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Introduction

One of the most common causes of mortality in the highly-civilized world
is the heart failure that brings to a sudden death [1]. Several factors may
induce a cardiac arrest, like coronary artery disease, damaged cardiac tissue,
irregularity in the heart anatomy or alterations in the electric signal that reg-
ulates the heartbeat. In some cases, during the postmortem examination, the
cause of the death can be recognized, but in other cases, as for arrhythmia,
physical damages are not visible so that it is more difficult to understand the
real phenomenon underlying the heart failure [2].

In this framework, the detailed study of the cardiac arrhythmias phe-
nomenology together with the understanding of how an irregular propagation
of the electric impulse can affect the heart functioning , become a fundamen-
tal subject of research. Indeed the comprehension of these phenomena may
help for the prevention and the prediction of sudden cardiac death.

Generally speaking, arrhythmias can be classified as triggered and reen-
trant [3]. The first type includes all the irregular events due to a series of
electrical impulses which are initiated in an abnormal way, while the second
class refers to an irregular potential wave that, before dying out completely,
excites again the cardiac cells compromising the evolution of the membrane
potential (action potential).

Triggered arrhythmias are principally induced by an after-depolarization
of the membrane that brings the value of the potential to a critical threshold
associated with the initiation of the action potential. The after-depolarizations
can occur either during the repolarization phase of the cardiac action poten-
tial (early after-depolarization or EADs) or at the final stage before the po-
tential permanently approaches its resting value (delayed after-depolarizations
or DADs). In both cases, if the membrane depolarization exceeds the acti-
vation threshold an abnormal impulse follows the main one giving rise to a
secondary excitation wave that may lead to an extrasystole.

In this work we only focus on DADs. The afterpotentials involved in
DADs may be generated when the cell is overloaded with calcium ions, the
overloading being due to both positive currents that flow towards the in-
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tracellular environment and internal mechanisms that cause calcium release
above a critical threshold. The resulting depolarization can reach the po-
tential threshold required to trigger a secondary electrical wave, and, if it
propagates along the cardiac fibers, extra-contractions of the heart are in-
duced.

In this Thesis we develop a study that aims at characterizing the delayed
after-depolarization phenomenon through existing models that describe the
propagation of the action potential in the cardiac membrane. The mathe-
matical ingredient of these models is represented by a two-variable dynami-
cal system, generally nonlinear, involving some constitutive parameters that
contain information on the physiological properties of the tissue. A solution
to the dynamical system simulates the evolution of a cardiac action poten-
tial, that starts with the initial electrical stimulation and ends up when the
potential recovers the relaxed configuration.

The original idea that is supported throughout the Thesis is to associate
the DAD event with special trajectories of the dynamical system, character-
ized by a secondary important oscillation (spike) of the membrane potential
occurring after the main upstroke. The spike models the depolarization of the
membrane and its amplitude determines the occurrence of a supra-threshold
phenomenon that may yield triggered arrhythmia.

The particular solutions introduced in the Thesis are identified by crit-
ical values of the model parameters, these values being computed here by
numerical simulations. Actually the emergence of anomalies in the electric
signal may be ascribed to alterations in the normal features of the cardiac
membrane, such as its conductance or its excitation properties.

The two-variable dynamical systems we deal with are derived by the
FitzHugh-Nagumo model [4, 5, 6], which simulates an action potential propa-
gating along the neuronal membrane. Owing to its flexibility and its universal
charcter, this model can be simply fitted to contexts other than neuronal,
like the cardiac framework.

More particularly, by providing the dynamical system with suitable cor-
rections that interpret the mechanisms underlying the heart functioning, we
can bring the model toward an accurate description of the cardiac action po-
tential and consequently we can simulate in a more realistic way the occur-
rence of after-depolarizations. Obviously the improvement of the description
yields some complexities in the solutions to the motion equations, and the
characterization of the spike-solutions becomes more complicated.

In chapter 1 we presented a briefly description of the heart structure,
that is the main composition of the cardiac muscle and the role of the dif-
ferent constituents and we analyzed the ionic mechanisms, occurring across
the membrane, that generate the electric impulse which is then propagated
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by the heart conduction system. In the same chapter we provided a more
detailed investigation of the action potential evolution, in order to introduce
the readers to the main subject of the Thesis.

Chapter 2 deals with the specific analysis of the after-depolarizations. We
have summarized the physiological explanations of the phenomenon recov-
ered in the literature and we have examined the cellular interactions that
cause the spreading of the depolarization wave an then the generation of the
arrhythmia.

In chapters 3 and 4 we developed the main research of the Thesis. Pre-
cisely, chapter 3 contains the analysis of the FitzHugh-Nagumo-type models
that we used to derive our description. A deep analytical examination is
performed, in terms of phase plane analysis and equilibrium configurations,
and we present also a discussion about the improvements introduced in the
models to approach a real representation of the cardiac dynamics. On the
contrary, in chapter 4 we defined and investigated the spike-solutions and
the critical values of the constitutive parameters that characterize their oc-
currence. We deeply discuss also the choice of the spike amplitude because
it is a crucial issue of the study. Indeed the comparison between this value
and the depolarization threshold that activates the excitation wave deter-
mines the modeling of sub-threshold or supra-threshold depolarization, the
last phenomena being the triggering event for the extrasystole.

Therefore, we examine also the conditions under which a supra-threshold
episode generates a potential wave that propagates through the membrane,
meaning that we provide the model with a predictive tool of DAD-triggered
aftercontractions.
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Chapter 1

The Heart

1.1 Introduction

The heart is a muscular organ that rhythmically contracts to coerce blood
spreading into the body of a living creature with a circulatory system. The
beating of the heart is controlled by the autonomic nervous system and an
internal control center (pacemaker) called the sinoatrial node.

Mammals have a double circulatory system. Indeed their heart is divided
into two halves that work separately and feed different parts of the body.
One side of the heart pumps blood to the lungs and back to the heart. The
other side of the heart pumps blood to all other parts of the body and back
to the heart.

The human heart is contained in the chest, and in particular it is located
between the two lungs. Its shape is similar to that of an inverted cone with
the tip pointing down. Although its size varies with the person’s weight, age,
sex, and state of health, to have an idea of its dimensions we can say that a
human heart has the size of a person’s closed fist. The heart volume is about
20 cm3 in the childhood, reaching 150/160 cm3 in a middle-aged person.

The aim of this chapter is to present a brief introduction to the anatomy of
the human heart, in order to provide the reader with all the elements that will
be useful for the topic of this Thesis. Obviously for a deeper analysis on the
functioning of the cardiac muscle, the reader should refer to an appropriate
literature (e.g. [7, 8, 9]).
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1.2 Heart anatomy and cardiac tissue com-

position

1.2.1 The cardiac cavities

The heart is divided into a left and a right half through a longitudinal par-
tition. Each cavity is transversely separated into two chambers, one at the
top called atrium, and one at the bottom, called ventricle (Fig. 1.1).

Figure 1.1: Structure of the heart (from
www.edoctoronline.com/medical-atlas.asp).

The blood flow is regulated by four valves: two valves separate the atria
from the ventricles, the other two regulate the outflow from the right ventricle
through the pulmonary artery and from the left ventricle through the aorta.
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The valve between the left atrium and ventricle is called bicuspid or mitral
valve, such a name deriving from its shape similar to a bishop’s mitre, since
it has two flaps like the typical bishop headgear. On the contrary the valve
separating the right atrium from the corresponding ventricle has three cusps,
and it is called tricuspid valve.

The atria are thin-walled cavities which main property is to have the
capacity to contain the blood received from the veins. The right atrium
collects blood coming from the two venae cavae, the major veins bringing
back deoxygenated blood from the head, body, and limbs. The left atrium
receives blood coming from the lungs by means of the four pulmonary veins.

On the other hand the ventricles collect blood from the atria and pump
it feeding the circulatory system.

More particularly, the right ventricle drives the blood received from the
right atrium to the main pulmonary artery while the left ventricle feeds all
the arteries of the body. Due to their function of spreading the blood into
the entire body, the ventricular cavities have stouter walls than the atria.
The left ventricle walls, in particular, are thicker than those of the other
chambers, as their contraction should generate sufficient blood pressure to
propel the blood into the arteries.

The left ventricle is able to pump to a peak pressure of 17 kPa in a regular
heartbeat, while the right ventricle develops a maximum pressure of 4 kPa.

1.2.2 The cardiac wall

The cardiac wall is made of three coatings: the external one, pericardium, the
intermediate one, myocardium and the internal one, endocardium (Fig. 1.2).

The pericardium is the serous membrane that encloses the heart. It con-
sists of two layers: an internal serous layer and an external fibrous layer.
The serous pericardium is in turn composed by two coatings: a parietal peri-
cardium and a visceral pericardium. The parietal pericardium is integrated
within the fibrous pericardium such that it is difficult to distinguish from
each other, while the visceral pericardium is fused with the epicardium, that
represents the external stratum of the cardiac wall. Between the two coatings
of the serous pericardium the pericardial cavity is located. It is filled with a
serous fluid which allows the heart to beat in a frictionless way.

The fibrous pericardium is the outer layer of the pericardium and it prin-
cipally defends the heart against excessive dilations eventually caused by an
increasing in the blood volume.

The endocardium is a thin membrane that covers the internal surface of
the cardiac cavities. It is made of three layers, the endotelium (composed by
large polygon cells), the proper tonaca and the subendocardial stratum, and
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Figure 1.2: Internal structure of the cardiac wall (from
http://nursegeorge.com/ecg1.html).

contains various blood vessels, some muscle bundles, and a portion of the
system of conduction of the heart.

The myocardium is the cardiac contractile stratum as it is composed by
the muscular fibers characterized by cross striations, that is the alternation of
thick and thin filaments. In the myocardial stratum we can distinguish three

Figure 1.3: Orientation of cardiac muscle fibers (from [10]).

muscle bundle belonging to: (1) atria, (2) ventricles, (3) atrial-ventricular
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node of His.

1. The right and the left atria are connected by the Bachmann’s bundle, or
anterior interatrial bundle, that is a wide group of muscle accountable
for the initiation of the electrical signal in the left atrium.

2. The ventricular bundles of the myocardium are U-shaped, the U con-
vexity being directed towards the tip of the heart (Fig. 1.3). They can
be subdivided in four parts: a left and a right hand bundle, with a spi-
ral shape, that together constitute an external layer that encloses both
the ventricles; an internal muscle bunch enveloping the ventricles, and
finally a fourth group of fibers that arranges around the left ventricle
only.

3. The only connection between the atrial and ventricular myocardium
is the atrial-ventricular bundle of His. For the most part, the atrial-
ventricular node is made of particular muscle spindle-shaped cells, that
play a fundamental role in the transmission of the electric signal (see
section 1.5).

From the microscopic point of view, the myocardium consists of fibers
called myocytes. These cells are linked one to another through particular
connections called gap junctions. They provide for an electric and mechanic
coupling, allowing the ions passage (as described below) and consequently
the transfer of the contractile tension (Fig. 1.4).

The myocardial muscles merged through the gap junctions form fila-
mentous structures named cardiac fibres. The cardiac fibres are themselves
grouped, with connective tissue acting as lubricating fluid containing a rich
capillary network.

Two proteins carry out the main activities of the myocyte: the mitochon-
dria and the sarcomere. The mitochondria are the cellular power sources
and occupy about one-third of the volume of the myocyte. Thanks to the
abundant presence of the mitochondria, the cardiac muscle ability to extract
oxygen from the blood is definitely larger than that of other tissues. The
sarcomere is the contractile unit of the myocardium and its activation is due
to an electrical stimulus.

1.3 The myocyte conduction system

The regulation system of the ionic flux in cardiomyocytes is mainly located
in the sarcolemma, the cytoplasmic membrane that covers the cardiac cells
(see Fig. 1.4). It is developed in a large network made of tubuli (T tubuli)
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Figure 1.4: Myocardial components (from
http://magisnef.wordpress.com/2007/04/02/fisiologia-muscular-componentes-del-

musculo).

that spread in deep from the extracellular environment. They allow for the
diffusion of the depolarization in all the cellular regions.

The sarcolemma contains many channels, exchangers and pumps respon-
sible for the ionic homeostasis of the cells. One of the most important
membrane proteins is the Na+-K+ pump, also called Na+-K+-ATPase (see
Fig. 1.5), that produces a net outward current through the ejection of three
Na+ ions for two K+ ions.

Moreover the Na+-Ca2+ exchanger is a bidirectional channel that enables
one Ca2+ ion to go out in exchange for three Na+ ions which enter the
intracellular space. The activity of the exchanger represents the predominant
mechanism responsible for Ca2+ efflux from the myocyte.

Other significant proteins crossing the lipid stratum of the sarcolemma
are the ionic channels, that enable ions transfer both inward and outward.
Ion channels are classified on the basis of the specific ionic flux of which they
allow the transit: in the following we will mainly deal with Na+, K+ and
Ca2+ channels.

Each ion channel is also characterized by the gating mechanism (the pro-

10



Figure 1.5: Microscopic structure of a myocyte (from [11]).

cess that causes the opening and closing of the channel): voltage dependent,
ligand-dependent and mechano-sensitive gating.

The voltage-dependent ion channels activity depends on changes in the
membrane potential, while ligand-dependent channels conductance is related
to reactions involving chemical components. The stretch-activated channels
can transform a mechanical input into an electrical property because their
sensitivity to the ions passage changes with the stretch magnitude.

Usually, in modeling the electrical properties of cardiac cell membrane,
ion channels are represented by an equivalent resistor. However, most ion
channels are regulated by a nonlinear current-voltage low, as the current
magnitude depends on the direction of ionic flux (into or out of the cells),
the electrochemical potential being equal. This characteristic is called recti-
fication and it is an important property of K+ channels.

Each myocyte is made of parallel bundles of myofilaments, called my-
ofibrils, that contain the principal elements for the development of the con-
tractile function: the actin and the myosin. The myofibrils are part of a
more complex system, named sarcoplasmic reticulum, composed by a tubu-
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lar structure that carries out an important role in the control of intracellular
ion motion. Indeed this area is a wide storage for the calcium ions, that dur-
ing the contraction-relaxation cycle are eventually released or absorbed. The
sarcoplasmic reticulum calcium release yields the amount of Ca2+ required
for the activation of the contractile proteins [12, 13].

1.4 The cardiac cycle

The cardiac cycle is defined as the chain of events occurring during one
complete heartbeat. It is made of three phases: systole, diastole, and complete
rest. Each cycle lasts 0.8 seconds while the complete rest phase between one
cycle and the other lasts 0.4 seconds. This sequence is repeated 70/80 times
a minute under resting conditions.

The cycle begins when blood, that is low in oxygen, fills the right atrium
through the superior and inferior vena cavae. When the right atrium is
completely filled, it contracts and the tricuspid valve opens so that blood is
pumped into the right ventricle (atrial systole).

When the right ventricle is full with blood the ventricular myocardium
contracts (ventricular systole): the organization of the fibers induces a de-
crease in the ventricular cavities volume and consequently the blood pressure
grows up. The pressure force determines the closure of the tricuspid valve,
so that the backward flow of blood is not allowed, and the blood flux reaches
the pulmonary artery.

Blood rich of oxygen returns from the lungs to the left atrium through
the pulmonary veins; once it is filled, the left atrium reduces its volume and
the blood is pumped into the left ventricle. This occurs at the same time of
the right atrial systole.

After the mitral valve is closed, the left ventricle contracts and the aortic
valve between the ventricle and the aorta opens so that oxygen-rich blood
flows out into the aorta.

The closure of the atrial-ventricular valves in the systole induces vibra-
tions in the heart walls and causes the first and loudest heart beat sound,
while their closure during diastolic phase is responsible for the second, lower
heart beat.

1.5 The heart conduction system

Cardiac cells develop two functions: they have a contractile ability and they
are excitable. These two features are linked each other, since the activation
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Figure 1.6: The heart conduction system (from
http://www.webmd.com/heart/conduction-system-of-the-heart).

of the mechanical function is provided by an electrical signal that propagates
in the tissue, the propagation being allowed by the excitable property of the
cells.

The electric stimulus is generated in the sinoatrial node located on the
right atrium below the superior vena cava (Fig. 1.6) and from here reaches
the atrial-ventricular node, which is situated in the layer of the interatrial
septum near the tricuspid valve.

The atrial-ventricular node expands through the interventricular septum
and becomes part of the His bundle. Then the bundle of His branches into
a left and right ramification, that conduct stimulus to the right and left
ventricle respectively.

The sinoatrial node is the stimulation source of the heart because it is
responsible of the generation of the electric impulse determining the heart-
beat. For this reason its cells are called pacemaker cells. It rhythmically
emits a stimulus that depolarizes the adjacent muscle, propagates in the
myocardium of both atria making them contract and then reaches the atrial-
ventricular node. When the atria depolarization is completed the electric
impulse spreads in the His bundle and in its two branches.

As soon as the electric impulse reaches the ventricular myocardium, it
contracts.

1.5.1 The cardiac action potential

When an excitable cell is activated, the membrane potential of that cell
evolves according to a process called action potential.
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All the cells of the heart conduction tissue are able to autonomously gen-
erate series of action potential, but the sino-atrial node cells own a greater
capacity simply because the frequency of their spontaneous electric shocks
is higher. They give rise to the action potential with a 70 volt/minute ca-
pacity, while the capacity of atrial-ventricular node cells is about 30 milli-
volt/minute.

The different phases of the action potential are associated with the motion
of positive and negative charges, and principally with the channels conduc-
tance to calcium, potassium and sodium ions.

Calcium is the main resource for the contractile activity, while potassium
and sodium are involved the myocardium relaxation.

The excitable cells are characterized by a negatively-charged intracellu-
lar region and a positive extracellular area. The specific placement of this
charges gives rise to a potential difference that, in the equilibrium state, is
about −90 mV. This is the so called membrane potential at rest.

The pacemaker cells that start the impulse do not own a relaxing potential
because they undergo a continuous transfer of ionic charges, while the cells
that really contract (working myocytes), giving rise to the heartbeat, are
characterized by a relaxed configuration, described above.

In the following we summarize the five phases of the action potential
[14, 9].

Phase 4 Resting membrane potential and diastolic depolarization. In the
rest state the membrane is quite permeable to K+ and the potential
value is near to the potassium Nernst potential. The leading actors of
this phase are the inward rectifier K+ channels [15], that privilege the
inward flow of K+ ions.

Atrial and ventricular cells have a stable membrane potential between
two action potentials (that is, during the diastolic phase).

Conversely, in other cells (SA node, His-Purkinje) the rest membrane
potential slowly depolarizes during the diastole, thus giving rise to the
so called diastolic depolarization. Sometimes the depolarization may
reach the threshold for cell activation so that a spontaneous action
potential is triggered.

When the cell is depolarized by other external forces, the inward recti-
fier K+ channels close and the membrane potential can change.

Phase 0 Upstroke or rapid depolarization (1-3 ms). An appropriate depolar-
izing stimulus induces the opening of stimulus-dependent Na+ channels,
so that sodium ions flows into the cell and the membrane undergoes a
local depolarization.
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If the local depolarization reaches a physiological value generating the
electrical activation (potential threshold), voltage-dependent Na+ chan-
nels (so called because their conductance changes depending on vari-
ations in potential difference) open, thus generating an inward flow
of Na+ ions. As a consequence the membrane internal environment
becomes positively charged and the action potential starts.

The onset of the action potential does not depend on the stimulus
amplitude. More precisely, if the depolarizing impulse exceeds the ac-
tivation threshold the cell undergoes the potential upstroke, while the
action potential fails if the stimulus does not achieve the threshold.
This phenomenon is called all or none response.

In the atrial and ventricular cells the upstroke is caused by the voltage-
dependent Na+ channels opening, while in the SA and AV node the
depolarization is linked to the activity of the voltage-dependent Ca2+

channels. In these cells the upstroke is slower.

While internal [Na+] and positive intracellular charge increase, the
strength of the Na+ flux decreases until the membrane potential reaches
the sodium Nernst potential so that sodium channels are inactivated.

Phase 1 Early rapid repolarization (6-15 ms). In correspondence of the
inactivation of the fast Na+ channels, the K+ channels open and a
slow current moves K+ ions towards the extracellular environment.
This transient outward current is the phenomenon underlying the small
downward deviation in the action potential (Fig. 1.7).

Phase 2 Plateau (200-400 ms). During this phase the membrane conduc-
tance to most of the ions decreases and the most significant activity is
the balance between a weak inward calcium current and a low flux of
K+ through the potassium channels. Consequently the membrane po-
tential is not affected by large changes, as evidenced by the horizontal
trace in Fig. 1.7.

