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Summary

This thesis present a novel method for compressible gasdynamics for two-dimensional
rotorcrafts applications. The arbitrary Lagrangian-Eulerian formulation of the Euler
equations is solved within the finite-volume framework over adaptive grids. The mod-
ifications to the topology of the grid, resulting from the adaptation step, are locally
interpreted in terms of continuous deformation of the finite volumes built around the
nodes. This allows to compute the flow variable over the new grid by simply integrat-
ing the arbitrary Lagrangian-Eulerian formulation of the Euler equations, without any
explicit interpolation step.

The new, adapted, grids are obtained resorting to a suitable mix of mesh deformation,
edge-swapping, node insertion and removal. The adaptation procedure is driven by a
sensor that depends on both the geometry/configuration of the domain, i.e. the position
of the boundaries at a give time, and the solution, e.g. error estimators based on the
gradient or the Hessian matrix. A fixed-point approach to the adaptation problem in
the unsteady case has been adopted, by iterating until both grid and solution have
converged at each timestep. Both steady and unsteady simulations over adaptive grids
are presented that demonstrate the validity of the proposed approach.

The adaptive scheme outlined above is used to tackle typical two-dimensional prob-
lems for rotorcraft blade sections, where mesh adaptation is of primary importance
to perform efficient unsteady computations while highlighting relevant flow features,
such as shocks, wakes or vortices. The developed adaptive scheme is used to carry out
high-resolution computations over three selected problems of interest for rotorcraft aero-
dynamics: an oscillating airfoil, an impulsively started airfoil and parallel blade-vortex
interaction.

The material used to compile this thesis has been produced during the course of the
Ph.D. research at Politecnico di Milano. Part of this material has been already published
in refereed international journals [60, 74, 76] and presented at scientific conferences [89,
93, 59, 58, 91, 92, 75, 56, 151, 57, 77, 90].
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Sommario

In questo lavoro è presentato un metodo innovativo per lo studio della gasdinamica com-
primibile per applicazioni bidimensionali di tipo elicotteristico. La formulazione Arbti-
rariamente lagrangiana-euleriana delle equazioni di Eulero è affrontata con una discretiz-
zazione ai volumi finiti su griglie adattive. Le modifiche topologiche del reticolo dovute
alla adattazione sono interpretate in chiave continua come deformazione dei volumi finiti
costruiti attorno ai nodi. Tale approccio consente di calcolare la soluzione sulla nuova
griglia semplicemente integrando le equazioni di governo, senza interpolazione.

L’adattazione di griglia è effettuata utilizzando tecniche di deformazione di griglia,
scambio delle diagonali, inserimento e rimozione dei nodi. Un apposito sensore è uti-
lizzato per guidare l’adattazione che dipende contemporaneamente dalla geometria del
dominio, in particolare dalla distanza dai contorni, e dalla soluzione, per esempio dal
gradiente o dall’essiano del numero di Mach. Un approccio a punto-fisso è stato seguito
per estendere le classiche tecniche di adattazione di griglia al caso non stazionario, cioé
iterando fino a che sia la griglia che la soluzione sono arrivate a convergenza ad ogni
passo temporale. La validità dell’approccio proposto è dimostrata tramite simulazioni su
griglie adattive sia nel caso stazionario sia instazionario.

Lo schema di adattazione descritto è quindi utilizzato per studiare correnti bidimen-
sionali tipiche per profili di pala di elicottero, dove il controllo della spaziatura di griglia è
chiave per poter cattuarare in maniera efficiente alcune peculiarità della corrente, come
onde d’urto, scie o vortici. Lo schema presentato è usato per effettuare simulazioni ad
alta risoluzione di tre problemi di tipo elicotteristico: un profilo oscillante, l’avviamento
impusivo di un profilo e l’interazione parallela tra vortice e pala.

Il materiale usato per scrivere questa tesi è stato prodotto durante il corso di dottorato
presso il Politecnico di milano. Parte di questo materiale è già stata publicata in riviste
internazionali [60, 74, 76] e presentato presso conferenze scientifiche [89, 93, 59, 58, 91,
92, 75, 56, 151, 57, 77, 90].
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Chapter 1

Introduction

The present chapter provides an account of the relevant literature on the subject of
computational aerodynamics, arbitrary Lagrangian-Eulerian (ALE) methods and mesh
adaptation techniques. The reader should be aware that such account is far from being
a complete review. It only mentions the literature that has had a major impact on the
present work.

In section 1.1 the milestones of numerical methods in aerodynamics are described,
in section 1.2 the arbitrary Lagrangian-Eulerian formulation is briefly described together
with the most important works that are based on it and in section 1.3 the most popular
mesh adaptation strategies for steady and unsteady applications are presented.

1.1 A brief history of numerical methods for aerody-

namic applications

In the present section a brief description of the most important numerical methods in
fluid dynamics and aerodynamics is presented. The extent of the subject are such that it
would be impossible to give a comprehensive description of it. Therefore only the major
achievement have been covered with a specific focus on the works that are specifically
relevant to the present research.

Incompressible inviscid flows

In the pioneering era of aviation the engineers could only rely on analytical methods
and wind-tunnel tests to evaluate the characteristics of the low-speed airfoil sections
they designed. In fact, at the time, neither automatic calculators nor numerical meth-
ods for partial differential equations were available. To this purpose Theodorsen and
Garrick [176] developed a complex potential flow theory to compute the velocity field
and pressure around arbitrary airfoil sections. The idea was to map circles into arbitrary
airfoil shapes in the complex space. All in all the method was easy to implement and
produced results in agreement with those obtained by the experiments.

However this method could not be applied to wings since a complex space is not
available in three dimensions and only when the first computers became available and
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the idea of solving the three-dimensional potential flow equations by means of integral
methods took shape. One of the main advantages of using integral methods is the fact
that only the body surface has to be discretized, and not the flow field, and this was
vital given the limitations in computational resources. Amongst the most popular panel
methods, the one from Morino [137] and Hess [85] covered the bodies with panels and
then computed the integrals on the panels itself, i.e. so-called influence coefficients.
Once the influence coefficients were computed and stored, the numerical solution simply
required the solution of a linear system with a full matrix [100]. Due to the increase in
speed of the airplanes, testified by the braking of the so-called sound barrier in 1947 [150],
a numerical solution in the transonic regime was needed and the panel method were
extended to the transonic regime. Field points needed to be included in the regions
of the flow field significantly affected by compressibility, with a sensible increase in the
level of complexity of the method. The increase in computational capabilities of the
60s, allowed researchers to move to numerical methods based on the direct solution of
partial differential equations.

Full potential flows and the advent of Computational Fluid Dynamics

With aircraft flying at transonic speed, the capability of the flow model to capture shock
waves appeared to be paramount. To this end the first efforts were directed to solve
the full potential equation for compressible inviscid flows rather than the Euler equations
due to limitations in computer power. Nonetheless the adopted finite-difference methods
were usually hampered by instabilities, because of the mixed elliptic-hyperbolic nature of
the equation in the transonic regime. As later pointed out by Murman and Cole [140],
central differences schemes are indeed unsuitable to solve hyperbolic equations and up-
winding schemes, which evaluated the differences according to the flow direction, are to
be preferred. The first application of the upwind scheme was used to solve the transonic
small disturbance equation [140, 86], a simpler version of the full potential model which
was later solved by Jameson [94] thanks to the devised the rotated difference scheme.
All in all for discontinuous flow problems the finite-volume method proved to be a better
choice than the finite-differences [86]. Indeed, if integrated in over a control volume, the
governing equations are casted in the form of a conservation law and they can formally
handle discontinuities. Application of the method demonstrated its high potential and
computations of the flow around wings appeared. A description of the finite volume
method can be found in [86], and a more rigorous exposition is found in [112] and [113].
The introduction of finite-volume and finite-difference methods as tools to describe the
dynamic of fluids defined a whole new branch of research. The first Computational Fluid
Dynamics (CFD) conference consecrated this new era and, as pointed out by Jameson
in [95], “The AIAA First CFD Conference, held in Palm Springs in July 1973, signified
the emergence of computational fluid dynamics as an accepted tool for airplane design”.
In the period that followed the research efforts where enthusiastically directed to inves-
tigate better numerical schemes, faster solution methods for the equations or flexible
ways of generating computational meshes.

Euler equations, artificial dissipation and reconstruction schemes

The first multi dimensional Euler solver where developed at the beginning of the 80s,
thanks to improved numerical knowledges and increased computational resources. A
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central discretization plus artificial dissipation scheme that uses a Runge-Kutta pseudo-
time marching procedure to reach steady state was devised by Jameson, Schmidt and
Turkel [97]. Such scheme, commonly referred to as JST scheme, is very effective and is
still in use today.

A rather different approach is followed by the so called Godunov method [73] that
considers the flux between two cells to be similar to that obtained by solving the Rie-
mann problem of gas-dynamics, i.e. the solution of the Euler equations starting from a
piecewise constant initial data having a single discontinuity. In the Godunov method it is
not necessary to introduce artificial dissipation, which is naturally provided by upwinding.
However, it is only first-order accurate, thus not very attractive in practice. Second-order
accuracy was achieved by Van Leer, who introduced a reconstruction procedure that was
named Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) [186].
MUSCL schemes are still Godunov-like schemes, in that they use a Riemann solver, but
a linear reconstruction of the primitive variables at the cell interface is performed. With
reconstruction-based schemes high-accuracy is obtained in smooth flows, but unwanted
oscillations in the solution are usually introduced when discontinuities or sharp gradients
are present.

To preserve the monotonicity of the scheme the reconstructed variables had to be
“limited” in order to enforce a monotonic behavior. Amongst the several limiters that
have been introduced by researchers, the Van Albada limiter [185] and the Van Leer [186]
are widely used.

Aside from the reconstruction methods, a slightly different class of high-resolution
schemes has been developed that avoid the arise of spurious oscillations near shocks [186],
Such schemes limit the fluxes instead of the reconstructed variables to ensure the total
variation diminishing (TVD) property [113]. In general, when the limiter of the schemes
that act on the system fluxes the flux limiter is used, while when the limiter acts on
system state, e.g. velocity, density and pressure, the slope limiter is preferred. Note that
both flux limiters and slope limiters have the effect of bounding the solution gradient
near shocks or discontinuities.

To reduce the computational burden of the original Godunov method, which requires
an iterative Newton method to compute the “exact” solution of the Riemann problem,
many approximate schemes where developed. Amongst the several solvers that have
been introduced, Roe’s approximate Riemann solver [157] and Osher’s scheme [143] are
widely used. A detailed description of the several reconstruction-based and dissipation-
based methods developed and their applications can be found in [109].

Unstructured grid solvers

The main advantage of finite-volume scheme is indeed the fact that they are a natu-
ral framework for the discretization of conservation laws. However, another interesting
feature of such methods is the ability of discretizing the equations on hybrid and unstruc-
tured grids, i.e. meshes made by elements of different types and without any particular
ordering of the nodes. Other methods exist that may be used for the implementation
of unstructured flow solvers, e.g., the finite-element method and the spectral element
method.

Structured grid generation may be extremely time consuming and eventually impos-
sible, especially around complex configurations such as complete aircraft. Compared to
structured solvers, unstructured solvers usually require a much larger amount of memory
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for the storage of several quantities such as the gradient, which cannot be computed
on-the-fly as in the case of structured solvers. Moreover computational power is needed
in a larger amount because an unstructured solver performs in general more operations
than a structured one. E.g., the solution of the linear system is complicated by the
fact that the matrix is sparse and it generally requires preconditioning techniques which
require a substantial amount of preparatory work.

The constant growth in computer performances allowed to start investigating un-
structured solvers in the mid 80s. In 1988 the Euler equations were solved on an un-
structured median-dual mesh, obtained by the union of the nodes with the elements
center, by Désidéri and Dervieux [47] with the so-called upwind triangle scheme, which
was the first attempt to implement reconstruction schemes on unstructured meshes.
Barth [12] investigated the implementation of reconstruction schemes and solution meth-
ods suitable for median-dual meshes and his work was cardinal in the further progress
of unstructured solvers. He has also shown the equivalence of the finite-volume method
on the median-dual mesh to one type of finite-element method (FEM), that was already
well spread in structural analysis [86, 203].

The first computations of the flow around complete aircraft configurations appeared
in the second half of the 80s. The 3D transonic potential flow around the complete
Dassault Falcon by means of finite elements was computed [28] and an unstructured
FEM solver was used to compute the transonic Euler flow around the Boeing 747 by
Jameson, Baker and Weatherill [96]. The numerical scheme used by Jameson et al.
was essentially an adapted version of his dissipation scheme and the FEM he used was
equivalent to the finite-volume method on the median-dual mesh.

During the 90s several solution techniques, specifically developed for structured
solvers, have been successfully applied to unstructured solvers [126]. E.g. the multigrid
method has been largely studied by Marviplis [129] as well as by other authors [196, 101,
84, 170, 138, 97], and the lower-upper symmetric Gauss-Seidel (LU-SGS) method [98]
has been refined by several authors [41, 121]. Amongst the others two comprehensive
review articles on unstructured solvers have been written by Venkatakrishnan [188] and
Mavriplis [130].

Very high order schemes

Since the second half of the 90s edge-based solvers have become a standard implemen-
tation strategy of numerical methods for fluid dynamics, within both the aeronautical
industry and research centers. To name but a few of those solvers: the Funcode of
NASA Langley, the Edge code of the FOI, the elsA from ONERA, the TAU code of the
DLR and the NSU code of Mavriplis.

During the last decade the research on numerical methods for fluid dynamics have
moved toward different approaches which, for the most part, relies on very high-order
space integration. For example Discontinuous have been developed to combine features
of the finite element and the finite volume framework and have been successfully applied
to hyperbolic, elliptic and parabolic problems arising from a wide range of applications.
For a complete review on the Discontinuous Galerkin methods the reader is referred
to [8, 13, 14]. Another approach that has received much attention during the last
decade is the so-called Residual Distribution (RD) method, which allows to obtain very
high accuracy in space. The mathematical foundations of RD have been primarily driven
by a large number of publications by Abgrall and co-workers [1, 3, 2]. The Ph.D. thesis by
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Ricchiuto provides a very complete description of the fundamental mathematics behind
Residual Distribution methods [156].

To further development and extension of adaptive higher order variational methods
for aerospace applications is dedicated the ADIGMA project. The reader is referred
to [102] for an overview over the latest developments and achievements in the field of
numerical methods for fluid dynamics.

1.2 Arbitrary Lagrangian-Eulerian methods in contin-
uum mechanics

The numerical simulation for fluid-dynamic applications and nonlinear solid mechanics
often requires to deal with strong distortions of the continuum under consideration
while allowing for a clear delineation of free surfaces and fluid-fluid, solid-solid, or fluid-
structure interfaces. The choice of the kinematic description of the material determines
how the continuum is related to the computational mesh. This has a major impact over
the overall accuracy of the method and over the capabilities to complete the simulation,
e.g. mesh invalidation due to an excessive distortion.

Two natural description of the motion exists in continuum mechanics: the Lagrangian
and the Eulerian one [40, 124]. The mesh nodes of the Lagrangian algorithms move at the
local velocity of material particles during the motion and are mostly adopted in structural
mechanics. Such approach is specifically well-suited to track interfaces between different
materials but it is limited by the instability to follow large mesh distortion, mostly caused
by shear movements and vorticity. Eulerian algorithms find natural applications in fluid
dynamics, in which the mesh is fixed and the continuum material “flows inside” the
mesh. No problems in terms of mesh distortion arise but it is generally harder to identify
accurately the interfaces, where present, and an higher level of error could be obtained
due unresolved regions.

The arbitrary Lagrangian-Eulerian description of the fluid motion is an intermediate
formulation developed to combine the advantages of the other two classical approaches
and possibly minimize their respective drawbacks. In the ALE description of the motion,
the grid nodes are moved in some arbitrarily specified way in order to control the quality
of the mesh and, therefore, the accuracy of the solution. Comprehensive reviews of the
ALE approach have been written by Hirt, Amsden and Cook [87] and by Donea [49].

Note that by the ALE method two similar, yet different, type of approaches are
intended. As pointed out by Shashkov et al. [104] one is the variation of Lagrangian
hydrodynamics which avoids mesh distortion by rezoning and remapping and another uses
a mesh smoothly moving in a predefined way, typically determined by moving boundaries
rather than by fluid motion. The underlying idea is applied in two different ways.

Decoupled ALE approach

In their earlier applications ALE algorithms where used to tackle solid mechanics prob-
lems. To this extent already existing Lagrangian solvers for fluid or solid motion are
usually adapted to use the ALE formulation in order to increase accuracy and perfor-
mances. Those type of algorithm usually features a three steps procedure:

Lagrangian update: during this phase the equations of motion are explicitly updated.
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In fluid dynamics the governing equations, e.g. Euler equations or Navier Stokes
equations, are casted and solved in the Lagrangian framework where each mesh
cell is considered as a fluid particle moving along with the grid, i.e. with no mass
flux between the cells. This phase can be followed by an implicit iteration of
the momentum equation with the equation of state. Indeed when the material
velocities are much smaller than the fluid sound speed, the optional implicit phase
allows sound waves to move many cells per cycle, thereby significantly improving
computational efficiency.

The Lagrangian phase can be used to simulate the behavior of more sophisticated
materials, e.g. the Quotidian EOS. The hyperbolic Lagrangian system is treated
by methods that conserve total energy [35, 34], and artificial viscosity schemes
can be implemented into the difference scheme [103].

Rezone: during the rezone phase the mesh quality is improved where necessary, so that
the computation can continue with desired precision. This can be done in several
ways, mesh regularization/smoothing as the Winslow approach [197] or combining
geometry-based node placement with numerical optimization of a quality indicator
which allows to recover invalid elements [183].

Remap: after the rezone phase has been performed the computational grid is different
from the one over which the solution had be computed with the Lagrangian step.
The solution has therefore to be interpolated from the old grid to the new one.
This operation must conserve mass, momentum, and total energy, must preserve
the monotonicity of the solution should be as accurate as possible. The ALE
formulation is used to effectively obtain these requirements. Many approaches
exists, depending on how the ALE equations are discretized, on perform an in-
terpolation weighted by the swept-area followed by a repair step, which prevent
under/overshoots [105, 67]. Other techniques combine low-order inter cell fluxes
with some portion of higher-order fluxes, in a flux-limiter fashion, e.g. the Flux-
Corrected Remapping [184].

As described above this type of ALE methods are inherently Lagrangian, in that the
governing equations of the fluid or solid are resolved in a Lagrangian fashion and a
conservative interpolation is performed resorting to the ALE framework.

It has to be noted that the “Lagrangian update” step can be replaced by a classic
Eulerian update, where the fluid governing equations are solved, and the above scheme
reduces to a classic three-step procedure for unsteady adaptive computations: time-
advance, mesh deformation and interpolation. Differently from the Lagrangian ALE
approach, however, the Eulerian ALE approach poses some limitations, e.g. the interpo-
lation step must be repeated more than once if multi-step schemes are used to advance
in time in the first phase.

Embedded ALE approach

Whether the update phase is carried out in a Lagrangian way or in an Eulerian one, it is
always decoupled from the ALE, i.e. remap, phase. Another approach can be obtained
if the update and the remap phase are performed simultaneously.

Many problems of interests involve the relative motion of bodies surrounded by a
continuum material, i.e. aeroelastic problems or turbomachinery. In this cases the
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extension of a classic Eulerian algorithm to the case of moving meshes by means of an
ALE formulation appears more natural, since aerodynamic solvers are usually Eulerian,
and leads to a class of schemes that are slightly different than the one described above.
The flow equations are recasted in the ALE framework which allows to automatically
take into account the fact that the mesh points are moving, thus avoiding any explicit
interpolation step. Mavriplis and Yang showed how to extend a fixed gird Euler solver
to deforming meshes [132], for both Backward Differences Formulæ (BDF) and implicit
Runge-Kutta schemes. Michler, De Sterck and Deconinck recasted a residual distribution
scheme in the ALE framework [134]. Geuzaine, Grandmont and Farhat have extend a
Navier-Stokes solver to moving grids focusing on the design of ALE time-integrators [69].

Recasting Eulerian schemes in the ALE framework is fairly straightforward and usu-
ally requires minor modifications to the algorithm. The methods obtained with this
approach to the ALE formulation are generally are simpler than the one obtained with
the decoupled approach and many key properties, such as conservativeness or mono-
tonicity, of the original schemes are naturally inherited. In this approaches the remap
phase is naturally “embedded in” but also “hidden by” the governing equations and
this might be misleading. It has to be noted, for example, that the time-space discrete
counterpart of the ALE formulation could be interpreted as an interpolation, albeit no
explicit interpolation phase occurs.

Geometric Conservation Law

The issue of preserving the time-accuracy in the ALE extension of existing Eulerian codes
has been investigated in details only recently [141, 69, 53, 128]. In this respect, No-
bile [141] showed that a naïve extension of fixed-grid methods to flows in moving domains
does not preserve numerical accuracy and may possibly lead to numerical instabilities.
Therefore, care is to be taken in both the evaluation of the local grid velocities and the
definition of the geometric quantities, which are necessary to compute the fluxes across
a given portion of the domain, which cannot be chosen independently [52]. Thomas
and Lombard [177] proposed to supply the discrete statement of the problem with the
additional constraint of reproducing a uniform flow field exactly. This condition, known
as the Geometric Conservation Law (GCL), is demonstrated to be sufficient to achieve
a first order time accuracy [166] but it is neither necessary nor sufficient for higher order
accuracy [69]. Moreover, satisfying the GCL is a necessary and sufficient condition to
guarantee the nonlinear stability of the integration scheme [147]. An updated review of
the literature on the subject can be found in [51].

1.3 Adaptive mesh strategies for PDEs

The accuracy of CFD analysis depends on the spatial discretization of the flow domain,
namely, by the grid used in the computations. With an inappropriate distribution of
the nodes within the grid predictions of the flow field, in terms of both integral quan-
tities (aerodynamic coefficients) and local flow field features (shock waves, slip lines,
etc.) may be inaccurate. When steady problems are tackled it is possible to obtained
suitably spaced grids by means of a grid adaptation procedure, i.e. an iterative process
that employs information obtained from the solution itself, at either a previous time
(unsteady flows) and/or on a coarser grid (steady flows), to generated a computational
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grid. Successful implementation of the adaptive strategy can increase the accuracy of
the numerical approximations and also decrease the computational cost. In the past
two decades, there has been important progress in developing mesh methods for PDEs,
including the variational approach of Winslow [198], Brackbill [26], and Brackbill and
Saltzman [27]; finite element methods by Miller and Miller [135] and Davis and Fla-
herty [44]; the moving mesh PDEs of Li and Petzold[116], Cao, Huang, and Russell [31],
Stockie, Mackenzie, and Russell [174], and Ceniceros and Hou [39]; and moving mesh
methods based on harmonic mapping of Dvinsky [50] and Li, Tang, and Zhang [114, 115].

A key factor for adaption strategy is the definition of a suitable indicator of the error
that is used to provide an estimate of the required local grid spacing. The most popular
strategies modify the grid to improve the capturing of local flow features or to better
computed the flow integral quantities, e.g. the lift coefficient of a complete aircraft.
Error sensor developed for adaption to local flow features depends on the gradient or
undivided differences of a relevant variable of the flow field [10, 117, 149, 193], or on
the Hessian matrix of the solution [37, 80, 146, 195, 193, 200]. Indicators that are
based on the norm of the FEM residual the have also been experimented [117, 168] for
steady flow applications. As far as integral estimators are concerned, many approaches
have been proposed [16, 17, 61, 70, 110, 122, 145, 152, 187]. For highly anisotropic
flows, such as boundary layer flows, anisotropic adaption is to be preferred. Generally it
requires the specification of a suitable Riemannian measure [38] of the space, to be used
in evaluation of the element dimensions. To determine the grid length in the transformed
Riemann space, a metric tensor [25, 37, 46, 187] is computed from the solution, e.g. the
Hessian matrix of a given physical variable. The grid is then altered to produce elements
characterized by the same dimension in the Riemannian metric [68].

A suitable algorithm is used to generate a grid that satisfies the “target” spacing dis-
tribution function of the error indicator. The adapted grid can be produced from scratch
or obtained from the previous one via subsequent modifications. The first approach
is related to the grid generation problem, the subject has been extensively covered,
e.g. [179, 65, 131, 154], the second approach has been extensively covered as well and
approaches have been followed to perform the alteration step [10]. For example, Peraire
and collaborators [146] presented a method, suitable for Delaunay triangulations, based
on the remeshing of the whole computational domain, allowing for a direct control over
the element sizes and resulting in grids which are virtually independent from the initial
one.

Mesh adaptation via local modification

In many cases of practical interest a complete remesh might be undesirable and a
grid that satisfy the imposed size-distribution can be obtained by just performing local
changes by means of a combination of node movement or r-refinement [133], topology
modification e.g. edge-swapping [64], node insertion/deletion or h-refinement [118] and
local remeshing [48].

The displacement of the vertices towards desired regions allows to reduce the size of
the elements while the number of grid nodes is untouched, however the obtained mesh
could feature excessively stretched elements. Element refinement techniques has been
first implemented by Berger and Jameson [21] and by Dannenhoffer and Baron [43]. To
avoid an excessive growth of the grid size it is possible to balance the number of inserted
nodes by deleting those placed in low error regions, i.e. the so called grid derefinement.
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Many flow solvers require the grid to be conformal, i.e. without hanging nodes, if
so local grid topology reconstruction technique might be necessary after performing a
insertion/removal of a node [10, 169]. Common practices are the insertion of new nodes
in the center of an element or in the middle point of an edge; the local grid topology
is then recovered by means of a coherent splitting of the elements interested by node
insertion [48, 127, 168, 195]. In particular, Mavriplis [127] proposed an element based
algorithm in which grid conformity is enforced by adding new elements where nodes have
been inserted.

An algorithm to perform grid derefinement by element splitting or by removal after
a suitable configuration is reached by means of edge-swapping has been presented by
Sonar [168]. An edge collapsing derefinement strategy has been applied to triangu-
lar anisotropic and isotropic grids by Webster [195] and Dolejsi [48], respectively. In
Mavriplis [127] and Webster et al. [195] the topology reconstruction is performed after
the a node has been inserted by resorting to a look-up table for each possible element
refinement pattern. Instead, in [48] the local grid reconstruction is performed every time
a new node is inserted, by connecting all nodes belonging to the two elements sharing
the refined edge. This technique, which does not required specific element refinement
patterns, is viable only for grids made of triangles.

Unsteady adaptation

As described above the idea of the mesh adaptation method for steady-state configura-
tions is to converge toward a desired fixed point for the pair formed by the mesh and the
solution. In unsteady simulations there is no fixed state to converge to and for capturing
a time-dependent phenomenon the solution at the each subsequent time step must be
somehow predicted.

In this context, few works on mesh adaptation have been done and a very popular
approach consists in carrying out the adaptation step after a given number of time
iterations [118, 144, 153] . With this approach, the grid is adapted to the solution
computed at the time t and the solution at the time t + ∆t is computed over the
previously adapted grid. Thus no predictions in the evolution of the phenomena are
carried out and the capabilities of capturing transient solutions depends severely on the
Courant number.

Alauzet et al. [7] proposed a transient fixed-point approach to the adaptation problem
by introducing a new loop in the main adaptation loop. The same fixed-point approach
used for steady computations is repeated at every time t but instead of computing the
solution as a steady state it is computed as the unsteady solution at the time t+∆t. To
furthermore improve the capability of the adaptation scheme to capture the transitory,
Alauzet et al. [7] introduced a time-step dependent error estimator which is given by
the intersection of the error sensor computed between two subsequent times.

1.4 Thesis goals and outline

This thesis present a novel method for compressible gasdynamics to solve the arbitrary
Lagrangian-Eulerian formulation of the Euler equations is solved within the finite-volume
framework over adaptive grids. Thanks to the interpetation of the grid topology modi-
fications as of continuous deformation of the finite volumes, the solution over the new
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(adapted) grid is computed by simply integrating the arbitrary Lagrangian-Eulerian for-
mulation of the Euler equations, without any explicit interpolation step.

An adaptation strategy is proposed for unsteady problems. A suitable mix of mesh
deformation, edge-swapping, node insertion and removal is performed to adapt the grid
to a new configuration of the geometry or to redistribute the discretization error amongst
the grid elements.

Both steady and unsteady simulations over adaptive grids are presented that demon-
strate the validity of the proposed approach. In the final chapter typical two-dimensional
problems for rotorcraft blade sections are tackled. The adaptive ALE scheme is used
to perform high-resolution computations over three selected problems of interest for ro-
torcraft aerodynamics: an oscillating airfoil, an impulsively started airfoil and parallel
blade-vortex interaction. Resorting to mesh adaptation is of primary importance to per-
form unsteady computations in such problems, where the need of efficiency is combined
to the necessity to highlight relevant flow features, such as shocks, wakes or vortices.

Chapter 2: Finite volume ALE scheme for adaptive meshes

The Navier-Stokes equations provide a complete mathematical description of the behav-
ior of flows past aerodynamic bodies. Due to the multi-scale nature of the turbulence that
characterize the majority of the flows of interest their solution is still an extreme challeng-
ing task. In many problems of practical interest, however the Navier-Stokes equations
can be replaced by the more simple Euler equations neglecting the effect of the viscosity
and thermal conductivity. The computational costs required to solve the Euler equations
are dramatically lower than the ones required to solve the so-called Reynolds-Averaged
Navier-Stokes (RANS) coupled with the most simple turbulence models [99].

