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AbstratThe study and development of high-order methods for simulating elasti wave propagationin seismi regions has been subjeted to a tremendous growth, ourred in the past ten years.Reent developments in omputational seismology have been based on numerial strategies as �-nite di�erenes, boundary element methods and, more reently, spetral element (SE) methods.SE methods ombine the �exibility of �nite elements with the auray of spetral tehniques.They handle naturally both interfae ontinuity and free boundary onditions, allowing veryaurate resolutions of evanesent interfae and surfae waves. Moreover, SE methods retaina high level parallel struture, thus are well suited for massively parallel omputations. Themain drawbak of SE methods is that they require a uniform polynomial order on the wholeomputational domain, and this an lead to an unreasonably large omputational e�ort, in par-tiular in regions where a �ne mesh grid is needed already to desribe aurately the domaingeometry. Therefore, it an be more adequate in some ases to use a lower order method in thesmall elements to redue the CPU e�ort without loosing muh auray.Non-onforming high-order tehniques, like the Disontinuous Galerkin Spetral Element (DGSE)or the Mortar Spetral Element (MSE) methods, allow to treat loally varying polynomial de-grees of the basis funtions, so-alled p-adaptivity, as well as loally varying mesh size on theomputational domain, h-adaptivity. The hp-adaptive version of these shemes is useful inomplex 2 and 3-d models with small-sale features whih have to be meshed with reason-ably small elements to apture the neessary geometrial details of interest. In this thesis, wepresent a new disretization approah to ombine the DGSE and MSE methods with suitabletime advaning shemes for the simulation of wave propagations in heterogeneous media. Tooverome the limitations of the existing approahes we will apply the non-onforming paradigmonly at subdomain level (not elementwise). We will show that the resulting formulations arestable, provide optimal approximation properties, and su�er from low dispersion and dissipa-tion errors. Appliations of the DGSE and MSE methods to simulate realisti seismi wavepropagation problems are also analyzed.Keywords: High-order Disontinuous Galerkin and Mortar methods; Non-onforming domaindeomposition tehniques; Wave propagation; Numerial analysis.





Contents
Introdution iii1 Motivations and model formulation 11.1 The physial problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 The mathematial model . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 The variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . 72 Non-onforming Galerkin spetral formulations 92.1 The Disontinuous Galerkin spetral element method . . . . . . . . . . . 132.2 The Mortar spetral element method . . . . . . . . . . . . . . . . . . . . 152.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.1 Semi-disrete error estimates - DGSE method . . . . . . . . . . . 202.3.2 Semi-disrete error estimates - MSE method . . . . . . . . . . . . 272.3.3 Semi-disrete L2-error estimates - DGSE/MSE methods . . . . . 332.4 Algebrai formulation of the semi-disrete formulations . . . . . . . . . . 342.4.1 Strutural damping . . . . . . . . . . . . . . . . . . . . . . . . . . 392.4.2 Absorbing boundary onditions . . . . . . . . . . . . . . . . . . . 392.5 Extension to three dimensional problems . . . . . . . . . . . . . . . . . . 413 Time disretization 433.1 Fully-disrete formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 443.1.1 Leap-frog �nite di�erene method . . . . . . . . . . . . . . . . . . 443.1.2 Runge-Kutta 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.1.3 Impliit midpoint method . . . . . . . . . . . . . . . . . . . . . . 503.2 Fully-disrete error estimates . . . . . . . . . . . . . . . . . . . . . . . . 53i



4 Analysis of grid dispersion, dissipation and stability 574.1 Grid dispersion and dissipation errors for semi-disrete approximations . 594.2 Grid dispersion and dissipation errors for fully-disrete approximations . 694.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 Implementation issues 915.1 Numerial integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036 Numerial results for test ases 1076.1 Auray and order of onvergene . . . . . . . . . . . . . . . . . . . . . 1086.2 Cirular inlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146.3 Layer over a halfspae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216.4 Croissant valley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277 Appliations of geophysial interest 1337.1 Aquasanta railway bridge . . . . . . . . . . . . . . . . . . . . . . . . . . 1347.2 Gubbio alluvial basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397.3 Grenoble valley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1427.4 22 February 2011 Christhurh earthquake . . . . . . . . . . . . . . . . . 1488 Conlusions and perspetives 155

ii



Introdution
The study of wave propagation in elasti solids has a long and distinguished history.Indeed, sine the middle of the 19th entury, great mathematiians as Poisson, Cauhy,Green, Lamé and Stokes developed what is now generally known as the theory of elasti-ity. In the latter part of the 19th entury the interest in the study of wave propagationsin elasti solids has inreased beause of appliations in the �eld of geophysis. Cur-rently, wave propagation in solids is still a very ative area of investigation in seismologybeause of the need for aurate informations on earthquake phenomena, and detetionof nulear explosions.In this thesis we aim at proposing and analyzing a family of non-onforming nu-merial methods apable of simulating elasti wave propagations in two and three di-mensional on�gurations, haraterized by the presene of irregular interfaes, heteroge-neous materials as well as the apability of prediting orretly soil-struture interationphenomena.The use of the elastodynamis equations to model the seismi response of heteroge-neous earth media with irregular topography and internal interfaes is a subjet thathas been intensively investigated in reent years. The study and development of high-order methods for simulating elasti wave propagation in seismi regions has been sub-jeted to a tremendous growth, ourred in the past ten years. Reent developmentsin omputational seismology have been based on numerial strategies as �nite di�er-enes, boundary element methods and, more reently, spetral element methods (seee.g. [46, 50, 41, 61, 104, 34, 57, 67℄). Although the �nite di�erene (FD) method stillrepresents the most employed tehnique in omputational seismology, it is well knownthat standard seond order FD shemes su�er from grid dispersion employed on toooarse omputational grids or when the wave �eld features large layers. Then, when FDshemes are employed in realisti appliations is rather di�ult to balane the trade-o�iii



between numerial dispersion and omputational ost [48, 87, 89℄. However, it is possi-ble to redue grid dispersion, dissipation and anisotropy errors using the staggered-gridformulation [72, 115, 70℄, whih is based on the symmetri �rst-order hyperboli form ofthe elastodynamis equation [56℄, or using fourth-order entered shemes both in spaeand time, based on modi�ed wave-equation tehniques [37, 13℄.An interesting overview foused on the stability ondition and grid dispersion of thethree dimensional fourth-order FD shemes is provided in [81, 80, 82℄, where impor-tant advanes were obtained in the use of staggered-grid tehniques. Other di�ultiesarising with FD methods are the implementation of free-surfae or absorbing boundaryonditions and their lak of geometrial �exibility. Even though some tehniques havebeen inorporated to deal with surfae topography using methods based on grid defor-mation ombined with the staggered grid formulation, they remain limited to simplegeometrial settings [99, 86℄. For suh reasons, FD methods are not able to desribeaurately surfae waves (e.g. Rayleigh and Love waves) and interfae waves. On theother hand, despite the fat that �nite element methods (FE) are able to deal with om-plex geometries (e.g. realisti basins) and strong heterogeneous materials, they exhibitpoor dispersion and dissipation properties. Therefore, FE are not widely used for wavepropagation problems [113, 76℄.Numerial solutions to the wave equation an be obtained on the basis of the integralrepresentations of the problem relating quantities on the physial boundaries. Diretboundary element (BE) methods formulate the problem in terms of unknown trationsand displaements [32, 33, 14℄, while indiret methods make use of a formulation interms of fore and moment boundary densities [100℄. The main advantage of thesetehniques is that solutions are found over a surfae that is one dimension lower thanthe original form of the problem, and that the radiation (Sommer�eld) ondition is apriori satis�ed. On the other hand, BE methods are most often limited to linear andhomogeneous problems. Moreover, the resulting linear systems of equations in thesemethods are very large, dense and in general non symmetri, making the solution of theresulting linear system of equations una�ordable from the omputational point of view.The omputational advantage in proessing time and storage requirements that wouldintuitively be expeted is therefore not always ahieved in the ase of realisti problemsizes.Another possible approah is to enrih the approximation spaes with funtions thatwell apture the harateristis of the solution. This is the idea adopted in [119, 77, 116℄iv



with the disontinuous enrihment (DE) method or in [53, 83℄ with the plane wave (PW)method. In DE and PW approahes the standard �nite element spae (that representsthe oarse sale of the solution) is enrihed elementwise by free-spae solutions of thehomogeneous partial di�erential equation to be solved. This an redue dramatiallythe omputational ost of standard FE methods while preserving their auray and�exibility.The other family of disretization methods widely used in omputational seismol-ogy is the spetral element method. Spetral methods were �rstly introdued in �uiddynamis around thirty years ago and suessively applied to elastodynami problems.The so-alled global pseudo-spetral (PS) method was then introdued by replaingthe original set of trunated Fourier series with a set of algebrai polynomials in spae(of Chebyshev or Legendre type). The PS numerial solution satis�es the wave equa-tion in di�erential form at some suitably hosen olloation points, and its auray isshown to depend strongly on this hoie [65, 118, 58℄. The main limitation of the PSmethods is the di�ulty to handle omplex geometries, heterogeneous materials andrealisti free-surfae boundary onditions. To overome suh shortomings in [28, 59℄urvilinear oordinate systems have been proposed. However, this remains on�ned tosmooth global mappings of little use in realisti geologial models.The spetral element (SE) method, introdued �rstly in �uid dynamis by [88, 74℄,an be related to the p− and hp−versions of the FE methods [11, 10℄. SE methods arebased on high-order Lagrangian interpolants sampled at the Gauss-Legendre-Lobattoquadrature points, and ombine the �exibility of �nite elements with the auray ofspetral tehniques. Sine they are based on the weak formulation of the elastodynamisequations, they handle naturally both interfae ontinuity and free boundary onditions,allowing very aurate resolutions of evanesent interfae and surfae waves. Moreover,SE methods retain a high level parallel struture, thus are well suited for massivelyparallel omputations. Important reent appliations, with SE tehniques were providedfor omputational seismology appliations [60, 110, 79, 35℄. SE methods usually requirea uniform polynomial order on the whole omputational domain, and this an lead toan unreasonably large omputational e�ort, in partiular in regions where a �ne meshgrid is needed already to desribe aurately the domain geometry.Non-onforming high-order tehniques, like the Disontinuous Galerkin spetral ele-ment (DGSE) method [9, 95, 52℄ or the Mortar spetral element (MSE) method [19, 117,21℄, allow to deal with a non uniform polynomial degree distribution (p−adaptivity),v



as well as a loally varying mesh size (h−adaptivity). The built-in �exibility of theseshemes is useful in omplex two and three dimensional problems that feature multi-sale phenomena.In [57℄ the p−version of the Disontinuous Galerkin approah have been studied forseismi wave propagation problem. This method ombines DG disretizations with theso-alled Cauhy-Kovalewski approah using repeatedly the governing partial di�eren-tial equation itself, in order to guarantee arbitrary high-order auray in both spaeand time. Moreover, to further inrease the omputational e�ieny, the authors haveintrodued a new loal time stepping algorithm. Indeed, usual expliit time steppingshemes require stability (Courant-Friedrihs-Levy (CFL)) onditions that impose atime step whih depends on the smallest element size. By using loal time stepping,eah element an use its optimal time step given by the loal stability ondition [44℄.One of the main drawbak of the tehniques proposed in [57, 44℄ is that the DG approahis applied elementwise, and therefore the proliferation of degrees of freedom annot bekept under ontrol.Here, we present a new disretization approah to ombine the DGSE and MSEmethods with suitable time advaning shemes for the simulation of wave propagationsin heterogeneous media. To overome the limitations of the existing approahes wewill apply the non-onforming paradigm only at subdomain level. We will show thatthe resulting formulations are stable, provide optimal approximation properties, andsu�er from low dispersion and dissipation errors. Some meaningful geophysial applia-tions are also addressed. The results of this thesis are original and have been partiallypublished or submitted for possible publiation in [8, 78℄We desribe in detail the subjet addressed by summarizing the ontents of the var-ious hapters.In Chapter 1 we desribe the physial phenomenon governing seismi wave propaga-tions and we derive the elastodynamis weak formulation.The geometrial and funtional disretization of the problem is presented in Chapter 2in the ontext of non-onforming approximations and the Disontinuous Galerkin andthe Mortar spetral element methods are derived starting from a ommon weak formula-tion. The omputational domain is split into maro-regions alled subdomains (usuallyassoiated to the earth's substrata, heterogeneous media, engineering strutures) withvi



Figure 1: Non-onforming domain deomposition. The omputational domain Ω is partitioned insubdomains Ωk of harateristi (linear) size Hk. Conforming partition inside eah Ωk made by quadri-laterals/hexahedras of size hk and polynomial approximation degree Nk. The non-onforming approahis employed aross subdomains' boundary.typial size H (see Figure 1), and the non-onforming approah is employed aross sub-domains' boundaries. The quadrilaterals/hexahedras do not have to math betweenneighbouring subdomains, and di�erent spetral approximation degrees are allowed, seeFigure 1. Therefore, the ontinuity of the solution at the skeleton S =
⋃

k(∂Ωk \ ∂Ω) ofthe deomposition is imposed weakly, either by means of a Lagrange multiplier for theMSE method, or by penalizing the jumps of the displaement in the DGSE method.Then, in eah non-overlapping subdomain a onforming spetral �nite element dis-retization is employed.Starting from a ommon displaement-based weak formulation of the elastodynamisequation, we prove a priori error bounds for the non-onforming semi-disrete formu-lations. A similar analysis is provided in the existing literature for a slightly di�erentDisontinuous Galerkin formulation, for dynami linear elastiity and visoelastiity[98, 97℄. In fat the above formulation involves an additional penalty term whose phys-ial meaning is unlear. Yet, other authors refer to that analysis when disussing theirDisontinuous Galerkin shemes [40, 39℄. Here we modify and update the results of [98℄to analyze the presented DGSE method. In the MSE method ase, at the best of ourknowledge, suh analysis has never been arried out before in elastodynamis, but onlyfor ellipti and paraboli equations [19, 5, 17, 49℄. The algebrai aspets of the DGSEand MSE methods are then desribed at the end of Chapter 2. To ease the presentation,vii



the analysis is arried out in a two dimensional setting. The extension of the theoretialresults to three dimensional problems is given at the end of Chapter 2 for the DGSEmethods.In Chapter 3 we desribe three di�erent time integration shemes that ould be usedfor the disretization of the system of ordinary di�erential equations resulting fromthe semi-disrete approximations. In partiular we study the leap-frog (LF) sheme,the impliit midpoint (IM) method and the fourth order Runge-Kutta (RK4) method.Moreover we present error estimates for the fully-disrete-problem, obtained ombin-ing the non-onforming disretizations with the previous time integration methods.The LF �nite di�erene method, the most popular approah used in seismi modelling[61, 36, 35, 43, 30℄, is a speial ase of the Newmark methods [55℄ and is seond orderaurate, expliit and onditionally stable. The IM method belongs to the family of theRunge-Kutta methods [68℄ and it is still seond order aurate but impliit and unon-ditionally stable. At the best of our knowledge, up to now, impliit time integrationshemes have been oupled only with �nite di�erenes or olloation methods to solveaousti [54℄ and elasti wave propagation problems [118℄. The main advantage of thisapproah relies on their unonditioned stability, that allows to hose a time integrationstep ten times larger than the one in the expliit ase [118℄. The four stage RK4 methodis expliit, fourth order aurate and onditionally stable. Runge-Kutta methods arestudied and applied in wave propagation [54, 71℄ beause they are highly aurate andfeature low dispersion errors. Moreover, in the expliit ase their absolute stability re-gion is not more restritive than the LF one.Other high order methods proposed in the literature for time disretization are Taylor-Galerkin methods [39℄, the ADER-DG method [57, 41℄, the rapid expansion method[112, 64℄, and the sympleti method [105, 85, 112℄. A omparison of these methods isbeyond the sope of this present work and will be the subjet of future researh.The semi-disrete and fully-disrete non-onforming formulations are analyzed in Chap-ter 4 from the point of view of the dispersion, dissipation and stability properties. Forwave propagation problems, the grid dispersion/dissipation riterion determines the low-est number of nodes per wavelength suh that the numerial solution has an aeptablelevel of auray, while the stability riterion determines the largest time step allowedfor expliit time integration shemes. Here, we propose a new generalized eigenvalueviii



approah to determine sharp grid dispersion and dissipation errors as well as stabilitybounds for the LF and RK methods. This approah is based on the Von Neumann'smethod (plane wave analysis) and an be used to determine dispersion and dissipa-tion properties for di�erent spae and time disretizations. First, we use this tehniqueto derive dispersion and dissipation relations for the semi-disrete DGSE and MSEapproximations. Then, we extend the analysis to the orresponding fully-disrete prob-lems presented in Chapter 3, addressing the ombined e�et of the LF, RK4, IM timedisretizations with DGSE and MSE approximations. A general framework to studythe numerial dispersion for the SE methods has been developed in [36℄ and analyzedfor the aousti ase up to polynomial approximation degree equal to three. In [103℄ aomplete desription for the elasti ase is given, based on a Rayleigh quotient approxi-mation of the eigenvalue problem haraterizing the dispersion relation. For the DGSEmethod, grid dispersion has been analyzed in [3, 40℄. In partiular in [3℄ the dispersionand dissipation errors of the aousti wave equation in one spae dimension are derivedusing the �ux formulation. The results inlude polynomial approximation degree equalto three and onjetures on the extension to higher orders are given. Making use of theplane wave analysis, in [40℄ a omplete desription of the grid dispersion properties isarried out for both the aousti and the elasti ase.At the best of our knowledge, for the MSE method no results are available for thegrid dispersion/dissipation properties regarding the elasti wave equation. The resultsobtained show that both DGSE and MSE methods feature low dispersive/dissipativeerrors.Chapter 5 is devoted to the implementation aspets of the non-onforming approahesin a spetral element based ode. Speial emphasis is given to the desription of thenumerial strategies used for faing integral omputations present in DGSE and theMSE disretizations. Moreover, we propose an e�ient way (in term of low memorystorage and exeuting program veloity) to ode DGSE and MSE approahes for wavepropagations.Numerial results for test ases are presented in Chapter 6. Here, we validate theproposed shemes on two and three dimensional benhmarks available in literature. Allthe results are ompared with analytial solutions or with the numerial solution ob-tained with the SE approximation. ix



Chapter 7 addresses some real geophysial appliations. At �rst we show the seismiresponse of a remarkable railway masonry bridge, and soft soil ampli�ations ourringon alluvial basin. Then, we present relevant earthquake senarios, i.e., the ase of theGrenoble valley (Frane) and the Canterbury plains near Christhurh (New Zealand).The latter results represent the state of the art in omputational seismology.Finally, in Chapter 8 we draw some onlusions and we outline some future perspetives.
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Chapter 1
Motivations and model formulation
1.1 The physial problemWave propagation in heterogeneous media is a problem arising in many sienti� disi-plines as aoustis, eletro-magnetis, frature mehanis and elastodynamis. Usually,when onsidering aousti or eletromagneti waves we are interested on their refrationaross an obstale, while when dealing with elasti waves we observe their propagationwithin the examined body.Seismi waves are elasti waves of energy that travel through the earth, and are a resultof an earthquake, explosion, or a volano that imparts low-frequeny aousti energy.The diret physial e�et yielded by an earthquake in the region surrounding the soureonsists, essentially but not exlusively, of a vibratory (or seismi) ground motion vary-ing from point to point. A fundamental seismologial and engineering problem is thatof quantifying the harateristis of suh motion (e.g. amplitude, duration, frequenyontent) at a distant point, as a funtion of the harateristis of the soure and of theportions of the earth rust traversed by the seismi waves.The propagation veloity of the waves depends on density and elastiity of the medium.Veloity tends to inrease with depth, and ranges from approximately 2 to 8 km/s inthe earth's rust up to 13 km/s in the deep mantle. Earthquakes reate various typesof waves with di�erent veloities; when reahing seismi observatories, their di�erenttravel time enables the sientists to loate the epientre. There are two types of seismiwaves, body wave and surfae waves.Body waves travel through the interior of the earth. They follow ray-paths refrated1



2 Motivations and model formulationby the varying density and modulus (sti�ness) of the earth's interior. Body waves aredivided into two ategories: primary (P) waves and seondary (S) waves. P wavesare longitudinal (pressure) waves that an travel through any type of material, andan travel at nearly twie the speed of shear waves. S-waves are transverse (shear) innature. These waves typially follow P waves during an earthquake and displae theground perpendiular to the diretion of propagation. S waves an travel only throughsolids, sine �uids (liquids and gases) do not support shear stresses.Surfae waves are analogous to water waves and travel along the earth's surfae. Theytravel slower than body waves. Beause of their low frequeny, long duration, and largeamplitude, they an be the most destrutive type of seismi wave. There are two typesof surfae waves: Rayleigh waves and Love waves that are the ause of the rolling andirular shearing of the ground.All these information are resumed and desribed by the following elastodynamis modelas we are going to explain.
1.2 The mathematial modelWe onsider an elasti medium oupying a �nite region Ω ⊂ R

d, for d = 2, 3, withboundary Γ = ∂Ω and unit outward normal n = n(x1, ..., xd) at the point (x1, ..., xd) ∈
∂Ω. The boundary is assumed to be omposed of portions ΓD, where the displaementvetor u is presribed, ΓN where external loads apply, and ΓNR where suitable non-re�eting onditions are imposed. The portion ΓNR is in fat a �titious boundary ofthe omputational domain whih is introdued to bound the physial domain for thenumerial approximation of wave propagation problems in unbounded media. We makethe assumptions that ΓD,ΓN and ΓNR are disjoint, i.e. ΓD∩ΓN = ∅ and ΓN ∩ΓNR = ∅and either ΓD or ΓN an be empty, .Here and in the sequel, an underlying bar denotes matrix or tensor quantities, whilevetors are typed in bold. Having �xed the temporal interval [0, T ], with T real andpositive, the equilibrium equations for an elasti medium, subjeted to an external fore



1.2 The mathematial model 3
f (seismi soure) read:





ρ∂ttu−∇ · σ(u) = f , in Ω× (0, T ],

u = 0, on ΓD × [0, T ],

σ(u) · n = t, on ΓN × [0, T ],non re�eting boundary onditions on ΓNR × [0, T ],

∂tu = u1, in Ω× {0},
u = u0, in Ω× {0},

(1.1)
where u = (u1, ..., ud)

⊤ is the medium displaement vetor, σ the stress tensor, t thetime variable and ρ the material density and where u0,u1 are given (smooth enough)funtions. Here and after ∂t denotes the partial derivative with respet to time, while
∇ · a =

∑d
j=1

∂aij
∂xj

represents the divergene of the tensor a. Without loss of generality(see, for instane, [92℄) we make the following further assumptions on Γ: on ΓD themedium is rigidly �xed in the spae and on ΓN we presribe surfae trations t. Finally,on ΓNR non-re�eting boundary onditions are imposed: from the mathematial pointof view, the latter ondition have the e�et of introduing a �titious tration t∗, thatwill be de�ned later, whih is a linear ombination of spae and time derivatives of thedisplaement u (f. [107, 30℄, for example).To omplete the system in (1.1), we presribe initial onditions u0 and u1 for thedisplaement and the veloity, respetively.When we onsider visoelasti materials, see Chapter 6, we introdue in the system(1.1) an additional term in the form of volume foresfvisc = −2ρζu̇− ρζ2u, (1.2)where ζ = ζ(x1, ..., xd) is a suitable deay fator with dimension inverse of time. Cor-respondingly, the equation of motion beomes
ρ∂ttu−∇ · σ(u) = f + fvisc. (1.3)The parameter ζ is supposed to be pieewise onstant, as in [30℄, in order to modelabsorbing regions, thus providing an alternative or a omplement to the absorbingboundary onditions. In other ases, like seismi wave propagation through heteroge-neous media with strong elasti impedane, this model is used to prevent the onset of



4 Motivations and model formulationnon-physial osillations of the numerial solution.We de�ne the strain tensor ε as the symmetri gradient of u, i.e.,
ε(u) =

1

2
(∇u+∇u⊤),or equivalently

ǫij(u) =
1

2
(
∂uj
∂xi

+
∂ui
∂xj

) ∀i, j = 1, ..., dsine (∇u)kℓ =
∂uk

∂xℓ
, for ℓ, k = 1, ..., d. The stress tensor is denoted by σ(u) suh that

σii(u) is the normal stress in the diretion xi and σij(u) for i 6= j is the shear stress.The stress tensor satis�es the onstitutive relation (Hooke's law)
σij(u) = λ

d∑

j=1

∂uj
∂xj

δik + 2µǫij(u) =
d∑

k,ℓ=1

Dijkℓǫkℓ(u) ∀i, j = 1, ..., dwhere where λ and µ are the Lamé elasti oe�ients of the medium, δij is the Kronekerdelta and Dijkℓ = (D)i,j,k,ℓ, is the fourth order Hooke's tensor, satisfying the symmetries
Dijkℓ = Djikℓ = Dijℓk = Dkℓij.We assume that D is positive de�nite and bounded over Ω, i.e, ∃D0 and D1 s.t.

0 < D0

∑

i,j

χ2
ij ≤

∑

i,j,k,ℓ

χijDijkℓχkℓ ≤ D1

∑

i,j

χ2
ij ∀χ 6= 0.Moreover, sine for heterogeneous media we suppose ρ, λ and µ bounded funtions ofthe spatial variable, not neessarily ontinuous, i.e., ρ, λ and µ ∈ L∞(Ω), the stresstensor is also pieewise onstant over Ω and by the Hooke's law, an be written as




σ11

σ22

σ12


 =




λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ







ǫ11

ǫ22

ǫ12


 ,for d = 2 and similarly for d = 3.The availability of aurate and reliable modelling of wave transmission along the bound-aries of the disretized domain is a key issue in the simulation of wave propagation prob-lems. While the representation of the free boundaries (typially free surfaes in geophys-ial appliation) do not present any di�ulty, the modelling of ontinuous boundariesis a deliate issue. Ideally, suh boundaries should be able to propagate any inidentwave without re�etions.



1.2 The mathematial model 5Let n = (n1, n2) be the unit normal to the point (x1, x2) ∈ ∂Ω and let τ = (τ1, τ2) bethe tangential unit vetor at (x1, x2) ∈ ∂Ω, the non-re�eting onditions on ΓNR takethe form [29℄




∂

∂n
(u · n) = − 1

cP

∂

∂t
(u · n) + cS − cP

cP

∂

∂τ
(u · τ ),

∂

∂n
(u · τ ) = − 1

cS

∂

∂t
(u · τ ) + cS − cP

cP

∂

∂τ
(u · n).

(1.4)The quantities cP and cS appearing in (1.4) are the ompressional and the shear waveveloities, respetively de�ned as
cP =

√
λ+ 2µ

ρ
and cS =

√
µ

ρ
, (1.5)and they refer to the veloity of P and S body waves respetively. Primary (P) andSeondary (S) waves travel from the soure through the interior of the elasti mediumand they follow paths refrated by the varying density and modulus (sti�ness) of thematerials enountered. P waves are said ompressional or longitudinal waves and theyare very similar to aousti waves, in partiular the partiles of the material invested byP waves move in the same diretion of the P wave front. S waves are transversal wavesand indue on the material osillations perpendiular to their propagating diretion.An important feature of S waves is that they an not propagate in �uids, for whihthe Lamé oe�ient µ = 0. Absorbing boundary onditions must be applied as naturalboundary onditions, in other words ΓNR is a boundary subjeted to a stress state σ∗whih satis�es equation (1.4). Then, to derive the expliit expression of the �titioustration t∗ = σ∗(u) · n we proeed as follows.We rewrite the stress tensor σ in the oordinate system {τ ,n} as




σ11

σ22

σ12




=




σττ

σnn

στn




=




(λ+ 2µ)∂uτ

∂τ + λ∂un

∂n

(λ+ 2µ)∂un

∂n + λ∂uτ

∂τ

µ(∂uτ

∂τ + ∂un

∂τ )




. (1.6)
We use equation (1.4) to express derivatives with respet to the normal diretion as aombination of derivatives with respet to the tangential diretion and with respet to



6 Motivations and model formulationtime so that equation (1.6) beomes



σττ

σnn

στn




=




(λ+ 2µ)∂uτ

∂τ + λ(− 1
cP

∂un

∂t + cS−cP
cP

∂uτ

∂τ )

(λ+ 2µ)(− 1
cP

∂un

∂t + cS−cP
cP

∂uτ

∂τ ) + λ∂uτ

∂τ

µ∂uτ

∂τ + µ(− 1
cS

∂un

∂t + cS−cP
cS

∂un

∂τ )




.In this system of oordinates, the fore for surfae unit t∗ is



t∗τ

t∗n


 =




στn

σnn


 =




µ(2cS−cP )
cS

∂un

∂τ − µ
cS

∂uτ

∂t

λcS+2µ(cS−cP )
cP

∂uτ

∂τ − λ+2µ
cP

∂un

∂t


 .Computing in the above equation normal and tangential derivatives as ∂

∂n = n1
∂

∂x1
+

n2
∂

∂x2
and ∂

∂τ = τ1
∂

∂x1
+ τ2

∂
∂x2

= n2
∂

∂x1
− n1

∂
∂x2

we obtain



t∗τ

t∗n


 =




µ(2cS−cP )
cS

[n1n2(
∂u1
∂x1

− ∂u2
∂x2

)− n2
1
∂u1
∂x2

+ n2
2
∂u2
∂x1

]− µ
cS
(∂u1

∂t n2 − ∂u2
∂t n1)

λcS+2µ(cS−cP )
cP

[n2
2
∂u1
∂x1

− n1n2(
∂u1
∂x2

+ ∂u2
∂x1

) + n2
1
∂u2
∂x2

]− λ+2µ
cP

(∂u1
∂t n1 +

∂u2
∂t n2)


 .Finally, sine t∗ is expressed in the loal oordinate system, we projet it on the globaloordinate system

t∗ =

[
t∗1

t∗2

]
=

[
t∗τn2 + t∗nn1

t∗nn2 − t∗τn1

]
. (1.7)For d = 3 non-re�eting boundary onditions are given by (see [30℄)





∂

∂n
(u · n) = − 1

cP

∂

∂t
(u · n) + cS − cP

cP

[
∂

∂τ1
(u · τ1) +

∂

∂τ2
(u · τ2)

]
,

∂

∂n
(u · τ1) = − 1

cS

∂

∂t
(u · τ1) +

cS − cP
cP

∂

∂τ1
(u · n),

∂

∂n
(u · τ2) = − 1

cS

∂

∂t
(u · τ2) +

cS − cP
cP

∂

∂τ2
(u · n),

(1.8)where τ1 and τ2 are two arbitrary mutually orthogonal unit vetors on the plane orthog-onal to n, the normal to ΓNR, suh that {τ1, τ2,n} de�nes a right handed Cartesiansystem. Starting to (1.8) it is possible to dedue an analogous of (1.7) for the de�nitionof absorbing boundary onditions on a three dimensional framework. We refer to [29℄for a detailed desription of the derivation along with the illustration of a proedure forthe pratial hoie of the axes τ1 and τ2.