Phase 3 Final rapid repolarization (100-150 ms). The slow inward Ca2+

and Na+ currents involved in the previous phase fade away while the
delayed rectifier K+ channels open and K+ ions move gradually to the
extracellular space. Consequently a positive charge on the external
surface is recovered and the cellular resting conditions are achieved.

During an action potential the susceptibility of the cells changes, because
some phases in particular require precise excitability conditions. Two char-
acteristics of the cell sensitivity are commonly selected.
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Figure 1.7: Basic cardiac action potential (from
http://drsvenkatesan.wordpress.com/2009/08/26, modified from

www.ocw.tufts.edu).

• Absolute refractory period. It corresponds to the plateau phase and
lasts until the potential reaches −40 mV. During this phase the cell is
completely insensitive to the impulses, whatever their intensity. This
is an essential characteristic of the cardiac muscle because it prevents a
propagation of a secondary impulse while the heart is still in the systolic
phase. Owing to the refractory period the ventricle can be entirely filled
by blood and it develops the highest tension before performing another
contraction.

• Relative refractory period. This phase follows the previous phase. Dur-
ing the repolarization the outward potassium flux brings the membrane
potential closer to the K+ equilibrium potential. It may occur that the
membrane potential becomes slightly more negative than the usual rest-
ing potential. Then, and until the potassium conductance returns to
the resting value, a greater stimulus is needed to reach the threshold
for a secondary action potential. The achievement of the K+ Nernst
potential marks the end of the relative refractory period.
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Chapter 2

The Delayed

After-Depolarization

2.1 Introduction

The after-depolarization (or after potential) is a depolarization of the mem-
brane potential that follows an action potential and influences its future
evolution. During an after-depolarization the potential difference across the
heart membrane increases (meaning that it evolves towards more positive val-
ues), and if the depolarization achieves the potential activation threshold, it
can induce a spontaneous action potential. If this secondary upstroke, which
is called spontaneous because it is not triggered by an external stimulus but
is induced by an intrinsic mechanism, propagates in the cardiac membrane, it
may generate after-contractions of the cardiac tissue that consequently give
rise to arrhythmias that are said to be triggered.

There exist two types of after-depolarizations: the early after-depolarization
and the delayed after-depolarization. The first one occurs during the repo-
larization phase of the action potential (phases 2 and 3 described in the
previous chapter), while the delayed after-depolarization happens after the
completion of the repolarization phase before the potential stabilizes about
its steady value (Fig. 2.1).

Early after-depolarizations (EADs) mainly occur if the action potential
duration extends into a critical value. Indeed, in this situation, L-type Ca2+

channels (low threshold type calcium channels), that normally open during
the plateau phase, can be again stimulated so that they open again and lead
to an inward depolarizing current while the membrane is still depolarized.
The long action potential duration has been observed in some individuals
with a genetic arrhythmic syndromes. The best known example is the long
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Figure 2.1: Early after-depolarization and delayed after-depolarization occurring
during the cardiac action potential [3].

Q-T syndrome that causes a long Q-T interval on the electrocardiogram (the
Q-T interval is the time elapsing between the beginning of the Q wave and
the T wave completion during the electrical event).

On the other hand the delayed after-depolarization (DAD) is generally
related to enhanced Ca2+ outflow from the sarcoplasmic reticulum through
the ryanodine receptor channel (see Fig. 1.5). The calcium concentration
within the cytosolic area increases and consequently the Na+-Ca2+ exchanger
expels one Ca2+ ion in exchange for three Na+ ions causing a net intake
of positive charges in the intracellular environment that contributes to a
membrane depolarization.

The release of calcium from the sarcoplasmic reticulum can be activated
both by an external process, called Ca2+-induced Ca2+ release (CICR), or by
an internal mechanisms that bring the concentration of calcium ions above
a critical threshold that triggers a spontaneous calcium release. CICR is
a characteristic of the ryanodine-sensitive Ca2+ stores, and is caused by an
increase in calcium concentration at the intracellular cytoplasmic surface that
induces an increase in Ca2+ efflux from the calcium compartment [16, 13, 12].

2.2 Quantitative results from the literature

Although performing quantitative studies on the dependence between Ca2+

release from sarcoplasmic reticulum and DAD amplitude is a complex goal,
some authors have tried to delineate experimentally this relationship by ar-
tificially triggering the DAD phenomenon.
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In the following we mention the three main results from Schlotthauer
and Bers [17], Luo-Rudy [16] and Xie et al. [18]. In the first article the
authors work with caffeine-induced sarcoplasmic reticulum Ca2+ release to
generate DADs with different concentration of calcium. The calcium load
in the sarcoplasmic reticulum is varied by changing the frequency of the ac-
tion potentials. For each test, after the last induced action potential, they
inject a certain amount of caffeine in order to immediately induce Ca2+ ef-
flux and DAD. The results they found are depicted in Fig. 2.2: stimulation
from 1 to 3 Hz brings to subthreshold DAD, while at 4 Hz a suprathreshold
depolarization is achieved so that a spontaneous action potential is induced.

Figure 2.2: Dependence of delayed after-depolarization from the calcium
concentration generated by Ca2+ release from sarcoplasmic reticulum. The two

graphs show the last steady state action potentials followed by the
caffeine-induced DADs and the Ca2+ transient for different values of the action

potential frequency respectively (from [17]).

Figure 2.2 also evidences that the activation threshold for a spontaneous
action potential is about 65 mV (see also [18]), which is more or less 1/8 of the
amplitude of the steady state action potential. This is only a qualitative re-
sult but it will guide us in the mathematical modeling of after-depolarization.
Indeed, the membrane potential threshold is a critical parameter for the
model that marks out the outcome of cardiac triggered arrhythmias.
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Some different simulations have been made by Luo and Rudy. They per-
formed experiments on the spontaneous Ca2+ release from the sarcoplasmic
reticulum in order to understand the ionic currents that largely influence the
DAD generation. In addition to the current developed by the Na+-Ca2+ ex-
changer, they consider another contribution due to the so called non specific
Ca2+-activated channel. This ionic current is the sum of the sodium and
potassium currents through the nonspecific Ca2+-activated channel. They
found that if the intracellular concentration of calcium attains a physiological
value, the depolarization is mainly due to the current through the Na+-Ca2+

exchanger, while in Ca2+ overload conditions both the contributions are of
fundamental importance.

Figure 2.3: Contributions to DAD generation in the Luo-Rudy model (from [16]).

Figure 2.3 shows the results of the experiments made in normal conditions
of intracellular calcium. When the induced series of electric cycles ends, a
spontaneous Ca2+ release is observed followed by an increase in the intra-
cellular calcium concentration (panel B). Then the two currents described
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above are activated (panels C and D) so that they depolarize the cell and
yield DAD phenomenon shown in panel A. In picture E we can read the
minimum concentration of calcium in the sarcoplasmic reticulum that could
generate spontaneous Ca2+ release.

Figure 2.4: Relationship between DAD amplitude and the amount of
sarcoplasmic reticulum Ca2+ release in a single myocyte (from [18]). Open circles
and solid circles refer to a different time for the release (respectively τ = 10 ms

and τ = 50 ms).

In Fig. 2.4 we report the quantitative results from [18]. In that experi-
ment, Xie et al. fixed the threshold depolarization to −62.9 mV, and inves-
tigated the dependence of the DAD amplitude from the rate of sarcoplasmic
reticulum Ca2+ release in a single myocyte. The graph shows that if the time
constant for the calcium outflow is increased from 10 ms (solid marks) to 50
ms (empty marks), the measure of total Ca2+ efflux necessary to trigger an
action potential grows up.

2.3 DADs and cardiac arrhythmias

We can classify three types of cardiac arrhythmias according to the physio-
logical processes underlying the abnormal functioning of the heart [19]. The
most common type of arrhythmia is the reentry activity caused by alterations
in the spreading of the electric pulse along the tissue mainly due to the mu-
tual influence between neighboring cells and the non homogeneous texture
of the myocardium.
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On the other hand mechanisms involving the cellular background induce
automaticity and triggered activity. The first phenomenon concerns the car-
diac cells ability to generate a spontaneous action potential by means of
an autonomous diastolic suprathreshold depolarization occurring after the
action potential. All the cardiomyocytes can perform this ability but in a
healthy tissue only pacemaker cells carry out this function.

Triggered activity is related to the after-depolarization and is observed
when the depolarization achieves the potential threshold and yields a trig-
gered action potential.

The triggering event for EADs is commonly ascribed to a critical duration
of the repolarization, and for this reason the resulting arrhytmia is more likely
to occur when the cell is excited with a slow series of impulses. Consequently
EAD-induced triggered activity is associated with bradycardia or pauses.

By contrast, the appearance of DADs is usually related to rapid heart
stimulations, so they generally can induce tachycardias.

As we have already said before, the irregularities in the heartbeat caused
by DADs occur under conditions that increase the intracellular calcium con-
centration. One example is the digitalis-induced triggered activity occurring
when the patient undergoes high dosage of cardiac glycosides (digitalis) used
in the case of congestive heart failure and heart rhythm problems. Digitalis
medicines acts by increasing the force of the heartbeat since they enhance
the calcium load in the cardiac cells so that the muscle fibers experience a
stronger contraction.

Digitalis-induced DADs are generally detected in Purkinje fibers, while in
the ventricular myocardium they are readily generated in cells and tissue from
the M region. This region is located between the endocardial and epicardial
layers of the heart tissue and the specific property of the M cells is to have
a prolonged action potential [20, 21]. Therefore, since a long duration of the
action potential allows a great influx of Ca2+ ions, the calcium concentration
inside the cells increase and a DAD can occur more easily.

The mechanism for which a DAD can yield aftercontractions of the heart
tissue is the so called source-sink mismatch between adjacent cells [18].

Indeed, if a single myocyte undergoes a DAD phenomenon (the source of
depolarizing current), the change of its membrane potential establishes an
electrical discrepancy with the neighboring cells, which are still repolarized
(the sink). Consequently a potential wave spreads from the tissue near the
single myocyte with the aim to reduce the voltage difference.

If the density of this electrical wave is sufficient to bring the neighbor-
ing myocytes to their activation threshold, a spontaneous action potential
propagates in the tissue.

In [18], Xie et al. showed some interesting experimental results. They
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performed simulations in a one, two and three dimensional tissue where a
certain amount of cells is designed to experience a suprathreshold DAD (sus-
ceptible myocytes). Then they estimate how many contiguous myocytes, that
simultaneously exhibit a DAD, are required to activate a spontaneous action
potential that propagates in the tissue.

Their findings for the 1D case are visible in Fig. 2.5. They placed in
the central region of the fiber the myocytes generating DADs of amplitude
24.6 mV, that is 0.2 mV above the threshold, and they found that a number
of 80 susceptible myocytes are required to propagate a DAD wave in the
tissue. Then by increasing the total release of calcium from the sarcoplasmic
reticulum, the DAD magnitude enhances further above the potential limit
for a triggered action potential (see Fig. 2.4), while the number of required
cells for an action potential decreases substantially (see Fig. 2.6).

Figure 2.5: Action potential along a 1D fiber. The red lines identify the
DADs-susceptible cells: the left panel reproduces the simulation with 79 excited
myocytes while the right graph takes account for 80 cells so that a propagation of

the triggered action potential is reproduced (from [18]).

The experiments on 2D or 3D tissues show that the number of susceptible
myocytes necessary to generate an extra-action potential increases exponen-
tially. This means that for tissues with a simple texture, that therefore can
be associated with a one-dimensional structure (for instance Purkinje fibers),
the occurrence of DAD phenomena is more likely since for the excitation of
the whole fiber it is sufficient that a limited portion of myocytes experiences
a DAD. On the contrary, in more complex networks, the DAD phenomenon
is rather rare. The authors of [18] explain this result by stating that the
propagation of the depolarizing stimulus is substantially influenced by the
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Figure 2.6: Number of adjacent DAD-stimulating myocytes required for the
propagation of a triggered action potential versus the total amount of calcium
released for different release time constant (open circles τ = 10 ms, solid circles

τ = 50 ms) (from [18]).

curvature factor of the surface between the susceptible myocytes and the
neighboring repolarized cells. In particular in two and three-dimensional lat-
tices the contact surface between the cells extends in several directions and
then the DAD source must develop a stronger signal to excited the neighbor-
ing cells.
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Chapter 3

Mathematical models for the

cardiac action potential

In the last decades several models reproducing the electrophysiology of the
cardiac tissue are studied. They differ substantially for the mathematical
complexity of the equations and the level of detail with which they repre-
sent the underlying biology [22]. In order to understand the advantages or
disadvantages of studying one of these models, they can be divided in three
main categories [23, 24]: the simplified two-variable models, and the first and
second generation cardiac cells model.

The two-variable models are characterized by a phenomenological ap-
proach through which the cardiac electric event is described by accounting
only for the excitation and the recovery phenomena. Despite their simplic-
ity, these models exhibit a remarkable ability to reproduce basic properties of
the dynamics of the cardiac tissue. Indeed the parameters and the functions
involved in the equations can often be fitted to quantitatively reproduce the
features that, from time to time, the model should highlight. Related to this
category are the FitzHugh-Nagumo type models, including the FitzHugh-
Nagumo model [4] and all its modified representations (for instance the Aliev
and Panfilov model [25]).

On the other hand, the first generation models are based on experimental
information acquired from voltage clamp and patch clamp studies about the
voltage and time dependence of ion channel conductance. They describe the
individual ionic currents that cross the cell membrane and model the kinetics
of the resulting ionic flow. All these systems derive from the Hodgkin-Huxley
model [26, 27] of the squid giant axon and improve its basic physiological
representation by adding a detailed description of membrane channels, ex-
changer and pumps. Some examples are provided by Noble [28], who adapted
the Hodgkin-Huxley model to the cardiac Purkinje cells, Beeler and Reuter
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[29] who added a simplified description of the intracellular calcium concen-
tration, and the Luo-Rudy model [30] which describes six distinct membrane
currents. In the second generation models the number of the unknowns is
increased by adding detailed characterizations of intracellular concentrations
of sodium, potassium and calcium ions [31, 16]. Consequently they require
a noteworthy computational effort.

3.1 The FitzHugh-Nagumo model

The FitzHugh-Nagumo model is a two-variable dynamical system that sim-
ulates the propagation of the electrical signal along the nerve membrane.
It is deduced from the Hodgkin-Huxley model, indeed it essentially arises
as a compact reformulation of the Hodgkin-Huxley equations. For this rea-
son it does not involve an exhaustive description of the ionic flows through
the membrane, but it provides a flexible model and allows a straightforward
mathematical analysis.

Before going into details of the FitzHugh-Nagumo dynamical system, in
the following we briefly report the main features of the Hodgkin-Huxley re-
search.

3.1.1 The Hodgkin-Huxley model

The Hodgkin-Huxley dynamical system is based on the basic observation that
the cell membrane can be modeled as an electrical circuit [32]. As a matter of
fact, since the cell membrane acts as charge separator, it can be represented as
a capacitor. Consequently, the equivalent electric representation of a specific
channel can be viewed as a resistor (not necessarily ohmic) in parallel with
the capacitor, so that the complete system is the circuit depicted in Fig. 3.1.

By imposing the balance between the currents at node A, the equation
associated with the circuit in Fig. 3.1(a) is

icm + iion + iappl = 0,

where icm denotes the capacitor current density, iion is the sum of the con-
tributions of all the ionic currents and iappl is an externally applied current
density. By specifying the expression for icm , we get

cm
dVm
dt

+ iion = −iappl, (3.1)

where cm is the membrane capacitance per unit area (Table 3.1) and Vm
is the difference between the internal and the external membrane potential
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(a) (b)

Figure 3.1: Electrical circuit model of the cell membrane.

(Vm = Vi − Ve). A common way of computing iion is to consider the ionic
current density as a linear function of the potential [32]. Then, for each ionic
flux, we get the relation

ii = gi(Vm − Vi), (3.2)

where gi is the membrane conductance (per unit area) of passage of the
specific ion and Vs is the Nernst potential (that is the equilibrium potential
difference across the membrane).

By taking account of (3.2), and by considering that the principal ionic
currents are due to K+ and Na+ ions, equation (3.1) becomes

cm
dVm
dt

= −gNa(Vm − VNa)− gK(Vm − VK)− gL(Vm − VL)− iappl, (3.3)

where the term gL(Vm − VL) accounts for other ionic currents (for instance
the Cl− flux) that are combined together into a current called the leakage
current.

For practical purposes Hodgkin and Huxley replaced the variable Vm with
v = Vm−Veq and Vi (i = Na,K,L) with vi = Vi−Veq, where Veq is the absolute
value of the membrane resting potential (namely the potential difference
between the inner and outer regions of the cell membrane when the cell is
not conducting an impulse). Then (3.3) becomes

cm
dv

dt
= −gNa(v − vNa)− gK(v − vK)− gL(v − vL)− iappl.

The two scientists modeled the conductances of the ionic channels by per-
forming voltage clamp experiments on the giant axon of the squid. Voltage
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clamping is an experimental method that uses electrodes to alter the mem-
brane potential allowing to test membrane conductance of ions at specific
membrane potentials. It is also possible to measure the equilibrium poten-
tial of the membrane to certain ions.

On the basis of the experimental results, they hypothesized that the ionic
conductances could be written as some power of a variable satisfying a first-
order differential equation. Therefore they deduce the following relations:

gK = ḡKn
4

dn

dt
= αn(v)(1− n)− βn(v)n

for the potassium conductance, n being the potassium activation variable.
Similarly for the sodium conductance:

gNa = ḡNam
3h

dw

dt
= αw(v)(1− w)− βw(v)w w = m,h

where m is the sodium activation variable and h the sodium inactivation
variable. The empirical functions αn(v), βn(v), αw(v) and βw(v) have been
adjusted by Hodgkin and Huxley to fit the data of the giant axon of the
squid.

The differential equations describing the evolution of the variables n, m
and h (that are called gating variables) characterize how ionic channels open
and close in response to voltage [32]. If one assumes that the channel can
exist in either a closed or an open state, and that the rate of change from one
state to another is dependent on the voltage, there must be two functions
establishing the rate of conversion from the close state to the open state
(α(v)) and viceversa (β(v)).

Therefore, if c denotes the fraction of channels in the open state and
consequently (1− c) the fraction of closed channels, the differential equation
for the evolution of c is

dc

dt
= α(v)(1− c)− β(v)c.
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In summary, the Hodgkin-Huxley motion equations are:

cm
dv

dt
= −ḡNam

3h(v − vNa)− ḡKn
4(v − vK)− ḡL(v − vL)− iappl

dn

dt
= αn(v)(1− n)− βn(v)n

dm

dt
= αm(v)(1−m)− βm(v)m

dh

dt
= αh(v)(1− h)− βh(v)h.

3.1.2 The FitzHugh simplification

In 1960 FitzHugh [5] proposed a reduced system by contracting the Hodgkin-
Huxley equations to a two-variable model. He noted that for brief time inter-
vals, the variables h and n change very little while v andm vary considerably.
This means that the sodium channels activation and the membrane poten-
tial have a fast dynamics, while the sodium channels inactivation and the
potassium channels change very slowly. Therefore FitzHugh concluded that
the behavior of v and m could be studied by setting h and n constant and
equal to their resting values, and solving the fast dynamical system:

cm
dv

dt
= −ḡKn4

0(v − vK)− ḡNam
3h0(v − vNa)− ḡL(v − vL)− iappl

dm

dt
= αm(1−m)− βmm

(3.4)

where n0 and h0 are the equilibrium values of the slow variables.
In the following we show a brief analysis in the phase plane of (3.4) where

αm and βm are replaced with the expression provided by Hodgkin and Huxley
[27, 32],

αm = 0.1
25− v

exp
(

25−v
10

)

− 1
(3.5)

βm = 4 exp
(

− v

18

)

(3.6)

and the assigned values of the parameters are shown in Table 3.1. In this
study we will assume iappl = 0.

Firstly, we notice that in the limit v → 25±, αm tends to 0.1, so that αm

may easily be defined to be strictly positive for all v. Analogously βm > 0
∀v.

The m and v nullclines intersect in three points, corresponding to three
steady states of the fast equations (Fig. 3.2). It can be shown that two of
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Table 3.1: Values of the parameters in (3.4) [32].

cm 1 µF/cm2 ḡL 0.3 mS/cm2

ḡK 36 mS/cm2 vL 10.6 mV

vK −12 mV n0 0.3176

ḡNa 120 mS/cm2 h0 0.596

vNa 115 mV
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Figure 3.2: (a) Representation of the m-nullcline (yellow line), the v-nullcline
(red line) and the equilibrium points of dynamical system (3.4). (b) An

enlargement of the region near the origin.

these three points are stable steady states of the fast subsystem, while one
is a saddle point. For this reason we will call the three steady states vr , vs,
and ve, that is respectively resting, saddle, and excited states (Fig. 3.3).