Section 2.1 - Euler equations: The numerical solution of the RANS equations
requires very fine meshes which are characterized by a huge increase of the mesh density
approaching the wall in the boundary layer region. On the other hand the Euler equations
can predict accurately enough the wave and the induced component of the drag since
the viscosity is neglected. As such, their use is limited to specific problems, e.g. high-
Reynolds number flows over aerodynamic bodies, and some crucial information cannot
be correctly evaluated, e.g. aircraft efficiency.In the present work the Euler equations
are the model of choice. A detailed description of the equations and their properties can
be found in [86, 113].

Section 2.2 - ALE formulation of the Euler equations: To perform computations
over dynamic grids, the Arbitrary Lagrangian-Eulerian approach, in which the control
volumes are allowed to change in shape and position as time evolves, is to be preferred
to the classic Eulerian one. In the ALE approach an additional contribution to the fluxes
is present, that is proportional to the velocity component normal to the interface of the
control volume. A particular emphasis is placed on the derivation procedure and on the
eigenstructure of Jacobian matrix. Indeed the differences between the Eulerian and the
ALE formulation of the governing equations can be reduced to a modification of the
eigenvalues of the Jacobian matrix, while the eigenvectors are unchanged. An additional
constraint over the interface velocities exists within the ALE framework, the so called
Geometric Conservation Law.

Section 2.3 - Space discretization: The flow solver is based upon an unstructured
finite-volume formulation used to discretize the ALE formulation of the Euler equations
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on the median-dual mesh [12]. The median-dual mesh can be easily drawn on top of
the original mesh, connecting each cell center to its edge mid-points. The result of the
construction is a mesh where the control volumes can be located on the nodes of the
original mesh.

Interesting feature of the median-dual discretization is the so called transparency of
the computational mesh [82]. In fact the edge-based data structure used within the
solver makes no distinction between 2D and 3D or between different types of elements.
There is always a single edge, only with a normal vector linked to it. To automatically
satisfy the GCL constraint the velocity integrated along the cell boundary is computed
as the time derivative of the area swept by the interface during the movement.

The flow solver employs a Flux Limiter approach in which a second-order centered
flux contribution is blended with a first-order one. To avoid numerical oscillations a
van Leer limiter [186] is used, which enforces monotonicity in the solution. A piecewise
constant representation of the solution is used, therefore the variables have different
values across the control volume interfaces and therefore a discontinuity exists. Roe’s
approximate Riemann solver [158] is used to evaluate the flux given the discontinuous
states. The boundary conditions are imposed in a weak form, i.e. by evaluating the
boundary fluxes on a suitable boundary state which depends on the type of boundary
condition to be enforced. Particular emphasis is placed on the effects of mesh movement
on the boundary conditions.

Section 2.4 - Time integration: A standard BDF scheme [106] is adopted to ap-
proximate the derivatives with respect to the time. To enforce the time-discrete version
of the Geometric Conservation Law the same BDF scheme is adopted to compute the
grid velocity, which is therefore proportional to the area swept by the interfaces during
each time-step. The solution of the flow equations at a given time is found by means
of an implicit dual-time stepping scheme. The scheme is obtained as an application of
the defect correction method to the semi-discrete form of the equations [101]. A local
pseudo-time step is added to each control volume and is gradually increased to infinity
according to the level of convergence of the solution. In practice, the scheme coincides
with a backward Euler method that uses an approximate Jacobian [126].

At each pseudo-time step the flow solution is updated by solving a sparse linear
system of equations. The solution is obtained iteratively by means of a Symmetric
Gauss-Seidel (SGS) procedure. The system is therefore solved by a forward sweep on
the nodes for the lower-triangular part of the matrix, followed by a backward sweep for
the upper-triangular part. The linear iterations are stopped when the norm of the linear
residuals vector is around one order of magnitude smaller than the norm of the residuals
vector. The method has some resemblance with the LU-SGS method [98, 121], of whom
SGS may be seen as an improvement.

Section 2.5 - Test cases for steady problems: The edge-based finite volume solver
is tested on standard fluid dynamic and aerodynamic test cases in order to assess the
properties of the numerical scheme, i.e. steady flow past a transonic airfoil, steady low
Mach number flow around a cylinder and the steady supersonic flow facing a positive
slope. Grid convergence is checked for the presented test cases and the convergence curve
obtained with the SGS scheme are compared with the one obtained with a GMRES solver
and LU solver.

Section 2.6 - ALE scheme for adaptive grids: the implicit unsteady finite-volume
scheme described in section 2.4 is extended to the case of adaptive grids. The application
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of local modifications of the mesh topology, e.g. edge-swapping and mesh de/refinement,
causes a modification in the shape of the cells. In principle, due to this modification
the solution at new time is to be interpolated over the new grid. The changes in the
topology are interpreted as continuous deformations of the finite volumes happening in
the time lapse from t to t + ∆t. This is reflected in the application of a correction term
to the interface velocities given by the grid movement. The solution over the new grid
can be therefore computed by simply integrating the governing equations.

To conserve the solution an additional flux term is to be included in the system
for every edge that has been removed from the mesh. Similarly an additional governing
equation has to be taken into account for every deleted cell. The nature of such additional
contributions depends strongly on the type of time integration scheme adopted.

Chapter 3: Mesh update strategy

In the third chapter the strategy followed to perform the mesh adaptation of a grid made
of triangles is briefly described. A suitable mix of very standard techniques is adopted,
given by mesh deformation, edge-swapping and node insertion/deletion.

Section 3.1 - Mesh deformation: A mesh deformation technique is adopted to permit
the movement of the boundaries, while maintaining high level of grid quality reducing
numerical errors. A two steps procedure is carried out: first each boundary node is
displaced as prescribed by a given law, then the position of the inner nodes is modified
accordingly. The used internal node-displacement algorithm extends to idea of the elastic
analogy that represent each element as a deformable body presented by Belytschko, Liu
and Moran [18]. The obtained algorithm works well with grids made of triangles and
the provided examples demonstrate both its robustness and computational efficiency.

Section 3.2 - Edge-swapping: For large displacements of the mesh nodes the topology
is altered with an edge-swapping technique [64], which allow to preserve the total number
of grid nodes. The edge-swap consists in altering the connectivity of a given couple of
triangular elements by deleting the edge connecting the two vertexes shared by the two
elements and by adding a new edge connecting the other two vertexes.

A suitable element quality measure is defined to decide whether an edge must be
swapped. A scale-invariant quality measure Q has been chosen among those presented
in [165] for two-dimensional grids, which indicate how close an element is to the equi-
lateral triangle. This allow to improve the condition number of the stiffness matrix
associated with the fluid problem. Presented numerical examples show that large grid
deformations can be achieved with a suitable combination of mesh deformation and
edge-swapping.

Section 3.3 - Node insertion and deletion: Several type of element refinement
techniques can be found in literature, even for simple triangular meshes [63]. A simple
barycentric node insertion is performed on domain elements, while the boundary elements
are split in half. Domain and boundary nodes removal are performed reconstructing the
local connectivity in order to locally maximize the element quality.

In the present work the spacing distribution is controlled in two ways: as proportional
to the distance from the boundaries and as proportional to a suitably defined error
indicator. The first approach is specifically suited for aerodynamic applications, indeed
in most of the cases of interest the smaller elements are gathered close to the solid walls
and the size smoothly increase as the maximum dimension is prescribed on the outer
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boundary. The second approach aims to capture the local features of the flow-field locally
changing the grid spacing according to the principle of error equidistribution [174, 63]. In
this way, if a computational region has a numerical error higher than the average, it will
be refined using a technique of node insertion; on the other hand, regions with a lower
numerical error will be derefined thanks to a deletion node procedure. An estimator is
defined to identify regions with high and low numerical error which is usually a function
of the flow gradients [10, 117, 148, 193], of the Hessian matrix H of a convenient
sensor variable [37, 200, 195], of the vorticity or of the substantial derivative of the
density [181].

Standard fluid dynamics flow fields usually present features with different intensities,
e.g. the gradients near the shock wave and the rarefaction fan that are computed as
solution of a one dimensional Riemann problem. In order to capture flow features with
lower intensities a multiple passages technique is adopted to suitably modify the list of
nodes that participate in the computation of the de/refinement threshold [4].

Section 3.4 - Grid adaptation for unsteady applications: For steady problems is
computed the implementation of an adaptation scheme is quite straightforward and it
essentially seeks the convergence of both the solution and the computational grid. The
application of grid adaptation to the unsteady case different approaches are possible.

Mohammadi and Hecht [136] use a “forward” approach in which the grid is adapted
over the solution computed at the time t, the solution at t + ∆t is computed over the
new grid and so on. However Such procedure is suitable only if very small time steps are
adopted since, as pointed out by Alauzet et al.[7]: “the mesh is late over the solution”.

In the present work a an approach similar to the one proposed by Alauzet et al.[7]
is followed, which consists in a iterative procedure which alternate a solution prediction
phase with the adaptation one, when the grid has converged to a stationary state a
new time step is tackled. By doing so the grid is essentially adapted over the solu-
tion computed at a current time, instead of the previous one. To further increase the
grid-convergence rate and the overall efficiency of the algorithm an error interpolation
technique has also implemented that allows to repeatedly apply the adaptation procedure
without computing the solution over the new grid.

Chapter 4: Simulations of reference compressible flows

Numerical experiments are carried out to test the accuracy of the proposed solution
procedure. Both steady and unsteady cases are tackled to demonstrate the correctness
of the used adaptation strategy.

Section 4.1 - Oblique shock problem: First the computational efficiency of the im-
plemented adaptation strategies is evaluated against the standard steady oblique-shock
test case where no complications in the domain geometry are present and the analytical
solution is simple enough that only two shocks are featured in the flow field [180].

Section 4.2 and 4.3 - Steady flow past AGARD 02 and NACA 0012 airfoil sec-
tions: Steady flow simulations around the AGARD-02 and NACA 0012 airfoil are
performed to assess the solver capabilities at simultaneously capturing relevant flow
features of transonic flows, including shock waves, shear lines and regions of smooth
flows.

Section 4.4 - Sod Problem: The shock tube problem first proposed by Sod [167] is
tackled to test the capabilities of the adaptive scheme to describe a transient solution.
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The Sod problem features simultaneously a shock waves, a contact discontinuity and a
rarefaction fan moving inside the domain and an analytical/exact solution is available.
It is thus well suited to study different error sensors in the unsteady case.

Section 4.5 - Forward facing step : The supersonic forward-facing step problem made
famous by Woodward and Colella [199] is also tackled. The forward-facing step test case
is particularly well suited to test the solver capabilities in capturing very complex flow
fields made by curved shocks that interacts with the wall and with other discontinuities.

Chapter 5: Simulations of compressible flows around rotorcraft blade sections

Helicopter simulation is a challenging problem due to the complexity of the flow field
generated by the rotor disk, and the interaction between vortices, blades and fuselage.
Prediction of helicopter performance strongly dependend on the accuracy of the predic-
tion of the transonic flow past the blade on the advancing side of the rotor and on the
resolution of blade-vortex and blade-wake interactions. Therfore a robust and accurate
compressible CFD solver is essential in computing the flow around rotor blades.

As briefly discussed in section 1.1, the stability of the majority of the CFD solvers
is ensured by the introduction of a certain amount of numerical dissipation, which is
generally proportional to the mesh size. To this purpose a method that captures the
vortical structures in order to properly resolve a helicopter wake is crucial, since excessive
numerical dissipation may lead to wrong preditction of the intensity of the wake or the
vortices. To this purpose the idea of Vorticity Confinement, first proposed by Steinhoff,
has shown to be effective in treating concentrated vortical regions in coarse grids [191,
119, 29]. Another approach that can be adopted consists in increase the grid resolution
in the region of the domain that surrounds the vortex core [175, 142].

In this chapter typical two-dimensional problems for rotorcraft blade sections are
presented, appling the adaptive scheme outlined in chapter 3 and 2 to perform high-
resolution computations involving pitching motion, airfoil start-up and parallel blade-
vortex interaction.

Section 5.1 - Pitching Airfoil : Compressible inviscid subsonic and transonic flow
computations around a pitching NACA 0012 airfoil are carried out. The variation of
the angle of attack in time is prescribed analytically as a sinusoidal function. This type
of pitching movement is similar to the one that is performed by a blade section for an
helicopter rotor in forward flight, where a variation the in cyclic pitch angle is used to
generate a thrust force. A critical difficulty of this type of problem is the fact that a
shock wave is continuously moving from the upper to the lower side of the airfoil and,
because of the variation of the entropy increase, a shear wake is intermittently shed.
The adaptation scheme must efficiently capture all this flow features.

Section 5.2 - Start-up vortex from the NACA 0012 airfoil: The 2D unsteady flow
past the NACA 0012 airfoil impulsively set into motion is also tackled. The generation of
the vortical structure is not due to the viscous effects but to the singularity in the trailing
edge, therefore the Euler equations can correctly represent the space-time evolution of
the start-up vortex in the computational domain. The dynamics of the start-up vortex
strongly influence the time history of the force coefficient over the airfoil. Since both
the flow field around the airfoil and the start-up vortex need to be captured accurately
at the same time, due to the Kelvin’s circulation theorem, it is mandatory to adapt the
computational grid in an unsteady fashion to follow the vortex dynamics and accurately



Introduction 15

compute the flow field close to the airfoil.

Section 5.3 - Parallel blade-vortex interaction: The blade-vortex interaction (BVI)
phenomenon occurs when a rotor blade passes within a close proximity of the shed tip
vortices from a previous blade. The parallel BVI is the most critical configuration and
occurs when the axis of the filament-like vortex is aligned with the axis of the blade. One
of the major challenges faced when simulating an AVI is to preserve the vortex structure
accurately as it convects through the solution and minimize the numerical dissipation
that is inherent in CFD simulations.

The work of Oh et al. [142] addressed this problem by the use of adaptive unstructured
meshes to dynamically concentrates mesh points in the region surrounding the vortex
core. In the present work a similar approach has been followed reserving a special
treatment to the nodes surrounding the vortex core. To better study the capabilities
of the adaptive flow solver the simulation vortices transport within the flow field, the
free-vortex advection problem is first tackled on both fixed and adaptive grids.
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Chapter 2

Finite volume ALE scheme for
adaptive meshes

In many cases of aerodynamic interest the Euler equations are sufficient to describe the
dynamic behavior of the air. More generally the approximation introduced when deriving
these equations are valid for sufficiently dense gases, i.e. the continuum hypothesis must
hold, for high values of the flow Reynolds number, i.e. for “thin” boundary layers, for
attached flows, i.e. no regions of separation are present in the flow field, and for low
values of the flow Mach number, i.e. to avoid possible hypersonic effects.

Since in the present work the aim is to compute the pressure distribution on the
surface of aerodynamic bodies, e.g. airfoil sections, that face high-Reynolds transonic
air flows, the Euler equations can be considered a good approximation in terms of
predictive capabilities.

The present chapter is organized as follows: in section 2.1 the Euler equations are
introduced, in section 2.2 the arbitrary Lagrangian-Eulerian formulation is derived, in
section 2.3 the finite-volume discretization of the governing equations for grid with con-
stant connectivity is presented, in section 2.4 the time integration scheme is described,
with particular emphasis on the ALE formulation, in section 2.4.2 the iterative implicit
solver for the equations is introduced, in section 2.5 the result obtained on some stan-
dard test cases for steady flows are shown and in section 2.6 the finite-volume scheme
is extended to the case of grids with variable connectivity and number of nodes.

2.1 Euler equations

The governing equations for a two-dimensional compressible inviscid fluid flow represent
the balance of mass, momentum and total energy of a fixed control volume, i.e.

∫

C

∂u

∂t
dx+

∮

∂C
f(u) ·n ds = 0, ∀C ⊆ Ω, (2.1)
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where x ∈ Ω ⊆ R
2 is the position vector and t ∈ R

+ is time and where u : Ω×R
+ → R

4

is the vector of the conservative variables, i.e.

u = (ρ,m, Et)T,

where ρ is the density, m is the momentum vector and Et is total energy per unit
volume. The flux function f ∈ R

4 × R
4 of Eq. (2.1) is defined as

f(u) =
(
m, m⊗m/ρ + P (u) I2,

[
Et + P (u)

]
m/ρ

)T
, (2.2)

where I is the 2 × 2 identity matrix and P is the pressure. The outward unit vector
normal to the boundary ∂C of the control volume C is termed as n(s) ∈ R

2 and it is
a function of the curvilinear coordinate s along ∂C. The dot product between the flux
function and the normal vector of Eq. (2.1) is defined as f ·n = fxnx + fyny. Eq. (2.1)
is to be made complete by specifying suitable initial and boundary conditions on the
boundary ∂Ω, see e.g. [72].

The expression of the fluxes of the Euler equations, i.e. Eq. (2.2), depends on the
thermodynamic model chosen for the gas. The polytropic ideal gas is the most simple
model and is, with no doubts, the most adopted. For the aerodynamic problems of
interest is suitable and well describes the thermodynamics behavior of the air in the
lower atmosphere. The equation of state for perfect gas, which reads

P (u) = (γ − 1)

(
Et − |m|2

2ρ

)
, (2.3)

fully describe the thermodynamics for the Euler equations, where γ is the ratio of specific
heats, which for air is about 1.4. The speed of sound, for a polytropic ideal, gas depends
on the temperature only and it can be expressed as a function of the conserved variables
as

c =

√
γ

γ − 1

ρ

(
Et − |m|2

2ρ

)
.

2.1.1 Non dimensional variables

Dimensionless variables are used for the solution of the equations. A reference value
for the pressure and the temperature is chosen, i.e. Pref and Tref respectively. Other
reference variables can be obtained through dimensional analysis of the problem, i.e.

ρref =
Pref

RTref

, mref =
√

ρrefPref, Et
ref = Pref, tref =

√
ρref

Pref

,

where R is the specific gas constant, that for air is about 287.04 J
kg K . The non di-

mensional counterparts of Eq. (2.1), (2.2) and (2.3) have the same form, but the non
equations of state for a polytropic ideal gas read

P̂ = ρ̂T̂ and Êt = ĉv ρ̂T̂ +
|m̂|2
2ρ̂

,

where the non-dimensional quantities are built as P̂ = P/Pref and the reference value of
both the specific gas constant R and the specific the specific heat at constant volume
cv is chosen as R. In the following, all the variables are assumed to be dimensionless,
the “hat” however is not used since it can be safely dropped without causing confusion.
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2.2 ALE formulation of the Euler equations

The Arbitrary Lagrangian-Eulerian formulation of the Euler equations expresses the bal-
ance of the conservative variables with respect to a moving control volume. For later
convenience, the ALE equations for an arbitrary control volume C(t) moving with a ve-
locity v(s, t) specified on the boundary ∂C(t) are now derived by introducing a suitable
mapping between the current volume, i.e grid configuration, Ωx(t) and the reference or
initial one ΩX , namely

ψ : ΩX × R
+ −→ Ωx × R

+

(X , t) 7−→ ψ(X, t) = (x, t)

where X indicate the reference domain coordinates. The well-known Reynolds transport
theorem provides

d

dt

∫

Cx(t)

u(x, t) dx =
d

dt

∫

CX

J(X , t) U(X, t) dX =

∫

CX

∂

∂t
[J U] dX. (2.4)

with U(X , t) = u(x(X , t), t) and dx = J(X, t) dX, and where

J(X, t) =

∣∣∣∣
∂x(X , t)

∂X

∣∣∣∣ > 0, (2.5)

is the Jacobian of the mapping ψ at each time instant. Note that the shape and position
of the reference or initial volume CX does not depend on time and therefore the time
derivative operator commutes with integration over CX . From [182], one also has

∂J

∂t
= J ∇x·v, (2.6)

where v(x, t) = ∂x(X, t)/∂t is the local velocity of the volume and ∇x · ( · ) is the
divergence operator in Ωx. Substituting Eq. (2.6) and the identity ∂U/∂t = ∂u/∂t +
v · ∇xu in Eq. (2.4) in the current configuration one obtains

d

dt

∫

Cx(t)

u dx =

∫

Cx(t)

[
∂u

∂t
+ ∇x· (uv)

]
dx.

The governing equations in the ALE framework for an arbitrary control volume C(t) ∈
Ωx(t) moving with mesh velocity v are finally obtained as follows

d

dt

∫

C(t)

u dx+

∮

∂C(t)

[
f(u) − uv

]
·n ds = 0, ∀C(t) ⊆ Ω(t), (2.7)

where differently from equation (2.1), here n and v are functions of both s and t.
Relation (2.6) can be interpreted as a constraint that the control volume must comply

with during the movement [62, 51]. Indeed setting u ≡ U ≡ 1, integrating (2.6) in time
over CX from the initial condition J(0) = 1 and substituting (2.4), one has

∫

CX

[
∂J

∂t
− J∇x·v

]
dX = 0 ⇔ d

dt

∫

Cx(t)

dx =

∮

∂Cx(t)

v ·n ds, (2.8)
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a condition that is usually referred to as the Geometric Conservation Law. Relation
(2.8) represents a constraint that must be satisfied by the interface velocity to ensure
that the ψ mapping is regular. The role of the GCL for ALE formulations has been
the subject of a large number of investigations, generating controversial opinions. It is
worthwhile recalling here some basic issues related to the GCL condition (2.8) and to its
discrete version. In general, the GCL is neither a necessary nor a sufficient condition to
preserve time accuracy [69], but schemes that violate it usually are polluted by spurious
oscillations [132]. Additionally, Shyy et al. [166] showed that errors up to O(1) can be
introduced if the GCL is not enforced. It has been shown that using a time integration
scheme that is of p-th order on fixed meshes, compliance with the GCL condition up
to the p-th order is a sufficient condition to obtain a scheme that is at least first order
accurate [54]. Therefore, it is generally accepted that enforcing the GCL results in
improving the accuracy and the stability of the numerical scheme. An updated review
of the literature on the subject can be found in [51].

2.2.1 Jacobian matrix and eigenstructure

Due to the hyperbolic nature of the problem the Euler fluxes and their derivative with
respect to the solution, i.e. Jacobian matrix, are of key importance for the development
of numerical schemes. In the ALE framework the Jacobian matrix computed along a
given direction A(u,n,v) ∈ R

4 × R
4 reads

A(u,n,v) =
∂f(u) ·n

∂u
+ (v ·n)I4. (2.9)

A is therefore given by the sum of the Jacobian matrix computed in the Eulerian frame-
work and a correction term that is proportional to the projection of the velocity vector
along n.

Of primary importance for the description of the wave phenomena is the eigenstruc-
ture of the Jacobian matrix. A(u,n,v) can be therefore decomposed in the product of
three matrices namely the left eigenvectors L(u,n) ∈ R

4 × R
4, the right eigenvectors

R(u,n) ∈ R
4 × R

4 and the eigenvalues diagonal matrix Λ(u,n,v) ∈ R
4 × R

4.
In the ALE framework the expression of the eigenvalues in the 2D case reads

Λ(u,n) =

(
m ·n

ρ
− v ·n

)
I4 − diag (c, 0, 0, −c)

T
,

which correspond to the eigenvalues of the equations in the Eulerian framework plus a
correction term proportional to v ·n. Since the last term of Eq. (2.9) does not depend
on u, the matrices of the eigenvectors L(u,n) and R(u,n) do not depend on the velocity
of the control volume and correspond to the ones computed in the Eulerian framework.
For a more detailed explanation the reader is referred to [113, 76].

2.3 Space discretization

The discrete representation of the ALE Euler equation (2.7) over a dynamic grid with no
topology modifications is now obtained by selecting a finite number of non overlapping
volumes Ci(t) ⊂ Ω(t), with boundary ∂Ci(t), such that

⋃
i Ci(t) ≡ Ω(t). According

to the node-centered finite volume approach considered here, each finite volume Ci
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Ci
ξi

(b) Boundary discretization

Fig. 2.1: Nodepair discretization of the control volumes. The shaded regions are the
finite volumes Ci and Ck; dashed lines indicate the underlying triangulation. (a) Edge
i-k associated with the finite volume interface ∂Cik = ∂Ci ∩ ∂Ck and metric vector ηik

(integrated normal) in two spatial dimensions. (b) Discretization along the boundary
interface ∂Ci ∩ ∂Ω and metric vector ξi (integrated normal) in two spatial dimensions.

surrounds a single node i of the triangulation of Ω, as shown in fig. 2.1. For each finite
volume, equation (2.7) reads

d[Vi ui]

dt
+

∮

∂Ci(t)

[
f(u) − uv

]
·ni ds = 0, ∀i ∈ K, (2.10)

where

Vi(t) =

∫

Ci(t)

dx and ui(t) =
1

Vi(t)

∫

Ci(t)

u(x, t) dx,

K is the set of all nodes of the triangulation and ni = ni(s, t) denotes the outward
normal with respect to the volume Ci, see fig. 2.1. The set of all the nodes located
along the boundary of the mesh is termed as K∂ . In the following expressions the
variables of integration dx and ds are not indicated for brevity. The second term of
(2.10) is now rearranged to put into evidence the internal and boundary contributions,
namely,

d[Vi ui]

dt
+

∑

k∈Ki,6=

∫

∂Cik(t)

[
f(u) − uv

]
·ni +

∫

∂Ci(t)∩∂Ω(t)

[
f(u) − uv

]
·ni = 0, (2.11)

where Ki, 6= = {k ∈ K, k 6= i|∂Ci ∩ ∂Ck 6= ∅} is the set of the indexes k of the
finite volumes Ck sharing a portion of their boundary with Ci, Ci excluded. The set
∂Cik(t) = ∂Ci ∩ ∂Ck is often referred to as the cell interface between the volumes Ci(t)
and Ck(t), see fig. 2.1(a). Each interface ∂Cik is associated to the corresponding edge
i-k connecting nodes i and k of the triangulation of Ω. The second term of Eq. (2.11)
is the contribution of the boundary fluxes to the conservation equation of the i-th finite
volume, which is different from zero provided that ∂Ci ∩ ∂Ω 6= ∅, namely, node i is a
boundary node, see fig. 2.1(b).
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A suitable integrated numerical flux, i.e. ΦII
ik ∈ R

4, approximating the flux across
the cell interface ∂Cik, is now introduced [113]. Considering for example a centered
approximation [113] of the unknown and of the flux function at the cell interfaces, the
domain contribution reads

∫

∂Cik(t)

[f(u) − uv] ·ni ≃ f(ui) + f(uk)

2
·ηik(t) − ui + uk

2
νik

= −ΦII
ik(ui, uk, νik, η̂ik, ηik),

(2.12)

where ηik and νik are the integrated outward normal and interface velocity, respectively,
defined as follows

ηik =

∫

∂Cik(t)

ni and νik =

∫

∂Cik(t)

v ·ni. (2.13)

and where ηik = |ηik| and η̂ik = ηik/ηik. The conservativity of the scheme [113]
imposes that ηik = −ηki and νik = −νki. Thanks to the piecewise constant represen-
tation of the unknown in the finite volume framework, u is constant along the boundary
∂Ci ∩ Ω and the corresponding flux contribution of Eq. (2.11) simplifies to

∫

∂Ci(t)∩∂Ω(t)

[f(u) − uv] ·ni ≃ f(ui) · ξi − ui νi

= −Φ∂(ui, νi, ξ̂i, ξi),

(2.14)

where ξi and νi are the integrated outward normal and interface velocity of the i-th
boundary node, respectively, defined as

ξi(t) =

∫

∂Ci(t)∩∂Ω(t)

ni(s, t) and νi(t) =

∫

∂Ci(t)∩∂Ω(t)

v(s, t) ·ni(s, t) , (2.15)

and where ξi = |ξi| and ξ̂i = ξi/ξi. Moreover, for the finite volume to be closed, the
following relation holds

ξi(t) +
∑

k∈Ki,6=

ηik(t) = 0.

For a general, namely, non-centered approximation of the numerical fluxes a general
expression of Eq. (2.10) can be formally rewritten as, i.e.

d

dt
[Vi ui] =

∑

k∈Ki,6=

ΦII(ui, uk, νik, η̂ik, ηik) + Φ∂(ui, νi, ξ̂i, ξi). (2.16)

The calculation of the domain and boundary fluxes will be addressed in section 2.3.1
and 2.3.2 respectively.

The same finite volume approach can be adopted to compute the interface integrals
appearing in the Geometric Conservation Law, thus Eq. (2.8), i.e.

d

dt

∫

Ci(t)

=

∫

∂Ci(t)∩∂Ω(t)

v ·ni +
∑

k∈Ki,6=

∫

∂Cik(t)

v ·ni ,
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becomes
dVi(t)

dt
= νi(t) +

∑

k∈Ki,6=

νik(t). (2.17)

A natural way to satisfy Eq. (2.17) is to split the derivative of the cell volume into
contribution pertaining to the so called Interface Volumes, i.e. the volumes (areas in
two dimensions) swept by the different parts of the interfaces, which satisfy the following

νik =
dVik

dt
and νi =

dVi,∂

dt
, (2.18)

where Vik(t) and Vi,∂(t) are the volumes swept by the interfaces ∂Cik(t) and ∂Ci(t) ∩
∂Ω(t) respectively. Such definition of the integrated normal velocities allows to auto-
matically satisfy the GCL constraint and is therefore the most natural choice [132, 166],
however it is not unique. Indeed, there is a dim Ki, 6= − 1 parameter family of interfaces
velocities satisfying condition (2.17), where dim indicates the number of elements of a
given set. Additionally, it can be observed that one can think of a deforming control
volume as a set of points moving with a given velocity field, which is defined by the im-
posed grid velocity. As said, the GCL is satisfied by an infinite combination of interface
velocities, but only one of them is the one that is computed as the result of subsequent
geometry configurations that includes at every time the same (material) points.