1.3 The variational formulation 71.3 The variational formulationBefore reasting the problem in a variational form we introdue the following notation.We denote by X the d-diret produt of the funtional spae X by itself and introduethe following produt operators de�ned for salar, vetorial and tensorial quantities:
a · b = ab, (a, b)Ω =

∫

Ω
a · b dΩ ∀ a, b ∈ L2(Ω),

a · b =

d∑

i=1

aibi, (a,b)Ω =

∫

Ω
a · b dΩ ∀ a,b ∈ L2(Ω),

a : b =

d∑

i,j=1

aijbij, (a, b)Ω =

∫

Ω
a : b dΩ ∀ a, b ∈ [L2(Ω)]d,respetively. By multiplying the �rst equation in (1.1) for a regular enough funtion

v (andidate to represent an admissible displaement), integrating by parts over thedomain Ω, using the Green's formula:
− (∇ · σ(u),v)Ω = (σ(u), ε(v))Ω − (v, σ(u) · n)Γ ,and imposing the boundary onditions, the variational formulation of (1.1) reads: ∀t ∈

(0, T ] �nd u = u(t) ∈ V suh that
dtt (ρu,v)Ω +A(u,v)Ω = L(v) ∀v ∈ V, (1.9)where the bilinear form A : V × V → R

d is de�ned as
A(u,v)Ω = (σ(u), ε(v))Ω ,and the linear funtional L : V → R

d as
L(v) = (t,v)ΓN

+ (t∗,v)ΓNR
+ (f ,v)Ω .Here V is the Sobolev spae V = {v ∈ H2(Ω) : v = 0 on ΓD}, where L2(Ω) is thespae of square integrable funtions over Ω and H2(Ω) is the spae of funtions in

L2(Ω) suh that for every multi-index α suh that |α| ≤ 2 the weak partial derivative
∂αu belongs to L2(Ω). We reall that it an be proved that the bilinear form A(·, ·)is symmetri, V -ellipti and ontinuous [94℄. These onditions imply that problem(1.9) admits a unique solution u ∈ C0((0, T );V ) ∩ C1((0, T );L2(Ω)) satisfying suitablestability estimates [24, 94℄, provided that ρ ∈ L∞(Ω) is a stritly positive funtion, and



8 Motivations and model formulationthat u0 ∈ V , u1 ∈ L2(Ω) and f ∈ L2(Ω × (0, T )).By introduing a �nite dimensional spae Vδ whih is a suitable approximation of V ,the semi-disrete approximation of (1.9) reads : ∀t ∈ (0, T ] �nd uδ = uδ(t) ∈ Vδ suhthat
dtt (ρuδ,v)Ω +A(uδ,v)Ω = L(v) ∀v ∈ Vδ. (1.10)In the next setion we will explain how to onstrut Vδ for two di�erent families ofnon-onforming domain deomposition methods, namely, the Disontinuous Galerkinspetral element (DGSE) method and the Mortar spetral element (MSE) method.The reasons for using non-onforming DGSE and MSE disretizations an be sum-marized in the following lines. Firstly, the �exibility in handling omplex geometries,retaining the high order auray of spetral elements methods for loally smooth solu-tions.Seondly, sine they are based on the weak formulation of the elastodynamis equations,they handle naturally both interfae ontinuity and free boundary onditions, allowingvery aurate resolutions of evanesent interfae and surfae waves. Moreover, theyguarantee geometrial and polynomial �exibility that is an important task for simu-lating orretly the wave-front �eld in omplex wave phenomena suh as soil-strutureinteration problems or seismi response of sedimentary basins (f. Chapters 6 and 7),aommodating disontinuities, not only in the parameters, but also in the wave�eld.Finally, they retain a high level parallel struture, thus well suited for parallel ompu-tations.



Chapter 2
Non-onforming Galerkin spetralformulations
We �rst introdue the non-onforming Galerkin spetral formulations in a d = 2 dimen-sional setting, to ease the presentation. The extension to three dimensional problemsan be obtained similarly.At the �rst level, we subdivide Ω into K non overlapping polygonal subdomains Ωk,
k = 1, ...,K, of size Hj = diam(Ωj), with su�iently smooth boundary ∂Ωk, suh that
Ω =

⋃K
k=1Ωk with Ωk ∩ Ωℓ = ∅ if k 6= ℓ and we de�ne the skeleton of this (maro)deomposition as S =

⋃K
k=1 ∂Ωk \ ∂Ω.Note that this (maro) deomposition an be geometrially non-onforming, i.e., for twoneighbouring subdomains Ωk, Ωℓ, the interfae γ = ∂Ωk ∩ ∂Ωℓ may not be a ompleteside of Ωk or Ωℓ (see Figure 2.1).Then problem (1.1) is solved in eah Ωk together with transmission onditions to en-sure that the loal solution is the restrition to Ωk × (0, T ] of the global solution. Forthe elasti problem (1.1) the transmission onditions read: (TC1) [[u]] = 0 and (TC2)

[[σ]] = 0, where [[· ]] denotes the jump of a quantity aross a given interfae.Next, in eah Ωk we introdue a partition Thk
, made by quadrilaterals elements Ωj

k,with typial linear size hk, say hk = maxj h
j
k with hjk = diam(Ωj

k), and Ωk =
⋃Jk

j=1Ω
j
k(see Figure 2.1). We remark that the global partition T =

⋃K
k=1 Thk

must preserve theboundary deomposition introdued in (1.1).Let us set Ω̂ = (−1, 1)d and suppose that there exists a suitable invertible mapping
F
j
k : Ω̂ → Ωj

k with (positive) Jaobian J
Ωj

k

. This (meso) partition is instead geomet-9
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Figure 2.1: Example of a two dimensional subdomain partition. In this ase K = 3 and Ω =

Ω1 ∪ Ω2 ∪ Ω3, with Ω1 =
⋃12

j=1 Ω
j

1, Ω2 =
⋃4

j=1 Ω
j

2 and Ω3 =
⋃3

j=1 Ω
j

3.rially onforming in eah Ωk, thus the intersetion of two elements Ωj
k, Ωℓ

k, ℓ 6= j, iseither empty, or a vertex, or an edge of both Ωj
k and Ωℓ

k (see Figure 2.1).We thus have that
∫

Ωk

f =
∑

Ωj
k
∈Thk

∫

Ωj
k

f =
∑

Ωj
k
∈Thk

∫

Ω̂
(f ◦ Fj

k)JΩj
k

.The third (miro) level will be represented by the so-alled Gauss-Lobatto-Legendre(GLL) points in eah mesh element Ωj
k. Let QNk

(Ω̂) be the spae of funtions de�nedon Ω̂ that are algebrai polynomials of degree less than or equal to Nk ≥ 2 in eahoordinate diretion, and let
QNk

(Ωj
k) = {v = v̂ ◦Fj

k

−1
: v̂ ∈ QNk

(Ω̂)}.We de�ne the �nite dimensional spae Xδ(Ωk) as
Xδ(Ωk) = {vδ ∈ C0(Ωk) : vδ|Ωj

k
∈ QNk

(Ωj
k) ∀Ω

j
k ∈ Thk

},and �nally
Vδ = {vδ ∈ L2(Ω) : vδ|Ωk

∈ Xδ(Ωk) ∀k = 1, ...,K : vδ|ΓD
= 0},where δ = {H,h,N} with H = (H1, ...,HK), h = (h1, ..., hK) and N = (N1, ..., NK)

K-uplets of disretization parameters. Eah omponent hk and Nk represents the mesh



11size and the degree of the polynomial interpolation in the subdomain Ωk, respetively.In order to onstrut a nodal basis for Vδ, we introdue on eah element Ωj
k a set ofinterpolation points {pi} and orresponding degrees of freedom whih allow to identifyuniquely a pieewise polynomial funtion in Vδ. We remark that, by the de�nition ofthe spae Vδ, the basis funtions will not be globally ontinuous on the whole domain

Ω.In the spetral element approximation, the interpolation points {pi} are hosen to bethe GLL points. On the referene element Ω̂, these points are tensor produt of pointsde�ned in the referene interval [−1, 1] as the zeros of (1 − x2)L′
Nk

where L′
Nk

is thederivative of the Legendre polynomial LNk
. This means that there exist Nk + 1 points

pi for the interpolation of a polynomial of degree Nk in [−1, 1], see [27℄ for details. Aspreviously observed, in higher dimensions, the spetral nodes {pi} are de�ned on thereferene element Ω̂ = [−1, 1]d, via tensor produt of the one dimensional distribution,and are then mapped onto the generi element Ωj
k in the physial spae through F

j
k. Inthe spetral element (SE) method, suh interpolation points are also used as quadraturepoints. Thus, we have

∫

Ω̂
(f ◦Fj

k)JΩj
k

≈
(Nk+1)d∑

i=1

(f ◦ Fj
k)(pi)JΩj

k

(pi)wi,where wi are the weights of the GLL quadrature formula whih is exat for all (f ◦
F
j
k)JΩj

k

∈ Q2Nk−1(Ω̂). The spetral shape funtionsΨi ∈ Vδ are de�ned asΨi(pj) = δij ,
i, j = 1, ..., (Nk + 1)d, where δij is the Kroneker symbol. It is straightforward to seethat the restrition of any spetral funtion to Ωj

k either oinides with a Lagrangepolynomial or vanishes. Moreover the support of any shape funtion is limited to theneighbouring elements if the spetral node lies on the interfae between two or moreelements, while it is on�ned to only one element for internal nodes.To introdue the non-onforming Disontinuous Galerkin (DG) and Mortar variationalformulation, we write the equilibrium equations for a generi Ωk, integrate it by partsand sum over Ωj
k ∈ Thk

. What we obtain is an equivalent form of the equation(1.9). For eah t ∈ (0, T ], we now seek for a K-uplet (uδ,1, . . . ,uδ,K) of funtions,one for eah subdomain Ωk. Problem (1.10) is then equivalent to: ∀t ∈ (0, T ] �nd
(uδ,1(t), . . . ,uδ,K(t)) ∈ Vδ suh that

K∑

k=1

(
dtt(ρuδ,k,vk)Ωk

+A(uδ,k,vk)Ωk
+ B(uδ,k,vk)∂Ωk\∂Ω

)
=

K∑

k=1

L(vk)Ωk
, (2.1)
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Figure 2.2: Example of non-onforming deomposition.for all (v1, . . . ,vK) ∈ Vδ, where
A(u,v)Ωk

= (σ(u), ε(v))Ωk
, and B(u,v)∂Ωk\∂Ω = (σ(u) · n,v)∂Ωk\∂Ω. (2.2)Depending on the hosen non-onforming approah, the funtional spae Vδ is om-pleted by additional onditions on uδ,k, k = 1, . . . ,K, on S whih ensure that uδ,k isthe restrition to Ωk of uδ ∈ H1(Ω). The bilinear form B(·, ·) may either be zero orgather all the ontributions (σ(uδ,k) · nk,vk)∂Ωk\∂Ω, k = 1, . . . ,K, depending on thehosen approah. In fat, TC1 is imposed by introduing a weak ontinuity onditionon the skeleton S ompatible with the onsidered formulations while TC2 is enforedstrongly. In both situations this lead to a strongly onsistent numerial method. Thismeans that the exat solution satis�es the numerial sheme for eah hoie of h and

N, [91℄.Equation (2.1) represents the starting point to introdue the Disontinuous Galerkinand the Mortar variational formulation. With both formulations we will be able totreat more general situations like (i) geometri non-onformity and (ii) funtional non-onformity (i.e. variable polynomial approximation degrees).In (i) the partitions Tk and Tℓ, of di�erent subdomains Ωk and Ωℓ an have di�erentmesh sizes hk and hℓ: in fat, the pratial importane of the proposed methods forelastodynamis problems lies on the possibility of using omputational grids with dif-ferent loal mesh sizes to take into aount sharp variations in the physial parametersof the media.Furthermore, the verties of elements Ωj
k and Ωi

ℓ lying on the skeleton S do not nees-sarily have to math, not even in the ase hk ≈ hℓ (Figure 2.2).In (ii) we use di�erent polynomial approximation degrees in eah subdomain to get



2.1 The Disontinuous Galerkin spetral element method 13higher preision without re�ning too muh the grid only in the subdomain of inter-est. Moreover, as we show in Chapter 4, it is evident that high order methods do notsigni�antly su�er from numerial dispersion. The ombination of (i) and (ii) yieldsapproximate solutions that are both numerially aurate and omputationally heap.Obviously, interfae onditions other than those we onsider are possible as well: anintuitive alternative is o�ered by pointwise mathing onditions whih require di�erentspetral solutions to math on a partiular set of points lying on S. The Mortar orDisontinuous Galerkin approah is preferred to the pointwise mathing sine it bringsoptimal onvergene rate, whih is not the ase for methods based on pointwise on-ditions (see [18℄ for the ellipti ase), without a�eting signi�antly the omputationale�ort.In the sequel, we desribe in detail the DG and Mortar non-onforming methods. Toease the presentation, we suppose that eah partition Thk
of Ωk onsists in only oneelement, this means that eah subdomain is in fat a spetral element (i.e., hk = Hk).The more general ase follows from similar arguments.2.1 The Disontinuous Galerkin spetral element methodBefore going into the detail of the DG spetral formulation let us introdue some no-tation that will be useful in the sequel. Let us subdivide the skeleton S in elementaryomponents as follows:

S =
M⋃

j=1

γj, with γi ∩ γj = ∅, if i 6= j, (2.3)where eah element γj = (∂Ωk(j) ∩ ∂Ωℓ(j)) \ ∂Ω, for some di�erent positive integers kand ℓ: this deomposition is unique (see Figure 2.3). Next we ollet all the edges inthe set FI .For any pair of neighbouring subdomains Ωi and Ωj that share a non trivial edge
γ ∈ FI , we denote by vi, σi (resp. vj, σj) the restrition to Ωi (resp. Ωj) of regularenough funtions v, σ. We also denote by ni (resp. nj) the exterior unit normal to Ωi(resp. Ωj).On eah γ ∈ FI we de�ne the average and jump operators for v and σ as follows:

{v} =
1

2
(vi + vj), [[v]] = vi ⊗ ni + vj ⊗ nj, (2.4)
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Figure 2.3: Non-onforming domain deomposition (left) and skeleton struture (right) showing theelementary omponents (dark ontinuous lines).and
{σ} =

1

2
(σi + σj), [[σ]] = σi · ni + σj · nj , (2.5)where a ⊗ b ∈ R

d×d is the tensor with entries (a ⊗ b)ij = aibj , 1 ≤ i, j ≤ d, for all
a,b ∈ R

d.Starting from (2.1), the appliation of jump and average operators de�ned in (2.4)-(2.5) and the imposition of ondition TC2, i.e., ontinuity of trations aross S, wededue that
K∑

k=1

(σ(u) · n,v)∂Ωk\∂Ω
=

M∑

j=1

({σ(u)}, [[v]])γj . (2.6)Sine also TC1 holds, i.e., [[u]] = 0 is zero aross S, we an further add other terms in(2.6) that penalize and ontrol the jumps of the numerial solution,
θ

M∑

j=1

([[uδ]], {σ(v)})γj +
M∑

j=1

ηγj ([[uδ ]], [[v]])γj ,with θ = {−1, 0, 1} and ηγj positive onstants depending on the disretization param-eters h and N and on the Lamé oe�ients. The terms do not a�et onsisteny ofthe method and are added with the purpose of providing more generality and betterstability properties to the sheme (see [95, 96℄).In this ontext we hoose ηγj = α{λ + 2µ}A N
2
j/hj , where {q}A represents the har-moni average of the quantity q, de�ned by {q}A = 2qk(j)qℓ(j)/(qk(j) + qℓ(j)), Nj =
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max(Nk(j), Nℓ(j)), hj = min(hd−1

k(j), h
d−1
ℓ(j) ) and α is a positive onstant at disposal. Thesemi-disrete DG formulation reads:

∀t ∈ (0, T ] �nd uδ = (uδ,1(t), ...,uδ,K(t)) ∈ V DG
δ ≡ Vδ suh that

K∑

k=1

(
dtt (ρuδ,v)Ωk

+A(uδ,v)Ωk

)
+

M∑

j=1

B(uδ,v)γj =
K∑

k=1

L(vk), (2.7)for all v = (v1, ...,vK) ∈ V DG
δ , with

B(u,v)γj = − ({σ(u)}, [[v]])γj + θ ([[u]], {σ(v)})γj + ηγj ([[u]], [[v]])γj . (2.8)Corresponding to di�erent hoies of θ we obtain di�erent DG shemes, namely: θ = −1(resp. θ = 1) leads to the symmetri (resp. non-symmetri) interior penalty methodSIPG (resp. NIPG), while θ = 0 orresponds to the so-alled inomplete interior penaltymethod IIPG (see [9, 95, 96, 98℄ for more details).2.2 The Mortar spetral element methodIn this setion we introdue the Mortar spetral element (MSE) method for the solutionof (2.1). The emphasis is on the numerial formulation, implementation and on theillustration of its �exibility and auray. To illustrate the key points, we onsider thefree-vertex variant of the MSE method [42, 16℄. The onstrained-vertex strategy an beimplemented in a similar framework. For this latter tehnique the theoretial analysisis given in [19, 18, 73℄.The MSE method relaxes the H1-ontinuity requirements of the onforming spetral-element method by onsidering eah element (or in the general ase eah subdomain)separately and ahieving mathing or pathing onditions through a variational proess.The mortars play the role of gluing the briks of the spetral onstrution. Throughthe use of mortars, one an also ouple domains where spetral elements are employedwith others treated by �nite elements [18℄.To begin, we denote by Γℓ
k, ℓ = 1, . . . , 2d, the edges of eah subdomain Ωk, k = 1, . . . ,K,so that

∂Ωk =
2d⋃

ℓ=1

Γ
ℓ
k.
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Figure 2.4: Non-onforming domain deomposition (left) and skeleton struture (right) showing aross-point (•), a virtual vertex (�), the mortars (dark ontinuous lines) and the non-mortars (darkdashed lines).We then represent the skeleton S as the union of elementary non-empty omponentsalled mortars (or masters), more preisely
S =

K⋃

k=1

(∂Ωk \ ∂Ω) =
M⋃

m=1

γm, with γm ∩ γn = ∅, if m 6= n, (2.9)where eah mortar is a whole edge Γ
ℓ(m)
k(m) of a spei� element Ωk(m) and m is anarbitrary numbering m = 1, . . . ,M , with M a positive integer. Those edges Γℓ

k thatdo not oinide with a mortar are alled non-mortars (or slaves) and provide a dualdesription of the skeleton, as
S =

⋃

mmortar

γ+m =
⋃

nnon−mortar

γ−n .The intersetion of the losures of the mortars de�nes a set of verties or ross-points
V = {xq = (γ+r ∩ γ+s ), xq 6∈ γ+m, m = 1, . . . ,M},where q is an arbitrary numbering q = 1, . . . , V. We de�ne as well the set Ṽ of virtualverties (that are not ross-points) as

Ṽ = {x̃q = (γ+
r ∩ γ+s )},where q is an arbitrary numbering q = 1, . . . , Ṽ (see Figure 2.4).



2.2 The Mortar spetral element method 17We de�ne Λδ(Γ
ℓ
k) = QNk

(Γℓ
k), the spae of the traes of funtions of Xδ(Ωk) over Γℓ

kand we also introdue Λ̂δ(Γ
ℓ
k) = QNk−2(Γ

ℓ
k).We an now de�ne the non-onforming spetral element disretization spae Ṽδ as thespae of funtions vδ ∈ Vδ that satisfy the following additional mortar mathing ondi-tion:(MC) let Φ be the mortar funtion assoiated with vδ, i.e., a funtion that is ontinuouson S, zero on ∂Ω and suh that on eah mortar γm = Γ

ℓ(m)
k(m) it oinides withthe restrition of vδ,k = vδ|Ωk

to γm; then, for all indies (k, ℓ) suh that Γℓ
k isontained in S but (k, ℓ) 6= (k(m), ℓ(m)) for all m = 1, . . . ,M (that is for allindies (k, ℓ) suh that Γℓ

k is a non-mortar) we require that:
∫

Γℓ
k

(vδ,k − Φ) · Φ̂ = 0 ∀Φ̂ ∈ [Λ̂δ(Γ
ℓ
k)]

d (2.10)and that
vδ|Ωk

(xq) = Φ(xq), ∀xq ∈ V ∪ Ṽ. (2.11)The integral mathing ondition (2.10) represents a minimization of the jump of thefuntions at internal boundaries with respet to the L2-norm and is the ounterpartin the Mortar framework of ondition TC1. The vertex ondition (2.11) ensures exatontinuity at ross-points. The Mortar spetral formulation is obtained by solving ineah subdomain Ωk the elastodynamis variational problem (2.1) with homogeneousNeumann boundary onditions on S ( σ(u) · n = 0 so that ∑k B (u,v)∂Ωk\∂Ω
is identi-ally zero, i.e., TC2 is satis�ed), and enforing weak ontinuity of the displaement on

S with mortar ondition (2.10). Thus, the semi-disrete Mortar spetral formulationreads: ∀t ∈ (0, T ] �nd (uδ,1(t), . . . ,uδ,K(t)) ∈ V mortar
δ suh that

K∑

k=1

dtt (ρuδ,k,vk)Ωk
+A(uδ,k,vk)Ωk

=

K∑

k=1

L(vk), (2.12)for all (v1, . . . ,vK) ∈ V mortar
δ where

V mortar
δ = {(v1, . . . ,vK) ∈ Vδ : mortar conditionMC is satisifed} .The Mortar Element method was originally proposed as a non-overlapping domaindeomposition approah, however reently it has been generalized to the ase of over-lapping subdomains [47, 75, 93℄. The overlapping version may be quite useful in elas-todynamis modelling to treat subdomains with omplex shaped boundaries (see anappliation in Setion 7.2). Let us onsider the two ases presented in Figure 2.5.
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Ω2

Ω1

Ω2

Ω1

S

S

A

B

C

DFigure 2.5: Example of retangular domain Ω where the surfae S separates two di�erent physialmaterials. Non overlapping subdomains and meshes (left), holes as non meshed subdomains (shadowedareas) and overlapping subdomains and meshes (right).On the one hand, the retangular domain Ω is partitioned into two non-overlappingsubdomains Ω1, Ω2 and the skeleton S of the deomposition oinides with the sepa-ration surfae between two di�erent materials suh that elasti waves propagate fasterin Ω2 than in Ω1. By adapting the mesh size hk in eah subdomain Ωk aording tothe propagation veloity of the elasti waves in the subdomain, one reasonably selets
h1 > h2. However, h2 has to be small enough to follow the shape of S and h1 annotbe too large otherwise some holes appear lose to the surfae S. As a onsequene,
h1 ∼ h2 in a neighbourhood of S resulting in a large number of unknowns to onsider inboth subdomains. The mortar mathing ondition allows to transfer the displaementfrom the set of master interpolation points to the set of slave ones and both sets ofpoints are loated on the (d−1)-dimensional surfae S. Note that numerial results areindependent of the hoie of the master and of the slave subdomains.On the other hand, the retangular domain Ω is partitioned into two overlappingsubdomains, namely, Ω1 whih is the bottom left-handed subdomain under the dashedpolyhedral surfae AB and Ω2 the top right-handed subdomain over the solid line S.These two subdomains overlap in the region between S and the surfae AB. In this ase,we an have h1 > h2 everywhere in Ω1 and the mortar mathing ondition allows totransfer the displaement from the set of interpolation points of Ω1 whih are ontainedin the d-dimensional region bounded by the polyhedral surfaes AB and CD to the setof interpolation points of Ω2 whih are on the (d− 1)-dimensional surfae S. Indeed, inthe overlapping ase, the slave subdomain always overs the master one. Moreover, theslave subdomain is hosen as the one where the mesh best desribes the surfae S andthe master subdomain ontains the soure of elasti waves. In the overlapping ase, themathing ondition reads:



2.3 Error analysis 19(MCO) let Φ be a funtion that is equal to vδ,k in the d-dimensional elements of mastersubdomain Ωk ontaining a part of S, and zero elsewhere. Then, for eah slavesubdomain Ωi suh that ∂Ωi ∩ S 6= ∅, we require that:
∫

S
(vδ,i − Φ) · Φ̂ = 0 ∀Φ̂ ∈ [Λδ,i(S)]d (2.13)where Λδ,i(S) is the spae of the traes over S of funtions belonging to Xδ(Ωi).2.3 Error analysisIn this setion we introdue some notation and present a priori error estimates forthe semi-disrete formulations (2.7) and (2.12) respetively. For the DG formulation(2.7), we show, in a suitable mesh-dependent energy norm, error estimates that areoptimal with respet to the mesh size h and suboptimal with respet to the polynomialapproximation degree N. Suh results are in agreement with those proved in [98, 96, 97℄for a slightly di�erent DG method.For the MSE formulation (2.12), in agreement with [19, 17℄, we prove an optimal errorbound in both h and N, using the H1-broken norm.For the error analysis we onsider the problem (1.9) de�ned in Ω ⊂ R

2 with ∂Ω = ΓN ∪
ΓD. We suppose that its unique solution u is regular enough so that all the norms weintrodue are well de�ned. Moreover, in the following, C will denote a positive onstantthat varies at eah ourrene but is independent of the disretization parameters h and
N. We also assume Ω to be partitioned into K non overlapping quadrilaterals Ω1, ...,ΩK(i.e., H1 = h1, ...,HK = hK) and that S is subdivided in M elementary omponents
γ1, ..., γM (resp. non-mortar edges γ−1 , ..., γ

−
M ) for the DGSE ase (resp. for the MSEase). The more general situation an be obtained using similar arguments.For Ωk ⊂ Ω̄ we denote by ‖ · ‖p,Ωk

(resp. | · |p,Ωk
) the Hp(Ωk) norm (resp. seminorm).When Ωk = Ω we simply write ‖ · ‖p= ‖ · ‖p,Ω (resp. | · |p= | · |p,Ω). Sine we aredealing with time dependent funtions, we take the standard approah of treating theseas maps from time into a Banah spae X and set

||u||Lp(0,t;X) =

(∫ t

0
||u||pX

)1/p

, 0 ≤ t ≤ T, 1 ≤ p < ∞,with the obvious modi�ations when p = ∞.



20 Non-onforming Galerkin spetral formulations2.3.1 Semi-disrete error estimates - DGSE methodTo analyze the DG formulation (2.7) we introdue the enrihed spae V (δ) = Vδ ⊕
(H2(Ω) ∩H1

ΓD
(Ω)) and de�ne the following mesh-dependent norms on Vδ and V (δ):

||vδ ||DG =




K∑

k=1

||D1/2 ε(vδ)||20,Ωk
+

M∑

j=1

ηγj ||[[vδ ]]||20,γj




1/2

∀vδ ∈ Vδ, (2.14)and
|||v|||DG =

(
||v||2DG +

K∑

k=1

(
hk
N2

k

)2

|v|22,Ωk

)1/2

∀v ∈ V (δ). (2.15)Notie that, when restrited to Vδ, these two norms are uniformly equivalent, thanks toa loal inverse inequality [9℄. We also set
ADG(u,v) =

K∑

k=1

A(u,v)Ωk
+

M∑

j=1

B(u,v)γj ∀u,v ∈ V (δ). (2.16)Lemma 1. There exist two positive onstants M and κ suh that:
ADG(u,v) ≤ M |||u|||2DG|||v|||2DG ∀u,v ∈ V (δ), (2.17)

ADG(uδ,uδ) ≥ κ ||uδ||2DG ∀uδ ∈ Vδ. (2.18)For θ = 0,−1 the last inequality holds provided that ηγj is hosen su�iently large
∀γj ∈ FI .Proof.Inequality (2.17) follows from the de�nition of the ||| · |||DG-norm (2.14) by applyingthe Cauhy-Shwarz and trae inequality [9℄. Conerning estimate (2.18), if θ = −1(2.18) holds with κ = 1 (and is indeed an equality). If θ = −1 or 0 we observe thatby the trae and inverse inequalities, supposing that Nk/Nj ≈ 1 and hk/hj ≈ 1, we get
∀γj ∈ FI : γj ⊂ ∂Ωk

||{σ(u)}||20,γj ≤ C
N2

j

hj
(||u||2DG +

h2k
N4

k

|u|22,Ωk
) ≤ C

N2
j

hj
||u||2DG ∀u ∈ Vδ,see [9℄. Setting δ∗ = minj {λ+ 2µ}A,γj we dedue

M∑

j=1

| ({σ(u)}, [[u]])γj | ≤
C

αδ∗
||u||2DG

M∑

j=1

ηγj ||[[u]]||20,γj ≤ C

αδ∗
||u||2DG.



2.3 Error analysis 21Then, it holds
ADG(u,u) ≥ ||u||2DG − 2 |

M∑

j=1

({σ(u)}, [[u]])γj |

≥ (1− 2C/αδ∗)||u||2DG.Choosing α su�iently large so that 1 − 2C/αδ∗ is bounded away from zero we have(2.18).
�We reall from [10℄ the following approximation result. For any Ωk ⊂ Ω, γj ∈ FI and

u ∈ Hsk(Ωk) there exists a sequene uI ∈ QNk
(Ωk), for Nk = 1, 2, ..., suh that

||u− uI ||q,Ωk
≤ C

hmk−q
k

N sk−q
k

||u||sk ,Ωk
, 0 ≤ q ≤ sk, (2.19)

||u− uI ||0,γj ≤ C
h
mk−1/2
k

N
sk−1/2
k

||u||sk ,Ωk
, sk > 1/2, (2.20)where mk = min (Nk + 1, sk) and C is a positive onstant independent of hk and Nk.For further use we also introdue the projetion operator Π : V −→ Vδ suh that

ADG(Πu,v) = ADG(u,v) ∀v ∈ Vδ. (2.21)Notie that Πu is well de�ned thanks to Lemma 1. Moreover, sine Πu is a projetion,we learly have
|||u−Πu|||2DG ≤ 2|||u− uI |||2DG + 2|||uI −Πu|||2DG

≤ 2|||u− uI |||2DG +
2M

κ
|||uI − u|||2DG|||u−Πu|||2DG

≤ 2|||u− uI |||2DG +
M

κǫ
|||u− uI |||2DG +

Mǫ

κ
|||u−Πu|||2DG,for any positive onstant ǫ. Therefore for ǫ = κ/2M we have

|||u−Πu|||2DG ≤ C|||u− uI |||2DG.Finally, by using (2.19)-(2.20), it is easy to see that Πu satis�es the following approxi-mation property.



22 Non-onforming Galerkin spetral formulationsLemma 2. There exists a positive onstant C suh that
|||u−Πu|||DG ≤ C

(
K∑

k=1

h2mk−2
k

N2sk−3
k

||u||2sk ,Ωk

)1/2

. (2.22)Moreover, it holds
||u−Πu||0 ≤ C

(
K∑

k=1

h2mk

k

N2sk−2
k

||u||2sk ,Ωk

)1/2

. (2.23)where Nk ≥ 1 and mk = min (Nk + 1, sk).Proof. We start showing inequality (2.22). Let χ = u − uI . By using the traeand inverse inequalities and the interpolation estimates (2.19)-(2.20) it follows
|||χ|||2DG = ||χ||2DG +

K∑

k=1

(
hk
N2

k

)2

|χ|22,Ωk

≤ C
K∑

k=1

||∇χ||20,Ωk
+

M∑

j=1

ηγj ||[[χ]]||20,γj +
K∑

k=1

(
hk
N2

k

)2

|χ|22,Ωk

≤ C

[
K∑

k=1

hmk−2
k

N sk−2
k

||u||2sk ,Ωk
+

K∑

k=1

h2mk−2
k

N2sk−3
k

||u||2sk ,Ωk

K∑

k=1

h2mk−2
k

N2sk
k

||u||2sk,Ωk

]

≤ C

K∑

k=1

h2mk−2
k

N2sk−3
k

||u||2sk,Ωk
,where Nk ≥ 1, mk = min (Nk + 1, sk). Next, we show (2.23). We set χ = Πu− u. Weassume that Ω is su�iently smooth so that the solution of the dual problem





−∇ · σ(Φ) = χ, in Ω,

Φ = 0, on ∂Ω,belongs to H2(Ω), with ontinuous dependene on χ, i.e., ∃C > 0:
||Φ||2 ≤ C||χ||0. (2.24)Integrating by parts element-wise yields:

||χ||20 = (−∇ · σ(Φ),χ)Ω =
K∑

k=1

[
(σ(Φ),∇χ)Ωk

− (σ(Φ) · n,χ)∂Ωk\∂Ω

]
.



2.3 Error analysis 23Thanks to the symmetry of σ and (2.6) we obtain
||χ||20 =

K∑

k=1

(σ(Φ) : ε(χ))Ωk
−

M∑

j=1

({σ(Φ)}, [[χ]])γj ,sine thanks to the regularity of Φ, [[σ(Φ)]] = 0 on eah γj . By subtrating the orthog-onality equation for any Φ∗ ∈ Vδ : ADG(χ,Φ
∗) = 0, using the symmetry of σ and theregularity of Φ we have

||χ||20 =

K∑

k=1

(σ(Φ−Φ∗) : ε(χ))Ωk
− (1 + θ)

M∑

j=1

({σ(Φ)}, [[χ]])γj

+θ

M∑

j=1

({σ(Φ−Φ∗)}, [[χ]])γj +
M∑

j=1

({σ(χ)}, [[Φ −Φ∗]])γj

−
M∑

j=1

ηγj ([[σ(χ)]], [[Φ −Φ∗]])γj .By using the trae and inverse inequalities, the estimate (2.24) and the approximationproperty (2.22) we have
||χ||20,Ωk

≤ C
hk

N
1/2
k

||Φ||2,Ωk
|||χ|||DG ≤ C

hk

N
1/2
k

||χ||0,Ωk
|||χ|||DG.The inequality (2.23) follows now using (2.22).