We now prove the stability of the equilibrium points by linearizing the
system through the indirect Liapunov method. If the general form of a
nonlinear dynamic system is

ẋ = f(x(t)) (3.7)

and if x̄ is an equilibrium point, we can approximate f in the neighborhood
of this point, x = x̄+ y, by means of a Taylor expansion

f(x̄+ y) = f(x̄) + Fy + o(|y|)
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Figure 3.3: The phase portrait associated to the dynamical system (3.4):
representation of the nullclines, the vector field, the three equilibrium points and

the stable and unstable manifolds corresponding to the saddle point vs.

where F is the Jacobian matrix of the vector f computed at point x̄
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Since f(x̄) = 0, the linearized system (3.7) is reduced to

ẏ = Fy.

Now, let (v̄, m̄) be an equilibrium point of (3.4). The Jacobian matrix has
the following form

F =







−ḡKn4

0
−ḡNam̄

3h0−ḡL
Cm
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Table 3.2: Properties of the equilibrium points of (3.4).

point coordinates (mV) type of equilibrium stability properties

ve (113.92, 0.999) nodal sink Asymptotically Stable

vs (2.602, 0.0716) saddle point Unstable

vr (0.018, 0.053) nodal sink Asymptotically Stable

The stability of the equilibrium configuration of the nonlinear system is de-
termined by the eigenvalues λi of matrix F. In particular:

• if all the eigenvalues of F are negative, (v̄, m̄) is asymptotically stable;

• if at least one eigenvalue of F has positive real part, then (v̄, m̄) is
unstable.

By substituting the parameters values in Table 3.1, we find the result shown
in Table 3.2. Since vs is a saddle point, it has a stable manifold (evidenced
in Fig. 3.3). It represents a separatrix in the phase plane because the tra-
jectories starting from the left or from the right of the stable manifold have
a different behavior. If the initial point of a solution is located on the left,
the corresponding trajectory evolves toward the resting state vr, while if the
solution starts from a point on the right it is prevented from reaching vr and
it must end up at the excited state, ve.

Therefore by exciting the system from the resting state, if the perturba-
tion is large enough to cross the separatrix, it results in a large excursion in
the voltage that reaches the excited state, while, if the shock strength is not
sufficient to cross the manifold, the stimulus returns to vr. This is called a
threshold phenomenon because the stable manifold acts as a threshold, by
causing the excitation of the system once the separatrix is crossed.

Whenever a solution reaches the excited state, the potential stays at ve
indefinitely and the system exhibits no return to the resting state. The main
reason for this unphysical behavior is that the model does not take into
account changes in h and n, which are the variables responsible for bringing
the potential to the resting state. Thus it is required to reintroduce one of
these variables in the model to completely describe an action potential.

FitzHugh proved that during the course of an action potential the plots
of n an h versus time have similar shapes ([4], Fig.1). Then he suggested
that the variable h could be eliminated by setting h = 0.85− n [5].

By following this idea and assuming that the activation of the sodium
channels is faster than the evolution of the voltage (which is equivalent to
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assuming that m is always in instantaneous equilibrium), Keener and Sneyd
[32] proposed a fast-slow model involving the fast variable v and the slow
variable n:

cm
dv

dt
= −ḡKn4(v − vK)− ḡNam

3
∞(v)(0.8− n)(v − vNa)− ḡL(v − vL)− iappl

dn

dt
= αn(1− n)− βnn

where m∞(v) is the equilibrium value of m (m∞(v) = αm(v)/(αm(v) +
βm(v))).

By replacing αm, βm, αn and βn with the relations provided by Hodgkin
and Huxley [27, 4], they get

cm
dv

dt
= −ḡKn4(v − vK)− ḡNa





0.1 25−v

e
25−v

10 −1

0.1 25−v

e
25−v

10 −1
+ 4e

−v

18





3

(0.8− n)(v − vNa)− iappl

− ḡL(v − vL)

dn

dt
= 0.01

10− v

e(
10−v

10
) − 1

(1− n)− 0.125e(
−v

80
)n.

(3.8)

The nullclines and the vector field corresponding to this dynamical system
(when iappl = 0) are shown in Fig. 3.4.

In analogy with the previous system, we observe that the coefficients
αm and αn are different from zero for all the values of the potential. If we
make use of Table 3.1, the nullclines intersect in a single point, located in
veq = (−0.196, 0.315), so that the dynamical system has a single steady state.

The Jacobian matrix evaluated at the equilibrium point is

F =





−0.332 −54.881

0.003 −0.183



 .

Since trF < 0 and detF > 0, the equilibrium point is stable, and more
precisely it is a spiral sink. In the following analysis we show that, in the
limit cm → 0, the orbits are attracted by the stable sink.

As a matter of fact, since v is a fast variable (and small values of cm
highlight this statement) and n is slow, the trajectories in the phase plane are
approximately horizontal except closed to the v−nullcline. Along this curve
the orbit (dashed line in Fig. 3.4) moves slowly in the direction prescribed
by the sign of dn

dt
, but however, as we may realize from Fig. 3.4, it moves
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Figure 3.4: Phase portrait of system (3.8).

away from the middle branch of the v−nullcline toward the left and the right
branches.

In particular, when the trajectory reaches the right branch, that is the de-
creasing part of the curve dv

dt
= 0 which starts at the relative maximum of the

cubic function, dn
dt
> 0, so that the solution moves up until the turning point

is reached. At this point, since the right branch of the slow manifold ceases
to exist, the solution moves quickly to the left branch of the v−nullcline,
identified by the decreasing portion of the nullcline that ends at its rela-
tive minimum. Here, dn

dt
< 0, so that the trajectory proceeds approaching

the steady state, and then completing the action potential. This last path
corresponds to the recovery phase of the action potential.

On the other hand, if an orbit directly intersects the left branch, it remains
close to it and it is guided by the vector field to the resting point.

The variables n and v are usually called the excitation and recovery vari-
ables, respectively: v controls the increase up to the excited state, while n
causes the return to the equilibrium point.

The middle branch of the slow nullcline is referred to as the unstable
branch. It is included between the relative minimum and maximum of the
curve dv

dt
= 0 and it acts as a threshold, exactly as the unstable manifold

for the previous model. If a perturbation from veq is small enough so that v
does not cross the unstable manifold, then the trajectory moves horizontally
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toward the left and returns to the steady state. However, if the excursion is
large enough so that v intersects the unstable manifold, then the trajectory
moves quickly toward the right branch of the slow manifold, which coincides
with the excited state.

The correspondence between the fast model and the fast-slow model can
be recognized also in the three different states: resting, excitable and saddle
(or unstable). Indeed the three intersection points between the v and m
nullclines in the fast phase plane (fixed n and h) match the three branches
of the v nullcline in the fast-slow model. Precisely we can say that the left
branch of this nullcline corresponds to the resting state, the middle branch
to the unstable state and the right one to the excited state.

An useful illustration of the previous statement is presented in Fig. 3.5
which shows the fast phase portrait with the m-nullcline (dashed line) and
the variation of the v-nullcline for n increasing and h decreasing. As n grows,
the unstable and the excited state, vs and ve, coalesce and disappear. The
same behavior is observed in the fast-slow model (Fig. 3.4): as n increases,
the two rightmost branches of the slow nullcline coincide in a point and then
vanish.

1

2

3

4
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Figure 3.5: The fast phase plane as a function of the slow variables, showing the
m-nullcline (dotted) and the v-nullcline (solid) for different values of the slow

variables. 1) h0 = 0.596, n0 = 0.3176; 2) h0 = 0.4, n0 = 0.5; 3) h0 = 0.2,
n0 = 0.7; and 4) h0 = 0.1, n0 = 0.8.
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It is clear that all the assertions discussed above hold because the left
and the right branches of the v−nullcline tend to infinity, and in particular
the left branch tends to +∞ for v → vK, while the right branch goes to −∞
for v → vNa.

3.1.3 The Nagumo circuit and the FitzHugh-Nagumo

system

In 1960 Nagumo proposed a simplified model of the cell membrane that
summarizes the characteristics of the main ionic currents responsible for the
action potential [6]. This model reproduces, in a detailed but still manageable
way, the slow and the fast currents analyzed by FitzHugh in the previous
systems. He built the circuit in Fig. 3.6 consisting of three components:
a capacitor, that usually models the membrane capacitance, a non-linear
current-voltage element representing the fast ionic currents and a resistor,
an inductor and a battery in series simulating the recovery forces.

Application of the Kirchhoff current law at node A (Fig. 3.6) yields

iappl + ifast + icm + irec = 0,

equivalent to

F (Vm) + irec + cm
dVm
dτ

= −iappl.

Application of the Kirchhoff voltage law to the right closed loop, yields

Vm − VR − VL − V0 = 0,

that is

Vm − V0 = Rirec + L
direc
dτ

,

where we have used Ohm’s law for the resistance (irec is the current through
the resistor-inductor) and the relation linking the voltage and the current in
the inductor. The τ denotes a dimensional time, while t will be used as a
dimensionless time variable.

Thus we obtain the following (Vm, i) system











F (Vm) + irec + cm
dVm
dτ

= −iappl

Vm − V0 = Rirec + L
direc
dτ

.

(3.9)

The next step consists in introducing dimensionless variables depending on
the passive resistance of the non linear element, R1 = 1/F ′(0), and the
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Figure 3.6: The Nagumo circuit (modified from [32]).

two stable equilibrium configurations of the differential equation dVm/dτ =
−F (Vm), once we have assumed F (Vm) of cubic shape (Fig. 3.7). The function
F (Vm) of the figure corresponds to the v-nullcline of the fast-slow phase plane,
and the three zeros illustrated in Fig. 3.7 identify the three branches of the
curve.

By multiplying equations (3.9) by R1/V1, and introducing the dimension-
less variables

t = τ
R1

L
v =

Vm
V1

w =
R1

V1
irec f(v) = −R1

V1
F (Vm)

we get














− f(v) + w + cm
R1

V1

dVm
dt

dt

dτ
= −iappl

R1

V1

R1v −
R1

V1
V0 = Rw + L

R1

V1

direc
dt

dt

dτ
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Figure 3.7: Schematic representation of the function F(V).

or














− f(v) + w + cm
R2

1

L

dv

dt
= −iappl

R1

V1

R1v −
R1

V1
V0 = Rw +

R2
1

V1

direc
dt

.

Finally, by letting ε = R2
1cm/L, w0 = iapplR1/V1, γ = R/R1 and v0 = V0/V1,

system (3.9) becomes:











ε
dv

dt
= f(v)− w − w0

dw

dt
= v − γw − v0.

(3.10)

Equations (3.10) are referred to as classical FitzHugh-Nagumo dynamical
system. The parameters of the model need to satisfy the following require-
ments:

0 < γ < 1 which implies R1 > R, (3.11)

0 < ε≪ 1 which implies
C

L
≪ 1

R2
1

. (3.12)

The first request specifies a property of the membrane, so that γ is usually
adjusted as a fitting parameter. The second statement takes into account
the different time scales of the fast and slow currents (indeed (3.12) is a sort
of a comparison between the conductance of the non linear device and that
of the inductor).
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Figure 3.8: Graph of f(v).

The function f(v) is a cubic with three zeros. In the following we will set

f(v) = v(1− v)(v − α),

with α ∈ (0, 1).
In summary, the dynamical system we will study in the following is











ε
dv

dt
= v(1− v)(v − α)− w

dw

dt
= v − γw

(3.13)

where we have set iappl = 0 and V0 = 0.
The v-nullcline has a cubic form while the w-nullcline is a linear function.

They are represented by the relationships

dv

dt
= 0 ⇒ w = v(1− v)(v − α),

dw

dt
= 0 ⇒ w =

v

γ
.

The number of intersection points between these two curves depends on
the values of γ. In particular, denoting by γcr,1 = 4/(1− α)2, then we have:

• If γ < γcr,1 there is a single equilibrium configuration, which corre-
sponds to (v, w) = (0, 0).
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Table 3.3: Stability properties of equilibrium configurations for (3.13).

γ2ε < 1
type of equilibrium stability

γf ′(veq) < γ2ε sink stable
γf ′(veq) = γ2ε center stable

γ2ε < γf ′(veq) < 1 source unstable
γf ′(veq) = 1 unstable
γf ′(veq) > 1 saddle point unstable

γ2ε = 1
γf ′(veq) < γ2ε sink stable
γf ′(veq) = γ2ε further analysis needed
γf ′(veq) > γ2ε source unstable

γ2ε > 1
γf ′(veq) < 1 sink stable
γf ′(veq) = 1 stable

1 < γf ′(veq) < γ2ε saddle point unstable
γf ′(veq) = γ2ε saddle point unstable
γf ′(veq) > γ2ε saddle point unstable

• If γ = γcr,1 there are two equilibrium points.

• If γ > γcr,1 three different equilibrium points arise.

By studying the Jacobian matrix of system (3.13) we can easily deduce the
stability of the equilibrium configurations determined above. If we let

J =

[

ε−1f ′(veq) −ε−1

1 −γ

]

(3.14)

we have

detJ =
1

ε
(1− f ′(veq)γ) and trJ = −γ +

f ′(veq)

ε
. (3.15)

Since ε and γ are assumed to be positive, it follows that whenever f ′(veq) ≤ 0,
the equilibrium configuration is stable. Otherwise, if f ′(veq) > 0, the sign
of det J depends on whether γf ′(veq) ⋚ 1, while the sign of tr J changes as

f ′(veq) ⋚ γε. By matching the previous results we may derive the stability
Table 3.3.

In Fig. 3.9 we depict the phase plane representation for the following
values of the parameters:

γ =
1

2
α =

1

10
ε =

1

100
. (3.16)
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For such values γ < γcr,1, then the unique steady state is located at the
origin and, since γ2ε < 1 and f ′(veq) < γε = 5× 10−3, the equilibrium point
is a stable sink. In this case a generic solution behaves like the trajectory of
system (3.8): once it hangs the right branch of the v-nullcline, it follows the
curve up to the relative maximum. Then it moves quickly on the left region,
and it moves down along the left branch toward the resting state.

dw/dt=0

dv/dt=0
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Figure 3.9: (a) FitzHugh-Nagumo phase plane with iappl = 0. (b) Plot of the
potential as a function of time.

Therefore, analogously to the model (3.8), the middle branch of the v-
nullcline is the unstable region in the phase plane; this means that all the
points belonging to this branch are unstable and may play the role of a
voltage threshold. For this reason, in the literature the authors refer to α as
a voltage threshold [33, 34, 1, 35]: indeed when the point v = α, which is also
a zero of the function f(v), belongs to the middle branch, it can be assumed
as the threshold. That is, if the perturbation exceeds the value v = α the
system reacts by performing a complete action potential.

With the values of the parameters in (3.16) but the current clamp iappl 6= 0
the phase portrait and the solutions change substantially. For the sake of
clarity, from now on we replace the term w0 in (3.10) with Iappl, in order to
stress the fact that this term is linked to the density current applied to the
circuit. Then the dynamical system we will analyze is











ε
dv

dt
= v(1− v)(v − α)− w + Iappl

dw

dt
= v − γw.

(3.17)
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Obviously the number of equilibria equals the number of roots of the poly-
nomial

p(v) = v(1− v)(v − α)− γ−1v + Iappl.

Generally speaking, if γcr,2(α) = 3/(1− α + α2), we can say that:

• If γ ≤ γcr,2(α), the polynomial p is monotonically decreasing, and
therefore there is a unique equilibrium configuration. We remark that
γcr,2 ∈ (3, 4] when α ∈ (0, 1), so that this case is the most significant in
practical applications.

• If γ > γcr,2(α), the polynomial p exhibits a relative minimum at v = v−,
and a relative maximum at v = v+, where

v± =
1 + α

3
±

√

γ − γcr,2
3γγcr,2

.

When this is the case, the number of equilibrium configurations depends
on the particular value of Iappl, as this latter parameter influences the
polynomial p by simply translating it upwards or downwards.

For the values of α, γ and ε in (3.16), γ < γcr,2=̇3.2967, then system
(3.17) again has one equilibrium point.

Since the stability condition requires f ′(veq) < γε, in terms of Iappl this
happens when either Iappl < Iappl,1 or Iappl > Iappl,2 where Iappl,1=̇0.105 and
Iappl,2=̇1.238 (Figs. 3.10 3.11).

At both critical values of Iappl a Poincaré-Andronov-Hopf bifurcation oc-
curs [32, 36].

Indeed, when Iappl,1 < Iappl < Iappl,2, the equilibrium point lies on the
middle branch of the v-nullcline, so that it identifies an unstable configura-
tion, and the solution behaves like in Fig. 3.12. Instead of approaching the
equilibrium configuration after a finite number of cycles around the steady
state, each trajectory alternates periodically between the upper and lower
branches, giving rise to an infinite number of periodic solutions (limit cycle
behavior).

The qualitative behavior of the phase plane of (3.17) evidences that, by
varying the constitutive parameters, the solutions of the dynamical system
may undergo two quite different evolutions: either they perform a finite num-
ber of cycles before remaining trapped close to the equilibrium configuration
(this solution corresponds to the emission of a finite number of action po-
tentials), or they converge towards a limit cycle (an un-physical situation
which would correspond to the emission of an infinite number of action po-
tentials). In this Thesis we deal with the first class of solutions. It is our
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Figure 3.10: FitzHugh-Nagumo phase plane with Iappl=̇0.105.
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Figure 3.11: FitzHugh-Nagumo phase plane with Iappl=̇1.238.
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Figure 3.12: FitzHugh-Nagumo phase plane with Iappl = 0.5.

aim to associate with each solution the number of cycles it performs before
remaining trapped in the spiral sink, and to study how this number depends
on the constitutive parameters. We will, for simplicity, limit ourselves to
the case Iappl = 0, although all our treatment could easily be generalized to
any value of the constitutive parameters which correspond to a single, stable
equilibrium configuration.

3.2 Nonexistence of limit-cycle solutions and

boundedness of the orbits

In the previous section we have shown that, when Iappl = 0 and the other
constitutive parameters assume the typical values in (3.16), the orbits in
the phase plane evolve toward the equilibrium oscillating around the resting
value. The question we handle in this section concerns the possibility of
having solutions that, for values of α, ε and γ different from (3.16), do not
converge to the stable state as t→ ∞.

More precisely, limiting the research to the case γ < γcr,1, so that the only
equilibrium point is the origin, we analyze the possible occurrence of both
periodic and unbounded solutions for (3.13) when the constitutive parameters
vary in their physiological range. Indeed if there were a limit cycle solution
that contains the origin, a trajectory starting out of the region enclosed by
the cycle would be prevented form approaching the stable equilibrium point.
Moreover, if there exist unbounded orbits (as t → +∞), they divide the
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phase plane into two regions, so that solutions starting in the domain that
does not contain the equilibrium point could not belong to the attraction
basin of the spiral sink.

In deriving the results contained in this paragraph we mainly follow [37,
38]. These reports analyze quite different dynamical systems, but put forward
the analytical methods fit to prove both the absence of limit cycles and the
boundedness of the solutions. Here, we adapt their method to the dynamical
system (3.13), and supplement the results with some numerical analysis.

3.2.1 Nonexistence of limit cycles: Analytical results

A simple test that proves the nonexistence of periodic solutions is the Bendix-
son’s criterion [39], that we state in the following.

Lemma 1 (Bendixson’s negative criterion). Let ẋ = F(x) be a planar au-
tonomous dynamical system, where x = (x(t), y(t)) and F = (f(x, y), g(x, y)).
Suppose F ∈ C1(E) where E is a simply connected region of the plane. If
divF = ∂f

∂x
+ ∂g

∂y
is always of the same sign but not identically zero, then there

are no periodic solutions within E.

By applying this criterion to (3.13) we can say that the system has no
limit cycles if

∂

∂v

[

1

ε
(v(1− v)(v − α)− w)

]

+
∂

∂w
(v − γw) 6= 0,

and it does not change sign. This means that the discriminant of the following
expression must be negative ∀v

1

ε
(−3v2 + 2v(1 + α)− α)− γ,

that is
1

ε2
(1 + α2 − α)− 3γ

ε
< 0. (3.18)

If we consider the values of the parameters in (3.16), relation (3.18) is not
satisfied, so that this criterion does not prevent the FitzHugh-Nagumo dy-
namical system from exhibiting periodic solution in correspondence of the
values of the constitutive parameters in (3.16).

