing
resources and in making decisions, this unavoidably reflecting in improvements of services offered
to patients to safeguard their health.
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terminazioni in merito alla Rete per il trattamento dei pazienti con Infarto Miocardico con
tratto ST elevato(STEMI)

[37] Einbeck, J., Darnell, R., Hinde, J. (2009), npmlreg: nonparametricmaximum likelihood esti-
mation for random effect models. Available at http://CRAN.R-project.org/package=npmlreg

[38] Febrero, M., Galeano, P., Gonzalez-Manteiga, W. (2008), Outlierdetection in functional data
by depth measures, with application to identify abnormal NOx levels,Environmetrics, 19,
331–345

[39] Fellegi, I., Sunter, A. (1969). A Theory for Record Linkage.Journal of the American Statistical
Association, 64, 328, 1183–1210

[40] Ferguson, T.S. (1973), A Bayesian analysis of some non-parametric problems,Annals of
Statistics, 1, 209–230

[41] Ferraty, F., Vieu, P. (2006), Nonparametric functional data analysis, Springer-Verlag, New
York

[42] Fox, J. (2002), Linear Mixed Models, Appendix to AnRandS-PLUS Companion to Applied
Regression

[43] Fraiman, R. and Meloche, J. (1999), Multivariate L-estimation,Test, 8, 255–317

[44] Fraiman, R. and Muniz G. (2001), Trimmed means for functional data,Test, 10, 419–440



199

[45] Freeman, E.A., Moisen, G.G. (2008), A comparison of the performances of threshold criteria
for binary classification in terms of predicted prevalence and kappa,Ecological Modeling, 217,
58–58

[46] Gallant, A.R. (1987), Nonlinear Statistical Models, Wiley, New York

[47] Gamerman, D. (1997): Markov Chain Monte Carlo, Chapman & Hall.

[48] Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2006), Bayesian Data Analysis, Chapman
& Hall/CRC Texts in Statistical Science, 2nd edition

[49] Gelman, A., Hill J. (2007), Data Analysis Using Regression and Multilevel/Hierarchical Mod-
els, Cambridge University Press, Cambridge, 2nd edition

[50] Gelman, A. (2006), Prior distributions for variance parameters in hierarchical models,
Bayesian Analysis, 1, 3, 515–533

[51] Goldstein H. (1989), Restricted unbiased iterative generalized least-squares estimation,
Biometrika, 76, 3, 622–623

[52] Goldstein H. (1991), Nonlinear Multilevel Models, with an Application to Discrete Response
Data,Biometrika, 78, 1, 45–51

[53] Goldstein H., Rabash J. (1996), Improved Approximations for Multilevel Models with Binary
Response,Journal of the Royal Statistical Society A, 159, 3, 505–513

[54] Goldstein H., Spiegelhalter D.J. (1996), League Tables and Their Limitations: Statistical Is-
sues in Comparisons of Institutional Performance,Journal of the Royal Statistical Society A,
159, 3, 385–443

[55] Goldstein, H. (2011), Multilevel Statistical Models, Wiley Series in Probability and Statistics,
4th edition

[56] Grieco, N., Sesana, G., Corrada, E., Ieva, F., Paganoni, A.M., Marzegalli, M. (2007), The
Milano Network for Acute Coronary Syndromes and Emergency Services, MESPE journal,
First Special Issue

[57] Grieco, N., Corrada, E., Sesana, G., Fontana, G., Lombardi, F., Ieva, F., Paganoni, A.M.,
Marzegalli, M. (2008), Predictors of reduction of treatment time for ST-segment eleva-
tion myocardial infarction in a complex urban reality. The MoMi2 survey, [Online] http://
mox.polimi.it/it/progetti/pubblicazioni/quaderni/10-2008.pdf

[58] Grieco, N., Sesana, G., Ieva, F., Marzegalli, M., Paganoni A.M. (2008), Door to Balloon Time
in Patients with ST-Segment Elevation Myocardial Infarction,Actsof XLIV Scientific Meeting
of the Italian Statistical Society 2008, Arcavacata di Rende, Cosenza (Italy), June 25-27, 2008