�Let now introdue the bilinear form
A∗

DG(u,v) = ADG(u,v) +
M∑

j=1

ηγj ([[∂tu]], [[v]])γj ∀u,v ∈ V (δ). (2.25)Notie that in the formulation (2.25) introdued in [98, 97℄, the presene of the (onsis-tent) penalty term ([[∂tu]], [[v]])γj has not a lear physial meaning, but it provides anauxiliary aid to to prove optimal error estimate in h and suboptimal in N for the DGsheme. In the sequel we will use the results in [98, 97℄ to omplete the analysis. Now,for all 0 ≤ t ≤ T we set uDG = uDG(t) and u∗
DG = u∗

DG(t) the unique solutions in Vδof the problems
dtt (ρuDG,v) +ADG(uDG,v) = L(v), ∀v ∈ Vδ, (2.26)
dtt (ρu

∗
DG,v) +A∗

DG(u
∗
DG,v) = L(v), ∀v ∈ Vδ, (2.27)



24 Non-onforming Galerkin spetral formulationsrespetively. From Lemma 1 and standard tehniques, follows that the variationalproblem in (2.26) is well posed. The same is true for (2.27). From the results given in[98, 97℄, the estimates (2.22) and (2.23), we haveLemma 3. There exists a positive onstant C suh that for all t ∈ [0, T ]

|||(u− u∗
DG)(t)|||DG ≤ C

{
K∑

k=1

h2mk−2
k

N2sk−3
k

||u||2H2(0,t;Hsk (Ωk))

}1/2

, (2.28)where Nk ≥ 1 and mk = min (Nk + 1, sk).The proof of Lemma 3 in given in [98, 97℄. We report it for the sake of larity.Proof. Let Πu be de�ned as in (2.21). By the triangle inequality we have
|||u− u∗

DG|||DG ≤ |||u−Πu|||DG + |||Πu − u∗
DG|||DG = T1 + T2.Estimate (2.22) yields

|T1| ≤ C

(
K∑

k=1

h2mk−2
k

N2sk−3
k

||u||2sk ,Ωk

)1/2

. (2.29)For the term T2 we set χ = u∗
DG −Πu and ξ = u−Πu. We have for t > 0

(ρχtt,v) +A∗
DG(χ,v) = (ρξtt,v) +A∗

DG(ξ,v) ∀v ∈ L2(0, T ;Vδ).Denoting by J(u,v) =
∑M

j=1 ηγj ([[u]], [[v]])γj and realling (2.21), the above equationredues to
(ρχtt,v) +A∗

DG(χ,v) = (ρξtt,v) + J(ξt,v) ∀v ∈ L2(0, T ;Vδ). (2.30)By hoosing v = χt, the error equation (2.30) beomes
(ρχtt,χt) +ADG(χ,χt) + J(χt,χt) = (ρξtt,χt) + J(ξt,χt).We an rewrite the above equation as follows

1

2
dt||ρ1/2χt||20 +

K∑

k=1

(σ(χ), ε(χt))Ωk
+ J(χ,χt) + J(χt,χt) = (ρξtt,χt)

+J(ξt,χt) +

M∑

j=1

({σ(χ)}, [[χt]])γj − θ

M∑

j=1

([[χ]], {σ(χt)})γj



2.3 Error analysis 25whih is equivalent to
1

2
dt||ρ1/2χt||20 +

1

2
dt||χ||2DG + J(χt,χt) = (ρξtt,χt) + J(ξt,χt)

+

M∑

j=1

({σ(χ)}, [[χt]])γj − θ

M∑

j=1

([[χ]], {σ(χt)})γj . (2.31)Therefore, integrating (2.31) in time between 0 and t and noting that by de�nition
χ(0) = 0, we obtain:

1

2
||ρ1/2χt(t)||20 +

1

2
||χ(t)||2DG +

∫ t

0
J(χt,χt) =

∫ t

0
(ρξtt,χt) +

∫ t

0
J(ξt,χt)

−θ

M∑

j=1

([[χ]], {σ(χ)})γj (t) + (1 + θ)

∫ t

0

M∑

j=1

({σ(χ)}, [[χt]])γj

+
1

2
||ρ1/2χt(0)||20. (2.32)We now bound eah of the terms on the right-hand side of (2.32) that involves integralson γj , using the trae inequality:

|(1 + θ)

∫ t

0

M∑

j=1

({σ(χ)}, [[χt]])γj | ≤ C

2ǫ

∫ t

0
||χ||2DG +

ǫ

2

∫ t

0
J(χt,χt),

|θ
M∑

j=1

([[χ]], {σ(χ)})γj | ≤ ǫ̂

2
||χ||2DG +

C

2ǫ̂α
J(χ,χ),

∀ǫ, ǫ̂ > 0. We also have
∫ t

0
(ρξtt,χt) ≤

∫ t

0

1

2
||ρ1/2χt||20 +

∫ t

0

1

2
||ρ1/2ξtt||20,and

∫ t

0
J(ξt,χt) ≤

C

2ǫ

∫ t

0
J(ξt, ξt) +

ǫ

2

∫ t

0
J(χt,χt).Then, equation (2.32) redues to

1

2
||ρ1/2χt(t)||20 + (

1

2
− ǫ̂

2
)||χ(t)||2DG + (1− ǫ)

∫ t

0
J(χt,χt)−

C

2ǫ̂α
J(χ,χ)

≤ 1

2
||ρ1/2χt(0)||20 +

C

2ǫ

∫ t

0
||χ||2DG +

∫ t

0

1

2
||ρ1/2χt||20

+

∫ t

0

1

2
||ρ1/2ξtt||20 +

C

2ǫ

∫ t

0
J(ξt, ξt). (2.33)



26 Non-onforming Galerkin spetral formulationsTaking ǫ = 1/4, ǫ̂ = 1/2 and α ≥ 4C we have
||ρ1/2χt(t)||20 + ||χ(t)||2DG ≤ C

[∫ t

0

(
||ρ1/2χt||20 + ||χ||2DG

)

+||ρ1/2χt(0)||20 +
∫ t

0
||ρ1/2ξtt||20 +

∫ t

0
J(ξt, ξt)

]
.By applying the Gronwall's lemma [92℄ we obtain

||ρ1/2χt(t)||20 + ||χ(t)||2DG ≤ C
[
||ρ1/2χt(0)||20

+

∫ t

0
||ρ1/2ξtt||20 +

∫ t

0
J(ξt, ξt)

]
.By the approximation property (2.22) it holds:

||ρ1/2χt(0)||20 ≤ C

K∑

k=1

h2mk

k

N2sk
k

||ut||2L2(0,t;Hsk (Ωk))

∫ t

0
||ρ1/2ξtt||20 ≤ C

K∑

k=1

h2mk−2
k

N2sk−3
k

||utt||2L2(0,t;Hsk (Ωk))

∫ t

0
J(ξt, ξt) ≤ C

K∑

k=1

h2mk−2
k

N2sk−3
k

||ut||2L2(0,t;Hsk (Ωk))Therefore
|T2| ≤ C

(
K∑

k=1

h2mk−2
k

N2sk−3
k

[
||ut||2L2(0,t;Hsk (Ωk))

+ ||utt||2L2(0,t;Hsk (Ωk))

])1/2

. (2.34)Then, (2.28) follows by ombining the estimate (2.29) and (2.34) and taking the supre-mum over all t ∈ [0, T ].
�For uDG we have the following onvergene result.Theorem 1. Suppose that uDG ∈ H2(0, T ;Hsk(Ωk)) for any Ωk ⊂ Ω. There exists apositive onstant C suh that

sup
t∈[0,T ]

|||(u− uDG)(t)|||DG ≤ C

{
K∑

k=1

h2mk−2
k

N2sk−3
k

||u||2H2(0,T ;Hsk (Ωk))

}1/2

, (2.35)where Nk ≥ 1 and mk = min (Nk + 1, sk).



2.3 Error analysis 27Proof. Let u∗
DG ∈ Vδ be the solution of (2.27). From Lemma 1 we an show that

|||(uDG − u∗
DG)(t)|||DG ≤ C|||(u− u∗

DG)(t)|||DG ∀ t ∈ [0, T ]. (2.36)In fat, it holds
|||uDG − u∗

DG|||2DG ≤ C||uDG − u∗
DG||2DG

≤ C

κ
ADG(uDG − u∗

DG,uDG − u∗
DG)

=
C

κ
ADG(u− u∗

DG,uDG − u∗
DG)

≤ CM

κ
|||u− u∗

DG|||DG|||uDG − u∗
DG|||DG.Now, by the triangle inequality,

|||(u− uDG)(t)|||DG ≤ |||(u− u∗
DG)(t)|||DG + |||(uDG − u∗

DG)(t)|||DG,then, the desired result is obtained using (2.28)-(2.36) and taking the supremum overall t ∈ [0, T ].
�2.3.2 Semi-disrete error estimates - MSE methodWe now move to the error analysis for the MSE method semi-disretization (2.12). Let

H1/2(∂Ωk) be the trae spae of H1(Ωk) on ∂Ωk, endowed with the norm
||u||1/2,∂Ωk

=
(
||u||20,Ωk

+ |u|21/2,∂Ωk

)1/2
,with |u|1/2,∂Ωk

= min
v|∂Ωk

=u
|v|1,Ωk

, and for any γ ⊂ ∂Ωk, de�ne the spae H
1/2
00 (γ) as

H
1/2
00 (γ) = {u ∈ H1/2(γ) : û ∈ H1/2(∂Ωk)},where û is the extension by zero of u to ∂Ωk, see [1℄. Moreover we introdue themesh-dependent norm
||u||∗ =

(
K∑

k=1

||u||21,Ωk

)1/2

∀u ∈ V (δ),and we de�ne the bilinear form AM(·, ·) by
AM (u,v) =

K∑

k=1

A(u,v)Ωk
∀u,v ∈ V (δ).We have the following properties for AM (·, ·).



28 Non-onforming Galerkin spetral formulationsLemma 4. There exists two positive onstants M and κ, independent of h and N, suhthat
AM (u,v) ≤ M ||u||∗||v||∗ ∀u,v ∈ V (δ), (2.37)
AM(uδ,uδ) ≥ κ||uδ ||2∗ ∀uδ ∈ V mortar

δ . (2.38)Proof.Inequality (2.37) is a diret onsequene of the Cauhy-Shwarz inequality, while (2.38)is easily obtained using the generalized Korn's �rst inequality and the Poinaré inequal-ity for uδ ∈ V mortar
δ , see [23℄.

�The ruial point of the MSE method error analysis relies on the onstrution of amodi�ed ellipti projetion operator Π from V to V mortar
δ satisfying optimal error es-timate with respet to both h and N. In order to de�ne it we need some preliminaryapproximation results that we reall from [19, 21, 17℄.For any non-mortar side γ−n of S suh that γ−n = γ−n(k) ⊂ ∂Ωk, we de�ne the projetionoperator

πn : [L2(γ−n )]
2 −→ [Λδ(γ

−
n )]

2 ∩H1
0(γ

−
n ),by ∫

γ−
n

(v − πnv) · Φ̂ = 0 ∀Φ̂ ∈ [Λ̂δ(γ
−
n )]

2. (2.39)Then, see [21℄, for any non-negative real numbers s and q it holds
||v − πnv||−q,γ−

n
≤ C

(
hk
Nk

)q+s

||v||s,γ−
n

∀v ∈ Hs(γ−n ).We now de�ne a lifting operator Rn : [Λδ(γ
−
n )]

2 ∩ H1
0(γ

−
n ) −→ [Xδ(Ωk)]

2 suh that
Rnv = v on γ−n , Rn vanishes on eah side of Ωk exept on γ−n and satis�es (see [22℄)

||Rnv||1,Ωk
≤ C||v||1/2,γ−

n
∀v ∈ [Λδ(γ

−
n )]

2 ∩H1
0(γ

−
n ).Moreover we introdue the operator P : V −→ V mortar

δ de�ned by
Pu =

K∑

k=1


uI|Ωk

+
∑

Γℓ
k
⊂∂Ωk

̺ℓ
k


 , (2.40)



2.3 Error analysis 29where uI satis�es (2.19)-(2.20) and
̺l
k =




0, if Γℓ

k is a mortar edge,
Rn[πn(u− uI)|

γ
−
n

], if γ−n = Γ
ℓ(n)
k(n) is a non-mortar edge.Finally we state the following approximation result (see [19℄ for the proof).Lemma 5. There exists a positive onstant C, independent of h and N suh that forany v ∈ Hsk(Ωk) it holds

||v −Pv||1,Ωk
≤ C

hmk−1
k

N sk−1
k

||v||sk ,Ωk
, sk > 3/2, (2.41)with Nk ≥ 1 and mk = min(Nk + 1, sk).We now de�ne the modi�ed ellipti projetion Π : V → V mortar

δ as:
AM (u−Πu,v) −

M∑

n=1

(σ(u), [[v]])γ−
n
= 0 ∀v ∈ V mortar

δ . (2.42)Note that Πu ∈ V mortar
δ is well de�ned sine the bilinear form AM(·, ·) satis�es theoerive property (2.38).Lemma 6. There exists a positive onstant C suh that

||u−Πu||∗ ≤ C

(
K∑

k=1

h2mk−2
k

N2sk−2
k

||u||2sk ,Ωk

)1/2

sk > 3/2. (2.43)with Nk ≥ 1 and mk = min(Nk + 1, sk). Moreover it holds
||u−Πu||0 ≤ C

(
K∑

k=1

h2mk

k

N2sk
k

||u||2sk ,Ωk

)1/2

. (2.44)Proof. Using the projetion operator introdued in (2.40) we rewrite the equation(2.42) obtaining
AM (Pu−Πu,χ) = −AM(u− Pu, χ) +

M∑

n=1

(σ(u), [[χ]])γ−
n
= 0 ∀χ ∈ V mortar

δ .Choosing χ = Pu − Πu and using the boundedness and oerive property (2.37) and(2.38) respetively, we have
κ||χ||2∗ ≤ M ||u− Pu||∗||χ||∗ +

M∑

n=1

| (σ(u), [[χ]])γ−
n
|.



30 Non-onforming Galerkin spetral formulationsNow, from [21, Proposition 3.1℄ we have
∑

n

| (σ(u) : [[χ]])γ−
n
| ≤ C

K∑

k=1

hmk−1
k

N sk−1
k

||u||sk ,Ωk
||χ||∗. (2.45)Therefore,

||χ||∗ ≤ C

[
||u− Pu||∗ +

K∑

k=1

hmk−1
k

N sk−1
k

||u||sk ,Ωk

]
.(2.43) is obtained ombining the above inequality with the estimate (2.41) and usingthe triangle inequality

||u−Πu||∗ ≤ ||u− Pu||∗ + ||Pu−Πu||∗.To prove (2.44) we set χ = Πu− u. By duality arguments (see proof of Lemma 2) andintegrating by parts on eah element yields:
||χ||20 = (−∇ · σ(Φ),χ)Ω = AM(Φ,χ)−

M∑

n=1

(σ(Φ), [[χ]])γ−
n
,or equivalently,

||χ||20 = AM (Φ− PΦ,χ) +AM (PΦ,χ)−
M∑

n=1

(σ(Φ), [[χ]])γ−
n
.Using the symmetry of σ and the properties (2.42) and (2.39) we have

||χ||20 = AM(Φ− PΦ,χ) +
∑

n

(σ(u), [[PΦ]])γ−
n

−
M∑

n=1

((σ(Φ)− πnσ(Φ)), [[χ]])γ−
n
.We now bound the three terms on the right-hand side of the above equation. Using(2.37) we have

|AM (Φ− PΦ,χ)Ωk
| ≤ C

hk
Nk

||χ||0||χ||1,Ωkfor any Ωk, k = 1, ...,K. By trae inequality we obtain
| (σ(u) : [[PΦ]])γ−

n
| ≤ C

hmk

k

N sk
k

||χ||0||u||sk ,Ωk
,

| ((σ(Φ)− πnσ(Φ)), [[χ]])γ−
n
| ≤ C

hk
Nk

||χ||0||χ||1,Ωk
,for any γ−n ⊂ ∂Ωk. Therefore we onlude ombining the above estimates with (2.43).
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�Let uM = uM (t) be the solution of the variational problem (2.12) in V mortar

δ or equiv-alently of
(ρ∂ttuM ,v) +AM(uM ,v) = L(v) ∀v ∈ V mortar

δ . (2.46)From the results given in [19, 17℄, the estimate (2.43) and (2.44) we have the followingLemma 7. There exists a positive onstant C suh that for all t ∈ [0, T ] it holds
||(Πu− uM )(t)||∗ ≤ C

{
K∑

k=1

h2mk−2
k

N2sk−2
k

||u||2H2(0,T ;Hsk (Ωk))

}1/2

, (2.47)where Nk ≥ 1 and mk = min (Nk + 1, sk).Proof. We introdue the modi�ed ellipti projetion Πu as in (2.42) and we set
ξ = u− Πu and χ = uM −Πu. When multiplying the �rst line in (1.1) by a funtion
v = v(t) ∈ L2(0, T ;V mortar

δ ) and integrating by parts on eah Ωk, we observe that
(ρ∂ttu,v) +AM(u,v) +

M∑

n=1

(σ(u), [[v]])γ−
n
= L(v).Now subtrating (2.46) from the above equation we have, for any v ∈ L2(0, T ;V mortar

δ ),
(ρ∂tt(u− uM ),v) +AM (u− uM ,v) +

M∑

n=1

(σ(u), [[v]])γ−
n
= 0,or equivalently,

(ρχtt,v) +AM (χ,v) = (ρξtt,v) +AM(ξ,v) +

M∑

n=1

(σ(u), [[v]])γ−
n
.Choosing v = χt and using the property (2.42) we obtain

(ρχtt,χt) +AM (χ,χt) = (ρξtt,χt) + 2
M∑

n=1

(σ(u), [[v]])γ−
n
.We rewrite it as follows

1

2
dt||ρ1/2χt||20 +

1

2
dtAM (χ,χ) = (ρξtt,χt) + 2

M∑

n=1

(dt(σ(u), [[χ]])γ−
n

−2

M∑

n=1

(σ(ut), [[χt]])γ−
n
. (2.48)



32 Non-onforming Galerkin spetral formulationsTherefore, integrating (2.48) in time between 0 and t, noting that by de�nition χ(0) = 0and using (2.38) we obtain
1

2
||ρ1/2χt(t)||20 +

κ

2
||χ(t)||2∗ ≤

∫ t

0
(ρξtt,χt) + 2

M∑

n=1

(σ(u), [[χ]])γ−
n
(t)

−2

∫ t

0

M∑

n=1

(σ(ut), [[χt]])γ−
n
+

1

2
||ρ1/2χt(0)||20. (2.49)We now bound eah of the terms in the right-hand side of (2.49) that involves integralson γ−n , using the trae inequality:

|2
∫ t

0

M∑

n=1

(σ(ut), [[χ]])γ−
n
| ≤ C

K∑

k=1

h2mk−2
k

N2sk−2
k

∫ t

0
||ut||2sk,Ωk

+
1

2

∫ t

0
||χ||2∗,

|2
M∑

n=1

(σ(u), [[χ]])γ−
n
| ≤ C

2ǫ

K∑

k=1

h2mk−2
k

N2sk−2
k

||u||2sk,Ωk
+

ǫ

2
||χ||2∗,

∀ǫ > 0. We also have
∫ t

0
(ρξtt,χt) ≤

∫ t

0

1

2
||ρ1/2χt||20 +

∫ t

0

1

2
||ρ1/2ξtt||20.Then, inequality (2.49) yields

1

2
||ρ1/2χt(t)||20 + (

κ

2
− ǫ

2
)||χ(t)||2∗ ≤ 1

2

∫ t

0

(
||ρ1/2χt||20 + ||χ||2∗

)

+
1

2

∫ t

0
||ρ1/2ξtt||20 +

C

2ǫ

K∑

k=1

h2mk−2
k

N2sk−2
k

||u||2sk,Ωk
+

1

2
||ρ1/2χt(0)||20

+C
K∑

k=1

h2mk−2
k

N2sk−2
k

∫ t

0
||ut||2sk,Ωk

. (2.50)Choosing ǫ suh that κ− ǫ is bounded away from 0 we obtain
||ρ1/2χt(t)||20 + ||χ(t)||2∗ ≤ C

[∫ t

0

(
||ρ1/2χt||20 + ||χ||2∗

)
+

∫ t

0
||ρ1/2ξtt||20

+

K∑

k=1

h2mk−2
k

N2sk−2
k

||u||2sk ,Ωk
+ ||ρ1/2χt(0)||20 +

K∑

k=1

h2mk−2
k

N2sk−2
k

∫ t

0
||ut||2sk,Ωk

]
.By applying the Gronwall's lemma [92℄ it holds

||ρ1/2χt(t)||20 + ||χ(t)||2∗ ≤ C

[∫ t

0
||ρ1/2ξtt||20 +

K∑

k=1

h2mk−2
k

N2sk−2
k

||u||2sk ,Ωk

+||ρ1/2χt(0)||20 +
K∑

k=1

h2mk−2
k

N2sk−2
k

∫ t

0
||ut||2sk,Ωk

]
.



2.3 Error analysis 33Using the approximation properties (2.43)-(2.44) it follows that:
||ρ1/2χt(0)||20 ≤ C

K∑

k=1

h2mk

k

N2sk
k

||ut||2L2(0,t;Hsk (Ωk))
,

∫ t

0
||ρ1/2ξtt||20 ≤ C

K∑

k=1

h2mk−2
k

N2sk−2
k

||utt||2L2(0,t;Hsk (Ωk))
.Therefore we have

||χ(t)||2∗ ≤ C

K∑

k=1

h2mk−2
k

N2sk−2
k

||u||2H2(0,t;Hsk (Ωk))
.

�For uM it holds the following onvergene result.Theorem 2. Suppose that uM ∈ H2(0, T ;Hsk(Ωk)) for any Ωk ⊂ Ω. There exists apositive onstant C suh that
sup

t∈[0,T ]
||(u− uM )(t)||∗ ≤ C

{
K∑

k=1

h2mk−2
k

N2sk−2
k

||u||2H2(0,T ;Hsk (Ωk))

}1/2

, (2.51)where Nk ≥ 1 and mk = min (Nk + 1, sk).The proof of Theorem 2 is obtained using the triangle inequality, estimates (2.43)-(2.44) and (2.47) and taking the supremum over all t ∈ [0, T ].2.3.3 Semi-disrete L
2-error estimates - DGSE/MSE methodsStarting from the estimates in Theorems 1 and 2 and using standard duality argumentsit is possible to prove the following L2-error estimates for the uDG and uM semi-disretesolutions, respetively. Here, for the sake of brevity we report only the �nal result.Theorem 3. There exists two positive onstant C1 and C2 suh that

sup
t∈[0,T ]

||(u− uDG)(t)||0 ≤ C1

{
K∑

k=1

h2mk

k

N2sk−1
k

||u||2H2(0,T ;Hsk (Ωk))

}1/2

,and
sup

t∈[0,T ]
||(u− uM )(t)||0 ≤ C2

{
K∑

k=1

h2mk

k

N2sk
k

||u||2H2(0,T ;Hsk (Ωk))

}1/2

,where Nk ≥ 1 and mk = min (Nk + 1, sk).



34 Non-onforming Galerkin spetral formulationsWe remark that in the family of DGSE approximations the above result holds forthe SIPG method but is no longer true when the NIPG method is applied [9℄. In thisase the NIPG solution satis�es a L2-error estimate similar to (2.35).2.4 Algebrai formulation of the semi-disrete formulationsFor simpliity we onsider the elastodynamis equation (1.1) in a bounded domain
Ω ⊂ R

2 with mixed Dirihlet Neumann boundary ondition, thus ΓD ∪ ΓN ≡ Γ,
ΓNR = ∅. To ease the presentation let also suppose that Ω is partitioned into Knon-overlapping spetral elements Ω1, ...,ΩK so that S =

⋂K
k=1 ∂Ωk \ Γ. The moregeneral ase an be obtained with similar arguments. The extension of this theory tovisoelasti external fores and absorbing boundary onditions is addressed in Setions2.4.1 and 2.4.2 respetively, while the algorithmi aspets and implementation issuesare disussed in Chapter 5.We denote by D =

∑K
k=1(Nk + 1)2 the dimension of eah omponent of Vδ and weintrodue a basis {Ψ1

i ,Ψ
2
i }Di=1 for the �nite dimensional spae Vδ, where Ψ1

i =
(
Ψ1

i , 0
)⊤and Ψ2

i =
(
0,Ψ2

i

)⊤. Dropping the subsript δ, we write the trial funtions u ∈ Vδ aslinear ombination of the basis funtions, i.e.,
u(x, t) =

D∑

j=1

[
Ψ1

j(x)

0

]
U1
j (t) +

D∑

j=1

[
0

Ψ2
j(x)

]
U2
j (t), (2.52)Next, we de�ne

ak = 1 +

k−1∑

j=1

(Nj + 1)2 and bk =

k∑

j=1

(Nj + 1)2and we order the basis funtions suh that
u|Ωk

= (u1, u2)
⊤
|Ωk

=




bk∑

j=ak

Ψ1
jU

1
j,k ,

bk∑

j=ak

Ψ2
jU

2
j,k




⊤

, (2.53)for k = 1, ...,K. With the notation just introdued, we write the equation (2.1) for anytest funtion Ψℓ
j(x), for ℓ = 1, 2, in the spae Vδ and we obtain the following set ofordinary di�erential equations:MÜ+AU+ BU = Fext, (2.54)



2.4 Algebrai formulation of the semi-disrete formulations 35or equivalently
[ M1 0

0 M2

][
Ü1

Ü2

]
+

[ A1 + B1 A2 + B2A3 + B3 A4 + B4

][
U1

U2

]
=

[
Fext,1

Fext,2

]
, (2.55)where Ü represents the vetor of nodal aeleration and Fext the vetor of externallyapplied loads de�ned as

F ext,ℓ
i = (t,Ψℓ

i)ΓN
+ (f ,Ψℓ

i)Ω, for ℓ = 1, 2.As a onsequene of assumptions on the basis funtions, the mass matries M1 and M2have a blok diagonal struture Mℓ = diag(Mℓ
1,Mℓ

2, ...,Mℓ
K), ℓ = 1, 2, where eah blokMℓ

k is assoiated to the spetral element Ωk andMℓ
k(i, j) = (ρΨℓ

j ,Ψ
ℓ
i)Ωk

, for i, j = ak, ..., bk. (2.56)The matrix A assoiated to the bilinear form A(·, ·) de�ned in (2.2) takes the formA =

[ A1 A2A3 A4

]
,where the blok diagonal matries Aℓ, ℓ = 1, .., 4, are equal to Aℓ = diag(Aℓ

1,Aℓ
2, ...,Aℓ

K).The elements of the matries Aℓ
k, for ℓ = 1, ..., 4 and k = 1, ..,K are de�ned byA1

k(i, j) = A(σ(Ψ1
j ), ε(Ψ

1
i ))Ωk

, A2
k(i, j) = A(σ(Ψ2

j ), ε(Ψ
1
i ))Ωk

,A3
k(i, j) = A(σ(Ψ1

j ), ε(Ψ
2
i ))Ωk

, A4
k(i, j) = A(σ(Ψ2

j ), ε(Ψ
2
i ))Ωk

, (2.57)for i, j = ak, ..., bk , or equivalently byA1
k(i, j) = ([λ+ 2µ]

∂Ψ1
j

∂x1
,
∂Ψ1

i

∂x1
)Ωk

+ (µ
∂Ψ1

j

∂x2
,
∂Ψ1

i

∂x2
)Ωk

,A2
k(i, j) = (λ

∂Ψ2
j

∂x2
,
∂Ψ1

i

∂x1
)Ωk

+ (µ
∂Ψ2

j

∂x1
,
∂Ψ1

i

∂x2
)Ωk

,A3
k(i, j) = (µ

∂Ψ1
j

∂x2
,
∂Ψ2

i

∂x1
)Ωk

+ (λ
∂Ψ1

j

∂x1
,
∂Ψ2

i

∂x2
)Ωk

,A4
k(i, j) = ([λ+ 2µ]

∂Ψ2
j

∂x2
,
∂Ψ2

i

∂x2
)Ωk

+ (µ
∂Ψ2

j

∂x1
,
∂Ψ2

i

∂x1
)Ωk

.



36 Non-onforming Galerkin spetral formulationsby de�nitions of the stress and strain tensors σ and ε, respetively. We remark thatthe matries M and A are very similar to those resulting from the disretization of theelastodynamis equation (1.9) with onforming spetral element method (see [26, 27℄).The matrix B, assoiated to the bilinear form B(·, ·) de�ned in (2.2), is the one thattakes into aount the disontinuity of the numerial solution aross the skeleton S. Inthe DG approah it is given by B =

[ B1 B2B3 B4

]
,where Bℓ =




Bℓ
1,1 · · · Bℓ

1,K... . . . ...Bℓ
K,1 · · · Bℓ

K,K


 , for ℓ = 1, ..., 4.In partiular the elements of eah matrix B1

k,n are de�ned by:B1
k,n(i, j) =

∑

γ∈FI

B(Ψ1
j ,Ψ

1
i )γ

=
∑

γ∈FI

−
∫

γ
{σ(Ψ1

j )} : [[Ψ1
i ]] + θ

∫

γ
[[Ψ1

j ]] : {σ(Ψ1
i )}

+ηγ

∫

γ
[[Ψ1

j ]] : [[Ψ
1
i ]], (2.58)for i = ak, ..., bk and j = an, ..., bn. The elements of the matries Bℓ

k,n, for ℓ = 2, 3, 4,are de�ned in a similar way.The situation is a little bit more ompliated in the Mortar approah, sine the weakontinuity ondition aross the skeleton S does not appear expliitly in the variationalequation but it is a onstraint in the funtional spae V mortar
δ : in fat, in the MortarVariational Formulation, B(·, ·) = 0 implies that B is a null matrix.To aount for MC we need to modify (2.55) as follows. Without loss of generality letus suppose that γ−n is a non-mortar edge ontained in S and moreover that it is sharedby two subdomains Ωm and Ωn. We all master the side of γ−n belonging to Ωm andslave the other side. Thus, the mortar onditions MC an be reast as:(i) Φ = um on γ−n ,(ii) ∫γ−

n
(un − um) · Φ̂ = 0 ∀Φ̂ ∈ [Λ̂δ(γ

−
n )]

2.