The differential relations of Eq. (2.18), which for an assigned mesh motion allows
one to compute the interface velocities νik(t) and νi(t), complements the ODE system
of the Euler equations (2.16), namely





dViui

dt
= Φ∂(ui, νi, ξ̂i, ξi) +

∑

k∈Ki,6=

Φ(ui, uk, νik, η̂ik, ηik), i ∈ K

dVik

dt
= νik, k ∈ Ki, 6=

dVj,∂

dt
= νj , j ∈ K∂

(2.19)
In the system (2.19) the unknowns are 4NV , with NV = dim K, the boundary conditions
are applied to NV,∂ = dim K∂ boundary nodes, the numerical fluxes are evaluated over
each of the NE edges, with NE = 1

2

∑
i∈K dim Ki, 6=, and NE + NV,∂ interface velocity

consistency conditions are defined.

2.3.1 Domain Fluxes

The evaluation of numerical fluxes of Eq. (2.16) requires particular care, due to the
hyperbolic nature of the equations and, possibly, due to the need to achieve second-
order accuracy in space.

The domain fluxes are discretized resorting to an approximate Riemann solver, which
gives the flux that would be obtained by solving the well-known Riemann problem of gas
dynamics, i.e. evolution of the solution from a discontinuous initial state. Riemann based
solvers are well suitable to describe wave propagations but lead to first order spatially
accurate schemes [113]. A high-resolution Total Variation Diminishing expression for
the integrated numerical flux is used in the to compute flows with shock waves [113].
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Centered Approximation

The integrated numerical flux can be calculated using the mean of the “natural” fluxes
evaluated on the grid nodes, i.e.

ΦII
ik =

f(ui) + f(uk)

2
·ηik − ui + uk

2
νik. (2.20)

This centered approximation is found to be second-order accurate [158].

Roe Solver

It is well known, see e.g. [113], that the use of the second-order integrated numerical flux
of Eq. (2.20) may lead to the appearance of spurious oscillations in advection dominated
flows and in particular near discontinuities of the flow variables; in this case, the following
first-order upwind approximation due to Roe [158], namely

ΦI
ik =

f(ui) + f(uk)

2
·ηik − ui + uk

2
νik − 1

2
|Ã| (uk − ui), (2.21)

is to be preferred. The Roe matrix, i.e. Ã ∈ R
4 × R

4, is the Jacobian of the flux vector
projected along the normal vector η̂ik evaluated at the Roe state ũ = ũ(ui, uk), namely
Ã = A(ũ, η̂ik, ηik, νik). The Roe state can be computed as

ρ̃ =
√

ρiρk, m̃ =
mi

√
ρk +mk

√
ρi√

ρi +
√

ρk

and h̃ =
hi

√
ρi + hk

√
ρk√

ρi +
√

ρk

,

where h = (Et + P )/ρ is the specific total enthalpy.
The absolute value of the Jacobian matrix |A(ũ, η̂ik, ηik, νik)| is computed resorting

to its spectral decomposition, namely

|Ã| = R̃|Λ̃|L̃,

where R̃ = R(ũ, η̂ik) and L̃ = L(ũ, η̂ik) are matrices of the right and left eigen-
vectors of A, introduced in section 2.2.1, evaluated in the Roe state, respectively.
Λ̃ = Λ̃(ũ, η̂ik, ηik, νik) is the diagonal matrix built with the absolute values of the eigen-
values, namely |Λ̃| = diag (|λ̃(1)|, . . . , |λ̃(4)|), where

λ̃(1) = ηik

(
m̃ · η̂ik

ρ̃
− c(ũ)

)
− νik,

λ̃(2) = λ̃(3) =
m̃ ·ηik

ρ̃
− νik,

λ̃(4) = ηik

(
m̃ · η̂ik

ρ̃
+ c(ũ)

)
− νik,

are the eigenvalues integrated along the interface ∂Cik(t).
The Roe flux is essentially a central term plus a matrix dissipation term, see Eq.(2.21).

If the introduced numerical dissipation is too small, i.e. if the eigenvalues are close to
zero, non-physical solutions may appear. In order to avoid such behavior the a correction,
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i k

i⋆ k⋆

Fig. 2.2: Extended edge structure i⋆-i-k-k⋆ for high-resolution.

usually termed as entropy fix, to the eigenvalues is performed in order to ensure that the
introduced dissipation is not below a given threshold [113].

In the present work a modification of the entropy fix first proposed by Selmin is
adopted [162] and the eigenvalues used to compute the Roe matrix are replaced by

λ̂h =





|λ̃(h)| if λ̃(h) > δ̃,

λ̃2
(h) + δ̃2

2δ̃ + ε
if λ̃(h) < δ̃,

(2.22)

where ε = 10−12 is a small positive parameter chosen in order to avoid divisions by zero
of a null quantity, δ̃ = 0.2(M(ũik, η̂ik, ηik, νik) + 1)ηik is adopted as a threshold and

M(u, η̂, η, ν) =
1

c(ũ)

(
m̃ · η̂

ρ̃
− ν

η

)
(2.23)

is the relative Mach number projected along the η̂ik direction.

Flux Limiter

Following [186], a high-resolution expression for the integrated numerical flux is now
obtained by resorting to the Total Variation Diminishing approach, in which the second
order approximation ΦII

ik is replaced by its first order counterpart ΦI
ik near flow discon-

tinuities; the switch is controlled by a suitable flux limiter Υ, Υ = diag (Υ1, . . . , Υ5).
The resulting high-resolution integrated numerical flux reads

ΦHR
ik = ΦI

ik + Υ
[
ΦII

ik − ΦI
ik

]
= ΦII

ik +
1

2
R̃|Λ̃| (w̃ − ṽ), (2.24)

where ṽ = L̃ (uk − ui) and w̃ = Υ L̃ (uk − ui). By substituting the expression of the
limiter by Van Leer [186], the h-th component of the vector of the limited characteristic
jumps w̃ reads

w̃(h) =
ṽ(h)|q̃(h)| + |ṽ(h)|q̃(h)

|ṽ(h)| + |q̃(h)| + ǫ
, (2.25)

where ǫ is a small positive parameter introduced here to avoid division by zero of a zero
quantity (ǫ = 10−12 here) and where the h-th component of the vector of “upwind”
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jumps q̃ is given by

q̃(h) =





η̂ik · (xk − xi)

η̂ik · (xk⋆ − xk)
L̃(h)(uk⋆ − uk) if λ̃(h) > 0,

η̂ik · (xk − xi)

η̂ik · (xi − xi⋆)
L̃(h)(ui − ui⋆) if λ̃(h) ≤ 0.

In the above definition, the nodes i⋆ and k⋆ are the extension nodes belonging to edge i-k
of the triangulation and L̃(h) is the h-th row of matrix L̃. Note the above high-resolution
version of the scheme requires the definition of an extended edge data structure that
includes also the extension nodes i⋆ and k⋆, that are needed in the evaluation of the
limiter function Υ. Following [194], the extension nodes belong to the two edges best
aligned with i-k, see Fig. 2.2.

The computer implementation of the finite volume scheme described above is fairly
straightforward and very efficient, see e.g. [163]. All computations are performed only
over the edges of the mesh: edges are present in one-, two- and three-dimensional grids
and therefore the extension to different spatial dimension requires only few modifications
to the code, that are limited to the definition of the vector unknown and to the associated
flux function.

2.3.2 Boundary Fluxes

Boundary conditions are enforced in a weak form, i.e. by evaluating the flux Φ∂
i of

Eq. (2.14) in a suitable boundary state u∂ = u∂ (ui, ξ̂i, ξi, νi). Two different boundary
conditions are described: slip and non-reflection condition.

Slip boundary conditions are imposed by subtracting to ui the component of the
velocity normal to the wall in a reference frame that is moving with the body, i.e.

uW(ui, ξ̂i, ξi, νi) = ui −
[

0,

(
mi · ξ̂i − ρi νi

ξi

)
ξ̂i,

1

2

∣∣∣∣
mi · ξ̂i

ρi

− νi

ξi

∣∣∣∣
2
]T

. (2.26)

The boundary flux corresponding to a slip wall condition, therefore is equal to

Φ∂
i (uW , ξ̂i, ξi, νi) = P (ui)

[
0, ξi ξ̂i, νi

]T

,

which correspond to the pressure forces and power. The boundary state u∂
i at the far-

field is computed via characteristic reconstruction from the nodal state vector ui and
the far-field state u∞ as follows [78]

u∞(ui, ξi, νi) = ui + R(ui, ξ̂i) N(ui, ξ̂i, ξi, νi) L(ui, ξ̂i)
[
u∞ − ui

]
, (2.27)

where N = − diag
(

min (λ(h)/|λ(h)|, 0)
)
, h = 1, . . . , 4. Note that the expression above

simplifies to u∂

i = ui for λ(h) < 0 ∀h and to u∂

i = u∞ for λ(h) > 0 ∀h, i.e. a supersonic
outflow and inflow respectively.

2.3.3 Metrics computation

In the present section, the expression for the volume (area in two dimensions) Vi and
the metric quantities ηik and ξi, are given in terms of geometrical entities defined over
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Fig. 2.3: Definition of the finite volume C1 (shaded region) from the underlying trian-
gulation in two spatial dimensions. The nodes of the triangulation are indicated with
the symbol •; the grid elements are indicated by dashed lines. a) Node 1 belongs to
the interior of the computational domain Ω. b) Node 1 lies on the boundary of Ω, here
represented by the segments 2–1 and 1–5. The medians of the triangle (1, 2, 3) and of
the quadrilateral element (1, 6, 7, 2) are also indicated with dotted lines, cf. Fig. 2.3.

the underlying triangulation of the domain Ω. The latter is possibly a so-called hybrid
triangulation, namely, it could be made of elements of different types. The computation
of the velocities νik and νi will be discussed in section 2.4

With reference to Fig. 2.3, the finite volume Ci is first split into the subsets Ci,e =
Ci ∩ Ωe, where Ωe is the e-th element of the triangulation, so that Ci =

⋃
e∈Ei

Ci ∩ Ωe,
with Ei the set of the elements sharing node i. The set Ei is often referred to as the
element bubble of node i. Over each subset Ci,e, the boundary ∂Ci,e = ∂Ci ∩Ωe is made
of the two segments connecting the center of gravity xe of the element to the midpoints
xik of the two edges from node i, as shown in Fig. 2.4. The elemental contribution
ηik,e, see Fig. 2.4a, is therefore computed as

ηik,e(t) =

∫

∂Cik,e(t)

ni = (xik(t) − xe(t)) × ẑ, (2.28)

where ẑ is the unit vector normal to the plane x-y. The metric vector ηik is then
computed as

ηik(t) =
∑

e∈Ei

ηik,e(t). (2.29)

Similarly, the boundary metric vector ξi =
∑

e∈E∂
i
ξi,e, where E∂

i is the set of the

boundary elements having node i in common, one has

ξi,e(t) =

∫

∂Ci,e(t)

ni = (xe(t) − xi(t)) × ẑ. (2.30)

Note that in two spatial dimensions the boundary elements are the edges of the domain
element themselves, so that the center of gravity of the e-th boundary element is the
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Fig. 2.4: Definition of the finite volume from the underlying triangulation in two spa-
tial dimensions. The nodes of the triangulation are indicated with the symbol •, the
barycenter xik and xe of the edges and of the element, respectively, are indicated with
�. a) The portion of the perimeter of the finite volume C1 pertaining to the triangular
element e with nodes (1, 2, 3) is made of the two segments (x12,xe) and (xe,x13).
The contribution to the area of the finite volume is given by the sum of the area of the
two triangles (x1,x12,xe) and (x1,x13,xe). b) Elemental contributions for triangular
element lying on the domain boundary.

midpoint of the segment of the e-th element which lies on the boundary, as shown in
Fig. 2.4b. The contribution Vi,e of element e to the volume of Ci (area in the present
two-dimensional case) is given by sum of the area of the two triangles having as vertices
node i, xe and each of the two midpoints xik, see Fig. 2.4. In terms of edge contributions
it the cell volume is computed as

Vi(t) =
∑

e∈Ei

Vi,e(t) =
∑

e∈Ei

∑

k∈Ki,6=

Vik,e(t) ,

where

Vik,e(t) =
xe(t) − xi(t)

2
·ηik,e(t) . (2.31)

All the definitions given above are applicable to elements of any kind, e.g. to hy-
brid triangulations of triangles and quadrilaterals, and guarantee that each finite vol-
ume is closed. It is worth noticing that, for fixed grids, Selmin [163] and Selmin and
Formaggia [164] proved that a centered finite volume discretization built according to
the above prescriptions is equivalent to a linear finite element approach in the case of
two-dimensional grids of triangles or three-dimensional grids of tetrahedra, but for the
boundary terms.
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2.4 Time integration

The time discretization of the finite volume discretization of the ALE Euler equa-
tions, i.e. Eq. (2.19), here introduced. A generic Backward Differences Formulæ
scheme [106] is adopted to approximate the derivatives with respect to the time, e.g.
dy/dt ≃ ∆t−1

∑p
q=−1 aqyn−q is an approximation of order p+1 of accuracy and aq

are the p+1 coefficients of the BDF [106]. The same scheme can be recasted in an

incremental fashion, i.e. dy/dt ≃ ∆t−1
∑p−1

q=−1 αq∆yn−q, with ∆yn = yn − yn−1 and

αq =
∑q

d=−1 ad. Eq. (2.19) is therefore rearranged as





p∑

q=−1

aqV n−q
i un−q

i =
[ ∑

k∈Ki,6=

Φ(ui, uk, νik, η̂ik, ηik)n+1

+Φ∂(ui, νi, ξ̂i, ξi)
n+1
]

∆t, i ∈ K
p−1∑

q=−1

αq∆V n−q
ik = νn+1

ik ∆t, k ∈ Ki, 6=

p−1∑

q=−1

αq∆V n−q
ℓ,∂ = νn+1

ℓ ∆t, ℓ ∈ K∂

(2.32)

where Φ( · , · )n+1 = Φ( ·
n+1, ·

n+1). In system (2.32) all quantities are assumed to be

known at time level n and all grid-dependent quantities, such as Vi, η̂ik, ηik, ξ̂i and
ξi, are computed from the known positions of the grid nodes at time level n + 1. The
nonlinear system for the fluid variables u at time level n + 1 is solved here by means
of a modified Newton method, in which the Jacobian of the integrated flux function is
approximated by that of the first-order scheme, and by resorting to a dual time-stepping
technique [190], to improve the conditioning number of the Jacobian matrix.

The Geometric Conservation Law (2.17) is made discrete using the same BDF scheme
adopted to discretize the governing equation, i.e.

p−1∑

q=−1

αq

∆V n−q
i

∆t
= νn+1

i +
∑

k∈Ki,6=

νn+1
ik . (2.33)

Condition (2.33) is usually referred to as the Discrete Geometric Conservation Law
(DGCL) [54].

2.4.1 Interface Velocity Consistency Condition

The GCL compliant interface velocity νn+1
ik is computed using Eq. (2.32) from the values

of ∆V n+1
ik that represent the area swept by the interface ∂Cik(t) during the time step

from tn to tn+1, namely

∆V n+1
ik =

∫ tn+1

tn

∫

∂Cik(t)

v(t) ·n(t).

By noticing that the interface ∂Cik, is the union of straight sides ∂Cik,e, see fig. 2.5(a),
and assuming a linear dependence of the node position on time in [tn, tn+1), a simple
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(d) Swept area and boundary metrics

Fig. 2.5: Area swept by the domain and boundary interface ∂Cik,e and ∂Ci,e, respectively,
during the interval [tn, tn+1)

computation gives

∆V n+1
ik =

∑

e∈Ei∩Ek

(
xn+1

e − xn+1
ik

)
− (xn

e − xn
ik)

4
·

(
ηn+1

ik,e + ηn
ik,e

)
,

where xe and xik are the barycenter of the element e and of the edge i-k in fig. 2.5(b),
respectively, and where ηik,e is the contribution to ηik pertaining to element e.

Similarly, see fig. 2.5(c), the integrated velocities of the boundary interfaces can be
computed from the values of ∆V n+1

i,∂ , namely

∆V n+1
i,∂ =

∑

e∈E∂
i

∩∂Ω

(
xn+1

i − xn+1
e

)
− (xn

i − xn
e )

4
·
(
ξn+1

i,e + ξn
i,e

)
,

where xe is the center of mass of the boundary element e in fig. 2.5(d), respectively,
and where ηik,e is the contribution to ηik pertaining to element e.

2.4.2 Iterative Implicit Solver

The governing equation for the steady state are solved adopting an implicit pseudo-time
stepping scheme.
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Due to the non-linear nature of the equations an iterative scheme is adopted which
require the solution of the linear system. The matrix so generated by the finite-volume
discretization of the equations is poorly diagonally dominant, this is caused by the elliptic-
hyperbolic nature of the equations and the second-order space accuracy and poses several
problems in solving the linear system. To improve the diagonal dominance of the system
matrix a defect-correction method is used [101], i.e. the exact Jacobian of the numerical
fluxes is with an approximated one, and a fictitious time step is introduced [190]. When
the convergence is achieved, or when large time steps are used, the scheme is indeed an
inexact Newton method with a linear convergence rate.

In section 2.4.3 the linear system solver is introduced. An iterative a symmetric
Gauss-Seidel method [36] is used to produce the solution at each pseudo time step. The
SGS method has been preferred over more standard iterative or direct sparse scheme
because it increases the overall efficiency of the method by balancing the accuracy of
the solution of the linear system with the accuracy of the solution of the non linear
equations.

Without loosing generality, system (2.32) can be recasted as

dVu

dt
= −q (2.34)

where u = [u1, u2, . . . , uNV ]T is the solution vector, V = diag (V1I4, . . . , VNV I4) is the
diagonal matrix built from the cells area and q = [q1, q2, . . . , qNV ]T is the residual
vector. The lower-case bold notation is used in the following sections to indicate column
vectors of size 4NV , while upper case bold letters for matrices of size 4NV × 4NV . The
i-th row of q is computed as the right hand side of the first equation of system (2.32),
i.e.

qi = −Φ∂(ui, νi, ξ̂i, ξi)
n+1 −

∑

k∈Ki,6=

Φ(ui, uk, νik, η̂ik, ηik)n+1.

In the steady case system (2.32) can be reduced to q = 0, that ideally could be resolved
simply adopting a Newton-Raphson scheme. However, due to the non-linearity of the
equations, such iterative methods generally fail to converge unless the initial guess is
sufficiently close to the final solution. It is common practice to include a the pseudo-
time derivative in the flow-equations and use the free-stream as a first guess. The
solution that satisfies q(u) = 0 is therefore obtained as the steady state marching in the
pseudo-time step, i.e.

V
um+1 − um

∆τ
= −q(um+1). (2.35)

The right hand side of Eq. (2.35) is then approximated by a first-order Taylor series
expansion, i.e. [

V

∆τ
+

∂q̃

∂u

]m

(um+1 − um) = −qm. (2.36)

where qm = q(um). As common, in Eq. (2.36) the exact Jacobian of q has been
replaced with an approximated on, i.e. q̃, to increase the diagonally dominance of
the linear system [101]. The convergence of the scheme is therefore more robust but
unfortunately the convergence rate of an inexact Newton method is not quadratic, even
when ∆τ goes to infinity [12, 126, 189].
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Local time stepping

The stability condition for linear hyperbolic equations states that the Courant-Friedrichs-
Lewy number must not be greater than one, i.e. Co ≤ 1 [113]. In the present work
a local time-stepping technique is obtained to choose the local pseudo-time step such
that the CFL condition is locally satisfied at every step, i.e.

∆τi =
Vi Co

λmax(ui, ξi, νi) +
∑

k∈Ki,6=
λmax(ui, uk,ηik, νik)

,

where λmax is the largest of eigenvalues taken as positive [71]. As the solution um

approaches the exact one, the CFL condition can be relaxed and the Courant number
can be chosen as greater than one. To increase the convergence speed, the Co number
is updated as

Com = min

(
max

[
γ

L2(qm−2)

L2(qm−1)
, 1

]
Com−1, Comax

)
,

where L2 is a discrete norm of the residual, γ = 0.8 ÷ 1 is the increase ratio and Comax

is the maximum allowed Courant number.
In steady state computations, to increase the robustness of the method, it is common

practice to first obtain a first-order accurate solution which is then used as a starting
guess to obtain a quasi second-order one. In the first-order computation the Roe fluxes
are adopted and, due to the highly diffusive nature of the scheme, virtually no upper
bound to the Co is required. The quasi second-order solution u is computed resorting to
the flux-limiter approach and the maximum value of Co is chosen in the range 1 ÷ 103.

2.4.3 Iterative solution of the linear system of equations

At each pseudo time-step τm, Eq. (2.36) implies the solution of a linear system Mz = qm

where M is the linear system matrix of dimension 4NV × 4NV , i.e.

M =

[
V

∆τ
+

∂q̃

∂u

]m

.

The solution is therefore updated as um+1 = um + z. Due to the finite volume
discretization of the governing equation, the matrix M is sparse and the solution of
the linear system can become prohibitive as the number of nodes grows. Due to the
non-linear nature of Eq. (2.36), however, both the system matrix and the residual qm

changes at every pseudo-time step, i.e. at every non-linear iteration. As it is common
practice, in the present work Eq. (2.36) is solved using an iterative scheme without
seeking full convergence and performing only a “suitable” number of so called linear
iterations [189, 190, 202].

The exact solution of Eq. (2.36) is replaced with an approximated one, i.e. zk, that
can be computed with the following three-step procedure

qlin = qm − Mzk, ∆z = P−1
M

qlin, and zk+1 = zk + ∆z (2.37)

where qlin is the residual of the linear system and PM is the preconditioner of M. The
procedure of Eq. (2.37) is started choosing z0 = um − um−1.
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As already introduced, in the present work a Symmetric Gauss-Seidel scheme is
adopted in which the system matrix is decomposed as M = L + D + U, where L, U
and D are the strictly lower, the strictly upper and the diagonal parts of the matrix,
respectively. It can be shown [36] that the preconditioner corresponding to the SGS
scheme is PM = (D + L)D−1(D + U).

Eq. (2.37) represent a linear iteration of the SGS scheme and it is repeated until the
ratio between the norm of the linear residual and the norm of the non-linear residual is
smaller below a given threshold, i.e.

L2(qlin
k) ≤ 0.1 L2(qm)

A drop of a factor 10 in the linear residual has been shown to be a reasonable compromise
between computational costs and convergence rate. [36] Very low values of tolerance are
not useful since no improvements in the convergence rate can be expected due to the
use of an approximate Jacobian.

The efficiency of any iterative solver depends on “how well” the preconditioner ap-
proximate the system matrix and how easily can it be inverted. If the first requirement
is not sufficiently satisfied the convergence can be poor and in some cases it can stall
but usually the more effective the preconditioner, the more expensive its application is.
As usual a trade-off between effectiveness and cost is necessary.

Eq. (2.37) is solved by computing the matrix-vector products Mzk and applying the
preconditioner to qlin

k. Both tasks may be efficiently carried out by taking into account
the topology of the approximate Jacobian as described in the next section.

The approximate Jacobian

The Jacobian ∂q̃/∂u of Eq. (2.36) is approximate, in that only the first-order upwind
term of Eq. (2.24) is considered and its derivation is not computed exactly, i.e. Φ̃ik = ΦI

ik

and ∂Φ̃ik/∂ui ≈ ∂Φik/∂ui. Since the adopted first-order fluxes depend only on the
solution on the nodes i and k, i.e. no extended structure is necessary, the approximated
Jacobian can be constructed simply looping over the edges as it is done for the residual.

Using the upper-lower decomposition for the system matrix adopted in the SGS
scheme, the contribution of each edge to M is

[ii] Di = Di +
∂Φ̃ik

∂ui

, [ik] Lik =
∂Φ̃ik

∂uk

,

[ki] Uki = −∂Φ̃ik

∂ui

, [kk] Dk = Dk − ∂Φ̃ik

∂uk

,

The off-diagonal terms Lik and Uki do not need to be accumulated and the assembly of
the diagonal terms should be completed with the boundary flux Jacobian and the area
terms of Eq. (2.36), which have been neglected in above.

The numerical flux Jacobian for the Roe flux in Eq. (2.21) are obtained by taking
the Roe matrix as a constant during the differentiation, which gives

∂Φ̃ik

∂ui

=
A(ui) + |Ã(ui, uk)|

2
and

∂Φ̃ik

∂uk

=
A(uk) − |Ã(ui, uk)|

2
. (2.38)

The numerical boundary flux in Eq. (2.16) is differentiated considering the chain rule,
i.e.

∂Φ̃∂
i

∂ui

= A
(
u∂ (ui)

)∂u∂

∂ui
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where ∂u∂ /∂ui is computed exactly from the definition given by Eq. (2.26) and (2.27).

It is worth to note that the numerical dissipation and the pseudo-time step have a
key role in the solution of the linear system. The complete expression of the diagonal
terms of M, including the time step and the boundary contributions, is

Di =
Vi

∆τi

I4 +
∂Φ̃∂

i

∂ui

+
∑

k∈Ki,6=

∂Φ̃ik

∂ui

.

For an internal node, taking into account Eq. (2.38) and the fact that the control volume
is closed, the above equation reduces to

Di =
Vi

∆τi

I4 +
1

2

∑

k∈Ki,6=

|Ã(ui, uk)|.

The above equation highlights that both the numerical dissipation and the pseudo time-
step contribute to the diagonal dominance of the matrix. A small value of the local
Courant number together with a large dissipation are therefore beneficial to increase
the convergence properties of the scheme. The artificial dissipation introduced in the
scheme depends directly on the (entropy fixed) eigenvalues and on ηik, therefore a small
mesh size may cause the diagonal dominance of the matrix to reduce at the point where
the solution stalls. Thus if the mesh size is reduced it is generally necessary to lower the
overall value the Courant number, which must be updated more slowly.

Matrix-vector products

The computation of the Matrix-vector products Mz is necessary in the solving procedure
of Eq. (2.37). The i-th component of the resulting vector is given by

Mz|i =


 Vi

∆τi

I4 +
∂Φ̃∂

i

∂ui

+
∑

k∈Ki,6=

∂Φ̃ik

∂ui


 zi +

∑

k∈Ki,6=

∂Φ̃ik

∂uk

zk,

where the term inside the square bracket is equal to Di. The first two terms depends
only on the solution ui and can be efficiently computed. The computation of the third
and last term however require one loop on the nodes i ∈ K and another loop on the
nodes k ∈ Ki, 6=, which can be time consuming. A very efficient way to compute this
terms can be derived if the edge-based data structure is used. Some algebra reveals that,
neglecting the time-step contribution and the boundary term, the matrix-vector product
can be assembled as

Mz|i = Mz|i +
∂Φ̃ik

∂ui

zi +
∂Φ̃ik

∂uk

zk,

Mz|k = Mz|k − ∂Φ̃ik

∂ui

zi − ∂Φ̃ik

∂uk

zk,

(2.39)

which involve a loop on the edges ik.
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Symmetric Gauss-Seidel Preconditioning

The inversion of the SGS preconditioner of Eq. (2.37) is performed sweeping twice on
the nodes of the matrix, back and forth. First the lower-triangular matrix (D + L) is
inverted with a Gauss-Seidel algorithm, i.e. executing a forward sweep on the nodes of
K as

∆z∗ = D−1
i


qlini

−
∑

k∈Ki,<

Lik∆z∗
k


 , i ∈ K.

A second (backward) sweep on the nodes of K is performed to invert the upper-triangular
matrix (I4 + D−1U), i.e.

∆zi = ∆z∗
i − D−1

i

∑

k∈Ki,>

Uik∆zk, i ∈ {K, backward}.

Ki,< and Ki,> are respectively the lower and upper subsets of Ki, 6=, i.e.

Ki,< = {k ∈ Ki, 6= : k < i} and Ki,> = {k ∈ Ki, 6= : k > i}.

The preparatory work for the inversion of the preconditioner is limited to the inversion
of the diagonal 4 × 4 matrix Di, which is computed exactly. There is no need to store
both M and PM, but it is enough to store only D, L, U, and D−1 at each non-linear
iteration, thus halving the required memory.

2.4.4 Implicit solver for unsteady equations

The unsteady Euler ALE equations are solved resorting to the pseudo-time stepping
approach, similarly to the steady case described in section 2.4.2. un+1 is sought as the
steady state solution in the fictitious time τ of a modified version of Eq. (2.35), i.e.

Vn+1

[
a−1

∆t
+

1

∆τ

]
∆um+1 = −a−1

Vn+1um

∆t
−

p∑

q=−1

aq

Vn−qun−q

∆t
− q(um).

When the steady state is obtained, i.e. ∆um+1 = 0 and um = un+1, the above equation
reduces to

p∑

q=−1

aq

Vn−qun−q

∆t
+ q(un+1) = 0,

which is the discrete version of Eq. (2.34). Again a local time-stepping technique is
adopted to choose an appropriate value of ∆τ . Differently from the steady state com-
putation, however, the diagonally dominance of the system matrix is already increased
by the a−1/∆t term. This and the fact that, at every time step, the initial solution is
relatively close to the final one allows using larger values of γ and maximum Courant
number.