This result suggests to look for a weaker condition ensuring the nonex-
istence of limit cycles, since, as we have noted before, the solutions to the
FitzHugh-Nagumo dynamical equations when ε, α and γ are those in (3.16)
converge to the potential resting value.
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Therefore, in order to search for a weaker request, we apply a variable
transformations to the equations in (3.13) and make use of some theorems
about Liénard systems [40, 41]. By introducing the change of variables

{

x = −εv
y = w + γx

equations (3.13) become

dx

dt
= y − F (x)

dy

dt
= −g(x),

(3.19)

where

F (x) = x

(

1

ε

(

1 +
x

ε

)(x

ε
+ α

)

+ γ

)

g(x) = x

(

γ

ε

(

1 +
x

ε

)(x

ε
+ α

)

+
1

ε

)

.

An easy computation shows that the condition

xg(x) > 0, ∀x 6= 0 (3.20)

is equivalent to considering the origin as the unique fixed point of the system.
Indeed the term multiplying x in g(x) is positive for all x if (1−α)2−4/γ < 0,
that yields γ < γcr,1.

Let G(x) =
∫ x

0
| g(ξ) | dξ. Since condition (3.20) ensures that g(x) has

only one zero at x = 0 and that

g(x) > 0 if x > 0

g(x) < 0 if x < 0

and assuming that α, γ and ε are positive, we get:

G(x) =

{

x2

12

(

3γ
ε3
x2 + 4 γ

ε2
(1 + α)x+ 6

ε
(γα + 1)

)

if x ≥ 0

−x2

12

(

3γ
ε3
x2 + 4 γ

ε2
(1 + α)x+ 6

ε
(γα + 1)

)

if x < 0

from which we deduce that G(x) is continuous on R and it is strictly in-
creasing. Consequently the inverse of G exists, and we can make use of the
following theorem for Liènard systems.
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Theorem 1. [40] Suppose that the origin is the only equilibrium point and

F (G−1(−w)) 6= F (G−1(w)) ∀w > 0 (3.21)

Then (3.19) has no limit cycles.

We try to rephrase (3.21) in order to obtain a more straightforward expression
involving α, γ and ε. Following [37], we compute the three roots of the cubic
polynomial F (x):

a = 0

b =
ε

2

(

−1− α +
√

(1− α)2 − 4γε
)

c =
ε

2

(

−1− α−
√

(1− α)2 − 4γε
)

.

In the case
(1− α)2 − 4γε > 0 (3.22)

we have c ≤ b < a. Indeed we can easily prove that

b =
ε

2

(

−1− α +
√

(1− α)2 − 4γε
)

<
ε

2

(

−1− α +
√

(1− α)2
)

= −εα < 0.

We come to the following theorem.

η

η*=F(x
max

)

bc c(η) x
max

b(η)

x
min

a(η)a

Figure 3.13: Plot of the cubic polynomial F (x), illustrating the arrangement of
its roots, and the position of its relative maximum and minimum.

Theorem 2. [37] Let a(η) ≥ b(η) ≥ c(η) denote the roots of the equation
F (x) = η, where η ∈ [0, η∗], η∗ = F (xmax), and xmax denotes the point of
local maximum of F (see fig. 3.13). Then condition (3.21) is equivalent to

(G(a(η)) +G(b(η)) 6= 0) ∧ (G(a(η)) +G(c(η)) 6= 0) ∀η ∈ (0, η∗]. (3.23)

If, moreover, xmin denotes the point of local minimum of F , holds c(η) ≤
xmax ≤ b(η) ≤ xmin < a(η) holds.
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Proof. Let G(c(η)) = Gc G(b(η)) = Gb G(a(η)) = Ga. Since G is
strictly increasing and c(η) < b(η) < a(η), we have

G(c(η)) < G(b(η)) < G(a(η)).

We also have
η = F (a(η)) = F (b(η)) = F (c(η))

that is
η = F (G−1(Ga)) = F (G−1(Gb)) = F (G−1(Gc)). (3.24)

Now, suppose that G(a(η)) = −G(b(η)) and G(a(η)) = −G(c(η)), that is
Ga = −Gb and Ga = −Gc. Then (3.24) becomes

η = F (G−1(Ga)) = F (G−1(−Ga))

which yields the contradiction of (3.21). This proves that (3.21) is equivalent
to (3.23).

Let us now evaluate G(a(η))

G(a(η)) =
a2(η)

12

(

3γ

ε3
a2(η) + 4

γ

ε2
(1 + α)a(η) +

6

ε
(γα + 1)

)

. (3.25)

By considering the following equivalence

F (a(η))− η = 0 =
a3(η)

ε3
+
a2(η)

ε2
(1 + α) + a(η)(γ +

α

ε
)− η (3.26)

we can subtract from (3.25) the quantity

1

12
(3γa(η) + εγ(1 + α))(

a3(η)

ε3
+
a2(η)

ε2
(1 + α) + a(η)(γ +

α

ε
)− η) (3.27)

and we get

G(a(η)) =
1

12

[

a2(η)

(

6

ε
− 3γ2 − γ

ε
(−α + 1 + α2)

)

+a(η)
(

3γη − εγ(1 + α)(γ +
α

ε
)
)

+ εγ(1 + α)η
]

.

Similar computations can be made for b(η) and c(η), provided that we add
the expression (3.27) computed for b(η) and c(η)

G(b(η)) =− 1

12

[

b2(η)

(

6

ε
− 3γ2 − γ

ε
(−α + 1 + α2)

)

+b(η)
(

3γη − εγ(1 + α)(γ +
α

ε
)
)

+ εγ(1 + α)η
]

,
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G(c(η)) =− 1

12

[

c2(η)

(

6

ε
− 3γ2 − γ

ε
(−α + 1 + α2)

)

+c(η)
(

3γη − εγ(1 + α)(γ +
α

ε
)
)

+ εγ(1 + α)η
]

.

Then, with the above relations, (3.23) becomes

(

6

ε
− 3γ2 − γ

ε
(−α + 1 + α2)

)

(a(η) + b(η)) 6=

− 3γη + εγ(1 + α)(γ +
α

ε
) ∀η ∈ (0, η∗]

(

6

ε
− 3γ2 − γ

ε
(−α + 1 + α2)

)

(a(η) + c(η)) 6=

− 3γη + εγ(1 + α)(γ +
α

ε
) ∀η ∈ (0, η∗]

where η∗ > 0.
Let now η → 0. The right hand side in the previous relations becomes

εγ(1 + α)(γ + α
ε
) > 0, then

a(η) → a = 0 b(η) → b < 0 c(η) → c < 0.

So the left hand side is negative if

6

ε
− 3γ2 − γ

ε
(−α + 1 + α2) > 0. (3.28)

Then, if (3.28) holds, for η → 0 we have

(

6

ε
− 3γ2 − γ

ε
(−α + 1 + α2)

)

(a(η) + b(η)) < −3γη + εγ(1 + α)(γ +
α

ε
)

(3.29)
(

6

ε
− 3γ2 − γ

ε
(−α + 1 + α2)

)

(a(η) + c(η)) < −3γη + εγ(1 + α)(γ +
α

ε
).

(3.30)
Since (3.23) must hold for all η ∈ (0, η∗], inequalities in (3.29) and (3.30)
can not change sign; moreover c(η) < b(η) ∀η ∈ (0, η∗], then we come to the
following proposition.

Proposition 1. [37] If (3.28) holds, condition (3.23) is equivalent to

(

6

ε
− 3γ2 − γ

ε
(−α + 1 + α2)

)

(a(η) + b(η)) <

− 3γη + εγ(1 + α)(γ +
α

ε
) ∀η ∈ (0, η∗].

(3.31)
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We can take a step forward by introducing a new parameter ξ and study-
ing the solutions of the equation

F (x)− F (ξ) = 0, for ξ ∈ [c, xmax).

By substituting in the previous equation the expression for F we obtain

(x− ξ)(x2 + x(ξ + ε+ αε) + (ξ + ε)(ξ + αε) + γε2) = 0.

The roots of this equation are ξ, a(ξ) and b(ξ), where a(ξ) and b(ξ) solve

bx
max

x
min

ac ξ

Figure 3.14: Rendering of the parameter ξ.

the following system

{

a(ξ) + b(ξ) = −(ξ + ε+ αε)

a(ξ)b(ξ) = (ξ + ε)(ξ + αε) + γε2.

By substituting η = F (ξ) in (3.31) and the first of the previous relations, we
get

H(ξ) :=− ξ3
(

3γ

ε3

)

− 3γ

ε2
(1 + α)ξ2 − ξ

(

γ

ε
(α + 1)2 + 6

(

γ2 − 1

ε

))

+

(6− 2γ2ε− γ(1− α)2)(1 + α) > 0 ∀ξ ∈ [c, xmax).

(3.32)

We are now in a position to introduce the main result.
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Theorem 3. [37] The dynamical system (3.13) does not have limit cycles if
(3.18) holds, or if the following statements are simultaneously verified

γ − 4/(1− α)2 < 0; (3.33)

3γ

ε
− 1

ε2
(1 + α2 − α) < 0; (3.34)

4γε− (1− α)2 < 0; (3.35)

−6

ε
+ 3γ2 +

γ

ε
(−α + 1 + α2) < 0; (3.36)

−H(c) < 0; (3.37)

−H ′(c) < 0. (3.38)

Proof. The first inequality guarantees that (3.13) has one equilibrium point,
(3.34) indicates that parameters violate (3.18), (3.35) ensures that F (x) has
three real zeros, (3.36) allows to employ Proposition 1 while (3.37) and (3.38)
guarantee that (3.32) holds.

Indeed, since we consider γ2ε < 1 (see section 3.1.3), the discriminant of
H ′(ξ) is greater than zero, so H has a local maximum and a local minimum
at

{

ξmin = − ε(1+α)
3

− ε
3γ

√

−6(γ3ε− γ)

ξmax = − ε(1+α)
3

+ ε
3γ

√

−6(γ3ε− γ).

We observe also that (3.36) implies that

ξmin < xmax = −(1 + α)ε

3
+
ε

3

√

1 + α2 − α− 3γε.

In conclusion (3.37) and (3.38) ensure that (3.32) is satisfied.

In the plane (γ, ε) we can identify the region where the parameters satisfy-
ing inequalities (3.33)-(3.38) must be inspected. In Fig. 3.15 we represent this
region for different values of α. Note that H(c) is defined if 4γε−(1−α)2 < 0,
that is for the points lying below the solid line in Fig. 3.15. In this region
(and in particular in the grey region) −H(c) < 0 ∀γ, ε.

It is worth making some observations on Fig. 3.15 in order to better
understand the behavior of the admissible parameters region.

1. The hyperbola 3γε− 1−α2 +α = 0 is above the hyperbola 4γε− (1−
α)2 = 0 ∀α. This is because

α2 + 1− α

3γ
>

(1− α)2

4γ
⇒ α2 + 2α + 1 > 0

that is true ∀α.
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Figure 3.15: Representation of the region where the parameters satisfying
inequalities (3.33)-(3.38) must be found in the (γ, ε) plane with (a) α = 0.1, (b)

α = 0.5 and (c) α = 0.01.
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2. Let us write the equation H ′(c) = 0,

−
(

−1− α−
√

(1− α)2 − 4γε
)2

(

9γ

4

)

− 3γ(1 + α) (−1− α−
√

(1− α)2 − 4γε
)

− γ(α+ 1)2 − 6εγ2 + 6 = 0.

Let γcr,3(α) =
6

(α−2)2
. When ε → 0, γ → γcr,3(α), that is for ε → 0,

the equation H ′(x3) = 0 has solutions ∀α 6= 2. In particular we can say
that ∀γ < γcr,3(α), ∃εcr(α) such that for 0 < ε < εcr(α) the FitzHugh-
Nagumo dynamical system does not have limit cycle solutions.

3. Consider now the curves (a) 6 + 3γ2ε + γε(−α + 1 + α2) = 0, (b)
4γε − (1 − α)2 = 0 and (c) H ′(c) = 0. In Fig. 3.16 we represent with
a solid line the γ-coordinate of the intersection point between (b) and
(c) by varying the parameter α, with a dashed line the γ-coordinate
of the intersection point between (a) and (b). The intersection points
between (a) and (c) are two: the first coincides with the one between
(a) and (b) while the second is represented by a dotted line. It has a
critical value for α = 2−

√
3 for which (a) and (c) do not intersect each

other.

It can be easily proved that the dashed line is above the solid one for all
α. Then we can conclude that the grey region in Fig. 3.15 is delimited
∀α by the intersection point between (b) and (c). In the following we
will call the γ-coordinate of this point γcr,4.

4. The critical values γcr,3(α) and γcr,4(α) are decreasing functions of α.
Indeed, Figs. 3.15(b) and 3.15(c) show that, as α decreases, γcr,3(α)
decreases and also the intersection point between the curves (b) and
(c) reduces its value.

5. Let us analyze the behavior of the curve −6+3γ2ε+γ(−α+1+α2) = 0
for large or small γ. For γ → ∞, ε = α−1−α2

3
1
γ
+ 2

γ2 , so the first order

approximation of ε is α−1−α2

3γ
. On the other hand, for γ → 0, ε ∼ 2

γ2 .

6. Let us now perform the same analysis for H ′(c) = 0. For γ → 0 we
have

− 9

4
γ(1 + α +

√

(1− α)2 − 4γε)2 + 3γ(1 + α)(1 + α +
√

(1− α)2 − 4γε)

− 6εγ2 + 6 ∼ 0.

(3.39)
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Figure 3.16: γ-coordinate of the intersection points between (a)
6 + 3γ2ε+ γε(−α+ 1 + α2) = 0, (b) 4γε− (1− α)2 = 0 and (c) H ′(c) = 0. Solid
line, dashed line and dotted line represent respectively the intersection point

between (b) and (c), (a) and (b) and (a) and (c).

If 1 < ε < 1
γ
, that is εγ → 0, (3.39) becomes 6 ∼ 0 which is false. If

1
γ
< ε < 1

γ2 , that is εγ → ∞ and εγ2 → 0 (3.39) becomes

− 9

4
γ(1 +α+

√

−4γε)2 +3γ(1 +α)(1 +α+
√

−4γε) + 6 ∼ 0. (3.40)

Since H ′(c) is equal to 0 for a finite γ, see Fig. 3.15, for γ → 0 in H ′(c)
ε < 0, so that −4γε > 0. Then (3.40) becomes

−9γ(−γε) + 3γ(1 + α)
√

−4γε+ 6 ∼ 0.

By neglecting
√
γε with respect to γε we get

9γ2ε+ 6 ∼ 0 ⇒ 6 ∼ 0,

which is false again.

The final case we have to analyze is ε > 1
γ2 , that yields εγ → ∞ and

εγ2 > 1. Consequently (3.39) is

−9γ(−γε) + 3γ(1 + α)
√

−4γε− 6εγ2 + 6 ∼ 0.
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Again by ignoring
√
γε with respect to γε it remains 3γ2ε + 6 ∼ 0 ⇒

ε ∼ 2
γ2 that is consistent with the initial hypothesis, εγ2 > 1.

Conclusively, for γ → 0, ε ∼ 2
γ2 .

For γ → ∞, H ′(c) = 0 is not defined. Indeed the curves 4γε−(1−α)2 =
0 and H ′(c) = 0 intersect each other for a finite γ = γcr,4 (see Fig. 3.16).
If γ > γcr,4, H

′(c) is not defined.

To sum up, for γ → 0, the curves 3γε−1−α2+α = 0 and 4γε−(1−α)2 =
0 behave like 1/γ, while −6+3γ2ε+γ(−α+1+α2) = 0 and H ′(c) = 0
behave like 2/γ2. For γ → ∞ the first three curves behave like 1/γ
whereas H ′(c) = 0 is not defined.

If we now verify inequalities (3.33)-(3.38) when the parameters are those in
(3.16), we obtain:

(3.33) ⇒ −3.5404 < 0 (3.34) ⇒ −8950 < 0 (3.35) ⇒ 0.7900 < 0

(3.36) ⇒ −553.7500 < 0 (3.37) ⇒ −H(c) = −0.6425 < 0

(3.38) ⇒ −H ′(c) = −421.1724 < 0,

being c = −0.0099. In particular we infer that for the physiological values of
the constitutive parameters in (3.16) the system does not have limit cycles.

3.2.2 Nonexistence of limit cycles: Numerical results

If the parameters ε, α, γ assume values outside the grey region in Fig. 3.15,
the existence of limit cycle solutions for the FitzHugh-Nagumo model is not
excluded by the results in the preceding section. Therefore in this section
we report the evidence obtained by means of a number of numerical inves-
tigations from which we may deduce that, also for the parameter values we
did not test in the previous paragraph, the dynamical system (3.13) does not
possess limit cycles. The method we use is the following.

We parameterize the nullcline w = v/γ, for w < 0, by a curvilinear
coordinate s (see Fig. 3.17). Then we study a trajectory starting from any
0 < s0 < ∞. Let s1 = f(s0) be the point where this trajectory crosses the
nullcline w = v/γ for the first time during its evolution. Then the trajectory
is a limit cycle if s1 = s0.

Fig. 3.18 shows the numerical calculation of f(s) ∀s ∈ (0, 2] for different
values of α ε and γ. The plots on the right side represent the zoom of f(s)
close to s = 0. The numerical results clearly evidence that f(s) < s for all
s, so that there are not limit cycles. The indication consistently confirmed
by the plots in Fig. 3.18 has been indeed tested for several different values of
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Figure 3.17: Characterization of the numerical method used to show the
nonexistence of periodic solutions to (3.13).

the constitutive parameters. More precisely, the variation of α and γ within
their physiological range does not affect consistently the behavior of f(s).
Slightly more remarkable, and therefore explicitly reported in the plots in
Fig. 3.18, is the increase of f with ε, though f(s) remains always sensibly
smaller than s, even for physiologically-large values of ε(ε ≈ 1).

3.2.3 Boundedness of the solutions

As we have already noted at the beginning of this section, if there exists a
solution which is unbounded for t→ +∞, the phase plane separates into two
regions, one of which contains the origin. Then, since trajectories cannot
cross each other, solutions starting out from the region that encloses the
equilibrium point, never reach the resting state. In this section we look for
conditions that prevent system (3.13) from having unbounded solutions.

For all the computations we refer to [37] and [38]. In these papers it
is shown that, if the origin is the unique fixed point of (3.13), it is an at-
tractor for the whole R

2 plane except for a bounded set. This means that
the solutions must be bounded. A sketch of the proof is presented in the
following.

By a suitable change of variables, equations (3.13) assume a more afford-
able shape, since it becomes quite easy to construct a Lyapunov function for
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Figure 3.18: Numerical estimate of |f(s)| for s ∈ (0, 2] for different values of ε, α
and γ.
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the transformed system. To this aim let
{

u = v − ve

s = w − we

,

{

y = u− γs

x = s

where (ve, we) = (0, 0) is the equilibrium point of (3.13). System (3.13)
becomes

dx

dt
= y

dy

dt
=

1

ε
(−yf1(x, y)− g1(x))

(3.41)

where

f1(x, y) = y2 + y(3γx− b2) + 3γ2x2 − b1 − 2b2γx+ γ

g1(x) = −b1γx− b2γ
2x2 + γ3x3 + x

and b1 = f ′(ve), b2 =
f ′′(ve)

2
, being f(v) = v(1−v)(v−α). If (ve, we) = (0, 0),

b1 = −α and b2 = (1 + α). Define for system (3.41) the function

V (x, y) =
y2

2
+
G(x)

ε
,

where G(x) =
∫ x

0
g1(ξ)dξ =

x2

12
(6(αγ + 1)− 4(1 + α)γ2x+ 3γ3x2). We have

V̇ (x, y) = yẏ +
g1(x)

ε
ẋ = −y

2

ε
f1(x, y).

If we show that V is a Lyapunov function for (3.41), we can deduce that its
solutions are bounded. The only equilibrium point for (3.41) is the origin.
Then, set (xe, ye) = (0, 0), V (x, y) is a Lyapunov function for (xe, ye) if

• V (xe, ye) = 0 and V (x, y) > 0 if (x, y) 6= (xe, ye);

• V̇ (x, y) ≤ 0 in R
2 \ (xe, ye).

In order to prove that the first statement is satisfied, let us rewrite V as

V (x, y) =
y2

2
+

x2

12ε
h(x)

where h(x) = 6(αγ+1)−4(1+α)γ2x+3γ3x2 is a parabola. The discriminant
of h(x) is

△ = 16(1 + α)2γ4 − 72(αγ + 1)γ3.
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Then, if △ < 0, h(x) > 0 ∀x and consequently V (x, y) > 0 ∀(x, y) 6= (0, 0).
Note that △ < 0 is equivalent to γ < 9/(2 + 2α2 − 5α) = γcr,5. Since γcr,1 <
γcr,5 for all α > 0, when the dynamical system (3.13) has one equilibrium
point, only the case △ < 0 occurs.