2.4 Algebrai formulation of the semi-disrete formulations 37We remark that when interfaes do not math geometrially, i.e. γ−n is shared by M∗+1subdomains Ωn,Ωm(1), ...,Ωm(M∗), ondition (ii) reads as
M∗∑

ℓ=1

∫

γ−
n ∩∂Ωm(ℓ)

(un − um(ℓ)) · Φ̂ = 0 ∀Φ̂ ∈ [Λ̂δ(γ
−
n )]

d.Then the following arguments have to be intended for eah integral in the above ex-pression. Now, for the spetral element Ωn (resp. Ωm) we order �rst the Nn + 1 (resp.
Nm + 1) degrees of freedom (d.o.f.) assoiated to the spetral nodes pi that live in γ−nand next the d.o.f. assoiated to the remaining spetral nodes pi. With this assumptionsthe restrition of the funtion un on γ−n is rewritten as

un|
γ
−
n

= (

Nn+1∑

j=1

Ψ1
jU

1
j,n,

Nn+1∑

j=1

Ψ2
jU

2
j,n)

⊤,and the same for the funtion um|
γ
−
n

. Hene, by de�nition of salar produt, the mortarondition (ii) beomes
∫

γ−
n

(u1,n − u1,m)Φ̂1 +

∫

γ−
n

(u2,n − u2,m)Φ̂2 = 0 ∀ Φ̂1, Φ̂2 ∈ Λ̂δ(γ
−
n ). (2.59)Sine the integrals in (2.59) onern separately the two omponents of the displaement,we fous the attention onto one of them, dropping the subsripts 1 and 2 to ease thenotation. The other one is treated in the same manner. For the slave side of the mortarwe obtain

∫

γ−
n

unΦ̂i =

Nn+1∑

j=1

Uj,n

∫

γ−
n

ΨjΦ̂i =

Nn+1∑

j=1

Ri,jUj,n, for i = 1, .., Nn − 1, (2.60)where Ri,j =
∫
γ−
n
ΨjΦ̂i. For the master side, using the mortar ondition (i), we havethat

∫

γ−
n

umΦ̂i =

Nm+1∑

j=1

Uj,m

∫

γ−
n

ΦjΦ̂i =

Nm+1∑

j=1

Pi,jUj,m, for i = 1, .., Nn − 1, (2.61)with Pi,j =
∫
γ−
n
ΦjΦ̂i. One may use (2.60)-(2.61) to reast the mortar onstraint MCin matrix notation

R




U1,n...
UNn+1,n


 = P




U1,m...
UNm+1,m


 . (2.62)



38 Non-onforming Galerkin spetral formulationsNow, to ompute numerially the matries R and P we use suitable quadrature formulasdepending if we are on the slave or in the master side of the mortar. We hoose Nn+1GLL nodes to evaluate the integrals ∫γ−
n
ΨjΦ̂ids suh that the matrix R takes a speialstruture. In fat, beause of this hoie the interior part Rint is diagonal. The �rstand the last olumns are full but they are onerned only with d.o.f. (namely, U1,nand UNn+1,n) but do not depend on the mathing onditions. We observe also that thematrix P is full. Then the loal projetion operator an be written in a matrix form as




U2,n...
UNn,n


 = R−1

int




P1,1 · · · P1,Nm+1 −R1,1 −R1,Nn+1... . . . ... ... ...
PNn−1,1 · · · PNn−1,Nm+1 −RNn−1,1 −RNn−1,Nn+1




︸ ︷︷ ︸
Q

n




U1,m...
UNm+1,m

U1,n

UNn+1,n



.Thanks to the projetion operator Q

n
, we are then able to reover the slave unknownsin γ−n one we know the master ones. To obtain a global projetion operator Q̃ weproeed as follows. For eah omponent of u we denote byUslave the vetor of unknownsassoiated to d.o.f. that lay on the slave side of S and byUmaster the vetor of unknownsassoiated to all the remaining d.o.f. Then, for eah γ−n belonging to the skeleton S webuild the loal projetion operator Q
n
and we store it into the matrix Q̃. In this way

Q̃ has a blok struture of the form
Q̃ =

[
Q̂ 0

0 Q̂

]
, (2.63)where Q̂ is a blok diagonal matrix with a blok equal to the identity and the otherequal to the retangular matrix Q ontaining all the loal matries Q

n
. Thus, we havethat the global linear system an be expressed asQ̃⊤M̃Q̃Ümaster + Q̃⊤ÃQ̃Umaster = Q̃⊤

Fext, (2.64)where the matries M̃ and Ã have olumns and rows modi�ed with respet to the onesof M and A aording to latter assumptions on the unknowns reordering. All the termsappearing in the matries of the two algebrai formulation are omputed using Gauss-Lobatto quadrature rule in whih the quadrature points oinide with the GLL points.We remark that sine the term Ψℓ
jΨ

ℓ
i ∈ QNk

, for some k, while the Gauss-Lobatto rulewith Nk points is exat for polynomials up to degree 2Nk − 1 in eah variable, thespetral mass matrix M is slightly under integrated. However, the �nal auray ofspetral methods is maintained [26℄.



2.4 Algebrai formulation of the semi-disrete formulations 392.4.1 Strutural dampingWhen using equation (1.3) to model visoelasti materials, very useful for seismi ap-pliations, we must ompute additional external fores:
Fvisc = −CU̇−DU, (2.65)or equivalently

[
Fvisc,1

Fvisc,2

]
= −

[ C1 0

0 C2

] [
U̇1

U̇2

]
−
[ D1 0

0 D2

][
U1

U2

]
,where the matries Cℓ and Dℓ, for ℓ = 1, 2, are blok diagonal. Eah blok Cℓ

k and Dℓ
kis assoiated to a spetral element Ωk andCℓ

k(i, j) = (ρζΨℓ
j ,Ψ

ℓ
i)Ωk

, Dℓ
k(i, j) = (ρζ2Ψℓ

j,Ψ
ℓ
i)Ωk

, for i, j = ak, ..., bk , (2.66)respetively. Then, the DGSE system beomes:MÜ+ CU̇+ (A+ B+D)U = Fext, (2.67)where U̇ represents the nodal veloity vetor.Obviously when MSE method is onsidered, the above system is modi�ed as explainedin the previous setion (see 2.64). This leads to the �nal systemQ̃⊤M̃Q̃Ümaster + Q̃⊤C̃Q̃U̇master + Q̃⊤
(Ã+ D̃)Q̃Umaster = Q̃⊤

Fext. (2.68)2.4.2 Absorbing boundary onditionsSpeial attention must be paid if absorbing boundary onditions (ABC) are onsideredin the model (1.1). As we desribed in Setion 1.2, ABCs are presribed on ΓNRintroduing �titious trations t∗ depending on spae and time derivatives of u as in(1.7). At the disrete level ABCs are in the form
Fabc = SU̇+ RU, (2.69)or equivalently

[
Fabc,1

Fabc,2

]
=

[ S1 0

0 S2 ][ U̇1

U̇2

]
+

[ R1 R2R3 R4

][
U1

U2

]
.



40 Non-onforming Galerkin spetral formulationsOn the one hand, the blok matries Sℓ, for ℓ = 1, 2, are diagonal and eah blok Sℓkassoiated to an Ωk suh that γ∗k = ∂Ωk ∩ ΓNR 6= ∅, is de�ned bySℓk(i, j) = (cℓΨ
ℓ
j,Ψ

ℓ
i)γ∗

k
, i, j = ak, ..., bk , (2.70)with

c1 = [−λ+ 2µ

cP
(n1n2 + n2

1)−
µ

cS
(n1n2 + n2

2)], (2.71)
c2 = [−λ+ 2µ

cP
(n1n2 + n2

2) +
µ

cS
(n1n2 + n2

1)]. (2.72)On the other hand, matries Rℓ, for ℓ = 1, .., 4, are still blok diagonal, i.e.,Rℓ = diag(Rℓ
1, · · · ,Rℓ

K

)
. (2.73)but eah Rℓ

k, for k = 1, ...,K is non diagonal. In fat, setting
c3 =

µ(2cS − cP )

cS
and c4 =

λcS + 2µ(cS − cP )

cP
,it is possible to write the bloks Rℓ

k in the following formR1
k(i, j) = ([c3n1n

2
2 + c4n1n

2
2]Ψ

1
j ,
∂Ψ1

i

∂x1
)γ∗

k
+ ([−c3n

2
1n2 − c4n

2
1n2]Ψ

1
j ,
∂Ψ1

i

∂x2
)γ∗

kR2
k(i, j) = ([c3n

3
2 − c4n

2
1n2]Ψ

1
j ,
∂Ψ2

i

∂x1
)γ∗

k
+ ([−c3n1n

2
2 + c4n

3
1]Ψ

1
j ,
∂Ψ2

i

∂x2
)γ∗

kR3
k(i, j) = ([−c3n

2
1n2 + c4n

3
2]Ψ

2
j ,
∂Ψ1

i

∂x1
)γ∗

k
+ ([c3n

3
1 − c4n1n

2
2]Ψ

2
j ,
∂Ψ1

i

∂x2
)γ∗

kR4
k(i, j) = ([c3n1n

2
2 − c4n1n

2
2]Ψ

2
j ,
∂Ψ2

i

∂x1
)γ∗

k
+ ([c3n

2
1n2 + c4n

2
1n2]Ψ

2
j ,
∂Ψ2

i

∂x2
)γ∗

kfor i, j = ak, ..., bk. Finally, taking into aount of both visoelasti and absorbingterms, i.e., (2.65) and (2.69) respetively, the global disretized system readsMÜ+ (C− S)U̇+ (A+ B+D− R)U = Fext, (2.74)for the DGSE method andQ̃⊤M̃Q̃Ümaster + Q̃⊤
(C̃− S̃)Q̃U̇master + Q̃⊤

(Ã+ D̃− R̃)Q̃Umaster = Q̃⊤
Fext, (2.75)for the MSE method, respetively. In the next hapter we desribe three time integrationshemes that we adopted for solving (2.74) and (2.75). In partiular we foused onthe leap-frog sheme, the fourth order expliit Runge-Kutta method and the ImpliitMidpoint method.



2.5 Extension to three dimensional problems 412.5 Extension to three dimensional problemsNon-onforming disretizations an be used as well for the approximation of three di-mensional problems and the general theory (suh as the formulation, the disretizationand the error analysis) follows easily from the results presented in the previous setions.However, for three dimensional wave propagations we deide to implement and studyonly the DGSE method. In fat, as we will see in Chapter 7, to simulate realisti earth-quake senarios, an e�ient numerial algorithm well suited for parallel omputations ismandatory. Form an algorithmi point of view, the interfae integrals introdued withthe bilinear form B(·, ·) in (2.8) are easier to ompute than the mortar ondition MCde�ned in the MSE formulation.Indeed, as we will see in Chapter 5 the de�nition of the spae of multipliers Λ̂δ is quiteelaborate in two dimension and it is almost prohibitive in three dimension. For thisreason, it is preferable to use in a three dimensional framework, a di�erent Mortar ap-proah in whih the mortar onstraint is diretly imposed into the weak formulation,e.g. [69, 15℄. At the algebrai level this tehnique leads to a saddle-point problem andspeial solvers are needed for the solution of the resulting algebrai system.On the ontrary, using the DGSE method, no modi�ations our to the algebrai sys-tem (2.55) and this yields enormous advantages from the omputational point of view.Sine we allow the possibility of dealing with meshes independently de�ned with re-spet to the neighbouring ones, the algorithmi key point resides on the omputationof interfae integrals having support on the elementary omponents (now intersetionof quadrilateral surfaes). The proedure we follow is very similar to that desribedfor the general two dimensional on�gurations, so we refer to Chapter 5 for a detaileddesription.



42 Non-onforming Galerkin spetral formulations



Chapter 3
Time disretization
In this hapter we desribe three di�erent approahes for solving the ordinary di�er-ential system of equations (2.74) and (2.75), resulting from the DGSE or MSE semi-disretization, respetively. Sine DGSE and MSE methods are high-order tehniques(see Chapter 2.3), we are looking for time integration shemes that preserve also in timetheir good approximations properties. In partiular, these methods must be stable (witha not too restritive CFL ondition) and must produe low dispersion and dissipationerrors during the propagation of the wave�eld. Moreover they must be omputationallyheap in terms of both memory storage and omputational time.In the following we desribe three di�erent time integration shemes, namely the leap-frog (LF) �nite di�erene method, the impliit midpoint (IM) method and the fourthorder expliit Runge-Kutta (RK4) method, see [91℄. The development of muh generalhigh order semi impliit and impliit integration shemes and the related preondition-ers is under investigation.The LF sheme, whih is the most popular time-stepping sheme for wave propagation[35, 62, 61, 63, 50, 39, 34, 36, 79, 12℄, belongs to the family of the Newmark methods[91, 92℄. It is seond order aurate, expliit and onditionally stable.The IM sheme omes from the family of the Runge-Kutta methods [68℄ and it is stillseond order aurate but impliit and unonditionally stable.At the best of our knowledge, impliit time integration shemes have been applied ou-pled only with �nite di�erenes or olloation methods to solve aousti [54℄ and elastiwave propagation problems [118℄. The main advantage of this approah relies on theirunonditioned stability, that allows to hoose a time integration step ten times larger43



44 Time disretizationthan in the expliit ase [118℄.For higher order aurate time integration shemes we onsider the Runge-Kutta ap-proah [25℄. Other high order methods proposed for the disretization in time areTaylor-Galerkin method [39℄, the ADER-DG method [57, 41℄, the rapid expansionmethod [112, 64℄ and the sympleti method [105, 85, 112℄. A omparison of thesemethods is beyond of the sope of this present work and will be the subjet of futureresearh.High order Runge-Kutta shemes are one step methods that inrease their aurayat the prie of inreasing the number of funtional evaluations at eah time level, thussarifying linearity. These methods are studied and applied in wave propagation [54, 71℄beause they are highly aurate and low dispersive. Moreover, in the expliit ase theirabsolute stability region is not more restritive than the LF one (f. Chapter 4). Hereand in the following we analyze in detail the four stage Runge-Kutta method RK4, thatis expliit, fourth order aurate and onditionally stable.In this hapter the attention is foused on the analysis of LF, IM and RK4 time dis-retizations when oupled to DGSE and MSE semi-disretizations and on the orre-sponding fully disrete formulations.3.1 Fully-disrete formulationsTo ease the notation we present the analysis in absene of visoelasti materials andabsorbing fores, i.e, starting from the algebrai systems (2.54) and (2.64) oming fromthe DG and Mortar formulations. Moreover we suppose that Ω ⊂ R
2 is partitioned into

K non-overlapping spetral elements Ω1, ...,ΩK . The more general situation and theextension to three dimensional problems an be obtained straightforwardly with similararguments.3.1.1 Leap-frog �nite di�erene methodHere and in the following we all V = U̇ the vetor of nodal veloities and we presribeinitial onditions U(0) = u0 and V(0) = u1.Consider the system (2.54). Let nowsubdivide the interval (0, T ] into N subinterval of amplitude ∆t = T/N and set tn =

n∆t, for n = 1, ..., N .



3.1 Fully-disrete formulations 45Time integration for the DGSE methodThe Newmark method [94℄ applied to (2.54) onsists in �nding the approximations
{U(tn)}n to u(tn) suh that

[M+∆t2β(A+ B)]U(tn+1) =

[
2M−∆t2(

1

2
− 2β + ϑ)(A+ B)]U(tn)

−[M+∆t2(
1

2
+ β − ϑ)]U(tn−1)

+∆t2[βFext(tn+1) + (
1

2
− 2β + ϑ)Fext(tn) + (

1

2
+ β − ϑ)Fext(tn−1)], n ≥ 2, (3.1)with

[M+∆t2β(A+ B)]U(t1) =

[M−∆t2(
1

2
− β)(A+ B)]U(t0)−∆tMV(t0)

+∆t2[βFext(t1) + (
1

2
− β)Fext(t0)]. (3.2)Notie that, at eah time step tn+1 the solution of (3.3) an be obtained provided U(tn)and U(tn−1) are known.Here, β ≥ 0 and ϑ ≥ 1

2 are parameters to be hosen. We reall that for ϑ = 1
2 theNewmark sheme is seond order aurate in time, whereas it is only �rst order auratefor ϑ > 1

2 . For β = 0 the Newmark sheme (3.2)-(3.1) requires at eah time step thesolution of a linear system with the mass matrix M. However, beause elements aredeoupled, M is blok-diagonal with eah blok of size equal to the number of degrees offreedom in the element. Therefore, it an be inverted at very low omputational ost andthe sheme is essentially fully expliit. Indeed, due to the hoie of the basis funtions,M redues to a diagonal matrix, f. Setion (2.4). With ϑ = 1
2 , the expliit Newmarkmethod orresponds to the standard leap-frog sheme. For β > 0, the resulting shemeis impliit and involves the solution of a linear system of equations with a positivede�nite matrix M + ∆t2β(A + B) at eah time step. We �nally note that the seond-order Newmark sheme with ϑ = 1

2 is unonditionally stable for β ≥ 1
4 , whereas for

0 ≤ β < 1
4 the time step ∆t has to be restrited by a CFL ondition, [94℄. In the ase

β = 0, this restrition depends on the maximum eigenvalue of the matrix A + B, seeChapter 4 for more details. For ϑ = 1/2 and β = 0, the expliit Newmark method (3.1)orresponds to the standard leap-frog shemeMU(tn+1) =
[
2M−∆t2(A+ B)]U(tn)−MU(tn−1) + ∆t2Fext(tn), (3.3)



46 Time disretizationfor n = 1, ..., N , withMU(t1) =

[M− ∆t2

2
(A+ B)]U(t0)−∆tMV(t0) +

∆t2

2
Fext(t0).Time integration for the MSE methodConsider now the system (2.64) oming from the Mortar semi-disretization. Setting

ϑ = 1/2 and β = 0 in (3.2)-(3.1), the leap-frog sheme is given byQ̃⊤M̃Q̃Ums(tn+1) = Q̃⊤
[(2M̃−∆t2Ã)Q̃Ums(tn)−M̃Q̃Ums(tn−1)+∆t2Fext(tn)], n ≥ 2,(3.4)with̃Q⊤M̃Q̃Ums(t1) = Q̃⊤
[(M̃− ∆t2

2
Ã)Q̃Ums(t0)−∆tM̃Q̃Vms(t0) +

∆t2

2
Fext(tn)].Here and in the following the abbreviations ms and sl stand for master and slave, re-spetively. In the MSE method the matrix Q̃⊤M̃Q̃ is non-diagonal, but taking advantageof the struture of Q̃ it is possible to split the linear system (3.4) as follows

[ MI
ms 0

0 M̃S

ms

] [
UI

ms(tn+1)

US
ms(tn+1)

]
=

[
bI
ms

b̃S
ms

]
, n ≥ 2, (3.5)with

b = [(2M̃−∆t2Ã)Q̃U(tn)− M̃Q̃U(tn−1) + ∆t2Fext(tn)], n ≥ 2,and whereM̃S

ms =

[ MS,1
ms +Q⊤MS,1

sl Q 0

0 MS,2
ms +Q⊤MS,2

sl Q

] and b̃S
ms =

[
b
S,1
ms +Q⊤b

S,1
sl

b
S,2
ms +Q⊤b

S,2
sl

]
.(3.6)The supersripts I and S identify those unknowns belonging to the interior or to theskeleton of the domain respetively.At eah time step, it is possible to solve separately the two bloks of the linear system(3.5). The �rst blok is diagonal and then easily solvable. The seond one is a blokmatrix with idential bloks on the diagonal. Then, we perform the LU-fatorization(see [91℄) of one of the two bloks and then we solve separately for the two omponents.This tehnique does not inrease too muh the omputational ost beause of the verylow dimension of this system with respet to the full one (3.5).



3.1 Fully-disrete formulations 473.1.2 Runge-Kutta 4We now move on the desription of Runge-Kutta time integration sheme, starting fromthe four-stage Runge-Kutta method.Time integration for the DGSE methodUsing the notation introdued in Setion 3.1.1, we rewrite (2.54) as the following �rstorder system of equations
[ I 0

0 M ][
U̇(t)

V̇(t)

]
=

[
0 I

−(A+ B) 0

] [
U(t)

V(t)

]
+

[
0

Fext(t)

]
, (3.7)where I is the identity matrix. Now, setting W(t) = [U(t) V(t)]⊤, (3.7) beomes

Ẇ(t) = g(t,W(t)), (3.8)with
g(t,W(t)) =

[
0 I

−M−1(A+ B) 0

]
W(t) +

[
0M−1Fext(t)

]
. (3.9)The Runge-Kutta method an be written as

W(tn+1) = W(tn) + ∆tG(tn,W(tn)), (3.10)where G is the inremental funtion de�ned as
G(tn,W(tn)) =

s∑

i=1

biKi,

Ki = g(tn + ci∆t,W(tn) + ∆t

s∑

j=1

aijKj), i = 1, 2, ..., 4.The oe�ients {aij}, {ci} and {bi} fully haraterize the RK methods and they areolleted in the following Buther array, [91℄
c1 a11 a12 · · · a14

c2 a21 a22 a24

c3
... . . . ...

c4 a41 a42 · · · a44

b1 b2 · · · b4



48 Time disretizationwhere the following ondition holds
ci =

4∑

j=1

aij, i = 1, ..., 4.If the oe�ients aij are equal to zero for j ≥ i, with i = 1, 2, ..., 4, then eah Ki anbe expliitly omputed in term of i− 1 oe�ients K1, ...,Ki−1 that have already beendetermined. In suh a ase the RK method is expliit. Otherwise, it is impliit andsolving a non-linear system of size 4 is neessary for omputing the oe�ients of Ki.In the ase we are interested in, i.e. the fourth order expliit RK4, the Buther arraytakes the form
0
1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6and onsequently (3.10) beomes

W(tn+1) = W(tn) +
∆t

6
(K1 + 2K2 + 2K3 +K4) , (3.11)where

K1 = g(tn,W(tn)),

K2 = g(tn+ 1
2
,W(tn) +

∆t

2
K1),

K3 = g(tn+ 1
2
,W(tn) +

∆t

2
K2),

K4 = g(tn+1,W(tn) + ∆tK3).Notie that, sine ∑4
i=1 bi = 1, the RK4 method is onsistent [25℄. Moreover 4 is themaximum number of stages for whih the order of the method is not less than thenumber of stages itself, see [68, 91℄ for details. Notie that the number of unknowns in(3.11) is twie with respet to the LF sheme and �ve di�erent vetors K1, ...,K4 and

W(tn) must be stored at eah time step to ompute the solution at the next time step.



3.1 Fully-disrete formulations 49Time integration for the MSE methodAs in the previous ase we rewrite (2.64) as the following �rst order system of equations

 Q̃⊤ĨQ̃ 0

0 Q̃⊤M̃Q̃ 

[

U̇(t)

V̇(t)

]
=


 0 Q̃⊤ĨQ̃

−Q̃⊤ÃQ̃ 0



[

U(t)

V(t)

]
+

[
0Q̃⊤
Fext(t)

]
.(3.12)Setting H̃ms = diag(H1

ms + Q⊤H1
slQ, H2

ms + Q⊤H2
slQ), for H = I,A,M and F̃ext

ms andtaking advantage of the struture of Q̃ it is possible to rewrite the above system in theform



IIms 0 0 0

0 ĨSms 0 0

0 0 MI
ms 0

0 0 0 M̃S

ms







U̇
I
ms(t)

U̇
S
ms(t)

V̇
I
ms(t)

V̇
S
ms(t)



=




0 0 IIms 0

0 0 0 ĨSms

−AI
ms 0 0 0

0 −ÃS

ms 0 0







U
I
ms(t)

U
S
ms(t)

V
I
ms(t)

V
S
ms(t)



+




0
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ext,I
ms (t)

F̃
ext,S
ms (t)



,(3.13)Let WI

ms(t) = [UI
ms(t) VI

ms(t)]
⊤ (resp. WS

ms(t) = [US
ms(t) VS

ms(t)]
⊤) be the vetorontaining the master nodal displaements and veloities, belonging to the interior(resp. skeleton) of the domain.Then, we deouple (3.13) in two linear systems of the following form

ẆI
ms(t) = g1(t,W

I
ms(t)), (3.14)where

g1(t,W(t)) =

[
0 IIms

−(MI
ms)

−1AI
ms 0

]
W(t) +

[
0

F
ext,I
ms (t)

]
, (3.15)and NS

msẆ
S
ms(t) = g2(t,W

S
ms(t)), (3.16)whereNS

ms =


 ĨSms 0

0 M̃S

ms


 and g2(t,W) =


 0 ĨSms

−ÃS

ms 0


W(t) +

[
0

F̃
ext,S
ms (t)

]
.(3.17)On the one hand the RK4 method applied to (3.14) produes a time integration shemesimilar to that desribed in Setion 3.1.2. On the other hand when RK4 is derivedfor (3.16), at eah intermediate step between tn and tn+1 we need to solve four linearsystems. In fat, in this last ase RK4 method readsNS

msẆ
S
ms(tn+1) = NS

msẆ
S
ms(tn) +

∆t

6

(
KS

ms,1 + 2KS
ms,2 + 2KS

ms,3 +KS
ms,4

)
,
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msK

S
ms,1 = g2(tn,W(tn)),NS

msK
S
ms,2 = g2(tn+ 1

2
,W(tn) +

∆t

2
KS

ms,1),NS
msK

S
ms,3 = g2(tn+ 1

2
,W(tn) +

∆t

2
KS

ms,2),NS
msK

S
ms,4 = g2(tn+1,W(tn) + ∆tKS

ms,3). (3.18)Fortunately, as desribed in Setion 3.1.2 eah system in (3.18) has the same strutureas (3.6) and involves only master unknowns on the skeleton. For this reason, evenin this ase it is possible to solve eah linear system in (3.18) in a low omputationalost, for example with an LU-fatorization, [91℄. We also remark that, as usual, slaveunknowns on the interfaes are reovered using the master ones. In partiular, we havethat
WS

sl(t) =

[
US

sl(t)
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sl(t)

]
=

[
Q 0

0 Q

][
US

ms(t)

VS
ms(t)

]
=

[
Q 0

0 Q

]
WS

ms(t), (3.19)and then
KS

sl,i =

[
Q 0

0 Q

]
KS

ms,i, i = 1, ..., 4.To ensure stability, the expliit LF and RK4 shemes must satisfy the usual Courant-Friedrihs-Levy (CFL) ondition (see [92℄) that imposes a restrition on ∆t. We seein Chapter 4 that this limitation is proportional to the minimal distane between twoneighbouring spetral nodes of the numerial grid. Sine this distane sales as hkN−2
k(hk size of the spetral element Ωk), the stability requirement on ∆t may beome toorestritive for very large polynomial degrees Nk. For these ases an impliit time shemeis reommended.3.1.3 Impliit midpoint methodTo derive the expression of the impliit midpoint (IM) method for the time integrationof the DGSE and Mortar semi-disrete formulations we proeed as follows.



3.1 Fully-disrete formulations 51Time integration for the DGSE methodLet us start onsidering the following system of ordinary di�erential equations



Ẇ(t) = g(t,W(t)), t ∈ [0, T ],

W(0) = W0,
(3.20)where g(t,W(t)) is the real vetor-valued funtion de�ned in (3.9). Sine g is linearand ontinuous with respet to t, then the solution of (3.20) satis�es

W(t)−W0 =

∫ t

0
g(τ,W(τ)). (3.21)Now, if a quadrature formula with s nodes in (tn, tn+1) is employed to approximate theintegral of g, whih we assume for simpliity to depend only on t, we get

∫ tn+1

tn

g(τ) ≈ ∆t

s∑

i=1

big(tn + cj∆t),having denoted by bj the weights and by tn + cj∆t the quadrature nodes. It an beproved (see [25℄) that for any RK formula (3.10), there exists a orrespondene betweenthe oe�ients bj , cj of the formula and the weights and nodes of a Gauss quadraturerule (see, [68℄, Setion 5.11). One the s oe�ients cj have been found, we an onstrutRK methods of order 2s, by determining the oe�ients aij and bj as being the solutionsof the linear systems
s∑

j=1

ck−1
j aij =

1

k
cki , k = 1, 2, ..., s, i = 1, ..., s,

s∑

j=1

ck−1
j bj = 1/k, k = 1, ..., s.In partiular, if Gauss-Legendre quadrature rule is employed, it is possible to attain themaximum possible order 2s for a �xed number of stages s. The IM is a speial one stepmethod of order two of the form

W(tn+1) = W(tn) + ∆tg

(
tn +

∆t

2
,
W(tn) +W(tn+1)

2

)
, n = 0, ..., N,

1
2

1
2

0 1
.(3.22)The IM method applied to DGSE disretization beomes

[ I −∆t
2
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∆t
2
(A+ B) M ][

U(tn+1)

V(tn+1)

]
=

[ I ∆t
2
I

−∆t
2
(A+ B) M ][

U(tn)

V(tn)

]
+

[
0

∆tFext(tn+ 1

2

)

]
,(3.23)



52 Time disretizationThe solution of (3.23) is obtained as follows. From the �rst equation of (3.23) we deduethat
U(tn+1) = U(tn) +

∆t

2
(V(tn) +V(tn+1)). (3.24)Then, by substituting (3.24) in the seond equation of (3.23) we obtain

[
∆t

4
(A+ B) +M]V(tn+1) = b (3.25)with

b = Fext(tn+ 1
2
)− (A+ B)U(tn)−

[
∆t

4
(A+ B)−M]V(tn).Due to (2.18) we have that the matrix in (3.25) is positive de�nite (thus invertible).Moreover it is symmetri if the SIPG method (2.7) is onsidered. So, at least in thisase, the Conjugate Gradient method an be used to solve the linear systems (3.25).If absorbing boundary onditions are taken into aount equation (3.25) beomes

[
∆t

4
(A+ B− R) +M− ∆t

2
S]V(tn+1) = bwhere the matries R and S are de�ned in (2.70) and (2.73), respetively,

b = Fext(tn+ 1
2
)− (A+ B− R)U(tn)−

[
∆t

4
(A+ B− R) +M− ∆t

2
S]V(tn).In this ase the resulting matrix is non-symmetri, even if the SIPG method is onsid-ered. Then, a preonditioned iterative method is mandatory. For example one an usethe ILUT fatorization and then the GMRES method, see [91℄.Time integration for the MSE methodIn order to write the �nal linear systems oming from the IM time disretization wesubdivide the unknowns in master and slave ones using the notation introdued inSetion 3.1.2. For interior unknowns WI

ms(t) = [UI
ms(t) V

I
ms(t)]

⊤ the IM methodredues to
WI

ms(tn+1) = WI
ms(tn) + ∆tg1
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)
, n = 0, ..., N − 1,where g1 is de�ned as in (3.15). In matrix notation the above equation beomes
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2
IIms
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,(3.26)



3.2 Fully-disrete error estimates 53for n = 0, ..., N − 1, whih is similar to (3.23).For master skeleton unknowns WS
ms(t) = [US

ms(t) V
S
ms(t)]

⊤, at eah time level we have
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ms(tn) + ∆tg2
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)
, n = 0, ..., N − 1,where g2 is de�ned in (3.17), or equivalently
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∆tF̃ext,S
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)

]
.(3.27)Then, we projet the solution of (3.27) to reover the slave unknowns WS

sl(tn+1) atthe interfaes. As for DGSE disretization to solve both systems (3.26)-(3.27) we theGMRES iterative method preonditioned by the ILUT fatorization.3.2 Fully-disrete error estimatesAs mentioned at the beginning of this hapter, we sketh the proof of the fully disreteerror estimates form the DG and Mortar formulations. We reall that the disreteformulation of problems (2.7) and (2.12) is obtained by approximating time derivativeswith either LF, RK4 or IM methods as desribed in Setion 3.1. For the LF sheme, ateah time step tn = n∆t, n ≥ 2, the problem reads: �nd uδ(tn) ∈ Vδ suh that
K∑

k=1

1

∆t2
(ρ(uδ(tn)− 2uδ(tn−1) + uδ(tn−2)),v)Ωk

+

K∑

k=1

A(uδ(tn−1),v)Ωk

+
M∑

j=1

B(uδ(tn−1),v)γj =
K∑

k=1

L(vk) ∀v ∈ Vδ (3.28)for the DGSE ase, and: �nd uδ(tn) ∈ V mortar
δ suh that

K∑

k=1

1

∆t2
(ρ(uδ(tn)− 2uδ(tn−1) + uδ(tn−2)),v)Ωk

+
K∑

k=1

A(uδ(tn−1),v)Ωk

=

K∑

k=1

L(vk) ∀v ∈ V mortar
δ (3.29)for the MSE ase, respetively. Comparing the fully disrete solution (3.28) (resp.(3.29)) with the semi-disrete solution (2.7) (resp. (2.12)) using estimate (2.35) (resp.(2.51)) and standard tehniques it is possible to prove the following result.