[59] Grieco, N., Corrada, E., Sesana, G., Fontana, G., Lombardi, F., Ieva, F., Paganoni, A.M.,
Marzegalli, M. (2008), Le reti dell’emergenza in cardiologia : l’esperienza lombarda,Gior-
nale Italiano di Cardiologia, Supplemento “Crema Cardiologia 2008. Nuove Prospettive in
Cardiologia”

[60] Grieco, N., Corrada, E., Sesana, G., Lombardi, F., Paganoni, A.M.,Ieva, F., Marzegalli, M.
(2008), On site ECG transmission reduces door-to-balloon time in patients referred for primary
PCI,European Heart Journal, 29 (Abstract Supplement), 655–656



200

[61] Grieco, N., Sesana, G., Paganoni, A.M., Ieva, F., Marzegalli, M. (2008), Door to Balloon
time in patients with ST-segment elevation myocardial infarction. A study in a complex urban
reality,Actsof IX Congresso SIMAI, Roma (Italy), September 15-19, 2008

[62] Grieco, N., Ieva, F., Paganoni, A.M. (2011), Performance assessment using mixed effects
models: a case study on coronary patient care,IMA Journal of Management Mathematics. In
press. [Online] http://imaman.oxfordjournals.org/content/early/2011/05/27/imaman.dpr007

[63] Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F. (2010), A hierarchical random-effects
model for survival in patients with Acute Myocardial Infarction,Actsof XLV Scientific Meet-
ing of the Italian Statistical Society 2010, Padua (Italy), June 16-18, 2010

[64] Guglielmi, A., Ieva, F., Paganoni, A.M., Soriano, J, Ruggeri, F. (2011) Semiparametric
Bayesian modeling for the classification of patients with high observed survival probabilites,
In progress

[65] Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F. (2011), Hospitalclustering in the treat-
ment of acute myocardial infarction patients via a Bayesian nonparametric approach,submit-
ted

[66] Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F. (2012), A Bayesian random-effects model
for survival probabilities after Acute Myocardial Infarction,Chilean Journal of Statistics. In
press. [Online] http://mox.polimi.it/it/progetti/pubblicazioni/quaderni/17-2010.pdf

[67] Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F. (2012), Process indicators and outcome
measures in the treatment of Acute Myocardial Infarction patients,Statistical Methods in
Healthcare, Wiley (2011). Editors: Faltin, F., Kenett, R., Ruggeri, F.

[68] Harding M., Hausman J., (2007), Using a Laplace Approximation to Estimate the Random
Coefficients Logit Model by Non-linear Least Squares,International Economic Review, 48, 4,
1311–1328

[69] Hartigan, J.A., Wong, M.A. (1979), A k-means clustering algorithm,Applied Statistics, 28,
100–108

[70] He, X., Pin, T. (1999), COBS: Qualitatively constrained smoothing vialinear programming,
Computational Statistics, 14, 315–337

[71] Hobert, J.P., Casella, G. (1996), The effect of Improper Priorson Gibbs Sampling in Hi-
erarchical Linear Mixed Models,Journal of the American Statistical Association, 91, 436,
1461–1473

[72] Hoff, P.D. (2009), A first course in Bayesian Statistical Methods,Springer Texts in Statistics

[73] Hox, J. (2002), Multilevel Analysis, Techniques and Applications,Lawrence Erlbaum Asso-
ciates, New Jersey

[74] Ieva, F. (2008), Modelli statistici per lo studio dei tempi di interventonell’Infarto Mio-
cardico Acuto, Master Thesis. Available at http://mox.polimi.it/it/informazioni/personale/
viewpers.php?id=91&en=en&tesi=on

[75] Ieva, F., Paganoni, A.M. (2009), Statistical Analysis of an Integrated Database Concerning
Patients With Acute Coronary Syndromes,Proceedingsof SCo2009, Sixth Conference, Mag-
gioli editore, Milano