As a general rule, if △ ≥ 0, then h(x) has two zeros, x1 and x2, and a
local minimum point x∗. If we define

ȳ = inf{y > 0 | y
2

2
+

(x∗)2

12ε
h(x∗) > 0}

then ȳ <∞. Therefore the set where V (x, y) < 0 is a subset of A = {(x, y) ∈
R

2 | x1 < x < x2, | y |< ȳ} which is bounded. Then V (x, y) > 0 outside of
this bounded set.

It remains to prove the second requirement. We can say that

V̇ < 0 ⇔ f1(x, y) > 0 and y 6= 0.

It can be easily shown that f1(x, y) is an elliptic paraboloid. Indeed, the
quadratic form associated to f1(x, y) is represented by the matrix

B =





3γ2 3/2γ 0
3/2γ 1 0
0 0 0



 .

The eigenvalues of B are: λ1 = 0, λ2 = 3/2γ2 + 1/2 +
√

9γ4 + 1 + 3γ2/2

and λ3 = 3/2γ2 + 1/2 −
√

9γ4 + 1 + 3γ2/2. Then, since the eigenvalues
different from 0 are both positive, f1(x, y) is an elliptic paraboloid. If we
label the minimum point of the quadratic form by (xmin, ymin), it is clear
that if f1(xmin, ymin) > 0, then the paraboloid is always positive. Since

xmin =
1 + α

3γ
, ymin = 0,

the value of f1 at the minimum point is f1(xmin, ymin) = − (1+α)2

3
+α+γ = S.

Therefore, f1(x, y) > 0 ∀(x, y) if and only if S > 0, that is γ > (α2−α+1)/3 =
1/γcr,2 (see section 3.1.3).

We can easily show that 1/γcr,2 < γcr,1 if −1 < α < 2.554, while 1/γcr,2 >
γcr,1 otherwise. Since the physiological values of α are in the interval [−1, 2.554],
typically 1/γcr,2 < γcr,1, then, for 1/γcr,2 < γ < γcr,1, S > 0 while, for
γ < 1/γcr,2, S < 0. If S < 0, f1(x, y) has a negative minimum. But since f1
is a paraboloid, ∃(x̂, ŷ) such that f1(x, y) > 0 in B = {(x, y) ∈ R

2| | x |< x̂, |
y |< ŷ}. Then the set where V̇ > 0 is bounded by B. Obviously V̇ = 0 if
y = 0 or f1(x, y) = 0. In conclusion, we have proved that, when the origin is
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the only equilibrium point of (3.13), V is a Lyapunov function for the fixed
point of (3.41) on whole of the plane except for a bounded set. This set
is detected by C = {(x, y) ∈ R

2| | x |> x̂, | y |> ŷ}. Then the solutions
(x(t), y(t)) to (3.41) must be bounded. Finally, since

{

v = y + γx+ ve

w = x+ we

we deduce that if (x(t), y(t)) <∞ for t > 0, than also the solutions (v(t), w(t))
to (3.13) are bounded as t > 0. This proves that the origin is an asymptoti-
cally stable attractor for all the orbits.

3.3 Generalized FitzHugh-Nagumo models

In recent years has increasingly asserted the idea that the cardiac mechanical
activity is influenced by the electrophysiological mechanisms that drive the
potential wave spreading through cardiac tissue. At the same time, the
propagation of the electrical flow is affected by the mechanical properties
of the tissue since changes in fiber length influence the electrical activity
via the so called mechano-electrical feedback [42, 43, 44]. Therefore, a more
realistic description of the cardiac action potential should also model the laws
regulating the information exchanged between the mechanical and electrical
environment in the heart.

In this section we make a first attempt to improve the FitzHugh-Nagumo
model by accounting for the influence of the depolarization wave propaga-
tion on the mechanical characteristics of the cardiomyocytes. This influence
is clearly evidenced by the consideration that changes in the electrical prop-
erties, occurring at a micro-scale, cause the macroscopic contraction of the
cardiac fibers. Then we aim to explicitly describe in the model how the elec-
tric flow modifies the physiological parameters, that contain information on
the intrinsic characteristic of the tissue.

The most simple way for acting in accordance with this approach is to
introduce a dependence on v of the model parameters, so that a modifica-
tion in the membrane potential can affect the constitutive variables. In the
following we will choose ε as a function of v, thus considering that the ratio
between the time constants of the fast current and the slow current depends
on the membrane potential. The system we obtain is











ε(v)
dv

dt
= v(1− v)(v − α)− w

dw

dt
= v − γw.

(3.42)
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The choice of the expression for ε(v) can be suggested either by a physi-
ological reasoning or by analytical arguments. We will present, in the next,
two different procedures described in the article by Ambrosi et al. [45], where
the analytical derivation is developed, and in the paper by Aliev and Pan-
filov [25] where the law for ε(v) is fitted to experimental measures. Then we
will compare the outcomes obtained from these two methods with empirical
studies recovered in the literature, in order to understand if our results are
compatible with the real physiological behavior.

In [45] a more complete model is studied. Indeed Ambrosi et al. located
system (3.13) in a spatial framework that accounts for the spatial coupling of
the cardiac cells and consequently for the transmission of the electric signal
through cellular linking.

Their model involves the diffusion of the action potential through myocyte
interconnections (i.e gap junctions), so that the propagation velocity of the
electric impulse is influenced not only by the transmembrane currents but
also by axial flows that spread the potential through the heart tissue. The
equations characterizing this new model are derived from the cable equation
fitted to the neuronal behavior [32]. Such equation represents the mathemat-
ical description of a spatial structure that involves many circuits of Fig. 3.6
coupled together by an axial current flow, simulating a fiber, or a tissue, of
adjacent cells electrically coupled.

Then, the three-dimensional extension of the FitzHugh-Nagumo equa-
tions is a system of a diffusion-reaction equation for the potential v and a
reaction-transport equation for the gate variable w











ε0
∂v

∂t
+ div(ẋv)− div(Dgradv) = v(1− v)(v − α)− w

∂w

∂t
+ div(ẋw) = v − γw

(3.43)

where div(ẋv) represents a convection term describing the transport due to
the displacement of the material itself, div(Dgradv) accounts for the spatial
distribution of the myocytes and D is the diffusion tensor. The symbols
grad and div are respectively the gradient and the divergence with respect
to the spatial coordinates, that characterize the present configuration of the
body. We have replaced ε by ε0 in order to distinguish between the constant
parameter ε in (3.13) and the function ε(v) = ǫ0ε̂(v). Forms equivalent to
the dynamical system (3.43) can be found in [46, 43, 35, 25].

In this section we follow the calculations made in [45]. Then, at the
final step, we let the diffusion coefficient tend to zero, thus considering again
a description that neglects the spatial bonds between the cardiomyocytes,
according to the 0D setting typical of the classical FitzHugh-Nagumo model.
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We assume D as an isotropic diffusivity tensor, namely D = dI and we
consider that the tissue undergoes large deformations.

By rewriting the dynamical system (3.43) in a material frame of reference,
which is assumed to coincide with the undeformed configuration, we obtain











ε0
∂

∂t
(Jv) = Div(dDiv(JvF−T )F−T ) + Jv(1− v)(v − α)− Jw

∂

∂t
(Jw) = Jv − Jγw

(3.44)

where Div and Grad denote the divergence and the gradient operators with
respect to the material coordinates Xi, i = 1, 2, 3 and J = detF, F being
the deformation gradient (Fi,j = ∂xi/∂Xj).

To obtain (3.44) we made use of the relations linking the volume and
area elements in spatial coordinates to the same elements in the reference
configuration:

dv = JdV, nda = JF−TNdA.

By considering now that the following statement hold

Div(ϕS) = ϕDivS+ SGradϕ ∀ϕ,S

where ϕ and S are a scalar and a tensor field respectively, and by making
use of the Piola identity

Div(JF−T ) = 0 for Fi,j = ∂xi/∂Xj and J = detF

(3.44) becomes











ε0
∂

∂t
(Jv) = Div(JdC−1Gradv) + Jv(1− v)(v − α)− Jw

∂

∂t
(Jw) = Jv − Jγw

(3.45)

where C = FTF is the right Cauchy-Green strain tensor.
As in [45], we make an elementary hypothesis assuming that, in the unde-

formed configuration, at any material point X the cardiac fibers are ordered
according to one direction n(X). In other words, we assume the following
form of F

F = I+ γ(v)n⊗ n

where γ(v) prescribes the contraction of the cardiomyocytes along the direc-
tion n.

If we now consider a one-dimensional domain, representing a cardiac fiber,
and we assume the simplest expression for γ(v), namely the contraction of
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the fibers linearly depending on the potential field, the tensor field F becomes
the scalar field

F = 1− βv. (3.46)

where β is the proportionality factor. Then system (3.45) changes into















ε0
∂

∂t
((1− βv)v) = d

∂

∂X
(

1

1− βv

∂v

∂X
) + (1− βv)v(1− v)(v − α)− (1− βv)w

∂(1− βv)w

∂t
= (1− βv)(v − γw).

(3.47)
Relation (3.46) is certainly a too simplified and therefore unrealistic con-

stitutive prescription for the activation of the contraction. Indeed the mech-
anisms underlying the muscle stretch involve concentration of calcium ions
and are described by more complicated functional relations than the simple
direct proportionality between the contraction and the potential [47, 16, 42].
Nevertheless, considering so a simple relation allows us to make a first step
toward a more realistic model than the traditional FitzHugh-Nagumo with-
out leading to needless complications of the problem.

According to (3.46), in the depolarization phase, i.e. for a positive po-
tential difference, −βv < 0 so that the fiber undergoes a contraction. The
physiological value of β is 0.3, since a typical muscle contraction requires a
30% strain.

Performing time derivatives in (3.47), the limit d→ 0 yields the following
spatially-independent model















ε0
1− 2βv

1− βv

dv

dt
= v(1− v)(v − α)− w

dw

dt
− β

1− βv

dv

dt
w = v − γw,

and with some further calculations














ε0
1− 2βv

1− βv

dv

dt
= v(1− v)(v − α)− w

dw

dt
=

β

ε0(1− 2βv)
w(v(1− v)(v − α)− w) + v − γw.

(3.48)

The v-nullclines are v = 1
β
and w = v(1 − v)(v − α) while the w-nullclines

result from the equivalence

β

ε0(1− 2βv)
w(v(1− v)(v − α)− w) + v − γw = 0
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which is a second order equation in w admitting, in general, two solutions
w1 = f1(v) and w2 = f2(v).

The existence of w1 and w2 is bound to the positiveness of the following
sixth order polynomial

P (v) =β2v6 − 2β2(α + 1)v5 + (β2(α + 1)2 + 2β(αβ − 2βεγ))v4+

+ (2βεγ − 2β(αβ − 2βεγ)(α + 1))v3 + ((αβ − 2βεγ)2 − 8β2ε−
− 2βεγ(α + 1))v2 + (4βε+ 2εγ(αβ − 2βεγ))v + ε2γ2.

Figures 3.19 and 3.20 show the graph of P (v) for different values of the
parameters α, ε0 and β (changing of γ does not affect substantially the
plot of the polynomial). From these diagrams we may deduce that, for the
physiological range of values of the parameters, there exists always an interval
where P (v) < 0.
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Figure 3.19: (a) Plot of the polynomial P (v) for γ = 0.5, β = 0.3, ε0 = 0.01 and
for α = 0.1, 0.3, 0.5, 1. (b) Plot of the polynomial P (v) for γ = 0.5, β = 0.3,

α = 0.1 and for different values of ε0.

For this reason in the phase portrait of the dynamical system (3.48),
shown in Figs. 3.21 and 3.22, there is a range of values of v, which is about
(−0.2, 0), where the two w-nullclines are not defined.

Figure 3.22 is a schematic representation of the vector field behavior of
the dynamical system. We should note that the line vcr =

1
2β

represents a
critical region for the equations.

Indeed, when the potential assumes this critical value, the first equation
of (3.48) yields dv/dt = ∞. Moreover, in the case w > v(1 − v)(v − α), if
v → v−cr, dv/dt < 0 then the potential is decreasing (see Fig. 3.22), while,
if v → v+cr, dv/dt > 0 and the potential is growing. Therefore a trajectory
never really reaches the point vcr.
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Figure 3.20: Plot of the polynomial P (v) for γ = 0.5, α = 0.1, ε0 = 0.01 and for
different values of β.

On the contrary, in the case w < v(1− v)(v − α), for v → v−cr, dv/dt > 0
while for v → v+cr, dv/dt < 0; consequently the solution oscillates around the
critical line.

The above observations yield the conclusion that the phase plane portrait
of dynamical system (3.48) is certainly more involved than that of (3.13),
since some singular features of the trajectories emerge. However the abnor-
mal behavior of the solutions can be connected to the linear dependence
(3.46) assumed for the functional relation F (v). Indeed, equation (3.46) is
to be interpreted as a linear Taylor expansion close to the equilibrium value
v = 0, and the first-order truncation of the series gives rise to the occurrence
of representation errors.

The equilibrium points of system (3.48) are:

Peq,1 =(0, 0) Peq,2−3 =

(

0,
1 + α±

√

1− γcr,1/γ

2

)

Peq,4−5 =

(

1

β
,
−ξ ±

√

ξ2 − 4εβ4

2β3

)

where ξ = 1− β(1− α) + αβ2 − γεβ2.
Peq,1 and Peq,2−3 result from the intersections between the curve w =

v(1 − v)(v − α) and the w-nullclines. Indeed, for the points on the cubic
nullcline and for small values of w, the second equation in (3.48) becomes
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Figure 3.21: Phase plane of (3.48) with α = 0.1, ǫ0 = 10−3, γ = 0.5 and β = 0.3.
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Figure 3.22: Schematic description of the vector field of (3.48).

dw/dt = v − γw, that equals the second equation in (3.13).
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Furthermore, if γ < γcr,1, the origin only survives as a steady state,
and, since the Jacobian matrix of (3.48), evaluated in Peq,1, is equivalent to
(3.14)|(0,0), Peq,1 is a nodal sink.

Peq,4−5 are the intersections between v = 1/β and the w-nullclines (see
Fig. 3.22). The vector field around the equilibrium configurations in Peq,4−5

suggests that Peq,4 may correspond to a stable configuration, while Peq,5 to
an unstable equilibrium.

However this two equilibria become meaningless once realized that, before
reaching the value v = 1/β, the solution intersects the critical region v = vcr,
and, as we already commented, is prevented from moving toward the value
v = 1/β.

In conclusion we can state that, if γ < γcr,1, a solution of (3.48) (blue
dashed line in Fig. 3.21) qualitatively performs the same behavior showed for
the model (3.13). After an external shock that moves the orbit out from the
equilibrium state in the origin, the trajectory hangs the right branch of the v
nullcline until it is possible, then it moves on the left region and approaches
the steady state following the stable branch of the fast nullcline.

For this reason, in the next chapters, we will analyze equations (3.48)
neglecting the behavior of the trajectories for v ≥ 1/2β. Indeed our aim is to
study the amplitude of the oscillations of the potential before the resting state
is achieved, then we should admit the system has only one stable equilibrium
point, Peq,1, and the potential assumes values less than vcr. That is, for our
purposes we consider that models (3.13) and (3.48) perform similar behaviors
in the phase plane.

3.3.1 The Aliev-Panfilov model

In 1996 Aliev and Panfilov [25] proposed a refinement of the FitzHugh-
Nagumo scheme, with the purpose of reproducing more precisely the shape of
the cardiac action potential. More precisely, they succeed in mimicking the
plateau phase of the cardiac action potential - a feature which is absent in
the FitzHugh-Nagumo model. To this aim they calibrated the constitutive
parameters of the model by fitting the simulated restitution curve to that
experimentally developed and by considering again the dependence of some
physiological parameters from the variables of the system.

They propose the following equations

dv

dt
= −kv(v − 1)(v − α)− vw

dw

dt
= ε(v, w)(−w − kv(v − α− 1))

(3.49)
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where
ε(v, w) = ε0 +

µ1w

v + µ2

,

k controls the magnitude of the transmembrane current, and µ1 and µ2 are
computed in order to approximate as well as possible the shape of the action
potential.

In particular, following a result by Elharrar and Surawicz [48], they ap-
proximated the shape of the restitution curve by the formula

APD =
CL

a CL + b

where APD is the duration of the action potential, defined as the time inter-
val in which the voltage remains above the activation threshold (vthr) [49],
and CL denotes the cycle length, that is the sum of APD and diastolic in-
terval. a and b are coefficients adjusted to reproduce as well as possible the
experimental action potential.

With this formula, Aliev and Panfilov computed different restitution
curves for different values of µ1 and µ2, and they detected the best approxi-
mation with the values µ1 = 0.2 and µ2 = 0.3.

The nullclines of system (3.49), shown in Fig. 3.23, are respectively:

v = 0 w = k(−v2 + v(1 + α)− a) ⇒ dv/dt = 0

w = k(−v2 + v(α + 1)) w = −ε0/µ1(µ2 + v) ⇒ dw/dt = 0.

Then the equilibrium points are:

Peq,1 = (0, 0) Peq,2 = (0,−ε0
µ2

µ1

)

Peq,3−4 =
kζ ∓

√

k2ζ2 − 4k(kα + ε0µ2/µ1)

2k

(3.50)

where ζ = 1 + α + ε0/µ1.
With the values of the parameters specified in [25], i.e. k = 8, α = 0.15,

ε0 = 0.002, the equilibrium configurations in (3.50) are respectively a nodal
sink, a saddle point, a nodal source and a saddle point.

Note that, again, there exists a critical value for the potential correspond-
ing to a singularity of the system (dotted line in Fig. 3.23) such that, for finite
values of w, if v = −µ2 , dw/dt → ∞. Nevertheless we will see next that
action potentials starting with a positive value of v do never approach this
value, as they are not allowed to change sign.

Looking at the vector field depicted in Fig. 3.23, we can deduce the be-
havior of the solutions starting from different initial points. Consider the
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region enclosed by the dashed parabola, with w < −ε0 v+µ2

µ1
and v > −µ2.

The orbits starting in this region evolve with dw/dt < 0 and moves towards
infinity for w → −∞. Then again trajectories starting with w < −ε0 v+µ2

µ1

and v > −µ2 and in the region out of the dashed parabola, tend to −∞ for
w → −∞, provided w < −ε0 v+µ2

µ1
for all t > 0, even if initially they grow

with dw/dt > 0.

On the other hand, for w > −ε0 v+µ2

µ1
and v > −µ2, solutions are all

attracted by the spiral sink at the origin. In particular, if the initial point
is such that −ε0 v+µ2

µ1
< w0 < k(−v2 + v(1 + a)− a), then the corresponding

trajectory reaches the decreasing branch of the nullcline w = k(−v2 + v(1 +
a)− a) (continuous parabola), hangs on it following the vector field until the
turning point is attained, then it reaches the other fast nullcline v = 0 and
eventually approaches the sink in Peq,1 as t→ ∞.

If (v0, w0) is such that w0 > k(−v2 + v(1 + a) − a) and v0 > 0, since
dv/dt < 0 the solution may join the parabola w = k(−v2+ v(1+ a)− a) and
then behave as described before, or, if it does not cross the fast nullcline, it
may directly achieve the value v = 0 and consequently reach the equilibrium
state.

When −µ2 < v0 < 0 and w0 > k(−v2 + v(1 + a)− a), orbits evolve with
dv/dt > 0 towards the w−axis and ends at the origin for t→ ∞.

Finally, if a solution starts on the left of the line v = −µ2, it diverges to
±∞ depending on whether w ≷ −ε0 v+µ2

µ1
.

By noting that the vertical axis v = 0 is itself a trajectory, we easily
infer that the potential v is not allowed to change its sign during an action
potential, since the w−axis can not be intersected by other trajectories. A
clear consequence of this observation is that a solution starting with a positive
v0 does never reach the singular value v = −µ2.

In conclusion, since our goal is to examine oscillations of the potential
around the rest state, we must allow the potential to be negative, then we
should exclude system (3.49) from our analysis.