54 Time disretizationTheorem 4. Suppose that u0,u1, f , t and the solution u of (1.1) are su�iently smooth.Then, there exists a onstant C = C(u0,u1, f , t,u) suh that it holds
||u(tn)− uDG(tn)||DG ≤ C

(
∆t2 +

K∑

k=1

hmk−1
k

N
sk−3/2
k

)
∀n ≥ 2,for the DGSE method, and

||u(tn)− uM (tn)||∗ ≤ C

(
∆t2 +

K∑

k=1

hmk−1
k

N sk−1
k

)
∀n ≥ 2,for the MSE method, where Nk ≥ 1 and mk = min(Nk + 1, sk).See [97℄ for the proof. Sine Runge-Kutta methods are non-linear with respet to uthe proof of fully disrete estimates is more involved than that for the leap-frog sheme.We reall that the loal trunation error τn+1(∆t) at the observation time tn+1 of theRK method (3.10) is de�ned by the relation

∆tτn+1(∆t) = Y(tn+1)−Y(tn)−∆tG(tn,Y(tn)),where Y(t) is the exat solution of the Cauhy problem (3.8) for the DGSE method or(3.14)-(3.16) for the MSE method. Moreover we have the followingDe�nition 1. The method (3.10) is onsistent if
τ (∆t) = max

n
|τn(∆t)| → 0 as ∆t → 0,and it is of order p ≥ 1 with respet to ∆t if

τ (∆t) = O(∆tp) as ∆t → 0.Sine RK methods are one-step methods, onsisteny implies stability and, in turn,onvergene. Sine RK4 and IM methods are both onsistent, estimates on the loaltrunation error an be derived [68℄; however, these estimates are often too involved tobe pro�tably used. We only reall that if a RK sheme has a loal trunation error oforder ∆tp, for any tn, then also the onvergene order will be equal to p, see [91℄. ForRK4 and IM methods it is possible to show that p = 4 and p = 2 respetively, as it isstated in the followingProposition 1. The order of an s−stage expliit RK method annot be greater than
s. Moreover, there do not exist s−stage expliit RK methods with order s if s ≥ 5. Asfar as impliit shemes are onerned, the maximum ahievable order using s stages isequal to 2s.
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Figure 3.1: Domain deomposition where Ω = Ω1 ∪ Ω2. The skeleton S = ∂Ω1 ∩ ∂Ω2.For the proof see [25℄.Now, we onsider the following test whih has the aim of validating the onvergene or-der for the LF, RK4 and IM oupled with DGSE and MSE disretizations. In partiularwe want to estimate the exponent p suh that
||(u− uδ)(t)||0 ≤ C(∆tp + o(∆tp)), for t ∈ [0, T ], (3.30)where uδ an be either the disrete solution obtained with the DGSE (uDG) or theMSE (uM ) methods. To validate the above result let us onsider an elasti mediumoupying the �nite region Ω = (−1

2 ,
1
2) × (−1, 1) with Ω = Ω1 ∪ Ω2 and h1 = h2 = 1

4 ,see Figure 3.1. We assume also that homogeneous Neumann boundary onditions areimposed on ∂Ω, ρ = 1 and that the Lamé elasti oe�ients are set equal to λ = 0and µ = 1
2 . Moreover, we impose initial onditions suh that the exat solution for theproblem (1.1) in Ω is

u(x1, x2, t) = sin(t)

[
sin(πx1) sin(πx2)

cos(πx1) cos(πx2)

]
, for t ∈ [0, T ]. (3.31)Then we �x the polynomial order of approximation N1 = N2 = 8.Sine u ∈ C∞([0, T ],C∞(Ω)), we expet that the spatial-disretization error in Theroem4 is negligible with respet to the time-disretization error. In Figure 3.2 we showthe behaviour of the time-disretization error (3.30) for the LF, RK4 and IM shemes
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Figure 3.2: Computed error ||uδ(T ) − u(T )||0,Ω, T = 20, with respet to the time step ∆t for theLF, RK4 and IM methods oupled with DGSE (left) and MSE (right) methods respetively.oupled with DGSE and MSE spae-disretization, respetively. As expeted we obtain
p = 4 for the RK4 and p = 2 for the LF and the IM methods.



Chapter 4
Analysis of grid dispersion,dissipation and stability
For wave propagation problems, the auray of the approximate solution relies on thedispersion and the dissipation properties of the numerial sheme employed. The dis-persion and dissipation errors are the numerial noises related to grid spaing, whihhave a negative e�et on auray. They our beause the omputed veloity of high-frequeny waves in the grid is di�erent from the real veloity. This is alled grid dis-persion/dissipation beause it is originated by the grid and it an our even when thephysial problem is not dispersive/dissipative. For instane, onsider a displaementpro�le u = f(x − αt) that represents a travelling perturbation with veloity α in anunbounded homogeneous mono dimensional domain, see Figure 4.1. In this ase, onethe wave pro�le f(x) has been de�ned at the time t = 0, for t = t∗ > 0 the pro�le willmove undistorted in the diretion of the x axis of the amount αt∗. When introduing anumerial sheme, the wave veloity in the omputational grid is an approximation αhof the real veloity α. The less αh di�ers from α (low dispersion/dissipation) and themore the omputed pro�le uδ will be similar to the exat displaement u. On the otherhand, the more the numerial veloity αh di�ers from α the more uδ provides a roughapproximation of u, see Figure 4.1.The grid dispersion error is de�ned as the relative error between the omputed veloity
αh and real one α, i.e., e = 1 − αh/α. In partiular, sine eah elasti bi-dimensionalwave an be written as a superposition of shear (S) and ompressional (P) waves, we57
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Figure 4.1: Displaement pro�le u = f(x − αt) (solid line) and omputed pro�le uδ a�eted bydispersion and dissipation (dashed line).analyze separately S and P grid dispersion errors, i.e.,
eS = cS,h/cS − 1 and eP = cP,h/cP − 1,being cS,h (cP,h) and cS (cP ) the approximated shear (resp. ompressional) and exatshear (resp. ompressional) veloities. We de�ne dissipation error as the maximum ratiobetween the amplitudes ||f(x− αht)||∞/||f(x− αt)||∞. As desribed for the dispersionerror, we onsider separately the P and the S dissipation errors.We remark that the error introdued by the grid dispersion/dissipation depends onthe ombined e�et of spae and time disretizations. For suh a reason, in the �rstpart of this hapter we address the grid dispersion/dissipation properties of the non-onforming tehniques introdued in Chapter 2, deriving dispersion/dissipation relationsfor the semi-disrete problems (2.54) and (2.64). Moreover, we ompare the results withthose obtained using standard SE tehniques, [103℄. In the seond part, we extend thisanalysis to the orresponding fully-disrete problems presented in Chapter 3, addressingthe ombined e�et of the LF, RK4, IM time disretizations with DGSE and MSEapproximations. Finally, the tehnial stability analysis is arried out for LF and RK4methods. Indeed, expliit time integration shemes, as the LF and RK4 methods, areonditionally stable and, in order to be stable, they must satisfy the Courant-Friedrihs-Levy (CFL) ondition [91℄, that imposes a restritions on the time step employed in the



4.1 Grid dispersion and dissipation errors for semi-disrete approximations59numerial sheme.Before going into the detail of the grid dispersion analysis we introdue some notationuseful in the sequel. A generalized framework to desribe a plane wave travelling in anarbitrary diretion is the following
a(x, t) = a0 cos(κ · x− ωt+ ϕ), (4.1)where κ = (κx, κy) is the wave vetor whih omponents κx, κy and magnitude |κ| =

2π/L. The diretion of the wave vetor κ is the diretion the plane wave is travelling.Here, L is the wave length, ω the angular frequeny, ϕ the phase shift and x the positionvetor whih de�nes a point in the two-dimensional spae. In the following, we hoosea more general formulation that employs the following representation in the omplexplane
U(x, t) = a0e

i(κ·x−ωt+ϕ). (4.2)We observe that the �rst term on the right hand side equals the real form of the planewave (4.1). The omplex form of the plane wave (4.2) an be simpli�ed by using theomplex valued amplitude c = a0e
iϕ, in plae of the real valued amplitude a0. Morepreisely, (4.2) an be written as

U(x, t) = cei(κ·x−ωt),where the real part of the above equation represents the physial plane wave. With-out loss of generality, in the following analysis we onsider plane waves with unitaryamplitude c = 1.4.1 Grid dispersion and dissipation errors for semi-disreteapproximationsIn this setion we present the Von Neumann analysis [91℄, whih provides the lowestsampling ratio, i.e., the minimum number of disretization points per wavelength suhthat the numerial solution has a presribed auray.Let us onsider the wave equation (1.1) in an isotropi, elasti, unbounded domain
Ω ⊂ R

2, with u(x, t) → 0 as |x| → ∞ for all t. We also assume f ≡ 0: this is not alimitation. We point out that the above assumptions are standard when dealing withthe Von Neumann's method (plane wave analysis), see [2, 3, 4, 40, 36, 108, 84, 76℄. At
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Figure 4.2: Periodi grid made by square elements with sides parallel to the oordinate axis. Thereferene element ΩC with sides γf and neighbouring elements Ωf , for f = {R,L, T, B}.the disrete level we assume that Ω is partitioned into non-overlapping spetral elements
Ωk having uniform size h. This partition is supposed to be periodi and made by squareelements with sides parallel to the oordinate axes (f. Figure 4.2). We also supposethat the polynomial approximation degree is equal to N in eah Ωk.Semi-disrete grid dispersion error: DGSE methodWe present the analysis of grid dispersion for the DGSE method, see also [40℄ forthe salar ase. Let Ψℓ,Ωf , ℓ = 1, 2 be the basis funtions with support in Ωf with
f ∈ {C, T,B,L,R} (f. Figure 4.2). Without loss of generality, we suppose that thetest and trial funtions an be written as

Ψℓ
i =




Ψ

ℓ,ΩC

i in ΩC ,

0 otherwise,
and Ψℓ

j =





Ψ
ℓ,ΩC

j in ΩC ,

Ψ
ℓ,Ωf

j in Ωf , f ∈ {T,B,L,R},

0 otherwise,

(4.3)respetively. By rewriting equation (2.55), we obtain a retangular linear system, in theunknowns
Uℓ = [Uℓ,ΩC ,Uℓ,ΩT ,Uℓ,ΩB ,Uℓ,ΩL ,Uℓ,ΩR ], ℓ = 1, 2, (4.4)that is underdetermined beause the number of olumns, 10(N+1)2, exeeds the numberof rows, 2(N+1)2. To redue it into a square linear system, we make use of the following



4.1 Grid dispersion and dissipation errors for semi-disrete approximations61plane wave hypotheses. Let us assume that the displaement is a plane wave, i.e., in
ΩC we have

U ℓ,ΩC

j = ei(κ·pj−ωt), ℓ = 1, 2, (4.5)where κ = (kx, ky) is the wave vetor and pj ontains the jth node in Cartesian oor-dinates. The above assumption implies that
U

ℓ,Ωf

j = eβfU ℓ,ΩC

j , ℓ = 1, 2, (4.6)with βf = {−ikyh, ikyh,−ikxh, ikxh} and f = {T,B,R,L}, respetively. Substituting(4.6) in (4.4) lead to the following modi�ed linear system of equations of dimension
2(N + 1)2:

[ M1 0

0 M2

][
Ü1,ΩC

Ü2,ΩC

]
+

[ A1 + B̃1 A2 + B̃2A3 + B̃3 A4 + B̃4

][
U1,ΩC

U2,ΩC

]
=

[
0

0

]
, (4.7)where Mi, i = 1, 2, and Ai, i = 1, ..., 4, are de�ned in (2.56) and (2.57), respetively. Thematries B̃ℓ, for ℓ = 1, ...4, are de�ned taking into aount the hypothesis of periodiityand the plane wave assumption (4.5). For example, B̃1 is given byB̃1

(i, j) = B1(i, j) +
∑

f={T,B,R,L}

eβfB1,f (i, j), i, j = 1, ..., (N + 1)2,where B1(i, j) =
∑

f={T,B,R,L}

−
∫

γf

{σ(Ψ1,ΩC

j )} : [[Ψ1,ΩC

i ]]

+ θ

∫

γf

[[Ψ1,ΩC

j ]] : {σ(Ψ1,ΩC

i )}+ ηf

∫

γf

[[Ψ1,ΩC

j ]] : [[Ψ1,ΩC

i ]],and B1,f (i, j) = −
∫

γf

{σ(Ψ1,Ωf

j )} : [[Ψ1,ΩC

i ]] + θ

∫

γf

[[Ψ
1,Ωf

j ]] : {σ(Ψ1,ΩC

i )}

+ηf

∫

γf

[[Ψ
1,Ωf

j ]] : [[Ψ1,ΩC

i ]].The matries B̃ℓ for ℓ = 2, 3, 4 are de�ned analogously. Now, taking the seond deriva-tive of Uℓ,ΩC with respet to time, and setting K̃ = A + B̃ we obtain the followinggeneralized eigenvalue problem K̃UΩC = ΛMUΩC , (4.8)



62 Analysis of grid dispersion, dissipation and stabilitywhere Λ = ω2
h, with ωh the angular frequeny at whih the wave is travelling. As ob-served in [39, 40℄ and in [102℄, the number of eigenvalues of problem (4.8) naturallyexeeds the number of admissible physial modes. Then, we need a strategy to seletwhih eigenvalues orrespond to the ompressional (cP ) and the shear (cS) wave velo-ities. This an be done by omputing all the veloities assoiated to the eigenvalues of(4.8) and then omparing them to the real cP and cS veloities de�ned in (1.5). Wedenote by ΛP and ΛS the eigenvalues that realize the best approximations cP,h and cS,hof cP and cS , respetively.Note that whenever IIPG and NIPG disretizations are employed, system (4.8) is nolonger symmetri, thus omplex eigenvalues might arise. However, in [40℄ it has beenpointed out that ΛP and ΛS are, in fat, always real numbers. Next, we de�ne the griddispersion of pressure and shear waves as the ratio between the numerial veloity atwhih the wave travels in the grid and the physial veloity. By de�nition, the numerialshear veloity cS,h is given by

cS,h = hωh/(2πδ),where δ = h/(NL) is the sampling ratio (or equivalently δ−1 is the number of GLLpoints per wavelength), and L is the wavelength of the plane wave. We have that
cS,h = h

√
ΛS/(2πδ),and therefore the grid dispersion is the relative error in the veloity, given by

eS = cS,h/cS − 1.Analogously we set
cP,h = h

√
ΛP /(2πδ) and eP = cP,h/cP − 1.We remark that in the de�nition of eS and eP the sign of the error indiates if thenumerial approximation auses a delay (negative sign) or an aeleration (positivesign) of the travelling wave. The grid dispersion error will depend on the sampling ratio

δ, the wave vetor κ, the degree of the basis funtion N and on the veloities cP and
cS . For the DGSE method the grid dispersion errors will depend also on the stabilityparameter η.
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Figure 4.3: Periodi grid made by square elements with sides parallel to the oordinate axis. Thereferene element ΩC with sides γf and neighbouring elements Ωf , for f = {R,L, T,B}. The solid lines(-) are the master edges and the dashed lines (- -) are the slave edges.Semi-disrete grid dispersion error: MSE methodIn order to arry out the dispersion analysis for the MSE method, we adopt a strategysimilar to the one desribed for the DGSE method. The goal is to obtain a generalizedeigenvalue problem assoiated only to the degrees of freedom belonging to ΩC . Underthe same hypothesis of regularity and periodiity of the mesh, we observe that theskeleton of the partition is uniquely de�ned one the master and slave edges for thereferene element ΩC are seleted. Consider the on�guration shown in Figure 4.3: thisis the unique, up to a rotation, possible ombination of master and slave edges for
ΩC that does not violate the hypothesis of grid periodiity. We next rewrite the ODEsystem (2.54) in the MSE framework. Using (4.3) we obtainMÜΩC +AUΩC = 0, (4.9)where M and A are de�ned in (2.56) and (2.57), respetively. Next, we impose the mor-tar onditions MC1 on the slave unknowns at the interfaes γB and γR. In partiular,for ℓ = 1, 2 and f = {R,B}, we have that

∑

j:pj∈γf

U ℓ,ΩC

j

∫

γf

Ψℓ,ΩC

j Φ̂ℓ
i =

∑

j:pj∈γf

U
ℓ,Ωf

j

∫

γf

Ψ
ℓ,Ωf

j Φ̂ℓ
i ∀ Φ̂ℓ

i ∈ Λ̂δ(γf ). (4.10)



64 Analysis of grid dispersion, dissipation and stabilityTo reast these onditions in terms of unknowns and basis funtions de�ned only on ΩCwe simply notie that, by periodiity,
Ψℓ,ΩR

j |γR
= Ψℓ,ΩC

j |γL
and Ψℓ,ΩB

j |γB
= Ψℓ,ΩC

j |γT
, ℓ = 1, 2, (4.11)and by the plane wave assumption, equation (4.6) holds. By substituting (4.11) in(4.10) we obtain

∑

j:pj∈γf

U ℓ,ΩC

j

∫

γf

Ψℓ,ΩC

j Φ̂ℓ
i =

∑

j:pj∈γf

eβfU ℓ,ΩC

j

∫

γf

Ψ
ℓ,Ωf

j Φ̂ℓ
i ∀ Φ̂ℓ

i ∈ Λ̂δ(γf ), (4.12)for ℓ = 1, 2 and f = {B,R}. We remark that equation (4.12) links slave unknownsin ΩC to master unknowns still in ΩC : this means that the matrix projetion Q̃ refersonly to the element ΩC . We use then Q̃ to redue the linear system (4.9) to a linearsystem in the master unknowns onlyQ̃⊤M̃Q̃Ü
ΩC
master + Q̃⊤ÃQ̃U

ΩC
master = 0. (4.13)We notie that Q̃ has always a blok diagonal struture like (2.63) where eah blok Q̂is modi�ed aording to (4.12). Taking the seond derivative of the displaement withrespet to time and de�ning K̃ = Q̃⊤ÃQ̃, we �nally obtain the following generalizedeigenvalue problem of size 2(N2 + 3)K̃U

ΩC
master = Λ Q̃⊤M̃Q̃U

ΩC
master, (4.14)where Λ = ω2

h as before.Numerial ResultsNow, we analyze the semi-disrete grid dispersion errors for both the MSE and theDGSE formulations from three di�erent points of view: (i) the onvergene with respetto the polynomial degree N , (ii) the onvergene with respet to the sampling ratio δ,and (iii) the numerial anisotropy introdued by the grid dispersion. Finally, we omparethe obtained results with the analogous ones obtained with the onforming SE method.The grid dispersion analysis for the semi-disrete SE formulation has been obtainedwith tehnique similar to the one desribed in the MSE ase, and the results obtainedare in agreement with [40, 103℄.In the �rst set of experiments, we �x the ratio between the veloities r = cP /cS = 2(notie that is a very ommon hoie in geophysial appliations), the inidene angle
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Figure 4.4: Grid dispersion versus the polynomial degree N: sampling ratio δ = 0.2 and inidentangle θ = π/4.
θ = π/4 and, for the DGSE method, we set η = 2N2/h. In Figure 4.4 we show the griddispersion errors versus the polynomial approximation degree N , �xing δ = 0.2 (i.e.,
5 grid points per wavelength). All the non-onforming approahes, exept the NIPG,feature the same spetral onvergene of the SE method. Indeed, the SIPG and theMSE methods reah the threshold value ≈ 10−13 for N = 6 while the NIPG for N = 9.The grid dispersion error as a funtion of sampling ratio δ is shown in Figure 4.5 for
N = 2, .., 5, respetively. The aim of this set of experiments is to establish a relationbetween the absolute value |eS |, resp. |eP |, and the mesh size h (i.e., determine q, resp.
q′, suh that |eS | = O(hq), resp. |eP | = O(hq

′
)). The omputed order of onvergeneis then given by the slope of the lines in Figure 4.5. From the results reported inFigure 4.5 it seems that both the SIPG and SE methods onverge with optimal order

q = q′ = O(2N); whereas a suboptimal order q = q′ = O(N + 1) is observed for bothNIPG and MSE methods. These results are in agreement with [6℄, where it is shownthat the symmetri DG methods approximate with an optimal rate the spetrum ofompat operators, whereas the non-symmetri DG methods are suboptimal in theapproximation of the spetrum.Finally, in Figure 4.6, we show the anisotropy (that is the ratio cS,h/cS and the ratio
cP,h/cP ) introdued by the numerial shemes. We onsider N = 2, 3, 4 and �ve pointsper wavelength. For N > 4 the anisotropy is less than 10−6. We notie that, for N = 2,in the SIPG and in the MSE methods the waves are slightly delayed for all possibleinident angles while in the NIPG method the waves are aelerated. In Table 4.1 we
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(a)

(b)

()

(d)Figure 4.5: Grid dispersion versus the sampling ratio δ for N = 2, 3, 4, 5.
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(a) Anisotropy urves cS,h/cS of the SE (left) and MSE (right).
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(b) Anisotropy urves cS,h/cS of the SIPG (left) and NIPG (right).
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() Anisotropy urves cP,h/cP of the SE (left) and MSE (right).
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(d) Anisotropy urves cP,h/cP of the SIPG (left) and NIPG (right).Figure 4.6: Anisotropy urves. Sampling ratio δ = 0.2 for polynomial degrees N = 2 (- -), N = 3 (-)and N = 4 (.-). For visualization purposes, the grid dispersion has been magni�ed by a fator 10.



68 Analysis of grid dispersion, dissipation and stability(a) S-anisotropyN SE SIPG NIPG MSE2 1.2684e-03 2.7156e-03 1.7540e-02 2.3728e-023 8.7429e-06 7.5949e-06 2.7196e-04 2.2247e-044 4.2894e-08 5.2818e-08 2.4372e-05 1.3029e-06(b) P-anisotropyN SE SIPG NIPG MSE2 9.8805e-04 1.5402e-02 2.8146e-02 8.8991e-023 6.8628e-06 1.8732e-05 5.6250e-04 2.4218e-044 3.1687e-08 3.3492e-07 6.8619e-05 1.5325e-06Table 4.1: Maximum value max0≤θ≤2π |eS | (top) and max0≤θ≤2π |eP | (bottom) for N = 2, 3, 4.also report the maximum value max0≤θ≤2π |eS | and max0≤θ≤2π |eP |, respetively. Fromthese results it an be inferred that all the methods perform in a very similar way andthe dispersion errors are negligible.Dissipation error for semi-disrete approximationsTo quantify the semi-disrete dissipation error, we still assume that the displaement uis a plane wave of the form (4.5). Sine κ has real omponents, it follows that the wavehas amplitude
|ei(κ·xj−ωt)| = etIm(ω) ∀xj , ∀ t > 0. (4.15)Thus it deays exponentially if Im(ω) < 0. If Im(ω) = 0 the plane wave amplitude isequal to 1 for all t > 0. Therefore, a disrete sheme is:- non dissipative if Im(ωh) = 0 for all κ,- dissipative if Im(ωh) < 0 for all κ 6= 0,where ωh is related to solutions of the assoiated generalized eigenvalue problems (4.8)or (4.14) in the DG or Mortar ase, respetively. Note that ωh an be either ωS,h or

ωP,h, depending if we are onsidering S- or P -waves.For the semi-disrete dissipation error, in Table 4.2 (resp. Table 4.3) we report thevalues of Im(ωh) for the semi-disrete problems (4.8) and (4.14) respetively, varyingthe polynomial approximation degree N (resp. the sampling ratio δ). We �x the inident



4.2 Grid dispersion and dissipation errors for fully-disrete approximations69SE SIPG MSE
N Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h)2 -1.8687e-16 -1.6884e-16 -6.9782e-16 -9.6888e-16 -5.5165e-16 -2.5680e-163 -1.2386e-15 -1.1085e-15 8.8005e-16 3.2135e-16 8.0515e-16 -2.5558e-164 -1.1744e-16 3.1257e-16 -4.2113e-15 -5.0858e-16 3.1670e-15 6.1221e-165 1.4644e-15 8.9666e-16 -1.9977e-15 -6.5793e-15 -2.1894e-15 -4.6190e-156 -6.0645e-16 8.0892e-17 -3.4844e-15 4.8253e-15 -4.1583e-15 5.8972e-157 -1.5149e-14 -7.2159e-15 3.7452e-15 -8.5995e-15 1.1333e-14 -4.3412e-158 -7.2058e-15 -6.2394e-15 -1.4276e-14 -1.4739e-14 9.7548e-15 1.0194e-149 7.5118e-16 -2.6108e-15 2.3753e-14 -6.2472e-15 -7.6537e-15 -9.0125e-1510 4.2337e-15 2.5439e-15 -5.1072e-14 2.3077e-14 -1.5956e-14 1.0328e-14Table 4.2: Computed values of Im(ωS,h) and Im(ωP,h). N = 2, .., 9, δ = 0.2 and θ = π/4.SE SIPG MSE
1/δ Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h)2 -4.6681e-17 -1.7229e-16 -1.7660e-15 -5.4334e-16 7.9602e-16 -3.9736e-164 -1.1896e-15 -1.8173e-15 -3.2565e-15 2.0011e-15 1.6631e-15 -1.8589e-156 -8.5509e-16 1.9686e-15 -3.8813e-15 7.3660e-16 3.9770e-16 -1.4470e-168 1.7380e-15 -3.8377e-16 1.3998e-15 1.8561e-15 -2.4063e-15 2.2529e-1510 -4.8637e-16 -1.1671e-15 8.1446e-16 4.6269e-16 -3.8415e-15 -2.9109e-16Table 4.3: Computed values of Im(ωS,h) and Im(ωP,h) varying the sampling ratio δ. N = 4 and

θ = π/4.angle θ = π/4 and we ompare the results with those obtained with SE disretizations.From the results reported in Table 4.2 and 4.3 we an onlude that all the methodsonsidered are non dissipative. Similar onlusions an be inferred using di�erent valuesof the inident angle θ. These results are not reported for the sake of brevity.4.2 Grid dispersion and dissipation errors for fully-disreteapproximationsIn this setion we investigate the dissipation and dispersion properties of the DGSE andMSE methods when oupled with the LF, RK4 and IM time integration shemes. With



70 Analysis of grid dispersion, dissipation and stabilitythis perspetive we start onsidering the following problemM̂Ü+ K̂U = 0, (4.16)where all the terms appearing in the above equation are de�ned on the referene element
ΩC (we omit the supersripts to ease the notation). In the DG framework K̂ = A+ B̃and M̂ = M (f. (4.8)), whereas in the Mortar approah K̂ = Q̃⊤ÃQ̃ and M̂ = Q̃⊤M̃Q̃(f. (4.14). Now, approximating the seond order derivative in (4.16) with one of thenumerial shemes introdued in Chapter 3 we obtain di�erent generalized eigenvalueproblems, from whih we an infer the dispersion relation we are interested in. Among allthe DG methods onsidered so far, in the following we will address only the performaneof the SIPG sheme sine, as shown in the previous setion, it has better grid dispersionproperties than the NIPG.Leap-frog time integration shemeAssuming that the solution is the plane wave given in (4.5), substituting this expressionin (4.16) and employing the leap-frog sheme for the disretization of the time derivativewe obtain M̂ 1

∆t2
(e−iωhtn+1 − 2e−iωhtn + e−iωhtn−1)u0 + K̂e−iωhtnu0 = 0, (4.17)for n = 1, ..., N − 1, where u0 is the initial ondition related to the amplitude of theplane wave. System (4.17) an be rewritten in an equivalent form as followsM̂ 1

∆t2
(2− e−iωh∆t − eiωh∆t)u0 = K̂e−iωhtnu0.Now, notie that

2− e−iωh∆t − eiωh∆t = 2(cos(ωh∆t)− 1) = 4 sin2
(
ωh∆t

2

)
.We thus obtain the following fully-disrete eigenvalue problemK̂u0 = Λ M̂u0, (4.18)for (3.3) or (3.4) respetively, depending on the degrees of freedom inside the refereneelement ΩC and where

Λ =
4

∆t2
sin2

(
ωh∆t

2

)
,



4.2 Grid dispersion and dissipation errors for fully-disrete approximations71or equivalently
ωh =

2

∆t
arcsin

(
∆t

2

√
Λ

)
.Then, the grid dispersion an be obtained as desribed in Setion 4.1. More preisely,the grid dispersion for the leap-frog sheme an be obtained by omputing the veloities

cS,h and cP,h assoiated to the eigenvalues of (4.18) and omparing them to the cP and
cS veloities de�ned in (1.5). We remark that the grid dispersion errors for the angularfrequenies

eS =
ωS,h

ωS
− 1 and eP =

ωP,h

ωP
− 1,are equivalent to those introdued in Setion 4.1 for the veloities cS,h and cP,h.Runge-Kutta 4 time integration shemeTo determine the grid dispersion relation for the RK4 method we rewrite system (4.16)in the form [

U̇(t)

V̇(t)

]
=

[
0 Î

−M̂−1K̂ 0

][
U(t)

V(t)

]
,or in a ompat form

Ẇ(t) = T̂W(t). (4.19)where all the terms appearing in the above equation refer to ΩC . Now, applying theRunge-Kutta 4 sheme de�ned in (3.10) to the above system of ODE we an expressthe oe�ients K1,K2,K3 and K4 as
K1 = T̂W(tn),

K2 = (T̂+
∆t

2
T̂2

)W(tn),

K3 = (T̂+
∆t

2
T̂2

+
∆t2

4
T̂3

)W(tn),

K4 = (T̂+∆tT̂2
+

∆t2

2
T̂3

+
∆t3

4
T̂4

)W(tn).Therefore we have
W(tn+1) =

4∑

k=0

(∆tT̂)k
k!

W(tn). (4.20)Sine both the veloity and the displaement are plane waves, it holds
W(t) =

[
1

1

]
ei(κ·pj−ωt),



72 Analysis of grid dispersion, dissipation and stabilitywith 1 identity vetor. Substituting the above expression in (4.20) leads to the followingeigenvalue problem
4∑

k=0

(∆tT̂)k
k!

W(0) = ΛW(0), (4.21)where Λ = e−iωh∆t. We therefore have the following fully-disrete dispersion relations
ωh,S = ℜe

[
i

∆t
log(ΛS)

] and ωh,P = ℜe
[

i

∆t
log(ΛP )

]
. (4.22)Impliit midpoint time integration shemeWe apply the IM method desribed in Setion 3.1.3 to the system (4.16) to obtain

[ Î −∆t
2 Î

∆t
2 K̂ M̂ ]

W(tn+1) =

[ Î ∆t
2 Î

−∆t
2 K̂ M̂ ]

W(tn),where all the matries are modi�ed aording to the plane wave assumptions (4.5).Now, proeeding as before we obtain the following generalized eigenvalue problem
[ Î −∆t

2 Î
∆t
2 K̂ M̂ ]

ΛW(0) =

[ Î ∆t
2 Î

−∆t
2 K̂ M̂ ]

W(0), (4.23)with dispersion relations given by
ωh,S = ℜe

[
i

∆t
log(ΛS)

] and ωh,P = ℜe
[

i

∆t
log(ΛP )

]
.Notie that the above relations have the same form of (4.22) but they are di�erentbeause they refer to di�erent eigenvalue problems.Numerial ResultsIn this setion we address the di�erent time integration shemes LF, RK and IM oupledwith the DGSE and the MSE formulations. In this ase the fully-disrete grid disper-sion error will depend not only N, δ and κ but also on the time step ∆t. In partiular,we expet that the fully-disrete dispersion errors tend to the semi-disrete dispersionerrors as ∆t goes to zero.First, we analyze the onvergene with respet to the polynomial degree N , then theonvergene with respet to the sampling ratio δ and �nally the numerial anisotropy



4.2 Grid dispersion and dissipation errors for fully-disrete approximations73introdued by the fully-disrete grid dispersion. All the results are ompared with theones obtained by the semi-disrete formulation. Throughout the setion when neededwe have hosen ∆t in suh a way that the resulting sheme is stable.In the �rst test ase we set the shear and ompressional wave veloities suh that
r = cP /cS = 2 and the inidene angle θ = π/4. As usual, for the SIPG method,we �x the parameter η = 2N2/h. For all the onsidered time integration methods, inFigure 4.7 we show the omputed shear grid dispersion error eS versus the polynomialapproximation degree N for di�erent hoies of disretization steps ∆t. The analogousresults obtained for the ompressional grid dispersion error eP are shown in Figure 4.8.All the results are ompared with the analogous one obtained in the semi-disrete ase.It is lear that as ∆t goes to zero, the fully-disrete error tends to the semi-disrete one.In partiular when ∆t ≤ 10−3 both eS and eP turn out to be negligible, indeed eS and
eP are less than 10−6.We also notie that the LF sheme outperforms the IM sheme. Indeed, when LFsheme is oupled with SIPG or MSE methods the error is of order 10−6 when N ≥ 3and ∆t ≤ 10−2. On the other hand, to obtain the same auray with the IM sheme weneed N ≥ 5 and ∆t ≤ 10−3. The expliit RK4 method has better dispersion propertiesthan LF and IM methods, sine the threshold value 10−6 is reahed with N ≥ 4 and
∆t ≤ 10−1.Now, let us onsider the same set of parameters r, δ and θ as before and �x ∆t = 10−3.In Figure 4.9 we ompare the fully-disrete grid dispersion errors for di�erent polyno-mial degrees N . The results are in agreement with analogous ones obtained for theorresponding semi-disrete formulations (f. Figure 4.4). We observe that for N ≥ 6the SE, SIPG and MSE methods are equivalent in terms of grid dispersion.Next, we �x N = 4, θ = π/4 and r = 2 and we address the behaviour of the fullydisrete dispersion error as a funtion of the sampling ratio δ. The results obtained inFigures 4.10-4.11 show that at least 5 points per wavelength (vertial dashed line) and
∆t ≤ 10−2 are enough to have a grid dispersion error less than 10−6. These resultsare in agreement with the analogous ones reported in Figures 4.7-4.8 and 4.9 for thesemi-disrete ase. In Figure 4.12 we ompare the grid dispersion errors obtained with
∆t = 10−3 for SE, SIPG and MSE disretizations. From the graphis it is evidentthat all methods onsidered are low-dispersive and have the same behaviour for δ ≤ 0.1(number of points per wavelength greater than 10). If δ ≤ 0.1 the SIPG method is
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(a) SIPG - leap-frog (left) and MSE - leap-frog (right).