2.5 Test cases for steady problems

The edge-based finite volume solver is tested on standard fluid dynamic and aerodynamic
test cases in order to assess the properties of the numerical scheme, i.e. steady flow
past a transonic airfoil, steady low Mach number flow around a cylinder and the steady
supersonic flow facing a positive slope.
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(a) Computational Grid (b) Grid Zoom

(c) Mach number contour (d) Entropy contour

Fig. 2.6: RAE 2822 test case obtained at M∞ = 0.75 and α = 3◦. (a) Computational
grid. (b) Computational grid close-up. (c) Mach number contour lines. (d) Entropy
variation contour lines.

2.5.1 RAE 2822

The edge-based finite volume solver is tested on the popular RAE-2822 aerodynamic test
case. The computational grid shown in fig. 2.6(a) and 2.6(b) is made of 11451 triangles
and 5942 nodes and the external radius is located at 20 chords of distance from the nose
of the airfoil. The Mach number of the free flow is M∞ = 0.75 and the angle of attack
is α = 3◦. The transonic nature of the flow field causes the generation of a compression
shock on the upper side of the airfoil as shown by the Mach number contour lines of
fig. 2.6(c). The entropy contour lines of fig. 2.6(d) show the abrupt variation across the
shock as well as the diffusion after the trailing edge, where the growth in the size of the
elements causes the scheme to be more dissipative.

In fig. 2.7(a) the pressure coefficient, defined as

Cp =
P − P∞
1
2 ρ∞v2

∞
,
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Fig. 2.7: (a) Comparison between the solution obtained with the SGS scheme with the
reference data by Vivian [79] in terms of pressure coefficient. (b) L2 Norm of the residual
as a function of the computational time for three different linear system solvers: SGS,
GMRES (Sparsekit) and LU factorization (UMFPACK).
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Fig. 2.8: RAE 2822 test case for different computational grids. Coarse: 2798 nodes, 5429
elements. Medium 10820 nodes, 21306 elements. Fine 42464 nodes 84260 elements.
(a) Pressure coefficient on the airfoil. (b) L2 Norm of the residual as a function of the
non-linear iterations.



38 2.5. TEST CASES FOR STEADY PROBLEMS

(a) Mach, coarse grid (b) Entropy, coarse grid

(c) Mach, medium grid (d) Entropy, medium grid

(e) Mach, fine grid (f) Entropy, fine grid

Fig. 2.9: Mach number and entropy contours on different grids for the RAE 2822 test
case at M∞ = 0.75 and α = 1◦. Coarse: 2798 nodes, 5429 elements. Medium 10820
nodes, 21306 elements. Fine 42464 nodes 84260 elements.
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is compared a reference solution computed with the Jameson scheme [79]. The agree-
ment between the two is fairly good, even though the solution computed with the
edge-based solver is slightly more dissipative across the shock. In fig. 2.7(b) the ratio
between the L2 norm of the residual and the one computed at the first iteration is
shown as a function of the computational time. Three different linear system solver
have been adopted: symmetric Gauss-Seidel, a GMRES solver (Sparsekit) and a LU
factorization based solver (UMFPACK). The present implementation of the SGS scheme
is approximately twice as fast as Sparsekit and four times as fast as UMFPACK1.

In fig. 2.8(a) pressure coefficient curves for the RAE 2822 test case obtained with
progressively meshes are shown. Three grids have been adopted a coarse one, with 2798
nodes and 5429 elements, an intermediate one, with 10820 nodes and 21306 elements
and a fine one, with 42464 nodes 84260 elements. In fig. 2.8(b) the L2 norm of the
residual at every non-linear iteration is plotted for every mesh. Doubling the number
of elements doubles the iterations required to achieve convergence. The computed
solutions in terms of Mach number contour lines are shown in fig. 2.9(a), 2.9(c) and
2.9(a). Increasing the grid resolution allows to better capture the shock, that appears
sharper, and the airfoil wake that is caused by the non isoentropic recompression that
occurs on the upper side. In fig. 2.9(b), 2.9(d) and 2.9(b) the contour lines for the
entropy, s, are show. The diffusive behavior of the scheme, highlighted in the wake
region, is reduced increasing the number of nodes. Moreover, in fig. 2.9(b) the presence
of a numerical boundary layer is revealed by a significant increase in entropy in the region
close to the nose of the airfoil. The size and intensity of the boundary layer is reduced
in the finer grids and it is not visible with the given number of contour lines.

2.5.2 2D cylinder

The second test case is the incompressible steady flow around a circular cylinder section
shown in fig. 2.10. The numerical solution has been computed at a free stream Mach
number of 0.3, which is close to the incompressible limit. The analytical (exact) solution
for the incompressible steady flow is

Cinc
p = 2

a2

R2

[
cos2 θ − sin2 θ − a2

8R2

]
, (2.40)

where a is the cylinder radius, R = |x| and θ = tan−1(y/x). Eq. 2.40 is valid only in
the incompressible limit, therefore the pressure coefficient has been corrected with the
Karman-Tsien formula, namely

Cp(M) =
Cinc

p√
1 − M2 +

Cinc
p

2
M2

1+
√

1−M2

,

which is considered to give reasonable results for values of the free-stream Mach number
lower than 0.5 ÷ 0.6.

A comparison between the solution obtained with the finite volume solver and the
analytical one is shown in fig. 2.10, the computed solution agrees fairly well with the
reference solution. Fig. 2.10(b) shows the Cp curves along the surface of the cylinder.
An error of roughly 5% is present for x/a = 0 and a slight non-symmetry in the solution

1The computations have been performed on a Intel Xeon X5650 at 2.67GHz machine.



40 2.5. TEST CASES FOR STEADY PROBLEMS

FLOWMESH

Exact

(a) Cp contour lines

-0.8 -0.4 0 0.4 0.8

-3

-2

-1

0

1

FLOWMESH
Exact

C
p

x/a

(b) Cp on the cylinder

Fig. 2.10: Comparison between the solution obtained with the finite volume solver and
the analytical one for the case of a quasi-incompressible flow across a 2D cylinder. The
numerical solution has been computed at a free stream Mach number of 0.3 and the
analytical one has been corrected using the Karman-Tsien formula.
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is visible between the lower and the upper surface caused by a small asymmetries in the
computational grid.

2.5.3 Supersonic wedge

The last test case is the case of a supersonic flow encountering a positive slope schemat-
ically represented in fig. 2.11(a). An analytical (exact) solution can be computed for
small values of the deflection angle δ, which correspond to an shock developing from the
initial point of the slope with an angle σ > δ. Since the shock is oblique the Mach num-
ber in the region after the shock, M2, is still supersonic. The values for the geometry
of the problem and its analytic solution are gathered in table 2.12.

In fig. 2.13 the pressure coefficient contour lines obtained with increasingly finer
meshes of uniformly distributed triangles are reported. The first, coarsest, grid has 658
nodes, 1222 elements and an average size of h = 0.25, where h is the smaller edge of a
triangle. The second grid has 2530 nodes, 4874 elements and h = 0.125. The third grid
is made of 9839 nodes and 19309 elements with h = 0.0625. The finer grid has 38827
nodes and 76919 elements, with h = 0.03125.

The L2 norm of the error between the computed solution and the exact one is
shown in fig. 2.11(b). The grid convergence curve show a first order behavior, which is
agreement with the adopted scheme which is second order away form the discontinuities
but it is only globally first-order when shocks are present.

2.6 ALE scheme for adaptive grids

In the present section, the implicit finite-volume scheme introduced in section 2.4 is
extended to the case of adaptive grids. The adaptation strategy is based only on local
modifications of the topology of the mesh, that is edge-swapping, node insertion and
node deletion, and displacement of nodes, e.g. mesh deformation and regularization.
When no changes in the topology occurs, i.e. adaptivity is only limited to mesh move-
ment and distortion, the change in position and shape of the finite volumes is easily taken
into account by the ALE formulation as shown in section 2.4. However the modification
in the shape of the volumes caused by the application of adaptation techniques, e.g. the
swapping of an edge shown in fig. 2.14, have to be treated separately. If the variation
of area is not correctly taken into account when projecting the solution onto the new
grid, conservation of mass, momentum and total energy is to be explicitly imposed and
possibly bounds on the total variation of the solutions are to be enforced [125, 120].
Moreover, if a p-step time integration scheme is adopted, such a conservative inter-
polation procedure must be repeated p times and thus additional difficulties may arise
when dealing with multi-step high-order integration schemes. The reader is referred to
references [83, 192] for a detailed discussion of this topic.

In principle, due to the modification of the grid connectivity resulting from the ap-
plication of the adaptation operators, the solution at time tn+1 is to be interpolated
over the new grid. In the present work a different strategy is proposed to avoid the
introduction of any explicit interpolation step by exploiting the ALE approach, as it is
commonly done when only mesh deformation is used. Admittedly, the application of ALE
mapping is equivalent to an interpolation step; however, its application does not require
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(a) Mesh R-1 (b) Mesh R-2

(c) Mesh R-3 (d) Mesh R-4

Fig. 2.13: Mach number contours on different grids for the oblique shock test case at
M1 = 2 and δ = 18.52◦. Mesh R-1: 658 nodes, 1222 elements, h = 0.25. Mesh
R-2 2530 nodes, 4874 elements, h = 0.125. Mesh R-3 9839 nodes, 19309 elements,
h = 0.0625. Mesh R-4 38827 nodes, 76919 elements, h = 0.03125.
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Fig. 2.14: Initial and final configuration of the mesh surrounding a swapped edge. a)
Initial configuration at time level tn. b) Final configuration at time level tn+1.

any special treatment to ensure appropriate accuracy, conservativeness and preservation
of function signs.

The key idea is to give an interpretation of the changes in the topology that happen
in the time lapse from tn and tn+1 as continuous deformation of the finite volumes
performed within the time interval [tn, tn+1), e.g. sections 2.6.1, 2.6.3 and 2.6.5. Such
approach is based on the idea of splitting the area swept by the interfaces into two
separate contributions: the deformation one, namely D, arising from the continuous
(in time) mesh movement and distortion and the adaptation one, namely A, which is
essentially correction term. As result, the total area swept by the interface ∂Cik during
in the time interval is ∆V n+1

ik = ∆An+1
ik + ∆Dn+1

ik .
Such an interpretation reveals beneficial in many respects. First, it is no longer

necessary to explicitly interpolate the old solution over the new grid, therefore the con-
servation of the flow variables is guaranteed by construction. Moreover, since cross-grid
interpolation is avoided, the implementation of multi-step high-order schemes for time
integration, e.g. BDF schemes, is straightforward and it does not require to resort to
cross-grid interpolation [83, 192].

In section 2.6.1 the edge-swapping is first described, in section 2.6.2 the overall ALE
scheme for grids with variable connectivity is outlined, in section 2.6.3 and 2.6.4 domain
and boundary nodes insertion are depicted, section 2.6.5 and 2.6.6 illustrate the node
deletion for domain and boundary nodes respectively and in section 2.6.7 the overall
scheme is outlined. In the next sections the adaptation techniques are described putting
the emphasis on the modifications to the ALE scheme that are necessary to avoid the
grid interpolation step. Chapter 3 describes how the same techniques are put together to
perform the adaptation of the grid. Although chapter 3 and the present section focus on
different aspects of the grid adaptation strategy, some repetitions may still be present.

2.6.1 Edge-Swapping

We start by commenting on fig. 2.14, which shows how the swap of edge j-ℓ into edge
i-k affects the shape of the finite volumes Ci and Cj . It can be observed that the
modification of the node to node connectivity is reflected on a modification of the cells
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Fig. 2.15: Computation of the interface velocities in case of edge-swapping. a) Initial
configuration at time tn which correspond to the non-dimensional time τ = 0. b) Col-
lapse of the quadrangle i, j, k, ℓ on the node k. c) Change of topology of the quadrangle
at an non-dimensional time 1

2 . d) Expansion of the quadrangle from the node k. e)
Final configuration at the non-dimensional time τ = 1.
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shape to comply with the definition of dual mesh given in section 2.3.3. Indeed due to
the removal of the edge j-ℓ, the cells Cj and Cℓ no longer share the points included in
∂Cjℓ and, due to the insertion of the edge i-k, the interface ∂Cik separates now the cell
Ci from Ck.

The idea is to interpret the change of area associated with the edge swap as a
special case of grid deformation. Indeed, difficulties arise in the computation of areas
swept by the interfaces since no change of the position of any grid node is related to the
variation of cell areas caused by edge swapping, as shown by fig. 2.14. To overcome such
difficulties a three-steps technique is introduced, composed by a node collapse phase,
a swap phase and an expansion phase. Fig. 2.15 illustrates how the swapping of the
edge j − ℓ can be viewed as a continuous modification of the finite volumes Ci, Cj , Ck

and Cℓ taking place during the time interval [tn, tn+1), described as a function of the
non-dimensional time τ = (t − tn)/(tn+1 − tn).

τ = 0: The initial condition is sketched in fig. 2.15(a) showing the two cells Ci and Cj.

0 < τ < 1
2 : The quadrilateral i-k-j-ℓ collapses, as shown in fig. 2.15(b), giving as a

result a area swept by the interfaces of the cells Ci, Cj and Cℓ thus an interface
velocity for the node-pairs connected with the nodes i, j and ℓ.

τ = 1
2 : At this time the four grid nodes share the same position, as shown in fig. 2.15(c).
The edge j-ℓ is swapped with the edge i-k. No area is swept by any interface during
the change of connectivity since all the interfaces that are involved in this change
of connectivity, i.e. those located inside the quadrangle i-k-j-ℓ, have null area.

1
2 < τ < 1: During this step, shown in fig. 2.15(d), the expansion phase takes place and

the nodes i, j and ℓ are moved back to the original positions but without the edge
j-ℓ. Again an area is swept by the interfaces of the cells Ci, Cj and Cℓ.

τ = 1: The final configuration is reached, as shown in fig. 2.15(e).

In fig. 2.16 is shown the area swept by each cell interface ∆A. Fig. 2.16(a) shows
the areas ∆Aiℓ and ∆Aij swept in the time interval 0 < τ < 1

2 ; the area ∆Ajℓ swept
in the step 0 < τ < 1

2 is shown in fig. 2.16(b); fig. 2.16(c) highlights the area ∆Aik

swept in the interval 1
2 < τ < 1; the area ∆Ajk swept for 1

2 < τ < 1 is shown in
fig. 2.16(d). Both the collapse, i.e. τ ∈ (0, 1

2 ), and the expansion, i.e. τ ∈ (1
2 , 1),

phases are simply grid deformation steps, thus the swept areas can be easily computed
following the approach already presented in section 2.4. On the contrary, the actual swap
operation at time τ = 1

2 has no effects in terms of interface velocities. Moreover, since
the overall area swept by each interface is given by the sum of the ∆A contributions of
the collapse and the explosion steps, thus for the interfaces located outside the i-k-j-ℓ
quadrangle the total swept area is null and such is the corresponding interface velocity.

The choice of the collapse point is arbitrary and for all possible choices the DGCL
condition (2.33) is fulfilled. However, the farthest the collapse node is located from
the swapped edge, the greater the value of the interface velocities are. Therefore,
a bad choice of the collapse point location will introduce larger perturbations in the
governing equations. So, even thought any combination of subsequent cell deformations
is acceptable, provided that the DGCL is always satisfied, the one that minimize the
swept areas should be preferred.
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Fig. 2.16: Areas swept during edge swapping. a,b) Area swept by the interfaces ∂Cij,
∂Ciℓ and ∂Cjℓ during the time interval [0, 1

2 ). c,d) Area swept by the interfaces ∂Cik,
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2 , 1).
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Edge insertion

When an edge i-k is inserted into a mesh a new interface between two finite volumes
is created to comply with the dual mesh definition given in section 2.3.3, e.g. the i-k
edge of fig. 2.15. It is trivial to say that the metrics of the interface ∂Cik for tm ≤ tn

are identically equal to zero, e.g. ηm
ik = 0 and ∆V m

ik = 0, while the metrics at the time
tn+1 are given by the current mesh configuration. Therefore the numerical fluxes for the
implicit scheme are evaluated at tn+1 as normal, namely

Φn+1
ik = Φ(un+1

i , un+1
k , νn+1

ik , η̂n+1
ik , ηn+1

ik ),

where νn+1
ik is computed according to Eq. (2.32), with ∆An+1

ik calculated as shown
above.

Edge deletion

When an edge j-ℓ is removed from the mesh, the corresponding portion of the fi-
nite volume interface ∂Cik is deleted to comply with the dual mesh definition given
in section 2.3.3, e.g. the j-ℓ edge of fig. 2.15. Thus at the time tm ≥ tn+1 the in-
terface has a zero length, i.e. ηm

ik = 0, and the normal unit vector can be taken as
η̂

m
jℓ = limt→tn+1 η̂jℓ(t) which is different from zero, since |η̂jℓ(t)| 6= 0, ∀t.

Assuming for simplicity that the mesh is fixed, i.e. D = 0, and that no other topology
changes occurs, then the integrated interface velocity is given by the correction term A
only. According to Eq. (2.32), νn+1

jℓ = α−1∆An+1
jℓ /∆t, which is generally different from

zero even if ηn+1
jℓ = 0. More generally, for a p + 1 accurate BDF scheme, the interface

velocity of an edge that has been removed during the adaptation phase between the
time level tn and tn+1 will be different from zero for the subsequent p timesteps, namely
νm

jℓ 6= 0 with m ≤ n + p + 1.
Therefore the numerical flux associated to a deleted edge is

Φn+1
jℓ = Φ(un+1

j , un+1
ℓ , νn+1

jℓ , η̂n+1
jℓ , 0),

Evaluating the first-order upwind fluxes of Eq. (2.21) with ηn+1
jℓ = 0 and η̂n+1

jℓ = η̂
n
jℓ

one obtains

ΦI,n+1
jℓ = νn+1

jℓ

un+1
j + un+1

ℓ

2
−

|νn+1
jℓ |
2

(un+1
ℓ − un+1

j ).

Indeed the average of the Euler fluxes is multiplied by ηn+1
jℓ , which is zero, and in this

case A does not depend on ũ and η̂jℓ since

A(ũ, η̂n
jℓ, 0, νn+1

jℓ ) = Rn+1
jℓ (νn+1

jℓ I4)Ln+1
jℓ ,

= νn+1
jℓ I4.

(2.41)

Similarly, when the high-resolution fluxes of Eq. (2.24) are evaluated at η = 0, the Euler
contribution is identically null and the fluxes reduce to

ΦHR,n+1
jℓ = νn+1

jℓ

un+1
j − un+1

ℓ

2
+

|νn+1
jℓ |
2

(w̃ − un+1
ℓ − un+1

j ),
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Fig. 2.17: Mapping function between two circles of radius 1 and R. a) Mapping function.
b) Area swept by the interface of arc θ from the time t to T .

where the limited jump w̃ is computed with the Eq. (2.25) and (2.3.1) by setting L̃ = I4

and λ̃(h) = νn+1
jℓ . It must be noted, that according to Eq. (2.41), no ad-hoc procedure

is necessary for the treatment of removed edges in terms of evaluation of the numerical
fluxes, which is performed with the standard routines for ALE Euler fluxes. However
an alternative entropy-fix procedure is necessary, since the definition of the relative
directional Mach number of Eq. 2.23 is singular for ηik = 0, namely

δ̃ =





0.2
(
M(ũ, η̂ik, ηik, νik) + 1

)
ηik if ηik > 0,

0.2 |νik| if ηik = 0,

where δ̃ is the threshold of Eq. (2.22).

The numerical flux corresponding to a removed edge is therefore given by the ALE
contribution to the fluxes only, which arises from the balance of the conservative variables
due to the mesh movement and the topology modification. In order to preserve the
conservativity of the scheme, the contribution to the fluxes associated to a removed
edge can be dropped only when the corresponding interface velocity is identically null
and this in turns depends on the adopted time integration scheme. For example the
contribution of an edge j-ℓ removed during the adaptation step occurring in the time
lapse between tn and tn+1 can be dropped when νm

jℓ = 0, that for a BDF scheme of
order p + 1 correspond to the condition m > n + p + 1.

Such remarkable result is a direct consequence of the differential nature of the GCL
constraint, i.e. Eq. (2.17) and (2.18), and does not depend directly on the adopted
integration scheme. Indeed it is also valid in the time-continuous framework, as it will
be shown in the following example. Let us take a circular control volume CX of radius
1 and a circular control volume Cx of radius R, as shown in fig. 2.17. The mapping
between the points of the reference configuration and the current one is x = ψ(X , t) =
R(t)X, i.e. Cx is a obtained by shrinking/enlarging CX . The inverse transformation
is easily obtained as X = Ψ(x, t) = x/R(t). The deformation gradient is given by
F (X , t) = ∇Xψ(X, t) and the Jacobian of the mapping is J(X, t) = detF = R2(t).
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The velocity of deformation of the element is therefore given by

v(X, t) =
dψ

dt
=

dR

dt
X or v(x, t) = v(Ψ(x, t), t) =

dR

dt

x

R
.

The integrated interface velocity for a boundary portion ∂Cx(t) is

ν(t) =

∫

∂Cx(t)

v(x, t) ·n(x, t) ds

=

∫

∂Cx(t)

1

R

dR

dt
(x ·n) ds.

(2.42)

For a circumference the product x ·n is equal to R since x is always locally aligned with
n. In a polar coordinate system one obtain ds = R dRdϑ, therefore Eq. (2.42) becomes

ν(t) =

∫ θ

0

R
dR

dt
dϑ = θR

dR

dt
(2.43)

where θ is the angle span of the arc corresponding to ∂Cx.

From Eq. (2.43) the value of ν depends on both the values of R and dR/dt. If, for
example, the radius is progressively reduced until a null area is obtained at the time T ,
the value of ν(T ) is not necessarily equal to zero but depends on how quickly R goes
to zero with respect to dR/dt as t approaches T . If the position of the nodes varies
linearly in time, i.e. R = R0(T − t)/T with R0 the initial radius, the Eq. (2.43) becomes
ν(t) = −θR2

0/T 2 (1−t) which gives ν(T ) = 0. However if ν(T ) is directly approximated
using a backward Euler scheme, as done in Eq. (2.32), one obtains ν = −θR2

0/(2T ),
where θR2

0/2 is the area swept by the interface in the interval [0, T ). Eq. (2.43) therefore
becomes

R
dR

dt
= −R2

0

2T
, i.e. R(t) = R0

√
1 − t

T
.

When adopting a BDF scheme, for which the backward Euler is a special case, the
underlying hypothesis is that during every timestep Vjℓ(t) depends linearly on t. The
motion of the points of the interface, however, is not linear in time but it depends on
the shape of the interface.

2.6.2 ALE scheme with variable connectivity

When using grids undergoing edge-swapping the local connectivity varies with the time,
i.e. Ki, 6= = Ki, 6=(t), while the total number of points K does not change. If the ALE
interpretation of the edge-swapping described in section 2.6.1 is adopted, Eq. (2.32) can
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be written for grids with variable topology and constant number of nodes, namely





p∑

q=−1

aqV n−q
i un−q

i =
[
Φ∂(ui, νi, ξ̂i, ξi)

n+1+
∑

k∈Kn+1
i,6=

Φ(ui, uk, νik, η̂ik, ηik)n+1

+
∑

k∈K[n−p,n+1)

i,6=

Φ(ui, uk, νik, η̂ik, 0)n+1
]
∆t, i ∈ K

p−1∑

q=−1

αq∆V n−q
ik = νn+1

ik ∆t, k ∈ K[n−p,n+1]
i, 6=

p−1∑

q=−1

αq∆V n−q
ℓ,∂ = νn+1

ℓ ∆t, ℓ ∈ K∂

where the set K[n−p,n+1)

i,6=
is the set of the finite volumes that do not share any point

with Ci at the time tn+1, i.e. the edge i-k is not part of the mesh at step n + 1, but
have shared some points with Ci at any time in the interval [tn+1−p, tn+1). This can be
formalized as

K[n−p,n+1)
i, 6= : {k ∈ K, k /∈ Kn+1

i, 6= such that νn+1
ik 6= 0}.

In the case of a Forward Euler scheme, for example, K[n,n+1)

i,6=
identifies the edges i-k that

are swapped during the adaptation occurring in the time lapse between tn and tn+1 plus
the edges that are created and removed during the same time interval because of possible
successive swapping. In fact, the computation of the area to go from the initial to the
final configuration can be easily accomplished by summing up the effects of a sequence
of simple collapse/expand operations. This choice is not mandatory, but simplifies the

implementation of the algorithm. The set K[n−p,n+1]
i, 6= is the totality of the edges, i.e.

K[n−p,n+1]
i, 6= = K[n−p,n+1)

i, 6= ∪ Kn+1
i, 6= .

The previous relations show how the governing equations take into account the
edge swapping contributions in terms of the DGCL simply as a continuous (in time)
deformation of the cells associated to each vertex. The computation of contributions
associated with each swap step represents a simple way to compute the total cell area
variation and the associated fluxes from the old grid to the new one. In this way, the
dynamic problem of a moving mesh with variable topology is kept within the framework
of ALE formulation.

2.6.3 Domain node insertion

The procedure used to treat in a conservative way the edge-swapping shown in sections
2.6.1 and 2.6.2 is here extended to the case of element refinement. Fig. 2.18 illustrates a
possible way of interpreting the node insertion operation as a continuous deformation of
the finite volumes performed in the time interval [tn, tn+1). A three step approach similar
to the one presented above is followed and it is described in terms of non-dimensional
time τ ∈ [0, 1).

τ = 0: the initial condition is sketched in fig. 2.18(a).
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Fig. 2.18: Interpretation of the node insertion procedure as continuous finite volumes
deformation in the non-dimensional time τ = (t − tn)/(tn+1 − tn). (a) Initial state. (b)
The k-th and j-th nodes collapse over the i-th node, the interfaces of the cells Cj and
Ck sweep a non null area. (c) Intermediate state, the element to be refined has entirely
collapsed. Any change of connectivity, due to the refinement, produces no variation of
area of the cells. (d) The k-th and j-th nodes return to their original locations. During
the expansion step the interfaces of the cells Cℓ, Cj , and Ck sweep a non null area. (e)
Final state.
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Fig. 2.19: Interpretation of the node insertion procedure along the boundary as contin-
uous finite volumes deformation in the non-dimensional time τ = (t − tn)/(tn+1 − tn).
(a) Initial state. (b) The k-th and j-th nodes collapse over the i-th node, the interfaces
of the cells Cj and Ck and the boundary interfaces ∂Ci ∩ ∂Ω and ∂Cj ∩ ∂Ω sweep a non
null area. (c) Intermediate state, the element to be refined has entirely collapsed. Any
change of connectivity, due to the refinement, produces no variation of area of the cells.
(d) The k-th and j-th nodes return to their original locations. During the expansion
step the interfaces of the cells Cℓ, Cj , and Ck and the boundary interfaces ∂Cℓ ∩ ∂Ω,
∂Ci ∩∂Ω and ∂Cj ∩∂Ω sweep a non null area. (e) Final state, the node xℓ is positioned
as prescribed by the continuous shape of the boundary.
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0 < τ < 1/2: the i, j, k triangle collapses over the node i. The portions of the cells that
are contained inside the i, j, k triangle collapse over i. The choice of the point of
collapse is arbitrary.

τ = 1/2: the node ℓ is inserted. Since the portion of the cells contained inside the
triangle i, j, k has a null area, this has no effects in terms of conservation of the
areas.

1/2 < τ < 1: the nodes i, j and k return to their original positions. The cell Cℓ and
all the other pieces of cell contained inside the i, j, k triangle are expanded. The
position of the node ℓ depends on the refinement pattern, e.g. the center off mass
of the non-refined element.

τ = 0: the final configuration is sketched in fig. 2.18(e). The finite volumes Ci, Cj and
Cℓ are constructed as prescribed by the dual mesh scheme of section 2.3.3.

As for the case of the edge-swapping, in the expansion and the collapse step the area
swept by the interfaces is calculated as described in section 2.4.1, since the grid move-
ment is a simple grid deformation with constant number of nodes and connectivity. The
insertion step has no effects in terms of the satisfaction of the GCL since the involved
cells have a null area, see fig. 2.18(c) and 2.19(c). As shown for the case of edge-
swapping the overall area swept by the interfaces outside the triangle i, j, k is equal to
zero and the net numerical flux is therefore null, indeed no changes of shape of those
portion of cells occurs.

The governing equation of a new cell, i.e. introduced between step n and n + 1, is




a−1
V n+1

i un+1
i

∆t
=

∑

k∈Kn+1
i,6=

Φ(ui, uk, νik, η̂ik, ηik)n+1, i is new

α−1
∆V n+1

ik

∆t
= νn+1

ik , k ∈ Kn+1
i, 6=

(2.44)
since V n−q = 0 and ∆V n−q = 0 with q > 1. The above equation highlights the fact
that the knowledge of the solution at time levels previous than n + 1 is not necessary,
since the metrics are null, and un+1 is computed by simply integrating the conservation
equation for the overall system.

2.6.4 Boundary node insertion

Fig. 2.19 illustrates a possible way of interpreting the boundary node insertion opera-
tion as a continuous deformation of the finite volumes performed in the time interval
[tn, tn+1). A three step approach similar to the one for the domain node is followed.

τ = 0: the initial condition is sketched in fig. 2.19(a).