3.3.2 Choices for ε(v)

The dynamical systems examined in the previous section are paradigmatic
examples that prove the aptitude of some generalized FitzHugh-Nagumo type
models for reproducing in a more realistic way the physiological mechanisms
underlying the cardiac action potential. These models make use of the de-
pendence on v of the constitutive parameter ε to account, in a very simple
way, for the electro-mechanical coupling. In the Aliev-Panfilov model the re-
lation defining this dependence has been driven by a physical request, while
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in the other case an analytical procedure has led to a functional relation for
ε(v). However in both models the parameter ε is inversely proportional to v,
then it decreases as the potential grows (Fig. 3.24).
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Figure 3.24: Plot of ε(v) in (3.48) and in (3.49). Negative values of ε(v) are
accounted for the sake of clarity.

As we have already noted, ε represents a time parameter for the model
and expresses the ratio between the fast and slow dynamics of the two vari-
ables. ε makes explicit that the evolution of the action potential happens on
two timescales: the fast dynamics of the membrane potential and the slow
adaption current.

The rapid phases of the action potential have to be correlated to the
voltage-gated Na+ channels that open rapidly during membrane depolariza-
tion, while voltage-gated K+ channels generate the recovery flow responsible
for the action potential repolarization [14]. Two types of K+ currents are
involved in the cardiac action potential: the transient outward K+ currents
that cause the early rapid repolarization (phase 1 in section 1.5) and the de-
layed rectifying K+ currents determining the return to the diastolic potential
(phase 3 in section 1.5).

On the basis of these observations, in order to understand if the relations
for ε(v) in (3.48) and (3.49) are physiologically reasonable, we have com-
pared them with the time constants evolution of the fast and slow membrane
currents.

The results of such a research are discussed in the following.
Figure 3.25 shows the time constants of the fast Na+ currents (τm) and

of the delayed rectifier and transient outward K+ currents (τua and τoa) pre-
sented in [50]. Ramirez, Courtemanche and Nattel used the Luo-Rudy formu-
lation for the ions currents and the representation of the model parameters
is compared with experimental data proving that the theoretical outcomes
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approximatively fit the empirical measures.

(a) (b)

(c)

Figure 3.25: (a) Gating variable time constants of the fast Na+ currents as a
function of the potential. τm is the activation timescale, τh corresponds to the

fast inactivation and τj to the slow inactivation. (b) Gating variable time
constants of the delayed rectifier K+ currents as a function of the potential. τxs
is the slow current time constant while τxr models the rapid current. (c) Gating
variable time constants of the transient outward K+ currents as a function of the
potential. τoa and τoi are the activation and inactivation timescales respectively

(from [50]).

We observe that, at least for positive values of the potential, both the
experimental traces (depicted in Fig. 3.25 with symbols ⋄, ◦ and ✷) and
the model curves reflect the decreasing evolution of ε(v) with the increase
of v. The mismatch between the graph in Fig. 3.25 and 3.24 for negative
values of the potential may be ascribed to the dimensionless setting of the
FitzHugh-Nagumo model, that causes the resting potential to be 0 unlike the
physiological value is about −85 mV.
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Similar plots are shown in Fig. 3.26 from [51], where the decreasing be-
havior of the time constants is more evident in the plots 3.26(a) and 3.26(c).
Indeed the experimental data shown here follow quite faithfully the hyper-
bolic behavior of ε(v) in Fig. 3.24.

(a) (b) (c)

Figure 3.26: (a) Activation time constant of Na+ currents. The solid line is the
simulation by Tusscher et al. while the dashed line derives from the Luo-Rudy

model. Symbols • denote the experimental data. (b) Activation time constant of
the slow delayed rectifier current. (c) Activation time constants of the transient
outward current. The solid line describes the model parameters of Tusscher et
al., the dashed curve reports the simulations in [50] and the dotted line derives

from the model by Priebe and Beuckelman (from [51]).

In the final analysis, we mention a simple assumption made in [52] which
may summarize all the comparisons made up to now. Keldermann, Nash and
Panfilov refer to a reaction-diffusion mechanics system based on the Aliev-
Panfilov model where the ratio between the time scale of the activation and
the recovery process is defined as

ε(v) =

{

1 for v < 0.05

0.1 for v ≥ 0.05.
(3.51)

Such a discontinuous function clarifies the net reduction of the time scale
parameter after a fixed value of the potential near the resting state. Then
the feature evidenced by (3.51) could be interpreted as follows: small values of
the transmembrane potential do not affect the dynamics of the two variables
but there exists a small interval for v where the ratio between the time scales
of the evolution of v and w undergo a large decrease, then settling itself to a
new small value. In other words, there exists a range for the potential v where
the time scales of the two evolution variables are remarkably different, thus
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highlighting the slow and the fast processes that determine the occurrence
of the action potential.

74



Chapter 4

Mathematical modeling of

DAD

4.1 Introduction

This chapter is devoted to the main topic of this Thesis, that is the possi-
bility of modeling DAD occurrence in the framework of extended FitzHugh-
Nagumo models. It is our goal to merge the simple structure of the FitzHugh-
Nagumo type model, described in the previous chapters, with the character-
ization of the DAD phenomenon for the cardiac action potential presented
in chapter 2.

We associate the occurrence of DAD with the existence of particular so-
lutions of the dynamical systems, that we will call spike solutions. These
particular orbits essentially perform a certain number of finite-amplitude os-
cillations (spikes) around the equilibrium configuration and then approach
the resting state. Our analysis will focus on the first spike after the main
upstroke, because it reasonably simulates a delayed after depolarization. In-
deed, on the one side, if it triggers DAD, the subsequent evolution is to be
modified to account for the effects of the new heartbeat. On the other hand,
if the primary spike is not strong enough to induce DAD, neither will be the
following spikes, which have lower intensity than the first in order to allow
the trajectory to approach the stable equilibrium configuration.

Moreover an interesting challenge will be the tuning of DAD amplitude
that best simulates a suprathreshold depolarization and may trigger a sec-
ondary action potential.

The starting point of this study is the paper by Tonnelier [53], where
the spike solutions for a piecewise-linear FitzHugh-Nagumo model were in-
troduced. Since in the piecewise-linear approximation the motion equations
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may be integrated analytically, Tonnelier performed some analytical compu-
tations to find conditions on the parameters of the model for the appearance
of a spike in the solution.

We derived from this article the definition of spike solution, then we
focused on the non linear system (3.13) reproducing similar investigations.
Namely we look for requirements on the constitutive parameters that allow
the characterization of the occurrence of DAD in the model. Obviously our
analysis is substantially a numerical study, since we examine a nonlinear
dynamical model.

Afterwards, in order to improve the representation of the cardiac po-
tential, we amplified the research by studying spike solutions in generalized
models, and more precisely for the dynamical system (3.48).

4.2 A piecewise-linear approximation to the

FitzHugh-Nagumo model

In [53] the following piecewise linear system is analyzed:

dv

dt
= −λv + µh(v − a)− w + Iappl

dw

dt
= bv

(4.1)

where h is the Heaviside step function, and the constitutive parameters sat-
isfy the following requirements: λ > 0, µ > 0, a > 0, b > 0 and µ > λa.

It should be observed that in (4.1) ε = 1 and γ = 0. However the role
of ε is carried out by b, because if b ≪ 1 the time scale of the equations
differs and v assumes a fast dynamic while w becomes the slow variable. The
vanishing of the parameter γ is a simplification that allows the analysis of
the excitable regime only, neglecting all other possible equilibrium states.

Figure 4.1 shows the phase plane portait of (4.1): the w-nullcline coin-
cides with the v−axis and the v-nullcline has a cubic-like shape, due to the
restriction µ > λa.

The only equilibrium point is the origin and it is locally stable if g′(0) is
negative, where g(v) = −λv + µh(v − a). In fact, since the Jacobian matrix
of (4.1) evaluated at the origin is

J =

[

g′(0) −1
b 0

]

,

the fixed point is stable if and only if g′(0) < 0. Then, since the distributional
derivative of g(v) is −λ for v ≶ a and µδ(a) for v = a, if λ > 0, the origin is
a stable sink.
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In this case, after an initial input for which the potential crosses the line
[−λa,−λa+ µ], the solution (plotted in Fig. 4.1 (a) with a black continuous
line) returns to the equilibrium state, completing the action potential, as
shown in Fig. 4.1 (b).

Owing to the direction of the vector field, the segment [−λa,−λa + µ]
can be intersected only in the extreme points.

A spike solution for system (4.1) is defined as an orbit which, while evolv-
ing towards the origin, performs a finite number of spikes Nsp. A spike is
defined as the number of times that a solution crosses a fixed, positive thresh-
old with positive left time-derivative v̇−. In [53] this threshold is set to be
vthr = a which is the minimum point of the cubic-like nullcline. Therefore
whenever (v(t), w(t)) crosses the line v = a with −∞ < w(t) ≤ 0, an addi-
tional spike is counted. Moreover, the count of Nsp includes also the initial
condition if v(t0) = v0 > vthr, in order to take into account the perturba-
tion necessary to drive the system to v0 from the neighborhood of the stable
equilibrium configuration.

Tonnelier analytically proved the following results.

Proposition 2. [53] For λ2 > 4b, there exists a spike solution when a < v0 <
µ

λ
.

This solution only presents a single spike.

This is the case shown in Fig. 4.1: the only spike is due to the initial
pulse (v0, 0) (w0 = 0 is considered in order to simplify the study).

dw/dt=0

dv/dt=0
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Figure 4.1: (a) Phase portrait of system (4.1) with λ = 2, µ = 2, a = 0.4 and
b = 0.5. (b) Plot of the potential versus time.
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Proposition 3. [53] For λ2 < 4b, the spike solution of system (4.1) is able to
present more than one action potentials.

A two-spike solution is depicted in Fig. 4.2. The plot on the left evidences
the occurrence of a spontaneous action potential caused by the exceeding of
the threshold v = a.

4.3 Spike solutions in the classical FitzHugh-

Nagumo model

In this section we apply the definition of spike solution to the FitzHugh-
Nagumo dynamical system (3.13), and we will study how Nsp depends on
the constitutive parameters. As we have said above, given the non-linearity
of the problem, our results mainly arise from the numerical integration of
the FitzHugh-Nagumo motion equations corresponding to particular initial
conditions. All the results presented in this section have been published in
[54].

In order to shorten the presentation we here assume vthr > 0, Iappl = 0 and
γ < γcr,1, so that there exists a unique equilibrium configuration (veq, weq) =
(0, 0), corresponding to a spiral sink.

Definition 1. ([54]) Let (v(t), w(t)) be a solution of the dynamical system
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Figure 4.2: (a) Phase portrait of system (4.1) with λ = 0.8, µ = 2, a = 0.4, b = 1
and (v0, w0) = (1.6, 0). (b) Plot of the potential versus time.
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(3.13) which satisfies the initial condition (v(0), w(0)) = (v0, w0), and con-
verges towards a stable equilibrium configuration, that is, such that

lim
t→∞

(v(t), w(t)) = (veq, weq).

We define number of spikes of such solution the integer number of solutions
of the equation v(t) = vthr with t > 0 and v̇ > 0, with the prescription that
Nsp is to be augmented by 1 whenever v0 > vthr.

Since the functions on the right-hand side of the motion equations are
continuous functions, v̇+ = v̇− so that in the previous definition we have not
specified the nature of the derivative.

v

w

vthr

Ns = 2

Ns = 1

Ns = 0

Figure 4.3: Representation of the separatrix (ṽ(t), w̃(t)) starting from
(vthr, f(vthr)) and computed backwards in time.

The strategy we follow to study the occurrence of spike solutions for (3.13)
is based on the selection in the phase plane of a particular orbit which acts as
a separatrix for the characterization of Nsp. It is the trajectory (ṽ(t), w̃(t))
such that (v0, w0) = (vthr, f(vthr)) (Fig. 4.3).

Such a solution performs only one spike for t > 0, which corresponds to
the initial condition v(0) = v0 = vthr, because for any t > 0 the equation
ṽ(t) = vthr has no solution. This statement can be easily proved by contra-
diction. In fact let us observe that, since the initial point of the separatrix
belongs to the v-nullcline and being vthr > 0 (which implies w̃(0) < ṽ(0)/γ),
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the following relations hold

˙̃v(0) = 0 ˙̃w(0) > 0. (4.2)

Then for a positive and sufficiently small t, the second of (4.2) yields w̃(t) >
w̃(0), which, in turn, implies v̇(t) < 0. In other words, the trajectory initially
moves in the half-plane ṽ(t) < vthr (Fig. 4.4).

If we assume that (ṽ(t), w̃(t)) should cross the threshold once more for
t > 0, it must intersect the curve (v, f(v)) for some v < 0 (point P1 in
Fig. 4.4) and then it could cross v = vthr at some w < f(vthr) (point P2

in Fig. 4.4). Indeed we must notice that, due to the vector field direction

v

w

vthr

P1

P2

Figure 4.4: Hypothetic behavior of the trajectory (ṽ(t), w̃(t)) exploited to prove
by contradiction the one-spike property of the separatrix when t > 0.

sketched in Fig. 3.9, if at time t̂ a generic solution (v(t), w(t)) crosses the line
v = vthr with v̇(t̂) > 0, then w(t̂) < f(vthr).

After the crossing point P2, the trajectory, by definition 1, should evolve
toward the equilibrium configuration as t→ ∞. It means that it must enter
the grey region evidenced in Fig. 4.4 which contains the equilibrium point,
so that the solution is forced to cross itself.

This is an impossible circumstance that derives from the uniqueness of
the solution for a dynamical system.

In conclusion, we have proved that the separatrix (ṽ(t), w̃(t)) is a one-
spike solution of (3.13) for t > 0.

From the same property of the impossible self-crossing of the trajectories,
we can derive the peculiar feature of the separatrix, namely the partition of
the phase plane determined every time that it intersects the threshold line
v = vthr with w < f(vthr) for t < 0.
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Such partition is evidenced in Fig. 4.3 with the domains painted in dif-
ferent grey tones. Each domain is characterized by a specific value of Nsp,
meaning that a solution starting from a point in one domain, carries out a
number of spikes equal to Nsp associated with that domain.

4.3.1 Spike solutions with a variable threshold

Initially, and in order to follow the threshold choice in [53], we have studied
the case vthr = vmin, where vmin is the value of the potential at which the
cubic function f(v) attains a relative minimum,

vmin =
1 + α−

√
1 + α2 − α

3
. (4.3)

The chosen value depends on the parameter α, which, as we have already
observed, contains information on the threshold for the depolarization needed
to generate the potential upstroke. Then, from a conceptual point of view,
this seems the best choice for vthr, as it is related to the intrinsic potential
threshold of the model.

However we will prove by numerical simulations that vmin is not a good
value for the definition of spike solutions, because it generates non physiolog-
ically reasonable results. As a consequence, we will choose below a specific
value for vthr, independent of any physiological parameter.

The numerical analysis developed in this section focuses on the study of
the negative-time behavior of the separatrix (ṽ(t), w̃(t)), such that (ṽ0, w̃0) =
(vmin, f(vmin)), by varying the constitutive parameters in their physiological
range. For each simulation, our aim is to keep track of the number of inter-
sections of the trajectory, integrated backward in time, with the threshold
half-line (vmin, w), with w < f(vmin).

We remind that, for t > 0 and for any values of the parameters, the
separatrix has only one spike (occurring at the initial time).

In a very first simulation, we have computed, for a fixed value of γ, the
values of ε and α for which there exist trajectories with Nsp ≥ 2. The results
are illustrated in Fig. 4.5 and are to be interpreted as follows.

Let αcr(ε̄, γ̄) (for γ̄ = 0.5, 0.6, 0.8) be the abscissa of the point belonging
to the curve associated with γ̄, having ε̄ as y-coordinate. Then, there exist
trajectories in the phase plane, with Nsp ≥ 2, for γ = γ̄ and ε = ε̄, if and only
if α < αcr(ε̄, γ̄). The plot evidences that, if α is large enough, only no-spikes
or single-spike trajectories exist.

Indeed, if we let αmax(γ̄) be the maximum value of αcr(ε, γ̄) for the curve
corresponding to γ̄, then, for any α ≥ αmax(γ̄), the separatrix is a one-spike
solution ∀t, then only solutions with Nsp ≤ 1 can be found.
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Figure 4.5: (a) Critical values of α and ε for the existence of multiple-spikes
solutions when γ = 0.5, 0.6, 0.8. (b) Behavior of the function αmax(γ) defined in

the text.

Figure 4.5b illustrates how αmax depends on γ (for γ in the physiological
range of values): as γ increases, the maximum value of α, that ensures the
existence of trajectories with Nsp ≥ 2, largely decreases. This result has not
a clear physical confirmation, since γ is a fitting parameter.

Figure 4.6 reports the results of a similar study, in which however α is
kept fixed and γ is allowed to vary.

Therefore let (γcr(ε̄, ᾱ), ε̄) be a point belonging to the curve associated
with α = ᾱ (ᾱ = 0.1, 0.3, 0.5). Then, there exist trajectories with Nsp ≥
2, for α = ᾱ and ε = ε̄, if and only if γ < γcr(ε̄, ᾱ). In this case, also,
the plot evidences the existence of γmax(ᾱ) representing the maximum value
of γcr(ε, ᾱ) for the curve corresponding to ᾱ. For any γ ≥ γmax(ᾱ), only
solutions with Nsp ≤ 1 can be found.

A noteworthy difference emerges when comparing Figs. 4.5 and 4.6. In-
deed, from Fig. 4.6 we deduce that, for any α, multiple-spikes solutions hap-
pen to exist even if ε is very large, provided γ is small enough. On the
contrary, in Fig. 4.5, choosing α < αmax(γ̄), multiple-spikes solutions exist
only for ε1(α) < ε < ε2(α).

The previous analysis (and in particular Fig. 4.5) shows that decreasing
the parameter α raises the probability of having solutions with two or more
spikes. In addition, we can prove that, as critical values of α become smaller
and smaller, solutions with higher-order spikes are involved, meaning that,
if α → 0, orbits oscillate many times around the resting state.

This effect is illustrated in Fig. 4.7. Fixed α = 10−2 (a value ten times
smaller than the typical physiological choice α = 10−1), we have studied the
ondet of regions with multiple spikes by varying γ and ε. In this case, even
for quite small values of ε (note the multiplying factor 10−3 in the y-axis)
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and physiological values of γ, trajectories can perform up to five (and more)
spikes.

From a physiological point of view, the onset of orbits with many spikes
suggests that the depolarization exceeds the activation threshold many times
consecutively. This is an un-physical phenomenon since, after a delayed
after depolarization had overtaken the threshold, a triggered action potential
occurs, then the following suprathreshold DADs can not happen.

In Fig. 4.8 we can see the separatrix (ṽ(t), w̃(t)) when it performs many
spikes. Moreover Fig. 4.9(a) shows, for each spike and for different values of
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Figure 4.6: Critical values of γ and ε for the existence of multiple-spikes solutions
when α = 0.1, 0.3, 0.5.
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Figure 4.7: Occurrence of multiple-spike solutions when α = 10−2.
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ε, the value of v of the intersection point between the separatrices (associated
with each ε) and the v-nullcline which occurs after the spike (black points
in Fig. 4.8). This value corresponds to the maximum value attained by the
variable v. In Fig. 4.9(b) we have represented the value of w at which the
trajectories cross the threshold vthr (red points in Fig. 4.8). In both pictures
different graphs correspond to trajectories exhibiting different numbers of
spikes.
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Figure 4.8: Representation of the separatrix ((ṽ)(t), (w̃)(t)) when it performs
many spikes for t < 0.

It clearly emerges from this analysis that the greatest values reached by
both variables is much smaller than 1. This fact is a signal that pictures like
the one in Fig. 4.8 clearly evidence. Figure 4.8 simply represents a zoomed
view of the phase plane near the origin and the spikes performed by the
solution are the small oscillations of the orbit near the equilibrium point,
caused by the attraction of the spiral sink [55]. As a matter of fact, as we
noticed in chapter 3, the equilibrium configuration is a spiral sink, which
implies that the converging orbits perform an infinite number of turns about
the equilibrium configuration. These turns may correspond to the spikes.

In support of this argument it should be noted that in most of the lit-
erature, the action potential simulated by non-dimensional models show the
main upstroke amplitude of order of 1 [43, 25, 44, 56, 57]. In [57], for in-
stance, Wedge studied the effects of changing in the parameters on the action
potential and they concluded that the non-dimensional potential v ranges es-
sentially from −1 to 1 during the upstroke, whatever the values of ǫ, α and
γ. Analogous investigations for w confirm that the recovering variable also
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ranges over the same interval as v, for any values of the physiological param-
eters.