(b) SIPG - Runge-Kutta 4 (left) and MSE - Runge-Kutta 4 (right).

() SIPG - impliit midpoint method (left) and MSE - impliit midpoint method (right).Figure 4.7: Shear grid dispersion error eS versus the polynomial degree N: δ = 0.2 and inident angle
θ = π/4. Comparison between fully-disretization (dashed lines) and semi-disretization (solid lines)for SIPG (left olumn) and MSE (right olumn) methods.
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(a) SIPG - leap-frog (left) and MSE - leap-frog (right).

(b) SIPG - Runge-Kutta 4 (left) and MSE - Runge-Kutta 4 (right).

() SIPG - impliit midpoint method (left) and MSE - impliit midpoint method (right).Figure 4.8: Shear grid dispersion error eP versus the polynomial degree N: δ = 0.2 and inident angle
θ = π/4. Comparison between fully-disretization (dashed lines) and semi-disretization (solid lines)for SIPG (left olumn) and MSE (right olumn) methods.



76 Analysis of grid dispersion, dissipation and stability

2 3 4 5 6 7 8 9 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

degree N

di
sp

er
si

on
 e

rr
or

 e
s

 

 
SE − LF
SIPG − LF
MSE − LF

2 3 4 5 6 7 8 9 10
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

degree N
di

sp
er

si
on

 e
rr

or
 e

p

 

 
SE − LF
SIPG − LF
MSE − LF

2 3 4 5 6 7 8 9 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

degree N

di
sp

er
si

on
 e

rr
or

 e
s

 

 
SE − RK4
SIPG − RK4
MSE − RK4

2 3 4 5 6 7 8 9 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

degree N

di
sp

er
si

on
 e

rr
or

 e
p

 

 
SE − RK4
SIPG − RK4
MSE − RK4

2 3 4 5 6 7 8 9 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

degree N

di
sp

er
si

on
 e

rr
or

 e
s

 

 
SE − IM
SIPG − IM
MSE − IM

2 3 4 5 6 7 8 9 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

degree N

di
sp

er
si

on
 e

rr
or

 e
p

 

 
SE − IM
SIPG − IM
MSE − IM

Figure 4.9: Fully-disrete dispersion errors eS (left) and eP (right) obtained with ∆t = 10−3, r =

2, δ = 0.2 and θ = π/4. Comparison between SE, SIPG and MSE disretizations oupled with the LF(top), RK (middle) and IM (bottom) time integration shemes.



4.2 Grid dispersion and dissipation errors for fully-disrete approximations77

(a) SIPG - leap-frog (left) and MSE - leap-frog (right).

(b) SIPG - Runge-Kutta 4 (left) and MSE - Runge-Kutta 4 (right).

() SIPG - impliit midpoint method (left) and MSE - impliit midpoint method (right).Figure 4.10: Fully-disrete shear grid dispersion versus the sampling ratio δ: N = 4. Comparison withthe SIPG (left) and the MSE (right) fully-disrete formulations (dashed lines) and the orrespondingsemi-disrete formulations (solid line.) The threshold δ = 0.2 is shown with a dashed vertial line.
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(a) SIPG - leap-frog (left) and MSE - leap-frog (right).

(b) SIPG - Runge-Kutta 4 (left) and MSE - Runge-Kutta 4 (right).

() SIPG - impliit midpoint method (left) and MSE - impliit midpoint method (right).Figure 4.11: Fully-disrete ompressional grid dispersion versus the sampling ratio δ: N = 4. Com-parison with the SIPG (left) and the MSE (right) fully-disrete formulations (dashed lines) and theorresponding semi-disrete formulations (solid line.) The threshold δ = 0.2 is shown with a dashedvertial line.



4.2 Grid dispersion and dissipation errors for fully-disrete approximations79N method LF RK IM
eS eP eS eP eS ePSE 9.1325e-4 9.1324e-4 9.1326e-4 9.1326e-4 9.1327e-4 9.1329e-42 SIPG 3.1768e-3 8.4215e-3 3.1768e-3 8.4215e-3 3.1768e-3 8.4215e-3MSE 3.5424e-2 6.2759e-2 3.5424e-2 6.2759e-2 3.5424e-2 6.2759e-2SE 6.5154e-6 6.5072e-6 6.5237e-6 6.5237e-6 6.5401e-6 6.5565e-63 SIPG 9.5991e-6 2.43323e-5 9.6073e-6 2.3340e-5 9.6238e-6 2.3372e-5MSE 3.3503e-4 1.4030e-4 3.3503e-4 1.4031e-4 3.3505e-4 1.4034e-4SE 2.2038e-8 1.3813e-8 3.0263e-8 3.0263e-8 4.6714e-8 6.3161e-84 SIPG 7.9786e-8 2.3355e-7 8.8012e-8 2.5000e-7 1.0446e-7 2.8290e-7MSE 1.9357e-6 6.2759e-7 1.9439e-6 8.5602e-7 1.9603e-6 8.8892e-7Table 4.4: Maximum value max0≤θ≤2π |eS | and max0≤θ≤2π |eP |, �xing δ = 0.2, r = 2 and ∆t = 10−3,omputed with the SE, SIPG and MSE disretizations and all the time integration shemes.preferable to MSE method.To analyze the anisotropy introdued by time integration shemes, we �xN = 3, δ = 0.2,

r = 2 and ∆t = 10−3. We ompare the results with the semi-disrete ones reported inFigure 4.6. In Figure 4.13 we plot the ratios cS,h/cS and cP,h/cP varying the inidentangle θ. To ath the small nuanes between LF, RK4 and IM oupled wit SE, SIPG,MSE disretizations we report in Table 4.4 the maximum value max0<θ<2π |eS | and
max0<θ<2π |eP | respetively.We onsider polynomial degree N = 2, 3, 4. For higher degrees the anisotropy is verysmall for all the pratial purposes. Table 4.4 on�rms that SIPG is lower dispersivewith respet to the MSE method.Dissipation error for fully-disrete approximationsIn this setion we address the dissipation error introdued by the DGSE and MSEdisretization oupled with LF, RK4 and IM time integration shemes. As in the semi-disrete analysis the amplitude of the plane wave is given by

|ei(κ·xj−ωtn)| = etnIm(ω) ∀xj, ∀ tn ∈ [0, T ],with ω replaed by the numerial values ωS,h, ωP,h, for S- or P-waves respetively.Clearly ωS,h and ωP,h depend on the hosen time integration sheme onsidered. Table4.5 shows the omputed values of Im(ωS,h) and Im(ωP,h) for the fully-disrete methodsobtained with the LF, RK4 and IM time integration shemes for di�erent hoies of the
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MSE − IMFigure 4.12: Shear (left) and ompressional (right) fully-disrete dispersion errors versus the samplingratio δ: N = 4, r = 2 and θ = π/4. Comparison between SE, SIPG, MSE formulations oupled withthe LF (top), RK (middle) and IM (bottom) time integration shemes.
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(a) Leap-frog time integration sheme.
  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

 

 MSE − RK4

SIPG − RK4

SE − RK4

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

 

 MSE − RK4

SIPG − RK4

SE − RK4

(b) Runge-Kutta 4 time integration sheme.
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() Impliit midpoint method time integration sheme.Figure 4.13: Fully-disrete numerial anisotropy for S- (left) and P- (right) waves: N = 3 and δ = 0.2.All results are magni�ed by a fator 103.



82 Analysis of grid dispersion, dissipation and stabilitypolynomial approximation degree N , �xing ∆t = 10−3. The analogous results obtainedwith N = 4 and varying the sampling ration δ are shown in Table 4.6. We remark thatall the onsidered methods do not su�er from global dissipation error. In partiularwith the SIPG-LF and MSE-LF methods we obtain the lowest dissipation errors.4.3 Stability analysisIn this setion we examine the stability properties for the expliit time integrationshemes LF and RK4. The aim of this analysis is to establish a riterion that determinesthe largest time step ∆t that we are allowed to use suh that the disrete solutionremains bounded with respet to the problem's data. In the literature this is knownas the Courant, Friedrihs and Lewy (CFL) ondition and imposes a restrition on thetime step of the form
∆t ≤ CCFL∆x

cP
,where ∆x is the minimum distane between two neighbouring disretization nodes,

cP is the P wave veloity. We reall that the Courant number CCFL depends on thedimension, the order of the sheme and the mesh geometry. In the appliations isempirially hosen to be between 0.3 − 0.6, see for example [61, 60, 85, 30℄. In thefollowing solving a generalized eigenvalue problem, we derive instead preise bounds forthe CCFL onstant, both for the SIPG and MSE disretizations oupled with LF andthe RK4 method. All the results will be ompared with the analogous ones obtainedwith the SE methods.Leap-frog time integration shemeLet us start onsidering the eigenvalue problem (4.18). In order to make expliit thedependene of Λ on either the mesh size h and the polynomial approximation degree
N , we rewrite (4.18) as K̂U = Λ′ M̂U, (4.24)with Λ′ = (h/∆t)2 sin2 (ωh∆t/2) . De�ning the stability parameter q = cP∆t/h, wededue the relation

q2Λ′ = c2P sin2
(
ωh∆t

2

)
≤ c2P ,or equivalently

q ≤ cP
1√
Λ′

= CCFL(Λ′), (4.25)



4.3 Stability analysis 83(a) LF time integration sheme.SE-LF SIPG-LF MSE-LF
N Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h)2 -1.8687e-16 -1.6884e-16 -6.9782e-16 -9.6888e-16 -5.5165e-16 -2.5680e-163 -1.2386e-15 -1.1085e-15 8.8005e-16 3.2135e-16 8.0515e-16 -2.5558e-164 -1.1744e-16 3.1257e-16 -4.2113e-15 -5.0858e-16 3.1670e-15 6.1221e-165 1.4644e-15 8.9666e-16 -1.9977e-15 -6.5793e-15 -2.1894e-15 -4.6190e-156 -6.0645e-16 8.0892e-17 -3.4844e-15 4.8253e-15 -4.1583e-15 5.8972e-157 -1.5149e-14 -7.2159e-15 3.7452e-15 -8.5995e-15 1.1333e-14 -4.3412e-158 -7.2058e-15 -6.2394e-15 -1.4276e-14 -1.4739e-14 9.7548e-15 1.0194e-149 7.5118e-16 -2.6108e-15 2.3753e-14 -6.2472e-15 -7.6537e-15 -9.0125e-1510 4.2337e-15 2.5439e-15 -5.1072e-14 2.3077e-14 -1.5956e-14 1.0328e-14(b) RK4 time integration sheme.SE-RK SIPG-RK MSE-RK
N Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h)2 8.8818e-13 -9.9920e-13 4.4409e-13 -1.1102e-12 4.4409e-13 -1.1102e-123 -9.9920e-13 -9.9920e-13 -5.5511e-13 6.6613e-13 -5.5511e-13 6.6613e-134 -9.9920e-13 -1.8874e-12 3.1086e-12 3.7748e-12 3.1086e-12 3.7748e-125 1.3323e-12 4.6629e-12 2.4425e-12 4.4409e-13 2.4425e-12 4.4409e-136 1.1546e-11 -6.4393e-12 1.3323e-12 3.3307e-12 1.3323e-12 3.3307e-127 -1.9984e-12 2.6645e-12 1.3323e-12 -6.4393e-12 1.3323e-12 -6.4393e-128 -1.9651e-11 3.9080e-11 -1.2212e-12 -6.5503e-12 -1.2212e-12 -6.5503e-129 1.5543e-12 -5.5511e-13 1.6653e-11 -9.8810e-12 1.6653e-11 -9.8810e-1210 -7.9936e-12 1.1324e-11 -2.8866e-12 -1.1102e-13 -2.8866e-12 -1.1102e-13() IM time integration sheme.SE-IM SIPG-IM MSE-IM
N Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h)2 -3.3307e-13 1.5543e-12 -6.6613e-13 1.5543e-12 -6.6613e-13 1.5543e-123 -8.8818e-13 6.6613e-13 -4.4409e-13 3.5527e-12 -4.4409e-13 3.5527e-124 1.5543e-12 -4.6629e-12 2.4425e-12 1.3323e-12 2.4425e-12 1.3323e-125 -1.1102e-13 4.6629e-12 -2.2204e-12 -3.1086e-12 -2.2204e-12 -3.1086e-126 4.4409e-13 2.2204e-13 1.1768e-11 6.6613e-13 1.1768e-11 6.6613e-137 4.6629e-12 -6.3283e-12 7.1054e-12 -1.0325e-11 7.1054e-12 -1.0325e-118 3.3974e-12 -6.8834e-12 1.3323e-12 -3.3307e-13 1.3323e-12 -3.3307e-139 1.1990e-11 -2.9976e-11 1.1102e-11 -2.0317e-11 1.1102e-11 -2.0317e-1110 4.5532e-12 -9.6589e-12 -8.7708e-12 -1.1102e-13 -8.7708e-12 -1.1102e-13Table 4.5: Computed values of Im(ωS,h) and Im(ωP,h) for N = 2, .., 9: δ = 0.2, θ = π/4 and

∆t = 10−3.
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(a) LF time integration sheme.SE-LF SIPG-LF MSE-LF

1/δ Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h)2 -4.6681e-17 -1.7229e-16 -1.7660e-15 -5.4334e-16 7.9602e-16 -3.9736e-164 -1.1896e-15 -1.8173e-15 -3.2565e-15 2.0011e-15 1.6631e-15 -1.8589e-156 -8.5509e-16 1.9686e-15 -3.8813e-15 7.3660e-16 3.9770e-16 -1.4470e-168 1.7380e-15 -3.8377e-16 1.3998e-15 1.8561e-15 -2.4063e-15 2.2529e-1510 -4.8637e-16 -1.1671e-15 8.1446e-16 4.6269e-16 -3.8415e-15 -2.9109e-16(b) RK4 time integration sheme.SE-RK SIPG-RK MSE-RK
1/δ Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h)2 -3.3307e-13 -1.7764e-12 1.9984e-12 -6.6613e-13 2.4425e-12 -2.5535e-124 -2.3315e-12 3.5527e-12 -5.5511e-13 -9.9920e-13 -1.8874e-12 2.8866e-126 1.9984e-12 -4.9960e-12 1.9984e-12 -5.7732e-12 -4.9960e-12 1.7764e-128 -2.2204e-13 4.4409e-13 1.7764e-12 -1.2768e-11 3.7748e-12 3.9968e-1210 -4.2188e-12 2.8866e-12 1.4655e-11 5.9952e-12 7.3275e-12 2.2204e-12() IM time integration sheme.SE-IM SIPG-IM MSE-IM
1/δ Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h) Im(ωS,h) Im(ωP,h)2 -2.3315e-12 2.2204e-13 4.4409e-13 -4.3299e-12 1.7764e-12 1.1102e-124 1.3323e-12 -2.8866e-12 -5.5511e-13 -3.6637e-12 -4.4409e-13 -2.9976e-126 2.4425e-12 3.7748e-12 -6.6613e-13 -7.8826e-12 6.6613e-13 2.2204e-128 -3.1086e-12 4.2188e-12 -1.3545e-11 -2.3315e-12 -4.6629e-12 -3.3307e-1210 5.5511e-12 -1.0991e-11 9.5479e-12 -2.2204e-12 2.6645e-12 -1.7764e-12Table 4.6: Values of Im(ωS,h) and Im(ωP,h) varying the sampling ratio δ: N = 4, θ = π/4 and

∆t = 10−3.



4.3 Stability analysis 85As noted in [39℄, CCFL is a funtion of Λ′ and therefore depends impliitly on the wavevetor κ through the matries K̂ and M̂. Moreover, inequality (4.25) must be ful�lledfor all the eigenvalues and all the wave vetors κ = 2πδ/h(cos(θ), sin(θ)).Thus, the stability ondition is given by
q = min

1≤j≤ν
min

0≤θ≤2π
CCFL(Λ′

j(θ)), (4.26)where θ is the inident angle of the plane wave and ν is the number of the eigenvaluesof problem (4.24). We remark that ondition (4.26) is equivalent to require that
q ≤ c(λ, µ)√

Λmax
,where Λmax is the largest eigenvalue of problem (4.24) and c(λ, µ) is a positive onstantthat depends on the Lamé oe�ients λ and µ. Thus, by estimating Λmax in terms of

h and N , it is possible to determine a bound for q.In the DG approah, the bilinear form K̂(·, ·) assoiated to the matrix K̂ in (4.18) takesthe form
K̂(u,v) =

∫

ΩC

σ(u) : ε(v)−
∑

f={T,B,R,L}

∫

γf

σ(u) : v⊗ n

+θ

∫

γf

(u− gf )⊗ n : σ(v) + ηf

∫

γf

(u− gf )⊗ n : v ⊗ n,where the funtions u,v ∈ V DG
δ are zero outside ΩC , and n is the normal unit vetorpointing outside ΩC . Aording to the plane wave hypothesis (4.5), we takegf = eβfu, for f = {T,B,L,R}.Following [7℄ we obtain

K̂(u,u) ≤ c(λ, µ, α)
N4

h2
||u||20,ΩC

.Thus, for the generalized eigenvalue problem (4.24), we an derive the estimate
Λmax ≤ c(λ, µ, α)

N4

h2
,and, onsequently,

Λ′
max ≤ c(λ, µ, α)N4. (4.27)



86 Analysis of grid dispersion, dissipation and stabilityFor the MSE method we observe that writing Λ′
max through the generalized Rayleighquotient yields

Λ′
max = sup

v∈R
2m

\{0}

(K̂v,v)ΩC

(M̂v,v)ΩC

= sup
v∈R

2m
\{0}

(Q̃⊤ÃQ̃v,v)ΩC

(Q̃⊤M̃Q̃v,v)ΩC

= sup
v∈R

2m
\{0}

(ÃQ̃v, Q̃v)ΩC

(M̃Q̃v, Q̃v)ΩC

= sup
w=Q̃v∈R

2n
\{0}

∃ i=1,...,2m: v·ei 6=0

(Ãw,w)ΩC

(M̃w,w)ΩC

≤ sup
v∈R

2n
\{0}

(Ãv,v)ΩC

(M̃v,v)ΩC

= sup
v∈R

2n
\{0}

(Av,v)ΩC

(Mv,v)ΩC

, (4.28)where m = (N2 + 3) and n = (N + 1)2. In this way, we obtain an upper bound forthe maximum eigenvalue of (4.24) when using MSE approximation. Indeed, the lastterm in (4.28) is exatly the maximum eigenvalue of the SE disretization for whih thefollowing estimate holds (f. [20℄)
c1N

4 ≤ Λ′
max ≤ c2N

4, (4.29)for c1 and c2 positive onstants. Finally, we an resume the stability analysis in thefollowing statement.Proposition 2. For every µ > 0, λ ≥ 0 and α ≥ αmin > 0, the CFL ondition (4.25) issatis�ed for both the MSE and SIPG methods if there exists a positive onstant c∗(λ, µ, α)suh that
q ≤ c∗(λ, µ, α)

N2
. (4.30)Moreover, for the MSE and the NIPG methods it holds αmin = 0 and c∗(λ, µ, α) =

c∗(λ, µ).We remark that for the SIPG, the onstant c∗(λ, µ, α) is proportional to α−1/2 (f.[7℄). Then a less restritive bound for q in (4.30) is ahieved when α = αmin. Moreover,it is possible to determine exatly the threshold value αmin (f. [45℄ for the ellipti ase),but this is beyond the objetive of this study. For the numerial simulations in Setion4.3 we hoose α = 1.Runge-Kutta 4 time integration shemeTo derive the CFL ondition for the fully-disrete sheme resulting from the RK4 in-tegration, let us onsider the ordinary di�erential system of equations (4.19). Suppose



4.3 Stability analysis 87that the matrix T̂ is diagonalizable in C, that means that there exists a omplete set of
m linearly independent eigenvetors Yk satisfyingT̂Yk = ξkYk, k = 1, ...,m, (4.31)where m = 4(N +1)2 (resp. m = 4(N2+3)) for SIPG (resp. MSE) disretizations. LetY = [Y1,Y2, ...,Ym] and Σ = [ξ1, ..., ξm] be the matries ontaining the eigenvetorsand the eigenvalues of (4.31) . Then, we obtainT̂ = YΣY−1 and Σ = Y−1T̂Y.Multiplying equation (4.19) by Y−1 on both sides and introduing I = YY−1 we havethe following equivalent system of ordinary di�erential equationsY−1Ẇ(t) = (Y−1T̂Y)Y−1W(t),that by setting Z(t) = Y−1W(t), an be rewritten as

Ż(t) = ΣZ(t).This is a diagonal system of ordinary di�erential equations, i.e., m independent salarequations, one for eah omponent of Z. The k-th suh equation reads
Żk(t) = ξkZk(t), k = 1, ...,m. (4.32)When applying the RK4 method to the above system we obtain m independent salarequations of the form

Zk(tn+1) = R(∆tξk)Zk(tn), k = 1, ...,m,where
R(z) =

4∑

j=0

zj

j!
.For the method to be stable, eah of the resulting salar problems must be stable, andthis learly imply that ∆tξk must be in the stability region of the RK4 method for all

k. The region of stability (more properly alled region of absolute stability) of a onestep method, is simply given by S = {z ∈ C : |R(z)| ≤ 1}, see [91℄. We notie that itis possible to obtain an equivalent estimate starting from
W(tn+1) =

4∑

k=0

(∆tT̂)k
k!

W(tn),



88 Analysis of grid dispersion, dissipation and stabilityand notiing that the region of absolute stability
S′ = {z ∈ C : z = eig( 4∑

k=0

(∆tT̂)k
k!

) and |z| ≤ 1},is suh that S′ = S. Moreover, we remark that, if we are able to estimate the region ofabsolute stability S or S′ automatially this provide a limitation for ∆t. As we will seein the next setion, CCFL behaves as CCFL . N−2, as for the leap-frog sheme.Numerial ResultsTo estimate the stability parameter q for the LF sheme we �x δ = 0.2 and the ratio
r = 1.414. This hoie gives a restritive stability ondition: higher values of r = cP /cSlead milder stability onditions [39℄. As for the grid dispersion analysis we have �xed
η = 2N2/h for the SIPG and the NIPG methods. In Table 4.7-(a) are shown theestimated threshold values for q, for N = 2, ..., 10. The onstants for the SIPG methodare around 70 perent with respet to the ones of the SE method, while for the MSEmethod are around 95 perent. The NIPG method has onstants always more restritivethan those of the SIPG method.In Table 4.7-(a) it is also shown the asymptoti behaviour of the q onstant with respetto N (N -rate), omputed as the average of the rates obtained for N = 2, ..., 20: asexpeted the deay rate of q is approximately proportional to N−2. In Figure 4.14 weshow the omputed value of Λ′

max versus the polynomial degree N . In agreement withthe theoretial estimate Λ′
max ≈ N−4. In pratie, the time step is often bounded, notby the size of the spetral elements h, but by the smaller spae inrement ∆x betweento neighbouring spetral nodes. In Table 4.7-(b) we ompute the upper bounds for themodi�ed stability parameter q′ = cP∆t/∆x. It is evident that the CFL ondition (4.26)is less restritive for the MSE method than for the SIPG sheme. We have repeated thesame set of experiments employing the RK4 integration sheme. In order to omparethe RK4 method with the LF sheme, we �x the same set of parameters, i.e., r = 1.414,

δ = 0.2 and η = 2N2/h for the SIPG sheme.As desribed in the previous setion to ompute the stability onstant for the RK4method we onsider a large set of ombinations (∆t, θ) for polynomial degrees N =

2, ...10. In Table 4.8-(a) we report the omputed values obtained with the SE, SIPGand MSE disretizations together with the asymptoti rate (N-rate). As for the LFsheme, the trend for the RK4 method is approximately proportional to N−2 and the
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Figure 4.14: Λ′
max (f. (4.27) and (4.29))versus the polynomial degreeN for the generalized eigenvalueproblem (4.24).

(a)N SE MSE SIPG NIPG2 0.3376 0.3333 0.2621 0.21633 0.1967 0.1770 0.1368 0.10454 0.1206 0.1118 0.0795 0.06075 0.0827 0.0776 0.0530 0.04006 0.0596 0.0570 0.0374 0.02817 0.0449 0.0434 0.0280 0.02108 0.0351 0.0342 0.0216 0.01629 0.0281 0.0277 0.0172 0.012910 0.0231 0.0227 0.0140 0.0105
N-rate -1.8463 -1.8253 -1.9247 -1.9360

(b)N SE MSE SIPG NIPG2 0.6752 0.6667 0.5241 0.43263 0.7115 0.6403 0.4951 0.37824 0.6983 0.6474 0.4607 0.35165 0.7039 0.6608 0.4515 0.34096 0.7017 0.6712 0.4400 0.33157 0.7009 0.6769 0.4360 0.32738 0.7005 0.6819 0.4303 0.32289 0.6994 0.6878 0.4282 0.320610 0.6995 0.6871 0.4247 0.3180average 0.6990 0.6689 0.4545 0.3471Table 4.7: LF method. Computed upper bound for the stability parameter q = cP∆t/h (a) and
q′ = cP∆t/∆x (b) for r = 1.414. Rate of deay of q with respet to N (a). Stability parameter q′proportional to qN2 thus onstant for di�erent hoies of ∆x (b).



90 Analysis of grid dispersion, dissipation and stability(a)N SE MSE SIPG2 0.4815 0.4175 0.37393 0.2835 0.2505 0.19724 0.1715 0.1585 0.11655 0.1175 0.1100 0.07626 0.0845 0.0810 0.05607 0.0640 0.0586 0.04088 0.0500 0.0450 0.03079 0.0400 0.0360 0.025710 0.0330 0.0295 0.0200
N-rate -1.8348 -1.8513 -1.9597

(b)N SE MSE SIPG2 0.9630 0.8350 0.74783 1.0257 0.9063 0.71354 0.9932 0.9179 0.67475 1.0002 0.9364 0.64876 0.9954 0.9542 0.65977 0.9980 0.9138 0.63628 0.9976 0.8978 0.61259 0.9942 0.8948 0.638810 1.0000 0.8940 0.6061average 0.9964 0.9056 0.6598Table 4.8: RK4 method. Computed upper bound for the stability parameter q = cP∆t/h (a) and
q′ = cP∆t/∆x (b) for r = 1.414. Rate of deay of q with respet to N (a). Stability parameter q′proportional to qN2 thus onstant for di�erent hoies of ∆x (b).
N -rate is omputed using polynomial degree up to 20. In the family of DG strategiesNIPG and IIPG approahes have CCFL bounds always lower than SIPG. The resultson�rm that stability bounds are less restritive for the MSE method with respet tothe SIPG. In partiular the former are around 90 perent of the SE ones while the latteraround 65 perent.In Table 4.8-(b) we also report the estimated bound for the modi�ed stability param-eter q′ = cP∆t/∆x, i.e., q saled by the minimum distane ∆x between two onseutiveGLL-nodes. Comparing Tables 4.7-(b) and 4.8-(b) we notie that in this ase the RK4stability bounds are less restritive of the LF ones, so from this point of view RK4 ispreferable to LF.



Chapter 5
Implementation issues
In this hapter we detail the algorithmi aspets of the DGSE and MSE formulations,desribing their implementation in a spetral element based ode.In Setion 5.1 we desribe the strategy employed to ompute the integrals appearing inthe algebrai formulations (2.54) and (2.64), respetively. We give speial attention tothe non-onforming part of the semi-disretizations (2.7) and (2.12) desribing in detailthe proedure adopted to ompute the interfae terms and the mortar ondition MC.In Setion 5.2 we ompare the DG and Mortar semi-disretizations from the e�ienyview point. We remark that in this ontext the word "e�ieny" means both lowmemory storage and omputational time.
5.1 Numerial integrationAs desribed in Chapter 2 we supposed Ω subdivided into K non overlapping subdo-mains Ωk, k = 1, ...,K, suh that Ω =

⋃K
k=1Ωk with Ωk ∩ Ωℓ = ∅ if k 6= ℓ. Moreover,in eah Ωk we introdue a partitioning Thk
, made by quadrilaterals elements Ωj

k, withgranularity hk. We denote by Γℓ
j(k), ℓ = 1, ..., 4, the boundary edges of eah Ωj

k (seeFigure 5.1 (left)). 91
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Figure 5.1: Left: example of subdomain partitio into K = 3 subdomains (Ω = Ω1 ∪ Ω2 ∪ Ω3) with
Ω1 =

⋃3
j=1 Ω

j

1, Ω2 =
⋃2

j=1 Ω
j

2 and Ω3 = Ω
1
3. Right: edges γ1, ..., γ6.Interfae integrals for the DGSE methodIn the DGSE approah the skeleton of the deomposition is de�ned as the union ofelementary omponents, i.e.,

S =

K⋃

k=1

∂Ωk \ ∂Ω =

M⋃

i=1

γiwhere γi = Γℓ
j(k) ∩ Γℓ′

j′(k′) for some triples (j, k, ℓ) and (j′, k′, ℓ′) with k 6= k′. To easythe notation we let Ω+ and Ω− be two elements that shear the edge γi, see Figure 5.2.We reall that the bilinear form B(·, ·) is given by
B(u,v)γi = − ({σ(u)}, [[v]])γi + θ ([[u]], {σ(v)})γi + ηγi ([[u]], [[v]])γi ,f. (2.8). Using the de�nition of {·} and [[·]] introdued in (2.4) and (2.5), respetivelywe have
B(u,v)γi = −1

2

(
σ(u+) + σ(u−),v+ ⊗ n+ + v− ⊗ n−

)
γi

+
θ

2

(
u+ ⊗ n+ + u− ⊗ n−, σ(v+) + σ(v−)

)
γi

+ηγi
(
u+ ⊗ n+ + u− ⊗ n−,v+ ⊗ n+ + v− ⊗ n−

)
γi
.