0 < τ < 1/2: the i, j, k triangle collapses over the node i. The portions of the cells that
are contained inside the i, j, k triangle collapse over i. The choice of the point of
collapse is arbitrary.

τ = 1/2: the node ℓ is inserted. Since the portion of the cells contained inside the
triangle i, j, k has a null area, this has no effects in terms of conservation of the
areas.
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1/2 < τ < 1: the nodes i, j and k return to their original positions. The cell Cℓ and
all the other pieces of cell contained inside the i, j, k triangle are expanded. The
position of the node ℓ depends on the refinement pattern, e.g. the center off mass
of the non-refined element.

τ = 0: the final configuration is sketched in fig. 2.19(e). The finite volumes Ci, Cj and
Cℓ are constructed as prescribed by the dual mesh scheme of section 2.3.3. The
node xℓ is positioned as prescribed by the continuous shape of the boundary, e.g.
evaluating airfoil equation or a spline interpolation curve.

Again the area swept by the interfaces are calculated as shown in section 2.4.1 and
the insertion step, i.e. τ = 1/2, has no effects in terms of GCL satisfaction. The key
difference with respect to the domain node case that the area swept by the boundary
interfaces must be also taken into account. In particular νn+1

ℓ,∂ = α−1∆An+1
ℓ,∂ /∆t is the

interface velocity given by the movement of the points of ∂Cℓ ∩ ∂Ω from the collapse
point to the final configuration.

The governing equation of a new boundary cell, i.e. introduced between step n and
n + 1, is





a−1
V n+1

i un+1
i

∆t
=

∑

k∈Kn+1
i,6=

Φ(ui, uk, νik, η̂ik, ηik)n+1

+Φ∂(ui, νi, ξ̂i, ξi)
n+1, i is new

α−1
∆V n+1

ik

∆t
= νn+1

ik , k ∈ Kn+1
i, 6=

α−1

∆V n+1
ℓ,∂

∆t
= νn+1

ℓ , ℓ ∈ Kn+1
∂

where Kn+1
∂ is the set of nodes that discretize the boundary at the time tn+1.

2.6.5 Domain node deletion

In fig. 2.20 is illustrated a possible ALE interpretation of the node deletion procedure
for a domain cell. Again a three steps procedure is adopted

τ = 0: the node i of fig. 2.20(a) is flagged for removal. The elements connecting i with
the surrounding nodes, e.g. j, k and ℓ, must be deleted and topology must be
reconstructed.

0 < τ < 1/2: the bubble of nodes surrounding the node i collapses over the node xi.
The choice of the collapse point is arbitrary. See fig. 2.20(b).

τ = 1/2: the node i is removed and the connectivity is regenerated in an arbitrary
fashion, fig. 2.20(c). Since the portion of the cells contained inside the bubble
surrounding i has a null area, this has no effect in terms of conservation of the
solution.

1/2 < τ < 0: the nodes of the bubble return to their original positions. The choice
of new connectivity is arbitrary, in the present case the nodes of the bubble are
connected with an edge to the node k.
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τ = 1: the final configuration is shown in fig. 2.20(e). The optimality in terms quality
of the mesh can restored performing an edge-swapping procedure.

Since the number of nodes and the connectivity is constant, the area swept by the inter-
faces during the expansion and the collapse is calculated as prescribed in section 2.4.1.
The node deletion, with the entailed connectivity destruction and reconstruction, has
no effect on the solution since the area of the involved cells is null. The swept areas so
calculated allows to compute νn+1

ik and the related ALE fluxes for the interfaces that are
removed.

The governing equation for a deleted domain cell, i.e. not considering the boundary
terms, is





p∑

q=0

aqV n−q
i un−q

i =
∑

k∈K[n−p,n+1)

i,6=

Φ(ui, uk, νik, η̂ik, 0)n+1∆t, i is removed

p−1∑

q=−1

αq∆V n−q
i,ik = νn+1

ik ∆t, k ∈ K[n−p,n+1)
i, 6=

(2.45)
where the left hand side of the first equation does not depend on un+1

i , since V n+1
i = 0,

note that the summation starts for q = 0. The right hand side is given by the ALE
contribution to the fluxes, e.g. second term of Eq. (2.20), of the removed edges and
it does depend on the solution evaluated at tn+1. As removed edges are associated to
additional ALE contribution to the fluxes, removed cells are associated to additional ALE
equations.

If the governing equations are integrated adopting an implicit scheme, as shown in
the system (2.32) or (2.45), then the computation of the value of u on each removed
cell is necessary to determine the solution on all remaining mesh nodes at the time level
n + 1 in a conservative manner. Indeed, given a removed cell Ci previously adjacent to
the cell Ck, the numerical fluxes across ∂Cik are function of un+1

i , un+1
k and νn+1

ik , as
given by Eq. (2.45). It is worth noting that, since the edges that are connected with a
deleted node must be removed as well, the IVC condition of Eq. (2.45) is defined for
every interface that is part of the mesh from tn−p to tn+1 but is no longer part of the
mesh at tn+1.

Since the time derivative is known and ηn+1
ik = 0, Eq. (2.45) is an algebraic equation.

Albeit the knowledge of the value of the solution on a removed node seems to be useless,
as it is no longer part of the mesh, it is necessary indeed to balance the ALE fluxes
exchanged with the surrounding cells in a conservative manner. Eq. (2.45) becomes a

trivial identity only when νn+1
ik = 0, ∀k ∈ K[n−p,n+1)

i, 6= . Thus p + 1 time steps after the
node removal the equation is erased from the system and the solution on the removed
cell is no longer computed.

2.6.6 Boundary node deletion

In fig. 2.21 is illustrated a possible ALE interpretation of the node deletion procedure
for a domain cell. Again a three steps procedure is adopted

τ = 0: the boundary node i of fig. 2.21(a) is flagged for removal. The elements con-
necting i with the surrounding nodes, e.g. j, k and ℓ, must be deleted and
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Fig. 2.20: Interpretation of the node deletion procedure as continuous finite volumes
deformation in the non-dimensional time τ = (t − tn)/(tn+1 − tn). 2.20(a) Initial
state. 2.20(b) The nodes surrounding the node to be removed, i.e. i, collapses on one
location. The interfaces of the cells surrounding Ci, e.g. Cj, Ck, and Cℓ, sweep a non
null area. 2.20(c) Intermediate state, bubble of nodes surrounding the i-th node has
entirely collapsed. No variation in area of the cells is produced by the node deletion and
the successive reconstruction of the local connectivity. 2.20(d) The nodes of the bubble
return to their original locations. During the expansion step the interfaces of the cells,
e.g. Cℓ, Cj , and Ck sweep a non null area. 2.20(e) Final state, the choice of the new
connectivity is arbitrary.
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Fig. 2.21: Interpretation of the boundary node deletion procedure as continuous finite
volumes deformation in the non-dimensional time τ = (t − tn)/(tn+1 − tn). 2.21(a)
Initial state. 2.21(b) The nodes surrounding the node to be removed, i.e. i, collapses
on one location. The interfaces of the cells surrounding Ci, e.g. Cj , Ck, and Cℓ and the
boundary interfaces ∂Ci ∩ ∂Ω, ∂Cℓ ∩ ∂Ω and ∂Cj ∩ ∂Ω sweep a non null area. 2.21(c)
Intermediate state, bubble of nodes surrounding the i-th node has entirely collapsed.
No variation in area of the cells is produced by the node deletion and the successive
reconstruction of the local connectivity. 2.21(d) The nodes of the bubble return to their
original locations. During the expansion step the interfaces of the cells, e.g. Cℓ, Cj , and
Ck sweep a non null area. Moreover the boundary interfaces ∂Cℓ ∩ ∂Ω and ∂Cj ∩ ∂Ω
sweep a non null area. 2.21(e) Final state, the choice of the new connectivity is arbitrary.
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reconstructed.

0 < τ < 1/2: the bubble of nodes surrounding the node i collapses over the node xi.
See fig. 2.21(b). The collapse point is chosen arbitrary, e.g. xi(τ = 0). The
boundary interfaces ∂Ci ∩ ∂Ω, ∂Cℓ ∩ ∂Ω and ∂Cj ∩ ∂Ω sweep a non null area, i.e.
∆Ai,∂ 6= 0, ∆Aℓ,∂ 6= 0 and ∆Aj,∂ 6= 0 respectively.

τ = 1/2: the node i is removed and the connectivity is regenerated in an arbitrary
fashion, fig. 2.21(c). Since the portion of the cells contained inside the bubble
surrounding i has a null area, this has no effect in terms of conservation of the
solution.

1/2 < τ < 0: the nodes of the bubble return to their original positions. The choice
of new connectivity is arbitrary, in the present case the nodes of the bubble are
connected with an edge to the node k. The boundary interfaces ∂Cℓ ∩ ∂Ω and
∂Cj ∩ ∂Ω sweep a non null area, i.e. ∆Aℓ,∂ 6= 0 and ∆Aj,∂ 6= 0 respectively.

τ = 1: the final configuration is shown in fig. 2.21(e). The optimality in terms quality
of the mesh can restored performing an edge-swapping procedure.

Again the area swept by the interfaces during the expansion and the collapse is calculated
as prescribed in section 2.4.1 and the node deletion, with the entailed connectivity
destruction and reconstruction, has no effect in terms of ∆A. The so calculated swept
area allows to compute νn+1

ik and the related ALE fluxes for the interfaces that are
removed.

The governing equation for a deleted boundary cell is





p∑

q=−1

aq

V n−q
i un−q

i

∆t
=

∑

k∈K[n−p,n+1)

i,6=

Φ(ui, uk, νik, η̂ik, 0)n+1

+Φ∂(ui, νi, ξ̂i, 0) i is removed

p−1∑

q=−1

αq∆V n−q
i,ik = νn+1

ik ∆t k ∈ K[n−p,n+1)
i, 6=

p−1∑

q=−1

αq∆V n−q
ℓ,∂ = νn+1

ℓ ∆t ℓ ∈ K[n−p,n+1)
∂

(2.46)

The above system is very close to the domain counterpart, i.e. system (2.45), but the
boundary fluxes are also taken into account and the IVC condition is defined for the
velocity of every removed boundary interface as well, i.e. νn+1

ℓ . This can be formalized
as

K[n−p,n+1)
∂ : {ℓ /∈ Kn+1

∂ such that νn+1
ℓ 6= 0}.

2.6.7 ALE scheme for grids with variable connectivity and number
of nodes

Introducing Kn+1 = K(tn+1) as the set of nodes of the triangulation of Ω at the time
tn+1 and Nn+1

K
= dim(Kn+1) as the total number of nodes. If NA nodes are inserted
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into the grid, NA × 4 new conservation equations and NA GCL constraints must be
satisfied, i.e. system (2.44) must be included in system (2.32).

The governing equation for the deleted nodes is taken into account introducing the
set of the removed cells that are associated to at least one interface with a velocity that
is different from zero, i.e.

K[n−p,n+1) = {i /∈ Kn+1 : ∃k such that νn+1
ik 6= 0}.

Note that, adopting a BDF scheme of order p + 1, K[n−p,n+1) is the set of the nodes
removed not before than tn−p. Moreover, introducing K[n−p,n+1] = Kn+1 ∪ K[n−p,n+1)

as the set of all nodes, it is possible to recast system (2.32) for the case of grids with
variable number of nodes as




p∑

q=−1

aq

V n−q
i un−q

i

∆t
= Φ∂(ui, νi, ξ̂i, ξi) +

∑

k∈Kn+1
i,6=

Φ(ui, uk, νik, η̂ik, )n+1

+
∑

k∈K[n−p,n+1)

i,6=

Φ(ui, uk, νik, η̂ik, 0)n+1,
(
i ∈ Kn+1

)

p∑

q=−1

aq

V n−q
j un−q

j

∆t
=

∑

k∈K[n−p,n+1)

j,6=

Φ(uj , uk, νjk, η̂jk, 0)n+1

+Φ∂(uj , νj , ξ̂j , 0),
(
j ∈ K[n−p,n+1)

)

p−1∑

q=−1

αq∆V n−q
i,ik = νn+1

ik ∆t,
(

k ∈ K[n−p,n+1]
i, 6=

)

p−1∑

q=−1

αq∆V n−q
ℓ,∂ = νn+1

ℓ ∆t,
(

ℓ ∈ K[n−p,n+1]
∂

)

(2.47)
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Chapter 3

Mesh update strategy

In this chapter the strategies adopted to update the computational mesh are outlined.
The goal is to permit the movement of the boundaries, while maintaining high level of
grid quality, and change locally the distribution of the nodes to increase or decrease the
resolution. To this purpose a suitable mix of mesh deformation and local topology mod-
ification techniques is implemented; all the adopted methods are very standard with few
modifications. In section 3.1 the mesh deformation algorithm is presented that allows
to reduce the quality losses due to the movement of the boundaries. In section 3.2 the
edge-swapping technique is briefly described. In section 3.3 the refinement/derefinement
procedures are outlined, with particular focus on the geometry-driven adaptation strat-
egy (section 3.3.1) and the solution-driven adaptation strategy (section 3.3.2). The
edge-swapping, node insertion and deletion techniques have been already presented in
section 2.6.3, 2.6.1 and 2.6.5 in the context of the ALE formulation; in the present
chapter, however, the focus will be on how these methods are used to adapt the grid.

3.1 Mesh deformation

In the present section, the mesh deformation strategy is briefly described. Mesh defor-
mation is required for the boundary of the new (deformed) mesh to be conformal to
the new boundaries of the domain. At the same time, the overall quality of the mesh
elements in the inner domain must be preserved to reduce numerical errors.

The mesh movement is performed in two steps. First, the displacement of each
boundary node of the fluid mesh is obtained from a given movement law; then, the
position of the inner nodes is modified accordingly.

The displacement of internal nodes can be obtained using different strategies. These
can be gathered in two classes: interpolation methods [30, 155], mainly used for struc-
tured meshes, and those based on some form of elastic analogy, which are more suitable
for unstructured meshes. Batina [15] introduced the elastic analogy by representing each
side of the grid as a spring with a nonlinear stiffness proportional to the edge length. To
avoid the occurrence of invalid elements with negative areas, Degand and Farhat [45]
introduced additional torsional springs at each vertex. Given its complexity, the mesh
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movement step may require a non negligible computational effort to the point that it
may become one of the most time-consuming tasks in the computation [45].

For the reasons described above, the envisaged deformation scheme should be de-
signed to fulfill the following requirements:

• Robustness: the scheme must handle significant boundary displacements and be
capable of producing valid grids (all elements with positive area) with an acceptable
quality especially in the areas where low numerical errors are sought for, i.e. near
the wall boundaries.

• Computational efficiency.

• Easy of use; the user intervention on the algorithm is to be minimal.

The grid deformation algorithm presented here extends to idea of the elastic analogy
by representing each element as a deformable body and moves from the discussion
presented in [18]. Differently from the spring analogy, such a choice avoids element
entanglement also in the case of large deformations. To reduce the computational
burden, a simple linear constitutive law is used, namely, in two spatial dimensions one
has σ = {σxx, σyy, σxy}T , and ǫ = {εxx, εyy, εxy}T , as σ = Dǫ, where the D matrix
is equal to

D =
E

(1 + ν)(1 − 2ν)




1 − ν ν 0
ν 1 − ν 0
0 0 1 − 2ν


 .

The correct grid deformation is achieved adopting a local Young modulus proportional
to the minimal dimension of each element following a simple law

Ee =
1

min
i,k ∈ Ke

‖xi − xk‖β
, (3.1)

where Ke is the set of all nodes belonging to the e-th element. In this way the small
elements close to wall boundaries are more stiff, so they tend to move rigidly with the
walls, leaving the burden to absorb the global deformations on the larger elements,
usually located far from the boundaries. The coefficient β can be used to control
the mesh deformation behavior, increasing the stiffness ratio between small and large
elements. A Poisson coefficient ν ∈ [0; 0.35] is chosen in order to avoid bad numerical
conditioning of the problem. The mesh deformation problem is then solved by means of a
standard finite element approach. The wall boundary displacements are imposed simply
as Dirichlet boundary conditions for the elastic mesh problem. Further improvements
can be obtained through the adoption of anisotropic continua.

The effectiveness of the proposed strategy is shown in Fig. 3.1(b), where a two-
dimensional unstructured mesh around the NACA 0012 airfoil is deformed to adapt it to
a one chord plunge. The variable stiffness produces an almost rigid displacement for the
small triangles near the airfoil walls, with a visible distortion only near the grid external
boundary, where larger numerical errors may be acceptable. A similar behavior is found
for the airfoil pitch, Fig. 3.1(c).

Furthermore, the linearity of the equations describing the mesh movement problems
allows for a further reduction of the computational time, since the global mesh de-
formation can be represented as a superposition of basic deformed grids computed in
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(a) Non-deformed grid (b) One chord airfoil plunge

(c) 20 deg. airfoil pitch (d) Pitch and plunge linear combination

Fig. 3.1: Grid deformation for a NACA 0012 airfoil.

advance. An example is shown in Fig. 3.1(d), where the two movement of pitch and
plunge are linearly combined. Large saving are obtained when three dimensional cases
are solved, using as basic elements for the superposition the deformed meshes associ-
ated with structural normal modes [23]. Of course, the superposition approach should
be applied only when small structural displacements are considered, which is usually the
case when aircraft aeroelastic stability is under investigation.

3.1.1 Grid Smoothing

In order to further improve the grid quality, grid regularization is performed [178]. When
barycentric smoothing is applied the new position of the i-th node is given by

xn+1
i = (1 − ks)xn

i +
ks

dim(Ki, 6=)

∑

k∈Ki,6=

xn
k , (3.2)

where ks = 0 ÷ 1 is a relaxation parameter. A well known issue of non weighted
smoothing techniques is the fact that when convergence is achieved, i.e. after several
application of Eq. (3.2), the final mesh features a uniformly distributed spacing. For such
reason the use of mesh smoothing should be carefully dosed. In the present work three
cycles of mesh smoothing are applied and kR = 0.5. In problems where the size of the
elements close to the walls is critical, e.g. in the BVI problem of section 5.3.1, Eq. (3.2)
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is applied only to the vertices of elements that undergo any topology a modification in
the topology.

3.2 Edge-swapping

If large displacements of the boundaries occur, the application of the above mesh defor-
mation technique may possibly result in distorted and tangled elements, leading to large
numerical errors or even to complete failure if negative area elements appear. Indeed, in
these cases the Jacobian J of the transformation is negative and condition (2.5) on the
regularity of the ALE mapping ψ is not fulfilled. For large displacements of the mesh
nodes it is therefore mandatory to alter the topology of the mesh, i.e. the element-node
connectivity, or, equivalently, the definition of the mesh edges. The alteration of the
mesh topology can be performed in a local or a global fashion [178]. In the present
work, a well-known local topology alteration technique—the so-called edge-swap tech-
nique [64]—is adopted, in which the total number of grid nodes is preserved. The basic
idea is to change the topological structure by local reconnection, without the addition or
removal of vertexes. This is accomplished by altering the connectivity of a given couple
of triangular elements by deleting the edge connecting the two vertexes shared by the
two elements and by adding a new edge connecting the other two vertexes (see fig. 3.2).
The ability of the swap operator in improving the quality of triangular or tetrahedral
meshes is well assessed [64].

To decide whether an edge must be swapped it is necessary to adopt a quality
measure for the elements. Following the analysis presented by Shewchuk [165], the key
factor is the condition number of the stiffness matrix associated with the fluid problem,
while the element size distribution is related to the need to minimize the error bound
and it does not have to be fixed by the swapping procedure. Therefore, a scale-invariant
quality measure Q has been chosen among those presented in [165] for two-dimensional
grids, defined as

Qe =
Ve

∑
i∈Ke

ℓ 2
i +

√
(
∑

i∈Ke
ℓi

2)2 − 48 V 2
e

, (3.3)

where Ve is the element are and ℓi the i-th edge length. For example, the element quits
its maximum value for the equilateral triangle with the third vertex in (1/2,

√
3/2), i.e.

Qideal = 0.1443375. Measure Q has sign, which means that it is negative if the area is
negative, so it is possible to recognize the occurrence of inverted elements.

Deformation and swapping

To obtain large displacement of the boundaries edge swapping has been used also in
connection with deforming meshes [11]. With reference to figure fig. 3.3, edge-swapping
is beneficial in this case in that it allows two vertexes that move in the opposite direction
to disconnect to avoid excessive stretching of the element. As a result the elements seems
to flow in the domain allowing bodies to move freely into the computational grid.

The complete mesh movement procedure is organized as described in the following
pseudo-code:

Displacement of boundary nodes
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i j

kℓ

(a) Reference Configuration

i j

kℓ

(b) Swapped Configuration

Fig. 3.2: Application of the edge-swapping technique to the quadrangle of vertices i, j,
k and ℓ.
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τ = 0 τ = 1/2 τ = 1

Fig. 3.3: Edge swapping applied to a deforming grid. A driver force cause the translation
of the lower row of vertices; the dashed edge are flipped transforming stretched elements
in more regular ones. At the end of the process the first vertex on the left of lower row
is connected by a new edge with the last edge on right of the upper row.

Grid deformation

FOR each edge

Compute quality of the elements, Qreference

Compute quality of the swapped-edge elements, Qswapped

IF(min(Qswapped) > min(Qreference) )

Apply swap

END

END

The cycle on grid edges can be applied a fixed number of times (one or more), or it can
be repeated up to the case where no additional edge swap is performed.

Fig. 3.4 and fig. 3.5 show the application of the present mesh update procedure to a
360◦ rotation and back of a RAE 2822 airfoil, located in the center of a circular domain
with radius of 10 chords, about the trailing edge. The external boundary fixed. This
is a typical grid arrangements to compute e.g the lift-angle-of-attack function for an
oscillating airfoil. A sinusoidal law is imposed, i.e. θ(t) = 180◦[1 − cos(2πt)]. In fig. 3.4
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Fig. 3.4: Grid and quality contour for different values of θ angle. Nstep = 80.
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Fig. 3.5: Grid and quality contour close-up on for different values of θ angle.
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Fig. 3.6: Average and minimum quality for different numbers of steps.

and fig. 3.5 (left) the grid is plotted for three different values of the angle theta, i.e.
for the initial position, the maximum rotation and the final position. The smaller and
therefore more rigid elements, which are located near the airfoil, rigidly move with the
body, thus preserving the mesh spacing close to the airfoil. The edge swapping allows
the inner rigid core of elements to slide inside the external grid. In fig. 3.4 (right) and
fig. 3.5 (right) the corresponding local normalized grid quality, i.e. Q/Qideal. The initial
grid quality is in the interval 0.7 < Q/Qideal < 0.9;it is then progressively reduced
to 0.5 < Q/Qideal < 0.7 and tend to be uniformly distributed among the elements.
In fig. 3.6 the minimum and the average value of quality are shown as a function of
the time for different values of ∆t = 1/Nstep. When the rotation is completed, the
mean quality curves tend to show a similar trend, while the minimum quality increases
decreasing the time step since more swapping and smoothing operations are performed
over a given time interval.

3.3 Node insertion and deletion

In the present work nodes are inserted and removed from the grid to locally control the
grid spacing. Several type of element refinement techniques can be found in literature,



Mesh update strategy 69

����������
����������
����������

����������
����������
����������

����������
����������
����������

����������
����������
����������

�����������
�����������
�����������

�����������
�����������
�����������

������������
������������
������������

������������
������������
������������

Fig. 3.7: Top: refinement pattern by node insertion in the center of mass of an existing
element for a domain (top-left) element and boundary (top-right) element. Bottom:
Derefinement pattern by node deletion for a domain (bottom-left) element and boundary
(bottom-right) element.

even for simple triangular meshes [63]. In the present work a simple barycentric approach
is followed to perform node insertion for domain nodes, see fig. 3.7 (left-top). The refine-
ment of boundary elements is performed computing the exact position of the boundary
nodes evaluating the spline curve describing the boundary, see fig. 3.7 (right-top). Do-
main and boundary nodes removal are performed as shown in fig. 3.7 (bottom), where
the local connectivity is reconstructed in order to maximize the local quality. In order
to guarantee the highest element quality through the mesh the node insertion/deletion
procedures are followed by a edge-swapping one.

3.3.1 Geometry driven adaptation

The goal of mesh refinement and derefinement is to control the quality and the dimension
of the elements to minimize the numerical errors. The imposed/desired mesh spacing is
described by a function A(x, t) ∈ R, defined over computational domain Ω for a given
time t.

In the present section the size distribution function is prescribed as proportional to
the distance from the boundaries, indeed in most of the cases of aerodynamic interest
the smaller elements are gathered close to the solid walls. Let Ve be a suitable measure
of the e-th element size, e.g. the area, and let A(x, t) be a generic function that put in
relation a desired triangle size and an element of Ω.

A parabolic description of the dimension distribution which is function of the distance
from the b-th boundary

Ab(x, t) = c1,b + c2,b

(
min

xb∈∂Ωb(t)
|x− xb|

)
+ c3,b

(
min

xb∈∂Ωb(t)
|x− xb|

)2

(3.4)

where c1,b, c2,b and c3,b are coefficients chosen by the user and ∂Ωb is the set of points
that belongs to the b-th boundary. The imposed size function is therefore chosen as

A(x, t) = min
b∈B

Ab(x, t) .
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Thus an element is flagged for refinement if Ve < (1 − ε)A(xe), where xe is the center
of mass of the e-th element and ε = 0.1 ÷ 0.3 is a suitable tolerance; similarly if

1

dim(Ei)

∑

e∈Ei

Ve > (1 + ε)A(xi)

the node is flagged for removal.

3.3.2 Solution driven adaptation

In this section the strategy used to adapt the grid to capture the local feature of the
flow-field is described. The purpose of this technique is to locally change the grid spacing
in order to distribute the numerical error in the whole computational domain according
to the principle of error equidistribution. In this way, if a computational region has
a numerical error higher than the average, it will be refined using a technique of node
insertion; on the other hand, regions with a lower numerical error will be derefined thanks
to a deletion node procedure.

The calculation of the numerical error requires the evaluation of a error estimator E
on the whole domain. Depending on the applications, error estimators can be either
functions of flow gradients or undivided differences [10, 117, 148, 193], or functions of
the Hessian matrix H [37, 80, 146, 193, 200, 195] of a convenient sensor variable s
which is representative of the flow features and whose choice depends on the physical
problem.

Gradient

In most applications, error estimators are either functions of flow gradients or undivided
differences [10, 117, 148, 193] of a convenient quantity s i.e. Ei = Vi||∇si||, where
|| · || indicates the Euclidean norm. Resorting to the nodepair based finite volume
discretization of the computation domain the gradient can be computed as

∇si =
1

Vi


siξi +

∑

k∈Ki,6=

si + sk

2
ηik


 (3.5)

A better approximation of the discrete gradient vector ∇s can be computed using a
finite-element approximation within the node-pair representation [163, 63]. The value of
the gradient at the center of mass of an element e is given by the average of the value
of the gradient at its vertices. This correspond to a piece-wise linear approximation of
the gradient, which is second order accurate.

Vorticity

In many cases of aeronautical interest it is desirable to have higher resolution in the
proximities of shocks or vortices. In such cases the vorticity of the solution can be taken
as a sensor of the error, i.e. Ei = |ωi|, where ω = ∇ × m/ρ is the vorticity vector
evaluated at xi. In the nodepair based finite-volume framework the rotor is computed
as

ωi =
1

Vi


ξi × mi

ρi

+
1

2

∑

k∈Ki,6=

ηik ×
(
mi

ρi

+
mk

ρk

)
 . (3.6)
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The above definition of the vorticity is correct only in three dimensions, i.e. m ∈ R
3

and ω ∈ R
3. In 2D the vorticity is a scalar equal to the component of ω aligned to the

z-axis, computed taking m, η and ξ as a vectors with three components and mz = 0,
ηz = 0 and ξz = 0 respectively.

Hessian matrix

Webster et al. show that in the one-dimensional case the root mean square of the
truncation error of a finite element scheme is proportional to the second derivative of
the solution and to the mesh size squared [195]. Following such principle a sensor of
the error in the two-dimensional case can be built from the Hessian matrix [37, 80, 146,
193, 200, 195] as

Ei = Vi

√
E2(τu) + E2(ηu), with E(p, s) =

pTH(s)p

pT∇s
√

Vi + ǫµ(s)
(3.7)

p is a generic versor in R
2, τu and ηu are the tangent and normal versors to the local

velocity vector, ǫ is a constant chosen between 0 and 1 (0.12 here) and µ(s) is the
average value of s over the computational domain. The discrete Hessian matrix H(s)
is computed as the gradient of each component of ∇s; eq. (3.5) is therefore applied
twice and again a second order approximation can be computed using a finite-element
scheme [163, 63].

Modified Hessian matrix

A modified version of the sensor of Eq. (3.7) is also introduced, i.e.

E(p, s) =
pTH(s)p

pT∇s
√

Vi + ǫµ(s)
+

pT
∇s

√
Vi

Vi pTH(s)p+ ǫµ(s)
, (3.8)

which uses the gradient of s to better capture the shocks. Indeed, due to the change in
sign across the discontinuities, the second derivative goes to zero near the shocks and
the grids obtained adapting on the Hessian show under resolution in such regions. The
second term of Eq. (3.8), however, counterbalance such effect since it is proportional to
∇s and inversely proportional to H(s).