Then, the behaviors shown in Fig. 4.8 and 4.9 do not involve the main
depolarization wave of the cardiac action potential, so that they can not
conveniently reproduce the onset of the secondary spike after the main action
potential.
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Figure 4.9: (a) Values of the abscissa v of the intersection point between the
orbit ((ṽ)(t), (w̃)(t)) and the v-nullcline which occurs after the spike. (b)
Absolute value of the intersection point between ((ṽ)(t), (w̃)(t)) and the

threshold vthr for −∞ < w ≤ 0.

This detailed investigation, that proves the odd behavior of the solutions
under some circumstances, yields the conclusion that our choice of vthr must
be discussed in detail.

4.3.2 Spike solutions with a fixed threshold

Together with the results of the previous paragraph, to justify the need of
a better choice for vthr, we should observe that in the small-α limit, the
threshold vthr = vmin tends to 0, because from (4.3) we deduce that vmin =
1
2
α + O(α2) when α → 0 (Fig. 4.10). Hence, as the threshold approaches

the equilibrium point, multi-spikes solutions are more likely to occur since,
as we have just noticed, near the resting state the solutions wrap themselves
an infinity of times due do the spiral attraction of the origin. It is therefore
evident that we need a more reliable description, which may be independent
of the constitutive variables of the model.

According to this purpose, in the following we will consider that the
threshold vthr is set by an external factor. This represents also a more realistic
choice, since the threshold needed to propagate an excitation depends on me-
chanical properties related to the contraction of the cardiac muscle, which are
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Figure 4.10: Representation of the function vmin(α).

not represented among the constitutive parameters of the FitzHugh-Nagumo
model. Indeed, the threshold needed is almost fixed in most of the literature.

Since the aim of this work is to simulate the DAD phenomenon, and
in particular to detect suprathreshold DADs, which may trigger arrhythmic
episodes, we are interesting in comparing the values of vthr, defined in our
analysis, with the depolarization threshold that causes the occurrence of a
secondary action potential.

In the literature we found that the potential value necessary to trigger
an action potential ranges over the interval (−65,−60) mV. We mention [17]
where vthr is set to 65 mV, [18] where vthr = −62.9 mV, [58] that estimates
the interval (−70,−60) mV and [52] where vthr is approximately −60mV .
Luo and Rudy [16] interestingly computed the threshold depolarization re-
quired to trigger a spontaneous action potential in terms of [Ca2+] in the
sarcoplasmic reticulum.

With the above values for vthr, we can infer that, since the whole ampli-
tude of the upstroke is about 120 mV (from −80 mV to 40 mV), the potential
value the DAD must exceed to generate an aftercontraction is about 1/8 of
the magnitude of an action potential. Then, in a qualitative way, if we adapt
this estimate to the normalized variables of the FitzHugh-Nagumo model, re-
calling that the adimensionalized potential v in (3.13) varies from 0 to about
1 during the upstroke [56], we can say that, if the secondary spike reaches
the value of about 0.125 of the action potential magnitude, it may induce
cardiac arrhythmia. In the next we will refer to this value as vthr,phy.

We should underline, however, that the comparison between vthr and
vthr,phy represents only a qualitative test and is not sufficient to deduce the
occurrence of a triggered action potential. Indeed system (3.13) does not
model the propagation of the secondary spike and in particular it does not
contain a tool that starts an action potential if the potential exceeds a fixed
threshold. Nevertheless, we can certainly state that if the difference |vthr −
vthr,phy| is small enough, our model is reasonably realistic.
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In the following analysis the values of the parameters α, γ and ε that
ensure the onset of spike-solutions for system (3.13) are discussed.

Firstly, assuming that γ attains some fixed values and varying α and ε, we
proved that there exists a critical value for α that restricts the possibility of
having two-spikes solutions. These specific values are illustrated in Fig. 4.11
for different choices of vthr and for different values of γ. Hence, when vthr
is fixed to some particular value, the corresponding αcr(vthr, γ̄), determined
by the continuous line associated with γ̄, is such that there exist multi-spike
solutions for any value of α < αcr(vthr, γ̄), while there are no multi-spike
solutions (whatever the value of ε) if α ≥ αcr(vthr, γ̄).
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Figure 4.11: Critical values of α for the existence of multi-spikes solutions for
different values of the potential threshold and for some values of γ.

Note that the value vthr = vthr,phy can be attained, although not so easily.

The dashed line in Fig. 4.11 represents the threshold vthr = vmin for
different values of α. It is worth comparing Fig. 4.11 with Fig. 4.5(a). In fact
the intersection points between the continuous curves and the line v = vmin

in Fig. 4.11 correspond to the values αmax(γ) in Fig. 4.5.

This means that, for γ = γ̄ and for vthr = vmin, the critical value of α that
determines the disappearance of multi-spike solutions is exactly the value
αmax(γ̄) detected in Fig. 4.5.

Figure 4.12 shows a two-spike separatrix for γ = 0.3, α = 0.1, ε = 0.76
and v0 = vthr = 0.16. The left plot represents the trajectory for t < 0, while
the right graph describes the action potential performed by this solution.
Conversely to what seen in Fig. 4.8, we can observe here that the variables
v and w ranges over the appropriate interval detected in the literature.
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Furthermore, to complete the study, we found the values of ε that guar-
antee the occurrence of two-spike solutions, α and γ being fixed.

The results are shown in Fig. 4.13 when γ = 0.5. Setting vthr = v̄thr,
system (3.13) owns orbits with multiple spikes if and only if εmin(v̄thr, ᾱ) <
ε < εmax(v̄thr, ᾱ), with ᾱ = 0.15, 0.25, 0.4. When vthr is small enough the
minimum admissible value of ε(v̄thr, ᾱ) is close to zero even if it maintains
a finite value since an infinitesimal ε makes the trajectories approaching the
origin almost horizontally. On the other hand, as vthr → 0 the maximum
value of ε moves asymptotically to +∞, meaning that a small extra-spike in
the action potential is not affected by values of ε great enough.

It is clear from Fig. 4.13 that the choice of the potential threshold that
determines the emergence of multi-spike solutions is bounded by a critical
value vthr,cr (for a fixed α). Indeed, by setting α = ᾱ, the existence of solu-
tions with more than one spike is ensured by a potential threshold belonging
to the interval (0, vthr,cr(ᾱ)), identified by the red dashed line in Fig. 4.13.

In conclusion, as we could expect, the choice of vthr is not completely free,
but it is limited by some upper bound, which depends on the values of α and
γ.

4.4 Spike-induced traveling pulses

The previous sections showed that an important property of the dynamical
system (3.13) is to reproduce perturbations in the action potential that have
reference to the delayed after-depolarization occurring in the cardiac action
potential. The amplitude of these perturbations is a crucial feature, since,
in dependence of its value, the DADs can be classified as suprathreshold or
subthreshold. In the presence of a suprathreshold depolarization a sponta-
neous impulse can be activated, and the cardiomyocytes, which have not jet
reached a relaxed state, may be re-excited.

In this section we are interested in studying the possible propagation
of the DAD-triggered impulse. Indeed we would to analyze the conditions
that cause the spike-induced action potential to generate a traveling wave
that spreads into the whole cardiac tissue and may influence the heart con-
tractions. This research requires the characterization of a spatial domain
representing the cardiac texture through which the potential wave propa-
gates. In particular we have to account for the dependence of the variables
(v, w) from a spatial coordinate, so that the motions equations they must
satisfy become spatially-dependent.

For the sake of simplicity, we will consider in the following the one-
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dimensional extension of the FitzHugh-Nagumo equations,

ε
∂v

∂t
=
∂2v

∂x2
+ v(1− v)(v − α)− w

dw

dt
= v − γw

(4.4)

where we accounted for only the diffusion term (that involves the second
derivative of v) and the diffusion coefficient is set to 1. Moreover the dynam-
ics of the gating variable w is assumed to be independent from the spatial
framework.

The study of traveling pulse solutions for the dynamical system (4.4) re-
quires the close examination of two issues. First of all, if the model is refined
with the description of the diffusion process for which the potential wave is
transmitted form a cell to its neighbors, the occurrence of secondary oscilla-
tions in the signal evolution will obey quite different constraints than those
studied for the spatial- independent model (3.13). Indeed the mechanisms
of interaction between the myocytes generate a dispersion of the potential,
and the force of the initial electric impulse will be reduced since, during its
propagation, some energy is lost. For this reason we should expect that the
existence of two-spike solutions will be verified for values of the constitutive
parameters slightly different from those found in the previous analysis, and,
more in general, the extra-spikes in the action potential will occur under
more restrictive circumstance.

However, although the previous observation is to be considered, we will
develop here the study with the parameter’s range valid for (3.13), since the
general structure of the results does not substantially change.

Secondly, for the existence of a traveling wave solution in the FitzHugh-
Nagumo model some further conditions on the parameters must hold [34, 59,
60, 61, 62]. Therefore, it is obvious that, for our aims, the parameter require-
ments that allow for the onset of a traveling wave must be supplemented with
the prescriptions on the constitutive parameters for having two-spike trajec-
tories in the model. More precisely, we have to make sure that there exist
values of the parameters for which the appearance of both a propagation
pulse and a two-spike solution occur. This last question can be partially an-
swered here. Indeed some interesting results from [34] can be easily adapted
to our contest, as they prove some inequalities the parameters should satisfy
for the propagation of traveling pulses.

Obviously, by presenting here the analysis suggested in [34] we can not be
expected to exhaust the topic. It is our aim to simply support, with an easy
argument, our perception that the dynamical system (3.13) can simulates
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in a complete way the consequences of the DAD occurrence on the heart
activity.

4.4.1 Traveling pulses in the FitzHugh-Nagumo model

To look for traveling pulse solutions, we introduce the coordinate ξ = x+ ct,
where c is the wave speed, and we rewrite the dynamical system (4.4) in the
new frame of reference. Note that if c > 0 the wave moves form right to left,
while if c < 0 it propagates in the other direction.

By replacing the dynamic variables v(x, t) and w(x, t) with v = ϕ(x+ ct)
and w = ψ(x + ct) in (4.4), we obtain a system of ordinary differential
equations

εcϕ′ = ϕ′′ + f(ϕ)− ψ

cψ′ = ϕ− γψ
(4.5)

where the apex denotes the derivative with respect to ξ and f(ϕ) = ϕ(1 −
ϕ)(ϕ− α).

According with the definition of traveling wave solution [32, 34, 59], we
assume that

lim
|ξ|→∞

ϕ(ξ) = lim
|ξ|→∞

ϕ′(ξ) = lim
|ξ|→∞

ψ(ξ) = 0 (4.6)

meaning that the pulse connects the same rest point because it starts and is
completed at the steady state of the motion equations (which in the frame-
work of our analysis is the origin). The condition on the derivative of φ
underlines that the transition must happen in a smooth way.

Then, according to [34], if we assume that the functions ϕ and ψ are
regular enough, we can multiply the first equation of (4.5) by ϕ and the
second equation by ψ and we can integrate the resulting system with respect
to the variable ξ from −∞ to ∞. That is we can write

εc

∫ ∞

−∞

ϕϕ′dξ =

∫ ∞

−∞

ϕϕ′′dξ +

∫ ∞

−∞

ϕf(ϕ)dξ −
∫ ∞

−∞

ϕψdξ

c

∫ ∞

−∞

ψψ′dξ =

∫ ∞

−∞

ψϕdξ − γ

∫ ∞

−∞

ψ2dξ.

By noting that ϕϕ′ = 1/2(ϕ2)′ and ψψ′ = 1/2(ψ2)′, and by taking account
for the hypothesis in (4.6) we integrate by parts and obtain

∫ ∞

−∞

ϕf(ϕ)dξ =

∫ ∞

−∞

(ϕ′)2dξ +

∫ ∞

−∞

ϕψdξ (4.7a)

γ

∫ ∞

−∞

ψ2dξ =

∫ ∞

−∞

ψϕdξ. (4.7b)
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Analogously, if we multiply the first of (4.5) by ϕ′ and the second by ψ′ and
we again integrate, we get

εc

∫ ∞

−∞

(ϕ′)2dξ =

∫ ∞

−∞

ϕ′ϕ′′dξ +

∫ ∞

−∞

ϕ′f(ϕ)dξ −
∫ ∞

−∞

ϕ′ψdξ

c

∫ ∞

−∞

(ψ′)2dξ =

∫ ∞

−∞

ψ′ϕdξ − γ

∫ ∞

−∞

ψ′ψdξ.

Then, by observing that ϕ′ϕ′′ = 1/2(ϕ′2)′ and integrating by parts

εc

∫ ∞

−∞

(ϕ′)2dξ = −
∫ ∞

−∞

ϕ
df(ϕ)

dξ
dξ −

∫ ∞

−∞

ϕ′ψdξ

c

∫ ∞

−∞

(ψ′)2dξ =

∫ ∞

−∞

ψ′ϕdξ.

The term
∫∞

−∞
ϕdf(ϕ)

dξ
dξ can be developed as follows

∫ ∞

−∞

ϕ
df(ϕ)

dξ
dξ =

∫ ∞

−∞

(−3ϕ3 + 2ϕ2(1 + α)− αϕ)ϕ′dξ =

(−3ϕ3 + 2ϕ2(1 + α)− αϕ)ϕ |∞−∞ −
∫ ∞

−∞

ϕ(−9ϕ2 + 4ϕ(1 + α)− α) = 0,

so that we have

εc

∫ ∞

−∞

(ϕ′)2dξ = −
∫ ∞

−∞

ϕ′ψdξ

c

∫ ∞

−∞

(ψ′)2dξ =

∫ ∞

−∞

ψ′ϕdξ.

(4.8)

Since
∫∞

−∞
ϕ′ψdξ = −

∫∞

−∞
ϕψ′dξ from (4.8) we derive

ε

∫ ∞

−∞

(ϕ′)2dξ =

∫ ∞

−∞

(ψ′)2dξ. (4.9)

We now multiply the second of (4.5) by ϕ and we integrate

c

∫ ∞

−∞

ϕψ′dξ =

∫ ∞

−∞

ϕ2dξ − γ

∫ ∞

−∞

ϕψdξ. (4.10)

Relations (4.7b) and (4.10) yield

∫ ∞

−∞

ϕ2dξ = c

∫ ∞

−∞

ϕψ′dξ + γ2
∫ ∞

−∞

ψ2dξ (4.11)
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and by making use of (4.9) and (4.7b), (4.7a) can be rewritten as
∫ ∞

−∞

ϕf(ϕ)dξ =
1

ε

∫ ∞

−∞

(ψ′)2dξ + γ

∫ ∞

−∞

ψ2dξ. (4.12)

Moreover from (4.11) we get
∫ ∞

−∞

ϕf(ϕ)dξ =
1

ε

∫ ∞

−∞

(ψ′)2dξ − c

γ

∫ ∞

−∞

ϕψ′dξ +
1

γ

∫ ∞

−∞

ϕ2dξ. (4.13)

By taking account also for the second of (4.8), (4.13) becomes

∫ ∞

−∞

ϕf(ϕ)dξ = ε−1

∫ ∞

−∞

(ψ′)2dξ − c2

γ

∫ ∞

−∞

(ψ′)2dξ +
1

γ

∫ ∞

−∞

ϕ2dξ

that is
∫ ∞

−∞

[

ϕ2

γ
− ϕf(ϕ)

]

dξ =

(

c2

γ
− 1

ε

)∫ ∞

−∞

(ψ′)2dξ. (4.14)

Let us now modify condition (4.12) according to (4.8). We obtain
∫ ∞

−∞

ϕf(ϕ)dξ =
1

cε

∫ ∞

−∞

ϕψ′dξ + γ

∫ ∞

−∞

ψ2dξ

and by (4.11)
∫ ∞

−∞

ϕf(ϕ)dξ =
1

c2ε

∫ ∞

−∞

(ϕ2 − γ2ψ2)dξ + γ

∫ ∞

−∞

ψ2dξ.

All these calculations yield the final expression
∫ ∞

−∞

[

1

c2ε
ϕ2 − ϕf(ϕ)

]

dξ = γ
( γ

c2ε
− 1

)

∫ ∞

−∞

ψ2dξ. (4.15)

Let us now rewrite the integrand of the left-hand side of (4.14) as

ϕ2

[

1

γ
+ (ϕ− 1)(ϕ− α)

]

= ϕ2

[

(

ϕ− 1 + α

2

)2

+
1

γ
− (1− α)2

4

]

(4.16)

If γ < γcr,1 the previous expression is positive ∀ϕ, α, γ. Consequently in
(4.14) it must hold

c2 >
γ

ε
.

Accounting for this last statement, (4.15) yields

1

c2ε
ϕ2 − ϕf(ϕ) < 0 (4.17)
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which is a second order inequality in ϕ and has solutions if and only if
(1 + α)2 − 4(α + (εc2)−1) > 0, that is c2 > 4/(ε(1− α)2) > γ/ε.

In conclusion, in the case γ < γcr,1 we have found a lower bound for the
wave speed c, and precisely

c >
2√

ε(1− α)
. (4.18)

We now would to search for an upper bound for c. To this aim, let be
Φ(ξ) = (ϕ(ξ), ψ(ξ))T . System (4.5) becomes

Φ′ =

[

1
εc

d2

dξ2
− 1

εc
1
c

−−γ

c

]

Φ +

[

f(ϕ)
εc

0

]

.

If we multiply by ΦT we obtain

ϕϕ′ + ψψ′ =
ϕϕ′′

εc
+
ψ

c
ϕ− ϕψ

εc
− ψ2γ

c
+
ϕf(ϕ)

εc
,

and integrating this expression between −∞ and ξ yields

1

2
ϕ2 +

1

2
ψ2 =

1

εc
ϕϕη |ξ−∞ − 1

εc

∫ ξ

−∞

(ϕη)
2dη +

1

c

∫ ξ

−∞

ϕψdη−

1

εc

∫ ξ

−∞

ϕψdη − γ

c

∫ ξ

−∞

ψ2dη +
1

εc

∫ ξ

−∞

ϕf(ϕ)dη.

(4.19)

Owing to the second relation of (4.5) we can write

1

c

∫ ξ

−∞

ϕψdη − γ

c

∫ ξ

−∞

ψ2dη =
1

c

∫ ξ

−∞

ψ(cψη)dη =
1

2
ψ2,

so that (4.19) becomes

1

2
ϕ2 =

1

εc
ϕϕη −

1

εc

∫ ξ

−∞

(ϕη)
2dη− 1

εc

∫ ξ

−∞

ψ(cψη + γψ)dη+
1

εc

∫ ξ

−∞

ϕf(ϕ)dη,

where we have replaced ϕ with cψη + γψ. By performing some calculations
we get the equation

1

2
ϕ2 =

1

2εc
(ϕ2)η −

1

εc

∫ ξ

−∞

(ϕη)
2dη − 1

2ε
ψ2 − γ

εc

∫ ξ

−∞

ψ2dη +
1

εc

∫ ξ

−∞

ϕf(ϕ)dη

from which we easily derive the following inequality

1

2
ϕ2 ≤ 1

2εc
(ϕ2)η +

1

εc

∫ ξ

−∞

ϕf(ϕ)dη. (4.20)
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We now claim

ϕf(ϕ)− (1− α)2

4
ϕ2 ≤ 0.

Indeed, by recalling the calculation made in (4.16) we can write

ϕf(ϕ)− (1− α)2

4
ϕ2 = ϕ2

[

−
(

ϕ− 1 + α

2

)2

+
(1− α)2

4
− (1− α)2

4

]

=

ϕ2

[

−
(

ϕ− 1 + α

2

)2
]

≤ 0.

Therefore (4.20) can be written

ϕ2 ≤ 1

εc
(ϕ2)η +

(1− α)2

2εc

∫ ξ

−∞

ϕ2dη.

Let be G(ξ) =
∫ ξ

−∞
ϕ2dη. The previous inequality yields

G′′ − εcG′ +
(1− α)2

2
G ≥ 0.

If we now set
G(ξ) = H(ξ)e

cε

2
ξ (4.21)

we find that H(ξ) satisfies the following differential inequality

H ′′ ≥
(

ε2c2

4
− (1− α)2

2

)

H.

Owing to the definition of G(ξ),

H(ξ) = e−
cε

2
ξ

∫ ξ

−∞

ϕ2dη ≥ 0. (4.22)

Then, if the inequality c2ε2 ≥ 2(1− α)2 also holds, we get

H ′′ ≥ 0 ∀ξ ∈ (−∞,∞),

meaning that H is convex. In the following we prove that H ′′ ≥ 0 if and only
if H ≡ 0, so that if c2ε2 ≥ 2(1−α)2 the only existing traveling wave solution
for (4.5) has a constant value.

Let us start the analysis by considering the behavior of H for ξ → +∞.
It is clear that, if ϕ ∈ L2(−∞,∞), then limξ→+∞H(ξ) = 0. While, if ϕ
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is not a L2 function in the interval (−∞,∞), the following two cases may
occur:

lim
ξ→+∞

H(ξ) = ∞,

lim
ξ→+∞

H(ξ) = 0.