201

[76] Ieva, F., Paganoni, A.M. (2009), Integrazione tra registri clinicidatabase amministrativi:
il progetto IMASTE della Regione Lombardia,SIS - Magazine[Online] http://www.sis-
statistica.it/magazine/spip.php?article161

[77] Ieva, F., Paganoni, A.M., Secchi, P. (2010), Mining Administrative Health Databases for epi-
demiological purposes: a case study on Acute Myocardial Infarctions diagnoses,Submitted,
[Online] http://mox.polimi.it/it/progetti/pubblicazioni/quaderni/45-2010.pdf

[78] Ieva, F., Paganoni, A.M. (2010), Multilevel models for clinical registers concerning STEMI
patients in a complex urban reality: a statistical analysis of MOMI2 survey,Communications
in Applied and Industrial Mathematics, 1, 1, 128-147 [Online] http://cab.unime.it/journals/
index.php/caim/article/view/2010CAIM477

[79] Ieva, F., Paganoni, A.M., Secchi, P. (2010), Data mining the Lombardia Public Health
Database: a pilot case study on hospital discharge data for Acute Myocardial Infarctions,Acts
of XLV Scientific Meeting of the Italian Statistical Society 2010, Padua (Italy), June 16-18,
2010.

[80] Ieva, F., Paganoni, A.M., Pigoli, D., Vitelli, V. (2011), Multivariate functional clustering
for the analysis of ECG curves morphology.Submitted[Online] http://www1.mate.polimi.it/
biblioteca/qddview.php?id=1434&L=i

[81] Ieva, F. (2011), Outlier detection for training sets in an unsupervised functional classification
framework: an application to ECG signals,Proceedingsof the 17th European Young Statisti-
cians Meeting, Lisboa (Portugal), September 5-9, 2011.

[82] Ieva, F., Pagnoni, A.M. (2011), Depth Measures for MultivariateFunctional Data,Submitted

[83] Ieva, F., Paganoni, A.M. (2011), Designing and mining a multicenter observational clinical
registry concerning patients with Acute Coronary Syndromes, [Online] http://www1.mate.
polimi.it/biblioteca/qddview.php?id=1443&L=i

[84] Ieva, F., Paganoni, A.M. (2011), Process Indicators for Assessing Quality of Hospital Care: a
case study on STEMI patients,JP Journal of Biostatistics, 6, 1, 53–75

[85] Ieva, F, Paganoni, A.M. (2011), Reportistica Archivio STEMI, Rapporto Tecnico di fine Pro-
gramma Strategico

[86] Inmon, W.H. (1996), Building the Data Warehouse, John Wiley & Sons, second edition.

[87] Ishwaran, H. and Zarepour, M.(2000). Exact and approximatesum representations for the
Dirichlet process,Canadian Journal of Statistics, 30, 269–283

[88] Jackman, S. (2009), Bayesian Analysis for the Social Sciences,Wiley

[89] Kalbfleisch, John D. and Prentice, Ross L. (1980), The statisticalanalysis of failure data, John
Wiley & Sons, New York

[90] Kaufman, L., Rousseeuw, P. (1990), Finding Groups in Data. WileySeries in Probability and
Mathematical Statistics

[91] Kelinman, K.P., Ibrahim, J.G. (1998), A Semi-parametric Bayesian Approach to the Random-
Effects Models,Biometrics, 54, 265–278



202

[92] Kelinman, K.P., Ibrahim, J.G. (1998), A Semi-parametric Bayesian Approach to Generalized
Linear Mixed Models,Statistics in Medicine, 17, 2579–2596

[93] Kiefer, J. and Wolfowitz, J. (1956), Consistency of the maximum likelihood estimator in the
presence of infinitely many nuisance parameters,Annals of Mathematical Statistics, 27, 887–
906

[94] Kuhn, E. and Lavielle, M. (2005), Maximum Likelihood estimation in nonlinear mixed effect
models,Computational Statistics and Data Analysis49, 4, 1020–1038

[95] Lai, T.L. and Shih, M.C. (2003), Nonparametric estimation in nonlinear mixed-effects models,
Biometrika, 90, 1, 1–13

[96] Laird, N.M. (1978), Nonparametric maximum likelihood estimation of a mixing distribution,
Journal of the American Statistical Association, 73, 805–811.