Substantial derivative

When mesh adaptation is applied to unsteady problems, the choice of the sensor function
is somewhat less straightforward. Indeed the necessity of adapting over the solution
computed at every time step, could be in contrast with the variation in time of the
solution itself, e.g. a normal shock wave moving in a duct. To this purpose a specific
sensor for unsteady problem is the substantial derivative of a variable of interest [181],
namely

E(s) =
∂s

∂t
+
m

ρ
· ∇s. (3.9)
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Fig. 3.8: Multi passage strategy for labeling procedure.

Threshold computation and multipassage strategy

The identification of subdomains concerned with significant flow features is the enabling
issue for mesh adaption. Elements characterized by high error estimate suggests that
some variation in the flow field may not be well resolved, while nodes with a low level
of error reveal a possibly excessive resolution.

Suitable threshold values are then defined to identify low and high values of error
based on statistical considerations, τD and τR respectively. Independently from the
definition of the threshold values an element will be flagged for refinement if Ee > τR,
where the error on the element is computed as the average of the error on its vertices,
i.e.

Ee =
1

dim Ke

∑

i∈Ke

Ei.

During the derefinement procedure, a node i tagged for removal if Ei < τD.
The error indicators are interpreted as a data set in which error estimates are dis-

tributed about an average value, i.e.

µ(s) =
∑

i∈K
E(si)

with a certain degree of dispersion indicated by the value of the standard deviation, i.e.

σ(s) =

√
1

dim(K)

∑

i∈K
(E(si) − µ)2.

In order to reduce the number of elements whose error is significantly higher than the
mean value, the refinement threshold is chosen as τR = µ + kRσ. The refinement
parameter kR has to be suitably chosen, the smaller the value the more uniformly the
error will be distributed between the elements of the domain.
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The derefinement threshold is simply chosen as τD = kDµ, where the standard
deviation is not used. Indeed in some cases the value of σ could be bigger than the
mean, thus resulting in a negative derefinement threshold.

For convenience the area-weighted average error is also introduced, namely

µw =

∑
i∈K ViE(si)∑

i∈K Vi

. (3.10)

Standard fluid dynamics flow fields usually present features with different intensities,
e.g. the gradients near the shock wave and the rarefaction fan that are computed as
solution of a one dimensional Riemann problem. In order to capture flow features with
lower intensities modifications to the classical error estimates have been proposed in the
literature [117]. To this purpose a multiple passages technique is thus adopted to suitably
modify the list of nodes that participate in the computation of the thresholds [4]. Fig. 3.8
illustrates labeling procedure in the case of refinement and derefinement. Each rectangle
in the figure represents the list of elements organized by increasing error estimate from
left to right. First the refinement threshold is computed considering every element of the
grid (i.e. the whole rectangle) then the elements with high values of error are flagged
for refinement, i.e. the dark gray colored elements of fig. 3.8. In the second passage
the mean and the standard deviation, i.e. µ2 and σ2 respectively, are computed by
considering just the elements that have not been already labeled for refinement, i.e. the
white region of the rectangle on top of fig. 3.8. In this way strong features are excluded
and the resulting thresholds are determined on the basis of the weaker features of the
flow field. The number of passages that can be performed is arbitrary, but in practical
problems no more than three levels of refinement are usually necessary. In the case of
derefinement the passage the mean computed in the last refinement passage is used to
identify the nodes with a low error level. No more than one passage is usually necessary,
since the most important flow features have been already captured during the last level
of refinement.

3.3.3 Refinement/Derefinement Strategy

In fig. 3.9 the refinement strategy based on both the solution driven adaptation and the
element size strategy is shown. First the requirements on the distance-based function are
met (check 1 and 2), then the equidistribution principle is enforced (check 3 and 4). An
additional check on the minimum length of the edges along the boundaries is performed
for triangles laying on ∂Ω. Check 2 and 4 avoid the insertion of a node that has strong
chances to be subsequently removed during a possible derefinement step, e.g. the area
of the refined element is below the given threshold or the weighted error is below τD.

As shown in fig. 3.10, a similar strategy is used to perform the deletion of a node
from the grid. First the requirements on the imposed dimension are checked, i.e. the
average area of the elements surrounding the node must not be lower than the given
threshold. The node is then removed if the average value of the error is higher than
τD. An additional constraint on the maximum size of the edges is applied for boundary
nodes.

In fig. 3.11 an example of the complete adaptation procedure, termed AP, is shown.
First the boundaries displaced with an assigned law and the internal mesh is deformed to
follow such movement, then the edges surrounded by low quality elements are swapped.
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Fig. 3.9: Refinement strategy based on a combination between both the error sensor
and the distance from the boundaries. The refinement is not performed if: (#1) the
area of the element is lower than minimum area imposed by the boundary distance based
function, (#2) the area of the refined elements is bigger than maximum area imposed by
the boundary distance based function, (#3) the error of the element is smaller than the
threshold τR, (#4) the error of the refined element is possibly larger than the threshold
τD.



Mesh update strategy 75

Fig. 3.10: Node removal strategy based on a combination between both the error sensor
and the distance from the boundaries. The refinement is not performed if: (#1) the area
of the bubble of elements surrounding the node is bigger than maximum area imposed
by the boundary distance based function, (#2) the mean error on the bubble of elements
surrounding the node is smaller than τD.

Def

SwapSwapSwapSwap

Ref DerefDeref

Smooth

AP

Ωn

T n

Ωn+1

T n+1

Fig. 3.11: Example of adaptation procedure. The deformation and the insertion/deletion
procedures are followed by an edge-swapping cycle to restore the highest possible quality
without change in the vertices position.
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The second step is the application of the refinement procedure of fig. 3.9, followed by a
swapping cycle to restore high quality and possibly reduce the local size of the elements.
The third and fourth steps are two subsequent derefinement plus swapping procedures.
The last step is the global grid regularization. The order and the number of times a
single procedure is applied is arbitrary but typically mesh deformation and smoothing
are the first and the last one respectively.

3.4 Grid adaptation for unsteady applications

When a steady solution is computed the implementation of an adaptation scheme is
quite straightforward and it consists essentially in a three steps procedure to be repeated
until convergence is achieved: steady state solution computation, error computation
and grid adaptation. A solution interpolation strategy can be also used to speed-up the
steady state computation step. For the application of grid adaptation to the unsteady
case different approaches are possible. A classic fixed-point, here termed SAP, algorithm
uses one steady adaptation cycle at each time step [136]. It can be sketched as follows:

SAP.1 The error is computed starting from the solution un

SAP.2 The mesh is adapted to E(un)

SAP.3 If necessary, the solution un is interpolated over the new mesh

SAP.4 The solution is updated and the next time step is carried out

Such procedure is suitable only if very small time steps are adopted, since the grid is
adapted over the “old” solution.

A different approach is the one illustrated in fig. 3.12 where the grid is adapted to
the new solution by means of an iterative procedure. Such approach, referred here as
SIAP, can be sketched as follows:

SIAP.1 The mesh is deformed to follow the movement (if any) of the bodies.

SIAP.2 The solution un+1 over the new grid is then predicted.

SIAP.3 The error is computed based on the new predicted solution.

SIAP.4 The grid is adapted over over E(un+1) and the old solution is interpolated,
if necessary.

SIAP.5 The solution un+1 is re-computed over the adapted grid in an unsteady
fashion, i.e. as an unsteady step from un to un+1. In the present work no
interpolation of un is necessary and the new solution is obtained simply integrating
Eq. (2.47).

Step 2, 3 and 5 are repeated (looping over s) until convergence is obtained, i.e. when
µw is lower than the threshold τE . While the point fixed procedure adapts the grid over
un, the iterative one over un+1. Moreover it has to be noted that the computational
burden of this iterative adaptation procedure relies on how “quickly” the error, thus the
solution, varies in time. The Co number is therefore critical in the choice of a reasonable
value of convergence threshold. In the present work a maximum number of 10 iterations
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Fig. 3.12: Simple Iterative Adaptation Procedure, i.e. SIAP.

over s is found suitable in many cases if interest. For low values of Co, e.g. when high
time-accuracy is required, iterations over s can be skipped and only the step from 1 to
5 described above can be carried out.

A modification of the iterative procedure SIAP has also been implemented in order to
speed up the grid-solution convergence at the new time level, with particular reference
to unsteady problems.

As shown in fig. 3.12 at a given adaptation step the error E(un,s) is computed
from the solution computed over the triangulation T n,s. The mesh is thus adapted
over E(un,s) and the triangulation T n,s+1 is obtained. If a further level of refine-
ment/coarsening of the grid is necessary the sensor must be recomputed over T n,s+1
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Fig. 3.13: Fast-Iterative-Adaptation-Procedure, i.e. FIAP.
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and thus the solution. The burden in terms of computational time can be signficant if
this operation is repeated frequently, i.e. for excessively coarse grids. To this purpose,
an empirical error redistribution technique is used which project the error distribution
E(un,s) over the new adapted grid, without recomputing the solution vector. As shown
in fig. 3.13 an additional loop over k has been inserted in the adaptation procedure,
which correspond to the error projection step. More specifically each new/modified el-
ement inherits the area-weighted value of the error estimator of its parental element
for grid refinement or neighboring elements for grid derefinement. When a node is in-
serted the elemental error Em is equally distributed amongst the new elements, e.g.
En+1,k+1

n = En+1,k
m /3 for the barycentric refinement and En+1,k+1

n = En+1,k
m /2 for the

boundary one. Similarly when a node is removed the error is distributed amongst the
nodes of the bubble surrounding the removed node, i.e.

En+1,k+1
j =

1

V n+1,k+1
j

(
ViE

n+1,k
i +

∑

k∈Ei

V n+1,k
k En+1,k

k

)
,

where the k + 1 and k superscripts indicate the configuration before and after node
removal respectively, e.g. fig. 2.20(a) and fig. 2.20(e).

A complete convergence of the iterative procedure at time tn+1 is reached when the
difference between average numerical error evaluated on consecutive s-cycles is below
a pre-defined threshold. After the final solution at tn+1 is computed on the adapted
grid T n+1, the computation advances to the next time level tn+2. This strategy will be
called Fast-Iterative-Adaptation-Procedure (FIAP).

3.4.1 Test cases for grid movement

The adaptation scheme presented above is tested on the simple geometry of fig. 3.14.
The smaller circle performs a rotation of full about the bigger one back and forth, i.e.
θ(τ) = π(1 − cos(2πτ)), with τ ∈ [0, 1]. The first simulation has been carried out using
only a combination of mesh deformation, edge-swapping and barycentric smoothing to
complete one rotation in 32 steps. In fig. 3.16 (left column) the grid obtained at different
time steps is shown. The initial spacing distribution is progressively lost, although the
overall element quality is fairly maintained during the movement and the smallest element
remain close to the rotating circle.

The second simulation has been carried out with the distance based adaptation
algorithm without solving any fluid dynamic equation. At every time step the adaptation
procedure of fig. 3.11 is applied and no other iterations are performed to further adapt
the mesh, e.g. neither the SIAP or the FIAP procedures have been adopted since there
is no solution to adapt on. The grids obtained every 16 timesteps are shown in fig. 3.16
(right column). The initial grid spacing is very well preserved as well as the grid quality.
Indeed the minimum and the average value of the quality of the elements, defined in
Eq. (3.3) and shown in fig. 3.15, is higher when the complete mesh adaptation is carried
out.
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(a) Initial grid
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(b) Prescribed movement

Fig. 3.14: Rotation the smaller a circle about the larger one. (a) Initial Grid. (b) The
smaller circle performs a rotation of 360◦ around the center back and forth.
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(s.a) τ = 1/4 (r.a) τ = 1/4

(s.b) τ = 1/2 (r.b) τ = 1/2

(s.c) τ = 3/4 (r.c) τ = 3/4

(s.d) τ = 1/2 (r.d) τ = 1/2

Fig. 3.16: Grid evolution for different values of the non-dimensional time τ . Left column swap-
ping and deformation, right column complete AP refinement/coarsening based on the distance
from the boundaries.
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Chapter 4

Simulations of reference
compressible flows

Numerical experiments are carried out to test the accuracy of the proposed solution
procedure.

Simulations for both steady and unsteady test cases are carried out. First the com-
putational efficiency of the two adaptation strategies named SIAP and FIAP discussed in
section 3 is evaluated against the standard steady oblique-shock test case in section 4.1,
where no complications in the domain geometry are present and the solution is simple
enough that only two shocks are featured in the flow field, moreover the exact solution
is available [180]. In section 4.2 and 4.3, steady flow simulations around the AGARD-02
and NACA 0012 airfoil are performed to assess the solver capabilities at capturing rele-
vant flow features of transonic flows, including shock waves, shear lines and regions of
smooth flows.

In section 4.4 the shock tube problem first proposed by Sod [167] is tackled to
test the capabilities of the adaptive scheme to describe a transient solution. The Sod
problem features simultaneously a shock waves, a contact discontinuity and a rarefaction
fan moving inside the domain and an analytical/exact solution is available. It is thus
well suited to study different error sensors in the unsteady case.

4.1 Oblique shock problem

The standard oblique-shock test problem is carried out to compare the efficiency of the
two proposed adaptation strategies. On the left boundary a Mach 3 flow parallel to the
wall is imposed, on the top the imposed solution correspond to a Mach 2.60243 flow
with an incidence of −8.01351◦ and on the right boundary no conditions are imposed
since it is a supersonic outflow. Due to the discontinuity in the boundary condition an
oblique shock (with a −25.60◦ angle with respect to the wall) is generated from the
top-left angle of the domain. The shock is reflected by the solid boundary with an angle
of 20.935◦ and the flow in the last region is supersonic and parallel to the wall.
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Level 0

Level 20

Level 2

(a) Grid (b) Mach number

Fig. 4.1: Grid and Mach number in the flow field for the oblique-shock problem for
SIAP. From top to bottom: original grid (1532 nodes, 2900 elements), intermediate
grid at the 2-nd adaptation level (2735 nodes, 5340 elements), final grid at the 20-th
adaptation level (10557 nodes, 20994 elements).

Level 0

Level 2

Level 11

Fig. 4.2: Grid and Mach number in the flow field for the oblique-shock problem for FIAP.
From top to bottom: original grid (1532 nodes, 2900 elements), intermediate grid at the
2-nd adaptation level (3787 nodes, 7460 elements), final grid at the 11-th adaptation
level (11500 nodes, 22916 elements).
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Fig. 4.3: Comparison between analytical and numerical solution at y = 0.4 for the
oblique-shock problem for different adaptation steps and strategies.

The initial grid is shown in fig. 4.1 (a-top) and it is made of 1532 nodes and 2900 el-
ements. The steady adaptation procedure on the gradient of the Mach number is carried
out until convergence on both grid and solution is achieved using the two proposed strate-
gies (SIAP and FIAP). A minimum element area of 10−6 is imposed in both cases. The
computations are interrupted when the relative difference of the area-averaged mean error
µw of two successive adaptation cycles is below 2%, namely

(
µs+1

w − µs
w)
)

/µ0
w < 0.02.

Since only shocks of comparable intensity are present in the flow field the multipassage
strategy has not been used.

In fig. 4.1 the evolution of the grid and of the solution in terms of Mach number at
different adaptation levels for the SIAP technique is shown. The grid converges after
20 steps and the final grid is made of 10557 nodes and 20994 elements. In fig. 4.2 the
grid and Mach number contour lines for the FIAP technique are shown. The adaptation
procedure is stopped after 11 iteration and the adapted mesh is made of 11500 nodes
and 22916 elements.

Fig. 4.3 shows the numerical solutions at y = 0.4 against the exact one for both
the SIAP and the FIAP procedures. The FIAP technique shows better results after the
second adaptation step already, indeed a higher number of nodes was inserted before
the solution is re-computed.

Fig. 4.4(a) shows the error and number of points at each time steps in the SIAP

case. The algebraical error µ increases, due to the redistribution of elements from low
error regions (constant solution regions) to high error regions (shock waves), while the
mean error scaled on areas µw decreases. When the minimum area threshold is reached
the value of µw remains quite constant and the higher values of the error are located
on the smaller elements. In the FIAP case, shown in fig. 4.4(a), a similar behavior is
obtained but a sharper decrease in the area weighted error can be observed. The lower
“readiness” of the SIAP scheme in terms of mesh adaptation is very well highlighted in
fig. 4.4(b). At the fifth iteration the adapted grid is made of roughly 40000 elements,
which causes the smaller elements size to be close to the minimum value. For this reason
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a sharp increase in the number of elements that can not be refined is observed together
with a decrease in the number of elements of the grid, that are removed from the low
error regions and added in the high error ones. In the SIAP case almost 15 iterations
are needed for the number of elements to be roughly constant, while in the FIAP case,
shown in fig. 4.4(d), only three iterations are necessary to enforce the constraint on the
minimum area.

The computational times are 170m 01s using SIAP and 53m 28s using FIAP on a
single core of an Intel Xeon QuadCore 3.166GHz. Therefore, in the present case the time
necessary to perform a single solution plus adaptation step two times higher when the
SIAP technique is adopted instead of the FIAP, possibly because a better initial guess
is computed in the FIAP case which reduces the time required to reach steady state.

4.2 AGARD 02 airfoil

The adaptation scheme is tested on a standard transonic aerodynamic problem, namely
the steady flow past a AGARD-02 airfoil [201]. The Mach number of the undisturbed
flow is 0.85 with an angle of attack of 1◦. As result two compression shocks are present,
the most intense of the two is located near the trailing edge on the upper side of the
airfoil, while the weaker one is on the lower side. A shear wake is also detaching from
the trailing edge since the jump of total enthalpy and pressure is different between the
upper shock and the lower one.

The initial grid, shown in fig. 4.5 (a-top), is made of 3467 nodes and 6704 elements.
The FIAP scheme is used to adapt the grid to the sensor defined in Eq. (3.8) as a
function of the Mach number. The multi passage strategy is used with one level of
refinement. The procedure is interrupted when the variation of the area weighted mean
error between two subsequent iterations is lower than 1% of the initial value of µw. The
minimum allowed element size is set to 1 × 10−6.

In fig. 4.5(a) the computational grids obtained at the first adaptation step (5552
nodes and 10806 elements) and at the final one (13539 nodes and 26791 elements)
are shown. The adopted sensor, which is proportional to both the gradient and the
Hessian of the Mach number, and the multi passage strategy allows to capture both the
shocks and the rarefaction close to the nose of the airfoil. The airfoil wake, shown as a
discontinuity in the Mach number profile, is only mildly captured in the region close to
the trailing edge. Indeed the intensity of contact discontinuity is sensibly weaker than the
one of the shocks and the rarefaction. Two or three multi passages should be sufficient
to better capture this feature but a strong increase in the number of elements is to be
expected near the leading edge as well.

In fig. 4.6(a) the Mach number distribution along the airfoil as a function of x/c
is shown. The solution obtained with the adaptive scheme is compared with the one
obtained on a fixed grid of 21383 nodes and the reference solution computed by Yoshihara
and Sacher [201] on a structured grid of 20480 nodes. The adapted solution agrees fairly
well with the references and the position of the shocks is predicted correctly.

The solution obtained with the adaptation scheme is compared with the solution
obtained with the same scheme but with a smaller minimum area threshold. With
Vmin = 5 × 10−7, the adaptation procedure converges after 11 iterations and the final
grid is made of 15716 nodes, whereas, with Vmin = 3×10−7, 13 iterations are necessary
to produce a grid made of 18174 nodes.



Simulations of reference compressible flows 87

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

µ
µw

σ

E
rr

or

s

(a) Error SIAP

0 5 10 15 20
0

20000

40000

Grid elements

Elements not refinable

N
u
m

b
er

o
f

el
em

en
ts

s

(b) N. of elements SIAP

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25 µ
µw

σ

E
rr

or

s

(c) Error FIAP

0 2 4 6 8 10
0

10000

20000

30000

40000
Grid elements

Elements not refinable

N
u
m

b
er

o
f

el
em

en
ts

s

(d) N. of elements FIAP

Fig. 4.4: Adaptation technique for both SIAP and FIAP procedures. (a) and (c): al-
gebraic mean µ, area-averaged mean µw and standard deviation σ as a function of the
adaptation steps for the steady-state oblique-shock problem. (b) and (d): number of
grid elements and of not refinable elements as a function of the adaptation step. Note
that the scale of the x-axis is different for the SIAP and the FIAP plots.
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Level 0

Level 1

Level 9

(a) Computational Grid (b) Mach number

Fig. 4.5: Computational grid and Mach number contour lines, 25 levels in the range
0.07 ÷ 1.4, for the AGARD 02 test case. The minimum element size is equal to Vmin =
1 × 10−6. Three adaptation levels are shown: the initial grid of 3467 nodes and 6704
elements, the first adapted grid of 5552 nodes and 10806 elements and the final grid
13539 nodes and 26791 elements.
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Fig. 4.6: Mach number distribution along the airfoil as a function of x/c. (a) Confronta-
tion between the solution obtained with the adaptive scheme, with Vm,min3 × 10−7, the
one obtained on a fixed grid made of 21383 nodes and 41368 elements and the refer-
ence solution computed by Yoshihara and Sacher [201] on a structured grid of 20480
nodes. (b) Confrontation between the solution obtained using the adaptation scheme
with different threshold for the smallest element: 1 × 10−6, 5 × 10−7 and 3 × 10−7.

In fig. 4.6(b) the Mach number distribution along the airfoil is compared for the
three adaptation schemes. Reducing the minimum area to 3 × 10−7 causes the shock
on the lower side to move aft, while the upper shock moves fore. If compared to the
reference [201], the position of the lower shock is better predicted in the most refined
case, whereas the upper shock is closer to the reference in the least refined one. The
location of the shock is extremely sensible to the computational grid, indeed the variation
between the finest and the coarsest adapted grids is roughly 2% of the chord and the
shock computed by the solution over the fixed grid of fig. 4.6(a) is located just in between
the reference and the coarsest adapted grid.

4.3 NACA 0012 airfoil

The case of the compressible inviscid flow developing past a NACA 0012 airfoil at 5◦

incidence and Mach = 0.7 is discussed. This transonic flow is characterized by the
presence of a shock wave located at about 45% of the chord and by a slip (entropy) line
detaching from the trailing edge.

The initial grid, made of 3179 nodes and 6030 elements, is shown in fig. 4.7 (top)
together with the contour lines of the Mach number. The grid is adapted on the
mixed Hessian-Gradient of the Mach number and one multi passage is used, as done in
section 4.2, but this time the SIAP procedure is used and the minimum element area is
set to 1×10−7. The adaptation procedure is stopped when the relative variation of µw is
lower than the threshold τE = 0.01 and the obtained grid is shown in fig. 4.7 (bottom).
Differently from the AGARD-02 case of section 4.2 the refinement scheme captures fairly
well the shock, the rarefaction on the nose and the rotational wake. This is caused by
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Level 0

Level 15

Fig. 4.7: Grid and Mach contour for NACA 0012 at Mach = 0.7. (top) original grid
(3179 nodes, 6030 elements) and isolines (25 levels from 0.08 to 1.5). Second row:
15-th adaptation level (26499 nodes, 52568 elements) and isolines (25 levels from 0.08
to 1.5).

the fact that the only one shock is present in the flow field and the variation in the
entropy between the upper and the lower side of the contact discontinuity is stronger.

Figure 4.8 shows the pressure coefficient over the airfoil after 0, 1 and 15 adaptation
steps. Fig. 4.9 (left) shows the algebraic mean, the area-averaged mean and the standard
deviation as a function of the adaptation step. Fig. 4.9 (right) shows the number of grid
elements at each adaptation step and the number of elements that cannot be refined
since Vm < 10−7. During the first iterations, both µ and σ decrease, due to the insertion
of additional nodes close to the airfoil. When the fifth adaptation cycle is reached these
quantities increase because new nodes are inserted close to flow discontinuities (i.e. large
error regions) and simultaneously elements are removed from low error regions. As new
grids are produced, the number of elements that cannot be refined increases. From the
tenth to the last adaptation step, no new nodes are added and only mesh coarsening
occurs.
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Fig. 4.8: NACA 0012 at Mach 0.7. Pressure coefficient over the airfoil for the initial
grid and for adapted grids (first and last adaptation steps).
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Fig. 4.9: (Left) algebraic mean µ, area-averaged mean µw and standard deviation σ as
a function of the adaptation step for the steady-state NACA 0012 simulations. (Right)
number of grid elements and of not refinable elements as a function of the adaptation
step.
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Max No. Max No.
Grid Vm/10−7 Lm/10−4 Nodes Elements

Fixed 3 ÷ 30 8.3 ÷ 26.3 29718 58586
Initial 3 ÷ 1000 8.3 ÷ 151.2 3797 7401
Adapt. Fine 3 ÷ 1000 8.3 ÷ 151.2 13358 26421
Adapt. Coarse 30 ÷ 1000 26.3 ÷ 151.2 13358 26421

Tab. 4.2: Minimum/maximum area allowed and number of nodes/elements for the
different simulations performed for the shock tube problem.

4.4 Sod problem

The first unsteady test case is the Sod shock tube problem [167]. A discontinuous initial
solution is imposed such that a jump is present in the density and the pressure of the
left and right state, as shown in table 4.1. The analytic solution of the corresponding
one-dimensional problem consists of a three waves propagating longitudinally, i.e. along
the tube: a rarefaction fan, a contact discontinuity and a shock.

State ρ u P
Left 1.000 0 1.0
Right 0.125 0 0.1

Tab. 4.1: Left and right state for
the Sod problem. The variables are
non-dimensional see section 2.1.1.

A reference, fixed-grid, solution is first com-
puted over the 5L × L computational mesh of
fig. 4.4 made of 29718 nodes and 58586 elements,
where L is the total length of the tube. A constant
time step, ∆t = 1.25 × 10−4, is adopted to inte-
grate the equations in the non-dimensional time
interval 0 ÷ 0.25. The area of the area of the ele-
ments is 3 × 10−7 for those located near the initial
discontinuity and 3 × 10−6 elsewhere.

The initial grid used to carry out the adaptive computations is shown in fig. 4.10.
It is made of 3797 nodes and 7401 elements, with an area of 9 × 10−7 close to the
discontinuity and 9 × 10−6 elsewhere. Every four time-steps the FIAP procedure, with a
convergence threshold τE = 0.05 and two passages, is carried out to adapt the grid to
the substantial derivative of the density.

In fig. 4.11 the adapted grids at several time levels are shown, one every 0.05 sec-
onds. Although both the rarefaction fan and the shock wave are well captured by the
substantial-derivative-based sensor, the contact discontinuity is not. This is agreement
with Trivellato [181], that showed in the case of the density Eq. (3.9) reduces to

E(s) = ρ

(
∇ ·

m

ρ

)
,

that is equal to zero since the velocity is constant across the contact discontinuity. In
fig. 4.12 a comparison of the density profile obtained with the adaptive scheme and
the exact solution along the center line is shown. The contact discontinuity is strongly
smeared due to the under resolution of the grid.

The mixed Gradient/Hessian of the Mach number sensor is tested on the shock tube
problem. Two different adaptive simulations have been carried out a fine one, with a
minimum element area of 3×10−7, and a coarse one, with a minimum area of 3×10−6.
In fig. 4.13 the computational grids for the fine case at several time levels (every 0.05
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(a) Fixed grid, made of 29718 nodes and 58586 elements. Vm ∈ (3 × 10−7, 3 × 10−6).

(b) Initial grid, made of 3797 nodes and 7401 elements. Vm ∈ (3 × 10−7, 1 × 10−4).

Fig. 4.10: Initial grids used for the “fixed grid” and the adaptive simulations.

time units) are shown, while fig. 4.14 shows the grids for the coarse case. In both the
simulations the sensor captures all the features of the flow field remarkably and the
maximum spacing is recovered in the uniform flow regions.

In fig. 4.15 and 4.15 the density profile is plotted as a function of the non dimensional
coordinate x/L along the center line of the domain, i.e. y/L = 0.5. The solution
obtained on the fixed grid of fig. 4.4 is also shown, together with the exact solution, at
several time steps. Due to its non-linear nature, once settled on its viscous profile, the
normal shock propagates unmodified along the domain. The linearly degenerate contact
discontinuity, however, is progressively smeared out by the numerical diffusion and, as
time proceeds, the maximum value of the derivative of the solution decreases. This
difference in the nature of these discontinuities is reflected on how the grid adaptation
procedure. Indeed in fig. 4.13 is clearly visible that, while the mesh spacing across
the shock is kept constant during the simulation, the refined zone across the contact
discontinuity is progressively enlarged and unresolved with a progressive change in the
intensity of the gray tone.

As shown in fig. 4.15 and 4.15, the solution computed over the fixed grid is overlaps
fairly well the solution obtained with the coarse adaptive scheme. Indeed the maximum
grid spacing for the fixed grid case is equal to the minimum one for the adaptive case,
therefore both the discontinuities are resolved over a mesh that has roughly the same
spacing.

The computations have been performed with a Intel Core 2 Duo T7500 processor
at 2.20GHz. The fixed grid computation required 48 h, 57 m and 37 s (∼88.1 s per
iteration), the coarse adaptive one required 8 h, 49 m and 32 s (∼15.9 s per iteration)
and the fine adaptive simulation required 34 h, 12 m and 35 s, (∼61.6 s per iteration).
In the present case, therefore, the use of the adaptive scheme allowed to obtain more
than a ×5 speed-up with respect to the fixed grid case, that has a similar accuracy.
Indeed the fixed-grid case over resolved large regions that featured a uniform flow.
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Fig. 4.11: Computational grids at various time levels, ∆t = 0.05, obtained adapting on
the substantial derivative of the density with a minimum allowable area of 3 × 10−7.
t = 0, 3797 nodes, 7401 elements; t = 0.05, 13035 nodes, 25765 elements; t = 0.10,
21542 nodes, 42708 elements; t = 0.15, 27171 nodes, 53905 elements; t = 0.20, 31007
nodes, 61535 elements; t = 0.25, 33899 nodes, 67280 elements.
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Fig. 4.12: Comparison between the density profile obtained adapting on the substantial
derivative of the density and the exact solution, along the center line.