The first condition implies G(ξ) → +∞, due to (4.21), and, from (4.22),
ϕ→ +∞ that contradicts the requirements in (4.6) and then yields the non
existence of traveling pulse.

Assume now that the second condition holds, and let us study H(ξ) for
ξ → −∞. The traveling wave definition yields

lim
ξ→−∞

ϕ(ξ) = 0, (4.23)

then the cubic polynomial f(ϕ) can be approximated as

f(ϕ) = −ϕ3 + ϕ2(α + 1)− αϕ ∼ −αϕ

and, consequently, we can linearize system (4.5) obtaining

εcϕ′ = ϕ′′ − αϕ− ψ

cψ′ = ϕ− γψ.
(4.24)

By rewriting (4.24) in terms of the only variable ϕ, we obtain the following
ordinary differential equation

ϕ′′′ + ϕ′′
(γ

c
− εc

)

− ϕ′(α + γε)− ϕ

(

1

c
+
γα

c

)

= 0. (4.25)

Because of condition (4.23), ϕ can be represented as an exponential for ξ →
−∞, that is

ϕ ∼ Aem1ξ for ξ → −∞
where m1 > 0 is the largest root of the equation obtained by replacing in
(4.25) the exponential form of ϕ, i. e.

m3 −m2
(

εc− γ

c

)

−m(α + γε)−
(

1

c
+
γα

c

)

= 0.

Since c2 > γ/ε, all the coefficients in the previous equation are negative,
except for that of the third order term. Then, the polynomial has only one
positive root. More particularly, we can say that m1 > c, because the value
of the polynomial for m = c is negative.
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An important consequence of this result is that ϕ approaches the null
value as ξ → −∞ with a rate at least equal to the decay of ecξ. Then (4.22)
implies that H(ξ) → 0 as ξ → −∞.

These findings complete the analysis, since the following statement has
been shown

if c2ε2 ≥ 2(1− α)2 lim
|ξ|→∞

H(ξ) = 0.

Due to the convexity of H, from the previous assertion we deduce H ≡ 0 and,
from (4.22), ϕ ≡ 0. Therefore for the existence of a non-constant traveling
pulse of (4.5) the inequality c2ε2 < 2(1−α)2 must hold, and this is equivalent
to say that the wave speed must respect the upper limit

c <
√
2
(1− α)

ε
. (4.26)

By comparing (4.18) and (4.26), we discover that the constitutive parameters
must satisfy the following relation

ε <
(1− α)4

2
(4.27)

so that a potential wave propagates along a cardiac fiber. Therefore, setting

εcr,w(α) = (1−α)4

2
, we can say that the dynamical system (4.5) possesses

traveling pulse solutions for a fixed α = ᾱ, only if ε < εcr,w(ᾱ).
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Figure 4.14: Representation of condition (4.27). The grey domain contains the
values of ε that allow the definition of traveling wave solutions for (4.5).
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Figure 4.15: Critical value of the threshold corresponding to εcr,w for
α = 0.04, 0.1, 0.15.
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4.4.2 Parameters characterization for DAD onset

Inequality (4.27) is displayed in Fig. 4.14. The evidenced region encloses all
the admissible values of ε, corresponding to each α ∈ (0, 1], that allow us to
define of a traveling wave solution for (4.4).

Recalling what we noted in the introduction to this section, the first step
we should make if we aim at investigating the possible propagation of a
secondary spike throughout the tissue, is comparing the values εcr,w(α) with
critical values of ε that guarantee the occurrence of two-spike solutions in
(4.5). This admissible range of ε is shown in Fig. 4.13, for some values of α
and vthr.
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Figure 4.16: (a) Behavior of vthr,cr,w for α ∈ (0, 4] compared with the critical
threshold required to have two-spike solutions. (b) Zoomed view of the area

where the curves are very close.

99



Let us consider, for instance, ᾱ = 0.15, so that εcr,w(0.15) ∼ 0.2610.
It can be easily verified that, for choices of vthr large enough, εcr,w(0.15) <
εmin(vthr, 0.15), therefore the secondary spike that eventually follows the main
electrical upstroke if εmin(vthr, 0.15) < ε < εmax(vthr, 0.15), does not evolve
because it immediately dies out.

In other words, there exists a critical value of the threshold, vthr,cr,w such
that, if vthr > vthr,cr,w a secondary spike, if arises, does not propagate in the
cardiac fibers. Such a value can be detected in Fig. 4.15 from the intersection
point between the line ε = εcr,w(α) and the curve corresponding to the chosen
α. This special value of the threshold and the line ε = εcr,w mark off an area in
Fig. 4.15 where the extra-spikes may generate a depolarization wave. Then,
if the time scale parameter exceeds the critical value two circumstances arise:
either an after-depolarization appears but the triggered action potential is
not transmitted to the adjacent cells, or the potential does not oscillate after
the main impulse.

As α → 0, vthr,cr,w increases and the grey region if Fig. 4.15 is extended.
This behavior is evidenced in Fig. 4.16, where we described vthr,cr,w as a
function of α and we compared the resulting curve with the behavior of
vthr,cr(α) for γ = 0.5 (already shown in Fig. 4.11), where vthr,cr is the value
of the threshold depicted with a red dashed line in Fig. 4.13 . It is clear
that the value of vthr,cr,w rapidly decreases in the interval (0, 0.4] and for
α > 0.4 it assumes so small values that they can be approximated with the
null value. This means that for α > 0.4 all the secondary oscillations that
may arise do not affect the electrical process and in particular there is no
risk of arrhythmias occurring.

At the same time, as α decreases, the difference between the two crit-
ical thresholds, the one representing the upper limit for the occurrence of
traveling pulses and the other bounding from above the onset of two-spike
trajectories, is reduced. Fig. 4.16 clearly shows that vthr,cr,w < vthr,cr ∀α, and
in particular that the two curves do not have common points, even if, in a
small interval, they are very close each other. Then we evince that for all
α ∈ (0, 1] and for γ fixed to its physiological value, if εmin < ε < εcr,w all the
two-spike trajectories potentially have the ability to generate a triggered ac-
tion potential. Moreover, if α is less than a critical value that makes the DAD
amplitude able to be compared with the physiological activation threshold,
all the secondary oscillations, whose amplitude is less than vthr,cr, necessarily
generate a traveling pulse which, consequently, affects the contraction process
of the myocytes, probably causing extra-systole. This effect is in agreement
with the so called all or none response (see chapter 1) typical of the cardiac
electrical activation. Indeed the upstroke initiation is not related to the am-
plitude of the stimulus, but rather to the fact that the activation threshold is
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reached or not. Then if the potential depolarization approaches vthr,phy, the
myocyte is excited and such a stimulation easily activates the surrounding
tissue.

This is a fundamental result that, although it is based on data that are
not strictly accurate, gives an idea on the capabilities of the model in the
prediction of DAD-induced afterpotentials.

4.5 The electromechanically coupled FitzHugh-

Nagumo model

On the wake of the previous outcomes, it is clear that looking for spike-
solutions in more realistic systems allows to make a more accurate analysis
that may yield more precise predictions. Therefore in this section we study
the occurrence of extra-spikes in the solutions to system (3.48).

In a very first analysis we assign to the fiber contraction the typical value,
β = 0.3. Figure 4.17 illustrates the values α(vthr, γ̄) for γ̄ = 0.3, 0.5, 0.8 so
that system (3.48) owns solutions with multiple spikes ∀α < α(vthr).
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Figure 4.17: Critical values of α for the existence of multi-spike solutions for
system (3.48) for different values of the potential threshold and for some values

of γ.

Furthermore in Fig. 4.18 we show the values of ε0(vthr, α), with γ = 0.5.
For a fixed vthr = v̄thr and α = ᾱ, solutions of system (3.48) perform two
spikes if ε0,min(v̄thr, ᾱ) < ε0 < ε0,max(v̄thr, ᾱ), where ε0(ᾱ) is the value of ε0
on the curve associated with ᾱ.
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Figure 4.18: Range of values for ε0 ensuring the existence of multi-spikes
solutions for system (3.48) for different values of the potential threshold and for

some values of α.

Observe that, for the same α, the values of vthr,cr for (3.48) are smaller
than those for system (3.13) (depicted in Fig. 4.13). This result suggests that
increasing the accuracy in the description of the cardiac dynamics limits the
choice for the potential threshold further on.

In order to know if the last statement is true for other values of the fiber
shortening, we have studied how vthr,cr changes as a function of the parameter
β.

From an analytical point of view, if β increases, the value of vcr = (2β)−1

decreases and approaches the null value. This means that the trajectory
is more likely to cross the critical line v = vcr in the phase plane and the
region where the solution has a non-singular behavior becomes smaller and
smaller. Consequently the maximal value of the threshold for the occurrence
of multiple-spike solutions will decrease.

This phenomenon is described in Fig. 4.19, which contains the results
clarified in the following. If we fix β ∈ [0.1, 0.7] and α = 0.15, 0.25, 0.4,
there exist solutions that perform more than one spike and the amplitude of
the secondary oscillation is less or equal than vthr,cr(β, α), this value being
detected on the corresponding curve in Fig 4.19.

For β = 0.3, vthr,cr(α) coincides with the x-coordinate of the points
marked with ∗, + and • in Fig. 4.18.

From a physiological point of view, Fig. 4.19 evidences that, as the con-
tractile capacitance of the myocytes decreases, the likelihood for triggered
activity induced by delayed after-depolarization is enhanced, since vthr,cr in-
creases thus approaching the physiological potential threshold vthr,phy.
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Figure 4.19: Behavior of vthr,cr as the contraction parameter β varies in [0.1, 0.7]
and emergence of supra-threshold DADs.

Real confirmations of this phenomenon can be found in the literature. In
[63] it is observed that, while at rapid heart rates the occurrence of DAD
is more likely, the contractile force is decreased because in failing hearts
the increasing rate of stimulation reduces the shortening capacitance of the
myocytes [64, 65].

In [47] it is performed a more detailed analysis. Pogwizd et al. analyze
the causes of the contractile dysfunction of the myocyes and then prove
that similar mechanisms are involved in the appearance of DAD and then in
arrhythmogenesis.

The reduced contraction force of a myocyte is principally due to a decrease
in the release of calcium from the sarcoplasmic reticulum (SR). In turn, the
decreased SR Ca2+ release is caused by a reduction in SR Ca2+ content. In
[47] it is shown that the unloading of SR Ca2+ is due to the increased activity
of the Na+-Ca2+ exchanger. Indeed it contributes to the efflux of calcium in
exchange with sodium ions.

On the other hand, although the load of SR Ca2+ is reduced, in heart
failure a lower threshold of calcium load in sarcoplasmic reticulum is required
to trigger the spontaneous Ca2+ release and then DAD. Moreover Pogwizd
et al. show that failing heart cells exhibit a residual β−adrenergic activity
that enables the spontaneous SR Ca2+ release which may cause arrhythmias.

Fig. 4.19 emphasizes the importance of accounting for the electro-mechanical
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coupling in the model, and in particular for the process by which cellular de-
polarization causes myocytes to contract (excitation-contraction coupling).
Indeed, in dependence of the value of the muscle contraction and for some
values for α (Fig. 4.19 displays only α = 0.05), a secondary spike amplitude
may exceed the physiological threshold and trigger a spontaneous upstroke.
In other words, there exists a critical value of β that determines, for some
fixed α, the onset of supra-threshold DADs.

The importance of considering a contracting domain for the equations
had been already detected in [45]. Indeed by integrating the 1-dimensional
dynamical system (3.47), Ambrosi et al. found that the pulse propagating
in a contracting fiber has a greater speed than if it propagates in a fixed
domain. Moreover the width of the stroke is shorter. This means that the
solution computed for β = 0 yields non-negligible errors.

By looking for a traveling front solution for (3.47), thus neglecting the
recovery phase, they proved also that a condition on the parameters must
be satisfied so that a traveling front exists. To be precise, the condition
αβ < 1/2 must hold.

In the framework of the 0-dimensional setting, we have shown here that,
by adding the description of the mechanical activity of the contractile units
of the cardiac muscle, the DAD-predictive property of the FitzHugh-Nagumo
model is enriched with information on the nature of the delayed depolariza-
tion, namely its sub-threshold or supra-threshold feature.
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Conclusions and future work

In this Thesis we have analyzed a mathematical model that characterizes
and predicts possible distortions in the evolution of the electric signal gen-
erated in the cardiac cells. Indeed, the excitation process, responsible for
the contraction of the cardiac fibers, can be altered by physiological factors
and, in particular, before the cardiomyocytes have recovered the stable con-
figuration, a secondary electrical wave can be generated, thus modifying the
equilibrium of the cells and, consequently, the contraction mechanisms. The
underlying event that induces this abnormal behavior is a membrane depo-
larization that perturbs the final stage of the cardiac action potential and is
called delayed after-depolarization.

The FitzHugh-Nagumo model provides a well-suited scheme to study
these phenomena, since it can easily modified and extended to fit the par-
ticular features of the question we deal with. Although it was introduced to
reproduce the transmission of the electric signal in the neuronal membrane,
it can be easily adapted to the cardiac framework. Indeed many examples
where the cardiac action potential is modeled through the FitzHugh-Nagumo
scheme can be recovered in the literature.

In the present Thesis we have defined particular solutions of the FitzHugh-
Nagumo dynamical system, labeled spike-solutions, characterized by the num-
ber of supra-threshold turns they perform around the equilibrium point be-
fore the potential approaches the equilibrium configuration. We have consid-
ered here a set of parameter values which ensures that the dynamical system
has only one steady state, and we have proved that, for all the values of the
constitutive parameters ensuring the existence of one stable configuration,
limit cycle solutions and unbounded orbits are absent in the phase plane.
However our analysis can be easily generalized, provided that there exists a
stable attractor in the phase plane and the basin of attraction of this equi-
librium includes only trajectories approaching the rest state as t→ +∞.

A deep examination of the spike-solutions may yield a quantitative de-
scription of the DAD event, since they exactly reproduce the oscillations the
potential evolution may undergo at the final phase of the process.
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A crucial property defining such orbits is the amplitude of the first spike,
called vthr since it plays the rule of a potential threshold. Indeed this param-
eter, compared with the physiological activation threshold, can give useful
information on the nature of the spike, and in particular it can distinguish
between supra-threshold and sub-threshold DADs.

In a first analysis we assigned vthr = vmin(α), vmin(α) being the mini-
mum point of the nullcline corresponding to the variable that describes the
fast dynamics of the signal propagation. Nevertheless this proved to be an
inappropriate choice since, in correspondence with the decreasing of α, the
amplitude of the first spike considerably decreases and several-spikes solu-
tions occur. This happens because vthr is moving away from its physiological
value and the resulting oscillations are exclusively due to the spiral attraction
from the equilibrium point. Indeed the threshold should not depend on the
physiological properties of the cardiac membrane, since it must represent an
objective parameter denoting the typical physiological condition of a healthy
individual.

Therefore we focused on a fixed value of vthr, trying to calibrate its mag-
nitude on the basis of the data found in the literature. This analysis has
produced interesting results. First of all, we found that if α is large enough,
the secondary spike does not occur, whatever the choice of vthr (Fig. 4.11),
so that once the electrical impulse is triggered, the potential immediately
stabilizes around the rest state. Moreover, even if the value for α guarantees
the existence of a secondary spike, the parameter ε has to vary in a suitable
range and there exists an upper limit for the DAD amplitude, beyond which
the depolarization can be neglected.

Once we have identified the correct values of the parameters ensuring the
existence of DADs, we wondered under which conditions the depolarization
could generate a traveling pulse perturbing, in such a way, the evolution of
the action potential. In practice we investigated the occurrence of a DAD-
induced traveling wave that excites again the cardiac muscle and leads to
after-contractions of the fibers. Such a possibility needs the fulfilment of
other parameter requirements, and, specifically, the parameter ε must not
exceed a critical value (Fig. 4.6). This means that we have to restrict the ad-
missible range of values of the constitutive parameters further on. A peculiar
threshold is associated with the critical value of ε, limiting the choice of the
magnitude of the secondary spike. More interestingly, contrary to what we
would have expected, in order to induce a propagating pulse, the depolariza-
tion occurring after the repolarization phase can not exceed a critical value
of the potential, that we have called vthr,cr,w. However Fig. 4.16 shows that,
if α assumes small values, every time an extra-spike occurs, it generates a
traveling wave, since in this case, vthr,cr,w is comparable with the physiological
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values.
Obviously, the analysis of traveling pulse solutions involves the spatial

dimension of the problem and, more particularly, we must account for a dif-
fusion of the potential through the tissue, that necessarily yields a dispersion
of the initial impulse. Consequently, the occurrence of two-spike solutions
will be subjected to slightly different criterions that will account for the
scattering potential. On the basis of this observations, it is clear that the
FitzHugh-Nagumo dynamical system must be refined and extended in order
to obtain more precise results. There are several models which improve the
FitzHugh-Nagumo scheme. One of the simplest generalizations is provided
by the Aliev-Panfilov model [25], which simulates the restitution property of
cardiac tissue and fits the shape of the action potential. This model is almost
as simple as the FitzHugh-Nagumo model since, more specifically, it preserves
the shape of the cubic function f(v), the character of the equilibrium configu-
ration and the information contained in the parameters definition. However,
we showed that the Aliev-Panfilov model can not predict the emergence of
DAD, since the phase plane structure of this dynamical system does not
allow the potential to perform turns around the equilibrium configuration.
For this reason we studied other refinements of the FitzHugh-Nagumo model
that are predisposed to be DAD-predictive schemes.

A possible choice aimed at making the model more realistic requires to
consider the dependence of the parameter ε on the potential v itself [45].
In this way we may simulate properly the dependence of the activation of
the contraction of the cardiac muscle on the potential field. The analysis
of the spike-solutions for this dynamical system produces fundamental out-
comes. Indeed we have shown that, by modeling the mechanical activity
of the cardiac fibers, the DAD-predictive feature of the FitzHugh-Nagumo
model contains also information on the nature of the extra-spike, namely
its sub-threshold or supra-threshold property. In dependence of the magni-
tude of the shortening, the secondary oscillation can exceed the physiological
threshold and then trigger an action potential. More particularly if the con-
traction of the fibers is sufficiently strong, no supra-threshold DAD are gen-
erated, whereas, if it is less than a critical value, the extra-spike amplitude
reaches the activation threshold and gives rise to a secondary wave.

Such a result provides a relation between the contraction ability of the
myocytes and the possible occurrence of arrhythmias. This connection is also
proved at a molecular level, since some authors studied the consequences of a
contractile dysfunction on the ionic environment that could establish the gen-
eration of DAD. Nevertheless, since the model itself can predict the cardiac
triggered activity on the basis of the contraction magnitude, it represents
a powerful tool that enables to design and predict decisive interventions in
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prevention of arrhythmical episodes.
By collecting all the outcomes summarized here we can conclude that the

onset of a delayed after-depolarization that generates triggered arrhythmias
depends on the contemporary occurrence of many factors. First of all the
physiological parameters should assume certain critical values both for the
generation of the DAD and for its propagation. Moreover the DAD amplitude
must satisfy some requirements. In particular, it has to be at the same time
smaller that the critical values found by the numerical analysis presented
here and greater, or at least equal, to the physiological value of the potential
activation threshold. This confirms the common opinion that DAD triggered
arrhythmia represents an abnormal evolution of the cardiac dynamic which
occurs only in the case of altered physiological conditions.

As we have already noted, a natural development of the research is the
extension of the DAD-predictive model presented in this work to a multidi-
mensional setting. Indeed, a spatial-dependent model allows the study of the
diffusion of the electric wave through the cardiac domain, and, in particu-
lar, the possible propagation of a secondary action potential, triggered by a
supra-threshold DAD, that may cause the onset of abnormal heart contrac-
tions.

Moreover, once we have verified that under suitable conditions an action
potential can propagate in a multi-dimensional domain, and in particular a
supra-threshold spike may generate a secondary electric wave, the FitzHugh-
Nagumo dynamical system must be enriched with an appropriate artifice that
models in the correct way the threshold phenomenon. That is we need some
device that triggers an action potential whenever the potential v exceeds
the value vthr. With this approach, we could check if the triggered action
potential propagates along the cardiomyocyte or it burns out immediately,
thus not compromising the heart functioning.

This last topic requires the introduction of substantial changes in the
dynamical system and will be a remarkable subject for a future work. Indeed
such a study can allow an outstanding employment of the DAD predictive
model for practical purposes.
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