[97] Laird N.M., Ware J.H. (1982), Random-Effects Models for Longitudinal Data,Biometrics, 38,
4, 963–974

[98] Lee Y., Nelder J.A. (1996), Hierarchical Generalized Linear Models, Journal of the Royal
Statistical Society B, 58, 4, 619–678

[99] Li, J. and Liu, R. (2004), New Nonparametric Tests of Multivariate Locations and Scales using
Data Depth,Statistical Science, 19, 686–696

[100] Lindsay, B.G. (1983), The geometry of mixture likelihoods: a general theory,The Annals of
Statistics. 11, 1, 86–94

[101] Lindstrom, M.J. and Bates, D.M. (1990), Nonlinear Mixed Effects Models for Repeated
Measures Data,Biometrics, 46, 673–687

[102] Liu, R. (1990), On a Notion of Data Depth based on Random Simplices, The Annals of
Statistics, 18, 405–414

[103] Liu, X., and Müller, H.-G. (2003), Modes and clustering for time–warped gene expression
profile dataBioinformatics, 19, 15, 1937–1944.

[104] Liu, X., and Yang, M. (2009), Simultaneous curve registration andclustering for functional
dataComputational Statistics and Data Analysis, 53, 1361–1376

[105] Lopez-Pintado, S., Romo, J. (2003), Depth-based classificationfor functional data,DIMACS
Series in Discrete Mathematics and Theoretical Computer Science.

[106] Lopez-Pintado, S., Romo, J. (2009), On the Concept of Depth for Functional Data,Journal
of the American Statistical Association, 104, 486, 718–734

[107] MacEachern, S.N. (1994), Estimating normal means with a conjugate style Dirichlet process
prior, Communications in Statistics, 23, 727–741

[108] MacEachern, S.N. (2000). Dependent Dirichlet processes.Technical Report, Department of
Statistics, The Ohio State University

[109] Mahalanobis, P.C. (1936), On the generalized distance in statistics,Proceedings of National
Academy of Science of India, 12, 486, 49–55



203

[110] Mallat, S. (1999), A Wavelet Tour of Signal Processing, Accademic Press

[111] Mallet, A. (1986), A Maximum Likelihood method for random coefficient regression models,
Biometrika. 73, 3, 645–656

[112] Marzegalli, M., Tridico, C., Fontana, G., Borghi, G., Grieco, N., Ieva, F., Paganoni, A.M.
(2009), Integrazione tra registri clinici e database amministrativi: il progetto IMASTE Lom-
bardia,Actsof “Cardiologia 2009” of XVIII International conference of Cardiovascular De-
partment A. De Gasperis, Milan (Italy), June 16-18, 27–31

[113] Müller, H.G., Stadtm̈uller, U. (2005), Generalized Functional Linear Models,Annals of
Statistics, 33, 2, 774–805

[114] Muller, P., Quintana, F.A. (2004), Nonparametric Bayesian Data Analysis,Statistical Sci-
ence, 19, 1, 95–110

[115] Normand, S.T., Glickman, M.E., Gatsonis, C.A. (1997), Statistical methods for profiling
providers of medical care: issues and applications,Journal of the American Statistical Associ-
ation, 92, 803–814

[116] Normand, S.T., Shahian, D.M. (2007), Statistical and Clinical Aspects of Hospital Outcomes
Profiling,Statistical Science, 22, 2, 206–226

[117] Ohlssen, D.I., Sharples, L.D., Spiegelhalter, D.J. (2007), A hierarchical modelling framework
for identifying unusual performance providers,Journal of the Royal Statistical Society A, 170,
4, 865–890
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