4.5 Forward facing step

The supersonic forward-facing step problem made famous by Woodward and Colella [199]
is here presented. This test case is particularly well suited to test the solver capabilities
in capturing very complex flow fields made by curved shocks that interacts with the
wall and with other discontinuities. Supersonic conditions are imposed at the inlet, i.e.
M = 3, slip conditions are imposed on the lower and upper boundaries of the duct and
no conditions are imposed at the outlet. The initial solution is uniform and correspond
to the one imposed at the inlet, namely P = 1.0, m/ρ = (3, 0)T and ρ = 1.4.

Two different computations have been carried out: a reference one with a uniform
fixed grid of and an adaptive one. The fixed grid is made of 48324 points and 95618
elements, with an average element area of 2.7 × 10−6. A second-order BDF scheme is
used to integrate the equations with non-dimensional time-step of 1/300, corresponding
to a maximum Courant number of 1.67.

The adaptive procedure is performed starting from an initial grid made of 7603 nodes
and 14799 elements, with an average element area of 4.33×10−5. The minimum allowed
element area for the refinement is 1 × 10−5, which is roughly twice the nodes spacing
of the fixed grid case. A Forward Euler scheme is adopted to integrate the equations
in time and the non-dimensional time-step is again equal to 1/300 corresponding to a
maximum Courant number 2.67. The mixed Hessian/Gradient of the Mach number error
estimator of equation (3.8) is adopted together with a multi-passage approach [117] with
two levels. Due to the small value of the Courant number, the FIAP procedure is carried
out at every time step without looping over the adaptation step s, i.e. using a three
step procedure: solution prediction, adaptation and correction.

In fig. 4.17–4.20 the density distribution and the grid obtained the adaptive scheme
are shown together with the fixed-grid and the reference solution [199] at four different
time steps. In both the fixed and the adapted computations the front curved shock is
very well captured and it appears to be sharper than the shock of the reference case.
In the adapted case however the weaker shocks are not sufficiently highlighted by the
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Fig. 4.13: Computational grids at various time levels, ∆t = 0.05, obtained adopting the
blended Gradient/Hessian of the Mach number as sensor with a minimum allowable area
of 3×10−7. t = 0, 3797 nodes, 7401 elements; t = 0.05, 12658 nodes, 25042 elements;
t = 0.10 13358 nodes, 26421 elements; t = 0.15, 12665 nodes, 25029 elements; t =
0.20, 11888 nodes, 23468 elements; t = 0.25, 10736 nodes, 21139 elements.
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Fig. 4.14: Computational grids at various time levels, ∆t = 0.05, obtained adopting the
blended Gradient/Hessian of the Mach number as sensor with a minimum allowable area
of 3 × 10−6. t = 0, 3797 nodes, 7401 elements; t = 0.05, 4636 nodes, 9015 elements;
t = 0.10, 4179 nodes, 8099 elements; t = 0.15, 4522 nodes, 8767 elements; t = 0.20,
4751 nodes, 9225 elements; t = 0.25, 4844 nodes, 9495 elements.
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Fig. 4.15: Comparison between the density profiles obtained adapting on the Hes-
sian/Gradient of the Mach number, the fixed grid solution and the exact solution, along
the center line.
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Fig. 4.16: Comparison between the density profiles obtained adapting on the Hes-
sian/Gradient of the Mach number, the fixed grid solution and the exact solution, along
the center line.

sensor: for example the upper portion of the shock in fig. 4.5 and the discontinuity
reflected by the lower boundary in figures 4.5 and 4.5 are significantly diffused. Even
though the rarefaction fan is only slightly captured by the adaptation scheme, the overall
solution does not seem to be penalized. Indeed, in all the presented cases, both the front
and the reflected shocks are curved due to the interaction with the expansion fan.

As a final remark it has to be noted that the adapted grid computations resulted to
be roughly ten times faster than the fixed grid ones on a single core machine. Moreover
the total number of nodes required in the adaptive computation varies from 14% to 25%
of the nodes used in the fixed case.
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Fig. 4.17: Comparison of the density contours with the fixed grid computations and the
reference [199] and computational grid at the non-dimensional time 0.500543.
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Fig. 4.18: Comparison of the density contours with the fixed grid computations and the
reference [199] and computational grid at the non-dimensional time 1.00044.
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Fig. 4.19: Comparison of the density contours with the fixed grid computations and the
reference [199] and computational grid at the non-dimensional time 1.50285.
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Fig. 4.20: Comparison of the density contours with the fixed grid computations and the
reference [199] and computational grid at the non-dimensional time 2.00456.
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Chapter 5

Simulations of compressible
flows around rotorcraft blade

sections

Helicopter simulation is a challenging problem due to the complexity of the flow field
generated by the rotor disk, and the interaction between the vortices with the blades
and fuselage.

The accurate computation of helicopter flow field in both hover and forward flights
is indeed to be a complex task to tackle. Reliable prediction of helicopter performance
strongly dependend on the accuracy of the prediction of the transonic flow past the blade
on the advancing side of the rotor and on the resolution of blade-vortex and blade-wake
interactions. Therfore a robust and accurate compressible CFD solver is essential in
computing the flow around rotor blades.

An attempt to entirely simulate the main rotor system of a helicopter requires a
multidisciplinary approach, involving coupling of the flow and structure models. In
addition, either multi-block structured meshes or unstructured meshes are needed, and
massive parallelization is a must for solving an entire helicopter including the fuselage and
tail rotor. Recent comprehensive surveys of the current status of helicopter aerodynamics
including both the theoretical and experimental work can be found in the article by
Conlisk [42] and the book by Leishman [111] and by Friedmann [66]. While an extensive
review on CFD for rotorcraft applications has been written by Caradonna [32].

Due to the increase in computational power of the last decades, simplified approaches
to helicopter aerodynamics, e.g. momentum theory, blade element theory and actuator
vortex theory, have been partially overtaken by CFD methods. The first rotor simulation
has been carried out in 1987 by Agarwal & Deese [5], which solved the Euler equations
accounting for rotor-wake effects by computing the local induced downwash with a free
wake analysis method. Agarwal & Deese also performed the first RANS simulation in
1988 [6].

Srinivasan and McCroskey [171] performed Euler calculations of unsteady interaction
of advancing rotor with a line vortex. The calculated results were compared to the two-
bladed model helicopter rotor experiment by Caradonna and Tung [33] and consisted of
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parallel and oblique shock interaction. Their results showed that subsonic parallel blade-
vortex interaction was almost two-dimensional. However in the transonic regime, the 3D
effects were found to be relevant. Boelens et al. [24] performed computations for one
rotor blade in hover focusing on vortex wake prediction solving the arbitrary Lagrangian-
Eulerian (ALE) formulation of the Euler equations over a mesh made of 823599 nodes
and 726784 elements.

As briefly discussed in section 1.1, the stability of the majority of the CFD solvers
is ensured by the introduction of a certain amount of numerical dissipation, which is
generally proportional to the mesh size. To this purpose a method that captures the
vortical structures in order to properly resolve a helicopter wake is crucial, since excessive
numerical dissipation may lead to wrong preditction of the intensity of the wake or the
vortices.

To this purpose the idea of Vorticity Confinement, first proposed by Steinhoff, has
shown to be effective in treating concentrated vortical regions in coarse grids. This
methods has also been applied to flows over airfoil [191], wings [119] and rotorcrafts [29],
however it is also somewhat controversial since its anti-diffusive nature may lead to non-
physical results [139]. Another approach that can be adopted consists in increase the
grid resolution in the region of the domain that surrounds the vortex core. Tang and
Baeder [175] used an ALE Euler solver to simulate the parallel blade-vortex interaction,
where mesh a deformation algorith was used to gather mesh points close to the vortex.
Oh, Kim, and Kwon [142] used adaptive grids to simulate the parallel BVI.

In the following sections typical two-dimensional problems for rotorcraft blade sec-
tions are presented. The idea is to apply the adaptive scheme outlined in chapter 3
and 2 to perform high-resolution computations involving pitching motion in section 5.1,
airfoil start-up in section 5.2 and parallel blade-vortex interaction in section 5.3.

5.1 Pitching Airfoil

In the present section compressible inviscid subsonic and transonic flow computations
around a pitching NACA 0012 airfoil are presented. The variation of the angle of attack
in time is prescribed analytically as a sinusoidal function, namely

α(t) = α0 cos(pt), with 0 ≤ t ≤ 4π
p , (5.1)

where α(t0) = 5◦ is the initial angle of attack and p = 0.1628 is the dimensionless
reduced frequency, obtained scaling the dimensional quantity with the asymptotic ve-
locity U∞ and the chord c∞. The time variable t of Eq. (5.1) is scaled as described in
section 2.1.1. The angle of attack of the airfoil with respect to the asymptotic flow is
changed by rotating the airfoil around the nose point.

Simulations on both reference and adaptive grid have been performed. The reference
grid is made of 29201 nodes, 57762 elements. A steady state solution is first computed
at α = α0 that is used as the initial one for the unsteady simulation during which the
whole grid rotates rigidly with the airfoil, i.e. the ALE formulation is used to account
for the movement but no deformation of the elements occur.

Similarly for the adaptive simulation a steady state is first obtained. During the
steady state computation the FIAP procedure is used to adapt the grid to the mixed
Hessian/Gradient of Mach number, with one level of multi-passage and τE = 0.01. For
the unsteady simulations the adaptation procedure outlined in fig. 3.11 is used, where
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Fig. 5.1: Lift coefficient versus angle of attack curves for the subsonic, i.e. M∞ = 0.3,
pitching NACA 0012 case obtained using two different time-steps.

the airfoil is moved, the grid is deformed consequently and then the grid is adapted.
Moreover the convergence criterion is relaxed, setting τE = 0.05.

For simplicity a reference non-dimensional time-step is defined as ∆t0 = 0.3856.
Numerical simulations have been performed using a Forward Euler scheme and two
different time-steps integration: ∆t = ∆t0 and ∆t = 2∆t0, respectively 0.5% and
1% of the whole simulation time T = 4π/p. Due to the strong unsteadiness of the
phenomenon, the adaptation procedure has been applied at each time-step.

In section 5.1.1 the subsonic case is presented and in section 5.1.2 the transonic one
described.

5.1.1 Unsteady subsonic flow around the pitching NACA 0012
airfoil

The subsonic case, where the Mach number of the external flow is 0.3, is first discussed.
The effect of the variation of the time step in terms of lift coefficient are first studied.
The lift coefficient is defined as

CL(t) = −
∮

∂Ω,wall

Cp(s, t) ny(s, t),

that in the finite volume representation of the equations becomes

CL(t) = −
∑

k∈K∂,wall

Cp(uk, t) ξ̂y,k(t),

where ξ̂y,k is the component of ξ̂k along the axis normal to the free flow. Fig. 5.1 shows
the curves CL − α obtained with the two different time-steps. Both the curves obtained
over the reference grid, shown in fig. 5.1(a), and the ones obtained with the adaptive
procedure, shown in fig. 5.1(b), suggests that the CL − α curve are mildly sensible to
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Fig. 5.2: Lift coefficient versus angle of attack curves for the subsonic, i.e. M∞ = 0.3,
pitching NACA 0012 case obtained using two different time-steps.

the time-step used. In fig. 5.2 the CL − α curves obtained with fixed grid and adaptive
procedure are plotted together; no relevant differences can be observed.

Fig. 5.3 shows the adaptive grid at different time-steps; at t = 0 the nodes are
primarily gathered around the airfoil, and in particular near the leading edge where the
Mach gradients are very strong. At successive time instants the pitching motion of
the airfoil is responsible for a continuous release of vorticity from the trailing edge and
the grid is adapted to refine the elements in the wake region. Indeed, estimating the
interpolation error with the spatial variation of the Mach number allows also to capture
the shear surfaces. In fig. 5.4 and 5.5, the Mach contour obtained using adaptive
procedure and reference grid at different time-steps are shown. It can be observed how
the intensity of the discontinuity across the wake is weak, compared to the rarefaction
near the nose, however the use of the multipassage strategy allows to capture this feature
as well.

The time required to run the simulations over a single core of an Intel CoreT M2 Duo
T7500 processor at 2.20GHz is 14 hours, 17 minutes and 13 seconds for the computation
on adaptive grid with ∆t = ∆t0 and 80 hours, 35 minutes and 58 seconds for the
computation on reference grid. A speed-up of roughly ×5.5 is achieved with the adaptive
strategy.

5.1.2 Unsteady transonic flow around the pitching NACA 0012
airfoil

The case of the compressible inviscid flow at M∞ = 0.755 developing around a pitching
NACA 0012 at is now discussed.
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Fig. 5.3: Computational grid at several timesteps for the the subsonic, i.e. M∞ = 0.3,
pitching NACA 0012 case obtained with ∆t = ∆t0.
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Fig. 5.4: Mach contour lines at several timesteps for the the subsonic, i.e. M∞ = 0.3,
pitching NACA 0012 case obtained with the adaptive scheme and ∆t = ∆t0.
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Fig. 5.5: Mach contour lines at several timesteps for the the subsonic, i.e. M∞ = 0.3,
pitching NACA 0012 case obtained with ∆t = ∆t0 over the reference grid.
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Fig. 5.6: Lift coefficient versus angle of attack curves for the transonic, i.e. M∞ = 0.755,
pitching NACA 0012 case obtained using two different time-steps.

As for the subsonic test case, a convergence study of the solution expressed in terms
of the CL − α curve has been conducted. Fig. 5.6 shows that the curves CL − α
are unrelated to the time-step used. Fig. 5.7 shows the curves CL − α obtained with
reference grid and adaptive procedure using ∆t = ∆t0; compared to the previous cases
the effects of the grid spacing on the curves are emphasized, possibly because of the
presence of a shock wave in the flow-field.

Fig. 5.8 shows the adaptive grid at different time-steps t during the simulation. The
grid obtain with the steady adaptation, i.e. fig. 5.8 (t = 0), finely captures the shock
wave, the contact discontinuity starting from the trailing edge, and the leading edge
rarefaction.

The unsteadiness of the phenomenon is very well captured by the scheme, indeed
the reduction/growth in terms of intensity of the shock and the shear wake are followed
by the grid. The FIAP procedure is therefore fast enough to follow the variation of the
flow field with the given time step. In fig. 5.8, however, the dependency of a grid from
the grid used at the previous time steps is still visible. Indeed the movement of the the
shock wave from the upper to the lower side of the airfoil causes an over refinement in
the region fore of the shock itself, e.g. fig. 5.8 (t = 25.85).

In fig. 5.9 and 5.10, the Mach contour obtained using adaptive procedure and refer-
ence grid at different time-steps are shown. Compared to the fixed-case, both the shocks
and the shear wake obtained over the adaptive grid are sharper.

The CPU time required to run the simulations on a single core of an Intel CoreT M2
Duo T7500 at 2.20GHz with ∆t = ∆t0 is 5 hours, 27 minutes and 47 seconds for
the computation on adaptive grid, while 22 hours, 52 minutes and 47 seconds for the
computation on reference grid. A speed-up of roughly ×4 is achieved with the adaptive
strategy.
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Fig. 5.7: Confrontation of the lift coefficient versus angle of attack curves for the tran-
sonic, i.e. M∞ = 0.755, pitching NACA 0012 case obtained using time-step ∆t = ∆t0

over the reference and the adaptive grid.

5.2 Start-up vortex from the NACA 0012 airfoil

The proposed methodology is now applied to the computation of the 2D unsteady flow
past the NACA 0012 airfoil impulsively set into motion. Since the generation of the
vortical structure is not due to the viscous effects but to the singularity in the geometry
of the body, Euler equations can be used to correctly represent the space-time evolution
of the start-up vortex in the computational domain.

As a consequence of lift generation over the airfoil, a trailing-edge vortex is produced.
This vortex is named start-up vortex and its dynamics strongly influence the time history
of the force coefficient over the airfoil. Since a clockwise circulation around the airfoil
is generated, the starting vortex is associated to a counterclockwise circulation. As
the distance between the airfoil and the start-up vortex increases due to their relative
motion, the influence of the latter on the aerodynamic coefficients vanishes. Eventually,
the steady-state value of lift coefficient CL(t) and circulation is attained.

The influence of the start-up vortex dynamics on the airfoil is very difficult to investi-
gate numerically. Since both the flow field around the airfoil and the start-up vortex need
to be captured accurately at the same time, indeed the circulation around the airfoil and
the intensity of the start-up vortex balances instantaneously, due to the Kelvin’s circula-
tion theorem. It is therefore mandatory to adapt the computational grid in an unsteady
fashion to follow the vortex dynamics and, at the same time, accurately compute the
flow field close to the airfoil.

In the numerical tests the free stream velocity is a step function that starts at zero
and reaches its asymptotic value V∞ at the time t > 0, i.e. a uniform flow at V∞ is used
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Fig. 5.8: Computational grid at several timesteps for the the transonic, i.e. M∞ = 0.755,
pitching NACA 0012 case obtained with ∆t = ∆t0.
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Fig. 5.9: Mach contour lines at several timesteps for the the transonic, i.e. M∞ = 0.755,
pitching NACA 0012 case obtained with the adaptive scheme and ∆t = ∆t0.
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Fig. 5.10: Mach contour lines at several timesteps for the the transonic, i.e. M∞ =
0.755, pitching NACA 0012 case obtained with ∆t = ∆t0 over the reference grid.
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Fig. 5.11: Impulsively-started NACA 0012. Mach = 0.7, α = 10◦: lift coefficient time
history for the reference grid against solution over the initial coarse grid for different
values of the time step using the one-step BDF1 (top) and the two-step BDF2 (bottom)
schemes (c). In (b) and (d) an enlarged view of the time interval across the minimum
CL is shown.

as initial condition. In the computations, the time variable t is made dimensionless by
the free-stream velocity V∞ divided by the airfoil chord c. The considered dimensionless
time interval is t V∞

c
∈ [0, 5].

Tests were performed for a free-stream Mach number M∞ = 0.7 and for α = 10◦

incidence. Simulations on both adapted and fixed grid were carried out. The fixed grid
used to compute the reference solution is made of 29367 nodes and 58094 elements.
The adaptation process starts from an initial grid made of 4989 nodes and 9627 elements
and the FIAP procedure is performed at every time-step until a the variation of µw is
lower than the 5% of the initial value. Two computations with different thresholds for
the minimum area of the elements, namely, 3 × 10−5 and 3 × 10−4 have been carried
out. The error is evaluated as the Gradient/Hessian of the local Mach number.
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Fig. 5.12: Impulsively-started NACA 0012 for Mach = 0.7, α = 10◦: close-up of the
computational grids at three different time levels (a) and reference grid (b).
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Fig. 5.13: Impulsively-started NACA 0012 for Mach = 0.7, α = 10◦: contour line of the
Mach number and of the pressure coefficient CP at different time levels computed with
the adaptive scheme.

First, to assess time convergence, a comparison between the solution obtained over
the reference grid and the initial one, without the adaptive scheme, have been carried
out. Time integration over the reference grid were performed using the BDF1 scheme
with ∆t = 0.0164, while both the first and second order BDF schemes were used over
the initial grid for ∆t = ∆t0 = 0.0103, ∆t = 2∆t0, ∆t = 4∆t0. Results for the lift
coefficient CL as a function of the non dimensional time are reported in fig. 5.11 and
demonstrate time convergence to the reference solution for the smallest time step for
both the BDF1 and BDF2 schemes. For BDF2, the solution is almost indistinguishable
from the reference also for ∆t = 2∆t0. Therefore, the simulations were run using the
FIAP adaptation procedure with ∆t = ∆t0 and the BDF1 time integration scheme.

Fig. 5.12 shows the adapted grids for the simulation with the minimum element area
equal to 3 × 10−5 at three different dimensionless time levels. These correspond to the
minimum of the lift coefficient (t V∞/c = 0.453, 9213 nodes and 18196 elements), a
condition where the influence of the start-up vortex begins to be negligible (t V∞/c =
1.234, 8360 nodes and 16494 elements) and the final configuration (t V∞/c = 4.966,
16986 nodes and 33733 elements), respectively. Fig. 5.13 shows the Mach number and
the pressure coefficient CP in the flow field at the three time levels. The CP − t profile
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Fig. 5.14: Impulsively-started NACA 0012 for Mach = 0.7, α = 10◦: contour line of
the Mach number and of the pressure coefficient CP at different time levels over the
reference grid.

over the airfoil is depicted in fig. 5.15 for the three considered time values. The airfoil
lift coefficient is plotted as a function of the dimensionless time in fig. 5.16.

A shock wave is formed on the top of the airfoils and terminate a supersonic region.
The shock wave evolution is nicely captured by the adapted grid scheme, whereas in the
reference dense grid computations the shock is smeared far from the airfoil. The start-
up vortex is generated at t V∞/c = 0+; its evolution is well captured by the adaptive
scheme, which is also capable of refining the grid close to the slip line from the trailing
edge. With reference to fig. 5.12, in adapted grid simulations a large number of nodes is
added to capture the pressure wave in front of the airfoil which is clearly visible at time
t V∞/c = 1.234); this accounts for the higher computational time. The propagation
of this perturbation does not affect significantly the overall value of the lift coefficient,
which is used here for comparisons. The above can be appreciated in fig. 5.17, where
the total number of grid nodes at each adaptation step is shown. In the finer grid case,
a large number of nodes is inserted during adaptation cycles between 100 and 200 to
capture the pressure wave dynamics. The CPU time required to run each simulation
is 9 hours, 19 minutes and 51 s for the reference simulations, which corresponds to an
average of 110s for time step (305 time steps total), 3 hours, 21 minutes and 29 s (25 s
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Fig. 5.15: Impulsively-started NACA 0012. Mach = 0.7, α = 10◦: pressure coefficient
over the airfoil at different time level for adapted grids.
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Fig. 5.17: Mach = 0.7, α = 10◦: number of grid elements and of not refinable elements
as a function of the adaptation step for element size limit of 10−4 (left) and 10−5 (right).

× 486) for the adapted-grid simulation with minimum element area of 3 × 10−4 and 14
hours, 18 minutes and 44 s (106 s × 486) for a minimum area of 3 × 10−5 on a single
core of an Intel Xeon QuadCore 3.166GHz. The adoption of the adaptation procedure
is found not to influence the (average) computational effort per time step.

5.3 Parallel blade-vortex interaction

In the present section the parallel blade-vortex interaction problem is tackled. The BVI
phenomenon occurs when a rotor blade passes within a close proximity of the shed tip
vortices from a previous blade. This causes a rapid, impulsive change in the pressure
distribution along the blade resulting in the generation of highly directional impulsive
loading noise. It has been shown that the main parameters governing the strength of
a BVI are the distance between the blade and the vortex, termed miss-distance, the
vortex strength at the time of the interaction, and how parallel or oblique the interaction
is [81, 123]. The parallel BVI is the most critical configuration and occurs when the axis
of the filament-like vortex is aligned with the axis of the blade.

Due to the high aspect-ratio of conventional blades a parallel BVI problem can gen-
erally be reduced to a two-dimensional airfoil-vortex interaction (AVI). This approach
is ideal to study the underlying physical mechanisms involved in the interaction as it
removes many of the complications of a three-dimensional BVI simulation and is com-
putationally less expensive. One of the major challenges faced when simulating an AVI
is to preserve the vortex structure accurately as it convects through the solution and
minimize the numerical dissipation that is inherent in CFD simulations. The work of
Oh et al. [142] addressed this problem by the use of adaptive unstructured meshes to
simulate a two-dimensional AVI. This method dynamically concentrates mesh points in
region of large flow gradients, providing high resolution in the region of any vortices and
other important flow features. Excellent results were achieved in this study and a similar
approach has been adopted here.

To better study the capabilities of the adaptive flow solver the simulation vortices
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transport within the flow field, the free-vortex advection problem is first tackled in
section 5.3.1 on both fixed and adaptive grids. The airfoil-vortex interaction problem is
presented in section 5.3.2.

5.3.1 Free vortex advection

The case of the advection of a vortex in an horizontal flow is presented. A two dimen-
sional vortex is represented by the Bagai-Lieshman compressible vortex [9]. The so called
n = 1 Scully [161] model is used for the velocity field, namely

mθ(r̂)

ρ(r̂)
=

2 r̂

(1 + r̂2)
Mc c∞, (5.2)

where r̂ = |x|/rc, rc is the vortex core radius, Mc is a reference value for the vortex
core Mach number and c∞ is the value the speed of sound for r̂ that goes to infinity.
As it is commonly done in the literature the vortex core Mach number can be expressed
in terms of the vortex intensity Γc and radius rc, namely Mc = Γc/(4π rc c∞).

Following Bagai and Lieshman [9], the density and pressure field are computed from
the radial momentum component of the compressible Navier-Stokes equations for an
isoentropic flow and an ideal gas, namely

ρ(r̂) = ρ∞

(
1 − 2

γ − 1

1 + r̂2
M2

c

) 1
γ−1

, (5.3)

and

P (r̂) =
c2

∞ρ∞
γ

(
ρ(r̂)

ρ∞

)γ

(5.4)

where ρ∞ is the density value far away from the vortex.

The compressible vortex defined above is then inserted in a uniform horizontal flow
which is completely defined by the Mach number M∞, the density ρ∞ and the momen-
tum modulus m∞. Indeed, the non-dimensional speed of sound of Eq. (5.2) is therefore
given by c∞ = m∞

M∞ρ∞
. In the present work a unit value has been chosen for both the

free-flow density and momentum, thus only the free-flow and vortex Mach number are
used to completely define the flow field.

Fixed grid computations

The finite-volume scheme is first tested over the compressible vortex advection case. The
free flow Mach number is 0.8, the vortex Mach number is 0.2 and rc = 0.1 grid units.
The lower half of the fixed computational grid is shown in fig. 5.18 together with the
upper half of the density contour lines. The grid dimensions are 240 rc × 120 rc and it is
made of 61015 nodes and 121722 elements. The far field boundary conditions described
in section 2.3.2 are imposed on every side of the rectangular domain, where the far field
state u∞ is taken as the exact solution to the problem, i.e. the rigid displacement of
the vortex along the horizontal axis with velocity M∞c∞.

To test the time-convergence properties of the scheme unsteady computations have
been carried out for different values of the Courant number and with different time
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schemes, i.e. BDF scheme of order 1, 2 and 3. The global Courant number is computed
as

Co =
m∞
ρ∞

∆t

hmin

,

where hmin = 0.005 is the smallest edge of the grid, and ranges between 0.1 and 20.
The computations are interrupted when the vortex has been displaced of 100 core radius,
i.e. t = 10.

In fig. 5.19 the final solution obtained adopting different schemes and time-steps is
plotted in terms of tangential component of the velocity computed along the symmetry
plane, i.e. y = 0. For values of the Courant number lower than 1 the numerical error
introduced by the time scheme is very small, indeed the curves obtained with the three
schemes are overlapped and difference with respect to the exact solution is given by the
error in space. Increasing the Courant number to 1 highlights the differences between
the first order scheme and the more accurate ones. In the Co = 20 case, shown in
fig. 5.19(c), the difference between the exact solution and the numerical one is increased
and the behavior of the three schemes differs. The curve obtained with the first order
BDF is strongly smeared but still monotone. The solution obtained with the second
order scheme is less dissipated but shows an error in phase that is not present in the
other cases. The curve computed with the third-order scheme shows a similar delay in
phase but, differently form the BDF2 scheme, does not show a monotone behavior. This
result is in agreement with the fact that the high-order (in time) extension of first order
TVD scheme does not necessarily share the total variation diminishing property. Indeed
Fernanez [55] showed that in the 1D Sod problem the implicit BDF2-Roe scheme is not
monotone for Co = 5, while Ruuth at al. [159, 88] set a maximum Courant to ensure
monotonicity of a BDF2 scheme in the one-dimensional case at 0.5 times the maximum
Courant of the corresponding first-order explicit scheme.

In fig. 5.20 the iso-vorticity lines at t = 10 are shown for the exact solution, while the
one obtained with the tested numerical schemes are presented in fig. 5.21. The number
of contour lines and the spacing is the same adopted in fig. 5.20.

For Co = 0.1 the numerical solutions are almost distinguishable amongst each other,
while for Co = 1 only the vorticity computed with the first order BDF appear to be
smeared and the effects of the entropy fix are visible, i.e. the different amount of
introduced numerical dissipation between the upper and the lower side of the vortex also
causes an error in phase. For Co = 20 the solution obtained with the first order scheme
is almost completely dissipated, while the one obtained with the high-order schemes
features an error in both phase and amplitude. The non-monotone behavior of the
scheme that has been shown in fig. 5.19(c) is here not visible due to the close-up view,
but it is nonetheless present in the vorticity as well.

Therefore to ensure the monotonicity of the solution the first-order Forward Euler
scheme is adopted, indeed the bound in terms of Courant number is such that the error
introduced by the first order and the high-order schemes is comparable, as shown in
fig. 5.19(a) and 5.21(a).