5.1 Numerial integration 93The above integrals are omputed for eah element Ω+ of the meso deomposition thathas an edge γi ∈ S. So when we look to γi from Ω+ we onsider only the ontributions
B(u,v)γi = −1

2

(
σ(u+) + σ(u−),v+ ⊗ n+

)
γi

+
θ

2

(
u+ ⊗ n+ + u− ⊗ n−, σ(v+)

)
γi

+ηγi
(
u+ ⊗ n+ + u− ⊗ n−,v+ ⊗ n+

)
γi
, (5.1)while when we look to γi from Ω− we ompute

B(u,v)γi = −1

2

(
σ(u+) + σ(u−),v− ⊗ n−

)
γi

+
θ

2

(
u+ ⊗ n+ + u− ⊗ n−, σ(v−)

)
γi

+ηγi
(
u+ ⊗ n+ + u− ⊗ n−,v− ⊗ n−

)
γi
. (5.2)Now, as a referene example, we onsider the integral (σ(u+) + σ(u−),v+ ⊗ n+)γi . Allthe other terms in (5.1) and (5.2) an be treated similarly. By hoosing as a test funtion

v = (Ψ1
i ,Ψ

2
i )

⊤ we have
(
σ(u+) + σ(u−),v+ ⊗ n+

)
γi

=
(
σ11(u

+),Ψ1,+
i n1,+

)
γi
+
(
σ12(u

+),Ψ1,+
i n2,+

)
γi

+
(
σ21(u

+),Ψ2,+
i n1,+

)
γi
+
(
σ22(u

+),Ψ2,+
i n2,+

)
γi
,

=
(
σ11(u

−),Ψ1,+
i n1,+

)
γi
+
(
σ12(u

−),Ψ1,+
i n2,+

)
γi

+
(
σ21(u

−),Ψ2,+
i n1,+

)
γi
+
(
σ22(u

−),Ψ2,+
i n2,+

)
γi
,for i = a+, ..., b+, with a+, b+ positive integers (depending on the unknowns numera-tion). Then, notiing that

σ11(u
±) = {λ+ 2µ}A

∂u±1
∂x1

+ {λ}A
∂u±2
∂x2

,

σ12(u
±) = {µ}A

(
∂u±1
∂x2

+
∂u±2
∂x1

)
,

σ21(u
±) = {µ}A

(
∂u±2
∂x1

+
∂u±1
∂x2

)
,

σ22(u
±) = {λ+ 2µ}A

∂u±2
∂x2

+ {λ}A
∂u±1
∂x1

,
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(
σ(u+),v+ ⊗ n+

)
γi

=

b+∑

j=a+

U1,+
j



c1

(
∂Ψ1,+

j

∂x1
,Ψ1,+

i

)

γi

+ c2

(
∂Ψ1,+

j

∂x1
,Ψ2,+

i

)

γi

+c3

(
∂Ψ1,+

j

∂x2
,Ψ1,+

i

)

γi

+ c4

(
∂Ψ1,+

j

∂x2
,Ψ2,+

i

)

γi





+

b+∑

j=a+

U2,+
j



c5

(
∂Ψ2,+

j

∂x2
,Ψ2,+

i

)

γi

+ c2

(
∂Ψ2,+

j

∂x2
,Ψ1,+

i

)

γi

+c3

(
∂Ψ2,+

j

∂x1
,Ψ1,+

i

)

γi

+ c4

(
∂Ψ2,+

j

∂x1
,Ψ2,+

i

)

γi



 .and

(
σ(u−),v+ ⊗ n+

)
γi

=

b−∑

j=a−

U1,−
j



c1

(
∂Ψ1,−

j

∂x1
,Ψ1,+

i

)

γi

+ c2

(
∂Ψ1,−

j

∂x1
,Ψ2,+

i

)

γi

+c3

(
∂Ψ1,−

j

∂x2
,Ψ1,+

i

)

γi

+ c4

(
∂Ψ1,−

j

∂x2
,Ψ2,+

i

)

γi





+

b−∑

j=a−

U2,−
j



c5

(
∂Ψ2,−

j

∂x2
,Ψ2,+

i

)

γi

+ c2

(
∂Ψ2,−

j

∂x2
,Ψ1,+

i

)

γi

+c3

(
∂Ψ2,−

j

∂x1
,Ψ1,+

i

)

γi

+ c4

(
∂Ψ2,−

j

∂x1
,Ψ2,+

i

)

γi



 .with a−, b+ positive integer (depending on the unknowns numeration) and

c1 = {λ+ 2µ}A n1,+,

c2 = {λ}A n2,+,

c3 = {µ}A n2,+,

c4 = {µ}A n1,+,

c5 = {λ+ 2µ}A n2,+.Now, the key point is how to ompute the quantities
(
∂Ψ±

j

∂x1
,Ψ+

i

)

γi

and (
∂Ψ±

j

∂x2
,Ψ+

i

)

γi

. (5.3)



5.1 Numerial integration 95In order to do that, we reall that the any element Ω is the image through a bilinearmap F of the referene element Ω̂ = (−1, 1)2. This means that the physial variables
(x1, x2) ∈ Ω depends on the loal variables (ξ, η) ∈ Ω̂ through F, i.e. F(ξ, η) =

(x1(ξ, η), x2(ξ, η)). Therefore, it holds
∂Ψi

∂ξ
=

∂x1
∂ξ

∂Ψi

∂x1
+

∂x1
∂ξ

∂Ψi

∂x2
,

∂Ψi

∂η
=

∂x1
∂η

∂Ψi

∂x1
+

∂x2
∂η

∂Ψi

∂x2
,or, in matrix form,




∂Ψi

∂ξ

∂Ψi

∂η



=




∂x1
∂ξ

∂x2
∂ξ

∂x1
∂η

∂x2
∂η







∂Ψi

∂x1

∂Ψi

∂x2



= J




∂Ψi

∂x1

∂Ψi

∂x2



, (5.4)where

J =
∂x1
∂ξ

∂x2
∂η

− ∂x1
∂η

∂x2
∂ξ

,is the Jaobian of the map F. From (5.4) we derive
∂Ψi

∂x1
= (

∂x2
∂η

∂Ψi

∂ξ
− ∂x2

∂ξ

∂Ψi

∂η
)/J,

∂Ψi

∂x2
= (

∂x1
∂ξ

∂Ψi

∂η
− ∂x1

∂η

∂Ψi

∂ξ
)/J.Then the integrals (5.3) beomes

∫

γi

∂Ψ±
j

∂x1
Ψ+

i =

∫

γ̂i

(
∂x±2
∂η

∂Ψ±
j

∂ξ
− ∂x±2

∂ξ

∂Ψ±
j

∂η
)Ψ+

i

∫

γi

∂Ψ±
j

∂x2
Ψ+

i =

∫

γ̂i

(
∂x±1
∂ξ

∂Ψ±
j

∂η
− ∂x±1

∂η

∂Ψ±
j

∂ξ
)Ψ+

i .where γi = F(γ̂i). Now, to ompute the above integrals we use a GLL quadraturerule with N∗ nodes. Here N∗ is hosen so that the resulting formula is exat for theintegrand under onsideration. Therefore we have
A =

∫

γ̂i

(
∂x±2
∂η

∂Ψ±
j

∂ξ
− ∂x±2

∂ξ

∂Ψ±
j

∂η
)Ψ+

i =
|γ̂i|
2

N∗∑

k=1

(
∂x±2
∂η

∂Ψ±
j

∂ξ
− ∂x±2

∂ξ

∂Ψ±
j

∂η
)(pk)Ψ

+
i (pk)wk, (5.5)

B =

∫

γ̂i

(
∂x±1
∂ξ

∂Ψ±
j

∂η
− ∂x±1

∂η

∂Ψ±
j

∂ξ
)Ψ+

i =
|γ̂i|
2

N∗∑

k=1

(
∂x±1
∂ξ

∂Ψ±
j

∂η
− ∂x±1

∂η

∂Ψ±
j

∂ξ
)(pk)Ψ

+
i (pk)wk, (5.6)
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Figure 5.2: Domain deomposition for DGSE disretizations. In this ase γi = ∂Ω
+ ∩ ∂Ω

−. Bilinearmaps F+,F− used to map Ω+ and Ω− to the referene element Ω̂.
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Figure 5.3: Example of domain deomposition with MSE method. In this ase S = γ−
1 ∪ γ−

2 .where {p, w} are the quadrature nodes and weights respetively. We remark that if
N+, resp. N−, is the polynomial degree in Ω+, resp. Ω− eah funtion Ψ±

j , and Ψ+
i ,is obtained by tensor produt of monodimensional polynomial funtions of degree N+,resp. N−, i.e.,

Ψ±
j (ξ, η) = φ±

r (ξ)φ
±
s (η), with j = (s − 1)N± + r,

Ψ+
i (ξ, η) = φ+

m(ξ)φ+
n (η), with i = (n− 1)N+ +m.Moreover, setting pk = (p±k , q

±
k ), (5.5)-(5.6) have to be intended as

A =
|γ̂i|
2

N∗∑

k=1

(
∂x±2
∂η

(p±k )
∂φ±

r

∂ξ
(p±k )φ

±
s (q

±
k )−

∂x±2
∂ξ

(q±k )φ
±
r (p

±
k )

∂φ±
s

∂η
(q±k )

)
φ+
m(p+k )φ

+
n (q

+
k )wk,

B =
|γ̂i|
2

N∗∑

k=1

(
∂x±1
∂ξ

(q±k )φ
±
r (p

±
k )

∂φ±
s

∂η
(q±k )−

∂x±1
∂η

(p±k )
∂φ±

r

∂ξ
(p±k )φ

±
s (q

±
k )

)
φ+
m(p+k )φ

+
n (q

+
k )wk,Sine F± is not invertible, to de�ne the GLL points p on the segment γ̂i we de�ne thequadrature point on the edge γi and then we use the Newton-Raphson algorithm [91℄to �nd their orresponding position on the referene element.Mortar ondition for the MSE methodIn this setion we desribe how the mortar ondition MC, introdued in Setion 2.2,is implemented in pratie. We reall that in the MSE approah the skeleton S of the



98 Implementation issuesdeomposition has a dual desription made by master or slave edges, i.e.,
S =

⋃

mmaster

γ+m =
⋃

s slave

γ−s ,and that MC holds for the slave part of S. Moreover, eah γ−s is a omplete edge of asubdomains Ωk, for k = 1, ...,K.In this ontext, the ruial point is the de�nition of a basis for the spae of multipliers
Λδ(S) =

⊕

s slave

Λδ(γ
−
s ).Sine MC applies separately for the omponents u1, u2 of the displaement u, seeSetion 2.4, here and in the sequel we onsider only the �rst omponent u1 and dropthe supersripts. Aording to the notation introdued in Setion 5.1, in eah element

Ωj
k the displaement u an be written as

u(x1(ξ, η), x2(ξ, η)) =

(Nk+1)2∑

j=1

UjΨj(ξ, η) =

Nk+1∑

m,n=1

Um,nφm(ξ)φn(η),where φm and φn are the one dimensional Lagrangian interpolants of order Nk, de�nedby
φNk
m (ξ) =

−L′
Nk

(ξ)(1 − ξ2)

Nk(Nk − 1)LNk
(pNk

m )(ξ − pNk
m )

, m = 1, ..., Nk + 1. (5.7)
φNk
m ∈ QNk([−1, 1]), φNk

m (pℓ) = δmℓ, m, ℓ = 1, ..., Nk + 1, and LNk
is the Legendrepolynomial of order Nk. The points pℓ are the GLL points of order Nk.For eah element edge Γℓ

j(k) suh that ∂Ωj
k =

⋃4
ℓ=1 Γ

ℓ
j(k), it is possible to expand u as:

u(x1(ξ), x2(ξ)) =

Nk+1∑

m=1

UmφNk
m (ξ),where x1(ξ), x2(ξ) represents the oordinate transformation restrited to Γℓ

j(k). To de�nea basis for the spae Λδ(γ
−
s ) we detet whether the end points of γ−s oinide with theend points of Γℓ

j(k), sine nodal values on the verties of γ−s are master unknowns.Depending on that we have to hoose projetion polynomials of order one or two, lessthan the Legendre funtion (5.7) of order Nk. Moreover, to avoid loosing the diagonalityin the left hand side of the projetion (2.62), we have:
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j(k) a basis for Λδ(γ

−
s ) is a set of Nk − 1 polynomials of order Nk − 2,whih has the form

φ̂Nk−2
m (ξ) =

−L′
Nk

(ξ)(1 − pNk
m )(1 + pNk

m )

Nk(Nk − 1)LNk
(pNk

m )(ξ − pNk
m )

, m = 2, ..., Nk,where pm, m = 2, ..., Nk are the GLL points, f. Setion 2.2.2. In the general ase when γ−s =
⋃J

j=1 Γ
ℓ
j(k), with J > 1 the basis for Λδ(γ

−
s ) onsistof the union of basis funtions for all edges Γℓ

j(k).For an edge that does not share any end points with the mortar, the basis is a setof NK + 1 Lagrangian interpolants of order Nk:
φ̂Nk
m = φNk

m , m = 1, ..., Nk + 1.In the last ase when an edge Γℓ
j(k) shares only one end point with a mortar γ−s ,the basis funtions are polynomials of order Nk − 1. If the end point orrespondsto p1 = −1, the polynomials are:

φ̂Nk−1
m (ξ) =

−L′
Nk

(ξ)(1− ξ)(1 + pNk
m )

Nk(Nk − 1)LNk
(pNk

m )(ξ − pNk
m )

, m = 2, ..., Nk + 1,Otherwise, if the end point orresponds to pNk+1 = 1 the polynomials are:
φ̂Nk−1
m (ξ) =

−L′
Nk

(ξ)(1 − pNk
m )(1 + ξ)

Nk(Nk − 1)LNk
(pNk

m )(ξ − pNk
m )

, m = 1, ..., Nk.Sine, we use the Lagrangian interpolants through GLL points, the funtions φmde�ned above, satisfy the relation φm(pn) = δmn for all nodal points pn , exeptthose that oinide with the end points of the mortar, see Figure 5.4.In order to see how this de�nition re�ets on the omputation of MC let us onsideras a referene ase the one illustrated in Figure 5.3, where S = γ−1 ∪ γ−2 with
γ−1 = Γ1

1(1) ∪ Γ1
2(1) ∪ Γ1

3(1),

γ−2 = Γ2
1(3).In this on�guration, we obtain1. ∫γ−

1
(u1 − u2)φ̂ = 0 ∀φ̂ ∈ Λ̂δ(γ

−
1 ),2. ∫γ−

2
(u3 − u1 − u2)φ̂ = 0 ∀φ̂ ∈ Λ̂δ(γ

−
2 ).
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()Figure 5.4: Mortar edge basis funtions on the referene element (−1, 1) for di�erenton�gurations: (a) Nk = 2, (b) Nk = 3 and () Nk = 4. Edge γ−i sharing no end pointswith the mortar edge (left), the left end point with the mortar edge (middle) and bothend points with the mortar edge (right).
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Figure 5.5: Unknowns reordering for Condition 1.Sine Λ̂δ(γ
−
1 ) = Λ̂δ(Γ

1
1(1)) ⊕ Λ̂δ(Γ

1
2(1)) ⊕ Λ̂δ(Γ

1
3(1)) eah funtion φ̂ ∈ Λ̂δ(γ

−
1 ) an bewritten as

φ̂ = φ̂1 + φ̂2 + φ̂3,with φ̂j ∈ Λ̂δ(Γ
1
j(1)) and with supp(φ̂j) ⊂ Γ1

j(1) for j = 1, 2, 3. Aording to thesede�nitions φ̂1, φ̂2 and φ̂3 are polynomials of degree N1 − 1, N1 and N1 − 1, respetively.Setting ujk = u|
Ω
j
k

we an rewrite Condition 1., as
∫

Γ1
1(1)

(u11−u12)φ̂
1+

∫

Γ1
2(1)

∩Γ3
1(2)

(u21−u12)φ̂
2+

∫

Γ1
2(1)

∩Γ3
2(2)

(u21−u22)φ̂
2+

∫

Γ1
3(1)

(u31−u22)φ̂
3 = 0.(5.8)Substituting the expression of ujk in terms of the basis funtions introdued before, andomputing the integral as we are going to explain in a moment, we obtain the projetionmatrix Q

1
related to the mortar γ−1 . For simpliity let us onsider the �rst term in(5.8) and let us suppose that the left end point of γ−1 orresponds to p1 = −1 in thereferene interval [−1, 1]. For eah φ̂1

i ∈ Λ̂δ(Γ
1
1(1)) it holds

∫

Γ1
1(1)

(u11−u12)φ̂
1
i =

N1+1∑

j=1

U1
1,j

∫

Γ1
1(1)

φ1
j φ̂

1
i −

N2+1∑

j=1

U2
1,j

∫

Γ1
1(1)

φ2
j φ̂

1
i = 0 for i = 2, ..., N1+1,(5.9)or equivalently

N1+1∑

j=2

U1
1,j

∫

Γ1
1(1)

φ1
j φ̂

1
i =

N2+1∑

j=1

U2
1,j

∫

Γ1
1(1)

φ2
j φ̂

1
i − U1

1,1

∫

Γ1
1(1)

φ1
1φ̂

1
i for i = 2, ..., N1 + 1,



102 Implementation issues

Figure 5.6: De�nition of the mortar o�set s0 for di�erent master-slave on�gurations. In the on-sidered ase Γsl = γ̂ = Γ1
1(1), Γms = Γ3

1(2) and s0 < 0.where we have ordered the unknowns as in Figure 5.5. To ompute the integral on theleft end side, we map the segment Γ1
1(1) onto [−1, 1] and we introdue the set of N1 +1GLL nodes and weights {pk, ωk}. Sine φ1

j(pk) = δjk, for j, k = 1, ..., N1 + 1, we obtain
∫

Γ1
1(1)

φ1
j φ̂

1
i =

|Γ1
1(1)|
2

N1+1∑

k=1

φ1
j (pk)φ̂

1
i (pk)ωk =

|Γ1
1(1)|
2

δjkφ̂
1
i (pk)ωk for i = 2, ..., N1 + 1.The diagonal form of the matrix Rint is thus preserved, see Setion 2.4:Rint(i, j) =

|Γ1
1(1)|
2

δijωj, for i, j = 2, ..., N1 + 1.On the other hand to ompute ∫Γ1
1(1)

φ2
j φ̂

1
i we need to introdue the notions of mortaro�set s0 [16, 19℄, see Figure 5.6. Then, the integral beomes

∫

Γ1
1(1)

φ2
j φ̂

1
i =

|Γ1
1(1)|
2

N∗∑

k=1

φ2
j(r(pk))φ̂

1
i (s(pk))ωk for i = 2, ..., N1 + 1, (5.10)where N∗ is hosen suh that the quadrature rule is exat for the set of polynomialsunder onsideration. In (5.10) we introdue the oordinate transformations r(·) and

s(·) for the master and the slave part of Γ1
1(1) respetively, i.e.,

r(pk) =





2|s0|
|Γms|

− 1 + (1 + pk)
|Γsl|
|Γms|

if s0 < 0,

−1 + (1 + pk)
|γ̂|

|Γms|
if s0 > 0,
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s(pk) =





−1 + (1 + pk)
|γ̂|
|Γsl|

if s0 < 0,

2s0
|Γsl|

− 1 + (1 + pk)
|γ̂|
|Γsl|

if s0 > 0.To ompute all the remaining integrals in (5.8) we proeed similarly, paying attentionto the de�nition of the mortar spaes Λ̂δ(Γ
1
2(1)) and Λ̂δ(Γ

1
3(1)).To impose Condition 2., we observe that sine Γ2

1(3) shares both end point of γ−2 thefuntional spae Λ̂δ(γ
−
2 ) = span{φ̂i}, i = 2, ..., N3, where φ̂i ∈ QN3−2(γ−2 ). Then, itholds that ∫

γ−
2

(u3 − u1 − u2)φ̂i =

∫

γ−
2

(u13 − u31 − u22)φ̂i,and �nally
N3∑

j=2

U1
3,j

∫

γ−
2

φ3
j φ̂i =

N1+1∑

j=1

U3
1,j

∫

γ+
1

φ1
j φ̂i +

N2+1∑

j=1

U2
2,j

∫

γ+
2

φ2
j φ̂i

−U1
3,1

∫

γ−
2

φ3
1φ̂i − U1

3,N3+1

∫

γ−
2

φ3
N3+1φ̂i for i = 2, ..., N3.Now, the above integrals are omputed as before.5.2 Implementation detailsIn this setion we desribe the �owhart of the developed numerial ode. The guidelinesan be followed also in three dimensional problems in onjuntion with ad-ho strategiesfor parallel omputations.We refer to the general problem (1.1) with visous foring terms and the orrespondingalgebrai linear systems introdued in Setion 2.4. After setting the initial ondition

U(0) = u0 and V(0) = u1, we build the skeleton S as explained in (2.3)-(2.9) for theDGSE or the MSE approahes respetively.Next,- we ompute all the matrix de�ned in (2.74)-(2.75),- we stored them using a sparse format, sine they show a highly sparse pattern,- we solve the resulting ODE system using a time integration sheme hoosingbetween LF, RK4 or IM, see Chapter 3.



104 Implementation issuesIn Algorithm 1 we summarize the DG solution sheme.We reall that, when using expliit LF or RK4 methods at eah disrete time tn, thematrix of the system is diagonal. On the other hand, the CFL ondition has to berespeted and therefore a large number of time steps is required to ompute the ap-proximated solution. When onsidering the IM method, larger time steps are allowedand the �nal time T an be reahed in few iteration. However at eah disrete time
tn the solution of the resulting (ill-onditioned) linear system of equations is needed.In these ases, suitable preonditioners are mandatory (espeially for three dimensionalproblems).In the mortar solution sheme, see Algorithm 2, a further step is required in order toidentify the master and the slave deomposition of S. Moreover, we remark that thesolution is omputed �rstly for the master unknowns and then projeted to the slaveones. At eah time level, to steps are then required. Finally, we remark that all thematrix-vetor produts of Algorithms 1-2 an performed subdomain per subdomain.Algorithm 1: DG Solution Sheme1. Set the initial onditions u0 and u1.2. Build the skeleton S .3. Deompose S into elementary omponents (edges).4. Build the matries M,A,B,C,D,R and S.5. For eah disrete time tn:

• Solve the ODE system MÜ+ (C− S)U̇+ (A+B+D−R)U = F
ext using a suitable timeintegration sheme.

• If the �nal time T is not reahed set tn ← tn+1 and go to step 5.Algorithm 2: Mortar Solution Sheme1. Set the initial onditions u0 and u1.2. Build the skeleton S .3. Deompose S into the union of master and slave edges.4. Build the matries M,A,C,D,R and S and the projetion operator Q for the interfae unknowns
Uslave.5. For eah disrete time tn:
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• solve for the master unknowns Umaster the systemsQ̃⊤M̃Q̃Ümaster + Q̃⊤

(C̃ − S̃)Q̃U̇master + Q̃⊤
(Ã+ D̃− R̃)Q̃Umaster = Q̃⊤

F
extusing a suitable time integration sheme.

• perform the projetion on the slave unknowns;
• if the �nal time T is not reahed set tn ← tn+1 and go to step 5.



106 Implementation issues



Chapter 6
Numerial results for test ases
The aim of this hapter is the validation of the non-onforming approahes on two andthree dimensional benhmarks. We present �rst a two dimensional analytial test asein order to test the auray of the DGSE and MSE methods when a smooth solutionis onsidered and to validate the theoretial estimates proved in Chapter 2. Then, weshow the �exibility of DGSE and MSE disretizations onsidering an elasti wave prop-agation problem on a square domain with a irular avity. We show that, exploitingthe �exibility of non-onforming grids, it is possible to obtain reliable solutions savingomputational time.In the seond part of Chapter 6 we test the DGSE approah on three dimensional testases. We onsider two benhmarks widely used in the literature to validate the per-formane of di�erent numerial approximations of elastodynamis problems. The �rstproblem we onsider, known in literature with the aronym LOH (Layer Over a Halfspae), has beome in the last years a referene benhmark for all the seismi orientedodes. The results obtained with the DGSE method are satisfatory and show oneagain the �exibility of the DGSE disretization. The seond problem onsists in theseismi response of a valley having a urved pro�le. In this ase we onsider a onforminggrid but di�erent polynomial approximation degrees for the valley and the underlyingbedrok. The results are in agreement with those obtained with the SE method.107
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Figure 6.1: First level of re�nement (L1) for the grid A (left) and B (right). The end points of theskeleton S are highlighted by two irles.6.1 Auray and order of onvergeneWe solve a wave propagation problem in Ω = (0, 1)2, setting the elasti parameters
λ = µ = ρ = 1, and hoosing f suh that the exat solution of (1.1) is

u(t, x, y) = sin(
√
2πt)

[
− sin2(πx) sin(2πy)

sin(2πx) sin2(πy)

]
. (6.1)The Dirihlet boundary onditions on ∂Ω, the initial displaement u0 and the initialveloity u1 are set aordingly.We onsider a subdomain partition made by subdomain Ω1 and Ω2 with orrespondingre�nements Th1 and Th2 (f. Figure 6.1). We denote by N1 and N2 the degrees ofthe spetral expansion in eah subdomain, respetively. The skeleton is de�ned as

S = ∂Ω1 ∩ ∂Ω2 as it is shown in Figure 6.1. In order to investigate the onvergeneproperties of MSE an DGSE methods with respet to h = (h1, h2) and N = (N1, N2)we address two di�erent situations: the �rst orresponding to a Cartesian mathing grid(Figure 6.1, left) while the seond to a Cartesian non-mathing grid (Figure 6.1, right),referred to as grid A and grid B, respetively. In Figure 6.1 is shown the �rst level (L1)of re�nement for both grids, orresponding to the initial mesh sizes h1 and h2 for Ω1and Ω2 respetively. At eah further step of re�nement (for a maximum number of foursteps), we onsider a uniform re�nement of the grids at the previous level, in partiularfor grid A, Li refers to h1 = h2 = 2−i whereas for grid B, Li refers to h1 = 2−i and
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h2 ≈ (2/3)h1. For the time integration we employ the seond order expliit leap-frogsheme desribed in Chapter 3.We have ompared the results with the analogous ones obtain with the SE method. Wereall that, for the SE approximations under suitable assumptions on the mesh size hand on the polynomial degree N the following a priori error bound holds (see [27℄)

‖u− uδ‖0 ≤ C


∆t2 +

{
K∑

k=1

h2mk

k

N2sk
k

‖u‖2Hsk (Ωk)

} 1
2


 ,where C is a positive onstant. Here sk represents the Sobolev regularity of u in Ωk,

mk = min(Nk + 1, sk) and ∆t the time step. Similar bounds an be proved for DGSEand MSE on the basis of the estimates in Theorem 3 in Setion 2.3.3.In partiular, if the solution is analyti, we expet exponential onvergene asN → +∞,whereas algebrai onvergene is expeted whenever N is �xed and h → 0.In the family of proposed DGSE methods, we analyze in detail the SIPG method (i.e.,
θ = −1 in (2.8)) beause it exhibits better performanes in term of grid dispersion andstability (see Chapter 4).In Figure 6.2-(a) (resp. Figure 6.2-(b)) we report (semilog sale) the omputed
L2-error using the MSE and SIPG methods with grid A versus N (resp. degrees offreedom). The estimated error is omputed at the observation time t∗ = 2 using ∆t =

5 · 10−4.The results show that both disretizations exhibit the same rate of onvergeneas the SE method. We have repeated the same set of experiments with ∆t = 10−4.The omputed errors are shown in Figure 6.3. The results on�rm that SIPG and MSEmethods exhibit exponential onvergene in N, until the threshold value given by ≈ ∆t2is reahed.Now, we �x N1 = N2 and we investigate the auray of the SIPG and MSE methodswith respet to the mesh size h. For eah level of re�nement we ompute the error inthe L2-norm obtained using grid A and grid B. The algebrai order of onvergene
O(hN+1) is learly ahieved in both ases for di�erent hoies of N and ∆t (see Figure6.4).Finally in Figure 6.5-(a) and Figure 6.5-(b) we show a qualitative analysis of stabilityof SIPG and MSE methods applied to this test ase. The results are in agreementwith those obtained in Setion 4.3 and on�rm that the region of stability for the MSEmethod is larger than that for SIPG sheme.
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(a) Computed errors versus the polynomial degree N.

(b) Computed errors versus the number of degrees of freedom (d.o.f.).Figure 6.2: Computed errors: MSE (left) and SIPG (right) methods at the observation time t∗ = 2

(∆t = 5 · 10−4). The results are obtained with the grid A and the re�nement level L2.
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(a) Computed errors versus the polynomial degree N .

(b) Computed errors versus the number of degrees of freedom (d.o.f.).Figure 6.3: Computed errors: MSE (left) and DGSE (right) methods at the observation time t∗ = 2

(∆t = 1 · 10−4). The results are obtained with the grid A and the re�nement level L2.
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(a) Computed errors versus the mesh size h.

(b) Computed errors versus the number of degrees of freedom.Figure 6.4: Computed errors: N1 = N2 = 2, ∆t = 10−3 (left) and N1 = N2 = 4 and ∆t = 10−4(right). The error in the L2-norm is omputed at the observation time t∗ = 2 for all the re�nementlevels L1-L4. The su�xes A,B in the legend refer to the grids employed in the omputation.
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114 Numerial results for test ases6.2 Cirular inlusionThis example illustrate the sattering of a plane wave by an elasti irle inluded ina homogeneous halfspae, see Figure 6.6. Suh an example appears frequently in non-destrutive testing and near surfae seismi studies (avity, gas inlusions). From thenumerial point of view, the main di�ulty lies on meshing the urved internal interfae,speially in the ase of two media with high veloity ontrast where both an aurateapproximation of the body and of the interfae waves are mandatory.In order to illustrate the �exibility of the proposed non-onforming approximations weonsider three di�erent ases (f. Table 6.1):(i) a sti� irular inlusion is inluded within a more ompliant elasti spae,(ii) a ompliant irular inlusion in a sti�er spae,(iii) a more ompliant inlusion is inluded in a sti�er elasti spae (in order to testthe auray of DGSE and MSE methods for extremely high veloity ontrast).In all the ases the physial model is a irular inlusion of diameter 500 m embeddedin the square elasti half spae (0, 2000) m× (0,−2000) m. In Table 6.1 we report thedi�erent material properties for the three di�erent ases onsidered. These parameterswere borrowed form [79℄ and were used �rstly in [90℄ to study a two quarter spae prob-lem, that is two elasti half-spaes in ontat along a vertial material disontinuity,with speial emphasis in the simulation of the interfae waves travelling along the ver-tial interfae, a geometry well suited for lassial SE methods based on quadrilateralmeshes. Here, we onsider the sattering by an elasti irle of a plane wave travellingupwards. In this example, an interfae wave is expeted to travel along the irularboundary of the buried irle.Case Layers ρ [Kg/m3] cP [m/s] cS [m/s](i) C 2 3000 1732HS 1 2000 1155(ii) C 1 2000 1155HS 2 3000 1732(iii) C 1 600 1400HS 2 2310 4000Table 6.1: Dynami and mehanial parameters for the irle (C) and the halfspae (HS).



6.2 Cirular inlusion 115

Figure 6.6: Cirular inlusion with enter C = (0,−1000) m and radius R = 500 m in the halfspae
(0, 2000) m× (0,−2000) m.The partition within the irle and the halfspae is designed in order to have 1/δ ≥ 5points per wavelength with polynomial degree N = 4, see Chapter 4. In partiular, wehave set

• test ase (i): hC = 100 m and hHS = 70 m,
• test ase (ii): hC = 70 m and hHS = 100 m,
• test ase (iii): hC = 35 m and hHS = 70 m,for the irle (C) and the half-spae respetively (HS). We apply free-surfae boundaryonditions, i.e. t = 0, on the top of the domain, while non-re�eting boundary ondi-tions are imposed on the remaining parts of the boundary. A Riker plane wave withinident angle ϑ = 0 and modulation of 5Hz entral frequeny is presribed along thebottom boundary by an initial displaement u0 and veloity u1, see Figure 6.7. Alongthe urved interfae, starting from the point R1 = (1000,−1250) m, 50 reeivers areplaed in a ounter lokwise order. The wave �eld is propagated using the LF sheme,f. Chapter 3, for T = 5 s using a time step ∆t = 10−3 s. All the results are om-pared with those obtained with a onforming SE approximation hoosing N = 4 and

hC = hHS = 35 m for all the ases (i)-(iii).In Figure 6.8 we report the horizontal and vertial displaement reorded by the reeiversalong the interfae, for the ases (i) and (ii), respetively obtained with the MSE ap-proximation. Analogous results have been obtained with the DGSE method. Notiethat the displaement turns out to be symmetri with respet the vertial axis. In Fig-
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Figure 6.7: Riker plane wave M(t) = [1−2β(t− t0)
2] exp[−β(t− t0)

2], t0 = 1s and β = 246.7401s−1 .ure 6.9 we report the displaement reorded by the reeiver R11 = (239.67,−1071.1) musing respetively the DGSE and the MSE methods, respetively. In the same graphiswe also plot the di�erenes (uDG − uSE) and (uM − uSE), where uSE is the solutionobtained with the SE method. It an be observed that both methods give similar resultsin both the ases (i) and (ii), and reprodue aurately the wave front �eld for all obser-vation times. In the third ase, a muh higher veloity ontrast between the ompliantirular inlusion and the surrounding spae is onsidered. The inident wave�eld isthe same as in the previous examples and boundary onditions apply in the same way.The results shown in Figure 6.10 have been obtained with the DGSE method. Similarresults have been obtained using the MSE method. In this ase, it is evident the e�eton the wave�eld indued by the softer inlusion: the waves that travel aross the irleare trapped within it and then phenomena of re�etion and refration arise. This ismore evident from the snapshots of the omputed solution shown in Figure 6.11.
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(a) Test ase (i).
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(b) Test ase (ii).Figure 6.9: Displaement reorded by R11 and orresponding residual.
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Figure 6.11: Case (iii). Displaement reorded by R11 and orresponding residual.
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Figure 6.12: Case (iii): snapshots of the horizontal and vertial displaements obtained with DGSEmethod.