Adaptive grid computations

As shown in the previous section the artificial dissipation introduced by the scheme is
responsible of the destruction of the vortex core. This can be avoided reducing the time
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Fig. 5.18: Lower half of the fixed mesh and upper half of the initial density contour lines.
The size of the mesh is 240 rc × 120 rc, with 61015 nodes and 121722 elements. The
minimum node spacing is roughly of 0.005 grid units.
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Fig. 5.19: Tangential component of the velocity along the symmetry line as a function
of the radial coordinate at the non-dimensional time t = 10. The vortex displacement
is equal to 100 rc.
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Fig. 5.20: Contour lines of the magnitude of the vorticity vector of the initial solution.
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Fig. 5.21: Contour lines of the magnitude of the vorticity vector obtained at t = 10 with
different time-steps and numerical schemes. The number of contour lines and the scale
is the same adopted in fig. 5.20
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Test Rigid Baeder Baeder
Case Adapted Rigid Adapted 8th order 5th order Kwon

∆vv(T )
∆vv(0) − 1 -0.58 -0.051 -0.05 +0.032 -0.15 -0.02

Tab. 5.1: Variation of the velocity on the edge of the vortex core with respect to the
initial value for the vortex advection problem.

step and the local grid spacing. To this hand the grid adaptation tools described in
chapter 3 are here applied to the vortex transport problem.

The free-flow Mach number is 0.8, vortex core Mach number is 0.255 and vortex
radius is 0.05. The initial grid and the vorticity field are shown in fig. 5.22. The grid
is 480 rv × 80 rv and is made of 33017 nodes and 65368 elements. Away from the
vortex the grid spacing is 0.08, i.e. Vm,max = 3 × 10−3, and around the vortex core
a refined region is created with elements of area 3 × 10−3, i.e. hmin = 0.002. The
geometry-driven adaptation outlined in section 3.3.1 is used to generate a constant area
region inside a circumference of radius 2rv centered on the vortex core. Moreover the
element size decreases linearly and at r ≃ 4rv the maximum area is recovered, as shown
in fig. 5.22(d).

The contour lines for the magnitude of the vorticity vector are shown in fig. 5.22(c).
Although the prescribed solution of Eq. (5.2) is smooth, the vorticity computed with
Eq. (3.6) is slightly non monotone possibly due to the effect of the variable grid spacing.

Following [142], in the unsteady computations the position of the vortex core xn+1
v

is taken as the grid vertex featuring the minimum/maximum of ω within the circle of
radius 0.5 rv centered in xn

v . Following [175] to measure how well the initial solution is
preserved the variation of the velocity along the vortex radius is introduced, i.e.

∆vv(t) = max
i∈K(t)

∣∣∣∣
mi(t)

ρi(t)
− m∞

ρ∞

∣∣∣∣− min
i∈K(t)

∣∣∣∣
mi(t)

ρi(t)
− m∞

ρ∞

∣∣∣∣ .

At a given time the error indicator is thus taken as ∆vv(t)/∆vv(0) − 1.
The FIAP procedure is carried out, without looping over s, to adapt the solution

over a sensor made by the sum of the magnitude of vorticity and the magnitude of the
gradient of ρ and to satisfy the geometric constraints sketched above, i.e. the element
size decreases linearly with the distance from the vortex core but the extrema are bounded
by the smallest and the largest elements present in the the initial mesh, i.e.

A(x, t) = (Vm,max − Vm,min)Av(x, t) + Vm,min, (5.5)

where

Av(x, t) =
1

3
min

(
max

( |x− xv(t)|
rv

, 3

)
, 0

)

is the normalized distance from the core and Vm,min and Vm,max are the minimum and
maximum element area of the domain, respectively.

The computations are carried out with a non-dimensional time step of 5 × 10−4,
which correspond to a Courant number of 0.1, and are interrupted at t = 4, i.e. when
the total distance traveled by the vortex core is 80rv. The final solution and grid are
plotted in fig. 5.23. The overall gird-quality is unsatisfactory and this is indeed reflected
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(a) Initial grid and vorticity contour

(b) Left half of the initial with vorticity contour

(c) Vorticity contour close-up (d) Initial grid close-up

Fig. 5.22: Initial grid and solution vorticity magnitude for the vortex advection problem
with adaptive the scheme. Grid made of 33017 nodes and 65368 elements, hmax = 0.08
and hmin = 0.002, with Vm,max = 3 × 10−3 and Vm,min = 1.863 × 10−6.
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Fig. 5.23: Final grid and solution vorticity magnitude for the vortex advection problem
with adaptive the scheme and no mesh deformation, 40687 nodes and 80623 elements.

over the iso-vorticity lines of fig. 5.23, which appear to be excessively irregular. Overall
the solution obtained adapting over ω and ∇ρ is severely smeared resulting in a 58%
error, as shown in tab. 5.1. This result is unsatisfactory if compared to other adaptive
mesh approaches to the vortex advection problem [142, 175].

As shown in fig. 5.23 the applied adaptive scheme is strongly dissipative. The nu-
merical dissipation introduced by the Roe scheme of Eq. (2.21) is proportional to the
eigenvalues of the Jacobian matrix, i.e. m/ρ, c and ν, and to the cell size, i.e. η. As
detailed in section 2.6, the grid velocity term is split into two different contribution the
deformation one and the correction to take into account the mesh adaptation, namely

νn+1 =
∆Dn+1

∆t
+

∆An+1

∆t
,

where a Forward Euler scheme has been used. The deformation contribution to the area
swept by the interface during the time-step depends from ∆t and, for smooth grid move-
ment laws, lim∆t→0 ∆Dn+1/∆t is bounded and correspond to ν(t). The adaptation
correction however does not depend on the time step and lim∆t→0 ∆An+1/∆t does not
exists. This result does not depend on the type of time-integration scheme adopted and
it is therefore valid for any BDF method as well. From the governing equations point
of view this means that the more the time step is reduced, and the more frequently the
grid is changed, the more numerical dissipation will be introduced by the scheme.

In the adaptation case of fig. 5.23 the grid around core is continuously changing due to
the effect of the vortex displacement and of the solution smearing as well. To overcome
such issue a different approach has been studied that limits the amount of topology
modifications performed to move the vortex core. The mesh deformation algorithm
presented in section 3.1 is modified to displace in rigid-like fashion the elements around
the vortex core, xv, and a predictor/corrector-like scheme is set up as follows

1. First the position of the vertex representing the vortex center point at the new
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time step is predicted as

x̂
n+1
v = xn

v +
∆t

2

(
mn

v

ρn
v

+
xn

v − xn−1
v

∆t

)
,

where mv and ρv are the values of momentum and density on the core node,
respectively.

2. The position of the rest of the grid nodes xn+1
i is computed with the mesh defor-

mation scheme based on the continuum analogy. The difference in size between
the elements close to the vortex core and the elements located in the rest of the
domain allows for the vortex core to be displaced almost rigidly while most of the
mesh deformation is absorbed by the elements located away from the core. To
better enforce the rigid displacement of the vortex the element young modulus
appearing in Eq. (3.1) is modified as

Êe = Av(x, t)(Ee − Ev) + Ev,

where Av is defined in Eq. (5.5) and Ev is the stiffness factor for the elements of
the vortex. In the present work Ev is equal to the minimum Young modulus over
the mesh elements, defined by Eq. (3.1), multiplied by a factor 10−3.

3. Following the FIAP procedure, the solution at the new time step is predicted and
then the position xn+1

v is updated locating the minimum/maximum of the vorticity,
as sketched above. A common issue with the application of the barycentric grid
regularization technique described in section 3.1.1 is the fact that it produces
meshes with uniformly distributed nodes and stretched elements on the boundaries.
In the present case the application of the smoothing technique inside the vortex
core is avoided, since it would a negative impact on the grid spacing, thus on the
solution. The relaxation parameter of Eq. (3.2) is modified as

k̂s = ks Av(x, t),

such that the nodes located inside the core are node moved.

4. The de/refinement scheme outlined in fig. 3.9 and 3.10 is carried out based on
the corrected position for the vortex core and the predicted solution the grid. This
allows to impose simultaneously the constraints based on the error equidistribution
theory and the geometric ones.

5. The solution un+1 is updated with the ALE scheme over the adapted grid.

The solution computed with the scheme outlined above are shown in fig. 5.24(a). The
initial grid quality and spacing are very well preserved, and the vorticity field is very close
to the exact one, indeed, as shown in tab. 5.1 a 5% loss is achieved that is comparable
with the 8-th order scheme from [175]. A similar result can be obtained if no nodes
are inserted or deleted and the movement is carried out only with mesh deformation
and swapping, as shown in fig. 5.24(b). Indeed, since the grid inside the vortex core is
translated almost rigidly, no changes in topology occurs inside this region and the vortex
is thus translating “together” with a high quality/resolutions mesh.
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(a) Adaptive, 36999 nodes and 73198 elements

(b) No-adaptation, 33017 nodes and 65368 elements.

Fig. 5.24: Final grid and solution vorticity magnitude for the vortex advection problem
with the adaptive scheme. (a) Mesh deformation and FIAP adaptation with geometric
constraints on the element dimension. (b) Mesh deformation and swapping only.

5.3.2 Interaction with a NACA 0012 airfoil

The interaction between a NACA 0012 airfoil and a vortex is here presented. The flow
field Mach number is 0.8 and the vortex reference Mach number is 0.259154, which
correspond to Γ = −0.2, i.e. rotating clockwise. The airfoil has a unit chord value, i.e.
c = 1, and the vortex core has a 0.05c radius and the initial position is xv(0) = −5c
and yv(0) = −0.26c.

As shown by [172, 173, 142], when the distance between the vortex and the lower
side of airfoil is sufficiently small an increase in the value of the local velocity on the wall
is observed, while the flow field on the upper side is only slightly affected. This causes
a pressure wave to be released by the nose of the airfoil, that propagates upstream, and
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(a) Grid (b) Mach

Fig. 5.25: Initial adapted grid and solution for a M∞ = 0.8 flow past a NACA 0012
at zero angle of attack. Initial grid is made of 50867 nodes and 100595 elements, i.e.
Vm,min = 4 × 10−7 and Vm,max = 1.

xv/c -0.6 -0.2 0.2 0.6 1.0 1.4

∆vv(t)
∆vv(0) − 1 0.1333 -0.1084 -0.3791 -0.3857 -0.4621 -0.5097

Tab. 5.2: Reduction in vortex intensity measured in terms of tangential velocity across
the vortex core.

a aft movement of the shock wave on the lower side due to the increase in streamwise
velocity. When the vortex reaches the trailing edge the shock wave on the lower side
moves fore, due to the reduction of the jump of velocity/pressure, and as the time
proceeds the original, steady, state is recovered.

First steady computations are carried out with adopting the FIAP adaptive scheme
for the NACA 0012 airfoil test case at zero angle of attack without vortex. The solution
features two strong shocks on the upper and lower side of the airfoil with equal intensity,
indeed no shear surface is present.

The FIAP scheme for steady applications is adopted, i.e. without looping over s,
to adapt the solution to the mixed Gradient/Hessian of the Mach number until a 5%
convergence is obtained for the relative variation of µw. The distance-based adaptation
of section 3.3.1 is also carried out imposing that the size of the elements decreases
with the distance from the airfoil, i.e. evaluating Eq. (3.4) with c1,wall = 4 × 10−6,
c2,wall = 3.897 × 10−3 and c3,wall = 3.897 × 10−2, and with the distance from the vortex
located in xv(0), i.e. evaluating Eq. (5.5) with Vm,max = 1 and Vm,min = 4 × 10−7.
Therefore the area of the elements located inside the core is one order of magnitude
smaller than the elements located on the boundary of the airfoil.

The obtained grid is shown in fig. 5.25(a) which is made of 50867 nodes and 100595
elements. The simultaneous use of the solution-based and the geometry-based adapta-
tion strategies allows to obtain a grid that is very well refined near close to the shocks
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Fig. 5.26: Comparison between the pressure coefficient computed with the adaptive
scheme for the Parallel BVI problem and the Euler [172] and Navier-Stokes [173] refer-
ence solutions.

and, on the other hand, is not under refined where the error sensor is small. Indeed the
grid obtained with the solution-driven scheme only feature very large elements in the
region between the nose of the airfoil and the shock wave, the use of the geometry-driven
scheme avoid such behavior. This “conservative” approach, which limits the grid dere-
finement, is considered a better choice when performing unsteady computations during
which the mesh undergoes significant modifications. In fig. 5.25(b) the contour lines for
the Mach number are shown: the solution is overall symmetric, the shock wave are very
well resolved and no shear wake is present.

To perform unsteady computations where the vortex travels very close to the airfoil,
i.e. with very a small miss-distance, a vortex is “inserted” in the flow field. To this
purpose the initial solution is calculated superimposing the solution obtained with the
adaptive steady computations, i.e. the one of fig. 5.25, and the solution computed
evaluating Eq. (5.2), (5.3) and (5.4) for the vortex with described above. The FIAP

scheme is then carried out without looping over s, i.e. performing one adaptation
procedure per time instant, using a Forward Euler scheme with a non dimensional time-
step of 0.08, corresponding to a maximum Courant number of 80.

The computational grid is shown in fig. 5.27 and 5.28 together with the pressure
contour lines. The grid around the core follows closely the vortex, that is convected
inside the domain and passes at small distance from the airfoil. The vortex, highlighted
as a minimum in the pressure field, looses most of its intensity after the interaction
with the airfoil with a 52% loss in terms of ∆vv when the core is located at 1.4c, i.e.
fig. 5.28(c). Fig. 5.27(b) and 5.27(c) shows that no pressure wave detaches from the
leading edge as reported by [142], this could be caused by a reduction of the vortex
intensity, as shown in tab. 5.2. The fore movement of the shock wave is also only mildly
captured, to this end the reduction of almost 50% of the vortex intensity is a key factor
together with the decrease of mesh quality that is caused by the close interaction of the
vortex and the shock wave shown in fig. 5.28(a).

Fig. 5.26 shows the comparison between the distribution of the pressure coefficient
along the airfoil computed with the adaptive scheme and the reference solutions obtained
with an Euler solver [172] and a Navier-Stokes solver [173]. For xv = 0 the curves on
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(a) xv/c = −0.6, 48928 nodes and 96500 elements

(b) xv/c = −0.2, 48937 nodes and 96516 elements

(c) xv/c = 0.2, 48375 nodes and 95388 elements

Fig. 5.27: Computational grid and pressure contour for the parallel BVI NACA 0012 for
M∞ = 0.8, Mv = 0.259154 and Co = 80.
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(a) xv/c = 0.6, 48254 nodes and 95145 elements

(b) xv/c = 1, 50565 nodes and 99761 elements

(c) xv/c = 1.4, 50178 nodes and 98987 elements

Fig. 5.28: Computational grid and pressure contour for the parallel BVI NACA 0012 for
M∞ = 0.8, Mv = 0.259154 and Co = 80.
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the upper side of the airfoil overlap fairly well, while the value of Cp on the lower side
is higher than expected. This is in agreement with the fact that no compression wave is
detached from the nose and could be caused by the reduction of the vortex intensity, as
discussed above. The position of the lower-side shock and its intensity agree with the
references. For xv = 0.5c the solution shows a better agreement in terms of pressure
coefficient close to the nose, but the predicted aft movement of the upper shock is
significantly underpredicted together with the increase in intensity. As before this is
deemed to be caused by the strong reduction in the vortex intensity shown in tab. 5.2.



Conclusion and future
development

A novel method for compressible gasdynamics for two-dimensional rotorcrafts applica-
tions has been presented. As shown in chapter 2 the ALE Euler equations are discretized
resorting to a standard finite-volume method over adaptive grids. The interpolation step
between the old grid and the adapted one is skipped by exploiting the ALE formulation of
the governing equations and simply integrating them to obtain the solution over the new
mesh. To do so, the modifications to the topology of the grid are locally interpreted in
terms of continuous deformation of the finite volumes built around the nodes, as shown
in section 2.6.

In section 2.5 the convergence properties of the finite-volume scheme has been tested
over a fixed grid for reference compressible flows. The scheme has proven to be first
order accurate in space when discontinuities in the solution are present. The present
implementation of symmetric Gauss-Seidel scheme showed a faster convergence rate
than standard GMRES and LU schemes, when applied to the transonic flow past an
airfoil.

As presented in chapter 3, grid adaptation is performed by resorting to a suitable
mix of very popular and standard techniques: i.e. mesh deformation, edge-swapping,
node insertion and removal. The grid spacing is controlled by both a geometry-driven
and a solution-driven criteria. The capabilities of the former to maintain the initial
grid spacing and quality when large displacements of the boundaries occurs has been
tested in section 3.4.1. Two different procedures have been presented to adapt the
grid to the solution in the steady case: the SIAP, that consists in simple fixed-point
iterations, and the FIAP, in which the error is interpolated amongst refined elements.
Both the procedures have been tested in the oblique shock steady problem, in the
transonic AGARD 02 case and in the transonic NACA 0012 problem. The use of the
FIAP procedure has proven to be extremely beneficial reducing both the number of
iterations required and the overall computational time.

In the unsteady case a fixed-point approach to mesh adaptation has been used,
by iterating until both grid and solution have converged for each timestep. Adaptive
unsteady simulations have been carried out for the Sod problem and the forward facing
step problem, that demonstrate the correctness of the adopted approach to capture
multidimensional unsteady flow features with different intensities.

The adaptive scheme outlined above has been used to tackle typical two-dimensional
problems for rotorcraft blade sections, where mesh adaptation is of primary importance
to perform efficient unsteady computations while highlighting relevant flow features,
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such as shocks, wakes or vortices. High-resolution computations over three selected
problems of interest for rotorcraft aerodynamics have been carried out: an oscillating
airfoil, an impulsively started airfoil and parallel blade-vortex interaction.

In both the cases of the pitching airfoil of the airfoil impulsively set in motion,
presented in section 5.1 and 5.2 respectively, the adaptive grid captures remarkably
well the most important flow features. Moreover the confrontation with reference solu-
tions shows a good agreement. The parallel blade-vortex interaction problem has been
discussed in section 5.3. Preliminary computations had shown that high-order time inte-
gration schemes do not preserve the monotonicity of the solution in the vortex advection
test case and an error in phase is observed for high values of the Courant number. To
reduce the numerical dissipation introduced by the scheme in the vortex region an ad-

hoc procedure had been implemented that preserve the grid spacing inside the vortex
core by rigidly displacing the mesh in the area surrounding the core. Such approach has
been also used to perform the unsteady interaction between an airfoil and a free-vortex.
Preliminary computations had shown that the vortex intensity is reduced of almost 50%
by the interaction with the airfoil, this is reflected in a strong underprediction of the
fore movement of the lower shock wave. Further investigations of the vortex transport
problem are required in order to reduce the introduced numerical dissipation.

The extension of the present approach to the three dimensional case is under study
and preliminary results for simulations of compressible flows past a wing are presented in
section A.2. An ALE Euler solver for deforming grid is already available and preliminary
results for a pitching wing seems promising. The extension of the ALE approach to
mesh adaptation in three dimension, however, poses several difficulties. The extension
of the ALE-based method, as it has been conceived and presented in this thesis, to
grids made of tetrahedra is fairly straightforward. Indeed when a local modification of
the topology occurs, e.g. face-swapping or node insertion, the three-step interpretation
of the continuous deformation of the volumes, i.e. collapse, topology modification and
expansion, can still be applied. The computations of the correction terms for the interface
velocities appear, therefore, to be fairly straightforward.

Major difficulties, however, arise when the above scheme is to be implemented within
the framework of 3D adaptive meshes. Indeed a naïve approach to mesh adaptation in
three dimensions would probably reveal disastrous in terms of computational efficiency
and mesh quality. To this purpose very promising results with 3D adaptive meshes have
been obtained by some researh groups: e.g. the open source program of the ITAPS
project, by the open source Stellar program of the Unversity of Berkeley or by the open
source mmg3d program by the team BACCHUS of INRIA. Even with such powerful tools
available, the implementation of an ALE-based solver for 3D adaptive meshes appears
still to be a challenging task. Indeed the need of storing additional contributions to the
fluxes and additional governing equations imposes to somewhat keep tracks of the grid
history and nformation must go from the solver to the grid and viceversa. Nonetheless
“smart” approaches to the problem are possible which, for example, envisage the use
dynamic data structure such as lists. Moreover the use of multi-stage schemes, such as
Runge-Kutta, would sensibly reduce the implementation complexities, since it would be
necessary to store the information form only two grids, i.e. the old one and the adapted
one.
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Appendix

In this chapter additional results obtained with the adaptive ALE scheme outlined in the
thesis are presented. The transonic two dimensional aileron buzz problem is described
in section A.1. In section A.2 the ALE scheme described in section 2.2 is applied to the
3D case of an oscillating airfoil/wing.

A.1 Aileron buzz

The investigation of aeroelastic stability boundaries by means of Fluid Structure Interac-
tion (FSI) analysis is becoming very popular for the preliminary and verification phases
of new aircraft design [20, 160].

Fig. A.1: Aerodynamic conditions for
which buzz may occur [108].

To obtain reliable results, appropriate
meshes of the fluid domain must be used. In
the present section this problem of the depen-
dency from the grid of the numerically eval-
uated stability boundary of a the transonic
aileron buzz is analyzed. This is an instability
involving the interaction of a single structural
degree of freedom, associated to the aileron
rotation about its hinge, with unsteady aero-
dynamic forces caused by strong shock waves
dwelling close to the hinge axis. The instabil-
ity may evolve into self-sustained Limit Cycle
Oscillations [107, 108].

Following the classification proposed by
Lambourne [107], the so called non-classical
aileron buzz problem is tackled, which results
from the interaction of the shock-waves with
the aileron movement without significant in-
tervention of the boundary layer. For numeri-
cal analysis of Type A phenomena see [22] and references therein.



140 A.1. AILERON BUZZ

α [°]

M
[-]

-1 0 1 2 3 4 5

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

No buzz
Buzz
Experimental (Lambourne)
Euler (Bendiksen)

Fig. A.2: Comparison of experimental and numerical stability boundaries of the Mach-
angle-of attack plane.

The structural model used to describe the aileron motion is a simple one degree of
freedom equation expressing equilibrium of moments about the aileron hinge, namely
Iβ̈ = H , where I is the inertia moment of the flap around the hinge and H is the
aerodynamic moment about the hinge line. Given the value of the flap rotation β at a
given time tn+1, the position of the grid nodes belonging to the boundary is updated
and the inner nodes are displaced resorting to the mesh deformation algorithm described
in section 3.1.

The direct time integration of the fluid-structure interaction problem is tackled using
a partitioned loosely coupled algorithm. Both aerodynamic and structural systems are
integrated using an implicit scheme, thus achieving linear stability for any value of time-
step ∆t. A second order accurate BDF scheme is used for the flow equation, while a
predictor-corrector method derived from Crank-Nicholson [71] has been adopted for the
structural subsystem. The latter scheme is here briefly outlined.

Structure predictor: The known values of flap angle, flap angular velocity and aero-
dynamic loads at the time n are used to prediction of the structural state at time n + 1,



Appendix 141

i.e. 



βn+1
p = βn + ∆t β̇n +

∆t2

2I
Hn,

β̇n+1
p = β̇n +

∆t

I
Hn.

CFD computation: The predicted predicted structural state, βn+1
p and β̇n+1

p is
used to compute the new mesh and subsequently the aerodynamic loads, Hn+1 =
H(βn+1

p , β̇n+1
p ).

Structure corrector: The predicted loads are used to correct the value of the structural
state at tn+1, i.e.





βn+1 = βn + ∆t β̇n +
∆t2

2I

Hn+1 + Hn

2
,

β̇n+1 = β̇n +
∆t

I

Hn+1 + Hn

2
.

Aileron buzz is now examined to study the suitability of the proposed approach to
investigate aeroelastic phenomena in two dimensional cases. The prerogative is to assess
non-classical aileron buzz over a range of transonic Mach numbers. Tests are conducted
on a RAE 102 typical section model clamped on its mass center to avoid pitch or plunge
movements and to allow only flap rotation around its hinge. Flap-chord/chord ratio
is 25% and non-dimensional frequency parameter is f = 0.063 approximately (which
corresponds to a reduced frequency of 0.1). A circular domain with a radius of 20
chords is chosen to avoid far-field boundary conditions interferences on the unsteady
phenomenon. The result obtained is the stability boundary in the Mach-angle-of-attack
plane. Since RAE 102 is a symmetrical airfoil, tests at α = 0◦ are conducted imposing
a non-dimensional initial angular velocity of flap around the hinge different from zero,
i.e. β̇(0) = −10−3. Differently, computations with an angle of attack α = 3◦ do not
need an initial perturbation thanks to a non-null hinge moment.

To define numerical boundary stability, mumerical computations have been conducted
at different Mach numbers ranging from 0.8 to 1, with two different angles of attack, i.e.
α = 0◦ and α = 3◦. Moreover two different grids have been used to test the sensitivity
of the phenomenon with respect to the discretization spacing: a coarse grid with 10396
nodes and 19745 elements and a fine one with 20845 nodes and 40482 elements. All
the computations have been carried out resorting to a second-order BDF scheme with a
time step of 0.5235.

Fig. A.2 shows the comparison of the computed stability boundary on the Mach-
angle-of-attack plane with the experimental one. The Euler equations model produces
a result far away from the experimental model instability [107] due to the neglection of
the viscous effects. Indeed the presence of the boundary layer is reflected in an increase
of the airfoil thickness for the inviscid flow point of view, providing an higher stability
boundary in terms of Mach number. The numerical results are indeed in fairly good
agreement with the inviscid computations by Bendiksen [19].

In fig. A.3 is shown the response in terms of flap rotation β for α = 0◦ using two
different grid spacings and two different values of Mach number across the stability
boundary, respectively M∞ = 0.86375 and M∞ = 0.865. A reduced grid spacing
determines a more negative aerodynamic damping effect, both for stable and unstable
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Fig. A.3: Comparison of flap rotation transient at α = 0◦ on different grids : (a) stable
responses; (b) unstable responses.
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Fig. A.4: Comparison of flap rotation transient at α = 3◦ on different grids : (a) stable
response; (b) unstable/stable responses.

cases, due to numerical viscosity increase with volume cell. The flap rotation responses
for α = 3◦ are shown in fig. A.4. In this case numerical stability boundary has been
evaluated about M∞ = 0.8125. Indeed the fine grid gives an unstable response while the
coarse grid a stable one, this is in agreement with the increase of aerodynamic damping
effect with cell volume.

Adaptive computation has been performed to improve the capturing of shocks move-
ments on airfoil and flap surface. Mesh adaptation has been driven by an error indicator
based on the mixed gradient/Hessian of the Mach number over the whole computation
domain. The initial grid is obtained adapting the mesh to the steady (freezed hinge)
case and is made of 21625 nodes and 42747 elements. Fig. A.5 and fig. A.6 show the
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Fig. A.5: Snapshots of adapted grids and Mach number contour during a cycle of an
unstable aileron buzz case (M=0.865,α = 0◦).
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Fig. A.6: Snapshots of adapted grids and Mach number contour during a cycle of an
unstable aileron buzz case (M=0.865,α = 0◦).
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details of some subsequent flow-fields around the flap during an unstable response at
M∞ = 0.865 and α = 0◦. When the flap starts moving upward the upper shock moves
forward and lower its strength while the lower shock does the opposite.

A.2 Preliminary simulations of 3D compressible flows

In the present section the ALE scheme described in section 2.2, i.e. without mesh
adaptation, is applied to the 3D problems.

Preliminary results for the case of the the AGARD 445.6 are shown in fig. A.7.
The free stream Mach number is 0.6 and a zero angle of attack is imposed. The
computational mesh is made of 22014 nodes and 118480 tetrahedra. The far field
boundary is located at distance of 15 root chords from the wing and symmetry boundary
conditions are imposed at the wing root. In fig. A.7(a) a close-up of the computational
mesh over the wing surface is shown, while in fig. A.7(b) the Mach distribution over the
surface is illustrated.

Another preliminary test case is carried out to test the ALE scheme in the three
dimensional setting. A wing is generated by extrusion of a NACA 0012 airfoil and the
computational mesh of 6732 nodes and 31434 tetrahedra is then generated around it,
as shown in fig. A.8(a). A free flow is imposed with a Mach number of 0.755 and an
angle of attack of 0.016 degrees, and the steady solution is shown in fig. A.8(a) in terms
of pressure coefficient distribution. A sinusoidal pitching motion is thus imposed with a
variation in the angle of attack of 2.51 degrees and a reduced frequency of 0.0816. A
second order BDF scheme is used to integrate the equations in time.

The solution in terms of lift coefficient versus angle of attack is shown in fig. A.8(b).
Comparison are performed with the results obtained solving the same case with a 2D
grid and with the data from Mavriplis [126]. The error between the 3D solution and
the 2D one in terms of CL is comparable with the values of lift coefficient calculated
at the beginning of the computations. Indeed the computational grid for the 3D case
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Fig. A.7: Computational mesh and Mach number distribution for the AGARD 445.6 test
case. M∞ = 0.6, α = 0, with a mesh made of 22014 nodes and 118480 elements.
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Fig. A.8: Computational mesh, pressure coefficient and lift coefficient for the NACA 0012
wing case. M∞ = 0.755, ∆α = 2.51, α0 = 0.016, k = 0.0816, 6732 nodes and 31434
elements.

is excessively coarse. Further simulations obtained with finer grids and different time-
integrators are currently under investigation.
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