6.3 Layer over a halfspae 121Layer Depth [m] cP [m/s] cS [m/s] ρ[Kg/m3]L 0-1000 4000 2000 2600HS 1000-17000 6000 3464 2700Table 6.2: Dynami and mehanial parameters for the layer (L) and the halfspae (HS).

Figure 6.13: One of the four symmetri quarters of the LOH test ase, onsisting of a surfae layer,
1 km thik. The hypoenter together with the reeivers loation are also shown.6.3 Layer over a halfspaeThis test ase we has been proposed by [38℄ and it is urrently a referene benhmark forthe most advaned numerial odes for seismi wave propagation (see e.g., [44℄). Thisproblem is known in literature with the aronym LOH, Layer Over Halfspae. Theomputational domain is Ω = [−15, 15] × [−15, 15] × [17, 0] km, with top layer havingthikness 1 km. The omputational domain and the material parameters are shown inFigure 6.13 and Table 6.2, respetively.The seismi soure f(x) = δ(x−xS)M(t) is loated at the entre of Ω on the horizontalx-y plane, i.e., xS = (0, 0, 2) km. The soure is represented by a double ouple, withamplitude M0 = 1018 Nm, and the moment-rate time variation is given by

M(t) = M0
t

τ2
exp(−t/τ).Here τ is alled smoothness parameter, and ontrol the frequeny ontent and ampli-tude of the soure time funtion. For this test ase we have set τ = 0.1 s, see Figure
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Figure 6.14: Moment rate funtion for the LOH test.6.14. Further details on the problem setting as well as on the soure time funtion anbe found in [38℄ together with the expression of the semi-analyti solution. In order toavoid dispersion errors the non-onforming mesh is designed in order to have 5 pointsper wavelength for both the halfspae and the layer, with polynomial degree N = 4,see Chapter 4. Then, the spetral element dimension is hHS ≈ 600 m in the halfspaeand hL ≈ 160 m in the top layer. The time step for the expliit seond order leap-frogsheme is ∆t = 10−4 s.The omputational grid for this problem onsists in 81150 spetral element for approxi-mately 3.6 ·107 degrees of freedom when using fourth order polynomial basis. In Figure6.15 we show the three omponents of the omputed veloity registered by the reeiverloated at (6, 8, 0) km. The reported results have been obtained with the DGSE methodon both strutured and unstrutured grids (test A) as the ones shown in Figure 6.16.Figure 6.15 also shows the referene solution [38℄. In eah plot, we also report therelative seismogram mis�t
E =

ns∑

i=1

(u̇DG(ti)− u̇(ti))
2/

ns∑

i=1

(u̇(ti))
2 (6.2)where ns is the number of time samples of the seismogram, uDG(ti) is the numerialvalue of the seismogram at sample ti, and u(ti) is the orresponding referene value.Figure 6.15 shows that the relative mis�ts are under 20 perent and 26 perent for thestrutured (a) and unstrutured ase (b), respetively. We an improve the auray ofthe DGSE solutions without inreasing the number of unknowns, onsidering a spetralelement grid re�ned in the �rst quadrant of the top layer (test B) as it is shown inFigure 6.17. Indeed, setting hL = 100 m and N = 2 for the positive quadrant of the
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Figure 6.16: Test A: Strutured (left) vs unstrutured (right) grid used for the disretization of thetop layer.

Figure 6.17: Test B: Strutured (left) vs unstrutured (right) re�nement for the �rst quadrant of thetop layer.



6.3 Layer over a halfspae 125top layer and hHS = 500 m and N = 4 for the remaining part of the domain the totalnumber of unknowns is approximately 3.6 ·107. With this hoie the relative mis�ts areunder 17 perent for both a strutured and an unstrutured re�nement as it is shownin Figure 6.18. These results are promising ompared to those available in literature[110, 44℄. Further improvements of the results an be ahieved, for instane, hoosingeven higher order polynomial degrees in the �rst quadrant.
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(b) Unstrutured grid for the layer.Figure 6.18: Test B: veloity �eld reorded at (6, 8, 0) km. Comparison between the semi-analytisolution (dashed line) and the approximated one (solid line). Relative mis�t omputed aording with(6.2).



6.4 Croissant valley 1276.4 Croissant valleyIn this setion we present some numerial omputations obtained for the predition ofthe seismi response of a three dimensional alluvial valleys under inident P and S wave[101℄. We onsider inidene of plane waves of the P, SH (horizontal shear) and SV(vertial shear) type with an angle of inidene of 0 degrees with respet to the vertialplane. We have omputed syntheti seismograms assuming for the inoming wave aRiker wavelet of harateristi period tP = 3 s, see Figure 6.19. The shape of the threedimensional alluvial valley an be desribed as follows: the soft material is, horizontally,within a region for whih the onditions r < a and R > b hold, where r2 = x2 + y2 and
R2 = (x− a)2 + y2. In other words the valley zone is limited by two irumferenes ofradii a and b, where a > b, (Figure 6.20). In this region the geometry of the interfaebetween the sediment and the halfspae is given by

z = z(x, y) = H(b2 −R2)[1 − 2a(a − x)/R2], (6.3)where H is a parameter that ontrols the valley's depth. The hoie of this analytialexpression is arbitrary and it is inspired by Weber's solution for the Saint-Venant stressfuntion for the torsion of a bar of irular ross setion of radius a with a irulargroove of radius b. We seleted b = 0.7a and H = 0.4/a; thus, the maximum depth isapproximately 0.25a.Figure 6.20 displays the ontour levels of the interfae, while Figure 6.21 shows a per-spetive of this pro�le. The free surfae of both the alluvial deposit and the halfspaeis assumed to be �at. The value for a is set equal to 4 km. The material properties aredesribed in Table 6.4 This test onsists of pure SH plane wave propagation through thenumerial domain of Figure 6.22. The angle of inidene is orthogonal to the free surfaeand the exitation onsists of a Riker type wavelet. Figure 6.23 shows three detailedviews of the mesh. In Figure 6.24 we show the omparison between syntheti seis-mograms obtained with the SE method (red line) and the DGSE disretization (blakdotted line). For both the ases, the LF sheme has been employed for the time dis-Layers ρ [Kg/m3] cP [m/s] cS [m/s] ζ [1/s]V 2000 2082 1000 0.01472HS 2500 3464 2000 0.01472Table 6.3: Dynami and mehanial parameters for the valley (V) and the halfspae (HS).
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Figure 6.19: Riker time shape funtion with harateristi period tP = 3 s.

Figure 6.20: Left: the softer material (shaded area) is limited by two irumferenes of radii a and
b, a > b. Right: Topographi ontour levels of the valley's basement.
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Figure 6.21: Perspetive view of the irregular valley's basement. Inidene angle γ for P, SH and SVwaves. Inidene angle γ with respet to the vertial for body waves.

Figure 6.22: The numerial mesh for the test of plane wave load with inidene angle orthogonal tothe free surfae. The numerial mesh has 19254 hexahedral elements and approximately 1.3 · 106 nodeswith polynomial approximation degree N = 4.
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(a) (b) ()Figure 6.23: Detailed views of the meshes (a) near the border of the irregular alluvial valley, (b) topview of the irregular three dimensional valley area and () bottom view.retization (∆t = 2 · 10−3 s, �nal observation time T = 40 s). More preisely, in Figure6.24 we ompare the three omponents of the displaement reorded by the reeivers

R1 = (0,−7680, 0) m, R25 = (0, 0, 0) and R49 = (0, 7680, 0) m. For the DGSE methodwe have hosen N = 4 on the bedrok and N = 3 on the valley, while N = 4 is assumedfor the SE disretization. In Figure 6.25 we plot the y-omponent of the displaementreorded by 49 reeivers equally spaed along x and y axes, respetively. The range of
x and y is between −7680 m and 7680 m.A omparison between the two numerial results shows a good agreement. Comput-ing the mis�ts as in (6.2) we obtain a maximum error E less than 3.10−3 for all thedisplaement omponents.
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(a) First displaement omponent.
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(b) Seond displaement omponent.
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() Third displaement omponentFigure 6.24: Displaements reorded by the reeivers R1, R25 and R49 along the y-axis. SE (ontin-uous line) vs DGSE (dashed line) solutions.
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(7680, 0, 0) m.Figure 6.25: Displaements reorded by 49 reeivers equally spaed along x (top) and y (bottom)axes. SE (ontinuous line) vs DGSE solution (dashed line).



Chapter 7
Appliations of geophysial interest
In this hapter we present some relevant appliations of the non-onforming disretiza-tions to problems of geophysial interest. We start presenting the seismi responseof the Aquasanta railway bridge and of the Gubbio alluvial basin. The �rst simu-lation desribe a soil struture interation problem in whih di�erent sales are usedfor the desription of the bridge and the underlying valley. With a suitable hoie ofthe disretization parameters h and N in the non-onforming approah, we an obtainaurate results while reduing the omputational ost by a fator 2 with respet to SEapproximations.The Gubbio alluvial basin is an evident example of topography ampli�ation. Due tothe di�erent harateristi soil properties, the seismi waves that travel aross the valleyare ampli�ed and trapped within the basin and re�etion phenomena take plae. Withthe non-onforming approah we an desribe aurately the wave front propagatinginside the valley as well as the omplex geometry of the problem.In the seond part of the hapter, we propose two realisti three dimensional geophys-ial appliations. These results are obtained with the DGSE approah. The �rst oneonerning the valley of Grenoble (Frenh Alps) has been the objet of an internationalbenhmark in the last years [110, 44, 35℄. As for the Gubbio basin test, we an repro-due the omplex interation between the radiation mehanism and the orrespondingdiretivity e�ets due to the the ompliated shape of the Grenoble basin.In the seond three dimensional appliation we study the seismi response of the Cen-tral Distrit Building (CBD) of Christhurh (New Zealand) during the February 22,2011 earthquake. Here, the non onforming strategy is used to deal with di�erent133



134 Appliations of geophysial interestmarosopi sales (meters for the strutures and kilometers for the geophysial re-gion) involved in the simulation. With this full-oupled analysis we an desribe, atthe same time, the seismi e�et of the earthquake on the CDB and the wave phenom-ena over all the region onsidered. For the three dimensional simulations we make useof the software CUBIT and METIS for the mesh generation and the mesh partition-ing, respetively. These ommerial ode are available at http://ubit.sandia.gov/and http://glaros.dt.umn.edu/gkhome/views/metis respetively. The simulationswere performed on the Lagrange luster loated at CILEA.7.1 Aquasanta railway bridgeIn this setion, we aim at studying a soil-struture interation problem, namely the seis-mi response of a railway viadut (Aquasanta viadut, Genova, Italy). We onsider thevisoelasti model (1.3) in the omputational domain (x, z) ∈ Ω = (0, 104) m×(0, f(x)),where f desribes the top pro�le of the bridge and of the surrounding valley, see Figure7.2. The size of the domain is hosen in order to avoid any possible interferene withre�etions of the waves of interest with the spurious ones eventually arising from theabsorbing boundaries. The dynami and mehanial properties of the struture and ofthe surrounding soil are summarized in Table 7.1. Aording to the mehanial proper-ties, we subdivide the omputational grid into di�erent regions, as shown in Figure 7.2(top panel).We simulate a point soure load of the form f(x, t) = g(x)M(t), where f is the externalfore introdued in (1.1). The funtion g desribes the spae distribution of the soure
g(x) = δ(x−xS)ŵ, where δ represents the Dira distribution, xS is the soure loationand ŵ is the diretion of the body fore. The soure time history M(·) is given by aRiker-type time funtion, see Figure 7.1, de�ned as

M(t) = M0[1− 2β(t− t0)
2] exp[−β(t− t0)

2], (7.1)where M0 = 106 Nm is a sale fator, t0 = 2 s is the time shift, νmax = 3 Hz and
β = π2ν2max = 9.8696 s−1 is a parameter that determines the width of the wavelet (7.1).In Figure 7.2 we show the two di�erent omputational grids used for the numerialsimulations. The onforming grid, see Figure 7.2 (left), is used with SE disretization toprodue a referene solution for the problem. It provides, in fat, a su�iently aurate
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Figure 7.1: Riker time shape fution de�ned in (7.1).

Figure 7.2: Conforming (left) and non-onforming (right) grids. The full domain is displayed on thetop and a zoom of the railway bridge is displayed on the bottom. The reeivers R1 (on the ground)and R2 (on the bridge) are also highlighted.



136 Appliations of geophysial interestLayer ρ [Kg/m3] cP [m/s] cS [m/s] ζ[1/s] N [SE℄ N [MSE/DGSE℄1 (bridge) 1750 1218 716,7 0.6283 4 22 (sti� soil) 2400 1100 635 0.31416 4 23 (soft bedrok) 2400 1100 635 0.02513 4 44 (medium bedrok) 2600 1700 982 0.02284 4 45 (sti� bedrok) 2800 2300 1330 0.02094 4 46 (sti� bedrok) 2800 2300 1330 0.02094 4 4Table 7.1: Dynami and mehanial parameters and polynomial approximation degree N for eahsubdomain of the domain deomposition (the fator ζ takes into aount the visoelasti linear soilbehaviour).disretization, as we veri�ed that further mesh re�nements generates quasi-identialseismograms. The non-onforming grid, shown in Figure 7.2 (right), is used for bothDGSE and MSE simulations. In the analysis we hoose the polynomial approximationdegree as desribed in Table 7.1. It is worth highlighting that the non-onformingapproximations lead to a dramati redution of the size of the numerial model and,hene, of the omputational osts (102.640 unknowns for the SE method vs. 41.322 forthe MSE and the DGSE methods). Suh an advantage will play a major role for threedimensional engineering appliations. In Figure 7.3 (resp. Figure 7.4) we analyse thesyntheti seismograms reorded by the reeiver R1 (resp. R2) on the top of the ground(resp. bridge) using the mis�ts riteria introdued in [66℄. With these riteria we anevaluate in the time domain the envelope (dissipation) and the phase (dispersion) mis�tsbetween the referene signals and the ones omputed with DGSE and MSE methodsoupled with a leap-frog time integration sheme. The results show an exellent �t ofthe data reeived by R1 and a good �t for the data registered by reeiver R2. Probably,for the latter reeiver, the results are a�eted by grid dispersion phenomena arisingwhen low order polynomial approximation degrees are used [8, 40, 39℄. Nevertheless, inboth ases the error is under 20 perent.
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7.2 Gubbio alluvial basin 1397.2 Gubbio alluvial basinIn this setion we analyze the seismi response of an alluvial basin. We onsider thevisoelasti model (1.3) in the omputational domain (x, z) ∈ Ω = (0, 2 · 104 m) ×
(−9.6 · 102 m, f(x)) where f desribes the top pro�le of the valley, see Figure 7.5. Thebottom and the lateral boundaries are set far enough from the point soure to avoidany interferene of possible re�etions from non-perfetly absorbing boundaries withthe waves of interest that are re�eted, transmitted, or onverted at the material orfree surfaes. We simulate a point soure load as desribed in Setion 7.1. Alternativesoure distributions an be expressed in terms of gradient or url of suitable potentialfuntions, giving rise to pure pressure and shear waves: more omplex and realistisoure mehanisms are based on tensorial models (f. [46℄).In Figure 7.5, we show the two di�erent mesh on�gurations. Figure 7.5 (left) showsa regular, strutured grid with a mesh spaing of h ≈ 40 m. The mesh size is ho-sen small enough to desribe with su�ient preision the physial pro�le of the valley.Figure 7.5 (right) shows an irregular, overlapping quasi-strutured grid with a meshspaing h1 ≈ 40 m for layer 1 (basin) and h2 ≈ 120 m for layer 2 (bedrok). The �nestmesh is used to desribe the physial boundary of the valley while the oarsest meshfor the bedrok. This type of overlapping disretizations an be handled by the MSEtehnique desribed in Setion 2.2. We assign onstant material properties within eahregion as desribed in Table 7.2.The regular onforming grid shown in Figure 7.5 (left) an be used to produe a ref-erene solution for the problem with SE method and provides a su�iently auratedisretization, sine further mesh re�nements generates quasi-idential seismograms. InFigures 7.6 we ompare the horizontal and vertial displaement reorded by reeiverR1 plaed on the free surfae of the valley (f. Figure 7.5). These results have beenobtained with the MSE methods oupled with the LF time integration sheme.The high disontinuities between the mehanial properties of the materials produehigh osillations and perturbations on the wave front. All these omplex phenomenaLayer cP [m/s] cS [m/s] ρ[Kg/m3] ζ[1/s]1 700 350 1900 0.031412 3500 1800 2200 0.06283Table 7.2: Dynami and mehanial parameters.
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(a) Conforming, strutured grid with amesh spaing of h ≈ 40 m at the interfaebetween the two materials. (b) Non-onforming, overlapping quasi-strutured grid with a mesh spaing h1 ≈
40 m for layer 1 (basin) and h2 ≈ 120 mfor layer 2 (bedrok).Figure 7.5: Top: reeiver R1 plaed on the top of the valley and point soure xS within the bedrok.Bottom: zoom of the valley pro�le.are well aptured by the MSE method using fourth order spetral elements. We remarkthat with MSE method we redue the omputational e�ort for the generation of the gridas well as the problem omplexity (from 61385 spetral nodes with SE method to 48091spetral nodes with MSE one). In Figure 7.7 we show the time histories of the seis-mograms reorded by some reeivers on the free surfae of the domain, obtained againusing MSE method. It an be observed that the wave that starts travelling from thepoint soure remains trapped into the valley, where it is ampli�ed and where phenom-ena of re�etion and refration arise. This phenomenon is relevant in some geophysialontexts, e.g., it has ourred in the Gubbio valley (in Italy) on the oasion of theearthquake of September 27, 1997. We refer to [106℄ for a detailed analysis.
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(a) Horizontal displaement.

(b) Vertial displaement.Figure 7.6: Displaements reorded by the reeiver R1 on the free surfae fo the valley. Comparisonbetween SE and MSE methods, N=4.
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Figure 7.7: Time histories of the reeivers on the top of the surfae obtained with MSE method(N=4). Layer Depth z [m] cP [m/s] cS [m/s] ρ[Kg/m3] ζ[1/s]Valley - 1450+1.5 z 300+19 √z 2140+0.125 z 0.062832Bedrok 1 0-3000 5600 3200 2720 0.06283Bedrok 2 3000-27000 5920 3430 2920 0.06283Table 7.3: Dynami and mehanial parameters.7.3 Grenoble valleyThe Grenoble earthquake senario has been analyzed during the last years in order toompare the performane of di�erent numerial odes used for the numerial simulationof seismi wave propagation in near-fault onditions. We refer to [44, 35℄ for a moredetailed desription of the benhmark spei�ations and to [110℄ for the onstrution ofthe numerial model based on a 250 m resolution digital elevation model (DEM) of thesurrounding topography and of the shape of the basin. We use a simpli�ed desriptionof the dynami properties of the soil layers, based on the following polynomial variationwith depth z, as it is shown in Table 7.3.The spatial disretization by standard spetral elements of the Grenoble basin and thesurrounding topography requires to build up a large unstrutured mesh of hexahedralelements as it is desribed in [110℄. The mesh used for SE disretization is shown inFigure 7.8 and onsists of 202.477 elements, the size of whih ranges from a minimum
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Figure 7.8: Hexahedral spetral element mesh adopted for the omputation of the Grenoble benh-mark, with the SE approah [110℄. Belledonne Border Fault is also shown on the right of the valleyalong with reeivers R25 to R36. Reeivers R25 up to R32 are loated on the alluvial basin. ReeiverR36 is loated on outrop bedrok.of about 20 m (inside the alluvial basin) up to 900 m. The mesh is designed in order topropagate orretly the signal for frequenies up to 3Hz using fourth order polynomials.A detailed desription of the meshing strategy adopted to desribe the geometry of theGrenoble basin an be found in [110℄, while other promising strategies to takle thisproblem are illustrated by [31℄ and [109℄. The mesh generation an be simpli�ed usingthe non-onforming approah. Using a mesh size ranging from 100 m to 300 m insidethe valley and from 300 m to 900 m elsewhere we obtain a omputational domain madeby 230.900 elements, as it is shown in Figure 7.9.The numerial simulation presented here refers to the benhmark spei�ations denotedas �Strong motion 1� [44℄ and orresponds to an earthquake senario originated by theEastern segment of the Belledonne Border Fault, with magnitude Mw ≈ 6 (Figure 7.8),geometrially de�ned by a 9 × 4.5 km retangle. The rupture mehanism is desribedin [110℄ and propagates irularly from the hypoenter, loated in the entre of theretangle, with veloity vr = 2.8 km/s. The time dependeny of the seismi momentsoure is desribed by an approximate Heaviside funtion:
M(t) =

1

2

[
1 + erf

(
2
t− 2τ

τ/2

)]
, (7.2)
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Figure 7.9: Non-onforming hexahedral spetral element mesh employed for the omputation of theGrenoble benhmark, with the DGSE method (top). Mesh size ranging from 100 m to 300 m for thedisretization of the valley (bottom left) and from 300 m to 900 m for the disretization of the bedrok(bottom right).
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7.3 Grenoble valley 145where erf(·) is the error funtion and τ = 1.116 s is the rise time, see Figure 7.10.These values are seleted for the slip veloity to be approximately 1 m/s. The totalnumber of spetral nodes required to model the Belledonne fault is approximately 750.Figure 7.11 shows the omparison of displaement waveforms, at reeivers shown inFigure 7.8, obtained by the SE method, and the DGSE method with N = 4. For boththe simulations, we have employed the leap-frog sheme (∆t = 2.5 · 10−4, T = 20 s).The numerial results obtained by SE and DGSE methods are in good agreement.Finally, in Figure 7.12 we report some snapshots of the radial veloity omponent rang-ing approximately from −0.7 m/s to 0.7 m/s obtained with the DGSE disretization.The maps in Figure 7.12 learly show the dramati e�et of the omplex interationbetween the radiation mehanism and the orresponding diretivity e�ets with theompliated shape and the low wave propagation veloities of the Grenoble basin (to-pographi ampli�ation e�et).Note that, as shown from the snapshots in Figure 7.12, the largest values of groundmotion our in the Grenoble basin along the fault strike diretion and onsist �rst of alarge basin-edge indued ampli�ation, followed by energy trapping inside the Southernpart of the basin.
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Figure 7.12: Snapshots of the fault radial veloity omponent in the Grenoble Valley, simulated byDGSE method.



148 Appliations of geophysial interest7.4 22 February 2011 Christhurh earthquakeOn 22 February 2011, anMw ≈ 6.2 earthquake struk the ity and suburbs of the largestity on the South Island of New Zealand: Christhurh. The earthquake was generatedby the Greendale fault loated between the Australian and Pai� plates, within about
6 km from the ity enter.During the last deade a set of seismi surveys aross the Canterbury Plains had beenarried out, but they did not revel any lear indiation that a major earthquake wasimminent in this partiular region. Between September 2010 and Deember 2011 theCanterbury area experiened four major earthquake with Mw ≥ 6.0 and a large numberof aftershoks. The Christhurh earthquake was reorded by several digital stations ofthe permanent network operated by the Institute of Geologial and Nulear Sienes.Peak ground motion aelerations in the epientral region of the earthquake range upto 1.261 g on the horizontal omponent and up to 1.269 g on the vertial omponent.The ground aelerations reorded within the ity of Christhurh are among the largestever reorded for a New Zealand earthquake, with exeptionally high vertial groundaeleration. The unusual severity of the ground shaking an be explained as a ombi-nation of four major e�ets; (i) the proximity of the ausative fault to the ity; (ii) thediretivity of the ground motion toward the urban area; (iii) the strong ampli�atione�ets of the soft alluvial sediments beneath the ity; and (iv) the handing wedge e�et,ausing a signi�ant inrease of ground shaking on the hanging wall.The availability on this unpreedent dataset of near-fault strong ground motion, om-bined with the peuliar geologial on�guration of the Christhurh area, makes theChristhurh earthquake a relevant benhmark to test the e�etiveness of numerialtools for the predition of the variability of strong ground motion in near-fault ondi-tions.In [51℄ di�erent numerial models were onstrut for the Christhurh earthquake, tohek the dependene of the results on: (a) the kinemati soure model, based on theinformation retrieved from reent seismi soure inversion studies, and (b) the shape ofthe alluvial-bedrok interfae within the Canterbury Plains. In this work the synthetiresults are ompared against the strong ground motion reords. The mis�t betweensimulated and reorded waveforms are evaluated in quantitative way making use of theriteria proposed by [66℄. The results show that model proposed is able to reproduewith a satisfatory level of auray the onsidered earthquake senario.
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Figure 7.13: Area of the model, inluding part of the Canterbury Plains and the Lyttelton-Akaroavolani region, along with the strong ground motion stations (top). Geologial A-A' ross-setion(bottom).

Figure 7.14: Left: three dimensional omputational domain together with depth ontours of theontat between the alluvial soft sediments and the grid volano materials (in meters). Right: zoom ofthe orresponding hexahedral mesh for the valley.
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Figure 7.15: Photo of the CBD and its representation into the model.The model of the region of the South Island of New Zealand overs an area of approxi-mately 60× 60× 20 km around the ity of Christhurh, see Figure 7.13. In the modelthe shape of the interfae between the soft soil and the volani material is improved,with onstrains inferred from the topography of the volano. The alluvial basin onsistof three di�erent layers with cS ranging from 300 m/s in the top 300 m to 1500 m/sat the interfae with the volani material. The volano region, with cS = 3175 m/s,extends down to a maximum depth of 5 km. Conerning the bakground geology, ahorizontally layered rustal model was assumed, see Figure 7.14.The visoelasti property of the soil is taken into aount hoosing a suitable valueof ζ in order to damp all the frequenies in the range up to 2 Hz [110℄. Here,we onsider the earthquake generate by the fault solution proposed by the Instituteof Geologial an Nulear Siene (GNS: data available by the GeoNET Data Centerhttp://www.geonet.org.nz/) where the slip soure time funtion is given as in (7.2)with rise time τ = 0.9 s onstant aross the fault plane.With the DGSE disretization we want to extend the results provided in [51℄ onsideringthe Christhurh building distrit (CBD) within the same model, see Figure 7.15, ou-pying a 1 km2 area of the Canterbury plains. The aim is not only to study the seismiresponse of the most important buildings of the ity damaged by the earthquake, butalso to see the in�uene of the ity on the wave propagation problem.We hose a mesh size h for the top layer of the valley ranging from 50 m (near theity) to 150 m, and polynomial approximation degree N = 4. For the CBD, h is hosenapproximately equal to 5 m and N = 1. This hoie leads to a omputational domainmade by ≈ 106 elements and ≈ 40 · 106 unknowns. The mehanial parameters used for
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Figure 7.16: Zoom of the mesh used for the disretization of the CBD and the neighbouring valley.

Figure 7.17: Map of Christhurh. The reeivers REHS, CCCC and CBGS together with the CBDare highlighted.
Layer cS [m/s] cP [m/s] ρ[Kg/m3] ζ[1/s]Foundation 400 650 2400 0.01472Building 100 163 2400 0.01472Table 7.4: Dynami and mehanial parameters for the CBD.



152 Appliations of geophysial interestthe buildings and their foundations are desribed in Table 7.4 aording to [111℄. Wehave employed the leap-frog sheme for the time integration.Figure 7.18 show the veloity �elds obtained with the DGSE reorded by threereeivers plaed near the CBD, see Figure 7.17. The results are ompared with thosepresented in [51℄ obtained with a SE disretization, oupled with the leap-frog timeintegration sheme (∆t = 1.25 · 10−4 s) in absene of the CBD. The seismi wavegenerated by the fault under the volano area moves from the south to the north ofthe Canterbury plains. On the seismograms reorded by the station REHS, plaed atthe north side of the CBD, it is more evident the ity-site e�et, espeially on the �nalpart of the signal. This result is in agreement with [114℄ and it will be more evidentfrom Figure 7.19. As expeted, the signals reorded by the stations CCCC and CBGS,loated at the south and at the west side of the CBD respetively, do not present anysubstantial modi�ations from those obtained without the CBD.Moreover, we present some snapshots of the radial veloity �eld on a neighbourhoodof the CBD. In Figure 7.19 it is possible to see the in�uene of the ity into the model.The buildings �rstly retain the energy transmitted by the earthquake (t ≈ 6 s) andthen they release it (t ≈ 6.5 s) onto the ground ating like a seismi soure, [114℄.
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(a) Veloity �elds reorded by the reeiver CCCC.
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(b) Veloity �elds reorded by the reeiver CBGS.
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() Veloity �elds reorded by the reeiver REHS.Figure 7.18: Veloity �elds reorded by the reeivers shown in Figure 7.13: East-West (EW), North-South (NS) and Up-Down (UD) omponents. SE (ontinuous line) versus DGSE solutions (dashedline).
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Figure 7.19: Snapshots of the fault radial veloity omponent in the Canterbury Plains (left) alongwith the CBD (right), simulated by DGSE method. Veloity �eld varying form −0.75 m/s to 0.75 m/s.



Chapter 8
Conlusions and perspetives
The Disontinuous Galerkin spetral element and the Mortar spetral element methodsare high-order numerial tehniques well suited for wave propagations in heterogeneousmedia. The possibility of treating non-onforming subdomain partitions where both themesh size and the approximation orders an be independently tuned to the region ofinterest make the DGSE and MSE disretizations more �exible than standard spetralelement methods.Starting from a ommon weak formulation we have desribed and analyzed both non-onforming approahes and highlighted their analogies and their di�erenes. The verygood performane in terms of auray, grid dispersion/dissipation and stability ofDGSE and MSE methods determine their e�ay when applied to wave propagationproblems. Indeed, we have proved that DGSE and MSE exhibit optimal approximationproperties, and at least �ve points per wavelength with spetral element approximationsof order four are su�ient to make dispersion/dissipation error negligible.Moreover, no dissipation e�ets arise when DGSE or MSE disretizations are em-ployed. For the stability analysis we have derived preise bounds when expliit nu-merial shemes are used for time integration (leap-frog and fourth order Runge-Kuttamethods). We have proved that, on the one hand, the symmetri version of the DGSEmethod yields optimal error deays in the grid dispersion as ours with the SE method.On the other hand, the MSE method allows larger time steps in the time advaningsheme.Finally, we have shown that the MSE and DGSE methods an be suessfully appliedto simulate realisti earthquake senarios improving the performanes of the SE dis-155



156 Conlusions and perspetivesretizations in terms of omputational osts. By using the numerial ode developed,important progress an be made in the analysis of seismi wave propagations. Possiblefuture developments of the present work go toward1. the geometrial �exibility (tetrahedral meshes),2. the auray (high order/impliit time integration shemes),3. omputational e�ort (load balaning for parallel omputations).
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